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Multidrug resistance (MDR) of hepatocellular carcinoma is a serious problem. Although
CD13 is a biomarker in human liver cancer stem cells, the relationship between CD13
and MDR remains uncertain. This study uses liver cancer cell model to understand
the role of CD13 in enhancing the cytotoxic effect of chemotherapy agents. Cytotoxic
agents can induce CD13 expression. CD13 inhibitor, bestatin, enhances the antitumor
effect of cytotoxic agents. Meanwhile, CD13-targeting siRNA and neutralizing antibody
can enhance the cytotoxic effect of 5-fluorouracil (5FU). CD13 overexpression increases
cell survival upon cytotoxic agents treatment, while the knockdown of CD13 causes
hypersensitivity of cells to cytotoxic agents treatment. Mechanistically, the inhibition
of CD13 leads to the increase of cellular reactive oxygen species (ROS). BC-02 is a
novel mutual prodrug (hybrid drug) of bestatin and 5FU. Notably, BC-02 can inhibit
cellular activity in both parental and drug-resistant cells, accompanied with significantly
increased ROS level. Moreover, the survival time of Kunming mice bearing H22 cells
under BC-02 treatment is comparable to the capecitabine treatment at maximum
dosage. These data implicate a therapeutic method to reverse MDR by targeting CD13,
and indicate that BC-02 is a potent antitumor compound.

Keywords: CD13, MDR, bestatin, BC-02, 5FU

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common cancer type and the third leading
cause of cancer-related deaths worldwide (Mlynarsky et al., 2015). Prognosis remains poor due
to the low percentage of patients with HCC eligible for surgery (9–29%) (Tsurusaki and Murakami,
2015), high tumor recurrence rates after resection (60%) (Cheng et al., 2005), and limited
benefit of conventional chemotherapy (Cao et al., 2012; Deng et al., 2015). The resistance of
cancer cells to structurally and mechanistically unrelated classes of anticancer drugs is known
as multidrug resistance (MDR) (Gottesman et al., 2002). And MDR is one of the major causes
of chemotherapeutic failure in HCC therapy. Therefore, exploring more effective therapeutic
strategies for patients with HCC is urgently needed. Increasing clinical trials have proposed that
combination therapy may provide new strategy for chemo-resistance in patients with advanced
HCC (Alves et al., 2011; Cervello et al., 2012; Shin and Chung, 2013).
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Zhang et al. CD13 Inhibition Reverse MDR to 5FU

Aminopeptidase N (APN, EC 3.4.11.2), which is also
known as CD13, is a type 2 transmembrane Zn-dependent
metallopeptidase of the gluzincin superfamily. APN forms a
non-covalent bond homodimer on the cellular membrane.
It hydrolyzes oligopeptides and releases neutral amino acids
from the N-terminal end of small peptides. In human non-
small cell lung cancer, pancreatic carcinoma, and prostate
cancer, CD13 expression is associated with poor prognosis, and
CD13 expression is involved in cancer invasion and metastasis
(Tokuhara et al., 2006; Su et al., 2012). CD13 is also a marker for
semi-quiescent cancer stem cells (CSCs) in human liver cancer
cell lines and clinical liver cancer samples (Haraguchi et al.,
2010). CSCs or tumor-initiating cells are responsible for drug
resistance and tumor recurrence. CSCs express high level of ATP-
binding cassette (ABC) transporters. Suppression of Pim-3 kinase
expression by targeting CD13 can reverse MDR in HCC cells.
Therefore, ABC transporters and Pim-3 may contribute to CD13
mediated HCC MDR (Guo et al., 2017).

Bestatin, which is a [(2S,3R)-3-amino-2-hydroxy-4-
phenylbutanoyl] leucine obtained from the culture filtrates
of Streptomyces olivoreticuli, is a dipeptide with low molecular
mass. It is also a potent competitive inhibitor of CD13 with
antitumor activity. Bestatin synergistically enhances the
antitumor effects of anticancer drugs in HCC cell lines, and
the effects of bestatin are due to the increased intracellular
reactive oxygen species (ROS) levels (Yamashita et al., 2016).
Our previous data indicated that CD13 inhibitor 4cc synergizes
the antitumor effects of 5-fluorouracil (5FU) on human liver
cancer cells in a ROS-dependent manner. CD13-neutralizing
antibody (clone WM15, CD13 Ab) can also significantly induce
ROS production compared with control (Sun et al., 2015).

In the current study, we aim to understand the role of
CD13 in MDR and evaluate the antitumor effect of BC-02,
a novel mutual prodrug (hybrid drug) of bestatin and 5FU,
which can be degraded into bestatin and 5FU (Dou et al.,
2017), on drug-resistant tumor cells. CD13 inhibitor bestatin
and neutralizing antibody can enhance the sensitivity of tumor
cells to cytotoxic agents. CD13 overexpression or knockdown
affects the sensitivity of cells to cytotoxic agents. Compound
BC-02 can inhibit both parental and drug-resistance tumor cell
proliferation more markedly than single treatment of bestatin,
5FU, or a combination of 5FU and bestatin. All together, this
study may bring new strategy to reverse MDR in HCC cancer.

MATERIALS AND METHODS

Cell Culture and Reagents
Human hepatocarcinoma cell line PLC/PRF/5, Huh7, H7402,
HepG2, and human colon cancer cell HCT116 were maintained
in RPMI-1640 supplemented with 10% fetal calf serum (FCS).
Human alveolar epithelial cell line A549 was grown in Dulbecco
modified Eagle medium supplemented with 10% FCS. The cells
were incubated at 37◦C in a humidified atmosphere containing
5% CO2. Lipofection 2000 was purchased from Invitrogen (Cat.
11668-019). siRNA was synthesized by Shanghai GenePharma.
Bestatin (Cat. B8385), 5FU (Cat. F6627), and cisplatin (cis-DDP,

Cat. P4394) were purchased from Sigma. Gemcitabine (GEM,
Cat. G8970), Paclitaxel (PTX, Cat. SP8020), and doxorubicin
(DOX, Cat. D8740) were purchased from Solarbio. BC-02 (12a)
was synthesized by conjugating bestatin and 5FU as previously
described (Jiang et al., 2018).

PLC/PRF/5-5FU Cell Culture
Low dose of 5FU was added into the medium of PLC/PRF/5.
When cells need digest and passage, 5FU was also added after cell
attachment. For a long time of incubation, higher concentration
of 5FU was added. Then cells could survive at 40 µM 5FU.

Flow Cytometry
Determination of CD13 expression by FACS was described
previously (Wang et al., 2011). 1 × 105 cells were washed
with cold PBS and incubated with PE-conjugated monoclonal
antibody targeting CD13 (BD Pharmingen, CD13mAb clone:
WM15) for 60 min on ice. Then, the cells were analyzed on
FACScan (FACSAria II; Becton-Dickinson). For ROS assay, cells
were seeded and exposed to different drug samples. After 5 h
incubation, cells were isolated and incubated at 37◦C for 30 min
with 10 µM 2,7-dichlorofluorescein diacetate (DCFH-DA) in the
dark. Then the samples were washed and analyzed on a FACSCan.

Cell Viability Assays
2 × 103 cells/well were seeded in 96-well plate and allowed
to grow for 4 h and the drugs were added to the wells at
various concentrations. After 48 h, cells were incubated with
1% of 0.5 mg/ml MTT reagent for an additional 4 h. After
that, the culture was removed, and the cells were lysed with
100 µl dimethyl sulfoxide (DMSO). The optical density of
570/630 nm was read on a plate reader (M5, MD) to calculate the
inhibition rate. The inhibition rate of compounds was calculated
by (ODcontrol-ODtested)/ODcontrol × 100%, where OD is
the mean value of three replicate wells. The IC50 values were
determined using ORIGIN 8 software (OriginLab Corporation,
Northampton, MA, United States).

Transfection Assay
Cells were seeded on a 96-well plate and transfected with siRNA
targeting the sequence of CCGAAATGCCACACTGGTCAA of
the human ANPEP (CD13) sequence (NM_001150) (Lai et al.,
2012). Non-specific scrambled siRNA duplex was also purchased
from GenePharma (Shanghai, China). The transfection protocol
was according to the lipofection 2000 instruction.

Lentivirus Infection
Lentivirus particles was supplied by GeneChem. The target of
shRNA lentivirus was CCGAAATGCCACACTGGTCAA of the
human ANPEP (CD13) sequence (NM_001150). The human
ANPEP (CD13) sequence (NM_001150) was inserted into the
vector of overexpression lentivirus. CD13 overexpression and
knockdown lentivirus all overexpress green fluorescent protein.
The procedure was according to the instruction. In brief,
lentivirus particles was added into the medium of cells. Twelve
hours later, the medium was replaced with completed culture
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medium. Then puromycin treatment help to get the stably
overexpression or knockdown cells.

Clone Formation Assay
Cells were plated in 6 or 48-well plates for overnight. Then cells
were treated with different compounds for about 7–10 days.
When the cells grew to visible colonies (>50 cells) the medium
was discarded, and the cells were fiand with paraformaldehyde
and stained with 0.1% crystal violet. Then clones were counted
under an optical microscope.

Western Blot
Either 20 or 30 µg of total protein of each lysate were
subjected to 10 or 12% SDS–PAGE and electrotransferred onto
PVDF membranes (Cat. IPVH00010, Millipore). Membrane
was blocked with BSA and then incubated with primary
antibodies. After washing, HRP-conjugated secondary antibodies
were incubated. Washed with TBST, the bound antibodies
were visualized by enhanced chemiluminescence (ECL, Cat.
WBKLS0050, Millipore).

In vivo Anti-tumor Assay
3 × 106 H22 cells were injected to enterocoelia of Kunming
mice. And mice were divided into different groups randomly
and treated with agents. The survival period was recorded.
For drug-resistant cell assay, H22-bearing KM mice were given

86 mg/kg/day capecitabine. After 2 weeks, tumor tissues were
dissected from mice and triturated into single cell suspension.
Then cells were implanted subcutaneously in KM mouse.
Then mice randomized into vehicle and treatment groups,
and mice were treated with BC-02 (130 mg/kg/day, ig) and
capecitabine (370 mg/kg/day, ig). The mice body weight was
monitored. After 2 weeks, all mice were sacrificed and dissected
to weigh the tumor tissues. Animal experiment was approved
by the Guidelines of the Animal Care and Use Committee
of Weifang Medical University. The protocol was approved
by the Animal Care and Use Committee of Weifang Medical
University.

Statistical Analysis
Data was presented as the mean ± SD, and analyzed by Student’s
two-tailed t-test. The limit of statistical significance was P < 0.05.
Statistical analysis was done with SPSS/Win11.0 software (SPSS
Inc., Chicago, IL, United States).

RESULTS

Cytotoxic Agent Results in Upregulation
of CD13 Expression
As shown in Figure 1A, after the 5FU treatment, CD13
expression was upregulated in hepatoma tumor cells, such as

FIGURE 1 | Cytotoxic agents increase CD13 expression, and CD13 inhibitor bestatin enhances the antitumor effect of cytotoxic agents. Different tumor cells were
incubated with low cytotoxic agent dosage for 3 days, and CD13 expression was detected (A). Geometric mean fluorescence intensity was shown (B). MTT assay
was employed to detect the viability inhibition after cytotoxic agent treatments combined with different bestatin concentrations (C). Data represent mean ± SD
(n = 3). ∗P < 0.05 and ∗∗P < 0.01 vs. Ctrl.
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FIGURE 2 | CD13 inhibition enhances the cytotoxic effect of 5FU. PLC/PRF/5 cells were transfected with CD13-targeting siRNA. FCS was used to detect CD13
expression (A). (B) The average intensity of fluorescence of one experiment. The results were from a representative of at least three repeated experiments.
PLC/PRF/5 and Huh7 cells were treated with CD13-neutralizing antibody, CD13-targeting siRNA, 5FU, a combination of neutralizing antibody and 5FU, and a
combination of siRNA and 5FU. Then, ROS level (C) and cell viability (D) were detected. Data represent mean ± SD (n = 3). ∗P < 0.05 vs. 5FU, ∗∗P < 0.01 vs. 5FU.
The transfection protocol was performed according to the instructions of lipofection 2000.
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PLC/PRF/5, Huh7, H7402, and HepG2. 5FU could also increase
CD13 expression in human alveolar epithelial cell line A549
and human colon cancer cell HCT116. Other cytotoxic agents,
such as DOX and GEM, could also increase CD13 expression in
PLC/PRF/5 and Huh7 cells. Meanwhile, cis-DDP could decrease
CD13 expression of in PLC/PRF/5 cells.

CD13 upregulation induced by cytotoxic agent treatments
demonstrated that CD13 may contribute to cell resistance to
anticancer drugs. We supposed that CD13 inhibitor should
enhance the cytotoxic effect of these agents. Our data indicated
that CD13 inhibitor bestatin could enhance the cytotoxic effect
of DOX, GEM, cis-DDP, and PTX (Figure 1B). Combination
of bestatin and cytotoxic agents remarkably inhibited the cell
viability of PLC/PRF/5 cells, compared with single treatment
of cytotoxic agents (Figure 1C). Thus, the increased CD13
expression may protect cells from cytotoxic agents, and CD13
inhibitor bestatin enhances the cytotoxic effect of anticancer
drugs.

CD13-Targeting siRNA and Neutralizing
Antibody Increase the ROS Level and
Inhibit Cell Viability
Although bestatin could enhance the cytotoxic effect of
anticancer drugs, off-target effect for small molecular compound
was observed. To certify the role of CD13 in protecting
cells resistant to cytotoxic agent, CD13-targeting siRNA and
neutralizing antibody were employed to suppress CD13. CD13-
targeting siRNA could remarkably decrease CD13 expression
(Figures 2A,B). siRNA and neutralizing antibody could also
increase the ROS level in PLC/PRF/5 and Huh7 cells (Figure 2C).
Compared with single 5FU, a combination of siRNA and
neutralizing antibody with 5FU could remarkably increase the
ROS level (Figure 2C). We also obtained similar result in
MTT assay. Compared with single 5FU, siRNA and neutralizing
antibody could remarkably enhance the inhibitory effect of 5FU
on proliferation (Figure 2D). These data prove the importance of

FIGURE 3 | Effect of CD13 expression on drug resistance. PLC/PRF/5 cells were infected with lentivirus. After puromycin screening, PLC/PRF/5 cells with stable
CD13 overexpression or knockdown were obtained (A). A representative immunoblot from three independent experiments giving similar results is shown for each
western blot experiment. Densitometry for western blot was performed using AlphaEaseFC-v4.0.0 program. 1 × 103 PLC/PRF/5 cells, vector control, stable CD13
overexpression or knockdown PLC/PRF/5 cells were seeded in 6-well plates. Approximately 1 week later, cells were dyed with 0.1% crystal violet, and then
photographs were taken (B). The inhibition rate of different cytotoxic agents on overexpressed or knocked down cells were determined (C). Data represent
mean ± SD (n = 3). ∗P < 0.05.
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CD13 in tumor cell proliferation through the modulation of ROS
generation.

CD13 Overexpression Induces Cell
Resistant to Cytotoxic Agent and CD13
Knockdown Leads to Sensitivity to
Cytotoxic Agent
To further verify the relationship between CD13 expression and
drug resistance, we used a lentiviral vector to overexpress or
knockdown CD13 expression. PLC/PRF/5 cells with stable CD13
overexpression or knockdown were obtained (Figure 3A). CD13
overexpression or knockdown could promote or inhibit cell
colony formation (Figure 3B). Then, we detected the sensitivity
of cells to cytotoxic agents. Compared with parental cells, CD13
overexpression induced cell resistance to 5FU, GEM, cis-DDP,

and PTX (Figure 3C). In addition, CD13 knockdown sensitized
cells to cytotoxic agents (Figure 3C).

BC-02 Induces Higher ROS Generation
Than 5FU and Inhibits Cell Viability
Compound BC-02 can be degraded into bestatin and 5FU
(Dou et al., 2017). And BC-02 could inhibit the viability
of PLC/PRF/5 and Huh7 cells more effectively, compared
with single treatment of bestatin, 5FU, or a combination
of 5FU and bestatin (Figures 4A,B). Clone formation assay
also indicated that BC-02 could potently inhibit the clone
formation of PLC/PRF/5 and Huh7 cells compared with 5FU
and 1:1 combination group (Figure 4C). To verify specificity,
we used CD13-neutralizing antibody, which could inhibit clone
formation. Meanwhile, a combination of neutralizing antibody
and 5FU could markedly inhibit clone formation compared

FIGURE 4 | BC-02 increases ROS level and inhibits cell viability. (A) The chemical structure of compounds. PLC/PRF/5 and Huh7 cells were treated with bestatin,
5FU, equal bestatin and 5FU molars (1:1), and BC-02 for 48 h. Inhibition rate was determined using MTT assay, and IC50 value was calculated (B). (C) 250
PLC/PRF/5 or Huh7 cells were seeded in 48-well plates. After 8 h, 2 µM drugs or 1 µg/ml neutralizing antibody were added. Approximately 1 week later, cells were
dyed with 0.1% crystal violet, and then photographs were taken. (D) PLC/PRF/5 and Huh7 cells were treated with different drugs for 5 h, and ROS level was
detected. (E) MTT assay was used to detect the inhibition rate of 5FU, 5FU+500 µM NAC, BC-02, and BC-02+500 µM NAC by using PLC/PRF/5 cells. Data
represent mean ± SD (n = 3). ∗P < 0.05, ∗∗P < 0.01.
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FIGURE 5 | BC-02 inhibits the viability of 5FU-resistant cells. After long period of 5FU incubation, 5FU-resistance PLC/PRF/5 cells (PLC/PRF/5-5FU) can survive at
40 µM 5FU. CD13 expression was detected by FCS (A). The inhibition rate of different drugs at a concentration 100 µM on PLC/PRF/5-5FU cells were determined
(B). After MTT was added for 2 h, photographs of cells were taken (C). The IC50 values of different cytotoxic agents on PLC/PRF/5 and PLC/PRF/5-5FU cells were
determined using MTT assay. In addition, drug resistance index was calculated using the IC50 value of PLC/PRF/5-5FU cells versus the IC50 value of PLC/PRF/5
cells (D). Data represent mean ± SD (n = 3). ∗P < 0.05, ∗∗P < 0.01 vs. 5FU.
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with neutralizing antibody or 5FU alone (Figure 4C). Moreover,
cellular ROS was detected by FCS. These data indicated that
BC-02 could induce significantly higher level of ROS in
PLC/PRF/5 and Huh7 cells more effectively, compared with
single treatment of bestatin, 5FU, or a combination of 5FU
and bestatin (Figure 4D). Moreover, ROS scavenger N-acetyl-L-
cysteine (NAC) could protect cells from the cytotoxic effects of
5FU and BC-02 (Figure 4E). All these data together indicated
that cell growth was inhibited through CD13 inhibition due to
ROS generation.

5FU-Resistant Cancer Cells With
Upregulated CD13 Expression Are More
Sensitive to BC-02 Than 5FU
It is common to meet chemo-resistance for patients with
HCC. Whether the chemo-resistant cells overexpress CD13
and remain sensitive to BC-02? To uncover this problem, we
established 5FU-resistant PLC/PRF/5 cells (PLC/PRF/5-5FU)
through low dose of 5FU incubation. After a long duration
time of incubation with 5FU, PLC/PRF/5-5FU cells could survive
at a concentration of 40 µM 5FU. FCS data confirmed that
CD13 expression was upregulated in PLC/PRF/5-5FU chemo-
resistant cells (Figure 5A). Moreover, PLC/PRF/5-5FU cells were
resistant to 5FU but sensitive to BC-02 after being treated with
100 µM of either 5FU, bestatin, 5FU+bestatin (1:1), or BC-02

(Figure 5B). Photographs were also taken after MTT was added
(Figure 5C). Almost no cells were observed in the BC-02 group.
MTT assay further confirmed that almost no 5FU resistant cancer
cells could survive after BC-02 treatment. The IC50 values of
different cytotoxic agents to PLC/PRF/5 and PLC/PRF/5-5FU
cells were determined, and drug resistance index was calculated
using the IC50 value of PLC/PRF/5-5FU cells versus the IC50
value of PLC/PRF/5 cells. PLC/PRF/5-5FU cells were resistant to
5FU, PTX, and GEM, which were sensitive to BC-02, DOX, and
cis-DDP, respectively (Figure 5D). All these data indicated that
both parental and 5FU resistant cancer cells remain sensitive to
BC-02.

BC-02 Inhibits H22 Tumor Growth in vivo
Capecitabine, a prodrug of 5FU, is used as a first- and
second-line drugs for HCC treatment by several clinical trials
(Murer et al., 2016; Casadei Gardini et al., 2017). The in vivo
antitumor activity of capecitabine was stronger than that of
5FU in H22 cell-bearing Kunming (KM) mice transplant model
(data not shown). Therefore, capecitabine was chosen as the
positive control for our study in antitumor activity evaluation
in vivo. In lifespan extension assay, H22 cell-bearing KM
mice were treated with capecitabine (1 mmol/kg/day, iv), BC-
02(À) (0.15 mmol/kg/day, iv), BC-02(Á) (0.075 mmol/kg, bid,
iv), or BC-02(Â) (0.1125 mmol/kg, bid, iv). Both BC-02 and

FIGURE 6 | Antitumor activities of BC-02 in vivo. 3 × 106 H22 cells were injected to the enterocoelia of Kunming mice. Then, mice were divided into different groups
and treated with BC-02 and capecitabine, and survival period was recorded (A). Capecitabine-resistant H22 cells was inoculated subcutaneously in KM mice, and
they were treated with BC-02 and capecitabine. Then, mice body weight was monitored (D). After 2 weeks, all mice were sacrificed and dissected to weigh tumor
tissues (B,C). “#” means no tumor was found.
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capecitabine could extend the lifespan of mice, while BC-02(Â)
(0.1125 mmol/kg, bid, iv) was more potent than capecitabine
(Figure 6A).

We also detected whether BC-02 inhibit the growth of
capecitabine-resistant H22 cell. As described in the method
section, capecitabine-resistant H22 cells were implanted
subcutaneously in KM mice, and they were treated with BC-
02 (130 mg/kg/day, ig) or capecitabine (370 mg/kg/day, ig).
Both BC-02 and capecitabine could inhibit tumor growth
(Figures 6B,C). No decrease in body weight was observed
indicating the safety of BC-02 (Figure 6D). All together, BC-02
showed potent anti-tumor activity comparable to capecitabine
in vivo.

DISCUSSION

HCC accounts for 85–90% of all liver cancer (El-Serag,
2011; Chacko and Samanta, 2016). Only a small portion
of patients with HCC are available for surgery due to
delayed diagnosis (Diaz-Gonzalez et al., 2016; Grandhi et al.,
2016; Llovet et al., 2016; Mazzanti et al., 2016; Mazzoccoli
et al., 2016). Because of low response rate and high toxicity,
many chemotherapy agents have limited usage and can only
provide minimal benefit to the survival time of patients
with HCC (Simonetti et al., 1997; Connell et al., 2016).
In this study, we found that CD13 was a therapeutic
target which can reverse tumor cell MDR. Through the
inhibition of CD13 activity, bestatin could enhance the
cytotoxic effects of 5FU and other chemotherapy agents.
Therefore, bestatin can be used as a good strategy for tumor
therapy.

CD13 is a biomarker in human liver CSCs (Haraguchi
et al., 2010), which are related to cancer MDR, recurrence, and
metastasis. Therefore, we detected the relationship between
CD13 and MDR. The results showed that CD13 inhibitor
bestatin, CD13-neutralizing antibody, and CD13-targeting
siRNA all could enhance the cytotoxic effect of 5FU and other
chemotherapy agents. CD13 overexpression in PLC/PRF/5
cells could cause resistance to chemotherapy agents, while
knocking down of CD13 could make PLC/PRF/5 cells to became
sensitive to chemotherapy agents. All of these data together
indicated that CD13 is a good therapeutic target to reverse
MDR.

CD13-neutralizing antibody and bestatin can increase the
ROS level in CD13+CD90− PLC/PRF/5 and CD13+CD133+
Huh7 CSCs (Haraguchi et al., 2010). Excess of ROS induces
cytotoxicity and apoptosis of cancer cells. Our previous work
also indicated that BC-02 impaires the properties of liver CSCs
by targeting CD13 and upregulating the intracellular ROS and
ROS-induced DNA damage (Dou et al., 2017). APN inhibitor
4cc also synergizes the antitumor effects of 5FU in human liver
cancer cells via ROS-mediated drug resistance inhibition and
concurrent activation of the mitochondrial pathways of apoptosis
(Sun et al., 2015). Therefore, we detected the relationship
between CD13 inhibition and ROS. FCS data indicated that
CD13 inhibitor bestatin, CD13-neutralizing antibody, and CD13

targeting-siRNA all could enhance the ROS upregulation effect of
5FU in tumor cells. Therefore, through CD13 inhibition, tumor
cells cannot resist the ROS upregulation effect of 5FU, thereby
leading to proliferation inhibition. Gclm participates in ROS
scavenger pathway and encodes the glutamate-cysteine ligase
which catalyzes the rate-limiting synthesis step of glutathione
(GSH). GSH works as a critical cellular anti-oxidant and reducing
agent. Gclm is overexpressed in the CD13+CD90− fraction
in PLC/PRF/5 cells (Haraguchi et al., 2010). Therefore, CD13
may protect cells from excessive ROS through up-regulation of
Gclm.

Capecitabine has been tested as first- and second-line
treatments for HCC by some studies (Murer et al., 2016;
Casadei Gardini et al., 2017), and its antitumor activity was
higher than that of 5FU in the mice transplant model. In
the present assay, the capecitabine dosage was the maximum
endurable dosage, while BC-02 was used at a much lower
dosage. When treated with equal dosage, BC-02 performed
better than capecitabine (data not shown). Moreover, BC-02
(0.1125 mmol/kg, bid, iv) was also more potent than the
maximum endurable capecitabine dosage in lifespan assay.
Furthermore, BC-02 was also sensitive in capecitabine-resistant
H22 model. BC-02 achieved its antitumor activity through ROS
upregulation. Silver nanoparticles also increased ROS level and
lead to cell apoptosis (Wei et al., 2015). If BC-02 can be
made into silver nanoparticles, its antitumor activity will be
strengthened.

Li et al. (2015) reports that combining 5FU and bestatin
could enhance the anticancer activity of 5FU in human tumor-
derived cell lines and an H22 tumor-bearing mouse model. The
authors mainly focused on normal tumor cells. In this study, we
further indicated that the inhibition of CD13 could reverse the
resistance of HCC cells to 5FU. ROS up-regulation is involved
in the CD13 suppression induced cell death. However, we didn’t
detect the ROS generation and elimination molecular. Therefore,
the underlying molecular mechanism is still unclear and needs
further research.

CONCLUSION

Our study revealed CD13 as a promising target to reverse MDR.
Through CD13 inhibition, the cytotoxic effect of chemo-agents
will be enhanced via ROS upregulation. By the release of bestatin
and 5FU, BC-02 remained sensitive to resistant cells. Taken
together, BC-02 can be developed as a potent chemotherapeutic
agent for human liver cancer.
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A constitutive activation of the Wnt/β-catenin pathway is an initiating event in colon
carcinogenesis. We developed colon cancer cells models that highlight the non-
selectivity of previously described inhibitors of the Wnt pathway and we propose our
model as a suitable screening system for inhibitors of the pathway.

Keywords: cell models, Wnt/β-catenin pathway, inhibitors, high-throughput screening, colorectal cancer

RESULTS

A constitutive activation of the Wnt/β-catenin signaling pathway is admitted as an initiating
event of carcinogenesis in at least 90% of colorectal cancers (Giles et al., 2003). This constitutive
activity is mostly due to mutations of the APC tumor suppressor that result in the accumulation of
β-catenin in the nucleus where β-catenin interacts with TCFs transcription factors to activate the
transcription of target genes like c-myc (Sansom et al., 2007). To date, very few molecules targeting
the Wnt pathway have been discovered and none has been yet approved for clinical practice (Kahn,
2014). Therefore, there is a great interest in identifying new inhibitors of Wnt signaling for clinical
use.

Luciferase-based reporter assays are widely used for studying gene expression at the
transcriptional level. Here, we use such a system to set up a high-throughput screening assay for
inhibitors of the Wnt/β-catenin signaling pathway by using DLD-1 cells stably transfected with a
luciferase TCF reporter plasmid (Veeman et al., 2003). The choice of a good control was critical
given that a previous work dedicated to screen new Wnt inhibitors had recently been retracted
due to a non-selective inhibition of the firefly luciferase activity (Li et al., 2017). Besides, a reporter
system based on mutated TCF binding sites is available, but has a very low basal luciferase activity
and is rather a control for a non-specific activation of the Wnt pathway. Here, we developed a
genetically modified DLD-1 cell line model expressing the firefly luciferase under the control of the
E2F1 promoter, an independent promoter of the WNT pathway.
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FIGURE 1 | Effects of XAV939 (A), IWR-1 (B), WIKI4 (C), ICRT14 (D), and PNU-74654 (E) on luciferase activity of DLD1-Wnt-luc cells (black squares) and of
DLD1-luc control cells (white squares). (F) MTT assay was performed in presence of ICRT14 on DLD1-Wnt-luc cells (black circles) and on DLD1-luc control cells
(white circles). In parallel, luciferase activity of DLD1-Wnt-luc cells (black squares) and of DLD1-luc control cells (white squares) was measured. The Student’s t-test
was performed for doses of 0.5 µM and the probability of error (p-value) is indicated by arrows.

Two types of available Wnt inhibitors were used in order to
validate the model: the tankyrase (TNKS) inhibitors XAV939
(Huang et al., 2009), IWR-1 (Chen et al., 2009) and WIKI4 (James
et al., 2012), and the destabilizers of the TCF/β-catenin complex
ICRT14 (Gonsalves et al., 2011) and PNU-74654 (Trosset et al.,
2006). TNKS acts as an activator of the Wnt/β-catenin signaling
by mediating poly-adenosine diphosphate (ADP) ribosylation of
AXIN-1 and -2, two key components of the β-catenin destruction
complex whose inhibition enhances β-catenin degradation and
consequently inhibits the Wnt/β-catenin signaling (Yamada and
Masuda, 2017).

XAV939 (Figure 1A), IWR-1 (Figure 1B), and WIKI4
(Figure 1C) specifically inhibited the activity of the
Wnt/β-catenin signaling, with and IC50 of 0.13, 0.21 and
0.28 µM, respectively. However, a side activating effect was
observed at doses higher than 1 µM as evidenced by the increase
of the luciferase activity observed in the control conditions.
Besides, both ICRT14 (Figure 1D) and PNU-74654 (Figure 1E)
behaved as non-selective inhibitors as evidenced by the inhibition
of both Wnt dependent and independent luciferase activities. In

addition, PNU-74654 was poorly efficient. To further determine
whether the apparent inhibitory effect of ICRT14 on the Wnt
independent luciferase activity was due to a toxicity, or not,
we evaluated the impact of ICRT14 on cells viability by using
the MTT system in parallel with measurement of the luciferase
activity. As shown in Figure 1F, ICRT14 again decreased both
Wnt dependent and independent luciferase activities in a dose
dependent manner but had no significant effect on cells viability.

MATERIALS AND METHODS

Luciferase and MTT assays were done as we previously described
(Molina-Molina et al., 2008). More details about the methods are
available in the Supplementary Material.

DISCUSSION

With respects to the use of inhibitors previously reported as
specific, studies have concluded that biological activities were
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regulated by the Wnt/β-catenin pathway. In the present study,
we demonstrate that the destabilizers of the TCF/β-catenin
complex ICRT14 and PNU-74654 are unspecific inhibitors of the
Wnt/β-catenin pathway. Therefore, to test the implication of the
Wnt pathway in a biological mechanism, it seems more rationable
to use at least one of the specific inhibitors confirmed here.
Compared with the original reference system dedicated to test
the impact of compounds on the activity of the Wnt/β-catenin
signaling pathway, our method was set-up with an adequate
control that lowers the number of false positives resulting from
a non-specific inhibition of the luciferase enzymatic activity.
For example, using our method points out ICRT14 as a
non-specific inhibitor of the Wnt/β-catenin signaling pathway.
Besides, true positives will have to be dose-dependent tested,
and their ability to decrease the proliferation of colon cancer
cells will have to be evaluated for further potential therapeutic
purposes.
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Ferroptosis is a type of programmed cell death characterized by the accumulation of

lipid reactive oxygen species (L-ROS) driven by the oxidative degeneration of lipids

in an iron-dependent manner. The mechanism by which lipid oxidative degradation

drives ROS-ferroptosis involvesmetabolic dysfunctions that result in impaired intracellular

metabolic processes and ROS production. Recent studies have found that p53 acts

as a positive regulator of ferroptosis by promoting ROS production. p53 directly

regulates the metabolic versatility of cells by favoring mitochondrial respiration, leading

to ROS-mediated ferroptosis. In mild stress, p53 protects cell survival via eliminating

ROS; additionally, in human colorectal cancer, p53 antagonizes ferroptosis by formation

of the DPP4–p53 complex. In short, the mechanisms of p53-mediated ROS production

underlying cellular response are poorly understood. In the context of recent research

results, the indistinct roles of p53 on ROS-mediated ferroptosis are scrutinized to

understand the mechanism underlying p53-mediated tumor suppression.

Keywords: p53, ferroptosis, reactive oxygen species, tumor suppression, metabolic gene

INTRODUCTION

Ferroptosis, a new form of cell death, was first described in a high-throughput screening
of molecules for selectively inducing cell death in RAS mutant isoform cancer cells (1).
As a novel subtype of programmed cell death, ferroptosis is primarily characterized by
increased mitochondrial membrane density and volume shrinkage with distinct morphological,
biochemical, and genetic differences from other types of cell death, including apoptosis, necrosis,
necroptosis, and autophagy; for instance, the typical characteristics of apoptosis, including activated
caspases, chromatin condensation, and DNA fragmentation, are absent in ferroptosis (1, 2),
the distinctive morphological feature of erastin-treated cells involved smaller mitochondria with
increased membrane density (3). In addition, loss of the plasma membrane integrity of necrotic
morphological features and formation of double membrane-layered autophagic vacuoles during
autophagy are not observed in ferroptosis.

21

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00507
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00507&domain=pdf&date_stamp=2018-11-02
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liwentong11@163.com
https://doi.org/10.3389/fonc.2018.00507
https://www.frontiersin.org/articles/10.3389/fonc.2018.00507/full
http://loop.frontiersin.org/people/616133/overview
http://loop.frontiersin.org/people/618368/overview


Li et al. Targeted p53 on Ferroptosis

Small molecules belonging to class I and class II ferroptosis-
inducing agents trigger ferroptosis via inhibiting cystine-
glutamate exchange transporter (system X−

c ) and glutathione
peroxidase 4 (GPX4), respectively (4). Class I ferroptosis
inducers, such as erastin, sorafenib, sulfasalazine and the
neurotransmitter glutamate, system X−

c , class II ferroptosis
inducers, such as RSL3, FIN56 (5), or altretamine (6) are shown
to induce ferroptosis via inhibition of GPX4.

Recent studies have reported that p53 activation is essential
for ferroptosis in certain cancers. Since the discovery of p53,
its role on tumor suppression in tumorigenesis and cancer
therapy has attracted considerable attention. Loss of p53 is a
vital event in the tumorigenesis of many human cancers (7, 8).
In general, the tumor suppression activity of p53 in response
to cellular stress relies on its capability to elicit cell-cycle arrest,
apoptosis, and senescence. Nevertheless, recent efforts indicate
that other unconventional activities of p53 are also crucial for
tumor suppression (9, 10).

Novel roles of p53 on tumor suppression have come to light
when a synthetic mutant of p53, incapable of transactivating
the majority of known p53 target genes, displays antitumor
activities in unstressed organisms and some cancer-prone
mouse models (10, 11). A mutant p53 that loses acetylation
at some definite residues of the DNA binding domain is
disabled to evoke growth arrest, senescence, and apoptosis,
thereby inhibiting spontaneous tumor development through
sensitizing cells to ferroptosis (12, 13). Given that p53 is a
main regulatory factor of critically important cellular biological
processes, elucidating the mechanism by which p53 responds to
stress may clarify the upstream signaling of ferroptosis. In the
context of recent insights, the indistinct roles of p53 signaling
in reactive oxygen species (ROS)-mediated ferroptosis via the
transcriptional and non-transcriptional regulation of metabolic
targets are scrutinized (Table 1).

ACTIVATION OF P53 SENSITIZES CELLS
TO ROS AND TRIGGERS FERROPTOSIS

Increased accumulation of lipid reactive oxygen species (L-ROS)
in an iron-dependent manner is a fundamental characteristic
of ferroptosis (14, 27). Metabolic dysfunctions contribute to
ferroptosis by elevating the production of ROS independent of
mitochondria (5). Thus, several investigations have been devoted
to elucidate the regulatory roles of p53 on metabolic targets in
ROS production for regulating ferroptosis.

p53 participates in various cellular processes by acting as
a DNA binding transcription factor that selectively modulates
the expression of target genes. For example, wild-type p53
regulates the transactivation of cytochrome c oxidase 2 (SCO2),
favoring mitochondrial respiration over glycolysis (28). In
addition, p53 plays a negative regulatory role on glycolysis
via transcriptionally modulating glucose transporter (GLUT)1,
GLUT4 (24), TP53-induced glycolysis and apoptosis regulator
(TIGAR), and glutaminase 2 (GLS2) (15, 29) (Figure 1). p53
could also suppress glucose metabolism directly by binding
and inhibiting glucose-6-phosphate dehydrogenase (30). Clearly,

p53 directly adjusts the metabolic polyfunctionality of cells by
supporting mitochodial respiration, leading to ROS-mediated
ferroptosis.

MODULATION OF P53 ON THE
EXPRESSION OF SLC7A11 TO MEDIATE
FERROPTOSIS

p53 Represses SLC7A11 Expression
SLC7A11 (xCT) is a light-chain subunit of the membrane Na+-
dependent system X−

c , which is a disulfide-linked heterodimer
composed of SLC7A11 and a heavy-chain subunit (SLC3A2)
(31). Previous experiments showed the inconformity in the p53
activation and expression of SLC7A11, which could directly
affect ferroptosis in mouse embryonic fibroblast (MEF) cells (32).
System X−

c transfers intracellular glutamate to the extracellular
space and extracellular cystine into cells (33). Cystine is
then converted into cysteine for synthesizing glutathione
(GSH), which protects cells from oxidative stress. Inhibition
of system X−

c reduces intracellular GSH, resulting in an iron-
dependent ferroptosis mediated by the accumulation of L-ROS
(23).

Activation of p53 by nutlin-3 markedly decreases SLC7A11
expression in HT-1080 cells with basal system X−

c activity
(34). Knockdown of p53 completely abrogates the inhibition
of SLC7A11 (35), and system X−

c function and SLC7A11
expression in p53KO cells are insensitive to nutlin-3 (36).
Furthermore, microarray analysis confirmed that SLC7A11
is a novel target gene of p53 in a tetracycline-controlled
p53-inducible cell line (13). A previous study identified

a p53-binding sequence at the 5
′

flanking region of the
SLC7A11 gene and subsequently confirmed the formation
of a p53–DNA complex at the promoter region (13). The
transcriptional repression of p53 on SLC7A11 leads to
the destruction of cystine import, resulting in declined
glutathione production and enhanced ROS-mediated ferroptosis
(Figure 2).

p53-Dependent Repression of SLC7A11 Is
Independent of p53 Mutation
The molecular cascade whereby p53 restrains cystine transfer
by suppressing SLC7A11 expression to induce ferroptosis
may be conducive to the oncosuppressive roles of p53
(13). Although an acetylation-absent p533KR (K117/161/162R)
variant at certain lysine residues cannot transcriptionally
activate gene expression involved in pro-apoptotic and cell
cycle arrest, knock-in mice expressing p533KR are not tumor
prone and exhibit similar overall survival with the wild-type
mice (12). Similarly, studies on p5325,26, a transactivation-
compromised mutant variant of p53, displayed intact tumor
suppression of p533KR in the absence of the most downstream
genes of p53 (10). Reduced levels of SLC7A11 expression
caused by the p533KR variant in xenograft tumor models
lead to an apparent depression of tumor growth (13).
This finding indicates that the intact p53-SLC7A11 axis,
reserved in the p533KR variant, promotes the inhibition
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TABLE 1 | The mechanisms of transcriptional and post-translational regulation on metabolic genes involving in ferroptosis.

Active style Targets Function References

Transcriptional

regulation

GLUT1,

GLUT4

Negatively regulates glycolysis by transcriptional repression (14)

TIGAR Negatively regulates glycolysis by transactivation (15–17)

GLS2 Favoring aerobic glycolysis over oxidative phosphorylation and contributing to Warburg

metabolism

(11, 18–20)

SCO2 Coupling p53 to mitochondrial respiration provides a possible interpretation for the

Warburg phenomenon

(13, 21)

SLC7A11 Repression of SLC7A11 leads to destruction of cystine import, resulting in declined

glutathione production and enhanced ROS-mediated ferroptosis

(9, 15)

RRAD Negatively regulates glycolysis (17)

SAT1 lipid peroxidation and ROS-induced ferroptosis (22)

p21 Slower depletion of intracellular glutathione and a reduced accumulation of toxic L-ROS (23)

Post-translational

regulation

G6PDH Suppress glucose metabolism directly via binding and inhibiting with G6PDH (24)

DPP4 Dismantling of DPP4-p53 complex (25)

SOSC1 The regulation of SAT1 by p53 was SOCS1-dependent, stabilizating p53 (26)

of tumorigenesis independent of the conventional tumor
suppression mechanisms of p53. Thus, ferroptosis can ensue
from the transcriptional repression of SLC7A11 in a p53-
dependent mechanism in response to stress, irrespective of p53
mutational status (37).

However, whether cell ferroptosis upon ROS-induced by
p533KR in human cancer cells is similar to that of wild-type
p53 remains unclear. In addition, whether cyclophilin D could
be a downstream responder of p53 activation has yet to be
clarified (38).

Acetylation Is Crucial for p53-Mediated
Ferroptosis
p53 activity is controlled by a complex fine-tuning network
that includes protein stability, recruitment of co-inhibitor or
activator, and various post-translational modifications, such as
acetylation, ubiquitination, phosphorylation, and methylation
(25, 39). In particular, acetylation of p53 serves a vital
role in regulating downstream targets in a promoter-specific
activation during stress responses. Acetylation of p53 at
K120 by Tip60/MOF is crucial for p53-induced apoptosis
(40). Nevertheless, p53-mediated cell cycle arrest is involved
in the combinative acetylation of K120 by Tip60/MOF and
K164 by CBP/p300 (41). The p533KR mouse expressing
acetylation-deficient p53, similar to the K120/164R mutations
in human, displays intact p53-dependent metabolic regulation
but lacks p53 functions in pro-apoptosis activity and growth
arrest (12).

A recent study has found that p53 is acetylated at lysine
residue K98 by acetyltransferase CBP. Acetylation of p53
at K98 lysine residue in mouse does not interfere with the
steady-state, DNA-binding abilities and transcriptional activity
of p53. However, combinatorial absence of K117/161/162
acetylation and K98 acetylation abrogates p53-mediated
transcriptional regulation on SLC7A11, TIGAR, and
GLS2 (32).

Binding of p53 With DPP4 Limits
Ferroptosis by Regulating SLC7A11
Although p53 induces ferroptosis in a transcription-dependent

manner in various cancers, in human colorectal cancer (CRC),
it unusually functions in the regulation of erastin-mediated

ferroptosis. p53-deficiency contributes to the increased lipid
oxidation and GSH downregulation in CRC cells treated with

erastin (42). Interestingly, the aforementioned alterations in

malondialdehyde and GSH were recovered after transfecting p53
cDNA into p53−/− CRC cells (42).

Depletion of p53 contributing to ferroptosis is involved
with interdicting dipeptidyl-peptidase-4 (DPP4) activity in a

transcription-independent mechanism. DPP4, a membrane-

bound dimeric peptidase, is widely expressed in different cell
types and can cleave and degrade various bioactive peptides

biologically (43, 44). The function of DPP4 in tumorigenicity

has been studied in many tumors (45). Deviant expression of

DPP4 is associated with tumor aggressiveness in different cancers
(18, 46). Paradoxically, some advanced malignancies, including

lung squamous cell carcinoma and endometrial carcinoma, show
the absence of DPP4 (22). Thus, DPP4 may play different roles in

different backgrounds or cancers, and further studies are needed
to elucidate the exact mechanism of DPP4 in cancer.

DPP4 has been related to increased proportion of cancer stem

cells and worse prognosis of CRC patients (16). Loss of p53
restrains the nuclear localization of DPP4 and boosts plasma-

membrane-associated DPP4-dependent lipid peroxidation

in CRC cells; then, the DPP4–NOX complex is formed
and facilitates lipid peroxidation-induced ferroptosis. p53

antagonizes ferroptosis in CRC cells by facilitating DPP4 into
nuclear to form the DPP4–p53 complex; dismantling of the

DPP4–p53 complex can recover the ferroptosis sensitivity of

CRC cells to erastin (Figure 3). This mechanism differs from

the previously recognized role of p53 as a positive regulator
of ferroptosis in non-CRC cells (13, 32, 47, 48). Thus, the
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FIGURE 1 | p53 binding sites within the upstream regulatory region of the target gene promoters. Schematic diagram indicates the p53 binding sites within the

upstream regulatory region of the SLC7A11, SAT1, SCO2, TIGAR, and GSL2 promoters.

bidirectional regulation of ferroptosis by p53 in a transcription-
dependent and transcription-independent manner is dependent
on tumor types and background.

However, many vital questions need to be elucidated. First,
only two types of CRC cell lines are used in Xie’s experiment
(42), which is insufficient to prove the role of p53 and DPP4 on
ferroptosis in CRC. Second, DPP4 is ubiquitously expressed in
various cell types, including different tumors, whereas mutations
and deletions of p53 are also common in malignant tumors.
Further studies are needed to reveal the mechanism underlying
the different roles of the DPP4–p53 complex on the regulation
of SLC7A11 in CRC and other types of malignant tumors.
Third, whether that p53 favors the localization of DPP4 into
nuclear to form the DPP4–p53 complex could be affected
by the mutation of p53 or modification of p53, such as
acetylation, should be illuminated, and this may provide an

answer to the opposite effects of p53 in different cellular
context.

P53 REPRESSES THE TIGAR, GLS2, SCO2,
AND SAT1 GENES TO MEDIATE
FERROPTOSIS

TIGAR Plays an Antioxidant Functions in a
p53-Dependent Manner
As a target of p53, TIGAR is prefigured to participate in tumor
suppression and plays a role in antioxidant functions, which is in
line with its functions in preventing cells from the acquirement
of injury (49) (Figure 2). Nevertheless, in mouse models, the
absence of TIGAR reduces capabilities to regenerate injured
intestinal epithelium and represses tumor development with
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FIGURE 2 | Schematic diagram of transcriptional regulation of p53 on targets. (a) p53 transcriptionally represses the expression TIGAR, GLS2, and SCO2 to mediate

ferroptosis. (b) SOCS1 is required for p53 modulating some target genes and SOCS1–p53 complex preserves a pool of preactive p53 via preventing p53

degradation. (c) Modulation of p53 on the expression of SLC7A11 system X−c activity to mediate ferroptosis.

FIGURE 3 | Schematic diagram of post-translational regulation of p53 on targets. (a) p53 antagonizes ferroptosis by favoring DPP4 into a nuclear to form of the

DPP4–p53 complex and impeding formation of the DPP4–NOX complex, which is required for lipid peroxidation in ferroptosis. (b) p53 suppresses glucose

metabolism and production of NADPH via inhibiting glucose-6-phosphate dehydrogenase directly.
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ROS restriction (50). TIGAR is upregulated in some cancer
models and tumor types via a pattern that may be independent
on the maintenance of p53 (51, 52). Furthermore, TIGAR
expression negatively correlates with p53 expression in human
breast cancer (53). p53-independent expression of TIGAR is
poorly understood, although some transcription factors, such as
SP1, CREB, and other members of the p53 family (p63 and p73),
have been implicated in the regulation of p53 (17, 19, 54). In
brief, these results highlight that TIGAR functions as a tumor
suppressor in response to p53 but might also participate in
cancer development when TIGAR expression is deregulated and
uncoupled from p53 (20).

GLS2 Plays an Antioxidant Functions in a
p53-Dependent Manner
Glutaminolysis plays crucial roles in ferroptosis (27).
Glutaminolysis refers to the switch of glutamine into glutamate
under the catalysis of GLS1 and GLS2. Although both enzymes
are similar in structure and enzyme catalysis, GLS2 is required for
ferroptosis (27). Human GLS2 gene is located on chromosome
12q13 and contains two potential p53 binding sites (BS).
Adenovirus-mediated expression of p53 binds to both BS1
and BS2, but only BS2 is associated with endogenous p53.
These data show that p53, once activated, can directly combine
with BS2 in the GLS2 promoter and augment the mRNA
expression of GLS2 (21). Upregulation of GLS2 contributes to
p53-dependent ferroptosis by favoring aerobic glycolysis over
oxidative phosphorylation and contributing to Warburg effect
(27, 47, 55, 56) (Figure 2).

p53-Mediate Metabolisms via Repressing
the SCO2
Synthesis of SCO2 is essential for regulating the cytochrome c
oxidase complex, which is the main site of oxygen utilization
in eukaryotic cells. The balance between the utilization of
respiratory and glycolytic pathways is modulated by SCO2,
which is a downstream target of p53 (57) (Figure 2). The
source of energy from cellular respiration to glycolysis caused
by the loss of p53 function resembles metabolic switch toward
glycolysis in cancer cells with wild-type p53 when the SCO2
gene is depleted. SCO2 coupling p53 tomitochondrial respiration
provides a possible interpretation for the Warburg phenomenon
and supplies new ideas as to how p53 influences metabolism and
ferroptosis (28).

P53-MEDIATED ACTIVATION OF SAT1
ENGAGES IN FERROPTOSIS

The polyamines, amino acid-derived polycationic alkylamines,
are basic for the growth and survival of eukaryotic cells (58).
Polyamine metabolism is frequently dysregulated in cancers
(59). Spermidine/spermine N1-acetyltransferase 1 (SAT1), a rate-
limiting enzyme, catalyzes the acetylation of spermidine and
spermine into N1-acetylspermidine and N1-acetylspermine (60).

SAT1 could be highly induced by p53 (48). It is a p53-regulated
target in wild-type p53 melanoma cells treated with Nutlin using

RNA sequencing and two p53-binding sites have been found on
the promoter region of SAT1. SAT1 transcriptionally activated
in a p53-dependented manner is critical for lipid peroxidation
and ROS-induced ferroptosis, and decreased expression of SAT1
significantly abrogates p53-induced ferroptosis. Elevation of
prostaglandin-endoperoxide synthase 2 (PTGS2), a ferroptosis
inducer, was identified in high-SAT1-expression xenograft
tumors. Ferroptosis induced by SAT1 is arachidonate 15-
lipoxygenase (ALOX15) dependent (Figure 2). ALOX15 is a
lipoxygenase that catalyzes the peroxidation of arachidonic acid,
and inhibition of ALOX15 can entirely rescue SAT1-induced
ferroptosis. These results are consistent with the previous
finding that ALOX15 is a main adjuster with which oxidative
stress is transformed into lipid peroxidation and cell death
(61). Nevertheless, whether that SAT1 plays a role in tumor
suppression remains largely unknown.

SOCS1 REGULATES FERROPTOSIS BY
ACTIVATING P53 VIA PHOSPHORYLATION
AND STABILIZATION

Suppressor of cytokine signaling (SOCS) family proteins have
been implicated as negative feedback regulators of cytokine
signaling pathways mediated by JAK-STAT (62). SOCS is
involved in tumor development by regulating STATs in the
background of aberrant activation of the JAK/STAT5 pathway.
In particular, SOCS1 is thought to act as a pivotal tumor
suppressor through negative regulation of JAKs and plays vital
roles in tumor progression. Downregulated SOCS1 expression in
various human cancers has been associated with dysregulation of
cytokine receptor signaling pathways (63), whereas upregulated
SOCS1 expression is associated with earlier tumor stages and
better clinical outcomes in breast cancer (64).

A significant correlation exists between the expression of
SOCS1 and the SOCS1-dependent p53 target genes in human
fibroblasts, and SOCS1 is required for p53 activation (26, 65).
SOCS1-regulated genes overlap with a set of genes induced
by oxidized phospholipids, which has been recently linked to
ferroptosis (66). The regulation of SAT1 by p53 is SOCS1-
dependent, suggesting a role for SOCS1 in ferroptosis. Aside
from influencing p53 target gene expression, SOCS1 also plays a
general role in senescence by stabilizing the interactions of p53
with protein complexes at DNA damage foci (Figure 2). This
function of SOCS1 allows the maintenance of a pool of preactive
p53 that could be slowly released and contribute to generate a
lasting chronic p53 response (67). SOCS1 activates the functions
of p53 via facilitating the serine 15 phosphorylation of p53 and
stabilizing p53 by interfering with KAP1 (67).

DELAYED FERROPTOSIS ONSET
REQUIRES P21

CDKN1A (encoding p21) is a well-characterized target of p53
and key mediator of p53-dependent cell-cycle progression. p21
upregulation could cause a coordinated p53-mediated response
that normally decreases cystine import to match the lower
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metabolic demands of growth-arrested cells. The impact of
p21 on GSH metabolism renders it a reasonable target for
inducing ferroptosis in the context of p53 (68). Stabilization
of p53 and activation of the p53–p21 axis make many cancer
cells insensitive to ferroptosis induced by system X−

c inhibition
or direct cystine deprivation. p21-dependent suppression of
CDKs may be required to preserve GSH by regulating CDK-
regulated metabolic enzymes and inhibit ferroptosis by inducing
a complete cell-cycle arrest (69). However, the mechanism
through which the p53–p21 axis reduces cellular reliance on
system X−

c -mediated cystine import and ongoing de novo GSH
synthesis is unclear (36). Thus, the p53–p21 axis may help cancer
cell survive metabolic stress, such as cystine deprivation, by
suppressing the onset of ferroptosis, indicating that the p53–
p21 transcriptional axis negatively regulates ferroptosis in cancer
cells.

S47 POLYMORPHISM OF P53 DECREASES
FERROPTOSIS

Aside from mutations that impair p53 activity, single-nucleotide
polymorphisms of p53 also alter cancer risk and clinical outcome
significantly by impairing p53 signaling. About 20 years earlier,
a naturally occurring polymorphism in p53 was discovered in
Africans and African Americans; this polymorphism transforms
the proline residue adjacent to Ser46 to a serine in human p53
(70). In particular, the Pro47Ser polymorphism (S47) impairs
p53 apoptotic and transcriptional functions through reducing
phosphorylation on serine 46 (47, 55). The defect in p53 function
is traced to a restriction in downstream gene regulation that
reduces cell ferroptosis in response to stress (70).

Profound cell death is induced in wild-type MEFs cells treated
with erastin. However, cell viability assays certified that S47

MEFs and heterozygote S47/wild-type MEFs are resistant to
erastin, especially S47 MEFs (47). Interestingly, treatment with

erastin remarkably upregulates GLS2 expression in wild-type
cells but not S47 cells, and depletion of GLS2 in wild-type
MEFs recapitulates the cell death defect that is exhibited in S47
cells treated with erastin (47). The defective capacity of S47 to
transactivate GLS2 might annotate the ferroptosis defect and
tumor-prone characteristics of S47 mice (55).

In brief, elucidating the relevancy between p53 and ferroptosis
has shown the other features of p53 biology and provided insights
into the tumor suppression roles of p53. Clarification of the
mechanism provides further insights into exploiting feasible
therapeutic means through inducing ferroptosis defined by the
occurrence of ROS in p53-retaining tumors. Nevertheless, the

roles of p53 in ferroptosis remain formally demonstrated in
different contexts due to the appearance of opposite effects in

various cancer cells. Moreover, p53 could protect cells from
slight stress damage via eliminating ROS, but p53-mediated
ferroptosis owing to serious stress in cancer cells relies on the
accumulation of ROS. Nevertheless, the mechanism of p53-
mediated ROS production underlying cellular response is poorly
understood.
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Ruthenium complexes are a new generation of metal antitumor drugs that are
currently of great interest in multidisciplinary research. In this review article, we
introduce the applications of ruthenium complexes in the diagnosis and therapy of
tumors. We focus on the actions of ruthenium complexes on DNA, mitochondria, and
endoplasmic reticulum of cells, as well as signaling pathways that induce tumor cell
apoptosis, autophagy, and inhibition of angiogenesis. Furthermore, we highlight the
use of ruthenium complexes as specific tumor cell probes to dynamically monitor the
active biological component of the microenvironment and as excellent photosensitizer,
catalyst, and bioimaging agents for phototherapies that significantly enhance the
diagnosis and therapeutic effect on tumors. Finally, the combinational use of ruthenium
complexes with existing clinical antitumor drugs to synergistically treat tumors is
discussed.

Keywords: ruthenium complexes, antitumor, diagnosis and therapy, drug combinations, synergistic effect

INTRODUCTION

Chemotherapy is an important modality for cancer treatment. Since the introduction of metal
chemotherapeutics represented by cisplatinum (Figure 1A), numerous metal agents have been
developed as antitumor drugs, and platinum-based drugs have become the focus of metal-based
antitumor drug research (Harper et al., 2010; Burger et al., 2011; Wang X. et al., 2015). In
recent years, the platinum-based drugs have become the first line of anti-cancer drugs because
of their significant antitumor efficacy (Jakupec et al., 2008; Gasser et al., 2011; Wang and Guo,
2013). However, there are increasing reports that platinum-based anticancer drugs have severe
side effects including myelotoxicity, peripheral neuropathy et al. (Galanski, 2006; Samimi et al.,
2007). Therefore, researchers have turned their attention to other potential metal antitumor drugs.
Ruthenium complexes have shown remarkable antitumor activity among the numerous metal
compounds studied; they possess various advantages over platinum drugs, such as potent efficacy,
low toxicity, less drug resistance, and are expected to become a new generation of clinical metal
antitumor drugs (Abid et al., 2016; Thota, 2016; Southam et al., 2017).

There are three main oxidation states of ruthenium compounds. The high oxidation state
of Ru(IV) compound is unstable, which limited its further development (Duan et al., 2009).
Ru(III) complexes have good stability of thermodynamics and kinetics, and can be used as
prodrugs under biological circumstances of hypoxia, acidic pH and high level glutathione, showing
antitumor effect by reducing to corresponding Ru(II) counterparts in vivo (Minchinton and
Tannock, 2006; Antonarakis and Emadi, 2010). Ru(II) can directly kill tumor cells via multiple
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mechanisms (Zeng et al., 2015). Ru(II) complexes have great
photophysical and chemical properties as well as multiple
exchanging ligands. Combining with their applicability as
nanomaterials and they have demonstrated significant antitumor
efficacy (Poynton et al., 2017). Generally, the thermodynamic and
kinetic stability of Ru(II) compounds are higher than Ru(III) due
to their lower oxidation states (Duan et al., 2009). In addition,
the nature and net charge of the ligands play important roles in
the kinetics of Ru(II) compounds hydration (Abid et al., 2016).
Many Ru(II) compounds showed better antitumor activities than
their corresponding Ru(III) counterpart in vivo (Minchinton and
Tannock, 2006; Hartinger et al., 2013). Generally speaking, the
following options are viable in improving the water solubility
of ruthenium compounds. (i) modifying the ligand structures;
(ii) constructing the supramolecular ruthenium compounds; (iii)
encapsulating ruthenium compounds into nanomaterial systems.
(Suss-Fink, 2010; Jiang et al., 2012; Schmitt et al., 2012).

All the following ruthenium complexes that have progressed
to clinical studies, NAMI-A {ImH[trans-RuCl4(dmso)
(imidazole)]} (Figure 1B), KP1019 {indazolium trans-
[tetrachlorobis(1H-indazole)ruthenate(III)]} (Figure 1C),
and KP1339, are Ru(III) complexes (Webb et al., 2013). NAMI-A
showed potent inhibitory efficacy on tumor metastasis. However,
the phase II clinical studies revealed that it caused severe side
effects in patients and, therefore, further investigations were
not undertaken (Bergamo et al., 2003; Alessio et al., 2004).
KP1019 had also failed to be investigated because of its poor
water solubility, severe side effects and unsatisfactory efficacy
for clinical study, (Hartinger et al., 2006, 2008). To improve the
low water solubility of KP1019, researchers designed a more
soluble sodium salt complex, KP1339 [Na(trans-RuCl4 (Ind)2)]
(Figure 1D), which is currently used in clinical studies (Heffeter
et al., 2010). Using the potent photophysical and chemical
properties of Ru(II) complex, researchers have synthesized a
photosensitizer TLD1443 (Figure 1E), which has immensely
enhanced photodynamic therapy (Zeng et al., 2017a). It has a
significant therapeutic efficacy on bladder cancer and is currently
in phase II clinical trials (Smithen et al., 2017).

Based on the characteristics of ruthenium compound,
optimizing its structure with relevant modification is a good
strategy to improve its targeting capability and antitumor
activity (Blanck et al., 2012). Researchers designed a series
of lipophilic ruthenium complexes that effectively increase the
uptake efficiency of tumor cells (Svensson et al., 2010; Matson
et al., 2011). They found that the difference in the length of
alkyl ether chains contributed to the different organelle-targeting
properties of ruthenium complexes. Coupling of targeted
polypeptides with ruthenium complexes is another effective
way to enhance their targeting capability (Chakrabortty et al.,
2017). In addition, encapsulating ruthenium complexes into
nanomaterials can improve their targeting capability through
the enhanced permeation and retention (EPR) effect (Frasconi
et al., 2013; Wei et al., 2015). Capitalizing the properties of Ru(II)
complexes, researchers have designed a series of nanoruthenium
complexes including, Ru(II)-selenium nanoparticles (Sun et al.,
2013), Ru(II)-gold nanocomplexes (Rogers et al., 2014), Ru(II)-
silicon nanocomplexes (Frasconi et al., 2013), Ru(II)-carbon

nanotubes (Wang N. et al., 2015), and some organic and
biometallic nanoruthenium complexes (Chakrabortty et al.,
2017) with direct antitumor effects. These nanoruthenium
complexes can also be used as a good catalyst, photosensitizer
and tracer to enhance the therapeutic effect (Chakrabortty et al.,
2017).

ANTITUMOR TARGETS AND
MECHANISMS OF RUTHENIUM
COMPLEXES

Ruthenium complexes show multiple targets and diverse
mechanisms for its antitumor properties (Figure 2). Some
ruthenium complexes act on telomere DNA, some interfere
with replication and transcription of DNA, and others inhibit
related enzymes (Kurzwernhart et al., 2012; Jain et al., 2018).
Furthermore, ruthenium complexes can block the cell cycle
(Kou et al., 2012; Wang et al., 2016; De Carvalho et al., 2018)
and induce the formation of DNA photocrosslinking products
to prevent RNA polymerization enzymes or exonucleases from
binding to DNA, thereby causing tumor cell apoptosis (Le Gac
et al., 2009; Rickling et al., 2010). Studies have found that some
dinuclear and polynuclear Ru(II) polypyridyl complexes bind
stably to the G-quadruplex (G4-DNA) structure of telomere
DNA (Hiyama et al., 1995; Ambrus et al., 2006), inhibiting
telomerase activity and blocking the function of DNA replication,
thus, preventing normal cells from developing into immortalized
tumor cells (Rajput et al., 2006; Shi et al., 2008). Ruthenium
complexes have good topoisomerase (Topo) inhibitory activity
(Kurzwernhart et al., 2012); however, some studies have found
that inhibition of one type of Topo increases the activity of others
(Crump et al., 1999; Vey et al., 1999). To solve this problem,
studies have been conducted to synthesize a ruthenium complex
with dual inhibitory property on Topo I and Topo II, which
significantly inhibits tumor cell proliferation (Du et al., 2011;
Zhang et al., 2013). Researchers have also designed a ruthenium
complex with dual inhibitory effects on G4-DNA and Topo (Liao
et al., 2015), achieving multitarget synergy with strong apoptosis
promoting effects on tumor cells. In addition, Hurley and co-
workers reported a ruthenium complex with dual stabilizing
effects on Topo and G4-DNA, which also inhibited some drug
resistant tumor cells (Kim et al., 2003).

In addition, it was found that ruthenium complexes
accumulate more in organelles, such as mitochondria,
endoplasmic reticulum, and lysosome, than in nucleus (Puckett
and Barton, 2007; Groessl et al., 2011). A number of studies
have revealed that mitochondria is a key target of ruthenium
complexes (Wang et al., 2014; Liu et al., 2015; Wan et al.,
2017), because ruthenium complexes can quickly decrease the
membrane potential of mitochondria, leading to mitochondrial
dysfunction or activating mitochondrial apoptosis pathways.
Furthermore, this effect promoted the expression of pro-
apoptotic members of the B-cell lymphoma-2 (Bcl-2) family,
releasing cytochrome c (Cyto C), and activating cascade reactions
of the caspase family members to induce tumor cell apoptosis.
The endoplasmic reticulum is a key participant in tumor cell
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FIGURE 1 | Structure of five clinical complexes; (A) Cisplatinum, (B) NAMI-A, (C) KP1019, (D) KP1339, and (E) TLD1443.

apoptosis, autophagy, and drug resistance and, thus, is a target
in antitumor research (Sano et al., 2012; Fernandez et al., 2015).
Ruthenium complexes can target the endoplasmic reticulum,
cause oxidative stress or endoplasmic reticulum stress (ERS),
and induce tumor cell apoptosis by activating caspase family
members (Gill et al., 2013; Sano and Reed, 2013). In addition,
ruthenium complexes can target another significant participant
in autophagy, the lysosomes, inducing autolysosome production
and hydrolase release (Tan et al., 2010; Castonguay et al., 2012;
Chen et al., 2016). Thereby, they increase apoptosis of tumor
cells (Yuan et al., 2015).

A very important feature of ruthenium complexes is
that it is effective against many platinum resistant tumors.
Gasser et al. found that [Ru(dppz)2(CppH)]2+ (CppH = 2-
(20-pyridyl)-pyrimidine-4-carboxylic acid)] accumulated in the
mitochondria. Moreover, this Ru(II) complex showed more
cytotoxic effect in cisplatin-resistant A2780/CP70 cells than
cisplatin and less cytotoxic than cisplatin in normal MRC-5
cells (Pierroz et al., 2012). Dyson and co-workers also designed
some ruthenium complexes which contained ethacrynic acid
(EA) ligands that inhibited cisplatin resistant A2780cisR cells

(Ang et al., 2007). Moreover, Chao’s and Chen’s group designed
a series of mitochondria-targeted Ru(II) complexes, based
on a 2-phenylimidazo[4,5-f] [1,10]phenanthroline (PIP) Ru(II)
polypyridyl complexes. These complexes induced apoptosis via
a mitochondrial pathway and were effective against cisplatin
resistant tumor cells (Li et al., 2012c; Wang et al., 2014; Yu et al.,
2014).

The membrane structure as a “protective barrier” not only
regulates the entry of drug molecules into cells, but also acts as
a direct target of drug molecules, effectively killing tumor cells.
A number of studies have confirmed that ruthenium complexes
directly act on cell membrane, changing its permeability to allow
cellular content to flow out of cells and induce cell apoptosis
(Deng et al., 2017). Using the photophysical properties of Ru(II)
complexes, researchers designed a Ru(II) polypyridine complex
that accumulates on mitochondrial membrane and tumor surface
membrane. These complexes emit red phosphorescence and
produce a large amount of 1O2, thereby causing cytotoxicity
and inducing cell apoptosis (Hess et al., 2017; Pal et al., 2018).
Chao and colleagues synthesized Ru(II) pyridine complexes with
two-photon performance and 1O2 yield, which could serve as a
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FIGURE 2 | General targets and mechanisms of anticancer action of ruthenium complexes.

photosensitizer to simultaneously target surface membrane and
mitochondrial membrane of human cervical carcinoma (HeLa)
cells, achieving a dual killing effect (Qiu et al., 2017).

THE USE OF RUTHENIUM COMPLEXES
IN DIAGNOSIS AND TREATMENT OF
TUMORS

The effective diagnosis and treatment of tumors is a major
clinical challenge. Ruthenium complexes have shown promising
application prospects to this difficulty. The combination of
development and applications of subcellular targeting probes
and bio-imaging technologies with the understanding of the
occurrence and physiological development of tumors, is expected
to facilitate the achievement of tumor-specific diagnosis and
therapy. Ru(II) complexes have the advantages of considerable
photothermal stability, large stokes shift, long luminescence
lifetime, and low toxicity (Gill et al., 2009). They are ideal
photosensitizers, catalysts, and imaging agents in phototherapy,
and could serve as excellent probes and tracers for subcellular
structure localization. Thomas and colleagues reported a
lipophilic Ru(II) complex that can be used as a fluorescent
probe, targeting the mitochondria and endoplasmic reticulum of
human breast cancer cell (MCF-7), and it showed comparable
cytotoxicity to that of cisplatin (Gill et al., 2013). In addition to
targeting and imaging tumor subcellular structures, ruthenium
complexes can also detect and specifically recognize biological

components of the microenvironment. As a significant active
ingredient in organisms, the level of thiol in tumor tissues can
change rapidly. Specific recognition of the thiol level is important
for tumor diagnosis and therapy (Dirican et al., 2016; Inal et al.,
2017). The Ru(II)-gold nanocomplex synthesized by Chao and
co-workers could be used as a specific two-photon probe for
thiol level, as it detected biothiol levels in living HeLa cells
and mouse hippocampus using two-photon microscopy, which
provides a potent tool for molecular biology research in tumors
(Zhang et al., 2014). The oxygen allotrope O2 is an indispensable
source of metabolic energy and could be specifically identified
and used to monitor the local metabolites of tumor cells,
which would facilitate tumor diagnosis and therapy. Keyes and
colleagues found that a peptide-bridged dinuclear Ru(II) complex
as the mitochondrial fluorescent probe can monitor the dynamic
changes of O2 concentration in mitochondria of HeLa cell, which
could be used to monitor the malignant proliferation of tumor
cells (Martin et al., 2014). The non-oxygen-dependent Ru(II)
complex has been used as a photosensitizer in treating hypoxic
tumors. This complex overcomes the limitations of low-depth-
effect and low cell killing efficiency of phototherapy, significantly
increasing 1O2 production and fluorescence efficiency, thus,
enhancing cytotoxicity of ruthenium complex and showing
potent therapeutic effects (Volker et al., 2014; Sadhu et al., 2015;
Cuello-Garibo et al., 2017).

The development of DNA structure recognition and imaging
probes enables us to understand the pathogenesis of cancer at
the genetic level, which has enhanced the study of antitumor
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drugs. Using the optical switch effect of Ru(II) complex to DNA
(Augustyn et al., 2007), a Ru(II) polypyridine complex as a
DNA secondary structure recognition probe was designed. The
Barton research team reported a selective Ru(II) complex for
DNA mismatch detection and fluorescence localization, which
effectively reduces the risk of carcinogenesis caused by base
mismatches (McConnell et al., 2012). DNA bulge structures are
caused by the DNA recombination process, which is likely to
cause a frameshift mutation in DNA replication. This structure
binds more tightly to DNA repair proteins than it does to normal
double-stranded DNA, making the bulge structures a potential
binding site for therapeutic drugs (Pieniazek et al., 2011). Keene
and colleagues synthesized a series of binuclear Ru(II) complexes
that selectively recognize and bind to DNA bulge structures
via electrostatic interaction and zonal action, and have DNA-
targeted repair function (Mulyana et al., 2011; Li et al., 2012a).
Z-DNA induces gene deletion, translocation, and other instability
(Dumat et al., 2016). Tridentate complexes, [Ru(tpy)(ptn)]2+

and [Ru(dmtpy)(ptn)]2+, were designed to induce Z-DNA
transforms into a stable B-DNA dominant conformation, which
effectively decreased the risk of mutations (Li et al., 2012b).

In addition to DNA imaging, some complexes were
synthesized by coupling fluorescent Ru(II) complexes with
histone deacetylase inhibitors (HDACIs). These complexes
specifically recognize and image proteins (Kurzwernhart
et al., 2012). Further investigation has found that it not only
images and inhibits HDACs, but also produces a large amount
of reactive oxygen species (ROS) under light irradiation,
showing comparable cytotoxicity to that of cisplatin. Thus, it
induces apoptosis of some tumor cells. Photoacoustic imaging
(PA) is a novel imaging technique for tissue imaging based
on optical absorption coefficients under the action of an
imaging agent (Levi et al., 2014). Liu and co-workers used
poly(nisopropylacrylamide) as a thermal response switch and
[Ru(bpy)2(tip)]2+ as a photosensitizer in combination with
gold nanomaterials to synthesize the Ru(II) complex pRu-
pNIPAM@RBT (Chen et al., 2017). Under optical stimulation,
this complex produces high heat and large amounts of ROS in
tumor tissues, and it showed synergistic action in photothermal
therapy (PTT) and photodynamic therapy (PDT) against
tumors. Ruthenium complexes are good imaging agents for PA.
Combination of infrared thermal imaging quantitative analysis
and PA data, can be effectively used to distinguish healthy and
tumor tissues, which has significantly improved the accuracy and
efficiency of tumor therapy (Su et al., 2010).

At the organizational level, tumor cell proliferation and
metastasis depend on adequate nutrient supply and angiogenesis.
Therefore, blocking tumor angiogenesis is also a key strategy
to inhibit tumor growth and migration (Gau et al., 2017).
Studies have found that some ruthenium complexes have good
antiangiogenic effects and effectively inhibit tumor growth (Silva
Sousa et al., 2016). Liu and colleagues designed a fluorescent
Ru(II)-selenium nanoparticles (Ru-SeNPs) that significantly
inhibited the proliferation of liver carcinoma HepG2 cells.
In vivo experiments in tumor bearing mice revealed that
NAMI-A potently inhibited tumor angiogenesis and migration
(Vacca et al., 2002). In another study, the nitric oxide synthase

(NOS) pathway was found to play an important role in tumor
angiogenesis (Chakraborty and Ain, 2017). Increasing NO levels
is positively correlated with tumor growth and migration.
Drugs that interfere with the NOS pathway can inhibit tumor
angiogenesis. It has been observed that NAMI-A inhibits vascular
endothelial growth factor (VEGF)-mediated angiogenesis in
tumor tissues by scavenging NO (Morbidelli et al., 2003).

SYNERGISTIC EFFECT OF RUTHENIUM
COMPLEXES

Drug combinations are common therapeutic strategies in
clinical practices. Combinational drug molecules act on multiple
targets and pathways simultaneously, which could enhance their
synergistic effects, reduce dosage and side effects, and reduce
the risk of drug resistance (Lehar et al., 2009). A ruthenium
complex was combined with a second-line antitumor agent
ketoconazole (KTZ) in hormone-refractory cancer therapy to
form a RuCl2(KTZ)2 complex, which showed a favorable
synergistic effect (Bozic et al., 2013). The combination of
these two agents in a C8161 melanoma cell line significantly
enhanced the expression of caspase-3 and promoted tumor cell
apoptosis. Mechanistic studies have shown that RuCl2(KTZ)2
has mitochondrial targeting effects, releasing mitochondrial
cytochrome c and activating superoxide dismutase (Mn-SOD),
thereby facilitating apoptosis. In the melanoma (WM164) cell
line, RuCl2(KTZ)2 displayed a stronger inhibitory effect on tumor
cell growth than cisplatin, and induced apoptosis by activating
poly-ADP ribose polymerase (PARP) fragmentation and the
proapoptotic factor Bcl-2-associated X protein (Bax) expression.
RuCl2(KTZ)2 acts on the P53 signaling pathway to effectively
inhibit the proliferation of a variety of adherent tumor cells,
and synergizes the anti-epidermal growth factor receptor (EGFR)
inhibitor C225MAb to kill resistant spheroids (Gelfo et al., 2016).

Berger and colleagues studied the combinations of ruthenium
complexes and first-line anticancer drugs. They found that
the clinical drug, ruthenium complex KP1339 combined with
multi-kinase inhibitor sorafenib was more effective in the
therapy of hepatoma (Hep3B) than KP1339 or sorafenib
alone (Heffeter et al., 2013). Specifically, the mean survival
of patients was extended by 3.9-fold by the combination,
whereas KP1339 and sorafenib alone extended it by 2.4-and 1.9-
fold, respectively. The combination of both agents effectively
inhibited sorafenib-resistant tumor cells. In-depth investigations
have found that the combination substantially increased their
intracellular accumulation and, thereby, interfered with the DNA
synthesis process, rendering the cells unable to perform effective
mitosis, and enhancing apoptosis induction.

In clinical studies, NAMI-A combined with gemcitabine,
better inhibited the activity of non-small cell lung cancer cells
and reduced tolerance compared with the use of gemcitabine
alone, but the combination of both had significant side effects
such as neutropenia, anemia, and renal impairment (Leijen
et al., 2015). Sava and co-workers identified promising drug
combinations with synergistic potential using high-throughput
screening (Bergamo et al., 2015). NAMI-A and doxorubicin
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were shown to have a potent synergistic antitumor efficacy.
NAMI-A effectively increased the accumulation of doxorubicin
in breast carcinoma. In in vivo studies of mouse MCa mammary
carcinoma, this combination increased inhibition of tumor
metastasis by 70%, compared to the use of doxorubicin alone. In
a lung metastasis preclinical tumor model in mice, both agents
demonstrated promising synergistic effects (Marien et al., 2017).
However, there were noticeable side effects when the maximum
doses were used.

The tumor vasculature is poorly organized, resulting in
extravascular permeation of drug molecules (Pries et al., 2010). In
addition, the decreased blood flow and oxygen supply affects drug
uptake, which is also a major obstacle to effective tumor therapy
(Siemann and Horsman, 2015). Studies on the combination
of ovarian carcinoma chemotherapeutic doxorubicin and a
ruthenium complex RAPTA-C have demonstrated that this
combination significantly promoted the apoptosis of A2780
ovarian carcinoma cells compared with either single drug alone
(Weiss et al., 2015). Normalization of tumor vasculature induced
by apoptosis reduces vascular extravasation, and provides
adequate oxygen for oxygen-dependent phototherapy, achieving
synergism (Goel et al., 2011). These studies provide valid evidence
for the interaction between anti-angiogenesis and antitumor
effects.

CONCLUSION AND PERSPECTIVES

Investigation of the antitumor activity of ruthenium complexes
has led to gratifying achievements and the identification of
some promising antitumor compounds (Chen et al., 2016;
Alves de Souza et al., 2017; Zeng et al., 2017b; Zhao et al.,
2018). The ruthenium complex showed more potent activities
than platinum drugs, and has a significant inhibitory effect on
platinum-resistant tumor (Zeng et al., 2016). The peculiarity
of ruthenium compounds suggests that the research methods
used for investigating platinum-based drugs may not fully be
applied in these agents, because the cytotoxic mechanisms of
cisplatin and ruthenium are different. The primary target of
cisplatin is DNA, but the target of some ruthenium complexes
is mitochondria or endoplasmic reticulum. Although they can
both regulate cell apoptosis and cell cycle, cisplatin induces a large
number of genes related to DNA damage, P53 and apoptosis,
while some ruthenium complexes facilitate the expression of
oxidative stress and ER stress (Licona et al., 2017).

The existing research achievements should be combined with
molecular biology and nanomaterials, applying the advantage
of existing tools and methods to develop antitumor drugs
with better therapeutic effects, based on these complexes. This
prospect is extremely enlightening, and antitumor drugs with
better efficacy than that of existing chemotherapeutic drugs,
which are ineffective in treating certain tumors, could be
developed. Furthermore, the prospective agents could be effective
against tumors that have developed drug resistance for their
potent efficacy (Wang N. et al., 2015; Purushothaman et al.,
2018). The results of clinical studies should be reflectively
considered in determining the reasons for the failure of the

clinical investigations of NAMI-A and KP1019, which could
lead to design drugs with less side effects, greater selectivity,
and higher bioavailability. For example, KP1339, the sodium
salt of KP1019, which is currently in clinical studies, has better
water solubility and transmembrane absorption efficiency than
KP1019 (Bytzek et al., 2016). The Ru(II) complex TLD1443, as
a promising photosensitizer, significantly enhanced the efficacy
of phototherapy and produced less toxicity in vitro and in vivo
(Smithen et al., 2017).

Numerous breakthroughs have been made in the diagnosis
and therapy of tumors using ruthenium complexes (Thota
et al., 2018). As a probe, the ruthenium complex could
be used for target localization and imaging of DNA, the
mitochondria, endoplasmic reticulum, and lysosomes, achieving
specific identification and dynamic monitoring of thiol and
O2 in tumors (Martin et al., 2014; Zhang et al., 2014). As
a tracer, it enhances the understanding of the physiological
development of tumors at the genetic level (Wilson et al.,
2016; Xu et al., 2016). As photosensitizers and catalysts, these
complexes have significant synergistic effects with phototherapies
such as PDT, PTT, and photoactivated chemotherapy (PACT)
(Chen et al., 2017). The combination of ruthenium complexes
and PA imaging technology has significantly improved the
accuracy and effectiveness of tumor diagnosis and therapy
(Chen et al., 2014). In the therapy of tumors using drug
combinations, ruthenium complexes have shown favorable
efficacy. The Ru(II) complex combined with KTZ significantly
inhibited the proliferation of C8161 melanoma cells and directly
killed cisplatin-resistant spheroids (Bozic et al., 2013). KP1339
combined with the first-line anticancer drug sorafenib for
hepatic carcinoma, demonstrated a remarkable therapeutic effect
(Heffeter et al., 2013). Furthermore, NAMI-A combined with
gemcitabine enhanced the inhibitory effect on non-small cell
lung cancer while NAMI-A combined with doxorubicin showed
potent inhibitory effects on lung metastasis in vivo (Bergamo
et al., 2015). RAPTA-C and doxorubicin showed synergistically
enhanced therapeutic effects on ovarian cancer and some solid
tumors (Weiss et al., 2015). However, studies on the synergistic
effect of ruthenium complexes are rare, because there are some
uncertain factors such as the mechanism of drug synergy and how
to choose drugs that cooperate with ruthenium complexes (Zhao
et al., 2013; Madani Tonekaboni et al., 2018).

In conclusion, the results of the investigations on drugs
combinations with ruthenium complexes are currently
unsatisfactory. Perhaps the development and use of high-
throughput screening technology and algorithm analysis tools
are a viable strategy to promote the study of drug synergistic
effects (Aviolat et al., 2018).

Presently, the mechanism of action of ruthenium complexes is
unclear, and further research is still needed. Before the ruthenium
complex can be used clinically, numerous problems need to
be addressed, including strategies to improve the hydrolysis of
ruthenium complexes to achieve effective absorption and better
metabolism, as well as enhance their cellular penetration to
achieve targeted tumor cell death. Furthermore, methods to avoid
and alleviate the side effects of ruthenium complexes, enhance
their efficacy via synergism, and overcome drug resistance are
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imperative. The solution to these problems would provide a
promising direction for the design and screening of ruthenium
complexes, which are of great significance for their use in clinical
diagnosis and therapy of tumors.
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Background and Purpose: Although trastuzumab has shown considerable activity in
the treatment of HER2-positive breast and gastric cancers, a significant proportion of
patients do not respond to trastuzumab. Recent studies revealed that osthole, an active
coumarin isolated from Cnidium monnieri (L.) Cusson possesses potent anti-tumor
activity. Here, we for the first time investigated the anti-tumor activity of trastuzumab
in combination with osthole in HER2-overexpressing cancers.

Materials and Methods: N87 and SK-BR-3 cell lines, which were HER2-
overexpressing cancer cells were used in our study. Cell Counting Kit-8 (CCK-8) assay
was utilized to test the inhibitory effects of trastuzumab plus osthole. Combination index
(CI) values were calculated using the Chou-Talalay method. Fluorescence-Activated Cell
Sorter (FACS) assay was used to examine the cell cycle change and apoptosis upon
combinatorial treatment. N87 tumor xenografts were established to evaluate in vivo
effects of trastuzumab plus osthole. In addition, molecular mechanisms were analyzed
by Western blot in vitro and in vivo.

Results: As shown in our study, osthole alone exhibited effective anti-tumor activity
against HER2-overexpressed N87 gastric cancer cells and SK-BR-3 breast cancer
cells, which may be attributed to cell cycle arrest on G2/M phase and apoptosis. More
importantly, our data demonstrated that trastuzumab plus osthole was much more
potent than either agent alone in inhibiting the growth of N87 cancer cells in vitro
and in vivo, which may be partly explained by the enhanced apoptosis upon the
combinatorial treatment. Besides these, we also observed a significant decrease on
the phosphorylation of AKT and MAPK in N87 cells when treated with trastuzumab
plus osthole compared to either agent alone. Further data from N87 tumor xenografts
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revealed that trastuzumab plus osthole exerted their synergistic effects mainly on AKT
signaling pathway.

Conclusion: Collectively, these results support the clinical development of combination
osthole with trastuzumab for the treatment of HER2-overexpressed gastric cancer.

Keywords: trastuzumab, osthole, gastric cancer, apoptosis, AKT

INTRODUCTION

Amplification of human epidermal growth factor receptor-2
(HER2), an important member of the ErbB family, is found in
many solid tumors such as breast cancer and gastric cancer (Han
et al., 2014; Yang et al., 2017). HER2 activation is dependent
on HER2 homodimers or heterodimers with other ErbB family
members, which could stimulate constitutive phosphorylation of
HER2 and initiate the key downstream PI3K/AKT pathway or
MAPK pathway that results in tumor growth and progression
(Agus et al., 2002; Baselga and Swain, 2009; Wang et al.,
2017). Trastuzumab is a well-known HER2-targeted humanized
antibody that binds to the extracellular domain IV of HER2
and then causes inhibition of activation of downstream pathway
(Wang et al., 2012; Li et al., 2013). It was approved by the US
Food and Drug Administration (FDA) for clinical use for patients
with HER2-overexpressing metastatic breast cancer in 1998, and
for HER2-positive metastatic gastric cancer in 2010 (Baselga and
Swain, 2009; Zheng et al., 2014). Despite the effectiveness, the
majority of trastuzumab-responsive patients developed resistance
within 1 year of treatment (Han et al., 2014; Zheng et al., 2014;
Yang et al., 2017). Increased levels of membrane-bound EGFR
and HER3 or sustained PI3K-AKT pathway activation has been
implicated in the resistance to trastuzumab (Baselga and Swain,
2009). Collectively, there is an urgent need to enhance the efficacy
of trastuzumab therapy.

Osthole is a natural coumarin, which was first derived
from Cnidium monnieri (L.) Cusson (Zhang et al., 2015).
As we know, osthole has been used in Traditional Chinese
Medicine (TCM) for the treatment of cutaneous pruritus,
eczema, trichomonas vaginalis infection, and sexual dysfunction
for a long time (You et al., 2009; Zhang et al., 2012). Studies
also revealed that osthole exhibited many pharmacological and
biological activities, including anti-oxidation, anti-osteoporosis,
and anti-inflammation (Liao et al., 2010; Chen et al., 2011).
Recently, osthole was found to potently inhibit the growth
of several types of cancer (Yang et al., 2003; Ye et al., 2013;
Wang et al., 2015). However, its molecular mechanism has
not been comprehensively elucidated although osthole has
shown potent anti-tumor effects. Xu et al. (2011) revealed
that osthole treatment caused G2/M arrest and apoptosis
via modulating PI3K/Akt signaling pathway in lung cancer
A549 cells. Besides, osthole was found to inhibit invasion and
metastasis through down-regulation of MMP-5 and MMP-9
level in human lung adenocarcinoma cells (Kao et al., 2012).
Moreover, studies revealed that osthole exerted anti-tumor effects
on HER2-overexpressed breast cancer through inhibiting the
c-Met/Akt/mTOR pathway (Lin et al., 2010; Hung et al., 2011).

However, the anti-tumor activity of trastuzumab plus osthole in
HER2-overexpressed cancers has not yet been reported.

Herein, we first investigated the anti-tumor effects of osthole
alone in HER2-overexpressed N87 gastric cancer cells and SK-
BR-3 breast cancer cells. Results revealed that osthole caused
G2/M arrest and apoptosis in the two types of cancer cells,
especially in SK-BR-3 cells. As we know, trastuzumab was an
established anti-tumor therapeutic in treating HER2-positive
breast cancer and gastric cancer (Baselga and Swain, 2009; Zheng
et al., 2014). Next, we examined the anti-tumor activity of
trastuzumab in combination with osthole against N87 and SK-
BR-3 cells. Surprisingly, our results for the first time showed
that osthole synergistically enhanced the growth-inhibitory effect
of trastuzumab against N87 cancer cells in vitro and in vivo.
Moreover, we found that the combination was more potent in
inducing apoptosis and reducing the phosphorylation of AKT
and MAPK than either agent alone in N87 cells, which may
explain the synergistic effect. To conclude, these results shown
in our study suggested that the effective regimen by combing
trastuzumab with osthole has a great potential to treat HER2-
overexpressed gastric cancer in clinics.

MATERIALS AND METHODS

Cell Lines
The human breast cancer cell line SK-BR-3 and gastric cancer
cell line N87 were purchased from the American Type Culture
Collection (ATCC).

Agents
Osthole was purchased from Shanghai Macklin Biochemical Co.,
Ltd. (Shanghai, China). It is over 99% pure determined by
HPLC. The stock solution of osthole was prepared by dissolving
in DMEM with 0.25% ethanol and 0.25% dimethyl sulfoxide
(DMSO).

Animals
All experimental protocols were approved by the Animal
Experimentation Ethics Committee of Xinxiang Medical
University and all efforts were made to minimize animal suffering
and reduce the number of animals used. All experiments were
performed in accordance with the guideline of the Animal Care
and Use Committee of Xinxiang Medical University. Five-week-
old female BALB/c nude mice were obtained from the Beijing
Vital River Laboratory Animal Technology Co., Ltd. (Beijing,
China).
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In vitro Cytotoxicity Assays
Cells were plated at a density of 5 × 103 per well and
incubated with increasing concentrations of osthole, trastuzumab
or the combination. Two days later, cell proliferation was
determined using CCK-8 kit (Dojindo, Japan). The percentage
of surviving cells was calculated using the following formula:
[(A450 of experiment – A450 of background)/(A450 of untreated
control – A450 of background)] × 100. Combination index
(CI) values were calculated using the Chou-Talalay method by
Compusyn software (Han et al., 2014). Drug synergy, addition,
and antagonism are defined by C.I. values less than 1.0, equal to
1.0, or greater than 1.0, respectively.

In vivo Therapy Study
N87 cells (1 × 107 per mouse) were inoculated subcutaneously
into the right flank of female BALB/c nude mice. When tumor
volumes reached an average of about 150 mm3 on day 8 after
inoculation, the mice were randomly divided into four groups of
six mice each. Mice were intraperitoneally injected with control
IgG (15 mg/kg for two times every week), trastuzumab (15 mg/kg
for two times every week), osthole (100 mg/kg once daily) or
the combination of trastuzumab (15 mg/kg for two times every
week), and osthole (100 mg/kg once daily) for 2 weeks. Tumors
were measured with digital calipers, and tumor volumes were
calculated by the formula: Volume = Length× (Width)2/2.

FIGURE 1 | Osthole inhibited the growth of N87 and SK-BR-3 cells and induced cell cycle arrest and apoptosis. (A) CCK-8 assay evaluating cell growth of N87 and
SK-BR-3 cells upon treatment with increasing concentration of osthole for 48 h. (B) Cell cycle analysis of N87 cells following 40 µM osthole treatment for 0, 6, and
12 h by flow cytometry. (C) Effects of osthole on cell cycle of SK-BR-3 cells. (D) N87 and SK-BR-3 cells were treated with 40 µM osthole for 30 h and cleaved
Caspase-3 and Bcl-2 were examined by Western blot.
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Immunoblotting
Western blot was performed using established procedures.(Yang
et al., 2017) Cells were lysed in lysis buffer (Beijing Dingguo
Biotechnology Co., Ltd.), incubated on ice for 30 min and
centrifuged for 20 min to remove cell debris. Total cell lysates
were subjected to SDS–polyacrylamide and immunoblotted with
primary antibodies and HRP-conjugated secondary antibody.
After another wash of the membrane, the bands were
detected using a super-sensitive ECL solution (Boster Biological
Technology Co., Ltd., China), and visualized using an Amersham
imager 600 (GE Healthcare Life Sciences, Fairfield, CT,
United States).

Cell Cycle Analysis
This assay was performed according to previous report.(Kovtun
et al., 2010) Cells (1 × 105/mL) were incubated with osthole for
0, 6, or 12 h at 37◦ C. Cells were then fixed with 1 mL of 70%
ethanol, and DNA content was determined after staining with
propidium iodide by flow cytometry. Flow cytometric data were
analyzed using FlowJo 7.6 software.

Apoptosis Analysis
Apoptosis analysis was performed by flow cytometry using
established procedures (Zhang et al., 2012). For flow cytometry
analysis, N87 cells (5 × 106/well ) were plated in 6-
well plate and treated with osthole (40 µM), trastuzumab
(10 µg/mL), or osthole (40 µM) in combination with
trastuzumab (10 µg/mL) for 30 h at 37◦C. The cells were
then labeled with Annexin V and Propidium Iodide (PI;
Beijing Dingguo Biotechnology Co., Ltd, Beijing). Apoptotic
rates were determined by FACSCalibur flow cytometer (BD
Biosciences, Franklin Lakes, NJ, United States) and analyzed
by Flowjo software. The percentage of the early apoptosis was
calculated by Annexin V (+) and PI (−), while the percentage
of the late apoptosis was calculated by Annexin V (+) and
PI (+).

Statistical Analysis
Statistical analysis was performed by Student’s unpaired t test
to identify significant differences unless otherwise indicated.
Differences were considered significant at p < 0.05.

FIGURE 2 | Osthole and trastuzumab synergistically inhibited the in vitro growth of N87 cells. (A) The inhibitory effects of osthole and trastuzumab combinatorial
treatment against N87 cells for 48 h. (B) The inhibitory effects of osthole and trastuzumab combinatorial treatment against SK-BR-3 cells for 48 h. (C) The
synergistic effect of trastuzumab in combination with osthole on the growth of N87 cell line. Combination index (CI) values were calculated at the drug concentration
of trastuzumab (3.125 µg/mL) plus osthole (6.25 µM), trastuzumab (12.5 µg/mL) plus osthole (25 µM), trastuzumab (50 µg/mL) plus osthole (100 µM) using the
Chou-Talalay method. Drug synergy, addition, and antagonism are defined by C.I. values less than 1.0, equal to 1.0, or greater than 1.0, respectively. Data show the
mean ± SD (three independent experiments); ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. ns, no significant difference.
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RESULTS

Osthole Exhibits Growth-Inhibitory
Activity Against HER2-Overexpressed
N87 and SK-BR-3 Cancer Cells Through
Cell Cycle Arrest and Apoptosis
We first examined the inhibitory effects of osthole alone on N87
and SK-BR-3 cell lines. As shown in Figure 1A, osthole inhibited
the growth of N87 and SK-BR-3 cancer cells in a dose-dependent
manner. Additionally, we found that SK-BR-3 cell line responded
more sensitively to osthole compared with N87 cell line.

Furthermore, we investigated the effect of osthole on cell
cycle arrest and apoptosis in N87 and SK-BR-3 cells. FACS
assay showing that osthole significantly elevated the percentage

of G2/M phase in both N87 and SK-BR-3 cells when treated
for 6 and 12 h compared to control (Figures 1B,C). More
importantly, elevated sub-G1 population in SK-BR-3 cells was
observed after treatment for 12 h. As we know, Bcl-2 was an
important anti-apoptotic protein that regulates a late step in the
apoptosis pathway (Srinivas et al., 2000; Willis et al., 2007). And
Caspase-3 is an important member in Caspase family, which
is critical for cytochrome c-dependent apoptosis (Zou et al.,
1997). In our study, we found that Bcl-2 was down-regulated and
cleaved Caspase-3 was up-regulated after treatment with osthole
for 30 h, suggesting apoptosis may be induced following cell
cycle arrest in response to osthole treatment in SK-BR-3 and N87
cells (Figure 1D and Supplementary Figure S1). Taken together,
osthole may exert its anti-tumor effects in SK-BR-3 and N87 cells
through inducing cell cycle arrest and apoptosis.

FIGURE 3 | Trastuzumab enhanced osthole-induced apoptosis, which may partly explained the synergistic anti-tumor effect of trastuzumab in combination with
osthole. (A) Induction of apoptosis of N87 cells after control IgG (10 µg/mL), osthole (40 µM), trastuzumab (10 µg/mL) or the combinatorial treatment for 30 h.
Apoptosis was measured by flow cytometry. (B) Statistical analysis of the percentages of the apoptotic cells. Data was shown with mean ± SD. (C) Cell cycle and
apoptosis related protein (CyclinB1, cleaved Caspase-3, Bax or Bcl-2) was examined in N87 cells when treated with control IgG (10 µg/mL), osthole (40 µM),
trastuzumab (10 µg/mL), or the combination for 30 h. (D) Quantification of Western blot signal intensity analysis is expressed relative to the β-actin loading control by
using Image J software. Data show the mean ± SD (three independent experiments); ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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Trastuzumab and Osthole Act
Synergistically on N87 Gastric Cancer
Cells in vitro
Next, we examined the inhibitory effects of trastuzumab in
combination with osthole on N87 and SK-BR-3 cell lines. As
shown in Figures 2A,B, trastuzumab plus osthole exhibited a
significantly greater inhibitory activity than either agent alone
in N87 cells, while no marked synergistic effect was found in
SK-BR-3 cells.

To further examine whether the combination of trastuzumab
with osthole is synergistic, we treated N87 cells with combination
of trastuzumab and osthole at various concentrations. Data were
analyzed using the method of Chou and Talalay to establish drug
C.I. values (Han et al., 2014). Synergy is defined as C.I. values of
<1.0, antagonism as C.I. values >1.0, and additivity as CI values
equal to 1.0. Our results showed that trastuzumab and osthole
synergistically inhibited the growth of N87 cells (Figure 2C).

Trastuzumab in Combination With
Osthole Synergistically Induced
Apoptosis
Furthermore, we investigated whether the co-treatment
of trastuzumab with osthole may synergistically induce
apoptosis in N87 cells. First, the apoptotic cell percentage
was analyzed by flow cytometry following Annexin V and PI
staining. Results showed that the percentage of apoptotic cells
was significantly increased in the trastuzumab plus osthole
treated cells compared to either agent mono-treated cells
(Figures 3A,B).

And we further assessed the cell extracts for expression
of apoptotic markers including cleaved Caspase-3, Bcl-2,
and Bax. Compared to treatment with either agent alone,
combinatorial treatment significantly up-regulated the
level of cleaved Caspase-3 (Figures 3C,D). In addition,
Bcl-2 was markedly down-regulated, while Bax that was a

protein favoring induction of apoptosis was up-regulated
in trastuzumab plus osthole treated cells. Besides these,
the expression of cell cycle-related molecule, CyclinB1 was
significantly decreased in N87 cells upon combinatorial
treatment. Taken together, these results suggested the addition
of trastuzumab markedly enhanced osthole-induced apoptosis,
which may partly explain the superiority of combinatorial
treatment.

Effect of Trastuzumab Plus Osthole on
AKT and MAPK Signaling Pathway
To further investigate the mechanism that may explain the
synergistic effect, we examined the level of AKT, phosphorylated
AKT, MAPK, and phosphorylated MAPK in N87 cells treated
with trastuzumab in combination with osthole. Compared
to trastuzumab or osthole treatment alone, trastuzumab plus
osthole more significantly inhibited the phosphorylation of
both AKT and MAPK in N87 cell lines (Figures 4A,B).
Notably, combinatorial treatment resulted in a more effective
inhibition on phospho-AKT level than on phospho-MAPK
level, whereas there was no substantially decrease in total AKT
and MAPK protein levels. Therefore, our results suggested
that trastuzumab in combination with osthole may exert their
synergistic effect on inhibiting AKT and MAPK pathway,
mainly inhibiting the phosphorylation of AKT, which also
further explained the superior effects of trastuzumab plus
osthole.

Trastuzumab in Combination With
Osthole Potently Suppresses the in vivo
Growth of N87 Cancer Xenografts
To assess the synergistic effect in vivo, we examined the
therapeutic efficacy of trastuzumab plus osthole for nude
mice bearing established N87 tumor xenografts. As shown
in Figures 5A,B and Supplementary Figure S2, our in vivo

FIGURE 4 | Trastuzumab in combination with osthole blocked AKT pathway in a synergistic manner. (A) Immunoblots assessing AKT and MAPK signaling in the
N87 cell lines upon treatment with control IgG (10 µg/mL), trastuzumab (10 µg/mL), osthole (40 µM), or trastuzumab (10 µg/mL) plus osthole (40 µM) for 30 h. Data
are representative of three independent experiments. (B) Quantification of Western blot signal intensity analysis is expressed relative to the β-actin loading control by
using Image J software. Data show the mean ± SD (three independent experiments); ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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FIGURE 5 | Trastuzumab plus osthole combinatorial treatment inhibits the growth of N87 cancer cells in vivo. (A) Tumor volume of N87 xenografts after injection with
control IgG (15 mg/kg), Trastuzumab (15 mg/kg), Osthole (100 mg/kg), or Trastuzumab (15 mg/kg) plus Osthole (100 mg/kg). (B) On day 16 post first injection,
xenograft tumors from each group were removed and photographed. Representative tumors in each group were shown. (C) After xenograft tumors were removed,
these tumors were weighted. (D) Effects of agents on tumor-bearing mice body weight were determined using N87 tumor-bearing nude mice. Mice were weighed at
regular intervals during the whole period to monitor unspecific toxicity. Data are shown as mean ± SD. (n = 6 mice, each group); ∗∗p < 0.01; ∗∗∗p < 0.001.

experiments showed that the combinatorial therapy of
trastuzumab with osthole significantly reduced tumor growth
compared to either agent treatment alone. Compared to the
control IgG, the treatment with trastuzumab and osthole
combination resulted in a 50 % reduction in tumor weight
(Figure 5C). Consistent with the observations in vitro,
combinatorial treatment of trastuzumab with osthole resulted
in a significant benefit over either agent alone in the N87
xenograft model. Moreover, we also preliminarily evaluated the
unspecific-toxicity in these xenografts. As shown in Figure 5D,
No marked weight loss was observed in trastuzumab plus osthole
treated mice compared with that of in the control IgG treated
group (p = 0.1934). Thus, our results showed that trastuzumab in
combination with osthole exhibited potent inhibitory effects and
good tolerance on N87 tumor xenografts.

Trastuzumab in Combination With
Osthole Inhibited AKT Signaling Pathway
in vivo
To further determine if combinatorial treatment caused
inhibition of intracellular signaling cascade in vivo, we examined

tumor samples from treated animals using western blot assay
to evaluate the degree to which MAPK or AKT signaling
was inhibited. As expected, the level of pAKT in tumors
of combinatorial treatment group was more effectively
regressed compared to that of in trastuzumab or osthole
treatment group while the level of pMAPK was not substantially
reduced in tumors from trastuzumab plus osthole treated mice
(Figures 6A,B). Collectively, these results above may also suggest
that trastuzumab plus osthole exerted their synergistic effects
mainly on AKT signaling pathway in N87 tumor xenografts.

DISCUSSION

In our study, we for the first time reported the anti-tumor effects
of trastuzumab in combination with osthole, a natural coumarin
derivative extracted from Traditional Chinese Medicine on N87
gastric cancer cells and investigated the underlying mechanism
involved. We first examined the inhibitory effects of osthole
on HER2-amplified N87 and SK-BR-3 cells. Results revealed
that osthole exhibited potent anti-tumor activity on the two cell
lines, especially on SK-BR-3 cells. Previous studies suggested
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FIGURE 6 | Trastuzumab in combination with osthole inhibited AKT signaling pathway in vivo. (A) Tumor tissues isolated from N87 xenografts upon treatment with
control IgG (15 mg/kg), Trastuzumab (15 mg/kg), Osthole (100 mg/kg), Sor Trastuzumab (15 mg/kg) plus Osthole (100 mg/kg) were then subjected to Western blot
to detect the expression of AKT, p-AKT, MAPK and p-AMPK. Data are representative of three independent experiments. (B) Quantification of Western blot signal
intensity analysis is expressed relative to the -actin loading control by using Image J software. Data show the mean ± SD (three independent experiments);
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

that osthole could induce G2/M arrest and apoptosis in lung
cancer A549 cells and hepatocellular carcinoma HepG2 cells
(Xu et al., 2011; Chao et al., 2014). In consistent with these
studies, we also found that osthole induced G2/M arrest and
apoptosis in HER2-amplified N87 and SK-BR-3 cells. As we
know, trastuzumab is a FDA-approved antibody therapeutic
that has shown clinical efficacy in treating breast and gastric
cancers (Hudis, 2007; Rose and Bekaii-Saab, 2011). Despite
the effectiveness, numbers of patients with HER2-positive
cancer treated with trastuzumab monotherapy exhibited de
novo resistance unfortunately (Zhang et al., 2011). Thus, novel
therapeutic regimens are urgently needed to enhance the efficacy
of trastuzumab-therapy. Surprisingly, we found that osthole
could synergistically enhance the inhibitory effect of trastuzumab
against HER2-overexpressed N87 cells both in vitro and in vivo.
However, the synergistic effect were not been observed in SK-
BR-3 cells, which was the other trastuzumab-sensitive breast
cancer cell line. The underlying mechanism explaining the
different responses to trastuzumab plus osthole in the two HER2-
overexpressed cancer cell lines will be further explored in our
following research.

As previously reported, trastuzumab may exert its anti-
tumor activity on HER2-overexpressed cancers through inducing
apoptosis (Cuello et al., 2001; Milella et al., 2004). And osthole
also caused cell cycle arrest and apoptosis in several types of
cancer (Xu et al., 2011; Chao et al., 2014; Wang et al., 2016). In our
present study, the hypothesis was investigated that if trastuzumab
plus osthole may synergistically enhance the effect of apoptosis in
N87 cells. As expectedly, our data revealed that trastuzumab in
combination with osthole more effectively promoted apoptosis
compared to either agent treatment alone.

As we know, studies have demonstrated that PI3K-AKT
pathway activity is directly linked to the proliferation
and growth of HER2-overexpressing cancer cells and
trastuzumab mainly exerted its anti-tumor in inhibiting
the HER2-PI3K-AKT pathway (Pal and Mandal, 2012; Li
et al., 2013; Han et al., 2014). Recently, Lin et al. (2014)
indicated that osthole inhibited IGF-1-induced EMT by
blocking PI3K-Akt pathway in brain cancer cells. In our
study, we also observed AKT and MAPK phosphorylation
were regressed in N87 cells when treated with trastuzumab
plus osthole. Especially, AKT phosphorylation was more
markedly inhibited in the combinatorial treatment compared
to either agent treatment alone, which was also verified
in tumor samples from N87 tumor xenografts. Generally
speaking, our study partly explained the molecular
mechanism involved in the synergistic effects of trastuzumab
in combination with osthole on HER2-overexpressed
gastric cancer, which may provide a reference for other
researchers. In our following study, we will explore if other
AKT involved signaling pathway like c-Met/Akt/mTOR
pathway may be related to the synergistic anti-tumor
effects.

Taken together, our results suggested that osthole, a promising
lead compound from traditional Chinese medicine could
effectively inhibit N87 and SK-BR-3 cells with HER2-
overexpression by causing cell cycle arrest and inducing
apoptosis. More importantly, we found that combination of
trastuzumab with osthole showed synergistic inhibitory effects
on the growth of N87 cells, which may be partly attributed to the
enhanced apoptosis. Phosphorylation of AKT were effectively
inhibited in vitro and in vivo when treated with trastuzumab plus
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osthole may also contribute to the synergistic effect. Therefore,
combination of trastuzumab with osthole provides a new strategy
for targeting HER2-overexpressed gastric cancer, which will
contribute to enhancing the therapeutic effect of trastuzumab.
Based on these results, our study also suggested that osthole can
be developed into an adjuvant drug for HER2-targeted therapy in
treating HER2-overexpressed gastric cancer. In addition, a novel
antibody-drug conjugate may also be designed by conjugating
osthole to trastuzumab, which may represent a new therapeutic
approach.

CONCLUSION

Our results indicated that osthole alone exhibited effective
anti-tumor activity against HER2-overexpressed N87 gastric
cancer cells and SK-BR-3 breast cancer cells. Furthermore,
osthole could synergistically enhance the inhibitory effect
of trastuzumab against HER2-overexpressed N87 cells both
in vitro and in vivo. Moreover, we explored the molecular
mechanism involved in the synergistic effects, which may
be attributed to the enhanced apoptosis effects and AKT-
MAPK signaling pathway blockade. Collectively, these
results support the clinical development of osthole plus
trastuzumab for the treatment of HER2-overexpressed gastric
cancer. Besides, our study may also provide a strategy
for testing combinations of HER2-targeting agents with
other bioactive constituents isolated from food in clinical
studies.
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Head and neck cancer is the 6th most common malignancy worldwide and urgently

requires novel therapy methods to change the situation of low 5-years survival rate and

poor prognosis. Targeted therapy provides more precision, higher efficiency while lower

adverse effects than traditional treatments like surgery, radiotherapy, and chemotherapy.

Blockade of PD-1 pathway with antibodies against PD-1 or PD-L1 is such a typical

targeted therapy which reconstitutes anti-tumor activity of T cell in treatments of cancers,

especially those highly expressing PD-L1, including head and neck cancers. There

are many clinical trials all over the world and FDA has approved anti-PD-1/PD-L1

drugs for head and neck cancers. However, with the time going, the dark side of

this therapy has emerged, including some serious side effects and drug resistance.

Novel materials like nanoparticles and combination therapy have been developed to

improve the efficacy. At the same time, standards for evaluation of activity and safety

are to be established for this new therapy. Here we provide a systematic review with

comprehensive depth on the application of anti-PD1/PD-L1 antibodies in head and neck

cancer treatment: mechanism, drugs, clinical studies, influencing factors, adverse effects

and managements, and the potential future developments.

Keywords: PD-1, PD-L1, immune checkpoint inhibitor, head and neck cancer, immunotherapy, adverse effects

INTRODUCTION OF HEAD AND NECK CANCERS

Head and neck cancers are composed of various kinds of epithelial malignant tumors, including
oral cancers, maxillofacial cancers, larynx cancers, and many others, almost all of which are head
and neck squamous cell carcinoma (HNSCC). Although, there are other pathological types such as
verrucous carcinoma, basaloid squamous cell carcinoma, papillary squamous cell carcinoma, they
only make up a small percentage (1). HNSCC is the 6th most commonmalignancy worldwide, with
number of 650,000 new cases a year and 350,000 deaths (2). Around 2/3 of patients present with
advanced disease, often with regional lymph node involvement, while 10% present with distant
metastases (3). According to epidemiological survey, the 5-years survival rate of HNSCC in all
stages was about 60%, and the survival rate was even worse for specific primary sites such as
hypopharynx. The main causes of head and neck cancers are tobacco and alcohol consumption
(1, 4–8). Chewing betel quid is also well-recognized as a risk factor for the cancer of oral cavity
(9). And human papillomavirus (HPV) and p53 mutation are related to certain subsets of head
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and neck cancers (10–12). About 25% of HNSCC contain HPV
genomic DNA (13). However, HPV positivity is a favorable
prognostic factor in HNSCC (14). Patients with HPV+ HNSCC
show better responsiveness to radiation, chemotherapy, or both,
and might be more susceptive to immunosurveillance of tumor-
specific antigens (14).

COMMON TREATMENT STRATEGIES FOR
HEAD AND NECK CANCERS

The location of the cancers makes it necessary to take the spiritual
and plastic factors into consideration. Primary tumor site, stage,
and resectability are also treatment concerns as well as the
patient factors such as swallowing, airway, organ preservation,
and comorbid illnesses. For plan making, doctors are needed and
organized from different departments which include head and
neck surgeons, plastic surgeons, medical oncologists, radiation
oncologists, radiologists, and dentists (2).

Common treatment strategies for head and neck cancers
include surgery, radiotherapy, and chemotherapy. At present,
surgery is still the standard therapy for HNSCC. However,
surgical operations are limited, owing to the complexity of
structures and the need for organ preservation. Most surgeons
agree that the carotid artery, the base of the skull, and the
invasion of the pre-vertebral muscle tissue are unresectable
(2). Moreover, when the tumor is too extensive or there are
multiple distant metastases, patients are generally not suitable
for surgical treatment. Radiotherapy alone can improve the cure
rate of early glottis, tongue, and tonsil cancers (15). However,
prolonged interruption of radiotherapy or delayed post-operative
radiotherapy may impair the patient’s prognosis, which may
be due to the proliferation of cancer cells (16). Delivery of
radiation remains to be improved with continuous technological
progress, and customization of radiation dose and volume
(17). Chemotherapy is the core component of local advanced
HNSCC treatment (18). Platinum compounds Cisplatin is a
standard reagent for combination with radiotherapy or other
drugs. Huperzine compounds are active and have been tested in
locally advanced HNSCC chemotherapy (19, 20). Concurrent
chemotherapy with normo-fractionated radiotherapy (2
Gy/day, 5 days/week, for 5–7 weeks) is used most in current
practice (21).

Traditional therapy can result in serious complications, from
pain to malnutrition, risk of infection, and psychological distress
(21). In order to ameliorate these drawbacks, comprehensive
treatments are currently preferred for the advanced tumors.

Abbreviations: APC, antigen presenting cell; ATF, activating transcription

factor; CRC, colorectal cancer; GEM, chemotherapy drug gemcitabine; GOx,

glucose oxidase; HNSCC, head and neck squamous cell carcinoma; IGF, insulin-

like growth factor; NFAT, nuclear factor of activated T cells; NSCLC, non-

small cell lung cancer; ORR, objective response rate; OS, overall survival; PIP,

phosphatidylinositol; PLGF, placental growth factor; RCC, renal cell carcinoma;

ROS, reactive oxygen species; RTK, receptor tyrosine kinases; SAEs, severe adverse

events; sPD-1/sPD-L1, soluble PD-1/ soluble PD-L1; TCR, T cell receptors; TGF,

transforming growth factor; TILs, tumor-infiltrating lymphocytes; TKIs, tyrosine

kinase inhibitors; TNF, tumor necrosis factor; T-NHL, T-cell non-Hodgkin’s

lymphoma; trAEs, treatment-related adverse events.

Comprehensive treatments must be well-designed and planned
according to the patient’s general condition and the stage of
tumor development. At present, the treatment of oral and
maxillofacial malignant tumors emphasizes the comprehensive
treatment based on surgery, especially the triple therapy, which
combines surgery with radiotherapy and chemotherapy.

Modern research has been keen on identifying specific
molecular targets involved in the occurrence and progression
of head and neck cancers. EGFR and VEGF are two main
targets which are overexpressed in majority of both precancerous
oral lesions and HNSCC (22–24). EGFR can bind to and
be activated by different ligands, including the epidermal
growth factor (EGF) and transforming growth factor-α (TGF-α)
(25). EGFR activation initiates subsequent signaling pathways,
eventually resulting in tumor cell resistance to apoptosis and
promoting angiogenesis, tumor cell migration, and tumor
cell proliferation (Figure 1) (25, 26). Current EGFR-targeted
therapies include monoclonal antibodies (mAbs) and tyrosine
kinase inhibitors (TKIs). Antibodies target the extracellular
domain of EGFR while TKIs hinder downstream signaling
pathways by binding to the cytoplasmic region of EGFR (27). To
date, Cetuximab remains the only FDA-approved EGFR-targeted
mAb for the treatment of recurrent/metastatic (R/M) HNSCC.
Cetuximab in combination with radiotherapy is a standard
treatment option for locally or regionally advanced HNSCC (28).
VEGF, is a key regulator of physiological angiogenesis during
embryogenesis, skeletal growth, and reproductive functions (29).
The biological effects of VEGF, mediated by two receptor tyrosine
kinases (RTKs), VEGFR-1 and VEGFR-2, cause receptor TK
activation and downstream signaling to stimulate endothelial
cell proliferation, vessel permeability, and migration (27).
Bevacizumab, a humanized monoclonal antibody targeting
VEGF-A, was approved by the FDA for treatment of advanced
cancer types. Bevacizumab could increase the sensitivity of
HNSCC to radiotherapy in preclinical trials. Bevacizumab was
evaluated in phase I and II clinical trials in combination with
Erlotinib, an EGFR inhibitor, in patients with R/M HNSCC
(30, 31) and the combined treatments increased the complete
response rate by ∼15% and median survival by 7.1 months (30).
The phase II trial on the combination of Bevacizumab with
chemotherapy, radiotherapy or EGFR inhibitors are ongoing.

IMMUNOLOGICAL TARGETED THERAPY

Immunotherapies stimulate host antitumor immune system and
can elicit endurable responses in subsets of patients across
different types of tumors (Figure 1) (32). Immune checkpoints,
like cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and
programmed cell death-1 (PD-1), work as inhibitory pathways,
playing an important role in self-tolerance under healthy
conditions. Checkpoint inhibitors are part of immunotherapies
that enhance antitumor T cell activity by hindering initiation
of suppressive signaling pathways of activated T cells. The 2018
Nobel Prize in Physiology or Medicine was recently given to
James P. Allison and Tasuku Honjo for their discovery and
contribution in cancer immunotherapy correlated with CTLA-4
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FIGURE 1 | Main targets and related signaling pathways involved in the targeted therapy for R/M HNSCC. Activation of EGFR by extracellular ligands initiates

activation of Src, STAT3, and PI3K. Activated Src promotes cell proliferation mainly via RAS/RAF/MAPK pathway. In the PI3K/Akt pathway, phosphorylation of PIP2 is

mediated by PI3K while dephosphorylation of PIP3 is controlled by PTEN. Akt could be activated independently by mTORC2 activation. Activation of Akt and

mTORC1 inhibit TSC1/2/Rheb and 4E-BP1/eIF-4E downstream signaling, respectively while IKK/NF-kB and S6/S6k pathways are initiated, promoting tumor cell

survival. Once activated, other targets, including VEGFR and c-MET, expressed on tumor cells share similar downstream signaling with EGFR. CD137L and OX40L

activate CD137 and OX40, respectively. And proliferation of activated T cells is achieved via TRAF/IKK/NF-κB downstream signaling. CTLA-4 and its ligands are also

demonstrated. Some pathways were simplified for clearer demonstration.

and PD-1. Other targets such as CD137 and OX40, unlike CTLA-
4 and PD-1, work as immune activators and are as well under
active investigation for cancer therapy (Table 1) (37, 38).

CTLA-4
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; also
known as CD152) is the first clinically targeted immune
checkpoint receptor. CTLA-4, expressed on activated CD8+

effector T cells, mainly regulates the early stage of T cell
activation, enhances the activity of effector CD4+ T cell, and
inhibits Treg cell-dependent immunosuppression (39, 40). CD28
and CTLA-4 have the same ligands B7-1 (also known as CD80)

and B7-2 (also known as CD86); and CTLA-4, compared to
CD28, has a much higher affinity for B7-1 (41). CTLA-4 has
been proved to be a negative regulator of T cell activation in
an effort to prevent autoimmunity, antagonizing the CD28-
B7 co-stimulatory signals. Research showed that the blockade
of CTLA-4 results in enhanced antitumor immunity (42).
Clinical studies using anti-CTLA-4 antibodies demonstrated
activity in melanoma. Ipilimumab, an anti-CTLA-4 antibody,
was the first targeted immunotherapy to prove a survival
advantage for patients with metastatic melanoma. Hence, it was
approved by FDA for the treatment of advanced melanoma
in 2010 (43). In HNSCC, Yu et al. showed that CTLA4
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TABLE 1 | Immunological targeted therapies approved or under investigation for the treatment of head and neck cancers.

Drug Target Modality Status References

MEDI0562 OX40 Antibody Phase I

Phase Ib

Phase

IPhase I

NCT03336606

NCT02315066

Urelumab CD137 Antibody Phase

IPhase I

NCT02110082

PF-05082566 CD137 Antibody Phase

IPhase I

NCT02315066

Ipilimumab CTLA-4 Antibody Phase II

Phase

IPhase I

Phase

IPhase I

NCT03620123

NCT03098160

NCT02812524

Tremelimumab CTLA-4 Antibody Phase III

Phase III

Phase II

Phase II

Phase

IPhase I-2

NCT02369874

NCT02551159

NCT03624231

NCT03292250

NCT03019003

Pembrolizumab PD-1 Antibody Approved (33, 34)

Nivolumab PD-1 Antibody Approved (35, 36)

Darvalumab PD-L1 Antibody Phase III

Phase II

Phase

IPhase I

NCT02551159

NCT02207530

NCT02997332

Avelumab PD-L1 Antibody Phase III

Phase

IPhase I

NCT02952586

NCT02938273

INCB024360 PD-L1 Antibody Phase

IPhase I/2

NCT02318277

PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4.

was upregulated in the tumor-infiltrating lymphocyte (TIL)
of HNSCC and the high CD8+/CTLA4 ratio was associated
with improved prognosis (44). Further, Jie et al. found that
intratumoral Tregs, compared to circulating Tregs, induced
higher expression of CTLA-4 in HNSCC (45). Currently, clinical
trials of Ipilimumab (NCT02551159, NCT03212469), alone or
in combination with other treatments, for HNSCC are in
progress (40).

CD137
CD137, a member of TNF receptor superfamily, is widely
induced on activated CD4+ T cells, CD8+ T cells, B cells,
NK cells, monocytes, and DC. The engagement of CD137
could promote the proliferation of T cells. The introduction of
Urelumab, the fully human CD137-agonist mAb, has enabled
modulation of CD137 function in immune-oncology, including
application in combination with tumor targeting mAb (46).
Srivastava et al. (38) confirmed that Cetuximab combined with
CD137 agonist was effective in the treatment of HNC. CD137 has
provided a new mechanism for the enhancement of Cetuximab
(38).

OX40
OX40 is a member of the TNF receptor family and mediates
an effective co-stimulation pathway which can enhance T cell

memory, proliferation, and antitumor activity in patients with
metastatic cancers (47, 48). Overexpression of OX40 in the TIL
of patients with HNSCC has been identified (49). Furthermore,
Montler et al. have noted co-expression of OX40 with PD-
1 and CTLA-4 in a majority of tumor specimens, especially
within the Treg population (49). The preclinical model showed
the synergistic effects of anti-OX40 and anti-PD1, anti-OX40
and anti-CTLA-4, as well as anti-OX40 and anti-PDL1 (49).
Anti-OX40 is currently being tested in early clinical trials of
HNSCC, both as monotherapy and in combination with other
immunotherapies (37).

ANTI-PD-1/PD-L1 THERAPY

T cells express the inhibitory receptor known as PD-1 on
their surfaces to guard our body (50). When bound by its
ligands PD-L1 or PD-L2, PD-1 transduces a signal into T
cells to attenuate downstream signaling through the PI3K and
PKCθ pathways (50, 51), which results in inhibition of T
cell activation and proliferation. This protective mechanism
is also utilized by tumor cells to escape immune attack
through expressing high abundance of PD-L1 ligands on their
surfaces.

Anti-PD-1/PD-L1 therapy has been a routine treatment to
patients with PD-L1 highly expressing tumor (52). This kind of
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immunotherapy could target tumors more precisely. Meanwhile,
as anti-PD-1/PD-L1 therapy has been applied to more and
more patients, the side effects and the factors hindering the
therapeutic effects have been noticed. Thus, combined treatments
and better administrating methods have been raised to improve
the treatment.

Mechanism of PD-1/PD-L1 Inhibitors
Tumor infiltrating lymphocytes, especially CD8+ T cells, exhibit
high levels of PD-1 in HPV+ HNSCC (12). When PD-1 binds
to PD-L1 on tumor cells, T cell proliferation is suppressed
and tumor cells are able to evade immune attack more
effectively in the tumor microenvironment (12). Since tumors
expressing PD-L1, compared to PD-L1–negative tumors, showed
improved response to Nivolumab (a PD-1 inhibitor) (53), it is
important to investigate the level of PD-L1 expression in tumor
microenvironment. One study suggested that patients with
HPV− HNSCC expressed high levels of PD-1 in T cells and PD-
L1 in a majority of tumor cells (54). Despite primary tumor sites,
PD-L1 has been spotted on metastatic lesions (55). In summary,
more than 29% of HPV− and around 70% of HPV+ HNSCC
express PD-L1, suggesting that the majority of these cancers have
potential for responding to PD-1 inhibitors (56). PD-L1 and
PD-1 interaction is among the signals beneficial for tumor cells,
which also include EGFR signaling, CD 28 stimulation and many
others. And there are plenty of downstream pathways as well,
which are composed of SHP2, RAS, ZAP70, P13K, and so on
(Figure 2).

When bond by PD-1 ligands, PD-1 is able to recruit
phosphatases including SHP2 toinhibit T cell functions by
countering the positive signaling events mediated by the T cell
receptors (TCR) and CD28 (50). For instance, they restrain
ZAP70 and PI3K–AKT and RAS signaling pathways (50). In
conclusion, this lowers down the activation of transcription
factors such as AP-1, NFAT, and NF-κB, which are important
for T cell activation, proliferation, growth, and survival. Besides,
PD-1 is able to inhibit T cell functions by improving the
expression of BATF transcription factor to inhibit the effector
transcriptional programs. EGFR is an important target for
mediating tumor metastasis and adhesion. After combining
with epidermal growth factor (EGF), EGFR can deliver positive
signaling events downstream. For example, it activates PI3K–
AKT and RAS signaling pathways to promote tumor cells
proliferation and migration (50). Successful anti-PD-1/PD-L1
therapy requires adequate amount of specific T cells in tumor
microenvironment and competent ability of T cells to get
enough nutrients (57). Studies have shown aerobic glycolysis
is essential for T cells to secrete IFN-γand attack tumor cells.
PD-1/PD-L1 inhibitors may help T cells compete for glucose in
tumor microenvironment, promoting T cell glycolysis and IFN-γ
secretion (57, 58).

Daste et al. reported a case that a 64-years-old patient with
HNSCC developed local tumor flare-up under immunotherapy,
and a dramatic response was achieved in the following
chemotherapy (59). Owing to the “loco-regional phenomena”
described in their case study, they suggested that although clinical
efficacy was not achieved in this case, immunotherapy might

enhance response sensitivity to chemotherapy in patients with
HNSCC (59).

Overview of FDA-Approved PD-1 Inhibitors
for Head and Neck Cancers
Pembrolizumab
Pembrolizumab was the first anti-PD-1 antibody approved by
FDA to treat patients with unresectable or metastatic melanoma
who progress after Ipilimumab treatment. It is also approved
for the treatment for melanoma patients harboring a BRAF
V600E mutation, following treatment with a BRAF inhibitor.
Pembrolizumab has also been legal for the treatment of non-
small-cell lung cancer (NSCLC) without EGFR mutation and
ALK rearrangement but with disease progression or following
platinum-based chemotherapy (60). In August 2016, FDA
approved the use of Pembrolizumab in R/M HNSCC that has
progressed on or after platinum-containing chemotherapy (33,
34).

Nivolumab
Nivolumab, a PD-1 inhibitor, has been approved by FDA to
treat Hodgkin lymphoma, renal cell carcinoma, NSCLC, and
melanoma. Recent breakthrough in the application of Nivolumab
in patients with processed HNSCC during chemotherapy or
R/MHNSCC after chemotherapy with platinum-based drugs has
made Nivolumab second to the Pembrolizumab approved by
FDA in HNSCC treatment (35, 36).

CLINICAL STUDIES OF PD-1/PD- L1
INHIBITORS

Inhibiting either PD-1 or PD-L1 function can block the PD-
1 pathway. A number of PD-1/PD-L1 inhibitors are being
investigated clinically and described in more details below
(Table 2).

PD-1
Pembrolizumab (MK-3475, Previously Known as

Lambrolizumab)
Preclinical anti-tumor effects were demonstrated in animals
bearing multiple tumors. The first phase I clinical trial was
carried out in patients with advanced solid tumors (61). Results
suggested that Pembrolizumab was well-tolerated and associated
with durable antitumor activity in multiple solid tumors (61).
Two mg/kg per 3 weeks is considered a safe and effective
minimum dose of antitumor activity (61). KEYNOTE-012 trial
was amulticenter, open-label, phase Ib trial that included patients
with R/M HNSCC in one of the cohorts. The objective response
rate (ORR) was ∼20% and overall survival (OS) was better in
HPV+ patients (33). Then a larger HNSCC expansion cohort of
KEYNOTE-012 reported an ORR of 18.2%, and response rates
were similar inHPV+ andHPV− patients (62). In a recent single-
arm, phase II KEYNOTE-055 study conducted in patients with
R/M HNSCC, ORR was 16% and response rates were similar
in HPV+ and HPV− patients, providing rationale for treatment
with Pembrolizumab (NCT02255097) (63).

Monotherapy with Pembrolizumab is being carried out in
patients with NSCLC (NCT01840579), advanced solid tumors

Frontiers in Oncology | www.frontiersin.org 5 November 2018 | Volume 8 | Article 56354

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Anti-PD-1/PD-L1 Therapy in HNC

FIGURE 2 | PD-L1/PD-1 signaling pathway and the correlated network. Interaction between PD-L1 and PD-1 on T cells results in inhibition of Zap70 phosphorylation

and PI3K activation, and finally attenuates TCR signaling, CD28 mediated co-stimulation, NF-κB, and AP-1 activation, and IL2 production. Through inhibition of T cell

via overexpression of PD-L1, cancer cells evade the host immune system.

(NCT01295827) and hematologic malignancies (NCT01953692).
Clinical trials of Pembrolizumab focusing on HNSCC are
ongoing in comparison to chemotherapy (NCT02358031),
in combination with radiotherapy (NCT02707588), and in
combination with cisplatin and radiation (NCT02586207).

Nivolumab (MDX-1106, BMS-936558, ONO-4538)
The first phase I clinical trial was conducted in patients with
treatment-refractory solid tumors such as advanced metastatic
melanoma, colorectal cancer, castrate-resistant prostate cancer,
NSCLC, and renal cell carcinoma (64). The study exhibited good
tolerance and meaningful antitumor activity of PD-1 inhibitors,
and the early results from a follow-up trial (NCT00730639)
further confirmed this. It appeared that the PD-1 antibody
was well-tolerated and demonstrated anti-tumor activity in
many patients whose previous treatment failed (65). In a recent
randomized, open-label, phase III clinical trial conducted in
patients with R/M HNSCC, the ORR was 26.1% for Nivolumab,
demonstrating a survival advantage compared with conventional
treatments with ORR of 0% for investigators’ choices of therapy
(NCT02105636) (66). Ongoing clinical trials focusing onHNSCC
include comparison to Cetuximab, Methotrexate or Docetaxel
(NCT02105636), combination with Cisplatin, Cetuximab, or
IMRT (NCT02764593), and monotherapy (NCT03132038,
NCT03012581).

PD-L1
Durvalumab (MEDI4736)
In a phase I/II clinical trial that included a group of HNSCC
patients, ORR was 17%, especially higher (25%) in PD-L1high

patients. The disease control rate in PD-L1 high subgroup was

44.9%,much greater than that in PD-L1 low or negative subgroup
(21.5%) (67). These data support continued clinical development
of Durvalumab in HNSCC. Durvalumab is being tested as
monotherapy (NCT02207530), in combination with Docetaxel
plus Displatin and 5-FU (NCT02997332), and in comparison to
Durvalumab plus Tremelimumab (NCT02551159).

Avelumab
Avelumab is an anti-PD-L1 antibody. Studies of Avelumab
targeting HNSCC has been scarce. It’s currently assessed in
combination with Cetuximab and radiotherapy in a phase I trial
(NCT02938273), and in combination with standard care in a
phase III trial (NCT02952586).

FACTORS INFLUENCING
ANTI-PD-1/PD-L1 THERAPY

Gut Microbiota
It has been lately reported that gut microbiome plays important
roles in many diseases, including influenza (68), multiple
sclerosis (69, 70), diabetes (71), colorectal cancer (68, 72), and
many others in various preclinical models, among which gut
microbiome may modulate PD-1/PD-L1-based immunotherapy
(73–76). Many kinds of bacteria have been proved to facilitate
PD-1/PD-L1 blockades, meanwhile, there are bacteria that
hamper the treatment (Table 3). It is reported that oral gavage
of Bifidobacterium could achieve the same effects as anti-PD-
L1 treatment, and combinational therapy almost eliminated
tumor outgrowth, in which enhanced dendritic cell function
led to more priming and accumulation of CD8+ T cells in
the tumor microenvironment (76). On one hand, Akkermansia
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TABLE 2 | Clinical Trials on anti-PD-1/PD-L1 in head and neck cancers.

Immune

checkpoint

Inhibitor Other names NCT-

nummer

Phase Arms N of

pts

Primary

endpoint

Recruitment

status

PD-1 pembrolizumab Lambrolizumab/MK-

3475

/Keytruda

NCT02586207 Phase I Pembrolizumab + Cisplatin +

Radiation

58 AE recruiting

NCT02358031 Phase III Pembrolizumab vs.

Pembrolizumab+Platinum+5-FU

vs. Cetuximab+Platinum+5-FU

825 PFS, OS Active, not

recruiting

NCT02707588 Phase II Pembrolizumab+radiotherapy

vs. Cetuximab+radiotherapy

133 LRC Active, not

recruiting

nivolumab Opdivo/BMS-

936558/MDX-

1106/NIVO/ONO-

4538

NCT02764593 Phase I Nivolumab+Cisplatin vs.

Nivolumab+High-dose Cisplatin

vs. Nivolumab+Cetuximab vs.

Nivolumab+ IMRT

40 DLT Active, not

recruiting

NCT03132038 Phase II Nivolumab 92 non-

progression

rate

recruiting

NCT03012581 Phase II Nivolumab 300 ORR recruiting

NCT02105636 Phase III Nivolumab vs.

Cetuximab/Methotrexate/

Docetaxel

506 OS Active, not

recruiting

PD-L1 Durvalumab Imfinzi/MEDI4736 NCT02207530 Phase II Durvalumab 112 ORR Active, not

recruiting

NCT02997332 Phase I Durvalumab+Docetaxel+

Cisplatin+5-FU

36 RP2D,

DLT

recruiting

NCT02551159 Phase III Durvalumab vs.

Durvalumab+Tremelimumab vs.

SOC

823 OS Active, not

recruiting

Avelumab Bavencio NCT02952586 Phase III Avelumab+SOC CRT vs.

Placebo+SOC CRT

640 PFS recruiting

NCT02938273 Phase I Avelumab+cetuximab+

Radiation therapy

10 toxicity recruiting

INCB024360 NCT02318277 Phase I/

II

MEDI4736 + INCB024360 42 DLT, AE,

ORR

Active, not

recruiting

PD-L1, programmed death-1 ligand; FU, fluorouracil; HNSCC, head and neck squamous cell carcinoma; AE, adverse event; LRC, locoregional control; DLT, dose limiting toxicity; ORR,

overall response rate; OS, overall survival; PFS, progression-free survival; SOC, standard of care; CRT, chemoradiation therapy; IMRT, intensity-modulated radiation therapy; RP2D,

recommended phase II dose.

muciniphila was screened out to affect the anti-PD-1-based
therapy in epithelial tumors in an IL-12 dependent fashion by
enhancing the recruitment of CCR9+CXCR3+CD4+ T cells (75).
Further study in patients also revealed that responding patients
had more diverse and abundant bacteria of the Ruminococcaceae
family, enhanced systemic and antitumor immunity, functioning
better in anabolic pathways as well (74). On the other hand, the
recent study by Matson V reported Blautia obeum and Roseburia
intestinalis with compromised efficacy of PD-1 blockade (77).
These results provide important information for cancer therapy
with immune checkpoint inhibitors.

Molecules Regulating PD-1/PD- L1
Some tumors respond more sensitively to anti-PD-1/PD-L1
therapy, while others do not. The mechanisms regulating anti-
PD-1/PD-L1 therapy sensitivity have arisen wide attention.
Recently, two molecules, CMTM6 and CMTM4, have been
reported as PD-L1 protein regulators. CMTM6 could prevent
the degradation of PD-L1, maintaining the stability of PD-L1
and facilitating the immune escape of tumors. Interfering either

CMTM6 or CMTM4 would hamper the expression of PD-L1.
They function through reducing the ubiquitination of PD-L1,
prolonging its half-life period. This provides a new target for
immunotherapy to enhance the anti-PD-1/PD-L1 treatment (78,
79).

ADVERSE EVENTS OF FDA-APPROVED
PD-1 INHIBITORS AND THE RELEVANT
MANAGEMENTS FOR HEAD AND NECK
CANCERS

The fact that PD-1/PD-L1 axis contributes to the maintenance
of self-tolerance implies that immune checkpoint blockade
might disturb the balance of immune systems, resulting in
treatment-related adverse events (trAEs) (80) (Table 4). TrAEs
are frequent and occur in up to 80% of patients treated
with an PD-1/PD-L1 antibody (81, 82). In the KEYNOTE-012
trial and the KEYNOTE-055 trial, trAEs occured in 63%-65%
HNSCC patients treated with Pembrolizumab (33, 63). The most
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TABLE 3 | Gut microbiome affecting efficacy of PD-1/PD-L1 treatment.

Effects Bacteria Models Other effects on immune

systems

Author/year References

Enhanced efficacy Akkermansiacea muciniphila Human/mouse Upregulating TCM,

CD4/Foxp3 ratio in tumor

sites and IL-12 production;

Increasing IFN- γ production

Bertrand Routy 2018 (75)

Alistipes indistinctus Human/mouse / Bertrand Routy 2018 (75)

Bifidobacterium adolescentis Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Bifidobacterium breve Mouse Stimulating DCs directly,

inducing DCs maturation

and cytokine secretion

Ayelet Sivan 2015 (76)

Bifidobacterium longum Mouse Promoting DCs maturation

and inducing cytokine

production

Ayelet Sivan 2015 (76)

Bifidobacterium longum Human / Matson V 2018 (77)

Collinsella aerofaciens Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Enterococcus faecium Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Enterococcus hirae Human/mouse Upregulating TCM,

CD4/Foxp3 ratio in tumor

sites and IL-12 production;

Increasing IFN- γ production

Bertrand Routy 2018 (75)

Klebsiella pneumonia Human / Matson V 2018 (77)

Parabacteroides merdae Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Ruminococcaceae Human/mouse Increasing effector T cells in

peripheral blood and tumors

Gopalakrishnan V 2018 (74)

Veillonella parvula Human / Matson V 2018 (77)

Compromised efficacy Blautia obeum Human / Matson V 2018 (77)

Roseburia intestinalis Human / Matson V 2018 (77)

TCM central memory T cell; Treg regulatory T cell; DC dendritic cell.

commonly observed trAEs were fatigue, decreased appetite, rash,
hypothyroidism, nausea and diarrhea (63). Grade 3–4 trAEs
occurred in around 9–14% of patients who had PD-1 inhibitors
treatment. Three deaths were reported due to pulmonary toxicity
(53, 82).

By comparing the various organs involved, grade 1–2
trAEs mainly influence the skin and the gut, while grade 3–
4 events mainly affect the digestive tract. Data suggest that
trAEs usually occur within 3–6 months after the PD-1/PD-
L1 blockade treatment (83). Accumulative toxic effects with
prolonged treatment of anti-PD-1 were not observed (65).

For T cell tumors, like T-cell non-Hodgkin’s lymphoma (T-
NHL), anti-PD-1/PD-L1 therapy could render the tumors better
proliferative. The reason is in this kind of tumors, T cells don’t
play the role to attack the tumors, instead, they are the major part
of the tumor. It highlights a dangerous possible adverse event of
anti-PD-1 treatment (84).

Nivolumab
A randomized, open-label, phase III study was designed to
investigate efficacy and safety of Nivolumab for patients with
recurrent HNSCC that progressed within 6 months post
platinum-based chemotherapy (36). In this trial, the primary end

point was OS. Although rates of trAEs of any grade were similar
between two groups, fewer events of grade 3 or 4 were observed
in the Nivolumab treatment group when treated with Nivolumab
than the standard therapy group. Fatigue, nausea, rash, decreased
appetite, and pruritus were the most commonly reported trAEs
of any grade in patients receiving Nivolumab. Two treatment-
related deaths owing to pneumonitis and hypercalcemia were
reported in the Nivolumab treatment group (36). Daste et al.
(59) reported a case of a patient with HNSCC developed tumor
flare-up after therapy with Nivolumab (59).

Pembrolizumab
TrAEs of any grade occurred within an average of 9 weeks after
the initiation of Pembrolizumab (85, 86). In the KEYNOTE-012
trial, trAEs of any grade were observed in 63% of patients. The
most frequently observed trAEs were fatigue, pruritus, nausea,
decreased appetite and rash. Grade 3–4 trAEs were reported
in 10 of 60 patients (17%), including increased ALT and AST,
hyponatremia, atrial fibrillation and congestive heart failure (33).
In the expansion cohort, 62% of patients had trAEs of any grade.
The most common trAEs were fatigue, hypothyroidism and
decreased appetite. Grade 3–4 trAEs were observed in around
9% of patients, including lowered appetite, facial swelling and
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TABLE 4 | Incidents of treatment-related adverse events occurring in patients with head and neck cancers.

Pembrolizumab

10 mg/kg

every 2 weeks

Ib/n 60 (33)

Pembrolizumab

200mg

every 2 weeks

Ib/n 132 (62)

Pembrolizumab

200mg

every 2 weeks

II/n 171 (63)

Nivolumab

3 mg/kg

every 2 weeks

III/n 236(GLOBAL)

(36)

Nivolumab

3 mg/kg

every 2 weeks

III/n 23(ASIAN)

(66)

Adverse Events Grade 1–2 Grade 3–4 Grade 1–2 Grade 3–4 Any Grade Grade 3–5 Any Grade Grade 3–4 Any Grade Grade 3–4

Fatigue 20.00% 2.00% 21.00% 0 18.00% 1.00% 14.00% 2.10% 17.40% 0

Decreased appetite 0 0 7.00% 2.00% 5.00% 0 7.20% 0 21.70% 0

Rash 5.00% 2.00% 0 0 2.00% 1.00% 7.60% 0 17.40% 0

Nausea 0 0 5.00% 1.00% 6.00% 0 8.50% 0 8.70% 0

Hypothyroidism 0 0 11.00% 0 9.00% 0 0 0 0 0

Pruritus 12.00% 0 0 0 0 0 7.20% 0 17.40% 0

Diarrhea 2.00% 2.00% 0 0 6.00% 1.00% 6.80% 0 4.30% 0

Abdominal pain 0 0 1.00% 1.00% 0 0 0 0 0 0

Stomatitis 0 0 1.00% 1.00% 0 0 2.10% 0.40% 0 0

Colitis 0 0 0 1.00% 0 0 0 0 0 0

Lymphopenia 0 2.00% 0 0 0 0 0 0 0 0

Atrial fibrillation 0 2.00% 0 0 0 0 0 0 0 0

Congestive cardiac failure 0 2.00% 0 0 0 0 0 0 0 0

Neck abscess 0 2.00% 0 0 0 0 0 0 0 0

Alanine aminotransferase increase 0 3.00% 0 0 4.00% 0 0 0 0 0

Hyponatremia 0 3.00% 0 0 2.00% 1%% 0 0 0 0

Anemia 0 0 0 0 4.00% 2.00% 5.10% 1.30% 0 0

Musculoskeletal pain 2.00% 2.00% 0 0 0 0 1.30% 0 0 0

Immune thrombocytopenic purpura 0 0 0 1.00% 0 0 0 0 0 0

Dysphagia 0 0 1.00% 1.00% 0 0 0 0 0 0

Dehydration 0 0 1.00% 0 0 0 0 0 0

Facial swelling 0 0 2.00% 3.00% 0 0 0 0 0 0

Pneumonitis 0 0 2.00% 2.00% 4.00% 1.00% 0 0 0 0

Hyperglycemia 0 0 1.00% 1.00% 0 0 0 0 0 0

Asthenia 0 0 0 0 0 0 4.20% 0.40% 0 0

pneumonitis (62). In the KEYNOTE-055 trial, around 64% of
patients exhibited trAEs. Grade 3–5 trAEs were reported in 15%
of patients. One death owing to treatment-related pneumonitis
was reported (63).

Severe Immune-Related Adverse Events in
Crucial Organs
Myocarditis
Accounting for <0.3% of patients, myocarditis is a rare but
severe immune-related adverse event that frequently results in
rapid dyspnea and acute heart failure (87). More and more
cases of patients with anti-PD-1/PD-L1 treatment-related heart
diseases have been reported in recent 3 years (88). Semper et al.
(89) reported a case of a patient, diagnosed with squamous
cell carcinoma of the lung, developing Nivolumab-induced
myocarditis. Three days post the 9th cycle of Nivolumab
therapy, the patient with tumor remission developed acute chest
pain and severe dyspnea, which was later confirmed to be
immunotherapy-related (89). Johnson et al. (87) reported two
more cases of patients, diagnosed with metastatic melanoma,
developing lethal myocarditis induced by Nivolumab and
Ipilimumab combined (87). Läubli et al. (90) reported a
case of Pembrolizumab-induced myocarditis. A 73-years-old

female patient with metastatic uveal melanoma developed
severe Pembrolizumab-induced myocarditis which resulted in
potentially life-threatening acute heart failure (90). In 2018,
Frigeri et al. (91) reported the patients achieved complete
remission of recurrent metastatic pulmonary adenocarcinoma
after 7 cycles of Nivolumab administration. Unfortunately, she
experienced rapid cardiogenic shock afterwards (91). A fatal
case was reported by Matson et al. (92). One patient with
NSCLC receiving Nivolumab developed acute heart failure (92).
Moslehi et al. (88) have identified altogether 101 cases of
severe immune checkpoint inhibitors-induced (ICIs-induced)
myocarditis, 46% of which resulted in patients’ deaths (88). A
more conclusive mechanism of anti-PD-1-induced myocarditis
is under investigation (87). Studies revealed that PD-L1 could be
found on endothelium. Interaction between PD-1 and its ligands
on endothelium is important in limiting T cell responses in
the heart and thus controlling immune-mediated cardiac injury
(93, 94). One suspected mechanism is that PD-L1 is expressed on
the surface of various types of cells and tissues, including tumor
cells and cardiac muscle cells. When patients receive anti-PD-
1/PD-L1 treatment, owing to the distribution of drugs, T cell
responses in cardiac muscles might be disturbed and enhanced,
leading to the occurrence of lethal immune-related myocarditis
(87, 95).
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Pneumonitis
Incidence of pneumonitis of all grades during anti-PD-1 therapy
was 2.7% and the incidence of pneumonitis for grade 3 or
higher was around 0.8% (96). Patients diagnosed with lung
cancers, compared to patients with other types of cancers
had higher incidence of treatment-related pneumonitis, with
incidence of grade 3 or higher being 1.8% and incidence
of deaths being 0.4% (96, 97). In a randomized, open-label,
phase II/III study on efficacy and safety of Pembrolizumab for
patients with advanced NSCLC, three cases of deaths resulting
from treatment-related pneumonitis were reported (85). As in
clinical trial of PD-1 blockade treating HNSCC, two treatment-
related deaths owing to pneumonitis and hypercalcemia were
reported in the Nivolumab group of a randomized, open-label,
phase III trial (NCT02105636) (36). In a phase II study, Bauml
et al. evaluated efficacy of Pembrolizumab in patients with
previously treated refractory head and neck cancers (KEYNOTE-
055) and one death owing to immune-related pneumonitis was
observed (63).

One patient with NSCLC, after receiving 2 cycles of anti–
PD-1 therapy, developed symptoms of pneumonitis and received
proper treatment. However, symptoms relapsed; treatments
with corticosteroids displayed less efficacy and the patient
died. Another case of a female patient with small-cell lung
cancer (SCLC), treated with an anti-CTLA-4/PD-1 combination
therapy, was reported. The patient showed responsiveness
to corticosteroid treatment; with discontinuation of current
immunotherapy, the patient recovered from pneumonitis and
started next line of anti-tumor therapy (98).

Hepatitis
The incidence of immune-related hepatitis of all grades was
around 3.1% and the incidence of grade 3 or higher was 0.5–
0.6% (99). For a clinical trial with Pembrolizumab in patients
with previously treated NSCLC (KEYNOTE-010), three cases of
immune-related hepatitis were reported (97).

Management of Adverse Events
Before confirming the occurrence of immune-related adverse
events, specialist should rule out all other possible diagnoses,
including but not limited to infection and tumor progression
(83). Figure 3 gives a glimpse of main adverse events in patients
receiving anti-PD-1/PD-L1 therapy. The general principle for
managing trAEs are suggested as followed: patients with grade
1 adverse events are provided with supportive care; patients with
grade 2 events are advised on treatment with topical or systemic
steroids (0.5–1 mg/kg/day); patients with grade 3 or 4 events
require hospitalization, treatment of steroids, 1–2 mg/kg/day, or
discontinuation of the current immunotherapy, depending on
specialists’ assessments (97, 100). Table 5 shows the management
of some commonly observed trAEs. Most trAEs are manageable
with steroids, which should be provided at a sufficient dose and
gradually withdrawn. But there are some cases where trAEs may
be permanent, and in those scenarios, adverse events can be
treated with hormone instead (83, 100).

THE PERSPECTIVES OF ANTI-PD-1/PD-L1
THERAPY IN HEAD AND NECK CANCERS

Figure 4 shows the perspectives of anti-PD-1/PD-L1 therapy.

Criteria to Monitor the
Immune-Checkpoint Blockade
Scientists brought up the importance of monitoring immune-
checkpoint blockade. As it is a novel therapy for cancers,
the response evaluation and biomarkers should be different.
Immune-related response criteria is an important concept
to evaluate the immunotherapy and is the first step of
precision immunotherapy (101). There are many biomarkers
of immunotherapy response including PD-L1, other immune-
checkpoint molecules, tumor-infiltrating lymphocytes (TILs),
IFN-γ (102–104), mutational burden, neoantigens, microsatellite
instability, serum markers, radiographic markers, and the
“immunoscore” (105) which evaluates the distribution of TILs
in the core and in the invasive margin of tumors. A recent
study showed that the frequency of CD14+CD16−HLA−DRhi

monocytes had strong correlation with progression-free and
OS in response to therapy with anti-PD-1. The researchers
used single-cell mass cytometry to analyze the immune cell
subpopulations in the peripheral blood of patients with stage IV
melanoma before and after anti-PD-1 therapy. It is an effective
predictive biomarkers of a clinical response (106). Similarly,
more predictive biomarkers are expected to be found and used
in the near future.

Novel Materials Advancing the Effect
Nanoscale materials have potential as drug delivery systems
that assist or advance the treatment in cancers. Some could
even respond intelligently to molecular triggers (107, 108). A
recent research reported that an autonomous DNA robot was
programmed to transport blood coagulation protease thrombin
within tubular nanorobot while DNA outside of the nanorobot
as both a targeting domain and a molecular trigger. It could
target the nucleolin specifically expressed in tumor blood vessels
and caused tumor necrosis. Animal experiments with this DNA
robot showed promising results (109). As it could carry the blood
coagulation protease thrombin that is a type of protein, it would
also be able to transport the anti-PD-1/PD-L1 antibody to specific
areas with certain DNA targeting domains.

A microneedle, made by hyaluronic acid and pH-sensitive
dextran nanoparticles, is developed to encapsulate anti-PD-1
antibody and glucose oxidase. Glucose oxidase can turn blood
glucose into gluconic acid and generate an acidic environment
in tumors to drive the self-dissociation of nanoparticles and
finally substantially release anti-PD-1 antibodies. This newly
developed tool with immunotherapy induced more robust
immune response in melanoma. And the microneedle could
carry more than one antitumor therapeutics like combination of
anti-PD-1 and anti-CTLA-4 antibodies to enhance the treatment
effect (110).

Years ago, Sun et al. utilized bacterial magnetosomes as
drug carriers transporting doxorubicin to treat hepatocellular
carcinoma and got a better result compared with the sole
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FIGURE 3 | Main adverse events and treatments.

doxorubicin group (111). Immobilization of anti-PD-1/PD-L1
antibodies on magnetic nanoparticles may also provide an
efficient local delivery strategy of the drugs for malignant
solid tumors. Local magnetic delivery of these immobilized
antibodies would increase local concentration while reduce the

administration times, total usage and peripheral distribution of
the antibodies, reducing the adverse effects. It would be very easy
to immobilize antibodies on either biosynthesized or chemical
synthesizedmagnetic nanoparticles since there are a lot of linking
methods available (112).
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TABLE 5 | Management of treatment-related rash, pneumonitis, thyroid dysfunction and diarrhea (100).

Adverse events Grade 1–2 Grade 3–4

Rash ≤30% BSA: anti-histamines for pruritus and topical

steroid cream for rash.

>30% BSA:skin biopsy is needed and steroids with 1 mg/kg of

prednisolone until BSA≤30%.If life-threatening, permanently

discontinue drug administration.

Pneumonitis Clinical or diagnostic observations; delay drug

administration; daily monitoring.

Oxygen is needed; stop drug administration; hospitalization; high

dose steroids with methylprednisolone; intensive care support.

Thyroid dysfunction Clinical or diagnostic observations; daily monitoring; for

hypothyroidism, levothyroxine indicated; for

hyperthyroidism, propranolol is needed.

Hospitalization; specialist consult; clinical observation

Diarrhea ≤6 bowel actions/day: supportive measures; anti-motility

agents when needed.

>7 bowel actions/day: hospitalization; specialist consult; clinical

observation; steroids with 1–2mg/kg prednisolone.

FIGURE 4 | Perspectives of anti-PD-1/PD-L1 therapy.

Novel Agents Providing Similar Blockade
Effects of Anti-PD-1/PD-L1 Antibodies
Despite the anti-PD-1/PD-L1 antibodies, soluble PD-1 (sPD-1)
peptides may provide similar inhibition effect of PD-1 pathway
by competitively binding to PD-L1 expressed on tumor cells. The
plasmids expressing sPD-1 peptides could also be developed as
gene therapy drugs which turn tumor cells as producers of sPD-1.

Soluble Immune Checkpoint Molecules
In addition to membrane bound form, there are sPD-1 and
soluble PD-L1 (sPD-L1). Currently, sPD-1 is thought to be the
translational product of the PD-11ex3 mRNA transcript, and
sPD-L1 may be derived from the cleavage of membrane bound
PD-L1 by matrix metalloproteinases.

sPD-1 and sPD-L1 can also bind to ligands, thus blocking the
PD-1/PD-L1 signaling pathway, resulting in potent peripheral T-
cell anti-tumor responses. It’s reported that the PD-1 extracellular

domain was transfected into tumors by adenoviral vectors and
could antagonize the negative regulation of T cells by PD-1/PD-
L1 pathway, thus inhibiting tumor growth and prolong survival
of mice (113).

Compared with membranous molecules, soluble molecules
can not only affect neighboring cells in the tumor
microenvironment, but also affect the body farther through
the blood circulation, having a wider range of biological effects.

The production and function of the sPD-1 and sPD-
L1 require further investigation. sPD-1 and sPD-L1 can
be used in immunomodulatory therapy in combination
with other antitumor therapy, such as HSP70 vaccine, to
enhance the anti-tumor efficacy of tumor vaccine (114). In
addition, the soluble forms may be used as an additional
biomarker to the membrane bound forms, helping more
accurately determine the patient’s immune status and predict
efficacy (115).
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Cancer Vaccines
Up to now, preclinical and recent clinical studies have indicated
that combining PD-1 or PD-L1 checkpoint inhibitors with
cancer vaccines improves antitumor activity compared with anti-
PD-1 or PD-L1 antibody monotherapy alone (116). However,
satisfactory results about vaccines targeting PD-1 or PD-L1
checkpoint molecular are few. The DNA vaccines under active
study work well but safety is hard to guarantee. In contrast,
protein vaccines are low in cost and high in safety. It provides
a promising research direction for the future development of
cancer treatment. A study using genetic engineering to prepare
a Cholera Toxin B based vaccine that targets both mouse MUC1
and mouse PD-1 showed that this fused protein vaccine can
produce a stronger immune response (117).

Combination Therapy
Luo et al. (118) developed a nano-vaccine by simply mixing
an antigen with a synthesized polymeric nanoparticle, PC7A
NP. It delivered tumor antigens to APCs in draining lymph
nodes, increasing surface presentation and simultaneously
activating type I interferon-triggered genes through STING
pathway. Combination of PC7A nano-vaccine with anti-PD-
1 antibodies demonstrated increased survival rate in animal
tumor models. Tumor growth was completely inhibited when
these vaccinated animals were rechallenged with tumor cells,
suggesting generation of antitumor memory (118). Researchers
found that exploiting the individual tumor mutations as neo-
epitopes and utilizing them as vaccines could enhance the
immune response to tumors. Some patients even completely
responsed to vaccination during combinational therapy with
anti-PD-1 (119, 120).

Oncolytic virotherapy has demonstrated promise, however,
it only had efficacy in a small fraction of tumor patients. As
the virus could upregulate PD-L1 expression on tumor cells,
combination of oncolytic virus, and anti-PD-1/PD-L1 therapy
could synergistically promote the treatment of cancers. This was
tested in colon and ovarian cancer models, but was believed to
own wider indications (121).

Recent study revealed that TNF-α blockade prevents death
of tumor infiltrating T lymphocyte induced by anti-PD-1 as

well as PD-L1 and TIM-3 expression. It is strongly rationalized
to develop a combinational therapy with anti-PD-1/PD-L1 and
anti-TNF-α in cancer patients (122).

Chemotherapy drug gemcitabine (GEM) and anti-PD-L1
antibodies could be released locally when an engineered reactive
oxygen species (ROS)-degradable hydrogel was injected and
formed in tumor microenvironment, which contained abundant
ROS. Anti-PD-L1-GEM scaffold promoted an tumor regression

in the tumor-bearing mice and prevention of tumor recurrence
after primary resection (123). In this research, a novel material

together with the combination therapy reinforced the effect and

reduced side effects of the treatment.
The trends of anti-PD-1/PD-L1 therapy are to enhance the

therapy effects while reduce the side effects. It would benefit
from the combination of anti-PD-1/PD-L1 antibodies with

other checkpoint inhibitors, other suppressor inhibitors, cytokine

inhibitors or chemotherapy drugs. Emerging novel materials
and delivery strategies like nanorobots, microneedle patches,

and magnetic immobilization could help the therapeutics work

better in the way of localizing them in the cancer sites or

carrying other biomarkers like DNAs or proteins to target
better.
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Objective: Non-Small Cell Lung Cancer (NSCLC) is extremely lethal upon metastasis

and requires safe and effective systemic therapies to improve a patient’s prognosis.

Prodigiosin (PG) appears to selectively and effectively target cancer but not healthy cells.

However, PG’s cancer-specific activity has remained elusive until recently.

Methods: PG’s cancer-specific performance was compared to Docetaxel (DTX),

Paclitaxel (PTX), and Doxorubicin (DOX) against human lung adenocarcinoma (A549)

and human small airway epithelial cells (HSAEC). Combination of PG with DTX, PTX,

or DOX in a 1:1 ED50 ratio was also evaluated. MTT assay was used to determine the

post-treatment cell viability. RNA-sequencing was used for comparative transcriptomics

analysis between A549 and HSAEC treated with 1.0µM PG for 24 h.

Results: PG reduced A549 cell viability by four-folds greater than HSAEC. In comparison

to DTX, PTX and DOX, PG was ∼1.7 times more toxic toward A549, and 2.5 times more

protective toward HSAEC. Combination of PG in a 1:1 ED50 ratio with DTX, PTX, or

DOX failed to exhibit synergistic toxicity toward A549 or protection toward HSAEC. In

A549, genes associated in DNA replication were downregulated, while genes directly

or indirectly associated in lipid and cholesterol biogenesis were upregulated. In HSAEC,

co-upregulation of oncogenic and tumor-suppressive genes was observed.

Conclusion: An overactive lipid and cholesterol biogenesis could have caused A549’s

autophagy, while a balancing-act between genes of oncogenic and tumor-suppressive

nature could have conferred HSAEC heightened survival. Overall, PG appears to be a

smart chemotherapeutic agent that may be both safe and effective for NSCLC patients.

Keywords: prodigiosin, small molecule, chemotherapy, lung cancer, selective, RNA-sequencing

INTRODUCTION

Cancer represents a major disease burden to mankind (1–4), and it accounts for almost one out of
six deaths worldwide (5). Out of the 8.8 million cancer deaths in 2015, 1.69 million was due to lung
cancer (5). The high mortality in patients with lung cancer is often associated with an advanced
metastatic disease state (6, 7). In such cases, effective systemic therapies are vital to improve a

66

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2018.00573
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00573&domain=pdf&date_stamp=2018-12-05
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:xiaoq@mail2.sysu.edu.cn
mailto:liang.li@siat.ac.cn
mailto:yangl@sustc.edu.cn
https://doi.org/10.3389/fonc.2018.00573
https://www.frontiersin.org/articles/10.3389/fonc.2018.00573/full
http://loop.frontiersin.org/people/620396/overview
http://loop.frontiersin.org/people/619382/overview
http://loop.frontiersin.org/people/610307/overview
http://loop.frontiersin.org/people/302991/overview


Davient et al. HSAEC’s Balancing-Act and A549’s Self-Cannibalization

patient’s prognosis. Targeted therapy, immunotherapy and
chemotherapy are all systemic therapies, each with their own
strengths and weaknesses.

Targeted therapies can mitigate most side-effects commonly
seen in chemotherapy by working on specific mutations unique
to cancer cells (8), but their highly specific nature excludes
patients whom do not harbor these mutations (9). Almost 80%
of all lung cancers are Non-Small Cell Lung Cancer (NSCLC).
The most studied target for NSCLC is the Epidermal Growth
Factor Receptor (EGFR). There exist three classes of activating
EGFR mutations that sensitizes NSCLCs to EGFR Tyrosine
Kinase Inhibitors (TKIs). These activating EGFR mutations have
been well summarized in the literature (10). Gefitinib, Erlotinib,
Afatinib, Osimertinib, and Dacomitinib are a few prominent and
promising EGFRTKIs used inNSCLC patients harboring specific
activating EGFRmutations. Gefitinib and Erlotinib are inhibitors
of a few specific EGFR mutations found in some NSCLC patients
and have demonstrated enduring progression free survival for
responders (11–13). Although effective, Gefitinib, Erlotinib, and
the other EGFR TKIs are beneficial to only a small population of
patients as only about 15% of Caucasian and 50% of Asian lung
adenocarcinoma patients harbor EGFR mutations (14, 15).

Immunotherapy exploits the patient’s own immune system
against cancers (16), but its success depends on the cancer’s ability
to display its unique neoantigens on its outer cell membrane (17–
19) to be identified and destroyed by immune cells (20). Cancers
can evade immune destruction by expressing ProgrammedDeath
(PD) Ligand 1 (PD-L1), which binds to PD-1 receptors on CD8+
T-cells, inhibiting cytotoxic elimination (21). Nivolumab and
Pembrolizumab are antibodies against PD-1. Their prevention of
interaction with PD-1 allows CD8+ T-cells to eliminate cancer
cells such as NSCLCs (22, 23). Anti-PD-1 effectiveness against
NSCLC has been reported to positively correlate with the cancer
cell’s mutation burden, as a high mutation load generates unique
neoantigens for T-cell recognition (24). However, response rates
of anti-PD-1 in NSCLC patients appears to be low at ∼19%
(22, 23, 25).

In contrast to targeted and immunotherapy, chemotherapy
offers broader patient coverage and is still the mainstream
cancer therapy available for the majority of cancer patients (26).
Platinum-based doublet chemotherapies have been indicated as
the first-line against NSCLC with response rates ranging from
25 to 35% (27, 28). However, despite better response rates, their
inability to distinguish rapidly diving cancer cells from healthy
cells could lead to debilitating side-effects such as anemia, nausea,
and neurotoxicity (29).

NSCLC urgently require therapies that are effective, have wide
coverage, and harbor fewer side effects. Many studies are ongoing
to improve systemic therapies for metastatic NSCLC. In terms of
chemotherapies, the search for newer and safer treatments, alone
or in combination, persists (30–33).

Nature provides a rich source of anti-cancer agents suitable
for chemotherapy. Docetaxel (DTX), Paclitaxel (PTX), and
Doxorubicin (DOX) are natural compounds that have been used
against NSCLC (34, 35). Recently, Prodigiosin (PG), a secondary
metabolite from Serratia marcescens, was observed to inhibit
NSCLC proliferation (36). Interestingly, PG has been reported

to exhibit high cancer-specificity (37–39). This means that PG
could potentially mitigate common side-effects associated with
chemotherapies, making it a smart chemotherapy candidate.

The current understanding of PG’s anti-cancer mechanisms
of action encompasses cytoplasmic acidification through
modulation of H+/Cl− symporters, DNA damage
through copper-mediated oxidative cleavage, inhibition
of topoisomerases, and ATP synthesis reduction through
disruption of the mitochondrial proton gradient (40). At the
molecular level, PG has been described to initiate autophagy
through mTOR deactivation (39) and apoptosis through the
disruption of BCL-2 family pro-survival members (39, 41) or
downregulation of pro-survival Survivin (40, 42), a member of
the inhibitor of apoptosis. In addition, common to many cancers
is the dysregulation of p53, a protein that dictates cell survival or
cell death upon cell stress. In most cancers, p53 activity is lost
and cells attain a permanent survival status. In some reports, PG
was able to induce cancer cell apoptosis in a p53-independent
manner (43, 44). This reveals that PG could trigger alternative
apoptosis pathways.

Altogether, PG appears to be a promising chemotherapeutic
agent which warrants further research into its mechanisms of
action. At present, there exists limited data on PG’s mechanisms
of action to draw meaningful links between studies. Here, we
add value to the current knowledge by unveiling PG’s potential
cancer-specific activity through comparative transcriptomics
analysis between Human Lung Adenocarcinoma (A549) and
Human Small Airway Epithelial Cells (HSAEC), with Human
Colorectal Carcinoma Cells (HCT116) as a cancer control. In
addition, we also report on PG’s in vitro effectiveness and
safety, based on the degree of cancer cytotoxicity and selectivity,
respectively, in comparison to DTX, PTX and DOX.

MATERIALS AND METHODS

Materials
Docetaxel purum (DTX), doxorubicin hydrochloride
(DOX), paclitaxel from Taxus brevifolia (PTX), prodigiosin
hydrochloride from Serratia marcescens (PG), and dimethyl
sulfoxide (DMSO) were purchased from Sigma (St. Louis, MO,
USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was purchased from Bio Basic (Amherst, NY,
USA). Proteinase K, RNase-Free DNase I and the RNAprotect
Cell Reagent were purchased from Qiagen (Hilden, Germany).
TURBOTM DNase, QubitTM dsDNA HS, and RNA HS Assay
Kits were purchased from Invitrogen (Waltham, MA, USA).
Angencourt RNAClean XP Kit was purchased from Beckman
Coulter (Bera, CA, USA). RNA ScreenTape was purchased from
Agilent (Santa Clara, CA, USA).

Cell Culture
Primary Small Airway Epithelial Cells; Normal, Human
(HSAEC) (ATCC R© PCS301-010TM), A549 (ATCC R© CCL-
185TM), HCT116 (ATCC R© CCL-247TM), and the Airway
Epithelial Cell Basal Medium (AECBM) with associated growth
factors were purchased from the American Type Culture
Collection (ATCC) (Manassas, VA, USA). Phosphate Buffered
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Saline (PBS) without calcium and magnesium, high glucose
Dulbecco’s Modified Eagles Media (DMEM) with added L-
glutamine, sodium pyruvate, and phenol red, were purchased
from GE Healthcare Life Sciences (Logan, UT, USA). Heat-
inactivated Fetal Bovine Serum (FBS) of South American origin
and Trypsin-EDTA (0.25%) with phenol red were purchased
from Gibco (Waltham, MA, USA). HSAEC cells were cultured
with 8mL AECBM while both A549 and HCT116 cells were
cultured with 8mL DMEM supplemented with 10% FBS, which
henceforth will be referred to as complete media, in a 75 cm2

culture flask. All culture flasks were incubated in a humidified
atmosphere at 37◦C with 5% CO2. All incubations mentioned
henceforth will be referring to these conditions. NoMycoplasma
testing was performed.

Cell Viability Assay
DTX, PTX, DOX, and PG were reconstituted with DMSO to
a stock concentration of 50, 50, 80, and 2mM, respectively.
Drugs were diluted in pre-warmed AECBM or complete
media of 37◦C. For each drug concentration tested, an
equivalent DMSO concentration was created as control
(Supplementary Figure S1).

At ∼90% cell confluency, cells were split into 96-well flat-
bottomed plates at a seed density and final volume of 7,000
cells and 100 µL per well. Cultures were incubated overnight
for 24 h. At ∼80% confluency, the spent media was replaced
with either the treatment or control media to a final volume of
100 µL per well. The culture plates were incubated for another
48 h.

The MTT shipped in the powdered state was reconstituted
with PBS to a final concentration of 5 mg/mL and sterile
filtered with a 0.2µm Acrodisk Syringe Filter (PALL, Port
Washington, NY, USA). This was mixed at a 1:1 ratio with
serum-free DMEM or AECBM to create the MTT mix. After
the 48 h of treatment, the spent drug media was replaced with
100 µL of the MTT mix. The cultures were incubated for
an additional 3 h before being homogenized with 150 µL of
DMSO. Cell viability was measured with the Infinite R© M200 Pro
(Tecan, Männedorf, Zürich, Switzerland) microplate reader at
590 nm.

Drug Cytotoxicity Screening
HSAEC and A549 cells, both at passage P6, were split into three
25 cm2 culture flasks. These cultures were propagated further
for two more passages, and at P8, each cell line was considered
to have three biological replicates of n = 3 (45). The cells were
thereafter cultured in 96-well plates as technical duplicates per
biological replicate.

DTX, PTX, DOX, and PG’s ED50 were pre-determined with
A549 cells (Supplementary Figure S2). The ED50 for DTX, PTX,
DOX, and PG were 0.1, 0.1, 1, and 0.3µM, respectively. For
the combination therapies with PG, drugs were mixed in a 1:1
ED50 ratio. All treatments were first created as eight-fold stock
concentrations and were serially diluted by two-folds (i.e., 8:8 to
4:4 till 0.25:0.25). All other steps conducted have been described
under the “Cell Viability Assay” section.

RNA Extraction and Quality Controls
HSAEC, A549, and HCT116 at passage number P8 were cultured
as technical triplicates in 25 cm2 culture flasks, and after two
more passages, each cell line was considered to have biological
triplicates of n = 3 (45). At 90% confluency, HSAEC and A549
cells were split at a seed density of 3.0 × 104 cells/cm2

, while
HCT116 cells were split at 6.0 × 104 cells/cm2 into 6-well plates.
After 24 h of incubation in 3mL of AECBM or complete media,
the spent media was replaced with 3mL of either 1.0µM PG
(treatment) or 0.05% DMSO (control). Cells were incubated for
another 24 h and thereafter, the media was replaced with 1mL of
RNAprotect Cell Reagent.

Cells were gently agitated on an orbital shaker at 80
revolutions per minute for 10min. A lysis cocktail comprised
of 10 µL 1% β-mercaptoethanol, 20 µL proteinase K, and 800
µL RLT buffer, which was a component from the RNeasy Mini
Kit (Qiagen), was homogenized with cells in each well. The RNA
extraction was conducted according to instructions found in the
RNeasy Mini Kit.

A 30min on-column DNase I treatment was performed.
DNA contamination was further minimized with TURBOTM

DNase treatment. Once RNA was purified with the Angencourt
RNAClean XP Kit, RNA integrity was verified using the RNA
ScreenTape with analysis on the Agilent 2200 TapeStation
(Agilent). Using the QubitTM dsDNA HS and RNA HS Assay
Kits, total RNA was quantified fluorometrically via the QubitTM

Fluorometer 2.0 (Invitrogen).

RNA Sequencing and Data Processing
RNA library preparation and sequencing were conducted by
an in-house facility at Singapore Centre for Environmental
Life Science Engineering (SCELSE). Briefly, library preparation
was executed with the Illumina R© TruSeq R© Stranded messenger
RNA Sample Prep Kit (Illumina, San Diego, CA, USA). The
output which was cDNA fragments were paired-end sequenced
at read lengths of 100 nucleotides via the Illumina R© HiSeq 2500
(Illumina) platform.

All samples had a sequencing depth of more than 24 million
reads. These reads were processed using the CLC Genomics
Workbench Version 11.0.1 (CLC Bio, Aarhus, Denmark). The
default settings were used unless otherwise stated. All reads
were trimmed with a quality score of 0.05. Using the “RNA-
Seq Analysis” function, the trimmed reads were mapped onto
the human genome GRCh38 downloaded from the Ensemble
database. The maximum number of hits for a read was set to
1. Gene hits were annotated with GRCh38.92 acquired from
the Ensemble database. Gene expression was measured as total
counts, where each paired-read was considered as 1. A negative
binomial test was performed using the workbench’s “Differential
Expression for RNA-Seq” tool to establish the differentially
expressed genes (DEGs). All raw and processed sequence files
may be acquired from Gene Expression Omnibus (Accession
number: GSE118448).

Functional Analysis
DEG datasets were exported from CLC into the Ingenuity R©

Pathway Analysis (IPA; Qiagen) Version 44691306 software. A
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Log2 Fold-change (Log2FC) of ±1 with a false discovery rate
(FDR) adjusted p-value of < 0.05 was applied to the datasets.
With these cut-off values, HSAEC had 2,222, A549 had 2,004, and
HCT116 had 2,199 DEGs out of 37,258 successfully annotated
gene identifiers.

Statistical Analysis
The Welch two-tailed t-test available in GraphPad Prism 8
was applied onto the drug cytotoxicity screening assay datasets.
This statistical test considers the data to have been sampled
from a Gaussian population but does not presume that the two
populations under scrutiny have the same standard deviation.
The null hypothesis is defined as the two populations tested
having equal means. When p > 0.05, the null hypothesis is
not rejected, and the interpretation would be that the evidence
is not convincing enough to claim that the means of the two
populations tested are different.

RESULTS

PG Demonstrated Selective Toxicity
Toward A549 but not HSAEC
PG has been known to induce cancer cell death while preserving
healthy cell’s viability (37–39). Here, we evaluated PG’s cancer-
specific toxicity with cancer cell line A549 and immortalized
human lung small airway epithelial cells (HSAEC; Figure 1). At
PG’s ED50 of 0.3µM, cell viability of A549 was reduced by 67.7
± 5.3%, while HSAEC was reduced by 15.6 ± 2.8%. As A549 is
a cancer cell line while HSAEC is an immortalized healthy cell
line, with both dividing rapidly, the greater reduction in A549 cell
viability demonstrates PG’s selective toxicity. PG concentrations
>0.3µM exhibited neither enhanced cancer toxicity nor healthy
cell protection.

PG Outperformed DTX, PTX, and DOX in
Terms of Cancer-Specificity
Here, we define performance as the agent’s ability to protect
normal cells while being toxic to cancer cells. In other words, the
degree of cancer-specificity. Evaluation of DTX, PTX, DOX, and
PG’s ED50 of 0.1, 0.1, 1.0, and 0.3µM, respectively, against A549
and HSAEC, revealed PG’s superior performance as a cancer-
specific agent. At these concentrations, PG preserved HSAEC
viability by 2.8, 2.4, and 2.5 times more than DTX, PTX, and
DOX, respectively (Figure 1). Moreover, PG reduced A549 cell
viability at an average of 1.7 times greater than the other agents.

PG Exhibited Poor Performance in
Combination With DTX, PTX, or DOX
DTX, PTX, or DOX in a 1:1 ED50 ratio with PG failed to
exhibit anti-cancer synergism and were almost equally toxic, if
not worst, toward HSAEC as compared to A549. 0.3µM PG
with 0.1µM DTX reduced HSAEC viability by 63.0 ± 2.6% and
A549 by 67.2 ± 3.7% (Figure 1A). 0.3µM PG with 0.1µM PTX
reduced HSAEC viability by 66.4 ± 7.5% and A549 by 63.9 ±

4.3% (Figure 1B). 0.3µMPGwith 1.0µMDOX reduced HSAEC
viability by 71.4 ± 2.7% and A549 by 40.4 ± 10.4% (Figure 1C).
PG in combination with DTX, PTX, or DOX, at 4:4, 2:2, 1:1,
0.5:0.5 or 0.25:0.25 ED50 ratio, failed to exhibit improved toxicity

toward A549 with enhanced protection to HSAEC in comparison
to 0.3µM PG alone.

PG Altered Both A549 and HCT116 Cancer
Cells’ Morphology
To determine if PG’s anti-cancer activity can be observed
beyond lung adenocarcinoma cells, in addition to A549 cells,
we treated HCT116 cells, another cancer type which could
serve as a cancer control, with 1.0µM PG for 24 h prior
microscopic visualization. A549 cells were found in low numbers,
elongated, shriveled, with a deformed nucleus and non-
homogenous cytoplasm (Figure 1Da). HCT116 cells appeared
rounded-up, detached from culture surfaces, but still adhered
to neighboring cells (Figure 1Db). Overall, PG demonstrated
substantial morphological alterations in both A549 and HCT116
cancer cell lines.

PG’s Toxicity Possibly Mitigated Through a
“Balancing Act” in HSAEC
To understand how PG protects healthy cells yet kills cancer cells,
we conducted an RNA-sequencing experiment with HSAEC,
A549 and HCT116 cells treated with 1.0µM PG for 24 h. Using
the top 50 up- and down-regulated genes per cell line, we
were able to identify 84 DEGs specifically perturbed in HSAEC.
These DEGs had an FDR p-value < 4.0 × 10−15 (Figure 2). For
comparison validity, these 84HSAEC-specific DEGs were filtered
under two conditions. Firstly, the corresponding DEGs in A549
and HCT116 were required to have an FDR p-value < 0.05, and
secondly, the difference in expression in terms of Log2FC with
HSAEC had to be > ± 1.5. Under these conditions, 21 DEGs
were identified as fit for comparison (Table 1).

The 21 DEGs revealed a “balancing act” in HSAEC between
genes of oncogenic and tumor-suppressive nature. Oncogenic
genes such as PDK4, RRAGD, HEY1, TSPAN15, and SERPINB9
were found overexpressed. At the same time, tumor-suppressive
genes such as MT1G, MT1M, CDKN1C, and DCN were
overexpressed. On the other hand, genes of oncogenic nature
such as SHCBP1, CPA4, KRT19, KRT15, and DSG3 were found
downregulated. DEGs such as BMP6, GULP1, AC106865.1,
CNTN3, GDAP1, C1orf116, and SDSL were uncategorizable due
to their lack of information.

PG Possibly Induced DNA Replication
Inhibition and Metabolic Rewiring in A549
and HCT116
To identify other possible anti-cancer mechanisms associated
with PG, we performed a comparative transcriptomics analysis
betweenA549, HCT116 andHSAEC cells treated with 1.0µMPG
for 24 h. A total of 18 DEGs were considered fit for comparison
(Table 2) based on two conditions. Firstly, the DEGs commonly
perturbed betweenA549 andHCT116 had to be upregulated by at
least>2 Log2FC and downregulated by<-1.5 Log2FC. Secondly,
the difference between A549 and HSAEC gene expression had to
be > ± 1.5 (Figure 2).

All commonly downregulated genes between A549 and
HCT116 were found associated with DNA replication. These
were MCM10, H2AFX, DSCC1, MCM4, and RFC5 (Table 2).
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FIGURE 1 | Cell viability of HSAEC and A549 cell measured by the MTT assay after 48-h of PG treatment (A–C). Effects of 1.0µM PG on A549 and HCT116 cell

morphology after 24 h treatment (Da–Dd). (A) PG, DTX, and PG+DTX. (B) PG, PTX, and PG+PTX. (C) PG, DOX, and PG+DOX. Bar graphs represent mean cell

viability from biological triplicates (n = 3) while the black vertical lines on the bar tops represent standard deviation (SD). A Welch t-test was applied to the datasets;

black horizontal lines compare drug effects between HSAEC and A549, blue lines compare within HSAEC, and red lines compare within A549 (*p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, and “ns” is not significant). (Da) A549 and (Db) HCT116 were treated with 1.0µM PG. (Dc) A549 and (Dd) HCT116 were treated with

0.05% DMSO as a negative control. Phase-contrast images were acquired at 20X magnification with the EVOS FL Auto 2 microscope. Images have not been

enhanced. Scale bars represent 125µm.

Frontiers in Oncology | www.frontiersin.org 5 December 2018 | Volume 8 | Article 57370

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Davient et al. HSAEC’s Balancing-Act and A549’s Self-Cannibalization

FIGURE 2 | Differentially expressed genes from CLC Workbench for HSAEC, A549 and HCT116 after 24 h treatment with 1.0µM PG. Blue circles represents HSAEC,

purple as A549 and yellow as HCT116. Twenty one genes for Table 1 were derived from filtering 84 HSAEC-specific genes on the condition that corresponding genes

in A549 and HCT116 had an FDR p-value < 0.05, and secondly, the difference of A549 and HCT116 gene expression in terms of Log2FC with HSAEC had to be > ±

1.5. Eighteen genes for Table 2 were derived from filtering 80 genes common to A549 and HCT116 on the condition that corresponding genes in A549 with HSAEC

had an FDR p-value < 0.05, and secondly, the difference of A549 and HSAEC gene expression in terms of Log2FC with HSAEC had to be > ± 1.5.

Surprisingly, MCM10 and DSCC1 expression were severely
repressed in HSAEC than in A549 and HCT116. On the
other hand, multiple genes associated with lipid and cholesterol
metabolism, either directly or indirectly, were found commonly
overexpressed between A549 and HCT116. These were ALDOC,
NDRG1, WIPI1, PCSK9, LIPG, MSMO1, MVD, IDI1, and
ANGPTL4 (Table 2). The other genes that were overexpressed
yet did not closely associate with the two main categories
described here were MIR210HG, CCNG2, P4HA1, and PPM1K
(Table 2). Confirmatory repeat experimental data for RNA
sequencing result of A549 and HCT116 can be found in
Tables S1,S2. Further pathway analysis also revealed different
upstream regulator activities in PG-treated HSAEC, A549, and
HCT116 cells (Tables S3–S5).

Based on pathway analysis, and in relation toDNA replication,
the “Role of BRCA1 in DNADamage Response” and the “Mitotic
Roles of Polo-Like Kinase” pathways were seen perturbed in all
three cell lines but were predicted to be inactivated (Table 3).
In terms of DNA damage, the “Cell Cycle: G2/M DNA Damage
Checkpoint Regulation” pathway was predicted to be activated
(Table 3). In relation to metabolic rewiring, the “Superpathway
of Cholesterol Biosynthesis,” the “Cholesterol Biosynthesis

III (via Desmosterol),” the “Cholesterol Biosynthesis II (via
24,25-dihydrolanosterol),” and the “Cholesterol Biosynthesis I”
pathways were significantly perturbed and predicted to be highly
activated (Table 3). Furthermore, these cholesterol pathways
were not perturbed in HSAEC following PG treatment.

With experimental data, the IPA’sMolecule Activity Prediction
(MAP) algorithm managed to predict PG-induced mechanistic
differences between HSAEC and A549 cells in terms of “Cell
Cycle Progression,” “Apoptosis,” “Cell Survival,” “Mitochondrial
Respiration,” “Glycolysis,” “Autophagy,” and “Senescence”
(Figure 3). The overall prediction landscape seems to suggest
PG-induced pro-survival in HSAEC but pro-death in A549.
Interestingly, “DNA Repair” mechanism was predicted to be
inhibited in both cell lines (Figure 3).

DISCUSSION

Metastatic lung cancers are extremely lethal and requires effective
systemic therapies to improve clinical outcomes for patients
(46). PG has demonstrated immense potential as a smart
chemotherapeutic candidate. Its most promising feature is its
ability to selectively eliminate cancer cells yet protect healthy
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TABLE 1 | HSAEC-specific DEGs in comparison with A549 and HCT116 cells after 24 h treatment with 1.0µM PG.

Log2FC

Gene name Gene symbol ENSEMBL ID HSAEC A549 HCT116

ONCOGENIC NATURED GENES

Pyruvate Dehydrogenase Kinase 4 PDK4 ENSG00000004799 6.87 1.25 1.62

Ras Related GTP Binding D RRAGD ENSG00000025039 4.92 2.03 0.68

Hes Related Family BHLH Transcription Factor with YRPW Motif 1 HEY1 ENSG00000164683 4.54 0.93 1.41

Tetraspanin 15 TSPAN15 ENSG00000099282 4.19 -0.61 1.28

Serpin Family B Member 9 SERPINB9 ENSG00000170542 3.69 -0.78 0.72

SHC Binding and Spindle Associated 1 SHCBP1 ENSG00000171241 -3.73 -2.18 -1.14

Carboxypeptidase A4 CPA4 ENSG00000128510 -3.68 0.49 0.67

Keratin 19 KRT19 ENSG00000171345 -3.48 1.97 0.76

Keratin 15 KRT15 ENSG00000171346 -3.28 1.13 2.00

Desmoglein 3 DSG3 ENSG00000134757 -2.86 – –

TUMOR-SUPPRESSIVE NATURED GENES

Metallothionein 1G MT1G ENSG00000125144 5.80 – –

Metallothionein 1M MT1M ENSG00000205364 5.64 – –

Cyclin Dependent Kinase Inhibitor 1C CDKN1C ENSG00000129757 4.74 2.84 2.43

Decorin DCN ENSG00000011465 3.81 – –

UNCATEGORIZABLE GENES

Bone Morphogenetic Protein 6 BMP6 ENSG00000153162 5.49 2.18 -1.41

GULP, Engulfment Adaptor PTB Domain Containing 1 GULP1 ENSG00000144366 4.11 0.78 1.41

– AC106865.1 ENSG00000250771 4.88 – –

Contactin 3 CNTN3 ENSG00000113805 4.51 – –

Ganglioside Induced Differentiation Associated Protein 1 GDAP1 ENSG00000104381 -3.93 -1.12 -0.63

Chromosome 1 Open Reading Frame 116 C1orf116 ENSG00000182795 -3.57 -1.47 1.23

Serine Dehydratase Like SDSL ENSG00000139410 -2.88 -0.68 -0.72

Upregulated genes are represented in red, downregulated in blue, and those with no detectable changes with the symbol “-”. All genes curated had an FDR p-value < 4.0 × 10−15

except the following; A549’s CDKN1C (0.01) and HEY1 (0.04), HCT116’s BMP6 (0.05). Experiments were conducted in biological triplicates of n = 3. Confirmatory repeat experimental

data can be found in Supplementary Table S1.

cells (37–39). Here, we were able to demonstrate PG’s selective
elimination of NSCLC by four-folds (Figures 1A–C). Beyond
lung adenocarcinoma cells, we also showed that PG could cause
substantial morphological alterations to colorectal carcinoma
cells (Figure 1D). When compared to other naturally derived
anti-cancer agents such as DTX, PTX, or DOX, PG exhibited
heightened protection toward HSAEC while being more toxic to
A549. Indeed, PG established itself as a promising cancer-specific
agent. However, the random combination with other anti-cancer
agents could ameliorate PG’s cancer-specific activity and yield an
undesirable outcome to healthy cells (Figures 1A–C). A rational
drug combination approach could increase synergism, hence,
greater success in combinatorial chemotherapies. To permit
a rational combination of PG with other anti-cancer agents,
we require a deeper understanding of the agent’s molecular
functions.

Previously, a microarray analysis for 1,176 genes was
performed on human breast cancer cells treated with PG (44).
Out of the 37 significantly perturbed genes (44), there were
no similarities found with our study (Table 2). The lack of
similarities was not unexpected as this could be due to the
inherent limitation of the microarray technology (47), or simply

because a different cell line was used. Nevertheless, using
RNA-sequencing, a genome-wide transcriptomics approach, we
were able to identify at least 2,000 significantly perturbed
genes per cell line. With broader coverage, we were confident
that employing such a technology would permit a more
comprehensive analysis.

The comparative transcriptomics analysis between A549 and
HCT116 revealed 18 genes that were significantly perturbed
by PG (Table 2). These genes revealed the possibility of DNA
replication inhibition and metabolic rewiring toward enhanced
lipid and cholesterol biogenesis. In the study with breast
cancer cells, PG was reported to perturb genes related to
transcriptional regulation, cell adhesion, cell cycle, and apoptosis
(44). Although we have not found perturbations in genes
associated with transcriptional regulation or cell adhesion, based
on experimental data, we have predicted cell cycle inhibition
(Table 3 and Figure 3) and reduced survival fitness in line with
apoptosis (Figure 3) in A549 cells.

The gene products of MCM10, MCM4, H2AFX, DSCC1,
and RFC5 are necessary for DNA replication. However, they
were found downregulated in both A549 and HCT116 after PG
treatment (Table 2). MCM10 plays a crucial role in allowing
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TABLE 2 | Common DEGs in both A549 and HCT116 cells after 24 h treatment with 1.0µM PG.

Log2FC

Gene name Gene symbol ENSEMBL ID HSAEC A549 HCT116

DNA-REPLICATION ASSOCIATED GENES

Minichromosome Maintenance 10 Replication Initiation Factor MCM10 ENSG00000065328 -4.67 -3.09 -1.87

H2A Histone Family Member X H2AFX ENSG00000188486 -0.96 -2.70 -1.57

DNA Replication and Sister Chromatid Cohesion 1 DSCC1 ENSG00000136982 -3.93 -2.35 -1.55

Minichromosome Maintenance Complex Component 4 MCM4 ENSG00000104738 -0.33 -2.22 -1.87

Replication Factor C Subunit 5 RFC5 ENSG00000111445 -0.51 -2.11 -1.62

LIPID AND CHOLESTEROL METABOLISM ASSOCIATED GENES

Aldolase, Fructose-Bisphosphate C ALDOC ENSG00000109107 1.74 5.36 4.71

N-Myc Downstream Regulated 1 NDRG1 ENSG00000104419 1.08 3.80 2.81

WD Repeat Domain, Phosphoinositide Interacting 1 WIPI1 ENSG00000070540 1.53 3.39 2.50

Proprotein Convertase Subtilisin/Kexin Type 9 PCSK9 ENSG00000169174 1.65 3.27 2.85

Lipase G, Endothelial Type LIPG ENSG00000101670 -0.27 2.82 3.35

Methylsterol Monooxygenase 1 MSMO1 ENSG00000052802 0.51 2.76 3.32

Mevalonate Diphosphate Decarboxylase MVD ENSG00000167508 0.52 2.48 2.76

Isopentenyl-Diphosphate Delta Isomerase 1 IDI1 ENSG00000067064 0.59 2.34 2.98

Angiopoietin Like 4 ANGPTL4 ENSG00000167772 -1.34 2.19 3.66

OTHER PATHWAYS ASSOCIATED GENES

MIR210 (MicroRNA 210) Host Gene MIR210HG ENSG00000247095 1.00 4.57 3.60

Cyclin G2 CCNG2 ENSG00000138764 0.78 3.15 3.74

Prolyl 4-Hydroxylase Subunit Alpha 1 P4HA1 ENSG00000122884 0.30 2.40 2.68

Protein Phosphatase, Mg2+/Mn2+ Dependent 1K PPM1K ENSG00000163644 0.57 2.32 2.15

Upregulated genes are represented in red and downregulated in blue. All genes curated had an FDR p-value < 4.0 × 10−15 except the following; HSAEC’s MIR210HG (4.09 × 10−15),

LIPG (7.17 × 10−3), MSMO1 (2.15 × 10−12), MVD (5.92 × 10−10), P4HA1 (4.41 × 10−4), IDI1 (3.13 × 10−10), PPM1K (8.86 × 10−3), MCM10 (3.26 × 10−7), H2AFX (4.09 × 10−15),

DSCC1 (8.96 × 10−4), MCM4 (2.54 × 10−3), and RCF5 (0.02). Experiments were conducted as biological triplicates of n = 3. Confirmatory repeat experimental data can be found in

Supplementary Table S2.

CDC45:MCM2-7:GINS helicase to unwind DNA double-strand
for replication initiation (48). After DNA has been unwounded,
DNA replication requires DSCC1 and RFC5 complexed with
other proteins to load Proliferating Cell Nuclear Antigen (PCNA)
onto the DNA (49). PCNA is required to clamp DNA polymerase
epsilon onto the DNA for replication (50). After DNA synthesis,
to maintain genomic integrity, H2AFX serves as a sensor for
DNA damage and recruits DNA repair complexes to the area
of lesion (51). PG has been reported to cause genotoxicity
directly through copper-mediated oxidative cleavage (52), or
indirectly through inhibition of topoisomerases (53). One
potential mechanism stemming from the downregulation of
H2AFX is the loss of genomic integrity, induction of cell
cycle arrest [CCNG2 overexpression (Table 2) and predicted
G2/M DNA damage checkpoint arrest activation (Table 3)] and
therefore, DNA replication stand-still (54, 55). By throwing the
DNA repair mechanisms off-balance [predicted BRCA pathway
shutdown (Table 3)], genotoxic agents such as PGmight increase
sensitivity and effectiveness against cancer cells (56, 57).

Metabolic rewiring has been described as an emerging
hallmark of cancer (58, 59), and there have been reports of
lipid and cholesterol metabolism being drivers of tumorigenesis
and progression (60–62). In fact, it has been mentioned that
“highly proliferative cancer cells show a strong lipid and
cholesterol avidity, which they satisfy by either increasing the
uptake of exogenous (or dietary) lipids and lipoproteins or

overactivating their endogenous synthesis (that is, lipogenesis
and cholesterol synthesis, respectively)” (60). Interestingly, these
overactivations were observed only after PG treatment (Table 2).
ALDOC, MVD, and IDI1 are metabolic enzymes that support
lipid and cholesterol biosynthesis. Their gene overexpression
could potentially hint at an overactive endogenous lipid and
cholesterol biogenesis. ANGPTL4, a lipoprotein lipase inhibitor,
had a Log2FC difference of 3.53 between healthy HSAEC and
cancerous A549 cells. ANGPTL4 upregulation in A549 cells
may have been in response to the overexpression of other
lipogenic genes (63). On the flip side, upregulation of PCKS9
hints at a potential supply cut-off of low-density lipoproteins
(LDL) from exogenous sources by reducing LDL receptors (64,
65). As a compensatory mechanism to reduced LDL uptake,
NDRG1 and LIPG may have been upregulated to acquire
LDL and fatty acids, respectively, from the cell’s surroundings
(66, 67). CXCL8, otherwise known as interleukin-8, has been
implicated as a cancer growth factor (68, 69), as well as a
molecule that promotes cholesterol accumulation (70). MSMO1
is also believed to be involved in cholesterol metabolism and
cancer (71, 72). Altogether, there may be a possibility that
the blockade of exogenous LDL import, compounded with
the rampant endogenous demand for lipid and cholesterol
biogenesis to support rapidly dividing cancer cells, induced a
suicidal metabolic rewiring that eventually led to autophagy
(73).
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TABLE 3 | Top 10 canonical pathways in A549 and HCT116 cells after 24 h of 1.0µM PG treatment.

Top 10 Canonical pathways -log(p-value) Activation z-score

HSAEC A549 HCT116 HSAEC A549 HCT116

Superpathway of Cholesterol Biosynthesis

Cell Cycle Control of Chromosomal Replication Not predictable

Cholesterol Biosynthesis III (via Desmosterol)

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol)

Cholesterol Biosynthesis I

Role of BRCA1 in DNA Damage Response

Mitotic Roles of Polo-Like Kinase

Hereditary Breast Cancer Signaling Not predictable

Mismatch Repair in Eukaryotes Not predictable

Cell Cycle: G2/M DNA Damage Checkpoint Regulation

Pathways were ranked in descending order of decreasing -log(p-value) of the Fisher’s exact test. Dark purple heat-map blocks represent high -log(p-value). Activation z-scores were

calculated based on the IPA’s pathway activity prediction algorithm. Dark orange heat-map blocks represent the possibility of a highly active pathway, whereas dark blue blocks represent

inhibition.

Autophagy is a form of cellular self-cannibalization of
cytoplasmic content via lysosomal compartments to recycle cell
materials and provide substrates for cellular homeostasis under
metabolic stress (74). However, autophagy can be a double-
edged sword when it comes to cancers. It could either be pro-
tumorigenic or anti-tumorigenic (75, 76). PG is known to bind
and inhibit mTORC1 and mTORC2, initiating autophagy in
cancer cells (39, 77, 78). We found WIPI1, a marker and an
important player in autophagy (79, 80), markedly upregulated

(Table 2). It is unclear if the lipid and cholesterol biosynthesis
genes were upregulated to support the de novo biogenesis of
autophagosomes.

How PG protects healthy cells yet eliminates cancer cells
has been a mystery thus far. For the first time, we attempted
to unravel PG’s cancer-specific mechanisms of action through
comparative transcriptomics analysis. Firstly, unlike in A549
and HCT116, there were little to no upregulation in lipid
and cholesterol biosynthetic genes and pathways in HSAEC
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FIGURE 3 | MAP of “p53 Signaling” pathway in (A) HSAEC and (B) A549 cells treated with 1µM PG over 24 h. Predictions were calculated based upon DEGs from

the experimental dataset overlaid onto the Ingenuity Knowledge Base in IPA. Orange, blue, yellow, and gray lines corresponds to predicted activation, inhibition,

contradiction, and the inability to predict an outcome, respectively. Red or green color intensities within shapes reflect the level of upregulation or downregulation,

respectively, based upon the experimental Log2FC values. Orange or blue color intensities within shapes reflect the level of predicted activation or inhibition,

respectively, based on upon IPA’s predictions.
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(Tables 2, 3). In fact, the downregulation of ANGPTL4 suggests
an active catabolism of lipoproteins. Secondly, although WIPI1
was upregulated, it wasmuch lesser than A549, possibly reflecting
a weaker autophagic status in HSAEC. Thirdly, the near-normal
expression of H2AFX suggests that HSAEC may be able to
overcome PG’s genotoxic stress. However, how this could be
possible despite BRCA1 downregulation (Figure 3) and potential
BRCA1 pathway inactivation (Table 3) is unclear. Fourth, a deep
analysis of HSAEC-specific genes perturbed by PG revealed a
“balancing act” expression of pro-cancer and anti-cancer genes
(Table 1). This could potentially assist in HSAEC’s viability under
PG treatment. Lastly, and surprisingly,MCM10 andDSCC1 were
found severely downregulated in HSAEC. As PG could inhibit
topoisomerases (53), another potential means of PG genotoxicity
could be mitigated here as the loss of MCM10 does not permit
DNA to unwind for replication (48). Altogether, we suspect that
HSAEC may have been conferred protection to PG through
DNA replication inhibition, BRCA1-independent DNA repair
availability and autophagic resistance.

PG’s upregulation of cholesterol pathways in cancer cells and
its ability to potentially inhibit DNA replication brings about two
immediate concerns that should be addressed in future studies.
Firstly, the degree of which PG could inhibit DNA replication
in HSAEC should be monitored with cell growth rate compared
to A549 and other rapidly dividing cells. This would elucidate
the potential clinical benefits PG has over other conventional
chemotherapeutics that falls short in protecting rapidly dividing
healthy cells. Secondly, the impact of PG treatment with regards
to hypercholesterolemia should be assessed in vivo. On the
other hand, further studies on MIR210HG, the second most
differentially expressed gene in both A549 and HCT116 (Table 2)
could potentially highlight novel insights with regards to PG’s
cancer-specific mechanisms of action. To further improve PG’s
cancer specificity, chemical modifications may be explored to
acquire novel PG analogs or develop targeted drug delivery
strategies which studies have already begun (81, 82).

CONCLUSION

Numerous decades of cancer research, drug discovery, and
development have led to major improvements in patients’
quality of life. Research into systemic therapies for metastatic
cancers continues at two major fronts, namely, safety and

efficacy. PG appears to be a promising smart chemotherapeutic
agent against NSCLC. PG not only demonstrated heightened
anti-cancer activity against A549, but this activity was also
cancer-specific. Understanding how such an agent differentiates
cancerous from healthy cells has been unclear until recently.With
RNA-sequencing, a next-generation tool for transcriptomics, we
managed to unravel PG’s potential cancer-specific mechanisms
of action. Through an exogenous cholesterol supply cut-
off and an internal overactivation of cholesterol synthesis,
PG might have induced cancer cell autophagy to a point
whereby self-cannibalization led to cell death. At the same
time, through balancing the overexpression of oncogenic
and tumor-suppressive genes, healthy cells might have been
conferred a heightened survival status by PG. By exposing A549
transcriptome landscape perturbed by PG, we can now conduct
further experiments with single or multiplexed knock-outs and
knock-downs using CRISPR to yield definitive targets which
could aid the development of precision medicine against NSCLC.
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Chemotherapy with or without radiation remains the first choice for most cancers.

However, intolerant side effects and conventional drug resistance restrict actual

clinical efficacy. Curaxin CBL0137 is designed to regulate p53 and nuclear factor-κB

simultaneously and to prevent the resistance caused by a single target. Functionally,

CBL0137 exhibits an antitumor activity in multiple cancers, including glioblastoma,

renal cell carcinoma, melanoma, neuroblastoma, and small cell lung cancer (SCLC).

Mechanistically, CBL0137 is originally identified to act by facilitates chromatin

transcription (FACT) complex. Further investigations reveal that several pathways,

such as NOTCH1 and heat shock factor 1 (HSF1), are involved in the process.

CBL0137 has been reported to target cancer stem cells (CSCs) and enhance

chemotherapy/monotherapy efficacy. The translational advance of CBL0137 into clinical

practice is expected to provide a promising future for cancer treatment.

Keywords: cancer stem cells, CBL0137, chemotherapy, facilitates chromatin transcription, p53

INTRODUCTION

Cancer harbors several characteristics, including high heterogeneity, diverse gene mutation, or
rapid progression; consequently, treating cancer is difficult, and it easily relapses. Remarkable
achievements have been observed in treatment approaches, including surgery, radiotherapy,
chemotherapy, immunotherapy, and targeted therapy. In particular, targeted therapies, such as
HER2 inhibitor lapatinib, EGFR inhibitor erlotinib, BRAF inhibitor dabrafenib, promote treatment
(1). However, we have failed to treat cancer. Malignancies, such as glioblastoma, are quite invasive
and cannot be entirely removed by surgery. Chemotherapy is hindered by innate and acquired
chemoresistance.

Originally, antimalarial agents, including quinacrine, can activate p53 and inhibit nuclear
factor-κB (NF-κB) simultaneously (2, 3). These drugs have been used as a reference of curaxins,
undergoing some structural changes but maintaining similar functions (2, 4). As a second-
generation curaxin, CBL0137 satisfies the requirements for a drug design, that is, full efficacy while
inducing the least adverse effects. Further research suggested that CBL0137 exerts an antitumor
activity through multiple targets, including facilitates chromatin transcription (FACT), NOTCH1,
and heat shock factor 1 (HSF1), in various cancers (Table 1). At present, CBL0137 in patients
with hematological malignancies (ClinicalTrials.gov Identifier: NCT02931110) and solid tumors
are under phase I clinical trials (ClinicalTrials.gov Identifier: NCT01905228). In this review, we
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summarized the design of CBL0137, highlighted its antitumor
mechanisms through multiple targets, and proposed its potential
for clinical applications, especially as a combination drug.

CBL0137: A SECOND-GENERATION
CURAXIN

Small molecular inhibitor CBL0137 [1,1′-(9-(2-
(isopropylamino)ethyl)-9H-carbazole-3,6-diyl)bis(ethan-1-one)
(IUPAC/chemical name)] is a second-generation curaxin.
Dermawan et al. (12) found that quinacrine (CBLC-102), a
first-generation curaxin, can overcome erlotinib resistance
through preconceived mechanisms in non-small cell lung cancer
(12). Similar results are also observed in ovarian (13) and breast
(14) cancers. Second-generation curaxins, such as CBLC-000,
CBLC-100, and CBLC-137 (CBL0137), have more exact targets
than first-generation curaxins, such as quinacrine (CBLC-102).
In particular, CBL0137 is water soluble because of its chemical
structure and better tolerated in mice than other members of
curaxins, showing great potential for cancer treatment (2). In
addition to the two targets, namely, p53 and NF-κB, CBL0137
can intercalate DNA through FACT without causing any DNA
damage or genotoxicity (2, 7, 15), and more targets are under
investigation.

FACT: A CORE TARGET FOR CBL0137

FACT, a histone chaperone, contains two subunits of the
suppressor of Ty 16 (SPT16) and structure-specific recognition
protein 1 (SSRP1), which participates in DNA replication,
transcription, repair, mitosis, and cell fate reprogramming (16–
18). SPT16 remodels the histone structure after transcription,
and SSRP1 recognizes nucleosomes with its high-mobility group
(HMG)-1 domain (19, 20). SSRP1 is considered more like
a target since it’s more amplified in cancers at mRNA and
protein levels. FACT is involved in the poor prognosis, malignant
transformation, tumorigenesis, and aggressiveness of cancers (9,
16, 21–23). It can recognize the formation of alternative DNA
structures and promote the activation of p53 to prevent DNA
damage (24); thus FACT is regarded as a sensor for genome
instability and mutation, which is one of the ten hallmarks of
cancer treatment (24, 25) (Figure 1). It is highly expressed in
cancer including glioblastoma (GBM) (6), breast cancer (16), and
hepatocellular carcinoma (21), but is poor expressed in normal
tissues or well-differentiated cells (26).

CBL0137, chemotherapeutic agents, UV radiation, oxygen-
free radicals, and hypoxia stress can affect p53 activation (7,
27, 28). With Western Blot analysis, Gasparian et al. (7) have
revealed that CBL0137 activates p53 through posttranslational
modifications at serine 392 (Ser392) rather than serine 15 (Ser15),
which involves casein kinase 2 (CK2) inhibition (7). Previous
studies showed that CK2-induced p53 phosphorylation involves
FACT. FACT, SPT16, and SSRP1 subunits, can bind to CK2 after
CBL0137 is administered, and the SPT16-SSRP1-CK2 complex
phosphorylates p53 at Ser392 and promotes p53 activation (2,
27) (Figure 1). Activated p53 induces apoptosis, promotes DNA

repair, and inhibits tumor growth. Extensive evidence has also
demonstrated that FACT can promote tumor growth, inhibit
apoptosis or cell differentiation and induce cell proliferations
through the regulation of multiple genes including TP53, MYC,
NF-κB, OCT1, and HSF1 (23) (Figure 1).

FACT has recently been reported to correlate with the
expression of cancer stem cell (CSC) markers, such as SOX2,
OCT4, OLIG2, and NANOG in an adult GBM model. The
transcriptional knockdown of FACT or its inhibition with a small
molecule (CBL0137) reduces the expression of these genes (5).

CBL0137 EXERTS ANTITUMOR ACTIVITY
BY INCREASING P53 AND DECREASING
NF-κB SIMULTANEOUSLY

p53 is a classic tumor suppressor protein responsible for the
prevention of oncogenic mutation accumulation, tumorigenesis
and tumor progression (29). p53 mutation or inactivation is
quite common in many cancers (30). p53 activities are regulated
by diverse post-translational modifications such as Ser15 and
Ser392 phosphorylation or lysine 382 acetylation and methylation
(7, 31). NF-κB is a critical transcription factor in antiapoptosis
and cell proliferation, which is activated in inflammation and
cancers (32). CBL0137 is originally designed to activate p53 and
inhibit NF-κB simultaneously to achieve an enhanced efficacy
with modest toxicity (7).

The in vitro and in vivo experiments of CBL0137 have
confirmed the issue. For example, a research on renal cell
carcinoma has suggested that CBL0137 intercalates DNA and
traps FACT, thereby leading to NF-κB inhibition. FACT binds
to CK2 to form a complex, which further induces Ser392

phosphorylation of p53; otherwise, p53 is degraded by MDM2
(2, 7, 33) (Figure 1). Meanwhile, NF-κB is inhibited by the
complex (6). Similar results have been shown in GBM research,
temozolomide (TMZ)-resistant A1207, TMZ-responsive U87MG
cell lines, and orthotopic model. CBL0137 prolongs the survival
of orthotopic A1207 and U87MG models, though it is less
effective than TMZ in the latter. Furthermore, 0.6 and 2.0µM
CBL0137 can increase p53 significantly in cell lines. These studies
have exhibited the antitumor activity of CBL0137 by targeting
p53 and NF-κB, which are the two most common transcription
factors in oncogenic and tumor suppressor pathways.

CBL0137 INHIBITS THE SELF-RENEWAL
OF CANCER STEM
CELLS/TUMOR-INITIATING CELLS
THROUGH NOTCH1 ACTIVATION

Therapeutic resistance is a complex phenomenon in cancer
treatment, though many mechanisms have been proposed. “The
bad seed” CSCs can explain the consequence to some degree (34).
Conventional therapies that do not target CSCs may encounter
cancer recurrence because CSCs can undergo self-renewal and
differentiation (35). Dermawan et al. investigated CBL0137 in
GBM and focused on cancer stem-like cells by using CD133 as
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TABLE 1 | Targets and induced effects of CBL0137 reported in cancer research.

Indications Targets Effects Experiment models References

Glioblastoma SSRP1↓

SOX2↓

OCT4↓

NANOG↓

OLIG2↓

CD133↓

Inhibited proliferation of patient-derived tumor cells Cell lines

Orthotopic mouse models

(5)

Glioblastoma (2) FACT↓

p53↑

NF-κB↓

Induced Apoptosis and inhibited proliferation

Increased survival of TMZ-responsive and -resistant

GBM

Cell lines

Orthotopic mouse models

(6)

Renal cell carcinoma p53↑

NF-κB↓

Induced death of tumor cells through FACT with no DNA

damage

Cell lines

PDX mouse models

(7)

Melanoma p53↑

NF-κB↓

HSF1↓

Enhanced anti-tumor activity by inhibiting heat shock

responses of tumor cells

Cell lines

Orthotopic mouse models

(8)

Neuroblastoma MYCN↓ Reduced tumor initiation and progression Cell lines

TH-MYCN

transgenic mouse models

(9)

Neuroblastoma (2) SSRP1↓

SPT16↓

MYCN↓

Inhibited neuroblastoma cell growth MYCN transgenic zebrafish (10)

Small cell lung cancer NOTCH1↑ Reduced the tumor cell growth

Preferentially kills tumor-initiating cells

Cell lines

PDX mouse models

(11)

PDX, patient-derived xenograft.

FIGURE 1 | CBL0137 exhibits its antitumor activity via multiple pathways. (1) CBL0137 can target SPT16 and SSRP1, the two subunits of FACT; (2) CBL0137 can

induce p53 activation by phosphorylation and NF-κB inhibition, depending on the formation of SPT16-SSRP1-CK2 complex; (3) CBL0137 can reduce the self-renewal

of CSCs through NOTCH1 signaling pathway activation; (4) CBL0137 can decrease HSF1 transcription level; (5) CBL0137 can downregulate MYCN expression.

a marker (5). CBL0137 accumulates in brain tissues in orthotopic
mouse models, suggesting that it can penetrate the blood brain
barrier; oral intake ad libitum can also achieve its efficacy.
CBL0137 prefers to inhibit CD133+ tumor cell growth with the
help of FACT, which is higher in CSCs than non-stem tumor cells.
CBL0137 treatment decreases the expression of CD133 and the
self-renewal of CSCs, increases asymmetric cell division, prevents

tumor initiation and prolongs the survival of tumor-bearing
animals (5). A similar consequence has been demonstrated in
small cell lung cancer (SCLC) and pancreatic cancer (11, 36).
Tumor-initiating cells (TICs) represent those with stemness.
CBL0137 preferentially reduces CD133high and CD44high cells
(TICs) over CD133low and CD44low (non-TICs) and attenuate
the self-renewal of TICs (11).
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The stemness of CSCs is well-modulated by stem-cell factors
including p53, NF-κB, Sox2, Bmi1, c-Myc, and NOTCH1 (35,
37). Therefore, drugs should target CSCs and CSC-related
factors. NOTCH signaling pathway plays a role in oncogenesis,
angiogenesis and CSC maintenance (38). It exhibits oncogenic
and suppressive roles in different cancers (11). NOTCH1, as a
member of the NOTCH family, increases apoptosis and inhibits
cell proliferation in SCLC (11). CBL0137 treatment in SCLC
prevents SP3 binding to the NOTCH1 promoter, decreases
achaete-scute homolog-1 (ASCL1) expression, increases the
mRNA expression of NOTCH1, and inhibits CSC renewal. The
expression levels of ASCL1 and SP3 are higher in TICs than non-
TICs, negatively modulating NOTCH1. Therefore, the tendency
of CBL0137 killing TICs may be a result of FACT and NOTCH1,
thoughwhether CBL0137 targetingNOTCH1 acts through FACT
is unclear in this research (11). CBL0137 can activate NOTCH1
and inhibit the self-renewal of CSCs/TICs (5, 11, 36), thereby
facilitating the enhanced prevention of therapeutic resistance and
tumor progression.

HSF1 IS INVOLVED IN THE
ANTIMELANOMA EFFECT OF CBL0137

Regional chemotherapy via isolated limb perfusion (ILP) is
recommended for patients with in-transit extremity melanoma
in which mild hyperthermia (42◦C compared with 37◦C) is
adopted, thereby improving drug uptake by tumor cells (8).
CBL0137 was then tested for potential use as a regional
chemotherapeutic agent on B16 melanoma cell line and tumor-
bearing mice. CBL0137 treatment by ILP reduces SSRP1
expression, suppresses HSF1/hsp70 transcription, and causes
tumor cell death, and its efficacy can be improved by
hyperthermia. Conversely, CBL0137 can downregulate HSF1
to inhibit heat shock responses brought by hyperthermia,
thereby increasing tumor cell apoptosis. However, treatment of
traditional melphalan had no statistically significant differences
between 42 and 37◦C. Moreover, the linkage of the ILP drug
melphalan can be highly toxic and cause death. By contrast,
even 0.1mg of CBL0137 establishes a strong antitumor activity,
suggesting its leakage causes minimal side effects (8). These
results explain the antitumor mechanism of CBL0137 from the
perspective of hyperthermia and HSF1, suggesting that CBL0137
can be considered as a promising candidate for ILP drug to treat
melanoma.

MYCN IN NEUROBLASTOMA: A
POTENTIAL INDICATOR OF CBL0137
SENSITIVITY

Approximately 20% of patients with neuroblastoma encounter
MYCN amplification, which is a predictor of poor prognosis
(9, 39). Considering that the expression of FACT and MYCN
is closely related and high in precancerous TH-MYCN+/+

neuroblasts, Carter et al. (9) treated TH-MYCN+/+ and TH-
MYCN+/− mice with CBL0137, which is regarded as the
inhibitor of FACT. CBL0137 can downregulate FACT andMYCN

expression and inhibit MYCN-driven tumor initiation and
progression in MYCN mice and xenografts. In tumor-bearing
zebrafish, CBL0137 elicits an inhibitory effect on neuroblastoma
(10). Moreover, high-MYCN-expressing cell lines, such as SH-
SY5Y and BE(2)C, require a lower IC50 of CBL0137 than
those expressing normal or relatively low MYCN, suggesting
that MYCN expression may be applied to evaluate CBL0137
sensitivity, though further investigation is needed (9).

COMBINATION APPROACH OF CBL0137:
THE WAY TO GO

The initial goal of scientists from Clevel and BioLabs Inc. in
designing curaxins is to regulate p53 and NF-κB (2). After the
“target multiplier” FACT is introduced, the understanding of
curaxins has improved. CBL0137 can reduce CSC populations
and their stemness (5, 11, 36), which show its promising clinical
prospect combined with standard treatment strategies.

The cisplatin resistance of SCLC is likely caused by CSCs.
In this research, the combination of CBL0137 and cisplatin at
a 1:1 molar ratio remarkably inhibits SCLC tumor growth in
H82 xenograft (11). Drug combination delays tumor growth for
30 days and prolongs tumor-bearing mice survival for more
than 10 days (11). FACT plays an important role in DNA
repair; thus, researchers believed that these results may be due
to FACT and its ability to inhibit DNA repair, though this
hypothesis has yet to be further investigated (11). However, this
hypothesis is partially confirmed in neuroblastoma. Combined
with cisplatin, cyclophosphamide, etoposide, or vincristine,
CBL0137 can inhibit DNA repair after a double-strand break
occurs without genotoxicity. DNA damage markers remarkably
increase after etoposide and CBL0137 are administered. The
results showed that the effects of CBL0137 are observed in
DNA synthesis inhibitors, such as hydroxyurea, rather than
microtubule poisons, such as hydroxyurea (9). Another research
has shown that the combination of CBL0137 and TMZ does
not significantly affect GBM. Combination therapy surpasses
CBL0137 monotherapy but not that of TMZ (6). These results
are not satisfactory for GBM, but they provide insights into
CBL0137 combined with chemotherapy. Further research should
be conducted on this area.

Early studies revealed the crosstalk between NF-κB and
epidermal growth factor receptor (EGFR), describing them as
“partners in cancer” (31, 40–44). In a GBM research, EGFR
inhibitor lapatinib and CBL0137 are combined at a 10:1 molar
ratio. Lapatinib seldom inhibits CSC growth, which partially
explains why it fails to achieve a satisfactory clinical efficacy in
GBM treatment (5). The combination of lapatinib and CBL0137
confirms Shostak and Chariot’s outlook and presents possibilities
for CBL0137 to be applied with targeted therapy.

CONCLUSIONS AND FURTHER
DIRECTIONS

Various small molecules, including PRIMA-1, COTI-2,
ReACp53, ZMC1, PK7088 (45–51), and CBL0137, target
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p53 and have been at preclinical and clinical stages. CBL0137 has
a broad antitumor activity in a wide range of cancers, other than
targeting p53 (7). CBL0137 can be considered as a candidate
for monotherapy and applied to enhance the effectiveness of
chemotherapy and targeted therapy, giving it more potential and
clinical significance.

However, some concerns still exist. Tumor suppressor
protein p53 is important in the oncogenic pathway, and
almost 50% of cancers possess mutated or depleted p53; thus,
resistance likely exists when one path is blocked. In vitro
data have also shown that p53-wild type cells are slightly
more susceptible to curaxins, including CBL0137-induced cell
death, than p53-null cells (7). Discovering how CBL0137
works on those cancers is quite important; in addition, the
effect of CBL0137 on the immune system is unknown, and
further data support should be obtained to determine whether
CBL0137 can synergize with immunotherapy to provide an
enhanced efficacy. Further studies on these areas may lead to

an in-depth understanding of the mechanism and application of
CBL0137.
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Cyclin-dependent kinases (CDK) 4/6 inhibitors, namely abemaciclib, palbociclib, and

ribociclib, interfere with cell cycle progression, induce cell senescence andmight promote

cancer cell disruption by a cytotoxic T cells-mediated effect. Phase III randomized clinical

trials have proven that CDK4/6 inhibitors (CDK4/6i) in combination with several endocrine

agents improve treatment efficacy over endocrine agents alone for hormone receptor

positive (HR+) HER2 negative (HER2–) metastatic breast cancer (MBC). Based on such

results, these combinations have been approved for clinical use. Preclinical studies in cell

cultures and mouse models proved that CDK4/6i are active against a broad spectrum

of solid tumors other than breast cancer, including liposarcoma, rhabdomyosarcoma,

non-small cell lung cancer, glioblastoma multiforme, esophageal cancer, and melanoma.

The role of CDK4/6i in monotherapy in several solid tumors is currently under evaluation

in phase I, II, and III trials. Nowadays, abemaciclib is the only of the three inhibitors that

has received approval as single agent therapy for pretreated HR+ HER2– MBC. Here we

review biological, preclinical and clinical data on the role of CDK4/6 inhibitors as single

agents in advanced solid tumors.

Keywords: solid tumors, cyclin-dependent kinases, palbociclib, ribociclib, abemaciclib, cell cycle

INTRODUCTION

The key role of cyclin-dependent kinases (CDK) and D-type Cyclins (CCND) in cell cycle
progression from G1 to S phase was discovered more than 20 years ago (1). Since then, it has
been demonstrated that several solid tumors present direct modifications of genes codifying for
several proteins involved in CCND-CDK activity and regulation (2). As a result, in recent years,
small molecule inhibitors which target this mitogenic pathway have been developed. Three of them
are currently available for the treatment of metastatic breast cancer (MBC) in combination with
aromatase inhibitors or fulvestrant. This review focuses on the role of CCND-CDK in normal cells,
on how this pathway is altered in solid tumors and on the activity of CDK4/6 inhibitors (CDK4/6i),
as single agents in the treatment of advanced solid tumors in adult patients.
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THE ROLE OF CDK IN CELL CYCLE AND
SOLID TUMORS

CCND interact with several CDK, including CDK 4/6, forming
functional complexes that phosphorylate and inactivate
retinoblastoma protein (pRb) (1). This protein operates a
negative control on E2F transcription factors, resulting in an
inhibition of cell cycle progression. Indeed, E2F modulates
the expression of a broad variety of genes implied in cell
cycle S1 phase and mitosis. On the opposite, functional
CCND-CDK4/6 complexes allow E2F to be released from
pRb control and promote the transition from the G1 to the
S phase of the cell cycle (Figure 1) (1). Cyclin D is important
in growth factor signaling and, more in general, is a common
downstream pathway for several mitogenic signaling, including
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR), mitogen-activated protein kinase
(MAPK), wnt/beta-catenin, janus kinase (JAK)-signal transducer
and activator of transcription (STAT), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB), and steroid
hormone signaling pathways (e.g., estrogen, progesterone, and
androgen) (Figure 1) (2). CDK 4/6 activity is regulated by the
INK4 family of proteins. Among them, p16INK4A appears to be
the most relevant, in terms of tumor suppression activity. Several
other factors, including p21CIP1 and p27KIP1 modulate CCND-
CDK4/6 complexes’ activity in a context-dependent manner
(2). Finally, the SMARCB1/INI1/SNF5 tumor suppressor gene
directly represses the transcription of the Cyclin-D coding
gene CCND1 and increases the expression of CCND-CDK4/6
negative regulators p16INK4A and p21CIP1 (2).

In solid tumors, an hyperactivation of the CCND-CDK4/6
activity can occur through: (1) increased activity of upstream
mitogenic signaling pathways; (2) aberrant activity of the
components of the pathway or their regulators. This latter may
depend on various molecular mechanisms, i.e., point mutations,
translocations or amplification of CDK4/6, amplification of
D-type cyclins, deletions that cause the loss of p16INK4A or
pRb expression, epigenetic modifications and downregulation of
microRNAs (miRNAs) that target CDK4/6. Alterations of the
expression of CCND-CDK4/6-INK4-Rb pathway components or
of their direct regulators result in cell cycle progression and cell

Abbreviations: CDK4/6, cyclin-dependent kynases 4 and 6; CDK4/6i, CDK4/6

inhibitors; CCND, cyclin D; PI3K, phosphatidylinositol 3-kinase; mTOR,

mammalian target of rapamycin; MAPK, mitogen-activated protein kinase;

JAK, janus kinase; STAT, signal transducer and activator of transcription;

NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells;

miRNAs, microRNAs; pRb, retinoblastoma protein; ET, endocrine therapy;

ER+, estrogen receptor positive; HR+, hormone receptor positive; HER2–,

human epidermal growth factor receptor 2 negative; MBC, metastatic breast

cancer; BC, breast cancer; GBM, glioblastoma multiforme; WD/DDLS, well-

differentiated/dedifferentiated liposarcoma; NSCLC, non-small cell lung cancer;

SCLC, small cell lung cancer; GIST, gastrointestinal stromal tumors; PDA,

pancreatic ductal adenocarcinoma; EAC, esophageal adenocarcinoma; BBB,

blood-brain barrier; ORR, overall response rate; PFS, progression-free survival;

mPFS, median progression-free survival; TTP, time to progression; DCR, disease

control rate; CBR, clinical benefit rate; DLT, dose-limiting toxicity; MTD,

maximum tolerated dose; RP2D, recommended phase II dose; ADRs, adverse

reactions; SD, stable disease; PR, partial response; CR, complete response; CI,

confidence interval; HR, hazard ratio.

proliferation and represent a key mechanism of tumorigenesis
(2). The solid tumors for which the CCND-CDK4/6-INK4-
Rb pathway is more frequently deregulated through direct
genetic, epigenetic or transcriptional modifications are breast,
head and neck, lung, pancreatic, ovarian and bladder cancer,
melanoma, endometrial carcinoma, liposarcoma, neuroblastoma,
and malignant rabdoid tumors (3–25). Because of their central
role in tumorigenesis and progression, CDK4 and 6 might
represent a valid therapeutic target for cancer treatment in a
broad spectrum of solid tumors.

CDK 4/6 INHIBITORS: AN OVERVIEW

Mechanism of Action and Toxicities
After the discovery of CDK 4/6 role in tumorigenesis, several
CDK inhibitors have been developed for clinical use. The most
recent are selective for CDK4 and CDK6, preventing inhibition
of other CDKs activity (1). Three CDK4/6i are currently
approved in clinical practice, namely: palbociclib, ribociclib, and
abemaciclib. Their mechanism of action is based on the binding
to CDK 4 and 6 ATP pocket, which leads to a substantial
inactivation of CCND-CDK4/6 complexes, with a subsequent
increase in the activity of pRb. The logic consequence is a
G1 phase arrest (Figure 2). The interference with cell cycle
progression results in an increased apoptosis phenomena in
tumor cells (1, 2).

Palbociclib and ribociclib are similar in chemical structure,
while abemaciclib differs and has a higher CDK4/6 binding power
than the other two CDK4/6i. More specifically, abemaciclib
shows higher selectivity for the complex CDK4/cyclin D1
compared to the other two compounds, and is 14 times
more potent against CDK4 than CDK6 (2, 26). Cell cycle
arrest and subsequent apoptosis are sought to be the most
relevant mechanism of action of CDK4/6i. However, a very
recent study based on mouse models of breast cancer and
other solid tumors and on a confirmatory trascriptomic
analysis of serial biopsies from a clinical trial involving
CDK4/6i in breast cancer, showed that CDK4/6 inhibition
might also induce a broad spectrum of immunologic events.
More precisely, they seem to increase the antigen presenting
capability of tumor cells, while concurrently reducing the
immunosuppressive population of T regulator lymphocytes.
This could in turn enhance the activation of cytotoxic T
cells, which ultimately kill tumor cells (27). However,
immunologic effects of CDK4/6i are still object of debate
and need further validation/confirmation. Despite a very
similar mechanism of action, dose limiting toxicities (DLTs)
observed in phase I trials differed, with neutropenia being
the DLT for palbociclib, diarrhea and fatigue for abemaciclib,
and neutropenia, mucositis, asymptomatic thrombocytopenia,
pulmonary embolism, increased creatinine, hyponatriemia,
and QTcF prolongation for ribociclib (2, 28). Some of the
latter toxicities (such as creatinine increase or thromboembolic
events) were also reported for abemaciclib however they
did not represent formal DLTs in phase I trials. The most
common CDK4/6i toxicities of any grade observed in pivotal
phase III trials were neutropenia, leukopenia, fatigue and
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FIGURE 1 | Mitogenic signaling and cell cycle progression. GFs, growth factors; TKR, tyrosine kinase receptor; SFs, survival factors; HR, hormone receptor; SHs,

steroidal hormones (i.e., estrogens, androgens); TFs, transcriptional factors.

FIGURE 2 | CDK4/6 inhibitors’ main effect on cell cycle progression.

nausea for palbociclib (29, 30), neutropenia, nausea, infections,
fatigue and diarrhea for ribociclib (31, 32), creatinine increase,
diarrhea, fatigue, and neutropenia for abemaciclib (33, 34).
The pathophysiology of such toxicities has mostly to be
linked to CDK4/6i mechanism of action. Additionally,
abemaciclib-induced creatinine increase, might be due to
its competitive inhibition of efflux transporters of creatinine
(26). A comparison between main pharmacokinetic and
pharmacodynamic properties among the three molecules
is reported in Table 1. All of the three molecules are orally
administered and are metabolized by the liver. Palbociclib
and ribociclib, due to longer half-life than abemaciclib, can be

administered once daily, while abemaciclib needs twice daily
administration.

Current Indications
The three inhibitors are currently available for the treatment of
hormone receptor positive (HR+) Human Epidermal Growth
Factor Receptor 2 negative (HER2–) MBC in combination with
an aromatase inhibitor (AI) as first-line endocrine therapy or in
combination with fulvestrant in pretreated patients. All of these
combinations substantially doubled the comparator in terms
of median progression-free survival (PFS) (29–34). Moreover,
ribociclib was also studied in combination with tamoxifen or AIs
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TABLE 1 | CDK 4/6 inhibitors’ pharmacological characteristics.

Drug

properties

CDK 4/6 inhibitors

Palbociclib Ribociclib Abemaciclib

Bioavailability (35) 46% Unknown 45%

Protein binding

(35)

85% ∼70% 96.3%

Metabolism (35) Liver Liver Liver

Elimination half-life

(35)

29 (±5) h 32.0 (29.7–54.7) h 18.3 h

Excretion (35) 74% feces, 18%

urine

69% feces, 23%

urine

81% feces,

3% urine

IC50 (nM) (2)

â CDK4-cyclin D1 11 10 2

â CDK6-cyclin

D1-2-3

15 39 10

â CDK1-cyclin B >10,000 113,000 1,627

â CDK2-cyclin

A-E

>10,000 76,000 504

â CDK9-cyclin T NR NR 57

MTDs (2) 125mg 900mg 200mg every

12 h

DLTs (2) Neutropenia Neutropenia,

Mucositis,

Asymptomatic

thrombocytopenia,

Pulmonary

embolism,

Increased

creatinine,

Hyponatriemia,

QTcF prolongation

(>500ms)

Fatigue

Recommended

dose (35)

125 mg/die on a

21-on-28-days

schedule

600 mg/die on a

21-on-28-days

schedule

200mg twice

daily

Administration (35) Oral Oral Oral

and a GnRH analog (GnRHa) in pre-/perimenopausal setting in
the context of the MONALEESA 7 phase III trial (36), which
enrolled HR+ HER2– MBC in first line setting and results were
in line with those published in the other CDK4/6i pivotal trials.
Results and characteristics of the pivotal trials, namely PALOMA
2 and 3, MONALEESA 2, 3, and 7, and MONARCH 2 and 3 are
reported in Table 2.

SINGLE AGENTS CDK4/6I: CURRENT
EVIDENCE

As previously reported, the CCND-CDK4/6-INK4-Rb pathway
is frequently deregulated through direct genetic, epigenetic or
transcriptional modifications in a broad variety of neoplasms (3–
25). Indeed, apart from their use in combination with ET for the
treatment of HR+ HER2– MBC, CDK4/6i are also under study
as single agent in breast cancer (BC) and other solid tumors.
The following paragraphs will resume the current preclinical and
clinical evidence supporting this experimental treatment strategy.

Preclinical Evidence
Single agent CDK4/6i have shown consistent activity in
preclinical models (38–56). In brief, the most relevant results
were observed in in vivo and/or in vitro models of colon
cancer (palbociclib, abemaciclib), glioblastoma (palbociclib,
abemaciclib), breast cancer (palbociclib, ribociclib, abemaciclib),
prostate carcinoma (palbociclib), sarcomas (palbociclib and
ribociclib), pancreatic ductal adenocarcinoma (palbociclib),
melanoma (palbociclib, ribociclib, abemaciclib), non-small
cell lung cancer (palbociclib, abemaciclib), and esophageal
adenocarcinoma (abemaciclib).

Palbociclib
A study demonstrated a potent antitumor activity in different
mice models, bearing colon cancer, glioblastoma, breast, and
prostate carcinoma xenografts. Palbociclib, given as continuous
treatment, was able to arrest growth and induce regression
of tumor xenografts. A modest activity was also observed in
non-small cell lung cancer (NSCLC) models (38). Palbociclib
was also able to arrest the growth of estrogen receptor-positive
(ER+) BC cell lines (39). A potent antitumor activity was also
demonstrated in an ex vivo model of human breast tumors
(40). Palbociclib activity was demonstrated on cell lines and
intracranial xenografts of glioblastoma multiforme (GBM) (41).
In the latter case, the proneural subtype appeared to be the
most sensitive to palbociclib activity (42). In ovarian cancer cell
lines, Palbociclib induces G0/G1 cell cycle arrest by reducing
pRb phosphorylation (43). Palbociclib is also effective in arresting
cell cycle progression and blocking proliferation in synovial
sarcomas cell lines (44). Another study demonstrated that
palbociclib may inhibit cellular growth and induce senescence in
liposarcoma cell lines and mice xenografts (45) and in sarcoma
cell lines (46). An antiproliferative effect was observed also in
rhabdomyosarcoma-derived cell cultures (47). Palbociclib was
also studied in immunocompromised mice with subcutaneous
and intrasplenic injections of pancreatic ductal adenocarcinoma
(PDA) cell lines derived from patients’ specimens. The CDK
4/6i significantly disrupted extracellular matrix organization
and increased quiescence and apoptosis, decreased invasion,
metastatic spread and tumor progression (48).

Ribociclib
Ribociclib as single agent is effective in inhibiting cell growth
in liposarcoma cell lines. Moreover, the administration to mice
bearing human liposarcoma xenografts resulted in tumor growth
inhibition and/or tumor regression. A similar effect was noted
in preclinical models of breast cancers with intact estrogen
receptor and/or activating aberrations of PIK3CA/HER2 (49).
In preclinical models, ribociclib also showed some activity in
melanomas with activating mutations of BRAF or NRAS (50).

Abemaciclib
Abemaciclib is effective in inducing cell cycle arrest and tumor
growth inhibition in colon cancer and breast cancer cell lines
and in mice bearing human melanoma and colon cancer
xenografts (51, 52). Abemaciclib, similarly to temozolamide,
increased survival in a rat xenograft model of glioblastoma
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TABLE 2 | Characteristics of pivotal trials concerning CDK4/6 inhibitors approved for clinical practice.

Characteristics Pivotal trials

Paloma 2 (29) Paloma 3 (30) Monaleesa 2 (31) Monaleesa 7 (36) Monaleesa 3 (32) Monarch-3 (33) Monarch-2 (34)

Combination Palbociclib +

letrozole vs.

letrozole

Palbociclib +

fulvestrant vs.

fulvestrant

Ribociclib +

letrozole vs.

letrozole

Ribociclib +

tamoxifen or AI +

GnRHa vs.

tamoxifen or AI +

GnRHa

Ribociclib +

fulvestrant vs.

fulvestrant

Abemaciclib +

NSAI vs. NSAI

Abemaciclib +

fulvestrant vs.

fulvestrant

Menopausal

status

Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal Pre- and

perimenopausal

Post-menopausal Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal

(iatrogenic or

physiologic)

Setting 1st line HR+

HER2– MBC

≥1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

≥1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

Median PFS

(months)

24.8 vs. 14.5 9.5 vs. 4.6 NR vs. 14.7 23.8 vs. 13.0 20.5 vs. 12.8 NR vs. 14.7 16.4 vs. 9.3

PFS HR (95%

Cis); p-value*

0.58 (0.46–0.72);

p < 0.001

0.46 (0.36–0.59);

p < 0.0001

0.56 (0.43–0.72);

p = 3.29 × 10−6
0.553

(0.441–0.694);

p < 0.0001

0.59 (0.48–0.73);

p = 4.10 × 10−7
0.543

(0.409–0.723);

p = 0.000021

0.553

(0.449–0.681);

p = 0.000021

ORR 42.1 vs. 34.7% 25 vs. 11% 40.7 vs. 27.5% 51 vs. 36% 41 vs. 9% 59.2 vs. 43.8% 48.1 vs. 21.3%

Trial phase III III III III III III III

FDA/EMA

status

A/A A/A A/A A/NA A/NA A/A A/A

*OS data not mature, yet, except for palbociclib + fulvestrant vs. fulvestrant [HR 0.81 (0.64–1.03); p = 0.043] (37).

NSAI, non-steroidal aromatase inhibitor; AI, aromatase inhibitor; GnRHa, gonadotropin releasing hormone analog; HR+, ER and/or PgR positive; HER2–, human epidermal growth

factor receptor 2 negative; A, approved; NA, not yet approved.

(53), thus suggesting a significant capability to cross the
blood-brain barrier (BBB). It was also effective on NSCLC
tumor xenografts (54). Abemaciclib was also able to inhibit
growth of melanoma tumor xenografts and delay tumor
recurrence in combination with vemurafenib. Furthermore,
abemaciclib yielded tumor growth regression in a vemurafenib-
resistant model, and induced apoptotic cell death in a
concentration-dependent manner, suggesting that this drug
might be a viable therapeutic option to overcome MAPK-
mediated resistance to B-RAF inhibitors in B-RAF V600E
melanoma (55). Abemaciclib was also evaluated in preclinical
models of esophageal adenocarcinoma (EAC): in tumor cell lines
it appeared to increased apoptosis and decrease proliferation
while in mice models, it was able to decrease of more than 20%
tumor volume (56).

Clinical Evidence
The preclinical data reviewed above offered a solid rationale to
test single agent CDK4/6i in clinical trials.

Palbociclib: Completed Trials
Palbociclib was tested in a cohort of 41 patients affected by several
solid tumors in the context of a phase I dose escalating study.
Tumors had been screened for the presence of pRb. In this trial
the maximum tolerated dose (MTD) and recommended phase
II dose (RP2D) of single-agent palbociclib was 125 mg/day on a
21-of-28 days schedule. The most frequent G3/4 toxicities were
neutropenia, leucopenia and anemia with the first present in 20%
of cases, the second in 10% and the latter in 7% of cases. Albeit
being a phase I trial, clinical activity was also reported. Among 37

evaluable patients, 27% achieved stable disease (SD) for at least 4
cycles and 16% for at least 10 cycles (57).

Several phase II studies tested palbociclib monotherapy in
a broad variety of solid tumors, namely well-differentiated or
dedifferentiated liposarcoma (WD/DDLS) (58, 59), NSCLC (60),
gastric and esophageal cancer (61), urothelial carcinoma (62),
epithelial ovarian cancer (63), HR+ and triple negative (TN) BC
(64, 65). The best results were observed in WD/DDLS, ovarian
and BC, counterbalanced by overall disappointing results in
the other neoplasms. The most frequent grade (G)3/4 adverse
reactions (ADRs) were hematologic.

More in details, a phase II study explored the activity and
safety of palbociclib on a 200mg/day on a 14-of-21-days schedule
in patients with advanced CDK4-amplified WD/DDLS. The
trial enrolled 30 patients. The estimated 12-weeks PFS rate
was 66%, far exceeding the expected rate of 40% for an active
agent. There was only one partial response (PR) and 19 SD
at 12 weeks. Median PFS (mPFS) was 17.9 weeks. The most
frequent G3/4 ADRs were neutropenia (50%), leukopenia (47%),
thrombocytopenia (30%), lymphopenia (27%), and anemia
(17%) (58). In a subsequent study, patients affected by advanced
WD/DDLS were treated with standard palbociclib 125mg for 21
days in 28 days-schedule. The trial results showed a successful
PFS at 12 weeks of 57.2% [95% Confidence Interval (CI): 42.4–
68.8%]. The median PFS was 17.9 weeks (95% CI: 11.9–24.0
weeks). One complete response (CR) was observed. G3/4 ADRs
were primarily hematologic and included neutropenia (33%),
without neutropenic fever (59). A clinical trial in previously-
treated patients with recurrent or metastatic NSCLC was
prematurely halted due to lack of objective tumor responses. Half
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of evaluable patients achieved SD. The mPFS was 12.5 weeks.
One patient experienced G3 transaminitis and unexpected G4
rhabdomyolysis, supposedly due to concomitant use of high-
dose simvastatin. Some patients developed G3 or 4 neutropenia,
and G3 thrombocytopenia (60). Single agent palbociclib was also
not effective in advanced gastric and esophageal tumors, even
if the patients had been selected for Rb expression and despite
19/38 tumors showed amplification of CCND1. The median
duration of treatment was of 1.7 months, with a maximum of
5.5months. No objective responses were observed (61). Similarly,
palbociclib was not effective in a phase II trial conducted in
patients affected by metastatic urothelial carcinoma with both
p16 loss and pRb expression (62). A single arm phase II trial in
patients with heavily pretreated epithelial ovarian cancer showed
a discreet activity and efficacy for palbociclib as single agent.
Thirty percent of patients were progression-free at 6 months,
with a median PFS of 3.7 months (95% CI: 1.2–6.2). A 4% of
PR and a 65% of SD were observed. The toxicity was minimal.
Predictive biomarker analyses are ongoing (63). A phase II study
of palbociclib as single agent was conducted in patients with
metastatic pRb positive BC. The clinical benefit rate (CBR) at 6
months, composed of all complete responses (CR), PR and SD
observed as best responses, was 21%, the median PFS were of
4.1 months (95% CI 2.3–7.7) for patients with ER+ HER2– BC,
18.8 months (95%CI: 5.1—NE) for ER+HER2+ patients and 1.8
months (95% CI: 0.9—NE) for patients with triple negative (TN)
tumors, respectively. Neutropenia (50%) and thrombocytopenia
(21%) were the most frequent G3/4 toxicities (64). The TREND
study, an Italian multicentre open-label phase II trial, compared
single agent palbociclib with palbociclib combined with the same
ET received prior to disease progression in post-menopausal
women with HR+ HER2– MBC. The trial enrolled 115 patients,
the primary endpoint was CBR. In both arms, 67% of pts had the
study treatment as second line, 33% as third line, and about 1/3
of pts also had received 1 prior chemotherapy for MBC. The CBR
was similar in both arms, 54% (95% CI: 42–67%) observed in the
combination one, and 60% (95% CI: 48–73%) with palbociclib
alone. The Overall Response Rates (ORR), composed of all CR
and PR observed as best responses, were 11% (95% CI: 3–
19%) and 7% (95% CI: 0.4–13%) with the combination therapy
and palbociclib alone, respectively. The trial was not powered
to estimate survival endpoints, however exploratory analyses
were performed, with no significant differences observed in PFS
(p = 0.13) and a longer median duration of clinical benefit for
the combination than for the single agent [11.5 months, 95% CI:
8.6–17.8 vs. 6 months, 95% CI: 3.9–9.9; Hazard Ratio (HR): 0.31,
95% CI: 0.1–0.7, p-value 0.001]. Overall, however, the primary
endpoint did not differ significantly between the 2 study arms,
thereby lending support to the potential use of palbociclib as
single agent in pretreated patients with HR+HER2– MBC (65).

Palbociclib: Ongoing Trials
A number of trials are currently ongoing with single agent
palbociclib in several advanced solid tumors.

Results are awaited from the NCT03219554 single arm
phase II trial that is evaluating the efficacy of single agent
palbociclib in patients with recurrent or metastatic advanced

thymic epithelial tumors pretreated with one or more cytotoxic
chemotherapy. The primary endpoint is PFS (66). The activity
and efficacy of single agent palbociclib will be also evaluated
in the Lung-MAP trial, a phase II/III biomarker-driven study
for second line therapy of squamous cell lung cancer (SCLC).
More specifically, single agent palbociclib will be studied in the
context of a sub-study that includes all patients that harbored
genetic alterations involving cell-cycle genes. The accrual has
been completed and results are awaited (67). A phase II study, the
NCT01907607—CYCLIGIST, has also already completed accrual
and will evaluate the efficacy of single agent palbociclib in
patients with gastrointestinal stromal tumors (GIST) refractory
to imatinib and sunitinib. The primary endpoint is the non-
progression rate at 4 months (68). Results are also awaited for
the NCT01356628. This multicenter single arm phase II trial
is exploring the efficacy of single agent palbociclib in advanced
hepatocellular carcinoma pretreated with standard therapies.
The primary endpoint is the time to disease progression (TTP)
(69). Another phase II trial, the NCT02806648—PALBONET, is
ongoing to demonstrate the safety and activity of palbociclib in
subject affected by pNET with overexpression of CDK4, RB1, and
CCND1. Results are awaited (70).

Several trials are currently recruiting participants. The
NCT02530320 phase II study is ongoing in patients with
oligodendroglioma or recurrent anaplastic oligoastrocytoma
with preserved pRb activity. The primary end point is the
PFS rate at 6 months (71). Another ongoing single arm phase
II study (NCT03242382) will evaluate the efficacy of second-
line palbociclib in patients with advanced soft tissue sarcomas
with CDK4 overexpression. The primary endpoint is the PFS
at 6 months (72). The NCT01037790 phase II clinical trial is
studying activity, safety and tolerability of single agent palbociclib
in preatreated refractory solid tumors, including metastatic
colorectal cancer that harbors the Kras or BRAF mutation,
metastatic breast cancer, advanced or metastatic esophageal
and/or gastric cancer, cisplatin-refractory, unresectable germ cell
tumors and any tumor type if tissue tests positive for CCND1
amplification, CDK4/6 mutation, CCND2 amplification or any
other functional alteration at the G1/S checkpoint. Co-primary
endpoints are the response rates and the safety and tolerability
profile. The trial is currently recruiting participants (73).

Finally, a single arm phase II trial (NCT03454919) in acral
melanoma bearing alterations in cell cycle pathways, including
CDK4 amplification and/or CCND1 amplification and/or P16
(CDKN2A) loss, is going to start but not yet recruiting patients.
The primary end point is PFS (74).

Ribociclib: Completed and Ongoing Trials
The initial phase I dose escalation study of single-agent ribociclib
enrolled 128 patients with pRb positive advanced solid tumors
and lymphomas. The MTD and RP2D were established as 900
and 600 mg/day, respectively, on a 21-of-28-days schedule. The
most relevant G3/4 ADRs were neutropenia (27%), leukopenia
(17%), fatigue (2%), and nausea (2%). An asymptomatic QTcF
prolongationwas observable, butmostly with doses≥600mg/day
(9% of patients at 600 mg/day; 33% at doses >600 mg/day).
Response rates were evaluable for 110 patients, though this was

Frontiers in Oncology | www.frontiersin.org 6 December 2018 | Volume 8 | Article 60890

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Schettini et al. CDK4/6 Inhibitors in Solid Tumors

a phase I trial. There were 3 PR and 43 SD as best response;
eight patients were progression-free for more than 6months (75).
Results are awaited for an ongoing phase I study (NCT02345824)
that will assess tumor pharmacokinetics and efficacy of ribociclib
in patients with recurrent glioblastoma or anaplastic glioma (76).

Several phase II trials of single agent ribociclib are
currently ongoing. More specifically, the NCT02571829 trial is
assessing the efficacy and safety of ribociclib in patients with
advanced WD/DDLS. Patients’ recruitment has been completed
(77). Another trial is ongoing in patients with advanced
neuroendocrine tumors of foregut origin progressed after prior
systemic therapy. The primary endpoint is the objective response
rate (78). The NCT02300987 randomized study is ongoing
in patients with relapsed, refractory, incurable teratoma with
recent progression from at least 1 prior line of chemotherapy
and for which no additional standard surgical or medical
therapy exists. This trial will compare ribociclib to placebo.
The primary endpoint is PFS. Recruitment has been completed
and results are awaited (79). Another phase II single arm
study (NCT03096912) assessing efficacy and safety of ribociclib
in patients with advanced WD/DDLS is currently recruiting
patients. The primary endpoint is the response to therapy after
36 months, as evaluated by RECIST and Choi criteria (80).

Abemaciclib: Completed Trials
Abemaciclib as single agent was investigated in a multicentre
phase I study conducted by Patnaik and colleagues. In this
study, the 225 enrolled patients were affected by NSCLC, BC,
melanoma, colorectal cancer and GBM. The MTD was 200mg
twice daily and the DLT was G3 fatigue. The most relevant G3
ADRs were diarrhea (5%), nausea (4%), fatigue (7%), vomiting
(2%), and neutropenia (7%). Activity data were also reported.
Fifteen patients experienced SD for at least 4 cycles, with 3
patients achieving SD for 8, 16, and 26 cycles, respectively. One
patient with ovarian cancer had a durable and relevant CA125
response. One patient with KRAS mutant NSCLC had a PR. One
patient with NRAS mutant melanoma had a confirmed PR. The
ORR was 31% for HR+ BC. Moreover, when also considering
patients who achieved SD as a best response, 61% of the overall
subjects obtained a clinical response lasting at least 6 months
(81, 82). A focus on 49 NSCLC patients was also published.
The most relevant G3 ADRs were diarrhea (2%), nausea (4%),
fatigue (2%), vomiting (2%), and anemia (2%); there were no
G4 events. Activity results were also shown. The disease control
rate (DCR = CR + PR + SD) was 51% with 1 confirmed PR.
The median duration of SD was 5.6 months and the median
PFS was 2.1 months. Twenty patients reached at least 4 cycles
and 13 reached at least 6 cycles. Among those 49 patients, 19
were affected by KRAS wildtype tumors, 26 by KRAS mutant
tumors and 4 with unknown KRAS status. The DCR was 37% for
KRAS wildtype and 54% for KRAS mutant NSCLC, consistently
with what observed in xenograft studies. The MTD was 200mg
twice daily (83). A randomized phase III study JUNIPER, has
compared abemaciclib plus best supportive care to erlotinib plus
best supportive care in patients with metastatic NSCLC with a
detectable KRAS mutation who have progressed after platinum-
based chemotherapy. The primary endpoint was OS and the

study failed to show a significant benefit. Moreover, researchers
reported a higher-than-expected OS rate in the control group
based on historical data (84, 85).

At present, the most relevant trial involving abemaciclib in
monotherapy is the MONARCH-1. Such study was a single
arm phase II trial in which the efficacy and safety profile of
abemaciclib as a single agent were investigated in HR+ HER2–
MBC. The 132 enrolled patients had to be progressed on
or after prior ET and must have received at least two prior
chemotherapy regimens, at least one but no more than two in the
metastatic setting. Abemaciclib was administrated at the dose of
200mg every 12 h on a continuous schedule. The ORR (primary
endpoint) was 19.7% (95% CI, 13.3–27.5), the CBR was 42.4%,
mPFSwas 6months (95%CI 4.2–7.5) andmedian overall survival
(OS) was 17.7 months (95% CI, 16 to not reached). In this
study the most common ADRs were diarrhea, fatigue, nausea,
neutropenia, leukopenia, anemia and increased serum creatinine
(86). This trial led to the FDA approval of abemaciclib as single
therapy in pretreated patients with HR+ HER2– MBC.

Finally, preliminary results from a Simon 2-stage single
arm phase II trial in patients affected by HR+ HER2– MBC,
NSCLC or melanoma with brain metastases showed a number
of brain partial responses that met the predefined threshold for
expanding the trial to stage 2. For each patient cerebrospinal
fluid concentration of unbound abemaciclib were comparable
and consistent with those in the plasma and tumor tissue (87).
This trial provided evidence that abemaciclib is able to cross
the BBB in human, coherently with preclinical evidence on mice
xenografts (53). The second stage is ongoing.

Abemaciclib: Ongoing Trials
Several ongoing trials with single agent abemaciclib have
completed patients’ recruitment. An asian phase I study
(NCT02014129) is evaluating the safety and toxicities of
abemaciclib in advanced solid tumors and lymphomas in
Japanese participants (88). Abemaciclib is also currently
investigated in GBM at first relapse in the NCT02981940 phase
II trial. Tumors must be pRb wild type and carry inactivation
of CDKN2A/B or C in the tumor by homozygous deletion.
The coprimary endpoint are the intratumoral abemaciclib
concentration and the 6-months PFS (89). Another phase II
trial (active but no more recruiting), the NCT02450539, is
evaluating the efficacy of abemaciclib compared to docetaxel in
patients with metastatic squamous NSCLC previously treated
with platinum-based chemotherapy. The primary endpoint is
PFS (90). A phase II ongoing study (NCT02308020), currently
recruiting participants, is evaluating the activity and efficacy of
abemaciclib in patients with brain metastases secondary to HR+
breast cancer, NSCLC or melanoma. The primary endpoint is the
objective intracranial response rate. Preliminary results have been
reported in a previous section of this review (87). Other ongoing
trials are currently enrolling participants. More specifically, the
NCT02919696 phase I trial is studying abemaciclib in native
chinese patients with advanced and/or metastatic cancers (91).
A phase II trial (NCT03130439) is also investigating the efficacy
and activity of abemaciclib in metastatic triple negative breast
cancer expressing pRb. The primary endpoint is the ORR
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TABLE 3 | Currently ongoing trials on CDK 4/6 inhibitors as single agent in solid tumors.

CDK4/6 inhibitor N Phase and setting Primary endpoint(s)

NCT03123744 Palbociclib 200 Non-randomized Phase II study of palbociclib in adult subjects with

recurrent or refractory advanced cancers with aberration(s) in cyclin

(CCN/CDK) signaling.

Response rates in subjects with

advanced cancer and aberrations of

cyclin pathway gene(s) who are

treated with palbociclib

NCT02530320 Palbociclib 40 Phase II pilot, prospective, open label, multicenter clinical trial, to evaluate

the safety and efficacy of palbociclib, in patients with oligodendroglioma or

recurrent oligoastrocytoma anaplastic with the activity of the protein rb

preserved

PFS, PFS6m

NCT03454919 Palbociclib 60 Phase II clinical study on efficacy of palbociclib in advanced acral melanoma

with cell cycle gene aberrations

ORR, Complete response and partial

response

NCT 03242382 Palbociclib 38 Phase II multicenter trial of palbociclib in second line of advanced sarcomas

with CDK4 overexpression.

PFS rate

NCT03219554 Palbociclib 33 Phase II single center, open-label, single arm study of palbociclib treatment

in patients with recurrent or metastatic advanced thymic epithelial tumor

(TET) after failure of one or more cytotoxic chemotherapy regimens

PFS

NCT01907607 Palbociclib 63 Multicentre single-arm phase II study evaluating the efficacy and safety of

orally Palbociclib, 125 mg/day, 21 days on/7 days off, in patients with

documented disease progression while on therapy with second line sunitinib

for unresectable and/or metastatic GIST.

Efficacy, assessed based on

4-months non-progression

NCT01356628 Palbociclib 23 Phase II study of Palbociclib in the treatment of patients with advanced

hepatocellular carcinoma (HCC), a type of adenocarcinoma and the most

common type of liver tumor.

Time to disease progression

NCT02806648 Palbociclib 21 Phase II trial to assess the activity and safety of Palbociclib in patients with

well and moderately differentiated metastatic pancreatic neuroendocrine

tumors (pNET)

Response rates

NCT01037790 Palbociclib 205 Phase II trial is studying the side effects and how well PD 0332991 works in

treating patients with refractory solid tumors.

Response rates

NCT02345824 Ribociclib 3 Early-phase study to assess tumor pharmacokinetics and efficacy of the

cdk4/6 inhibitor Ribociclib in patients with recurrent glioblastoma or

anaplastic glioma

Inhibition of CDK4/CDK6 signaling

pathway in cell proliferation

NCT03096912 Ribociclib 30 Phase II single arm study assessing efficacy and safety of Ribociclib in

patients with advanced well-differentiated or dedifferentiated liposarcoma

Response to therapy as evaluated by

RECIST 1.1

Response to therapy as evaluated by

Choi [Time Frame: 36 months]

NCT02571829 Ribociclib 30 Phase II single arm study assessing efficacy and safety of Ribociclib in

patients with advanced well-differentiated or dedifferentiated liposarcoma

Response to therapy as evaluated by

RECIST 1.1 and Choi [Time Frame:

36 months (24 months accrual period

and 12 months follow up period)]

NCT02300987 Ribociclib 10 Randomized, blinded, placebo-controlled, phase II trial of LEE011 in

patients with relapsed, refractory, incurable teratoma with recent

progression.

Progression free survival (PFS) [Time

Frame: at 4 months]

NCT02919696 Abemaciclib 20 Phase I study of Abemaciclib in native Chinese patients with advanced

and/or metastatic cancers.

Number of Participants with One or

More Drug Related Adverse Events

Number of participants with one or

more drug related adverse events

NCT02014129 Abemaciclib 12 Phase I study of Abemaciclib in Japanese patients with advanced cancer Number of Participants with

LY2835219 Dose-Limiting Toxicities

(DLT)

NCT02981940 Abemaciclib 36 Phase II study of Abemaciclib in recurrent glioblastoma Intratumoral abemaciclib

concentration [Time Frame: 2 years]

PFS6m

NCT03130439 Abemaciclib 37 Phase II study of Abemaciclib for patients with retinoblastoma-positive,

triple negative metastatic breast cancer.

Objective Response Rate [Time

Frame: 2 years]

ORR as confirmed Complete

Response (CR) or Partial Response

(PR) per Response Evaluation Criteria

in Solid Tumors (RECIST)

NCT02846987 Abemaciclib 30 Phase II study of Abemaciclib in dedifferentiated liposarcoma PFS [Time Frame: 12 weeks]

NCT03356587 Abemaciclib 32 Biomarker-driven, open label, single arm, multicentre phase II study of

Abemaciclib in patients with recurrent or metastatic head and neck

squamous cell carcinoma who failed to platinum-based therapy

Response rate [Time Frame: 24

months]

(Continued)
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TABLE 3 | Continued

CDK4/6 inhibitor N Phase and setting Primary endpoint(s)

NCT03356223 Abemaciclib 25 Phase II trial aiming to evaluate the clinical interest of Abemaciclib

monotherapy in patients with locally advanced/metastatic head and neck

cancer after failure of platinum and Cetuximab or anti-EGFR-based therapy

and harboring an homozygous deletion of cdkn2a, and/or an amplification

of CCND1 and/or of CDK6

The 8-weeks non-progression rate

defined as the rate of patients with

complete response (CR), partial

response (PR) or stable disease (SD)

lasting at least 8 weeks, according to

RECIST v1.1 [Time Frame: 8 weeks

after start of treatment]

NCT02450539 Abemaciclib 150 Randomized phase II study of Abemaciclib vs. docetaxel in patients with

stage iv squamous non-small cell lung cancer previously treated with

platinum-based chemotherapy.

PFS

NCT02308020 Abemaciclib 247 Phase 2 study of Abemaciclib in patients with brain metastases secondary

to hormone receptor positive breast cancer, non-small cell lung cancer, or

melanoma.

Percentage of Participants Achieving

Complete Response (CR) or Partial

Response (PR): Objective Intracranial

Response Rate (OIRR)

NCT03310879 Abemaciclib 38 Phase II study of the cdk4/6 inhibitor Abemaciclib in patients with solid

tumors harboring genetic alterations in genes encoding D-type cyclins or

amplification of CDK4 or 6.

Progression-free rate

(92). The NCT02846987 phase II trial is currently recruiting
patients affected by not surgically resectable locally advanced or
recurrent dedifferentiated liposarcoma with any number of prior
therapies (including none). The primary endpoint is PFS (93). A
biomarker-driven phase II study (NCT03356587) of abemaciclib
in patients with recurrent or metastatic head and neck squamous
cell carcinoma who failed to platinum-based therapy is also
currently recruiting participants. Primary endpoint is response
rate (94). Another phase II trial in (NCT03356223) patients
with locally advanced/metastatic head and neck cancer is
currently evaluating abemaciclib monotherapy after failure
of platinum and cetuximab or anti-EGFR-based therapy, but
only in tumors harboring a homozygous deletion of CDKN2A,
and/or amplification of CCND1 and/or of CDK6. The primary
endpoint is the 8-weeks non-progression rate (95). Finally,
the NCT03310879 phase II study is testing abemaciclib in
patients with solid tumors of non-breast origin harboring genetic
alterations in genes encoding D-type Cyclins or amplification of
CDK4/6 without therapeutic alternative. The progression-free
rate at 4 months is the primary endpoint (96).

Ongoing trials for palbociclib, ribociclib, and abemaciclib are
resumed in Table 3.

CONCLUSIONS

Albeit it is unquestionable, at present, that CDK 4/6i treatment
proved to be more efficacious in combination strategies (e.g., in
HR+ HER2– MBC is in combination with endocrine agents),
the MONARCH 1 trial results (86) led to the FDA approval
of abemaciclib as monotherapy for the treatment of adult
patients with HR+ HER2– MBC with disease progression
after prior ET and CT received in metastatic setting. This
study opened up a new scenario for CDK4/6i, making them
suitable as single agent treatment in heavily pretreated MBC.

In this perspective, the TREND trial provided some evidence
for some activity of palbociclib as single agent in pretreated
patients with HR+HER2–MBC (65). A cross-trial comparison of
response rate from the MONARCH-1 and TREND trial suggests
that abemaciclib might be more effective than palbociclib
in the same disease setting. However, this hint should be
taken as hypothesis only, given the lack of direct comparisons
between the two CDK4/6i. Additionally, there is a strong
need for biomarkers predictive of response and resistance to
better define which patients could benefit most from these
drugs. In fact, mechanisms of resistance to CDK4/6i therapy
have yet to be clearly identified. Laboratory evidences suggest
that markers of intrinsic resistance might be the pRb loss
and subsequent increase in p16INK4A, deregulation of cyclin
E expression, E2F family members amplification and TP53
mutations (97). Interestingly, a study recently published from
Condorelli et al. showed for the first time in human patients
that acquired mutations leading to functional loss of pRb
encoding gene (RB1) might emerge under treatment with
palbociclib and ribociclib, maybe due to selective pressure from
the CDK4/6i and might potentially confer therapeutic resistance
(98). Results from ongoing trials in solid tumors will surely
shed a light on CDK4/6i future development as single agents.
It is likely that eventual new treatment indications might be
acquired by the three inhibitors in the next future, especially
in tumors where few therapeutic options are available, such as
sarcomas.
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Epithelial to mesenchymal transition (EMT) is believed to be crucial for primary tumors

to escape their original residence and invade and metastasize. To properly define EMT,

there is a need for ligands that can identify this phenomenon in tumor tissue and invivo. A

phage-display selection screening was performed to select novel binding phage peptides

for identification of EMT in breast cancer. Epithelial breast cancer cell line, MCF-7 was

transformed to mesenchymal phenotype by TGF-β treatment and was used for selection.

Breast fibroblasts were used for subtractive depletion and breast cancer metastatic cell

lines MDA-MB-231, T47D-shNMI were used for specificity assay. The binding peptides

were identified, and their binding capacities were confirmed by phage capture assay,

phage-based ELISA, immunofluorescence microscopy. The phage peptide bearing the

7-amino acid sequence, LGLRGSL, demonstrated selective binding to EMT phenotypic

cells (MCF-7/TGF-β andMDA-MB-231) as compared to epithelial subtype, MCF-7, T47D

and breast fibroblasts (Hs578T). The selected phage was also able to identify metastatic

breast cancer tumor in breast cancer tissue microarray (TMA). These studies suggest

that the selected phage peptide LGLRGSL identified by phage-display library, showed

significant ability to bind to mesenchymal-like breast cancer cells/ tissues and can serve

as a novel probe/ligand for metastatic breast cancer diagnostic and imaging.

Keywords: Phage display, breast cancer, fibroblasts, EMT, cancer-associated fibroblasts

INTRODUCTION

Breast cancer is the most common cancer in women and the second leading causes of death due to
cancer (1). The cause of death in breast cancer is often due metastasis to distant sites, resulting in
organ failure accounting for a 5-year survival rate of 23%. Evidences support the observation that
metastasis is an early event in breast cancer progression (2), with possibly up to 90% of patients
already having metastasis at the time of diagnosis. Studies have shown that dissemination of cancer
cells andmetastasis into distant organs is often preceded by an epithelial to mesenchymal transition
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(EMT) of cancer cells (3), which allows cancer cells to
dedifferentiate, acquire mesenchymal including fibroblast-like
morphology, enhanced migratory and invasive properties,
enabling them to invade through the stroma and migrate and
seed to distant organs (4, 5). The concept of EMT in breast
cancer has been well demonstrated in numerous invitro studies
in different normal, malignant mammary epithelial cells and in
mouse models of mammary cancers (6, 7). It has been suggested
that tumor microenvironment (8) and growth factors such as
transforming growth factor-β (TGFβ), epidermal growth factor
(EGF), platelet-derived growth factor (PDGF) has a dramatic
effect on epithelial phenotype and in promoting motility and
invasiveness via the induction of EMT (9, 10). TGFβ treatment
changes epithelial cells from cubodial shape to more elongated
ones with concomitant loss of epithelial markers and increased
expression of mesenchymal markers vimentin, fibronectin and
α-smooth muscle actin (11). These EMT markers are also
present in activated cancer-associated fibroblasts (CAF’s), which
contributes to the pathogenesis of tumor progression and
invasiveness (12). Several studies support a physiologic role of
EMT during tumor progression (13–15) by monitoring EMT
progression by the cadherin switch, E-cadherin to N-cadherin,
which is normally also present in mesenchymal cells, fibroblasts,
neural tissue (16). Similarly, vimentin is also often used to
define cancer cells undergoing EMT, is also present in fibroblasts,
endothelial cells, cells of the hematopoietic lineages, and glial cells
(17, 18). There is a lack of specific ligands that can recognize
mesenchymal-like cancer cells and define EMT in tumor and in
cancer-associated fibroblasts.

Phage display offers great advantage as a high throughput
profiling technology based on peptide libraries present on the
surface of bacteriophage. Selective binding of phages from a
library with billions of diversified peptides can make a clear
distinction between two morphological same but functionally
different targets and thus offers a complementary approach
for comparative screening. Usually peptides can be displayed
on the N-terminus of pIII protein coat protein (pIII phage
display), which is displayed at one end of the filamentous phage
in 3–5 copies (19) or can be displayed on the N-terminus
of all copies of pVIII major coat protein (20). Diversity of
pIII or pVIII combinatorial phage library has been exploited
extensively to explore the cell surface repertoire of various
cancer cells such as colon (21), prostate (22, 23), pancreatic
(24), breast (25, 26) and to select many cell surface or cell
internalizing peptides. Some of these highly specific and high
affinity ligands have been used as diagnostic (24), molecular
and targeting agents (27–30). Additionally, lamba (T7) phage
display has been used to identify vascular zip codes (31) and
markers for angiogenesis (32). These studies and more define
the power of using combinatorial phage display to identify
molecular differences and interactive regions of the proteins
without knowing the nature of interaction.

In this study, we propose a novel and innovative study to
use phage display libraries for identification of phages that can
specifically and selectively bind to themesenchymal breast cancer
cells invitro. Since TGFβ is a known inducer of EMT, we have
used a model of TGFβ induced EMT in MCF-7 breast cancer

cells, (MCF-7/TGFβ) for selection of EMT-specific phages. CX7C
PhD phage library was used for selection of phages binding
to MCF-7/TGFβ cells after subtractive depletion from breast
fibroblasts. These selected phages were then tested on breast
cancer cells that exhibited EMT phenotype (MDA-MB-231 and
T47D-shNMI) and breast cancer TMA of primary and metastatic
site. The phage peptide LGLRGSL displayed specific binding to
the EMT breast cancer cells as well recognized tumor in TMA’s at
primary as well as metastatic site.

MATERIALS AND METHODS

Materials
PhD CX7C phage library was purchased from New England
Biolabs (NEB). Fetal calf serum (FCS) and cell culture media
(Dulbecco’s modified Eagle’s medium, DMEM) was purchased
from Sigma (USA). The phage display library contains random
peptides constructed at the N terminus of the minor coat
protein (cpIII) of M13 phage. The library contains a mixture of
3.1 × 109 individual clones, representing repertoire of phages
with 7-mer peptide sequences, which expresses random 7-
amino-acid sequences. The Escherichia coli host strain ER2738
(F+ strain, New England Biolabs) was used for M13 phage
propagation. The human breast cancer cell lines MDA-MB-
231, MCF-7 and breast fibroblasts (Hs 578T) were purchased
from the American Type Culture Collection. MCF-7 cells
were treated 1ng/mL of TGFβ for 16 days. MCF-7, MDA-
MB-231, MCF-7/TGFβ, breast cancer cells, and SW620, colon
cancer cells, were maintained in DMEM supplemented with
10% fetal bovine serum (Sigma) at 37◦C. PC3, prostate cancer
cells, were cultured in RPMI1640 media supplemented with
10% FBS at 37◦C.Breast fibroblasts (Hs578T) were maintained
in special hybricare medium supplemented with 15% FBS
(ATCC).

Validation of EMT Marker in MCF7/TGFβ

Cells by Western Blot
MCF-7 and MCF-7/TGFβ cells were grown in 25 cm2 flask
to 75–80% confluency. Confluent cells were lysed in ice-cold
complete 1x RIPA buffer (PMSF solution, sodium orthovanadate
solution, protease inhibitor cocktail solution, and 1x lysis buffer)
(Santa Cruz Biotechnology, Santa Cruz, CA, United States). The
protein concentration in the samples was quantified using the
BCA Protein Assay Kit (Pierce Biotechnology, Rockford, IL,
United States). Thirty microgram of protein from each sample
was separated by a 4–12% SDS-PAGE gel and then transferred
to a 0.2µm polyvinylidene difluoride (PVDF) membrane.
Membranes were blocked with 5% nonfat dry milk in PBS-T
for 45min and then incubated with the E-cad herin (Abcam,
UK) or N-cadherin (Abcam, UK) primary antibody (1:1,000)
overnight at 4◦C. After washing, membranes were incubated with
horseradish peroxidase (HRP)-conjugated secondary antibody
(1:2,000). Subsequently, membranes were washed and blots were
visualized using enhanced chemiluminescence. The membrane
was stripped withmild stripping buffer and reprobed with β-actin
(Cell Signaling, Danvers, MA, United States) to verify that equal
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amount of protein was loaded. The relative quantification was
normalized against β-actin using image J image analysis software.

In vitro Phage Selection
Biased protocol for selection of phages was employed as
described (26) with some modifications. The PhD phage library
(Cx7C) was depleted against a cell culture flask and breast
fibroblasts (Hs578T). Unbound phages recovered from the
depletion were incubated with confluent MCF-7/TGFβ cells
at room temperature for 1 h. Unbound phages were washed
away and cell-associated phages were eluted with elution buffer
(200mM glycine-HCl, 1 mg/ml BSA, 0.1 mg/ml phenol red,
pH 2.2) for 10min on ice. The eluate was neutralized with 376
µl of 1M Tris (pH 9.1). Internalized phages were recovered
with lysis buffer [2% CHAPS, 10mM Tris, 2mM EDTA (pH
8.0)] after further washing and propagated in bacteria to
determine their titer as described previously (29). The results
were expressed as a percentage of a ratio of output to input
phage. The eluted phage and cell-internalized phage were
amplified separately in bacteria and used in the second and
third round of selection using the same protocol of depletion
of the amplified phages (lysate and eluate) against breast
fibroblasts and incubating MCF-7/TGFβ cells with unbound
phages recovered from depletion. Sixty phages from the third
round of selection were randomly picked and were propagated
in the ER2738 bacteria. DNA was isolated form these 60
propagated clones using DNA isolation kit (QIAGEN GmbH,
Hilden, Germany) and individual phage DNA sequences were

identified. A sequencing primer used was 5
′

-CCC TCA TAG

TTA GCG TAA CG-3
′

(−96 gIII sequencing primer, provided
in the Ph.D.-CX7C Phage display peptide library kit (NEB,
MA).

Cell-Based ELISA and Phage Capture
Assay
Selected phage clones were characterized for their selectivity
toward EMT cells, MCF-7/TGFβ and MDA-MB-231 breast
cancer cells in comparison with epithelial breast cancer cells,
MCF-7, T47D, and breast fibroblasts using phage capture assay
(29) and cell-based ELISA.

Briefly, in phage capture assay, target cells MCF-7/TGFβ,
MDA-MB-231, MCF-7, T47D, T47D-shNMI, breast fibroblasts
(Hs578T), PC3 (metastatic prostate cancer cells) and SW620
(metastatic colon cancer cells) were cultured in triplicate to
confluence in separate wells of 12-well cell culture plates. Cells
were incubated with phage (1 × 1010 pfu) at RT for 1.5 h. Cells
were washed with 100 µl washing buffer for 5min eight times to
remove non-specifically interacting unbound phages. Cells were
lysed with 50µl lysis buffer (2.5% CHAPS) for 10min on a rocker
and the lysate containing phages was titered in E. coli ER2738
bacterial cells. Phage titer was calculated as a ratio of output to
input phage.

ELISA:

Confluent monolayers of MCF-7/TGFβ, MDA-MB-231, MCF-7,
T47D, T47D-shNMI and breast fibroblasts (Hs578T) cells were
incubated at room temperature with individual phage clones

(1010 PFU), for 1.5 h at RT. Subsequently, cells were washed
with PBS containing 0.1% Tween-20, incubated with primary
anti-M13-biotin antibody (1:1,000), for 1 h, at RT. Cells were
washed again with PBS containing 0.1% Tween-20, incubated
with secondary antibody streptavidin-HRP (1:2,000, 45min, RT),
developed with tetra methyl benzidine and read at absorbance
650 with microplate reader (BioTek).

Phage Capture Assay of Phage Binding to
Cancer-Conditioned Media Activated
Fibroblasts
Breast fibroblasts (Hs578T) were plated in a 12.5 cm2 flask
cultured until approximately 70% confluent. Once properly
confluent, fibroblasts were then cultured in MDA-MB-231
conditioned media or normal fibroblasts media for 72 h.
Thereafter, they were exposed to E11 phage (108 pfu) for 2 h and
analyzed for binding in phage capture assay as described above.

Immunofluorescence Study of Selected
Phages
MCF-7, MCF-7/TGFβ, MDA-MB-231 and Hs578T (breast
fibroblasts) cells were seeded in 4-well chamber overnight. On
next day, cells were fed with fresh medium. Phage LGLRGSL
(E11) (108 pfu) was added in fresh medium and incubated at RT
for 1 h. After removing the unbound phages, cells were washed
with wash buffer (0.1% tween-20 in PBS) three times and fixed
with 4% formaldehyde for 15min at 37◦C. Thereafter, cells were
permeabilized with 0.2% Triton X-100 at RT for 10min. Then,
cells were washed with TBS 3 times. Before incubation with anti-
phage antibody, cells were treated with blocking buffer for 30min
at RT. Cells were incubated with M13-pIII monoclonal antibody
for 1 h at RT, washed and incubated with the secondary goat anti-
mouse IgG antibody labeled with Alexa Flour R© 488 (Molecular
Probes) (1:500 in PBS containing 1% BSA) for 45min at RT.
Subsequently, cells were washed three times and stained with
TOTO-3 for nucleus staining. Prolong Gold Anti-fade Reagents
was used on the cells which were then covered with cover slides.
Pictures were taken by using the NIKON eclipse TE 2000-E
confocal microscope. The fluorescence intensity of the images
was quantified using image J software.

Phage Binding to Breast Cancer Tissue
Microarrays
The breast tissue microarrays were purchased from Novus
Biological (Littleton, CO). TMA included 40 breast cancer
infiltrating ductal carcinoma, 10 metastatic lymph node and
9 adjacent normal breast tissues. Clinico-histopathologic
characteristics of the subjects in the tissue microarray study
included grade, age, hormone status and clinical stage, according
to information provided by the suppliers. Tissues were de-
paraffinized in xylene, rehydrated in graded alcohols and
endogenous peroxidase activity was quenched with 3% hydrogen
peroxide for 5min. Slides were treated with LGLRGSL phage
(1010 pfu) overnight. Slides were subsequently washed and
blocked by 3% goat serum at RT for 1 h in humidity chambers.
Slides were then treated with M13-pIII phage monoclonal
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antibody (NEB, MA) or Vimentin antibody (Cell Siganling,
Danvers, MA, United States) (1:100) and then subsequently
with HRP conjugated goat anti-mouse secondary antibody
(Jackson Immunoresearch Laboratories Inc., West Grove, PA,
United States) for 40min. The antigen-antibody reaction was
visualized after applying diaminobenzidine (Sigma-Aldrich,
MO, United States) for 7min. The slides were counterstained
with hematoxylin (Sigma-Aldrich, MO, United States) for 1min.
Slides were dehydrated in alcohols and cleared in xylene baths
before being mounted with Permount media.

Statistics
The significance of difference between two variables was assessed
by the Student’s t-test. The difference was considered significant

if the p-value was<0.05. Data from all experiments are expressed
as mean ± standard error (SD). All statistical calculations were
performed using GraphPad Prism and Microsoft Excel.

RESULTS

Selection of Phages Binding to Breast
Cancer Cells That Have Undergone EMT
MCF-7 (epithelial-luminal subtype) breast cancer cells were
transformed into mesenchymal phenotype by long-term
treatment with TGFβ (1 ng/mL for 16 days). Figure 1A shows the
change of MCF-7 breast cancer cells change in morphology upon
TGFβ treatment. Since reduction in E-cadherin and upregulation
of mesenchyme markers, is a hallmark of metasatatic carcinoma’s

FIGURE 1 | (A) Morphological change in MCF-7 cells during TGFβ –induced EMT. Images of cells treated long term (16 days) with TGFβ showing spindle-shaped

morphology as compared with control. Images were acquired by phase contrast microscopy using a 20 × objective. (B) (left) Immunoblot analysis of expression of

EMT-related proteins. Protein expression levels of E-cadherin in TGFβ-treated MCF-7 cells were markedly decreased, whereas expression levels of N-cadherin and

vimentin (mesenchymal markers) were dramatically increased. Numbers below each panel indicate the relative integrated density of the protein band in that lane.

(right) Quantification analysis of the Western blot data showing the change in EMT markers (E-cadherin and N- cadherin) in MCF-7/TGFβ cells vs. MCF-7 breast

cancer cells. The relative quantification was normalized against β-actin using image J image analysis software. All data represent the mean± S.D of three different

experiments. *p <0.05, student-t-test.
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and indication of EMT (33, 34), following treatment MCF-
7/TGFβ cells were validated for EMT transition by looking
at the protein expression of E-cadherin and N-cadherin
(mesenchymal marker) (35). Consistent with literature that (33)
demonstrated that TGFβ treatment downregulates E-cadherin
expression in MCF-7 cells, our Western blot data confirmed
these observations. Figure 1B showed downregulation of E-
cadherin and upregulation of N-cadherin protein expression in
MCF-7/TGFβ cells as compared to MCF-7 cells.

CX7C PhD phage library (NEB) was used to find phage clones
that bind with high specificity and selectivity to MCF-7/TGFβ
cells. Extensive depletion of the phage library against plastic,
breast fibroblasts before enrichment of phage that interact with
MCF-7-TGFβ breast cancer cells was employed for a robust
selection of phage clones specific for cancer cells. This negative
selection step was also performed after each round of panning on
the MCF-7-TGFβ cells. Three such rounds of biopanning were
performed on and in every round, phage library and sub-library
was depleted against breast fibroblasts to preferentially select for
phages that did not bind to normal fibroblasts. Phages associated
with cells were eluted sequentially with acid and detergents. Titer
of the phage increased from one round to another indicating
successful enrichment for phage clones that bind to the target
MCF-7-TGFβ cells (Figure 2). After the third round of selection,
100 phage clones were randomly picked after titering of the eluate
and lysate fractions. Their DNA was isolated, sequenced and
translated to reveal the sequence of the pIII fusion peptides. In
total, 21 phage clones were isolated and classified based on their
consensus foreign peptide motifs (Table 1).

Selectivity of Phages Toward
Mesenchymal-Like Breast Cancer Cells
Phage clones obtained by screening of the CX7C phage library
against MCF-7/TGFβ cancer cells were tested for their selective
binding toward the target MCF-7/TGFβ, MDA-MB-231, T47D-
shNMI cells and not to breast fibroblasts or epithelial subtype

FIGURE 2 | Specific enrichment of eluate and lysate MCF-7/TGFβ cell-binding

phage isolated from PhD CX7C library during three rounds of selection. The

titer of recovered phages from each round was evaluated by blue

plaque-forming assay on agar plates. The phage enrichment rate was

calculated as yield (%), which is as output number/input number x100.

breast cancer cells MCF-7 and T47D in phage capture assay
(Figures 3A,B) and phage based ELISA (Figure 3C).

These cells lines MCF-7/TGFβ, MDA-MB-231, T47D-NMI
exhibit mesenchymal phenotype or markers of EMT and are
aggressive, are structurally similar to fibroblasts and expresses
markers of EMT and thus are representation of EMT in
breast cancer cells. MDA-MB-231 breast cancer cell line exhibit
mesenchymal phenotype and are detonated EMT phenotype
(36). T47D is an epithelial breast cancer cell line and was
transitioned to EMT by silencing a gene, N-myc and STAT
interactor (37).

In these assays, some phages demonstrated high selectivity
toward EMT cells, while other phage showed selectivity for
epithelial breast cancer cells as well as breast fibroblasts. Phages
were considered selective if their relative binding to EMT
phenotypic cells (MCF-7/TGFβ, MDA-MB-231, and T47D-
shNMI) and were at least five times higher than those of epithelial
breast cancer cells (MCF-7 and T47D) and breast fibroblasts.
KGDYKLF (L42), phage selected from lysate fraction, showed
high specificity toward MDA-MB-231 cells but not so selective
toward MCF-7/TGFβ, MCF-7 and breast fibroblasts. Phages
selected from eluate fraction, LGLRGSL (E11), GTFLFS (E32),
and PNLPWVP (E45) were very selective for EMT phenotypic
cells (MCF-7/TGFβ, MDA-MB-231, and T47D-shNMI) and

TABLE 1 | Displayed phage peptide sequences from isolated eluate and lysate

phages from third round of selection against MCF/TGFβ breast cancer cells.

ELUATE PHAGE PEPTIDE SEQUENCES

E9 I L N C M R N

E11 L G L R G S L

E12 A R K T N P L

E16 F N G P H T R

E20 T K F H F S G

E25 D F L T A R L

E29 N T F S W H T

E32 G T F L F S

E42 N T L R T P Y

E43 H H D N V A M

E45 P N L P W V P

E46 Y E H H P R I

E48 H M R Q G M A

LYSATE PHAGE PEPTIDE SEQUENCES

L5 T H S S W G M

L9 N M W E S V P

L10 R E G H M G V

L24 K D S H E P W

L27 T L A T G G M

L30 P Y E P R A T

L42 K G D Y K L F

L45 S I L S K N H

L46 E R S G M H S

L47 H W P A K H I

L49 P V L L G E S
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showed more than 10 times binding as compared to its binding
to breast fibroblasts (Hs578T) and epithelial breast cancer cells
(MCF-7 and T47D) in phage capture assay (Figure 3A). Phage
E11 was confirmatory toward EMT cells in phage-based ELISA
(Figure 3B) and thus was chosen for further characterization.

To determine if E11 could recognize EMT phenotype in
other cell types of tumor microenvironment, E11 was screened
against activated fibroblasts (fibroblasts converted to CAF’s by
treatment with cancer-conditioned media). E11 demonstrated
higher binding (twice as much) to activated-fibroblasts than
normal fibroblasts (Figure 3C). To see if E11 can recognize EMT
on cancer other than breast, E11 was screened against other
metastatic cancer cells, PC3 (prostate cancer) and SW620 (colon
cancer) in phage capture assay. PC3 is a highlymetastatic prostate
cancer cell line and exhibits EMT phenotype (38, 39). SW620
are highly tumourigenic, metastatic and exhibit fibroblasts like
morphology (40). E11 showed comparable binding to PC3 and
SW620 likeMDA-MB-231 (Figure 3D), which demonstrates that
it is binding to a receptor common to metastatic phenotype.

Affirmation of Phages Binding to Target
Cells in vitro Using Immunofluoresence
Analysis
To further affirm the specificity of LGLRGSL (E11) toward

breast cancer cells with an EMT phenotype, immunofluorescence

microscopy of intact target mesenchymal phenotypic cells (MCF-

7/TGF β and MDA-MB-231), control MCF-7 breast cancer cells
and breast fibroblasts (Hs578T) was employed. All cells were

treated with the phage (108 pfu) at RT for 1 h, and subsequently

incubated with primary anti-pIII antibody and then stained

with secondary anti-mouse Alexa fluor 488 secondary antibody.

LGLRGSL (E11) showed almost no binding to breast fibroblasts
(Figure 4A), some staining to MCF-7 cells (Figure 4B), while
abundant binding to EMT cells, MCF-7/TGFβ (Figure 4C) and
MDA-MB-231 (Figure 4D) as shown by green fluorescent phage
staining and analysis (Figure 4E). We did not observe any
background antibody as shown in the respective controls of cells
treated with just primary and secondary antibodies.

FIGURE 3 | continued
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FIGURE 3 | Affinity selected eluate and lysate phage showed higher binding to MCF-7-TGFβ, MDA-MB-231, T47D-shNMI cells as compared to breast fibroblasts,

T47D and MCF-7 cells in (A) phage capture assay; (B) in phage based-ELISA; (C) LGLRGSL (E11) was also highly reactive to activated fibroblasts. FBD denotes

fibroblasts in normal fibroblast media and FBC denotes fibroblasts in MDA-MB-231 breast cancer cell conditioned media and (D) LGLRGSL showed comparable

binding to PC3 and SW620 cancer cells as compared to MDA-MB-231 cancer cells. All data represent the mean± S.D. *p <0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p

≤ 0.0001.
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FIGURE 4 | A. Phage peptide LGLRGSL (E11) stained selective to EMT phenotypic cells in immunofluorescence microscopy analysis upper, (A) Breast Fibroblast, (B)

MCF-7, (C) MCF-7/TGFβ, and (D) MDA-MB-231 cells without phage exposure; stained with DAPI and Alexa 488 secondary antibody, lower, (A) Breast Fibroblasts,

(B)MCF-7, (C) MCF-7/TGF β, and (D). MDA-MB-231 exposed to phage; stained with M13 primary antibody, DAPI and Alexa 488 secondary antibody. Scale bar is

20µm. (E) Quantification data of the fluorescence intensity of the Breast fibroblasts, MCF-7, MCF-7/TGFβ, and MDA-MB-231 breast cancer cells. The fluorescence

intensity of the images was quantified using Image J software. All data represent the mean± S.D of three different experiments. *p <0.05, student-t-test.

Validation of Phage Peptide Binding to
Human Breast Cancer Exvivo
Next, we investigated the clinical relevance of these findings

by assessing if LGLRGSL (E11) could be used to prospectively

identify human invasive ductal carcinoma (IDC) breast tumors

with a propensity to metastasize as metastatic cells undergo EMT

before metastasizing (41). Immunostaining for phage in human

breast cancer tissue indicated phage has substantial staining for

invasive ductal breast cancer carcinoma (Figures 5A–C, left) and
its staining intensity increased in tumors invading into adjacent
lymph nodes (Figure 5D). Furthermore, we did not observe any
binding in normal breast tissues (Figure 5E). Interestingly we
observed that vimentin, a mesenchymal marker, within the same

TMA (Figures 5A–C, right) demonstrated a different staining
pattern than the LGLRGSL (E11) phage. While vimentin showed
stromal staining, phage was immunoreactive to the tumor cells
with robust staining around the invasive or leading edge of the
tumor-stromal interaction.

DISCUSSION

There is accumulating evidence to show that epithelial cells
can undergo transformation into migratory fibroblast-like
mesenchymal cells in a process called EMT (Epithelial-to-
Mesenchymal Transition). Normally, an embryo and organ
development related phenomenon, EMT is believed to be crucial
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FIGURE 5 | Ex vivo phage binding to human breast cancer tissue microarray. Tissue microarray of invasive ductal carcinoma and adjacent normal tissues were

incubated with 1010 pfu of LGLRGSL phage or Vimentin antibody and then subsequently with M13-pIII antibody for phage and secondary peroxidase antibody for

phage and Vimentin, imaged with a digital light microscope. Strong brown staining of the phage and Vimentin was observed in invasive ductal carcinoma sections

(A–C) and metastasis in lymph nodes, (D) while no staining was observed in normal breast tissue, (E) Scale Bar is 40 and 10µm for the inserts.

for primary tumors to escape their original residence and invade
and metastasize to other organs such as liver, lungs, bone and
brain (42). Moreover, EMT is also a critical determinant of
stemness and drug-related relapse (6, 41, 43). EMT of breast
cancer cells is, in large part, dependent oncontingent on the
tumor microenvironment (44). Because of the close cross-talk
between the cancer cells and CAFs, it is evident that the
development of cancer cannot be dissociated from its local
microenvironment (45). Tumor cells signals stromal fibroblast
cells and activate them into cancer-associated fibroblasts (CAFs)
to undergo EMT through the stimulation of paracrine growth
factors (46, 47) promotes EMT, cell survival (48) and progression
(49) of cancer cells. To better understand the events involved
from acquiring motility for invasion to seeding in distant organs,
there is a need to develop probes that can selectively bind to
invasive, metastatic and tumor-progressing CAF’s (46). Such
ligands can further ascertain the role of EMT in cancer metastasis
and could enable the development of new approaches in the
management of this disease.

In this study, we have successfully isolated phage ligands
using CX7C phage library for EMT transformed breast cancer

cells, MCF7/TGFβ and MDA-MB-231 by employing subtractive
depletion of phages binding to breast fibroblasts. The optimizing
procedures (several rounds of subtractive screening) were
performed to improve the probability of successful selection,
which is highly dependent on obtaining specific phages with
high selectivity. The isolated clones were used in cell-ELISA
and invitro phage capture assay to confirm their specificity to
EMT phenotype cells, MCF-7/TGFβ, MDA-MB-231 and T47D-
shNMI cells in vitro as compared to epithelial subtype cells, MCF-
7, T47D and mesenchymal breast fibroblasts (Hs578T). Phage
capture assay and ELISA demonstrated the selective affinity of
various phages to EMT phenotype.

The best candidate, LGLRGSL (E11), was then selected
for immunocytochemical assays. Immunofluorescence studies
confirmed the selectivity of LGLRGSL (E11) to the target
mesenchymal-like cells as there was minimal binding to the
non-target epithelial breast cancer cells and mesenchymal breast
fibroblasts. E11 also bound with great affinity to PC3, prostate
cancer cells and SW620, colon cancer cells. It’s binding to these
other cancer cell type was as comparable as to MDA-MB-231
breast cancer cells. These findings suggest that LGLRGSL (E11) is
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recognizing a receptor/antigen on mesenchymal-like cancer cells
that are highly invasive and metastatic in nature and would be a
useful probe to identify invasive front and metastatic tumor cells.
Phage probing to the breast cancer tissue microarray identified
tumor representing high grade and lymph node metastasis.
When compared to Vimentin, a marker of mesenchymal-like
cells metastasis, phage had more positive staining to the invasive
front and lymph node metastasis.

More work is needed to characterize LGLRGSL (E11) as ligand
binding to EMT marker of cancer origin. One such direction is
the identification of the receptors responsible for LGLRGSL (E11)
phage binding to the mesenchymal-like cells, that may allow for
the discovery of novel cell surface molecules, which may yield
future targets for drug design.

In conclusion, the 7-amino acid phage peptide, LGLRGSL,
obtained by phage-display technology showed significant ability
to bind to EMT breast cancer cells in vitro and tissues array
exvivo. The phage peptide can be used for preparation of

targeted devices for drug and gene delivery to metastatic cells;
development of probes for molecular imaging of metastasis;
and identification and isolation of cancer-specific receptors as
potential components for development of therapeutic antibodies,
anticancer vaccines and diagnostics.
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As medicine advances, cancer is still among one of the major health problems, posing
significant threats to human health. New anticancer agents features with novel scaffolds
and/or unique mechanisms of action are highly desirable for the treatment of cancers,
especially those highly aggressive and drug-resistant ones. Nitrogen mustard has been
widely used as an anticancer drug since the discovery of its antitumor effect in the
1942. However, the lack of selectivity to cancer cells restricts the wide usage of a
mass of nitrogen mustard agents to achieve further clinical significance. Discovery
of antitumor hybrids using nitrogen mustards as key functional groups has exhibited
enormous potential in the drug development. Introduction of nitrogen mustards resulted
in improvement in the activity, selectivity, targetability, safety, pharmacokinetics and
pharmacodynamics properties of corresponding lead compounds or agents. Herein,
the recently developed nitrogen mustard based hybrids have been introduced in the
cancer therapy.

Keywords: antitumor, nitrogen mustard, hybrids, side effects, drug discovery

INTRODUCTION

In recent years, malignant tumors have become a serious threat to human health due to their
worldwide rising incidence and mortality. Second to cardiovascular diseases, cancer contributed
the second most mortalities among all diseases (Torre et al., 2015; Ryerson et al., 2016; Lallukka
et al., 2017). In recent decades, development of antitumor drugs has achieved significant progress
in the treatment of cancer. Since nitrogen mustard, known as an alkylating agent, was proven
effective in the treatment of malignant lymphoma in the 1940s, the usage of nitrogen mustard
drugs in cancer chemotherapy has a history of over 70 years. At present, nitrogen mustard agents
are still used clinically, and targeted modification of nitrogen mustards is an important strategy
for the discovery of anticancer drugs. The development of nitrogen mustard derivatives originated
from bis(2-chloroethyl) sulfide, which was used as a poison gas during World War II (Gilman,
1963; DeVita and Chu, 2008). After a terrible accident, it was found that bis(2-chloroethyl) sulfide
exhibited therapeutic potential on leukemia. Because of its severe toxicity, bis(2-chloroethyl) sulfide
was not applied as a antitumor drug for clinical use. However, nitrogen mustard antitumor drugs
were developed based on the leukocyte killing effect of bis(2-chloroethyl) sulfide (Figure 1).

Nitrogen mustard is a kind of bio-alkylating agent, which can form active electron-deficient
intermediates or other compounds with active electrophilic groups in vivo. The active intermediates
can react electrophilically with some electron-rich groups in bio-macromolecules by forming
covalent bonds, and results in activity inhibition of corresponding bio-macromolecules. The
mechanism of nitrogen mustards includes DNA binding and cross-linking, thus preventing DNA
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FIGURE 1 | Origin of nitrogen mustards.

replication and cell proliferation. Since its binding to the N7
nitrogen-atoms on DNA guanines with poor selectivity, nitrogen
mustard agents are revealed to be toxic to normal cells (Kohn
et al., 1987; Bank et al., 1989; Povirk and Shuker, 1994; Di Antonio
et al., 2014).

Clinical application of nitrogen mustard compounds has a
long history, but the present and future application of nitrogen
mustards is limited by disadvantages including poor selectivity
and severe adverse reactions (Frei et al., 1988; Sanderson
and Shield, 1996; Schobert et al., 2009; Chen et al., 2014).
Therefore, enormous effort has been made in the development
of nitrogen mustard derivatives, aiming to obtain antitumor
nitrogen mustard drugs with high activity and low toxicity
(Zarytova et al., 1990). In recent years, the discovery of nitrogen
mustard drugs and derivatives has become attractive field
in the anticancer therapy. Development of nitrogen mustard
based hybrid molecules by introducing druggable fragment, has
been considered to be effective strategy in the antitumor drug
discovery. Herein, recently development of nitrogen mustard
based hybrids was reviewed and provided suggestions for the
future study of bifunctional and multitargeted antitumor drugs.

NITROGEN MUSTARD DRUGS

According to different carriers, nitrogen mustard drugs can be
classified into several classes, including fatty nitrogen mustard,
aromatic nitrogen mustard, amide nitrogen mustard, amino acid
and polypeptide nitrogen mustard, and heterocyclic nitrogen
mustard.

Chlormethine 1 (Figure 2), a fatty nitrogen mustard,
is now rarely used for clinic due to its poor selectivity
and severe toxicity. The introduction of aromatic rings into
nitrogen mustard causes the decrease of electrophilicity of the
nitrogen atom. Consequently, aromatic nitrogen mustards are
characterized with reduced reactivity and toxicity compared
with fatty nitrogen mustard (Goodman and Wintrobe, 1946).
Chlorambucil 2 (Figure 2) is used clinically for the treatment
of ovarian cancer, Hodgkin’s disease, chronic lymphocytic
leukemia and lymphosarcoma (Galton et al., 1961). Clinical
application of chlorambucil is also limited by adverse effects
including nausea, vomiting, anemia, bone marrow suppression
and neurotoxicity (Springer et al., 1990; Nicolle et al., 2004).
Melphalan 3 (Figure 2), which takes phenylalanine as the carrier,
has exhibited clinical effects on ovarian cancer, breast cancer,
lymphoid sarcoma and multiple myeloma (Sarosy et al., 1988).
Cyclophosphamide 4 (Figure 2), a heterocyclic amide nitrogen
mustard, features a board spectrum of anti-malignancy activity,
and is commonly utilized in the management of malignant
lymphoma, acute lymphoblastic leukemia, multiple myeloma,

lung cancer, neuroblastoma, breast cancer, ovarian cancer
and nasopharyngeal cancer (Hughes et al., 2018). Moreover,
cyclophosphamide has been discovered to be less toxicity than
other types of nitrogen mustard drugs, due to the specific
metabolic pathway.

NITROGEN MUSTARD BASED HYBRIDS

In recent years, it has been revealed that the conjugation of
targeted antitumor drugs or natural molecules with nitrogen
mustard drugs provides novel strategies for the discovery of
antitumor molecules with improved antitumor effect, selectivity,
and reduced toxicity.

Brefeldin A (BFA) 5 (Figure 3) is a 16-member macrolide
antibiotic with a broad range of pharmacological activities,
including antitumor, antiviral and antifungal effects
(Rajamahanty et al., 2010; Moon et al., 2012; South et al.,
2013; Toda et al., 2015; Grose and Klionsky, 2016; Huang
et al., 2017). In the antiproliferative activity assay, BFA
exhibited GI50 (half maximal growth inhibitory concentration)
value of 40 nM against the national cancer institute NCI-60
cancer cell line (Anadu et al., 2006). Although BFA has great
potentials to serve as a cancer chemotherapeutic drug, its
development is still restricted by major limitations including
severe undesirable effects and relatively low selectivity on
tumor cells over normal ones (Kikuchi et al., 2003; Seehafer
et al., 2013). Several novel BFA-nitrogen mustard conjugates
were derived by introducing nitrogen mustards at 4-OH
and/or 7-OH of BFA (Han et al., 2018). All the synthesized
BFA-nitrogen mustard compounds 5a-i (Figure 3) were assessed
for their effectiveness against different tumor cell lines. Several
hybrid molecules exhibited potent cytostatic activities and
improved selectivity on malignant cells over normal ones. It
is revealed that almost all the new BFA-nitrogen mustards
showed stronger cytotoxic activities against one or more cell
lines than nitrogen mustards and even 5-FU. Among all the
tested compounds, molecule 5a exhibited the most potent
antiproliferative effects against various tumor cell lines (with
IC50 (half maximal inhibitory concentration) values of 4.48,
9.37, 0.2, and 0.84 µM against human leukemia HL-60, human
prostate PC-3, human hepatocellular carcinoma Bel-7402 and
drug-resistant Bel-7402/5-FU cell lines), respectively. Molecule
5a also displayed much lower cytotoxicity (IC50 < 0.001 µM)
than BFA (IC50 = 9.74 µM) against normal human hepatic
L-O2 cells. Therefore, introduction of nitrogen mustard to toxic
natural products could be significant in the improvement the
potency and safety of lead compounds.

Evodiamine 6 (Figure 4) is a natural quinolone alkaloid
widely studied for the treatment of diverse human disorders
including Alzheimer’s disease, inflammation and especially
cancer (Ogasawara et al., 2002; Yu et al., 2013; Lv et al., 2015;
Shi L. et al., 2016; Wang et al., 2016; Wu et al., 2016; Fan
et al., 2017; Shi et al., 2017). By targeting topoisomerase I and
II, evodiamine has induced apoptosis and cell cycle arrest of a
broad spectrum of tumor cell lines (Shyu et al., 2006). However,
it is revealed that evodiamine is cytotoxic to human normal
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FIGURE 2 | Representative nitrogen mustard agents.

FIGURE 3 | Structures of Brefeldin A-nitrogen mustard hybrids.

cells, such as peripheral blood mononuclear cells (PBMC).
In discovery of antitumor agent with improved potency and
reduced adverse side effects, conjunct of evodiamine to nitrogen
mustards was carried out by Li and coworkers (Hu et al.,
2017). The synthesized nitrogen mustard-evodiamine hybrids
were evaluated in the antitumor activity assay. Compared with
evodiamine (IC50 values of 22.87 µM against PBMC cells), all the
tested mustard-evodiamine hybrids 7a-d, 8a-d, 9a-d (Figure 4)
showed improved safety properties with IC50 values of more
than 200 µM in inhibition the proliferation of PBMC cells.
Remarkably, molecule 9c revealed potent antiproliferative effects
against human liver cancer HepG2, human leukemic THP-1
and HL-60 cell lines with IC50 value of 17.04 µM, 4.05 µM
and 0.50 µM, respectively. The involved investigations indicated
that further drug discovery based on 9c is promising in the
treatment of tumor, such as leukemia. Collectively, introduction
of nitrogen mustard moiety has shown significance in the
improvement of potency and safety, and the nitrogen mustard

hybridation strategy could be productive for the optimization of
lead compounds.

Oridonin 10 (Figure 5) is a kind of natural diterpenoids,
which has a unique, safe, broad antitumor activity (Sun et al.,
2006; Cui et al., 2007; Zhou et al., 2007; Bao et al., 2014; Li Y.
et al., 2015; Ding et al., 2016; Dong et al., 2016; Shi M. et al.,
2016; Liu et al., 2017). However, the utilization of oridonin in
cancer chemotherapy was limited by its relatively low potency
(Wang et al., 2012; Xu S.T. et al., 2014). Development of oridonin-
nitrogen mustard conjugates used for antitumor application
has been demonstrated to be promising in the drug discovery
(Ding et al., 2013a,b). Several synthetic oridonin-nitrogen
mustard conjugates 10a∼f (Figure 5), and their anticancer
activities evaluated in four human malignant cell lines (human
leukemia K562 cells, human breast cancer MCF-7 cells, human
hepatocellular carcinoma Bel-7402 cells, and human gastric
cancer MCG-803 cells) were reported by Xu and coworkers
(Xu S. et al., 2014). All the tested compounds exhibited better
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FIGURE 4 | Structures of evodiamine-nitrogen mustard hybrids.

FIGURE 5 | Structures of oridonin-nitrogen mustard hybrids.

antiproliferative effects comparing to the positive control drugs,
melphalan, chlorambucil and benzoic acid mustard. Among
the synthetic oridonin mustards, compound 10b was the most
potent hybrid against MCF-7 and Bel-7402 cells with IC50
values of 0.68 µM and 0.50 µM, respectively. It is also revealed
that 10b and 10c could inhibit the growth of drug-resistant
cancer cells. Notably, molecule 10b exhibits approximately
eight-fold higher selectivity for cancer cells over normal cells,
which is significantly higher than its parent oridonin compound
and clinically available nitrogen mustard drugs. Collectively,

the derived oridonin-nitrogen mustard conjugates exhibited
improved activity and safety than the parent fragments, and
introduction of nitrogen mustard make contributions to the
potency and selectivity of oridonin based hybrids.

In addition to evodiamine, another alkaloid, sophoridine 11
(Figure 6) evaluated in detailed for its antitumor potency, was
approved by the CFDA in 2005 for treatment several types
of cancer, including liver, gastric and lung cancer (Sun et al.,
2012; Liu and Liu, 2013; Wang et al., 2014). The sophoridine
which could cause apoptotic cell death by inhibiting DNA
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FIGURE 6 | Structures of sophoridine-nitrogen mustard hybrids.

FIGURE 7 | Structures of etoposide-nitrogen mustard hybrids.

topoisomerase I activity and initiate cell cycle arrest at the
G0/G1 phase, has high solubility and good safety profiles (Quo
et al., 2013). However, the moderate anticancer activity of
sophoridine limit its clinical application. Therefore, development
of sophoridine derivatives was performed in discovery of more

effective drug candidates. The D-ring of sophridine has been
opened to generate sophoridinic acid 12 (Figure 6) for further
structural modification. A series of sophoridinic acid-nitrogen
mustard deivatives 12a-h (Figure 6) were derived by modifying
12 nitrogen atom and carboxyl groups of 12 (Li D.D. et al., 2015).
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FIGURE 8 | Structures of steroid-nitrogen mustard hybrids.

FIGURE 9 | Structures of Tyrosine-nitrogen mustard hybrids.

Compared with sophoridine (IC50 > 80 µM against human
liver cancer HepG2 cells), several new synthesized hybrids
showed improved antitumor activity. Especially compound 12f
showed IC50 value of 0.47 µM compared with melphalan (IC50
value of 0.41 µM) in the inhibition of HepG2 cells. SAR
analysis indicated two promising substituents on the 12-nitrogen
atom and carboxyl region, which were helpful for maintaining
potent antitumor activity. Moreover, various decorating various
substituents may be introduced to these two moieties, regulating
the pharmacological effects of the compounds. Introduction of
the cyclophosphamide metabolite (phosphamide mustard A)

analogs also resulted in hybrids with significantly improved
activities compared with sophoridine (Li D. et al., 2018). It
is demonstrated that the introduction of nitrogen mustard on
sophoridine could significantly improve interactions between
sophoridine and DNA-Topo I, and subsequently increase the
antitumor activity. Therefore, the study of nitrogen mustard as
the parent drug is of great significance in the design and synthesis
of antitumor drugs.

Etoposide 13 (Figure 7) is a topoisomerase II inhibitor
effective in the treatments of various types of cancer
including testicular cancer, lung cancer, lymphoma, leukemia,
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FIGURE 10 | Structure of Platinum-nitrogen mustard hybrid.

neuroblastoma, and ovarian cancer (Nitiss, 2009; Pommier and
Marchand, 2011; Pommier, 2013). In discovery of etoposide
analogs, glycoside moiety of etoposide was replaced by nitrogen
mustard moiety designed to alkylate either protein residues on
topoisomerase II, or the DNA bases on the DNA-topoisomeraseII
complex (Deweese and Osheroff, 2009; Pommier et al., 2010;
Wu et al., 2011). Seven N-mustard–epipodophyllotoxin
hybrid compounds 13a-g (Figure 7) were synthesized, and
demonstrated to target topoisomerase II by kDNA decatenation
assay, DNA cleavage assay, cellular ICE assay and the cell
cycle analyses (Yadav et al., 2014). The derived molecules also
exhibited nitrogen mustard-alike activity as it crosslinked
DNA. In the in vitro antiproliferative assay, molecule 13e
exhibited the best antiproliferative activity with IC50 values of
0.27 µM and 0.85 µM against human leukemia K562 cells and
etoposide-resistant K/VP.5 cells, and GI50 of 0.71 µM against
NCI-60 cells in contrast to the control melphalan (IC50 values
of 12 µM and 5.3 µM against K562 cells and K/VP.5 cells, and
GI50 of 29 µM against NCI-60 cells) and etoposide (IC50 values
of 0.29 µM and 4.9 µM against K562 cells and K/VP.5 cells, and
GI50 of 12 µM against NCI-60 cells). The results suggested that
hybridization of etoposide and nitrogen mustards is promising
in the development of highly potent antitumor molecules both
by topoisomerase II inhibition as well as DNA alkylation.

In order to decrease toxicity of nitrogen mustards, steroids
have been tested as a vehicle to deliver the mustard drugs
to a specific target tissue via interaction with steroid
receptors (Wall et al., 1969; Catane, 1978). Such conjugates
improved the lipophilicity and solubility of the resulting
drugs. Development of steroidal alkylating agents has been
reviewed by Bérubé and coworkers (Trafalis et al., 2016).
Herein, the recently derived novel steroidal lactam derivatives
and 3-(4-(bis(2-chloroethyl)amino)phenoxy)propanoic acid
(POPAM) (Figure 8) conjunctions were described (Trafalis
et al., 2016). Four new ester conjugates 14a-d (Figure 8) of
steroidal lactams with POPAM were synthesized and tested
against human leukemia cell lines in vitro. Molecule 14c was
discovered to be the most potent hybrid with IC50 values of

90 µM, 65 µM, 80 µM, and 85 µM against human leukemia
MOLT-4, CCRF-CEM, JURKAT and SUP-B15 cells compared
with melphalan (IC50 > 100 µM against all the test cell lines)
and POPAM (IC50 > 100 µM against all the test cell lines),
respectively. In the in vivo antiproliferative assay, 14c also
exhibited improved antileukemic activity compared with their
alkylating component alone (POPAM). Moreover, in the in vivo
acute toxicity test, all the derived hybrids had significantly lower
acute toxicity (LD10 (10% lethal dose) > 80 mg/kg), in contrast
to the non-steroidal alkylators POPAM (LD10 = 14 mg/kg) and
melphalan (LD10 = 15 mg/kg). Further investigation revealed
that the chemical linkage between the nitrogen mustard and
the lactam-steroids seems to both decreased the toxicities of the
nitrogen mustards and improved the bioactivity and antitumor
effects.

Tyrosine 15 (Figure 9), a natural amino acid, has been
reported to share some structural similarities to that of the
phenol group of estradiol (Anstead et al., 1997). Molecular
modeling study indicated that the phenol group of tyrosine
also interact with the estrogen receptor binding site in the
same manner as the A-ring phenol of estradiol. Therefore,
the tyrosine was modified to mimic the structure of estradiol
(Muthyala et al., 2003; Descoteaux et al., 2012b). Tyrosinamide,
combined tyrosine with hydroxyaniline, was proved to be
structurally similar to estradiol. A series of tyrosinamide-nitrogen
mustard derivatives were synthesized and tested by Bérubé and
coworkers (Descoteaux et al., 2012a). It is revealed that all
new compounds showed potent antitumor activities. Among
the derived tyrosinamide-chlorambucil hybrids, compound m-
16 (Figure 9), showed IC50 values of 48.61 and 31.25 µM
against human breast cancer MDA-MB-231 cells and MCF-7
cells compared with the parent compounds chloramucil (IC50
values of 136.85 and 130.36 µM against MDA-MB-231 cell and
MCF-7 cells), respectively. Compared with chloramucil (IC50
values of 63.17, 66.11, 100.48 and 131.83 µM against human
ovarian carcinoma A2780 cells, OVCAR-3 cells, human breast
cancer ZR-75-1 cells and MDA-MB-468 cells, respectively), the
m-17 (Figure 9) showed potent antitumor activity with IC50
values of 31.79, 35.42, and 52.10 µM against OVCAR-3 cells,
MDA-MB-468 cells and ZR-75-1 cells, respectively. It is found
that all the synthesized tyrosinamide-chlrambucil molecules
exhibited improved inhibitory activity in the inhibition of breast,
ovarian and uterine cancer cells than the parental chlorambucil.
Introduction of tyrosine entity to nitrogen mustards was
considered to make contributes to the increased antitumor
activity of the derived hybrid molecules.

Platinum-based antineoplastic drugs are usually considered as
another class of alkylating agents with high antitumor potency
(Jamieson and Lippard, 1999; Wang and Lippard, 2005). Notably,
cisplatin is one of the most potent platinum(II) complexes used
in cancer chemotherapy by binding to DNA and subsequently
interfere with replication and transcription, eventually leading to
cellular apoptosis (Abu-Surrah and Kettunen, 2006; Wheate et al.,
2010). However, clinical application of cisplatin is limited by its
severe adverse effects, including nephrotoxicity, hepatotoxicity,
ototoxicity and neurotoxicity, etc. Acquired resistance is also
a concern (Brabec et al., 2017). In discovery of more potent
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and safe antitumor compounds, conjunction of two different
types of DNA-damaging drugs by combining chlorambucil with
platinum(IV) complexes was performed by Gou and coworkers
(Qin et al., 2017). In the in vitro activity assay, molecule 18
(Figure 10), a hybrid of cisplatin and chlorambucil, displayed
potent antiproliferative activities with IC50 values of 3.99 µM,
4.37 µM, 4.97 µM, 2.97 µM, and 4.23 µM against human
breast cancer MCF-7, human colon cancer HCT-116, human
liver cancer HepG-2, human gastric cancer SGC7901, and
cisplatin-resistant SGC7901/CDDP cells, respectively. Compared
with chlorambucil, cisplatin, and oxaliplatin, molecule 18
exhibited improved activity in the inhibition of cisplatin resistant
SGC7901/CDDP cells. Further studies revealed that molecule 18
induced cell cycle arrest at S/G2 phases (distinct from those of
cisplatin and chlorambucil), and revealed ability of overcome
drug resistance. Collectively, hybridization of nitrogen mustards
and platinum(IV) complexes resulted in conjunctions with
improved antitumor potency, and with advantage of overcoming
drug resistance of tumor cells.

Several highly potent 1,3,5-triazine scaffold-carrying
cytostatic agents have been previously reported as inhibitors
of cell proliferation-involved enzymes (Maeda et al., 2000;

Riou et al., 2002; Gomez et al., 2003; Kaminski et al., 2004;
Mandal et al., 2007; Paquin et al., 2008). Among them, ZSTK474
(Figure 11) was discovered to inhibit the growth of tumor cells
in human cancer xenografts without toxic effects on critical
organs by targeting PI3K (Di Francesco et al., 2000; Vedejs
et al., 2003). In the structural modification of current melamine
derivatives, a series of melamine-nitrogen mustard derivatives
19a-f (Figure 11) were synthesized by introducing one or
more 2-chloroethylamine groups (Kolesinska et al., 2012). It is
revealed that all synthesized molecules showed potent antitumor
activities. Compared with the positive control chlorambucil (IC50
value of 29.14 µM against human breast cancer MCF-7 cells),
the obtained molecule 19f showed potent antitumor activity
with IC50 value of 18.70 µM against MCF-7 cells. Compound
19a also exhibited potent antitumor activities with IC50 value
of 0.62 µM, 0.99 µM, 1.40 µM, 2.06 µM and 3.45 µM against
human leukemia Jurkat, human prostate adenocarcinoma
LNCaP, human breast adenocarcinoma T47D, human lung
adenocarcinoma A549 and human colorectal carcinoma SW707
cells, respectively. Further biological studies suggested that
introducing nitrogen mustard into triazine is promising in
the increase of antitumor activity by promoting alkylation.

FIGURE 11 | Structures of melamine-nitrogen mustard hybrids.

FIGURE 12 | Structures of IDO1-nitrogen mustard hybrids.
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FIGURE 13 | Summary of the nitrogen mustard based hybridization strategy involved in the current article.

Accordingly, introduction of nitrogen mustard is regarded
to make contribution to improve the selectivity, activity and
lipophilicity of current drug-like cytotoxic derivatives.

IDO1, a heme-containing enzyme, plays an important role
in carcinogenesis and its progression by converting Trp to Kyn
(Jiang et al., 2015). Both Trp degradation and Kyn accumulation
are associated with immune tolerance by affecting T cell activity
and altering the tumor microenvironment (Moon et al., 2015).
A number of studies showed that the combination of IDO1
inhibitors along with cytotoxic chemotherapeutic agents is an
effective strategy in cancer treatment (Muller et al., 2005).
However, such a simple combination will inevitably be limited
by the severe adverse effects induced by the highly toxic
cytotoxic agents and possible drug-drug interactions. Therefore,
in discovery of potent antitumor molecules with reduced toxicity,
a series of hybrid molecules 20a-g (Figure 12) were synthesized
by including the pharmacophores of both IDO1 inhibitors and
nitrogen mustards (Fang et al., 2018). All the compounds showed
potent antitumor activities compared with the positive drug
chlorambucil in the inhibition of murine colorectal carcinoma
CT-26, human lung adenocarcinoma A549, human colon cancer
HCT116 and human colorectal adenocarcinoma HT-29 cells.
Obviously, compound 20a significantly inhibited IDO1 activity
in tumor tissues and reduced Kyn level in plasma with IDO1
inhibitory IC50 value of 0.13 µM and antiproliferative EC50

(half maximal effect concentration) value of 0.27 µM aganist
HeLa cells. Moreover, molecule 20a exhibited high potent in vivo
antitumor efficacy (tumor growth inhibition (TGI) = 58.2%)
compared with clinical candidate IDO1 inhibitor epacadostat
(TGI = 47.5%) in the allograft animal model with CT-26
without remarkable body weight loss or adverse effects. In
conclusion, it is revealed that introduction of nitrogen mustard
into pharmacophores of IDO1 inhibitors could significantly
improve the antitumor activity and reduce toxicity of parent
compound in the antitumor evaluation.

CONCLUSION AND PERSPECTIVE

Nitrogen mustards represent the earliest studied DNA
cross-linking agents, and application of DNA alkylating
agents has been widely utilized for the treatment of cancer for
more than 70 years. In spite of their long history, several nitrogen
mustard drugs, including cyclophosphamide, chlorambucil,
and melphalan, still remained as first line antitumor agents
in the management of various types of tumors. However, the
clinical application of nitrogen mustards was restricted by
their undesired adverse effects, relatively low efficacy compared
with targeted antitumor drugs, and drug resistance caused
by enhanced drug inactivation, decreased cellular uptake,
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enhanced DNA repair and/or DNA damage tolerance. It is
generally accepted that cancer has its pathological root in
genetical mutations, affecting cell replication. Thus, targeting
different proliferative mechanisms by the construction of
hybrid anticancer drugs seem to be a promising strategy.
Development of nitrogen mustard based hybrids has been
revealed to be effective strategy in discovery of antitumor
drugs with increased activity, reduced toxicity, and improved
physicochemical properties such as the lipophilicity and the
solubility.

With N,N-bis(2-chloroethyl)amine as functional group,
nitrogen mustards has been hybridized with various drug-like
fragments (Figure 13). Novel hybrids have been derived
with improved potency, selectivity, safety, pharmacokinetics,
pharmacodynamics properties and/or broader range of
therapeutic activities. Current achievements make development
of nitrogen mustard based conjunctions to be attractive area
in the cancer treatment. Despite the reported advantages,
unexpected side effects caused by introduction of nitrogen

mustards also require careful attention in the drug design and
biological evaluation. As questioned on the efficacy of twin drugs
and prodrugs, it is also necessary to demonstrate advantages of
the conjugates linked by ester bond or more stable bonds in
comparison with the combined therapy with parental drugs.

AUTHOR CONTRIBUTIONS

YC and YJ participated in most of the literature retrieval and
article writing. LZ and WS guided the review and revised the
writing.

FUNDING

Some of the materials in this work were supported by National
Natural Science Foundation of China (Youth Found, Grant No.
81803343).

REFERENCES
Abu-Surrah, A. S., and Kettunen, M. (2006). Platinum group antitumor

chemistry: design and development of new anticancer drugs complementary
to cisplatin. Curr. Med. Chem. 13, 1337–1357. doi: 10.2174/09298670677687
2970

Anadu, N. O., Davisson, V. J., and Cushman, M. (2006). Synthesis and anticancer
activity of brefeldin A ester derivatives. J. Med. Chem. 49, 3897–3905.
doi: 10.1021/jm0602817

Anstead, G. M., Carlson, K. E., and Katzenellenbogen, J. A. (1997). The
estradiol pharmacophore: ligand structure-estrogen receptor binding affinity
relationships and a model for the receptor binding site. Steroids 62, 268–303.
doi: 10.1016/S0039-128X(96)00242-5

Bank, B. B., Kanganis, D., Liebes, L. F., and Silber, R. (1989). Chlorambucil
pharmacokinetics and DNA binding in chronic lymphocytic leukemia
lymphocytes. Cancer Res. 49, 554–559.

Bao, R. F., Shu, Y. J., Wu, X. S., Weng, H., Ding, Q., Cao, Y., et al. (2014).
Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells
via the mitochondrial pathway. BMC Cancer 14:217. doi: 10.1186/1471-2407-
14-217

Brabec, V., Hrabina, O., and Kasparkova, J. (2017). Cytotoxic platinum
coordination compounds. DNA binding agents. Coordin. Chem. Rev. 351, 2–31.
doi: 10.1016/j.ccr.2017.04.013

Catane, R. (1978). Clinical experience with estramustine phosphate and
predinimustine, two steroidal alkylating agents compounds [proceedings].
Cancer Treat. Rep. 62, 1264–1265.

Chen, W. B., Balakrishnan, K., Kuang, Y. Y., Han, Y. Y., Fu, M., Gandhi, V., et al.
(2014). Reactive Oxygen Species (ROS) inducible DNA cross-linking agents
and their effect on cancer cells and normal lymphocytes. J. Med. Chem. 57,
4498–4510. doi: 10.1021/jm401349g

Cui, Q., Tashiro, S., Onodera, S., Minami, M., and Ikejima, T. (2007). Oridonin
induced autophagy in human cervical carcinoma HeLa cells through Ras.
JNK, and P38 regulation. J. Pharmacol. Sci. 105, 317–325. doi: 10.1254/jphs.
FP0070336

Descoteaux, C., Brasseur, K., Leblanc, V., Parent, S., Asselin, E., and Berube, G.
(2012a). Design of novel tyrosine-nitrogen mustard hybrid molecules active
against uterine, ovarian and breast cancer cell lines. Steroids 77, 403–412.
doi: 10.1016/j.steroids.2011.12.021

Descoteaux, C., Brasseur, K., Leblanc, V., Parent, S., Asselin, E., and
Berube, G. (2012b). SAR study of tyrosine-chlorambucil hybrid
regioisomers; synthesis and biological evaluation against breast
cancer cell lines. Amino Acids 43, 923–935. doi: 10.1007/s00726-011-
1152-3

DeVita, V. T. Jr., and Chu, E. (2008). A history of cancer chemotherapy. Cancer
Res. 68, 8643–8653. doi: 10.1158/0008-5472.CAN-07-6611

Deweese, J. E., and Osheroff, N. (2009). The DNA cleavage reaction of
topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 37, 738–748.
doi: 10.1093/nar/gkn937

Di Antonio, M., McLuckie, K. I. E., and Balasubramanian, S. (2014).
Reprogramming the mechanism of action of chlorambucil by coupling to
a G-Quadruplex ligand. J. Am. Chem. Soc. 136, 5860–5863. doi: 10.1021/
ja5014344

Di Francesco, A. M., Hargreaves, R. H., Wallace, T. W., Mayalarp, S. P., Hazrati, A.,
Hartley, J. A., et al. (2000). The abnormal cytotoxicities of 2,5-diaziridinyl-1,4-
benzoquinone-3-phenyl esters. Anti Cancer Drug Des. 15, 347–359.

Ding, C. Y., Zhang, Y. S., Chen, H. J., Yang, Z. D., Wild, C., Chu, L. L.,
et al. (2013a). Novel nitrogen-enriched oridonin analogues with thiazole-
fused a-ring: protecting group-free synthesis, enhanced anticancer profile, and
improved aqueous solubility. J. Med. Chem. 56, 5048–5058. doi: 10.1021/
jm400367n

Ding, C. Y., Zhang, Y. S., Chen, H. J., Yang, Z. D., Wild, C., Ye, N., et al.
(2013b). Oridonin ring a-based diverse constructions of enone functionality:
identification of novel dienone analogues effective for highly aggressive breast
cancer by inducing apoptosis. J. Med. Chem. 56, 8814–8825. doi: 10.1021/
jm401248x

Ding, Y., Ding, C. Y., Ye, N., Liu, Z. Q., Wold, E. A., Chen, H. Y., et al.
(2016). Discovery and development of natural product oridonin-inspired
anticancer agents. Eur. J. Med. Chem. 122, 102–117. doi: 10.1016/j.ejmech.2016.
06.015

Dong, X. J., Liu, F. Y., and Li, M. L. (2016). Inhibition of nuclear factor kappa
B transcription activity drives a synergistic effect of cisplatin and oridonin on
HepG2 human hepatocellular carcinoma cells. Anticancer Drugs 27, 286–299.
doi: 10.1097/CAD.0000000000000329

Fan, X., Zhu, J. Y., Sun, Y., Luo, L., Yan, J., Yang, X., et al. (2017). Evodiamine
inhibits Zymosan-induced inflammation in vitro and in vivo: inactivation of
NF-kappa B by inhibiting I kappa B alpha phosphorylation. Inflammation 40,
1012–1027. doi: 10.1007/s10753-017-0546-0

Fang, K., Dong, G. Q., Wang, H. Y., He, S. P., Wu, S. C., Wang, W., et al. (2018).
Improving the potency of cancer immunotherapy by dual targeting of IDO1
and DNA. ChemMedChem 13, 30–36. doi: 10.1002/cmdc.201700666

Frei, E. III, Teicher, B. A., Holden, S. A., Cathcart, K. N., and Wang, Y. Y. (1988).
Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer
Res. 48, 6417–6423.

Galton, D. A., Wiltshaw, E., Szur, L., and Dacie, J. V. (1961). The use of
chlorambucil and steroids in the treatment of chronic lymphocytic leukaemia.
Br. J. Haematol. 7, 73–98. doi: 10.1111/j.1365-2141.1961.tb00321.x

Frontiers in Pharmacology | www.frontiersin.org 10 December 2018 | Volume 9 | Article 1453117

https://doi.org/10.2174/092986706776872970
https://doi.org/10.2174/092986706776872970
https://doi.org/10.1021/jm0602817
https://doi.org/10.1016/S0039-128X(96)00242-5
https://doi.org/10.1186/1471-2407-14-217
https://doi.org/10.1186/1471-2407-14-217
https://doi.org/10.1016/j.ccr.2017.04.013
https://doi.org/10.1021/jm401349g
https://doi.org/10.1254/jphs.FP0070336
https://doi.org/10.1254/jphs.FP0070336
https://doi.org/10.1016/j.steroids.2011.12.021
https://doi.org/10.1007/s00726-011-1152-3
https://doi.org/10.1007/s00726-011-1152-3
https://doi.org/10.1158/0008-5472.CAN-07-6611
https://doi.org/10.1093/nar/gkn937
https://doi.org/10.1021/ja5014344
https://doi.org/10.1021/ja5014344
https://doi.org/10.1021/jm400367n
https://doi.org/10.1021/jm400367n
https://doi.org/10.1021/jm401248x
https://doi.org/10.1021/jm401248x
https://doi.org/10.1016/j.ejmech.2016.06.015
https://doi.org/10.1016/j.ejmech.2016.06.015
https://doi.org/10.1097/CAD.0000000000000329
https://doi.org/10.1007/s10753-017-0546-0
https://doi.org/10.1002/cmdc.201700666
https://doi.org/10.1111/j.1365-2141.1961.tb00321.x
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01453 December 13, 2018 Time: 15:23 # 11

Chen et al. Nitrogen Mustard Based Hybrids

Gilman, A. (1963). The initial clinical trial of nitrogen mustard. Am. J. Surg. 105,
574–578. doi: 10.1016/0002-9610(63)90232-0

Gomez, D., Aouali, N., Londono-Vallejo, A., Lacroix, L., Megnin-Chanet, F.,
Lemarteleur, T., et al. (2003). Resistance to the short term antiproliferative
activity of the G-quadruplex ligand 12459 is associated with telomerase
overexpression and telomere capping alteration. J. Biol. Chem. 278,
50554–50562. doi: 10.1074/jbc.M308440200

Goodman, L. S., and Wintrobe, M. M. (1946). Nitrogen mustard therapy; use of
methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl)
amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and
certain allied and miscellaneous disorders. J. Am. Med. Assoc. 132, 126–132.
doi: 10.1001/jama.1946.02870380008004

Grose, C., and Klionsky, D. J. (2016). Alternative autophagy, brefeldin A and viral
trafficking pathways. Autophagy 12, 1429–1430. doi: 10.1080/15548627.2016.
1203489

Han, T., Tian, K. T., Pan, H. Q., Liu, Y. X., Xu, F. X., Li, Z. L., et al. (2018). Novel
hybrids of brefeldin A and nitrogen mustards with improved antiproliferative
selectivity: design, synthesis and antitumor biological evaluation. Eur. J. Med.
Chem. 150, 53–63. doi: 10.1016/j.ejmech.2018.02.088

Hu, X., Wang, Y., Xue, J. J., Han, T., Jiao, R. W., Li, Z. L., et al. (2017). Design
and synthesis of novel nitrogen mustard-evodiamine hybrids with selective
antiproliferative activity. Bioorg. Med. Chem. Lett. 27, 4989–4993. doi: 10.1016/
j.bmcl.2017.10.014

Huang, H. R., Liu, T., Guo, J. X., Yu, L., Wu, X. F., He, Y., et al. (2017). Brefeldin A
enhances docetaxel-induced growth inhibition and apoptosis in prostate cancer
cells in monolayer and 3D cultures. Bioorg. Med. Chem. Lett. 27, 2286–2291.
doi: 10.1016/j.bmcl.2017.04.047

Hughes, E., Scurr, M., Campbell, E., Jones, E., Godkin, A., and Gallimore, A. (2018).
T-cell modulation by cyclophosphamide for tumour therapy. Immunology 154,
62–68. doi: 10.1111/imm.12913

Jamieson, E. R., and Lippard, S. J. (1999). Structure, recognition, and processing of
cisplatin-DNA adducts. Chem. Rev. 99, 2467–2498. doi: 10.1021/cr980421n

Jiang, T. Z., Sun, Y. Y., Yin, Z. C., Feng, S., Sun, L. P., and Li, Z. Y. (2015). Research
progress of indoleamine 2,3-dioxygenase inhibitors. Future Med. Chem. 7,
185–201. doi: 10.4155/fmc.14.151

Kaminski, Z. J., Kolesinska, B., and Markowicz, S. W. (2004). Synthesis and
cytostatic properties of monoterpene derivatives of cyanuric and isocyanuric
acids. Acta. Pol. Pharm. 61(Suppl.), 29–32.

Kikuchi, S., Shinpo, K., Tsuji, S., Yabe, I., Niino, M., and Tashiro, K. (2003).
Brefeldin A-induced neurotoxicity in cultured spinal cord neurons. J. Neurosci.
Res. 71, 591–599. doi: 10.1002/jnr.10479

Kohn, K. W., Hartley, J. A., and Mattes, W. B. (1987). Mechanisms of DNA
sequence selective alkylation of guanine-N7 positions by nitrogen mustards.
Nucleic Acids Res. 15, 10531–10549. doi: 10.1093/nar/15.24.10531

Kolesinska, B., Barszcz, K., Kaminski, Z. J., Drozdowska, D., Wietrzyk, J., and
Switalska, M. (2012). Synthesis and cytotoxicity studies of bifunctional hybrids
of nitrogen mustards with potential enzymes inhibitors based on melamine
framework. J. Enzyme Inhib. Med. Chem. 27, 619–627. doi: 10.3109/14756366.
2011.604482

Lallukka, T., Millear, A., Pain, A., Cortinovis, M., and Giussani, G. (2017). GBD
2015 Mortality and Causes of Death Collaborators. Global, regional, and
national life expectancy, all-cause mortality, and cause-specifi c mortality for
249 causes of death, 1980-2015: a systematic analysis for the Global Burden of
Disease Study 2015 (vol 388, pg 1459, 2016). Lancet 389:E1.

Li, D., Dai, L., Zhao, X., Zhi, S., Shen, H., and Yang, Z. (2018). Novel
sophoridine derivatives bearing phosphoramide mustard moiety exhibit potent
antitumor activities in vitro and in vivo. Molecules 23:E1960. doi: 10.3390/
molecules23081960

Li, D. D., Dai, L. L., Zhang, N., and Tao, Z. W. (2015). Synthesis, structure-activity
relationship and biological evaluation of novel nitrogen mustard sophoridinic
acid derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett. 25,
4092–4096. doi: 10.1016/j.bmcl.2015.08.035

Li, Y., Wang, Y., Wang, S. H., Gao, Y. J., Zhang, X. F., and Lu, C. H. (2015).
Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of
human breast cancer cells. Med. Oncol. 32:365. doi: 10.1007/s12032-014-0365-1

Liu, J. B., and Liu, Y. Q. (2013). Influence of Erbanxiao solution on inhibiting
angiogenesis in stasis toxin stagnation of non-small cell lung cancer. J. Tradit.
Chin. Med. 33, 303–306. doi: 10.1016/S0254-6272(13)60169-7

Liu, M., Wang, W. G., Sun, H. D., and Pu, J. X. (2017). Diterpenoids from Isodon
species: an update. Nat. Prod. Rep. 34, 1090–1140. doi: 10.1039/c7np00027h

Lv, Q. L., Xue, Y., Li, G. D., Zou, L. F., Zhang, X., Ying, M. F., et al. (2015). Beneficial
effects of evodiamine on P2X(4)-mediated inflammatory injury of human
umbilical vein endothelial cells due to high glucose. Int. Immunopharmacol. 28,
1044–1049. doi: 10.1016/j.intimp.2015.08.020

Maeda, M., Ligo, M., Tsuda, H., Fujita, H., Yonemura, Y., Nakagawa, K., et al.
(2000). Antimetastatic and antitumor effects of 2,4-diamino-6-(pyridine-4-yl)-
1,3,5-triazine (4PyDAT) on the high lung metastatic colon 26 tumor in mice.
Anti Cancer Drug Des. 15, 217–223.

Mandal, S., Berube, G., Asselin, E., Mohammad, I., Richardson, V. J., Gupta, A.,
et al. (2007). A novel series of potent cytotoxic agents targeting G2/M phase of
the cell cycle and demonstrating cell killing by apoptosis in human breast cancer
cells. Bioorg. Med. Chem. Lett. 17, 4955–4960. doi: 10.1016/j.bmcl.2007.06.033

Moon, J. L., Kim, S. Y., Shin, S. W., and Park, J. W. (2012). Regulation of brefeldin
A-induced ER stress and apoptosis by mitochondrial NADP(+)-dependent
isocitrate dehydrogenase. Biochem. Bioph. Res. Commun. 417, 760–764.
doi: 10.1016/j.bbrc.2011.12.030

Moon, Y. W., Hajjar, J., Hwu, P., and Naing, A. (2015). Targeting the indoleamine
2,3-dioxygenase pathway in cancer. J. Immunother. Cancer 3:51. doi: 10.1186/
s40425-015-0094-9

Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., and Prendergast,
G. C. (2005). Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory
target of the cancer suppression gene Bin1, potentiates cancer chemotherapy.
Nat. Med. 11, 312–319. doi: 10.1038/nm1196

Muthyala, R. S., Carlson, K. E., and Katzenellenbogen, J. A. (2003). Exploration
of the bicyclo[3.3.1]nonane system as a template for the development of new
ligands for the estrogen receptor. Bioorg. Med. Chem. Lett. 13, 4485–4488.
doi: 10.1016/j.bmcl.2003.08.061

Nicolle, A., Proctor, S. J., and Summerfield, G. P. (2004). High dose chlorambucil
in the treatment of lymphoid malignancies. Leuk. Lymphoma 45, 271–275.
doi: 10.1080/10428190310001595704

Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nat.
Rev. Cancer 9, 338–350. doi: 10.1038/nrc2607

Ogasawara, M., Matsunaga, T., Takahashi, S., Saiki, I., and Suzuki, H. (2002).
Anti-invasive and metastatic activities of evodiamine. Biol. Pharm. Bull. 25,
1491–1493. doi: 10.1248/bpb.25.1491

Paquin, I., Raeppel, S., Leit, S., Gaudette, F., Zhou, N., Moradei, O., et al. (2008).
Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-
benzamides and their analogues as a novel class of histone deacetylase
inhibitors. Bioorg. Med. Chem. Lett. 18, 1067–1071. doi: 10.1016/j.bmcl.2007.
12.009

Pommier, Y. (2013). Drugging topoisomerases: lessons and challenges. ACS Chem.
Biol. 8, 82–95. doi: 10.1021/cb300648v

Pommier, Y., Leo, E., Zhang, H., and Marchand, C. (2010). DNA topoisomerases
and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17,
421–433. doi: 10.1016/j.chembiol.2010.04.012

Pommier, Y., and Marchand, C. (2011). Interfacial inhibitors: targeting
macromolecular complexes. Nat. Rev. Drug Discov. 11, 25–36. doi: 10.1038/
nrd3404

Povirk, L. F., and Shuker, D. E. (1994). DNA damage and mutagenesis induced
by nitrogen mustards. Mutat. Res. 318, 205–226. doi: 10.1016/0165-1110(94)
90015-9

Qin, X. D., Fang, L., Chen, F. H., and Gou, S. H. (2017). Conjugation of
platinum(IV) complexes with chlorambucil to overcome cisplatin resistance
via a “joint action” mode toward DNA. Eur. J. Med. Chem. 137, 167–175.
doi: 10.1016/j.ejmech.2017.05.056

Quo, L., Xue, T. Y., Xu, W., and Gao, J. Z. (2013). Matrine promotes G(0)/G(1)
arrest and down-regulates cyclin D1 expression in human rhabdomyosarcoma
cells. Panminerva Med. 55, 291–296.

Rajamahanty, S., Alonzo, C., Aynehchi, S., Choudhury, M., and Konno, S. (2010).
Growth inhibition of androgen-responsive prostate cancer cells with brefeldin
A targeting cell cycle and androgen receptor. J. Biomed. Sci. 17:5. doi: 10.1186/
1423-0127-17-5

Riou, J. F., Guittat, L., Mailliet, P., Laoui, A., Renou, E., Petitgenet, O., et al.
(2002). Cell senescence and telomere shortening induced by a new series of
specific G-quadruplex DNA ligands. Proc. Natl. Acad. Sci. U.S.A. 99, 2672–2677.
doi: 10.1073/pnas.052698099

Frontiers in Pharmacology | www.frontiersin.org 11 December 2018 | Volume 9 | Article 1453118

https://doi.org/10.1016/0002-9610(63)90232-0
https://doi.org/10.1074/jbc.M308440200
https://doi.org/10.1001/jama.1946.02870380008004
https://doi.org/10.1080/15548627.2016.1203489
https://doi.org/10.1080/15548627.2016.1203489
https://doi.org/10.1016/j.ejmech.2018.02.088
https://doi.org/10.1016/j.bmcl.2017.10.014
https://doi.org/10.1016/j.bmcl.2017.10.014
https://doi.org/10.1016/j.bmcl.2017.04.047
https://doi.org/10.1111/imm.12913
https://doi.org/10.1021/cr980421n
https://doi.org/10.4155/fmc.14.151
https://doi.org/10.1002/jnr.10479
https://doi.org/10.1093/nar/15.24.10531
https://doi.org/10.3109/14756366.2011.604482
https://doi.org/10.3109/14756366.2011.604482
https://doi.org/10.3390/molecules23081960
https://doi.org/10.3390/molecules23081960
https://doi.org/10.1016/j.bmcl.2015.08.035
https://doi.org/10.1007/s12032-014-0365-1
https://doi.org/10.1016/S0254-6272(13)60169-7
https://doi.org/10.1039/c7np00027h
https://doi.org/10.1016/j.intimp.2015.08.020
https://doi.org/10.1016/j.bmcl.2007.06.033
https://doi.org/10.1016/j.bbrc.2011.12.030
https://doi.org/10.1186/s40425-015-0094-9
https://doi.org/10.1186/s40425-015-0094-9
https://doi.org/10.1038/nm1196
https://doi.org/10.1016/j.bmcl.2003.08.061
https://doi.org/10.1080/10428190310001595704
https://doi.org/10.1038/nrc2607
https://doi.org/10.1248/bpb.25.1491
https://doi.org/10.1016/j.bmcl.2007.12.009
https://doi.org/10.1016/j.bmcl.2007.12.009
https://doi.org/10.1021/cb300648v
https://doi.org/10.1016/j.chembiol.2010.04.012
https://doi.org/10.1038/nrd3404
https://doi.org/10.1038/nrd3404
https://doi.org/10.1016/0165-1110(94)90015-9
https://doi.org/10.1016/0165-1110(94)90015-9
https://doi.org/10.1016/j.ejmech.2017.05.056
https://doi.org/10.1186/1423-0127-17-5
https://doi.org/10.1186/1423-0127-17-5
https://doi.org/10.1073/pnas.052698099
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01453 December 13, 2018 Time: 15:23 # 12

Chen et al. Nitrogen Mustard Based Hybrids

Ryerson, A. B., Eheman, C. R., Altekruse, S. F., Ward, J. W., Jemal, A., Sherman,
R. L., et al. (2016). Annual report to the nation on the status of cancer, 1975-
2012, featuring the increasing incidence of liver cancer. Cancer 122, 1312–1337.
doi: 10.1002/cncr.29936

Sanderson, B. J., and Shield, A. J. (1996). Mutagenic damage to mammalian cells
by therapeutic alkylating agents. Mutat. Res. 355, 41–57. doi: 10.1016/0027-
5107(96)00021-8

Sarosy, G., Leyland-Jones, B., Soochan, P., and Cheson, B. D. (1988). The
systemic administration of intravenous melphalan. J. Clin. Oncol. 6, 1768–1782.
doi: 10.1200/JCO.1988.6.11.1768

Schobert, R., Biersack, B., Dietrich, A., Knauer, S., Zoldakova, M., Fruehauf, A.,
et al. (2009). Pt(II) complexes of a combretastatin A-4 analogous chalcone:
effects of conjugation on cytotoxicity, tumor specificity, and long-term tumor
growth suppression. J. Med. Chem. 52, 241–246. doi: 10.1021/jm801001d

Seehafer, K., Rominger, F., Helmchen, G., Langhans, M., Robinson, D. G., Ozata, B.,
et al. (2013). Synthesis and biological properties of novel brefeldin a analogues.
J. Med. Chem. 56, 5872–5884. doi: 10.1021/jm400615g

Shi, C. S., Li, J. M., Chin, C. C., Kuo, Y. H., Lee, Y. R., and Huang, Y. C. (2017).
Evodiamine induces cell growth arrest, apoptosis and suppresses tumorigenesis
in human urothelial cell carcinoma cells. Anticancer. Res. 37, 1149–1159.
doi: 10.21873/anticanres.11428

Shi, L., Yang, F., Luo, F., Liu, Y., Zhang, F., Zou, M. J., et al. (2016). Evodiamine
exerts anti-tumor effects against hepatocellular carcinoma through inhibiting
beta-catenin-mediated angiogenesis. Tumor Biol. 37, 12791–12803. doi: 10.
1007/s13277-016-5251-3

Shi, M., Lu, X. J., Zhang, J., Diao, H., Li, G. M., Xu, L., et al. (2016).
Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and
induces apoptosis in gastric cancer cells through p53-and caspase-3-mediated
mechanisms. Oncotarget 7, 22623–22631. doi: 10.18632/oncotarget.8033

Shyu, K. G., Lin, S., Lee, C. C., Chen, E., Lin, L. C., Wang, B. W., et al. (2006).
Evodiamine inhibits in vitro angiogenesis: implication for antitumorgenicity.
Life Sci. 78, 2234–2243. doi: 10.1016/j.lfs.2005.09.027

South, P. F., Harmeyer, K. M., Serratore, N. D., and Briggs, S. D. (2013). H3K4
methyltransferase Set1 is involved in maintenance of ergosterol homeostasis
and resistance to Brefeldin A. Proc. Natl. Acad. Sci. U.S.A. 110, E1016–E1025.
doi: 10.1073/pnas.1215768110

Springer, C. J., Antoniw, P., Bagshawe, K. D., Searle, F., Bisset, G. M., and
Jarman, M. (1990). Novel prodrugs which are activated to cytotoxic alkylating
agents by carboxypeptidase G2. J. Med. Chem. 33, 677–681. doi: 10.1021/
jm00164a034

Sun, H. D., Huang, S. X., and Han, Q. B. (2006). Diterpenoids from Isodon
species and their biological activities. Nat. Prod. Rep. 23, 673–698. doi: 10.1039/
b604174d

Sun, Q., Sattayakhom, A., Backs, J., Stremmel, W., and Chamulitrat, W. (2012).
Role of myocyte enhancing factor 2B in epithelial myofibroblast transition of
human gingival keratinocytes. Exp. Biol. Med. 237, 178–185. doi: 10.1258/ebm.
2011.011261

Toda, T., Watanabe, M., Kawato, J., Kadin, M. E., Higashihara, M., Kunisada, T.,
et al. (2015). Brefeldin a exerts differential effects on anaplastic lymphoma
kinase positive anaplastic large cell lymphoma and classical Hodgkin lymphoma
cell lines. Br. J. Haematol. 170, 837–846. doi: 10.1111/bjh.13508

Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A.
(2015). Global cancer statistics, 2012. Cancer J. Clin. 65, 87–108. doi: 10.3322/
caac.21262

Trafalis, D., Geromichalou, E., Dalezis, P., Nikoleousakos, N., and Sarli, V. (2016).
Synthesis and evaluation of new steroidal lactam conjugates with aniline
mustards as potential antileukemic therapeutics. Steroids 115, 1–8. doi: 10.1016/
j.steroids.2016.07.009

Vedejs, E., Naidu, B. N., Klapars, A., Warner, D. L., Li, V. S., Na, Y., et al. (2003).
Synthetic enantiopure aziridinomitosenes: preparation, reactivity, and DNA
alkylation studies. J. Am. Chem. Soc. 125, 15796–15806. doi: 10.1021/ja030452m

Wall, M. E., Abernethy, G. S. Jr., Carroll, F. I., and Taylor, D. J. (1969). The effects of
some steroidal alkylating agents on experimental animal mammary tumor and
leukemia systems. J. Med. Chem. 12, 810–818. doi: 10.1021/jm00305a021

Wang, C. Y., Bai, X. Y., and Wang, C. H. (2014). Traditional chinese medicine: a
treasured natural resource of anticancer drug research and development. Am. J.
Chin. Med. 42, 543–559. doi: 10.1142/S0192415X14500359

Wang, D., and Lippard, S. J. (2005). Cellular processing of platinum anticancer
drugs. Nat. Rev. Drug Discov. 4, 307–320. doi: 10.1038/nrd1691

Wang, L., Li, D. H., Xu, S. T., Cai, H., Yao, H. Q., Zhang, Y. H., et al. (2012).
The conversion of oridonin to spirolactone-type or enmein-type diterpenoid:
synthesis and biological evaluation of ent-6,7-seco-oridonin derivatives as novel
potential anticancer agents. Eur. J. Med. Chem. 52, 242–250. doi: 10.1016/j.
ejmech.2012.03.024

Wang, Z. Y., Liu, J. G., Li, H., and Yang, H. M. (2016). Pharmacological
effects of active components of chinese herbal medicine in the treatment of
Alzheimer’s disease: a review. Am. J. Chin. Med. 44, 1525–1541. doi: 10.1142/
S0192415X16500853

Wheate, N. J., Walker, S., Craig, G. E., and Oun, R. (2010). The status of platinum
anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113–8127.
doi: 10.1039/c0dt00292e

Wu, C. C., Li, T. K., Farh, L., Lin, L. Y., Lin, T. S., Yu, Y. J., et al. (2011). Structural
basis of type II topoisomerase inhibition by the anticancer drug etoposide.
Science 333, 459–462. doi: 10.1126/science.1204117

Wu, W. S., Chien, C. C., Chen, Y. C., and Chiu, W. T. (2016). Protein Kinase RNA-
like endoplasmic reticulum kinase-mediated Bcl-2 protein phosphorylation
contributes to evodiamine-induced apoptosis of human renal cell carcinoma
cells. PLoS One 11:e0160484. doi: 10.1371/journal.pone.0160484

Xu, S., Pei, L. L., Wang, C. Q., Zhang, Y. K., Li, D. H., Yao, H. Q., et al. (2014). Novel
hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer
drug candidates. ACS Med. Chem. Lett. 5, 797–808. doi: 10.1021/ml500141f

Xu, S. T., Pei, L. L., Li, D. H., Yao, H., Cai, H., Yao, H. Q., et al. (2014). Synthesis
and antimycobacterial evaluation of natural oridonin and its enmein-type
derivatives. Fitoterapia 99, 300–306. doi: 10.1016/j.fitote.2014.10.005

Yadav, A. A., Wu, X., Patel, D., Yalowich, J. C., and Hasinoff, B. B. (2014).
Structure-based design, synthesis and biological testing of etoposide analog
epipodophyllotoxin-N-mustard hybrid compounds designed to covalently bind
to topoisomerase II and DNA. Bioorg. Med. Chem. 22, 5935–5949. doi: 10.1016/
j.bmc.2014.09.014

Yu, H., Jin, H., Gong, W., Wang, Z., and Liang, H. (2013). Pharmacological actions
of multi-target-directed evodiamine. Molecules 18, 1826–1843. doi: 10.3390/
molecules18021826

Zarytova, V. F., Ivanova, E. M., and Chasovskikh, M. N. (1990). [Synthesis of
steroid-containing oligonucleotides and their alkylating derivatives]. Bioorg.
Khim. 16, 610–616.

Zhou, G. B., Kang, H., Wang, L., Gao, L., Liu, P., Xie, J., et al. (2007). Oridonin,
a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion
protein and shows potent antitumor activity with low adverse effects on t(8;21)
leukemia in vitro and in vivo. Blood 109, 3441–3450. doi: 10.1182/blood-2006-
06-032250

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Chen, Jia, Song and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Pharmacology | www.frontiersin.org 12 December 2018 | Volume 9 | Article 1453119

https://doi.org/10.1002/cncr.29936
https://doi.org/10.1016/0027-5107(96)00021-8
https://doi.org/10.1016/0027-5107(96)00021-8
https://doi.org/10.1200/JCO.1988.6.11.1768
https://doi.org/10.1021/jm801001d
https://doi.org/10.1021/jm400615g
https://doi.org/10.21873/anticanres.11428
https://doi.org/10.1007/s13277-016-5251-3
https://doi.org/10.1007/s13277-016-5251-3
https://doi.org/10.18632/oncotarget.8033
https://doi.org/10.1016/j.lfs.2005.09.027
https://doi.org/10.1073/pnas.1215768110
https://doi.org/10.1021/jm00164a034
https://doi.org/10.1021/jm00164a034
https://doi.org/10.1039/b604174d
https://doi.org/10.1039/b604174d
https://doi.org/10.1258/ebm.2011.011261
https://doi.org/10.1258/ebm.2011.011261
https://doi.org/10.1111/bjh.13508
https://doi.org/10.3322/caac.21262
https://doi.org/10.3322/caac.21262
https://doi.org/10.1016/j.steroids.2016.07.009
https://doi.org/10.1016/j.steroids.2016.07.009
https://doi.org/10.1021/ja030452m
https://doi.org/10.1021/jm00305a021
https://doi.org/10.1142/S0192415X14500359
https://doi.org/10.1038/nrd1691
https://doi.org/10.1016/j.ejmech.2012.03.024
https://doi.org/10.1016/j.ejmech.2012.03.024
https://doi.org/10.1142/S0192415X16500853
https://doi.org/10.1142/S0192415X16500853
https://doi.org/10.1039/c0dt00292e
https://doi.org/10.1126/science.1204117
https://doi.org/10.1371/journal.pone.0160484
https://doi.org/10.1021/ml500141f
https://doi.org/10.1016/j.fitote.2014.10.005
https://doi.org/10.1016/j.bmc.2014.09.014
https://doi.org/10.1016/j.bmc.2014.09.014
https://doi.org/10.3390/molecules18021826
https://doi.org/10.3390/molecules18021826
https://doi.org/10.1182/blood-2006-06-032250
https://doi.org/10.1182/blood-2006-06-032250
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


ORIGINAL RESEARCH
published: 18 December 2018
doi: 10.3389/fonc.2018.00631

Frontiers in Oncology | www.frontiersin.org 1 December 2018 | Volume 8 | Article 631

Edited by:

Yan-yan Yan,

Shanxi Datong University, China

Reviewed by:

Hua Zhu,

The Ohio State University,

United States

Xiao Qian Chen,

Huazhong University of Science and

Technology, China

*Correspondence:

Zhi Shi

tshizhi@jnu.edu.cn

Hui Liu

liuhui27@mail.sysu.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 12 November 2018

Accepted: 04 December 2018

Published: 18 December 2018

Citation:

Ye J, Zou M-M, Li P, Lin X-J,

Jiang Q-W, Yang Y, Huang J-R,

Yuan M-L, Xing Z-H, Wei M-N, Li Y,

Shi Z and Liu H (2018) Oxymatrine

and Cisplatin Synergistically Enhance

Anti-tumor Immunity of CD8+ T Cells

in Non-small Cell Lung Cancer.

Front. Oncol. 8:631.

doi: 10.3389/fonc.2018.00631

Oxymatrine and Cisplatin
Synergistically Enhance Anti-tumor
Immunity of CD8+ T Cells in
Non-small Cell Lung Cancer

Jin Ye 1†, Man-Man Zou 2†, Pei Li 1, Xi-Jun Lin 1, Qi-Wei Jiang 3, Yang Yang 3,

Jia-Rong Huang 3, Meng-Ling Yuan 3, Zi-Hao Xing 3, Meng-Ning Wei 3, Yao Li 3, Zhi Shi 3*

and Hui Liu 2*

1Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou,

China, 2Division of Pulmonary and Critical Care, Department of Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen

University, Guangzhou, China, 3Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell

Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and

Technology, Jinan University, Guangzhou, China

Oxymatrine (OMT) has shown broad antitumor activities for the treatment of several types

of cancers. However, little is known about its effect on anti-tumor immunity. Combination

therapy is a potentially promising strategy of cancer to enhance anticancer activity,

overcome drug resistance, and lower treatment failure rate. In the present study, we

demonstrated that the combination of OMT with cisplatin (DDP) synergistically inhibited

non-small cell lung cancer (NSCLC) cells growth when co-cultured with peripheral blood

mononuclear cells in vitro. Furthermore, the combination of OMT with DDP significantly

inhibited the growth of Lewis lung cancer (LLC) mouse xenograft tumors. Flow cytometry

analysis revealed that OMT and DDP synergistically increase the CD8+/ regulatory T cells

ratio and enhanced more CD8+ T cells secreted cytokines of IFN-γ , TNF-α, and IL-2

in vivo. Mechanistically, upregulation of miR-155 and downregulation of suppressor of

cytokine signaling-1 (SOCS1) were confirmed as a target signaling pathway to positively

regulate the anti-tumor response of CD8+ T cells. Overall, OMT in combination with

DDP showed outstanding synergistic anti-tumor immunity, suggesting that this beneficial

combination may offer a potential immunotherapy for NSCLC patients.

Keywords: oxymatrine, cisplatin, CD8+ T cells, anti-tumor immunity, NSCLC

INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide (1), and non-small cell lung
cancer (NSCLC) accounts for approximately 85% of the whole lung cancer cases (2). Despite years
of researches for early diagnosis and standard treatment, the prognosis for patients with lung
cancer remains dismal, and 5-year survival rate remains <15% (3–6). T cell–mediated anti-tumor
immunotherapy emerges as a promising treatment for humanmalignancies, in which CD8+ T cells
[cytotoxic T lymphocytes (CTLs)] represent a major of the cell-mediated anti-tumor response via
providing host immune protection against intracellular pathogens and cancers (7, 8). However,
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progressive tumors can escape immune recognition and
attack by smartly establishing an immune tolerance involving
immunosuppressive T lymphocytes (9, 10). In particular,
regulatory T cells (Treg) are proposed as key components of
the immune suppressive tumor microenvironment with strong
suppressive capacities toward CD4+ and CD8+ T lymphocytes,
B cells, and dendritic cells etc. (11). Further, Baras et al.
demonstrated that the CD8+/Treg ratio in tumor infiltrating
lymphocytes (TIL) densities rather than the two independent
parameters was significantly associated with cisplatin-based
neoadjuvant chemotherapy (12). MicroRNAs (miRNAs) have
been confirmed as global regulators of gene expression programs
that regulate specific target genes at the post-transcriptional
level (13). Some of them have been identified as targets for
anti-cancer therapeutics (14), and effects on tumor-infiltrating
immune cells has become a hot spot besides their functions in
cancer cells recent years (15). miR-155 is an ancient regulator
of the immune system (16). Elegant et al. demonstrated that
miR-155 was required for CD8+ T cell responses in defending
against infection and cancer by silencing suppressor of cytokine
signaling-1 (SOCS1) (17, 18). Initial evidence has also unraveled
the crucial role ofmiR-155 in dendritic cells functions in multiple
types of cancers (19, 20). Altogether, these studies suggested the
pivotal functions of miR-155 in various T cell subsets as they
respond to solid tumors.

Cisplatin (DDP)-based doublet remains the foundation of
treatment for the patients with NSCLC in the modern era (21).
The resistance of NSCLC cells to DDP is also an emergent
problem, therefore developing more effective strategies for
the treatment of NSCLC is urgently required. Combination
chemotherapy is identified as a potentially promising approach
to enhance anticancer activity, overcome drug resistance, and
lower treatment failure rate (22, 23). Oxymatrine (OMT) is
a main alkaloid extracted from roots of Sophora species with
a broad range of bioactivities. Especially, extensive researches
have reported that OMT have anticancer effects by inducing
cell cycle arrest, apoptosis and inhibition of angiogenesis in
various cancer cells in vitro and in vivo (24). In the previous
studies, immunoregulatory effects of OMT on hepatitis B of
mice, rheumatoid arthritis in rats and mastitis in mice have been
confirmed (25–27). Considering the extensive effects of OMT,
we investigate the effect of OMT in combination with DDP
on anti-tumor immunity in NSCLC and elucidate the potential
mechanism.

MATERIALS AND METHODS

Cell Culture and Reagents
Human A549 NSCLC cell line and mouse Lewis lung cancer
(LLC) cell line were cultured in Dulbecco’ s modified Eagle’s
medium (DMEM) with 10% fetal bovine serum (FBS), penicillin
(100 U/ml), and streptomycin (100 ng/ml) at 37◦C with 5%
CO2 in a humidified incubator. OMT and DDP were ordered
from Dalian Meilun Biotechnology and Qilu Pharmaceutical,
respectively. OMT and DDP were dissolved in phosphate-
buffered saline (PBS) on stock concentration (1M and 10mM,
respectively) and stored at −20◦C. Other reagents were

purchased from Shanghai Sangon Biotech unless otherwise
noted.

Cell Viability Assay
Freshly-isolated peripheral blood mononuclear cells (PBMCs)
were suspended in DMED culture medium and seeded into
a 96-well plate at a density of 1 × 104 cells/well and treated
with various concentrations of drugs in three parallel wells
for 72 h. CCK-8 (Dojindo Molecular Technologies, Shanghai,
China) was then added to each well according to the protocol of
the manufacture. The absorbance was measured at wavelengths
of 450 nm after incubation with CCK-8 solution at 37◦C for
4 h. Cells viability assay of A549 and LLC cells were measured
using methylthiazolyldiphenyl-tetrazolium bromide (MTT) (28).
Briefly, tumor cells were distributed (5,000 cells/well) into 96-well
plates containing agents at different concentrations. After 3 days,
MTTwas added to eachwell at a final concentration of 0.5mg/ml.
After incubation for 4 h, the medium and MTT solution were
removed from each well, and formazan crystals were dissolved
in 100 µl of DMSO. Absorbance was measured at wavelengths
of 570 nm. All absorbance was detected by Multiscan Spectrum
(Thermo Fisher). The concentrations required to inhibit growth
by 50% (IC50) were calculated from survival curves using the
Bliss method (29). Studies relative to human in this article
were approved by the ethics committee of the Third Affiliated
Hospital, Sun Yat-sen University (Approval No: [2014]2-17).

Tumor Cells/PBMCs Co-culture
After adherence of tumor cells into 6-well plates (target cells,
4 × 105 cells/well), a certain amount of PBMCs (effector cells)
suspended in the appropriate DMEM pulsed with 10% FBS
were added. Four ratios of effector cells to target cells, 0:1, 2:1,
4:1, and 6:1 were designed. After treated with OMT and DDP
alone or combination, target cells (tumor cells) and effector cells
(PBMCs) were co-cultured for 24 h at 37◦C in 5% CO2. The
cellular remaining viable tumor cells were photographed under
microscope (OLYMPUS IX71) and quantified, respectively.

Mice Xenograft Tumor Assay
Age-suitable C57BL/6 female mice were obtained from Vital
River Laboratory Animal Technology (Beijing), and all mice
have been maintained with sterilized food and water. All animal
experimental procedures were approved by the Institutional
Animal Care and Use Committee of Sun Yat-sen University
(Approval No: IACUC-DB-17-0502). Briefly, female C57BL/6
mice within 6 weeks old and 20 g weight were used for each
group. Each mouse was injected subcutaneously with LLC cells
(2 × 106 in 100 µl of PBS) in right scapular region. When the
subcutaneous tumors were approximately 0.3 × 0.3 cm2 (two
perpendicular diameters) in size, mice were randomized into four
groups. Mice were injected intraperitoneally with vehicle alone
(0.9% saline), OMT alone (100 mg/kg body weight per day),
DDP alone (2 mg/kg body weight every 2 day), or a combination
of OMT and DDP (administration method is as same as the
relevant single drug group). The body weights of mice and the
two perpendicular diameters (A and B) of tumors were recorded
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TABLE 1 | The primer sequences for real time PCR (mouse).

miR-155 (RT) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCCCT-3′

miR-155 (F) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCCCT-3′

miR-155 (R) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA-3′

U6 (RT) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA-3

U6 (F) 5′-GCGCGTCGTGAAGCGTTC-3

U6 (R) 5′-GTGCAGGGTCCGAGGT-3

SOCS1 (F) 5′-CTGCGGCTTCTATTGGGGAC-3

SOCS1 (R) 5′-AAAAGGCAGTCGAAGGTCTCG-3

β-actin (F) 5′-CCTTCTTGGGTATGGAATCCTG-3

β-actin (R) 5′-CAATGCCTGGGTACATGGTG-3

every day. The tumor volumes (V) were calculated according to
the formula:

V = π/6(1/2(A+ B))3

The mice were anesthetized after the experiment, and
tumors were excised from the mice and weighted. Heparin
anticoagulated peripheral blood, spleens and tumors were
collected for further use. The rate of inhibition (IR) was
calculated according to the formula below:

IR = 1-Mean tumor weight of experimental group/Mean
tumor weight of control group× 100%.

Flow Cytometric Analysis
PBMCs and spleen lymphocytes were collected with Ficoll-
diatrizoate (LTS1077, tbdscience, Tianjin) according to the
protocol of the manufacture. For the separation of tumor
infiltrating lymphocytes from LLC-bearing mice, xenograft
tumors were mechanically disrupted into 1 mm3 pieces and
digested chemically in 7ml of dissociation medium (DMEM
medium plus with 10% FBS, collagenase type IV (5 mg/ml),
DNase I (1 mg/ml), and hyaluronidase (1 mg/ml) for 30min at
37◦C followed by filtration through a 70µm cell strainer (NEST
Biotechnology, Wuxi). Dissociated tumor cells were washed
twice by PBS. Erythrocytes were lysed by red blood cell lysing
buffer (BD Pharmigen) if necessary. The following antibodies
were used for staining: Fc block (anti-CD16/32, Cat: 553142),
CD3APC-A750 (Cat: 557596), CD8a BV510 (Cat: 563068), CD4a
FITC (Cat: 553046), Foxp3 PE (Cat: 563101), CD45 Percp-
cy5.5 (Cat: 550994), IFN-γ FITC (Cat: 554411), TNF-α (Cat:
554420), anti-IL-2 (eBioscience, Cat: 12-7021-81), PE Rat IgG2a,
κ Isotype Control (Cat: 553930), FITC Rat IgG1, κ Isotype
Control (Cat: 554684), APC Rat IgG1, κ Isotype Control (Cat:
554686), and Rat IgG2b kappa Isotype Control (eBioscience,
Cat: 12-4031-82). As regards the concentrations of antibodies, 2
µl/test was used in PBMCs and spleen lymphocytes samples and
3 µl/test in TIL flow cytometry. All antibodies were purchased
from BD Pharmigen unless otherwise noted. Briefly, all samples
were block with anti-CD16/32 for 20min on room temperature
and then stained with appropriate antibodies for 30min on
ice. Anti-mouse FoxP3 staining (eBioscience, Cat: 00-5523) was
used for intracellular staining according to the manufacturer’s
instructions. For intracellular staining of IFN-γ , TNF-α, and

IL-2, single-cell suspensions were incubated at 37◦C for 5 h in
the presence of Cell Stimulation Cocktail (eBioscience, Cat: 85-
00-4975-93) according to the manufacturer’s protocol. Zombie
VioletTM Fixable Viability Kit (Biolegend, Cat: 423113) was
required to distinguish live/dead cells in tumor flow cytometry.
Appropriate isotype control antibodies were used to determine
the gating strategies.

CD8+ T Cell Isolation
Freshly-separated single-cells of splenocytes were obtained
according to the procedure above. For splenocytes CD8+ T
cells isolation, CD8+ T cells were sorted by MACS (Miltenyi,
Bergisch Gladbach, Germany) as described in the manufacturer’s
protocols. The purity of CD8+ T cells was >95%, confirmed by
flow cytometry.

Reverse Transcription Quantitative PCR
Total RNAs were extracted using RNeasy Mini Kit (Qiagen,
Duesseldorf, Germany) in accordance with the manufacturer’s
instructions. We used 0.1 µg total RNAs as the template to
synthesize cDNA via reverse transcription reaction through
GoScriptTM Reverse Transcription System kit (Promega)
according to the manufacturer’s instructions. For miRNA
detection, equal RNA from each sample was reverse-transcribed
to cDNA by means of specific miRNA stem-loop primers.
Subsequently, quantitative real-time polymerase chain reactions
were ran on Roche-LightCycler-480 by LightCycler 480
SYBR Green I Master. β-actin and U6 were used as internal
normalization controls. All assays were performed following the
manufacturer’s instructions. All sequences of primers listed in
Table 1 were synthesized by Sangon Biotech (Shanghai, China).
The thermal cycling conditions include 5min at 95◦C, and 40
cycles of 10 s at 95◦C and 20 s at 55◦C. Samples were run in
triplicate and differences in gene expression were calculated
using the 2−cycle threshold method (30, 31).

Statistical Analysis
All results were presented as mean ± standard deviation (SD).
Comparisons between the treated and untreated groups were
performed with Student’s t-test. All data were analyzed using
GraphPad Prism 5 and a values of P < 0.05 was set statistically
significant.
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RESULTS

OMT and DDP Synergistically Inhibit the
Growth of NSCLC Cells Co-cultured With
PBMCs in vitro
In the present study, we firstly investigate the effects of OMT and
DDP on NSCLC cells and PBMCs. Cell survival was assessed by
MTT assay. As shown in Figures 1A,B, the survival of all used
cells was decreased in a dose-dependent manner in vitro after
OMT or DDP treatment. OMT and DDP exhibited significant
cytotoxicity against A549 and LLC cells, but weaker cytotoxicity
against human and mice PBMCs. To assess the anti-tumor
effects of OMT and DDP on growth of NSCLC cells in the
presence of PBMCs, co-cultured NSCLC cells (target cells) with
PBMCs (effect cells) at ratios of 1:0, 1:2, 1:4, and 1:6 were
treated with OMT and DDP alone or combination. As showed in
Figure 1C, after co-treatment with OMT and DDP, the survival
of cancer cells were significantly reduced in comparison with
OMT or DDP alone without PBMCs. Strikingly, the growth of
tumor cells were more potently inhibited by OMT or (and)
DDP administration when co-cultivated in combination with
PBMCs at all target/effector cells ratio, and especially the ratio
of target/effect cells at 1:6 exhibited most effective inhibition.
These results suggest that OMT and DDP synergistically inhibit
the growth of lung cancer cells when co-cultured with PBMCs in
vitro.

OMT and DDP Synergistically Inhibit the
NSCLC Xenografts Growth in vivo
To examine the synergistic anti-tumor effects of OMT and
DDP in vivo, we generated the xenograft tumor models by
transplanting LLC cells into C57BL/6 mice. As shown in
Figures 2A–C, compared with OMT or DDP alone treatment,
co-treatment OMT with DDP significantly inhibited the growth
of subcutaneous tumors by diminishing the volume andweight of
tumors. The inhibition rate of tumor growth in the co-treatment
group reached 94.19%, which was obviously higher than that in
either single treatment group (Figure 2E). In addition, mice body
weights in DDP alone or co-treatment groups were lower than
those of control group (Figure 2D). These data suggest that OMT
and DDP can synergistically inhibit the NSCLC xenograft growth
in vivo.

OMT and DDP Synergistically Increase the
CD8+/Treg Ratio in vivo
The interaction of immune system in malignant diseases is
heralded as one of the most important advances in oncology.
We speculated that heightened tumor regression after OMT and
DDP treatments may be caused by strong anti-tumor immunity.
The cytotoxic T lymphocytes (CTLs, also CD8+ T cells, marked
as CD3+CD8+ T cells) are pivotal immune cells directed against
tumor cells susceptible to cell lysis, but CD4+Foxp3+ regulatory
T cells (Treg) disturb antitumor immunity by suppressing the
activities of effector T cells. Our flow cytometry data revealed
that compared with OMT or DDP alone treatment, co-treatment
OMT with DDP significantly increased CD8+ T cells percentage

in PBMCs and spleen lymphocytes, and decreased Tregs cells
percentage in PBMCs and tumor infiltrating lymphocytes
(Figures 3A–C). Furthermore, compared with OMT or DDP
alone treatment, co-treatment OMT with DDP significantly
increased the CD8+/Treg ratio in PBMCs, spleen lymphocytes
and tumor infiltrating lymphocytes (Figure 3D). These results
indicate that OMT and DDP can synergistically increase the
CD8+/Treg ratio in vivo.

OMT and DDP Synergistically Enhance
CD8+ T Cells Anti-tumor Immune
Response
We further evaluated the immune status of CD8+ T cells in
mice bearing LLC, since CD8+ T cells play a pivotal role in
anti-tumor immunity. As shown in Figures 4A,B, compared
with OMT or DDP alone treatment, co-treatment OMT with
DDP significantly induced the increased intracellular IFN-γ
and TNF-α and the decreased intracellular IL-2 in spleen
lymphocytes, and the increased intracellular IFN-γ , TNF-α, and
IL-2 in tumor infiltrating lymphocytes, suggesting that OMT and
DDP synergistically enhance CD8+ T cells anti-tumor immune
response.

OMT and DDP Synergistically Upregulate
miR-155 and Downregulate SOCS1

Expressions in Splenic CD8+ T Cells
MiR-155 plays a key role in tumor immune response by targeting
SOCS1 (16). We detected miR-155 and SOCS1 expressions in
splenic CD8+ T cells. As shown in Figure 5, compared with
OMT or DDP alone treatment, co-treatment with OMT and
DDP significantly upregulatedmiR-155 and downregulate SOCS1
expressions in splenic CD8+ T cells.

DISCUSSION

Natural products play an important role in the prevention and
treatment of cancer and other disease in the world (32, 33).
Our study clearly indicates that the combination of OMT and
DDP synergistically enhanced NSCLC cells growth inhibition,
CD8+/Treg ratio and CD8+ T cells anti-tumor immune response
with the upregulation of miR-155 and the silence of SOCS1.
It has been reported that cancer immunotherapy has been
a hot spot in the treatment of NSCLC (34). Treg cells are
highly immune suppressive cells and play central roles in the
maintenance of self-tolerance and immune homeostasis (35).
It can inhibit anti-tumor immunity in NSCLC by suppressing
effector T cells directly by cell interaction or indirectly via
the secretion of soluble factor-mediated suppression (36). We
previously have reported that higher Treg/CD8

+ ratio in tumor
was an independent factor for poor response to platinum-
based chemotherapy, but CD8+ and Treg tumor infiltrating
lymphocytes was not correlated with any clinicopathological
features in advanced NSCLC patients (37). Current findings on
the model of mice bearing LLC have suggested that co-treatment
OMT with DDP significantly enhanced the CD8+/Treg ratio in
comparison with single agent groups, which is also in agreement

Frontiers in Oncology | www.frontiersin.org 4 December 2018 | Volume 8 | Article 631123

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ye et al. Oxymatrine Enhances Cisplatin Anti-tumor Immunity

FIGURE 1 | OMT and DDP synergistically inhibit the growth of NSCLC cells co-cultured with PBMCs in vitro. Cells were treated with the indicated concentrations of

OMT or DDP for 72 h, and cell survival was determined by MTT or CCK-8 assay and summary survival curves (A) and IC50 values in the indicated cells (B) were

shown. Co-cultured NSCLC cells (target cells) with PBMCs (effect cells) at ratios of 1:0, 1:2, 1:4, and 1:6 were treated with OMT (3mM) and DDP (2µM) alone or

combination for 24 h. Quantified results were shown in (C). The values presented are the means ± SD for each group. *P < 0.05 and **P < 0.01 vs. corresponding

control.

with other clinical evidence that decreased CD8+/Treg ratio
among tumor infiltrating lymphocytes are correlated with poor
prognosis in various types of human cancers (38–40). However,

there are differences between the results of the present study and
a report by Zhang et al. which demonstrated that higher ratio
of CD8+/ Treg was significantly associated with poor overall
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FIGURE 2 | OMT and DDP synergistically inhibit NSCLC xenografts growth in vivo. Each mouse was injected subcutaneously with LLC cells (2 × 106 in 100 µl of

PBS) in right scapular region. When the subcutaneous tumors were approximately 0.3 × 0.3 cm2 (two perpendicular diameters) in size, mice were randomized into

four groups, and were injected intraperitoneally with vehicle alone (0.9% saline), OMT alone (100 mg/kg body weight per day), DDP alone (2 mg/kg body weight every

2 day), or a combination of OMT and DDP (administration method is as same as the relevant single drug group). The body weights and tumor volumes of mice were

recorded. The mice were anesthetized after experiment, and tumors were excised from the mice and weighted. The original tumors (A), tumor volumes (B), tumor

weights (C), body weights (D), and summary data (E) were shown. The values presented are the means ± SD for each group. *P < 0.05 and **P < 0.01 vs.

corresponding control.

survival and progression-free survival in early nasopharyngeal
carcinoma stage patients (41). Different chemotherapeutic
regimens and tumor context may contribute to these
differences.

It is well-known that CD8+ effector T cells have a critical
role in elimination of tumors. Previous studies showed that IFN-
γ , TNF-α, and IL-2-expressing CD8+ T cells are instrumental
in anti-tumor immune response (42). IFN-γ -expressing T cells
are essential in repressing tumor growth which promotes host

responses to tumors. Moreover, IFN-γ can execute direct anti-
proliferative, pro-apoptotic and anti-angiogenesis actions on
various tumor cells (43). TNF-α is another multifunctional
cytokine, which mediates anticancer adaptive immune response.
In the report of Ando et al. TNF-α might be an effective therapy
in some cases of NSCLC that have acquired resistance to gefitinib
(44). IL-2 acts crossroads functions in activation and cell growth
of T and NK cells and it can promote CD8+ T cells and natural
killer cells cytolytic activities in response to antigen (45). In lung
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FIGURE 3 | OMT and DDP synergistically increase the CD8+/Treg ratio in vivo. Isolated PBMCs, spleen lymphocytes and tumor infiltrating lymphocytes were stained

with indicated antibodies and analyzed by flow cytometry. Representative flow plots and quantified results of CD8+ T cells and Treg cells in PBMCs (A), spleen

lymphocytes (B), and tumor infiltrating lymphocytes (C) were shown. The CD8+/Treg ratios were quantified (D). *P <0.05 and **P < 0.01 vs. corresponding control.
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FIGURE 4 | OMT and DDP synergistically enhance CD8+ T cells anti-tumor immune response. Spleen lymphocytes and tumor infiltrating lymphocytes were isolated,

and intracellular IFN-γ , TNF-α, and IL-2 were determined by flow cytometry. Representative flow plots and quantified results of intracellular IFN-γ , TNF-α, and IL-2

expression in CD8+ T cells of spleen lymphocytes (A) and tumor infiltrating lymphocytes (B) were shown. *P <0.05 and **P < 0.01 vs. corresponding control.
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FIGURE 5 | OMT and DDP synergistically upregulate miR-155 and downregulate SOCS1 expressions in splenic CD8+ T cells. Splenocytes CD8+ T cells were

separated by magnetic bead from MACS and the total RNAs were extracted immediately. Expression of miR-155 and SOCS1 in splenic CD8+ T cells were

determined by RT-qPCR. U6 and β-actin were used as the normal controls. Data shown are representative of three independent experiments. *P <0.05 and **P <

0.01 vs. corresponding control.

cancer patients, IL-2 treatment reverses CD8+ T cells exhaustion
and markedly increases Granzyme B and IFN-γ in malignant
pleural effusion. Our study indicated that OMT in combination
with DDP significantly upregulated the production of IFN-γ and
TNF-α in CD8+ T cells compared with the single agent both in
the splenocytes and tumor infiltrating lymphocytes. Nevertheless,
expression of IL-2 is declined in splenocytes and increased
in tumor infiltrating lymphocytes, inversely. These differences
indicated the complexities of the effects of chemotherapeutic
drugs in different immune organs. Since IL-2 is essential for
the development and maintenance of Treg (45), declined IL-2
secretion may be able to decrease the immune suppressive Treg.
Thismay be anothermanner to enhance CD8+ T cells anti-tumor
response to a certain extent.

One particular miRNA, miR-155, has emerged as a central

regulator in immune homeostasis and antitumor immunity
recent years (16, 46). MiR-155 silencing promotes solid tumor
growth through increasing the recruitment and functions of

myeloid-derived suppressor cells in tumor microenvironment
(47). Strikingly, miR-155 can augments effector CD8+ T-cell
anti-tumor immunity against viruses and cancer (17, 18, 48,
49). In detail, miR-155 overexpression and silence of its target
SOCS1 in CD8+ T cells enhanced the antitumor response and
augmented tumor destruction (17). According to Ji et al.’s
report, miR-155 restrained the expression of SOCS1, one of
the negative regulators of signal transducer and activator of
transcription 5 (STAT5a), and constitutively active STAT5a
recapitulated the survival advantages conferred by miR-155 (18).
In addition, it is reported thatmiR-155 shapes cytokine signaling
via downregulation of SOCS1 in Treg subsets. Consistently,
these findings consider miRNA-155 and its target SOCS1 as
key regulators of effector CD8+ T cells that can be modulated
to potentiate immunotherapies for cancers. In our study,
increased miR-155 and decreased SOCS1 expressions in splenic
CD8+ T cells are much agreement with the aforementioned
investigations, which demonstrated that co-treatment OMT
with DDP can enhanced antitumor immunity via miR-155-
SOCS1 signaling pathway in mice bearing LLC tumor. Further

researches need to elucidate the effects of “loss or gain”
functions of miR-155 gene in our mice NSCLC model when
OMT co-treatment with DDP. Moreover, antitumor immunity
is most complicated involved in effector and immunosuppressive
networks in the tumor microenvironment. In addition to CD8+

T cells and Tregs, dendritic cells, natural killer cells, suppressive
dysfunctional dendritic cells and macrophagocytes, these are
essential immunogenic elements to skew the balance of pro- and
anti-tumor forces toward tumor-specific immunity (50). Their
immunomodulated functions in our present study need to be
further investigated.

Collectively, the present study offers the first evidence that
OMT and DDP synergistically inhibit the growth of NSCLC cells
when co-culture with PBMCs in vitro. Further in vivo studies
provide strong evidence that combinational treatment OMT
with DDP shows outstanding synergistic anticancer effect by
tipping a favor anti-tumor immunity, suggesting this beneficial
combination may offer a promising treatment option for NSCLC
patients.
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Salt-inducible kinase (SIK), which belongs to the sucrose non-fermenting

1/AMP-activated protein kinase family, was first discovered in the adrenal cortex

of a rat on a high-salt diet. As an isoform of the SIK family, SIK2 modulates various

biological functions and acts as a signal transmitter in various pathways. Compared with

that in adjacent normal tissues, the expression of SIK2 is significantly higher in multiple

types of tumors, which indicates its pivotal effect in oncogenesis. Studies on SIK2 have

recently underlined its role in several signaling pathways, including the PI3K-Akt-mTOR

pathway, the Hippo-YAP pathway, the LKB1-HDAC axis, and the cAMP-PKA axis.

Moreover, a few small-molecule SIK2 inhibitors have been found to be able to rescue

the oncogenicity of SIK2 during tumor development and reverse its abnormal activation

of downstream pathways. In this mini-review, we discuss the results of in vivo and in

vitro studies regarding the SIK2 mechanism in different signaling pathways, particularly

their regulation of cancer cells. This work may provide new ideas for targeting SIK2 as a

novel therapeutic strategy in tumor therapy.

Keywords: salt-inducible kinase, SIK2, cancer, signaling pathway, target therapy

INTRODUCTION

Plasma ion balances regulate a wide range of cellular processes from cell proliferation to
mitochondrial functions. The plasma concentrations of Na+ and K+ have been proven to play a
vital role in the biosynthesis of aldosterone in the adrenal cortex. Studies have shown that changes
in plasma ion concentration can target biomembrane ion channels, such as Na+-K+-ATPase to
regulate extra- and intracellular ion balances (1, 2). As a major part of this ion modulation network,
salt-inducible kinase (SIK) was first discovered in 1999 by Okamoto et al. in the adrenal cortex
of a rat on a high-salt diet. SIK is a serine/threonine protein kinase that belongs to the sucrose
non-fermenting 1/AMP-activated protein kinase (SNF1/AMPK) family. The SIK family comprises
three isoforms, namely, SIK1, SIK2, and SIK3, all of which may act as metabolic transmitters.
The SIK2 gene is located on chromosome 11 and encodes for the SIK2 protein, which has 926
amino acids and three domains (3, 4). The C-terminal domain of the SIK protein contains
numerous unique sites that can be phosphorylated by different protein kinases and transmit various
stimulation signals involved in different biological processes, including cell growth and apoptosis
(4–8). In many malignant tumors, such as breast cancer, lung cancer, melanoma, primary liver
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cancer, and ovarian cancer, SIK expression is significantly
different from that in adjacent tissues (9–14).

Growing evidence has proven that the expression and
action of SIK2 are tissue-specific. The cellular and subcellular
distributions of SIK should be considered to determine
its mechanism. Earlier investigations demonstrate that SIK2
maintains cell homeostasis via modulation of cAMP response
element binding protein (CREB)-mediated gene transcription
during starvation, whichmay be a possible mechanism for cancer
cell survival under stress, such as chemoradiotherapy (15). SIK2
reduces glucose uptake in muscle cells and white adipocytes and
downregulates lipogenesis and ketogenesis by phosphorylating
the glucose-activated histone acetyltransferase coactivator p300
(16). SIK2 modulates several subtle cellular signaling pathways,
and its abundant expression in melanoma and ovarian tumors
is suggestive of its pivotal function in tumor development (13,
17). Thus, in this mini-review, we discuss the specific role and
related signaling pathways of SIK2 in tumorigenesis. Our findings
indicate the potential application of SIK2 as a therapeutic target
for cancers.

SIK FAMILY AND THEIR FUNCTIONS

The structures of the SIK isoforms are shown in Figure 1. The
three isoforms are similar to one another, particularly in three
domains: a kinase domain near the N-terminal, a central SNF1
protein kinase homology (SNH) domain, and a phosphorylation
domain near the C-terminal (3). SIK1 is a 776-amino acid
protein with a kinase domain in the region of residues 27–
278, an SNH domain in the region of residues 301–354, and a
domain enriched with PKA-dependent phosphorylation sites in
the region of residues 567–613. Similarly, SIK2 is a 931-amino
acid protein with a kinase domain in the region of residues
20–271, an SNH domain in the region of residues 293–346,
and a phosphorylation domain in the region of residues 577–
623. Finally, SIK3 is a 1,263-amino acid protein with a kinase
domain in the region of residues 8–259, an SNH domain in the
region of residues 283–336, and a phosphorylation domain in
the region of residues 486–518. Initial studies have found that
SIK1 is most abundant in the adrenal cortex and an important
regulator in the early phase of hormonal stimulation of the
adrenal cortex (4, 18), adipose tissue (6), and neural tissue (19).
It may overexpress in several non-adipose tissues, such as in the
ovaries and lungs, and act as an oncogenic signal transmitter
during the occurrence and progression of tumors in the
aforementioned organs (18–20). Unlike SIK1, SIK2 modulates
several subtle cellular signaling pathways, and the increased
expression of SIK2 in adipose and neuronal tissues indicates its
pivotal role in lipid metabolism and neural physiology. SIK2
promotes insulin resistance and diabetes by reducing glucose
uptake in muscles and white adipose tissues and inhibiting
gluconeogenesis (7). SIK2 is overexpressed in several cancer cell
lines and boosts cancer cell tolerance to different stresses, such as
deprivation of nutrients and taxol chemotherapy (21). It plays a
proinflammatory role by repressing IL-10 secretion of regulatory
macrophages (22). However, little is known about why the
structural similarity of the SIK family leads to different biological
functions.

SIK2 AND THE PI3K-Akt-mTOR PATHWAY

The expression level of SIK2 in cancers is significantly higher
than that in adjacent and surrounding normal tissues, which
suggests that SIK2 is critical in tumorigenesis and tumor
development. Miranda et al. found that the loss of SIK2 reduces
G1/S transition, delays mitotic progression, and decreases Akt
phosphorylation levels (17). They also confirmed that SIK2 is
overexpressed in adipocyte-rich metastatic deposits compared
with ovarian primary lesions and that adipocytes activate
SIK2 in ovarian cancer cells in a calcium-dependent manner.
Following adipocyte-induced stimulation, the activated SIK2
alters metabolic effects in ovarian cancer cells by inhibiting
acetyl-CoA carboxylase and promoting fatty acid oxidation.
p85α, the regulatory subunit of the PI3K complex, was
previously identified as a putative SIK2 substrate during
chemical genetic screening. The identified p85α phosphorylation
site (S154) resides in the known SIK2 phosphorylation
consensus sequence L-x-[HKR]-[ST]-x-S-X(3)-L at L149–L158
(LYRTQSSSNL). Incubation of recombinant full-length SIK2
or its kinase domain with a peptide corresponding to L149–
L158 of p85α confirmed that SIK2 catalyzes the phosphorylation
of this sequence. More importantly, full-length SIK2, but not
the kinase-inactive mutant, phosphorylated p85α was confirmed
in isotopic labeling assay. Phosphopeptide mapping of p85α
following incubation with SIK2 (kinase domain or full-length)
revealed that the former was phosphorylated at S154 in the
BH domain. The BH domain is thought to bind to proteins
that modulate PI3K activity. Downstream S154 phosphorylation
also appears to increase in an SIK2-dose-dependent manner.
siRNA-mediated depletion or chemical inhibition confirms that
SIK2 is required for p85α S154 phosphorylation. Moreover,
p85α phosphorylation and concomitant Akt phosphorylation can
be triggered by calcium-mediated SIK2 activation. Consistent
with these observations, incubation of the PI3K complex with
recombinant SIK2 leads to a profound increase in PI3K activity in
vitro (up to 13.8-fold), while chemical inhibition of SIK2 induces
a dose-dependent reduction in PI3K activity to its basal level.
These data confirm that p85α is a direct catalytic substrate of
SIK2 and that SIK2 S154 phosphorylation significantly increases
the activity of the PI3K-Akt pathway in ovarian cancer cells.

While most reports suggest that SIK2 is an oncogenic marker,
one study in Turkey claimed that SIK2 is a potential tumor
suppressor in breast cancer (23); SIK2 expression was reportedly
reduced in tumor tissues and breast cancer cell lines compared
with that in normal counterparts. The researchers also found
SIK2-mediated attenuation of proliferation and survival of breast
cancer cells with parallel inhibition of the Ras-Erk and PI3K-Akt
pathways. However, the mechanisms underlying the reduction of
SIK2 levels in cancer tissues were not discussed. Thus, research
into the mechanism of SIK2 loss will help future scholars better
understand tumor transformation in breast tissue and design new
treatment strategies.

SIK2 AND THE HIPPO-YAP PATHWAY

The Hippo pathway is a highly conserved growth regulatory
signaling pathway that was first discovered in Drosophila. It can
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FIGURE 1 | Structures of isoforms in SIK family.

block the downstream pro-growth transcriptional co-activator
Yorkie (Yki), which is homologous tomammalian Yes-associated
protein (YAP), and exert its regulatory effects on organ size, cell
proliferation, and apoptosis during organ development (24, 25).
YAP has been shown to be highly expressed in various human
tumors, such as endometrial carcinoma, primary liver cancer, and
oral squamous cell carcinoma. Activation of YAP can remove
tumor cell contact inhibition, leading to tumor metastasis (25–
27). Tsujiura et al. immunohistochemically analyzed YAP in
endometrial carcinoma tissue samples and found that the high
expression of YAP in the nucleus is closely associated with higher
tumor grading and staging, lymphatic/blood vessel invasion,
increased recurrence, and metastasis. They then confirmed these
results at the cellular level in knockdown and overexpression
assays. Recent studies have demonstrated that YAP restricts
the activity of the cell cycle checkpoints ATM and ChK2 to
enable cancer cells to enter the cell cycle and mitosis after
chemoradiotherapy despite unrepaired DNA damage, resulting
in tumor growth, chemoradiotherapy resistance, and ongoing
proliferation (28).

Wehr et al. characterized Drosophila salt-inducible kinase
(sik2) as an upstream inhibitor of the Hippo pathway (29). sik2
has been identified as the ortholog of human SIK2. Activated sik2
phosphorylates Ser413 of the scaffold protein Salvador (Sav), a
major part of the core kinase complex of the Hippo pathway,
and subsequently abolishes the inhibition of the proto-oncogene
Yki. In addition, sik2 directly induces the expression of Yki and
facilitates Yki-dependent tissue overgrowth. Coincidentally, both
SIK2 and YAP have been proven to be oncogenes in ovarian
cancer. Research has confirmed a close interaction between the
PI3K-Akt-mTOR and Hippo-YAP pathways via SIK2 (Figure 2).
On the one hand, YAP directly activates PI3K-Akt-mTOR and
alters cellular biological functions (30, 31). YAP also increases
pAkt-S473 levels and suppresses apoptosis by induction of
insulin-like growth factor 2 expression (28). On the other hand,
mTOR complex 2 enhances the oncogenicity of YAP through
phosphorylation of the Hippo pathway component AMOTL2
(32). These observations reveal that mutual activation between
the PI3K-Akt-mTOR and Hippo-YAP pathways caused by SIK2
may be crucial in tumorigenesis. However, the precise role of

FIGURE 2 | Crosstalk between the PI3K-Akt-mTOR pathway and the

Hippo-Yap pathway via SIK2.

SIK2 in these intersecting pathways is not well-understood, and
future studies are still desperately needed to elucidate the related
detailed mechanisms.

SIK2 AND THE LKB1-HDAC SIGNALING
AXIS

Epigenetic studies have confirmed that DNA acetylation
modification is closely related to tumorigenesis, tumor invasion,
and chemoradiotherapy resistance (33–35). The abnormal
activation and overexpression of histone deacetylase (HDAC)
down-regulates tumor suppressor genes and exhibits tumor-
promoting effects. Using kinase domain-focused CRISPR
techniques, researchers screened all dependent kinase in acute
myeloid leukemia (AML), focusing subsequent experiments on
SIK3, which scored strongly in MOLM-13 and MV4-11 AML
cells and in a more intermediate fashion in other AML cell lines
(36). Liver kinase B1 (LKB1) was also identified to show an AML-
biased pattern of dependence. Since SIK3 is homologous to SIK1
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and SIK2, further studies were conducted to determine whether
a broader requirement exists for SIKs in cancer. By performing
dual targeting of each SIK gene combination in 17 AML cell lines,
researchers observed a broad AML-specific requirement for SIK2
+ SIK3 resembling the pattern of LKB1 dependence with a
bias for lines with mixed lineage leukemia fusions. In cDNA
rescue assays, LKB1 was found to phosphorylate and activate
SIK3 in AML. The SIK3 mutant was unable to maintain the
proliferation of MOLM-13 cells, while a phosphomimetic allele
of SIK3 rescued the proliferation arrest caused by inactivating
LKB1. The reverse of SIK3 dependence for AML proliferation
was observed during dual CRISPR targeting of HDAC4. Western
blotting revealed reductions in HDAC4 phosphorylation upon
genetic targeting of SIK3 or chemical inhibition of SIK. Taken
together, these results indicate that the function of SIK3 is critical
in AML and that inhibition of HDAC4 is one of the key functions
of SIK3 in supporting AML proliferation.

Histone H3 lysine 27 acetylation (H3K27ac) is linked to the
relevant downstream activity in the LKB1-SIK pathway, and
ChIP-seq has confirmed that LKB1/SIK3-dependent H3K27ac
coincides with sites of transcription factor MEF2C occupancy.
While LKB1/SIK3 knockout or following SIK inhibitor HG-
9-91-01 treatment did not change MEF2C protein expression,
HG-9-91-01 exposure led to increased HDAC4 binding to
MEF2C-bound sites. Epigenomic analysis suggests that LKB1-
SIK signaling is critical in AML to prevent HDAC4 from
inactivating the function of MEF2C on chromatin. These genetic
experiments suggest that co-inhibition of SIK2 + SIK3 could be
the ideal strategy to achieve potent MEF2C inhibition in AML.
Since MEF2C is maladjusted in lymphoid malignancies, LKB1-
SIK signaling is likely to be important in other hematopoietic
cancers (37).

SIK2 AND THE cAMP-PKA SIGNALING
AXIS

The G protein αs (GNAS) gene encodes the Gαs stimulatory
subunit of G proteins, whichmediate G-protein-coupled receptor
signaling, a major mechanism that links multiple environmental
stimuli with intracellular responses (38). The primary target is
adenylyl cyclase, which generates the second messenger cAMP,
which, in turn, activates downstream protein kinase A (PKA).
In many tissues, GNAS–cAMP-PKA signaling is required during
cell dormancy and cell growth (39–43). However, multiple
types of human cancers show gain-of-function variations in this
pathway (38). For example, loss of p53 promotes the advent of
GNAS R201C mutations and induces malignant transformation
in pancreatic benign tumors in the KGC mice model, which
can rapidly develop cystic pancreatic tumors (44–47). Mutated
GNAS R201C supports pancreatic tumor growth via cAMP-PKA
signaling, which subsequently phosphorylates SIKs (SIK1, SIK2,
and SIK3) and prevents them from phosphorylating downstream
targets (48). Also, small molecule pan-SIK inhibitors (HG-9-
91-01 and KIN-112) prevent the growth of KGC organoids
after silencing GNAS, and their effects are directly proportional
to the degree of SIK inhibition. Compared with wild-type

SIK2, the SIK2-S4A mutant, which is resistant to cAMP-PKA
activation, strongly inhibits the proliferation of KGC-like organs.
In particular, SIKKO rescues both organoid growth in vitro and
subcutaneous tumor growth following GNAS R201C silencing,
and these findings have been confirmed in human pancreatic
ductal adenocarcinomas (PDA). Thus, the cAMP-PKA-SIK2
signaling pathway is a conserved tumorigenic mechanism in
pancreatic tumor cells. The mutant GNAS drives downstream
PKA-SIK2 axis and promotes lipid hydrolysis in addition to lipid
synthesis and remodeling. While SIK2 is known to maintain cell
homeostasis and energetic metabolism, particularly glucose and
fatty acid oxidation (15), the suppression of SIK2 mediated by
GNAS-PKA will inhibit the phosphorylation of its downstream
CREB-regulated transcription co-activator (CRTC) and others
(Figure 3). Then it will promote lipids absorption and synthesis,
and the abundant lipids in tumor cells provide substrates for
structural, signaling, andmetabolic purposes, which explains why
SIK2 act as a tumor suppressor in PDA.

While SIK2 is deemed to be a tumor promoter in most cases,
in the context of GNAS mutated PDA, it is supposed to be a
tumor suppressor, mainly because SIK2 plays different roles in
different tissue and cells, similar to cAMP/PKA signaling. Given
the context-dependent tumor-promoting and -suppressing roles
of SIK2, administration of SIK2 inhibitors in GPCR-mutated or
other overactive cAMP-PKA cancer types should be attempted
with extremely caution to avoid potential pro-tumor effects.
More investigations are necessary to clarify these issues and
promote the use of SIK2 inhibitors in tumor therapy.

SIK2 IN CANCER THERAPY

Previous studies on SIK2 have reported its regulation of energetic
metabolism, mostly based on its signaling pathways and the
downstream role of LKB1 in adipocytes. Studies on SIK2 have
recently underlined its role in several signaling pathways related
to tumorigenesis. Clinical and pathological data indicate that

FIGURE 3 | The dichotomous oncogenic roles of SIK2 in the LKB1-HDAC

axis and the cAMP-PKA axis.
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SIK2 is a potential oncogenic marker in ovarian (17, 49),
prostate (50), osteosarcoma (51), and colorectal (52) cancers
by controlling different cellular mechanisms. Intriguingly, two
studies report that SIK2 may act as a tumor suppressor in breast
cancer and PDA. Since SIK2 plays a distinct role in different
tissues and divergent pathways, its dysregulation may lead to
conflicting phenotypes. Initial studies on SIK2 maily focused
on its role in energetic metabolism, particularly in glucose, and
lipids oxidation during starvation. The functions of SIK2 may be
unique in cells that are involved in glycolipid metabolism, such
as hepatocyte and pancreatic cells. As a consequence, SIK2 may
act as both tumor promoter and suppressor due to the diversity
of cancer cell types or different genetic background. The SIK2
inhibitors HG-9-91-01, ARN-3236, and KIN-112 have succeeded
in cancer therapy approaches, validated in cultured cells and in
vivo animal models (17, 36, 48), although additional optimization
of these small molecules is required for therapeutic investigation.
Further evaluation of these small molecules is necessary to
achieve potent SIK2 inhibition in the uncontrolled signaling
pathways of tumor cells while preserving the homeostatic and
tumor-protective functions of SIK2 in other cell types.

CONCLUSION

In this mini-review, we discussed the role of the newly identified
protein kinase, SIK2, in tumorigenesis, specifically focusing
on different signaling pathways involving SIK2. SIKs present
significant physiological functions, including novel roles in

tumorigenesis and tumor progression. While most studies reveal
SIK2 to be a tumor promoter, some claims indicate that
SIK2 provides protection from cancer. Thus, the dichotomous
function and mechanism between SIK2 and cancer must be
further elucidated. As described earlier, SIK2 targeting may
be applied as a novel strategy for treating multiple cancer
types. Future studies to investigate the molecular mechanisms
underlying the precise role of SIK2 in intersecting signaling
pathways, as well as the therapeutic effects of SIK2 in preclinical
and clinical trials, are recommended.
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Basing on Glycyrrhizic Acid-Modified
DSPE-PEG-PEI Nanoparticles for
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Zhiqin Gao1* and Jingliang Wu1*
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Combination therapy based on nano-sized drug delivery system has been developed
as a promising strategy by combining two or more anti-tumor mechanisms. Here,
we prepared liver-targeted nanoparticles (GH-DPP) composed of 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-polyethylene glycol-polyetherimide (DSPE-PEG-PEI)
with Glycyrrhetinic acid-modified hyaluronic acid (GA-HA) for co-delivery of doxorubicin
(DOX) and Bcl-2 siRNA. Particles size, zeta potential and morphology were determined
for the drug-loaded GH-DPP nanoparticles (siRNA/DOX/GH-DPP). Cellular uptake and
in vitro cytotoxicity were analyzed against HepG2 cells. In vivo bio-distribution and anti-
tumor therapeutic effects of siRNA/DOX/GH-DPP were evaluated in H22-bearing mice.
The results showed that siRNA/DOX/GH-DPP nanoparticles were nearly spherical and
showed dose-dependent cytotoxicity against HepG2 cells. Compared to Glycyrrhetinic
acid-free co-delivery system (siRNA/DOX/DPP) and GH-DPP nanoparticles for delivery
of DOX or Bcl-2 siRNA alone, siRNA/DOX/GH-DPP nanoparticles could induce more
cellular apoptosis, and showed higher anti-tumor effect. Herein GH-DPP nanoparticles
could simultaneously deliver both chemotherapy drugs and siRNA into the tumor region,
exhibiting great potential in anti-tumor therapy.

Keywords: combination therapy, nanoparticles, delivery, liver cancer, glycyrrhizic acid

INTRODUCTION

Liver cancer is one of prevalent cancers with high mortality rate around the world, and traditional
chemotherapy is one effective approach used in anti-cancer therapy (Gravitz, 2014; Sia et al.,
2017). However, many chemotherapeutic agents, such as DOX and paclitaxel, have many clinical
limitations owing to severe system toxicity, non-specific targeting, and the development of
multidrug resistance (MDR) (Zahreddine and Borden, 2013).

To improve selectivity toward liver cancer cells, an effective strategy is to design nano-sized
carrier to realize liver-targeted delivery (Shamay et al., 2018). Recently, nanoparticles have been
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proved to have the advantages in drug delivery with low
system toxicity (Wei et al., 2015; Zeng et al., 2017; Arms
et al., 2018). Many nano-sized drug delivery systems, such as
natural and synthetic polymer nanoparticles, metal nanoparticles,
and polymer-drug conjugates, have been investigated for
delivery of anti-tumor drugs (Ekladious et al., 2018; Liu
et al., 2018; Maeki et al., 2018). The nano-vehicles basing on
phosphoethanolamine-polyethylene glycol polymers (PEG-PE)
represent a promising nanoparticles delivery system owing to
biocompatibility, prolonged circulation, and accumulation in
tumors by the enhanced permeability and retention (EPR) effect
(Perche et al., 2012; Kohay et al., 2017). In the past decade, many
efforts have been made to prepare liver-targeting nano-carriers,
which were modified by sugars, antibodies, and other ligands
(Singh et al., 2016; Zhu et al., 2016; Yan et al., 2017; Wu J. et al.,
2018). Glycyrrhetinic acid (GA), a metabolite of glycyrrhizin, has
attracted growing interest in anti-hepatoma therapy (Wu J. et al.,
2018). It has been reported that GA-modified nano-carriers could
significantly improve liver-targeting efficiency and inhibit liver
cancer development.

Moreover, development of MDR in cancer cells was a
major cause of the failure in clinical chemotherapy. Bcl-2,
an anti-apoptosis protein, is distributed on the endoplasmic
reticulum, the outer membrane of nuclear and mitochondrion.
Up-regulation of Bcl-2 expression was one of the mechanisms
responsible for MDR, leading to the activation of anti-apoptotic
pathways (Yin et al., 2014). The Bcl-2 siRNA, an antisense
oligonucleotide sequence of Bcl-2, could silence the expression
of Bcl-2 gene, resulting in cell apoptosis of liver cancer (Sun et al.,
2018).

To overcome the limitations of traditional chemotherapy in
clinical antitumor therapy, combination drug strategy has been
applied as a novel anti-tumor therapy. It is based on co-delivery
nanoparticles system for combination of chemotherapeutics with
other treatment approaches like RNAi (Zuckerman and Davis,
2015). The nanoparticles can simultaneously co-deliver two or
more drugs to tumor region and thus improve the cancer
therapeutic effect by synergistic/combined therapy effect, and
reverse the multi-drug resistance (MDR) (Zhang et al., 2016; Sun
et al., 2018).

In previous study, we have prepared GA-modified hyaluronic
acid micelles for DOX delivery (Wu et al., 2016). Hyaluronic
acid (HA), a negatively charged polysaccharide, is present in the
extracellular matrix and synovial fluids (Knopf-Marques et al.,
2016). It can cover on the shell of positive nano-carriers, such
as PEI-PE, chitosan, dendrimer, to decrease the uptake rate by
reticuloendothelial systems (Nguyen and Alsberg, 2014; Zhao
et al., 2016; Wickens et al., 2017; Parmar et al., 2018).

In this study, DSPE-PEG-PEI and GA-HA conjugates
were synthesized, and GH-DPP nanoparticles were prepared
for co-delivery of DOX and Bcl-2 siRNA (Figure 1). The
characteristics of the drug-loaded nanoparticles were investigated
using dynamic light scattering, transmission electron microscopy
(TEM) and UV-Vis spectrophotometer. The in vitro cytotoxicity
and cellular uptake of siRNA/DOX/GH-DPP were investigated
against HepG2 cells. And the in vivo bio-distribution and anti-
tumor effect were explored.

MATERIALS AND METHODS

Materials and Cell Lines
Branched poly(ethyleneimine) (PEI, Mw 1.8 kDa) was purchased
from Sigma Aldrich (United States). DOX was purchased from
Dalian Meilun Biology Technology Co., Ltd., (Dalian, China).
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium ch
loride (DMT–MM) were purchased from Shanghai Medpep
Co., Ltd., (Shanghai, China) 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[succinimidyl (polyethylene glycol)
-2000] (DSPE-PEG-NHS) was purchased from Xi’an Rixi
Technology Co., Ltd., (Xi’an, China). Bcl-2 siRNA and FITC-
labeled siRNA were purchased from Guangzhou RiboBio Co.,
Ltd., (Guangzhou, China). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) was purchased from Sigma
Aldrich (United States). Fetal bovine serum and RPMI-1640
medium (RPMI) were purchased from Beijing Solarbio Co., Ltd.,
(Beijing, China). All other reagents were of commercial special
grade and used without further purification.

Human hepatic cell line (HepG2), human lung
adenocarcinoma cell line (A549) and murine HCC cells
(H22) were obtained from the China Center for Type Culture
Collection (Wuhan, China). Female BALB/c mice (weight:
18 ± 2 g) were supplied by the Experimental Animal Center of
Weifang Medical University (Weifang, China), and approved by
the WFMU Animal Research Ethics Committee.

Synthesis of HA-GA and DSPE-PEG-PEI
Conjugates
GA-HA conjugate (GH) was synthesized using HA as a
hydrophilic segment and GA as a hydrophobic segment (Wu
et al., 2016). In brief, GA–NH2 was obtained by adding ethylene
diamine to the GA solution in the presence of DMT-MM. And the
GA–HA conjugate was synthesized by the chemical modification
of GA–NH2 to HA chain.

Syntheses of DSPE-PEG-PEI (DPP) were conducted in one
steps as shown in Figure 2. Briefly, PEI was dissolved in DMSO
(10 mL) in a 25 mL glass flask, and then functional DSPE-PEG-
NHS was added into the reaction solution under stirring. The
reaction solution was stirred for 24 h at room temperature. The
product was purified by dialysis against distilled water (MWCO
8000-14000 Da), lyophilized, and the chemical structure was
confirmed by 1H NMR (in D2O, 300 MHz).

Preparation and Characteristics of
Drug-Loaded GH-DPP Nanoparticles
siRNA/DOX/GH-DPP nanoparticles were prepared by three
steps. Firstly, DOX was loaded into the core of DPP nanoparticles
via a dialysis method. In brief, DOX • HCl was stirred with
triethylamine (1.3-fold molar quantity of DOX) in DMF,
and the DPP conjugates were dispersed in formamide. Then
the DOX solution was added slowly to the DPP solution,
followed by stirring overnight. The mixed system was dialyzed
against deionized water. The solution in the dialysis bag
was freeze-dried to obtain DOX-loaded DPP nanoparticles
(DOX/DPP). Secondly, the DPP nanoparticles for co-delivery
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FIGURE 1 | Schematic illustration of Àpreparation of siRNA/DOX/GH-DPP nanoparticles, Áliver-targeted drug delivery via blood cycle, Âcellular uptake, and
ÃpH-triggered release of Bcl-2 siRNA and DOX.

of DNA and siRNA were prepared by electrovalent interaction.
The sequences of Bcl-2 siRNA were as follows: (sense) 5′ –
GUACAUCCAUUAUAAGCUGUCdTdT-3′, (anti-sense)
5′ – GACAGCUUAUAAUGGAUGUACdTdT-3′. DOX/DPP
nanoparticles were incubated with Bcl-2 siRNA in deionized
water. In order to obtain the proper mass ratio of DPP to
siRNA, the same amount of siRNA was incubated with different
concentrations of DOX/DPP nanopaticles solutions for 1 h.
The mass ratios of DOX/DPP to siRNA was set as 100:512,
100:256, 100:128, 100:64, 100:32, 100:16, and 100:8, respectively.
The binding ability of DOX/DPP and siRNA was investigated
by agarose gel retardation assay, followed by electrophoretic
mobility shift assay via a UV gel imaging system. The proper
mass ratio of DOX/DPP to siRNA was selected for preparation
of siRNA/DOX/DPP nanoparticles. Thirdly, GA-HA conjugate
was mixed with siRNA/DOX/DPP nanoparticles to prepare
siRNA/DOX/GH-DPP by stirring slowly for 1 h. Then drug-
loaded nanoparticles were freeze-dried, and the lyophilized
power was stored at 4◦C. The GH-DPP nanoparticles for delivery
of DOX or siRNA alone were prepared as control.

The particle size and ζ potential of siRNA/DOX/GH-DPP
nanoparticles were measured using a dynamic laser scattering
method with a wavelength of 633 nm at 25◦C. The detection
angle was set to 90◦. The polydispersingindex (PdI) was
used to evaluate the size distribution. The concentration of
siRNA/DOX/GH-DPP nanoparticles was kept 1 mg/mL, and all
measurements were performed in triplicate. The morphology of

siRNA/DOX/GH-DPP nanoparticles was observed by electron
microscopy. One drop of drug-loaded nanoparticles solution
were placed on a copper grid, and dried at room temperature.
The sample was examined using a transmission electron
microscope.

To evaluate the loading efficiency (LE) and encapsulation
efficiency (EE) of GH/DPP nanoparticles, siRNA/DOX/GH-DPP
nanoparticles were dissolved in formamide by gently heating,
and measured using UV–Vis spectrophotometer at 480 nm. The
concentration of DOX in the GH/DPP micelles was obtained
using the standard curve. Then LE and EE were calculated using
the following equation (1) and (2):

LE(%) = Ws/Wt × 100% (1)

EE(%) = Ws/Wa × 100% (2)

Ws = the amount of DOX measured in the GH/DPP
nanoparticles; Wt = the total weight of siRNA/DOX/GH-DPP
nanoparticles; and Wa = the initial amount of the DOX•HCl
added.

In vitro Drug Release From GH-DPP
Nanoparticles
The release of DOX and siRNA from GH-DPP nanoparticles was
investigated in PBS buffer (pH 7.4 and 5.0) (Wang et al., 2016).
1 mg/mL siRNA/DOX/GH-DPP nanoparticles was dispersed in
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FIGURE 2 | Synthesis of DSPE-PEG-PEI conjugate. (A) Synthetic route of DSPE-PEG-PEI conjugate. (B) 1H-NMR spectra of PEI, DSPE-PEG-NHS and
DSPE-PEG-PEI (a: peaks of PEI; b and c: peaks of DSPE-PEG-NHS).

5 mL PBS, and the solution was placed in a dialysis bag (MWCO
of 1000 and 20000 for DOX and siRNA, respectively). Then, the
dialysis bag was placed in 20 mL of PBS buffer at 37◦C under
a shaking speed of 100 rpm. At predetermined time intervals,
1 mL of release media was taken out and 1 mL of fresh PBS
buffer was added. The DOX and siRNA content was tested by
UV-Vis spectroscopyat 480 and 260 nm, respectively. The release
of DOX and siRNA was calculated by standard curve. The test
was performed in triplicate.

Cytotoxicity Assay of
siRNA/DOX/GH-DPP Nanoparticles
The cytotoxicity of blank DPP and GH-DPP nanoparticles
against HepG2 and A549 cells was evaluated by MTT
assay. Briefly, the tumor cells were seeded in 96-well plates
(1× 104 cells/well) and incubated for 48 h. Then, the cells were
co-cultured with different concentrations (1, 10, 20, 50, and
100 µg/ml) of DPP or GH-DPP nanoparticles, respectively. After
48 h, 20 µL of MTT reagents (5 mg/mL) was added for another
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4 h incubation at 37◦C. The media were replaced with 200 µL of
DMSO. The absorbance at 490 nm was measured using a Bio-Rad
Microplate Reader (Model 680, Richmond, VA, United States).

The cytotoxicity of siRNA/DOX/GH-DPP nanoparticles was
evaluated by MTT assay against HepG2 and A549 cells.
The cells were incubated with the culture media containing
free DOX, DOX/GH-DPP, siRNA/GH-DPP, siRNA/DOX/DPP
and siRNA/DOX/GH-DPP nanoparticles at different DOX
concentrations (0.01, 0.1, 0.5, 1, 2, and 5 µg/mL), respectively.
The cytotoxicity of drug formulations was shown as a cell viability
percentage with respect to the untreated tumor cells. All the
experiments were repeated thrice.

Cellular Uptake Analysis
Cellular uptake of DOX and FITC-labeled siRNA was monitored
by fluorescent microscopy (BX40, Olympus, Japan). HepG2
cells were seeded in a 12-well plate at a density of 1 × 105

cells/well at 37◦C. After the cells reached 75% confluence, the
media were replaced with fresh media containing free DOX and
siRNA, siRNA/DOX/DPP, siRNA/DOX/GH-DPP nanoparticles,
respectively. After 4 h, the cells were washed three times by
cold PBS, and fixed with 4% paraformaldehyde solution. The
intracellular localization of DOX was visualized by fluorescence
microscope.

Western Blotting Analysis
Suppression of the BCL-2 protein was determined by Western
blot using bicin-choninic acid protein assay kit (BCA, Invitrogen,
United States). Sample proteins (30 µg) was subjected to
electrophoresis in 10% sodium dodecyl sulfate polacrylamine
gel. And the protein was transferred to polyvinylidene difluoride
membranes, followed by incubation with non-fat milk for 1 h,
and with antibody against BCL-2 and β-action (1:1000 dilution)
for 12 h at 4◦C. The membranes were washed thrice in TBST,
and incubated with HRP conjugated goat anti-rabbit IgG (1:5000,
Santa Cruz Biotech., United States) for 1 h. the complexes were
visualized using chemiluminescence kit (KeyGEN, China).

In vivo Near-Infrared Fluorescence
Imaging (NIFI)
In vivo biodistribution of the drug-loaded GH-DPP nanoparticles
was monitored via near-infrared fluorescence imaging system.
Preparation of DiR loaded GH-DPP nanoparticles was as
followed: GH-DPP and DiR were dis-solved in methanol, and the
solution was dripped to deionized water by a micro-syringe pump
under magnetic stirring. The mixture system was dialyzed against
deionized water for 48 h. The final concentration of DiR for tail
vein injection was 40 µg/mL. The tumor-bearing mice model was
established by subcutaneous inoculation of H22 cells in the flank
of BALB/c female mice. When the volume of the tumor grew to
approximately 100 mm3, the mice were randomly divided into
three groups. DiR was used as a fluorescence agent. DiR-loaded
DPP and DiR-loaded GH-DPP nanoparticles were prepared,
respectively. Free DiR, DiR-loaded DPP and DiR-loaded GH-
DPP nanoparticles were administrated by intravenous injection.
The in vivo near-infrared fluorescence imaging was performed at

pre-determined times (2, 6, 12, and 24 h), using the Xenogen IVIS
Spectrum from Caliper Life Sciences (Ex was 745 nm, Em was
835 nm).

Anti-tumor Effect Analysis
The therapeutic effects of drug-loaded GH-DPP nanoparticles
were investigated through evaluation of their anti-tumor effects
using H22 tumor-bearing mice as model. When the tumor
size reached about 100 mm3, H22-bearing mice was randomly
divided into sever groups (five mice per group). The mice were
administrated by physiological saline (control), blank GH-DPP
nanoparticles, free DOX•HCl, siRNA/GH-DPP, DOX/GH-DPP,
siRNA/DOX/DPP, and siRNA/DOX/GH-DPP nanoparticles,
respectively. Drug treatment was set at a dose of 5 mg DOX/kg
body weight every other day. The body weight and tumor volume
was measured every day. Finally, all of the mice were sacrificed,
and the tumors were harvested. The tumor volume was calculated
by follow equation:

Vt = d2
× L/2

L is the longest diameter of tumor; d is the shortest diameter of
tumor; and Vt is the tumor volume.

Statistical Analysis
All results are presented as mean ± S.D., n = 3 parallel samples.
The data were analyzed by Student’s t-test for comparison of two
groups. A p-value less than 0.05 was considered to be significant.

Synthesis of DSPE-PEG-PEI Conjugates
Bi-functional DSPE-PEG-NHS was used to conjugate with PEI
via the primary amine reactive NHS ester moiety at weakly
basic pH, thus avoiding the conjugation and crosslinking of
the maleimide groups to the amine functions of PEI, which
occurs at higher pH (pH > 8). The structure of DSPE-PEG-
NHS, PEI and resulting DSPE-PEG-PEI copolymer were verified
by 1H NMR. The peaks of PEG (3.6 ppm, -CH2O-), DSPE (1.0–
1.5 ppm, -CH2-) and PEI (2.5–3.0 ppm, CH2-N) were confirmed.
The1H-NMR spectrum of DSPE-PEG-PEI in D2O exhibited
characteristic peaks at 2.5–3.0 ppm (peaks of PEI), 3.6 ppm (peaks
of PEG) and 1.0–1.5 ppm (peaks of DSPE), indicating that PEI
was successfully introduced to the DSPE-PEG-NHS molecular.

Preparation and Physicochemical
Characteristics of Drug-Loaded
Nanoparticles
Doxorubicin and Bcl-2 siRNA were loaded in DPP or GH/DPP
copolymers, named as siRNA/DOX/DPP and siRNA/DOX/GH-
DPP, respectively. The characterization of DOX-loaded
nanoparticles was shown in Table 1. The average particles size of
siRNA/DOX/GH-DPP was bigger than that of siRNA/DOX/DPP,
while the ζ potential was lower in siRNA/DOX/GH-DPP. The
result was due to the coverage of GA-HA conjugate, resulting
in bigger particles size and less ζ potential. LE and EE of DOX
in siRNA/DOX/GH-DPP nanoparticles were measured by UV
spectrophotometer. When the feed ratio of DOX to DPP was
10%, the EE and LE of DOX was 86.1 and 8.02%, respectively.
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TABLE 1 | The particle size, polydispersity index (PDI) and zeta potential of
siRNA/DOX/DPP and siRNA/DOX/GH-DPP (n = 3).

Size (nm) PDI Zeta (mV) EEb(%) DLb(%)

siRNA/
DOX/DPP

157.2 ± 5.7 0.272 ± 0.05 12.75 ± 2.19 87.4 ± 2.7 8.32 ± 1.4

siRNA/
DOX/
GH-DPP

185.4 ± 6.4a 0.294 ± 0.04 −2.64 ± 1.73a 86.1 ± 3.1 8.02 ± 1.6

aP < 0.05 siRNA/DOX/DPP vs siRNA/DOX/GH-DPP. bDOX loadeding.

To obtain the co-delivery system of DOX and siRNA, DOX/DPP
and siRNA with different mass ratio were mixed and tested by
gel retardation assay. Figure 3A showed that the fraction of
free DNA disappeared at 100:16, suggesting that DOX/DPP
could condense DNA efficaciously when the mass ratio of
DPP to siRNA was over 100:16. The siRNA/DOX/DPP and
siRNA/DOX/GH-DPP nanoparticles were well-separated with
a rather narrow size distribution (Figures 3B,C). As shown in
Figures 3D,E, the co-delivery system exhibited sphere in shape.
Stability studies showed that drug-loaded GH-DPP nanoparticles
were more stable than drug-loaded DPP nanoparticles under
physiological conditions (Supplementary Figure S1).

DOX and siRNA Release From
siRNA/DOX/GH-DPP Nanoparticles
The release of DOX and siRNA from siRNA/DOX/GH-DPP
or siRNA/DOX/DPP nanoparticles was conducted in pH 7.4
and pH 5.0. The siRNA and DOX released from GA-DPP or
DPP were time-dependent (Figure 4). Both GH-DPP and DPP
nanoparticles showed a rapid release at pH 5.0. By contrast, the
drug release was slower at pH 7.4. The possible explanation is that
the electrostatic interaction between positive segments (PEI) and
negative segments (siRNA, GA-HA) is weak at lower pH value,
leading to rapid release of the drug from the nano-carriers (Sun
et al., 2018). Compared to siRNA/DOX/GH-DPP nanoparticles,
the siRNA/DOX/DPP released more drugs at the same time. This
may due to the fact the coverage layer (GA-HA) could delay the
release of DOX from GH-DPP nanoparticles (Manna et al., 2010).

In vitro Cytotoxicity of
siRNA/DOX/GH-DPP Nanoparticls
The cytotoxicity of blank nano-carriers was determined using
the MTT assay. The cytotoxicity of two blank nano-carriers was
below 15% at the concentration of 10 to 100 µg/mL (Figure 5A).
The results suggested that DPP and GH-DPP nanoparticles could
be used in drug delivery materials due to their negligible toxicity.

The viability of A549 and HepG2 cells was evaluated after
incubations with free DOX, DOX/GH-DPP, siRNA/GH-DPP,
siRNA/DOX/DPP, and siRNA/DOX/GH-DPP nanoparticles
for 48 h. Figure 5B showed that all of five drug formulations
exhibited similar dose-dependent cytotoxic effects, and that
the co-delivery nanoparticles groups (siRNA/DOX/DPP
and siRNA/DOX/GH-DPP) showed higher cytotoxicity
compared to free drug treatment groups. The half maximal
inhibitory concentration (IC50 value) of siRNA/DOX/DPP and

siRNA/DOX/GH-DPP nanoparticles against HepG2 cells was
measured to be 1.02 and 0.76 DOX µg/mL, respectively, which
were lower than that of free DOX (1.86 DOX µg/mL). The
results suggested that co-delivery nanoparticles for DOX and
Bcl-2 siRNA could enhanced inhibitory effect of DOX. This
was due to the fact that sensitivity of HepG2 cells to DOX
was enhanced owing to down-regulation of BCL-2 by RNA
interference (Cao et al., 2011). As shown in Figures 5C,D,
siRNA/DOX/GH-DPP nanoparticles exhibited higher toxicity
against HepG2 cells than other DOX formulations, while, it
was different at same treatment with A549 cells. The possible
explanation was that GA-receptors were over-expressed on
HepG2 cells, which enhanced cellular uptake of DOX and
siRNA via GA receptor-mediated endocytosis. Whereas, the
siRNA/DOX/GH-DPP nanoparticles against A549 cells showed
lower cytotoxicity than siRNA/DOX/ DPP nanoparticles. The
different cytotoxicity against HepG2 cells and A549 cells might
due to different expressed level of GA-receptor on two tumor
cells (Tian et al., 2010).

Cellular Uptake of siRNA/DOX/GH-DPP
Nanoparticles and Suppression of BCL-2
Expression
The cellular uptake of siRNA/DOX/GH-DPP nanoparticles was
investigated through fluorescence microscope. Green and red
fluorescence signals indicate the uptake of siRNA and DOX,
respectively, while blue fluorescence signals show the nuclei
stained with DAPI. Overlays of three fluorescence picture
revealed the distribution of DOX and siRNA in the cytoplasm.
As shown in Figure 6A, there were obvious red fluorescence
signals in cytoplasm of HepG2 cells incubating with three drug
formulations, indicating that DOX was taken up by tumor
cells. There was little green fluorescence signals in the group
treated by mixture of free DOX and siRNA, indicating that
little siRNA were taken up by tumor cells. Compared to drug-
loaded DPP nanoparticles, stronger green fluorescence signals
were found in HepG2 cells incubating with DOX/GH-DPP
nanoparticles. This result was due to the coverage of GA-
HA conjugate, which increase the amounts of drugs via GA-
receptor-mediated endocytosis. The down-regulation of BCL-
2 gene in HepG2 cells was assessed by western blot assays.
After treated with siRNA/DOX/DPP and siRNA/DOX/GH-DPP
nanoparticles, the expression of BCL-2 protein was inhibited
obviously in comparison with the control group (Figures 6B,C),
suggesting that the up-regulation of BCL-2 in HepG2 cells
could be reversed by RNA interference basing on GH-DPP
nanoparticles.

In vivo Biodistribution of GH-DPP
Nanoparticles
DiR-loaded nanoparticles were prepared to investigate the
biodistribution of GH-DPP in vivo (Frangioni, 2003). After
injection of DiR formulations, fluorescence signals could be
monitored in liver and tumor. As shown in Figure 7, there
were strong fluorescence signals in the tumor for DiR-loaded
nanoparticles compared to free DiR, indicating the nano-carrier
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FIGURE 3 | Characteristics of siRNA/DOX-loaded GH-DPP nanoparticles. (A) The siRNA retardation assay of GH-DPP at the mass ratio of DPP to siRNA from
100:256 to 100:4 (1, 100:128; 2, 100:64; 3, 100:32; 4, 100:16; 5, 100:8; 6, 100:4). (B–C) Particle size distribution of siRNA/DOX/ DPP and siRNA/DOX/GH-DPP
nanoparticles. (D–E) TEM image of siRNA/DOX/ DPP and siRNA/DOX/GH-DPP nanoparticles.

FIGURE 4 | Release profile of siRNA and DOX-loaded nanoparticles. (A) siRNA release from GH-DPP or DPP nanoparticles in pH 7.4 or 5.0, respectively. (B) DOX
release from GH-DPP or DPP nanoparticles in pH 7.4 or 5.0, respectively.

could enhance drug accumulation in tumor region (Nichols and
Bae, 2014). Moreover, the fluorescence intensity of DiR-loaded
GH-DPP nanoparticles in the tumor was greater than that of
DiR-loaded DPP nanoparticles. This may be due to the fact
that GH-DPP nanoparticles increased accumulation in the liver
cancer cells via liver-targeting delivery, and decreased the uptake
by normal cells. After injection for 24 h, major organs and tumors
were extracted for fluorescent intensity evaluation. Similar to
DiR biodistribution in Figure 7A, the DiR-loaded GH-DPP

treatment group show strongest fluorescent signals in tumor
region (Figure 7B).

In vivo Anti-tumor Effect of
siRNA/DOX/GH-DPP Nanoparticles
The combination of DOX and Bcl-2-siRNA was used
in anti-hepatoma therapy. The anti-tumor effect of
siRNA/DOX/GH-DPP nanoparticles was evaluated in the H22
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FIGURE 5 | The cell viability of blank nanoparticles against (A) A549 cells and (B) HepG2 cells for 48 h. The cell viability of drug formulations against (C) A549 cells
and (D) HepG2 cells for 48 h.

tumor-bearing mice. As shown in Figure 8, the groups treated
with saline and blank GH-DPP nanoparticles showed a rapid
growth in tumor size, and no significant difference was observed
between the blank GH-DPP group and the control group,
indicating that the GH-DPP nanoparticles was biocompatible.
In contrast, the groups treated with drug formulations showed
obvious growth inhibition. In vivo tumor inhibition ratio
(IR) of co-delivery nanoparticles for DOX and Bcl-2 siRNA
was higher than GH-PDD nanoparticles for delivery of DOX
or siRNA alone, indicating that combined therapy of DOX
and Bcl-2 siRNA improved antitumor efficacy. Interestingly,
siRNA/DOX/GH-DPP nanoparticles showed stronger anti-
tumor effect than siRNA/DOX/DPP nanoparticles. This may
be due to GA-HA conjugate promoting the accumulation
of drug-loaded nanoparticles in tumor region, resulting
in higher anti-hepatoma efficacy than siRNA/DOX/DPP
nanoparticles.

Figure 8B showed that the body weight of mice treated
with free DOX was lower than those treated with drug-loaded
nanoparticles, indicating that GH-DPP nanoparticles decreased
the systemic toxicity of DOX. As shown in Figure 8E, obvious
intercellular vacuolation and dissolution of myocardial fibers
were observed in the group of free DOX, indicating that the
injection of free DOX induced significant cardiotoxicity. By
contrast, there was no obvious degeneration of myocardial
fibers in the groups which were injected by drug-loaded
nanoparticles. These results showed that combined therapy

basing on nano-carriers improved the anti-tumor effect and
alleviated the systemic toxicity of DOX.

The tumors were extracted for H and E staining to evaluate the
antitumor effect. As shown in Figure 8F, tumor cells treated with
co-delivery system exhibited obvious karyolysis and pyknosis
with more cytoplasmic vacuolation in comparison to single
drug formulation, indicating that combination therapy exhibited
higher antitumor effect. In comparison with siRNA/DOX/DPP
nanoparticles, the siRNA/DOX/GH-DPP nanoparticles induced
more shrunk nuclei and lower cellular density, suggesting
that introduction of GA-HA promote the liver-targeting
delivery of drugs, resulting in more effective treatment. The
expression of BCL-2 protein was evaluated in the tumor by
immunohistochemical assay. The high expression of BCL-2
protein was observed in the groups of free DOX and DOX/GH-
DPP nanoparticles. By comparison, the group treated with
co-delivery systems showed obvious suppression of BCL-2
expression (Cao et al., 2011).

DISCUSSION

Liver cancer has become one of the highest incidences of
malignant tumor in the world. Conventional chemotherapy has
severe system toxicity, and always fails in MDR (Perez-Herrero
and Fernandez-Medarde, 2015). Some efforts have been focused
on the combination of two or more therapeutic approaches
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FIGURE 6 | Cellular uptake and western blot analyses. (A) The images of HepG2 cells treated with mixture of free DOX and FITC-labeled siRNA, siRNA/DOX/DPP or
siRNA/DOX/GH-DPP nanoparticles for 4 h, respectively. FITC channel (green) for FITC-labeled siRNA, TRITC channel (red) for DOX, and DAPI channel (blue) for
nucleus were presented simultaneously. (B,C) Protein expression of BCL-2 evaluated by western blot analysis with different treatments. ∗∗P < 0.01 vs. control.

with different mechanisms. The combination of chemotherapy
drugs and RNA interference has attracted more attention for
the enhanced sensitivity of drugs against tumor cells due to the
silence of oncogene (Li et al., 2018). Moreover, nanoparticles
for drug delivery have been proven as the useful vehicles
of anti-tumor drugs or gene for liver-targeting delivery. The
nano-carriers could accumulate in tumor region via active-
targeted manner when they are modified by liver-targeting
moiety, resulting in loss of side effect from drugs (Chen et al.,
2014).

In this study, we prepared the GH-DPP nanoparticles
for co-delivery of DOX and Bcl-2 siRNA for liver cancer
therapy. The siRNA/DOX/GH-DPP nanoparticles were spherical
in shape, negative in zeta potential with an average particle
size of 185.4 nm. There was an obvious difference in
zeta potential between siRNA/DOX/GH-DPP (negative) and
siRNA/DOX/DPP nanoparticles (positive). This was due to
the introduction of the negatively charged GA-HA conjugate
which induced the shift of surface charge of nano-carriers.

The co-delivery system of DOX and Bcl-2 siRNA showed
time-dependent sustained release in vitro. Compared to DPP
nanoparticles, GH-DPP nanoparticles showed slower DOX
release. This might due to the fact the coverage layer (GA-HA)
delay the release of DOX from GH-DPP.

In vitro cytotoxicity test showed that siRNA/DOX/GH-
DPP nanoparticles exhibited a better therapeutic effect than
delivering DOX or Bcl-2 siRNA alone. This is due to that
fact that co-delivery of DOX and Bcl-2 siRNA produce a
synergistic anti-tumor effect in which sensitivity of HepG2
cells to DOX was enhanced owing to down-regulation of
BCL-2 by RNA interference. Moreover, siRNA/DOX/GH-
DPP nanoparticles exhibited higher cytotoxicity than
siRNA/DOX/DPP nanoparticles against HepG2 cells (GA-
receptor over-expressed). Interestingly, the cytotoxicity of
siRNA/DOX/GH-DPP against A549 cells (no GA-receptor) was
lower than that of siRNA/DOX/DPP. The possible explanation
was that the introduction of GA-HA conjugate promotes the
cellular uptake of drug-loaded GH-DPP nanoparticles by HepG2
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FIGURE 7 | (A) Real-time NIRF images of H22 tumors-bearing mice after tail vein injection of free DiR, DiR/DPP and DiR/GH-DPP nanoparticles for 24 h. The tumors
are circled in red. (B) Ex vivo NIRF images of organs and tumors excised at 24 h.

cells via GA-receptor-mediated endocytosis, leading to higher
cytotoxicity (Wu J. et al., 2018). However, there was no GA
receptor on A549 cells, and drug-loaded DPP nanoparticles

(positive charged) were easily taken up by tumor cells, resulting
in higher cytotoxicity than drug-loaded GH-DPP nanoparticles
(negative charged).
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FIGURE 8 | Inhibition of tumor growth by injection of physiological saline (control), blank GH-DPP nanoparticles, free DOX, siRNA/DPP, DOX/DPP, siRNA/DOX/DPP
or siRNA/DOX/GH-DPP nanoparticles, respectively. (A) Tumor growth curves; (B) Body weight changes; (C) The tumor growth inhibition rate; (D) excised tumors of
each group; (E) Histological observation of heart for H22 tumor-bearing mice treated with different drug formulations; (F) The histological features of H22
subcutaneous tumor sections are characterized by H and E and BCL-2 immunohistochemical analysis. The data represent the mean of the tumor volume or body
weight from five mice ± SD; ∗P < 0.05 and ∗∗P < 0.01.

Figure 6A showed that DOX or siRNA can be effectively
taken up by HepG2 cells compared with mixture of free DOX
and siRNA. There were stronger fluorescence signals in HepG2

cells incubated with drug-loaded GH-DPP than drug-loaded
DPP nanoparticles. This result may be due to the coverage of
GA-HA conjugate, which increase the amounts of cellular uptake
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via GA-receptor-mediated endocytosis (Yan et al., 2018). In vivo
near-infrared fluorescence imaging shows that the fluorescence
intensity of DiR-loaded GH-DPP nanoparticles in the tumor was
greater than that of DiR-loaded DPP nanoparticles. This may be
due to the fact that DiR-loaded GH-DPP nanoparticles could
be accumulated in the tumor tissue by liver-targeting delivery
manner (Fan et al., 2015).

As shown in Figure 8, there was no significant difference
in body weight and cardiotoxicity between the blank GH-DPP
group and the control group. By contrast, the treatment of free
DOX induced obvious intercellular vacuolation and dissolution
of myocardial fibers, showing significant cardiotoxicity.
This result suggested that the GH-DPP nanoparticles were
biocompatible and useful for the delivery of chemotherapy
drugs (Sun et al., 2018). Compared with nano-formulations
for delivery DOX or siRNA alone, siRNA/DOX/GH-DPP
nanoparticles showed stronger anti-tumor effect, indicating
combination therapy could improve the anti-tumor efficiency
by enhancing the sensitivity of cancer cells for chemotherapy
drugs through inhibiting the expression of Bcl-2 protein (Chen
et al., 2014). Compared to siRNA/DOX/DPP nanoparticles,
siRNA/DOX/GH-DPP nanoparticles exhibit stronger antitumor
effect. These results showed that the introduction of GA-
HA conjugate was helpful to promote the accumulation of
drug-loaded nanoparticles in tumor region, resulting in higher
anti-hepatoma efficacy (Cai et al., 2016).

CONCLUSION

Doxorubicin-loaded DPP nanoparticles were self-assembled
and then complexed successively with Bcl-2 siRNA and GA-
HA conjugate to prepare a co-delivery system. The GH-DPP
nanoparticles could simultaneously deliver siRNA and DOX
into HepG2 cells, and GA-receptor-mediated internalization
significantly increased the cellular uptake efficiency. In vitro
and in vivo anti-tumor effects revealed that siRNA/DOX/GH-
DPP nanoparticles could suppress the expression of Bcl-2 gene,
enhanced cell apoptosis, and exhibited higher anti-tumor effect.

The results showed that GH-DPP nanoparticles are efficient
nano-carrier for co-delivery of siRNA and hydrophobic drug in
combined therapy.
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Despite the significant achievements in chemotherapy, cancer remains one of the

leading causes of death. Target therapy revolutionized this field, but efficiencies of

target drugs show dramatic variation among individual patients. Personalization of target

therapies remains, therefore, a challenge in oncology. Here, we proposed molecular

pathway-based algorithm for scoring of target drugs using high throughput mutation

data to personalize their clinical efficacies. This algorithm was validated on 3,800 exome

mutation profiles from The Cancer Genome Atlas (TCGA) project for 128 target drugs.

The output values termedMutational Drug Scores (MDS) showed positive correlation with

the published drug efficiencies in clinical trials. We also used MDS approach to simulate

all known protein coding genes as the putative drug targets. The model used was built on

the basis of 18,273 mutation profiles from COSMIC database for eight cancer types. We

found that the MDS algorithm-predicted hits frequently coincide with those already used

as targets of the existing cancer drugs, but several novel candidates can be considered

promising for further developments. Our results evidence that the MDS is applicable to

ranking of anticancer drugs and can be applied for the identification of novel molecular

targets.

Keywords: cancer, DNA mutation, molecular pathways, biomarker, target drugs, tyrosine kinase inhibitors, nibs,

mabs

INTRODUCTION

Globally, cancer is one of the major causes of death (Centers for Disease Control and Prevention,
2017). For several decades, chemotherapy remains a key treatment for many cancers, often with
impressive success rates. For example, its use in testicular cancer turned near complete mortality to
>90% disease-specific survival (Hanna and Einhorn, 2014; Oldenburg et al., 2015). However, most
of the advanced cancers remain incurable and/or unresponsive using standard chemotherapy
approaches, frequently develop resistance to treatments and relapse (Vasey, 2003; Housman et al.,
2014). More recently, a new generation of drugs has been developed that specifically target
functional tumor marker molecules. These medicines termed Target drugs have one or a few
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specific molecular targets in a cell (Druker et al., 2001a,b;
Sawyers, 2004; Spirin et al., 2017). They have greater selectivity
and generally lower toxicity than the conventional chemotherapy
(Joo et al., 2013). Structurally, they can be either low molecular
mass inhibitor molecules or monoclonal antibodies (Padma,
2015). The repertoire of their molecular targets is permanently
growing and now includes receptor and intracellular tyrosine
kinases (Baselga, 2006), vascular endothelial growth factor
(Rini, 2009), immune checkpoint molecules such as PD1,
PDL1, and CTLA4 (Azoury et al., 2015), poly(ADP-ribose)
polymerase (Anders et al., 2010), mTOR inhibitors (Xie et al.,
2016), hormone receptors (Ko and Balk, 2004), proteasomal
components (Kisselev et al., 2012), ganglioside GD2 (Suzuki
and Cheung, 2015), and cancer-specific fusion proteins (Giles
et al., 2005). For many cancers, the emergence of target drugs
was highly beneficial. For example, trastuzumab (anti-HER2
monoclonal antibody) and other related medications at least
doubled median survival time in patients with metastatic HER2-
positive breast cancer (Hudis, 2007; Nahta and Esteva, 2007). In
melanoma, immune checkpoint inhibitors, and anti-BRAF target
drugs like Vemurafenib and Dabrafenib dramatically increased
the patient’s chances to respond to treatment and to increase
survival (Chapman et al., 2011; Prieto et al., 2012). Target drugs
were also of a great advantage for inoperable kidney cancer,
before almost uncurable (Ghidini et al., 2017).

The efficiencies of target drugs vary from patient to patient
(Ma and Lu, 2011) and the results of clinical trials clearly evidence
that the drugs considered inefficient for an overall cohort of
a given cancer type, may be beneficial for a small fraction of
the patients (Zappa and Mousa, 2016). For example, the anti-
EGFR drugs gefitinib and erlotinib showed little advantage in the
randomized trials on patients with non-small cell lung cancer.
However, ∼10-15% of the patients responded to the treatment
and had longer survival characteristics. It was further understood
that these patients had activating mutations of EGFR gene and
that these mutations, therefore, can predict response to the
EGFR-targeting therapies (Gridelli et al., 2011). Interestingly, the
same approach was ineffective in colorectal cancer, where EGFR-
mutated status had no predictive power for the anti-EGFR drugs
cetuximab and panitumumab. In the latter case, it is the wild-type
status of KRAS gene (∼60% of all the cases) that is indicative of
tumor response to these drugs (Grothey and Lenz, 2012).

The price for inefficient treatment is high as it is converted
from decreased patient’s survival characteristics and overall
clinical expenses. There are currently more than 200 different
anticancer target drugs approved in different countries, and
this number grows every year (Law et al., 2014). However, the
predictive molecular diagnostic tests are available for only a
minor fraction of drugs, in a minor fraction of cancer types
(Hornberger et al., 2005; Le Tourneau et al., 2014; Buzdin

Abbreviations: CDS length, Coding DNA Sequence Length; COSMIC, Catalog

Of Somatic Mutations In Cancer; FDA, Food and Drug Administration; ICGC,

International Cancer Genome Consortium; MDS, Mutational Drug Scores; MR,

Mutation rate; nMR, Normalized mutation rate; NIH, The National Institutes of

Health; PAS, Pathway Activation Strength; PI, Pathway instability; TCGA, The

Cancer Genome Atlas; TC, Target Conversion.

et al., 2018). This makes the clinician’s decision on drug
prescription a difficult task somewhat similar to finding needle
in a haystack. The problem of choosing the right medication
for the right patient is currently well understood, so US
FDA(Food and Drug Administration) strongly recommends
any new target drug emerging on the market to be supplied
with the companion diagnostics test1. It is, therefore, of a
great importance to identify robust predictive biomarkers of
target drug efficacy, for as many cancer-drug combinations as
possible. Recently, a new generation of molecular markers has
been proposed involving gene combinations and even entire
molecular pathways (Gu et al., 2011; Li et al., 2014; Toren
and Zoubeidi, 2014). Here, the biomarkers used are not just
a single gene or single locus-based mutation, expression or
epigenetic features, but rather the aggregated combinations of
those, crosslinking the physiologically relevant gene products
(Diamandis, 2014; Sanchez-Vega et al., 2018; Zaim et al., 2018).
The pathway-based approach has been better developed for
the high throughput gene expression data (Khatri et al., 2012;
Buzdin A. A. et al., 2017; Buzdin et al., 2018) where the
Pathway Activation Strength (PAS) may be used as an aggregated
biomarker (Buzdin et al., 2014). The formulas for PAS calculation
may be different; they normally consider relative concentrations
of gene products, internal molecular architecture of pathways
and gene coexpression patterns (Ozerov et al., 2016; Aliper et al.,
2017; Buzdin et al., 2018). PAS was shown to be more efficient
as a biomarker than the individual gene expression data (Borisov
et al., 2014, 2017), and PAS biomarkers were further generated
for a plethora of normal and pathological conditions, including
cancer response to treatments (Kurz et al., 2017; Petrov et al.,
2017; Spirin et al., 2017; Wirsching et al., 2017; Sorokin et al.,
2018).

Furthermore, a method for ranking of more than a 100 of
target anticancer drugs has been recently published based on
the PAS scoring and the pathway enrichments by the molecular
targets of drugs (Artemov et al., 2015). This approach termed
Drug Scoring was experimentally shown promising for drugs
prescription to advanced solid tumor patients (Buzdin A. et al.,
2017; Buzdin et al., 2018; Poddubskaya et al., 2018). However,
good quality expression profiles required for PAS-based Drug
Scoring frequently cannot be obtained due to apparent lack of
biopsy biomaterials and RNA degradation. To our knowledge, so
far there were no published reports on the application of gene
mutation data for Drug Scoring.

In this study, for the first time we proposed and tested
10 alternative pathway-based Drug Scoring algorithms utilizing
mutations data. These algorithms were used for the data from
3,800 published cancer mutation profiles representing eight
tumor localizations and validated using the published clinical
trials data. We showed that several mutation-based Drug Scoring
methods can be used efficiently for predicting the effectiveness of
target drugs. This has been evidenced by statistically significant
positive correlations between Drug Score ratings of individual

1For Consumers - Personalized Medicine and Companion Diagnostics Go

Hand-in-Hand Available at: https://www.fda.gov/ForConsumers/ucm407328.htm

[Accessed October 15, 2018].
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drugs and their therapeutic success reflected by the completed
phases of clinical trials for the respective cancer types. We also
used the best Drug Scoring algorithm to simulate all known
protein coding genes as the potential drug targets. We found
that the algorithm-predicted most efficient targets are highly
congruent with the molecular targets already used by the real
anticancer drugs.

MATERIALS AND METHODS

Mutation Data
The human mutation dataset was obtained from the Catalog Of
Somatic Mutations In Cancer (COSMIC) (Forbes et al., 2017).
COSMIC aggregates and annotates mutation data from various
sources by providing lists of verified somatic mutations. We
downloaded the data from COSMIC website, version 76. The
complete dataset includes 6,651,236 somaticmutation records for
20,528 genes in 19,434 tumor samples of 37 primary localizations.

The Algorithm Validation Dataset
For the validation of drug scoring algorithms, we extracted
mutation data only for the primary localizations containing at
least 100 samples indexed in COSMIC and originally taken from
The Cancer Genome Atlas (TCGA) project (Tomczak et al.,
2015; Forbes et al., 2017) because of the uniform sequencing and
data processing pipeline used there. For the algorithm validation
dataset, we totally took 3,800 tumor mutation profiles from
eight primary localizations: central nervous system, kidney, large
intestine (including cecum, colon, and rectum), liver, lung, ovary,
stomach, thyroid gland (Table 1).

The COSMIC data were processed with script written in R
(version 3.4.3) to obtain mutation profile for each tumor1. The
processed data is available as Supplementary Data Sheet 1.

The Dataset for Prediction of Potential
Molecular Targets
We used the full COSMIC dataset to increase the statistical
significance and to investigate the effectiveness of potential
target drugs for a maximum range of cancer localizations.
However, we excluded the samples related to cell cultures or
tumor xenograft to standardize the analysis.We excluded records
having the followingmarks in the “Sample source” field: organoid

TABLE 1 | The structure of algorithm validation dataset.

Localization (COSMIC

nomenclature)

Number of

samples

Disease, its

abbreviation

Central nervous system 657 Gliomas, GL

Kidney 601 Kidney cancer, KC

Large intestine 620 Colorectal cancer, CRC

Liver 188 Hepatic cancer, HC

Lung 569 Non-small cell lung cancer, NSCLC

Ovary 474 Ovarian cancer, OVC

Stomach 288 Stomach cancer, STC

Thyroid 403 Thyroid cancer, THC

culture, short-term culture, cell-line, xenograft. Thus, the final
dataset included 6,027,881 mutations records in 18,273 in tumor
samples of 35 primary localizations. The COSMIC data were
processed with script written in R (version 3.4.3) to return
mutation rates for all genes2. The processed data is available as
Supplementary Data Sheet 2.

Clinical Trials Data
We extracted clinical trials data from the web sites of NIH
(the National Institutes of Health)3 and US FDA4. They were
processed by manually curation of web data as of July 2017. The
processed clinical trials data used for the correlation studies are
shown on Supplementary Table 1.

Molecular Pathways Data
The gene contents data about 3,125 human molecular pathways
used to calculate mutation drug scores were extracted from
Reactome (Croft et al., 2014), NCI Pathway Interaction Database
(Schaefer et al., 2009), Kyoto Encyclopedia of Genes and
Genomes (Kanehisa and Goto, 2000), HumanCyc (Romero et al.,
2004), Biocarta (Nishimura, 2001), Qiagen5. For drug scores
calculation, we used only the 1,752 pathways including at least
10 gene products because of previously reported poor theoretical
data aggregation effect for smaller pathways (Borisov et al., 2017).
The information about molecular specificities of 128 anticancer
target drugs were obtained from databases DrugBank (Law et al.,
2014) and ConnectivityMap (Lamb et al., 2006).

Data Presentation
The results were visualized using package ggplot2 (Wickham,
2009).

RESULTS

In this study, we developed a molecular pathway-based method
of target drug scoring using high throughput mutation data.

Algorithms of Mutation Drug Scoring
The principle of Mutation Drug Scoring (MDS) methods
proposed here deals with quantization of mutation enrichment
for the molecular pathways having molecular targets of a drug
under investigation. Overall, they are based on the rationale
that the greater is the mutation level of the respective pathways,
the higher will be the expected drug efficiency. The mutation
enrichment of a molecular pathway called pathway instability
(PI) is calculated based on the relative mutation rates (MR) of
its member genes. Under mutations, we meant here the changes
in protein coding sequence understood as such in the Catalog of
Somatic Mutations in Cancer (COSMIC) v.76 database (Forbes
et al., 2016). COSMIC is the world’s largest database of somatic

2Cosmic v76 processing Available at: https://gitlab.com/White_Knight/

cosmic76_processing/tree/master [Accessed October 22, 2018].
3ClinicalTrials.gov Available at: https://clinicaltrials.gov/ [Accessed July 25, 2017]
4US Food andDrugAdministrationHome Page Available at: https://www.fda.gov/

[Accessed July 25, 2017].
5QIAGEN - Sample to Insight Available at: https://www.qiagen.com/us/shop/

genes-and-pathways/pathway-central/ [Accessed September 19, 2018].
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mutations relating to human cancers. We used only Genome-
wide Screen Data to estimateMR correctly. This part of COSMIC
consists of peer reviewed large-scale genome screening data and
data from the validated sources such as The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC).

Mutation rate (MR) is calculated according to the formula:

MRn,g =
N mut( n,g)

N samples (g)
,

where MRn,g is MR of a gene n in a group of samples g; N
mut(n,g) is the total number of mutations for gene n in a group
of samples g; N samples (g) is the number of samples in a group
g. The MR values strongly positively correlated with the lengths
of gene coding DNA sequence (CDS; data not shown). In order
to remove bias linked with the CDS length, we took for further
consideration a normalized value termed Normalized Mutation
Rate (nMR) expressed by the formula:

nMRn=
1000 ∗MRn

Length CDS (n)
,

where nMRn is the nMR of a gene n; MRn is the MR of a gene
n; Length CDS(n) is the length of CDS of gene n in nucleotides.
Indeed, normalization of this metric enabled to terminate any
CDS-linked bias (data not shown).

To determine if gene n is included in pathway p, we introduced
a Boolean flag pathway-gene indicator PGn ,p expressed by the
formula:

PGn,p =

{

1, pathway p includes gene n,
0, pathway p doesn′t include gene n;

The Pathway Instability (PI) score is then calculated as follows:

PIp=
∑

n
nMRnPGn,p ,

where PIp is pathway instability score for a pathway p; nMRn
is the normalized mutation rate of a gene n, PGn ,p is pathway-
gene indicator for gene n and pathway p. Pathway instability score
characterizes the mutation enrichment of a pathway (Pathway
instability is an effective new mutation-based type of cancer
biomarkers, 2018, in preparation). To formalize if gene n is
molecular target of drug d, we introduced another Boolean flag
drug target index, DTId,n:

DTId,n =

{

1, drug d has target gene n,

0, drug d doesn
′

t have target gene n

To complete DTI database for this study, we used the data about
molecular specificities of 128 target drugs extracted from the
databases DrugBank (Law et al., 2014) and Connectivity Map
(Lamb et al., 2006).

To link PI scores and estimated drug efficiencies, the following
basic formula was proposed for the calculation ofMutation Drug
Score (MDS):

MDSd =

∑

n
DTId,n

∑

p
PGn,p PIp , (1)

where d is drug name; n is gene name; p is pathway name;MDSd
isMDS for drug d;DTId,n is drug target index for drug d and gene
n; PIp is Pathway Instability of pathway p; PGn ,p is pathway-gene
indicator for gene n and pathway p.

The above basic formula (1) was modified to generate several
alternative methods of drug scoring.

- Pathway size-normalized. Since molecular pathways include
considerably different number of genes varying from dozens
to hundreds, we proposed a modification of the calculation
method (1) where normalization is performed forMDS on the
respective number of genes for each PI member:

MDS_Nd =

∑

n
DTId,n

∑

p
PGn,p PIp/kp , (2)

where kp is number of genes in pathway p.
- Single count-normalized. Impact of each gene participating in
pathways targeted by drug d is counted only once:

MDS_gened =

∑

n
nMRn GIId,n , (3)

where GIId,n – Boolean flag gene involvement index,

GIId,n =
{

1, gene n participates in at least one pathway targeted by drug d

0, gene n doesn′t participate in pathways targeted by drug d

- Number of pathways-normalized. MDS for drug d is
normalized on the number of its targeted molecular pathways.

MDS_md = MDSd/md, (4)

wheremd – number of pathways targeted by drug d.
- Number of pathways-normalized. MDS_N is additionally
normalized on the number of pathways targeted by drug d
(md).

MDS_N_md = MDS_N/md (5)

- Number of target genes-normalized. MDS_bd is additionally
normalized on the number of target genes for drug d, (bd).

MDS_bd = MDSd/bd (6)

- Number of target genes-normalized MDS_N. MDS_N,
normalized on the number of target genes for drug d, (bd).

MDS_N_bd = MDS_N/bd (7)

- Number of target genes-normalized MDS_gene. MDS_gene,
normalized on the number of target genes for drug d, (bd).

MDS_gene_bd = MDS_gene/bd (8)

- Target genes dependent only. MDS2 is calculated considering
only mutation frequencies of target genes.

MDS2d =

∑

p
PGn,p

∑

n
DTId,nnMRn (9)
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- Single count-normalized, target genes dependent only.
MDS2_gene is calculated, considering each target gene for
drug d only one time.

MDS2_gened =

∑

n
DTId,n NMRn GIId,n (10)

For these algorithms of mutation-based drug scoring, we next
compared their congruences with the published clinical trials
data.

Validation of Mutation Drug Scoring (MDS)
Algorithms on Clinical Trials Data
We calculated different versions of MDS according to formulae
(1–10) for 128 anticancer target drugs, for eight cancer types
(Supplementary Data Sheet 3). We examined somatic mutation
profiles for 3,800 samples of the following primary tumor
localizations: large intestine (including cecum, colon and
rectum), lung, kidney, stomach, ovarian, central nervous system,
liver, thyroid (Table 1).

Mutation profiles were extracted from COSMIC v76 database
(Forbes et al., 2016). To validate theMDS algorithms, we selected
only tumor samples related to TCGA project because it was
the largest source of biosamples profiled using a single deep
sequencing and bionformatic pipeline (Tomczak et al., 2015).
Molecular specificities of drugs were obtained from DrugBank
(Law et al., 2014) and Connectivity Map (Lamb et al., 2006)
databases. The information about clinical approval and the
completion of phases of clinical trials for 128 target drugs for
the above eight tumor localizations was taken from the web
sites of NIH and US FDA. To measure completion of clinical
investigations for a drug, we introduced the metric termed
Clinical Status. These values are congruent with the apparent
efficiencies of drugs for the given cancer types. The same drugs
most frequently had different clinical statuses for the different
cancer types.

The Clinical Status varied in a range from 0 to 1 proportional
to the top phase of clinical trials passed by a drug for a given
cancer type. The Clinical Status grows incrementally depending
on the completion of the clinical trials phases 1–4, while
the later phases have a greater specific weight, because they
allow to more accurately determine clinical efficacy of a drug
(Table 2).

TABLE 2 | Clinical Status of drug, according of the top passed phases of clinical

trials.

Phase of clinical trials Clinical status

Phase I ongoing 0.1

Phase I/II ongoing (Phase I completed) 0.2

Phase II ongoing 0.3

Phase II completed 0.4

Phase III ongoing 0.7

Phase III completed 0.85

Phase IV (drug approved and marketed) 1

The complete Clinical Status information for 128 drugs under
investigation is shown on Supplementary Table 1. The major
limitation of this approach is that only the drugs that had been
already clinically investigated for the respective tumor type can
be ranked in such a way.

To investigate the capacities of different versions of Mutation
Drug Scores to successfully predicts clinical efficiencies of
drugs, we analyzed how ranks of MDS values correlated
with Clinical Status of drugs. We calculated correlations
and compared distributions of the Spearman correlation
coefficients. To calculate correlations, we took all cancer
mutation profiles together without separation on cancer types
(Figure 1).

Overall, the markedly better correlations were seen for the
MDS and MDS_N types of drug scoring (Figure 1). We next
analyzed the cancer type-specific distributions (Figure 2). It was
seen that both MDS and MDS_N scores positively correlated
with the drugs clinical efficiencies in all the localizations
investigated, thus confirming their top status among the drug
scoring algorithms. Among those, MDS showed best overall

FIGURE 1 | Correlation between Clinical Status and MDS rank for 10 types of

drug scoring in eight cancer types at once. (A) Distributions of Spearman

correlation coefficients between Clinical Status and MDS rank for 128 target

drugs in 3,800 tumor samples. MDS rank of a drug was calculated as the

individual drug’s position in the rating (from top to low) of all drugs under

investigation. Ten violin plots distributed along X-axis, each represent a

particular type of drug scoring. The Y-axis reflects density distributions of

correlations between Clinical Status and MDS ranks. Boxes indicate the

second and third quartiles of distribution, black dots indicate outliers. (B) The

plot demonstrates the distributions of p-value for the correlation coefficients

between Clinical Status and MDS rank for 128 target drugs in the same tumor

samples. The horizontal green line corresponds to p = 0.05.
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FIGURE 2 | Correlation between Clinical Status and MDS rank for two best

types of drug scoring in eight cancer types separately. (A) Distributions of

Spearman correlation coefficients between Clinical Status and MDS rank for

128 target drugs in eight tumor types. MDS rank of a drug was calculated as

the drug’s position in the rating (from top to low) of all drugs under study. The

drug scoring methods are shown in horizontal lines, and the cancer types are

placed vertically. The violin plots distributed along X-axis, each represent a

particular cancer type. The Y-axis reflects density distributions of correlations

between Clinical Status and MDS ranks. Boxes indicate the second and third

quartiles of distribution, black dots indicate outliers. (B) The plot shows the

distributions of p-value for the correlation coefficients between Clinical Status

and MDS rank for 128 target drugs in the same tumor types. The horizontal

green line corresponds to p = 0.05.

functional characteristics and was, therefore, used in further
analyses.

Application of MDS for Identification of
Possible Target Genes
We next tested the MDS algorithm for its capacity to identify
potentially valuable drug targets. To this end, we modeled a
situation when each gene specifically corresponds to one target
drug. Those simulated, or virtual drugs, also were specific each
to only one gene product. Using the database of 1,752 molecular
pathways, we were able to calculate MDS for 8,736 virtual
drugs specific to the same number of genes included in these
pathways. For this analysis, we used 18,273 full-exome tumor
mutation profiles from the COSMIC v76 database. Top 30
molecular targets with highestMDS values and already clinically
approved cancer drugs specific for these molecular targets are
listed on Table 3. The complete MDS calculation data are given
in Supplementary Table 2.

We next ranked all the virtual drugs according to their
MDS values and compared if the same molecular targets are

TABLE 3 | Top 30 molecular targets sorted by MDS and clinically approved drugs

using these molecular targets.

Potential molecular

targets

MDS Existing relevant drugs

PIK3CA 387.11 Idelalisib

PIK3R1 371.31

MAPK1 354.75

MAPK3 343.81

HRAS 343.66

PIK3CB 313.02 Idelalisib

AKT1 305.54 Perifosine

PIK3R2 302.74

PIK3CD 293.15 Idelalisib

KRAS 291.42

PIK3R3 290.07

MAP2K1 288.80 Binimetinib, cobimetinib, selumetinib,

trametinib

NRAS 287.90

PIK3R5 279.34

RAF1 271.72 Dabrafenib, regorafenib, sorafenib

MAPK8 267.73

MAP2K2 257.33 Binimetinib, cobimetinib, selumetinib,

trametinib

TP53 255.89

GRB2 254.36

SOS1 243.39

RAC1 239.32

MAPK9 233.01

EGFR 232.80 Afatinib, brigatinib, cetuximab, erlotinib,

flavopiridol, foretinib, gefitinib, lapatinib,

masitinib, nimotuzumab, osimertinib,

panitumumab, vandetanib, necitumumab

MAPK14 224.08

MAPK10 222.51

EGF 214.20

RELA 212.43

PRKCA 211.99

NFKB1 211.63 Thalidomide

AKT2 205.38 Perifosine

already exploited by the existing 128 target cancer drugs
(Figure 3).

To do this, we introduced an auxiliary value termed Target
Conversion (TC). It reflects the percentage share of known
molecular targets among predictedmolecular targets.

TC=
number of knownmolecular targets

number of predictedmolecular targets
∗100%

For the overall (complete) list of potential molecular targets,
TC was 2.17%. However, there was an clear-cut incremental TC
growth trend when the potential molecular targets were sorted in
the ascending order ofMDS value (Figure 3A, shown for deciles
of the potential targets). The greater TC value exceeding 10% was
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FIGURE 3 | Dependence of MDS and occurrence of molecular targets in approved cancer drugs. (A) Deciles of potential molecular targets sorted in ascending order

according to MDS value. TC was calculated for each decile, shown on vertical axes. (B) Distribution of MDS values among the potential molecular drug targets. The

color scale on the graph indicates densities of clinically approved cancer drugs exploiting the respective molecular targets.

observed for the decile of molecular targets having the highest
MDS values.

Molecular targets with the highestMDS are clearly enriched by
the existing clinically approved drugs compared to those with low
MDS scores (Figure 3A). On the other hand, target genes with
higher MDS are covered by a bigger number of approved drugs
per target, as many drugs have common molecular specificities
(Figure 3B).

The present algorithm for scoring potential drug targets
considers a cumulative mutation enrichment of molecular
pathways. For the example shown on Figure 4 (Nectin adhesion
pathway), most genes involved in a pathway are mutated
in cancers, see the color scale. The mutation enrichment
of a pathway may characterize its overall involvement in
malignization. According to the present conception of drug
scoring, the maximum efficiency of drug can be obtained by
acting on the most strongly affected molecular pathways.

DISCUSSION

In this study, we report a new bioinformatic instrument of
ranking target anticancer drugs using high throughput gene
mutation data. We proposed here 10 different versions of

molecular pathway-based mutation drug scoring. At least two
types of this scoring could provide output data positively
correlated with the clinical trials data for 128 drugs in all
eight tumor localizations tested. We hope that the pathway-
based mutation drug scoring approach has a potential of helping
clinical oncologists to implement personalized selection of target
drugs based on the individual, the patient’s tumor-specific high
throughput mutation profile.

We showed that the same approach can be applied to identify
potentially efficient molecular targets in experimental oncology.
The educated choice of new drug targets is one of the main tasks
in pharmacology (Schenone et al., 2013). Experimental search
for new efficient drug targets is still time consuming, laborious,
and expensive (Haggarty et al., 2003), so since recently a
credit is frequently given to computational predictive algorithms
(Rifaioglu et al., 2018).

The history of computational prediction of drug targets began
with prediction of druggability based on the structure of targets
and biomedical text mining (Cheng et al., 2007; Zhu et al., 2007).
Several methods have been also proposed based on known links
between drugs and genes (Luo et al., 2017). Further development
of bioinformatic methods allowed to apply for this task a set of
systems approaches based on networks of molecular interactions
(Mani et al., 2008).
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FIGURE 4 | Mutation enrichment of Nectin adhesion pathway. The pathway is targeted by Idelalisib. The pathway structure is taken from the NCI database (Schaefer

et al., 2009). The mutation burden was visualized using Oncobox pathway plot tool. The color scale reflects mutation levels of the corresponding nodes on the

pathway graph. The green arrows indicate activation, red arrow—inhibition, bold black arrow indicates molecular target of Idelalisib.

Our results provide principal evidence that the mutation drug
scoring is applicable to ranking of anticancer drugs. On the other
hand, our data suggest that these drug scoring algorithms can
be applied for the identification of novel molecular targets for
the prospective anticancer drugs. Although many genes with
high MDS already serve as molecular targets of the approved
cancer drugs, there is a number of top MDS genes that are
not yet covered by the existing medications. This latter fraction
of genes, therefore, can be considered a source of potential
targets for new drug developments. For example, the following
top 100 MDS genes can be mentioned that are not yet covered
by approved or experimental cancer or antineoplastic drugs
[according to DrugBank (Law et al., 2014), DGIdb (Cotto
et al., 2018), FDA6, HMDB (Wishart et al., 2018), Tocris7,
GeneCards (Safran et al., 2010) databases]: GRB2, SOS1,SOS2,

6US Food andDrugAdministrationHome Page Available at: https://www.fda.gov/

[Accessed July 25, 2017].
7Tocris Bioscience Available at: https://www.tocris.com/ [Accessed December 21,

2018].

SHC1, GNB1, CREB1, GNG2, GNAQ, GNB5, GNAI2. Three of
them (GRB2, GNG2, CREB1) are the targets of approved non-
oncological drugs (Pegademase bovine, Naloxone, Adenosine
monophosphate, Citalopram, Halothane), thus illustrating MDS
method potential in drug repurposing.

This study can be regarded as proof-of concept trial of MDS
approach exemplified by bigger proportion of real cancer targets
among the genes with higherMDS values. In this application, we
assessed integral MDS for all cancer types. However, in further
applications the same approach can be used for any specific
tumor type or subtype to identify targets that may seem most
promising for this particular disease. This could be valuable, for
example, for drugs repurposing among the different tumor types
and for more effectively identifying the patient cohorts in clinical
trials

The present mutation drug scoring approach scores the
molecular pathway instability caused by accumulation of
mutations and ranks drugs according to a simple rationale—the
higher is mutation burden of a pathway, the greater may
be the efficiency of a drug targeting this pathway. We hope
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these findings will be interesting to those working in the
fields of oncology, drug discovery, systems biomedicine, high
throughput mutation data analysis, personalized medicine and
molecular diagnostics.
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The citrullination modification (Cit) of proteins has received increasing attention in recent

years. This kind of protein modification was first discovered in autoimmune diseases such

as rheumatoid arthritis. The citrullination modification process is catalyzed by the peptidyl

arginine deiminases (PADIs) family. A well-known citrullination of histone involves the

key mechanism of neutrophil extracellular traps (NETs) of inflammation in the peripheral

blood. Further studies revealed that citrullination modification of proteins also involves in

carcinogenesis in human being. Citrullinated proteins disturbed the stability of proteins

and caused DNA damages. There is increasing evidence that citrullinated proteins can

be used as potential targets for cancer diagnosis or treatment. This review introduces the

concept of citrullination modification of proteins, substrate proteins, examining methods

and biological significances.

Keywords: citrullination, proteins, histone, PADIs, molecular targets

INTRODUCTION

Proteins are the main executor of life activities. The epigenetics and post-translational modification
of proteins, such as phosphorylation, acetylation, glycosylation, methylation, ubiquitination and
citrullination have been found to play important roles on pathogenesis and carcinogenesis (1–3).
Citrullination of proteins is a new kind of post-translational modification, which has been reported
to be involved in large numbers of autoimmune diseases and cancers. This review focuses on
the mechanisms, regulation, and the clinical significance of citrullinated proteins in the field of
gastrointestinal diseases.

DEFINITION OF CITRULLINATED PROTEINS

Citrullination of protein refers to the process by which the peptidyl arginine residue is converted
to citrulline by a catalytic enzyme (Figure 1). Since this process is accompanied by the removal of
an amino group, it is also called a peptidyl arginine deamination reaction. This chemical reaction
is accompanied by a change in electrostatic charge, which may affect the folding state and function
of protein, especially on histones. To date, it has been confirmed that arginine residues of dozens
of proteins can undergo citrullination modifications. The substrates could be enolase, vimentin,
keratin, filaggrin, serine protease inhibitors, proteases and metabolic enzymes (4). Moreover,
arginine residues of histones such as H3R2/R8/R17/R26, H4R3, H2A, and H1 could be citrullinated
by peptidyl arginine deiminases (PADIs) (5–8).
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FIGURE 1 | The chemical conversion process of protein citrullination. In the

presence of calcium ions, PADIs could catalyze the formation of peptidyl

citrulline from peptidyl arginine, which removes an amino group, accompanied

by the positive charge becoming electrically neutral.

Citrullination of proteins is catalyzed by PADIs, which include
five isoenzymes (PADI1-4 and PADI6) in humans. The genes
of these five isozymes are located on chromosome 1p36.13. The
coding regions of PADIs are about 2k in size, and consist of
three parts: the nitrogen end, middle part and catalytic groups
of carbon end. Regarding the subcellular localization, the PADI4
is located in the nucleus with a nuclear localization signal,
while others are mainly localized in the cytosol (9) (Figure 2).
PADI2 had been shown to be undergoing nuclear translocation
in some cells for modifying histones (10). Therefore, citrullinated
modification of histones may catalyzed by PADI4 and PADI2.
The citrullination of proteins occurs in various life processes,
including regulation of gene expression, immune response and
protein degradation (10, 11). The citrullination of proteins is also
associated with carcinogenesis in the stomach (12, 13), the large
intestine (13–15), the pancreas (16), the liver (13), and so on.

CITRULLINATION OF NON-HISTONE
PROTEINS

Citrullination of proteins could be induced by chemical
compounds. Qu et al. reported that the antiparasitic drug
nitazoxanide could induce citrullination of protein β-catenin
in colorectal cancer cells via up-regulation of PADI2 enzyme.
Citrullination of β-catenin resulted in the instability of the
protein, and then inhibited the Wnt signaling pathway. ING4, a
tumor suppressor protein, was identified as a substrate of PADI4
enzyme. Citrullination of ING4 interfered with its interaction
with p53, and then decreased the tumor suppressor function
in colon cancer cells (17). On the other hand, some research
indicated that DNA damage induced PADI4, and then increased
the citrullination of NPM1 and lamine C, which inhibited cell
growth through the p53 pathway in colon cancer cells (18).
Cantarino and colleagues found that down-regulation of PADI2
is an early event in the pathogenesis of colorectal cancer and is
associated with poor prognosis (14). Overexpression of PADI2
inhibited cell growth and was accompanied with an increase

in citrullinated protein in colon cancer cells. Overexpression of
PADI2 did not increase cell apoptosis, but arrested the cell cycle
in G1 phase (15). The exact effect of citrullination of proteins on
cancer should be studied further.

Citrullination of proteins is not only detected in in vitro
experiments, but also in human blood. Ordóñez et al. (19)
reported that up-regulation of citrullinated antithrombin in
peripheral blood of patients with rheumatoid arthritis and
colorectal cancer predicted higher risk of thrombosis. Yuzhalin
et al. (20) found that PADI4 could be secreted into the
extracellular matrix by colorectal cancer cells, catalyzing the
citrullination of proteins, thereby promoting distant metastasis
of cancer cells to liver. Increased PADI4 could be found in the
peripheral blood of patients with various malignancies such as
gastric cancer, lung cancer, hepatocellular carcinoma, esophageal
squamous cell carcinoma and breast cancer (13, 21). Until now,
multiple proteins have been found as substrates of citrullination,
includingNF-κB p65 (22), CXCL8 (23), CXCL12 (24), E2F-1 (25),
GSK3β (26), MEK1 (27), VEGFR2 (28), and so on. Obviously,
citrullination of proteins involve double-sided roles in promoting
both inflammation and anti-inflammation, as well as cancer
promotion and inhibition.

CITRULLINATION OF HISTONE PROTEINS

Citrullinated modification of histones is an epigenetic event.
As introduced above, both PADI2 and PADI4 involve the
citrullination process of histones in the nucleus. Recently,
increased citrullinated histone H3 (H3Cit) has been considered a
novel prognostic blood marker in patients with advanced cancer,
due to its higher levels compared to healthy controls (29). PADI2
has been found playing an important role in mediating histone
H3Cit modification, and promoting disease progression in some
non-digestive cancers (30, 31). McNee et al. (32) found that
PADI2 could up-regulate IL-6 expression by catalyzingH3R26Cit
of bone marrow mesenchymal stem cells of multiple myeloma,
which ultimately lead to chemo-resistance to bortezomib. PADI4
is another important enzyme in catalyzing the citrullination of
histones. DNA damage could activate the PADI4-p53 network
and catalyze histone chaperone protein, nucleophosmin (NPM1)
(18). In addition, DNA damage could catalyze citrullination of
the arginine 3 residue of histone H4 (H4R3cit) through the
p53-PADI4 pathway in non-small cell lung cancer (33).

CITRULLINATION OF PROTEINS AND
IMMUNE RESPONSE

The immune system is a major weapon against cancer.
Citrullination of proteins exist widely in immune-related diseases
and cancers. Makrygiannakis and colleagues examined biopsy
tissues from rheumatoid arthritis, myositis, tonsillitis and
inflammatory bowel disease via immunohistochemistry. They
found that there is a significant increase in citrullinated proteins
in inflammatory tissues, compared to corresponding normal
controls (34). The immune system is composed of innate
immunity and acquired immunity. Neutrophils are a member of
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FIGURE 2 | The chromosome location and structural characteristics of PADIs family. Five PADIs genes (PADI 1, 2, 3, 4, and 6) are located in the p36.13 of

chromosome 1 across a region of approximately 500 k bases. PADIs members have similar structural regions, which can be divided into three sections: nitrogen zone,

middle zone, and carbon end catalytic zone. Only PADI4 contains a nuclear localization signal at the nitrogen end of sequence, implying that PADI4 may play a role in

the cell nucleus.

the cells of innate immunity. In process of clearing bacteria, the
neutrophils secrete cell DNA, histones, and intracellular proteins
to the extracellular space or circulatory system, forming so-
called neutrophil extracellular traps (NETs). The citrullination
of histones is involved in the process of NETs. In this process,
PADI4 mediates the citrullination of histones, and results
in the unwinding of DNA and subsequently excreting into
the extracellular space (35–37). NETs are a self-protective
mechanism against harmful bacteria. Recently, Thalin et al. found
that H3Cit was significantly increased in the peripheral blood
of advanced cancer patients (29). The proportion of H3Cit-
positive neutrophils was increased in more serious patients. The
expression level of H3Cit of serum was strongly correlated with
the neutrophil activation markers, such as neutrophil elastase,
myeloperoxidase and NETs-induced factors IL-6, as well as IL-
8. Therefore, H3Cit is considered a useful blood biomarker for
evaluating inflammatory response and prognosis in advanced
cancers. Up-regulation of NETs was also identified in pancreatic
ductal adenocarcinoma. The histone modification of H3Cit was

proposed as a marker of NETs (16). In the pancreas, stimulating
factors such as pancreatic juice could induce NETs in pancreatic

ducts. Excess in NETs blocks the pancreatic duct and eventually
causes pancreatitis (38).

In the cancer immunity area, the new epitopes caused by post-

translational modification of proteins may provide a novel target

for cancer-specific immune therapy. The condition of the cancer

microenvironment including nutrient deficiency, hypoxia, redox

stress and DNA damage could irritate active expression of PADIs,

and catalyze production of citrullinated peptides. Increased
content of citrullinated peptides may be a good target for the
immune system. The cancer-specific microenvironment could
induce the immune response by citrullinated peptides, and this
is non-toxic and safe to the host. Carbohydrate metabolizing
enzyme α-enolase is a substrate of citrullinated modification.
Cook et al. (39) found that citrullination significantly induced
elevation of α-enolase in Th1 immune cells, while unmodified
wild-type peptides of α-enolase did not show this efficacy.
Citrullinated peptides of α-enolase also induced CD4+ T
activation (40, 41). The results suggested that developing tumor
vaccines against citrullinated peptides of α-enolase may be a
useful strategy (39). The function of citrullinated protein epitope
has revealed promising utility in anti-cancer immunity.

DETECTION AND BIOLOGICAL
SIGNIFICANCE OF CITRULLINATION
MODIFICATION

Citrullination modification of proteins has been reported in
several fields of cancer research. Along with the progression
of biomedical techniques, detection and identification of
citrullinated proteins in complex biological systems becomes
more feasible. Clinically, the detection of anti-cyclic citrulline
antibody has been used as an assistive method for diagnosis
and monitoring clinical rheumatoid arthritis (42, 43). Since the
citrullination modification itself leads to 1Da mass change only,
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detection of the change of low abundance is still a challenging
work. Phenylglyoxal (PG) could be covalently bonded with
citrullinated residues specifically, and used for specific probes
of labeling citrullinated proteins. The reaction could be colored
by coupling dyes such as rhodamine (Rh) or biotin, and then
identified by ELISA or mass spectrometry (13, 21, 29, 42, 43).
By means of this technology, more and more antigens with
citrullinatedmodification could be found, which will provide new
targets for diagnosis and treatment of cancers.

In an animal experiment, Mohamed and colleagues found
that nanomaterials could induce production of citrullinated
protein and auto-antibodies in mice. In their study, after
injection of nickel nanowires into mice, the levels of citrullinated
protein and PADIs enzymes were elevated in the spleen,
kidney and lymph nodes of mice, implying a systemic response
to environmental materials (44). Their results suggested that
safety of the nanoparticles needs to be evaluated further.
Citrullination modification of proteins may be an important
event for the host to recognize foreign antigens. Citrullinated
proteins may be recognized as new antigens, and are promising
for targeted therapy or CAR-T/NK cell-specific recognition
targets.

Inhibitors of PADIs demonstrated strong potential of anti-
autoimmune and anti-cancer functions in vitro and in vivo.
PADI4 is the only member of the PADI family containing a
nuclear localization signal, and can citrullinate many substrates
including histones. PADI4 functions as a corepressor of p53
and cooperates with a histone deacetylase HDAC2 to repress
the expression of tumor suppressor genes. Chlor-amidine

(Cl-amidine) is a pan-PADI inhibitor that shows inhibitory
effects on several members of PADIs family. However, its
higher IC50 (150–200 µM) limit its preclinical exploration
in cancer study and treatment (44–47). Recently, Wang and
colleagues found a lead compound, YW3-56, which could
activate a cohort of p53 target genes, and realize inhibitory
efficacy on the mTORC1 signaling pathway, thereby disturbing
autophagy and inhibiting cancerous cell growth (45). However,
since the feature of a pan-PADIs inhibitor, Cl-amidine, is
still be used in experimental study (48), and many new
small molecule inhibitors of PADI4 are being developed by
pharmacologists (49).

In summary, compared to other modification of proteins,
citrullination modification is relatively novel. The exact
regulatory mechanisms and biological significance in
carcinogenesis are largely unclear. As shown in Figure 3, many
substrates of citrullination modification are very important
in life processes and development of cancers. The accurate
identification of citrullination sites may help researchers to
elucidate the underlying molecular mechanisms of citrullination
and designing drugs for related human diseases. Several groups
made efforts to predict citrullination sites by bioinformatics.
Ju and Wang (50) provided a user-friendly web-server for
CKSAAP_CitrSite. Zhang et al. (51) published their pioneering
work of maximum-relevance-minimum-redundancy to analyze
citrullination sites, and constructed classifier by random
forest algorithm. We believe that in citrullination research
area, bioinformatics will provide some useful insights and
assistance.

FIGURE 3 | The schematic presentation of citrullinated modification of proteins and its biological significance. PADIs enzymes are activated through receptors of

ER/EGFR/HER2, oxidative stress, hypoxia, and other microenvironment factors, which initiate autophagy and DNA damage. Increased PADIs catalyze citrullination

modification of histones and non-histone proteins, and result in cell proliferation, epithelial-mesenchymal transition, migration, and inflammation. Citrullinated proteins

as a new antigen may activate immune response of T cells or induce specific antibodies.
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Micelles are highly attractive nano-drug delivery systems for targeted cancer therapy.
While they have been demonstrated to significantly alleviate the side-effects of their
cargo drugs, the therapy outcomes are usually suboptimal partially due to ineffective
drug release and endosome entrapment. Stimulus-responsive nanoparticles have
allowed controlled drug release in a smart fashion, and we want to use this concept
to design novel micelles. Herein, we reported pH-sensitive paclitaxel (PTX)-loaded poly
(ethylene glycol)-phenylhydrazone-dilaurate (PEG-BHyd-dC12) micelles (PEG-BHyd-
dC12/PTX). The micelles were spherical, with an average particle size of ∼135 nm
and a uniform size distribution. The pH-responsive properties of the micelles were
certified by both colloidal stability and drug release profile, where the particle size was
strikingly increased accompanied by faster drug release as pH decreased from 7.4 to
5.5. As a result, the micelles exhibited much stronger cytotoxicity than the pH-insensitive
counterpart micelles against various types of cancer cells due to the hydrolysis of
the building block polymers and subsequent rapid PTX release. Overall, these results
demonstrate that the PEG-BHyd-dC12 micelle is a promising drug delivery system for
cancer therapy.

Keywords: pH-sensitive, micelles, cancer, paclitaxel, endosomal escape

INTRODUCTION

With the development of nanotechnology, various materials such as polymers, lipid, and metals
(oxides), have been widely applied to design drug delivery system, especially for cancer therapy
(Farokhzad and Langer, 2009). Nanoparticles based on the above materials have been demonstrated
to realize controlled drug release and effectively targeting drug delivery (Wilczewska et al., 2012).
To this end, micelles composed of amphipathic copolymers have received wide attention owing
to their attractive features, such as small and uniform size, tumor targeting ability via the
enhanced permeability and retention (EPR) effect, high stability in aqueous solution and excellent
biocompatibility (Felber et al., 2012; Liu J. et al., 2014; Wang et al., 2018).

However, albeit with the extensive research efforts, the clinical translations of micelles from
bench to bedsides are rather limited, partially due to their suboptimal therapy outcomes caused by
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the inefficient drug release at the tumor site and the endosomal
entrapment of micelles (Kanamala et al., 2016). Plain micelles
exhibit relatively slow drug release rate, which may result in
ineffective drug concentration inside targeted cells (Wu et al.,
2013). To mitigate these issues, smarter micelles are desired to be
equipped with endosomal escape and rapid drug release abilities,
which could be able to provide sufficient drug concentration for
effective killing of the tumor cells.

To achieve such goals, environmentally sensitive polymers
that can respond to different stimuli to trigger drug release have
been extensively investigated, such as light (Liu et al., 2012; Cao
et al., 2013), temperature (Kim et al., 2010; Wang et al., 2014),
ultrasound (Yin et al., 2013; Ahmed et al., 2015), magnetic field
(Ao et al., 2014; Deng et al., 2015), pH (Liu Y. et al., 2014; Yuba
et al., 2017), redox properties (Yin et al., 2015; Zhang et al., 2016),
and enzyme activity (Rao and Khan, 2013; Harnoy et al., 2014).
Among of them, the pH-sensitive polymeric micelle appears to
be a highly appealing candidate due to the intrinsic differences
between solid tumors and the surrounding normal tissues in
terms of their relative acidity. The pH-sensitive polymer micelles
were devised based on copolymers composed of hydrophobic
and hydrophilic polymers linked via acid-liable bonds, including
hydrazone (Mo et al., 2012), benzoic imine (Yuan et al., 2012),
oxime (Liu B. et al., 2014), acetal (Li et al., 2016), ester (Gao
et al., 2018) and orthoester (Tang et al., 2011). Hydrolysis of the
acid-labile bonds leads to rapid drug release at an acidic pH.

Herein, we synthesized the amphiphilic polymer PEG-BHyd-
dC12 via an acid-labile hydrazone bond and constructed pH-
responsive micelles. The hydrophilic PEG segment on micelles
surface affords high colloidal stability in vitro and long circulation
time in vivo, while it is readily departed from micelles at the
tumor site under acid conditions, which is beneficial for cellular
uptake (Du et al., 2011). Paclitaxel (PTX), one of the most
effective antitumor drugs, was encapsulated into micelles due to
its hydrophobic nature, and released in a pH-responsive manner.
For comparison, the pH-insensitive counterpart polymer of PEG-
BAmi-dC12 was also synthesized for micelles preparation. The
physicochemical characterization, colloidal stability, drug release,
cellular uptake, and in vitro cytotoxicity of the micelles were
evaluated.

MATERIALS AND METHODS

Chemicals and Reagents
Paclitaxel (PTX), 1-ethyl-3-[3-dimethylaminopropyl]
carbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide
(NHS), 4-dimethylaminopyridine (DMAP), lauroyl chloride,
α-methoxy-x-amino-poly(ethylene glycol) (Mn = 2000) (MeO-
PEG2000-NH2) were purchased from Shanghai Aladdin Reagent
Co. Ltd. (Shanghai, China). mPEG-hydrazide (Mn = 2000)
was from Seebio Biotech, Inc. (Shanghai, China), and 3,5-
dihydroxybenzaldehyde was from Bide Pharmatech Ltd.
(Shanghai, China). 3,5-Dihydroxybenzoic acid was obtained
from Saen Chemical Technology Co. Ltd. (Shanghai, China).
Potassium hydroxide (KOH), tetrahydrofuran (THF), dimethyl
sulfoxide (DMSO), petroleum ether, ethyl acetate were purchased

from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT), coumarine (Cou-6) and 4′,6-diamidino-2-phenylindole
(DAPI) were obtained from Sigma-Aldrich Co. (St. Louis, MO,
United States). Lysotracker red was supplied from Beyotime
Institute of Biotechnology (Jiangsu, China). Dulbecco’s modified
Eagle’s medium (DMEM), RPMI 1640, penicillin, streptomycin,
phosphate buffered saline (PBS), fetal bovine serum (FBS)
were purchased from Gibco Life Technologies, Inc. (Carlsbad,
CA, United States). Human lung cancer cells (A549), human
breast cancer cells (MDA-MB-231), human ovarian cancer cells
(A2780) were obtained from Xiangya cell center (Changsha,
China). PTX-resistant human lung cancer cells (A549/T) was
bought from Gefan Biotechnology Co., Ltd. (Shanghai, China).

Synthesis of the pH-Sensitive Copolymer
PEG-BHyd-dC12
3,5-Dihydroxybenzaldehyde was dissolved in THF, followed by
the addition of KOH. Lauroyl chloride was added dropwise into
the above mixture and vigorously stirred for 6 h to yield 3,5-
dilaurate benzaldehyde. The purified 3,5-dilaurate benzaldehyde
and mPEG-hydrazide were dissolved in ethyl alcohol and stirred
for 24 h. After purification, the final amphiphilic polymer PEG-
BHyd-dC12 was obtained.

Synthesis of the pH-Insensitive
Copolymer PEG-BAmi-dC12
First, lauroyl chloride was added dropwise to a mixture of 3,5-
dihydroxybenzoic acid with KOH in anhydrous acetone at 0◦C
under stirring to obtain 3,5-dilaurate benzoic acid. Then, 3,5-
dilaurate benzoic acid, EDC, DMAP and NHS were dissolved
into DMSO and stirred at room temperature for 2 h, followed
by the addition of MeO-PEG2000-NH2. The resulting solution
was dialyzed and subsequently lyophilized to obtain PEG-BAmi-
dC12.

Characterization of Copolymers
The 1H-NMR spectra of PEG-BHyd-dC12 and PEG-BAmi-
dC12 were recorded using a Bruker Avance 400 MHz NMR
spectrometer (Varian, United States) with deuterated chloroform
(CDCl3) as the solvent. The self-assembly behavior of polymers
was investigated by the fluorescence probe technique (Xiong
et al., 2017). First, 100 µL of pyrene in acetone (2.9× 10−2 mM)
was evaporated to form a thin film on the flask bottom. Then,
various concentrations of polymer solutions (from 0.1 µg/mL to
200 µg/mL) were added to the pyrene-coated vials and stored in
the dark overnight. The fluorescence intensity ratio of I337/I334 in
the emission spectra of pyrene was calculated and plotted against
the logarithm of the polymer concentrations. The CMC value
was obtained based on the fluorescence excitation spectra of the
mixed solution.

Preparation of Micelles
PTX-loaded micelles were prepared by a thin-film hydration
method. In brief, PEG-BHyd-dC12 or PEG-BAmi-dC12 (20.0 mg)
and PTX (1 mg) were dissolved in dichloromethane (4 mL).
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The solution was evaporated under reduced pressure to form
a uniform film. Deionized water (10 mL) was added and
rotated for another 1 h. The obtained colloidal solution
was then centrifuged at 3,000 rpm for 10 min and filtered
through 0.45 µm pore size filter, followed by lyophilization.
Blank micelles were prepared in a similar way in the absence
of PTX.

Characterization of Micelles
The particle size, PDI, and zeta potential measurement were
determined by dynamic light scattering (DLS) method using a
Malvern Zeta Sizer Nano series (Nano ZS, Malvern Instruments,
United Kingdom) at 25◦C. The morphologies of the micelles were
observed using transmission electron microscopy (TEM) (Titan
G2-F20, FEI, United States).

The determination of PTX was carried out using a high-
performance liquid chromatography (HPLC) system (LC-2010,
Shimadzu, Tokyo, Japan). The chromatographic column was an
ODS C18 (250 × 4.6 mm, 5 µm, Diamonsil, Beijing, China).
The mobile phase consisted of mixtures of acetonitrile and
water (55:45, v/v). The flow rate was 1 mL·min−1, and the
detection wavelength was 227 nm. Micelles were centrifuged in
an ultrafiltration tube (MWCO 10 kDa) at 5,000 rpm for 10 min
and filtered through 0.22 µm filter to remove the unloaded
PTX. PTX-loaded micelles were disrupted by methanol. The
PTX loading content (LC) and encapsulated efficiency (EE) were
calculated using the following formulae:

EE (%) = Amount of PTX in micelles/

Amount of PTX fed initially × 100%

LC (%) = Amount of PTX in micelles/

Amount of PTX-loaded micelles × 100%

Colloidal Stability
Micelles were incubated with 10% FBS or 10 mM phosphate
buffer solutions (pH 7.4, 6.5, and 5.5) at 37◦C for 72 h, and the
size was measured by DLS at different intervals.

In vitro Drug Release
The release study was assessed by the dialysis method. The
release media was PBS solutions containing 0.5% Tween-80 with
different pH values (5.5, 6.5, and 7.4). Typically, 2 mL of PTX-
loaded micelles was placed in a dialysis bag (MWCO 3500) and
dialyzed against 25 mL of buffer medium under mechanical
shaking (100 rpm) at 37◦C. At predetermined time intervals,
2 mL of release medium was withdrawn and replenished with an
equal volume of fresh medium. The released PTX was detected by
HPLC.

Cell Culture
A549 and A549/T cells were maintained in RPMI 1640
medium supplemented with 10% FBS, penicillin (50 U/mL)
and streptomycin (50 U/mL) in a 5% CO2 atmosphere at

37◦C. MDA-MB-231 and A2780 were maintained in DMEM
medium supplemented with 10% FBS, penicillin (50 U/mL) and
streptomycin (50 U/mL) in a 5% CO2 atmosphere at 37◦C.

Intracellular Distribution
Cou-6 loaded micelles were constructed according to the above
method, except the drug was replaced with Cou-6. A549 cells
were seeded on glass coverslips in the 24-well plates at a density
of 4 × 104 per well. After culturing for 24 h, Cou-6 loaded
micelles ([Cou-6] = 200 ng/mL) were added and incubated for
1 h. Alternatively, the cells were incubated with Cou-6 loaded
micelles for 1 h, then washed and cultured in fresh media
for another 3 h. Then, the medium was replaced with 70 nM
lysotracker red and incubated for another 1 h. Afterward, the
cells were fixed with 4% formaldehyde for 20 min at room
temperature and visualized using a CLSM (LSM 780, Carl Zeiss,
Jena, German).

Cellular Uptake
A549 cells were seeded in 6-well plates with a density of 3 × 105

cells per well and incubated overnight, and then, the medium was
replaced with Cou-6 loaded micelles at final Cou-6 concentration
of 200 ng/mL. After 1 h or 4 h of incubation, the cells were
harvested and quantified by flow cytometry (FACSVerse, BD,
United States).

Cytotoxicity Assay
The cytotoxicity of micelles with or without an anticancer
drug was determined by MTT assay. The cells were seeded
in a 96-well plate at a density of 6,000 cells per well and
maintained for 24 h. The medium was then replaced with
the micelles and further incubated for 72 h. Then, 20 µL
of MTT solution (5 mg/mL) was added to each well of the
plate for another 4 h. Subsequently, 100 µL of DMSO was
added to dissolve the formazan crystals, and the absorbance
was measured at 570 nm by a microplate reader (ELX800,
Bio-Tek, United States). The untreated cells were used as
controls.

Hemolysis Tests
The hemocompatibility of micelles was evaluated by hemolysis
assay (Yang et al., 2016). First, fresh rabbit blood was extracted
from the heart of a rabbit. Subsequently, erythrocytes were
obtained by centrifugation at 3,000 rpm for 15 min and washed
with normal saline (NS). Serial dilutions of micelles were then
added to the 2% erythrocytes (v/v) and incubated for 2 h at
37◦C in a thermostatic water bath. Finally, the mixtures were
centrifuged at 3,500 rpm for 15 min, and the supernatant of
all samples was measured for UV absorbance (A) at 540 nm.
NS and 0.5% Triton X-100 were regarded as the negative and
positive controls, respectively. The hemolysis ratio was calculated
as follows:

Hemolysis (%) = (Asample − Acontrol(−))/

(Acontrol(+) − Acontrol(−))
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Statistical Analysis
The data were expressed as the mean ± standard deviation (SD).
Statistical analysis was performed using a two-tailed Student’s
t-test and analysis of variance (ANOVA) with the aid of SPSS
23.0 software. Differences were considered statistically significant
when p-values were less than 0.05.

RESULTS AND DISCUSSION

Synthesis and Characterizations of
Copolymers
The synthesis schemes of PEG-BHyd-dC12 and PEG-BAmi-
dC12 were illustrated in Figures 1A,B. To synthesize the PEG-
BHyd-dC12 di-block amphiphilic polymer, the hydrophobic
fragment of 3,5-dilaurate benzaldehyde was conjugated with the
hydrophilic fragment of PEG through the linkage of hydrazone.
The 3,5-dihydroxybenzaldehyde was first reacted with lauroyl
chloride to form a 3,5-dilaurate benzaldehyde intermediate
with a yield of 90%, and then the aldehyde group on 3,5-
dilaurate benzaldehyde reacted with the hydrazine groups on
mPEG-hydrazide to give PEG-BHyd-dC12 with a final yield
was 69%. All of the synthetic compounds were characterized
by 1H-NMR spectra (Figures 1C,D), which were in good
agreement with their depicted structures as described in the
following:

1H NMR of intermediate compound 3,5-dilaurate
benzaldehyde: 1H NMR (400 MHz, CDCl3) δ (ppm) 0.91
(6H, t, -CH3), 1.21–1.45 (32H, m, -(CH2)n), 1.75 (4H, m,
CO-βH), 2,59 (4H, t, CO-αH), 7.20 (1H, t, 4-ArH), 7.52 (2H, d,
2,6-ArH), 9.98 (1H, s, -CHO).

1H NMR of PEG-BHyd-dC12: 1H NMR (400 MHz, CDCl3) δ

(ppm) 0.89 (6H, t, -CH3), 1.22–1.45 (32H, m, -(CH2)n), 1.74 (4H,
m, CO-βH), 2,54 (4H, t, CO-αH), 3.39 (3H, s, -OCH3 from PEG),
3.50–3.84 ((-OCH2CH2-)n), 4.19 (2H, s, CO-αH, from PEG), 6.94
(1H, t, 4-ArH), 7.41 (2H, d, 2,6-ArH), 8.24 (1H, s, -NH), 10.5 (1H,
s, -CH = N).

As for PEG-BHyd-dC12, the characteristic peaks at 3.5–
3.84 ppm were from PEG, and the proton peak at 10.5 ppm
indicated the formation of the hydrazone bond. In addition,
the absence of proton peak of aldehyde (9.98 ppm) suggested
that free 3,5-dilaurate benzaldehyde was removed in the purified
PEG-BHyd-dC12.

1H NMR of intermediate compound 3,5-dilaurate benzoic
acid: 1H NMR (400 MHz, CDCl3) δ (ppm) 0.90 (6H, t, -CH3),
1.21–1.44 (32H, m, -(CH2)n), 1.71 (4H, m, CO-βH), 2,61 (4H, t,
CO-αH), 7.20 (1H, t, 4-ArH), 7.72 (2H, d, 2,6-ArH).

1H NMR of PEG-BAmi-dC12: 1H NMR (400 MHz, CDCl3)
δ (ppm) 0.90 (6H, t, -CH3), 1.22–1.45 (32H, m, -(CH2)n), 1.75
(4H, m, CO-βH), 2,58 (4H, t, CO-αH), 3.40 (3H, s, -OCH3 from
PEG), 3.50–3.84 ((-OCH2CH2-)n), 7.06 (1H, t, 4-ArH), 7.45 (2H,
d, 2, 6-ArH), 7.79 (1H, d, -CONH).

The characteristic peaks of PEG (3.50–3.84 ppm) were
obvious, and the peak of new amide bond can be seen at 7.79 ppm
for PEG-BAmi-dC12.

CMC Measurement
As amphiphilic materials, a key parameter for their applications
as a nanocarrier is their CMC. Micelles can be formed at
concentrations above the CMC. The CMC values of PEG-BHyd-
dC12 and PEG-BAmi-dC12 were determined by a well-established
method using pyrene as a fluorescence probe, resulting in

FIGURE 1 | Synthesis and characterization of PEG-BHyd-dC12 (A,C) and PEG-BAmi-dC12 (B,D). The synthesis of PEG-BHyd-dC12 (A) and PEG-BAmi-dC12

(B), H1-NMR spectrum of PEG-BHyd-dC12 (C), and PEG-BAmi-dC12 (D).
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7.5 µg/mL for PEG-BHyd-dC12 and 5.6 µg/mL for PEG-BAmi-
dC12 (Figure 2). These CMC values were within the typical
concentration range for most polymeric micelle CMCs, which
can be directly applied in vivo (Maysinger et al., 2007; Diezi
et al., 2010; Owen et al., 2012). It is reasonable that these two
polymers have comparable CMC values, as their structures are
nearly identical; they only differed at the junction between the
hydrophobic and hydrophilic blocks (one with a hydrazone bond

FIGURE 2 | The CMC curve of PEG-BHyd-dC12 and PEG-BAmi-dC12.

and the other with an amide bond). Therefore, PEG-BAmi-dC12
is an excellent control to study the pH-responsive property of
PEG-BHyd-dC12 for drug delivery.

Preparation and Characterization of
Micelles
From the above experiments, we have demonstrated that
both PEG-BHyd-dC12 and PEG-BAmi-dC12 were able to self-
assemble into micelles at very low concentrations, implying
their applicability for the development of a nano-drug delivery
system. We next used these polymers to prepare micelles, and
the hydrophobic PTX was used a model to encapsulate into
the hydrophobic core of the micelles (Figure 3A). The pH-
sensitive micelles (PEG-BHyd-dC12/PTX) were prepared using a
standard thin-film hydration method. After removing the organic
solvents, the solution appeared to be semi-transparent with
light-blue opalescence (Inset in Figure 3B, left), suggesting the
successful preparation of nano-sized micelles. The particle size
was approximately 135 nm as determined by DLS (Figure 3B,
left); this size is suitable for passive accumulation in the tumor
tissue through the EPR effect (Danhier et al., 2010). From TEM,
the micelles were well dispersed with spherical morphology (Inset
in Figure 3B, left). The LC efficiency of PEG-BHyd-dC12/PTX
was 3% (Figure 3C), which was comparable to many other
PTX-loading micelles reported previously, and was sufficient for
subsequent in vitro/in vivo therapeutic applications (Lee et al.,
2003; Zhu et al., 2010; Mei et al., 2015).

FIGURE 3 | Preparation and characterization of micelles. Schematic preparation (A), appearance, size distribution, and TEM images (B, left presents
PEG-BHyd-dC12/PTX, right presents PEG-BAmi-dC12/PTX), characterization (C). Data were presented as mean ± standard deviation (SD; n = 3).
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By using the same method, the pH-insensitive PEG-BAmi-
dC12/PTX micelles were also prepared and characterized
(Figure 3B, right; Figure 3C). Interestingly, these two types
of micelles displayed quite similar properties in terms of
appearance, particle size, morphology and drug loading
efficiency. Therefore, a parallel comparison between these
micelles can be made for their in vitro/in vivo biological
performance, which can be rationalized by the pH-responsive
bond linkage.

Colloidal Stability
The colloidal stability of the micelles was first studied under
different buffer solutions. Interestingly, with pH decrease from
7.4 to 6.5 and 5.5, the particle size of PEG-BHyd-dC12/PTX
markedly increased, while it remained unchanged for PEG-
BAmi-dC12/PTX (Figure 4A). This can be rationalized by the
pH-responsive property of the PEG-BHyd-dC12/PTX, which
could swell and then collapse at lower pH (Li et al., 2016; Qiu
et al., 2017). We also challenged the micelles with 10% FBS, and
both types of micelles were quite stable even after 72 h incubation
(Figure 4B). Therefore, the pH-sensitive micelles were stable in
blood circulation and can rapidly collapse to release the payload
under acidic conditions.

In vitro Drug Release
The release behavior of PTX from polymeric micelles was
evaluated under various conditions at 37◦C. Different buffer
solutions were employed to simulate the micro-environment
of the blood circulation (pH 7.4), tumor tissue (pH 6.5),
and endosome (pH 5.5). We first studied the performance
of pH-sensitive PEG-BHyd-dC12/PTX micelles. At pH 7.4,
almost no PTX was released in the initial 4 h, which was
followed by a sustained release phase with only 38% PTX
release after 48 h (Figure 5A, black trace). Therefore, the
micelles can stably encapsulate PTX for a long time, which
is important for decreasing the side effects and increasing
the drug accumulation in tumor sites. By lowering the pH
to 6.5, a notable increase in drug release was observed
at each time point (Figure 5A, blue trace). With further
decrease of the pH to 5.5, the micelles showed an even
higher rate of drug release (Figure 5A, red trace). After 48 h,
the cumulative drug release was 50% and 65%, respectively,
significantly higher than that at pH 7.4 (∼40%), indicating
a good pH-responsive capability. This pH-responsive drug
release profile can be ascribed to the hydrazone bond between
the hydrophilic and hydrophobic chains of the polymer. As
the pH decreases, the hydrazone bond tends to hydrolyse

FIGURE 4 | Colloidal stability of micelles. Size change of PEG-BHyd-dC12/PTX micelles and PEG-BAmi-dC12/PTX micelles in phosphate buffers with different pH
values (A) and 10% FBS (B) at 37◦C for 72 h. The pHs were buffered by disodium hydrogen phosphate and sodium dihydrogen phosphate with total phosphate
concentration of 10 mM. Data were shown as mean ± SD (n = 3). ∗p < 0.05.

FIGURE 5 | Release profiles of PEG-BHyd-dC12/PTX micelles (A) and PEG-BAmi-dC12/PTX micelles (B) at different pHs at 37◦C. The pHs were buffered by
disodium hydrogen phosphate and sodium dihydrogen phosphate with total phosphate concentration of 10 mM. Data were shown as mean ± SD (n = 3).
∗p < 0.05, ∗∗p < 0.01.
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and thus the micelles collapse, resulting in burst drug
release.

As a control, we also performed the drug release experiment
with pH-insensitive PEG-BAmi-dC12/PTX micelles. In this case,

slow and sustained drug release was seen under different
conditions, and pH had little effect on the rate of drug
release, giving a cumulative drug release of less than 40%
after 48 h (Figure 5B). Considering the structural difference

FIGURE 6 | Cellular uptake studies of PEG-BHyd-dC12/Cou-6 and PEG-BAmi-dC12/Cou-6 in A549 cells by using CLSM (A), flow cytometry (B), fluorescence
intensities quantified from B (C). The (a) indicated PEG-BAmi-dC12/Cou-6 while the (b) represented PEG-BHyd-dC12/Cou-6. The scale bar is 25 µm.

FIGURE 7 | Cell viability of blank micelles after incubating with A549 (A), A549/T (B), MDA-MB-231 (C), and A2780 (D) cells for 72 h. Data were shown as
mean ± SD (n = 4).
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FIGURE 8 | Cell viability of PTX-loaded micelles and free PTX after incubating with A549 (A), A549/T (B), MDA-MB-231 (C), and A2780 (D) cells for 72 h. Data were
shown as mean ± SD (n = 4).

FIGURE 9 | Compatibility studies of micelles (pH 7.4). PEG-BHyd-dC12 (A) and PEG-BAmi-dC12 (B). “+” represents positive control by using 0.5% Triton X-100,
and “–” represents negative control of non-treatment.

TABLE 1 | IC50 value of the micelles and free PTX to A549, A549/T,
MDA-MB-231, and A2780 cells for 72 h incubation (mean ± SD, n = 4).

IC50 (µg/mL)

A549 A549/T MDB-MA-231 A2780

PTX 1.87 ± 0.08 11.17 ± 1.15 2.99 ± 0.37 2.01 ± 0.04

PEG-BHyd-
dC12/PTX

0.57 ± 0.16∗N 3.04 ± 1.13∗N 1.16 ± 0.06∗N 0.75 ± 0.08∗∗N

PEG-BAmi-
dC12/PTX

1.10 ± 0.06# 6.77 ± 0.30# 1.64 ± 0.13# 1.33 ± 0.13#

PTX vs. PEG-BHyd-dC12/PTX, ∗p < 0.05, ∗∗p < 0.01; PTX vs. PEG-BAmi-
dC12/PTX, #p < 0.05; PEG-BHyd-dC12/PTX vs. PEG-BAmi-dC12/PTX, Np < 0.05.

between PEG-BHyd-dC12/PTX and PEG-BAmi-dC12/PTX, these
results further demonstrated critical role of the hydrazone

bond for the pH-sensitive property of the PEG-BHyd-dC12/PTX
micelles.

Intracellular Uptake Study
Having demonstrated the pH-responsive property of the PEG-
BAmi-dC12/PTX micelles, we next studied the performance of
the micelles inside cells. To conveniently track the micelles inside
cells, Cou-6 (a hydrophobic green fluorophore) instead of PTX
was encapsulated into micelles, and the acidic organelles (i.e.,
lysosomes and endosomes) were stained by Lysotracker red.
A549 cancer cell line was used as a model since PTX has been
widely used in clinic for lung cancer therapy (Singla et al., 2002).
From confocal laser scanning microscopy (CLSM), substantial
green fluorescence was observed for both types of micelles after
1 h incubation (Figure 6A), indicating a high level of cellular
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internalization. To visualize the co-localization of micelles and
endo/lysosomes, we merged the green and red channels, and
the emergence of orange spots indicated the localization of
micelles in the endo/lysosomes. Both PEG-BHyd-dC12/Cou-6
and PEG-BAmi-dC12/Cou-6 micelles showed obvious spots after
1 h of incubation, consistent with the endocytosis pathway of the
micelles (Zhang et al., 2017).

We next studied the intracellular performance of the micelles.
To do this, the cells were washed and cultured in fresh
media so that further internalization of micelles was avoided.
After 4 h incubation, the pH-insensitive micelles were still
largely entrapped into the endo/lysosomes. In contrast, the
orange spots of pH-sensitive micelles were weakened, and green
color was evenly distributed throughout the cytoplasm, which
showed minimal co-localization with the red fluorescence of the
endo/lysosomes. The micelles detached from endosome due to
hydrolysis of copolymer under acidic organelles, which facilitated
efficient release of drug. Therefore, successful endo/lysosomal
escape of pH-sensitive micelles was indicated. It is known
that the successful escape of a nano-delivery system from
the intracellular endosome/lysosome for drug release is a key
issue in determining their therapeutic efficiency (Qiu et al.,
2017). After cellular uptake, micelles were first entrapped into
endosome/lysosome (Chou et al., 2011; Varkouhi et al., 2011).
Once entering the endo/lysosomes, the pH-sensitive micelles
were disassembled because of pH-triggered hydrolysis of the
acid-labile chemical linkage, and the drug rapidly escaped from
the endosome/lysosome, resulting in pH-triggered intracellular
burst release (Fang et al., 2016).

To have a quantitative understanding, we next performed flow
cytometry experiments to study the uptake of micelles by A549
cells (Figures 6B,C). After 1 h incubation, there was no difference
in intensity between pH-sensitive and pH-insensitive micelles.
Interestingly, after 4 h, the fluorescence from pH-responsive
micelles was considerably higher than that of pH-insensitive
micelles (Figure 6C), in agreement with a previous report (Qiu
et al., 2017). While the pH-responsiveness of micelles has little
effect on cell uptake process, the relative lower fluorescence
for PEG-BAmi-dC12/PTX was likely due to the efflux of the
micelles from cells to medium. As has been demonstrated, the
endo/lysosome entrapped micelles can be pumped out by ATP-
binding cassette protein B1 (ABCB1) transporter (Sakai-Kato
et al., 2012). Since the pH-responsive micelles collapse faster in
endo/lysosome, relatively less micelles were cleared from cells by
this pump-out process, resulting in stronger fluorescence inside
cells.

Cytotoxicity Assay
Cytotoxicity studies were performed by incubating micelles with
different types of cells for 72 h, and cell viability was measured
by MTT assay. The cytotoxicity of the polymers was tested by
incubating the cells with blank micelles (without PTX loading),
and all types of cells remained >90% viability with concentration
up to 800 µg/mL, indicating high biocompatibility (Figure 7).
As for A549, at the highest PTX concentration (16 µg/mL), the
viabilities of cells incubated with PEG-BHyd-dC12/PTX, PEG-
BAmi-dC12/PTX and free PTX dropped to 11%, 22%, and 28%,

respectively, showing high toxicity to cancer cells (Figure 8A).
The anti-cancer capability was quantified by measuring the
half-maximal inhibitory concentration (IC50), which was in
order of PEG-BHyd-dC12/PTX (0.57 µg/mL) < PEG-BAmi-
dC12/PTX (1.1 µg/mL) < free PTX (1.87 µg/mL) (Table 1).
Therefore, PEG-BHyd-dC12/PTX exhibited the highest activity,
which was attributable to the pH-responsive property for
rapid endo/lysosome drug escape to enhance the antitumor
effect.

To test the generality, we further performed the anti-
tumor assay by using MDA-MB-231 and A2780 cells, and
analogous results were observed (Figures 8C,D). The PEG-
BHyd-dC12/PTX displayed the best anti-cancer activity, followed
by PEG-BAmi-dC12/PTX and then free PTX. Therefore, such
micelles can be implemented for different types of cancer therapy.
As one limitation of PTX for long-term cancer treatment is the
acquired drug resistance by cancer cells (Yusuf et al., 2003),
we also tested whether the nano-systems could reverse drug
resistance by using PTX-resistant A549/T cells as a proof-
of-concept. The cytotoxicity of PTX and micelles was also
dose dependent (Figure 8B), while the overall IC50 value was
much higher due to the drug resistance (Table 1). Notably,
cytotoxicity of PEG-BHyd-dC12/PTX was 3.7-fold higher than
that of free PTX, which may be useful to reverse drug
resistance.

Hemolysis Assay
The biocompatibility of polymeric micelles is the prerequisite
for biomedical application. We studied this property by using
hemolysis assay. Typically, the micelles were incubated with
erythrocytes, and the release of hemoglobin was measured to
quantify the erythrocyte-damaging properties (Nogueira et al.,
2013). The positive control of 0.5% Triton X-100 showed obvious
hemolysis, as high as 100%, while the micelles produced less than
2% at different concentration (Figure 9). Therefore, the micelles
were highly biocompatible and can be directly administrated by
intravenous injection.

CONCLUSION

In this work, pH-sensitive PTX-loaded PEG-BHyd-dC12 micelles
were constructed and characterized. These nanoparticles
exhibited pH-dependent drug release profile and endosomal
escape ability after intracellular delivery, and displayed
enhanced anti-tumor activity compared with the pH-insensitive
counterpart micelles and the free PTX. All of these results
suggested that the PEG-BHyd-dC12 micelles-based drug
delivery system is a promising drug carrier for targeted cancer
treatment.
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Microtubules are important drug targets in tumor cells, owing to their role in
supporting and determining the cell shape, organelle movement and cell division.
The complementarity-determining regions (CDRs) of immunoglobulins have been
reported to be a source of anti-tumor peptide sequences, independently of the
original antibody specificity for a given antigen. We found that, the anti-Lewis B
mAb light-chain CDR1 synthetic peptide Rb44, interacted with microtubules and
induced depolymerization, with subsequent degradation of actin filaments, leading to
depolarization of mitochondrial membrane-potential, increase of ROS, cell cycle arrest
at G2/M, cleavage of caspase-9, caspase-3 and PARP, upregulation of Bax and
downregulation of Bcl-2, altogether resulting in intrinsic apoptosis of melanoma cells.
The in vitro inhibition of angiogenesis was also an Rb44 effect. Peritumoral injection
of Rb44L1 delayed growth of subcutaneously grafted melanoma cells in a syngeneic
mouse model. L1-CDRs from immunoglobulins and their interactions with tubulin-dimers
were explored to interpret effects on microtubule stability. The opening motion of tubulin
monomers allowed for efficient L1-CDR docking, impairment of dimer formation and
microtubule dissociation. We conclude that Rb44 VL-CDR1 is a novel peptide that acts
on melanoma microtubule network causing cell apoptosis in vitro and melanoma growth
inhibition in vivo.

Keywords: metastatic melanoma, microtubule, tubulin, peptide, complementarity-determining region, apoptosis

INTRODUCTION

The polymerization dynamics of cytoskeleton molecules is crucial to the survival and to the
energetic and mechanistic properties of cells and organisms. As important polymers in the mitotic
process, microtubules are targets of anticancer drugs, with several compounds already being
studied (1, 2).
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Microtubule targeting agents (MTAs) exert inhibitory effects
on cell proliferation, with cell cycle arrest at G2-M and induction
of apoptosis (3). They may act as vascular-targeting drugs,
disrupting microtubules in endothelial cells, which affects the
blood supply in the tumor tissue (4). Microtubules also induce
maturation and migration of dendritic cells, which are essential
to the immune response (5).

MTAs can be divided into mechanistic acting categories as
they either stabilize or destabilize microtubules (6). Microtubule-
stabilizing agents such as paclitaxel and docetaxel bind to
the taxane-binding site on β-tubulin, inhibiting microtubule
depolymerization and intensifying its polymerization. Recently,
Taxol/Paclitaxel has been described as first billion-dollar
anticancer drug (7). Microtubule-destabilizing agents including
colchicine and vinca alkaloid, typically bind to sites located at the
intra-dimer interface and near the GTP binding site on β-tubulin,
respectively. Such interactions induce inhibition of microtubule
polymerization and promote depolymerization (8, 9). Although
these agents are widely used in medicine, particularly paclitaxel
and vinca alkaloids, drug resistance and side effects such as
neurotoxicity, are significant limitations to MTAs clinical success
(10, 11).

In the last decade, peptides displaying anticancer properties
have been studied as promising alternative agents for cancer
therapy (12, 13). Peptides are mostly non-genotoxic, have
high affinity and selectivity for molecular targets on cancer
cells, low cost production with feasible synthesis of derivatives,
exhibiting low antigenicity and good tissue penetration (14,
15). Peptides can also be conjugated to large molecules to
improve pharmacokinetics (16). Peptides can be displayed on
the phage surface giving rise to specific sequences targeting
different tissues or be developed from internal regions of
transcription factors (17). Peptides and derivatives from natural
sources such as marine animals and insects have been described
with preferential antitumor activity without affecting normal
cells (18, 19). Complementarity-determining regions (CDRs) of
immunoglobulins (Igs) have been found to exhibit with high
frequency, antiinfective, immunomodulatory, and antitumor
activities (20–22).

Synthetic peptides corresponding to the Ig hypervariable
CDRs, may display antitumor activities in vivo, as well as
cytotoxic effects in vitro including cell cycle arrest, inhibition
of tumor cell migration and invasion, induction of apoptosis,
disruption of cytoskeleton dynamics (22–28), and many others.

We have previously described a novel bioactive mAb VL

CDR 1 peptide (C36L1), displaying in vitro and in vivo anti-
tumor activities. Depolymerization of microtubules, leading to
cytotoxic and cytostatic effects mediated by Rho-GTPase, PTEN,
and PI3K/Akt signaling, have been characterized (26).

Presently, we investigated a VL CDR1-derived synthetic
peptide, Rb44, expressed in a anti-Lewis B monoclonal antibody,
focusing on structural, biological and molecular docking
properties, in comparison with two other VL CDR1 peptides
(Rb29L1 and C36L1), to understand the mechanism of action
of Ig-CDR derived, apoptotic peptides targeting microtubules.
Rb44L1 exerted both in vitro and in vivo anti-melanoma activities
and inhibited endothelial cell sprouting in vitro.

MATERIALS AND METHODS

Peptides
The L1 CDR amino acid sequences were obtained
from the anti-Lewis B mAb antibody, VL Rb44L1
(RSSQTITHGNGNTYLY-NH2), and from the anti-A34 mAb, VL

Rb29L1 (RSSTSLLHGNGNTYLT-NH2) according to Kabat et al.
(29) CDR definition. The peptide sequences were purchased from
Peptide 2.0 (Chantilly, VA) at 95–98% purity. All peptides were
amidated at the C-terminus. Peptides were diluted in 1% DMSO-
RPMI medium. In some experiments a scrambled Rb44L1
(Scr44) peptide was used (SIGTYSTRNYQHNLTG-NH2). The
previously described C36L1 (KSSQSVFYSSNNKNYLA-NH2)
was comparatively studied for molecular modeling.

Tumor Cell Lines and Cell Culture
B16F10-Nex2 subline of murine melanoma cells was isolated
at the Experimental Oncology Unit (UNONEX) of Federal
University of São Paulo (UNIFESP) and registered in the Banco
de Células do Rio de Janeiro (BCRJ), no. 0342. The original
B16F10 cell line was obtained from the Ludwig Institute for
Cancer Research (LICR), São Paulo Branch. Human melanoma
cell line A2058; human carcinoma cell lines of colon, HCT-
8; uterine cervix, SiHa; and breast, MCF-7; murine fibroblasts,
3T3-NIH; and human fibroblasts, GM637, were provided by the
Ludwig Institute for Cancer Research and were a gift from Dr.
Luiz F. Lima Reis (Hospital Sírio-Libanez, São Paulo). Human
umbilical vein endothelial cells (HUVEC) were kindly provided
by the Department of Immunology, Institute of Biomedical
Sciences (University of São Paulo). Both cell lines were cultured
at 37◦C, under humid atmosphere and 5% CO2, in RPMI-
1640 medium for tumorigenic cell lines and DMEM for non-
tumorigenic ones, in both cases supplemented with 10mM
N-2-hydroxyethylpiperazine-N2 ethane sulfonic acid (HEPES),
24mM sodium bicarbonate, 40 mg/L gentamicin, pH 7.2 and
10% fetal bovine serum (FBS).

Cell Viability Assay
For IC50 determination, 1 ×104 tumorigenic and non-
tumorigenic cell lines were seeded in 96-well plates and treated
at different concentrations ranging from 0 to 1mM of Rb44L1
and Rb29L1 peptides for 24 h. Viable cells were quantified using
the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide) (Sigma-Aldrich, St. Louis, MO) assay. After incubation,
5 µL of MTT solution (5 mg/ml) was added to the cells,
followed by incubation for 3 h at 37◦C. Absorbance wasmeasured
in a microplate reader at 570 nm (SpectraMax-M2, Molecular
Devices Software Pro 5.4, Sunnyvale, CA). IC50 was calculated
using GraFit 5 data analysis software (Version 5.0.13).

Chromatin Condensation and DNA
Fragmentation Assays
Apoptotic melanoma cells treated with Rb44L1 peptide were
examined by TUNEL staining, using the in situ Cell Death
Detection Kit according with the manufacture’s instruction
(Roche Applied Science, Madison, WI). B16F10-Nex2 melanoma
cells (1 ×104) were seeded on 96-well clear-bottom black
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polystyrene microplate and incubated with 0, 130 and 260µM
of Rb44L1 peptide for 18 h. After incubation, cells were fixed
in formaldehyde 2% for 20min at room temperature, washed
in PBS, and incubated with Hoechst 33342 (Invitrogen, Eugene,
OR), at 10µg/mL final concentration in the reaction buffer and
TUNEL enzymatic substrate. Cells were washed and images were
acquired and analyzed in a Cytell Cell image cytometer (GE
Healthcare, Little Chalfont, UK).

Annexin V and Propidium Iodide Labeling
B16F10-Nex2 cells (5 ×105) were cultured in 6-well plates
and further incubated with Rb44L1 at 0, 80 and 100µM for
18 h at 37◦C. After incubation, the Annexin V-FITC Apoptosis
Detection Kit (Sigma-Aldrich, St. Louis, MO) was used and cells
labeled with propidium iodide (PI) and FITC annexin V (AV)
were analyzed by flow cytometry (BD Bioscience FACSCanto II
equipment, Franklin Lakes, NJ), using FlowJo software (TreeStar
Inc., Ashland, OR).

Cell Cycle Analysis
B16F10-Nex2 (5×105) cells were seeded in conical centrifugation
tubes and incubated with 65µM Rb44L1 peptide for 16 h in
suspension. After incubation, the cells were washed with PBS
and fixed in ethanol 70% for 1 h at 4◦C. Cells were then
washed again with PBS and stained with propidium iodide
(PI) solution (50µg/ml PI, 0.1 mg/ml RNAse A) for 20min
at 4◦C in the dark. DNA fluorescence staining was acquired
by FACSCalibur flow cytometer (Becton Dickinson, San Jose,
CA). FlowJo software (Tree Star Inc., Ashland, OR) was used
for post-acquisition analysis (20.000 events per sample). The
microtubule depolymerizing CA4 (combretastatin A4, Sigma-
Adrich, St. Louis, MO) was used at 75µM as positive control of
G2/M cell cycle arrest.

Transmission Electron Microscopy
B16F10-Nex2 cells (1 ×106) were seeded in 6-well plates. Cells
were then incubated with peptide Rb44L1 at 260µM for 18 h
at 37◦C. Fixation, dehydration and staining of the samples were
performed as previously described (23). Jeol 1200 EXII electron
microscope (Tokyo, Japan) was used for image acquisition.

Mitochondrial Membrane Potential (1ψm)
B16F10-Nex2 cells (1×104) were pre-incubated with the cationic
lipophilic dye tetramethylrhodamine ethyl ester (TMRE) at
20 nM for 30min, and then with peptide Rb44L1 at 0, 130, and
260µM for 6 h. After the incubation period, images of living cells
were acquired and analyzed by Cytell Cell Imaging System (GE
Healthcare, Little Chalfont, UK).

Superoxide Anion Measurement
Superoxide anion production was measured by dihydroethidium
(DHE) assay. Briefly, 1 ×104 cells cultivated on 96-well clear-
bottom black plate were pre-incubated with DHE for 30min
at 37◦C. Rb44L1 was added at 130 and 260µM concentrations
and fluorescence units were quantified after 16 h in a microplate
reader (Molecular Devices M2, Sunnyvale, CA) adjusted for
excitation at 370 nm and emission at 420 nm. As positive control,

cells were treated with 5mM of H2O2 at 37
◦C for 20min, and the

negative control run with no peptide.

Cell Lysate Extracts and Western Blotting
B16F10-Nex2 cells (106) were incubated with 0 and 130µM of
Rb44L1 peptide for different times (1, 3, 6, 8, and 24 h). After
incubation, cells were washed in PBS and lysed with 300 µL
of SDS sample buffer (62.5mM Tris-HCl, pH 6.8 at 25◦C, 2%
w/v SDS, 10% glycerol, 50mM DTT, 0.01% w/v bromophenol
blue). Proteins from whole cell extracts were analyzed by
Western blotting as previously described (20). The following
primary, highly specific monoclonal antibodies, were used: rabbit
anti-Bcl-2, -Bcl-xl, -Bax, -caspase-9 and cleaved caspase-9, -
caspase-3 and cleaved caspase-3, -Parp and cleaved Parp, and
-GAPDH (for total protein loading control), with secondary
anti-rabbit IgG conjugated with horseradish peroxidase (HRP).
All antibodies were purchased from Cell Signaling Technology
(Beverly, MA) except for anti-GAPDH, acquired from Sigma-
Aldrich (St. Louis, MO). Immunoreaction was revealed using the
LuminataTM Forte solution (Millipore, Billerica, MA) and images
were acquired using Uvitec Cambridge (Cambridge, UK). The
molecular mass of each protein was estimated based on a pre-
stained protein standard (Spectra Multicolor, ThermoScientific,
Waltham, MA). Full-length Western blotting membranes are
displayed in Figure S1.

In vitro Angiogenesis Assay
The basement matrix GeltrexTM (Invitrogen, Eugene, OR) was
added (30 µl/well) to coat a 96-well plate and allowed to
polymerize for 40min at 37◦C. HUVEC cells (5×103) suspended
in RPMI medium supplemented with 0.2% of fetal calf serum
were plated alone (control) or mixed with 5µM of Rb44L1
peptide. The cells were incubated at 37◦C for 6 h and images were
captured with a microscope digital camera (Olympus, Tokyo,
Japan). The numbers of pro-angiogenic structures (typically
closed compartments or rings formed after endothelial cell
sprouting) were counted from 3 different wells.

Ethics Statement
The present study is part of Project 2010/51423-0 granted by the
São Paulo State Research Support Foundation (FAPESP), Brazil.
The protocols used for animal experiments were carried out in
accordance with the Ethics Committee of Federal University of
São Paulo, Brazil and have been approved via document CEP
1234/2011.

Mice and Subcutaneous Melanoma Model
Eight-week-old male C57Bl/6 mice were acquired from the
Center for Development of Experimental Models (CEDEME) at
Federal University of São Paulo (UNIFESP), Brazil. The Ethics
Committee for Animal Experimentation (UNIFESP) approved
protocols of animal experiments. In the subcutaneous (s.c.)
melanoma model, male C57Bl/6 mice (five per group) were
subcutaneously grafted in the right flank with 1 ×105 syngeneic
B16F10-Nex2 melanoma cells. Animals were subjected to 5
peritumoral daily doses of 300 µg (total 10 mg/kg) of Rb44L1.
DMSO (1%) in PBS, was the vehicle control. Treatment started
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after the tumor size reached 80 mm3 as measured with a caliper.
The tumor volume (V) was calculated by the formula V= 0.52×
d2 ×D, where d and D are short and long diameters of the tumor,
respectively, measured every other day. Mice were euthanized
at the end of experiments or when the tumor size reached the
maximum allowed volume of 3,000 mm3.

Live-Cell Imaging of Microtubule Dynamics
Real-time fluorescence microscopy of living B16F10-Nex2
melanoma cells previously modified by viral transduction for
the expression of green fluorescent tubulin (CellLight R© Reagents
−2.0 BacMam, Life Technologies), was used to investigate the
peptide interaction with microtubules. Viable green fluorescence
protein (GFP) tubulin-expressing cells (1 ×104) were incubated
with Rb44L1 and Rb29L1 at 260µM and fluorescent images
were taken at 10-min intervals during 2 h using the time-lapse
BioStation fluorescence microscope (Nikon Instruments, Inc,
Melville, NY). For instance, humidity, temperature (37◦C) and
CO2 (5%) were carefully controlled. Fluorescence analysis and
quantification were performed with the ImageJ software and the
video was processed with the NIS-Elements analysis software
(Nikon, Tokyo) and Adobe After Effects software.

Fluorescence Staining of F-Actin
B16F10-Nex2 cells (5 ×104) were seeded in 24-well microplates
and incubated with different concentrations of Rb44L1 (0, 130
and 260µM) for 30min and 3 h. After incubation, cells were fixed
in 3.7% of formaldehyde for 20min at 4◦C, blocked (1% BSA,
5% SFB, 0.1% Triton in 1X PBS) for 30min at room temperature
and stained with Hoechst 33342 (Invitrogen, Eugene, OR) and
anti-phalloidin conjugated with FITC for 1 h at 37◦C. Images
were acquired and analyzed by Cytell Cell Imaging System (GE
healthcare, Little Chalfont, UK).

System Preparation and Molecular
Dynamics
De novo peptide structure prediction was made by Pep-Fold3
webserver (30). We obtained the tubulin structure from PDB
4TV9 (31) (chains A and B). Protonation analysis was made
by PROPKA3 (32). Energy minimization was carried out on
GROMACS 5.1 (33) using CHARMM36 force field (34). Systems
were built by CHARMM-GUI webserver (35, 36) with TIP3P
water molecules (37) and counter ions, when charge balancing
was required. Simulations consisted of 5,000 steps of steepest
descent energy minimization, followed by 25 ps of NVT
equilibration dynamics for L1-CDR peptides and 10 ns for
tubulin. A NPT production molecular dynamics of 100 ns was
carried out on GROMACS 5.1 using CHARMM36 force field
for each system. Secondary structure assignment and hydrogen
bonds (H-bonds) were analyzed by using VMD (38) plugins. H-
bonds distance cut-off was set up at 3.0 Å with angle cut-off of
20◦. All further MD analyses were made by GROMACS 5.1.

Normal Mode Calculations and Generation
of Low-Energy Conformations
Normal mode analysis (NMA) was performed using CHARMM
c41b1 (39) and CHARMM36 force filed using DIMB (40) module

and excluding CMAP (41). A distance dependent dielectric
constant was employed to treat the electrostatic shielding by the
solvent as described by Philot et al. (42). We used the mode
08 (open/close of tubulin monomers) as directional constraint
to generate low-energy conformers along the mode trajectory
using the VMOD algorithm in CHARMM as depicted by Louet
et al. (43). The restraints were applied only on Cα atoms and the
energy was computed for all atoms. The structures were displaced
from 0.0 Å to +6.0 Å (open direction) using steps of 1.0 Å,
resulting in 7 intermediate low-energy structures along themode.

Molecular Docking
In order to obtain different structures to perform molecular
docking, we clustered the MD trajectory of each peptide. All MD
frames were fitted to the reference structure and clustered with
GROMOS method by using GROMACS 5.1, with a backbone
RMSD cutoff of 2.0 Å for Rb29 and Rb44 and 5.0 Å for C36 (since
the last is very flexible) resulting in 3, 11, and 8 different clusters,
respectively. The center structure of each peptide cluster was then
used in docking simulations, performed with Hex 8.0 (44). Hex
depicts proteins as rigid bodies and makes a blind search through
protein surface while it evaluates the interaction correlation by
using the fast Fourier transformation algorithm. As described
in Meissner et al. (45), solvation and desolvation effects were
treated as surface phenomena, since the Hex algorithm models
the interaction, excluding volume and complementarity of form.
Approximately 350 solutions were found for each combination.
We used BINANA 1.2 (46) as a rescore method to investigate the
specific molecular basis guiding the interaction between tubulin
and peptides.

Chemiluminescent Dot-Blotting
Peptide Rb44L1 binding to microtubule structures was
determined by chemiluminescent (CL) dot-blotting as described
elsewhere (26) with some modifications. Peptides C36L1
(positive control), Rb44L1, scrambled-Rb44L1 (Scr44) at 10
µg/10 µL each, or vehicle (1% DMSO in milli-Q water), were
applied on nitrocellulose membranes. They were blocked with
5% BSA in 0.05% PBS-Tween 20. B16F10-Nex2 cell protein
lysate (50µg/ml), prepared with non-denaturing protein
extraction buffer according to the manufacturer’s instructions
(Cell Signaling, Beverly, MA), was applied onto the nitrocellulose
membranes and incubated overnight at 4◦C. After washing,
membranes were incubated with anti-alpha tubulin antibody
(Sigma-Aldrich, St. Louis, MO) for 1 h at 37◦C followed by
anti-rabbit IgG-HRP antibody for 1 h at 37◦C. Immunoreactivity
was determined using the LuminataTM Forte solution (Millipore,
Billerica, MA). Images were acquired by Uvitec Cambridge
(Cambridge, UK) with 1-min membrane exposure time. No
reactivity with the control peptide was observed. To investigate
the influence of GTP and Mn2+ on the peptide binding with α-
tubulin, the membranes coated with 10 µg Rb44L1 or scrambled
(Scr44) peptide were blotted with or without 1mM GTP
(Cytoskeleton, Denver, CO) and/or 1mM Mn2SO

.
4H2O (Sigma-

Aldrich, St. Louis, MO) added to the cell lysate (50µg/ml), for
2 h at 37◦C. Chemiluminescence was detected as described above
but with short membrane exposure time (20 s).
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Tubulin Polymerization Assay
Microtubule polymerization was evaluated using the Tubulin
Polymerization Assay kit (Cytoskeleton, Inc., Denver, CO).
Rb44L1 (130µM) or Scr44 (130µM); colchicine (50µM);
Rb44L1 (130µM)+ colchicine (50µM), diluted with 1% DMSO
in distilled water were added to 50 µl of the tubulin reaction
mix with optimized volumes for inhibitor detection containing
2 mg/ml or 1 mg/ml of tubulin in 80mM PIPES (piperazine-
N-N’-bis [2- ethane sulfonic acid] sodium salt), pH 6.9, 2mM
MgCl2, 0.5mM EGTA (ethylene glycol-bis N,N,N’,N’- tetra acetic
acid), 60% v/v glycerol, 1mM GTP, and 10µM of the fluorescent
reporter. The black, flat bottom, half area 96-well plate, with
the samples, was examined in a fluorescence microplate reader
(SpectraMax-M2e, Molecular Devices, Sunnyvale, CA) every
1min at 340 nm of excitation and 410 nm of emission for
40 or 180min. To monitor the tubulin polymerization in the
same condition as of the dot blotting assay, the reaction was
prepared as described above with 2 mg/ml of purified tubulin
in 0.1% of BSA in PBS and 3.4% of cell lysis buffer, without cell
lysate.

Statistical Analysis
The software GraphPad Prism 5.0 (San Diego, CA) was utilized
for all tests. Statistical differences between groups were compared
by Student’s t-test. Differences in survival time and rate were
evaluated by the Kaplan-Meier survival curves. P-values are
indicated as ∗p < 0.05, ∗∗p < 0.01 and, ∗∗∗p < 0.001.

RESULTS

L1-CDR Peptides Differ in Dynamic
Features
Peptides Rb44L1 and Rb29L1 were studied in comparison with
peptide (C36L1), which exerts cytotoxicity by depolymerization
of microtubules and displays antitumor activities, as previously
investigated (26).

In spite of the sequence similarity, the dynamics of L1-
CDRs were very different from each other. Rb29L1 assumed
a stable β-hairpin conformation, with residues 5SLL and
13TYL forming the β-sheet (Figures 1A,B). In turn, Rb44L1
showed only an intermittent β-bridge between residues 5TI
and 14YL (Figures 1C,D). C36L1, however, did not assume
any ordered structure (Figures 1E,F). Root-mean-squared
deviation (RMSD) of backbone heavy atoms and Cα root-
mean-squared fluctuation (RMSF) calculations were performed
to evaluate structure stability along the molecular dynamics
(MD). Results confirmed the stability of Rb29L1, while
C36L1 showed several conformational shifts (Figure 1G).
Flexibility analysis confirmed this profile (Figure 1H). H-bonds
formation during the dynamics could address these structural
differences among the peptides. Rb29L1 showed more internal
H-bonds than the other peptides, therefore it is more rigid.
Table 1 summarizes these interactions. The trajectories of
each peptide MD were clustered, according to RMSD, onto
representative conformations to perform docking simulations
(Figure S2).

In vitro Cytotoxicity of CDR Peptides
We investigated the anti-tumor potential of two L1-CDR-derived
peptides: Rb44L1 from anti-Lewis B mAb and Rb29L1 from anti-
A34 mAb. The IC50 values were determined for the Rb44L1
and Rb29L1 against different tumorigenic and non-tumorigenic
cell lines (Table 2). Peptide Rb44L1 showed the lowest IC50

values as compared to Rb29L1. The concentrations of 130µM
(IC50) and 260µM (IC100), respectively, were therefore used in
the subsequent experiments with B16F10-Nex2 melanoma cells.
Rb44L1, was less active against non-tumorigenic cells, including
murine and human fibroblasts, 3T3-NIH and GM637 cell lines.
In the concentration range of 0 to 0.140mM, no cytotoxicity was
observed in these cells. Rb29L1 IC50 values were 3- to 10-fold
higher than those of Rb44L1 in tumorigenic cell lines.

Rb44L1 Induces Apoptosis
Changes in the dynamics of the cytoskeleton have been
implicated in the induction of apoptosis. Here, we show that
Rb44L1 induced morphological alterations typical of apoptotic
cell death such as cellular shrinkage, membrane blebs and
cell rounding-up with pseudopodia retraction in B16F10-
Nex2 melanoma cells when incubated with peptide at IC50

(130µM) and IC100 (260µM) for 18 h (Figure 2A). Chromatin
condensation was observed in 95% and 98% of tumor cells
treated with Rb44L1 at 130 and 260µM, respectively, for
18 h. DNA fragmentation was determined by green positive
TUNEL staining in B16F10-Nex2 cells treated with 130 and
260µM of Rb44L1 (Figures 2B,C). Both DNA condensation
and fragmentation were significantly higher in Rb44L1-treated
cells as compared with the negative control (for chromatin
condensation, ∗∗p< 0.01 at 130µM, ∗∗∗p< 0.001 at 260µM; and
for DNA fragmentation, ∗∗∗p < 0.001 at both concentrations).
Additionally, we observed that Rb44L1 could significantly
enhance the translocation of phosphatidylserine (PS) to the outer
leaflet of the plasma membrane, indicating early apoptosis. We
observed a significant increase in the number of early apoptotic
events in cells treated with Rb44L1 at 80 and 100µM, in
comparison with untreated control cells (Figure 2D). Finally,
Rb44L1 inhibited cell proliferation with cell cycle arrest, at 65µM
(Figure 2E). The S-phase area decreased from 22.3 to 13.4%, with
increase of the G2/M phase (from 21.8 to 33.5%). Microtubule
depolymerizing combretastatin-A4 was used as positive control.

Morphological and Functional Alterations
in Mitochondria and ROS Production
Transmission electron microscopy (TEM) of Rb44L1-treated
B16F10-Nex2 cells, at 260µM for 18 h, showed condensed
chromatin, nuclear membrane detachment, enlarged, and
vacuolated mitochondria with damaged cristae surrounded
by heavily injured cytoplasmic organelles compared to
untreated cells (Figure 3A). The collapse of the mitochondria
transmembrane potential (1ψm) was observed on early
incubation with Rb44L1 (0, 130, and 260µM). After 6 h,
reduction of TMRE fluorescence (53 and 94% reduction in
cells treated with 130 and 260µM, respectively; ∗∗p < 0.01
and ∗∗∗p < 0.001 in relation to untreated cells) was observed
indicating mitochondrial damage in these cells (Figure 3B).
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FIGURE 1 | Secondary structure assignment during molecular dynamics and structural analysis of L1-CDRs. (A,B) Rb29L1 assumes a stable β-hairpin conformation
during MD, showing a well established β-sheet between residues 5SLL and 13TYL; (C,D) Rb44L1 shows a recurrent β-bridge between residues 5TI and 14YL; (E,F)
C36L1 presents the most flexible conformation, in its majority composed by turn and coil. Secondary structure color code: turn, in green; extended conformation
(β-sheet), in yellow; isolated bridge, in gold; 3-10 helix, in blue; coil, in white; (G) root-mean-squared deviation of backbone atoms of Rb29L1, Rb44L1, and C36L1.
Rb29L1 remains nearly at the same conformation during all MD, an effect also seen for Rb44L1, although with less intensity. C36L1, nonetheless, presented a great
conformational variation; (H) root-mean-squared fluctuations of Cα atoms of Rb29L1, Rb44L1 and C36L1. Cα fluctuation, or flexibility, follows RMSD pattern. Rb29L1
presents a rigid structure while Rb44L1 and C36L1 are more flexible, the latter more pronounced.

Tumor cells were incubated with Rb44L1 at 130 and 260µM
for 16 h and ROS levels were detected using DHE dye measured
by fluorimetry. Hydrogen peroxide (H2O2) was used as positive
control (Control +) at 5mM. Accumulation of ROS (59% in
relation to untreated cells; ∗∗∗p < 0.001) was observed in cells
treated with Rb44L1 at both concentrations (Figure 3C).

Rb44L1 Elicited Caspase Activation
Different pro- and anti-apoptotic proteins in total cell lysates
were evaluated by Western blotting in Rb44L1-treated B16F10-
Nex2 cells at 130µM and different incubation periods. We
observed that Rb44L1 induced early increase of pro-apoptotic
Bax protein, followed by the cleavage of caspase-9, caspase-3 and
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TABLE 1 | Hydrogen bonds formation during molecular dynamics of L1-CDR
peptides*.

Hydrogen bonds Occupancy (%)

Rb29L1

ARG1-Side-NH1 – TYR16-Side-OT1 34.94

ARG1-Side-NH1 – TYR16-Side-OT2 17.56

ARG1-Side-NH2 – TYR16-Side-OT1 17.78

ARG1-Side-NH2 – TYR16-Side-OT2 37.64

SER3-Side-OG – TYR16-Side-OT1 27.63

SER3-Side-OG – TYR16-Side-OT2 18.97

THR4-Main-N – TYR16-Side-OT1 11.7

THR4-Main-N – TYR16-Side-OT2 27.13

LEU6-Main-N – TYR14-Main-O 42.05

HIS8-Main-N – ASN12-Main-O 43.21

TYR14-Main-N – LEU6-Main-O 36.03

TYR16-Main-N – THR4-Main-O 43.64

TYR16-Side-OH – HIS8-Side-NE2 17.83

Rb44L1

THR7-Main-N – THR13-Main-O 36.35

LEU15-Main-N – THR5-Main-O 54.47

C36L1

ALA17-Main-N – GLN4-Main-O 11.51

*Only interactions with ≥ 10% occupancy are shown.

TABLE 2 | IC50 values of the bioactive peptide Rb44L1 and control Rb29L1
against tumorigenic and non-tumorigenic lineages after 16 h of incubation.

Cell lineages IC50 (µM) ± SD

Rb44L1 Rb29L1

B16F10-Nex2 130 ± 5.8 465 ± 67

A2058 66 ± 2.0 265 ± 16

MCF-7 134 ± 2.4 858 ± 53

SIHA 51 ± 6.6 773 ± 61

HCT-8 81 ± 1.5 821 ± 57

3T3-NIH* >140 >140

GM637* >140 >140

*Non-tumorigenic cell lines.

PARP, together with downregulation of anti-apoptotic protein
Bcl-2 (Figure 3D). GAPDH was used as loading control.

Rb44L1 Inhibited Angiogenesis in vitro
The cytotoxicity of Rb44L1 at different concentrations was
assayed in the HUVEC lineage (Figure 4A). A non-cytotoxic
concentration was used for the inhibition of endothelial cell
(HUVEC) sprouting in GeltrexTM Matrix. Rb44L1 at 5µM for
6 h, significantly inhibited 90% of endothelial cell sprouting, with
the number of compartments built by intercellular connections
being compared to that of the control (∗∗p< 0.01; Figures 4B,C).

Antitumor Activity in vivo Against
Subcutaneous Melanoma
The in vivo antitumor activity was also investigated in a
subcutaneously grafted, syngeneic murine melanoma model.

Peritumoral injections of Rb44L1 at 15 mg/Kg significantly
delayed tumor volume progression (∗∗p < 0.01), and also
prolonged mice survival (∗∗p < 0.01) (Figures 4D,E). Mice were
euthanized at the scheduled end of experiments, or before, should
the tumors ulcerate or reach the maximum allowed volume of
3,000 mm3.

Rb44L1 Interacts With Microtubules and
Induces Cytoskeleton Disruption in
Melanoma Cells
Disruption of the microtubule integrity in B16F10-Nex2
cells was monitored during the incubation with Rb44L1 and
Rb29L1. Microtubules were assessed by live-cell imaging
using B16F10-Nex2 cells previously transduced with a genetic
modified insect virus (baculovirus) containing a tubulin-
green fluorescent fusion-protein construct (CellLight R©, Life
Technologies). The fluorescence of live murine melanoma
cells was monitored and quantified for 2 h during incubation
with 260µM of Rb44L1 and Rb29L1. The Rb44L1 peptide
drastically reduced microtubule fluorescence compared to the
negative control (Figures 5A,B), indicating that the microtubule
network was depolymerized during the incubation with
Rb44L1, whereas no depolymerization was seen in Rb29L1
treated cells. A representative video showing the kinetics of
microtubule depolymerization in B16F10-Nex2 cells during
the incubation with Rb44L1 and Rb29L1 is available in
Video S1.

In addition to investigating whether Rb44L1 would also affect
the integrity of F-actin, the reaction was assessed simultaneously
using a phalloidin-FITC probe, as described in methods. We
observed that F-actin integrity was completely lost after 3 h of
incubation with Rb44L1 at 260 and 130µM (Figure 5C). Actin
degradation occurred after the microtubule disruption process,
as evidenced in the cytoskeleton integrity quantification analysis
(Figure 5D), suggesting that actin filaments were disrupted as
a consequence of microtubule depolymerization (∗p < 0.05
comparing microtubule and actin disruption). Less than 55 or
65% of cytotoxicity was seen when testing both concentrations
of Rb44L1 at 260 and 130µM, respectively, in the first hours of
incubation (Figure S3).

Normal Modes Expose Nonexchangeable
Nucleotide and Colchicine Binding Sites
Normal mode analysis (NMA) was employed to investigate
the opening motion of tubulin monomers. We hypothesized
that this opening motion would be required to expose the
nucleotide binding site located at α-tubulin (N-site) and dimer
interface. Such exposition could favor the efficient docking of
L1-CDR peptides and impair the tubulin dimer assembly, finally
leading to microtubule dissociation. This motion was verified as
the normal mode 8 (Figures 6A,B). Using the VMOD routine
implemented on CHARMM, we performed a mass-weighted
displacement of tubulin structure along mode 8, to produce
energy-relaxed structures with gradually exposed nucleotide site.
Tubulin residues originally in contact with GTP (contacts within
4.5 Å) showed a solvent-accessible surface area (SASA) of 511
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FIGURE 2 | Rb44L1 induces apoptosis in melanoma cells. (A) morphological changes were analyzed by light microscopy. Representative images of cells treated with
different doses of Rb44L1 or untreated cells (control). Arrows indicate inserts (x200, magnification); (B) representative images of chromatin condensation (Hoescht
33342, blue) and DNA fragmentation (TUNEL, green) of tumor cells treated with different concentrations of Rb44L1 for 18 h. Scale bar represents 50µm; (C)
percentage of TUNEL positive cells and condensed nuclei. **p < 0.01 and ***p < 0.001 in comparison to untreated cells; (D) percentage of apoptotic cells
determined by the externalization of phosphatidylserine; (E) cell cycle of B16F10-Nex2 cells after incubation with Rb44L1 at 65µM for 16 h. Percent tumor cells at
Sub-G1, G1, S, and G2/M phases are indicated. CA4 was used as positive control.

Å² at the crystallographic structure (PDB 4TV9), while the
same residues were more exposed after a displacement of 6 Å,
presenting a SASA of 588 Å² (Figures 6C,D). The same occurred

for the colchicine site, which presented a SASA of 225 Å² before
the displacement and 236 Å² after mass-weighted displacement
of 6 Å.

Frontiers in Oncology | www.frontiersin.org 8 January 2019 | Volume 9 | Article 25185

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Girola et al. A CDR-L1 Peptide Targets Melanoma Microtubules

FIGURE 3 | Rb44L1 induces morphological alterations in mitochondria. (A) B16F10-Nex2 cells were treated with 260µM of Rb44L1 for 18 h and examined by
transmission electron microscopy. Representative micrographs of untreated cells (control) and Rb44L1 treated cells. Arrows indicate mitochondrial ultrastructure in the
inserts; scale bar represents 2µm; (B) loss of mitochondrial transmembrane potential in B16F10-Nex2 cells treated with 130 and 260µM of Rb44L1 for 6 h, probed
with red TMRE. **p < 0.01 and ***p < 0.001 in comparison to the control; (C) enhanced superoxide anion production observed by DHE staining in B16F10-Nex2 cells
treated with different concentrations of Rb44L1 for 16 h, vehicle control (Control −) and 5mM H2O2 as positive control (Control +). The conversion of DHE to ethidium
by oxidation was acquired at 370 nm (excitation) and 420 nm (emission). ***p < 0.001 in relation to control (−); (D) levels of apoptosis related proteins in
Rb44L1-treated melanoma cells. Time-dependent effect on cell signaling of B16F10-Nex2 incubated with Rb44L1 at 130µM. Levels of total and cleaved
caspase-3,−9, cleaved PARP, Bax, Bcl-2, and Bcl-xl during Rb44-induced apoptosis are shown by Western blotting. GAPDH was used as loading control. A single
cell-lysate sample was used in the same experiment and the Western blotting membranes were processed in parallel for antibody reactivity. Uncropped, full-length
blottings are shown in Figure S1.

Docking Studies Reveal the Importance of
Electrostatic Interactions
Docking calculations were performed using 7 tubulin structures
generated from NMA displacement against the central structure
of each L1-CDR peptide cluster (3 for Rb29L1, 11 for Rb44L1,
and 8 for C36L1). In every docking round, an average of 350
different solutions was calculated. We then evaluated the best
solution from Hex with BINANA to better understand the key
binding characteristics governing the interaction.

Results indicated less favorable interactions for Rb29L1 than
C36L1 and Rb44L1 in almost all displacements (as summarized
in Table 3, detailed in Table S1, respectively), according to
experimental results. At the best pose for Rb44L1 (docked with
tubulin displaced by 2 Å) the 1R side-chain is buried in the
cavity formed between tubulin monomers, participating in 3
of 6 H-bonds and 2 salt-bridges (Figures 7A,C,E,G). In fact,

interactions involving 1R were observed in all displacements
except at 3 Å and 4 Å. This indicates the putative importance

of this residue to maintain the interaction with tubulin. When

the 1R is replaced by alanine, the results showed a systematic
worsening of energy values (as summarized in Table 3, detailed

in Table S1). Biological assays confirmed this prediction since

the R1A substitution in Rb44L1 was not cytotoxic to B16F10-
Nex2 cells, in the 0 to 500µM range (data not shown). C36L1
pose analysis also indicated the involvement of a basic residue
governing the interaction with tubulin. The 13K was present
participating of H-bond, salt-bridge or cation-pi interactions in
all tubulin displacements but at 5 Å. At the best pose–docked with
tubulin displaced by 4 Å, 13K appeared in two H-bonds and in a
salt-bridge (Figures 7B,D,F,H). Moreover, its side-chain was also
buried in a cavity between tubulinmonomers. On the other hand,
although Rb29L1 had a greater number of H-bonds, the lack of
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FIGURE 4 | Rb44L1 inhibits HUVEC sprouting on GeltrexTM Matrix. (A) dose-response curve of Rb44L1 on HUVEC cells; (B,C) Inhibition by Rb44L1 (5µM) on
HUVEC sprouting on GeltrexTM Matrix to form closed proangiogenic structures; **p < 0.01 compared to untreated control. Rb44L1 prevents tumor progression. (D)
1 ×105 syngeneic B16F10-Nex2 cells were subcutaneously injected in C57Bl/6 mice. Peritumoral daily doses of 300 µg of Rb44L1 peptide were administered during
five consecutive days. Tumor volume was measured and documented during the treatment period. **p < 0.01 in comparison with control group treated with PBS; (E)
survival of C57Bl/6 challenged mice after treatment with Rb44L1 or PBS (control). **p < 0.01 in relation to control group.

charged residues would contribute to predicted energies higher
than the other peptides.

Docking Studies Showed the L1-CDR
Interactions Preferentially at the
Nonexchangeable Nucleotide-Binding Site
We evaluated the best docking pose for both Rb44L1 and C36L1
in relation to the exposed nucleotide and colchicine binding sites.
Rb44L1 interacted with three residues of the N-site (11Q, 69D, and
71E) and with one residue of the colchicine site (252K). The 1R
participated in all interactions. C36L1, however, interacted with
different residues of the N- site (71E, 11Q, 224Y, 206N, 177V) and
one residue of colchicine site (179T). These interactions depended
on 13K and 11N residues of the C36L1 peptide (Figures 8A,B).
Rb29L1 showed interactions with tubulin similarly with those
of C36L1 (177V, 179T, 206N, and 224Y). In contrast, there were

interactions shared with Rb44L1 and C36L1 (11Q and 71E), which
were absent in Rb29L1 (Figure 8C). Taken together, these results
showed that tubulin-opening motion corresponded to a decrease
of summed electrostatic energy values of the displaced structures
(Figure 8D).

Both Rb44L1 and C36L1 interacted with the region of helices
α2, α3 and α8 of α-tubulin subunit, and showed differences in
relation to β-tubulin monomer. While Rb44L1 interacts with
loops α1β1 and α7α8, C36L1 interacts with loop β9α11 and
helix α11. The overlapping of C36L1 and Rb44L1 best poses
showed residues 13K and 1R occupying the same region at the
tubulin dimer interface, that is blocked by residues 70LEPT of
α-tubulin and 243PGQL of β-tubulin in a minimized structure
(Figure 8E). Rb44L1 interaction with α-tubulin subunit was
further confirmed using a chemiluminescence dot-blotting assay.
We observed that Rb44L1 significantly bound to α-tubulin
present in B16F10-Nex2 cell extract, as compared to the negative
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FIGURE 5 | Rb44L1 targets microtubules and disrupts tubulin assembly. (A) B16F10-Nex2 cells expressing baculovirus-transduced fluorescent tubulin were
incubated with Rb44L1 at 260µM; representative image of microtubule integrity is shown. Scale bar represents 50µm; (B) microtubule dissociation was quantified in
Rb44L1 and Rb29L1 treated cells and expressed as fluorescence decreased intensity and complete dispersion. ***p < 0.001 in comparison to untreated cells; (C)
representative images of B16F10-Nex2 cells treated for different times with 130 and 260µM of Rb44L1. Merged images of phalloidin-FITC and Hoescht 33342
staining are shown; (D) loss of actin and tubulin assembly integrity in Rb44L1 treated cells was quantified and compared. Results are expressed by fluorescence
intensity. *p < 0.05 comparing microtubules and actin disruption.

control and the scrambled peptide (Scr44), which was inactive.
The C36L1 peptide was used as a positive control (Figure 8F).
Different concentrations of the coated peptide Rb44L1 were
tested and we found 10 µg/10 µl to give the best resolution
in the dot-blotting (Figure S4). Interaction with β-actin was
also evaluated and no reaction was seen (data not shown).
As the docking studies revealed that the Rb44L1 interacted
preferentially close to the N-site, we investigated the influence of
additional GTP and Mn2+ on the peptide binding to α-tubulin
in a dot-blotting assay with fixed peptide and melanoma cell
lysate as a source of α-tubulin (monomeric, modified, dimeric).
The peptide binding was enhanced in the presence of both
GTP and Mn2+, but not with these agents added separately
(Figure S5). Since the GTP N-site is nonexchangeable and non-
catalytic, most likely the addition of GTP and Mn2+ triggered

tubulin assembly by interacting on the E-site. Oligomeric
tubulin bound to the peptide explains the increased reactivity
with anti-α-tubulin antibody used to reveal the dot-blotting
assay.

Rb44L1 Inhibits Purified Tubulin Assembly
The microtubule destabilization effect of Rb44L1 was
also evaluated using a fluorescence recombinant tubulin
polymerization assay kit (Cystoskeleton, Inc., Denver, CO). In
this setting and starting with 2 mg/ml tubulin, 0.2 mg/ml of
Rb44L1 delayed tubulin assembly and reduced approximately
1/4 of the total assembly capacity compared to the control
(∗∗∗p < 0.001) and the scrambled peptide, Scr44 (Figures 9A,B).
This effect was significantly more evident at half the tubulin
concentration (1 mg/ml) and 0.2 mg/ml of Rb44L1 (∗∗∗p < 0.001
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FIGURE 6 | Motion representation of normal mode 8 and nucleotide/colchicine site exposition as a result of α/β-tubulin displacement. (A) cartoon representation of
α/β-tubulin normal mode 8. The circular motion in opposite directions of each tubulin monomer promotes the exposition of a nucleotide and colchicine binding sites;
(B) highlight of vector directions. Vectors are placed into Cα atoms of each residue. Secondary structure color code: turn in green; β-sheet in yellow; β-bridge in gold;
α-helix in purple; G, 3-10 helix in blue; and C, Coil in white. (C,D) α/β-tubulin crystallographic structure (PDB 4TV9) where atoms are represented as spheres.
(C) comparison of GTP N-site (cyan), colchicine (yellow), and GTP E-site (green) site exposition between (C) α/β-tubulin crystallographic structure (PDB 4TV9); and (D)

α/β-tubulin displaced by 6 Å along normal mode 8. Atoms are represented as spheres and residues present in both colchicine, and GTP N-site are colored in purple.
α-Tubulin is represented in light-pink and β-tubulin in light-blue.

compared to the control). Polymerization was inhibited in 3/4
followed by depolymerization, after approximately 150min
incubation (Figures 9C,D). Since colchicine is a well-known
microtubule inhibitor and has a binding-site mostly on β-tubulin,
we assayed the effect of simultaneous addition of colchicine and
Rb44L1. Increased inhibition of tubulin assembly was observed
with this combination, suggesting independent interaction
sites of Rb44L1 and colchicine, ∗∗∗p < 0.001 compared to the
colchicine alone (Figure 9E). It should be pointed out that
single drugs such as the MT- depolymerizing colchicine and
the MT-polymerizing paclitaxel when used in combination, the
depolymerization effect has predominated (47).

DISCUSSION

The microtubules together with various stabilizing and
destabilizing molecules display many important physiological
functions. Due to their indispensability in the mitotic cell
division, microtubules have been selected as preferred anticancer
targets. Indeed, microtubule directed drugs are among the
most commonly prescribed agents in cancer chemotherapy (2).
Recently, anti-tumor peptides targeting microtubules (26) have
been studied as tubulin interacting ligands that may evolve to be
used in cancer therapy.

Novel anti-tumor peptides may have advantages over mAbs
and tyrosine-kinase inhibitors, such as low cost, high specificity

and potency due to their compatibility with targeted proteins,
ability to penetrate the cell membrane, reduced immunogenicity,
and improved safety (48). For example, the ADH-1 (Exherin),
is an anticancer peptide distributed by Adhex Technologies R©,
which targets N-cadherin and induced partial and complete
protective responses in patients with metastatic melanoma (49).

The microtubule destabilizing Ig VL CDR1 peptide (C36L1)
triggered cytotoxic and cytostatic effects on melanoma cells
in vitro (23). Besides C36L1, we found that another CDR-
L1 derived peptide, from anti-Lewis B mAb, exhibited similar
cytotoxic mechanisms, targeting microtubules (MT). In the
present work, we studied the molecular structure and biological
effects of different L1-CDR-derived peptides: C36L1, Rb44L1 and
Rb29L1 on microtubules. We analyzed the structure of L1-CDR-
destabilizing MT peptides C36L1 and Rb44L1, as compared to
the inactive one, Rb29L1. The latter demonstrated themost stable
and rigid structure, assuming a β-hairpin conformation with
several high occupancy H-bonds. Rb44L1 showed less rigidity as
compared to Rb29L1, with a stable β-bridge conformation, while
C36L1 was the most flexible peptide among them.

The biological effects of the peptides were examined and
Rb44L1 showed the highest cytotoxic activity, selectively in
different cancer cell lines with no significant effects on non-
tumorigenic cell lines (Table 2).

Morphological and biochemical changes during tumor cells
incubation with cytotoxic concentrations of Rb44L1 were
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TABLE 3 | