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Programmed cell death (PCD) is central in maintaining the life of multicellular 
organisms, during development as well as in healthy adulthood or in the context 
of disease. The best understood form of PCD is apoptosis, a caspase mediated, 
immunologically silent cell death that can be initiated in probably all cell types 
upon aging, lack of growth support, critical damage or infection. One of the key 
pathways of apoptosis involves mitochondrial outer membrane permeabilization 
(MOMP), a process tightly regulated by members of the BCL-2 family. Whereas PCD 
and apoptosis were used synonymously in the past, other forms of PCD have been 
discovered more recently, including RIPK1/3- and MLKL-dependent necroptosis, 
resulting in a necrotic phenotype, and pyroptosis. Interestingly, key components 
of the necroptotic pathway are actively suppressed by apoptotic caspases, and this 
interconnection allows a switch in cell death modalities with greatly impact on 
the host’s immune response. Recent findings link mitochondria and/or MOMP to 
non-apoptotic forms of PCD, including ferroptosis and necroptosis, putting this 
organelle even more in the center of cellular death. This article collection highlights 
the exciting potential and as yet undiscovered regulation of programmed cell death 
that can impact the immune system and its response.
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Combined Knockout of RIPK3 and
MLKL Reveals Unexpected Outcome
in Tissue Injury and Inflammation
Caroline Moerke, Florian Bleibaum, Ulrich Kunzendorf and Stefan Krautwald*

Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Kiel, Germany

Necroptosis, initially identified as a backup cell death program when apoptosis is
hindered, is a prominent feature in the etiology and progression of many human
diseases, such as ischemic injury and sepsis. Receptor-interacting protein kinase
3 (RIPK3) is the cardinal regulator of this cell death modality, recruiting and
phosphorylating the executioner mixed lineage kinase domain-like protein (MLKL) to
signal necroptosis, which is terminated by a cellular plasma membrane rupture and
the leakage of intracellular contents from dying cells. Experimental data to date
indicate that RIPK3 and MLKL is the core machinery essential for all necroptotic
cell death responses. By using CRISPR/Cas9 (clustered regularly interspaced short
palindromic repeat/CRISPR-associated protein 9) technology, we showed that Ripk3
and Mlkl knockout and Ripk3/Mlkl double-knockout in necroptosis-sensitive cell lines
extensively block susceptibility to necroptosis, in each case to an indistinguishable
degree. In vivo studies using Ripk3- or Mlkl-deficient mice validated kidney ischemia
reperfusion injury and high-dose tumor necrosis factor (TNF) availability, as druggable
targets in necroptotic-mediated pathologies. Here, we demonstrated that Ripk3 or
Mlkl-deficient mice are protected to a similar extent from kidney ischemia reperfusion
injury and TNF-induced toxicity. Remarkably, in contrast to each single knockout,
Ripk3/Mlkl double-deficient mice did not have appreciable protection from either of
the above necroptotic-mediated pathologies. Paradoxically, the double-knockout mice
resembled, in each case, the vulnerable wild-type mice, revealing novel complexities in
the mechanisms of inflammation-driven diseases, due to aberrant cell death.

Keywords: regulated cell death (RCD), necroptosis, Ripk3/Mlkl, ischemia- reperfusion injury, TNF-induced shock

INTRODUCTION

Necroptosis is a caspase-independent programmed cell death mediated by receptor-interacting
protein kinase 3 (RIPK3) activation (Cho et al., 2009; He et al., 2009; Zhang et al., 2009) and
the pursuant RIPK3-mediated phosphorylation of its pseudokinase substrate mixed lineage kinase
domain-like protein (MLKL) (Sun et al., 2012). This initial stimulus prompts a conformational
change that results in MLKL oligomerization, plasma membrane translocation, and lethal
permeation of the lipid bilayer, leading to the release of cellular content, which triggers an
inflammatory response (Rickard et al., 2014b). However, the exact mechanism by which activated
MLKL kills cells remains unclear (Petrie et al., 2017). The availability of pharmacological inhibitors,
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especially mice harboring deletions that are indispensable for
necroptotic pathway signaling, facilitates research investigating
the mechanisms of necroptosis and its relevance to diseases such
as ischemic injury and sepsis (Krautwald et al., 2016). However,
the role of natural necroptosis in human diseases remains
controversial, and the potential off-target effects of the applied
inhibitors besides kinase activity and existing scaffold functions
of the involved proteins often complicate the interpretation of
findings. In this context, our previously published data verify
that pharmacologically blocking necroptosis may worsen diseases
such as acute pancreatitis or vascular leakage syndrome, which is
triggered by a high-dose tumor necrosis factor (TNF). The latter
is often considered a model for systemic inflammatory response
syndrome (SIRS) (Duprez et al., 2011). We recently discovered
that necroptosis and ferroptosis, a caspase-independent regulated
cell death modality characterized by the accumulation of lethal
lipid reactive oxygen species (ROS) which is produced through
iron-dependent lipid peroxidation, are alternative cell death
pathways that operate in acute kidney failure, where each
death modality can compensate for another when one is
compromised (Müller et al., 2017). In contrast, we, along with
others have reported that Ripk3 deficiency and catalytically
inactive RIPK1 are beneficial in renal ischemia-reperfusion injury
(IRI), Gaucher’s disease, myocardial infarction, and the high-
dose TNF shock model (Linkermann et al., 2013; Polykratis
et al., 2014; Vitner et al., 2014; Zhang et al., 2016). Deleting
either Ripk3 or Mlkl can suppress skin inflammation in RIPK1-
deficient mice (Dannappel et al., 2014), and the fact that Ripk3 or
Mlkl deficiency ameliorates liver inflammation and splenomegaly
in Sharpin-deficient mice (Rickard et al., 2014a), suggesting
that MLKL follows RIPK3 directly in necroptotic signaling,
therefore confers a similar degree of protection against the
abovementioned necroptotic-mediated injuries. Nevertheless,
there are also studies indicating that Mlkl deficiency confers
less protection in the kidney IRI model compared to Ripk3
deficiency, and in contrast to Ripk3-deficient mice, Mlkl-deficient
mice resemble wild-type mice in their sensitivity to hypothermia
induced by low-dose TNF (Newton et al., 2016a). However,
our present findings reveal that when mice experience severe
renal IRI, or when treated intravenously with a high-dose TNF,
the differences between Ripk3-deficient and Mlkl-deficient mice
are less apparent, substantiating the premise that RIPK3 cannot
exacerbate these injuries independently of MLKL. Interestingly,
our findings describe for the first time that combined knockout
of the necrosome members Ripk3 and Mlkl in an entire organism
antagonizes the beneficial effect of the respective single knockouts
in necroptotic cell death processes of severe IRI and TNF-
induced shock.

MATERIALS AND METHODS

Cell Culture
NIH3T3 cells (American Type Culture Collection) were cultured
in Dulbecco’s modified Eagle’s medium (Gibco/Thermo Fisher
Scientific, Darmstadt, Germany) supplemented with 10%
(vol/vol) fetal calf serum, 100 U/ml penicillin, and 100 µg/ml

streptomycin in a humidified atmosphere containing 5% CO2.
Generation of the CRISPR/Cas9 NIH3T3 knockout cells has
been described previously (Müller et al., 2017). To exclude
feasible off-target effects or clonal variations within the cell
population, we generated and analyzed three guide RNAs per
target gene and observed congruent outcomes in each case. Each
gene knockout was validated via a western blot analysis of the
protein expression, as described previously (Müller et al., 2017).

Reagents and Antibodies
Recombinant purified TNFα, annexin V-fluorescein
isothiocyanate (FITC) antibody, and 7-amino-actinomycin
D (7-AAD) antibody was obtained from BioLegend (London,
United Kingdom). The zVAD-fmk (herein referred to as zVAD)
was obtained from Bachem (Weil, Germany); erastin and
1S,3R-RSL3 (herein referred to as RSL3) obtained from Tocris,
Bio-Techne (Wiesbaden, Germany).

Cell Death Detection in vitro
Phosphatidylserine exposure to the outer cell membrane
of apoptotic cells, or at the inner plasma membrane of
necrotic cells and 7-AAD incorporation into necrotic cells, was
quantified by fluorescence-activated cell sorting (FACS). Staining
was performed according to the manufacturer’s instructions
(BioLegend). Fluorescence was analyzed using an FC 500 flow
cytometer (Beckman Coulter, Krefeld, Germany).

Mice
All mice (8 weeks old) used were on C57BL/6 background and
age-, sex-, and weight-matched. The mice were received and
independently bred as wild-type, Ripk3 knockout, Mlkl knockout,
and Ripk3/Mlkl double-knockout colonies, and mice of different
genotypes were not housed in the same cages. The Ripk3 and
Mlkl single knockout mice as well as the Ripk3/Mlkl double-
knockout (dko) mice have been described previously (Newton
et al., 2004; Murphy et al., 2013; Tanzer et al., 2015). All mice
were kept on a standard diet and a 12-h day/night rhythm. All
in vivo experiments were performed according to the Protection
of Animals Act, after receiving approval from the German local
authorities (MELUND, Kiel, Germany, application nos. V311-
72241.121-4 and V242-30421/2016).

TNFα-Induced Shock Model
Recombinant carrier-free murine TNFα was obtained from R&D
Systems (Bio-Techne, Wiesbaden, Germany). Each female mouse
received a single bolus of 1 mg murine TNFα/kg body weight in
a total volume of 200 µl phosphate-buffered saline, via the tail
vein. The animals were placed under permanent observation and
survival was checked every 15 min.

Ischemia-Reperfusion Injury (IRI)
Kidney IRI was induced via a midline abdominal incision and
40-min bilateral renal pedicle clamping using microaneurysm
clamps (Aesculap, Inc.) as described previously (Moerke et al.,
2018). Male mice were sacrificed 48 h after reperfusion, and
serum urea and creatinine values were measured.
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FIGURE 1 | In contrast to the parental NIH3T3 cells, Ripk3 knockout (ko) NIH3T3 cells, Mlkl knockout (ko) and Ripk3/Mlkl double-knockout (dko) NIH3T3 cells are
protected from necroptosis. (A) Cell death was induced by the addition of 100 ng/ml TNFα + 25 µM zVAD for 24 h at 37◦C. Necroptotic cell death was quantified by
FACS using 7-AAD and phosphatidylserine accessibility (annexin V staining) as markers. A representative FACS dot plot of three independent experiments is shown.
(B) Detection of ferroptosis in NIH3T3 clones. All cells were treated for 24 h at 37◦C with 2 µM erastin or 2.5 µM RSL3. Ferroptotic cell death was quantified by
FACS using 7-ADD and annexin V. Results are the mean ± SD of three independent experiments. ∗p < 0.05 and ∗∗p < 0.02.

Statistical Methods and Analyses
For all experiments, dataset differences were considered
statistically significant when p-values were lower than 0.05,
unless otherwise specified. Statistical comparisons were
performed using the Mann–Whitney U-test with exception
of the survival curves which were analyzed using the Gehan-
Breslow-Wilcoxon test and the log rank test (Mantel-Cox).
Asterisks in the figures/legends specify statistical significance
(∗p < 0.05, ∗∗p < 0.02, and ∗∗∗p < 0.001). Statistics are indicated
as SD, unless otherwise specified.

RESULTS

Recently, we have shown that two forms of regulated cell death,
necroptosis and ferroptosis, are alternative, in that resistance
to one pathway sensitizes cells to death via the other pathway,
suggesting a mechanism by which one regulated pathway
compensates for the other, when one is compromised (Müller
et al., 2017). Regarding increased susceptibility to ferroptosis,
we obtained these novel insights by specific deletion of Mlkl.
In contrast to RIPK3, MLKL is so far known to merely play a
role in necroptosis (Alvarez-Diaz et al., 2016). Here, however,

we confirmed in vitro the aforementioned hypersensitization to
ferroptosis and consequently coordinated the regulation of these
two pathways in a similar manner by deleting Ripk3 instead
of Mlkl. However, as RIPK3 exerts its functions independently
of necroptosis (Moriwaki and Chan, 2017), we were interested
in examining whether the combined loss of Ripk3 and Mlkl
genes was equivalent to single gene knockouts. As illustrated
in Figure 1A, the Ripk3/Mlkl dko protected the cells from
TNF/zVAD-induced necroptosis just as effectively as each single
knockout. As expected, our previously described time- and
concentration-dependent hypersensitivity to ferroptosis in Mlkl
knockout cells, was also present in the Ripk3 knockout cells.
To prove this, we depicted a representative experiment in
which cells were treated for 24 h at 37◦C with 2 µM erastin
and with 2.5 µM RSL3 (Figure 1B), small molecules that
trigger this unique iron-dependent form of regulated cell death
(Dixon et al., 2012). However, even more astonishing were
the findings regarding the Ripk3/Mlkl dko cells in this setting.
Paradoxically, hypersensitivity of the dko cells, to erastin- and
RSL3-induced ferroptosis, which was detectable across a range
of erastin and RSL3 concentrations (1–10 µM, data not shown)
was, in contrast to each single knockout, almost completely
abrogated (Figure 1B). Although the dko cells were still protected
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FIGURE 2 | Combined knockout of Ripk3 and Mlkl in an entire organism antagonizes the beneficial effect of each single knockout in ongoing necroptotic cell death
processes. (A) For establishing renal IRI, mice (n = 16 per group) underwent 40-min bilateral renal pedicle clamping followed by 48-h reperfusion. The wild-type mice
had notably higher plasma levels of serum creatinine and urea than the Ripk3 and Mlkl knockout animals. The remarkable protection of each single knockout in the
model could not be detected in the Ripk3/Mlkl dko animals. (B) Ripk3 and Mlkl deficiency protects against TNF-mediated shock, induced by a high-dose TNF (1 mg
murine TNFα/kg body weight). Mice with combined knockout of both genes resembled the vulnerable wild-type mice and the superior effect and survival benefit of
each single knockout was abolished nearly completely in the dko model (n = 18 per group). Survival is presented as a Kaplan–Meier plot. ∗p < 0.05, ∗∗p < 0.02, and
∗∗∗p < 0.001.

completely from TNF/zVAD-induced necroptosis (Figure 1A),
in contrast to each single knockout, the dko conferred no
increased sensitization to ferroptosis and the cells behaved more
like the parental unedited NIH3T3 cells. Initially, we thought
that this was probably a cell-specific phenomenon, especially
as the observed effect of the absent hypersensitivity of the
dko cells to ferroptosis could also not be reproduced using
CRISPR/Cas9-edited Ripk1/Mlkl double-deficient NIH3T3 cells
(data not shown). However, the strong contrast of the dko
of the immediately adjacent necrosome members RIPK3 and
MLKL perplexed us.

Mouse models have been the key biological tools for
defining regulated cell death in development, physiology, and
homeostasis. So far, the major phenotypes observed in mice
deficient in cell death pathway genes, by the intercrossing of
different null alleles, have been described (reviewed in Belizario
et al., 2015). Crossing transgenic knockout mouse models
deficient in two and more genes has helped elucidate cell death
pathways and the essential role of the downstream regulator
genes involved in several inflammatory pathologies. However,
in contrast to Ripk1/Mlkl dko animals, Ripk3/Mlkl dko animals
are anatomically normal, viable, and fertile (Tanzer et al., 2015).
For this reason, we tested Ripk3/Mlkl dko animals in direct
comparison with both single knockouts in an acute kidney IRI
model and in TNF-mediated shock. To track the benefit of genetic

deficiency in core necroptotic signaling pathway components, we
induced a severe renal IRI in which mice underwent 40-min of
bilateral renal pedicle clamping followed by 48-h reperfusion.
As shown in Figure 2A, the wild-type mice exhibited elevated
serum creatinine and urea levels, indicating compromised kidney
function. As described previously, Ripk3 (Linkermann et al.,
2013) and Mlkl knockout (Müller et al., 2017) conferred
distinct protection in this model. As mentioned before, the
extent of kidney damage and protection in this model depends
greatly on the duration of ischemia and following reperfusion.
Nevertheless, the Ripk3/Mlkl dko animals were, astonishingly,
in contrast to the single knockout animals, barely protected in
this cell death modality, but were rather comparable to their
genetically unedited wild-type counterparts. Interestingly, the
TNFα-mediated inflammatory in vivo model presented a similar
scenario. Ripk3 and Mlkl single deficiency each protected against
TNF-mediated shock convincingly (Figure 2B), whereas dko did
not. However, as we have reported previously, Ripk3 knockout
mice exhibit prolonged survival following high-dose TNFα

injection (Linkermann et al., 2013). In contrast to the missing
protection in this pathophysiological model of TNF-induced
shock, when Mlkl-deficient mice received intravenous low-
dose TNF (Newton et al., 2016a), their substantially prolonged
survival in this setting (high-dose TNFα) resembled that of
the Ripk3-deficient mice. However, the combined Ripk3/Mlkl
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dko nearly completely abolished the superior effect and survival
benefit of each single knockout (Figure 2B), indicating that
the complex regulation and interconnectivity among a single
regulated necrosis pathway is still not fully understood.

DISCUSSION

Necroptotic cell lysis and the resultant release of
proinflammatory mediators are thought to cause inflammation
in necroptotic disease models. Preferentially, investigators
have utilized mice lacking Ripk3 as a necroptosis deficiency
model, even where caspase inhibitors were absent under the
conditions investigated. However, it is now emerging that
RIPK3 almost certainly has pro-inflammatory effects clearly
separable from its role in necroptosis (Kearney and Martin,
2017). Therefore, pseudokinase MLKL is currently viewed as
the sole and main effector of necroptosis (Hildebrand et al.,
2014). Nevertheless, it was shown recently that Staphylococcus
aureus infection in Ripk3- versus Mlkl-deficient animals has
opposing outcomes: Mlkl deficiency led to a delayed clearance
of the bacterium, increased inflammation, and a worse outcome,
whereas Ripk3 deficiency led to an improved bacterial clearance
and reduced inflammation (Kitur et al., 2016), showing that
the loss of Ripk3 is not equivalent to the loss of Mlkl and/or
necroptosis and verifying that signaling is usually far more
complex. Interestingly, to date, virtually no in vivo data have
been published using Ripk3/Mlkl double-deficient animals.

Our investigation of Ripk3 and Mlkl single knockout mice,
in established preclinical models of severe AKI and high-
dose TNF-induced shock, respectively, did not yield contrasting
data. In our experience, knocking out Ripk3 or Mlkl leads to
remarkable and quantitatively indistinguishable protection from
injury in both in vivo models. However, reported differences
of these single-null animals are often evident in rather mild
conditions triggering the abovementioned clinical disorders
(Newton et al., 2016a). Nevertheless, our results regarding
the Ripk3/Mlkl dko mice remain a conundrum. We predicted
that the dko animals would receive the same protective effect
in the AKI and TNF-induced shock models, as each single
knockout, or rather that in their limited ability to stimulate
inflammasomes and the inability to activate necroptosis, the dko
mice would have increased protection against these pathologies.
However, none of this occurred. The dko mice in each case
unexpectedly resembled the vulnerable wild-type mice, and the
former protective effect in both in vivo models, which was
mediated by Ripk3 or Mlkl loss, respectively, was completely
abrogated. As all mice were backcrossed to an identical C57BL/6
background and as all animals were obtained from our facility,
we postulate that differences in colony microflora, or similar,
were not responsible for this discovery. Mechanistically, we
eschew the hypothesis that immunoreactivity may explain our
controversial findings, particularly when in a published animal
model of TNF hypersensitivity, the skin principally underwent
apoptosis while the spleen and liver in these identical mice
were sensitized to necroptosis (Rickard et al., 2014a). So far,
the physiological stimulus or insult that dictates the regulated

death modality induced in vivo remains unmanageable, but
a feasible possibility is that merely effector abundance might
dictate which death signaling occurs. Nevertheless, we assessed
pooled data from several independent experiments to increase
the statistical power. The AKI approach was repeated twice
with eight mice per group; the TNF-induced shock model
was replicated three times with six animals per group. As we
obtained identical results in each case, we are convinced that
it is a reliable consequence of the simultaneous Ripk3 and
Mlkl knockout. Our data unambiguously demonstrates that
necroptosis is not the only cell death modality implicated in both
abovementioned pathologies and raises the question about the
existing functions of RIPK3, and above all, of MLKL beyond
necroptosis, and if so, how are they differentially regulated?
The concept that combined deficiency in pro-inflammatory and
necroptotic signaling in these models switches the etiopathology
at onset completely toward ferroptosis, which we have proved,
although only in the AKI model with necroptotic-resistant
Mlkl knockout mice (Müller et al., 2017), can be verified only
after developing durable, less serum-labile ferroptosis inhibitors.
Furthermore, there is justifiable doubt that necroptosis is the
sole initiator of inflammation. Interestingly, Ripk3 knockout
mice in a dextran sulfate sodium (DSS)-induced colitis model
had enhanced sensitivity, suggesting that RIPK3 may also have
tissue regenerative functions (Moriwaki et al., 2014). Presumably,
processes such as mitochondrial ROS generation can contribute
to necroptosis, but will be bypassed, activating the necroptotic
pathway downstream at the RIPK3 or MLKL level. However, our
own discovery of MLKL-independent necroptosis (Günther et al.,
2016) and the recently published report of RIPK3-independent
necroptosis (Zhang et al., 2016), and the unexpected function of
ZBP1 (Z-DNA binding protein 1) in the skin (Lin et al., 2016) and
thymus (Newton et al., 2016b), suggests that regulated necrosis
pathways still have secrets and further related work would be both
essential and highly informative.

AUTHOR CONTRIBUTIONS

SK and UK designed the research. CM and FB performed
the experiments. CM, FB, UK, and SK analyzed the data. CM
prepared the figures. SK wrote the paper.

FUNDING

SK was funded by the Deutsche Forschungsgemeinschaft [DFG,
German Research Foundation, Projektnummer, 400339789
(KR 1690/6-1)]. This work was additionally funded by the
Medical Faculty of CAU Kiel, Germany (CM and SK) and by Dr.
Werner Jackstädt-Stiftung (SK).

ACKNOWLEDGMENTS

We thank Janina Kahl, Maike Berger, and Katja Bruch for their
excellent technical assistance.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 February 2019 | Volume 7 | Article 198

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00019 February 18, 2019 Time: 15:54 # 6

Moerke et al. The Unexpected Complexity of Departure

REFERENCES
Alvarez-Diaz, S., Dillon, C. P., Lalaoui, N., Tanzer, M. C., Rodriguez, D. A., Lin, A.,

et al. (2016). The pseudokinase MLKL and the kinase RIPK3 have distinct roles
in autoimmune disease caused by loss of death-receptor-induced apoptosis.
Immunity 45, 513–526. doi: 10.1016/j.immuni.2016.07.016

Belizario, J., Vieira-Cordeiro, L., and Enns, S. (2015). Necroptotic cell death
signaling and execution pathway: lessons from knockout mice. Mediators
Inflamm. 2015:128076. doi: 10.1155/2015/128076

Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., et al.
(2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates
programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123.
doi: 10.1016/j.cell.2009.05.037

Dannappel, M., Vlantis, K., Kumari, S., Polykratis, A., Kim, C., Wachsmuth, L.,
et al. (2014). RIPK1 maintains epithelial homeostasis by inhibiting apoptosis
and necroptosis. Nature 513, 90–94. doi: 10.1038/nature13608

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason,
C. E., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell
death. Cell 149, 1060–1072. doi: 10.1016/j.cell.2012.03.042

Duprez, L., Takahashi, N., Van, H. F., Vandendriessche, B., Goossens, V., Vanden
Berghe, T., et al. (2011). RIP kinase-dependent necrosis drives lethal systemic
inflammatory response syndrome. Immunity 35, 908–918. doi: 10.1016/j.
immuni.2011.09.020

Günther, C., He, G. W., Kremer, A. E., Murphy, J. M., Petrie, E. J., Amann, K., et al.
(2016). The pseudokinase MLKL mediates programmed hepatocellular necrosis
independently of RIPK3 during hepatitis. J. Clin. Invest. 126, 4346–4360. doi:
10.1172/JCI87545

He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., et al. (2009). Receptor
interacting protein kinase-3 determines cellular necrotic response to TNF-
alpha. Cell 137, 1100–1111. doi: 10.1016/j.cell.2009.05.021

Hildebrand, J. M., Tanzer, M. C., Lucet, I. S., Young, S. N., Spall, S. K., Sharma, P.,
et al. (2014). Activation of the pseudokinase MLKL unleashes the four-helix
bundle domain to induce membrane localization and necroptotic cell death.
Proc. Natl. Acad. Sci. U.S.A. 111, 15072–15077. doi: 10.1073/pnas.1408987111

Kearney, C. J., and Martin, S. J. (2017). An inflammatory perspective on
necroptosis. Mol. Cell 65, 965–973. doi: 10.1016/j.molcel.2017.02.024

Kitur, K., Wachtel, S., Brown, A., Wickersham, M., Paulino, F., Penaloza, H. F., et al.
(2016). Necroptosis promotes staphylococcus aureus clearance by inhibiting
excessive inflammatory signaling. Cell Rep. 16, 2219–2230. doi: 10.1016/j.celrep.
2016.07.039

Krautwald, S., Dewitz, C., Fändrich, F., and Kunzendorf, U. (2016). Inhibition
of regulated cell death by cell-penetrating peptides. Cell. Mol. Life Sci. 73,
2269–2284. doi: 10.1007/s00018-016-2200-7

Lin, J., Kumari, S., Kim, C., Van, T. M., Wachsmuth, L., Polykratis, A., et al. (2016).
RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature
540, 124–128. doi: 10.1038/nature20558

Linkermann, A., Bräsen, J. H., Darding, M., Jin, M. K., Sanz, A. B., Heller, J. O., et al.
(2013). Two independent pathways of regulated necrosis mediate ischemia-
reperfusion injury. Proc. Natl. Acad. Sci. U.S.A. 110, 12024–12029. doi: 10.1073/
pnas.1305538110

Moerke, C., Jaco, I., Dewitz, C., Müller, T., Jacobsen, A. V., Gautheron, J., et al.
(2018). The anticonvulsive Phenhydan suppresses extrinsic cell death. Cell
Death Differ. doi: 10.1038/s41418-018-0232-2 [Epub ahead of print].

Moriwaki, K., Balaji, S., McQuade, T., Malhotra, N., Kang, J., and Chan, F. K.
(2014). The necroptosis adaptor RIPK3 promotes injury-induced cytokine
expression and tissue repair. Immunity 41, 567–578. doi: 10.1016/j.immuni.
2014.09.016

Moriwaki, K., and Chan, F. K. (2017). The inflammatory signal adaptor RIPK3:
functions beyond necroptosis. Int. Rev. Cell Mol. Biol. 328, 253–275. doi: 10.
1016/bs.ircmb.2016.08.007

Müller, T., Dewitz, C., Schmitz, J., Schröder, A. S., Bräsen, J. H., Stockwell, B. R.,
et al. (2017). Necroptosis and ferroptosis are alternative cell death pathways

that operate in acute kidney failure. Cell. Mol. Life Sci. 74, 3631–3645. doi:
10.1007/s00018-017-2547-4

Murphy, J. M., Czabotar, P. E., Hildebrand, J. M., Lucet, I. S., Zhang, J. G.,
Alvarez-Diaz, S., et al. (2013). The pseudokinase mlkl mediates necroptosis via
a molecular switch mechanism. Immunity 39, 443–453. doi: 10.1016/j.immuni.
2013.06.018

Newton, K., Dugger, D. L., Maltzman, A., Greve, J. M., Hedehus, M., Martin-
McNulty, B., et al. (2016a). RIPK3 deficiency or catalytically inactive
RIPK1 provides greater benefit than MLKL deficiency in mouse models of
inflammation and tissue injury. Cell Death Differ. 23, 1565–1576. doi: 10.1038/
cdd.2016.46

Newton, K., Sun, X., and Dixit, V. M. (2004). Kinase RIP3 is dispensable for normal
NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor
receptor 1, and Toll-like receptors 2 and 4. Mol. Cell Biol. 24, 1464–1469.
doi: 10.1128/MCB.24.4.1464-1469.2004

Newton, K., Wickliffe, K. E., Maltzman, A., Dugger, D. L., Strasser, A., Pham, V. C.,
et al. (2016b). RIPK1 inhibits ZBP1-driven necroptosis during development.
Nature 540, 129–133. doi: 10.1038/nature20559

Petrie, E. J., Hildebrand, J. M., and Murphy, J. M. (2017). Insane in the membrane:
a structural perspective of MLKL function in necroptosis. Immunol. Cell Biol.
95, 152–159. doi: 10.1038/icb.2016.125

Polykratis, A., Hermance, N., Zelic, M., Roderick, J., Kim, C., Van, T. M., et al.
(2014). Cutting edge: RIPK1 Kinase inactive mice are viable and protected from
TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543. doi: 10.4049/
jimmunol.1400590

Rickard, J. A., Anderton, H., Etemadi, N., Nachbur, U., Darding, M., Peltzer, N.,
et al. (2014a). TNFR1-dependent cell death drives inflammation in Sharpin-
deficient mice. eLife 3:e03464. doi: 10.7554/eLife.03464

Rickard, J. A., O’Donnell, J. A., Evans, J. M., Lalaoui, N., Poh, A. R., Rogers, T.,
et al. (2014b). RIPK1 regulates RIPK3-MLKL-driven systemic inflammation
and emergency hematopoiesis. Cell 157, 1175–1188. doi: 10.1016/j.cell.2014.
04.019

Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., et al. (2012). Mixed lineage
kinase domain-like protein mediates necrosis signaling downstream of RIP3
kinase. Cell 148, 213–227. doi: 10.1016/j.cell.2011.11.031

Tanzer, M. C., Tripaydonis, A., Webb, A. I., Young, S. N., Varghese, L. N., Hall, C.,
et al. (2015). Necroptosis signalling is tuned by phosphorylation of MLKL
residues outside the pseudokinase domain activation loop. Biochem. J. 471,
255–265. doi: 10.1042/BJ20150678

Vitner, E. B., Salomon, R., Farfel-Becker, T., Meshcheriakova, A., Ali, M., Klein,
A. D., et al. (2014). RIPK3 as a potential therapeutic target for Gaucher’s disease.
Nat. Med. 20, 204–208. doi: 10.1038/nm.3449

Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., et al.
(2009). RIP3, an energy metabolism regulator that switches TNF-induced cell
death from apoptosis to necrosis. Science 325, 332–336. doi: 10.1126/science.
1172308

Zhang, T., Zhang, Y., Cui, M., Jin, L., Wang, Y., Lv, F., et al. (2016).
CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-
induced myocardial necroptosis. Nat. Med. 22, 175–182. doi: 10.1038/nm.
4017

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Moerke, Bleibaum, Kunzendorf and Krautwald. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 February 2019 | Volume 7 | Article 199

https://doi.org/10.1016/j.immuni.2016.07.016
https://doi.org/10.1155/2015/128076
https://doi.org/10.1016/j.cell.2009.05.037
https://doi.org/10.1038/nature13608
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1016/j.immuni.2011.09.020
https://doi.org/10.1016/j.immuni.2011.09.020
https://doi.org/10.1172/JCI87545
https://doi.org/10.1172/JCI87545
https://doi.org/10.1016/j.cell.2009.05.021
https://doi.org/10.1073/pnas.1408987111
https://doi.org/10.1016/j.molcel.2017.02.024
https://doi.org/10.1016/j.celrep.2016.07.039
https://doi.org/10.1016/j.celrep.2016.07.039
https://doi.org/10.1007/s00018-016-2200-7
https://doi.org/10.1038/nature20558
https://doi.org/10.1073/pnas.1305538110
https://doi.org/10.1073/pnas.1305538110
https://doi.org/10.1038/s41418-018-0232-2
https://doi.org/10.1016/j.immuni.2014.09.016
https://doi.org/10.1016/j.immuni.2014.09.016
https://doi.org/10.1016/bs.ircmb.2016.08.007
https://doi.org/10.1016/bs.ircmb.2016.08.007
https://doi.org/10.1007/s00018-017-2547-4
https://doi.org/10.1007/s00018-017-2547-4
https://doi.org/10.1016/j.immuni.2013.06.018
https://doi.org/10.1016/j.immuni.2013.06.018
https://doi.org/10.1038/cdd.2016.46
https://doi.org/10.1038/cdd.2016.46
https://doi.org/10.1128/MCB.24.4.1464-1469.2004
https://doi.org/10.1038/nature20559
https://doi.org/10.1038/icb.2016.125
https://doi.org/10.4049/jimmunol.1400590
https://doi.org/10.4049/jimmunol.1400590
https://doi.org/10.7554/eLife.03464
https://doi.org/10.1016/j.cell.2014.04.019
https://doi.org/10.1016/j.cell.2014.04.019
https://doi.org/10.1016/j.cell.2011.11.031
https://doi.org/10.1042/BJ20150678
https://doi.org/10.1038/nm.3449
https://doi.org/10.1126/science.1172308
https://doi.org/10.1126/science.1172308
https://doi.org/10.1038/nm.4017
https://doi.org/10.1038/nm.4017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00040 March 16, 2019 Time: 17:7 # 1

MINI REVIEW
published: 19 March 2019

doi: 10.3389/fcell.2019.00040

Edited by:
Thomas Kaufmann,

University of Bern, Switzerland

Reviewed by:
Gustavo P. Amarante-Mendes,
University of São Paulo, Brazil

Najoua Lalaoui,
Walter and Eliza Hall Institute

of Medical Research, Australia

*Correspondence:
Beat C. Bornhauser

beat.bornhauser@kispi.uzh.ch

Specialty section:
This article was submitted to

Cell Death and Survival,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 02 December 2018
Accepted: 05 March 2019
Published: 19 March 2019

Citation:
Mezzatesta C and Bornhauser BC

(2019) Exploiting Necroptosis
for Therapy of Acute Lymphoblastic

Leukemia. Front. Cell Dev. Biol. 7:40.
doi: 10.3389/fcell.2019.00040

Exploiting Necroptosis for Therapy of
Acute Lymphoblastic Leukemia
Caterina Mezzatesta and Beat C. Bornhauser*

Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland

Escape from chemotherapy-induced apoptosis is a hallmark of drug resistance in
cancer. The recent identification of alternative programmed cell death pathways opens
up for possibilities to circumvent the apoptotic blockade in drug resistant cancer and
eliminate malignant cells. Indeed, we have recently shown that programmed necrosis,
termed necroptosis, could be triggered to induce cell death in a subgroup of primary
acute lymphoblastic leukemia (ALL) including highly refractory relapsed cases. In this
review we focus on molecular mechanisms that drive drug resistance in ALL of childhood
and discuss the potential of necroptosis activation to eradicate resistant disease.

Keywords: necroptosis, leukemia, drug resistance, necroptotic compounds, apoptosis dysregulation

INTRODUCTION

Acute leukemia is a hematological malignancy that perturbs the normal function of the
hematopoietic system with fatal outcome if left untreated. Substantial improvement in the
treatment of patients with childhood acute lymphoblastic leukemia (ALL) has been achieved over
the last decades (Pui et al., 2015). Despite this success that is based on intensive chemotherapy
protocols established in international collaborative studies (Schrappe et al., 2013), relapsed
leukemia still ranks among the most common diagnoses of childhood malignancies, and survival
rates of relapsed ALL remain low (Bhojwani and Pui, 2013). Thus, new treatment approaches
have to be developed, in particular for relapsed ALL patients. In addition to immunotherapy,
most current treatment approaches focus on targeting oncogenic lesions to induce cell death
(Muschen, 2018). Enormous efforts over the recent years have identified and characterized the
genomic lesions that occur in ALL (Mullighan et al., 2007; Fischer et al., 2015; Richter-Pechanska
et al., 2018). Chromosomal translocations frequently affecting transcription factors combine with
deletions in genes that regulate B- and T-cell development and mutations in genes that drive
proliferation (e.g., CRLF2, RAS, ILR7, STAT5, Notch) (Mullighan et al., 2007; Fischer et al., 2015;
Richter-Pechanska et al., 2018). The latter frequently occur at subclonal level. This heterogeneity
and diversity of molecular lesions in ALL (Mullighan et al., 2007; Liu et al., 2017) has rendered
the development of targeted therapies very challenging. In particular, chimeric translocations
remain largely undruggable, and direct targeting of deletions is obviously not possible. Many
of these alterations lead to reprogramming of hematopoietic differentiation and deregulation of
molecular mechanisms that balance cell death and survival, providing the basis for poor response
to chemotherapy and failure to undergo apoptosis. At the same time, this deregulation of signaling
pathways also identifies nodes that could be targeted using small molecules and novel approaches.
Among these, exploiting cell death mechanisms independent on classical apoptosis and caspases
activation represents a particularly attractive alternative, with the potential to activate cell death
responses under circumstances that prevent caspase-dependent cell death. Indeed, activation of
necroptosis using the small molecule SMAC mimetic birinapant eliminated refractory leukemia
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cells in samples from highly resistant ALL patients (McComb
et al., 2016). Corroborating these results, several compounds
such as other SMAC mimetics or natural products are able to
trigger the necroptotic pathway in leukemia but also in different
carcinomas (Han et al., 2007; Fu et al., 2013; McCabe et al., 2014;
Brumatti et al., 2016; Hannes et al., 2016; He et al., 2017; Safferthal
et al., 2017). The possibility to develop and use drugs to induce
necroptosis render this cell death mechanism very attractive for
therapeutic approaches to eradicate malignant cells.

ALTERATION OF CELL DEATH AND
SURVIVAL SIGNALING AS MECHANISMS
OF DRUG RESISTANCE IN ALL

Comparison of ALL samples at diagnosis and relapse identified
genomic and cytogenetic changes (Raimondi et al., 1993;
Mullighan et al., 2008; Muschen, 2018; Richter-Pechanska et al.,
2018) that are disease-driving and contribute to occurrence of
relapse. Indeed, refractory ALL samples frequently present with
secondary genetic alterations that arise from a minor subclone
at diagnosis, which becomes predominant at relapse conferring
drug resistance. Many of these alterations induce deregulation
of pro- and anti-survival signaling pathways. Aberrant activation
of the PI3K/AKT/mTOR axis is associated with poor clinical
outcome in ALL, and its dysregulation can induce cell survival
and resistance to cytotoxic drugs (Batista et al., 2011; Gomes
et al., 2014; Khanna et al., 2018). Inhibition of this key pro-
survival pathway, for instance using arsenic trioxide treatment,
can resensitize steroid poor responder patients to glucocorticoids,
key components of first-line ALL therapy. Arsenic trioxide
increases protein levels of the BH3-only protein BAD, a pro-
apoptotic member of BCL2 family and decreases the levels
of the caspase inhibitor XIAP (Bornhauser et al., 2007). As
shown in a case report of a refractory T-ALL patient, treatment
with arsenic trioxide could induce complete remission without
minimal residual disease (Wu et al., 2016). More direct inhibitors
of this pathway, such as PI3K inhibitors or dual PI3K/mTOR
inhibitors have shown promising activity in preclinical ALL
models (Fruman et al., 2017). ALL refractory to glucocorticoids
presented with high expression levels of the anti-apoptotic
BCL2 family protein MCL1, due to a hyper activation of
the PI3K/AKT/mTOR network (Wei et al., 2006), and specific
MCL1 inhibitors are currently under evaluation for anti-
leukemia activity (Ramsey et al., 2018). In refractory ALL, other
possible dysregulation may more directly involve the apoptotic
pathway and mitochondrial activity, which is controlled by the
BCL2 family members. Indeed, correlation of drug resistance
and alterations of BCL2 family proteins has been extensively
described in leukemia (Letai et al., 2004; Campbell et al., 2010).
Next to association of BCL2 family protein expression and
drug resistance, these anti-apoptotic proteins also contribute to
leukemogenesis. A transgenic mouse model showed a synergistic
effect between BCL2 and c-MYC in malignant transformation
of B-cells (Strasser et al., 1990). Moreover, an adaptation of
the same mouse model demonstrated that presence of BCL-XL
(anti-apoptotic BCL2 member) accelerates the development of

MYC-driven leukemia (Swanson et al., 2004). Increased leukemia
development was observed also in Eµ-Myc transgenic mice upon
genetic disruption of one BIM (BCL2 pro-apoptotic protein)
allele (Egle et al., 2004). Thus, dysregulation of pro- or anti-
apoptotic BCL2 proteins can support malignant cell maintenance
and survival also once the tumor is established. Recently
developed diagnostic procedures with functional analysis of
BCL2 family protein dependence using BH3 profiling (Ryan
and Letai, 2013; Ryan et al., 2016; Touzeau et al., 2016) can be
used to predict chemotherapeutic sensitivity in several cancer
types (Ni Chonghaile et al., 2011). It has become clear from
these approaches that a subset of ALL cases heavily depend on
specific BCL2 family members. In order to target the interaction
between pro- and anti-apoptotic BCL2 proteins in cancer, a new
class of compounds, the BH3-mimetics, has been developed.
In particular the BCL2-specific BH3-mimetic venetoclax (ABT-
199) has shown high activity ex vivo and in vivo in a subset
of B-cell precursor ALL (Fischer et al., 2015) and in some
T-cell leukemia samples (Chonghaile et al., 2014; Peirs et al.,
2014; Frismantas et al., 2017). Moreover, venetoclax has shown
promising results also in clinical trials for other hematologic
malignancies (Konopleva et al., 2016). However, high expression
of MCL1 (Choudhary et al., 2015) or low expression ratio of BCL2
vs. BCL-XL may underlie a potential resistance to venetoclax. To
overcome this, it is possible to combine MCL1 inhibitors with
BCL2 inhibitors, which was shown to have a synergistic effect
in preclinical studies (Leverson et al., 2015). While representing
an important factor for drug resistance, dysregulation of BCL2
proteins is not the only cause for apoptotic rescue in malignant
cells. Alterations in genes that drive metabolism have also been
described to underlie drug resistance in ALL. Mutations in
the nucleotidase NT5C that are recurrent in T-ALL (Tzoneva
et al., 2013, 2018) may confer resistance to mercaptopurine, a
key element in ALL therapy, representing a typical example of
gain-of-function mutations that are difficult to target, which is
in addition also associated with occurrence of relapse. Recent
discoveries have highlighted the occurrence of the deletion of
the B-cell transcription factor IKZF1 together with CDKN2A,
CDKN2B, PAX5, or PAR1 to identify a subgroup of B-cell
precursor ALL patients with exceedingly bad outcome (Stanulla
et al., 2018). We are only at the beginning of understanding the
consequences of such deletions on drug resistance. In addition to
drive B-cell development, IKZF1 controls a metabolic program
that includes regulation of responses to steroids (Marke et al.,
2016; Chan et al., 2017), and its loss may be directly linked
to steroid resistance. Next to metabolic alterations, a second
group of pro-survival proteins, the inhibitor of apoptosis proteins
(IAPs), are frequently highly expressed in leukemia (Tamm
et al., 2004; Hundsdoerfer et al., 2010) and constitute relevant
targets for intervention. The pro-survival activity of cIAP1/2
is linked with their ubiquitination activity and the ability to
interact with and promote the survival activity of receptor-
interacting protein kinase 1 (RIPK1) (Peltzer et al., 2016; Lalaoui
and Vaux, 2018). Ubiquitination of RIPK1 enables its Nuclear
Factor kappa B (NF-kB) activating potential, supporting survival
also in cancer cells (Bertrand et al., 2008; Varfolomeev et al.,
2008). Small molecules SMAC mimetics can target and inhibit
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FIGURE 1 | Treatment of leukemia cells with traditional chemotherapies can
select for apoptotic-resistance. SMAC mimetics such as birinapant induce
concurrent apoptosis and necroptosis in ALL and are thus active against
apoptosis-resistant cells. This may contribute to eradication of resistant and
refractory leukemia.

the cIAPs, which induces deubiquitination of RIPK1 in the
TNF receptor 1 (TNFR1) complex and subsequent activation of
RIPK1-dependent death. These agents have shown anti-cancer
activity in different solid tumor cell line models (Fulda, 2015).
Moreover, primary ALL and acute myeloid leukemia (AML)
samples undergo RIPK1-dependent death upon SMAC mimetics
treatment (Brumatti et al., 2016; Lalaoui et al., 2016; McComb
et al., 2016; Richmond et al., 2016). The tumor suppressor role
of RIPK3 for AML development in mice (Hockendorf et al.,
2016) further underscores the importance of this pathway in
hematological malignancies. Interestingly, treatment with SMAC
mimetics induced RIPK1-dependent concurrent apoptosis and
necroptosis in primary ALL samples, both in vitro and in vivo
in the xenograft model (McComb et al., 2016). The high anti-
leukemic activity of SMAC mimetics is thus based on their
potential to trigger necroptosis, to eradicate also refractory
ALL cells that are unable to mount an apoptotic response
(Figure 1). To further characterize and understand the potential
of necroptosis activation for anti-leukemia therapy, it will be
important to develop biomarkers that brand a response and to
determine strategies to identify those patients who may benefit
from such an approach.

ACTIVATION OF NECROPTOSIS AS
ANTI-LEUKEMIA THERAPY

Despite its relatively recent description (Degterev et al., 2005),
necroptosis ranks among the best described non-apoptotic
and caspase-independent forms of cell death. It is a caspase-
independent cell death mechanism, which presents necrotic
features that are highly regulated (Wang et al., 2018). The signal
transduction steps that govern necroptosis induce initiation and
execution of this cell death pathway controlled by the RIP
Kinases, ending with cell swelling and rupture of the cellular
membrane, leading to the release of cellular content into the
extracellular space (Kaczmarek et al., 2013). The main regulating
players of this programmed cell death are RIPK1, RIPK3, and
the mixed lineage kinase domain-like protein (MLKL) (Vanden
Berghe et al., 2014). Experimentally, necroptosis is frequently

triggered by exogenous tumor necrosis factor alpha (TNFα)
in combination with pharmacological caspase inhibition using,
e.g., zVAD, QVD, or emricasan. Other death receptors that
can activate necroptosis in presence of their respective ligands
include FAS (also known as CD95 or APO-1), DR3, TRAILR1,
TRAILR2, and DR6 (Wilson et al., 2009). Mechanistically,
TNFα binding induces oligomerization of TNFR1 and the
formation of complex-I at the plasma membrane. Complex-
I is a multiprotein complex that includes TNFRI, TNFR-
associated death domain protein (TRADD), TNFR-associated
factor-2 and 5 (TRAF2/TRAF5), the cIAPs1/2 and RIPK1
(Vanden Berghe et al., 2014). At this level, cell fate decisions
are taken, with RIPK1 having multiple functions. Depending on
its post-translational modifications, in particular ubiquitination
status, RIPK1 controls cell survival or can activate cell death
trough apoptosis and necroptosis. Poly-ubiquitination of RIPK1
driven by cIAPs1/2 and LUBAC triggers survival through
NF-kB signaling, which leads to mitogen-activated protein
kinase (MAPK) activation (Pasparakis and Vandenabeele, 2015).
Simultaneously, ubiquitination of RIPK1 prevents necroptosis
and RIPK1-dependent apoptosis activation. Deubiquitination of
RIPK1 can induce the formation of the cytosolic complex-IIb,
which comes in two different flavors. Under caspase-8 proficient
conditions, deubiquitination of RIPK1 leads to formation of the
ripoptosome leading to apoptosis through caspase-8 dependent
mechanisms, while the necrosome is formed if caspase-8 is
non-active (Wegner et al., 2017) (Figure 2). In the necrosome,
RIPK1 associates with and phosphorylates RIPK3 leading to
the oligomerization and translocation of MLKL to the plasma
membrane (Zhao et al., 2012; Huang et al., 2017). It is worth
noting that in particular the ripoptosome is fairly short lived
and can usually only be detected under experimental caspase
blockade using zVAD. The deubiquitination of RIPK1 may occur
through activity of the deubiquitinases CYLD and A20 (Wright
et al., 2007; Bonapace et al., 2010; Wegner et al., 2017) or
through depletion of cIAP1/2 by SMAC mimetics treatment.
To guide decisions between RIPK1-dependent apoptosis or
necroptosis, autophagy genes were shown to play an important
scaffolding role (Goodall et al., 2016). MLKL can be considered
the executor of necroptosis as it induces formation of pores
on the plasma membrane, which becomes permeable releasing
damage-associated molecular patterns (DAMPs), thus ending
into necroptosis (Dondelinger et al., 2014; Wang et al., 2014; Xia
et al., 2016). The identification of RIPK1-dependent necroptosis
to underlie the extraordinary sensitivity to SMAC mimetics in
a subgroup of pediatric ALL represents an example in which
experimental inhibition of caspase-8 is not required. Rather, we
hypothesize that this may be due to the existence of specific
but varying RIPK1-associated protein complexes within the cells.
We could not identify any association of protein expression
of either caspase-8, RIPK3, MLKL, cIAP1/2, or RIPK1 with
sensitivity to SMAC mimetics in ALL (McComb et al., 2016),
suggesting that the regulation and sensitivity will be more
complicated than mere expression levels. Interestingly, our own
data (McComb et al., 2016) demonstrated a TNFα-independent
effect of SMAC mimetics, suggesting that auto- or para-crine
regulation of TNFα by RIPK1 does not seem to play a major
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FIGURE 2 | The binding of TNFα to TNFR1 induces the formation of complex-I, which contains also ubiquitinated RIPK1. Deubiquitination of RIPK1, upon inhibition
of cIAPs by SMAC mimetics, can trigger formation of pro-death signaling complexes, either via apoptosis and/or necroptosis.

role for sensitivity. Comparative gene expression analyses suggest
association of the Philadelphia-like ALL subgroup with sensitivity
to SMAC mimetics, with TNFR1 expression correlating with
response, while cFLIP did not appear amongst the most highly
regulated genes (Richmond et al., 2016). Mutations in caspase-
8 or epigenetic silencing has not been described in ALL so far
(Mullighan et al., 2007; Liu et al., 2017), indicating that the
underlying molecular mechanisms that determine sensitivity will
be more complex than anticipated.

POTENTIAL OF
NECROPTOSIS-INDUCING
COMPOUNDS IN ALL

Triggering necroptotic cell death should be considered as a
new therapeutic approach in cancer treatment in order to

eradicate malignant cells that are refractory to apoptotic drugs.
Several agents, including natural and targeted compounds, have
been shown to induce necroptosis in ALL, frequently also in
combinatorial approaches. In particular combination of SMAC
mimetics with the steroid dexamethasone (Rohde et al., 2017)
and with demethylating agents (DAC) (Gerges et al., 2016),
as well as inhibition of NF-kB (Meng et al., 2010) activate
necroptosis in ALL cells, while hypertonicity enhanced activity
of SMAC mimetics by combination of apoptosis and necroptosis
(Bittner et al., 2017). The best well-known drugs that can induce
necroptotic cell death are indeed the SMAC mimetics combined
with caspase-8 inhibition (McCabe et al., 2014; Brumatti et al.,
2016; Hannes et al., 2016). This type of treatment can push the
cells to necroptosis due to inhibition of cIAPs, thereby inhibiting
the pro-survival function of RIPK1, and on the other hand
caspase inhibition confers a block in apoptosis. Interestingly,
we have observed that refractory ALL samples could undergo
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necroptosis cell death also in absence of caspases inhibition
upon the SMAC mimetic compound birinapant as single agent
(McComb et al., 2016). Several SMAC mimetic compounds are
already in phases I or II of clinical trials to treat leukemia and
solid tumors (NCT02098161, NCT01188499, NCT01486784). It
will be interesting to see if necroptosis contributes to a potential
anti-tumor effect in these trials. Still, the most promising anti-
tumor activity of SMAC mimetics may be achieved if combined
with other anti-cancer agents. For instance, the SMAC mimetic
compound BV6 synergizes with DAC, cytarabine, or HDAC
inhibitors in acute myeloid leukemia (AML) (Steinhart et al.,
2013; Chromik et al., 2014; Steinwascher et al., 2015). This activity
required necroptosis for full efficacy. Antagonism of cIAPs may
boost both innate and adaptive immune responses and increase
tumor cell killing (Beug et al., 2017; Dougan and Dougan, 2018;
Michie et al., 2019). In addition to SMAC mimetics, other
agents are able to trigger a necroptosis response. Activation
of necroptosis using drugs as 5-fluorouracil or staurosporine
(Dunai et al., 2012; Grassilli et al., 2013; Oliver Metzig et al.,
2016), again if caspases are inhibited, showed high anti-cancer
potential. Moreover, necroptosis could be activated by shikonin,
a natural compound derived from a plant extract, in leukemia
and in multiple myeloma (Han et al., 2007; Wada et al.,
2015). This compound and other analogs may overcome drug
resistance due to expression of MRP1, BCRP1, P-glycoprotein,
BCL2 and BCL-XL through necroptotic cell death (Han et al.,
2007; Xuan and Hu, 2009). Furthermore, necroptosis has been
described in some cases to depend on autophagy. In fact, the
pan-BCL2 inhibitor obatoclax triggered autophagy-dependent
necroptosis, thus restoring the response to the glucocorticoid
dexamethasone in steroid-resistant ALL (Bonapace et al.,
2010). Moreover, bypassing chemoresistance through autophagy-
mediated necroptosis is possible upon chalcone treatment or
using the tyrosine kinase inhibitor sorafenib (He et al., 2014;
Kharaziha et al., 2015). One important aspect to be taken
into account when considering necroptosis activation in cancer
therapy is its potential immunogenicity. Disruption of the
cellular membrane and release of DAMPs may activate immune

responses that potentially can also act on the malignant cells.
Indeed, vaccination with necroptotic cancer cells induces an
adaptive immune response through cytotoxic CD8a+ T cells
in vivo, which mediates efficient anti-tumor immunity (Aaes
et al., 2016). Sometimes though, the release of DAMPs may
not be sufficient for CD8+ T cell cross-priming, and RIPK1
signaling and activation of NF-κB within dying cells is in
addition required to boost the response (Yatim et al., 2015).
The question to what extent activation of necroptosis in ALL
in particular, but also in other hematological malignancies
such as AML (Brumatti et al., 2016) is immunogenic remains
open. Some data from solid tumors suggest that necroptosis
does not necessarily always have to be pro-inflammatory and
immunogenic (Brouckaert et al., 2004; Lohmann et al., 2009).
Still, while TNFα-induced necroptosis may even shut down
inflammatory responses (Kearney et al., 2015), data with respect
to cytokine release and inflammatory responses on necroptosis
induced by SMAC mimetics are lacking, in particular also in the
context of refractory ALL. Clearly, susceptibility to necroptosis-
mediated cell death does represent a specific vulnerability
of lymphoid cells, even without necessity to experimentally
inhibit caspases. In the future, potential immunogenicity and
inflammatory responses of necroptosis induction will have to
be investigated carefully, in order to evaluate the therapeutic
anti-leukemia potential of necroptosis induction.
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Over the past decades, immunotherapy has demonstrated a prominent clinical efficacy
in a wide variety of human tumors. For many years, apoptosis has been considered
a non-immunogenic or tolerogenic process whereas necrosis or necroptosis has long
been acknowledged to play a key role in inflammation and immune-related processes.
However, the new concept of “immunogenic cell death” (ICD) has challenged this
traditional view and has granted apoptosis with immunogenic abilities. This paradigm
shift offers clear implications in designing novel anti-cancer therapeutic approaches.
To date, several screening studies have been carried out to discover bona fide ICD
inducers and reveal the inherent capacity of a wide variety of drugs to induce cell
death-associated exposure of danger signals and to bring about in vivo anti-cancer
immune responses. Recent shreds of evidence place ER stress at the core of all the
scenarios where ICD occur. Furthermore, ER stress and the unfolded protein response
(UPR) have emerged as important targets in different human cancers. Notably, in multiple
myeloma (MM), a lethal plasma cell disorder, the elevated production of immunoglobulins
leaves these cells heavily reliant on the survival arm of the UPR. For that reason, drugs
that disrupt ER homeostasis and engage ER stress-associated cell death, such as
proteasome inhibitors, which are currently used for the treatment of MM, as well as
novel ER stressors are intended to be promising therapeutic agents in MM. This not
only holds true for their capacity to induce cell death, but also to their potential ability
to activate the immunogenic arm of the ER stress response, with the ensuing exposure
of danger signals. We provide here an overview of the up-to-date knowledge regarding
the cell death mechanisms involved in situations of ER stress with a special focus on
the connections with the drug-induced ER stress pathways that evoke ICD. We will also
discuss how this could assist in optimizing and developing better immunotherapeutic
approaches, especially in MM treatment.

