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The Frontiers in Materials Editorial Office team are delighted to present the inaugural
“Frontiers in Materials: Rising Stars” article collection, showcasing the high-quality
work of internationally recognized researchers in the early stages of their independent
careers.

All Rising Star researchers featured within this collection were individually nominated
by the Journal's Chief Editors in recognition of their potential to influence the
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future directions in their respective fields. The work presented here highlights the
diversity of research performed across the entire breadth of the materials science
and engineering field, and presents advances in theory, experiment and methodology
with applications to compelling problems.

This Editorial features the corresponding author(s) of each paper published within
this important collection, ordered by section alphabetically, highlighting them as
the great researchers of the future.

The Frontiers in Materials Editorial Office team would like to thank each researcher
who contributed their work to this collection. We would also like to personally thank
our Chief Editors for their exemplary leadership of this article collection; their strong
support and passion for this important, community-driven collection has ensured
its success and global impact.
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Carbon Based Materials

Raul Berenguer

Dr Raul Berenguer is an Associate Researcher at the Materials Institute (IUMA) of the University of Alicante.
In 2010, he obtained his PhD in the field of Material Science and Applied Electrochemistry at the University
of Alicante, Spain. He joined the Institute of Multidisciplinary Research for Advanced Materials at Tohoku
University (2010-2012, the Chemical Engineering Department at the University of Malaga (2012-2015),
the Materials Institute (IUMA) of the University of Alicante (2015-2017), and the Bioelectrogenesis group
at the Institute IMDEA Water (2018) as a post-doc. He recently received a “‘Ramon y Cajal” grant and his
current interests include the development of electrode materials for wastewater treatment, microbial

electrochemical technologies, or energy storage/conversion.

Francisco José Garcia Mateos

Dr Francisco José Garcia Mateos completed a BSc in Industrial Engineering at the University of Malaga
in Spain in 2010, and a MSc degree in Advanced Chemistry at the same institution in 2011. He obtained
his PhD in Chemical Engineering at UMA in 2017 with the thesis entitled “Preparation of carbon based
submicrometric fibers for energy and environmental applications”, supervised by Prof. Cordero and Prof.
Rodriguez-Mirasol. During his PhD studies, he completed a short research stay with the "Materiales

Carbonosos y Medio Ambiente (MCMA)" group at the University of Alicante (Spain).

He joined the “Tecnologia de Residuos y Medio Ambiente (TERMA)" group in 2009. His research focuses
on the valorization of biomass and industrial waste for the preparation of submicrometric carbon-based
fibers, using an electrospinning technique, as well as the design and preparation of electrodes based on
metallic, metal oxides, and carbon materials, for their utilization in adsorption, heterogeneous catalysis,

and energy storage processes.
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Hongying Hou

Prof. Dr Hongying Hou, an ACS member and reviewer for some international journals, acquired her
doctorate in 2009 and worked as a Post doctorate researcher in France between 2010 and 2012. Her
research interests are mainly focused on electrochemistry and new energy materials including fuel cells
and lithium ion batteries. To date, she has published 33 papers and holds two patents. Her published
work includes two review articles published in ChemSusChem and the Journal of Membrane Sciences,
both of which achieved great academic impact. In March 2012, she joined the Kunming University of
Science and Technology as a high-level talent in China and became a Professor in 2013.

Miriam Navlani-Garcia

Dr Miriam Navlani-Garcia received her PnD in Material Science from Alicante University (Spain) under the
supervision of Prof. Diego Cazorla-Amords in 2014. In 2015, she moved to Osaka University, Japan, where
she worked as a Specially Appointed Assistant Professor in the Division of Materials and Manufacturing
Science, within the research group of Professor Hiromi Yamashita. In 2017 she was a recipient of a JSPS
Postdoctoral Fellowship for Overseas Researchers (Standard) awarded by the Japan Society for the
Promotion of Science. She was recently awarded a Postdoctoral Fellowship for researchers with
international experience (Plan GenT, Generalitat Valenciana) and she is currently developing her research
activities in the Carbon Materials and Environment group at the University Materials Institute of Alicante
(IUMA). Her research interests focus on the development of nanocatalysts and photocatalysts for
environmental applications, mainly hydrogen purification and production.
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Khanin Nueangnoraj

Dr Khanin Nueangnoraj is currently an Assistant Professor at the School of Bio-Chemical Engineering
and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Thailand.
He obtained his PhD in 2013 from Tohoku University, Japan. His research interests include structural
control of carbon materials with novel structures through a template approach, surface functionalization

of carbon materials, electrochemical capacitors, and hybrid energy storage systems.

Martin Oschatz

Dr Martin Oschatz studied Chemistry at the Technische Universitat Dresden, Germany. He carried out
his PhD studies in the group of Stefan Kaskel and graduated in April 2015 summa cum laude. In 2013 he
pursued a research stay with Gleb Yushin at the Georgia Institute of Technology, Atlanta, USA. After a
postdoctoral stay at Utrecht University, Netherlands in the group of Krijn de Jong, Martin joined the
Colloid Chemistry department of Markus Antonietti at the MPI of Colloids and Interfaces, Germany in
November 2016 supported by a Liebig grant of the German Chemical Industry Fund. Since April 2019,
he has been working as a Professor (by proxy) for inorganic chemistry at the University of Potsdam,
Germany. His research focusses on nanostructured carbon materials for energy and environmental

applications.

Frontiers in Materials

1 April 2020 | Frontiers in Materials: Rising Stars


https://www.frontiersin.org/research-topics/8408/frontiers-in-materials-rising-stars
https://www.frontiersin.org/journals/materials

Takafumi Ishii

Takafumi Ishii received his PhD in 2014 from Tohoku University, Sendai, Japan. He also received A Research
Encouragement Award from the Institute of Multidisciplinary Research for Advanced Material” while
completing his PhD After obtaining his degree, he was employed as an assistant Professor at Gunma
University, Japan. His research interests include the surface chemistry of carbon materials, nano carbons,
and carbon catalysts. he is particularly devoted to analyzing the chemical structure of the carbon surface

by means of temperature programmed desorption techniques.

Olli Pitkanen

MSc Olli Pitkdnen graduated as MSc in electrical engineering in 2010 from the University of Oulu, Finland.
After a few years in the industry and university laboratory work, he began to pursue his PhD degree in
2015 and defended his thesis in 2019. His background is in electronics, materials science, and
microfabrication. His research has been focused on applications of carbon-based nanomaterials, energy
storage and sensors, while the topic of his PhD studies focused on on-device synthesis of carbon nanotube
structures.
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Ramiro Ruiz Rosas

Ramiro Ruiz Rosas is an Associate Professor of Chemical Engineering at the University of Malaga. He
obtained his PhD from the University of Malaga in 2012. He completed research stays at Penn State
University, Universidade Nova de Lisboa and the Institute of Multidisciplinary Research for Advanced
Materials of Tohoku University. In 2012 he joined the MCMA group at the Materials Institute of the University
of Alicante, as a postdoctoral researcher. Since 2018 he is a member of the TERMA group at the University
of Malaga. His research interests focus on the preparation and use of advanced carbon materials from
lignocellulosic wastes (Hierarchical porous carbons, heteroatom doped activated carbons, templated
carbons, carbon molecular sieves, carbon monoliths and porous electrospun carbon fibers) and their
use as adsorbents, catalysts, and electrodes in environmental protection and energy storage/generation
applications. He has published more than 50 articles in international reviewed journals, four book chapters,
and holds 2 patents.

David Salinas-Torres

David Salinas-Torres obtained his PhD. degree in Material Science in 2014 from Alicante University, Spain
under the supervision of Prof. Cazorla-Amords and Prof. Morallon. He moved to the Université de Liege
and joined the group of Prof. Job where he developed the project focused on the design of N-containing
carbon-based materials for their application as electrodes in energy storage devices. He then worked as
a Specially Appointed Assistant Professor in the Division of Materials and Manufacturing Science, Graduate
School of Engineering, Osaka University. After that, he was granted a JSPS Postdoctoral Fellowship for
Research in Japan. He was awarded a "Juan de la Cierva” contract from the Spanish government and he
is currently developing his research in the Group of Electrocatalysis and Polymer Electrochemistry (GEPE),
within the University Materials Institute of Alicante. His current research focuses on the synthesis of

carbon-based materials from biomass for their use in energy storage devices.
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Oxidation of Different Microporous
Carbons by Chemical and
Electrochemical Methods

Raul Berenguer* and Emilia Morallon

Instituto Universitario de Materiales, Departamento Quimica Fisica, Universidad de Alicante (UA), Alicante, Spain

The functionalization of high surface area microporous carbon materials by oxidative
treatments receives great interest for multiple applications. The micropore structure of
the material and the oxidation method could play an important role in the process. In
this work, we analyze and compare the effects of liquid-phase chemical and alternative
electrochemical oxidation treatments in the textural and chemical properties of four
microporous carbon materials, namely a granular-, cloth-, and powder-like activated
carbon (AC) and a powdery zeolite templated carbon (ZTC). Particularly, we provide
new data on oxidation kinetics and changes on microporosity and surface chemistry of
various microporous carbons. Characterization techniques reveal that the extent, textural
changes, and selectivity of the oxidation greatly depend on the type of microporous
material and the oxidation method. The incorporation of surface oxygen groups (SOGs)
generally causes a more-or-less significant decrease in the measured micropore volume
and the specific surface area. In the studied ACs, the extent of oxidation and BET surface
area reduction augment with their micropore volume, and the textural changes seem to
be governed by the micropore blockage by SOGs. The disordered microporous structure
of these materials is then quite robust toward oxidation, but its heterogeneity may
contribute to the lack of selectivity during this process. By contrast, the regular micropore
framework of the ZTC is rapidly destroyed even under soft oxidizing conditions, but it is
proposed to promote certain selectivity during oxidation. The high reactivity and structural
fragility of ZTC are assigned to the weak interconnections and large number of exposed
edge sites in its structure. Our results demonstrate the fast oxidation rate of chemical
treatments under different conditions, especially in the case of ZTC, what is proposed to
restrict the control and to limit the oxidizability and selectivity of these functionalization
processes. Contrarily, the electrochemical treatments are proved to better control the
kinetics of oxidative functionalization, what may explain the observed higher efficiency
and selectivity for SOGs introduction and the minimization of degradation in fragile
microporous structures.

Keywords: microporous carbons, chemical oxidation, electrochemical oxidation, functionalization, oxidation
kinetics, selectivity
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INTRODUCTION

Microporous carbon materials with pores of < 2nm diameter
and high specific surface area (up to 4,000 m2/g) receive
great interest for multiple applications, such as gas storage
and purification (Bottani and Tascén, 2008; Linares-Solano
et al., 2008; Tascon, 2012), catalysis (Rodriguez-Reinoso, 1998;
Serp and Figueiredo, 2009), wastewater treatment (Radovic
et al., 2000; Bottani and Tascén, 2008; Tascon, 2012), energy
storage and conversion (Bottani and Tascon, 2008; Beguin
and Frackowiak, 2009; Nishihara and Kyotani, 2012), etc. For
these applications, the micropore structure (volume, pore-size
distribution, ordered/disordered arrangement, interconnectivity,
shape, wall thickness, etc. of micropores) becomes crucial.
Moreover, the use of oxidative post-treatments to adjust the
number and type of oxygen surface groups (SOGs) in these
materials could be very important for their optimization in some
of these applications. Nevertheless, the control on the extent and
selectivity of the oxidation processes is complex and their possible
effects on the textural properties must be considered.

Microporosity features are mainly determined by the
precursor and preparation method. Activated carbons (ACs)
constitute the most widely known family of microporous
carbons. In these materials, microporosity mainly develops as
spaces among disordered aromatic sheets and small graphitic
domains formed upon heating (Rodriguez-Reinoso and Molina-
Sabio, 1998; Molina-Sabio and Rodriguez-Reinoso, 2004) and/or
by carbon oxidation to CO or CO;, depending on the activation
method (Rodriguez-Reinoso and Molina-Sabio, 1998; Molina-
Sabio and Rodriguez-Reinoso, 2004; Linares-Solano et al.,
2008). Another family of microporous carbons are the so-
called zeolite-templated carbons (ZTCs) obtained by using
zeolite as a sacrificial template (Ma et al., 2000; Nishihara and
Kyotani, 2018). Unlike ACs, ZTCs exhibit an ordered micropore
framework of curved and single-layer graphene coming from the
zeolite channels.

The oxidation of microporous ACs has been largely studied
in the past. The effect of multiple different oxidation methods
and conditions on their properties and applications was analyzed
(Shen et al., 2008; Daud and Houshamnd, 2010; Jaramillo et al.,
2010; Rivera-Utrilla et al., 2011; Thakur and Thakur, 2016).
So far, liquid-phase chemical oxidation by using H,O,, HNO;
or (NHy4),S,0g has been the most studied oxidative method
(Otake and Jenkins, 1993; Moreno-Castilla et al., 1995, 1997,
1998, 2000; De la Puente et al., 1997; Gil et al., 1997; Mangun
et al., 1999; Pradhan and Sandle, 1999; El-Sayed and Bandosz,
2001; Shim et al., 2001; Strelko and Malik, 2002; El-Hendawy,
2003; Li et al., 2003, 2011; Houshmand et al., 2011; Ternero-
Hidalgo et al., 2016). It has been claimed that the oxidation
degree of microporous ACs can be easily controlled by adjusting
the oxidation parameters, i.e., treatment time, concentration,
and temperature of common oxidants (HNO3; or (NHy),S,0s)
(Moreno-Castilla et al., 1997; Houshmand et al., 2011). These
treatments generally cause a decrease in specific surface area
and micropore volume, which becomes more significant with an
increasing degree of activation in the oxidized material (Moreno-
Castilla et al., 1995, 1997, 2000). While some authors suggest

that the decrease in textural properties is due to a blockage by
SOGs at the entry of the micropores (Moreno-Castilla et al., 1995,
1997; Pradhan and Sandle, 1999; Li et al., 2003; Maroto-Valer
et al., 2004; Szymanski et al., 2004; Houshmand et al., 2011),
others claim their destruction by the oxidation reaction (Moreno-
Castilla et al., 1995, 1997, 1998; Pradhan and Sandle, 1999; Li
et al., 2003). These disparities have been attributed to the distinct
oxidation method and differences in the micropore texture,
thickness of micropore walls, etc. of the oxidized material. And
reciprocally, it has been proposed that the porosity of the material
plays an important role in the rate of fixation of SOGs (Moreno-
Castilla et al., 1997).

Other conventional treatments of microporous ACs are based
on gas-phase chemical oxidation at middle/high temperature
(Garcia et al, 1998; Figueiredo et al., 1999; Boudou et al,
2000; Goémez-Serrano et al, 2002; Alvarez et al., 2005).
Although high oxidation degrees can be reached with these
processes, they generally cause significant textural modification.
By contrast, electrochemical oxidative treatments at room
temperature have been proposed as promising advantageous
alternatives (Kinoshita, 1988; Berenguer et al, 2009, 2012,
2013a,b; Tabti et al., 2013; Gonzélez-Gaitan et al., 2015; Vujkovi¢
et al., 2018). We previously carried out systematic studies
on the electrochemical oxidation of various carbon materials
(Berenguer et al., 2009, 2012, 2013a,b; Tabti et al., 2013). For a
microporous AC, preliminary results suggested that the kinetics
for SOGs generation through electrochemical oxidation are more
controllable than with chemical treatments, without significantly
affecting its textural properties (Berenguer et al., 2012).

The oxidation of ZTCs, however, remains practically
unexplored (Berenguer et al., 2013a,b; Vujkovi¢ et al., 2018).
In a pioneer work, it was found that, compared to chemical
treatments, the electrochemical method enabled to better
retain the original microporous structure of the ZTC during
SOGs incorporation (Berenguer et al, 2013a). Moreover,
from variations in CO/CO; ratios it was proposed that the
electrochemical oxidation involves a less aggressive and more
controlled oxidation than the chemical one (Berenguer et al.,
2013b). Although a better controllability of the oxidation kinetics
was proposed to explain these phenomena, no kinetics studies
were carried out.

It can be deduced from literature, hence, that not only
the oxidative method but also the micropore structure of
the oxidized material seem to play an important role on the
reactivity and effects of the oxidation processes. Among the
vast literature, however, few investigations compare the effect
of different oxidation methods on a given carbon material
(Otake and Jenkins, 1993; Figueiredo et al, 1999; Li et al.,
2003; Houshmand et al.,, 2011; Berenguer et al., 2012, 2013a)
and very few deal with the influence of the different micropore
structure of the material when oxidized by a specific method
(Moreno-Castilla et al., 1997; El-Sayed and Bandosz, 2001).
To the knowledge of the authors, there are no investigations
analyzing both effects at the same time. Remarkably, studies
on the kinetics and controllability of the different oxidation
reactions are lacking. In this work, various carbon materials
with disordered (three distinct ACs) and ordered (a ZTC)
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microporous structure have been oxidized by conventional
liquid-phase chemical and alternative electrochemical oxidation
methods. The chemical and textural properties of the different
materials, before and after oxidation, have been analyzed by
various techniques. For these materials, the effects of the
different oxidative treatments on the oxidation degree, changes
on the microporous texture and the selectivity toward SOGs
introduction have been studied. Furthermore, the kinetics of
the different oxidative functionalizations have been analyzed.
Finally, the effects of the different oxidative methods have been
correlated with their kinetics and the microporous structure of
the distinct materials.

MATERIALS AND METHODS

Materials

Four different carbon materials were used for this study: (i)
the granular activated carbon (GAC) was supplied by Waterlink
Suctliffe Carbons (207 A, pHpzc = 9, Mesh: 12 x 20) and
it is referred to as W; (ii) the activated carbon cloth (ACC)
was provided by MAST Carbon (C-TEX27, pHpzc = 6.5)
and denoted as EX; (iii) the powdery activated carbon (PAC),
designated as A, was prepared by chemical activation of an
anthracite with KOH as reported elsewhere (Lozano-Castelld
etal,, 2001). For that, a physical mixture of KOH:anthracite = 3:1
was heated at 5°C/min up to 740°C, and kept at this temperature
for 1h, under a 6,000 mL/min flow of Nj; and (iv) the zeolite
templated carbon (ZTC) was synthesized by using a zeolite Y
template (Na-form, SiO,/Al,O3 = 5.6, from Tosoh Co. Ltd.) as
previously described (Ma et al., 2000). The main textural and
chemical properties of these materials are collected in Table 1.

Oxidation Methods

Chemical Oxidative Functionalization

The chemical oxidation of the different ACs and the ZTC
was performed with HNO3, H,0,, and/or (NHy),S,Og, under
different conditions, as reported before (Berenguer et al., 2012,
2013a). The nomenclature of the chemically-oxidized materials
includes the name of the carbon material (W, EX, A, ZTC); the
letters N, H, or S referring to the used oxidizing agent (HNOs3,
H,0,, and (NHy),S,Og, respectively); a number indicating their
concentration (%); a number or the letter R (room temperature)
related to the temperature of the experiments (°C); and finally,
the treatment time (h or min).

TABLE 1 | Textural and chemical properties of the studied microporous materials.

Material SBET VN3 VCO, CO, co o
(m?/g)  (cm®/g) (em®/g) (wmol/g) (wmol/g) (nmol/g)
w 875 0.37 0.29 393 418 1,204
EX 1,130 0.48 0.39 665 1,370 2,700
A 3,130 1.26 0.74 946 2,861 4,753
ZTC 3,650 1.54 1.00 286 2,644 3,216

Electrochemical Oxidative Functionalization

The electrochemical oxidation of the different ACs was carried
out in a filter-press electrochemical cell (Berenguer et al., 2009,
2012; Tabti et al., 2013), whereas the ZTC was assembled into
a paste to be electrooxidized in a conventional three-electrode
cell (Berenguer et al., 2013a). The different materials were
galvanostatically treated at RT in 1M NaOH, 2 wt% NaCl
or 1M H;SO4 aqueous electrolytes under different conditions.
The nomenclature of the electrochemically-oxidized materials
comprises the name of the carbon material (W, EX, A, ZTC); a
number indicating the applied current; the abbreviations OH™,
Cl™, or HT, related to the NaOH, NaCl, and H,SOy4 electrolytes,
respectively; and finally, the treatment time.

Characterization and Parameters

Prior to their characterization, the functionalized materials were
washed with abundant distilled water, vacuum-filtered, and dried
at 110°C overnight.

Porous Texture Characterization
The textural properties of the materials before and after oxidation
were analyzed by N, adsorption-desorption at —196°C and
CO; adsorption at 0°C. The different ACs were analyzed in an
Autosorb-6 system (Quantrachrome Corporation) after vacuum
out-gassing at 250°C for 4h, while the ZTC samples were
characterized in a BEL Japan analyzer (BELSORP-mini) after out-
gassing at 150°C under vacuum for 6 h. The apparent surface
area (Spgr) was determined by the Brunauer-Emmett-Teller
(BET) method using the data of N, adsorption branch in the
P/Py range of 0.01-0.05. The total volumes of micropores (VN;)
(d < 2nm) and narrowest micropores (VCO;) (d < 0.7nm)
were calculated from the Dubinin—Radushkevich (DR) equation
applied to N, (in the range 0.005 < P/P0 < 0.17) and CO,
adsorption isotherms, respectively (Arenillas et al., 2004). The
good fitting of the N, and CO, adsorption data to the DR
equation validated the application of this method for the different
microporous materials. Pore size distributions were derived by
density functional theory (DFT), applying the QSDFT model
to the adsorption branch for the analysis of the geometrically
and chemically disordered (slit/cylindrical/sphere) micro-/meso-
pores of ACs; and the NLDFT equilibrium model of carbon
slit pores for the ZTC samples. Moreover, the changes on ZTC
structural order were followed by X-ray diffraction (XRD-6100,
Shimadzu) using a Cu-Ka radiation (A = 1.541 A) generated at
30 kV and 20 mA.

Particularly, in this work, the change on BET surface area was
calculated as:

ASBET=SBETox —SBET,
or, relatively, as the loss (%) of BET surface area:

AS
%SBET loss= ﬂ

BET,

x 100

where, SBET, and SBETox are the specific surface area of
the material before and after oxidation, respectively. As it is
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explained below, changes on the Sggr of the studied materials are
unequivocally attributed to changes on micropore volume.

Surface Chemistry Characterization
The concentration and type of SOGs was characterized by
Temperature-Programmed Desorption (TPD) experiments and
X-Ray Photoelectron Spectroscopy (XPS). Nevertheless, other
techniques, like titration methods, water adsorption, infrared
spectroscopy, etc., could have been also used. For the different
ACs, the TPDs were performed at 20°C/min up to 950°C
under a He flow (100 mL/min) in a SDT 2960 Simultaneous
equipment (TA Instruments) coupled to a MSC 200 mass
spectrometer (Thermostar, Balzers). The ZTC samples were
heated up to 1,000°C (2°C/min), and kept at this temperature
for 1h, under a He flow, and the CO,, and CO evolved gasses
were analyzed with a micro gas chromatograph (Varian 490-
GC). The XPS analysis was carried out by using a VG-Microtech
Multilab electron analyzer and an unmonochromatized Mg-
Ka (1253.6€V) radiation at base pressure of 5 x 1070 mbar.
Photoelectrons were collected at a pass energy of 50 eV and the
binding energies (BE) were referenced against the main Cls line
at284.5eV.

The number of SOGs introduced by a given oxidation method
was calculated from TPD measurements by subtraction as:

AO=00px—09¢

where, Oy and Opx are the total oxygen evolved (O = 2CO, +
CO) calculated from the TPD-profiles of the material before and
after oxidation, respectively. From this parameter, the change on
BET surface area relative to SOGs incorporation was calculated
as ASppr/AOQO.

RESULTS AND DISCUSSION

Oxidation Degree and Textural Properties

Changes by Chemical Treatments

The studied carbon materials were oxidized by different chemical
or electrochemical methods (see experimental section). Figure 1
represents the increment of SOGs (AO) caused by different
oxidation treatments vs. the variation of specific surface area
(ASggT) determined for the studied materials. The increment of
SOGs (AO) can be associated to the oxidizability of the material
and/or the efficacy of the oxidative treatment and conditions.
Although ASppr was arbitrarily represented as positive, a
decrease in the measured Sggr was found in all cases, so a higher
ASggr value was characteristic of a larger decrease in specific
surface area. Given the lineal dependence of ASppr with the
change on the micropore volume (AVN3) (see section Analysis of
Textural Changes), changes on ASggr can be directly attributed
to variations of the micropore volume determined from N,
adsorption-desorption isotherms.

Chemical Oxidation of the ACs

As it can be observed in the figure, the extent of both the
oxidation degree and decrease in surface area greatly depends
on different aspects. The RT-treatment of the W (SBET( = 875

m?/g) with different oxidizing reagents for 2 h (inlet of Figure 1)
enables to introduce a maximum of 3,000 wmolO/g in the
case of (NH4),S,0g, which is even more effective than 65 wt%
HNO3 (AO = 2,200 pmolO/g) and much than H,O,. When
the reaction time is prolonged up to 24h with (NHy4),S,0s,
a maximal increment of 5,000 pmolO/g is observed. These
results indicate that the chemical oxidation may be faster at the
beginning, so that its rate decreases with time (Figure 2A). Such
a kinetic behavior can be observed also in other ACs reported
in literature (Moreno-Castilla et al., 1997; Houshmand et al,,
2011; Figure 2A) and was associated to the uncontrollability
of chemical oxidation (Berenguer et al., 2012). The main
consequence is that significantly long times are needed to reach
significant oxidation degrees, so that further functionalization of
this material by this method and conditions becomes complex
and restricted.

On the other hand, none of these treatments produced
significant changes on the surface area (a detailed analysis of the
textural properties is presented in section Analysis of Textural
Changes). In particular, a maximal 4.5% loss in surface area was
observed in the case of 65 wt% HNOs3, this being a very low
relative decrease of surface area by SOGs gain (0.02 m?/jLmolO).

Quite similar results were found for the chemical oxidation of
EX under similar conditions (not shown in Figure 1), although
in this case both the attained oxidation degrees and the observed
changes on surface area were slightly higher (AO = 6700
wmolO/g and 13% loss in surface area for EX-S-24h). This
could be explained by the slightly larger micropore volume and
surface area of this material (see Table 1), which could result in
a greater concentration of reactive edge sites (Arenillas et al.,
2004) and larger oxidations (AO) (Moreno-Castilla et al., 1995,
1997, 2000; Mangun et al., 1999). For example, in only 1h a
RT-treatment of activated carbon fibers (ACFs) (SBETy = 1390
m?/g) with concentrated HNOj resulted in larger oxidation
degrees (AO = 5420 pwmolO/g) and surface area losses (6.8%)
(Mangun et al., 1999) than a 2 h-similar-treatment of the studied
W. Moreover, such effects of the surface area at RT were also
observed and systematically studied, with other reagents [H,O;
and (NHy),S,03], by Moreno-Castilla et al. (1995, 1997, 2000).

However, these authors found that the ACs prepared
from olive stones display lower oxidative reactivity than
those obtained from almond shells (Moreno-Castilla et al,
1995, 1997, 2000). Hence, not only the textural properties
but also the nature of the precursor or other features
(wettability, dimensions, conformation, mesoporosity, wall
thickness, electrical conductivity in the case of electrochemical
oxidation, etc.), may affect the reactivity of the material.

The increased reactivity with the development of
textural properties was confirmed for the powdery AC,
sample A, which presents around triple micropore volume
and surface area than previous materials (Table1). As
it can be seen in Figurel, ca. 5,770 pmolO/g can be
introduced after 3 h-oxidation with 65 wt% HNO; (A-
N65-R-3h) and the surface area considerable decreases
in a 19.1%. Thus, the relative decrease of surface area by
SOGs gain (ASppr/AQ) increases to ca. 0.10 m?/pmolO.
Nevertheless, the finer particle size of this powdery material
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FIGURE 1 | Extent of oxidation (AO) and surface area variation (decrease) caused by most common chemical reagents in liquid phase [HoOp, HNO3 and
(NH4)2S50g] and different galvanostatic treatments at different conditions on the studied microporous materials. The carbonaceous structures of the ZTC and the
ACs are adapted from Nishihara et al. (2009) and Rodriguez-Reinoso and Molina-Sabio (1998), respectively. Note: (*Cl™) refers to the too strong electrochemical
conditions for the oxidation of ZTC (> 50 mA in NaCl) at which their oxidizing power approaches those of chemical treatments. Oxidation conditions: a: 30-60 wt%
HNO3, R—80°C,15 min-2h; a*: 50mA, 3-7 h; b: 2-20mA; c: 2-5mA, 1-36h; d,e,f: 0.2-1.0A; g: 10-33 wt% HxO», 2h; h: 23-65 wt% HNOg, 2h; /:
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FIGURE 2 | (A) Evolution of the oxidation degree upon time (oxidation kinetics) of various studied and referenced materials functionalized by chemical or
electrochemical methods; (B) Evolution upon time of the loss in surface area (associated to structural degradation (*) in section Analysis of Textural Changes) of ZTC

compared to the previous ones, favoring the contact with
the oxidizing agents, may also have a strong influence on its
greater oxidizability.

It is well-known that the oxidation degree of ACs reached by

the chemical method can be further increased in the range AO =
5,000-12,000 wmolO/g, respectively by raising the temperature,
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concentration and/or acidity of the reagent (Moreno-Castilla
et al., 1995; Mangun et al., 1999; Ternero-Hidalgo et al., 2016).
However, these treatments parallelly caused more severe textural
modifications, with a decrease in surface area between 10 and
50%. As it can be deduced from literature data (see Figure 2A
the data of Houshmand et al., 2011), for ACs the kinetics
of chemical oxidation greatly increases with such stronger
oxidizing conditions.

Chemical Oxidation of the ZTC
Unlike the case of ACs, the ZTC experiences a comparable SOGs
introduction but a much more marked reduction of surface area
when exposed even at much softer oxidizing chemical conditions
(see some examples in the upper part of Figure 1). For example,
in only 15 min (45°C) or 1 h (room temperature) the oxidation of
ZTC with 30 wt% HNO3 introduces 4,000-5,000 pmolO/g, but
its surface area decreases in more than 1,400 m?/g. These effects
suppose a 39-41% loss in Sggr and a considerable enhancement
of the relative variation of Sggt to 0.30-0.40 m?/pumolO (for 30
wt% HNO3). It can be inferred beforehand (see details on section
Oxidation Methods) that this loss in surface area is associated
to the destruction of the ordered microporous framework of
this material, so it is referred to as structural and/or textural
degradation. Hence, chemical treatments at RT produce severe
damage in the extraordinary textural properties of ZTC.
Moreover, in this case it is easier to induce further
functionalization by simply extending treatment time,
temperature or reagent concentration, but any increment
in SOGs gives rise to further textural decline. For example,
boiling 30 w% HNO; (80°C) can introduce 5,000-7,200
umolO/g in only 15 min—2h of treatment, but it causes a 50—
70% loss of Spet. Another interesting feature is that the chemical
oxidation reaction of ZTC is very fast, even in the case of 30
wt% H,O, at RT, the softest conditions studied (Figure 2A).
Such oxidation kinetics are greatly accelerated at stronger
conditions (see for example the results of boiling 30 wt% HNO3
in Figure 2A). As a result, the degradation of ZTC properties
under chemical conditions is remarkably fast. Figure 2B shows
that above 40 % of the initial Sppr of ZTC is lost within the 1 h of
treatment with HNOj3 under different conditions. This stresses
the extraordinarily high reactivity and fragility of this material
toward chemical functionalization, which may be unacceptable
for the potential application of these materials with designed
unique nanostructure.

Analysis of Textural Changes

The microporosity of the different materials before and after
oxidative treatments was analyzed by gas adsorption techniques.
Figure 3 compares the N, adsorption-desorption isotherms of
the pristine W, A, and ZTC (see their textural parameters in
Table 1) with those of representative oxidized samples. The
isotherm of EX (figure not shown) was quite similar to that
of W (Zakaria, 2014). For the oxidized ACs, examples of
materials obtained by electrochemical treatments have been
considered because they cause higher oxidation degrees (see
section Electrochemical Oxidation: Greater Controllability at
Room Temperature), what may help to discern more clear effects.

The isotherms for W and A samples are a combination of type I
and IV (Lozano-Castell6 et al., 2009). In fact, the good correlation
between the volume of micropores and the specific surface
area of the many samples oxidized under different conditions
(Figure 4A) confirms the microporous nature of all the oxidized
materials considered in this work (Mangun et al., 1999; Strelko
and Malik, 2002; Szymanski et al, 2004). Nevertheless, the
hysteresis loops observed in the isotherms of W and the relatively
open elbows at low pressures in the isotherms of A, and their
oxidized derivatives, indicates the presence of some mesopores in
these (combination of Type I and Type IV isotherms) materials.
As explained below, this mesoporosity is also evident in the
derived PSDs.

Particularly, the A material contains ca. 3-fold larger
micropore (VN;) and narrow micropore (VCO;) volumes
than the W (Table 1), but they show quite similar micropore
size distribution. From the derived PSD graphs (Figure 3) it
can be inferred that most micropores in W and A materials
are 1.10 and 1.05nm in diameter, respectively, together
with a certain concentration of wider micropores and
some mesopores, mainly in the case of A, ranging between
1.30 and 2.10nm. Another difference is that W contains a
larger concentration of different mesopores with diameters
(maximum population) of 3.80, 4.60, and 6.70 nm, whereas
A only contains some mesopores of ca. 3.40nm. On the
other hand, ZTC presents even a higher micropore volume
with a narrower PSD, thus most pores ranging between
1.10 and 1.30nm. Nevertheless, the large micropore volume
determined by CO, adsorption (Table1) may point out the
presence of narrower zones, i.e., neck-like interconnections
between successive larger cavities. This texture agrees with
the 3D-arranged graphenic framework of interconnected
1.2 nm-micropores coming from the templated zeolite Y
(Nishihara et al., 2009).

As shown in Figure 3, the shape of isotherms for the oxidized
microporous materials is quite similar to that of the pristine
materials. The main difference is the decrease in the volume
of N, adsorbed. The VN, decrease was generally observed for
the different oxidized materials, but its extent depended on
the oxidation treatment, like the case of Sppr (Figurel, in
agreement with their linear relationship, Figure 4A). Moreover,
the shape of the PSDs is also well-conserved after oxidation,
although a slight shift of the main peak in the PSD toward
smaller diameters (maximum at 1.00 nm) can be observed for the
W. These features indicate that, despite the micropore volume
decreases, the micropore structure is not significantly affected
by the oxidative treatments (at least that of supermicropores,
0.7 < d < 2nm) (Mangun et al., 1999; El-Sayed and Bandosz,
2001; Shim et al., 2001; Strelko and Malik, 2002; Maroto-Valer
etal., 2004). In the same line, the volume of narrower micropores
(d < 0.7nm), deduced from CO, adsorption isotherms (not
shown), also decreased to a different extent after the different
oxidative treatments.

Further information was deduced from the changes on both
the wider and narrower micropores. Figure4B depicts the
VN,/VCO; ratio vs. the change on specific surface area. For the
W and EX materials, the VN,/VCO; ratio remains practically
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constant with the extent of Sggr decrease. Contrarily, in the
case of A and ZTC the ratio clearly decreases, and, for the
later material starts to decrease more rapidly after certain Spgr

decrease is reached. Particularly, for the most oxidized A sample
in this study (A-1.0A-Cl-3h), the VN,/VCO; ratio is decreased in
ca. 25%, and ca 35-70% for the most oxidized ZTC samples.
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The similar isotherms and PSDs and nearly constant
VN,/VCO; ratios observed, independently of the extent of Sggr
decrease, for the differently oxidized W materials suggest that
the decrease in their micropore volume after oxidation may be
assigned to a pore blockage by the created SOGs and/or split
molecules; and/or electrostatic repulsion of N, probe molecules
(Moreno-Castilla et al., 1995; Pradhan and Sandle, 1999; Li
et al., 2003; Maroto-Valer et al., 2004; Szymanski et al., 2004;
Houshmand et al., 2011). Given the constant VN,/VCO ratios, it
may equally affect to wider and narrower micropores. The slight
narrowing (shift in PSD) of the most abundant micropores in W
may be in line with the proposed surface blockage, suggesting
that there are N, molecules that may be able to pass also through
the partially blocked (narrower) micropores. Because it is not
destroyed, the micropore structure in these materials may be
highly tough toward oxidation.

In the case of sample A, the large Spgr decrease with the
oxidation degree (Figure 1) might be also explained by surface
blockage, at least this could be similarly deduced from the results
of Figure 3. In this case a shift in the maximum of PSD is not
observed probably because these predominant micropores are
narrower from the beginning (maximum at 1.05 nm). However,
the decrease in the VN,/VCO; ratio with the extent of oxidation
found for A could be indicative of other phenomena, like a
favored blockage and/or the destruction of wider micropores
(VN,). It has been proposed that the destruction of micropores
by breakage of surface C-C bonds can result in the formation
of narrower (Gil et al., 1997; El-Sayed and Bandosz, 2001) or
wider (Moreno-Castilla et al., 1995, 1997; Pradhan and Sandle,
1999; El-Hendawy, 2003) ones. The much larger relative decrease
in VN, than in VCO; (for this sample the relative variation
of both types of micropores AVN,/AVCO, = 4), and the fact
that no mesopores are generated (see PSD in Figure 3), seem
to neglect the possibility of micropore destruction. Hence, the
idea of a favored blockage of wider micropores seems to gain
strength. This could be explained by considering that the sample
A contains a larger volume and proportion of pores between
1.30 and 2.10 nm than W (compare PSD of samples A and W in
Figure 3). Thus, despite blocking the entrance of N; (of slightly
bigger size than CO; and presenting more interactions with
SOGs), some of the more-opened micropores in the sample A
could permit the entrance of CO;, thus, observing a decrease in
the VN,/VCO; ratio.

It is noteworthy to mention that other parameters, like
the mesoporosity (which may affect the reaction kinetics)
and the wall thickness (which can lead to the collapse of
the pore structure) could be crucial in the oxidation of
microporous carbons. However, the low mesoporosity and the
neglected micropore destruction in the studied ACs suggest
that these features may not be significant in the observed
oxidative behaviors.

The variation of the textural properties of the ZTC upon
oxidation deserves a special discussion. A detailed analysis of
the effect of different oxidation treatments on ZTC structural
properties was previously carried out (Berenguer et al., 2013a,b).
Figure 3C shows that, besides a decrease in the adsorption of
N, the oxidation of ZTC (1 h-treatment with 30 wt% HNOs3

in this example) entails a marked reduction in the intensity
of its characteristic (111) X-ray diffraction peak. Considering
that this peak comes from the ZTC regular structure derived
from zeolite Y, the decreased intensity or disappearance of this
peak evidence the destruction of ZTC structure by oxidative
treatments. Another exclusive feature of this degradation is the
conversion of the 3D arrangement of graphenic layers into a
stacked 2D structure, as confirmed by the evolution of the
two broad diffraction peaks around 25 and 45° characteristic
of graphitic structures. These results suggest that the breakage
of ZTC gives rise to graphenic fragments that can be stacked.
Considering the molecular structure of ZTC (Nishihara et al.,
2009), it is proposed that the breakage may occur by C-C
cleavage at linking/interconnecting points among cavities, where
the graphenic layers are thinner, as schematized in Figure 4C.
Once fragmented, the wall cavities (the larger graphenic parts
in ZTC structure) might be deformed into planar forms able to
be stacked.

The destruction of ZTC structure at its very thin
interconnecting points among graphenic layers may be the
reason explaining the high fragility of this unique microporous
structure. In fact, ordered mesoporous carbons (OMCs) with
different wall and/or connector thickness and surface area were
found differently affected by the chemical treatments (Lu et al.,
2005; Vinu et al., 2007; Bazula et al., 2008). For example, it has
been reported that a soft treatment with 30 wt% H,O, (Lu et al.,
2005) or 53 wt% HNOj3 (Bazula et al., 2008) at RT causes, in few
minutes, structural collapse of the CMK-5 carbon framework,
as deduced from XRD characterization. This high reactivity was
attributed to the unique structure of this material, comprised of
porous interconnected tubes of very thin carbon walls (2-3 nm)
(Lu et al., 2005; Bazuta et al., 2008). Bazula et al. had to work
under low HNOj3 concentrations (4.5-18 wt %) to functionalize
this type of materials (SBETo = 1,389-1,846 mz/g) (Bazuta
et al., 2008). Nevertheless, the temperature was raised to 80°C to
generate high oxidation degrees (AO = 5,300-10,250 umolO/g)
in 3h, producing Spgr losses of 11-35 % associated to the
structure breakdown. On the other hand, unlike tubular OMCs,
rod-like CMK-3 carbons with thicker walls and connectors
showed increased stability toward oxidative functionalization
(Vinu et al,, 2007; Bazula et al, 2008). Such a high fragility
exhibited by CMK-5 and CMK-3 OMCs resembles that of the
ZTC and it was attributed to C-C cleavage on the links between
adjacent tubular or rod-like structures, respectively (Lu et al,
2005; Bazula et al., 2008). Moreover, these studies showed that
the oxidation of these OMCs leads to the formation of small
organic molecules and a substantial weight loss; and, whenever
the whole structure is not collapsed, the N, isotherms of the
materials were quite similar shape to those of pristine materials.
All these similarities between the oxidative behavior of OMCs
and that of ZTC support the proposed degradation mechanism
and fragility reasons.

Nevertheless, the high reactivity of ZTC may not be exclusively
related to a weak interconnectivity in its 3D microporous
structure. In this sense, the preparation of a mesoporous
graphene-based framework, by replication of the outer surface
of Al;O3; nanoparticles, resulted in a continuous 3D structure
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with a minimal number of edge sites (Nishihara et al., 2016). This
unique material realized both a large surface area (1,940 mz/g)
and an extraordinarily high stability against oxidation. Hence,
another crucial aspect involved in the reactivity and fragility of
the studied ZTC may be the large number of exposed edge sites,
associated to the very small graphenic layers and/or incomplete
replication of the Y zeolite channels in this material (Nishihara
et al,, 2009), as well as its thin (single layer) wall thickness (Vinu
et al., 2007; Bazula et al., 2008).

Electrochemical Oxidation: Greater

Controllability at Room Temperature

Sections Chemical Oxidation of the ACs and Chemical Oxidation
of the ZTC have evidenced the limitations of chemical treatments
to control the oxidation of carbon materials. Figure 1 compiles
the effects of various electrochemical oxidative treatments on the
properties of the studied carbon materials. As it can be observed
in this figure, the different materials exhibit variable fragility
toward electrochemical oxidation, but remarkable differences can
be observed when compared with chemical treatments.

The anodic treatment in NaCl at enough-high currents
enables, at room temperature and in short time, to greatly
enhance the oxidation degree of the ACs. Particularly, strong
electrochemical oxidizing conditions, polarization at 1.0 A,
introduced in 3h a larger amount of SOGs (AO = 5,600
umolO/g for W and 7,150 wmolO/g for EX) than chemical
oxidation with (NH4),5,0s in 24h (ca. 5,000 pmolO/g for W
and 6,700 pmolO/g for EX). Similar results are obtained when
considered other ACs, like A (see for example CO;-like TPD
profiles of A-oxidized samples in Figure 5A) or other reagents
(see for example CO-like TPD profiles of W-oxidized samples
in Figure 5B).

It was previously demonstrated that the oxidation degree
introduced on ACs by electrochemical methods can be easily
adjusted, without the need of working at higher temperatures
or using highly corrosive reagents, by the suitable choice of the
applied current and treatment time (Berenguer et al., 2009, 2012).
For example, it was found that similar oxidation degrees can be
reached when the W is treated at 500 mA for 3 h than when it is
oxidized at 200 mA for 5h (Berenguer et al., 2012). The choice
of these parameters may be strongly affected by the reactivity
of the material, but also by its dimensions, morphology, and
configuration, which may determine their effective polarization
in the electrochemical cells and the contribution of direct
and/or indirect oxidation mechanisms (Berenguer et al., 2013a).
Furthermore, apart from current and time, the electrolyte also
plays a key role. For instance, in Cl~ solutions, the anodic
generation of Cl, and other oxidants can produce, through the
indirect mechanism, larger functionalization than in NaOH or
H,SOy4. Thus, the concentration of oxidants during treatments
in NaCl can be so high that the oxidizing conditions become
even harder than those of chemical treatments, explaining the
observed greater oxidation efficiency (Figure 5A). Considering
all these facts, enough high anodic currents (usually above
200mA) are necessary to cause similar or larger oxidation
degrees than chemical treatments, and specifically in the case

of ACs in the form of particles or cloths, which are not
completely fixed to/contacting the current collector (i.e., when
direct electrooxidation is less important).

Figure 5C represents the SOGs gain and Sggr decrease, after
similar electro-oxidation treatments, as a function of micropore
volume of the studied ACs. It can be observed that the extent
of oxidation and induced textural changes in the studied ACs
augment with their micropore volume. This trend observed for
the electrochemical method agrees with those found in literature
and hereby presented for the chemical oxidation of ACs. Respect
to the textural properties of the ACs, the extent of Spg-decrease
with the oxidation degree seems to be independent of the
oxidative method. Thus, the decrease in surface area may be
better correlated with the extent of oxidation (Figure 5D), so a
larger Sppt decrease is generally observed for the more efficient
electrochemical treatments (inlet of Figure 1). This fact is in line
with the blockage of micropores as the main mechanism affecting
the textural properties of oxidized ACs (see section Analysis of
Textural Changes).

In the case of the ZTC, both the higher reactivity and the
optimum polarization that is achieved by using ZTC-pastes
(see experimental section) involves the use of lower currents
for electrooxidation experiments. Figurel shows that under
different conditions the electrochemical oxidation allows to fill
the gap of properties that are difficult to obtain by uncontrolled
chemical treatments. For example, short (1 h) oxidation times in
NaCl at current between 2 and 20 mA (ZTC-Cl- curve) permit to
reach lower oxidation degrees that are rapidly overcome during
fast chemical treatments. On the other hand, long treatments
(15-36h) in H,SO4 at low current (2-5mA) (ZTC-H+- curve)
enable to reach similar or larger oxidation degrees to those
of most oxidizing chemicals but with considerably lower Sggr
losses. The effect on the textural properties is shown in the
Figure 5E. The figure shows that for a similar oxidation degree
of 5,100 umolO/g, the ZTC oxidized at 5mA for 15 in H,SO4
maintains a larger volume of micropores (larger volume of N,
adsorbed at low pressures in the isotherm) than the sample
treated with 30 wt% HNO; for 1h, both at RT. This greater
microporosity in the electro-oxidized sample agrees with the
higher intensity of the X-ray diffraction peak related to the long-
range microporous ordering from the Y zeolite template. In this
sense, Figure 5F demonstrates that at low currents, the extent
of structural degradation of ZTC (decrease in the intensity of
111-X-ray peak) can be gradually controlled just by adjusting
the treatment time. Hence, the considerably higher oxidation
degrees with lesser structural degradation in ZTC reached by
extending the treatment time of low-current anodic oxidations
in H,SO4 suggests that these are the most suitable conditions
to functionalize ZTC. Similar conclusions were reached from the
analysis of the modification of CO/CO5 ratios after the different
oxidative treatments (Berenguer et al., 2012, 2013a,b).

Apart from all these effects, to talk about the controllability
of the oxidative treatments is necessary to analyze the kinetics
of the process. As it can be observed in Figure 2A, the
linear or almost linear (gradual) evolutions of the oxidation
degree with time, for different microporous materials and under
quite different electrochemical conditions, are indicative of a
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controlled oxidation process. The slope of these linear trends
is related to the kinetics of the oxidation processes. One of
the main consequences of this behavior is that the oxidation
kinetics remain approximately constant for a given set of
experimental conditions (at least during the analyzed periods
of time). Moreover, Figure 2A also shows that the modification
of these electrochemical parameters (current, time, electrolyte)
enables to adjust the slope of the linear trend, i.e., the rate of the
oxidation reaction. By contrast, chemical oxidation treatments
show all (more exaggerated in the case of the ZTC) a fast-initial
oxidation (high slope) that rapidly slows down (low slope), i.e.,

a highly variable reaction rate difficult to control. For the ZTC,
the consequence of this fast reaction rate is that above 40%
of its initial BET surface area is lost just in few minutes, i.e.,
within the 1h of chemical oxidation (Figure 2B). This indicates
that the collapse of ZTC structure during chemical oxidation is
remarkably fast.

Interestingly, even at strong electrochemical conditions for
ZTC (ZTC-50 mA-Cl), where the oxidizing conditions are
comparable to those of most oxidizing chemical treatments, the
rate of ZTC electro-oxidation is slower (more controlled) than
chemical oxidation with 30 wt% HNO3; at 80°C (Figure 2A).
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This may be explained by considering that the concentration
of reactive species is initially zero and increases in a controlled
manner for the NaCl anodic treatment, whereas it is high from
the beginning for any chemical oxidation (Berenguer et al.,
2012). Another possible consequence of the less controllability
of oxidizing conditions is that the chemical oxidation may occur
rapidly on the outer surface of the carbon material, just after
physical interaction, so that the introduced SOGs could hamper
the diffusion of reagent into the inner pores. By contrast, in
indirect anodic treatments the reactants may be homogeneously
generated in any effectively-polarized micropore impregnated
with NaCl. This effect could also contribute to explain the
comparatively higher oxidation degrees and greater micropore
blockage (during N, adsorption-desorption analysis) when the
ACs are anodically oxidized in NaCl.

Selectivity

As exposed in the introduction section, among the spectrum
of different functionalities, only some specific groups are
desired for certain applications. For these applications, hence,
the selectivity of the functionalization becomes important.
Figure 6A compiles the CO;-evolving TPD profiles of various
carbon materials after different effective oxidative treatments
(AO > 3,500 pmolO/g). The chemical oxidation of the W
with (NH4),S,0g (W-S-5h) mainly increases the CO;-evolving
SOGs with lower thermal stability, i.e., those decomposing at
lower temperatures. Particularly, the profile is characterized by
two peaks, the most intense with maximum at 275°C and
a wider overlapped contribution with maximum at 450°C.

These evolutions have been assigned to carboxylic- and lactone-
like groups, respectively, on carbon surfaces (Figueiredo et al.,
1999). As it can be seen in the figure, the electrochemical
oxidation of the GAC in NaCl produces exactly the same CO,-
TPD profile, and the same was observed also for the chemical
treatment with 65 wt% HNOj3 (figure not shown). Furthermore,
exactly the same CO,-TPD profiles were also obtained for
A after electrochemical oxidation in NaCl (Figure 6A) and
chemical treatments with 65 wt% HNO3 or H,O; (figures not
shown), as well as many other ACs in literature (Otake and
Jenkins, 1993; Romdn-Martinez et al., 1993; Moreno-Castilla
et al.,, 1995, 1997; De la Puente et al., 1997; Figueiredo et al.,
1999; Pradhan and Sandle, 1999; Strelko and Malik, 2002;
Li et al, 2003; Bleda-Martinez et al., 2006). In particular,
different studies on the chemical oxidation of ACs point out
that, compared to HNO3, (NHy4),S,0s favors the generation
of carboxylic groups (Moreno-Castilla et al., 1995, 1997; Vinu
et al, 2007). On the other hand, quite similar CO-TPD
profiles, with a general increase in the whole temperature
range and a shift of the maximum toward lower temperatures,
were also obtained for the different materials treated under
these conditions.

The results observed by TPD were confirmed by XPS.
Figure 6B shows the O(1s) XPS spectra of the W samples
oxidized in 65 wt% HNO3, (NH4),S,0s, or anodically in NaCl
As observed, the spectra of the three oxidized samples are
centered at the same binding energy (532.7 eV). This suggests
that the same type of oxygen bonds prevail in these samples.
All these results indicate that, though different in concentration,
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the SOGs introduced by the chemical reagents and the anodic
treatment in NaCl are of the same nature, stressing the lack of
selectivity by these oxidative treatments.

By stark contrast, the GAC samples electrochemically oxidized
in H,SO4 and NaOH electrolytes, where the electrochemical
oxidation may be governed by direct polarization, displayed TPD
profiles and XPS spectra with different shape. For example, the
anodic oxidation in H,SOy4 leads to an increase in the most stable
CO;-evolving SOGs (Figure 6A) and, accordingly, a remarkable
shift in the O(1s) XPS binding energy toward lower binding
energies (centered at 531.3 eV) (Figure 6B). Hence, by changing
the electrolyte the electrochemical oxidation method enables to
reach a different selectivity.

In the case of highly-reactive ZTC, the oxidation by chemicals
or anodically in NaCl at high currents produced a general
increase in the whole TPDs, confirming the lack of selectivity.
As it can be observed in Figure 6C, the relative increase
in CO;-evolving groups was more significant after chemical
oxidation (CO/CO; = 2.80-2.90) than after electro-oxidations
at softer conditions in NaCl or H;SO,4 (CO/CO; = 3.60-5.60),
the later exhibiting a remarkably higher relative increase in
CO-evolving groups (sample ZTC-2H+-36h). In addition, this
sample treated in H;SO4 electrolyte shows a relative larger
generation of the most stable CO,-evolving groups, thus bringing
a different selectivity.

The remarkable increase in the CO-profile after
electrochemical oxidation in H,SO4 was associated to a large
generation of quinone-like SOGs (Itoi et al., 2014; Nueangnoraj
et al., 2015). Indeed, by controlling the parameters of the
electrochemical method, oxidized ZTC-derived carbons with
ca. 80-90% selectivity toward quinone-like SOGs generation
have been obtained. Since such a significant selectivity cannot
be achieved in ACs by using similar electrochemical methods,
the nature of the material may play also a crucial role.
Accordingly, it is hypothesized that the characteristic regular
structure of ZTC may somehow influence in the incorporation
of quinones.
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