Keywords: immunogenic cell death, multiple myeloma, ER stress, danger-associated molecular
pattern, immunotherapy

INTRODUCTION

Every day in the human body, billions of cells pass away and are kindly replaced by newborn
members leaving no trace behind, allowing in this way conservation of whole-body homeostasis.
In order to occur without catastrophic consequences, this process must remain almost completely
unnoticed to the immune system. During this physiological, programmed cell death, mainly in the
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form of apoptosis, intracellular content is confined within
membranous bodies that are rapidly cleared by phagocytes in an
immunological “silent” manner. Hence, apoptosis has long been
considered a non-immunogenic or even tolerogenic process,
whereas necrosis and necroptosis have been shown to play a
key role in inflammation and immune related processes (Poon
et al., 2014; Yatim et al., 2015). However, the new concept of
“immunogenic cell death” (ICD) has challenged this traditional
view and has granted apoptosis with immunogenic abilities. This
immunostimulatory kind of apoptosis is characterized by the
ability of dying cells to elicit robust adaptive immune responses
against altered self-antigens/cancer-derived neo-epitopes, in the
case of tumor cells, or against pathogen-derived antigens (Ags)
during the course of an infection (Galluzzi et al., 2017).
Besides antigenicity, another vital factor needed to unleash a
genuine immune response is adjuvanticity, which is conferred
by microorganism- and/or danger-associated molecular patterns
(MAMPs and DAMPs, respectively). These are molecules that are
exposed or released by dying cells and let the immune system
know the existence of a menace to the organism (Fuchs and
Steller, 2015). This “danger” state is sensed in the human body
by pattern recognition receptors (PRRs) displayed by innate
immune cells such as monocytes, macrophages and dendritic
cells (DCs), hence promoting activation and maturation of
these cells to engage the adaptive arm of the immune system
(Matzinger, 2002).

Screening studies have been carried out to unveil the
immunogenic potential of myriads of anti-cancer agents
(Sukkurwala et al., 2014). To date, only a small yet diverse
collection of anti-cancer therapies, whether chemotherapeutic
drugs (e.g., anthracyclines, oxaliplatin, bortezomib) (Obeid et al.,
2007; Garg et al., 2017) or physical modalities [e.g., radiotherapy,
hypericin-based photodynamic therapy (Hyp-PDT), and high
hydrostatic pressure (HHP)] (Golden et al., 2012; Adkins et al.,
2014) have been shown to induce bona-fide ICD. However,
a common denominator can be extracted from the action
mechanisms of all these approaches: ER stress and ROS
generation. Thus, activation of the ER stress pathways also
known as the unfolded protein response (UPR), and specially,
the PERK-mediated arm of the UPR is vital for the vast majority,
if not all, the scenarios where ICD occurs (Rufo et al., 2017).
Moreover, during tumor development, cancer cells have to cope
with harsh conditions that trigger ER stress. Thus, UPR activation
constitutes an important hallmark of several human cancers
that endow cancer cells with the ability to acquire essential
characteristics required for tumor progression (Corazzari et al.,
2017). Of note, although UPR activation is initially intended to
restore cell homeostasis, it can also shift the cellular fate toward
cell death. All the aforementioned has clear implications for
cancer therapy. The UPR-dependency of tumor cells together
with the connection of ER-stress and the emission of danger
signals (or ER stress-ICD connection), can be harnessed to
design novel therapeutic tools. These therapeutic approaches
not only would reduce tumor burden, but also improve the
immunogenic capacity of dying cancer cells to elicit long-term
adaptive immune responses. In particular, in multiple myeloma
(MM), a lethal plasma cell disorder, the elevated production of

immunoglobulins leaves these cells heavily reliant on the survival
arm of the UPR. Nevertheless, although myeloma cells rely on the
UPR to thrive, they are extremely sensitive to ER-stress associated
cell death. This feature explains why proteasome inhibitors
show a prominent clinical efficacy in the treatment of MM
(Merin and Kelly, 2014; Scalzulli et al., 2018). Sadly, resistance
to therapy is recurrent, and in most of the cases accounts for
the lethality of the disease (Robak et al., 2018). MM is also a
genuine neoplasia where the immune system is compromised.
Nonetheless, immunotherapeutic interventions in this disease
have potential to be successful, as graft-vs-myeloma effect has
been evidenced in patients subjected to allogenic stem-cell
transplantation or under donor lymphocyte infusions (Ladetto
et al., 2016). In fact, current immunotherapeutic approaches
are giving promising results in relapsed and refractory patients.
Among the novel and more promising immune-based therapies
that are under investigation, we can include: (1) Antibody-
based therapies with daratumumab and elotuzumab as the
flagships of this kind of approach, (2) Boost the immune effector
line of defense with adoptive cell therapy (ACT), either with
expanded tumor-infiltrating lymphocytes (TILs), NK cells or
CAR-T cells, (3) Releasing the brakes of immune response
with immune-checkpoint blockade, (4) Enhancing general anti-
tumor immunity through vaccination strategies, and finally (5)
Combinatorial strategies of the immunotherapies themselves
or combined with immunogenic chemo- or radiotherapies.
Noteworthy, all of these approaches can theoretically be
benefited by ICD. Hence, the immunostimulatory potential of
chemotherapeutics or other ICD-related modalities could be
exploited to enhance general immunity or at least create an
immune-friendly tumor microenvironment. This way, some
of the drawbacks occurring in the clinical setting could be
circumvented to achieve an effective immune response in cancer
patients (Montico et al., 2018).

THE UNFOLDED PROTEIN RESPONSE

Tumor cells are constantly coping with aggressive insults and
subjected to different types of cellular stress. Some of these
extrinsic (hypoxia, nutrient deprivation, acidosis) and intrinsic
(oncogenic activation, genetic alterations, exacerbated secretory
capacity) factors are common instigators of ER stress (Dufey
et al., 2016). To cope with ER stress, cells activate an adaptive and
well-conserved mechanism called UPR. The UPR is a fine-tuned
process controlled by three membrane-bound ER stress sensors:
Protein Kinase RNA-activated (PKR)-like ER Kinase (PERK),
Inositol-Requiring transmembrane kinase/Endonuclease (IRE1)
and Activating Transcription Factor 6 (ATF6). These sensors
remain inactive in basal conditions due to the interaction with
Binding Immunoglobulin Protein (BIP, also known as GRP78)
through their ER luminal domains. Under ER stress conditions,
BIP dissociates from the ER stress sensors to help in protein
folding (Almanza et al., 2018). This event allows ER stress sensors
to self-activate by homodimerization/oligomerization and trans-
auto-phosphorylation in the case of PERK and IRE1, and
translocation to the Golgi in the case of ATF6. First, the UPR tries
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to restore cell homeostasis, by attenuating protein translation,
enhancing degradation of misfolded proteins and increasing
levels of ER chaperones and redox enzymes to increase folding
capacity (Almanza et al., 2018). However, if ER stress persists,
the UPR can trigger proapoptotic programs controlled mainly
by the IRE1 and PERK arms. IRE1 is a Ser/Thr kinase that also
has an endoribonuclease domain. When activated, IRE1 drives
XBP1 mRNA splicing, leading to a more stable XBP1s protein
that acts as a transcription factor upregulating genes controlling
ER homeostasis maintenance (Sano and Reed, 2013). Moreover,
during the chronic phase of ER stress, IRE1 is also able to degrade
many ER-targeted mRNAs through regulated IRE1-dependent
mRNA decay (RIDD) process. Activation of PERK signaling leads
to phosphorylation of eIF2α, which results in inhibition of global
protein translation in order to reduce protein load. Nonetheless,
some transcripts like ATF4 are translated more efficiently during
ER stress. ATF4 increases the expression of genes involved in
aminoacid and redox metabolism, ubiquitin ligases and the
transcription factor CAAT/enhancer-binding protein (C/EBP)
homologous protein (CHOP/GADD153). ATF4 and CHOP are
also key determinants of ER stress-induced cell death. Finally,
the cytosolic domain of ATF6 also acts as a transcription factor
that mainly regulates the expression of genes involved in the
ER-associated degradation (ERAD) pathway (Dufey et al., 2016).

IMMUNOGENIC CELL DEATH

During the last decade, our conception of the characteristics
of different types of cell death has significantly changed.
Necrosis was first conceived as an accidental, pathological
and pro-inflammatory form of cell death, whereas apoptosis
was recognized to be a non-immunogenic, physiological and
regulated way of cell demise (Poon et al., 2014). However,
these features are no longer so clear-cut since programmed
necrosis (necroptosis) has been shown to be triggered by a
genetically encoded, well-regulated molecular program (Golstein
and Kroemer, 2007; Vanden Berghe et al., 2009; Dhuriya and
Sharma, 2018). On the other hand, apoptosis is no longer
considered to be an immunologically “silent” process, since
some apoptotic cells are able to induce antigen-specific immune
responses (Obeid et al., 2007). In cancer research, the role of the
immune system has been overlooked for many years due, in part,
to the way chemotherapy and other anticancer therapies were
usually tested. Particularly, the frequent use of immunodeficient
mice to assess the efficacy of these treatments has precluded
from gaining insight on the precise role of the immune system
in cancer therapy (Krysko et al., 2012). Nonetheless, the re-
evaluation of concepts like cancer antigenicity and ICD, as
well as the interpretations from Danger Theory, has redirected
the focus in oncological research toward novel or improved
immunotherapeutic protocols (Garg et al., 2015a).

The ICD concept has been defined as an unique class of
regulated cell death capable of eliciting complete antigen-
specific adaptive immune responses through the emission
of a spatiotemporally defined set of danger signals or
DAMPs (Casares et al., 2005; Kroemer et al., 2013). These

signals are endogenous molecules that perform conventional
intracellular functions but when extracellularly exposed, gain
immunogenic competences. The release or membrane exposure
of these molecules, allow their interaction with their cognate
PRRs displayed by innate immune cells such as monocytes,
macrophages and DCs. This leads to activation and maturation
of these cells that migrate to draining lymph nodes loaded with
cancer-derived antigen-specific cargoes. Cancer antigens are
then presented to T cells (CD4+ and CD8+ T lymphocytes)
which enable a potent anticancer adaptive immune response
(Chen and Mellman, 2013). To date, four modes of ICD have
been described, each related to a particular type of inducing
stimulus and to the emission of a specific set of danger signals
(Galluzzi et al., 2017) (see Figure 1): (1) Pathogen-driven ICD,
as one of the defense mechanisms against invading pathogens;
(2) ICD exhibited by physical cues, such as Hyp-PDT, irradiation
and HHP; (3) Necroptosis, but not accidental necrosis, since
this regulated form of cell death was able to vaccinate syngenic
mice against a rechallenge with cells of the same type (Aaes et al.,
2016). According to this, RIPK3 or MLKL deficiency abrogated
the ability of these cells to secrete the required immunogenic
signals that lead to an anticancer immune response in mice (Yang
et al., 2016); and (4) ICD evoked by some chemotherapeutics
targeting different types of essential cell components or processes
that induce cell death pathways. It has been demonstrated
that a diverse panel of drugs can elicit protective immune
responses in mice (Apetoh et al., 2007; Obeid et al., 2007;
Michaud et al., 2011). Of note, despite some screening studies
using large drug libraries have been performed, only a small
group of candidates have emerged to be valid ICD inducers
(Obeid et al., 2007; Martins et al., 2011; Menger et al., 2012;
Sukkurwala et al., 2014). The chemical nature of these agents,
is considerably diverse: oxazophorines like cyclophosphamide
(Schiavoni et al., 2011); Pt-based compounds as oxaliplatin
(Tesniere et al., 2009); anthracyclines (Minotti et al., 2004)
such as idarubicin and doxorubicin; anthracenediones such
as mitoxantrone and dipeptides such as bortezomib (Merin
and Kelly, 2014). Similar to bortezomib, carfilzomib another
proteasome inhibitor used in the treatment of MM, has also
shown to expose CRT in different MM cell lines (Jarauta et al.,
2016). Although it may appear attractive, no simple structure-
function relationship has been found that could predict the
suitability of drugs to trigger ICD. This is clearly exemplified
by the oxaliplatin-cisplatin or the melphalan-cyclophosphamide
paradigms (Tesniere et al., 2009; Martins et al., 2011; Dudek-
Perić et al., 2015). Several factors, such as the type of cell death,
the ICD stimuli and the interconnection between various cellular
stress responses, influence the type of danger signals emitted
during the course of cell death (Agostinis, 2017). On the other
hand, combinatorial strategies can be exploited to compensate
for DAMPs generation scarcity displayed by some agents, restore
immunogenicity and hence transform tolerogenic cell death
into immunogenic modalities (Martins et al., 2011; Bezu et al.,
2015). Furthermore, not all the DAMPs exposed during cell
death are immunostimulatory. In fact, there are some molecules
(Prostaglandin E2, adenosine, etc.) (Agostinis, 2017; Galluzzi
et al., 2017) that exhibit immunosuppressive properties and play
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FIGURE 1 | Immunogenic cell death cycle and forms of ICD. (A) Cancer cells subjected to some type of chemotherapeutics and other anti-cancer therapies expose
calreticulin (CRT) and other endoplasmic reticulum chaperones, such as Hsp70, Hsp90 or Bip on their surface, secrete ATP, initiate type I interferon (IFN) response
that is able to trigger the production of CXC-chemokineligand 10 (CXCL10), and release high-mobility group box 1 (HMGB1) and annexin A1 (ANXA1). When
secreted or exposed extracellularly, they bind to their cognate receptors on the surface of myeloid or lymphoid cells, which enables the engulfment of cell corpses by
antigen-presenting cells, including DCs. This process in the context of proper immunostimulatory signals, eventually leads to the priming of an adaptive immune
response involving both αβ and γδ T cells. This culminates in the establishment of a CTL-mediated anti-cancer immune response with potential to kill
therapy-resistant cancer cells via an IFNγ-dependent mechanism. In the clinical setting, cancer cells with higher expression of some DAMPs have been found.
Depending on the cancer type, this could be correlated with good or bad prognosis, as well as to markers of an active anti-cancer immune response. (B) Forms of
ICD. Different variants of ICD could be evoked by distinct types of stimuli that are associated with a differential set of danger signals. Even in the form of
immunogenic chemotherapy, each drug could instigate differential danger signaling pathways (Galluzzi et al., 2017); P2RX7, purinergic receptor P2X7; P2RY2,
purinergic receptor P2Y2; TLR4, Toll-like receptor 4.
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important roles in tolerance to dead cells. Among all members of
DAMP family, the best studied, and those who have been shown
to be pivotal for ICD are described in the next section.

Calreticulin and ER Chaperones
Calreticulin (CRT) is a, highly conserved, soluble, ER-associated
chaperone with numerous functions inside and outside the ER
(calcium homeostasis, assembly of MHC-I, etc.) (Johnson et al.,
2001; Michalak et al., 2009). In stressed or dying cells, CRT is
exposed in the outer leaflet of the plasma membrane (ecto-CRT)
where it functions as a potent “eat-me” signal. CRT binds to LRP1
(also known as CD91), and possibly other scavenger receptors,
displayed by phagocytic cells. This role in phagocytic clearance of
dead cells was first described by Gardai et al. (2005). Nonetheless,
Obeid et al. (2007) went a step further and demonstrated that
CRT exposure was a key determinant in ICD-driven anticancer
immunity. Actually, cancer cells undergoing cell death triggered
by certain chemotherapeutics, expose CRT on their surface. This
event leads to the engulfment of cancer material by DCs and,
more importantly, to tumor antigen presentation and anticancer
cytotoxic T lymphocyte (CTL) specific responses (Kroemer et al.,
2013). Furthermore, ecto-CRT has been shown to prompt IL-
6 and TNF expression on DCs, priming pro-inflammatory
T-helper type 17 (Th17) polarization (Pawaria and Binder,
2011). Likewise, other ER-resident chaperones such as heat-shock
protein 70 (Hsp70) and Hsp90, play also an important role in the
immunogenicity of dying cancer cells. Thus, ecto-Hsp90 has been
reported to enhance DC uptake of bortezomib-treated MM cells,
including primary cells isolated from MM patients and induction
of anticancer immunity (Spisek et al., 2007). On the contrary,
Dudek-Perić et al. (2015), using blocking antibodies against
Hsp90 in a DC maturation assay, reported that this chaperone
was not (or at least partially) involved in the immunogenicity
of melanoma cells treated with melphalan. The specific role
of Hsp70 in the immunogenicity of cancer cells has not been
studied so extensively. However, it has been reported that in
shikonin- or gemcitabine-treated cells, Hsp70 was involved in
DC-mediated activation of CD4+ and CD8+ T cells (Pei et al.,
2014; Lin et al., 2015). In the case of Hyp-PDT treatment, Hsp70
promotes nitric oxide (NO) generation in innate immune cells
(Song et al., 2013). In a different context, Hsp70 has shown to
efficiently vaccinate mice against murine MM cells using a DNA-
based vaccination strategy (Liu et al., 2018). BIP, a fundamental
regulator of ER function and the UPR, has been described to
be secreted and participate in the cross-presentation of tumor-
derived Ags in DCs, inducing Ag-specific CTL immune responses
(Tamura et al., 2011). Indeed, chaperones as efficient protein
folding mediators, are often present bound to antigenic peptides.
When released, these chaperone-peptides complexes enter APCs
by endocytosis via CD91 receptors and are cross-presented on
MHC-I and MHC-II molecules to CD8+ and CD4+ T cells (Feng
et al., 2001, 2003). Thereby, these molecules not only potentiate
immunogenicity of dying cancer cells by acting merely as potent
danger signals, but also contribute to boost cancer antigenicity
assisting in the cross-presentation process.

With regards to the kinetics and the cellular pathways
involved in the exposure of CRT (depicted in Figure 2), it has

been documented that they may differ depending on both the
apoptotic phase under evaluation and the inducing stimulus
(Krysko et al., 2012). For example, there are some instances where
ecto-CRT exposure precedes phosphatidylserine externalization
(Panaretakis et al., 2009; Osman et al., 2017), is systemically
accompanied by ERp57 to the plasma membrane and requires
PERK-mediated phosphorylation of eIF2α. This is followed by
caspase-8 activation and specific cleavage of BAP31, leading to
the subsequent activation of BAX and BAK. CRT relocation
also requires anterograde ER-Golgi trafficking and the exocytic
pathway in a SNAP23-dependent manner (Panaretakis et al.,
2009). On the contrary, Hyp-PDT mediated CRT exposure
requires PERK, BAX, BAK and the secretory pathway but not
eIF2α phosphorylation and caspase-8 activation (Garg et al.,
2012c). However, there are other ways by which CRT can be
relocated to the cell surface and that are independent from
the aforementioned mechanisms. Other studies claimed that
CRT can bind with high-affinity to phosphatydilserine (Païdassi
et al., 2011; Wijeyesakere et al., 2016) in a Ca2+-dependent
manner, and thus during cell death these two molecules are co-
translocated at the same time in a caspase-independent fashion
(Tarr et al., 2010).

Many studies investigating the role of CRT in ICD, carried
out either in vitro or using in vivo animal models, assume
the fact that CRT exposure is a consequence of the therapy
itself. However, these studies have not considered basal surface
expression of CRT on cancer cells and its potential implication
on immunogenicity. Clinical studies supporting tumor cell-
dependent immunity associated to basal CRT exposure are scarce
and direct immunogenic effects of cells killed by chemotherapy in
cancer patients have been rarely observed. It has been proposed
that this is probably due to the fact that the chemotherapeutic
dose needed to efficiently induce ICD is not reached in the
clinical practice (Montico et al., 2018). Most of the available
data indicate that tumor tissues express higher levels of CRT
than healthy tissues, and that CRT expression may correlate
with cancer progression and aggressiveness (Fucikova et al.,
2018). Moreover, increasing clinical evidence is supporting the
notion that CRT exposure, as well as other DAMPs may serve
as important prognostic biomarkers in cancer patients (Fucikova
et al., 2018). Different studies have shown that, depending on
the cancer cell type, CRT expression could stand as a positive
or negative prognostic factor for cancer patients. For example, in
acute myeloid leukemia (AML), indolent B-cell lymphoma, non-
small cell lung cancer (NSCLC), ovarian cancer, glioblastoma,
endometrial cancer or colon cancer, the increased expression
of CRT correlates with a favorable clinical outcome, as well
as (in some cases) with increased levels of biological markers
related to an active anti-cancer immune response (Peng et al.,
2010; Zappasodi et al., 2010; Garg et al., 2015b; Stoll et al.,
2016; Fucikova et al., 2016a,b, 2018; Xu et al., 2018). Meanwhile,
in other cancer types like gastric cancer, pancreatic cancer,
neuroblastoma, bladder carcinoma and mantle cell lymphoma,
higher CRT levels were related to a poor clinical outcome (Chen
et al., 2009; Chao et al., 2010; Sheng et al., 2014). In some
cases like in esophageal squamous carcinoma, no differences in
overall survival between CRT-high and low expression groups
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FIGURE 2 | Mechanisms of DAMPs exposure. Differential mobilization pathways can be observed between Type I and Type II ICD inducers, defined by their
off-targeted or targeted effect on the ER, respectively. Exposure of CRT in the plasma membrane upon treatment with Type I ICD inducers requires an intrincate
pathway with activation of the ER stress–ROS signaling mediated by the activation of the PERK, and the ensuing phosphorylation of eiF2α. This is followed
by the required cleavage of B-cell receptor-associated protein 31 (BAP31) by preapoptotic caspase-8. Bax/Bak activation is also mandatory in this process. Finally CRT

(Continued)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 April 2019 | Volume 7 | Article 5023

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00050 April 14, 2019 Time: 13:17 # 7

Serrano-del Valle et al. Immunogenic Cell Death

FIGURE 2 | Continued
relocation also requires anterograde ER-Golgi trafficking and the exocytic pathway in a SNAP23-dependent manner (Panaretakis et al., 2009). Along all the way from
the ER to the plasma membrane, CRT is accompanied by ERp57. Upon treatment with Type II ICD inducers fewer requirements are needed, since this pathway only
relies on PERK, Bax, Bak, and the secretory pathway. Regarding ATP secretion upon type II ICD inducers treatment, it follows a pathway quite similar to that of CRT,
except for Bax/Bak and involving partially caspase 8. Type I ICD inducers require an independent pathway mediated by autophagy as ATG5, ATG7 and BCN1 are
required in ATP release. Moreover, other molecules involved in different cellular processes like lysosomal exocytosis (LAMP1), membrane blebbing (ROCK1),
apoptotic machinery (caspases) and membrane permeabilization (PANX1) have been shown to be essential in type I ICD-induced ATP externalization (Martins et al.,
2014). CRT, calreticulin; eIF2a, eukaryotic initiation factor 2; ER, endoplasmic reticulum; ICD, immunogenic cancer cell death; PANX1, Pannexin 1; PERK, protein
kinase R-like ER kinase; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; ROCK1, rho-associated, coiled-coil-containing protein kinase 1; ROS, reactive
oxygen species; SNARE, SNAP (soluble N-ethylmaleimide-sensitive factor attachment protein) receptor.

were found (Suzuki et al., 2012; Fucikova et al., 2018). In
some of these studies, other markers involved in ICD or
ER stress response such as phosphorylation of eIF2α, Hsp70,
Hsp90 and BiP (GRP78/HSPA5), correlated with CRT expression
and patient prognosis (Uramoto et al., 2005; He et al., 2011;
Fucikova et al., 2016a,b). As mentioned above, only in a few
studies a correlation between increased CRT expression and
the chemotherapy regimen and good prognosis was found. For
example, ovarian tumors from patients that displayed high levels
of CRT showed a good clinical response to radiotherapy or
treatment with paclitaxel (which are well-known ICD inducers)
(Garg et al., 2015b). Similarly, in endometrial cancer patients,
low CRT expression was associated with poor survival rates
and resistance to doxorubicin (another reported ICD inducer)
(Xu et al., 2018). However, in other cases such as in patients
with NSCLC or AML, cancer cells exposed heterogeneous levels
of CRT, regardless of the treatment received. Cancer cells can
also experiment stress prior to chemotherapy, perhaps due
to the oncogenic malignant transformation itself (Fucikova
et al., 2018). This alternative source of stress also activates ER
stress responses culminating in CRT translocation and danger
signaling (Fucikova et al., 2018). This process facilitates anti-
cancer immunosurveillance, represented by the higher amount
of infiltrating mature DCs and effector T cells in the case of
NSCLC patients (Stoll et al., 2016) and increased numbers of
circulating NK cells and IFN-γ producing CD4+ and CD8+ T
cells in AML patients (Fucikova et al., 2016b). Moreover, cancer
cells that express low levels of CRT have shown to correlate, in
some cases, with therapy resistance, such as in endometrial cancer
patients (Xu et al., 2018). It is possible that this reduced CRT
expression may arise from the ability of cancer cells to resist ER
stress conditions (whether oncogenic- or chemotherapy-driven).
Therefore, this situation might be overcome by using ER stressors
that directly target ER stress response, possibly sensitizing to
conventional chemotherapy and restoring danger signaling and
the ensuing anti-cancer immunosurveillance.

ATP
During the course of ICD, dying cells expel ATP (Ghiringhelli
et al., 2009; Michaud et al., 2011) to the extracellular milieu
where it functions as a powerful short-range “find me” signal
(Elliott et al., 2009). Once secreted, ATP binds to ionotropic
(P2X7) and metabotropic (P2Y2) purinergic receptors on APCs
(Elliott et al., 2009; Ghiringhelli et al., 2009), stimulating their
phenotypic maturation and chemotactic attraction, respectively
(Galluzzi et al., 2015). In particular, extracellular ATP can
activate the caspase-1 dependent NLRP3 complex (the so called

inflammasome) triggering IL-1β secretion (Ghiringhelli et al.,
2009), which in turn promotes CD8+ T cell (Ghiringhelli et al.,
2009), as well as, IL-17 producing-γδ T cell (Ma et al., 2011)
anti-tumor responses. According to this, mice lacking any of
these components (Nlrp3−/−, P2rx7−/− or Casp1−/−) seem to
be incapable of promoting adaptive immune responses during
drug-induced ICD (Ghiringhelli et al., 2009; Ma et al., 2011).
The molecular mechanisms of ATP secretion during ICD are
also dependent on ICD-inducing stimulus. In mitoxantrone- or
oxaliplatin-driven early apoptotic ATP secretion, autophagy has
been demonstrated to be mandatory, since depletion of important
autophagy proteins (ATG5, ATG7 and BCN1) prevented ATP
release (Martins et al., 2014). Moreover, other molecules involved
in other cellular processes such as lysosomal exocytosis (LAMP1,
VAMP1), membrane blebbing (ROCK1, myosin II), apoptotic
machinery (caspases) and membrane permeabilization (pannexin
1, PANX1) have been shown to be essential for ICD-induced ATP
release (Martins et al., 2014). Interestingly, PANX1 activation
and surface exposure, as well as, LAMP1 translocation are
strongly dependent on caspases rather than on the autophagic
machinery (Martins et al., 2014). In fact, it is possible that
remodeling of autophagic effectors and lysosomal effectors
or PANX1 hemichannels by caspases rather than the mere
presence of these components per se, are the real originators
of ATP secretion (Garg et al., 2014; Martins et al., 2014).
However, as it occurs in Hyp-PDT induced CRT relocation,
ATP secretion mechanisms may differ from those described for
chemotherapy-induced ICD. In particular, Hyp-PDT mediated
ATP is autophagy independent (Garg et al., 2013) and rather
requires the PERK-mediated proximal secretory pathway and
PI3K-regulated exocytosis (Garg et al., 2012c).

HMGB1
High mobility group Box 1 is a non-histone chromatin-
binding protein localized in the nucleus, where it interacts
with DNA and regulates transcription (Garg et al., 2010). In
particular, it regulates the activity of NF-κB and p53 and other
transcription factors and favors VD(J) recombination (Müller
et al., 2004; Krysko et al., 2012). Extracellularly, HMGB1 can
perform cytokine-based (distinct from DAMP-based) functions
in monocytes and macrophages under the influence of pro-
inflammatory molecules (TNF, LPS, IL-1β) (Scaffidi et al., 2002;
Müller et al., 2004; Krysko et al., 2012). When released from
dying cells, HMBG1 exerts potent immunostimulatory effects
by interacting with distinct PRRs (TLR2, TLR4 and RAGE)
(Sims et al., 2010). During chemotherapy- or radiotherapy-
induced cell death, HMGB1 is released from dying cells and
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signals through TLR4-MyD88 axis on DCs, facilitating antigen
processing and presentation (Apetoh et al., 2007; Saenz et al.,
2014). The molecular pathways that participate in release of
this DAMP remains to be elucidated. It has been documented
that necrotic cells passively release huge amounts of HMGB1,
acting as a potent mediator of inflammation (Scaffidi et al.,
2002). Similarly, HMGB1 is also released by secondary necrotic
cells and the use of Z-VAD-fmk (a broad caspase inhibitor that
delays secondary necrosis) impede HMGB1 discharge in cells
undergoing ICD (Bell et al., 2006; Apetoh et al., 2007). The
immune related features of HMBG1 are strongly influenced by
its redox status (Venereau et al., 2012; Yang et al., 2012), and
this may account for the observed contradictory results (Palumbo
et al., 2004; Jube et al., 2012). This redox modulation as well as the
different behaviors observed in different studies have precluded
from drawing definitive conclusions (Garg et al., 2014).

ICD – ER STRESS CONNECTION

As stated before, numerous studies have been carried out to
decipher ICD mechanisms and large screening studies (Martins
et al., 2011; Menger et al., 2012; Sukkurwala et al., 2014) have
been performed to unveil the immunogenic potential of myriads
of anti-cancer agents. All this work has converged toward a
common denominator in ICD molecular pathways: ER stress and
ROS generation (Tesniere et al., 2008; Rufo et al., 2017). Then,
activation of the ER stress control pathways, also known as the
UPR, and specially the PERK-mediated arm, is vital for the vast
majority if not all the scenarios where ICD occurs (Panaretakis
et al., 2009; Rufo et al., 2017). As mentioned in previous sections,
CRT exposure induced by chemotherapeutics requires ER stress
with a decisive participation of PERK-mediated phosphorylation
of eIF2α (Panaretakis et al., 2009). Meanwhile, in hypericin-
PDT induced ICD, the ER stress module is similarly required
being PERK fundamental, but not eIF2α phosphorylation. Here,
PERK may modulate proper secretory pathway functioning, in
both ecto-CRT induction and ATP secretion (Garg et al., 2012c;
van Vliet et al., 2015). Regardless of these dissimilarities, PERK
abrogation through genetic maneuvers, significantly diminished
(but not completely abolished) the immunogenicity of stressed
cancer cells in vivo (Panaretakis et al., 2009; Garg et al.,
2012c). Altogether, PERK have shown to be a major player
in ICD-derived emission of danger signal(s). Depending on
the trigger stimuli it could be involved only in CRT emission
or both in ATP and CRT emission (Kepp et al., 2013; van
Vliet et al., 2015; Rufo et al., 2017). Nevertheless, this context
dependency determines whether PERK contribution arise from
its UPR-related function (Panaretakis et al., 2009) or through
its ability to modulate the proximal secretory pathway (Garg
et al., 2012c). Moreover, other novel PERK cellular functions
related to actin cytoskeleton dynamics and formation of ER-
plasma membrane contact sites, may sustain DAMP trafficking
in ICD (van Vliet et al., 2015, 2017; van Vliet and Agostinis,
2016; Rufo et al., 2017). Interestingly, although the three branches
of the UPR (PERK, IRE1α and ATF6) were triggered under
cardiac glycoside treatment (Menger et al., 2012), abrogation

of IRE1α and ATF6 pathways through genetic interventions
did not alter CRT exposure in dying cells under the influence
of different types of therapies (mitoxantrone, oxaliplatin, UVC
irradiation) (Panaretakis et al., 2009). Furthermore, tunicamycin
and thapsigargin, two potent chemical ER stressors, both of
which induce strong UPR responses (Obeng et al., 2006; Almanza
et al., 2018; Shen et al., 2018), have been shown to efficiently
restore CRT relocation and/or in vivo immunogenicity of cis-
platinum or mytomicin C (Martins et al., 2011), two reported
non-ICD inducers. Of note, it seems that ER stress alone is
not sufficient to trigger CRT translocation or in vivo immune
responses (Kepp et al., 2013). In line with this, tunicamycin
and thapsigargin have been shown to be ineffective (or at
least less effective as other bona fide ICD inducers) in eliciting
ICD (Martins et al., 2011; Kepp et al., 2013). In contrast,
thapsigargin has reflected the opposite in some scenarios (Peters
and Raghavan, 2011). The relative importance of ER stress (the
process itself and also its kinetics and intensity) is underscored
by the classification of ICD inducers. There are two main
groups of ICD inducers, type I and type II (Krysko et al.,
2012; Rufo et al., 2017), depending on cell death is either
a consequence of a primary effect of ER stress or death is
triggered through a different path and ER stress is merely a
secondary effect of the therapeutic agent under consideration
(Krysko et al., 2012). For example, some oncolytic viruses
(Newcastle disease virus) (van Vloten et al., 2018; Ye et al.,
2018), Pt(II) N-heterocyclic carbene complex (Wong et al., 2015)
and hypericin-PDT (Garg et al., 2012c) fall within type II ICD
inducer category as they selectively target the ER provoking
intense ROS-based ER stress (Krysko et al., 2012; Rufo et al.,
2017). Conversely, anthracyclines (type I ICD inducers) exert
its cytotoxic effects primarily on the nucleus, where they are
mainly localized (Minotti et al., 2004) and leave the ER stress as a
secondary side-effect. Bortezomib is also considered a type I ICD
inducer. Although bortezomib affects ER homeostasis generating
a potent ER stress response (Obeng et al., 2006; Verfaillie et al.,
2013; Gandolfi et al., 2017; Manasanch and Orlowski, 2017) and
elevation cellular ROS levels (Lipchick et al., 2016), its direct
cellular target is the inhibition of 26S proteasome (Gandolfi
et al., 2017). Thus, as the cellular targets of these two types of
ICD inducers are different, it is conceivable that the cellular
responses triggered (particularly in the ER stress context) are
different both in their kinetics and potency. Consequently, this
has clear implications in the quality and amount of danger signals
emitted. In fact, it has been shown that hypericin-PDT (a type
II ICD inducer) has a superior capacity of emitting faster, a
higher number and a broader spectrum of DAMPs, compared to
type I ICD inducers (Garg et al., 2012a,b,c; Krysko et al., 2012;
Rufo et al., 2017).

It’s important to mention that, in some regulated variants
of cell demise, ROS-mediated ER stress may be dispensable for
triggering ICD and the ensuing in vivo immune responses (Aaes
et al., 2016; Rufo et al., 2017). Specially, different to hypericin-
PDT based and anthracycline-induced ICD, the necroptotic
variant occurred in absence of apparent/perceptible ER stress or
PERK activation (Aaes et al., 2016). This reveals that there may
be alternative mechanisms that may take part in the induction
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of danger signaling and further reinforce the idea that ICD
induction may be stimulus and context-dependent.

ER stress could also instigate immunosuppressive effects in
the tumor microenvironment. In particular, transmissible ER
stress has been observed in myeloid cells incubated with tumor
supernatants obtained under ER stress conditions (Mahadevan
et al., 2011; Colegio et al., 2014; Parker et al., 2015; De
Sanctis et al., 2016). Moreover, tumor cells can activate in a
paracrine fashion the UPR in tumor-infiltrated myeloid cells
(DCs, MDSCs) that adopt an immunosuppressive phenotype,
showing an impaired antigen presenting capacity, secretion of
pro-inflammatory cytokines (IL-6, TNFα, IL-23, ...) as well as
other immune-restraining factors (Mahadevan et al., 2011, 2012).
Supporting this notion, mice tumors exposed to thapsigargin
displayed exacerbated tumor growth which correlated with the
increased numbers and aggressive phenotype of MDSCs (Lee
et al., 2014). To our knowledge, although transmissible ER stress
has not been directly demonstrated in MM, this system share
common players with MM pathogenesis (IL-6, MDSCs, alteration
of DCs). Therefore, as MM cell suffer from ER stress, it is
not rare to think that transmissible ER stress might contribute
to the characteristic immunosuppressive BM microenvironment
in MM patients. Collectively, all these data seem to point to
the fact that low to moderate ER stress may contribute to
create an immunosuppressive environment, whereas high-level
ER stress, such as the one occurred in ICD, could bring about
immunostimulatory responses (Cubillos-Ruiz et al., 2017).

Besides the contributions to ICD stated before, ER stress
may further boost DAMP signaling abilities of stressed cancer
cells through the induction of autophagy (Martins et al., 2014;
van Vliet et al., 2015). It is known that upon UPR activation,
autophagy is activated as a defense mechanism to promote
cell survival (Høyer-Hansen and Jäättelä, 2007; Velasco et al.,
2010; Michallet et al., 2011; Corazzari et al., 2017). Moreover,
as mentioned in previous sections, autophagy plays a crucial
role in ATP secretion during ICD driven by chemotherapeutics
(Martins et al., 2014). For these reasons, it may seem feasible
that ER stress-induced autophagy triggered by ICD inducers
further contributes to the immunogenicity of dying cancer cells.
However, whether autophagy is directly induced by these drugs
or is just a consequence of ROS-based ER stress in the context
of ICD, needs to be thoroughly explored. Nonetheless, there are
at least three facts that question the involvement of ER stress-
induced autophagy in ICD: (1) The extensive characterization
of molecular pathways involved in autophagy-mediated ATP
secretion comprise molecular mechanisms (caspases, LAMP1-
dependent trafficking, PANX1 channels lysosomal exocytosis)
that seem to be independent of ER stress/UPR pathways (Martins
et al., 2014). (2) In chemotherapy-induced ICD, autophagy do
not regulate the emission of DAMPs which are dependent on
ER stress pathways (Panaretakis et al., 2009; Michaud et al.,
2011; Martins et al., 2014). (3) Finally, ATP secretion and CRT
exposure appear to follow a different time-course, since CRT
mobilization has been shown to occur prior phosphatidylserine
externalization, whereas ATP is expelled during the blebbing
phase of apoptosis. Altogether, these considerations may point
to ER stress and autophagy as two independent constituents

of ICD, at least in chemotherapeutic-driven ICD. On the
other side, under Hyp-PDT treatment, autophagy has also been
shown to be activated and to confer resistance against ROS-
mediated cytotoxicity of stressed cancer cells (Dewaele et al.,
2011; Rubio et al., 2012). One might argue that as hypericin
is a direct ER sensitizer (Garg et al., 2012a) (type II ICD
inducer), autophagy is triggered as a consequence of ER stress
induction. Meanwhile in type I ICD inducers, as ER stress
is not the primary target, autophagy could be induced upon
interaction with other cellular targets. Furthermore, the ICD
pathways involved in danger signaling are not identical when
triggered by type I or type II ICD inducers. Thus, contrary to
chemotherapy-induced ATP secretion, in the Hyp-PDT scenario
ATP secretion is not dependent on autophagy machinery (Garg
et al., 2013). Outstandingly, autophagy was found to attenuate
CRT translocation and DCs maturation as well as suppress DC-
mediated proliferation of CD4 and CD8 T cells (Garg et al.,
2013). This has been rationalized as the autophagy machinery
is able to clear oxidized proteins and organelles (Rubio et al.,
2012; Garg et al., 2013), which in turn would alleviate the ER
retention system that becomes overwhelmed under ER stress
conditions (Johnson et al., 2001; Wiersma et al., 2015). Hence,
during Hyp-PDT treatment, ER stress and ROS production
allow oxidized proteins to accumulate leaving the ER retention
system saturated (Dewaele et al., 2011; Rubio et al., 2012).
Under these conditions, autophagy inhibition would increase
the amount of oxidized proteins (possibly by augmenting ROS-
based ER stress) and would favor that ER resident chaperones
such as CRT could escape from ER confinement (Johnson et al.,
2001; Peters and Raghavan, 2011; Garg et al., 2013). Similarly,
in a model of melanoma, in wild-type as well as in BRAF-
resistant cells, concurrent silencing of ATG5 and treatment with
a MEK-inhibitor (U0126), amplified the levels of ecto-CRT and
ecto-HSP90 compared to those cells in which autophagy was
intact (Martin et al., 2015). Additionally, emerging mechanisms
underpinning the crosstalk between the autophagic flux and the
endosomal pathway could contribute to unravel the interplay of
autophagy in modulation of ER-stress driven DAMP trafficking
(Kim et al., 2012; Hyttinen et al., 2013; McKnight et al., 2014;
van Vliet et al., 2015). ER stress could also have an impact over
intracellular ATP levels through stimulation of mitochondrial
respiration and bioenergetics (Bravo et al., 2012). This way the
cell fill their bioenergetic stores to restore cell homeostasis.
Given the chemotactic power of ATP, by increasing its cellular
levels, the cell may also be preparing to alert the immune
system that something is wrong. Finally, ER stress and the UPR
could also impact on cytokine production in multiple levels
(PRRs, transcription factors involved in cytokine production,
etc.) (Smith et al., 2018). The mechanisms involved in this process
are out of the scope of this manuscript and have been recently
reviewed in Reverendo et al. (2019) and Smith et al. (2018).

ER STRESS-ASSOCIATED CELL DEATH

With all these players around the table, it seems tempting to
target PERK and/or ER stress in cancer. In fact, ER stress
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as a target, is increasingly getting more adepts in the cancer
crusade. During tumor development cancer cells have to cope
with harsh conditions that are widely known to trigger ER stress
(e.g., nutrient deprivation, hypoxia, acidic pH) (Sano and Reed,
2013). Thus, UPR activation constitutes an important hallmark of
numerous human cancers (Riha et al., 2017). This process endows
cancer cells with the ability to acquire essential characteristics
(dormancy, resistance to therapy, tumor-driven angiogenesis,
etc.) required for tumor progression (Sano and Reed, 2013;
Corazzari et al., 2017; Mohamed et al., 2017). As stated before,
ER stress could also negatively influence immunity at different
levels, favoring this way tumor development (Mahadevan et al.,
2011; De Sanctis et al., 2016; Cubillos-Ruiz et al., 2017). In the
particular case of MM, their exacerbated secretory phenotype
leave these cells heavily reliant on the survival arm of the UPR.
Therefore, as plasma cell development and survival strongly
relies on an intact UPR (Reimold et al., 2001; Iwakoshi et al.,
2003), it does not seem unusual that UPR activity increases
with MM progression (Nakamura et al., 2006). Furthermore,
whole genome sequencing studies have revealed that MM
patients frequently harbor mutations in genes related to the
UPR (Chapman et al., 2011). Among the UPR mediators,
XBP1 has been found to be overexpressed in MM and has
also been identified to be mutated in a small subpopulation of
patients (Carrasco et al., 2007; Bagratuni et al., 2010; Chapman
et al., 2011; Nikesitch et al., 2018). Nevertheless, although
myeloma cells count on the UPR to thrive, they are extremely
sensitive to ER stress-associated cell death (Obeng et al., 2006;
Ling et al., 2012; Gandolfi et al., 2017). This feature explains
why proteasome inhibitors, have shown a prominent clinical
efficacy in the treatment of MM (Leleu et al., 2018; Scalzulli
et al., 2018), although resistance to therapy is recurrent and
in most of the cases accounts for the lethality of the disease
(Nikesitch et al., 2018; Robak et al., 2018). For these reasons,
novel ER stress/UPR-targeting therapies have emerged. Given its
important role in myeloma pathogenesis, novel drugs targeting
the RNAse domain of IRE1 (4µ8C, MKC-3946, STF083010)
have been developed. These drugs showed significant tumor
growth inhibition in mouse myeloma models (Papandreou
et al., 2011; Mimura et al., 2012), as well as in primary
myeloma plasma cells (Papandreou et al., 2011). In addition,
new potent and selective first-in-class inhibitors have been
developed against PERK (GSK2606414 and the derived form
GSK2656157) (Atkins et al., 2013; Hoi et al., 2013). These
drugs have shown promising pre-clinical results in a model
of pancreatic cancer (Atkins et al., 2013; van Vliet et al.,
2015). Nonetheless, given the dual role of ER stress and UPR
related pathways in cancer, a word of caution about needs
to be taken when targeting these cellular pathways. On one
side we may be inhibiting the pro-tumorigenic role of UPR
mediators but in the other, we may reduce the immunogenicity
of cancer cells dampening danger signaling (or vice versa).
Therefore, future investigations assessing the repercussion on
overall immunity, as well as cell-autonomous responses on
cancer cells, on immunocompetent mice models are needed
in order to truly evaluate the therapeutic relevance of these
approaches in cancer.

Although UPR activation is initially conceived to restore
cell homeostasis, it is also able to shift the cellular demise
toward cell death. When ER stress persists, the UPR is able
to trigger proapoptotic programs controlled mainly by IRE1
and PERK arms. Activated IRE1 can act as a docking platform
to recruit other proteins such as the adaptor protein TRAF2,
that subsequently tethers ASK1 which causes activation of
JNK/p38 MAPK pathway. These downstream stress kinases, are
reported to promote apoptosis in several ways. For example, JNK
phosphorylation has been shown to inhibit the anti-apoptotic
members Bcl-2, Bcl-xL and Mcl-1, while activating pro-apoptotic
members BID and BIM (Deng et al., 2001; Lei and Davis, 2003;
Almanza et al., 2018). As regards to p38 MAPK, it phosphorylates
and activates transcription factor CHOP which contributes to
apoptosis controlling several Bcl-2 family members (Yamaguchi
and Wang, 2004; Puthalakath et al., 2007). As in the case of PERK
signaling, it increases the expression of ATF4 and CHOP, two key
determinants of ER stress-induced cell death. CHOP can increase
the transcription of BH3-only proteins BIM (Puthalakath et al.,
2007) and PUMA (Cazanave et al., 2010). Moreover, Noxa has
been reported to be upregulated by ATF4 (Armstrong et al.,
2010). ATF4/CHOP pathway also downregulates the expression
of Bcl-2 and Mcl-1 anti-apoptotic proteins, contributing in this
way to cell death (Puthalakath et al., 2007; Gomez-Bougie et al.,
2016). Moreover, PUMA, BID and BIM deficient cells, as well as
BAX and BAK double-knock-out cells, are protected from cell
death by external ER insults (Ren et al., 2010; Almanza et al.,
2018). The extrinsic apoptotic pathway could also be upregulated
under ER stress conditions. Thus, CHOP and ATF4 have been
shown to increase the expression of DR4 and DR5 receptors
(Hiramatsu et al., 2015; Iurlaro et al., 2017). In fact, bortezomib
have been shown to cooperate and potentiate cell death induced
by Apo2L/TRAIL in MM cell lines (Balsas et al., 2009).

Bcl-2 family are better known for their roles in controlling
mitochondrial permeability and cell death mechanisms.
However, they also play important roles in regulating calcium
ER homeostasis and ER stress-induced cell death. Interestingly,
an intense crosstalk between mitochondria and ER organelles
exists, which even increases during ER stress conditions
(Bhat et al., 2017). For example, BAX and BAK are capable
of modulating IRE1 activity during ER stress by interacting
with IRE1 (Hetz, 2006). In similar way to mitochondria,
BAX and BAK can also oligomerize at the ER membrane
under ER stress conditions. This results in an increase of
ER-membrane permeability and the release of ER resident
proteins such as calreticulin, BIP, PDI and GRP94, which
could aggravate ER stress and ROS production (Rodriguez
et al., 2011; Pihán et al., 2017). This process is triggered by
BH3-only members and counteracted by Bcl-2 and Bcl-xL
(Wang et al., 2011; Kanekura et al., 2015). The mechanism by
which ER permeabilization leads to cell death is still unknown.
However, it has been speculated that ER permeabilization
could bring about release of ER-Ca2+ stores and increase
Ca2+ flux to the mitochondria through mitochondria ER-
associated membranes (MAMs). This would instigate cell
death by mitochondrial permeabilization transition pore
(mPTP) (Pihán et al., 2017). Taken together, these studies
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delineate the ER as an important stress sensor and integrator
where also cell fate decisions may take place, with Bcl-2
family as the critical circuitry that connect and modulate
the mechanisms involved in cell fate (UPR, apoptosis and
also autophagy).

IMMUNOTHERAPY IN MM

Multiple myeloma is a hematological malignancy that arises
due to uncontrolled proliferation of abnormal plasma cells. It
accounts for 10–20% of all hematological neoplasms and 0.9% of
all newly diagnosed cancer cases worldwide (Bray et al., 2018).
Over the past two decades, treatment regimens and survival rates
of myeloma patients have witnessed a radical improvement, with
ASCT, IMiDs, proteasome inhibitors and monoclonal antibodies
as the contributors to this advance. Among them, proteasome
inhibitors, stand out as the cornerstone of this scientific
and medical achievement (Scalzulli et al., 2018). However,
although overall survival and patient outcomes have considerably
improved, drug resistance is still a major concern and accounts
for the fatality of the disease (Nikesitch et al., 2018; Robak et al.,
2018). That is why novel and more efficient (immuno)therapeutic
approaches may take the relief. It is important to point out
that MM is a genuine example where the immune system is
compromised. Deficits in antibody production/immunoglobulin
levels due to a reduction of bone marrow (BM) B-cell progenitors
are common in MM (Rawstron et al., 1998). General disruption
of T-cell immune profile has also been observed, characterized
by increased numbers of regulatory T cells (Tregs), aberrant
CD4/CD8 ratios and altered CD4+ T cell numbers among
others (Braga et al., 2014; Joshua et al., 2016; Chen et al.,
2017). MM is also characterized by augmented expression of
programmed cell death ligand 1 (PD-L1), one of the immune
checkpoint inhibitory ligands that counterbalance T cell activity
by binding to PD-1 on activated T cells (Paiva et al., 2015;
Jung et al., 2017). MDSCs are also a major issue in MM, as
expansion of this population usually correlates with disease
progression and a negative clinical outcome (Malek et al., 2016).
In addition, MM also finds good allies in BM stromal cells
(BMSCs), which are important players sculpting a permissive
BM microenvironment (Mahindra et al., 2010). Through cell-
to-cell (Mondello et al., 2017) o exosome-mediated contacts
(Wang et al., 2014) with MM cells, they secrete cytokines that
favor the recruitment of immunosupressive populations such
as Tregs and MDSCs (Giallongo et al., 2016; Malek et al.,
2016). Finally, several studies have documented an impaired
DC function and although contradictory results have been
reported, alterations in DCs frequencies and phenotypes have
been found in in MM patients (Pasiarski et al., 2013; Leone
et al., 2015; Brown et al., 2018). Despite all these stones
in the immunotherapeutic path, immune-interventions have
potential to be successful in this disease. Graft-vs-myeloma
effect was firstly evidenced in patients subjected to ASCT or
under donor lymphocyte infusions, suggesting an active immune
response against myelomatous cells (Ladetto et al., 2016). Current
immunotherapeutic approaches that are giving positive results

in relapsed and refractory patients are going to be described
below (see also Figure 3).

Antibody-Based Therapy
Although monoclonal antibodies (moAbs) have been in
the anticancer therapeutic armamentarium for some years,
effectively treating some solid and hematological cancers, it
was only a few years ago that Daratumumab was approved
for the treatment of MM. Daratumumab is a moAb that
selectively targets CD38, an antigen highly expressed in aberrant
plasma cells and at relatively low levels on normal lymphoid
and myeloid cells, including normal PCs. Similarly, other
anti-CD38 moAbs are currently under investigation such
as isatuximab and MOR22. As single agent, Daratumumab
showed a promising efficacy, observing objective response rates
(ORRs) of approximately 30%, progression free survival (PFS) of
4 months and overall survival (OS) of 20 months, in relapsed and
refractory MM (RRMM) patients heavily treated with at least two
prior lines of therapy (Lokhorst et al., 2015; Lonial et al., 2016;
Rodríguez-Otero et al., 2017). Daratumumab has been shown
to kill MM cells through a plethora of mechanisms ranging
from antibody-dependent cell mediated cytotoxicity (ADCC)
mediated by NK cells, complement-medicated cytotoxicity
(CDC), antibody-dependent cell phagocytosis (ADCP) mediated
by macrophages and even apoptosis via direct cross-linking
(van de Donk and Usmani, 2018). NK cell-mediated cytotoxicity
seems to be one of the main mechanisms, and since patient
NK cell status may vary, this could explain differences in
response between patients (van der Veer et al., 2011). Nowadays,
another moAb, elotuzumab, has been approved in MM therapy
targeting the SLAMF7 molecule expressed among normal and
myeloma PCs, NK, and T cells. The mechanism of action of
Elotuzumab is thought to differ from that of daratumumab.
This thought is based on the fact that elotuzumab alone has
not reached objective responses in MM patients but when
combined with lenalidomide and dexamethasone, in a phase II
trial and afterward in the Eloquent-2 phase III trial, significantly
improved ORRs and OS in RRMM patients (Lonial et al., 2015;
Rodríguez-Otero et al., 2017).

Combination of chemotherapy with this kind of approach
could render synergistic effects and improve patient’s outcomes.
Interestingly, IMiDs have shown to prime MM cell lines to
Daratumumab-induced NK cell-mediated cell death (Fedele
et al., 2018). In fact, several clinical trials combining IMiDs
and Daratumumab have been performed obtaining good
results (Gavriatopoulou et al., 2018). Similarly, the efficacy
of Daratumumab alone was even improved with combination
regimens of daratumumab plus lenalidomide and dexamethasone
or daratumumab with bortezomib plus dexamethasone,
significantly extending PFS period with strong and durable
responses (Blair, 2017; Rodríguez-Otero et al., 2017). As
Carfilzomib has shown better survival curves compared to
bortezomib, combinations of Daratumumab plus carfilzomib
and dexamethasone are currently under phase I investigation
(clinical trial NCT03158688).

Other novel and promising designs of these kind of
therapy are the conjugated antibodies and the bi-specific T
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FIGURE 3 | Current clinical immunological scenario in MM. MM is a genuine example where the immune system is compromised. It is characterized by: (1) Deficits in
antibody production due to a reduction of bone marrow (BM) B-cell progenitors (Rawstron et al., 1998). (2) General disruption of T-cell immune profile, characterized
by increased numbers of regulatory T cells (Tregs), aberrant CD4/CD8 ratios and altered CD4+ T cell numbers among others (Braga et al., 2014; Joshua et al., 2016;
Chen et al., 2017). (3) Increased expression of programmed cell death ligand 1 (PD-L1), one of the immune checkpoint inhibitory ligands that counterbalance T cell
activity (Paiva et al., 2015; Jung et al., 2017). (4) MDSCs and BMSCs are also a major issue in MM. They are important players sculpting a permissive BM
microenvironment, through cell-to-cell (Mondello et al., 2017) o exosome-mediated contacts (Wang et al., 2014) with MM cells, they secrete cytokines that favor the
recruitment of immunosupressive populations such as Tregs. (5) An impaired DC function and alterations in DCs frequencies and phenotypes have been found in
MM patients (Pasiarski et al., 2013; Leone et al., 2015; Brown et al., 2018). At the right is depicted the current immunotherapeutic repertoire in MM therapy. All these
immunotherapeutic approaches could be virtually benefited from the immunostiumulatory effect of ICD-related therapies.

cell engagers (BiTEs). Conjugated antibodies carry in their
structure cytotoxic molecules that are guided by the specificity
of the antibody part and delivered directly into the target. In
particular, an anti-BCMA specific antibody linked to a new
class of antimitotic agent, monomethyl auristatin F, has been
developed (GSK2857916). This formulation has demonstrated
in a phase I trial a 60% response rate and PFS of 7.9 months
in RRMM patients with at least three prior lines of therapy

(Trudel et al., 2018). Regarding the BiTEs, these are bispecific
antibodies that hold on one side specificity for the target
cancer cell epitope and on the other recognizes (generally)
CD3 molecules on T cells facilitating the contact between
them. This way, contact between effector cells and cancer cells
is facilitated. There are several BiTEs targeting the BCMA
antigen that are currently under development (BI 836909, EM801
and JNJ-64007957) and showed positive results in preclinical
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models (Cho et al., 2018). Some of these have now entered
clinical trials (NCT02514239, NCT03145181, NCT03269136
and NCT03269136), we will have to wait to new updates
of these and other studies to check the efficacy of these
new formulations.

Adoptive Cell Therapy
Another way to confront the tumor is by directly using and
improving patient’s own defenses (immune effector cells) to
kill cancer cells with ACT. By expanding, activating and even
engineering NK or T cells outside the immunosuppressive
tumor microenvironment, some of the immune barriers may
be successfully, or at least partially overcome. As mentioned
earlier, graft versus myeloma effect has been observed in patients
subjected to autologous stem cell transplantation (ASCT). This
effect is thought to be mainly mediated by T cells. Therefore, this
population and more specifically, tumor infiltrating lymphocytes
(TILs), MILs in the case of myeloma, represents one of the
major immune effector cells that could be used to fight MM.
Although clinical data in this issue is still scarce, encouraging
results has been reported. Noonan et al. (2015) reported that
a 90% reduction of tumor burden was achieved with a PFS of
25.1 months, hence demonstrating the feasibility and efficacy
of this approach. Genetically engineered T cells stand as a
novel and a leading therapeutic opportunity in cancer in general
and also in MM. There are two categories: (1) Transgenic
TCRs, with specificity toward a tumor antigen in the context
of MHC molecule and (2) chimeric antigen receptor (CAR)
T cells, which are fusion proteins composed of a single-chain
variable fragment (scFv) that directs the specificity toward the
cancer cell antigen, coupled to intracellular signaling modules
(CD3ζ) or costimulatory molecules (CD28 or CD137/4-1BB).
TCR engineered T cells have the advantage to recognize both
intracellular and surface antigens, therefore virtually any tumor
antigen could be targeted. However, they are restricted to the
HLA-I type limiting the patient eligibility criteria (Rodríguez-
Otero et al., 2017). Moreover, potential recombination with
TCR α and β chains could lead to off-target toxicities due to
generation of unexpected MHC-TCR-peptide complex (Cohen,
2018). Fatal and sudden toxicities have been observed in two
patients receiving transgenic TCR T cells with specificity to
MAGE-A3 class I peptide, due to unwanted specificity of
transgenic TCR toward the myocardial protein titin (Linette
et al., 2013). Therefore, caution in selecting the proper Ag must
be taken. In myeloma, transgenic TCR T cells for NY-ESO1
peptide and its homolog LAGE are currently under clinical
testing (Rapoport et al., 2015). Regarding the use of CAR T
cells, one of its limitations is that only surface antigens can
be targeted, so the number of available targets is lower with
this approach. Therefore, the success of this therapy relies on
selecting the appropriate target, to selectively kill the cancer cell
limiting off-target and targeted-toxicities on healthy tissue. To
date CD19 CAR T cells has shown remarkable results on acute
lymphoblastic leukemia, chronic lymphocytic leukemia and non-
Hodgkin lymphoma (Porter et al., 2015; Maude et al., 2018).
Nowadays, there are several antigens in the anti-myeloma CAR
T cell repertoire including CD19, CD138, CD38 and SLAMF7.

To date BCMA CAR T cell formulation is the one that has been
developed in further extent (Cohen, 2018). Several clinical trials
have tested or are currently testing BCMA CAR T cells in heavily
treated RRMM patients reporting encouraging results. In these
studies, overall response rates were close to 80% or even higher
and CRs were achieved in an important proportion of patients
(Castella et al., 2018; Cohen, 2018).

Similarly, NK cells also pose as a committed ally in cancer
therapy. They do not rely on MHC restriction or antigen
recognition, but rather they are dependent on the balance
between activating and inhibitory receptors. In MM, NK cell
numbers and functionality are usually altered, therefore it is
feasible to think that restoration of NK cell compartment with
ACT could represent a suitable opportunity to face this disease.
There are many therapeutic options that are currently under
clinical evaluation. They mainly differ in their source (umbilical
cord vs. peripheral blood), in their allo-reactivity (autologous
vs. allogeneic), and the expansion and stimulation protocols
used to prepare and improve these cells (Fionda et al., 2018).
One conclusion may be drawn out from all these studies and
that is the superior capacity of allo-reactive NK cells to bring
myeloma down. Regarding the use of CAR NK cells in MM,
they are still under preclinical studies and have not move yet to
clinical investigation.

Here chemotherapy could also improve the effectiveness of
these approaches. In particular, Lenalidomide has shown to
improve the function and persistence of anti-myeloma CS1
CAR T cells in vivo (Wang et al., 2018). Carfilzomib has
also shown activating and sensitizing activities over NK cells
and MM cells, respectively (Chang et al., 2018). In addition,
the combination of expanded and activated allogeneic NK
cells (eNK) with therapeutic mAbs directed against tumor
antigens (e.g., daratumumab in the case of MM), could
give excellent results through ADCC mediated by eNK cells
(Sanchez-Martinez et al., 2018).

Releasing the Brakes With
Checkpoint Blockade
T cell activation is a complex and well-regulated process.
When the menace have been removed, returning to the
homeostatic state and preventing damage of tissues requires
negative feedback signals that terminate with the immune
response. To that end, checkpoint inhibitors are the major
class of receptors that provide these attenuation signals to
limit the T cell response. Multiple inhibitory checkpoints
have been discovered so far: CTLA-4, PD-1, LAG-3, TIM-
3, etc. Although, currently both stimulatory and inhibitory
checkpoints are under investigation, the checkpoint drugs on
which clinical therapies have been developed are CTLA-4, PD-
1 and PD-L1. CTLA-4 is an inhibitory receptor expressed
on activated T cells and binds to B7 costimulatory molecules
on APCs with higher affinity than CD28. Therefore, CTLA-
4 blocks and displaces costimulatory interactions eventually
leading to abrogation of T cell activation. Ipilimumab, a blocking
antibody against CTLA-4, was the first of these type of drugs
clinically tested, showing important improvements in metastatic
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melanoma patients (Robert et al., 2011; Sharma and Allison,
2015). Like CTLA-4, PD-1 is also a checkpoint inhibitory
receptor expressed on activated T cells and has two known
ligands, PD-L1 and PD-L2. PD-1/PD-L1 (PD-L2) signaling
axis interferes with TCR signaling and contributes to T cell
exhaustion. PD-L1 / PD-L2 are widely expressed among different
cell types and their expression is known to increase under IFN-
γ exposure (Sharma and Allison, 2015). Hence, it is thought
that this pathway is a late mechanism of protection from T
cell activation and represents a physiological way to regulate
termination of inflammatory reactions (Sharma and Allison,
2015; Cogdill et al., 2017). PD-L1 is upregulated in tumor cells
acting as a disguise mechanism that allow them to escape from
T cell-mediated tumor surveillance. Moreover, PD-L1 expression
has been linked with poor prognosis in a variety of human
cancers (Ghebeh et al., 2006; Mu et al., 2011). On the other
hand, probably due to the immunosuppressive character of
the tumor microenvironment, TILs show higher expression of
PD-1 (Fourcade et al., 2010; Zhang et al., 2010). In MM, PD-
L1 expression is upregulated on myeloma cells but not in
normal plasma cells from healthy donors (Liu et al., 2007;
Tamura et al., 2012; Paiva et al., 2015; Yousef et al., 2015).
In fact, higher PD-L1 expression in MM cells was associated
with disease progression as shown in the differences of PD-L1
expression between MGUS, MM and relapsed/refractory MM
(RRMM) patients (Paiva et al., 2015). Blocking PD-1 alone with
nivolumab has not reached good clinical objective responses
with half of the patients experiencing disease stabilization
in a phase I study (Lesokhin et al., 2016; Rodríguez-Otero
et al., 2017). Similarly, on KEYNOTE-013 study, Ribrag and
colleagues assessed the clinical efficacy of the anti-PD-1 mAb
pembrolizumab as single agent in patients with RRMM. No
patient of the 30 enrolled in the study experienced any response
and the best outcome observed was again disease stabilization
(Paul et al., 2018).

Although checkpoint blockade therapy alone has shown
promising results in some cancer patients, this response is not
universal and strongly relies on the tumor microenvironment.
Thus, checkpoint blockade efficacy may also be refined by
induction of more propitious immunogenic conditions in
the tumor tissue through ICD. Recent preclinical studies
have shown that immunogenic chemotherapy may sensitize
cancer cells to checkpoint blockade leading to synergistic
responses. In a lung mouse cancer model, an approved clinical
chemotherapy regimen (Oxaliplatin plus cyclophosphamide)
were able to foster CD8+ T cell infiltration and increase
TLR4+ DCs in tumor tissue, which leads to sensitization
of tumors to immune checkpoint therapy (Pfirschke et al.,
2016). Another study also showed that the CDK inhibitor
dinaciclib was able to increase immune infiltration and activation
within tumors and combination with anti-PD1 therapy resulted
in enhanced anticancer activity in three different syngeneic
mouse cancer models (Varpe et al., 2012). In the clinical
practice, NSCLC patients treated with combined regimens of
chemotherapy (platinum-based) with different anti-PD1 agents
have demonstrated considerable higher response rates and
improved clinical outcome compared to that seen on single-agent

modalities (Mathew et al., 2018). In patients with metastatic
renal cell carcinoma, combination of anti-PD1 (nivolumab) plus
pazopanib or sunitib also showed promising clinical responses
(Amin et al., 2014).

In MM, preclinical data shows that lenalidomide, one
of the so-called immunomodulatory drugs (IMiDs), reduce
the expression of PD-1 and PD-L1 in MM cells and BM
accessory cells isolated from RRMM patients. Moreover, a
synergistic effect between lenalidomide and anti-PD-1 or anti-
PD-L1 was observed (Görgün et al., 2015). These results
encouraged the rationale of using PD-1/PD-L1 blockade in
combination with IMiDs in the treatment of MM. Hence,
phase I and phase II clinical trials on RRMM patients
who underwent at least three prior lines of therapy have
been conducted (Wilson et al., 2016; Badros et al., 2017).
These studies showed ORRs of 60% with even some cases
of complete response. Therefore, development of phase III
clinical trials were the following step to test these combination
modalities (Malavasi et al., 2018). Pembrolizumab plus Len
and Dex (KEYNOTE-185, NTC02579863), Pembrolizumab plus
Pom and Dex (KEYNOTE-183, NTC02576977) and another
phase III study testing three different combination regimens
(Poma and Dex vs. nivolumab, Pom and Dex vs. nivolumab,
elotuzumab, Pom and Dex; CheckMate 602, NCT02726581)
were developed. However, these studies were discontinued due
to an increase of unprecedented deaths in the pembrolizumab
group as well as that no objective responses were observed in
the tested groups.

DC-Based Vaccines and Its
Enhancement/Upgrade With ICD
Due to its particular nature, DCs are at the fine-tuned crossroads
between innate and adaptive immunity, playing a pivotal role
in anti-cancer host immune responses. Therefore, DC-based
vaccines seem to be a good option to re-educate the host immune
system against myeloma, leading not only to the expansion
of anti-tumor specific T cells, but also to long-term memory
generation. Since its first documented clinical use on melanoma
patients in 1995 (Mukherji et al., 1995), DC-based vaccines
have gained momentum in anti-cancer therapy. In fact, this
approach has showed positive survival benefits in a diverse
set of human cancers (Kantoff et al., 2010; Nakai et al., 2010;
Anguille et al., 2014; Cao et al., 2014). In the particular case
of MM, DC-MM fusion vaccines achieved anti-cancer immune
responses and disease stabilization in the vast majority of
patients (Rosenblatt et al., 2011; Rosenblatt et al., 2013). In
hematological cancers, following ASCT a complete “resetting”
of the hematological system occurs, leaving a huge opening to
vaccination strategies to succeed (Rodríguez-Otero et al., 2017).
However, although considerable objective clinical responses have
been observed, the overall clinical outcome still has not reached
the expected standards (Anguille et al., 2014; Vandenberk et al.,
2015). As mentioned earlier, due to the hostile microenvironment
surrounding MM cells, DC populations are dysfunctional in
MM, showing impaired T-cell stimulation capacity (Guillerey
et al., 2016; Chung, 2017). Moreover, it is said that the antigens
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displayed by myeloma cells are presented to DCs in absence of the
appropriate costimulatory signals. Therefore, these interactions
lead to inadequate immune responses and even create tolerance
against cancer Ags (Chung, 2017). For these reasons, there is
a consensus that DC vaccines may need to be optimized and
standardized in order to enhance their clinical efficacy. There
are several factors that have a direct impact on DC biology and
the quality and potency of the ensuing T cell responses: route
of administration and frequency of injection, delivery system,
use and type of adjuvants, nature of DC vaccine formulations,
and nature of tumor cell lysates/antigen cargo (Vandenberk
et al., 2015; Rodríguez-Otero et al., 2017). Among them, the
immunogenicity of dying cancer cells used to load DCs could be
easily and notably improved by using ICD-inducers. Numerous
studies have proven the potential of ICD-inducers to have a huge
impact on DC biology and improve the ability of DCs to stimulate
effector cells and enhance anti-cancer T cell responses in vivo.
For example, γ-irradiation, has been shown to effectively induce
DCs maturation and stimulate in vivo CTL responses (Goldszmid
et al., 2003). Moreover, γ-irradiated cells efficiently immunized
mice against a subsequent rechallenge with live syngeneic cancer
cells in various preclinical models (Strome et al., 2002). Different
ICD-related modalities such as UV light (Brusa et al., 2008),
oncolytic viruses (Donnelly et al., 2011), HHP (Mikyšková et al.,
2016), heat shock (Adkins et al., 2017) among others have shown
to upregulate maturation markers in DCs as well as prime antigen
specific T-cell responses both in vitro and in vivo. Hyp-PDT
is also equally effective in inducing complete tumor regression
in vivo both in curative and prophylactic vaccination settings
(Sanovic et al., 2011). DCs charged with Hyp-PDT treated cells
significantly enhanced CTL responses, IFN-γ producing CD8+
T cells and Th1-driven immunity in ectopic murine mammary
tumors (Jung et al., 2012) as well as orthotopic glioma mice
models (Garg et al., 2016).

In the clinical practice, melanoma and high-grade glioma
patients have successfully been treated with DC vaccines loaded
with γ-irradiated tumor cells (Cho et al., 2012). In the case of
glioblastoma multiforme, patients who underwent conventional
treatment plus DC-based therapy showed an increased short-
term (1–3 years) survival rates compared to control group
receiving conventional therapy (Cho et al., 2012). Relapsed Non-
Hodgkin’s B-cell lymphoma (NHL) patients have also benefited
from DC vaccines pulsed with γ-irradiated, heat shock or UV
light-treated tumor cells (Zappasodi et al., 2010). Accordingly,
CRT and HSP90 expression levels on NHL cells positively
correlated with the observed clinical and immune responses
(Zappasodi et al., 2010).

In MM, data regarding the use of ICD-dying cells to provide
an enhanced immunogenic feed to DCs and the expected in
vivo anti-cancer immune responses are still lacking. In particular
lenalidomide has shown to impact DCs biology and enhance
CD8+ T cell cross-priming by primed DCs (Henry et al., 2013).
Another study evaluated ICD induced by bortezomib in MM cell
lines and MM primary cells, as well as the capacity of bortezomib-
treated cells to increase maturation markers in DCs and to induce
proliferation and polarization toward IFN-γ producing T cells

in vitro (Spisek et al., 2007). There is currently an ongoing phase
II clinical trial testing DC/MM fusion vaccines in combination
with lenalidomide and GM-CSF (NCT02728102). We will need
to wait for further studies to see the clinical advantages of
combining this type of approaches.

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

Over the past years, ICD and ER stress are gaining momentum
in anti-cancer therapy. The ability of chemotherapeutics and
other anti-cancer therapies, not only to mount an active immune
response against the tumor, but also to modulate the cancer
immune environment, has transformed the therapeutic scenario
in oncoimmunology. Moreover, understanding of the molecular
pathways involved in all these processes, is uncovering a
whole new set of potential prognostic biomarkers with which
cancer patients could be better monitored and stratified to
determine their optimal therapeutic regimen. However, given
that certain danger signaling markers have been found both
in treated and untreated patients, further investigations are
needed to unravel the real repercussion of therapy driven-
ICD, as well as oncogenic-driven DAMP exposure in the
clinical setting. Furthermore, special caution is needed when
targeting ER stress and UPR pathways, as it could pose both
beneficial and detrimental consequences on patient’s outcome.
On one sid, we may be enhancing cell death pathways or
boosting immunogenicity of cell death, but on the other we
could also be fostering the cytoprotective function of the
UPR as well as some ER stress-related immunosuppressive
effects. Nonetheless, given the adaptability and complexity of
cancer, it is becoming increasingly clear that future anti-cancer
therapeutic approaches will take advantage from combination of
immunogenic (chemo)therapeutic modalities with current and
novel immunotherapeutic regimens. In particular, in MM, this
type of combinatorial approaches have a great opportunity to
success, since encouraging results have been already obtained.
Nonetheless further investigations awaits to circumvent and
manage some of the basic problems and clinical adverse events
that arise with these novel kind of approaches.
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Due to its extensive vascularization and physiological function as a filter and storage
organ, the liver is constantly exposed to infectious and tumorigenic threat, as well as
damaging actions of xenobiotics. Detoxification reactions are essential for the excretion
of harmful substances, but harbor also the risk of “side effects” leading to dangerous
metabolites of otherwise harmless substances, a well known effect during paracetamol
overdose. These drugs can have detrimental effects, which often involves the induction
of sterile inflammation and activation of the immune system. Therefore, the role of certain
immune cells and their effector molecules in the regulation of drug-induced liver damage
are of special interest. Hepatocytes are type II cells, and death receptor (DR)-induced
cell death (CD) requires amplification via the mitochondrial pathway. However, this
important role of the mitochondria and associated CD-regulating signaling complexes
appears to be not restricted to DR signaling, but to extend to drug-induced activation of
mitochondrial CD pathways. We here discuss the role of members of the TNF family, with
a focus on TRAIL, and their interactions with the Bcl-2 family in the crosstalk between
the extrinsic and intrinsic CD pathway during xenobiotic-induced liver damage.

Keywords: death receptor, TRAIL, DILI, Bcl2 family, Bim, JNK, APAP

LIVER DAMAGE BY XENOBIOTICS

One major task of the liver is to maintain metabolic homeostasis. It processes and stores nutrients
absorbed in the gut and delivered by the portal vein. In addition, as part of the enterohepatic
circulation, the liver is the first organ to receive absorbed xenobiotics and toxins. Therefore, it
provides a plethora of biochemical tools to metabolize, activate or inactivate drugs and poisons.
Mainly involved are enzymes of the cytochrome P450 (CYP) family, which introduce functional
groups. The subsequent conjugation and detoxification reactions enable the secretion of harmful
chemicals via bile and kidney. Additionally, CYP enzymes are also involved in the chemical
activation of inactive pro-drugs (e.g., cortisone or prednisone). These pharmacologically important
reactions, called first-pass effect, are important for the regulation of activity and dosage of many

Abbreviations: APAP, acetaminophen, paracetamol; CD, cell death; cytC, cytochrome C; DAMP, danger associated
molecular pattern; DILI, drug induced liver injury; DR, death receptor; JNK, c-Jun N-terminal kinase; KC, Kupffer cells;
MOMP, mitochondrial outer membrane permeabilization; PAMPs, pathogen-associated molecular pattern; TNF, Tumor
Necrosis Factor; TRAIL, Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand.
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drugs. Next to beneficial activation and detoxification processes,
these enzymatic reactions may also result in a detrimental
outcome, e.g., via the chemical activation of otherwise harmless
compounds, thereby gaining substantial toxic potential.
Examples are N-acetyl-p-benzochinonimin (NAPQI), a reactive
metabolite of acetaminophen, or aflatoxin B1 (AFB1). These
reactive metabolites rather affect centrilobular hepatocytes,
which have high CYP enzyme activity. Besides such indirect “side
effects” of detoxification reactions, other chemicals may also
directly induce liver toxicity. Such drugs or poisons can affect
parenchymal and non-parenchymal cells of the liver, promoting
a typically early onset of disease within a few days. Especially,
hepatocytes in periportal regions of the liver lobules as well as
endothelial cells are exposed to high levels of such xenobiotics.
Altogether, these different forms of drug-induced liver injury
(DILI) account for 50% of all cases with acute liver failure.
Examples of medically relevant substances are acetaminophen
(APAP, paracetamol), environmental toxins (AFB1), alcohol,
carbon tetrachloride (CCl4), as well as antineoplastic agents.
However, the bulk of DILI cases is attributed to APAP overdose.
Generally, liver damage by xenobiotics can be induced by
protein adducts and dysfunction, lipid peroxidation, DNA
damage and glutathione depletion due to increased reactive
oxygen species (ROS) levels, thereby inducing mitochondrial
damage and impaired energy supply. Subsequent lytic necrosis
and/or apoptosis can promote the release of cellular content,
and associated induction of immune cell activation and sterile
inflammation (Figure 1 upper part).

THE ROLE OF THE IMMUNE SYSTEM IN
LIVER DAMAGE

Liver-resident immune cells are important in the protection
from enteric and liver-specific infections, as well as immune
surveillance of liver metastases. Deregulated host immune
reactions, however, are also a frequent cause of severe hepatitis.
Similarly, metabolic disorders can induce detrimental liver
damage and thereby activate effector mechanisms of the host
immune system, e.g., as seen during metabolic syndrome,
non-alcoholic fatty liver disease (NAFLD), non-alcoholic
steatohepatitis (NASH), and alcoholic liver disease (ALD).

In this context also DILI is not necessarily only established
by direct action of the respective compound on liver cells,
but may involve a secondary response of the immune system.
Important mediators during initiation and deregulation of such
sterile inflammatory processes are so-called danger-associated
molecular patterns (DAMPs). These normally intracellular
molecules are typically released during necrotic CD due to loss
of membrane integrity, but the process is likewise also relevant
for apoptotic CD, though to a lesser extent. Immune cells are
thus capable to distinguish “self-safe” and “self-dangerous” by
evolutionary conserved pattern recognition receptors. Multiple
transmembrane and intracellular receptors can sense DAMPs.
They activate preferentially myeloid cells, resulting in the
secretion of pro-inflammatory cytokines, like TNF and IFNγ, the
recruitment of innate immune cells and further damage of the

affected tissue. The vicious cycle of massive hepatocyte damage
and extensive DAMP release is a well-known feed-forward loop
interconnecting inflammation and CD during liver damage.

Kupffer cells (KC) are liver-resident tissue macrophages and
the most abundant innate immune cells of the liver. Therefore,
depletion of these phagocytic cells can have protective effects
(Zhao et al., 2008; Kiso et al., 2012) but also exacerbate drug-
induced liver damage due to their additional anti-inflammatory
and tissue-protecting functions (Bourdi et al., 2002). Importantly,
studies in human patients also suggest a role for infiltrating
mononuclear cells in tissue repair processes, rather than
promoting tissue damage (Antoniades et al., 2012). Natural killer
cells (NK) and NKT cells are likewise part of the liver’s innate
immune defense. Though liver-resident cells, they accumulate as
infiltrates after initial liver damage. For APAP-induced DILI it
was reported that NK and NKT cells play a disease-promoting
role since increased NKT cell infiltrates and effector molecules,
such as IFNγ, were observed. Additionally, NK and NKT
depletion had a protective effect in APAP-induced DILI in mice
(Liu et al., 2004). Though, this claim was challenged by others,
and reported to be caused by side-effects of the solvent DMSO
(Masson et al., 2008).

Independent of direct liver damage are immune reactions
of the adaptive immune system, which are implicated in
so-called unpredictable reactions, called idiosyncratic DILI
(IDILI). These destructive mechanisms are not well understood,
but are generally believed to be based on immune-mediated
hypersensitivity (Schnyder et al., 1997; Chen et al., 2018).

IMMUNE CELL-DERIVED DEATH
LIGANDS AFFECTING
DRUG-INDUCED HEPATITIS

Drug- and toxin-induced hepatic insults, either by direct toxicity
or caused by the adaptive immune system, are associated with
deregulated inflammatory responses mediated by members of
the TNF superfamily. This family comprises a multitude of
membranous and soluble molecules. A subset of this family,
including TNF, Fas ligand (FasL, CD95L) and TRAIL can activate
so-called DRs and thereby the extrinsic CD pathway. Generally,
sensitivity of CD induction by members of the TNF superfamily
is highly regulated.

The most detrimental effect on hepatocytes is mediated
by FasL, which is involved in various forms of immune cell-
mediated acute liver damage. Activation of the Fas receptor on
e.g., virus-infected or transformed hepatocytes leads to their
rapid death. Released cellular content can modulate cells in close
proximity to increase their FasL susceptibility, thereby further
increasing bystander killing. Due to the abundant expression
of Fas throughout the liver, systemic administration of FasL or
agonistic anti-Fas antibodies results in acute and mostly fatal
hepatitis (Ogasawara et al., 1993). Consequently, FasL expression
and Fas-induced hepatocyte death need to be tightly controlled,
e.g., by transcriptional control, post-translational regulation like
intracellular storage and activation-dependent mobilization,
and shedding by metalloproteases (Brunner et al., 2003).
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FIGURE 1 | Role of immune cells and TNF family members in regulating drug-induced liver damage. Xenobiotics are absorbed in the gut and transported to the liver,
where they become metabolized. During the metabolization, toxic intermediates may be generated, inducing damage to liver parenchymal cells, most importantly
hepatocytes, via activation of the Bcl-2-regulated mitochondrial apoptosis pathway. This can lead to apoptosis via permeabilization of the outer mitochondrial
membrane, cytC release and subsequent apoptosome formation, or necrotic CD if ATP levels are too low. Resulting DAMP (danger–associated molecular pattern)
release by necrosis or late apoptosis can initiate sterile inflammation by activation of liver-resident immune cells, e.g., KC. DAMPs and PAMPs can stimulate immune
cells, resulting in the release of effector molecules, e.g., cytokines and chemokines, which recruit and activate other immune cells. Additionally, DR ligands induce the
extrinsic CD pathway. In hepatocytes already affected by xenobiotics DR activation promotes synergistic CD at otherwise sublethal concentrations. This crosstalk
between DR and xenobiotics involves caspase-8-mediated cleavage of Bid, DR-induced activation of JNK and Bim, and xenobiotic-induced induction and activation
of other BH3-only proteins. Resulting neutralization of pro-survival Bcl-2-like and activation of Bax-like molecules results in mitochondrial apoptosis or necrosis.

Functionally, FasL-induced apoptosis serves as a key effector
mechanism in T- and NK cell-mediated cytotoxicity against
Fas-expressing target cells.

Tumor Necrosis Factor plays a prominent role in the context
of KC activation and associated liver pathology. It causes the
induction of pro-inflammatory cytokines and chemokines, which
promote recruitment of other inflammatory cells, induction of
hepatocyte death or proliferation for wound healing responses.
These pleiotropic effects on different cell types highlight it’s
complex signaling output. In the healthy liver, for example, TNF
produces non-apoptotic signals via activation of the MAP kinases
JNK or p38, or NFκB, thereby triggering pro-survival and pro-
inflammatory responses. Bifurcation of the signaling pathway
is eventually regulated in a context-dependent manner. Thus,

hepatocytes are rather insensitive to TNF-induced CD when
administered alone. However, in combination with the liver-
specific transcriptional inhibitor D-(+)-galactosamine (GalN) it
causes massive CD. In this situation, the transcription-dependent
pro-survival signaling of TNF cannot restrict the secondary
activation of CD pathways, i.e., apoptosis or necroptosis.

Immediately after its discovery, the TNF homolog TRAIL
gained extensive clinical interest due to its rather tumor-selective
CD-inducing activity, even though this was also stated for
untransformed cells. In the liver, TRAIL was reported to be
involved in immune surveillance of tumors and metastases, but
also in the control of viral infections. TRAIL is predominantly
expressed by liver NK cells, where it contributes to their
cytotoxic effector mechanisms together with perforin and FasL
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(Kayagaki et al., 1999; Takeda et al., 2001). TRAIL expression
is regulated by IFNγ, which triggers TRAIL expression not
only in NK cells, but also in monocytes and dendritic cells
(DCs). Autocrine IFNγ production has been reported to promote
constitutive TRAIL expression by liver-resident NK cells (Takeda
et al., 2001). Receptor expression is, however, not sufficient to
induce apoptosis by TRAIL, as the ratio of activating and decoy
receptors, as well as anti-apoptotic proteins define sensitivity
(Sarhan et al., 2014). Sensitivity might also be regulated by
the crosstalk with the intrinsic apoptosis pathway. Many drugs
that induce ER-stress, DNA damage or ROS sensitize otherwise
TRAIL-resistant cells, leading to synergistic CD induction
(Ganten et al., 2005; Koschny et al., 2007; Schneider-Jakob et al.,
2010; Badmann et al., 2011).

Synergy Between Death Ligands and
Xenobiotics in Liver Toxicity
In contrast to FasL, TNF, and TRAIL may not only directly
trigger the extrinsic CD pathway, but can also stimulate signaling
pathways, which modify apoptosis initiated by other triggers. The
cellular context seems to be especially relevant in this crosstalk
between DR signaling and the intrinsic apoptosis pathway.
A well-described player is the Bcl-2 family member Bid. In
so-called type I cells, caspase activation after DR activation is
sufficient to directly cause apoptosis. Type II cells, though, rely
on the amplification of the extrinsic signal via the mitochondrial
pathway (Yin et al., 1999). The best-characterized type II cells are
hepatocytes. Low level of caspase-8 activation upon DR activation
promotes cleavage of Bid, and its truncated form (tBid) mediates
MOMP by direct activation of the pore-forming Bcl-2 family
member Bax and neutralization of anti-apoptotic Bcl-2 homologs
(Li et al., 1998). Besides this Bid-mediated crosstalk, other
connections between different DRs and stress signaling pathways
have added further levels of complexity. Initially, a crosstalk
between TRAIL and the intrinsic pathway has been described
in thymocytes. Thus, it was observed that TRAIL-deficiency
results in reduced activation-induced thymocyte apoptosis upon
T cell receptor (TCR) crosslinking, which is Bim-dependent
(Corazza et al., 2004; Kassahn et al., 2008). Subsequently
it was found that TRAIL enhances not only TCR-mediated
apoptosis, but extends to other apoptosis triggers, like UV-
and γ-irradiation, and glucocorticoids, but not Fas crosslinking.
Given that thymocytes are type I cells, these findings suggested
that TRAIL may specifically enhance the mitochondrial CD
pathway. As in type II cells the Fas pathway is also amplified via
mitochondria, it was tempting to speculate that TRAIL would
also enhance Fas-induced hepatocyte apoptosis and associated
liver damage. Indeed, it was found that Fas-induced hepatocyte
apoptosis could be synergistically enhanced by TRAIL receptor
activation (Corazza et al., 2006). Interestingly, this CD amplifying
pathway initiated by TRAIL did not seem to depend on direct
caspase activation, but rather on TRAIL receptor-initiated JNK
activation and associated Bim phosphorylation. Consequently,
TRAIL- and Bim-deficient mice, as well as mice treated with
JNK inhibitors, were protected from anti-Fas-induced acute liver
damage. Interestingly, similar observations have also been made

for TNF. Kaufmann et al., 2009 described that both, Bid and Bim
contribute to TNF-dependent LPS/GalN-induced liver damage
(Kaufmann et al., 2009), whereas other publications observed
a similar enhancing effect of TNF on Fas-induced hepatocyte
apoptosis and associated liver damage, which was dependent on
JNK and Bim (Schmich et al., 2011; Faletti et al., 2018). Thus,
while lacking a direct hepatotoxic activity both TRAIL and TNF
can activate the JNK-Bim axis and thereby enhance Fas-induced
apoptosis in type II cells (Figure 1 lower left part).

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand,
which induces CD in a p53-independent manner, has been
regarded as an exciting alternative to conventional p53-
dependent chemotherapy (Hellwig and Rehm, 2012). Various
studies in different types of tumors revealed additive or
even synergistic CD induction when TRAIL was combined
with chemotherapy. Given the CD-enhancing effect of TRAIL
in hepatocytes via activating the JNK-Bim axis, an obvious
idea was that TRAIL would similarly regulate chemotherapy-
induced apoptosis in tumor cells. Indeed, in hepatocellular
carcinoma cells TRAIL stimulation results in JNK activation
and Bim hyperphosphorylation (Schneider-Jakob et al., 2010).
Furthermore, while tumor cells were relatively insensitive to
TRAIL and chemotherapeutic drugs, a profound synergistic
CD induction was seen when used in combination. This
synergistic CD induction was strongly attenuated upon either
pharmacological inhibition of JNK, or knockdown of Bim
and Bid, confirming that TRAIL receptor-mediated activation
of the JNK-Bim axis, likely together with the activation or
transcriptional induction of other BH3-only proteins, represents
the molecular basis for this synergy. Likely synchronized TRAIL-
and chemotherapy-induced changes in the Bcl-2 interactome,
ultimately resulting in efficient activation of Bax and Bak,
and MOMP, are key events (Hantusch et al., 2018). TRAIL-
induced and JNK-mediated phosphorylation of Bim appears
to be an important switch in this process. It has been
previously shown that BimL and BimEL interact with dynein
light chain 1 (DLC1). While it was previously thought that
DCL1 sequesters Bim at the cytoskeleton (Puthalakath et al.,
1999), thereby inhibiting its apoptosis-inducing activity, more
recent data shows that DLC1 is important for oligomerization
of Bim and clustering it in high-molecular-weight complexes
together with Mcl-1 at the mitochondrial outer membrane
(Singh et al., 2017). Interestingly, the DLC1-binding domain
of Bim overlaps with the phosphorylation site of JNK (T112).
Thus, JNK-mediated phosphorylation appears to release Bim
from this complex and thereby unleash its apoptosis-inducing
activity by initiating Bax activation and neutralization of anti-
apoptotic Bcl-2 homologs, such as Bcl-xL. Thereby it limits its
Bax retrotranslocating activity, which seems to be critical for
controlling Bax oligomerization and MOMP (Todt et al., 2015;
Hantusch et al., 2018). Further adding to the level of complexity
is the fact that some of the JNK-mediated phopsphorylation sites
in Bim are overlapping with those of ERK1/2 (Lei and Davis,
2003; Ley et al., 2003). Yet, while JNK appears to have in general
an activating activity on Bim, ERK1/2-mediated phosphorylation
rather leads to Bim degradation and survival. Synergistic
induction of CD in tumor cells by TRAIL and chemotherapy may
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represent promising strategies to overcome therapy resistance
in tumor patient. However, it is worth mentioning that the
mechanism per se seems to be far more general, as also primary
human hepatocytes are sensitized by TRAIL to chemotherapeutic
drug-induced apoptosis (Schneider-Jakob et al., 2010).

Role of the TRAIL-JNK-Bim Axis in
Enhancing Drug-Induced Liver Necrosis
As discussed above, APAP overdose is responsible for the vast
majority of DILI cases. Interestingly, APAP overdose leads to
necrotic lesions, rather than apoptotic liver CD. In addition, RIP1
and probably also RIP3 deficiency rescues from APAP toxicity,
implicating a necrotic or necroptotic form of CD (Ramachandran
et al., 2013; Dara et al., 2015). However, since MLKL inhibition
has no beneficial effect on APAP pathology, necrosis remains to
be the most relevant pathway. At the same time, APAP toxicity
includes upstream apoptotic signaling events, like induction of
pro-apoptotic Bcl-2 homologs, Bax activation and MOMP with
release of cytC and Smac/DIABLO. Surprisingly, at least in vivo
no caspase activation is seen, and caspase inhibitors do not
prevent APAP-induced liver damage (Jaeschke et al., 2006). The
question remains why caspases are not activated despite the
extensive activation of the mitochondrial apoptosis pathway.
It is well known that APAP treatment causes mitochondrial
impairment and associated drop in ATP levels (Jaeschke, 1990).
Furthermore, low ATP levels prevent apoptosome formation
and caspase activation, shifting the CD execution toward
necrosis (Nicotera et al., 1998). Therefore, it was suggested
that APAP-induced decrease in ATP levels is responsible for
shifting apoptotic processes toward a necrotic outcome. Indeed,
preventing APAP-induced mitochondrial permeability transition
by cyclosporine A, or increasing intracellular ATP by providing
the glycolytic substrate fructose increases APAP-induced caspase
activation in hepatocytes (Kon et al., 2004). Thus, current
knowledge indicates that APAP-induced liver damage represents
an interplay of several distinct CD mechanisms, including the
activation of Bcl-2-family members and induction of MOMP, yet
resulting in a necrotic outcome. Despite the lack of evidence for
apoptosis induction, a role of certain Bcl-2 family members in
the regulation of APAP-induced liver toxicity is well documented.
Most importantly, the TRAIL-JNK-Bim axis seems to play also
an important role in APAP-induced liver necrosis. Astonishingly,
TRAIL or Bim deletion not only resulted in reduced APAP-
induced hepatocyte death (Badmann et al., 2011), but also
reduced death of liver sinusoidal endothelial cells (LSEC)
(Badmann et al., 2012). Similarly, a profound role of JNK in
the transcriptional upregulation of Bim, and the subsequent
phosphorylation of Bim was observed (Badmann et al., 2011).
These results clearly demonstrate that CD amplification via the
TRAIL-JNK-Bim axis goes far beyond Bcl-2 family-regulated
apoptosis induction via the mitochondrial pathway, but extends
to necrotic form of liver CD and is likely not limited to APAP-
induced liver damage. The question, however, remains how
TRAIL can enhance hepatocyte necrosis. Does TRAIL indeed
amplify APAP-induced necrosis and if so how? Or does it shift
the cellular response from necrosis to apoptosis, which would

likely involve a stabilization of intracellular ATP levels and
apoptosome formation? And finally, how are these processes
regulated by the Bcl-2 family members and their interactions?
Especially in LSECs it could be shown that APAP and TRAIL
synergistically induce apoptotic events followed by substantial
caspase activation, which could indeed be rescued by the pan-
caspase inhibitor zVAD (Badmann et al., 2012; Figure 1 lower
right part). Mechanistically, the role of TRAIL and APAP in
transcriptional and post-translational activation of Bim and other
BH3-family members certainly has to be further addressed. In
addition, the role of TRAIL in switching the APAP-induced
CD pathway toward necrosis or apoptosis likewise remains an
unsolved open question. Similarly, it remains to be investigated
whether also other forms of DILI are regulated by TRAIL and
the Bcl-2 family.

CONCLUSION

Initial hepatocyte CD and subsequent liver damage induced by
deregulated immune reactions are the common denominator
of many severe forms of acute and chronic liver pathologies.
However, the exact sequence of certain events, like e.g., the
initial hepatotoxic insult, involvement of infiltrating and resident
immune cells, cytokines, and secondary immune reactions, still
need further clarification. Especially in the case of most immune
cell-derived factors it needs to be carefully addressed whether
they are cause or consequence of on-going CD events. In this
regard, the role of death ligands in disease progression is of special
interest, since they may add an additional complexity to the
picture. Particularly the role of TRAIL, but also other modulating
factors of intrinsic apoptosis pathways in liver parenchymal
and endothelial cells, have not been taken into account by
most in vitro studies. They need to be carefully interpreted
since they do not reflect the in vivo situation where e.g.,
TRAIL is readily present by infiltrating, and most importantly
resident, immune cells to modify xenobiotic- and drug-induced
hepatotoxicity. The identification of the relevant underlying
mechanisms of DILI, either mediated by apoptosis or necrosis,
may help to develop effective emergency treatments to prevent
drug-induced liver failure.

AUTHOR CONTRIBUTIONS

All authors drafted the manuscript. JD generated the illustration.
VS and TB wrote the manuscript.

FUNDING

This work was supported by grants from the German Science
Foundation (BR 3369/5) to TB.

ACKNOWLEDGMENTS

The authors would like to thank the members of the FOR2036
research consortium and the Brunner lab for helpful discussions.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 April 2019 | Volume 7 | Article 7244

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00072 April 20, 2019 Time: 18:53 # 6

Spinnenhirn et al. Drug-Induced Liver Damage

REFERENCES
Antoniades, C. G., Quaglia, A., Taams, L. S., Mitry, R. R., Hussain, M., Abeles,

R., et al. (2012). Source and characterization of hepatic macrophages in
acetaminophen-induced acute liver failure in humans. Hepatology 56, 735–746.
doi: 10.1002/hep.25657

Badmann, A., Keough, A., Kaufmann, T., Bouillet, P., Brunner, T., and Corazza,
N. (2011). Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in
acetaminophen-induced liver damage. Cell Death Dis. 2:e171. doi: 10.1038/
cddis.2011.55

Badmann, A., Langsch, S., Keogh, A., Brunner, T., Kaufmann, T., and Corazza,
N. (2012). TRAIL enhances paracetamol-induced liver sinusoidal endothelial
cell death in a Bim- and Bid-dependent manner. Cell Death Dis. 3:e447.
doi: 10.1038/cddis.2012.185

Bourdi, M., Masubuchi, Y., Reilly, T. P., Amouzadeh, H. R., Martin, J. L., George,
J. W., et al. (2002). Protection against acetaminophen-induced liver injury and
lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology
35, 289–298. doi: 10.1053/jhep.2002.30956

Brunner, T., Wasem, C., Torgler, R., Cima, I., Jakob, S., and Corazza, N. (2003).
Fas (CD95/Apo-1) ligand regulation in T cell homeostasis, cell-mediated
cytotoxicity and immune pathology. Semin. Immunol. 15, 167–176. doi: 10.
1016/s1044-5323(03)00035-6

Chen, C.-B., Abe, R., Pan, R.-Y., Wang, C.-W., Hung, S.-I., Tsai, Y.-G., et al. (2018).
An updated review of the molecular mechanisms in drug hypersensitivity.
J. Immunol. Res. 2018, 1–22. doi: 10.1155/2018/6431694

Corazza, N., Brumatti, G., Jakob, S., Villunger, A., and Brunner, T. (2004). TRAIL
and thymocyte apoptosis: not so deadly? Cell Death Differ. 11(Suppl. 2),
S213–S215. doi: 10.1038/sj.cdd.4401525

Corazza, N., Jakob, S., Schaer, C., Frese, S., Keogh, A., Stroka, D., et al. (2006).
TRAIL receptor-mediated JNK activation and Bim phosphorylation critically
regulate Fas-mediated liver damage and lethality. J. Clin. Invest. 116, 2493–2499.
doi: 10.1172/JCI27726

Dara, L., Johnson, H., Suda, J., Win, S., Gaarde, W., Han, D., et al. (2015).
Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity
independent of the necrosome and not through necroptosis. Hepatology 62,
1847–1857. doi: 10.1002/hep.27939

Faletti, L., Peintner, L., Neumann, S., Sandler, S., Grabinger, T., Mac Nelly, S.,
et al. (2018). TNFα sensitizes hepatocytes to FasL-induced apoptosis by NFκB-
mediated Fas upregulation. Cell Death Dis. 9:909. doi: 10.1038/s41419-018-
0935-9

Ganten, T. M., Koschny, R., Haas, T. L., Sykora, J., Li-Weber, M., Herzer, K., et al.
(2005). Proteasome inhibition sensitizes hepatocellular carcinoma cells, but
not human hepatocytes, to TRAIL. Hepatology 42, 588–597. doi: 10.1002/hep.
20807

Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T., and Rehm, M. (2018). Bax
retrotranslocation potentiates Bcl-xL’s antiapoptotic activity and is essential for
switch-like transitions between MOMP competency and resistance. Cell Death
Dis. 9:430.

Hellwig, C. T., and Rehm, M. (2012). TRAIL Signaling and Synergy Mechanisms
Used in TRAIL-Based Combination Therapies. Mol. Cancer Ther. 11, 3–13.
doi: 10.1158/1535-7163.MCT-11-0434

Jaeschke, H. (1990). Glutathione disulfide formation and oxidant stress during
acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of
allopurinol. J. Pharmacol. Exp. Ther. 255, 935–941.

Jaeschke, H., Cover, C., and Bajt, M. L. (2006). Role of caspases in acetaminophen-
induced liver injury. Life Sci. 78, 1670–1676. doi: 10.1016/j.lfs.2005.
07.003

Kassahn, D., Brunner, T., and Corazza, N. (2008). Distinct but complementary roles
of Fas ligand and Bim in homeostatic T cell apoptosis. Cell Cycle 7, 3469–3471.
doi: 10.4161/cc.7.21.6929

Kaufmann, T., Jost, P. J., Pellegrini, M., Puthalakath, H., Gugasyan,
R., Gerondakis, S., et al. (2009). Fatal hepatitis mediated by tumor
necrosis factor TNFα requires caspase-8 and involves the BH3-only
proteins bid and bim. Immunity 30, 56–66. doi: 10.1016/j.immuni.2008.
10.017

Kayagaki, N., Yamaguchi, N., Nakayama, M., Takeda, K., Akiba, H., Tsutsui, H.,
et al. (1999). Expression and function of TNF-related apoptosis-inducing ligand
on murine activated NK cells. J. Immunol. 163, 1906–1913.

Kiso, K., Ueno, S., Fukuda, M., Ichi, I., Kobayashi, K., Sakai, T.,
et al. (2012). The role of Kupffer cells in carbon tetrachloride
intoxication in mice. Biol. Pharm. Bull. 35, 980–983. doi: 10.1248/bpb.
35.980

Kon, K., Kim, J.-S., Jaeschke, H., and Lemasters, J. J. (2004). Mitochondrial
permeability transition in acetaminophen-induced necrosis and apoptosis of
cultured mouse hepatocytes. Hepatology 40, 1170–1179. doi: 10.1002/hep.
20437

Koschny, R., Ganten, T. M., Sykora, J., Haas, T. L., Sprick, M. R., Kolb, A., et al.
(2007). TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces
cancer-specific apoptosis within a therapeutic window. Hepatology 45, 649–658.
doi: 10.1002/hep.21555

Lei, K., and Davis, R. J. (2003). JNK phosphorylation of Bim-related
members of the Bcl2 family induces Bax-dependent apoptosis. Proc.
Natl. Acad. Sci. U.S.A. 100, 2432–2437. doi: 10.1073/pnas.04380
11100

Ley, R., Balmanno, K., Hadfield, K., Weston, C., and Cook, S. J. (2003). Activation
of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-
dependent degradation of the BH3-only protein. Bim. J. Biol. Chem. 278,
18811–18816. doi: 10.1074/jbc.M301010200

Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates
the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.
doi: 10.1016/s0092-8674(00)81590-1

Liu, Z.-X., Govindarajan, S., and Kaplowitz, N. (2004). Innate immune
system plays a critical role in determining the progression and severity
of acetaminophen hepatotoxicity. Gastroenterology 127, 1760–1774.
doi: 10.1053/j.gastro.2004.08.053

Masson, M. J., Carpenter, L. D., Graf, M. L., and Pohl, L. R. (2008). Pathogenic
role of natural killer T and natural killer cells in acetaminophen-induced liver
injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology
48, 889–897. doi: 10.1002/hep.22400

Nicotera, P., Leist, M., and Ferrando-May, E. (1998). Intracellular ATP, a switch
in the decision between apoptosis and necrosis. Toxicol. Lett. 10, 139–142.
doi: 10.1016/s0378-4274(98)00298-7

Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M., Matsuzawa, A., Kasugai, T.,
Kitamura, Y., et al. (1993). Lethal effect of the anti-Fas antibody in mice. Nature
364, 806–809. doi: 10.1038/364806a0

Puthalakath, H., Huang, D. C., O’Reilly, L. A., King, S. M., and Strasser, A. (1999).
The Proapoptotic activity of the Bcl-2 family member bim is regulated by
interaction with the dynein motor complex. Mol. Cell 3, 287–296. doi: 10.1016/
S1097-2765(00)80456-6

Ramachandran, A., McGill, M. R., Xie, Y., Ni, H. M., Ding, W. X., and Jaeschke,
H. (2013). Receptor interacting protein kinase 3 is a critical early mediator
of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58,
2099–2108. doi: 10.1002/hep.26547

Sarhan, D., D’Arcy, P., Lundqvist, A., Sarhan, D., D’Arcy, P., and Lundqvist,
A. (2014). Regulation of TRAIL-receptor expression by the ubiquitin-
proteasome system. Int. J. Mol. Sci. 15, 18557–18573. doi: 10.3390/ijms151
018557

Schmich, K., Schlatter, R., Corazza, N., Ferreira, K. S., Ederer, M., Brunner, T.,
et al. (2011). Tumor necrosis factor α sensitizes primary murine hepatocytes to
Fas/CD95-induced apoptosis in a Bim- and Bid-dependent manner. Hepatology
53, 282–292. doi: 10.1002/hep.23987

Schneider-Jakob, S., Corazza, N., Badmann, A., Sidler, D., Stuber-Roos, R., Keogh,
A., et al. (2010). Synergistic induction of cell death in liver tumor cells by TRAIL
and chemotherapeutic drugs via the BH3-only proteins Bim and Bid. Cell Death
Dis. 1, e86. doi: 10.1038/cddis.2010.66

Schnyder, B., Mauri-Hellweg, D., Zanni, M., Bettens, F., and Pichler, W. J. (1997).
Direct, MHC-dependent presentation of the drug sulfamethoxazole to human
alphabeta T cell clones. J. Clin. Invest. 100, 136–141. doi: 10.1172/JCI11
9505

Singh, P. K., Roukounakis, A., Frank, D. O., Kirschnek, S., Das, K. K., Neumann,
S., et al. (2017). Dynein light chain 1 induces assembly of large Bim complexes
on mitochondria that stabilize Mcl-1 and regulate apoptosis. Genes Dev. 31,
1754–1769. doi: 10.1101/gad.302497.117

Takeda, K., Smyth, M. J., Cretney, E., Hayakawa, Y., Yamaguchi, N., Yagita, H.,
et al. (2001). Involvement of tumor necrosis factor-related apoptosis-inducing
ligand in NK Cell-mediated and IFN-γ-dependent suppression of subcutaneous

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 April 2019 | Volume 7 | Article 7245

https://doi.org/10.1002/hep.25657
https://doi.org/10.1038/cddis.2011.55
https://doi.org/10.1038/cddis.2011.55
https://doi.org/10.1038/cddis.2012.185
https://doi.org/10.1053/jhep.2002.30956
https://doi.org/10.1016/s1044-5323(03)00035-6
https://doi.org/10.1016/s1044-5323(03)00035-6
https://doi.org/10.1155/2018/6431694
https://doi.org/10.1038/sj.cdd.4401525
https://doi.org/10.1172/JCI27726
https://doi.org/10.1002/hep.27939
https://doi.org/10.1038/s41419-018-0935-9
https://doi.org/10.1038/s41419-018-0935-9
https://doi.org/10.1002/hep.20807
https://doi.org/10.1002/hep.20807
https://doi.org/10.1158/1535-7163.MCT-11-0434
https://doi.org/10.1016/j.lfs.2005.07.003
https://doi.org/10.1016/j.lfs.2005.07.003
https://doi.org/10.4161/cc.7.21.6929
https://doi.org/10.1016/j.immuni.2008.10.017
https://doi.org/10.1016/j.immuni.2008.10.017
https://doi.org/10.1248/bpb.35.980
https://doi.org/10.1248/bpb.35.980
https://doi.org/10.1002/hep.20437
https://doi.org/10.1002/hep.20437
https://doi.org/10.1002/hep.21555
https://doi.org/10.1073/pnas.0438011100
https://doi.org/10.1073/pnas.0438011100
https://doi.org/10.1074/jbc.M301010200
https://doi.org/10.1016/s0092-8674(00)81590-1
https://doi.org/10.1053/j.gastro.2004.08.053
https://doi.org/10.1002/hep.22400
https://doi.org/10.1016/s0378-4274(98)00298-7
https://doi.org/10.1038/364806a0
https://doi.org/10.1016/S1097-2765(00)80456-6
https://doi.org/10.1016/S1097-2765(00)80456-6
https://doi.org/10.1002/hep.26547
https://doi.org/10.3390/ijms151018557
https://doi.org/10.3390/ijms151018557
https://doi.org/10.1002/hep.23987
https://doi.org/10.1038/cddis.2010.66
https://doi.org/10.1172/JCI119505
https://doi.org/10.1172/JCI119505
https://doi.org/10.1101/gad.302497.117
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00072 April 20, 2019 Time: 18:53 # 7

Spinnenhirn et al. Drug-Induced Liver Damage

tumor growth. Cell. Immunol. 214, 194–200. doi: 10.1006/CIMM.2001.
1896

Todt, F., Cakir, Z., Reichenbach, F., Emschermann, F., Lauterwasser, J., Kaiser,
A., et al. (2015). Differential retrotranslocation of mitochondrial Bax and Bak.
EMBO J. 34, 67–80. doi: 10.15252/embj.201488806

Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., et al. (1999). Bid-
deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400,
886–891. doi: 10.1038/23730

Zhao, X.-J., Dong, Q., Bindas, J., Piganelli, J. D., Magill, A., Reiser, J.,
et al. (2008). TRIF and IRF-3 binding to the TNF promoter results
in macrophage TNF dysregulation and steatosis induced by chronic
ethanol. J. Immunol. 181, 3049–3056. doi: 10.4049/jimmunol.181.
5.3049

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer UM declared a past co-authorship with one of the authors TB to the
handling Editor.

Copyright © 2019 Spinnenhirn, Demgenski and Brunner. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 April 2019 | Volume 7 | Article 7246

https://doi.org/10.1006/CIMM.2001.1896
https://doi.org/10.1006/CIMM.2001.1896
https://doi.org/10.15252/embj.201488806
https://doi.org/10.1038/23730
https://doi.org/10.4049/jimmunol.181.5.3049
https://doi.org/10.4049/jimmunol.181.5.3049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00073 April 30, 2019 Time: 16:54 # 1

REVIEW
published: 03 May 2019

doi: 10.3389/fcell.2019.00073

Edited by:
Thomas Kaufmann,

University of Bern, Switzerland

Reviewed by:
Dwayne G. Stupack,

University of California, San Diego,
United States
Chunying Li,

Georgia State University,
United States

*Correspondence:
Ian E. Gentle

ian.gentle@uniklinik-freiburg.de

Specialty section:
This article was submitted to

Cell Death and Survival,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 15 January 2019
Accepted: 10 April 2019
Published: 03 May 2019

Citation:
Gentle IE (2019) Supramolecular

Complexes in Cell Death
and Inflammation and Their

Regulation by Autophagy.
Front. Cell Dev. Biol. 7:73.

doi: 10.3389/fcell.2019.00073

Supramolecular Complexes in Cell
Death and Inflammation and Their
Regulation by Autophagy
Ian E. Gentle*

Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg,
Freiburg im Breisgau, Germany

Signaling activation is a tightly regulated process involving myriad
posttranslational modifications such as phosphorylation/dephosphorylation,
ubiquitylation/deubiquitylation, proteolytical cleavage events as well as translocation
of proteins to new compartments within the cell. In addition to each of these events
potentially regulating individual proteins, the assembly of very large supramolecular
complexes has emerged as a common theme in signal transduction and is now known
to regulate many signaling events. This is particularly evident in pathways regulating
both inflammation and cell death/survival. Regulation of the assembly and silencing of
these complexes plays important roles in immune signaling and inflammation and the
fate of cells to either die or survive. Here we will give a summary of some of the better
studied supramolecular complexes involved in inflammation and cell death, particularly
with a focus on diseases caused by their autoactivation and the role autophagy either
plays or may be playing in their regulation.

Keywords: inflammation, cell death, death domain, RHIM, supramolecular complexes, innate immunity,
autophagy, cargo receptors

STRUCTURAL ELEMENTS FOR SUPRAMOLECULAR
SIGNALING COMPLEXES

In order to assemble supramolecular signaling complexes in a tightly regulated fashion, certain
protein–protein interaction domains and motifs have evolved. By using shared interaction
mechanisms, these structures can assemble many subunits of differing function in a rapid and
modular fashion to facilitate signal transduction. There are likely many other examples of proteins
and domains that fall into this category, but in this review we have chosen to focus on the following
structural elements due to their significant representation in the pathways regulating cell death
and inflammation.

Death Domain Family
The death domain containing protein family is involved in numerous aspects of cell signaling
and fate and contains several subfamilies including Caspase Activation and Recruitment Domain
(CARD), Death Effector Domain (DED), Pyrin Domain (PYD), and the Death domain (DD)
itself (Nanson et al., 2018). These domains share structural and sequence similarity but they
show specificity with their interactions and tend to interact within each subfamily specifically,
CARD–CARD or DD–DD interactions for example. Each member of the family mediates
protein–protein interactions and seem to typically form Helical assemblies, some of which
are fibrillar in nature such as ASC in inflammasomes (Lu et al., 2014; Li et al., 2018).
Members of the Death Domain family interact through three distinct interaction types known as
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Types I–III (Figure 1A). Depending on the arrangement and
combination of the different interaction interfaces between
DD family proteins, different structural arrangements can
be generated (Figure 1). Clustering of death domain family
proteins leads to recruitment of effector proteins including
caspases but also ubiquitin ligases and deubiquitinases (DUBs),
kinases and other regulatory proteins involved in signal
transduction. Through the ordered clustering provided by death
domain structures, proteins requiring oligomerization such as
caspases are locally concentrated to stimulate interaction and
subsequent activation. Interruption of these Death Domain
family interactions blocks function suggesting that their assembly
is required for activity (Park et al., 2007).

Receptor Homotypic Interaction Motif
(RHIM)
Another structural element contained in supramolecular
complexes discussed in this review and which has been shown
to play a crucial role in inflammatory and cell death signaling is
the Receptor Homotypic Interaction Motif (RHIM) (Sun et al.,
2002). RHIMs are relatively short motifs characterized by a core
sequence that has the property of folding into a highly stable
amyloid structure (Pham et al., 2019) (Figure 1B). Proteins
that include RHIM motifs interact with each other via these
RHIM–RHIM interaction and include RIPK1, RIPK3, TRIF,
DAI/ZBP1. Each of these may potentially interact with the other,
however, it is not clear that all combinations are seen under
normal situations in the cell (Pham et al., 2018). Mutation of
RHIM motifs in RIPK3 for example is enough to abolish its
activity suggesting that its role in polymerizing partners together
is not separable from other functions it may have (Li et al., 2012).
Large structures have been demonstrated for both RIPK1 and
3 as well as TRIF, which are dependent on RHIM interactions
(Li et al., 2012; Gentle et al., 2017; Samie et al., 2018). In the
case of TRIF, we have shown that these structures are fibrillar
complexes that contain at least RIPK1 as well and probably also
RIPK3 and can activate caspase-8 and other signaling outcomes
of TRIF mediated signaling (Gentle et al., 2017). RHIM–RHIM
interaction also provide important scaffolds for recognition of
viral infection and subsequent cell death, such as is observed in
influenza A virus infections triggering a DAI/ZBP1 and RIPK3
dependent cell death (Thapa et al., 2016). RHIM containing
proteins are often recruited to complexes formed through Death
Domain family interactions and RIPK1 indeed, has both a RHIM
and Death Domain to promote this. How the architecture of
such supramolecular complexes formed through RHIM and
Death Domain scaffolds looks is still an unknown question, but
what is clear is that loss of either of them can drastically alter
signaling outcomes.

Ubiquitin
A common component and key player in the regulation of
supramolecular signaling complexes is ubiquitin. In all complexes
described in this review, polyubiquitin chains are attached to one
or more of the subunits. A common signal activating function
of ubiquitin chains in these complexes is to recruit kinase

complexes IKK and TAB/TAK to activate NF-κB. However, the
same K63 chains are also involved in the eventual silencing of
the signaling complexes (see later). Other linkage specific chains
are also present including K48 and Met1. Met1 which is added
by the Linear UBiquitin chain Assembly Complex (LUBAC)
is also important for NF-κB activation through recruitment
of IKK complexes in a similar fashion to and in cooperation
with K63 chains (Hrdinka and Gyrd-Hansen, 2017). K48 chains
are typically associated with proteasomal turnover and are
also important for regulation of signals such as from TNFR1
through proteasomal degradation of RIPK1 (Grice and Nathan,
2016; Annibaldi et al., 2018). Depending on the substrate and
site of attachment, these ubiquitin chains may also regulate
interactions with partner proteins and thus activity, for example
recruitment of the NF-kB inducing kinases. The ubiquitin
network within a signaling complex is a dynamic one, with
the competing actions of ligases and deubiquitinases (DUBs)
modifying the overall outcome of the signaling event, regardless
of the receptor complex in question. This is a very complicated
system and beyond the scope of this review to cover in any
depth and has been reviewed thoroughly (Swatek and Komander,
2016). We will focus instead mostly on the role ubiquitin
plays regulating recruitment to the autophagy machinery and
activation of NF-κB.

SWITCHING OFF LARGE
SIGNALLNG PLATFORMS

Assembly for supramolecular complexes such as those discussed
throughout this review, presents a potential problem in terms
of switching the signal off. Given the damaging outcome
of overactivation of inflammatory or cell death promoting
complexes, these structures need to be silenced before they
can lead to cellular or tissue damage and disease. While this
may in part be regulated by post translational modifications
such as (de)ubiquitination, and (de)phosphorylation the likely
stability and energetic requirement to break apart complexes
such as RHIM or CARD mediated fibrils make this an unlikely
mechanism to completely explain disassembly and inactivation of
the fully assembled complexes. Degradation of subunits of these
complexes by the proteasome may also play some role, however,
the size of the complexes discussed in this review make it unlikely
that proteasomal degradation of the assembled complexes occurs.
Access to the proteasome typically requires unfolding of the
substrate to allow it to fit within the catalytic barrel (Collins and
Goldberg, 2017). Individually unfolding proteins assembled into
supramolecular complexes, while perhaps possible, is likely an
inefficient way to silence the activity of these complexes, however,
is certainly a relevant regulatory mechanism for preventing
their assembly through degrading members of the complexes
before they can be recruited. Autophagy represents an existing
mechanism capable of dealing with very large protein aggregates.

Autophagy is at its heart a cellular recycling mechanism
to provide energy in times of nutrient stress, but has been
adapted in multicellular organisms to also regulate multiple
aspects of cellular biology. The canonical pathway also
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FIGURE 1 | Structural elements of death domain family, RHIM and ubiquitin scaffolds. (A) Death domain family interaction can form fibrillar structures. Death domain
family members interact with themselves through three different interaction modes known as Types I–III, depending on the surfaces of the domain that interact.
Shown are two possible helical fibrillar assemblies using differing combinations of interfaces. Multiple forms of this type of interaction have been identified, allowing
for modular assembly of different complexes. (B) RHIM–RHIM scaffolds form amyloid fibrils. Shown is a fibril of two proteins containing a RHIM and globular
domains. The fibril is formed by two parallel beta amyloid sheets coming together. This brings the globular domains into close proximity for interaction and potential
activation such as kinase domains of RIPK1/3. RHIM fibrils can be mixed or homogeneous (RIPK1–RIPK3 or RIPK3–RIPK3 fibers form example). (C) Polyubiquitin
chains have different functional roles. Shown are K48 and K63/linear ubiquitin chains. The structural layout of the individual chains is different resulting in recruitment
of different ubiquitin binding proteins. K63 and linear ubiquitin chains are similar in their layout, although still functionally distinct. K48 chains are predominantly used
for proteasomal degradation, whereas K63 and linear ubiquitin chains are used for recruitment of NF-κB activating complexes such as TAB/TAK and IKK as well as
linking to autophagic cargo receptors among other functions.

known as Macroautophagy creates so-called autophagosomes,
membranous vesicles, which engulf random parts of the
cytosol and organelles (Zhao and Zhang, 2018) (Figure 2A).
These autophagosomes fuse with lysosomes and degrade the
contents which are then recycled for use in energy catabolism
or for synthesis of new molecules. More specific forms of
autophagy have evolved to degrade particular targets including
mitochondria (mitophagy), intracellular bacteria and viruses
(Xenophagy) and also aggregated proteins (aggrephagy) among
others. In each of these targeted autophagic pathways, the
target is ubiquitylated, typically by K63 ubiquitin chains
(Sharma et al., 2018). These ubiquitylated targets are detected

by so-called cargo receptors through binding to ubiquitin
chains. This process is now known to be regulated by
phosphorylation by TBK1, which will be discussed later in
the review more specifically (Figure 2A). The receptors then
recruit LC3, a component of the forming autophagophores
causing engulfment of the cargo receptor bound target
in autophagosomes (Figure 2B). The cargo containing
autophagosomes can then fuse with lysosomes and degrade
the contents (Figure 2B). Thus, autophagy is ideal for switching
off signals from supramolecular signaling complexes. It is of
note that many of the signaling pathways using supramolecular
complexes such as toll like receptors (TLR) and TNF Receptor
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FIGURE 2 | Autophagy regulates turnover of Supramolecular complexes. (A) Summary of general autophagic process. The autophagic machinery including LC3 is
recruited to the donour membrane and forms the phagophore. This then extends to form the isolation membrane which begins to engulf cytoplasmic or ubiquitylated
contents. Eventually the enclosed autophagosome is formed which then can fuse with lysosomes to form the autolysosome. Lysosomal enzymes then degrade the
contents of the autolysosome. (B) Summary of specific autophagy mediated by cargo receptors. Assembled supramolecular signaling complexes begin their
signaling response. Cargo receptors such as p62 are recruited via K63 ubiquitin chains on the complex. TBK1 which has been activated and recruited to the
complex phosphorylates the cargo receptor to enhance its recruitment. At this stage the signal from the complex may be amplified due to clustering of multiple
complexes together or perhaps further enhancement of the localized proximity of kinases, caspases, and ubiquitin ligases for example. As the cargo:cargo-receptor
complexes are engulfed by the forming autophagosome, signaling will be reduced. Finally, degradation of the complex within the autolysosome completes the cycle
and the complex is destroyed.

family signals, also induce autophagy, thus stimulating the
pathways involved in their silencing (Lee et al., 2018; Liu Y. et al.,
2018). Examples of specific autophagy of signaling molecules are
given throughout this review.

SUPRAMOLECULAR SIGNALING
COMPLEXES IN CELL DEATH AND
INFLAMMATION

TNF Family Receptors
Much of the best studied signaling complexes are in the
TNF Super Family (TNFSFR), including TNFR1, FAS, TRAIL

among others. Each of these receptors ultimately leads to
activation of caspase-8 as well as activating transcriptional
programs, particularly NF-κB. TNFSFR use death domain
family interactions to recruit both scaffolding proteins such
as TRADD and FADD, as well as effector proteins such as
Caspase-8/10, and RIPK1, although many of the effector proteins
also exhibit some scaffolding function, independent of their
catalytic activities. Using TNFR1 as a well-studied example,
TNFR1 recruits the adapter TRADD, which in turn recruits
both RIPK1 and/or FADD. Recruitment of TRAF2/5 along with
cIAP1/2 triggers k63 linked ubiquitylation of RIPK1 as well
as other components. These ubiquitin chains recruit IKK as
well as the TAB/TAK complexes and the linear ubiquitin chain
assembly complex (LUBAC) which further adds linear ubiquitin
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chains. The IKK and TAB/TAK complexes then both activate
NF-κB as well as phosphorylate RIPK1 to prevent its activation
(Figure 3). This results in upregulation of inflammatory
cytokines and cell survival. Loss of RIPK1 ubiquitylation, and
thus recruitment of the IKK and TAB/TAK complexes, results
in cell death via apoptosis when the so-called complex-II
containing RIPK1-FADD-caspase-8 separates from the receptor
and activates cytosolic caspase-8 leading to apoptosis (Figure 4)
(Vince et al., 2007; Dondelinger et al., 2013, 2015, 2017; Jaco et al.,
2017; Menon et al., 2017; Annibaldi et al., 2018). This cytosolic
amplification of complex-II formation is likely also mediated
by supramolecular assembly of the complex-II through DD and
RHIM interactions. Structural models have been developed for
the assembly of FADD and Caspase-8 into fibrillar complexes
in response to TRAIL ligand (Dickens et al., 2012) or FasL (Fu
et al., 2016). While these models differ in their assembly, the
principle remains that large elongated networks of Caspase-8 are
assembled to trigger its activation through proximity (Figure 4).

It seems likely that RIPK1 dependent Caspase-8 activation in
the cytosol via Complex-II follows a similar mechanism. To date
no auto-activating mutants of FADD or caspase-8 have been
identified in disease, this is likely due to their propensity to
trigger apoptosis, however, somatic loss of function mutants or
repression of expression of FADD and caspase-8 are associated
with numerous cancers, and seem to drive NF-κB (Teitz et al.,
2000; Shin et al., 2002; Kim et al., 2003; Tourneur et al., 2004;
Soung et al., 2005; Ando et al., 2013). This speaks to the role
that supramolecular complex assembly has in regulating the
complicated network of signaling molecules that are recruited
and that loss of function of one, can lead to hyperactivation of
another or vice versa.

In the case of TNF family receptors, one important aspect
of their activity is their endocytosis. Endocytosis is required
for apoptosis from TNFR1 for example (Micheau and Tschopp,
2003; Schütze et al., 2008). Endocytosed receptors are thought
to be able to either traffic back to the plasma membrane or are

FIGURE 3 | Supramolecular signaling complexes in inflammation share common scaffolds and signaling pathways. The supramolecular signaling complexes formed
by TLR, TNFSR, NOD1/2, STING, MAVS, Carma, BCL-10, MALT1 (CBM) and inflammasome complexes are indicated. Shown are the core scaffolds formed through
death domain family interactions as well as RHIM interactions. STING contains no death domain family member or RHIM. Specific proteins known to interact through
death domain interactions and RHIM interaction are indicated within each complex. Recruitment of TBK1 and/or K63/linear ubiquitin is indicated. TBK1 recruitment
activates IRF3 to induce interferon responses. K63/linear ubiquitin recruits the TAB/TAK and IKK complexes which result in activation of NF-kB and Map kinase
transcriptional responses. Also shown is linear/K63 ubiquitination of ASC of inflammasomes which can promote their assembly and activation or degradation.
Complexes and organelles such as mitochondria that are k63 ubiquitylated recruit autophagy cargo receptors such as p62. This leads ultimately to degradation and
silencing of the complexes. This is enhanced by TBK1 mediated phosphorylation of the cargo receptors. Other scaffolds such as those mediated via TRAF proteins
are also present, but for simplicity have been omitted from the figure. DD family and RHIM scaffold are not meant to be to scale or reflect the actual organization of
the scaffold, but simply indicate that each of these scaffolds are present.
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FIGURE 4 | Supramolecular signaling complexes can activate cell death. (Upper) The indicated complexes and the respective scaffolds recruited are indicated.
Numbers correspond to the modes of cell death shown in the lower panel ad indicate the modes shown to be triggered by the respective complexes. (Lower)
Different modes of cell death and the role of the respective scaffold in activating caspases, or RIP kinases is shown. (1) Inflammasomes assemble a core filament of
ASC which in turn recruits filaments of caspase-1, to cluster it and trigger its activation. Active caspase-1 then cleaves Gasdermin D to allow the cleaved form to
assemble into multimeric pores in the plasma membrane, causing pyroptosis. (2) Release of cytochrome C through Bax/Bak pores on the mitochondrial outer
membrane triggers formation of the apoptosome. The apoptosome consists of a core of APAF1 and caspase-9 interacting through CARD–CARD interactions as
indicated. This allows activation of caspase-9. Caspase-9 then cleaves and activates caspase-3/7 to trigger apoptosis. (3) Caspase-8 clustering onto FADD causes
its autoactivation. Clustering is mediated through DED–DED interactions between FADD and caspase-8 and caspase-8 itself (not shown is cFLIP which can
commingle with caspase-8 to regulate its activation). Active caspase-8 can cleave caspase-3/7 and trigger apoptosis. This scaffold can be activated by numerous
receptors as indicated. (4) Recruitment and activation of RIPK1/3 through RHIM–RHIM mediated amyloid fibers can trigger FADD recruitment and clustering through
the DD of RIPK1. Clustered FADD recruits caspase-8, probably causing similar aggregation as shown in mode 3. Active caspase-8 cleaves caspase-3/7 to trigger
apoptosis. (5) The kinase domains of RIPK1 and RIPK3 are also brought into close proximity by RHIM fibers. Normally, the capase-8 indicated in mode 4 will
inactivate these through cleavage of their kinase domains, however, when no caspase-8 activity is present, as is shown, RIPK3 is activated and phosphorylates
MLKL. Phosphorylated MLKL assembles into pore complexes in the plasma membrane, causing necroptosis.

packaged into multivesicular bodies (MVB) that ultimately fuse
with lysosomes and are degraded. In this regard, endocytosis and
trafficking via vesicles acts as an in-built silencing mechanism
for TNFSFR proteins. However, targeted autophagy was recently
identified to regulate the levels of fn14 suggesting that autophagic
degradation may also occur in other TNFSFR too (Winer et al.,
2018). Supporting this, optineurin (a homolog of NEMO and
a functioning autophagic cargo receptor) blocks TNF induced
NF-κB by binding ubiquitylated RIPK1 (Zhu et al., 2007). While
not shown in this study, this likely also results in degradation
of RIPK1/3 containing complexes. More recently, optineurin,
mutations of which are associated with amyotrophic lateral
sclerosis (ALS), was shown to trigger degradation of RIPK1 and

its loss lead to axonal degeneration (Ito et al., 2016). Optineurin
loss also sensitized L929 cells to necroptosis induction supporting
its role in targeting RIPK1 and RIPK3 for autophagic degradation
to prevent their accumulation and activation (Ito et al., 2016).
Optineurin loss has also been shown to sensitize to TNF induced
caspase-8 activation (Nakazawa et al., 2016), supporting it as
having a negative regulation of TNFR1 signaling.

Toll Like Receptors (TLRs)
Toll Like receptors, like TNFSFR, also signal through large
complexes which may promote both inflammation and cell
death. TLR’s, use specific adapter proteins to recruit signaling
complexes to the receptor. More specifically, TLRs that signal
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through the adaptor TRIF/TICAM1 are able to recruit RIPK1
and through RIPK1 activate caspase-8 and or RIPK3 to trigger
apoptosis or necroptosis (Kaiser and Offermann, 2005; Weber
et al., 2010; Kaiser et al., 2013) (Figures 3, 4) TRIF is recruited
to both TLR3, where it is the sole adapter, and TLR4, which
also uses MYD88 like all other TLR’s (Hoebe et al., 2003;
Oshiumi et al., 2003). Normally, TRIF mediated signaling results
in assembly of K63 and linear ubiquitin chains that recruit the
TAB/TAK and IKK complexes to trigger NF-κB (Figure 3) (Shim
et al., 2005; Zinngrebe et al., 2016). TRIF also activates IRF3/7
mediated interferon responses via TBK1 activation (Fitzgerald
et al., 2003; Hemmi et al., 2004) (Figure 3). In either case TRIF
signaling complexes are restricted to endosomes (Figures 3, 4).
Myd88 dependent signaling occurs through formation of the
myddosome (Motshwene et al., 2009). The myddosome is a
helical complex consisting of Myd88, IRAK4, and IRAK1/2
stacked together through Death Domain interactions in a manner
similar to that shown in Figure 1A (Lin et al., 2010). This
platform recruits TRAF6, leading to IKK activation and NF-κB
(Häcker et al., 2006) (Figure 3). While some evidence exists
for apoptosis induced through MYD88 from TLR2 through
recruitment of FADD and caspase-8, this seems to be the
exception rather than the rule (Figure 4) (Aliprantis et al., 2000).

In either case, both MYDD88 and TRIF adapters have been
shown to form supramolecular complexes which are required for
several aspects of their signaling activity (Funami et al., 2007;
Tatematsu et al., 2010; Guven-Maiorov et al., 2015; Gentle et al.,
2017; Samie et al., 2018). Indeed Mutations in Myd88 that are
associated with Lymphoma trigger auto-assembly of the TIR
domain and the myddosome without receptor ligation (Avbelj
et al., 2014). To date no auto-activating mutations of TRIF have
been identified, possibly due to its capacity to trigger cell death
when overactive. Mutations in FADD that are associated with
cancers have also been shown to interfere with the association
of FADD with MYD88, which may in turn promote myddosome
assembly (Guven-Maiorov et al., 2015).

A number of studies have now associated regulation of TLR
signaling via autophagy. Specifically Myd88 was reported to be
recruited to p62 and Histone deacetylase 6 ( HDAC6) positive
structures upon TLR4 stimulation (Into et al., 2010; Fujita et al.,
2011). p62 acts as a cargo receptor for selective autophagy and
HDAC6 is thought to help traffic the ubiquitylated complexes to
bring them together and promote fusion of the autophagosomes
with lysosomes (Kawaguchi et al., 2003; Lee et al., 2010). Loss of
p62 or HDAC6 resulted in enhanced JNK, p38, and ERK signaling
in response to TLR ligands, but appeared to have little effect
on NF-κB. While it was not specifically demonstrated in these
studies, the enhanced signaling, albeit through specific pathways,
is suggestive of the myddosome being targeted by autophagy, loss
of which prevents the signals being dampened.

TRIF can form large fibrillar complexes that have been variably
reported to interact with the autophagy cargo receptors p62,
Tax1BP1, and NDP52 to target them for degradation (Inomata
et al., 2012; Gentle et al., 2017; Yang et al., 2017; Samie et al.,
2018). Our own study showed that if autophagy is inhibited, not
only did the transcriptional activity of TRIF signaling become
enhanced resulting in increased cytokine production, but also the

cell death inducing activity, with enhanced caspase-8 activation
being detected upon TLR3 stimulation of melanoma cells (Gentle
et al., 2017). Similar results were shown in the other studies
indicating enhanced IFN production in response to polyI:C or
LPS when autophagy was inhibited (Samie et al., 2018). TRIF
can also interact with the ubiquitin like protein ubiquitilin1
driving association with autophagosomes and degradation of
TRIF (Biswas et al., 2011). Loss of ubiquitilin1 leads to excessive
type I interferon responses from TLR4 and TLR3 (Biswas et al.,
2011). Additionally TRIF can also induce autophagy as is the case
with most of the complexes discussed here (Gentle et al., 2017).

As with TNFRSF receptors that become endocytosed, TLRs,
in part at least, are associated with endosomes, an aspect which
is essential for their activity (Petes et al., 2017). In addition to
the autophagic regulation discussed above, a similar fate probably
awaits activated TLRs that are present on endosomes such as
TLR3 and TLR4 containing TRIF complexes (Wang et al., 2007).
What ultimately happens to plasma membrane bound TLRs after
assembly of myddosomes is unclear. They may also be trafficked
via general endocytosis or they may, as is the case with TNFR1
complex II dissociate from the receptors themselves and then
become targeted by autophagy separately.

Inflammasomes
Inflammasomes are another example of a death domain
based supramolecular complex that has potent inflammatory
signaling activity but can also trigger death of cells. There
are a number of inflammasomes, however, the majority share
a core structure, with a receptor subunit such as NLRP3
activating and recruiting Apoptosis-associated speck-like protein
containing a CARD (ASC), which is able to then polymerize
into a helical fibrillar structure that recruits Caspase-1 (Lu
et al., 2014; Li et al., 2018). This brings caspase-1 into close
proximity with other caspase-1 molecules, triggering auto-
processing and activation of the zymogen into its functional
form. Caspase-1 then cleaves the cytokines IL-1β and IL-18
to trigger further inflammation, but can also cleave substrates
including Gasdermin D which then forms pores in the plasma
membrane leading to a type of cell death called Pyroptosis
(Martinon et al., 2002; He et al., 2015; Shi et al., 2015; Liu et al.,
2016) (Figures 3, 4). Pyroptotic death is additionally thought
to release danger associated molecular patterns (DAMPS) that
trigger inflammation in and of themselves, thus promoting
an inflammatory environment (Frank and Vince, 2018).
Auto-activating mutations in inflammasome components are
known and cause diseases such as Familial Mediterranean
Fever (FMF) and cryopyrin-associated periodic syndrome
(CAPS) (Cordero et al., 2018). These mutations typically lead
to auto-assembly of the inflammasome and lead to severe
inflammatory pathologies due to the increased secretion of
IL-1β and II-18 and pyroptosis (Cordero et al., 2018). Efficiently
regulating the signal strength and length of signaling through
inflammasomes is therefore essential. Autophagy plays a number
of roles in regulating inflammasomes. Both the AIM2 and
NLRP3 inflammasomes can be recruited to p62 and engulfed
by autophagosomes and later associate with lysosomes for
degradation (Shi et al., 2012). Blocking autophagy enhances
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inflammasome activity and stimulating autophagy reduces it
(Shi et al., 2012). Loss of autophagy is also associated with
enhanced NLRP3 activation and IL-1β secretion (Saitoh et al.,
2008), although the mechanism behind this activation is not yet
clear. A number of studies have suggested that mitochondrial
defects, possibly through insufficient mitophagy, may promote
inflammasome activation through excessive ROS production
or possibly release of ligands such as mtDNA (Ip et al., 2017).
Stimuli that induce inflammasome activation also induce
autophagy (Shi et al., 2012), supporting its role as a negative
feedback system for these complexes.

STING
STING is activated by cyclic dinucleotides (cGAMP) produced
by cGAS upon detection of cytoplasmic DNA (Ablasser et al.,
2013). cGAMP binding causes STING to assemble into a large
ER associated complex that leads to activation of NF-κB through
IKK activation upon recruitment to K63 and linear polyubiquitin
chains, but also to IRF3 through recruitment and activation of
TBK1 (Abe and Barber, 2014) (Figure 3).

STING activation can also induce apoptosis in T cells and
B-cell lymphomas although the mechanism is still unclear (Tang
et al., 2016; Gulen et al., 2017; Larkin et al., 2017). Auto activating
mutations of STING cause STING-associated vasculopathy with
onset in infancy (SAVI), which among other problems results
in T-cell cytopenia. This is independent of IRF-3 and could
be due to cell death of developing or mature T-cells based on
mouse knock-in models (Warner et al., 2017; Wu and Yan,
2018). Autoactivating mutations of STING trigger dimerization
in the absence of ligand, allowing the signaling complex to form
(Konno et al., 2018). FADD deficiency can block IFN activation
in STING activated cells, suggesting that STING requires FADD
and providing a possible mechanism for how STING may
induce cell death through apoptosis (Ishikawa and Barber, 2008)
(Figure 4). Additionally, STING can also cause necroptotic cell
death indirectly through induction of TNF and interferon in
macrophages and dendritic cells (Brault et al., 2018).

STING has also recently been identified as an autophagic
substrate. Upon activation it binds to p62 and is targeted for
degradation through autophagy (Liu D. et al., 2018; Prabakaran
et al., 2018). STING itself can also act as an autophagy cargo
receptor through an LIR motif to directly recruit LC3 and
form autophagosomes around it after activation (Liu D. et al.,
2018), although why it should need its own LIR when p62
is also recruited remains to be seen. Loss of p62 causes
strongly enhanced IFN stimulated gene expression in response
to cytosolic DNA indicating that STING activity is much
higher. STING also induces autophagy in order to stimulate
its own degradation (Liu D. et al., 2018) and the autophagy
inducing kinase ULK1 also phosphorylates activated STING to
negatively regulate its function (Konno et al., 2013). STING
directly promotes the lipidation of LC3 at the ER to promote
autophagosome production (Gui et al., 2019). This function of
STING appears to have evolved before interferon activation as
demonstrated by a lack of TBK1 and IRF activation by both
Xenopus and sea anemone STING homologs, and is important
for clearance of HSV-1 (Gui et al., 2019). Together, these

studies support the picture of autophagy regulating signaling
platforms and vice versa.

Mitochondrial Antiviral-Signaling Protein
(MAVS)
Mitochondrial antiviral-signaling protein (MAVS) is a signaling
scaffold for detection of viral RNA products. The receptors RIG-I
and MDA5 bind to viral dsRNA molecules and then oligomerize
(Berke et al., 2012; Jiang et al., 2012). Exposure of their CARD
domains allows them to bind to the card domains of MAVS on
the mitochondrial outer membrane whereby MAVS polymerizes
into supramolecular fibrillar complexes to act as a scaffold for
recruitment of IKK and TBK1 complexes for the activation
of NF-κB and IRF3 (Figure 3) (Seth et al., 2005; Hou et al.,
2011; Xu et al., 2014). Additionally FADD, RIPK1, RIPK3, and
caspase-8 can be recruited to these complexes (Kawai et al., 2005;
Downey et al., 2017). Infection with Semliki Forest virus induces
apoptotic cell death through caspase-8 activation via the MAVS
pathway highlighting that there can be a direct death inducing
signal triggered by MAVS (Figure 4) (El Maadidi et al., 2014).
Again, the MAVS complexes assemble through CARD–CARD
interactions, and while no auto-activating mutations are known
in humans for MAVS itself, gain of function mutations are
found in both mda5 and RIG-I and are associated with type I
interferonopathies such as Aicardi-Goutières syndrome (AGS)
and Atypical Singleton-Merten syndrome (SMS) (Rice et al.,
2014; Jang et al., 2015; Rutsch et al., 2015). These mutations
can lead to enhanced fibril formation of the MAVS complex
through an unknown mechanism that may be due to enhanced
activation of the receptors themselves leading to excessive MAVS
polymerization (Funabiki et al., 2014; Rice et al., 2014).

While MAVS appears to be an autophagy substrate it is
perhaps a somewhat special case in this regard due to its location
on the mitochondria. MAVS is reported to contain an LIR
motif for direct recruitment of LC3 and MAVS activation and
assembly into its large fibrillar state can stimulate mitophagy (Sun
et al., 2016), thus removing MAVS along with the mitochondrial
it is associated with. Additionally, MAVS can be degraded by
autophagy through an NDP52 dependent mechanism regulated
by the interferon response gene tetherin and loss of NDP52
gives an enhanced interferon response, albeit minor (Jin et al.,
2017). The relatively minor effect that loss of NDP52 has on
MAVS signaling, may be due to MAVS acting as its own cargo
receptor and inducing autophagy/mitophagy. Clearly, however,
MAVS adheres to the pattern shown for the other complexes so
far discussed in using autophagy as a silencing mechanism.

NOD2
NOD2 is another CARD containing PRR that recognizes
bacterial muramyl dipeptide (MDP) (Girardin et al., 2003).
Through its CARD domain NOD2 recruits RIPK2, which is
then ubiquitylated by XIAP resulting in the recruitment of the
TAB/TAK and IKK complexes and NF-κB activation through
addition of linear ubiquitin chains via LUBAC (Figure 3)
(Damgaard et al., 2012, 2013). Recently, RIPK2 was shown
to also form filaments through CARD–CARD interactions
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and filament formation and scaffolding function is required
for NOD2 activity (Hrdinka et al., 2018; Pellegrini et al.,
2018). Interestingly, crosstalk between the NOD2 and MAVS
pathway has been demonstrated during viral infection. ssRNA
is recognized by NOD2 and it then interacts with MAVS
triggering IRF3 activation through TBK1, although surprisingly,
not through CARD–CARD interactions (Sabbah et al., 2009).
Mutations in NOD2 are associated predominantly with Crohn’s
Disease and result in a failure to induce NF-κB in response to
ligand (Hampe et al., 2001; Hugot et al., 2001; Ogura et al.,
2001; Bonen et al., 2003). However, there is some question as to
whether this is the causative defect in Crohn’s Disease (Eckmann
and Karin, 2005). Another disease thought to be caused by
autoactivating mutations of NOD2 is Blau syndrome. Patients
with Blau syndrome exhibit granulomatous dermatitis, arthritis,
and uveitis (Kanazawa et al., 2005; Parkhouse et al., 2014)
Although, again the autoactivation of NOD2 driving disease
has also been questioned (Dugan et al., 2015). Given the fibril
forming nature of NOD2-RIPK2 complexes, it seems likely that
hyperactivation could result from aberrant assembly of RIPK2
fibrils, however, this has not been demonstrated yet.

NOD2 has a complex interaction with the autophagy
machinery. As is the case with most of the complexes discussed
here, NOD2 can induce autophagy. It is thought that this occurs
through a RIPK2 kinase dependent mechanism (Homer et al.,
2012). Additionally, NOD2 is also involved in the recruitment
of autophagic machinery to sites of invading bacteria at the
plasma membrane through interaction with Atg16. This targets
the bacteria for degradation via xenophagy (Cooney et al., 2010;
Homer et al., 2010, 2012; Travassos et al., 2010; Anand et al.,
2011; Negroni et al., 2016). To date no degradation of NOD2 or
its complexes have been shown via autophagy. NOD2 is thought
to be a proteasomal substrate under conditions where HSP90
is blocked or its access to NOD2 is restricted (Normand et al.,
2018). RIPK2, however, has been identified as interacting with
p62, although autophagic degradation was not shown in this
study (Park et al., 2013). The NOD2-RIPK2 fibril may therefore
also be a target of autophagic degradation given this association
and may play a role in dampening NOD driven inflammation.

CBM Signalosome
In a similar manner to inflammasomes, the CARMA-BCL10-
MALT1 (CBM) signaling complex consists of a core of
BCL10 that recruits the paracaspase MALT-1. Different CARD
containing adapters can recruit BCL10 to trigger its assembly
including CARD9, -10, -11, and CARD14 (Gehring et al., 2018;
Juilland and Thome, 2018). CARD11/CARMA1 is one of the
best studied to date and is activated by TCR and BCR signaling.
CARMA1 recruits BCL10 through CARD–CARD interactions,
whereupon BCL10 forms filamentous helical structures in a
manner similar to what has been described here for other CARD
mediated structures such as inflammasomes (Qiao et al., 2013;
David et al., 2018; Schlauderer et al., 2018). These filaments
assemble in a star like formation radiating out from CARMA1
nucleation points (David et al., 2018). MALT1 is a paracaspase
which requires recruitment to BCL10 for activation. TRAF6
is also recruited via interaction with MALT1 and NF-κB is

subsequently activated through recruitment of IKK complexes
to ubiquitin chains (Figure 3) (Sun et al., 2004). Recently it
was shown that LUBAC is also required for NF-κB activation,
although this may be due to a scaffolding role as catalytically
inactive HOIP could also restore NF-κB signals in HOIP deficient
cells (Dubois et al., 2014). FADD and caspase-8 are also recruited
to the CBM complex and caspase-8 catalytic activity is required
for effective activation of NF-κB by the CBM (Su et al., 2005).
As loss of caspase-8 activity is a known trigger for necroptosis
in stimulated T cells, these data also suggest that recruitment of
FADD and caspase-8 are accompanied by RIPK1 and that this
could be the route for activation of necroptosis in the absence of
caspase-8 in stimulated lymphocytes (Figure 4).

Interestingly, mutations in CARD11 (Carma1) are causative
of B cell expansion with NF-κB and T cell anergy (BENTA),
an immunodeficiency caused by overactivation of the CBM
complex. These mutations cause CARD11 to aggregate and
recruit BCL10 and MALT1 into large complexes (Snow et al.,
2012; Brohl et al., 2015). They are also often associated with
diffuse large B cell lymphoma and other lymphomas (Lenz et al.,
2008; Chan et al., 2013). CARMA3 has also been identified as a
negative regulator of MAVS oligomerization and IRF3 activation
(Jiang et al., 2016). This highlights again, that supramolecular
signaling complexes can be prone to autoactivating mutations
due to their ability to rapidly assemble into ordered signaling
hubs, and the complexity with which they share common
interactions and regulation.

As with the other supramolecular complexes discussed so far,
a link with autophagy has been shown with CBM signalosomes
too. Degradation of BCL10 in response to TCR stimulation
occurs through a proteasome independent lysosomal dependent
mechanism (Scharschmidt et al., 2004), suggesting autophagy as
a likely route. As discussed later, the CBM complex also associates
with p62 during TCR signaling in order to regulate the intensity
of the signal (Paul et al., 2012).

MITOCHONDRIA

Mitochondria act not only as the metabolic engine of the
cell, but also as a key signaling hub filtering signals for
cellular growth and energetics, innate immune and inflammatory
signals, and also decisions to survive or die. The classical
intrinsic mitochondrial apoptotic machinery comprised of Bax
and Bak mediated pores regulated by BCL2 family pro and
anti-apoptotic proteins is well characterized, if not completely
understood (Edlich, 2018). As with the death domain family,
the BCL2 family of proteins share common domains that
they use for their interaction, namely the BCL2 Homology
(BH) domain. Mechanistically, Bax and Bak form pores in the
outer membrane of mitochondria upon an apoptotic stimulus.
Contents of the mitochondrial intermembrane space then leak
out, including cytochrome C and SMAC/DIABLO. Cytochrome
C then binds APAF1 triggering the formation of the apoptosome
thus activating caspase-9. Caspase-9 in turn activates effector
caspases such as caspase-3 which carry out the end points
of apoptosis (Figure 4). The BCL2 family proteins also form
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large complexes which are quite dynamic in their composition
and function depending on the state of the cell, and may be
antiapoptotic or proapoptotic [reviewed in Westphal et al. (2014),
Cosentino and García-Sáez (2017), and Kale et al. (2018)]. As
such they can be considered a kind of dynamic supramolecular
complexes themselves that also use common domains (BH) to
interact. In another link between mitochondria and inflammatory
signaling, release of mitochondrial DNA (mtDNA) after Bak/Bak
mediated permeabilization can also activate STING to trigger
inflammation (McArthur et al., 2018; Riley et al., 2018).

The central role mitochondria play in regulating so many
aspects of cellular homeostasis and immunity mean that they
can in a sense be considered as a supramolecular signaling hub
themselves. Given their importance it is not surprising then,
that they are also heavily regulated and prone to quality control.
Mitophagy is a specialized form of autophagy that causes the
degradation of damaged mitochondria (Narendra et al., 2014).
Mitophagy is analogous to aggrephagy in that targets on the
mitochondria are ubiquitylated and cargo receptors such as
p62 are recruited to the mitochondria followed by engulfment
in autophagosomes and subsequent degradation in lysosomes
(Figures 2, 3) (Geisler et al., 2010). Recent work by a number of
labs has shown that mitophagy plays a role in regulating aspects
of apoptosis and also associated inflammation. A recent study
has shown the activation of Bax and Bak on mitochondria is
associated with induction of autophagy, and that subsequently,
apoptotic mitochondria are engulfed and degraded through
autophagy (Lindqvist et al., 2017). Blockade of autophagy lead
to enhanced production of interferon β (Lindqvist et al., 2017).
Release of other mitochondrial contents in to the cytosol after
outer membrane permeabilization can also be a stimulatory
event, inducing cytokine production and DNA damage (Ichim
et al., 2015; McArthur et al., 2018; Riley et al., 2018). BCL2
family of proteins integration into the outer membranes of
mitochondria likely makes them a difficult target for direct action
by specific degradation through autophagy, however, evidence
exists for a role of Parkin (E3 ubiquitin ligase responsible
for ubiquitylating damaged mitochondria during mitophagy)
in regulating BCL2 complexes as well as mitophagy. Parkin
can ubiquitylate MCL-1 leading to its degradation and cell
death in response to mitochondrial damaging agents such as
valinomycin (Zhang et al., 2014). Less damaging treatments such
as cccp are reported to induce mitophagy instead (Zhang et al.,
2014). Loss of mitophagy may contribute to inflammation in
a number of ways including accumulation of ROS, release of
mtDNA from damaged mitochondria as well as persistence of
signaling platforms such as MAVS that are localized on the
mitochondrial membrane.

TBK1 as a Central Regulator
An interesting connection between the activation of these
receptor signaling complexes and their degradation by autophagy
is the activation of the Tank Binding Kinase 1 (TBK1). TBK1
is required for IRF activation from many of the receptors
complexes described in this review including TLR3/4 via TRIF,
STING and MAVS. TBK1 is also a well characterized activator of
autophagic cargo receptors including p62, optineurin and NDP52

(Pilli et al., 2012; Korac et al., 2013; Matsumoto et al., 2015;
Yang et al., 2016; Oakes et al., 2017; Cho et al., 2018). TBK1
phosphorylates these receptors, enhancing their recruitment of
the autophagic machinery and therefore promoting degradation
of the target complexes (Figure 2). This was shown directly
for STING, but also for mitochondria and bacteria. Recently
TBK1 was also identified as being recruited to TNFR1 where it
does not activate IRF3, but instead played an essential role in
regulating survival (Figure 3). Loss of TBK1 expression leads
to RIPK1 dependent apoptosis and reduced levels can replicate
ALS in mice (Lafont et al., 2018; Xu et al., 2018). This was
shown to be dependent on TBK1 mediated phosphorylation of
RIPK1. Given the recent observations about TNFR1 and TBK1
mediated survival, it is possible that TBK1 activation may also
promote the degradation of RIPK1 complexes in reducing the
amount of activated complex-II in response to TNF, however,
this remains to be shown. Of note is that TBK1 is also a
critical component of enhanced autophagy and NF-κB activation
in K-Ras-dependent non-small cell lung carcinoma (NSCLC)
(Newman et al., 2012). The role of TBK1 in activating autophagy
receptors and its recruitment to and activation by supramolecular
complexes described here is indicative of the importance of this
pathway in dampening inflammatory and cell death signals.

AUTOPHAGY RECEPTORS ACTING AS
SIGNALING SCAFFOLDS TOO

In another twist to the role of autophagy in regulating
supramolecular signaling complexes, some cargo receptors such
as p62 can promote signaling and assembly of the complexes
prior to their degradation (Figure 2B). This has been reported
for caspase-8 activation upon TRAIL stimulation (Jin et al.,
2009), whereby p62 promoted the aggregation of caspase-8 in a
cullin-3 dependent fashion, thus suggesting that aggregation by
p62 enhanced the signal triggering apoptosis, but at the same time
lead to the ultimate degradation of the complex and its silencing.

Recently a role for HDAC6 has been shown in clearance of
Listeria monocytogenes (Moreno-Gonzalo et al., 2017). In this
context loss of HDAC6 in DCs resulted in enhanced bacterial
load, due to defects in autophagy, and also strongly reduced
activation of NF-κB and MAPK pathways. It was proposed that by
interacting with MYD88 that HDAC6 promoted its aggregation
and activation of downstream signaling pathways. While no
specific mechanism for this is given, HDAC6 may promote
association of MYD88 with autophagy receptors such as p62
to enhance its activity before being degraded. Additionally loss
of p62 was shown to reduce cytokine production, NF-κB and
ERK activation in response to TLR2 and TLR6 activation in
keratinocytes (Lee et al., 2011). In a similar fashion to the above
examples, p62 promoted NF-κB activation prior to degradation of
BCL10 in TCR signaling (Paul et al., 2012, 2014), however, BCl10
degradation ultimately silences NF-κB activation (Scharschmidt
et al., 2004). NOD2 also shows reduced NF-κB activation in
response to ligand in the absence of p62 (Park et al., 2013).
Of note is that is required for TRAF6 dependent ubiquitylation
of NEMO/IKKγ, and loss of p62 blocks IL-1β induced NF-κB
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substantially (Zotti et al., 2014). Additionally p62 is required for
RAS induced NF-κB in cancer through TRAF6 ubiquitylation
and IKK activation (Durán et al., 2008). Together these data
support the idea that these large signaling complexes that become
ubiquitylated also use this aggregation phase to enhance signaling
prior to silencing. While p62 is by far the most studied of
the autophagy cargo receptors, it is likely that there is some
redundancy and that the other cargo receptors also exhibit signal
amplifying activities prior to their degradation. Thinking of these
adapters as cargo receptors may actually be too simplistic for
their role in signal regulation, and instead perhaps they should be
thought of more as generalized modulators or scaffolds for tuning
signal strength and duration.

Loss of Autophagy in Various Diseases
Associated With Inflammation and Cell
Death
A number of diseases are associated with deficiencies in
autophagy, many of which are inflammatory in nature and
in a number of cases show direct links to proteins from
supramolecular signaling complexes involved in cell death and
inflammatory signaling. Gaucher’s Disease is a lipid storage
disease caused by mutations in glucocerebrosidase that results in
accumulation of the sphingolipid glucocerebroside in lysosomes,
effectively blocking their function. Thus, as a byproduct, the
autophagy pathway is also backed-up and blocked by a failure
to degrade targets in the lysosome (Settembre et al., 2008).
Gaucher’s disease is associated with a strong hyperinflammation
and splenomegaly and interestingly, in mouse models, it was
shown that it could be largely blocked by loss of RIPK3,
suggesting a potential role for RIPK3 mediated cell death as a
possible driver of the disease (Vitner et al., 2014). While it has
yet to be shown, it is intriguing to speculate that active RIPK3,
assembled into fibrillar complexes through the RHIM domain
do not get degraded, and then promote either cell death or
inflammation directly. Indeed increased RIPK3 levels are seen in
Gaucher’s patients (Vitner et al., 2014).

Niemann Pick disease is another lysosomal disease that is
associated with inflammatory pathology, particularly Crohn’s
disease like symptoms. Niemann Pick diseases are caused by
failure to metabolize Sphingomyelin for various reasons, leading
to lysosomal disfunction (Guo et al., 2016). While it has not
directly been shown that Niemann Pick is regulated by RIPK3 in
a similar fashion to Gaucher’s disease, the possibility remains. As
mentioned, a particular pathology associated with Niemann-Pick
is the development of Crohn’s Disease like pathology. This was
reported to be associated with decreased xenophagy in a manner

similar to loss of function of two other well-known Crohn’s
Disease associated proteins, Nod2 and XIAP (Schwerd et al.,
2017), both of which also positively regulate autophagy (Homer
et al., 2010; Gradzka et al., 2018). Mutations in NOD2 lead
to loss of NF-κB activation, as do many of the mutations in
XIAP that are associated with disease, suggesting that failure
to activate this pathway is the initial cause of the pathology,
however, recent studies have shown that NOD2 and XIAP both
also have roles in targeting invasive bacteria for xenophagy
(Homer et al., 2010; Gradzka et al., 2018). How this may be
coordinated is not clear, but the association of other autophagy
related mutations such as the Atg16L1, NDP52, Optineurin,
and others CD suggest that specific defects in the autophagy
process may be a key trigger as well. At least part of the
inflammation seen may be associated with a concomitant failure
to silence assembled signaling complexes within the usual time
frame. Additionally, there are a number of neuronal diseases
associated with defects in autophagy that may also have an
inflammatory element. These include Alzheimer’s disease and
Parkinson’s disease to give just two prominent examples. Again,
a role for degradation of signaling complexes may also play
a significant role in the inflammation and cell death seen
in these diseases.

CONCLUSION

Formation of large supramolecular complexes as signaling hubs
is emerging as a unifying theme in signaling and it is likely that
many more receptor complexes will demonstrate this capacity.
The fact that so many receptors all share common structural
domains and signaling targets supports this and highlights
the crosstalk that many of these receptors have in regulating
the strength, and severity of signals that are produced. The
propensity of these complexes to assemble is also highlighted by
the numerous, although rare, genetic immune diseases associated
with auto-activation of components of the complexes discussed
here. The common theme of induction of autophagy, recruitment
to cargo receptors to amplify signals prior to their degradation
provides a tightly regulatable circuit for negative regulation of
these important signaling complexes and suggest that autophagy
induction may provide a useful target in helping to prevent some
of these diseases at their source.
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Macrophages stand in the first line of defense against a variety of pathogens but
are also involved in the maintenance of tissue homeostasis. To fulfill their functions
macrophages sense a broad range of pathogen- and damage-associated molecular
patterns (PAMPs/DAMPs) by plasma membrane and intracellular pattern recognition
receptors (PRRs). Intriguingly, the overwhelming majority of PPRs trigger the production
of the pleiotropic cytokine tumor necrosis factor-alpha (TNF). TNF affects almost any
type of cell including macrophages themselves. TNF promotes the inflammatory activity
of macrophages but also controls macrophage survival and death. TNF exerts its
activities by stimulation of two different types of receptors, TNF receptor-1 (TNFR1)
and TNFR2, which are both expressed by macrophages. The two TNF receptor types
trigger distinct and common signaling pathways that can work in an interconnected
manner. Based on a brief general description of major TNF receptor-associated signaling
pathways, we focus in this review on research of recent years that revealed insights into
the molecular mechanisms how the TNFR1-TNFR2 signaling network controls the life
and death balance of macrophages. In particular, we discuss how the TNFR1-TNFR2
signaling network is integrated into PRR signaling.

Keywords: apoptosis, necroptosis, TNF, TNFR1, TNFR2, ripk1, ripk3, caspase-8

INTRODUCTION

Tumor necrosis factor-alpha (TNF) is a highly pleiotropic cytokine that affects practically any type
of cell. It triggers cellular responses reaching from the induction of inflammatory gene expression
programs, over the stimulation of cellular proliferation and differentiation to the activation of
cellular suicide programs such as apoptosis and necroptosis (Wajant et al., 2003; Wajant and
Scheurich, 2011; Brenner et al., 2015).

Tumor necrosis factor-alpha is the name giving and prototypic ligand of the TNF superfamily
(TNFSF). It is expressed (i) as a type II single spanning transmembrane protein and (ii) as a soluble
variant which is released from the transmembrane form by proteolytic processing in the stalk region
which separates the characteristic TNF homology domain (THD) from the transmembrane and
the intracellular domain (Locksley et al., 2001; Bodmer et al., 2002; Figure 1). Since the THD
mediates self-assembly into trimeric molecules and receptor binding, both the transmembrane
and soluble form of TNF interact with the two know receptors of TNF, TNF receptor 1 (TNFR1),
and TNFR2 (Figure 1). Both receptors of TNF are typical representatives of the TNF receptor
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superfamily (TNFRSF). As such, TNFR1 and TNFR2 are single-
spanning type I transmembrane proteins characterized by having
several cysteine-rich domains (CRDs) in their extracellular
domain (Locksley et al., 2001; Bodmer et al., 2002). Soluble
forms of TNFR1 and TNFR2 have also been described and
result from alternative splicing or shedding (Philippe et al., 1993;
Taylor, 1994; Galve-de Rochemonteix et al., 1996; Lainez et al.,
2004; Gregory et al., 2012). The soluble TNF receptor variants
inhibit TNF by competing with the cellular receptor species for
TNF binding but possibly also by acting as dominant-negative
molecules. Indeed, the N-terminal CRDs of TNFR1 and TNFR2
are not directly involved in ligand binding but mediate inactive
self-association in the absence of ligand (Chan et al., 2000).
This part of the TNF receptors has therefore been named pre-
ligand binding assembly domain (PLAD) and seems to be a
prerequisite for ligand binding and subsequent formation of
active receptor complexes (Chan et al., 2000). Thus, soluble
TNF receptor molecules might also act as TNF inhibitors by
formation of inactive complexes with cellular TNF receptors by
PLAD-PLAD interaction, but this issue has not been clarified yet.

TNFR1 and TNFR2 belong to different subgroups of the
TNFRSF. TNFR1 is a death receptor (DR) and harbors a death
domain (DD) in its cytoplasmic part (Tartaglia et al., 1993). The
DD is a conserved type of protein-protein interaction domain
which enables DRs to interact homotypically with cytoplasmic
proteins also harboring a DD (Park et al., 2007). DD-containing
signaling proteins link TNFR1 to cytotoxic signaling pathways
triggering apoptosis or necroptosis but also allow engagement
of signaling pathways that activate transcription factors of the
nuclear factor of kappa B (NFκB) family or kinases of the
MAP kinase family (Wajant et al., 2003; Wajant and Scheurich,
2011; Brenner et al., 2015). There exist several mechanisms,
described below in more detail, that suppress cytotoxic signaling
by TNFR1 so that proinflammtory, gene inductive signaling can
be considered as the default mode of TNFR1 activity. TNFR2
has no DD and is a prototypic TNF receptor associated factor
(TRAF)-interacting TNFRSF receptor (Xie, 2013). Thus, there
is a short amino acid motif near the C-terminus of TNFR2
which enables recruitment of the adapter protein TRAF2 and
TRAF2-associated proteins such as TRAF1 and cellular inhibitor
of apoptosis protein 1 (cIAP1) and cIAP2 (Xie, 2013). TNFR2 has
therefore no intrinsic cell death inducing activity but stimulates
NFκB signaling and activation of various kinases (Wajant et al.,
2003). The transmembrane and soluble form of TNF bind with
high affinity to the two TNF receptor types and crystallographic
data revealed a similar structural mode of ligand binding by
TNFR1 and TNFR2 (Banner et al., 1993; Mukai et al., 2010).
Nevertheless, there is a striking difference in the TNF receptor-
stimulating activity of the two TNF forms. While transmembrane
TNF activates TNFR1 and TNFR2 signaling with high efficacy,
binding of soluble TNF results only in the case of TNFR1
in strong and general receptor activation (Wajant et al., 2003;
Figure 1). TNFR1 is expressed by almost any cell type. TNFR2
expression, however, is rather restricted to certain cell types,
including myeloid cells, regulatory T-cells, glial cells and some
endothelial cell types, but can also be induced in epithelial
cells, fibroblasts and certain T- and B-cell subsets (Medler and

Wajant, 2019). TNFR2 is furthermore frequently expressed on
hematopoietic malignancies and some solid tumors. TNF is
not constitutively expressed and is instead readily induced in
activated immune cells but it is also expressed by fibroblasts and
endothelial and epithelia cells in response to proinflammatory
triggers and cytokines including TNF itself (Pauli, 1994;
Medler and Wajant, 2019).

TNFR1-RELATED SIGNALING
PATHWAYS

After binding of soluble or membrane-bound TNF, the
DD-containing cytoplasmic proteins TNFR1-associated death
domain (TRADD) and receptor interacting protein kinase-
1 (RIPK1) recruit to TNFR1 due to DD–DD interactions
(Figure 2). Deficiency or knock-down of RIPK1 enhance
recruitment of TRADD and TRAF2 to TNFR1 (Devin et al.,
2001; Jin and El-Deiry, 2006; Zheng et al., 2006; Fullsack
et al., 2019). Deficiency or knock-down of TRADD, in contrast,
consistently reduced TRAF2 recruitment in various studies and
showed varying effects on RIPK1 recruitment (Jin and El-Deiry,
2006; Zheng et al., 2006; Ermolaeva et al., 2008; Pobezinskaya
et al., 2008; Fullsack et al., 2019). Since TRAF2 interacts
furthermore with high affinity with TRADD outside its DD
(Park et al., 2000), these findings suggest that TNFR1-bound
TRADD, and to a lesser extent TNFR1-bound RIPK1, recruit
TRAF2 homotrimers (or TRAF1-TRAF2 heterotrimers) into the
TNFR1 signaling complex. With TRAF2 the E3 ligases cIAP1 and
cIAP2, which already form complexes with TRAF2 homotrimers
(or TRAF1-TRAF2 heterotrimers) in the cytoplasm, become
co-recruited to the TNFR1 signaling complex (Wajant and
Scheurich, 2011). The cIAPs modify various components of
the TNFR1 signaling complex, in particular RIPK1, with K63-
linked ubiquitin chains and create so binding sites for the
E3 ligase linear ubiquitin chain assembly complex (LUBAC).
The LUBAC then further modifies RIPK1 with linearly linked
ubiquitin chains which allow the recruitment of the MAP3K
transforming growth factor-β (TGFβ)–activated kinase-1 (TAK1)
via the adapter protein TAK1-binding protein-2 (TAB2) and
of the inhibitor of kappa B kinases (IKK) complex (Wajant
and Scheurich, 2011; Brenner et al., 2015). TAK1 can now
phosphorylate and activate the IKK2 subunit of the IKK
complex and triggers this way the events of the classical
NFκB pathway including phosphorylation and degradation
of inhibitor of kappa B-alpha (IκBα), release and nuclear
translocation of previously IkBα-inhibited NFκB dimers and
transcription of various NFκB-regulated targets. The latter
include IκBα itself but also other factors that in feedback
loops can modulate TNFR1 signaling, e.g., the FADD-like ICE-
inhibitory proteins (FLIPs), cIAP2, A20 and TRAF1 (Wajant
et al., 2003). The described chain of events emerge from
the plasma membrane located TNFR1 signaling complex (also
named complex I) within seconds to very few minutes and
allows production of functional relevant amounts of NFκB-
regulated proteins in less than 1 h (Wajant and Scheurich, 2011;
Brenner et al., 2015).
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FIGURE 1 | The TNF-TNFR1-TNFR2 system. As other receptors of the TNFRSF, TNFR1 and TNFR2 are characterized by cysteine-rich domains (CRD) in their
extracellular part. TNFR1 harbors furthermore a death domain (DD) and TNFR2 a TRAF2 binding site (T2bs). TNF occurs in two forms, as a membrane-bound
trimeric ligand (memTNF) and as a soluble likewise trimeric molecule (sTNF). TACE processes memTNF to sTNF. Please note, memTNF stimulates both TNF
receptors while sTNF largely fails to stimulate TNFR2 despite high-affinity binding. PLAD, pre-ligand binding assembly domain.

With time the TNFR1 signaling complex starts to internalize
and this comes along with the release of the TNFR1-bound
signaling molecules (Fritsch et al., 2017). In the cytoplasm
the latter can form receptor-free cytoplasmic complexes (also
named complex IIa and IIb) with FADD, caspase-8 and RIPK3
which context-dependent enable induction of apoptosis or
necroptosis (Brenner et al., 2015). Since TRADD, RIPK1, TRAF2
and the cIAPs are also part of the initially formed TNFR1-
associated signaling complex, it is tempting to speculate that
these molecules as a whole can dissociate from TNFR1 to recruit
then FADD/caspase-8 and to act as a “condensation nucleus”
to recruit RIPK3 and additional RIPK1 and RIPK3 molecules
(Li et al., 2012). Noteworthy, there is evidence that TNFR1-
induced activation of p38 and its downstream target MAPK
kinase-activated kinase-2 (MK2) results in MK2-mediated
phosphorylation of RIPK1 on serine 320 (human)/321(mouse)
of TNFR1-associated RIPK1 but also of “free” cytosolic RIPK1
which hinders RIPK1 from acting as “condensation nucleus” of
cytosolic complexes containing kinase active RIPK1 (Li et al.,
2012; Jaco et al., 2017). Complex IIa-associated maturation
of procaspase-8 dimers results in the release of mature
heterotetrameric caspase-8 molecules composed of the two
p18 and p10 subunits of a procaspase-8 dimer. Subsequent
apoptosis induction is typically suppressed by constitutive
and NFκB-induced expression of FLIP proteins and K63-
ubiquitination of RIPK1 (Brenner et al., 2015). Thus, cells are
normally resistant against TNF-induced apoptosis as long as
FLIP expression/induction is not inhibited (e.g., by CHX or IKK
inhibitors) and/or RIPK1 K63 ubiquitination is not prevented
(e.g., by SMAC mimetics or TRAF2 depletion) (Brenner et al.,
2015; Annibaldi and Meier, 2018). Noteworthy, complex IIa-
associated active caspase-8 and caspase-8/FLIPL heterodimers,
which have a limited enzymatic activity, cleave RIPK1 and RIPK3
and prevent so complex IIb triggered formation of necroptosis-
inducing oligomeric RIPK1/RIPK3 aggregates (Brenner et al.,
2015). Moreover, K63- and linear ubiquitination of RIPK1
and activation of TAK1 and IKK not only stimulate the anti-
apoptotic classical NFκB pathway but also inhibits cytotoxic

RIPK1 activation by phosphorylation in its intermediate domain
(S320 of human RIPK1, S321 of murine RIPK1) directly
(IKK and TAK1) and indirectly (TAK1) via activation of the
p38-MK2 dyad (Dondelinger et al., 2015, 2017; Geng et al.,
2017; Jaco et al., 2017; Menon et al., 2017). TNF-induced
necroptosis therefore only occurs when caspase-8 activation
fails in cells with a compromised TNFR1-TRAF2-cIAP1/2-
LUBAC-TAK1-IKK sequence (Figure 2). Apoptotic cells release
membrane-enclosed apoptotic vesicles containing the cellular
content of the dying cell which are cleared by macrophages
without triggering inflammation. In contrast, necroptosis is
a lytic form of cell death releasing intracellular DAMPs and
proinflammatory cytokines and thus promotes inflammation
(Kearney and Martin, 2017; Frank and Vince, 2019). Since
ongoing TNFR1 signaling is per se highly inflammatory, TNF-
induced necroptosis might nevertheless dampen inflammatory
TNF effects under certain circumstances (Kearney and Martin,
2017). Thus, the inflammatory net effect of TNFR1 in vivo is
determined by the complex interplay of TNFR1-induced classical
NFκB signaling, apoptosis and necroptosis.

In context of TNFR1 signaling, TRADD, RIPK1, TRAF2
and TAK1 are not only of central relevance for the activation
of the classical NFκB pathway and suppression of the cell
death inducing capacity of TNFR1 but are also responsible for
triggering the MAP kinase cascades leading to the activation
of JNK and p38 (Wajant et al., 2003). Since the relevance of
TNFR1-induced activation of JNK and p38 signaling have been
poorly addressed so far in macrophages, it will not been addressed
further in this review. The same applies for TNFR1-induced DD-
independent activation of the neutral sphingomyelinase and ERK
signaling pathways.

TNFR2-RELATED SIGNALING
PATHWAYS

Initially, oligomerized TNFR2 recruit TRAF2 along with
its tightly associated binding partners TRAF1, cIAP1 and
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FIGURE 2 | TNFR1 signaling. The default state of TNFR1 signaling results in activation of proinflammatory pathways such as the classical NFκB pathway. If FLIP
proteins and the TRAF2-cIAP1/2 complexes are limited, e.g., due to CHX treatment and/or TRAF2-cIAP1/2 depletion), the quality of TNFR1 signaling shifts to
apoptosis. Not before caspase-8 activity is limited under apoptotic conditions, there is finally necroptosis induction. For more details see text.

cIAP2 what resembles the indirect, TRADD/RIPK1-mediated
recruitment of these proteins in context of TNFR1 signaling.
Although there is no evidence for a role of TRADD and/or RIPK1
in TNR2 signaling, the LUBAC as well as the IKK complex are
also recruited to the TNFR2 signaling complex (Figure 3), but less
efficient as in the case of TNFR1 (Wicovsky et al., 2009; Borghi
et al., 2018). TNFR2 stimulation results therefore in activation of
the classical NFκB pathway, too.

Cell surface expression levels of TNFR2 reach often > 10000
molecules per cell (e.g., Gehr et al., 1992; Medvedev et al., 1996)
and are regularly much higher than those of TNFR1 which
are typically in the range of a few hundred to 1-3 thousand
molecules per cell (e.g., Thoma et al., 1990; Gehr et al., 1992).
Recruitment of TRAF2-cIAP1/2 and TRAF1-TRAF2-cIAP1/2
complexes to TNFR2 can therefore lead to a significant depletion
of these complexes in the cytoplasm and may thus affect other
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FIGURE 3 | TNFR2 signaling. TNFR2 efficiently recruits TRAF2-cIAP1/2 and TRAF1-TRAF2-cIAP1/2 complexes which allow activation of the classical NFκB
pathway. TNFR2 recruitment of TRAF2-cIAP1/2 and TRAF1-TRAF2-cIAP1/2 complexes concomitantly depletes the cytosolic pool of these proteins and hinder them
so to trigger degradation of the alternative NFκB pathway stimulating kinase NIK. Thus, TNFR2 also activates the alternative NFκB pathway.

activities of these molecules (Duckett and Thompson, 1997;
Fotin-Mleczek et al., 2002; Li X. et al., 2002). Indeed, TRAF2
and the cIAPs are constitutively engaged in the cytoplasm in
the inhibition of the alternative/non-canonical NFκB pathway
which is of special relevance for the control of the activity of p52-
RelB NFκB dimers (Sun, 2017). By virtue of its ability to reduce
the cytosolic pool of TRAF2-containing complexes, TNFR2 is
thus able to activate the alternative NFκB pathway (Rauert et al.,
2010). In detail, TRAF2 recruits its binding partners cIAP1/2 to
TRAF3 and the TRAF3 interacting MAP3-kinase NIK. The cIAPs
ubiquitinate NIK with K48-linked ubiquitin chains and thereby
promote the proteasomal degradation of this constitutively
active kinase. TNFR2-induced depletion of cytosolic TRAF2-
cIAP1/2 complexes results therefore in the accumulation of
active NIK and NIK-mediated phosphorylation of the NFκB
precursor protein p100. Phosphorylated p100 becomes K48-
ubiquitinated and is then processed by the proteasome to
the NFκB transcription factor subunit p52, thus resulting in
the activation of p100-containing NFκB dimers (Sun, 2017).
Although it has been found that depletion of TRAF2-cIAP1/2 and
TRAF1-TRAF2-cIAP1/2 complexes is fully sufficient to interfere
with the cytoplasmic activities of these complexes (Fotin-Mleczek
et al., 2002), the depletion effect might be enhanced and sustained

further by TNFR2-triggered proteasomal degradation of TRAF2
and cIAP2 (Duckett and Thompson, 1997; Li X. et al., 2002).
TNFR2-induced depletion of the cytosolic pool of TRAF2-
cIAP1/2 and TRAF1-TRAF2-cIAP1/2 complexes can also limit
the availability of these proteins for other receptors. Indeed, it
has been observed that prestimulation of TNFR2 (or similarly
acting TNFRSF receptors such as Fn14) affects recruitment
of TRAF2 and cIAPs to TNFR1 and thereby attenuates the
ability of TNFR1 to stimulate classical NFκB signaling (Fotin-
Mleczek et al., 2002). Due to the relevance of TRAF2 and
cIAPs for preventing apoptosis and necroptosis in context of
TNFR1 signaling, TNFR2-mediated depletion/degradation of
these molecules can result in enhanced TNFR1-induced cell
death in macrophages as is discussed below in detail.

In a cell type-specific manner TNFR2 can also activate the
tyrosine kinase bone marrow kinase on chromosome X (BMX)
and the phosphatidylinositol 3-kinase (PI3K)/protein kinase
B(Akt) pathway (Pan et al., 2002; So and Croft, 2013). The
latter presumably occurs TRAF2-dependent because TRAF2 has
been implicated in Akt activation by various receptors including
TNFR1 and the TNFR2-related TNFRSF receptor CD40 (Davies
et al., 2005; Zhu et al., 2016). In contrast, TNFR2-induced BMX
activation occurs independently from TRAF2 (Pan et al., 2002).
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The molecular mechanisms used by TNFR2 to activate BMX and
PI3K/Akt are, however, poorly investigated and their relevance in
macrophages has not been addressed so far.

In sum, TNFR1 and TNFR2 are differently activated by soluble
and membrane TNF, induce production of their own ligand in
some cells, engage receptor-specific but also common pathways
and the various TNFR1/2-associated signaling pathways are,
last but not least, interconnected by regulatory circuits. TNF
and its receptors therefore constitute a complex signaling
network what is reflected by the fact that additive, synergistic
or even antagonistic effects have been reported for the two
TNF receptor types.

THE TNF-INDUCED CYTOTOXIC
SIGNALING NETWORK IN
MACROPHAGES

The complexity of the TNF-TNFR1-TNFR2 signaling system
is especially relevant in macrophages because this cell type not
only co-expresses TNFR1 and TNFR2 but also produces high
amounts of TNF upon stimulation of a variety of receptors
including all types of PRRs and various members of the TNFRSF.
Of central relevance for the upregulation of TNF is the activation
of the classical NFκB pathway. Macrophage-produced TNF
not only mediates the proinflammatory and cytotoxic activities
of this cell type but also regulates in an autocrine fashion the
viability and activation status of macrophages. Indeed, there
are a variety of examples of pathogen-induced macrophage
cell death that crucially involves TNF (Table 1). An intensively
studied example is killing of human alveolar and monocyte-
derived macrophages by in vitro infection with mycobacteria

TABLE 1 | Pathogen-induced TNF-mediated macrophage killing.

Pathogen TNF-inducing
factor/
mechanisms

Evidence References

Mycobacterium
avium

– Anti-TNF Balcewicz-Sablinska
et al., 1999; Bermudez
et al., 1999

Mycobacterium
tuberculosis

– Anti-TNF Balcewicz-Sablinska
et al., 1998; Rojas
et al., 1999

Mycobacterium
tuberculosis

Mce4 Anti-TNF Saini et al., 2016

Mycobacterium
tuberculosis

PGRS33 > TLR2 Anti-TNF Basu et al., 2007

Helicobacter pylori JHP0290 Anti-TNF Pathak et al., 2013

Salmonella enterica OMP96-induced
cell stress

Anti-TNF Chanana et al., 2006,
2007

Ureaplasma
urealyticum

– Anti-TNF Li Y.H. et al., 2002

– LPS Anti-TNF Xaus et al., 2000

Bacillus
Calmette-Guérin

– TNFR1 KO Rodrigues et al., 2013

Yersinia
pseudotuberculosis

– TNFR1 KO Peterson et al., 2016

(Keane et al., 1997; Balcewicz-Sablinska et al., 1998, 1999;
Bermudez et al., 1999). Interestingly, mycobacteria infection also
results in macrophage production of IL-10 which in turn triggers
TNFR2 shedding resulting in TNF neutralization by soluble
TNFR2 and reduced apoptosis (Balcewicz-Sablinska et al., 1998,
1999). TNF-induced cell death in mycobacteria-infected murine
macrophages and macrophage cell lines has been attributed to
TNFR1-induced caspase-8 activation and concomitant TNFR1-
induced reactive oxygen species (ROS)-mediated activation of
apoptosis signaling kinase-1 (ASK1) which promotes c-Cbl-
mediated ubiquitination and degradation of the short FLIP
isoform (FLIPS) (Bhattacharyya et al., 2003; Kundu et al., 2009).
Worth mentioning Mycobacterium tuberculosis can also trigger
RIPK3/MLKL-mediated cell death by tuberculosis necrotizing
toxin-mediated NAD+ depletion independently from TNF and
RIPK1 signaling (Pajuelo et al., 2018).

TNFR1-DEPENDENT NECROPTOSIS IN
MACROPHAGES

Studies with SMAC mimetics (IAP antagonists) depleting
cIAP1/2 and the cIAP1/2-related XIAP molecule as well as
evaluation of XIAP and cIAP1/2 knockout cells revealed that
these molecules are crucial for the survival of primary murine
bone marrow-derived macrophages (McComb et al., 2012; Wong
et al., 2014). The survival function of XIAP, cIAP1 and cIAP2
in this scenario could be traced back to the suppression of
TNF-induced necroptosis (McComb et al., 2012; Wong et al.,
2014). Studies with murine macrophages genetically deficient for
TNFR1, TNFR2 and TNF together with the use of TNFR1- and
TNFR2-specific agonists and antagonists revealed furthermore
that both TNF receptors cooperate in triggering necroptotic
cell death (Legarda et al., 2016; Siegmund et al., 2016; Lawlor
et al., 2017). While exogenous TNF and/or autocrine TNF
produced in response to TNFR1 and TNFR2 activation deliver
a potential trigger for TNFR1-induced necroptosis, TNFR2
signaling enables realization of the necroptotic potential of
activated TNFR1 by depletion of the cytosolic pool of TRAF2-
cIAP1/2 complexes (Ruspi et al., 2014; Siegmund et al., 2016).
As already mentioned above, some pathogens, e.g., mycobacteria,
trigger IL-10-mediated shedding of TNFR2 to dampen/escape
autocrine TNF killing (Balcewicz-Sablinska et al., 1998, 1999).
The protective effect of TNFR2 shedding has so far mainly
be attributed to the neutralization of TNF by the soluble
TNFR2 ectodomain (Balcewicz-Sablinska et al., 1998, 1999). In
light of the pro-necroptotic activity of TNFR2 in macrophages
identified in recent years, however, it appears plausible that
the protective effect of TNFR2 shedding is also due to the
inhibition of the pro-cell death activities of TNFR2. RIPK1
and RIPK3 trigger execution of necroptotic cell death mainly
by activation of mixed lineage kinase domain-like (MLKL)
protein which forms cell-lytic plasma membrane pores and
stimulation of mitochondrial production of reactive oxygen
species (ROS) (Roca and Ramakrishnan, 2013; Fulda, 2016).
Since ROS can promote TNF mRNA expression in human and
murine macrophages (Gossart et al., 1996; Chandel et al., 2000;
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Kono et al., 2000; Brown et al., 2004), this arm of the
necroptotic response might close a feed forward loop in TNF-
induced necroptosis.

In accordance with the established anti-necroptotic activity
of caspase-8, robust/maximal necroptosis induction by TNF
in macrophages requires caspase-8 inhibition (McComb et al.,
2012; Siegmund et al., 2016). In most studies, the latter has
been achieved artificially by the use of caspase-8 inhibitors
or genetic deletion of the caspase-8 gene. This raises the
question for the physiological/pathophysiological conditions
under which necroptosis occurs. A first pathophysiological
scenario where caspase-8 is limited are tumor cells that evade
from apoptotic surveillance mechanisms by down-regulation
of caspase-8 expression, for example by DNA methylation or
caspase-8 gene deletion (e.g., references Grotzer et al., 2000; Teitz
et al., 2000; Fulda et al., 2001; Shivapurkar et al., 2002; Hopkins-
Donaldson et al., 2003). Necroptosis induction in caspase-8
low tumor types, however, has been poorly investigated so
far. A second scenario where caspase-8 activity is limited and
necroptosis gain relevance is in cells infected by viruses encoding
caspase-8 inhibitory proteins. Several viral inhibitors of caspase-
8 have been identified in recent years and include CrmA from
cowpox virus and the baculovirus-encoded p35 protein (Ray
et al., 1992; Zhou et al., 1997; Xu et al., 2001) but also proteins of
clinically important human viruses. The human cytomegalovirus
(CMV) gene UL36 encodes the viral inhibitor of caspase-8-
induced apoptosis (vICA) protein which is conserved in primates
and rodents and the ribonucleotide reductase R1 subunits of
herpes simplex virus types 1 and 2 also act as caspase-8 inhibitors
(McCormick, 2008; Dufour et al., 2011). Please be aware that
some of these viral proteins not only inhibit caspase-8 but also
other caspases including caspase-1 which is of crucial relevance
for signaling by inflammasomes. The relevance of caspase-8
inhibition and sensitization for necroptosis for the in vivo effects
of these pathogenic factors can therefore be difficult to define.

TNF-INDUCED NECROPTOSIS AND ITS
INTEGRATION IN PRR SIGNALING

In accordance with the fact that PRRs strongly stimulate TNF
production by macrophages, it has been described that induction
of TNF and TNFR2-mediated TRAF2 depletion contribute to
macrophage necroptosis induced by certain TLRs, including
TLR4 and TLR3 (Kaiser et al., 2013; Legarda et al., 2016;
Siegmund et al., 2016; Lawlor et al., 2017). TNF-independent
necroptosis induction by TLR4 and by TLR3, however, has
also been described (He et al., 2011; McComb et al., 2014).
The varying relevance of autocrine TNF production for TLR4-
induced necroptosis presumably reflects the use of different
doses of the TLR4 agonist lipopolysaccharide (LPS) in the
cited studies. Indeed, it has been described that high doses
of LPS directly activate necroptotic signaling so that the
effect/contribution of autocrine TNF-induced necroptosis is
masked (Legarda et al., 2016). Studies with XIAP-deficient
bone marrow progenitor cell-derived dendritic cells revealed
an unexpected inhibitory role of XIAP on TNF signaling

(Yabal et al., 2014) which was later on confirmed in murine
bone marrow-derived macrophages (Lawlor et al., 2015, 2017).
It turned out that LPS-stimulated XIAP-deficient macrophages,
despite unchanged TNF production, elicit an enhanced cell
death response, inflammasome activation and IL-1β secretion
in a TNF-dependent manner (Yabal et al., 2014). Worth
mentioning XIAP-deficiency showed no effect on TNF-induced
activation of the classical NFκB pathway, p38 MAPK activation
and TNFR1 signaling complex formation (Yabal et al., 2014).
Thus, XIAP might preferentially affect TNF-related activities in
macrophages that require RIPK3. Indeed, TNF-induced IL-1β

secretion, caspase-8 activation and cell death induction were
blocked in dendritic cells derived of XIAP/RIPK3 DKO mice
(Yabal et al., 2014).

Lipopolysaccharide-induced TLR4 signaling has not only the
potential to trigger necroptosis via induction of endogenous TNF
but also adjusts the necroptotic sensitivity of macrophages for
TNF in a complex manner (Figure 4). On the one side, TLR4
induces type I interferons which have various pro-necroptotic
effects as is discussed below in detail. One the other side,
TLR4 activates caspase-8 in a TNF-independent manner and
promotes so the “inactivating” cleavage of the deubiquitinase
Cyld (Legarda et al., 2016; Figure 4). Cyld removes K63-linked
polyubiquitin chains from RIPK1 and interferes so in context of
TNFR1 signaling with the recruitment and survival functions of
the TAB2-TAK1 and IKK complexes. The LPS-induced caspase-
8-mediated degradation of Cyld thus desensitizes macrophages
for necroptosis. TLR4-induced caspase-8 activation requires
the TLR4-RIPK1 linking adapter protein Toll/interleukin-1
receptor domain-containing adaptor protein inducing interferon
(TRIF) and is dependent on RIPK1 and FADD (Weng et al.,
2014; Legarda et al., 2016; Peterson et al., 2016). Caspase-8
activation by TLR4 thereby closely resembles the mechanisms
of TNFR1-induced TRADD-RIPK1-mediated stimulation of the
FADD-caspase-8 dyad.

Studies with human-induced pluripotent stem cells (hiPSCs)
showed that differentiated RIPK1-deficient macrophages
progressively undergo autocrine TNF-dependent cell death
(Buchrieser et al., 2018). Thus, RIPK1 can also elicit anti-
necroptotic activity in context of TNF signaling in macrophages.
However, the cues defining the net quality of RIPK1 effects in
macrophages are elusive. Noteworthy, addition of exogenous
soluble TNF not further enhanced endogenous-TNF dependent
cell death of RIPK1 KO hiPSCs while LPS- and poly(I:C)-induced
TNF-independent necroptosis was enhanced (Buchrieser et al.,
2018). Since soluble TNF poorly stimulate TNFR2, it is tempting
to speculate that TNFR2-mediated cell death sensitization is the
limiting step in TNF-induced cell death in this model.

COOPERATION OF TNF AND TYPE I
INTERFERONS IN NECROPTOTIC
SIGNALING IN MACROPHAGES

Besides the classical NFκB pathway, the type I interferon pathway
is a second major signaling pathway which is regularly engaged
by PRRs (Figure 5). The central elements of the type I interferon

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 May 2019 | Volume 7 | Article 9169

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00091 May 28, 2019 Time: 20:12 # 8

Wajant and Siegmund TNF and the Life-Death Balance in Macrophages

FIGURE 4 | The cytotoxic TLR-TNF signaling network. TNF expression is strongly upregulated by PRRs such as TLR3 and TLR4 via the classical NFκB pathway.
TNF via the two TNF receptors can then cooperate with TLR3/4-TRIF-RIPK1 axis to trigger apoptosis or necroptosis. For details see text. Please note, necroptosis
only takes place when caspase-8 activity is limited, e.g., by viral caspase-8 inhibitors.

pathway are the kinases TANK-binding kinase 1 (TBK1) and
inhibitor of kappaB kinase ε (IKKε) which phosphorylate and
activate the interferon-β gene inducing transcription factor
interferon regulatory factor 3 (IRF3). In context of TLR3 and
TLR4 signaling the adapter proteins TRIF and TRAF3 mediate
activation of TBK1/IKKε and IRF3. Together with the in parallel
activated classical NFκB pathway, the type I interferon pathway
stimulates the production of the type I interferons (Ikushima
et al., 2013). Thus, TNF and type I interferons are co-produced
by pathogen challenged macrophages. Similarly to TNF, type
I interferons not only act as effector molecules of activated
macrophages but also retroact on the macrophages. Moreover,
there is growing evidence that TNF and type I interferons
cooperated in the control of macrophage viability (Figure 4).
So it has been found that TNF/ZVAD- and LPS/ZVAD-
induced necroptosis are blocked in macrophages derived of
Interferon-α/β receptor alpha chain (IFNAR1) knockout mice

(McComb et al., 2014; Legarda et al., 2016). The compromised
necroptosis sensitivity correlated with reduced expression of
the “pro-necroptotic” proteins TNFR2 and MLKL (Legarda
et al., 2016). Reconstitution experiments revealed, however, that
reexpression of TNFR2 and MLKL alone is not sufficient to
restore necroptotic sensitivity for LPS pointing to additional
type I interferon targets which are of relevance in necroptotic
signaling. Indeed, there is evidence that TRIF-dependent induced
type I interferons also promote the expression of Z-DNA binding
protein-1 (Zbp1) and gasdermin D (GSDMD), which after
cleavage can also cause lytic cell death (see below), via KAT2B-
and p300-mediated histone 3 acetylation at lysine 27 (Li et al.,
2018). Moreover, it has been shown that interferon-β activates
protein kinase R (PKR) and promotes so its interaction with
RIPK1 to trigger RIPK1/RIPK3-mediated necroptotic cell death
(Thapa et al., 2013). The relevance of this mechanism for TNF-
induced IFNAR1-dependent necroptosis in murine macrophages
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FIGURE 5 | The role of type I interferons in the cytotoxic TLR-TNF signaling network. TNF via the classical NFκB pathway induces IRF1 which in turn stimulates in
cooperation with the classical NFκB pathway the expression of low amounts of IFNβ. The latter boosts its own expression by autocrine signaling but also the
expression of pro-necroptotic proteins, such as TNFR2 and MLKL. PRRs, e.g., TLR4, often co-induce TNF and IFNβ expression. Thus, cytotoxic signaling by PRRs,
IFNβ, and TNF are interconnected in various ways in macrophages by feed forward loops. Please be aware, for simplicity functional relevant phosphorylation and
ubiquitination events are not included. For more details see text.

is, however, unclear. Last but not least, it has been found
in caspase-8-inhibited macrophages that LPS initially induces
TRIF-mediated type I interferon production which then trigger
via the interferon-stimulated gene factor-3 (ISGF3) complex
sustained RIPK3 phosphorylation and necroptosis by a yet poorly
understood mechanism independent from PKR (McComb et al.,
2014; Saleh et al., 2017).

Noteworthy, there is not only evidence that type I interferons
contribute to TNF-induced necroptosis but vice versa also that
TNF- and/or necroptosis-associated signaling contribute to the
induction of type I interferons. TNF induces in macrophages
not only NFκB-regulated genes but also, with delay, typical
signal transducer and activator of transcription-1 (STAT1)-
and interferon response proteins such as MX1, IRF7 and
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STAT1 itself (Yarilina et al., 2008). The stimulation of the
transcription of the latter proteins is due to an indirect
mechanism involving NFκB-mediated upregulation of IRF1
via both TNF receptors and subsequent induction of low
concentrations of IFNβ by the joint action of IRF1 and NFκB
transcriptions factors (Yarilina et al., 2008). TNF and TNF-
induced IFNβ cooperate then in the sustained and strong
expression of NFκB/STAT co-regulated inflammatory factors
such as CCL5, CXCL10 and CXCL11 and also maintain IFNβ

expression (Yarilina et al., 2008). Whether TNF-induced IFNβ

production is of relevance for TLR4-triggered necroptosis
appears, however, unlikely as the TLR4-TRIF-IRF3 axis is
already sufficient to mount a strong type I interferon response.
There is, however, evidence from studies with LPS/ZVAD-
treated macrophages that TBK1, IKKε, RIPK1 and RIPK3 form
a high molecular weight complex which via RIPK3 promote
TBK1/IKKε signaling (Saleh et al., 2017). Thus, TNF-induced
RIPK1/RIPK3 activation in course of necroptotic signaling might
have the potential to boost IFNβ production but this has not
been evaluated yet.

TNF AND CASPASE-8-MEDIATED
INFLAMMASOME ACTIVATION AND
PYROPTOSIS

Besides apoptosis and necroptosis, pyroptosis is a third
form of programmed cell death which is of particular
relevance in macrophages (Man et al., 2017). Pyroptosis is
a strongly proinflammatory form of lytic cell death which
is triggered downstream of inflammasome complexes by
caspase-1 mediated cleavage of gasdermin D (GSDMD). The
N-terminal p30 cleavage product of GSDMD forms then
large pores in the plasma membrane and executes so cell
lysis (Man et al., 2017). Inflammasome-triggered pyroptosis
of macrophages and intestinal epithelial cells is of special
relevance for combating infection by intracellular bacteria
(Frank and Vince, 2019). Recent studies showed that Yersinia
bacteria by help of their TAK1 inhibitory acetyltransferease
YopJ triggers RIPK1-mediated activation of caspase-8 (Orning
et al., 2018; Sarhan et al., 2018). Interestingly, this not
only results in effector caspase activation and apoptosis
but also in caspase-8-mediated, thus non-canonical GSDMD
cleavage, GSDMD-mediated NLRP3 inflammasome activation
and pyroptosis (Orning et al., 2018; Sarhan et al., 2018). In
one of these reports, it has been furthermore shown that
cell death induction and IL-1β production by a mixture of
pharmacological TAK1 inhibitors and TNF are reduced in
GSDMD-deficient murine macrophages (Orning et al., 2018).
Moreover, Yersinia-induced cell death was reduced in murine
macrophages deficient for TLR4, TRIF or TNFR1 (Orning
et al., 2018). Thus, under appropriate conditions TNF may
also trigger GSDMD-dependent non-canonical inflammasome
activation and pyroptosis, too (Figure 5). GSDMD is presumably
directly cleaved by caspase-8 in these scenarios because TAK1
inhibition/LPS-induced generation of the pore forming p30
GSDMD fragment occurred in caspase-3/-7 double-deficient

macrophages and GSDMD coimmunoprecipitated furthermore
with caspase-8 (Orning et al., 2018; Sarhan et al., 2018). The
mechanisms described are presumably of broader relevance as
various other pathogenic bacteria and viruses, e.g., enteroviruses,
pseudomonas and vibrio also utilize TAK1 inhibitory proteins
(Zhou et al., 2013; Lei et al., 2014; He et al., 2017; Rui et al., 2017).
RIPK1-mediated caspase-8 activation is inhibited by cIAPs (see
above). Since Yersinia, LPS and TNF trigger cIAP depletion via
the TLR4-TRIF pathway and the TNFR2-TRAF2 axis, it appears
possible that cIAP depletion contributes to the pyroptotic RIPK1-
caspase-8-GSDMD signaling branch but this issue has not been
experimentally addressed yet.

Most pathogens activate in macrophages several types
of inflammasome complexes. Yersinia pestis for example
not only activates the NLRP3 inflammasome but also the
pyrin inflammasome (Philip and Brodsky, 2012; Jamilloux
et al., 2018). The sensor protein pyrin detects Rho GTPases
molecule species which are inhibited by bacterial toxins and
forms then an inflammasome with ASC and procaspase-
1 (Jamilloux et al., 2018). TNF and various other PPR-
induced cytokines, including type I interferons, stimulate the
expression of pyrin in macrophages (Centola et al., 2000).
Thus, the TNF triggered pyroptotic RIPK1-caspase-8-GSDMD
signaling axis might further cooperate with TNF/interferon-
induced pyrin expression and enhanced pyrin inflammasome
activity to promote macrophage pyroptosis (Figure 5). Indeed,
a contribution of TNF-induced pyrin expression to pyrin
inflammasome activation, IL-1β production and pyroptosis
induction has been recently demonstrated for clostridium difficile
toxin B (Sharma et al., 2019).

Just recently two studies demonstrated that intrinsic, thus
mitochondria-dependent apoptosis in bone marrow-derived
macrophages is accompanied by activation of the NLPR3
inflammasome and IL-1β activation (Chauhan et al., 2018; Vince
et al., 2018). Noteworthy, the latter was not only due to activation
of the NLRP3 inflammasome but has also been traced back
to inflammasome-independent IL-1β processing by caspase-8.
In context of intrinsic apoptosis caspase-8 is directly activated
by processing by effector caspases and indirectly by cIAP1/2
depletion and subsequent RIPK1 kinase activation. Caspase-8-
activation and cIAP1/2 depletion can also be triggered by TNFR1
(or other death receptors) and TNFR2. It is thus well conceivable
that TNF triggers this unusual proinflammatory mode of
apoptosis, especially under circumstances where TNFR1-induced
caspase-8 is insufficiently blocked. Future studies have to
show whether the proinflammatory activities of caspase-8
(GSDMD cleavage, IL-1β processing) gain relevance for the
biology and pathophysiology of TNF in vivo. Noteworthy, the
pyroptotic GSDMD p30 fragment is able to trigger mitochondrial
ROS production (Platnich et al., 2018) and the ROS in
turn are established inducers of the NLRP3 inflammasome
(Tschopp and Schroder, 2010) and, as mentioned before, of
TNF expression (Gossart et al., 1996; Chandel et al., 2000;
Kono et al., 2000; Brown et al., 2004). Thus, the GSDMD
p30-ROS axis might auto-amplify p30 production by two
feed forward loops, first by NLRP3 inflammasome activation
and second by TNF-induced caspase-8 activation. TNF itself
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is furthermore able to trigger mitochondrial production of
ROS in macrophages and thus might further enhance these
feed forward loops.

CONCLUSION AND PERSPECTIVE

There are a considerable number of high quality publications
addressing the role of TNF in the life death balance of
macrophages. In sum, these studies show that the effect of TNF
on macrophage viability not only depends on the integrated
and complex activity of the TNFR1-TNFR2 signaling network
but also from its crosstalk with other, equally complex signaling
systems engaged by PRR-, inflammasomes and interferons. It
is thus not really surprising that the precise net-effects of TNF
on macrophages in infection diseases and cancer are still poorly
predictable. Indeed, it is not even clear whether and if yes
to which extend, the reported effects of TNF on macrophages
are generalizable to all types of macrophages. Likewise, it is
unclear under which in vivo conditions which of the various
individual TNF-related signaling mechanisms gain dominance.
Thus, future studies must show whether there are key factors

that determine the quality of TNF signaling on macrophage
viability. It appears particularly important to learn more about
the crosstalk of concomitantly occurring signaling paths engaged
by TNF and other inducers of macrophage cell death. Last
but not least, it will be important for the understanding of
the role of TNF for macrophage biology to learn more about
the systemic immunological net-effects triggered by timely
limited “immunogenic” death versus persistent inflammatory
activation of macrophages.
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Sepsis is one of the leading causes of deaths world-wide and yet there are no
therapies available other than ICU treatment. The patient outcome is determined by
a complex interplay between the pro and anti-inflammatory responses of the body
i.e., a homeostatic balance between these two competing events to be achieved for
the patient’s recovery. The initial attempts on drug development mainly focused on
controlling inflammation, however, without any tangible outcome. This was despite most
deaths occurring during the immune paralysis stage of this biphasic disease. Recently,
the focus has been shifting to understand immune paralysis (caused by apoptosis and
by anti-inflammatory cytokines) to develop therapeutic drugs. In this review we put forth
an argument for a proper understanding of the molecular basis of inflammation as well
as apoptosis for developing an effective therapy.

Keywords: inflammation, sepsis, apoptosis, programmed cell death, immune suppression

INTRODUCTION

Early medical records have documented infectious diseases in humans as far back as 1000 BC,
and yet, pathogenic infection remains as the leading cause of morbidity and mortality (Ruffer and
Ferguson, 1911; Cossart, 2014). Infection leading to sepsis continues to be one of the biggest health
problems world-wide. Although difficult to discern the absolute global burden of the disease, it
is estimated that thirty million people are affected each year (Reinhart et al., 2013). The disease
predominantly affects low- to middle-income countries and is responsible for an estimated six
million deaths (Fleischmann et al., 2016). In addition, every year one million deaths of newborns
are due to maternal/neonatal sepsis (Vogel, 2017). In the United States alone, costs associated with
this disease can exceed $16 billion dollars, as most patients admitted to ICU require mechanical
ventilation to stay alive (Angus et al., 2001).

Despite the heavy cost of sepsis, the etiology of the disease continues to be enigmatic. In the
past, it was believed that the primary source of infection originated solely from the gut microbiota
(Friedman et al., 1998). However, subsequent studies showed that Pseudomonas sp. that colonizes
and causes infection of the upper respiratory tracts was the most commonly associated infection in
sepsis (Rangel-Frausto, 1999; Mayr et al., 2014). Now we know that sepsis is a highly heterogenous
disease both in terms of its cause and its progression. Before the 90s, the majority of septic patients
who presented at the clinic showed gram-negative organisms in their blood (Polat et al., 2017).
This lead some scientists to establish diagnostic criteria for the sepsis syndrome – claiming specific
medical symptoms and known cause of infection are central for diagnosis (Bone et al., 1989). Within
the following decade it became evident that although gram-negative bacteria are still prevalent in
septic patients, gram-positive microbiota became more apparent within patient sera (Friedman
et al., 1998). In fact, almost the same number of gram-negative and gram-positive bacteria are
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today associated with the disease (Vincent and Abraham, 2006).
However, the causative agent is not always bacteria as parasites
and fungus can also cause sepsis (Hubner et al., 2013; Florescu
and Kalil, 2014; Liang, 2016). Furthermore, in about a third
of patients an infectious pathogen is not detectable (Bone
et al., 1989; Liang, 2016). This includes trauma patients whom
frequently displayed clinical signs of sepsis but lacked bacteria
in the blood (Goris et al., 1985). These discrepancies forced
physicians to modify the diagnostic criteria for sepsis in 1992 at
a Consensus Conference in Chicago (Bone et al., 1992). These
new criteria suggested that infection did not have to be limited
to bacteria and systemic inflammatory response syndrome –
SIRS – became the new age term to describe the disease
(Bone et al., 1992).

Although diagnostic criteria were being updated regularly –
one aspect of sepsis drew the attention of researchers and
remained constant - the presence of inflammation during disease.
The inflammatory nature of sepsis was investigated as far back
as 1960 – where the first clinical trial commenced to attenuate
the inflammatory response (Bennett et al., 1962). These studies
led to the use of corticosteroids; however, no therapeutic benefit
was noted (Bennett et al., 1962). Drug trials which target the
inflammatory phase of sepsis would continue well into the 2000s
without any tangible benefits in patient survival (Polat et al.,
2017). A recent shift in the paradigm would lead researchers to
believe that inflammation is in fact necessary to fight infection
associated with disease (Ding et al., 2018). Nevertheless, these
revelations are relatively new and therapies to treat the disease
are still under investigation.

ROLE OF INFLAMMATION IN SEPSIS
PATHOLOGY: A DOUBLE-EDGED
SWORD

Sepsis is fundamentally an inflammatory disease mediated by the
host immune response. The innate immune response is facilitated
by the activation of pattern recognition receptors (PRR) during
early sepsis. The receptor-response is highly dynamic and can be
elicited by both pathogen-associated molecular patterns (PAMPs)
and/or damage-associated molecular patterns (DAMPs) such as
mitochondria released from injured tissues (Mogensen, 2009;
Hauser and Otterbein, 2018). At an organism level, complement,
surface-receptors of epithelial, endothelial and disseminated
immune surveillance cells incite such responses (Takeuchi and
Akira, 2010). Intracellular signaling process is highly complex –
with complementary and/or redundant roles for numerous
signaling pathways, ultimately leading to expression of genes
involved in adaptive immunity and inflammation. However, the
deregulated hyperinflammation can lead to the many symptoms
seen in the early phase of sepsis including disseminated
intravascular coagulation (DIC) and subsequent multi-organ
dysfunction syndrome (MODS), inflammation-coagulation due
to aberrant platelet activation, peripheral vasodilation leading
to low blood pressure ensuing hypoperfusion of the kidney
and kidney failure (Dhooria et al., 2016; Wang et al., 2018).
Thus, sepsis is a multifaceted disease manifested in many ways

including endocrine disorder, coagulopathy, polyneuropathy,
complement activation and polyneuropathy, all emanating from
dysregulated inflammation (Figure 1).

Inflammation is an essential step in alerting the immune
system to the presence of infection so that the hosts white blood
cells can quickly locate and combat the pathogen (Weighardt
et al., 2000). This response is typically tightly controlled, with
inflammation waning after infection is resolved – returning to
basal levels with the host’s white blood cells following suit.
When homeostasis is maintained, excessive inflammation and
immune cell activity is avoided, and the immune system can
prime itself for effective response to future infection (Newton
and Dixit, 2012). During sepsis, the stimulus that is recognized
by the immune system, ranging from PAMP’s like endotoxins
and viruses to DAMP’s during serious trauma, is far greater than
in regular infections (Hotchkiss et al., 2016). The immediate
result is a cytokine storm brought on due to the overstimulation
of the numerous white blood cells that recognize those factors.
This dysregulation in response causes a myriad of symptoms that
make sepsis distinctly different to regular infections, regardless of
severity (Martin, 2012). When functioning normally, the immune
system can combat most infections, with an imperceptible
amount of inflammation occurring before the pathogens are
cleared from the host. Resolving most infections so rapidly, with
little damage to the host, depends on the strict regulation of
cytokines. Cytokines are essential in the process of initiating and
escalating the innate immune response as well as the adaptive
immune response (Banyer et al., 2000). However, high levels
of inflammatory cytokines can co-exist with a significant innate
immune suppression, which can lead to nosocomial infections
(Hall et al., 2013).

MOLECULAR MECHANISMS OF
INFLAMMATION

Many different antigenic constituents from bacteria, viruses
and fungi, as well as tissue trauma are known causative
agents of sepsis. Common pathogens recurrently isolated from
septic patients include gram-positive Staphylococcus aureus
and Streptococcus pneumoniae and gram-negative bacteria
Escherichia coli and Pseudomonas aeruginosa (Martin et al.,
2003). PAMPs such as LPS are recognized by toll-like receptors
(TLRs) expressed on antigen presenting cells (APCs), such
as macrophages and dendritic cells (Poltorak et al., 1998).
APCs express a variety of these TLRs containing leucine-
rich repeats, which act to sense and elicit responses against
these antigens (Kawai and Akira, 2010). Upon receptor contact
with their cognate ligands, pro-inflammatory intermediates are
recruited, some of which include mitogen activated protein
kinases (MAPKs) – which are activated upon phosphorylation –
signal transducers and activators of transcription (STAT), Janus
kinases (JAK) and nuclear factor κ (kappa)-light-chain-enhancer
of activated B cells (NF-κB) – which translocates to the nucleus.
As a result, gene expression is initiated to promote inflammatory
cytokine and chemokine production (Johnston et al., 1995).
This fine-tuned process is dependent on the repertoire of
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FIGURE 1 | Sepsis is a multi-faceted disease. Multiple derangements exist in sepsis involving several different organs ranging from altered coagulation, immune
suppression to inflammation and multiple organ failure.

PAMPs, DAMPs and signaling pathways stimulated, to determine
intensity and route of response, in an effort to re-establish host
homeostasis. In the septic response, excessive inflammation due
to deregulated intrinsic mechanisms is associated with pathology
(Surbatovic et al., 2013).

IMMUNE ACTIVATION GENES

The transcription complex, NF-κB, is triggered in response
to numerous extracellular inflammatory stimuli (Sen and
Baltimore, 1986; Pahl, 1999). Activation of NF-κB by post-
translational mechanisms induces expression of early activation
genes including IL-1/12/18 and type-1 IFNs – to name a few
(Naumann and Scheidereit, 1994). These inflammatory cytokines
initiate synthesis of other cytokines and chemokines, such
as IL-6/8, IFN-γ and CXC-chemokine ligands – exacerbating
the inflammatory response. Stimulation of PRRs leading to
the inflammatory cascade causes adaptive immune constituents

to either become reactive or suppressive (Hayden et al.,
2006). Such canonical pathways have shown to instigate the
hyperinflammation observed in sepsis. Hence, studies have
aimed to block NF-κB – as well as other intermediates – to
attenuate hyper-responsiveness, however, results are conflictive
(Sha et al., 1995; Gjertsson et al., 2001). Studies investigating
differentially expressed genes in sepsis demonstrate genetic
aberrations associated with disease, which could potentially be
used as diagnostic markers (Prabhakar et al., 2005; Zhang et al.,
2017). Interleukin-1 receptor-associated kinase 3 (IRAK3) is one
such marker, which is specifically elevated in blood monocytes
of septic patients and can possibly possess diagnostic value
(Escoll et al., 2003).

ENDOCRINOPATHY

Sepsis is a highly inflammatory disorder with the presence of
organ dysfunction in severe cases and mostly caused by bacterial
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infection (Bone et al., 1989). These obvious characteristics of
the disease prompted galvanize the belief that inflammation
solely was responsible for sepsis related mortality. This claim
was supported by endotoxemia models, which were deemed
appropriate as they recapitulate obvious pathogenic features of
the disease (Heppner and Weiss, 1965; Hardaway et al., 1996;
Deitch, 2005). Hence, therapies were designed to attenuate host
inflammatory responses evident in sepsis. One of the first anti-
inflammatory treatments was the use of corticosteroids (Bennett
et al., 1962). Evidence of adrenal gland insufficiency in patients
with sepsis initially encouraged the use of steroids (Melby and
Spink, 1958). Indeed, endotoxemia animal models of disease
supported these findings (Mckechnie et al., 1985) and led to the
use of steroids in a human study. The trial consisted of septic
patients administered with high doses of methylprednisolone,
leading to significant reduction in mortality with (Schumer,
1976). In a subsequent study, high dose steroid administration
was found to have adverse effects (Warrington and Bostwick,
2006). Also, with adequate vasopressor therapy and fluid
resuscitation (Colling et al., 2018), the use of steroids for treating
sepsis became obsolete. Recently, a meta-analysis re-visited the
applicability of steroids in sepsis – suggesting that low doses
could be advantageous (Rochwerg et al., 2018). Another larger
randomized study – comprised of 3800 subjects – measured
survival in septic shock patients infused with hydrocortisone.
They concluded that hydrocortisone did not reduce 90-day
mortality when compared to placebo (Venkatesh et al., 2018).
As it stands, the benefits of steroid use for treating sepsis remain
vague and lack promise.

COAGULATION CASCADE

Coagulopathy associated with sepsis has long been identified
as a clinical feature of disease (Martinez et al., 1966). Of
those who present to the clinic, 35% meet criteria for DIC,
which is a robust predictor of mortality (Wheeler and Bernard,
1999; Bakhtiari et al., 2004). During early DIC, activation of
thrombin leads to the formation of fibrin complexes followed
by thrombocytopenia. Late progressive DIC is characterized
by the deposition of fibrin in the small blood vessels of
the body, causing dissemination of micro-thrombi, which is
associated with organ failure (Taylor et al., 2001; Gando et al.,
2016). In order to prevent mortality in septic patients with
microthrombus development, studies have used high-dose anti-
thrombin therapy, however, no benefit was noted with the
treatment (Warren et al., 2001). Other studies investigating the
antithrombotic activity of heparin – unfractionated or low-dose –
have also showed lack of effectiveness in preventing sepsis-
related mortality (Zhang and Ma, 2006; Jaimes et al., 2009). The
biggest drawback of such studies seems to be their single facet
approach, where in fact a multi-facet approach is required for
treating heterogeneous disease such as sepsis. Also to be taken
into consideration is the close relationship between the innate
immune system and the coagulation cascade (Esmon, 2003).
Ample evidence suggest that hemostatic changes in sepsis can be
regulated by pro-inflammatory mediators such as TNF-α during

the “cytokine storm” (Zimmerman et al., 2002; Levi and Van
Der Poll, 2010). Hence, the pathological “cross-talk” between
coagulation and inflammation during septic shock warranted
further investigation. In this context, the coagulation mediator,
activated protein C, readily became of interest as a treatment
option as this protein has important roles in coagulation and
in attenuating immune responses (Opal, 2004). Identification
of this protein as a putative therapeutic target for sepsis led
to the controversial Recombinant Human Activated Protein
C Worldwide Evaluation in Severe Sepsis (PROWESS) study
(Bernard et al., 2001). Recombinant human activated protein C,
marketed by Eli Lilly as Drotrecogin alpha activated (DrotAA)
or Xigris, was used in this study. However, the study showed
a modest 6.1% decrease in 28-day mortality in severe septic
shock patients treated with DrotAA (Bernard et al., 2001). Similar
studies using DrotAA in Early Stage Severe Sepsis (ADDRESS)
and Extended Evaluation of Recombinant Human Activated
Protein C United States Trial (ENHANCE), showed lack of drug
efficacy with increased side effects such as hemorrhage (Abraham
et al., 2005; Vincent et al., 2005).

Translation from “bench to bedside” appears to be the
biggest hurdle for researchers in the development of successful
treatments for sepsis. The disconnect has indeed been highlighted
in the failure of past drug trials, especially those impeding
inflammatory pathways associated with disease. However, in
recent years researchers have shifted their focus to immune
activation in sepsis – as inflammation is critical for clearing
infection. Hence, immune stimulating strategies reveal an
innovative focal point for treating sepsis pathogenesis.

CYTOKINE AND COMPLEMENT
ACTIVATION

Cytokines TNF-α and IL-1 are the most extensively studied
pro-inflammatory mediators in sepsis. These cytokines are
capable of activating target immune cells to produce additional
inflammatory mediators and as a consequence, a heightening
immune responses. This prompted an increased focus on
these cytokines to develop a therapeutic strategy to treat
sepsis (Schulte et al., 2013). Other cytokines with anti-
inflammatory property such as IL-6, IL-8, IL-12, IFN-γ, and
IL-10 could dampen the inflammatory response (Van Der Poll
and Opal, 2008). The cytokine predominantly produced by
Th17 T-cells, IL-17, possesses the capacity to provoke a pro-
inflammatory immune response by eliciting the production
of TNF-α, which in turn provides a route for cross-talk
between lymphocytes and phagocytes (Weaver et al., 2007).
Murine studies have shown that blockage of IL-17 is associated
with marginal survival advantage (Flierl et al., 2008). The
sepsis inflammatory response has also been shown to be
regulated by macrophage migration inhibitory factor (MIF).
MIF has been shown to be vital for the regulation of host
immune responses via modulation of TLR4. Mice lacking
MIF have been shown to have a defective response to
intravenous LPS introduction, due to reduced TLR4 expression
(Calandra et al., 2000).
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Apart from the production of inflammatory cytokines,
complement activation is also associated with sepsis onset. This
in turn has profound effects on coagulation, compromising the
endothelial barrier integrity transitioning into a pro-coagulant
state. Similar to cytokines, complement activation is also
initiated by PAMPs and DAMPs. During sepsis, complement
peptide C5a is converted to a potent chemo-attractant state,
causing derangement in neutrophil function, that results in
tissue damage (Guo and Ward, 2005). Additionally, this
potent peptide amplifies inflammatory responses by stimulating
production of pro-inflammatory cytokines, which is thought
to contribute to organ failure in acute sepsis (Ward, 2010).
Furthermore, complement factors have also been detected in
clinical settings of disease suggesting a role in sepsis pathogenesis.
However, treatment methods to prevent complement activation
are ineffectual in reducing mortality associated with sepsis
(Markiewski et al., 2008).

IMMUNE CELL DEATH

Sepsis pathogenesis was believed to consist of two distinct phases
in response to systemic infection, which included the initial
pronounced inflammation phase – or cytokine storm – that
transitioned into a phase of prolonged immune suppression
(Hotchkiss et al., 2013). Patients who survive the initial phase
can enter a protracted hypo-inflammatory phase know as PICS –
persistent inflammation/immunosuppression and catabolism
syndrome (Figure 2). PICS is characterized by organ failure,
persistent inflammation, protein catabolism/cachexia, ineffectual
wound healing and increased susceptibility to infection due
to immune suppression (Gentile et al., 2012). The propensity
for patients with sepsis to readily develop persistent, recurrent
and nosocomial infections suggested the existence of immune
suppression in sepsis (Grimaldi et al., 2011). In further support
of this idea, patients with sepsis have a higher rate of latent
virus reactivation and blood cultures positive for opportunistic
organisms (Otto et al., 2011; Walton et al., 2014). Irrespective
of the disease classification, the immune suppression and
dysregulation associated with disease is undeniably the major
cause of sepsis related fatalities (Daviaud et al., 2015).

During sepsis, cells from both the innate and adaptive
immune system are affected. The immune cells displaying
marked depletion during sepsis include B cells, CD4+, and
CD8+ T cells and dendritic cells in lymphoid organs such
as the thymus, spleen and lymph nodes (Hotchkiss et al.,
2005). Apoptosis, both extrinsic and intrinsic, has proved to
be the driver of this depletion, with dying cells positive for
active caspases and enhanced expression of pro-apoptotic BH3-
only proteins. Multiple studies have shown, using various
models such as transgenic mice and caspase-inhibitors, that
blockade of lymphocyte apoptosis improves survival in sepsis
(Hotchkiss et al., 1999a; Peck-Palmer et al., 2009). Indeed,
autopsy studies of patients with sepsis revealed that immune
cell apoptosis was the underlying cause of mortality (Torgersen
et al., 2009). Furthermore, survival had a strong negative
correlation with immune cell apoptosis during sepsis in

mice (Hotchkiss et al., 1999b). The apparent linear relationship
between disease severity and apoptosis is due to less circulating
immune cells, hence, decreased surveillance and detection of
infectious pathogens. In turn, compromising the hosts ability to
successfully clear what should be a “mild” secondary infection.
The negative effects of cell death during sepsis also impacts
apoptotic cell uptake and clearance by surviving immune
cells. Loss of follicular dendritic cells causes considerable
impairment of T and B cell function, with CD4+ T cell
deficit impeding macrophage activation (Tinsley et al., 2003).
Consequently, impaired macrophages are unable to mount the
suitable inflammatory response toward the invading agent.

IMMUNE CELL TOLERANCE AND
DYSFUNCTION

Lymphocytes undergoing apoptosis – during sepsis – can also
serve to further suppress immune functions via interactions
with macrophages, monocytes or dendritic cells. Phagocytotic
cells are triggered to release anti-inflammatory cytokines –
such as IL-10 and TGFβ – upon engulfment of apoptotic
cells rendering them anergic. Additionally, this process can
cause aberrations at the transcriptional level – preventing pro-
inflammatory cytokine production – thus further contributing to
immune paralysis (Coopersmith et al., 2003). Immune tolerance
caused by excessive exposure to endotoxin can similarly have
major consequences on macrophage functionality. In addition
to excess release of immunosuppressive mediators, endotoxin
tolerant macrophages possess relatively low levels of HLA-DR
on their surface, resulting in a lack of antigen presentation
(Saenz et al., 2001). Malfunction of sentinel first line defense
immune cells combined with pronounced apoptosis is associated
with a poor outcome in sepsis (Huang et al., 2009). Innate
defenses are further compromised during disease pathogenesis
due to impaired function of neutrophils and natural killer (NK)
cells. During sepsis, circulating neutrophils exhibit an immature
phenotype affecting transmigration, adhesion and the formation
of neutrophil extracellular traps (NETs) (Kovach and Standiford,
2012). Indeed, neutrophils isolated from patients with sepsis
showed to lack maturity, evidently having chemotaxis defects
and reduced oxidative capacity. The depressed effector functions
alter neutrophil antimicrobial defenses and is reported to be
associated with the development of secondary infections in
in vivo and in clinical settings (Demaret et al., 2015). This is also
the case with NK cells, which are heavily depleted during sepsis.
Animal and human studies have shown that as well as being
reduced in number, remaining NK cells have defective cytotoxic
function (Forel et al., 2012). Amongst the vast magnitude of
cellular aberrations occurring during sepsis, exhaustion of T
cells is characteristic of prolonged septic insult. Onset of T cell
exhaustion is caused by a high load of antigen and amplified
levels of anti- and pro-inflammatory cytokines, characteristic of
the host septic environment. A recent study using cecal-ligation
and puncture (CLP) showed that exhaustion of CD8+ T cells can
extend beyond initial septic insult and can inflict long-lasting
changes in T cells leading to compromised reactivity toward
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FIGURE 2 | Sepsis is a biphasic disease, the initial phase is characterized by overwhelming inflammation followed by immuno-suppression. A homeostatic balance
between these two competing events is to be achieved for the patient’s recovery.

future infections (Condotta et al., 2015). Hence, detrimental
effects of immune cell death and dysregulation result in a
long-term immunological “scar” causing substantial mortality of
patients many years later when initial disease has been resolved.

DRUG TRIALS FOR SEPSIS: A CATALOG
OF FAILURES

Severe immune dysregulation is the prominent hallmark
of sepsis – rendering the disease biologically complex and
consequently a challenge to treat (Sprung et al., 2006). More than
100 clinical trials have investigated putative treatments for sepsis,
yet a cure still remains elusive (Table 1). Past failures of clinical
trials can largely be attributed to disinclination of researchers to
abandon ineffectual sepsis models. For instance, multiple past
trials were based on studies which used experimental mice dosed
with abnormal amounts of pathogen to mimic sepsis (Fink, 2014).
Models such as this have since been largely discredited as they
cause inflammation at a supra-physiological level (Lewis et al.,
2016). The use of such imprecise models to study sepsis – in-
turn – led to the development of non-targeted drugs which were
unable to resolve disease in the clinic.

In the late 1960s, many researchers began to trial
immunomodulatory agents for the treatment of sepsis (Davis
et al., 1969). One of the most potent immune activators that
gained prominence was bacterial cell wall component – LPS
(Okeke and Uzonna, 2016). Studies demonstrated that lethality,
associated with high doses of endotoxin in mice, was reverted
with IgG infusion (Davis et al., 1969; Rubenstein and Worcester,
1969). Subsequently, the first anti-endotoxin trial commenced,
which investigated the level of antiserum in patients infected
with gram-negative bacteria. The study showed a reduction
in mortality upon bacterial vaccination (Ziegler et al., 1982).
Promising pre-clinical results led to the development of the
monoclonal antibody – HA-1A – directed against the toxic lipid
A component of LPS. Initial human trials showed that patients
with sepsis tolerated the antibody well and were thought to
benefit from treatment (Ziegler et al., 1991). However, lack of
data reproducibility raised doubts against the study leading to
a second trial. Further investigation revealed that the HA-1A
treated groups had an increase in mortality – leading to drug
withdrawal from the market (Costongs et al., 1993; Mccloskey
et al., 1994). Homologs of LPS have also been designed to
antagonize the activity of endotoxin at the receptor level. One
such study used potent LPS antagonist E5531, which blocked
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endotoxin response in healthy volunteers infused with small
amounts of LPS (Bunnell et al., 2000). However, LPS homologs
lost credibility when applied in a clinically relevant setting of
sepsis. A study using eritoran – a synthetic TLR4 antagonist –
demonstrated the drug’s inability to reduce 28-day mortality
in septic patients (Opal et al., 2013). The lack of effectiveness
seen with anti-endotoxin treatment is perhaps not surprising
since only about half of septic patients present with gram-
negative infections. This suggested that pre-clinical models
of disease do not appropriately reflect the heterogeneity of
the human condition (Hotchkiss and Karl, 2003; Buras et al.,
2005). Additionally, studies have used adoptive transfer of
bone marrow cells between LPS-sensitive and LPS-resistant
mice, which found that transferred bone marrow cells rendered
mice susceptible to endotoxin lethality (Michalek et al., 1980).
However, this study added credence to the fact that endotoxin
wasn’t killing the mice directly, rather their response to
that exposure was.

For the last two decades, anti-cytokine strategies were
thought to have boundless therapeutic potential. However,
despite this optimism, they’ve shown to have little use in
the treatment of sepsis. This was the case for extensively
studied adjunctive therapies targeting tumor necrosis factor or
TNF-α. Neutralization of this target receptors entailed the use

TABLE 1 | Sepsis therapy, a catalog of failures.

Target Strategy References

Lps/Endotoxin HA-1A Ziegler et al., 1991

E5531 Bunnell et al., 2000

Anti-CD14 Reinhart et al., 2004

Eritoran Opal et al., 2013

Polymyxin B Payen et al., 2015

conjugate

Endocrinopathy Methylprednisolone Bone et al., 1989

Vasopressin Ohsugi et al., 2016

Hypercoagulability
/Disseminated Intravascular
Coagulation (DIC)

Activated Protein C Bernard et al., 2001

Anti-thrombin Warren et al., 2001

Heparin Zhang and Ma, 2006

Thrombomodulin Hagiwara et al., 2016

Cytokines Anti-TNF-α Tracey et al., 1987

IL-1 receptor Fisher et al., 1994

Antagonists

Soluble TNF-α receptor Borrelli et al., 1996

Diacerhein Calisto et al., 2012

Eicosanoids Ibuprofen Bernard et al., 1997

Nitric Oxide L-NMMA Petros et al., 1994

Oxidat1ve Stress Statins Patel et al., 2012

Selenium Sakr et al., 2014

Nf-Kb Transcription Curcumin Zhong et al., 2016

Apoptosis Caspase inhibitors Weber et al., 2009

Most, if not all, were targeting inflammation including caspase inhibitors. Caspases
do have a central role in inflammation (Mandal et al., 2018).

of monoclonal antibodies as well as soluble TNF-α receptors
as decoy receptors (Tracey et al., 1987; Vacheron et al., 1992;
Borrelli et al., 1996). Many of these studies showed promise
in rodents, however, could not demonstrate the same effect
in human clinical trials. A notable study performed by Fisher
et al., 1996, revealed that targeting inflammatory mediators could
even be harmful. In this randomized, double-blinded study,
septic patients were administered with recombinant soluble
TNF-α receptor. Recombinant protein did not reduce mortality
in septic patients and high doses were even associated with
increased mortality (Fisher et al., 1996. In fact, clinical use
of anti-TNF-α therapy has been linked to increased risk of
infections (Ali et al., 2013). On the contrary, studies have
shed light on the benefit of cytokine activation during sepsis
(Echtenacher et al., 2001). Other studies have similarly used IL-
1 receptor antagonists to test prognostic value in clinical sepsis,
yet, fail to demonstrate significant reduction in mortality (Fisher
et al., 1994). Failed trials that target inflammation in sepsis
highlight the disconnect between laboratory experiments and
clinical outcome and this warrants an urgent recalibration in
research approach.

CURRENT TRIALS

Many recent therapeutics have targeted endotoxins and cytokines
circulating through patients with sepsis at dangerously high
levels, in an attempt to reduce the inflammation and the
associated pathology (Polat et al., 2017). However, all these
therapies, while showed promise in animal models, showed no
change in patient outcome or overall survival, and in some cases
increased mortality. These therapeutics often had the desired
effect of reducing the levels of its target endotoxin or cytokine,
however, they consistently failed to improve short term clinical
outcomes observed during SIRS i.e., organ failure, elevated heart
rates and blood pressure or longer-term outcomes such as: time
spent in ICU, rate of opportunistic infection and mortality. The
failure to improve patient outcome by any of these measures’
highlights both the complexity of the disorder as well as the flaw
of targeting the initial acute phase of sepsis. Lack of correlation
between cytokine levels and mortality was highlighted in a
retrospective study published 20 years ago (Antonelli, 1999).
Recently, focus has shifted to the chronic immunosuppressive
phase as the cause of most sepsis-related deaths.

The subsequent immunosuppressive phase of sepsis is
characterized by a drop in pro-inflammatory cytokine levels and
leukopenia, frequently culminating in infection by opportunistic
pathogens and death (Polat et al., 2017). During sepsis both
myeloid cells and lymphocytes undergo high levels of apoptosis,
with many of the remaining cells entering a state of anergy,
rendering both the innate and adaptive arms of the immune
system ineffective (Hotchkiss et al., 2013). The magnitude
of the drop of total and functioning leukocytes is directly
correlated with patient survival. Coupled with consistently falling
mortality rates during the acute phase of sepsis (Levy et al.,
2010), increasing the number of healthy leukocytes presents a
promising therapeutic target that is now beginning to be explored
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(Meisel et al., 2009; Chousterman and Arnaud, 2018). Immuno-
stimulatory adjuvant therapies intend to counter the immune-
paralysis that occurs in the chronic phase of sepsis (Meisel et al.,
2009; Chousterman and Arnaud, 2018; Francois et al., 2018).
These therapies aim to reduce apoptosis of leukocytes allowing
their numbers to increase and revert them to a functional
phenotype. Such therapies currently being investigated include
the growth factors granulocyte-macrophage colony stimulating
factor (GM-CSF) and IL-7 and the receptor, programmed
cell death 1 (PD-1).

GM-CSF is a potent cytokine that stimulates the generation
and maturation of monocytes and neutrophils, allowing them to
effectively respond to pathogens (Mathias et al., 2015; Shindo
et al., 2015). This effect has been demonstrated both ex vivo
and in vitro. Addition of recombinant human GM-CSF to whole
blood of septic patients recapitulates their phenotype closer to
that of a healthy person. Treatment re-sensitizes both neutrophils
and macrophages to LPS, with treated cells releasing significantly
higher levels of pro inflammatory cytokines including TNF-α,
IL-6, and IL-8, all of which are released at significantly lower
levels in many patients during the later stages of sepsis (Mathias
et al., 2015). Another marker of immune cell dysfunction
is prolonged downregulation of membrane-associated human
leukocyte antigen receptors (mHLA-DR) (Landelle et al., 2010).
Lower expression levels of mHLA-DR have been associated
with poorer outcomes and lower patient survival (Landelle
et al., 2010), with GM-CSF demonstrating the capacity to
restore mHLA-DR expression. A clinical trial involving patients
with severe sepsis or septic shock conducted by Meisel et al.
(2009) corroborated these findings. Patients were initially treated
with 4 µg/kg daily for the first five days, then depending on
the response, given 4 or 8 µg/kg daily for the next 3 days.
Ex vivo analysis of monocytic function demonstrated that the
monocytes from patients treated with GM-CSF – that were then
stimulated with LPS – secreted higher levels of TNF-α, IL-6,
and IL-8. Additionally, mHLA-DR expression was significantly
upregulated, compared to that of normal levels, and less of the
anti-inflammatory cytokine IL-10 was expressed (Meisel et al.,
2009). Analysis of patient serum revealed that absolute neutrophil
and monocyte count increased by a factor of four, with all patients
approaching a normal white blood cell count after treatment.
Additionally, TNF-α levels were increased, however, all other
cytokines remained unchanged relative to the placebo group.
Other clinical outcomes included treated patients spending
less time on mechanical ventilation and reduced APACHE-II
scores. Despite these favorable short- and long-term changes
to many clinical outcomes, 28-day mortality was not reduced
(Meisel et al., 2009).

IL-7 is a growth factor that stimulates the proliferation and
maturation of many cell types, in particular T lymphocytes. IL-
7 also causes many desirable changes in T lymphocytes (that
may prove beneficial) in the context of sepsis disease progression,
including: upregulation of Bcl-2 proteins and resistance to
apoptosis, proliferation and enhanced function (Francois et al.,
2018). During sepsis both CD4+ and CD8+ T cell populations
drop considerably, and, like myeloid cells, the magnitude of
the drop is correlated closely with patient survival (Drewry

et al., 2014). In a phase II trial investigating CYT107, a
recombinant form of human IL-7 in treating patients with
septic shock and severe lymphopaenia (Francois et al., 2018).
The most significant finding of this study was that, despite
the complexity of the inflammation and immunosuppression
seen during sepsis, there was a four-fold increase in absolute T
lymphocyte count, which persisted well beyond the completion
of therapy (Francois et al., 2018). However, much like the trial
of GM-CSF, there was no significant difference in 28- or 90-
day survival.

One of the main contributing factors of lethality in sepsis
is immune tolerance, the mechanisms of which are only
beginning to be understood. One pathway in which this occurs
is the upregulation of PD-1 on T lymphocytes and PD-L1
specifically on APC’s (Watanabe et al., 2018). During the
immunosuppressive phase of sepsis, APCs upregulate PD-L1
further impairing remaining T-lymphocytes and compounding
the effects of the suppressive cytokine profile of patients
(Shindo et al., 2015; Liu et al., 2017). When T cells expressing
PD-1 interact with cells expressing high levels of PD-L1,
any response the T cells would have otherwise mounted is
suppressed. This is compounded by the elevated levels of
soluble PD-L1 in the serum of septic patients, leading to
further lymphocyte attrition (Liu et al., 2017). PD-1 and PD-
L1 antagonists are a new class of therapeutic blocking the
interaction between the two molecules (Patera et al., 2016).
These monoclonal antibodies are being investigated for use in
diseases such as cancer and types of chronic viral infection,
where restoring T cell function is of particular importance
in fighting the disease (Watanabe et al., 2018). Similar to
GM-CSF and IL-7 treatment, the PD-L1 antagonist BMS-
936559 is well tolerated, with all therapies having little to no
adverse effects when used to treat critically ill patients (Patera
et al., 2016). Importantly, all drugs did not elicit an excessive
pro inflammatory cytokine response, that would have further
harmed patients (Meisel et al., 2009; Francois et al., 2018;
Watanabe et al., 2018).

However, these therapies are not without limitations. The
absence of improved short-term survival in all immunoadjuvant
therapies is the most glaring shortcoming. It is likely due
to a complex variety of reasons, though they do offer some
clear benefit to sepsis patients. These limitations include the
relatively small sample size in all the studies, the severity
of sepsis of those included, as well as the use of 28- or
90-day survival as the end point. Severe sepsis and septic
shock have the highest mortality rates of all types of sepsis
during the acute phase, chronic phase and long after discharge
from hospital (Karlsson et al., 2009). Long term mortality
in these cases is over 1.5 times higher than in-hospital
mortality, with the quality of life of survivors also being
lower (Karlsson et al., 2009). It is these deaths that immuno-
stimulant adjuvant therapies may offer the greatest benefits i.e.,
in reducing immune scarring and allowing the survivors of
sepsis to reconstitute a functioning immune system. Past trials
have not been powered to follow patients for such extended
periods of time, but it is possible that is where the greatest
benefits will be seen.
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CONCLUDING REMARKS

Experimental drug therapies for sepsis are at cross-roads with
the withdrawal of the latest drug Xigris (activated protein
C, Eli Lilly) from the market following the negative results
of the 1,700-person PROWESSSHOCK phase III trial in
2011. Critical-care physicians now have no drugs specifically
approved to treat severe sepsis with the failure of Talactoferrin
alfa (an immunomodulatory lactoferrin, Agennix, Germany)
and AstraZeneca’s CytoFab, an antibody directed against
pro-inflammatory tumor necrosis factor-alpha (TNF-α) to
name a few. Apart from using incorrect animal models
(such as endotoxin-mediated sepsis in the absence of any
confirmed infection), these failures could be attributed to the
strategy of targeting inflammation, notwithstanding the fact
that inflammation contributes to less than 20% of sepsis-
related mortality. In the context of sepsis, inflammation is
necessary evil as inflammatory cytokines are the activators of
both the innate and the adaptive immune systems. Blocking
of this pathway proven to be counterproductive in treating
sepsis as there is a clear correlation between anti-inflammatory
therapies and increased risk of infections (Ali et al., 2013).
Use of steroids is yet another controversial topic. Since its
inception in 1976 (Schumer, 1976), glucocorticoids are the
preferred choice of treatment by great many physicians in
spite of the fact that it does not offer any survival advantage
(Venkatesh et al., 2018). There is a collective imperative
on both the researchers and the physicians to measure

the treatment outcome in terms of patient survival rather
than reduced economic cost in ICUs. The immune paralysis
phase of sepsis accounts for more than 80% of the sepsis-
related mortalities and there is an inverse correlation between
immune cell apoptosis and patient survival (Hotchkiss et al.,
2013). Methods for identifying when patients have entered the
immunosuppressive phase of sepsis and for detecting defects
in immunity might enable the application of potent new
immunotherapies. Therefore, there is a need to identify the
factors that lead to immune-suppression by deregulated cytokine
production and immune cell apoptosis. To understand the
molecular mechanism of immune cell death during sepsis,
particular emphasis should be given on the intrinsic or the Bcl-2
family mediated apoptosis.
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Mitochondrial outer membrane permeabilization (MOMP) is essential to initiate
mitochondrial apoptosis. Due to the disruption of mitochondrial outer membrane
integrity, intermembrane space proteins, notably cytochrome c, are released into
the cytosol whereupon they activate caspase proteases and apoptosis. Beyond its
well-established apoptotic role, MOMP has recently been shown to display potent
pro-inflammatory effects. These include mitochondrial DNA dependent activation of
cGAS-STING signaling leading to a type I interferon response. Secondly, via an IAP-
regulated mechanism, MOMP can engage pro-inflammatory NF-κB signaling. During
cell death, apoptotic caspase activity inhibits mitochondrial dependent inflammation.
Importantly, by engaging an immunogenic form of cell death, inhibiting caspase function
can effectively inhibit tumorigenesis. Unexpectedly, these studies reveal mitochondria
as inflammatory signaling hubs during cell death and demonstrate its potential for
therapeutic exploitation.

Keywords: mitochondria, cell death, inflammation, interferon, NF-κB, apoptosis, caspases, mtDNA

INTRODUCTION

Mitochondrial outer membrane permeabilization (MOMP), induced by the pro-apoptotic Bcl-2
proteins BAX and BAK, is the essential step in initiating mitochondrial apoptosis. Following
MOMP, soluble mitochondrial intermembrane space proteins including cytochrome c, SMAC
(also called DIABLO) and Omi (also called HtrA2), are released into the cytoplasm. In the
cytoplasm, cytochrome c binds to APAF-1; this leads to APAF-1 conformational changes and
oligomerization into a heptameric wheel-like structure called the apoptosome that recruits and
activates the initiator caspase-9 (Bratton and Salvesen, 2010). Active caspase-9 cleaves and activates
the executioner caspases-3 and -7, leading to widespread substrate cleavage. Caspase activity is
essential for the biochemical and morphological hallmarks of apoptosis, leading to rapid cell
death that is considered immunosilent (Arandjelovic and Ravichandran, 2015). Nevertheless, cells
usually die irrespective of caspase activation upon MOMP, demarcating it as a point of no return
(Tait et al., 2014).

While apoptosis is considered a silent form of cell death, mitochondrial dysfunction (that occurs
upon MOMP) is associated with inflammatory effects. For instance, mitochondrial dysfunction
can lead to cytosolic exposure of several danger-associated molecular patterns (DAMPs), such as
mitochondrial DNA (mtDNA) (Shimada et al., 2012; West et al., 2015) and cardiolipin (Tuominen
et al., 2006). Moreover, mitochondrial ROS – increased upon disruption of mitochondrial
respiratory chain function – can also promote inflammation (Nakahira et al., 2011; Zhou et al., 2011;
Zorov et al., 2014). Once exposed to the cytosol, mitochondrial DAMPs are recognized by various
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adaptor molecules or receptors leading to an inflammatory
response (Grazoli and Pugin, 2018). When mtDNA is in the
cytosol it can be recognized by cyclic GMP-AMP (cGAMP)
synthetase (cGAS), toll-like receptor 9 (TLR9), and the NLRP3
inflammasome (West and Shadel, 2017), of which the latter
can also be activated by mtROS (Shimada et al., 2012). Upon
MOMP, release of intermembrane space proteins (Liu et al., 1998;
Adrain et al., 2001; van Loo et al., 2002) and cytosolic exposure
of the inner mitochondrial membrane occurs (McArthur et al.,
2018; Riley et al., 2018), enabling mtDAMP exposure during
apoptosis. Various studies have shown that activation of apoptotic
caspases has an immunosilencing effect during cell death. The
anti-inflammatory effects of apoptotic caspases are likely to be
pleiotropic; for instance, caspases have been shown to directly
cleave and inactivate inflammatory pathway components as well
as strongly suppress protein translation (Clemens et al., 2000;
Ning et al., 2019). At least two parallel inflammatory pathways
are activated during caspase-independent cell death (CICD)
(Rongvaux et al., 2014; White et al., 2014; Giampazolias et al.,
2017; McArthur et al., 2018; Riley et al., 2018). In this minireview,
we will discuss how MOMP induces inflammation, focusing
primarily on two recently described mechanisms: MOMP-
induced cGAS-STING signaling (Rongvaux et al., 2014; White
et al., 2014; Giampazolias et al., 2017; McArthur et al., 2018; Riley
et al., 2018) and activation of pro-inflammatory NF-κB signaling
(Giampazolias et al., 2017).

MITOCHONDRIAL RELEASE OF mtDNA
CAUSES A TYPE I INTERFERON
RESPONSE

When pathogen-derived, cellular or mitochondrial DNA is
present in the cytosol various immunogenic pathways are
activated. One of these cytosolic DNA sensors is cGAS, which
produces cGAMP, from ATP and GTP, upon DNA binding.
cGAMP functions as a secondary messenger and binds to the
endoplasmic reticulum (ER) membrane adaptor STING (Cai
et al., 2014). Upon binding, STING changes its conformation and
becomes activated. Active STING translocates from the ER to
an ER-Golgi intermediate apparatus and the Golgi compartment.
During this process, the carboxyl terminus of STING recruits and
activates TBK1, which in turn phosphorylates the transcription
factor IRF3. Phosphorylated IRF3 dimerises and translocates
to the nucleus where it initiates a type I interferon response
(Chen et al., 2016). The type I interferon response acts in
a pleiotropic manner to activate both innate and adaptive
immunity (Trinchieri, 2010).

Several years ago, it was found that during mitochondrial
apoptosis under caspase-inhibited conditions a type I interferon
response is activated (Figure 1; Rongvaux et al., 2014; White et al.,
2014). Genetically engineered mouse models and corresponding
mouse embryonic fibroblasts with deleted caspases-3 and -7, or -
9 showed significantly upregulated type I interferon expression
and interferon-stimulated gene response following MOMP.
Consistent with this, cells were highly resistant to infection by
RNA and DNA viruses (Rongvaux et al., 2014). Similar results

were obtained in hematopoietic stem cells, as deletion of caspase
9 increased basal levels of type I interferons and cell death in
the presence of caspase inhibition stimulated expression of type
I interferons (White et al., 2014). Both groups established that
this increase in type I interferons during cell death was due
to recognition of mtDNA by cGAS and subsequently STING
activation (Rongvaux et al., 2014; White et al., 2014).

During mitochondrial apoptosis, only the outer mitochondrial
membrane was thought to permeabilise following BAX and
BAK activation. This made it challenging to reconcile how
matrix localized mtDNA could activate cytosolic cGAS-
STING signaling. Toward answering this conundrum, recent
studies have shown that subsequent to MOMP, the inner
mitochondrial membrane is extruded through expanding,
BAX/BAK-dependent, outer membrane pores (McArthur et al.,
2018; Riley et al., 2018; Ader et al., 2019). In the cytosol, these
mitochondrial herniations can rupture, enabling mtDNA release
(McArthur et al., 2018; Riley et al., 2018). Beyond providing a
mechanism for mtDNA dependent activation of cGAS-STING
signaling these studies demonstrate that BAX and BAK can
form huge, expanding pores, termed macropores (McArthur
et al., 2018), on the mitochondrial outer membrane. Previous
studies have shown that BAX and BAK pores are highly flexible
and dynamic in their pore size and shape in order to release
proteins into the cytosol (Bleicken et al., 2013; Große et al., 2016;
Salvador-Gallego et al., 2016), however, no study had shown
before that these pores could be big enough to release mtDNA
from the mitochondria. It is unclear beyond the requirement for
BAX/BAK activation whether the release of mtDNA is regulated,
but it is independent of both mitochondrial dynamics and
mitochondrial permeability transition (Riley et al., 2018).

Besides STING activation, other immune sensing pathways
can also be activated by mtDNA. Many antigen presenting cells
possess TLR9, which is able to recognize mtDNA by virtue of
its high content of CpG rich domains. It has been observed
that recognition of mtDNA by TLR9 can both lead to NF-κB
translocation and a type I interferon response (Oka et al., 2012;
Zhang et al., 2014; Saito et al., 2018). An immune response can
also be provoked by activation of the NLRP3 inflammasome
via mtDNA during cell death (Nakahira et al., 2011; Shimada
et al., 2012; Vince et al., 2018). Activation of the NLRP3
inflammasome leads to processing of interleukin (IL) 1β and IL-
18, thereby activating monocytes, macrophages, neutrophils, and
T-cells (Netea et al., 2010). Nevertheless, the contribution of these
two pathways in the immune response following CICD awaits
further investigation.

ACTIVATION OF PRO-INFLAMMATORY
NF-κB SIGNALING FOLLOWING MOMP

In addition to increased expression of type I interferon genes
during CICD, we also observed nuclear translocation of NF-
κB, thereby activating transcription of pro-inflammatory genes
(Giampazolias et al., 2017). NF-κB has been described as
having a key role in inflammation, and can be activated
in a canonical and non-canonical manner (Lawrence, 2009).
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FIGURE 1 | Release of mitochondrial proteins and mtDNA initiates an inflammatory response in CICD. Upon an apoptotic trigger, BAX and BAK form pores in the
mitochondrial membrane to allow the release of mitochondrial proteins, such as cytochrome c and SMAC/DIABLO, and mtDNA. During CICD, the release of
mitochondrial proteins activates the NF-κB pathway via a SMAC-like mechanism. In parallel, release of mtDNA may activate the NLRP3 inflammasome, TLR9
receptor and the cGAS-STING pathway. Activation of the latter will lead to nuclear translocation of IRF3 during CICD. Both NF-κB and IRF3 engage the transcription
of various inflammatory cytokines, leading to immune cell activation.

Besides inducing the transcription of various inflammatory
genes, NF-κB also regulates the activation, differentiation, and
effector function of inflammatory T-cells (Lawrence, 2009;
Liu et al., 2017).

One of the genes that is transcribed by NF-κB activation
is tumor necrosis factor (TNF). TNF is a pro-inflammatory
cytokine that can trigger necroptosis, which is a regulated form
of cell death that shares morphological similarities with necrosis.
It has been observed that CICD has necroptotic features, as
the kinetics of cell death were slowed by genetic alteration
or pharmacological inhibition of the necroptotic pathway.
Inhibiting TNF signaling with Enbrel showed a decrease in
cell death, indicating that TNF is needed to engage necroptosis
in CICD (Giampazolias et al., 2017). TNF is a well-known
activator of NF-κB (Schütze et al., 1992), however, neither TNF
nor the necroptotic pathway is responsible for the activation
of NF-κB during CICD. Rather, we found that the increase
in TNF expression and NF-κB activation during CICD is
wholly dependent on BAX and BAK, indicating that MOMP
is essential for initiating the inflammatory response. Because
of the observation that MOMP is needed to initiate nuclear
translocation of NF-κB in caspase inhibited conditions, we can

conclude that necroptosis is not essential for the activation of
this pathway but accelerates cell death following TNF expression
(Giampazolias et al., 2017).

While NF-κB is robustly activated following MOMP, how
this is initiated is unclear. A logical explanation may relate
to the release of intermembrane space protein SMAC. When
SMAC is present in the cytosol it binds to inhibitor of
apoptosis proteins (IAPs) to block their function (Du et al.,
2000; Verhagen et al., 2000). Besides the role of IAPs to
regulate caspase activity and apoptosis, it is also known
that IAPs are able to modulate inflammatory signaling by
engaging pro-survival NF-κB activation (Gyrd-Hansen and
Meier, 2010). Our lab has shown that upon MOMP, NF-κB
becomes activated through a SMAC-like mechanism, whereby
IAPs are degraded, leading to the activation of NF-κB-inducing
kinase (NIK) (Figure 1). Degradation of IAPs occurs in a
SMAC-like manner since a non-SMAC binding XIAP mutant
is stabilized (Giampazolias et al., 2017). Nevertheless, even
in the absence of known intermembrane space IAP-binding
proteins, SMAC and Omi, IAPs are degraded following MOMP
(Giampazolias et al., 2017). These results demonstrate that
neither SMAC or Omi are required for IAP degradation upon
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MOMP and that some other factor(s) downregulate IAPs in
their absence. Interestingly, recent studies have shown that
IAP-depletion following MOMP also contributes to caspase-8
dependent inflammasome activation in macrophages (Chauhan
et al., 2018; Vince et al., 2018). MOMP-dependent IAP
depletion can therefore promote inflammation by at least two
distinct pathways.

The question remains as to how IAP degradation is
engaged following MOMP. Are proteins in the mitochondrial
intermembrane space responsible for this? Or does it relate
to the permeabilization of the mitochondrial inner membrane,
leading to the release of proteins from the matrix and the inner
mitochondrial membrane into the cytosol? In order to fight
microbial pathogens, the NF-κB pathway is commonly used and
pathogens often interfere with this pathway to escape the immune
response (Rahman and McFadden, 2011). Possibly stemming
from their bacterial ancestry, could it be that mitochondria
have similar pathogen associated molecular patterns (PAMPs)
as invading bacteria, and caspases are capable of silencing the
mitochondrial PAMPs that activate the NF-κB pathway?

CELL DEATH ASSOCIATED
INFLAMMATION: DISEASE RELEVANCE
AND OPEN QUESTIONS

In this mini-review we have described how MOMP can lead
to an inflammatory response in two parallel pathways. MOMP
allows mtDNA to be released into the cytosol, which will
be recognized by cGAS leading to activation of STING. This
allows phosphorylation of IRF3 to occur, inducing a type I
interferon response. In parallel, MOMP leads to the exposure
of factors into the cytosol causing degradation of IAPs in a
SMAC-like manner. IAP downregulation activates NIK and
subsequently NF-κB activation, leading to the transcription
of various cytokines. Several questions remain outstanding:
is mtDNA release regulated? What triggers NF-kB activation
during CICD? How does caspase activity silence inflammation?
Does the immune response only occur in caspase-inhibited
conditions during cell death? Most importantly, what are the
biological roles of these inflammatory effects during apoptotic
cell death?

Although apoptosis is a common cell death mechanism
during embryonic development, the expression of many pro-
apoptotic proteins is reduced in various adult tissues (Sarosiek
et al., 2017). Cardiomyocytes for example do not express
APAF-1 (Sanchis et al., 2003), thereby being unable to form
the apoptosome following MOMP. As a consequence, caspase
activation by cytochrome c is strictly regulated by endogenous
XIAP (Potts et al., 2005). Although cell death is strongly
regulated in cardiomyocytes, apoptosis and necrosis does occur
in hearts when reperfused after myocardial infarction (MI)
(Zhao et al., 2000). Inhibition of caspases in myocardial
ischemia/reperfusion-induced models has shown to limit infarct
size and to improve recovery in rabbit and rat hearts (Holly
et al., 1999; Mocanu et al., 2000; Kovacs et al., 2001).
Even when inhibition of caspases does not fully prevent

cardiomyocytes from dying, the observed clinical improvement
when reperfusion is performed in combination with caspase
inhibition suggests that caspase activity negatively impacts
recovery via an unknown mechanism. It is well established
that during ischemia and reperfusion injury an inflammatory
response is provoked by DAMPs derived from necrotic cells
in the core of the infarct site. These DAMPs help to recruit
leukocytes to the injured areas for cell debris clearance
before heart remodeling can take place (Ong et al., 2018).
In contrast to the necrotic core of the infarct, apoptosis is
primarily observed in the border zone of the infarct (Cheng
et al., 1996; Sarate et al., 1997; Toyoda et al., 1997). It has
been speculated that loss of cells in the border zone has
negative impact on ventricular remodeling (Balsam et al., 2005).
Inhibition of caspases might enhance survival of cardiomyocytes
in the border zone when the extrinsic apoptotic pathway is
activated, however, when MOMP occurs in these cells the
intrinsic apoptotic pathway will still lead to cell death in
the presence of caspase inhibitors. Nevertheless, engaging a
pro-inflammatory response in the border zone through the
release of DAMPs in CICD might have beneficial effects.
Especially DAMP-associated TNF upregulation during CICD
might play a big role in preventing cell loss in the border
zone, as a 50% increase in apoptotic cell death was observed
when a TNF inhibitor was administered in a mice suffering
from MI (Wang et al., 2018). On the other hand, there is
evidence that a type I interferon response, which can potentially
be induced by the release of mtDNA during MI (Wang
et al., 2015), might be harmful as inhibiting this pathway
improves cardiac function and ventricular dysfunction after
MI (King et al., 2017). This indicates that a fine balance
in pro-inflammatory pathways is needed to have a beneficial
effect in MI therapy.

In the context of cancer therapy, it has been described in
multiple studies that apoptosis can have a pro-tumorigenic effect
instead of being anti-tumorigenic (Ichim and Tait, 2016; Cao
and Tait, 2018). One of the implications is that if apoptosis
is not executed properly, it can cause DNA damage and
genomic instability thereby promoting tumor growth (Lovric
and Hawkins, 2010; Ichim et al., 2015; Liu et al., 2015). In
contrast, engaging CICD in subcutaneously injected tumors in
mice causes 50% of the tumors to completely regress. These
tumors showed increased expression of cytokines and T-cell
infiltration, which was completely reversed when T-cells were
depleted in mice, suggesting that the immune system is of
great importance in tumor clearance (Giampazolias et al., 2017).
Specific inhibition of pro-apoptotic caspases improves cancer
cell death by recruiting immune cells to the tumor site. This
shows that there is a potential to significantly improve cancer
therapy by changing the way cells die from an immunosilent to
immunogenic phenotype.
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Pro-inflammatory signaling pathways, induced by pathogens, tissue damage or
cytokines, depend on the ubiquitylation of various subunits of receptor signaling
complexes, controlled by ubiquitin ligases and deubiquitinases. Ubiquitylation sets the
stage for the activation of kinases within these receptor complexes, which ultimately
regulate pro-inflammatory gene expression. The receptors, which transduce pro-
inflammatory signals, can often induce cell death, which is controlled by ubiquitylation as
well. In this review, we discuss the key role of ubiquitylation in pro-inflammatory signaling
by TNFR1 and TLRs and its role in setting the threshold for cell death induced by these
pro-inflammatory triggers.

Keywords: TLR, TNFR1, TNF, ubiquitin, inflammation, apoptosis, necroptosis

BUILDING UP SIGNALING COMPLEXES: UBIQUITYLATION IN
IMMUNE RECEPTOR SIGNALING

Inflammation is essential for the initial response to a pathogen or to tissue damage. If a pathogen
overcomes barrier tissues such as the skin or the intestinal epithelium, an inflammatory response
is induced by cells of the innate immune system, such as macrophages and dendritic cells.
These cells, but also epithelial cells, endothelial cells as well as fibroblasts express germline-
encoded pattern recognition receptors (PRR), which recognize structures or factors typical for
pathogenic microbes. Structures associated with pathogens such as bacteria or viruses (but
not the host), collectively dubbed as pathogen associated molecular patterns (PAMPS), are
recognized by transmembrane TLRs and C-type lectin receptors (CLRs), as well as by cytoplasmic

Abbreviations: BMDM, bone marrow derived macrophages; CYLD, cylindromatosis; DUB, deubiquitinase; FADD, fas -
associated protein with death domain; FLIP, flice inhibitory protein; HOIL-1, haem-oxidized IRP2 ubiquitin ligase-1; HOIP,
HOIL-1 interacting protein; IAP, inhibitor of apoptosis; IKK, IκB kinase; IL, Interleukin; IRAK, interleukin-1 receptor
associated kinase; LPS, lipopolysaccharide; LUBAC, linear ubiquitin chain assembly complex; MAPK, mitogen activated
protein kinase; MK2, mitogen activated protein kinase-activated protein kinase 2; MKK, MAPK kinase; MLKL, mixed lineage
kinase like; MLKL, mixed lineage kinase like; MyD88, Myeloid differentiation primary response 88; NEMO, NF-κB essential
modulator; NF-κB, nuclear factor -κB; OTULIN, OTU deubiquitinase with M1-linkage specificity, SPATA2, spermatogenesis
associated protein 2; PIM, PUB interacting motif; PUB, peptide:N-glycanase/UBA- or UBX-containing proteins; RIPK1,
receptor interacting kinase 1; SC, signaling complex; SHARPIN, SHANK associated RH domain interactor; TAK1, TGF-
beta activated kinase; TBK TANK binding kinase; TBK1, TANK binding kinase; TLR, Toll-like receptor; TNF, tumor necrosis
factor; NOD, Nucleotide-binding oligomerization domain-containing protein; TRADD, Tumor necrosis factor receptor type
1-associated death domain protein; UBA, ubiquitin associated; UBD, ubiquitin binding domain.
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receptors such as the Retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs), DNA sensing receptors (DSRs), and NOD-like
receptors (NLRs).

Likewise, molecules indicative of cell damage (danger
associated molecular patterns, DAMPS) are recognized by
TLRs or IL-1 family receptors (Takeuchi and Akira, 2010;
Martin, 2016).

The engagement of PRRs ultimately induces the transcription
of genes encoding cytokines, chemokines and interferons. PRR
signaling requires ubiquitin ligases, generating ubiquitin chains
with different linkage types. The pro-inflammatory cytokines
induced by PRR activation, such as TNF or IL-1, again heavily
depend on poly-ubiquitylation for the signaling pathways they
induce in target cells and tissues. As described in this article,
ubiquitylation also has a key role in preventing cell death induced
by these triggers.

Ubiquitylation is a posttranslational protein modification by
which ubiquitin, a small protein, is reversibly linked to protein
substrates. Ubiquitin ligases enzymatically link the C-terminus
of ubiquitin, a small, 8 kD protein, to the ε-amino group
of a lysine of a given protein, including ubiquitin itself. In
addition, ubiquitin can be linked to the free amino group
of the methionine of another ubiquitin. This energy-requiring
transfer is accomplished in three separate steps. Firstly, upon
ATP consumption, a free ubiquitin is transferred to a cysteine of
an ubiquitin-activating enzyme, forming a high-energy thioester
(E1). Ubiquitin is then transferred from E1 to an E2 enzyme.
The human genome encodes only two E1 ligases, but about
fourty E2 conjugating enzymes, which exhibit a first level of
specificity. The transfer of ubiquitin from E2 to the target protein
is mediated by one of several hundred different substrate-specific
E3 ligases. E3 ubiquitin ligases can mediate the attachment of
either single ubiquitins to target proteins, resulting in protein
mono-ubiquitination, or using an attached ubiquitin as an anchor
to generate extended polyubiquitin chains (Ebner et al., 2017).
The primary structure of ubiquitin contains seven lysines (K6,
K11, K27, K29, K33, K48, and K63), the ε-amino group of
which can be linked to the C-terminus of an incoming ubiquitin,
thereby creating an isopeptide bond. In addition, the free amino-
terminus of ubiquitin (M1) can be linked with the C-terminus of
another ubiquitin, resulting in a peptide bond, which generating
M1-linked ubiquitin chains. Thus, depending on the linkage
specificity of the respective E3 ubiquitin ligase, poly-ubiquitin
chains with different inter-ubiquitin linkages can be generated
(Komander and Rape, 2012; Akutsu et al., 2016).

Ubiquitylation is a reversible posttranslational modification
and poly-ubiquitin chains are disassembled by ubiquitin-specific
proteases. These deubiquitinases, just as ubiquitin ligases, exhibit
substrate specificity with regard to the linkage of the ubiquitin
bond they hydrolyze. About one-hundred deubiquitinases exist
in humans, which attenuate or erase the signal mediated by
ubiquitin ligases (Mevissen and Komander, 2017).

Poly-ubiquitin chains exhibit their function through their
recognition by proteins containing ubiquitin binding domains
(UBDs), which bind and thereby ’read’ those structures
(Dikic et al., 2009). UBDs are specific for the structure of
ubiquitin chains, depending on the linkage type, or they

recognize linker regions directly, and their affinity may depend
on the length of the ubiquitin chain (Rahighi and Dikic,
2012). In analogy to chromatin modifiers in epigenetics,
ubiquitin ligases can be considered as “writers” and UBDs as
“readers.” Accordingly, deubiquitinases function as “erasers”
(Komander and Rape, 2012).

The recognition of ubiquitylation by UBDs triggers diverse
biological processes. The attachment of K48-linked polyubiquitin
chains to a protein is a signal for its degradation by the
proteasome. K63- and M1-linked polyubiquitin chains have
various functions, such as in DNA repair or for the activation of
kinases in receptor complexes (Ulrich and Walden, 2010; Jiang
and Chen, 2011). The role of K6-, K11-, K27-, K29-, and K33-
linked ubiquitylation is comparably less well understood and
reviewed elsewhere (Akutsu et al., 2016).

For both TLR and TNF signaling, K63- and M1-linked
polyubiquitination is essential for the formation of the signaling
complexes, which ultimately mediate NF-κB and MAPK activity
and pro-inflammatory gene activation. As a general principle,
the stimulation of an innate immune receptor induces the
recruitment (via different adaptors) of E3-ligases (such as
TRAF6 or cIAP1/2), which conjugate proteins in the receptor
complex with K63-linked polyubiquitin chains. Adapter proteins
which recognize these chains mediate the recruitment of the
kinase TAK1, the activity of which is central to TLR and
TNF signaling (Jiang and Chen, 2011). In addition, K63-
linked polyubiquitin chains recruit the LUBAC complex, an
M1-linkage specific ubiquitin ligase, to the receptor complex.
LUBAC decorates proteins in the complex with M1-linked
polyubiquitin chains, often by extending K63-linked with M1-
linked polyubiquitin chains (Cohen and Strickson, 2017). This
promotes the recruitment of the IKK complex, which comprises
the kinases IKKα, IKKβ and the adapter NEMO/IKKγ, to the
receptor complex, via the interaction of its subunit NEMO with
M1-linked polyubiquitin chains. Being in the proximity of TAK1,
IKKs are activated by TAK1 through direct phosphorylation.
Once activated, the IKKs phosphorylate IκBα, which triggers
its K48-linked polyubiquitylation and degradation, thereby
liberating NF-κB transcription factors. In addition, TAK1, by
phosphorylation of MKKs, activates p38 and JNK signaling, and
thereby AP-1 transcription factor activity (Hrdinka and Gyrd-
Hansen, 2017). Ubiquitylation in these receptor complexes, is
counteracted by deubiquitinases, including CYLD, which exhibits
linkage specificity for K63-and M1-linked ubiquitin chains, and
OTULIN, which specifically disassembles M1-linked ubiquitin
chains (Mevissen and Komander, 2017).

TNFR1 Signaling Controlled by
Ubiquitylation
Induction of PRRs result in the induction of various pro-
inflammatory cytokines, and a crucial player among those is TNF.
TNF is made by macrophages, monocytes, dendritic cells as well
as activated lymphocytes, but also by non-professional immune
cells such as epithelial and endothelial cells (Takeuchi and Akira,
2010). TNF-induced inflammation is beneficial in containing
pathogens, but also has a key role for chronic inflammatory
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diseases. In consequence, TNF-inhibitory molecules proved to
be successful for the treatment of inflammatory diseases, such as
rheumatoid arthritis or psoriasis (Udalova et al., 2016).

There are two receptors for TNF. While TNFR1 is expressed
ubiquitously, expression of TNFR2 is restricted to immune
cells and endothelia (Wajant et al., 2003). In general, TNF
triggers inflammation in tissues by inducing pro-inflammatory
gene expression in target cells. It does so by induction of
NF-κB and MAPK, which are activated through ubiquitylation-
dependent signaling complexes. Upon ligation of the TNFR1,
TNFR1 complex I is formed by the interaction of the death
domain (DD) of the receptor with the DDs of the kinase RIPK1
and the adaptor TRADD, thereby independently recruiting
both proteins to the receptor. TRADD recruits the protein
TRAF2 and thereby the E3 ligases cIAP1/2 which decorate RIPK
with K63-linked polyubiquitin chains (Bertrand et al., 2008;
Varfolomeev et al., 2008).

Both free and attached K63-linked polyubiquitin chains have
been reported to activate the kinase TAK1 (Wang et al., 2001;
Xia et al., 2009). This is mediated by adaptor proteins (TAB2
and TAB3), which recognize K63-linked poly-ubiquitin chains
(but not M1-linked polyubiquitin chains) via their zinc-finger
UBD, activating the kinase TAK1 (Wang et al., 2001; Kanayama
et al., 2004; Kulathu et al., 2009; Xia et al., 2009). TAK1 activation
is a key event for pro-inflammatory gene expression, as TAK1
activates the IKK complex, through IKKβ phosphorylation, and
MAPK signaling by the phosphorylation of MKK3, MKK6, and
MKK4 (Moriguchi et al., 1996; Shirakabe et al., 1997; Lee et al.,
2000; Wang et al., 2001).

However, full activation of the IKK complex requires the
activity of another ubiquitin ligase, the LUBAC complex. LUBAC
consists of the enzymatic subunit HOIP and the proteins
HOIL-1 and SHARPIN and is the only identified E3 ligase
capable of generating M1-linked polyubiquitin chains. K63-
linked polyubiquitylation is the prerequisite for the association
of LUBAC to the receptor complex, as the absence of cIAP1/2
abrogated the recruitment of LUBAC to the TNFR1 signaling
complex (TNFR1-SC) (Haas et al., 2009). LUBAC was shown
to interact with polyubiquitin via the Npl4 zinc finger (NZF)
domains of HOIP and of HOIL-1 (Haas et al., 2009; Peltzer
et al., 2018). Once associated with the TNFR1-SC, LUBAC
was demonstrated to attach M1-linked polyubiquitin chains
to RIPK1, TRADD and TNFR1 itself (Gerlach et al., 2011;
Draber et al., 2015). There is convincing evidence that, upon
TNF stimulation, LUBAC extends preexisting K63-linked poly-
ubiquitin chains in the TNFR1-SC with M1-linked polyubiquitin
chains, and those hybrid chains were attached to RIPK1 upon
TNFR1 stimulation (Emmerich et al., 2016). In addition, TNFR1
itself is decorated with M1-linked polyubiquitin chains, possibly
attached to multi-monoubiquitinated TNFR1.

M1-linked polyubiquitin chains are bound with high affinity
by the IKK complex member NEMO, through its UBAN
(ubiquitin-binding domain present in ABINs and NEMO),
thereby mediating the association of the IKK complex with the
TNFR1-SC (Lo et al., 2009; Rahighi et al., 2009). NEMO itself
was shown to be subject to M1-linked polyubiquitylation by
LUBAC (Tokunaga et al., 2009, 2011; Gerlach et al., 2011), while it

was subsequently demonstrated that M1-linked ubiquitylation of
NEMO is comparably low, questioning its relevance for signaling
(Clark et al., 2013; Emmerich et al., 2013). The interaction of
NEMO with K63-/M1-linked hybrid chains might bring the
IKK complex, recruited to M1-linked polyubiquitin sections,
into proximity of the TAB/TAK1 complex, associated with K63-
linked polyubiquitin chain segments, facilitating the activating
phosphorylation of the IKKs by TAK1 (Wang et al., 2001;
Zhang et al., 2014; Cohen and Strickson, 2017). The activated
IKK complex phosphorylates the protein IκBα, which triggers
the K48-linked polyubiquitylation and degradation. Freed from
IκBα, a NF-κB dimer can enter the nucleus and promote the
transcription of genes promoting inflammation. MKKs activated
by TAK1 induce the MAP Kinases JNK and p38 and activate the
transcription factor AP1, which also induces the transcription of
pro-inflammatory cytokines (Moriguchi et al., 1996; Shirakabe
et al., 1997; Wang et al., 2001).

In cells stimulated by TNF, this transcriptional program
induces a large number of genes, which bring about the changes
typical for inflamed tissues. In addition, TNF ubiquitylation-
dependently induces genes, which promote cell survival such as
c-FLIP, as will be described in detail below.

The disassembly of ubiquitin chains by DUBs has a crucial
role in the regulation of TNFR1 signaling, either by mediating
destabilization of the receptor complex, attenuating the signal,
or by trimming/editing polyubiquitin chains. The K63-and M1-
linkage specific DUB CYLD was shown to negatively regulate
TNF-induced NF-κB and MAPK activation (Brummelkamp
et al., 2003; Kovalenko et al., 2003; Trompouki et al., 2003; Lee
et al., 2013). CYLD is recruited to the TNFR1-SC along with
the LUBAC complex (Takiuchi et al., 2014; Draber et al., 2015;
Hrdinka et al., 2016). This requires the adaptor protein SPATA2,
bridging the interaction between CYLD and HOIP (Elliott et al.,
2016; Kupka et al., 2016; Schlicher et al., 2016; Wagner et al., 2016;
Figure 1A). CYLD was shown to counteract M1- and K63-linked
ubiquitylation of RIPK1, TRADD and TNFR1 (Draber et al.,
2015; Hrdinka et al., 2016). Consistently, the absence of SPATA2
was shown to exhibit increased M1-ubiquitylation in the TNFR1-
SC (Schlicher et al., 2016). However, a reduction of RIPK1
ubiquitylation as well as K63- and M1-linked polyubiquitin
was observed in cells lacking SPATA2 by other studies (Draber
et al., 2015; Schlicher et al., 2016; Wei et al., 2017). While the
reasons for those inconsistencies are not clear, different effects
of CYLD and SPATA2 on ubiquitylation in the TNFR1-SC may
hint at yet unidentified SPATA2 functions, which may not be
directly linked to CYLD.

OTULIN specifically degrades M1-linked polyubiquitin
chains, generated by LUBAC (Keusekotten et al., 2013; Rivkin
et al., 2013). Just like SPATA2, OTULIN interacts with LUBAC
through a PUB interacting motif (PIM), which associates with
the PUB domain of HOIP, implying a competition of SPATA2
and OTULIN for binding to HOIP (Elliott et al., 2014, 2016;
Schaeffer et al., 2014; Takiuchi et al., 2014; Schlicher et al.,
2016; Wagner et al., 2016). However, in contrast to SPATA2 and
CYLD, OTULIN was not found to be recruited with LUBAC
to the TNFR1-SC upon TNFR1 stimulation. Accordingly, the
absence of OTULIN did not affect M1-linked polyubiquitylation
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FIGURE 1 | Ubiquitylation regulating pro-inflammatory signaling and cell death induction by the TNFR1-SC. (A) Upon binding of TNF to TNFRI, complex I is
assembled by binding of the adaptor protein TRADD and the kinase RIPK1 to the receptor. Recruitment of TRAF2 and the E3 ligase cIAP1/2 leads to K63-linked
ubiquitylation within the complex, serving as a platform for binding of TAB2/3 and TAK1 to mediate activation of MAPK signaling. In addition, K63-linked
poly-ubiquitin chains recruit LUBAC, which mediates M1-linked ubiquitylation of different components within the complex, promoting association of NEMO and
activation of IKKaα/β and NF-κB. Assembly of the TNFR1-SC is negatively regulated by the DUB CYLD, which interacts with the LUBAC component HOIP via the
bridging protein SPATA2 and is recruited to the TNFR1-SC, thereby diminishing M1- and K63-linked ubiquitin chains. (B) TNFR1 stimulation induces functional
variants of the cell death promoting complex II, consisting of the adaptor TRADD and FADD, RIPK1, caspase-8 and its paralog c-FLIP. Abrogation of NF-κB induced
gene expression permits caspase-8 activation in complex II a, leading to cell death by apoptosis. When ubiquitylation of the TNFR1-SC is compromised,
caspase-8-activating complex II b is formed, which induces apoptosis depending on RIPK1 kinase activity. Upon loss of caspase activity, RIPK1 associates with
RIPK3, which phosphorylates and activates MLKL, leading to necroptotic cell death.

at the TNFR1-SC (Draber et al., 2015). However, different
studies indeed detected OTULIN in TNFR1-SC pulldowns
(Schaeffer et al., 2014; Wagner et al., 2016), and it was also
shown that OTULIN disassembles M1-linked ubiquitin in
receptor complexes (Fiil et al., 2013; Keusekotten et al., 2013).
This is compatible with a concept that OTULIN functionally
counteracts LUBAC, thereby limiting the activation of NF-κB
and MAPK signaling. Consistently, mice with acute ablation
of OTULIN in bone marrow cells or myeloid cells exhibited
massive TNF-dependent systemic or chronic inflammation,
respectively, reflecting patients with defective OTULIN, which
exhibit multi-organ inflammation (Damgaard et al., 2016).

This view was challenged recently. It had been observed
previously that LUBAC ubiquitylates itself, and that OTULIN
deubiquitylates LUBAC components (Fiil et al., 2013;

Keusekotten et al., 2013; Elliott et al., 2014; Draber et al.,
2015; Hrdinka et al., 2016). In a recent study, knock-in MEF
expressing catalytic-inactive OTULIN exhibited enhanced
LUBAC auto-ubiquitylation with reduced abundance of HOIL-1
HOIP and SHARPIN. The authors reported reduced stability of
TNFR1 complex I and enhanced formation of TNFR1 complex
II in these cells (Heger et al., 2018). These data suggest that
OTULIN promotes LUBAC activity and pro-inflammatory
signaling, while preventing cell death, as described further below.

A third DUB implicated in TNFR1 signaling, A20, was
recently shown to exhibit its function independently of its
enzymatic activity. The recruitment of A20 to the TNFR1-
SC required M1-polyubiquitin chains and actually resulted in
protection of these chains from degradation. This was shown to
depend on the ZnF7 zinc-finger domain of A20 providing the
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interaction with polyubiquitin chains and possibly shielding them
from binding proteins activating gene expression (Nishimasu
et al., 2012; Verhelst et al., 2012; Draber et al., 2015). Consistent
with a minor role of A20 enzymatic activity, mice expressing
DUB-inactive A20 mutant exhibit normal TNF-induced NF-κB
signaling (De et al., 2014).

TLR Signaling Controlled by
Ubiquitylation
Pattern recognition receptors of the toll-like-receptor (TLR)
family are germline-encoded and expressed by professional
innate immune cells such as macrophages, monocytes and
dendritic cells, but also epithelial cells, endothelial cells
and fibroblasts. They recognize, through their leucine-rich
ectodomains, an array of bacterial or viral structures, including
lipids, proteins and nucleic acids. TLRs are located either on
the plasma membrane or on endosomes and recognize bacterial
patterns such as peptidoglycan through the TLR1/2 heterodimer,
LPS through TLR4, flagellin through TLR5, and CpG DNA
is detected by TLR9. Likewise, viral, double-stranded RNA is
recognized by endosomal TLR3 (Takeuchi and Akira, 2010).

Toll-like receptors signal through two different pathways,
depending on whether MyD88 or TRIF is recruited as an adapter
to the receptor. Signaling of all TLRs except TLR3 requires the
adapter protein MyD88, while signaling by TLR3 depends on
TRIF. TLR4 is the only TLR, which signals via both MyD88- and
TRIF-dependent pathways (Yamamoto et al., 2003a).

The MyD88-dependent pathway is also employed by receptors
for cytokines of the IL-1 family (O’Neill, 2008). TLRs and
IL-1 receptor share the Toll -and IL-1 (TIR) domain, which
interacts with the TIR domain of the adapter MyD88 upon
receptor activation. In turn, the DD of MyD88 recruits, through
a homotypic interaction, the kinase IRAK4 via its DD, which
promotes the additional recruitment of the kinases IRAK1
and IRAK2. The IRAKs now dissociate from the receptor
complex and interact with TRAF6, an E3 ubiquitin ligase
(Takeuchi and Akira, 2010). By cooperating with the E2 ligases
Ubc13 and Uev1A, TRAF6 auto-ubiquitylates, but also generates
K63-linked poly-ubiquitin chains which were shown to be
attached to IRAK1, IRAK4, and MyD88 (Emmerich et al.,
2013). In addition, IRAK1 and IRAK4 can phosphorylate
the E3 ligase Pellino1, which also generates K63-linked poly-
ubiquitin chains (Ordureau et al., 2008). Those protein-
anchored and/or free K63-linked polyubiquitin chains provide
the docking sites for the zinc-finger UBD of the adaptors
TAB2/3, which bring the kinase TAK1 to the complex and
activate it, thereby mediating activation of MAPK signaling
(Wang et al., 2001; Kanayama et al., 2004; Kulathu et al., 2009;
Xia et al., 2009).

As for TNFR1 signaling, LUBAC is required for full activation
of NF-κB by the MyD88-dependent pathway (Cohen and
Strickson, 2017). In further similarity to the TNFR1-SC, LUBAC
extends preexisting K63-linked poly-ubiquitin chains in the
complex with M1-linked polyubiquitin chains (Emmerich et al.,
2013). M1-linked polyubiquitin chains, recognized by NEMO,
promote the activation of the IKK complex (Lo et al., 2009;

Rahighi et al., 2009), by a mechanism which was demonstrated
to depend on TAK1-mediated phosphorylation and IKK auto-
phosphorylation (Zhang et al., 2014; Figure 2A).

A different TLR signaling pathway, which is independent from
the adaptor MyD88, instead requires the adapter protein TRIF
(Yamamoto et al., 2003a). This pathway is employed by TLR3 and
TLR4 upon binding of their ligands double-stranded RNA and
LPS, respectively. TLR4 additionally requires the adaptor TRAM
for the interaction with TRIF (Yamamoto et al., 2003b). TRIF is
recruited to TLR3 or TLR4 through its TIR domain, interacting
with the TIR domain of the activated receptor. Via its RHIM
domain, TRIF recruits the kinase RIPK1 through a homotypic
RHIM:RHIM interaction to the receptor, which is required for
downstream NF-κB signaling (Meylan et al., 2004; Cusson-
Hermance et al., 2005). The further assembly of the receptor
complex is mediated by ubiquitylation, by the TRIF-mediated
recruitment of the E3-ligases TRAF6 and cIAP1/2. These E3
ligases generate K63-linked polyubiquitin chains, activating the
kinase TAK1, which in turn activates IKK and MAPK as
described above (Cusson-Hermance et al., 2005; Shim, 2005).
In addition, M1-linked ubiquitylation mediated by LUBAC was
recently shown to be essential for TLR3 signaling. LUBAC was
demonstrated to be recruited to activated TLR3, generating
M1-linked polyubiquitin chains, which was essential for the
activity of IKKs and MAPKs and the transcriptional induction
of TNF or IL-8, as well as secretion of IFN-β. Interestingly,
this study showed that the TLR3 receptor SC contains FADD
and caspase-8 (Zinngrebe et al., 2016). As in the case of
MyD88-mediated signaling, the presence of hybrid K63/M1-
linked polyubiquitin chains was observed upon stimulation of
TLR3, some of which were attached to RIPK1, while most of
these chains were not linked to the kinase (Emmerich et al., 2016;
Figure 2B). In addition to NF-κB and MAPK/AP-1 activation,
TRIF mediates the induction of IFN-α and IFN-β, through
phosphorylation of the transcription factors IRF-3 and IRF-
7 by the IKK-related kinases TBK-1 and IKKε (Häcker and
Karin, 2006). This requires the recruitment to TLR3 of the E3
ligase TRAF3 and its auto-ubiquitylation, resulting in further
recruitment of the adaptors TANK, NAP1, and SINTBAD,
which in turn recruit TBK-1 and IKKε to the receptor complex
(Takeuchi and Akira, 2010).

The role and the regulation of deubiquitylases (DUBs) in
MyD88 and TRIF dependent signaling is less well explored. In
the MyD88 dependent pathway, CYLD was shown to reduce
TLR2-mediated TRAF6 ubiquitylation and NF-κB activation
(Kovalenko et al., 2003; Trompouki et al., 2003; Yoshida
et al., 2005; Lim et al., 2007; Komander et al., 2009; Ritorto
et al., 2014). More recently, CYLD was shown to reduce K63-
linked polyubiquitylation of MyD88, thereby limiting MyD88-
dependent cytokine induction and inflammation in vivo (Lee
et al., 2016). This is consistent with data generated with CYLD
deficient BMDM, which were shown to exhibit increased JNK
activation upon stimulation with LPS (Zhang et al., 2006).
In line with the role of SPATA2 being required for CYLD
activity in receptor complexes, SPATA2 deficiency resulted in
increased JNK signaling and cytokine expression of BMDM
treated with LPS (Wei et al., 2017). However, it is noteworthy
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FIGURE 2 | Ubiquitylation in TLR signaling. (A) The recognition of PAMPs or IL-1α/β by the respective TLR or IL-1R leads to binding of the adaptor protein MyD88,
which interacts with the TIR domain of the receptor, leading to recruitment of the kinases IRAK4, IRAK1 and IRAK2. Dissociation of IRAK1 and IRAK2 and their
interaction with the ubiquitin ligase TRAF6 initiates the formation of K63-linked poly-ubiquitin chains, serving as a platform for recruitment of TAB2 and TAB3 to
activate the kinase TAK1 and in turn MAPK signaling. In addition, the ubiquitin ligase LUBAC extends K63-linked poly-ubiquitin chains with M1-linked poly-ubiquitin
chains, resulting in recruitment and activation of the IKK complex through its adaptor NEMO. Phosphorylation of IKKβ by TAK1 leads to activation of NF-κB and
pro-inflammatory signaling. The DUB CYLD counteracts ubiquitylation by TRAF6. (B) TLR3 signaling works independently of MyD88 but requires the adaptor TRIF.
After binding of dsRNA or Poly I:C to the receptor, the kinase RIPK1 is recruited. The ubiquitin ligases TRAF6 and cIAP1/2 generate K63-linked poly-ubiquitin chains
to activate TAK1 and downstream MAPK. To induce the activation of IKKs and NF-κB, LUBAC is recruited to the complex to generate M1-linked poly-ubiquitin
chains. If K63- and/or M1-ubiquitylation are blocked, apoptosis is induced by a complex including FADD, caspase-8 and RIPK1.

that another study did not find that the absence of CYLD
in BMDM affected LPS-induced NF-κB and MAPK signaling
(Reiley et al., 2006).

Together, the generation of ubiquitin chains is key for the
induction of pro-inflammatory gene expression by TNFR1,
IL-1R, and TLRs. This is reflected by genetic defects in
humans, which affect M1-linked ubiquitylation, with severe
pathologic consequences. Deficiency in HOIL-1 resulted in
invasive pyogenic bacterial infection, likely due to an impaired
induction of NF-κB, but also in autoinflammation and glycogen
storage disease (Boisson et al., 2012). Similar defects were
reported for a patient with a hypomorphic HOIP mutation
(Boisson et al., 2015). Of note, the respective defects resulted
in a destabilization of all the LUBAC components in these
patients. While the observed pathologies can be explained by

the inability to raise a pro-inflammatory response, an alternative
explanation could be an enhanced susceptibility for cell death, as
described below.

UNLEASHING THE CELL DEATH
MACHINERY: REGULATION BY
(DE-)UBIQUITINATION

Cell Death Induced by TNFR1
The default outcome of the signaling pathways described above
is the induction of transcriptional programs, which regulate
inflammation. However, upon certain conditions, inflammatory
triggers can result in the induction of cell death, and the
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regulation of ubiquitylation is central in the decision for or
against cell death. The predominant forms of cell death induced
by immune/cytokine receptors are apoptosis and necroptosis.
Both forms of cell death are triggered by the formation of
protein complexes, which provide the platforms to activate the
proteolytic activity of caspase-8 or the kinase activity of RIPK3.

TNFR1-induced apoptosis requires the activation of caspase-8
by homodimerization, which results in the cleavage and thereby
activation of executioner caspases-3/-7 (Boatright et al., 2003).
Caspase activation triggers a controlled form of cell death,
leaving the plasma membrane intact and surrounding cells
undisturbed. Thus, apoptosis is in general not expected to be
pro-inflammatory or immunogenic.

In contrast, necroptosis requires RIPK3 activation by auto-
phosphorylation, which is induced by dimerization via its
RHIM and kinase domains (Cho et al., 2009; He et al., 2009;
Raju et al., 2018). RIPK3 phosphorylates and activates the
pseudokinase MLKL, which mediates Ca2+ influx and plasma
membrane rupture (Sun et al., 2012; Cai, 2013; Khan et al.,
2014). Necroptosis is morphologically indistinguishable from
uncontrolled necrosis, with spillage of cytoplasmic contents into
the environment of a dying cell (Zhang et al., 2016).

Some 20 years ago it had been observed that necrotic cell
death induced by TNF occurs in absence of caspase activity
(Vercammen et al., 1998). TNF-induced programmed necrosis is
indeed repressed by the proteolytic activity of caspase-8, which
is functionally separate from the apoptosis-inducing caspase-8
activity, exhibiting a different substrate specificity (Pop et al.,
2011). Upon heterodimerization with cFLIPL, caspase-8 does not
induce the activation of executioner caspases and apoptosis, but
instead cleaves pro-necroptotic proteins such as RIPK1, RIPK3,
and CYLD (Feng et al., 2007; O’Donnell et al., 2011; Oberst et al.,
2011; Zhang et al., 2019). This pro-survival caspase-8 activity is
the reason for the mid-gestation lethality of caspase-8 deficient
mice, which was rescued in mice expressing a cleavage-deficient
caspase-8 allele (which cannot undergo processing to its pro-
apoptototic form) (Varfolomeev et al., 1998; Kang et al., 2008).
The rescue of caspase-8 knockout mice upon additional loss of
RIPK3 or MLKL provided genetic evidence for the inhibition of
necroptosis by caspase-8 (Kaiser et al., 2011; Oberst et al., 2011;
Alvarez-Diaz et al., 2016).

TNFR1 stimulation induces cell death via a signaling complex,
which is different from the TNFR1-SC described above and
therefore dubbed complex II. This complex is not associated
with the receptor and comprises RIPK1, the adaptors TRADD
and FADD, the initiator caspase-8 as well as the caspase-8
paralog c-FLIP (Micheau and Tschopp, 2003). It constitutes the
platform to activate caspase-8 by induced proximity. However,
as mentioned above, cell death upon TNFR1 stimulation is not
the default outcome, because the TNFR1-SC transcriptionally
induces the expression of pro-survival molecules such as c-IAP2
and c-FLIP, the latter coming in two splice forms, c-FLIPs
and c-FLIPL (Chu et al., 1997; Micheau et al., 2001). The
cFLIPS/L molecules heterodimerize with caspase-8 and thereby
inhibit the pro-apoptotic activity of caspase-8 (Hughes et al.,
2016). Thus, TNFR1-SC signaling activates a transcription-
dependent anti-apoptotic checkpoint, by the transcriptional

induction of pro-survival proteins, preventing pro-apoptotic
caspase-8 activation (Figure 1B).

Thus, any disturbance of the TNFR1-SC, interfering with
M1- or K63-linked polyubiquitination, and/or the activity of the
kinases, which require polyubiquitin chains for their activation,
will reduce or abrogate the transcription-inducing activity of NF-
κB and MAPK. Thereby, expression of pro-survival proteins such
as cFLIP is compromised, allowing caspase-8 homodimerization
in a complex, which is defined as TNFR1 complex IIa in
this context. Many pathogens interfere with and subvert pro-
inflammatory signaling [reviewed in Reddick and Alto (2014)],
which may accordingly result in cell death. This checkpoint can
be experimentally suppressed by inhibitors of transcription or
translation such as actinomycin D or cycloheximide, permitting
TNF to trigger apoptosis (Kreuz et al., 2001).

A different pathway for TNFR1-induced apoptosis critically
depends on RIPK1, which is required for the activity of a
death-inducing complex defined as complex IIb. This complex
is composed of the proteins FADD, caspase-8 and RIPK1
(Wang et al., 2008). RIPK3 is likely also part of this complex,
as it was shown to contribute to RIPK1-dependent apoptosis
(Dondelinger et al., 2013). While RIPK1 has a scaffold function
in TNFR1 complex I, which is independent of its kinase activity,
its kinase activity is required for the activation of caspase-
8 in TNFR1 complex IIb (Löder et al., 2012; Dondelinger
et al., 2013). Therefore, the regulation of RIPK1 kinase
activity, which induces its auto-phosphorylation on S166, is a
critical checkpoint for TNF-induced apoptosis. In consequence,
apoptosis controlled by this checkpoint can be prevented by
RIPK1 inhibitors (Degterev et al., 2008). Moreover, provided
that caspase-8 is inhibited, complex IIb can induce necroptosis.
This also requires the kinase activity of RIPK1, which mediates
the recruitment and activation of RIPK3 through the RHIM
domains of both molecules (Cho et al., 2009; Li et al., 2012;
Raju et al., 2018).

By default, upon TNFR1 stimulation, RIPK1 auto-activation is
prevented by its ubiquitylation and phosphorylation (described
in detail below). Thus, complex IIb induces cell death when,
upon TNFR1 stimulation (i) the activity of E3 ligases such
as the cIAPs and LUBAC is compromised or (ii.) the
activity of RIPK1 inhibitory kinases, which are ubiquitylation-
dependently recruited to and activated in the TNFR1-SC, is
compromised (Figure 1B).

Accordingly, the loss of K63-linked polyubiquitylation upon
TNFR1 activation results in RIPK1 dependent cell death.
Treatment of cells with IAP inhibitors (SMAC mimetics, SM)
results in K48-linked autoubiquitylation of cIAP1/2 and their
rapid degradation (Petersen et al., 2007; Varfolomeev et al.,
2007; Vince et al., 2007; Bertrand et al., 2008). In consequence,
upon TNF/SM stimulation, RIPK1 ubiquitylation is reduced and
RIPK1-dependent apoptosis ensues (Bertrand et al., 2008; Wang
et al., 2008). In a physiological setting, cIAP1 can be degraded
upon stimulation of the TNF-superfamily receptor FN14 by its
ligand TNF-like weak inducer of apoptosis (TWEAK). Thereby,
stimulation of FN14 and TNFR1 can cooperate to induce cell
death which is blocked by RIPK1 inhibition (Vince et al., 2008;
Wicovsky et al., 2009). Similar effects have been described
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with TNFR2, which, upon stimulation with transmembrane
TNF, triggers the cytosolic depletion of TRAF2/cIAP1/2 and
cooperates with TNFR1 to induce apoptosis (Chan and Lenardo,
2000; Fotin-Mleczek et al., 2002). In similarity to K63-linked
ubiquitylation, M1-linked polyubiquitylation by LUBAC is
crucial for the prevention of cell death by TNF. Mice deficient
for the LUBAC component SHARPIN (cpdm mice) develop
TNF-dependent dermatitis and multi-organ inflammation, which
can be rescued by heterozygosity of caspase-8 or keratinocyte-
specific loss of FADD, combined with loss of RIPK3, indicating
cell death as the cause of inflammation (HogenEsch et al.,
1993; Gerlach et al., 2011; Ikeda et al., 2011; Kumari et al.,
2014; Rickard et al., 2014). This was shown to depend on
the kinase activity of RIPK1, as RIPKK45R knock-in cpdm
mice were protected from multi-organ inflammation, and
RIPKK45R cells were shown to be protected from necroptosis
(Berger et al., 2014). Similarly, MEF lacking HOIP were
shown to undergo apoptosis upon stimulation with TNF,
which partly depended on RIPK1 activity (Peltzer et al., 2014).
Likewise, TNF induced cell death in absence of the LUBAC
component HOIL-1, which was in part dependent on RIPK1
(Peltzer et al., 2018).

Consistent with the notion that RIPK1 ubiquitylation
prevents TNF-induced RIPK1 activity and cell death, RIPK1
deubiquitylation by CYLD was reported to be required for
apoptosis induction by complex IIb (Hitomi et al., 2008; Wang
et al., 2008). Underscoring the cell-death promoting role of
CYLD, the adaptor for the recruitment of CYLD to the TNFR1-
SC, SPATA2, was shown to promote RIPK1-dependent apoptosis
(Schlicher et al., 2016; Wei et al., 2017). Similarly, both CYLD
and SPATA2 were reported to promote RIPK1 activation and
TNF- induced necroptosis (Hitomi et al., 2008; Wang et al., 2008;
Kupka et al., 2016; Wei et al., 2017). Counteracting its role in
promoting necroptosis, CYLD was shown to be a substrate of
non-apoptotic caspase-8 activity (O’Donnell et al., 2011).

The role of OTULIN in the disassembly of M1-linked
polyubiquitin chains and the regulation of RIPK1-dependent
death appears to be more complex. OTULIN specifically
degrades M1-linked polyubiquitin chains, implying that it
functionally counteracts LUBAC, thereby promoting TNF-
induced cell death. However, a recent study suggests that the
M1-linked auto-ubiquitylation of LUBAC inhibits its function,
and decreases the abundance of LUBAC components. OTULIN,
by deubiquitylating LUBAC, was suggested to promote LUBAC
activity and thereby prevent the TNF-induced formation of
complex II and cell death (Heger et al., 2018). Accordingly,
fibroblasts derived from mice, which homozygously express
an inducible, catalytically inactive OTULINC129A mutant,
exhibited a substantial reduction of M1-linked polyubiquitin
in the TNFR1-SC and enhanced formation of complex II
and cell death upon treatment with TNF. The cell death was
partly inhibited by RIPK1 inhibition, indicating that OTULIN
activity maintains RIPK1-dependent and -independent pro-
survival checkpoints. Consistently, the auto-inflammation in
adult mice, which expressed inactive OTULIN, was dependent
on cell death, as suggested by the finding that it was largely
relieved by the combined loss of caspase-8 and RIPK3. This

suggested that OTULIN, in similarity to LUBAC, prevents
cell death (Heger et al., 2018). However, another study
found that induced OTULIN deficiency in leukocytes did
not result in cell death (Damgaard et al., 2016). Moreover,
as cells expressing a patient-derived OTULING218R mutant
conferring pathologic inflammation were not sensitized to
TNF-induced cell death, it is not clear how hypomorphic
OTULIN mutations found in patients compare to OTULINC129A

(Damgaard et al., 2019).
Together, K63-and M1-linked ubiquitylation in the TNFR1-

SC is critical for the prevention of RIPK1-induced cell death.
However, the specific requirement of RIPK1 ubiquitylation for
the prevention of complex IIb formation was challenged by
the finding that RIPK1 was ubiquitylated in complex II as well
(Dondelinger et al., 2013; de Almagro et al., 2015). This raised
the possibility that the restriction of RIPK1 activity depends on
E3-ligases, but not on a direct effect of ubiquitylation on RIPK1.

Ultimately, ubiquitylation in the TNFR1-SC promotes the
activity of kinases such as TAK1, IKKκ/β, or p38. Indeed,
a number of recent studies showed that the inhibitory
phosphorylation of RIPK1 by those ubiquitylation-dependent
kinases prevents RIPK1 activity. A first indication came from
the finding that TNFR1 ligation in the absence of TAK1 activity
results in rapid apoptosis, which was dependent on RIPK1
kinase activity (Dondelinger et al., 2013). Interestingly, TNF-
induced cell death upon cIAP inhibition could be reduced by
knockdown of CYLD, while cell death by TAK1 inhibition
was independent of CYLD, indicating that TAK1 represses
RIPK1 activity downstream of ubiquitylation events. Indeed,
NEMO/IKKα/β, the activity of which depends on TAK1,
prevented RIPK1 activity and cell death independently of the
induction of NF-κB (Legarda-Addison et al., 2009; Dondelinger
et al., 2015). More recently it was demonstrated that IKKα/β
phosphorylates S25 of RIPK1, thereby inhibitising its kinase
activity. Accordingly, knock-in of a phospho-mimetic RIPK1S25D

mutant prevented RIPK1 auto-phosphorylation and cell death
upon TNFR1 stimulation and IKK inhibition (Dondelinger
et al., 2019). Underscoring the relevance of this phosphorylation,
mice carrying the SHARPIN cpdm mutation, when crossed to
RIPK1S25D animals, were completely protected from multi-organ
inflammation, in similarity to the protection provided by kinase
dead RIPK1S45A (Berger et al., 2014).

In addition to IKK mediated phosphorylation, S321 and S336
of RIPK1 were shown to be phosphorylated in the cytosol by
MK2, a downstream kinase of MAPK p38. While inactivation
of MK2 by itself had no effect on TNF induced apoptosis, it
further sensitized cells lacking IKK activity, or cells treated with
SMAC mimetics, to TNF-induced RIPK1 activation, complex II
formation and apoptosis (Dondelinger et al., 2017; Jaco et al.,
2017; Menon et al., 2017). Consistently, stimulation of cells with
TNF and TWEAK, resulting in the loss of TRAF2, reduced the
activation of both IKK and MK2, permitting RIPK1 dependent
cell death (Dondelinger et al., 2017).

Another study showed that the RIPK1 site shown to be
targeted by MK2 by the studies above could be directly
phosphorylated by TAK1 in vitro, however, the loss of S321
phosphorylation in cells lacking p38/MK2 activity possibly
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suggests that the effect of TAK1 on this site is mostly via its
downstream kinase p38/MK2 (Dondelinger et al., 2015; Geng
et al., 2017; Jaco et al., 2017; Menon et al., 2017).

More recently it was demonstrated that the kinases TBK1
and IKKε are, dependent on LUBAC-mediated M1-linked
ubiquitylation and NEMO, recruited to the TNFR1-SC. While
these kinases exhibited limited effects on TNF-induced gene
expression, they were required to prevent TNF-induced cell death
(Lafont et al., 2018; Xu et al., 2018). Direct phosphorylation
of RIPK1 by TBK1/IKKε was suggested by RIPK1 gel shifts
or the loss of phosphorylation of RIPK1S189 in cells upon
TBK1/IKKε inhibition (Lafont et al., 2018; Xu et al., 2018).
Furthermore, TNF-induced cell death of TBK1−/− cells required
RIPK1 kinase activity (Xu et al., 2018). Here, inhibition or
loss of either TBK1 or IKKα/β (targeting different sites in
RIPK1) permitted TNF-induced apoptosis, indicating that for
prevention of RIPK1 mediated apoptosis, the simultaneous
inhibitory phosphorylation of RIPK1 on different sites must
be maintained (Lafont et al., 2018). Interestingly, IKKε had
previously been reported to phosphorylate and inactivate CYLD,
raising the possibility that the negative regulation of CYLD by
IKKε also has a role in the prevention of RIPK1 dependent cell
death in the context of inflammation as well (Hutti et al., 2009).

A recent study suggested that the prevention of RIPK1 activity
by ubiquitylation does not necessarily depend on ubiquitylation-
dependent kinases such as TAK1, IKK or p38/MK2. Instead,
ubiquitylation, mediated by cIAP1, directly controlled RIPK1
activity. A point mutation in the UBA domain cIAP1,
resulted in reduced interaction with TRAF2, but mediated
otherwise normal NF-κB and MAPK activation and NIK
degradation, indicating regular activation of the upstream
kinases. Nevertheless, the reduced cIAP activity rendered cells
more sensitive to TNF-induced cell death, due to reduced K48-
linked polyubiquitylation of RIPK1, as well as reduced occupancy
of lysines of RIPK1 by mono-ubiquitylation, which resulted in
accumulation and increased (activating) auto-phosphorylation of
RIPK1 (Annibaldi et al., 2018).

Cell Death Induced by TLRs
While TNF-induced cell death has been subject to intense
research, cell death induced by TLR signaling is much less
investigated. MyD88-dependent TLR signaling does not directly
induce cell death, however signaling through TRIF was shown to
result in cell death by apoptosis which required FADD, caspase-
8 and inhibition of the proteasome, presumably stabilizing
IκB (Ruckdeschel et al., 2004). In another study, apoptosis
upon TRIF overexpression was shown to require the RHIM
domain of TRIF (Kaiser and Offermann, 2005). The involvement
of ubiquitylation in the regulation of TRIF-dependent cell
death was suggested by a study showing that poly (I:C)
induced apoptosis was dependent on TLR3, TRIF, and caspase-
8, which was counteracted by cIAP1 (Weber et al., 2010).
Importantly, TLR3-induced apoptosis, promoted by the absence
of cIAPs, required RIPK1 (Feoktistova et al., 2011; Estornes
et al., 2012). One of these studies found active caspase-8
to be associated with the TLR3 (Estornes et al., 2012). In
similarity to TNF-induced cell death signaling, upon inhibition

of caspases, macrophages were shown to undergo necroptosis
upon stimulation of TLR3 and TLR4. This was dependent on
the presence of TRIF (He et al., 2011). In this study, RIPK1
knockdown resulted in macrophage death, where as Nec-1
prevented TLR3/4-induced necroptosis, indicating a prosurvival
function of RIPK1, but the promotion of TRIF-induced cell death
by its kinase activity. Another study on TLR-induced necroptosis
confirmed the requirement for TRIF and RIPK1 kinase activity
for macrophage necroptosis upon TLR3/4 stimulation and
showed that macrophage necroptosis by stimulation of TLR2/5/9
required TNF to induce cell death. However, fibroblasts and
endothelial cells did not require RIPK1 to undergo TLR3-induced
necroptosis, suggesting a TRIF:RIPK3 complex to activate
RIPK3 (Kaiser et al., 2013). This finding is supported by the
contribution of TRIF to the perinatal RIPK3-dependent mortality
of RIPK1−/− mice (Dillon et al., 2014). Thus, unlike with TNF-
dependent necroptosis, there is no absolute requirement for
RIPK1 in TLR-induced necroptosis.

More recently, LUBAC was shown to prevent TLR3-induced
apoptosis, as loss of HOIP or SHARPIN sensitized cells to cell
death induced by poly (I:C) (Zinngrebe et al., 2016). This study
identified the formation of a cytosolic death-inducing complex
induced by TLR3, containing LUBAC, cIAP1/2, RIPK1, FADD,
and caspase-8. Together, these reports demonstrate that K63-and
M1-ubiquitylation represent pro-survival checkpoints not only in
TNF-, but also in TLR-dependent cell death.

CONCLUSION

The usual outcome of TLR and TNFR1 stimulation is pro-
inflammatory gene expression, as different mechanisms or
checkpoints prevent cell death upon stimulation of these
receptors. In case of TNFR1 signaling, different levels of cell death
prevention were defined, and interfering with these checkpoints
[as often observed with pathogens (Lamkanfi and Dixit, 2010)]
will reduce the threshold for cell death.

Cell death is prevented by TNFR1-induced gene expression,
by transcriptional induction of pro-survival proteins. Another
level of cell death suppression is the inhibition of the kinase
activity of RIPK1, by the activity of E3 ligases such as cIAP1/2
and LUBAC, as well as kinases such as TAK, IKK, p38, and
TBK1/IKKε. Interfering with these enzymes will, however, not
only promote RIPK1 dependent cell death, but also inactivate
the transcription-dependent checkpoint (with the exception of
TBK1/IKKε, which have no role in pro-survival NF-κB induction
by TNF (Pomerantz and Baltimore, 1999).

The actual and specific roles of cell death, triggered by the
mechanisms described, remain to be investigated. It appears that,
just as inflammatory gene expression triggered by innate immune
and cytokine receptors, cell death induced via these receptors can
likewise be beneficial or deleterious. Increasing evidence supports
the concept that in addition to unrestricted pro-inflammatory
signaling, the cell death-inducing activities of innate immune
receptors have a key role for pathological inflammation. Cell
death due to dysregulated ubiquitylation, as in LUBAC- or
OTULIN defective animals or patients, can be a crucial trigger
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of pathologic chronic inflammation, with consequences such as
auto-inflammatory disease (HogenEsch et al., 1993; Gerlach et al.,
2011; Ikeda et al., 2011; Tokunaga et al., 2011; Berger et al., 2014;
Kumari et al., 2014; Rickard et al., 2014; Boisson et al., 2015;
Heger et al., 2018; Damgaard et al., 2019).

On the other hand, induction of cell death by apoptosis
upon loss of ubiquitylation-dependent kinase activity has been
shown to be beneficial. For example, the Yersinia protein
YopJ, injected into target cells, blocks the kinase activity of
TAK1 and thereby pro-inflammatory gene expression (Haase
et al., 2005; Mukherjee et al., 2006). However, the resulting
caspase-8 activation and cell death is in fact instrumental
for defense against the pathogen (Philip et al., 2014; Weng
et al., 2014). Accordingly, RIPK1K45A (kinase dead) knock-in
mice exhibited reduced macrophage cell death upon Yersinia
infection, but succumbed rapidly to the infection (Peterson
et al., 2017). Those examples likely reflect only an initial
understanding of TLR- and TNFR1- induced cell death for
both host defense and disease. Certainly, more work will be
required to clarify the role of TLR- and TNFR1-induced cell

death for limiting the spread of infection as well as causing
human pathology.
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The clinical success of biologics that inhibit TNF (Tumor Necrosis Factor) in inflammatory
bowel diseases (IBD), psoriasis and rheumatoid arthritis (RA) has clearly established a
pathogenic role for this cytokine in these inflammatory disorders. TNF binding to its
receptors activates NFκB and MAPK signaling, inducing the expression of downstream
pro-inflammatory genes. This is thought to be the primary mechanism by which TNF
elicits inflammation. TNF is also a well-known trigger of caspase-dependent apoptosis
or caspase-independent necroptosis. Whether cell death has any role in TNF-mediated
inflammation has been less clear. Emerging data from animal models now suggest that
cellular demise caused by TNF may indeed provoke inflammation. The default response
of most cells to TNF stimulation is survival, rather than death, due to the presence of
two sequential cell death checkpoints. The early checkpoint is transcription-independent
involving the non-degradative ubiquitination of RIPK1 to prevent RIPK1 from becoming
a death-signaling molecule. The later checkpoint requires the induction of pro-survival
genes by NFκB-mediated transcription. When the early checkpoint is disrupted, RIPK1
initiates cell death and we suggest the term ripoptocide to describe this manner of death
(encompassing both apoptosis and necroptosis). The sensitivity of a cell to ripoptocide
is determined by the balance between regulatory molecules that enforce and those that
disassemble the early checkpoint. As there is evidence suggesting that ripoptocide is
inflammatory, individuals may develop inflammation due to ripoptocide brought about
by genetic, epigenetic or post-translational alteration of these checkpoint regulators.
For these individuals, drugs that reinforce the early checkpoint and inhibit ripoptocide
could be useful in ameliorating inflammation.

Keywords: TNF, ripoptocide, apoptosis, necroptosis, ubiquitin, E3 ligase, deubiquitinase, RIPK1

ROLE OF TNF IN INFLAMMATION

Tumor necrosis factor (TNF) was first described in 1975 as a serum factor that could lyse tumor
cells present in bacillus Calmette-Guerin (BCG)-infected mice that were challenged with endotoxin
(Carswell et al., 1975). It was discovered as part of an effort to uncover factors that could account
for the observations of William Coley in the late 1800s, who administered a bacterial cocktail to
induce tumor regression in his patients. This bacterial cocktail came to be known as Coley’s toxins.
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Subsequent efforts to use TNF as an anti-tumor agent in patients
largely failed, due in part to the fact that TNF administration
induces an intolerable systemic inflammatory response. TNF is
now used only in conjunction with melphalan in isolated limb
perfusion (TM-ILP) for the localized treatment of soft tissue
sarcoma and melanoma of the extremities (Grunhagen et al.,
2006). A large body of work over the past few decades has now
shown TNF to be highly inflammatory with pleiotropic effects
in multiple cells and tissues. This pro-inflammatory function
of TNF plays a physiological role in anti-microbial defense
(Fiers, 1991). On the other hand, dysregulation of TNF has been
linked to the development of inflammatory diseases including
rheumatoid arthritis (RA), inflammatory bowel diseases (IBD)
and psoriasis. Biologics that block TNF have proven to be
highly effective in the treatment of these inflammatory disorders
(Taylor and Feldmann, 2009; Blandizzi et al., 2014; Mitoma
et al., 2018). This inflammatory role of TNF in both anti-
microbial defense and in inflammatory disorders is thought
to be due to its induction of NFκB and MAPK signaling,
and subsequent transcription of downstream pro-inflammatory
genes including other cytokines, chemokines, receptors and
adhesion molecules.

Another explanation for why TNF failed as an anti-tumor
agent is that TNF is a poor inducer of tumor cell death
when used as a single agent, contrary to its initial description
as a cytotoxic factor. The initial experiments were carried
out using Meth A and L929 mouse tumor lines (Carswell
et al., 1975), which are highly sensitive to TNF-induced cell
death. In contrast, most transformed cells as well as non-
transformed primary cells are largely resistant to TNF-induced
cytotoxicity. Indeed, TNF has the opposite effect and induces a
pro-survival state in most cells. Nonetheless, extensive studies
have demonstrated that TNF has the capability to induce
cell death under the right circumstances. Experimentally, this
often involved the use of pharmacological agents or genetic
manipulation to sensitize cells to death. One manipulation
used often to sensitize cells to TNF-induced killing is to
treat cells with either actinomycin D or cycloheximide to
block new protein synthesis. This indicated that the cell death
machinery is pre-existing but since the default response to
TNF in most cells is survival, this suggested that there are
molecular mechanisms that serve as checkpoints to suppress
the cell death machinery. Since the default response is survival
rather than death, the physiological and patho-physiological
function of TNF-induced cytotoxicity has been difficult to
study. While knocking out TNF enables one to ascribe a
role for TNF to a particular biological response, one is
unable to conclude whether that TNF-mediated response is
due to its induction of MAPK/NFκB signaling or cell death.
Therefore, a role for cell death in mediating the inflammatory
effects of TNF has been unclear. Recent emerging data from
mouse genetic models with perturbations that alters the
cell death response now support the notion that cell death
may play a role in driving inflammatory responses. In this
review, we will discuss our current understanding of the
molecular mechanisms that determine whether a cell remains
resistant or succumb to TNF-induced death and propose that

tipping the response to death may be linked to inflammation
in some patients.

DUAL SEQUENTIAL CELL DEATH
CHECKPOINTS IN THE TNF PATHWAY

The early observation that transcription or translation inhibitors
sensitized cells to TNF-induced death pointed toward the
presence of a transcription-dependent cell death checkpoint.
In the mid-1990s, this checkpoint was attributed to NFκB-
dependent transcription of pro-survival genes (Beg and
Baltimore, 1996; Van Antwerp et al., 1996; Wang et al.,
1996). One critical molecule induced by NFκB is c-FLIP,
which binds to unprocessed CASPASE 8 and prevents it
from triggering apoptosis (Micheau et al., 2001; Micheau and
Tschopp, 2003). c-FLIP is a short-lived protein and if it is not
replenished by NFκB-dependent transcription, unprocessed
CASPASE 8 undergoes autocatalysis to generate a p18/p10
tetrameric complex that initiates the apoptotic cascade. Other
pro-survival molecules induced by NFκB includes members
of the BCL2 family and several components of the TNF
receptor 1 (TNFR1) signaling complex such as cIAP1/2, TRAF2
and A20 (Wang et al., 1998, 1999; Lee et al., 2000; He and
Ting, 2002). Another checkpoint was discovered in 2007
and this was shown to be dependent on the non-degradative
ubiquitination of the TNF signaling molecule RIPK1 but
did not depend on NFκB-mediated transcription (O’Donnell
et al., 2007). We had previously proposed that these two
cell death checkpoints function sequentially in the TNFR1
signaling pathway (O’Donnell and Ting, 2010, 2011; Ting and
Bertrand, 2016). Ubiquitination of RIPK1 functions as the
initial checkpoint and this transcription-independent checkpoint
serves to prevent RIPK1 from becoming a survival-signaling
molecule (Figure 1A). The TRAF2/cIAP1/2 and LUBAC E3
ubiquitin ligases are recruited to TNFR1 to conjugate K63-linked
and M1-linked (linear) polyubiquitin chains onto RIPK1,
respectively (Hsu et al., 1996; Shu et al., 1996; Bertrand et al.,
2008; Wang et al., 2008; Haas et al., 2009; Gerlach et al., 2011).
Polyubiquitinated RIPK1 serves as a platform to recruit the
TAB2/3-TAK1 and NEMO-IKKα/β kinase complexes allowing
TAK1 to phosphorylate and activate IKKα/β (Figure 1A).
One function of NEMO-IKKα/β is to phosphorylate RIPK1 on
residue serine 25 to further suppress its death-signaling capability
(Dondelinger et al., 2015, 2019), as well as CYLD to inhibit this
deubiquitinase from dismantling K63-linked polyubiquitin
chains (Reiley et al., 2005). The death-signaling capability of
RIPK1 is additionally suppressed by TAK1, TBK1/IKKε and
MK2–mediated phosphorylation (Dondelinger et al., 2017;
Geng et al., 2017; Jaco et al., 2017; Menon et al., 2017; Lafont
et al., 2018; Xu et al., 2018). These phosphorylation events
serve to reinforce the early checkpoint, providing a transient
protection against death. Another function of NEMO-IKKα/β
is to phosphorylate I-κBα leading eventually to the activation
of NFκB and its induction of pro-survival genes (Figure 1A).
This later checkpoint constitutes a transcription-dependent
programing of the cells to provide a more permanent protection
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against death. Indeed, gene products of the late NFκB-dependent
checkpoint include the E3 ligase for RIPK1 (i.e., cIAP1/2 and
TRAF2) thereby functioning in a positive feedback manner to
further strengthen the early checkpoint and to suppress RIPK1’s
death-signaling function. A20/TNFAIP3 is another gene product
induced by NFκB that strengthens the early checkpoint by
binding to M1-linked ubiquitin chains and preventing their
dismantling (Draber et al., 2015).

While disruption of either checkpoint sensitizes cells to
TNF-induced death, the manner by which the cells die are
different in the two situations. The early checkpoint can be
disrupted by inhibiting ubiquitination of RIPK1. This can be
done experimentally by treating cells with SMAC mimetics
that degrade cIAP1/2 (Bertrand et al., 2008), mutating the
ubiquitin acceptor site on RIPK1 (O’Donnell et al., 2007),
deleting NEMO (Legarda-Addison et al., 2009) or the E3
ligases that catalyze K63-linked or M1-linked (linear) ubiquitin
conjugation (Gerlach et al., 2011; Ikeda et al., 2011; Tokunaga
et al., 2011; Moulin et al., 2012). Disrupting ubiquitination
‘flips on a death switch’ on RIPK1 (O’Donnell et al., 2007),
converting it from a survival-signaling molecule to a death-
signaling molecule. This enables RIPK1 to associate with the
FADD/CASPASE 8 complex leading to the auto-processing of
CASPASE 8 to initiate apoptosis (Figure 1B). If FADD/CASPASE
8 is absent or defective, RIPK1 forms a complex with RIPK3,
leading to the activation of this kinase. RIPK3 phosphorylates
MLKL and this initiates an alternative form of cell death known
as necroptosis or programed necrosis. In either case, this can
be considered ‘death by execution’ and a hallmark of this death
is the requirement for a functional RIPK1 kinase activity. We
propose the term ripoptocide to describe cell death that is
dependent on RIPK1, be it apoptosis or necroptosis. Another
route to flip on the death switch on RIPK1 is to activate
CYLD, a deubiquitinase that preferentially dismantles K63-linked
ubiquitin chains, including from RIPK1. On the other hand,
the late checkpoint can be disrupted by pharmacological or
genetic inhibition of NFκB-dependent gene expression. This
leads to a failure in replenishing c-FLIP, which normally acts
as a brake on CASPASE 8. Without c-FLIP present, CASPASE 8
undergoes auto-processing and initiates apoptosis (Micheau and
Tschopp, 2003). This can be considered ‘death by starvation’ and
RIPK1 is not involved in turning on this death. While TNF can
induce apoptosis if either checkpoint is disrupted, because the
mechanisms involved are different, it is likely that the biological
effects of ‘death by execution’ and ‘death by starvation’ is likely
to be different.

APOPTOSIS CONFERRED BY THE LOSS
OF THE EARLY CHECKPOINT IS
INFLAMMATORY

Apoptotic cell death has been largely assumed to be non-
inflammatory and tolerogenic, and there are examples in the
immune system that support this idea. For instance, the
bulk of thymocytes undergo apoptosis when they failed to
be selected (Wiegers et al., 2011; Daley et al., 2017) with no

sign of inflammation in the thymus. Similarly, antigen-specific
lymphocytes that multiply in response to an infection undergo
apoptosis after the infection has been cleared due to cytokine
withdrawal without causing inflammation (Snow et al., 2010).
The rapid engulfment of apoptotic cellular debris by phagocytic
cells to prevent the release of intracellular content, together
with presentation of self-antigens on MHC molecules in a non-
inflamed environment without costimulatory signals are ways by
which apoptosis can induce peripheral tolerance (Ferguson et al.,
2011; Martin et al., 2012; Green et al., 2016).

TNF can induce RIPK1/RIPK3-dependent necroptosis, a
form of necrotic death marked by the release of endogenous
ligands for pattern recognition receptors (known as damage-
associated molecular patterns or DAMPs), which can activate
innate immune cells to mount an inflammatory response
(Wallach et al., 2016). Since existing paradigm considers
apoptosis to be tolerogenic, TNF-induced necroptosis rather
than apoptosis is thought to induce inflammation. However,
emerging animal models are now suggesting that TNF-induced
apoptosis can in fact be inflammatory as well. A key model
that has shed light on this is the cpdm mutant mouse strain.
This strain was identified because it spontaneously developed
dermatitis and was subsequently shown to possess a loss-of-
function mutation in the Sharpin gene. In addition to the
skin, the cpdm strain also exhibits multi-organ inflammation
and immunodeficiency (HogenEsch et al., 1999). SHARPIN
associates with two RING-containing proteins, HOIP/RNF31
and HOIL1/RBCK1, to form the Linear Ubiquitination Assembly
Complex (LUBAC) (Ikeda, 2015). LUBAC is an E3 ligase that
catalyzes the addition of linear ubiquitin chains on RIPK1 and
NEMO, and this post-translational modification is a critical
part of the early checkpoint (Figure 1B). SHARPIN deficiency
conferred sensitivity to RIPK1-dependent death in cells treated
with TNF (Gerlach et al., 2011; Ikeda et al., 2011; Tokunaga
et al., 2011). In vivo, the dermatitis seen in the Sharpin-deficient
cpdm strain can be reversed by a compound deletion in Tnf
(Gerlach et al., 2011) indicating that this inflammation is TNF-
driven. Furthermore, a K45A knock-in mutation of Ripk1 that
disables its kinase activity (and thus RIPK1-dependent death)
also reversed the skin inflammation in the cpdm mice (Berger
et al., 2014). This observation demonstrated that the SHARPIN
deficiency led to the disruption of the early checkpoint and
flipped on the death switch on RIPK1. Conditional deletion
of the death-signaling molecule Fadd in keratinocytes (Kumari
et al., 2014) or a heterozygous germline deletion of Casp8
(Rickard et al., 2014), both in combination with germline Ripk3
deletion to disable apoptosis and necroptosis, also reversed the
inflammation in the cpdm strain. However, deletion of just Ripk3
or Mlkl in the cpdm strain only partially reversed the skin
inflammation (Kumari et al., 2014; Rickard et al., 2014). The
Sharpincpdm/cpdmRipk3−/− or Sharpincpdm/cpdmMlkl−/− mice,
which were competent for TNF-induced apoptosis but not
necroptosis, still developed dermatitis.

Another insightful model came from the study of mice
with a deletion of Nemo, a component of the IKK complex,
in intestinal epithelial cells (IEC). Prior in vitro studies had
indicated that NEMO is an essential component of the early

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 August 2019 | Volume 7 | Article 163111

https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00163 August 9, 2019 Time: 16:39 # 4

Ang et al. RIPK1-Dependent Cell Death Initiates Inflammation

FIGURE 1 | Dual sequential cell death checkpoints in the TNFR1 signaling pathway. (A) In most cells, binding of TNF to its receptor TNFR1 does not trigger cell
death. This is due to the presence of two sequential cell death checkpoints. The early checkpoint occurs rapidly following TNFR1 ligation when RIPK1 is conjugated
with K63- and M1-linked poly-ubiquitin chains catalyzed by the TRAF2/cIAP1/2 and LUBAC E3 ligases, respectively. When this occurs, RIPK1 functions as
pro-survival signaling molecule and does not associate with the FADD/CASPASE 8 death-signaling complex. This early checkpoint is reinforced by IKK-mediated
phosphorylation of RIPK1 and CYLD to further inhibit their death-signaling capabilities. The late checkpoint occurs when NFκB translocates to the nucleus to
upregulate expression of pro-survival genes. The two checkpoints function in different ways to protect cells from death; the early checkpoint does not require de
novo gene transcription whereas the later checkpoint does. (B) The early checkpoint fails when RIPK1 ubiquitination is disrupted. This happens when the ubiquitin
E3 ligases (e.g., TRAF2, cIAP1/2, LUBAC) is inhibited or deleted. An increase in the activity of deubiquitinases (e.g., CYLD), which remove ubiquitin from RIPK1, can
similarly lead to the disruption of the early checkpoint. Impaired ubiquitination of RIPK1 leads to its association with FADD and CASPASE 8 to initiate apoptosis, or
with RIPK3 to induce necroptosis if apoptosis is inhibited. We use the term ripoptocide to denote this RIPK1-dependent death, which can lead to inflammation.

checkpoint (Legarda-Addison et al., 2009; O’Donnell et al.,
2012). NEMO can function as a ubiquitin-dependent physical
restraint on RIPK1 (Legarda-Addison et al., 2009; O’Donnell
et al., 2012) or via IKK-dependent phosphorylation of RIPK1
(Dondelinger et al., 2015) to inhibit the death-signaling function
of RIPK1. Since NEMO is also essential for NFκB signaling,
loss of NEMO leads to the failure of both checkpoints but cell
death in NEMO-deficient cells is dependent on RIPK1 (Legarda-
Addison et al., 2009; O’Donnell et al., 2012), indicating that
the early checkpoint is central to cell death sensitivity. IEC-
specific deletion of Nemo led to severe intestinal inflammation
that is TNF-dependent and reversed with a loss-of-function in
the kinase domain of RIPK1 (Vlantis et al., 2016). In contrast,
combined deletion of Rel members of the NFκB family in
the same tissue (thereby leading to failure of only the late
checkpoint with no RIPK1 involvement) did not lead to colitis
(Vlantis et al., 2016). Similar to the situation in the cpdm mice,
deletion of Ripk3 in the IEC knockout of Nemo, still resulted
in colitis in a proportion of mice (Vlantis et al., 2016). In
both models, blocking RIPK3-dependent necroptosis did not

completely reversed the inflammation. Another insightful model
is the Tnfaip3−/− mice, which succumbed postnatally to multi-
organ inflammation (Lee et al., 2000). This postnatal lethality
can be partially reversed by inactivating the kinase activity of
RIPK1 or by deleting Ripk3 but not deleting Mlkl (Newton
et al., 2016). Thus, the inflammation in A20-deficient mice is
not due to MLKL-mediated necroptosis but rather, it is caused
in part by RIPK1/3-dependent apoptosis or a death-independent
function. It is interesting to note that since A20 is also an
inhibitor of NFκB signaling, A20-deficient cells also harbor
enhanced NFκB activity but despite this, A20-deficient cells are
highly sensitive to TNF-induced apoptosis (Lee et al., 2000). This
behavior suggests that disruption in the early checkpoint (and
therefore ripoptocide) can override a functioning late checkpoint.
It should also be noted that the postnatal lethality of the A20-
deficient mice could not be fully reversed by the kinase-inactive
RIPK1 or RIPK3 removal (Newton et al., 2016), suggesting that
the inflammation caused by A20 deficiency may be due to a
combination of excessive cell death and NFκB gene transcription.
These different mouse knockout models suggest that TNF-driven
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apoptosis caused by disruption of the early checkpoint (and
therefore dependent on RIPK1) underlies the inflammation.
Thus, there may be something uniquely inflammatory about
RIPK1-dependent apoptosis. One possibility is that in addition
to activating the cell death machinery, RIPK1 can also induce
the expression of inflammatory cytokines and chemokines in
the dying cells (Yatim et al., 2015; Najjar et al., 2016; Saleh
et al., 2017; Zhu et al., 2018). The combined effect of apoptosis
with inflammatory cytokines/chemokines may be particularly
potent at recruiting and activating inflammatory cells. Another
possibility is that TNF-induced cell death is a combination of
apoptosis and necroptosis in contexts where RIPK3 is available.
RIPK1-dependent apoptosis could also lead to inflammation
if this is occurring in cells serving a barrier function. Their
inappropriate loss would lead to a breach in barrier and
subsequent invasion of the underlying tissue by commensals.

The mouse models described above, which are caused by
single gene alteration, provide evidence that disruption of
the early checkpoint results in ripoptocide and inflammation.
Humans with a genetic defect in the early checkpoint would
be similarly expected to develop inflammation. In this regard,
humans with a genetic defect in RNF31 (coding for HOIP) or
RBCK1 (coding for HOIL1) developed autoinflammation and
immunodeficiency, which overlap with the phenotype observed
in the SHARPIN-deficient mice. Females with a single copy
defect in the X-linked IKBKG gene (coding for NEMO) develop
Incontinentia Pigmenti (IP), which is characterized by skin
inflammation during the early stages of life (Fusco et al., 2015).
Cells in which X-inactivation occurred on the wild type IKBKG
allele would be sensitive to TNF-induced ripoptocide. Humans
haploinsufficient for TNFAIP3 (coding for A20) also developed
autoinflammation (Zhou et al., 2016), akin to the phenotype
of the Tnfaip3−/− mice. In addition, polymorphisms in the
TNFAIP3 gene has long been associated with a number of
human inflammatory disorders (Vereecke et al., 2011; Ma and
Malynn, 2012). While there is no direct evidence currently that
the inflammation in these human genetic disorders is RIPK1-
dependent, the mouse models strongly suggest that the pathology
in these genetic disorders is caused by a failure in the early
checkpoint. Therapeutically, these rare patients may benefit from
the use of TNF antagonists and RIPK1 kinase inhibitors.

MECHANISMS THAT CONFER
SENSITIVITY TO RIPOPTOCIDE AND
INFLAMMATION

While the genetic models described above provide insights into
the biological consequence of disrupting the early checkpoint,
it is less clear how this checkpoint may be disrupted in a
normal individual. The TNF cell death pathway likely evolved
as an anti-microbial defense mechanism (Old, 1985) and the
physiological role of the early checkpoint in this response
remains incomplete. Germline deletion of several components
of the early checkpoint (e.g., cIAP1/2, HOIP, HOIL1 and
TRAF2) resulted in embryonic lethality due to inappropriate
cell death (Yeh et al., 1997; Moulin et al., 2012; Peltzer et al.,

2014, 2018) demonstrating that these survival molecules are
essential for development. However, this checkpoint and more
importantly, the capability to actively induce death when it
fails, must serve an essential postnatal function evolutionary
because there is no selection pressure to have this death
response in a developing embryo. The early checkpoint likely
evolved to serve a ‘trapdoor’ function in postnatal life. The
molecules that constitute the early checkpoint are often also
involved in signaling downstream of pattern recognition and
cytokine receptors. Thus, these checkpoint molecules are targeted
by microbial-encoded effector molecules to block the pattern
recognition and cytokine receptors from signaling (Silke and
Hartland, 2013). In so doing, the infected cells become
vulnerable to TNF-induced ripoptocide and this could serve
to limit infection. The fact that microbes encode molecules
that block apoptosis is consistent with the notion that the
induced death of host cells serves an anti-microbial function
(Silke and Hartland, 2013). In addition, the pro-inflammatory
effects of ripoptocide could serve to bypass the inflammatory
blockade imposed by the microbial-encoded molecules. There
is evidence that an effective response to Yersinia infection
requires RIPK1-dependent apoptosis (Peterson et al., 2017;
Dondelinger et al., 2019). The Yersinia effector molecules
YopJ can target components of the early checkpoint including
TAK1 and IKK (Orning et al., 2018; Dondelinger et al., 2019).
Recently, it was reported that TBK1 and IKKε phosphorylate
RIPK1 to inhibit its death-signaling function (Lafont et al.,
2018; Xu et al., 2018) and this constitutes another element
of the early checkpoint. Since TBK1 and IKKε play a
critical role in the induction of type I interferon, there is
speculation that microbial-encoded antagonists of TBK1/IKKε,
in attempting to block type I interferon induction, could
open the ‘trapdoor’ leading to TNF-mediated destruction
of infected cells.

Since TNF underlies a number of inflammatory disorders,
the question arises as to whether the inflammation in these
pathologies is caused by excessive TNF-driven NFκB and
MAPK signaling, or by a failure in the early checkpoint
leading to inappropriate TNF-induced ripoptocide. We propose
that this may be dependent on the tissue affected and
on the individual. For instance, it is possible that in one
inflammatory disorder, it is caused by excessive TNF-driven
expression of NFκB-dependent inflammatory genes whereas
in a different disorder, it is driven by TNF-mediated death
(Figure 2). It may be that in a particular tissue, the affected
cell type expresses lower level of checkpoint-fortifying molecules
rendering this cell more susceptible to ripoptocide. However, in
tissues where early checkpoint molecules are highly expressed,
inflammation may be due to excessive induction of NFκB
and MAPK signaling. It is also possible that within a
population of patients with the same disorder, some develop
inflammation due to excessive cell death whereas others
develop inflammation due to excessive NFκB/MAPK signaling.
RIPK1 kinase inhibitors are being developed for inflammatory
disorders (Harris et al., 2017) and these may work only in
the subset of patients where the cause is a defect in the early
checkpoint. The results from these trials will be interesting as
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FIGURE 2 | TNF can cause inflammation via induction of either NFκB signaling or ripoptocide. Induction of either arm of the signaling pathways downstream of
TNFR1 can lead to inflammation. It may be that in some tissue, the inflammation is caused by excessive TNF-induced NFκB signaling and expression of downstream
cytokines, adhesion molecules and other pro-inflammatory genes. In a different tissue, the inflammation may be caused by excessive TNF-induced ripoptocide,
which could come about from reduced expression of signaling molecules that fortify the early checkpoint. The affected tissues are drawn for illustrative purposes.
Currently, there is no evidence to show tissue-dependent sensitivity to ripoptocide. Alternatively, within a single tissue/disorder, some patients develop inflammation
due to excessive NFκB signaling whereas others develop inflammation due to excessive ripoptocide.

FIGURE 3 | Balance between checkpoint enforcement and disassembly determines sensitivity to ripoptocide-dependent inflammation. Whether a tissue develops
sensitivity to TNF-induced ripoptocide and subsequent inflammation may be determined by the level of early checkpoint regulators in the cells within the tissue. For
example, if cells from an individual express high level of LUBAC (which enforces checkpoint) but low level of CYLD (which disassembles checkpoint), they would be
more resistant to TNF-induced ripoptocide. That individual would be more resistant to ripoptocide-mediated inflammation. Conversely, if cells from an individual
express low LUBAC but high level of CYLD expression, that individual would be more prone to ripoptocide and hence inflammation. Individual to individual variation
in expression of checkpoint regulators could be due to allelic differences, epigenetic differences and a host of environmental factors extrinsic to the cells. Prior
infections or injury could alter expression level via changes in transcription factor activity and chromosomal accessibility. Elements within the diet or byproducts of
diet breakdown could directly alter the protein level or functionality of the checkpoint regulators. Encoded gene products or byproducts of metabolism from microbes
(commensals or pathogens) may have the same effect. These factors that modulate expression/activity of checkpoint regulators and how they work together to
confer sensitivity to ripoptocide are poorly understood.

they would provide evidence for whether ripoptocide underlies
inflammatory disorders in humans.

Another key question is why an individual develops sensitivity
to death and therefore inflammation, whereas another individual
does not. The list of signaling molecules that constitute the
early checkpoint is quite numerous and is likely to grow
as we gain more understanding of this checkpoint. Defective
expression in one of these genes or more likely, a combination
of several genes, would be expected to render the affected
cell sensitive to TNF-induced ripoptocide. It is likely that the
balance between signaling molecules that enforce the checkpoint
(i.e., pro-survival molecules) versus those that disassemble the
checkpoint (i.e., pro-death molecules) determine sensitivity to
ripoptocide and subsequent inflammation (Figure 3). There
is an array of factors that could impact the expression levels
of these molecules. Foremost, the genetics of the individual
can determine the relative expression of the two opposing

classes of molecules in the affected cells. Expression can be
further tuned by epigenetic regulation in response to cell
extrinsic environmental cues. These cues could come from prior
infections, tissue injury, microbiome and diet. In addition to
affecting gene expression, microbial-encoded molecules or the
products of their metabolism could directly affect the function or
availability of these checkpoint molecules via post-translational
mechanisms. Cell intrinsic factors and environmental signals
likely combine to determine the expression and function of the
two opposing classes of molecules. The combinatorial effects
from multiple hits may ultimately tip the balance in favor of
RIPK1-dependent death and inflammation. Since most human
inflammatory disorders are chronic, even a small change in
the balance between pro-survival and pro-death molecules in
the early checkpoint may lead to disease progression over
time without having a significant disruption of homeostasis at
any given point.
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CONCLUSION

The toggling of RIPK1 between its survival-signaling and
death-signaling functions, regulated by an early ubiquitin
switch, provides a molecular explanation for the long-
known capability of TNF to induce either cell survival or
death (O’Donnell et al., 2007). An elaborate machinery
exists to regulate the non-degradative ubiquitination of
RIPK1 as a checkpoint against death. Failure to hold
this checkpoint results in ripoptocide. While a number
of molecules are now known to regulate this checkpoint,
the list is likely to grow. The quest in future studies
will be to understand how the different molecules in
the checkpoint themselves are regulated. Currently, we
have a limited understanding of the genetic, epigenetic
and post-translational mechanisms that determine whether
the early checkpoint holds or fails. Further insights into
these mechanisms will allow us to fully manipulate this
checkpoint for therapeutic purposes. Strategies to reinforce
the checkpoint and prevent ripoptocide may be clinically
beneficial in inflammatory disorders and transplantation.
Conversely, disrupting the checkpoint and inducing

ripoptocide may be beneficial in cancer, vaccines and
infectious diseases.
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Innate immune signaling and programmed cell death are intimately linked, and
many signaling pathways can regulate and induce both, transcription of inflammatory
mediators or autonomous cell death. The best-characterized examples for these dual
outcomes are members of the TNF superfamily, the inflammasome receptors, and
the toll-like receptors. Signaling via the intracellular peptidoglycan receptors NOD1
and NOD2, however, does not appear to follow this trend, despite involving signaling
proteins, or proteins with domains that are linked to programmed cell death, such as
RIP kinases, inhibitors of apoptosis (IAP) proteins or the CARD domains on NOD1/2. To
better understand the connections between NOD signaling and cell death induction, we
here review the latest findings on the molecular regulation of signaling downstream of
the NOD receptors and explore the links between this immune signaling pathway and
the regulation of cell death.

Keywords: RIPK2, NOD2, ubiquitin, inflammation, cell signaling

ACTIVATION OF THE NOD PATHWAY

Pattern Recognition Receptors
Sensing of pathogen-associated molecular patterns (PAMPs) is the initiating step in an efficient
immune reaction to a bacterial, viral or parasitic threat. The intracellular receptors nucleotide-
binding oligomerization domain-containing protein 1 and 2, NOD1 and NOD2, are members
of the pattern recognition receptors (PRR) and recognize intracellular bacterial peptidoglycans.
The PRR family consists of a range of cytoplasmic or transmembrane stress sensors that recognize
PAMPs and damage-associated molecular patterns (DAMPs).

PRRs are divided into two main groups based on their cellular localization: the
transmembrane/endosome-associated PRRs, consisting of toll-like receptors (TLRs) and C-type
Lectin receptors, and the cytosolic PRRs which are further divided into the RIG-1-like receptors,
AIM2-like receptors and the NOD-like receptors (NLRs) (Bertin et al., 1999; Inohara et al., 1999;
Ogura et al., 2001b). NLRs are characterized by a central 300–400 amino acid long NACHT domain
(also referred to as the NOD or NBD domain) that has predicted nucleoside-triphosphatase activity
and facilitates its oligomerization. On the C-terminus, NLRs bear multiple leucine-rich repeats
(LRRs) that mediate ligand sensing (Figure 1).

The NLRs consists of four subfamilies, based on the nature of their N-terminal effector domain:
The NLRC subfamily is characterized by one or multiple N-terminal caspase activation and
recruitment domains (CARDs) that allow direct interaction with other CARD-containing proteins.
Among the NLRCs, NOD1 and NOD2 represent the two best characterized members and are
sensors of intracellular bacterial peptidoglycan (Girardin et al., 2003a,b). The NOD1 and NOD2
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FIGURE 1 | Domain architecture of NOD-like receptors. NLRs are composed of C-terminal leucine-rich repeats (LRR), an intermediate nucleotide-binding-domain
(NACHT) and variable N-terminal protein-protein interaction domains that divide NLRs into different protein subfamilies: NLRCs contain one to two caspase
activation and recruitment domains (CARD). NLRBs contain multiple baculovirus inhibitor of apoptosis protein repeats (BIR). NLRAs contain at least one acidic
transactivating domain (AD) and the NLRP subfamily harbors a pyrin domain (PYD).

pathways have been associated with a range of autoimmune
disorders, most prominently with inflammatory bowel disease
(IBD). Single nucleotide polymorphisms (SNPs) in the NOD2
gene were the first identified genetic risk factors associated with
Crohn’s disease (CD) (Hugot et al., 2001; Ogura et al., 2001a).

The second key member of the NLR family are the NLRPs,
which are best known for their role in the formation of
large oligomeric complexes, the inflammasomes. Inflammasomes
mediate the processing, activation and secretion of pro-
inflammatory cytokines as well as the induction of pyroptosis
through the recruitment and activation of caspase-1 (Martinon
et al., 2009). NLRPs contain an N-terminal pyrin domain (PYD)
that is also known as a “death fold,” which is evolutionary related
to the death domain (DD) found in cell death-inducing receptors
including Fas, TNFR1 and TRAIL R-1 and R-2 (Fairbrother et al.,
2001). The two smaller subfamilies of NLRs are NLRA and NLRB.
The NLRA (A for acidic transactivating domain) subfamily
only includes one member, class II major histocompatibility
complex transactivator (CIITA), that serves as an activator of
MHC class II antigen presentation (Nickerson et al., 2001).
Members of the NLRBs [B for baculovirus inhibitor of apoptosis
protein repeat (BIR)] have one or multiple N-terminal BIR
domains. The approximately 70 amino acid zinc-binding BIR
domain was first identified through sequence homology among
proteins belonging to the Inhibitors of Apoptosis (IAP) family
and is mostly recognized for its role in promoting cell survival
(Silke and Meier, 2013).

Expression of NOD Receptors
NOD1 and NOD2 both recognize building blocks of bacterial
peptidoglycans and share identical downstream signaling
pathways. One important difference between these two
PRRs is their distinct expression pattern: NOD1 is broadly

expressed in a variety of cells including epithelial cells,
stromal cells and endothelial cells (Inohara et al., 1999;
Park et al., 2007b). In contrast, the expression of NOD2 is more
restricted and highest in the hematopoietic compartment, most
prominently in cells of myeloid origin such as monocytes
(Ogura et al., 2001b), dendritic cells and macrophages
(Pashenkov et al., 2010). Furthermore, expression of NOD2
has also been demonstrated in hematopoietic cells of lymphoid
origin including B cells (Petterson et al., 2011), CD4+ and
CD8+ T cells (Caetano et al., 2011; Lin et al., 2013) and
regulatory T cells (Kerns et al., 2009). Notably, NOD2 is
also expressed by various epithelial cell types, particularly in
Paneth cells located within the ileum of the intestinal tract
(Uehara et al., 2007).

Basal expression levels of NOD1 and NOD2 are generally low
but can be induced by various immunomodulators. In intestinal
epithelial cells, interferon-gamma (IFN-γ) (Rosenstiel et al.,
2003), tumor necrosis factor-alpha (TNF-α), lipopolysaccharide
(LPS) (Kim Y.G. et al., 2008), 1,25-dihydroxycholecalciferol
(Wang et al., 2010), and butyrate (Leung et al., 2009) have been
shown to induce the upregulation of NOD2 mRNA. Additionally,
we and others observed that IFN-γ increases NOD2 protein
levels in bone marrow-derived macrophages and is required for
an effective cytokine response after stimulation with the NOD2
ligand muramyl dipeptide (MDP) (Nachbur et al., 2015; Fekete
et al., 2017; Stafford et al., 2018).

Once expressed, NOD1 and NOD2 reside in the cytosol
and localize to bacterial entry sites at the plasma membrane
(Barnich et al., 2005; Kufer et al., 2008). Both receptors constantly
interact with the actin cytoskeleton, which facilitates their
rapid relocalization upon stimulation (Legrand-Poels et al.,
2007). More recent studies indicate that NOD1 and NOD2
are associated with early endosomes that serve as assembly
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platforms for NOD signaling complexes (Irving et al., 2014;
Nakamura et al., 2014).

Expression levels of NOD1 and NOD2 are held in check
through constant degradation by the proteasome. This is
counteracted by several chaperones including HSP90, SGT1
(Correia et al., 2007; Mayor et al., 2007; Lee et al., 2012) and
HSP70 (Mohanan and Grimes, 2014) which bind and stabilize
NOD proteins. Their importance for NOD signaling has been
demonstrated using small molecule inhibitors that decrease
NOD2 ligand-dependent activation.

A candidate E3 ubiquitin ligase that was shown to ubiquitinate
NOD2 and target it for proteasomal degradation is TRIM27
(Zurek et al., 2012). NOD2 was shown to be modified with
K48-linked ubiquitin chains after overexpression of TRIM27 in
HEK293T cells while siRNA-mediated knockdown of TRIM27
led to the stabilization of NOD2 protein levels. Recently,
NLRP12 was shown to indirectly regulate NOD2 protein levels
in monocytes. NLRP12 activation leads to the sequestering of
HSP90, which in turn promotes K48-linked ubiquitination and
degradation of NOD2 in response to MDP. The significance
of NLRP12 as a regulator of NOD2 signaling was highlighted
by the finding that LPS-primed NLRP12-deficient mice are
highly susceptible to secondary challenge by bacterial MDP
(Normand et al., 2018).

Canonical Activation of NOD1 and NOD2
Upon its discovery, various groups reported that NOD1
is activated by lipopolysaccharides (LPS) and mediates the
activation of NF-κB in a MyD88-independent manner (Girardin
et al., 2001; Inohara et al., 2001; Kobayashi et al., 2002). However,
through the use of ultra-pure LPS, and synthetic NOD ligands,
it has become clear that NOD1 and NOD2 sense distinct
monomeric peptidoglycan (PGN) fragments: NOD1 is activated
by γ-D-glutamyl-meso-diaminopimelic acid (DAP), a PGN
fragment that is present in the cell wall of all Gram-negative and
certain Gram-positive bacteria (Chamaillard et al., 2003; Girardin
et al., 2003a). NOD2 recognizes muramyl dipeptide (MDP), a
PGN fragment found in both Gram-negative and Gram-positive
bacteria (Girardin et al., 2003b; Inohara et al., 2003).

Multiple mechanisms of how MDP and DAP are transported
into the cytosol to activate NOD1/2 have been reported. In
agreement with a role of NODs as sensors of intracellular
bacterial infections, NOD1 activation during infection has
first been reported with the facultatively intracellular pathogen
Shigella flexneri (Girardin et al., 2001). Moreover, extracellular
DAP can be delivered to the cytosol by type III and IV secretion
systems, for instance in Helicobacter pylori (Viala et al., 2004),
or through bacterial outer membrane vesicles (OMVs). OMVs
are small secreted vesicles derived from the outer membrane of
Gram-negative bacteria that are able to penetrate the intestinal
mucus layer and interact with epithelial cells (Sanchez et al.,
2010). Only recently it has been shown that OMVs from probiotic
and commensal strains of Escherichia coli can be endocytosed
by intestinal epithelial cells where they colocalize with NOD1
and trigger its aggregation. OMVs are therefore important
contributors to the maintenance of the intestinal homeostasis
(Canas et al., 2018). On the other hand, there is substantial

findings that OMVs from pathogenic bacteria contribute to their
virulence, for instance of Neisseria gonorrhoeae, Pseudomonas
aeruginosa (Kaparakis et al., 2010), Salmonella enterica (Yoon
et al., 2011), Brucella abortus (Pollak et al., 2012), and Legionella
pneumophilia (Jager et al., 2015; Jung et al., 2016).

Further mechanisms of how NOD ligands translocate to
their intracellular receptors include passive transport through
oligopeptide transporters such as SLC15A1 (Vavricka et al.,
2004; Ismair et al., 2006), or active transport processes such
as phagocytosis of live or fragmented bacteria or through
epithelial junction transfer (Kasper et al., 2010). In accordance
with the localization of NODs to endosomes, endocytosis
is another important entry route for NOD ligands (Lee
et al., 2009; Marina-Garcia et al., 2009). Certain cell types,
in particular dendritic cells express the endosomal peptide
transporters SLC15A3 and SLC15A4, that facilitate this process
(Nakamura et al., 2014).

Once in the cytoplasm, PGN binds to NOD1/2 and induces
a downstream signaling cascade resulting in the induction
of a transcriptional response. In silico modeling of human
and zebrafish NOD2 indicated a hydrophobic pocket on the
concave face of the LRR as a putative binding site of MDP
to NOD2 (Tanabe et al., 2004; Maharana et al., 2014). This
was validated using information gathered from the rabbit
NOD2 crystal structure, where mutating amino acids within the
hydrophobic core of the LRR reduced, respectively abolished
MDP-dependent NF-κB activation (Maekawa et al., 2016). Using
surface plasmon resonance (SPR), Grimes et al. provided the
first biochemical evidence that MDP bound directly to NOD2
with a relatively high affinity (KD = 51 nM) (Grimes et al.,
2012). Interestingly, the affinity of MDP to NOD2 was pH-
dependent and highest in the pH range from 5.0 to 6.5. This
data suggests that in vivo binding could occur in an acidic
cellular compartment, for instance in endosomes. Due to the
high degree in sequence homology, ligand binding of NOD1 is
believed to occur in a similar manner, however a crystal structure
that could confirm this theory is still missing. Nevertheless,
direct interactions between the NOD1 LRR domain and several
agonists, such as TriDAP (L-Ala-D-isoGlu-meso-DAP) have been
demonstrated (Laroui et al., 2011). Notably, in their assay, the
NOD1 ligand TriDAP bound the NOD1 LRR domain with a
KD of 34.5 µM, which raises questions about the physiological
relevance of TriDAP.

But how is ligand binding triggering the assembly of the
NOD signaling complex? It was difficult to draw conclusions
about the mode of action of signaling complex assembly
from early models of NOD1 and NOD2, which were based
on the crystal structures of homologous receptors such as
apoptotic protease-activating factor 1 (Apaf-1) (Riedl et al., 2005;
Proell et al., 2008). The recently published crystal structure
of NOD2 provides a more detailed view on how structural
changes impact on ligand binding and signal transduction.
Under steady-state conditions, NOD2 remains in an inactive,
closed conformation with tightly packed subdomains by ADP-
mediated inter-domain interactions (Maekawa et al., 2016).
Ligand binding to the LRRs and the exchange of ADP for
ATP triggers the unfolding of the protein and stabilizes it
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in an active conformation (Maekawa et al., 2016). NOD2
oligomerizes via its NOD and CARD domains and recruits
RIPK2 to form a hetero-CARD complex (Kobayashi et al., 2002;
Fridh and Rittinger, 2012). Recent work showed that multiple
RIPK2 monomers can then bind via homotypic CARD-CARD
interactions to form fibrillar protein assemblies, termed higher-
order signalosomes (Gong et al., 2018; Pellegrini et al., 2018).
Single amino acid mutations in the CARD domain of RIPK2 that
disrupt its oligomerization shut down MDP-dependent NF-κB
responses (Pellegrini et al., 2018). Similar structures have been
reported in other innate immune signaling pathways such as
in the NLRP3, ASC, caspase-1 inflammasome (Lu et al., 2014)
and are believed to facilitate and regulate signal transduction
(Wu, 2013).

Non-canonical Activation of NOD2
While activation of the NOD pathways through PGN stimulation
is well documented, there are more recent reports of activation
through PGN-independent pathways. Keestra-Gounder et al.
(2016) observed that systemic pro-inflammatory responses
triggered by thapsigargin and by infections with the ER-
stress-inducing bacterium Brucella abortus are blunted in
NOD1/2-deficient mice. The underlying mechanisms are
still largely unclear, however, experiments conducted with
a dominant-negative form of TRAF2 suggested that this
process is TRAF2-dependent. The ER stress sensor IRE1
and TRAF2 have been previously shown to interact in
overexpression studies and in yeast-two-hybrid screenings
(Urano et al., 2000) and this interaction could link NF-
κB and MAPK activation with stress pathways (Kaneko
et al., 2003). Furthermore, earlier studies suggested that
members of the TRAF family interact with the adaptor
protein RIPK2, which functions downstream of NOD1 and
NOD2 activation (Thome et al., 1998). NOD2 contains a
predicted TRAF2-binding motif in its nucleotide-binding
oligomerization domain (Schneider et al., 2012) and could
therefore function as the link between ER stress and
inflammatory signaling. A recent study confirmed that
thapsigargin induces NOD-dependent pro-inflammatory
signaling, although this was due to the compound’s inhibition
of the sarcoplasmic or endoplasmic reticulum calcium ATPase
family (SERCA), which is responsible for Ca2+ movement
into the ER and cellular Ca2+ regulation (Molinaro et al.,
2019). Thapsigargin-induced depletion of Ca2+ within the
ER led to a rise in intracellular Ca2+ levels and enhanced
both Ca2+ internalization and endocytosis. This endocytosis
led to internalization of trace peptidoglycan contaminants
in the cell culture grade FCS, which was confirmed using
mass spectrometry.

Several pathogenic scenarios also point toward PGN-
independent activation of the NOD pathway. Neuropathic pain,
mediated by an inflammatory reaction of peripheral macrophages
in mice that underwent nerve injury, results in the activation
of the NOD2 pathway without the evident involvement of
bacterial components (Santa-Cecilia et al., 2019). Furthermore,
increased levels of phosphorylated RIPK2, a hallmark of NOD1/2
pathway activation, has been detected in neoplastic tissue of

triple-negative breast cancer patients (Mertins et al., 2016). Also
in this scenario, it is not directly evident that NOD pathway
activation is a direct result of bacterial components and it will
be interesting to further investigate the mode of activation in
these tissues. It has to be noted though that secreted bacterial
components such as OMVs could well be the underlying factor
for these apparently non-canonical forms of activation of the
NOD pathway.

Signaling Downstream of NOD2
Activation
Binding of PGN to NOD1/2 and subsequent recruitment
of RIPK2 results in the ubiquitination of RIPK2 and the
recruitment of downstream effector proteins including
the IKK complex and TAK1 (Park et al., 2007a; Kim
J.Y. et al., 2008; Figure 2). The exact role of ubiquitin
ligases and the consequence of RIPK2 ubiquitination
will be discussed later. RIPK2 ubiquitination ultimately
leads to the activation of key transcription factors such
as NF-κB and AP-1. Synchronized activation of both
transcription factors is required for the transcriptional
response, as interference with the timing of activation using
a RIPK2 inhibitor resulted in a reduced cytokine response
(Nachbur et al., 2015).

Among the strongest induced genes downstream of NOD
activation are immunomodulatory cytokines, such as TNF,
IL-1β, IL-6, and CC-chemokine ligand 2 (CCL2/MCP-1)
(Kobayashi et al., 2005; Gilmore, 2006; Conforti-Andreoni
et al., 2010). Transcriptomic profiling of MDP stimulated
macrophages revealed a specific gene set downstream of
NOD2 compared to general inflammatory stimuli (Tigno-
Aranjuez et al., 2014). Members of this set are preferentially
involved in immune functions, nucleotide regulation, and
cell metabolism. In endothelial cells and Langerhans cells,
stimulation with MDP resulted in enhanced IL-6 production
and the Th17-differentiation of T cells within the skin (Manni
et al., 2011), suggesting that the transcriptional response
downstream of NOD stimulation varies considerably between
cell types.

While the major outcomes of the NOD1 and NOD2 pathway
primarily occur via the activation of NF-κB transcription factors
and cytokine production, NOD1 and NOD2 activation can also
lead to autophagy induction to clear a bacterial threat. This is
in line with NOD2 localization at early endosomes, and the role
of NOD1/2 in intestinal homeostasis. Activated NOD has been
shown to interact with the autophagy protein ATG16L1 at the
site of bacterial entry, although whether RIPK2 is involved in
this process is under debate. Two studies show the involvement
of RIPK2 in autophagy induction (Cooney et al., 2010; Homer
et al., 2010), while a third study observed autophagy induction
occurring in the absence of RIPK2 (Travassos et al., 2010).
However, the studies agree on the observation that autophagy
induction is independent of NF-κB, using both infection models
as well as purified ligands. Induction of autophagy downstream
of NOD activation can have implications in several pathological
conditions, particularly in Crohn’s diseases where mutations in
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FIGURE 2 | Anti-bacterial signaling mediated by NOD2. Within the family of NLRs, NOD2 represents a particularly well-studied receptor that is activated by binding
to the peptidoglycan fragment MDP in the cytosol and at endosomal membranes. NOD2 recruits the adaptor molecule receptor-interacting serine/threonine-protein
kinase 2 (RIPK2) through CARD-CARD interactions to form large polymers that facilitate the activation of downstream kinases and lead to the initiation of immune
modulatory transcriptional responses through AP-1 and NF-κB transcription factors. RIPK2 is regulated through polyubiquitination by multiple E3 ubiquitin ligases
including X-linked inhibitor of apoptosis protein (XIAP) and the linear ubiquitin chain assembly complex (LUBAC) and by phosphorylation of serine and
tyrosine residues.

the autophagy protein ATG16L1 are among the highest genetic
risk factors to develop the disease.

RIPK2, THE MEDIATOR OF NOD
SIGNALING

RIPK2 Is a Member of the RIP Kinase
Family
As mentioned above, RIPK2 is the central adaptor kinase in the
NOD pathway. RIP kinases represent a class of serine/threonine
kinases that play essential roles in the regulation of innate
immune signaling. Their functions depend on the highly
conserved N-terminal kinase domains and distinct C-terminal
interaction motifs. Amongst the RIP kinases, RIPK1 and RIPK3
are the best-characterized members, which are being extensively
studied due to their involvement in cell death and their role in
chronic diseases and cancer. RIPK1 contains a C-terminal death

domain (DD) that mediates direct binding to death receptors of
the TNF receptor superfamily members including TNFR1, Fas,
and TRAIL, and to adaptor proteins such as FADD or TRADD.
Upon binding, oligomeric protein complexes are formed that can
regulate survival or cell death. Under specific conditions, RIPK1
associates with RIPK3 through their RIP homotypic interaction
motif (RHIM) to activate the pseudokinase mixed lineage kinase
domain-like (MLKL) to induce necroptosis, a pro-inflammatory
form of programmed cell death (Silke et al., 2015).

Receptor-interacting serine/threonine-protein kinase 2
(RIPK2) represents the next best-characterized member of the
RIP kinase family. Compared to RIPK1 and RIPK3, RIPK2
does not have a RHIM or a DD and is therefore unable
to interact with these death receptor complexes. RIPK2 is
composed of an N-terminal kinase domain, an intermediate
domain of unknown function, and a C-terminal CARD that
mediates binding to NOD1/2 via homotypic CARD-CARD
interactions (Inohara et al., 1998; McCarthy et al., 1998;
Thome et al., 1998). Structural data of the kinase domain
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(Canning et al., 2015; He et al., 2017; Hrdinka et al., 2018;
Suebsuwong et al., 2018) and the CARD of RIPK2 (Lin et al.,
2015; Goncharuk et al., 2018) have recently been revealed. The
kinase domain shows a typical kinase fold with the catalytic
center located between a smaller N- and a larger C-lobe.
The C-terminal CARD of RIPK2 displays typical features of
a protein from the death domain family, but unlike other
CARDs or death domains, the CARD of RIPK2 contains an
additional sixth helix. The intermediate domain of RIPK2
is thought to be unstructured and highly flexible, however,
posttranslational modifications in this domain upon stimulation
could suggest so far unappreciated involvement in RIPK2s
signaling function.

RIPK2 is indispensable for NOD-mediated activation of the
NF-κB and MAPK pathways and its recruitment to NOD2 occurs
via CARD-CARD interaction (Girardin et al., 2001; Park et al.,
2007a; Magalhaes et al., 2011). An acidic patch in the NOD1
CARD forms the primary binding interface with basic residues
in the RIPK2 CARD. Using mutational analysis and pulldown
experiments, Manon et al. (2007) identified three acidic residues
(E53, D54, E56) in helix 3 of the NOD1 CARD and three basic
residues (R444, R483, R488) in the RIPK2 CARD as the key
mediators of the NOD1-RIPK2 interaction. A more recent study
proposed that two additional residues in RIPK2 (K443, Y474) are
required for NOD1 binding (Mayle et al., 2014).

The NOD2-RIPK2 interface differs from that between NOD1
and RIPK2. Overexpression of both NOD2 CARDs is required
for a constitutive NF-κB response (Ogura et al., 2001b). Even
though the two CARDs of NOD2 do not act independently,
the N-terminal NOD2 CARD (CARDa) is solely responsible
for binding to RIPK2 (Fridh and Rittinger, 2012). In contrast
to the interaction between NOD1 and RIPK2, the NOD2-
RIPK2 interaction motif is made of two basic residues in the
NOD2 CARDa (R38, R86) and a set of acidic residues on the
RIPK2 CARD (D461, E472, D473, E475 and D492). Intriguingly,
direct interaction between NOD2 and RIPK2 has so far only
been described using recombinant proteins or in overexpression
experiments, which suggests that under physiological conditions
the NOD-RIPK2 interaction is either highly transient or unstable.

Structure and Function of RIPK2
RIPK2 was originally identified as a serine-threonine kinase
based on sequence homology (Inohara et al., 1998; McCarthy
et al., 1998; Thome et al., 1998), but was later reclassified
as a dual-specificity kinase that is also able to phosphorylate
tyrosine residues (Tigno-Aranjuez et al., 2010). Although the
importance of RIPK2 as the central player in NOD signaling
has been demonstrated, the function of its kinase activity is
still under debate. The active state of the kinase domain is
dictated by an invariant lysine within the N-lobe (K47), which
contacts and supports ATP. This interaction is supported by the
formation of a salt bridge within the middle of the αC-helix
(Kornev and Taylor, 2010).

The only substrate of RIPK2 that has been described so far,
is RIPK2 itself. Upon activation by dimerization via the CARD
domains of NOD1/2, RIPK2 autophosphorylates on S176 in
the activation loop of the kinase domain (Dorsch et al., 2006)

and on Y474 in its CARD (Tigno-Aranjuez et al., 2010). In
overexpression systems, mutation of either of those residues
decreased RIPK2’s ability to induce downstream signaling.

By comparing the phosphorylation profiles of wild-type
RIPK2 vs. catalytically inactive mutants (K47A and D164N),
it was observed that besides S176, multiple additional serine
residues within the activation loop can be phosphorylated
(Pellegrini et al., 2017). More phosphorylated residues have
been discovered in large-scale proteomic screenings, however,
their functional relevance remains to be evaluated (Daub et al.,
2008; Oppermann et al., 2009). In vitro auto-phosphorylation
assays indicated that catalytically inactive mutants could still
be phosphorylated by purified full-length RIPK2, suggesting
that autophosphorylation occurs in trans (Pellegrini et al.,
2017), which requires strong interactions between two or
multiple RIPK2 molecules. In line with this theory, biophysical
measurements suggested that the active state RIPK2 is a
stable dimer whilst the inactive kinase is in a monomer-
dimer equilibrium. Supporting this, recently published crystal
structures display the phosphorylated form of RIPK2 as a
side-by-side dimer, suggesting that dimerization plays a critical
role in kinase activation (Tigno-Aranjuez et al., 2010; Tigno-
Aranjuez et al., 2014; Canning et al., 2015; Charnley et al., 2015;
Nachbur et al., 2015; Haile et al., 2016).

While the ability of phosphorylation by RIPK2 was clearly
demonstrated, it is still under debate whether the kinase
function is required for NOD signaling. On the one hand side,
studies utilizing overexpression of RIPK2 suggested that the
kinase activity of RIPK2 is dispensable for NF-κB activation
and cytokine production altogether. The catalytically dead
mutants of RIPK2 (K47A and D146N) could still activate NF-
κB signaling, although this occurred independently of NOD2
engagement with MDP (Inohara et al., 1998; Thome et al.,
1998; Eickhoff et al., 2004; Hrdinka et al., 2018). On the
other hand side, bone marrow-derived macrophages (BMDMs)
from a kinase-dead (K47A) knock-in mouse were defective in
signaling (Nembrini et al., 2009). However, kinase-dead RIPK2
was only expressed at very low levels, which could be the
reason for deficient NOD signaling in this system and suggests
that RIPK2’s kinase activity is required for protein stability
rather than being an intrinsic requirement for NOD signaling.
Recent studies also re-raised questions about the importance
of the regulatory autophosphorylation sites S176 and Y474.
Overexpression of RIPK2 mutants in HeLa cells showed that
wild-type RIPK2 and the S176A mutant resulted in similar
amounts of cytokines following infections with S. flexneri, while
the S176E mutant resulted in reduced cytokine levels (Ellwanger
et al., 2019). In contrast, cytokine production was completely
abolished in cells expressing the RIPK2 Y474F mutant. The
importance of Y474 for signal transduction was also highlighted
in two recent studies that utilized cryo-EM to solve RIPK2
structures. Y474 was found to sit at a critical interface in
the CARD and to mediate intermolecular interactions during
RIPK2 polymerization, which was shown to be essential for
NF-κB activation. Thus, it is not surprising and explains that
a tyrosine to phenylalanine mutation disrupts RIPK2 activity
(Gong et al., 2018; Pellegrini et al., 2018).
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RIPK2 Ubiquitination and Scaffolding
While the importance of the kinase activity of RIPK2 remains
somewhat dubious, it has become clear that its ubiquitination
is a critical determinant of downstream signaling. Ubiquitin is
a small, 8.5 kDa protein that can be covalently attached via
its C-terminus to lysine residues of target proteins or to the
N-terminus of one of the seven lysine residues of a substrate-
attached ubiquitin. The diverse biological outcomes of protein
ubiquitination are dependent on the complex interplay between
the sites of the ubiquitination, chain length, chain type, chain
branching as well as posttranslational modifications on ubiquitin
itself (Komander and Rape, 2012; Swatek and Komander, 2016).

Within the NOD signaling pathway, RIPK2 is the key
substrate for this process. Upon NOD activation, multiple
ubiquitination events have been described on RIPK2, which
are required to induce the activation of NF-κB and MAPK
pathways. Ubiquitination was first observed to regulate the
NOD1 and NOD2 pathways in studies that utilized over-
expression of RIPK2 and Mycobacterium tuberculosis infections
in macrophages. RIPK2 was stably ubiquitinated, and this
ubiquitination was required for optimal cytokine production
(Hasegawa et al., 2008). These results led to several subsequent
studies and today it is widely accepted that polyubiquitin chains
on RIPK2 serve as binding platforms for downstream signaling
proteins that are vital for the activation of NF-κB and MAP
kinases. The key events downstream of RIPK2 ubiquitination
are the recruitment of the NF-κB-activating IkB kinase (IKK)
complex composed of IKKα, IKKβ and NEMO (Inohara et al.,
2000; Yang et al., 2007; Hasegawa et al., 2008), TGF-β activated
kinase (TAK1), which is recruited via the two ubiquitin-binding
scaffold proteins MAP3K7-binding protein 2 and 3 (TAB 2 and 3)
(Kanayama et al., 2004) and the linear ubiquitin chain assembly
complex (LUBAC), which is composed of a catalytic subunit
HOIP and the two regulatory subunits HOIL-1 and SHARPIN
(Gerlach et al., 2011).

IAPs: Critical E3 Ligases of RIPK2
So far K48, K63, M1 and more recently K27 ubiquitin linkages
have been reported on RIPK2 (Damgaard et al., 2012; Panda and
Gekara, 2018). Accordingly, an increasing number of E3 ligases
and DUBs have been described to regulate the RIPK2 ubiquitin
network (Figure 3). Screenings for ubiquitinated lysines within
the kinase domain of RIPK2 suggested that ubiquitination of
K209 is essential for signaling, and a RIPK2 K209R mutant was
unable to activate NF-κB (Hasegawa et al., 2008).

A critical family of E3 ligases regulating NOD signaling are the
IAPs. Cellular IAP1 and -2 (cIAP1/cIAP2), as well as X-linked
IAP (XIAP), have all been reported to regulate NOD signaling
(Bertrand et al., 2009; Krieg et al., 2009). The IAPs represent
a group of cell death regulators and were initially described
as caspase inhibitors, however, only XIAP is able to inhibit
caspases at physiologically relevant concentrations. cIAPs, in
turn, regulate cell death indirectly via their E3 ligase activity
(Yang and Li, 2000). IAPs are defined by the presence of up to
three approximately 70 amino acids long motifs called baculoviral
IAP repeats (BIRs) (Birnbaum et al., 1994), which can mediate

protein-protein interactions. Moreover, cIAP1, cIAP2, and XIAP
contain a ubiquitin-associated domain (UBA) for binding to
polyubiquitin chains and a really interesting new gene (RING)
domain that provides E3 ligase activity (Silke and Vucic, 2014).
The role of cIAP1 and cIAP2 in regulating TNF receptor signaling
complexes is well-established: cIAPs directly ubiquitylate RIPK1
to facilitate activation of MAPK and canonical NF-κB pathways
(Mahoney et al., 2008; Varfolomeev et al., 2008).

The first evidence that the cIAPs play a role in NOD signaling
occurred in 1998. In HEK-293T cells overexpressed cIAPs co-
immunoprecipitated with overexpressed RIPK2 (Thome et al.,
1998). Bertrand et al. (2009) later showed that mice deficient in
cIAP1 and cIAP2 had significantly reduced cytokine production
in response to MDP injection compared to wild-type mice.
Overexpression and pulldown experiments in HEK293T cells
also suggested that cIAP1 and cIAP2 bind to and ubiquitinate
RIPK2 independently of their CARD domains. However the role
of the cIAPs in NOD signaling is controversial and we and
other groups subsequently observed that removal of cIAP1/2
had no significant impact on signaling immediately downstream
of NOD2 (Damgaard et al., 2012, 2013; Stafford et al., 2018).
The discrepancy between the blunted cytokine response to MDP
in vivo in cIAP1 and cIAP2-deficient mice but normal signaling
in ex vivo stimulated BMDMs can be explained by a secondary
autocrine loop that drives cIAP-dependent NF-κB and MAPK
activation through TNFR1 (Stafford et al., 2018).

While recent studies argue against a critical role of cIAPs
in NOD signaling, XIAP has emerged as a critical mediator
of RIPK2 ubiquitylation and NOD signaling. The addition of
K63-linked ubiquitin chains on RIPK2 is dependent on XIAP
(Krieg et al., 2009; Damgaard et al., 2012). Using mouse and
human cell lines devoid of XIAP, it was shown that XIAP is
an indispensable component of the NOD signaling pathway
and is required for the majority of ubiquitination on RIPK2.
SPR recently revealed a direct interaction between the RIPK2
kinase domain and the BIR2 of XIAP (Goncharov et al., 2018).
Consistently, IAP antagonists specifically targeting XIAP’s BIR2
disrupted this interaction, and impair RIPK2 polyubiquitination
and downstream activation of MAPK and NF-κB pathways
(Goncharov et al., 2018; Hrdinka et al., 2018). Adding to
the first discovered ubiquitination site K209, Goncharov et al.
also described further XIAP-dependent ubiquitination sites
(K410/K538) on RIPK2 that, when mutated, reduce NF-κB
activation and cytokine production.

Other E3 Ligases and Deubiquitinases in
the NOD Pathway
Ubiquitination of RIPK2 by XIAP is a vital step for subsequent
recruitment of LUBAC (Damgaard et al., 2012), which is the
only protein complex described so far to have the ability to add
linear ubiquitin chains to substrates (Fiil et al., 2013; Tokunaga,
2013). It is not entirely clear whether linear ubiquitin chains are
added on a previously non-ubiquitinated lysine residue of RIPK2,
or as branching on a pre-existing ubiquitin chain. Cells lacking
LUBAC subunits fail to fully activate NF-κB, which highlights the
importance of LUBAC for efficient NF-κB and MAPK activation
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FIGURE 3 | RIPK2 ubiquitination regulates NF-κB and MAPK activation by NOD1 and NOD2. Upon ligand binding to NOD1 or NOD2, RIPK2 is rapidly ubiquitinated
with K63- and M1-linked polyubiquitin chains. The K63-specific E3-ligase XIAP and the Linear-Ubiquitin Assembly Complex (LUBAC) have been shown to be
essential for downstream responses including activation of NF-κB and MAPK pathways in vitro and to induce robust PGN-dependent immune responses in vivo.
Other E3 ligases are able to bind and ubiquitinate RIPK2 such as cellular inhibitor of apoptosis protein-1 and protein-2 (c-IAP1 and c-IAP2), pellino3, itchy E3
ubiquitin protein ligase (ITCH), TNF receptor associated factor 2, 5, and 6 (TRAF2, TRAF5, and TRAF6) and zinc and ring finger 4 (ZNRF4). Deubiquitinases
negatively regulate NOD signaling by removing ubiquitin from RIPK2. Amongst them are A20, OTU deubiquitinase with linear linkage specificity (OTULIN), ubiquitin
carboxyl-terminal hydrolase CYLD, and histone H2A deubiquitinase MYSM1.

after NOD2 stimulation, possibly by recruiting and facilitating
activation of the IKK complex.

Additional E3 ligases that mediate ubiquitination of RIPK2 to
positively regulate NOD signaling have been reported: The TNF
Receptor Associated Factors (TRAF) -2, -5, and -6, which are
key adaptors in the TNFR1 signaling pathway contain a RING
domain with E3 ligase activity. All three of these proteins have
been linked to NOD signaling (Xie, 2013). So far there is no
evidence for E3 ligase activity of TRAF2 and TRAF5 during
NOD signaling, however, TRAF6 has been reported to directly
contribute to RIPK2 ubiquitination. The knockdown of TRAF6
by siRNA in HEK293T cells reduced ubiquitination of RIPK2
and the induction of NF-κB following NOD2 stimulation (Yang
et al., 2007). In another study, TRAF6 was not required for NOD
signaling since TRAF6-deficient mouse embryonic fibroblasts
(MEFs) still activated NF-κB and MAP kinases in response to
NOD1 agonists (Hasegawa et al., 2008).

The E3 ligase Pellino3 was identified as another positive
regulator of the NOD2 pathway, by mediating K63-linked
ubiquitination of RIPK2. BMDMs from Pellino3-deficient mice
displayed a lower activation of NF-κB and MAPK pathways and
produce fewer cytokines after stimulation with MDP (Yang et al.,
2013). Of note, the authors found a lower expression of Pellino3
protein in the colons of patients with Crohn’s disease, supporting
the theory that Pellino3 is an important mediator of NOD2
signaling in the gut.

E3 ubiquitin-protein ligase Itchy homolog (ITCH) was also
reported to be a direct E3 ligase for RIPK2, by adding K63-
linked ubiquitin chains in in vitro ubiquitination assays and
pulldown experiments (Tao et al., 2009). BMDMs from ITCH
knock-out mice failed to ubiquitinate RIPK2 and had reduced
activation of NF-κB and MAPK pathways and consequently
reduced expression of NF-κB target genes after MDP-stimulation.

More recently, ZNRF4 was identified as a negative regulator
of NOD2-dependent NF-κB activation in a genome-wide

RNAi screening in HEK293T cells. ZNRF4 induced K48-linked
ubiquitination of RIPK2 and promoted RIPK2 degradation.
Moreover, ZNRF4 knockdown macrophages produced higher
amounts of pro-inflammatory cytokines in response to MDP
and ZNRF4 knockdown mice displayed reduced tolerance to
secondary exposure to MDP and L. monocytogenes (Bist et al.,
2017). To sum up, these data suggest that ZNFR4 could be part
of a negative feedback loop to turn off prolonged and aberrant
NOD2 signaling after pathway activation.

The removal of ubiquitin by linkage-specific DUBS fine-tunes
NOD1 and NOD2 signaling. A20 was the first DUB identified
to negatively regulate NOD2 signaling by cleaving non-K48-
linked ubiquitin chains (Hitotsumatsu et al., 2008). OTULIN
was shown to limit M1-linked ubiquitination of RIPK2 and
antagonize LUBAC after NOD2 activation and subsequent NF-κB
and MAPK signaling (Fiil et al., 2013). The ubiquitin carboxyl-
terminal hydrolase CYLD targets both M1- and K63-linked
ubiquitin linkages to limit NOD2 signaling (Hrdinka et al.,
2016). Panda et al. showed that RIPK2 is also ubiquitinated
with atypical K27-linked chains and Histone H2A deubiquitinase
MYSM1 is a DUB that specifically removes K27-, K63- and M1-
specific chains to dampen NOD2 signaling. Supporting a role in
NOD signaling, MYSM1-deficient mice injected intraperitoneally
with MDP exhibited higher recruitment of neutrophils to the
peritoneum and peripheral organs (Panda and Gekara, 2018).

SIGNALING OUTCOMES OF NOD
ACTIVATION

NOD2 Signaling and Disease
Inflammatory bowel disease, particularly Crohn’s disease, is the
most commonly associated pathology associated with NOD2
signaling (Caruso et al., 2014; Philpott et al., 2014). However
there is compelling evidence that deregulated NOD1/2 signaling
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is associated with inflammation-associated diseases such as
early-onset sarcoidosis, uveitis, neuropathic pain, rheumatoid
arthritis or solid cancers (Caruso et al., 2014; Kim et al., 2016) and
more recently with allergic asthma (Miller et al., 2018) and type
2 diabetes mellitus (T2DM) (Amar et al., 2011; Schertzer et al.,
2011; Denou et al., 2015; Cavallari et al., 2017). Most of these
disease associations have been reviewed extensively elsewhere
(Kanneganti et al., 2007; Chen et al., 2009; Philpott et al., 2014;
Mukherjee et al., 2019), and we focus here briefly on the most
recent understanding of how NOD signaling can contribute to
IBD or T2DM.

A clear hot spot for NOD2 related pathologies is the intestinal
tract. The two key players in NOD2 signaling, NOD2 and
RIPK2 are both highly expressed in intestinal epithelial cells
as well as in resident immune cells in the gut. NOD2 seems
to have an important role in gut homeostasis as there is
evidence that NOD2 directly regulates colonic epithelial cell
growth and survival. Nevertheless, NOD2-deficient mice do
not have intestinal inflammation and display normal myeloid
and lymphoid cellularity in the gut, at least in the absence of
stimulation (Kobayashi et al., 2005). However NOD2-deficient
mice do have reduced clearance upon oral or intragastric bacterial
challenge (Kim et al., 2011). In vitro, primary colonic epithelial
cells induced cell death in response to treatment with the
NOD2 ligand MDP, while cells from NOD2-deficient mice were
protected and shRNA-mediated knockdown of NOD2 in human
colonic carcinoma cells resulted in increased levels of apoptosis
(Cruickshank et al., 2008).

Several studies show an intimate link between NOD signaling
and TLR signaling in the gut: NOD2 can significantly inhibit
TLR4 signaling in enterocytes of the neonatal small intestine
resulting in marked protection from the induction of TLR4-
dependent apoptosis (Richardson et al., 2010). Furthermore,
NOD2-deficient mice have exacerbated antigen-specific colitis
that is dependent on TLR2 function (Watanabe et al., 2006).
Subsequently it was shown that NOD2 protects in mouse models
of experimental colitis via a cross-tolerance mechanism that
dampens TLR responses (Hedl et al., 2007; Watanabe et al., 2008;
Hedl and Abraham, 2011b), which relies on the induction of
interferon regulatory factor 4 (Watanabe et al., 2014).

In experimental models of type 2 diabetes mellitus (T2DM),
alterations in the intestinal barrier lead to increased intestinal
permeability and translocation of PAMPs to the bloodstream,
a phenomenon named metabolic endotoxemia (Cani et al.,
2007). It is a well-established concept, that chronic exposure
to low levels of bacterial components in the plasma, such as
LPS or MDP, promotes inflammation and contributes to the
development of hepatic insulin resistance. Therefore, it is not
surprising that NOD1 and NOD2 agonists have been identified
as modulators of insulin sensitivity. Intriguingly, the activation
of either NOD1 or NOD2 leads to different outcomes in mouse
models of T2DM: NOD1/2 double-knockout mice (Schertzer
et al., 2011) and NOD1 knockout mice (Amar et al., 2011)
were protected from HFD-induced insulin resistance. This effect
was due to the role of NOD within immune cells, as bone
marrow chimeras using bone marrow from NOD1-deficient
mice transplanted into wild-type mice were protected against

glucose and insulin tolerance (Chan et al., 2017). Unlike NOD1-
knockout mice, animals deficient in NOD2 showed no protection
to insulin resistance during HFD and even had increased
adipose tissue and liver inflammation as well as exacerbated
insulin resistance (Denou et al., 2015). Accordingly, injections
of mice with the NOD2 ligands MDP and Mifamurtide reduced
insulin resistance in mouse models of HFD-induced obesity
and insulin resistance after endotoxic shock, while the NOD1
ligand FK565 worsened glucose tolerance (Cavallari et al., 2017).
This divergence between the roles of NOD1 and NOD2 could
be explained by the differential tissue and cellular distributions
of the receptors.

Pharmacological Inhibition of the NOD2
Pathway
Given the involvement of NOD2 and RIPK2 in a range of
diseases, inhibition of RIPK2 could have an application in
inflammatory diseases driven by dysregulated NOD signaling
pathways. Kinase inhibitors with significant activity toward
RIPK2 are already approved for clinical use, such as the multi-
tyrosine kinase inhibitor ponatinib and the EGFR inhibitor
gefitinib (Canning et al., 2015). Over the last years, significant
efforts have been put towards the development of more specific
RIPK2 inhibitors and multiple compounds have been successfully
tested in mice. Two groups independently developed highly
specific RIPK2 inhibitors, that could efficiently block cytokine
production in vivo after intraperitoneal administration of MDP
(Goncharov et al., 2018; Hrdinka et al., 2018). Furthermore,
a specific RIPK2 inhibitor WEHI-345, was used to protect
against the onset of paralysis in the experimental autoimmune
encephalomyelitis (EAE) model for multiple sclerosis (Nachbur
et al., 2015). These experiments also showed that even though
RIPK2 kinase inhibitors bind into the ATP-binding pocket
and block its kinase activity, their real mode of action is by
blocking NOD signaling through disruption of the RIPK2-
XIAP interaction. Lastly, GlaxoSmithKline has tested their RIPK2
kinase inhibitor GSK-559 in Phase 1 clinical trials for IBD,
however, they have recently terminated their RIPK2 program.

An alternative approach to inhibit the NOD pathway is to
antagonize the critical E3 ligases IAPs. However, compounds that
target cIAPs and XIAP are not tolerated in the clinic as they
induce an inflammatory response in vivo (Lawlor et al., 2015).
Until recently, all reported compounds with activity toward XIAP
were pan IAP inhibitors (Condon et al., 2014). Recently new
compounds that only target XIAP have been developed and could
be promising tools to block NOD signaling without inducing cell
death (Goncharov et al., 2018). Similar to RIPK2 inhibitors, these
new compounds antagonize NOD signaling by disrupting the
RIPK2-XIAP interaction.

IS NOD SIGNALING LINKED TO CELL
DEATH?

As discussed in detail above, signaling downstream of NOD1/2
harbors many proteins and protein domains that are closely
associated with cell death signaling. A link between NOD
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signaling and cell death induction seemed therefore likely ever
since NOD signaling was studied.

NOD1, NOD2, and RIPK2 harbor one or multiple highly
conserved CARDs, which are known to recruit caspases, the
key mediators of apoptosis. It is therefore not surprising that
all these proteins have initially been associated with caspase
binding and with programmed cell death. Indeed, overexpression
studies with NOD2 showed that it could bind to multiple caspases
via its CARD, and was able to directly activate caspase-9 and
induce apoptosis (Inohara et al., 1999). This was attributed to the
analogy to Apaf-1, the well-characterized activator of caspase-9
in the intrinsic apoptosis pathway. Similarly, NOD1 was able to
directly activate Caspase-9 in a RIPK2-dependent manner. This
was somewhat surprising as also RIPK2 was shown to interact
with Caspase-9, but not to activate it. It was therefore suggested
that RIPK2 needs to interact with NOD1 for caspase-9 activation
(Bertin et al., 1999).

An indirect link between NOD signaling and apoptosis
was suggested in early studies on RIPK2, which showed that
overexpressed RIPK2 could potentiate CD95-induced apoptosis
via caspase-8 and caspase-10 (Inohara et al., 1998). ATP binding
to RIPK2 was critical for this function as the mutation of
K38 resulted in reduced cell death after CD95L stimulation.
Notably, RIPK2 also interacted with various members of the
death receptor machinery, including cellular FLICE (FADD-like
IL-1β-converting enzyme)-inhibitory protein (c-FLIP), cIAP1
and cIAP2 and members of the TNFR-associated factor (TRAF)
family (Thome et al., 1998). These findings suggested that
RIPK2 may play a role in the regulation of cell death,
which was supported by experiments conducted in MCF-7
breast carcinoma cells, where overexpression of RIPK2 induced
apoptosis (McCarthy et al., 1998). The cell death-inducing
function of RIPK2 was dependent on the CARD and could be
blocked with the caspase inhibitor zVAD.

The strongest evidence that suggests direct involvement of
NOD signaling pathways in regulating caspase functions stem
from observations that NOD1 and NOD2 can induce IL-1β

through NF-κB and MAPK pathways in multiple human and
mouse cell populations, including myeloid-derived cells (Li et al.,
2004; Watanabe et al., 2004; Abraham and Cho, 2009). Moreover,
there is evidence that NOD2 directly activates caspase-1 in certain
cell lines (Damiano et al., 2004; Ferwerda et al., 2008; Hsu
et al., 2008; Marina-Garcia et al., 2008). In human monocyte-
derived macrophages (MDMs), activation of NOD2 leads to rapid
IL-1β processing and autocrine signaling, a process that was
essential for robust cytokine production (Hedl and Abraham,
2011a). The authors measured early MAPK activation, which
was dramatically reduced by blocking IL-1β signaling and by
inhibiting caspases using zVAD. Since the effects were visible
already before transcription, translation, and secretion of IL-1β

would be expected to occur, a model where NOD2 stimulation
activates caspase-1, leading to the rapid processing of preformed
pro-IL-1β, which in turn mediates early MAPK activation was
suggested (Hedl and Abraham, 2011a).

A surprising finding was presented later, when it was shown
that Bid, a well-characterized pro-apoptotic member of the Bcl2
family, was shown to be required for NOD signaling, as cells and

mice deficient in Bid were not able to react to MDP (Yeretssian
et al., 2011). However this finding was refuted shortly after
(Nachbur et al., 2012) and Bid has since not been linked to NOD
signaling, nor has it come up in screens for regulators of the NOD
signaling pathway (Warner et al., 2014).

While there seems to be no direct link between NOD signaling
and apoptosis, there is a strong link between NOD signaling
and autophagy, the disassembly of damaged or unnecessary
cellular components, that can result in death. In the context
of NOD signaling, autophagy is more likely to be a cellular
defense mechanism for bacterial clearance rather than a cell
death mechanism.

Taken all together, initial experiments that linked NOD
signaling with cell death could not be confirmed when
endogenous protein levels and physiological ligands were used in
later experiments. While overexpression studies are an important
tool to determine molecular mechanisms of cell signaling, it has
become clear that one has to be cautious when assessing the
effects of overexpressed proteins on cell death. The last decade
has seen many advances in establishing the links between innate
immune signaling pathways and cell death, using mainly myeloid
cells and relevant ligands. It has become clear that the link
between NOD signaling and cell death is not as straight forward
as initially thought, despite the indisputable involvement of cell
death-related proteins and cell death-promoting domains.

CONCLUSION AND PERSPECTIVES

The title of this research topic is “Connecting the dots between
inflammatory signaling and the working of cell death.” Here
we have dissected the molecular mechanisms of signaling
downstream of the intracellular PGN receptors NOD1/2. We
have found that a critical point of difference between the NOD
pathway and other innate immune signaling pathways is its
failure to connect these dots. This is somewhat surprising.
Not only do most inflammatory signaling pathways directly or
indirectly induce cell death, but also have early studies implicated
that activation of the NOD signaling pathway results in caspase
activation and apoptosis. The development of new reagents and
model systems has led to studies using endogenous proteins and
specific means to stimulate the NOD pathways, as well as the use
of relevant cell types. This is in contrast to earlier studies that
were largely based on overexpression of members of the NOD
pathway. In these newer work, the initial findings that NOD1/2
activation leads to any form of cell death could not be confirmed.

So what is different between the NOD pathway and other
cell death-inducing inflammatory pathways? One reason could
be that the NOD pathway is not exclusively pro-inflammatory
at all. The best evidence is the strong association of NOD2
mutations with Crohn’s disease: These are prominently loss of
function mutations within NOD2, suggesting that NOD signaling
has an anti-inflammatory role. Conversely, hyperactivation of
the NOD pathway is described in other inflammatory diseases
and elevated RIPK2 activation, a hallmark of NOD signaling,
is observed in many pathologies, intriguingly also in patients
with IBD. Therefore, the NOD pathway rather plays an
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immunomodulatory role, rather than a pro-inflammatory. A cell
that induces inflammation needs to be shut down rapidly to avoid
hyperactivation of an inflammatory response, and a potent way
to do so is to induce programmed cell death in this cell. If NOD
signaling is, however, not as inflammatory at all, there is no
need to self-destruct and hence the missing link between NOD
signaling and cell death.

Despite the missing link between cell death and NOD
signaling, this pathway has emerged as an important contributor
to human pathologies. Therefore, significant efforts have been
put toward better understanding the molecular mechanisms of
NOD signaling. The focus for the development of therapeutics
interfering with NOD signaling has been the kinase RIPK2,
and several ATP competitive inhibitors have been developed
by commercial and academic entities. The most recent data
show convincingly, however, that the kinase activity of RIPK2
is dispensable for downstream signaling, and the critical role of
RIPK2 is its scaffolding function in the pathway. Therefore, the
understanding of protein-protein interactions and the ubiquitin

network on RIPK2 and other members of the NOD pathway is
pivotal for the development of novel therapeutics in this space.
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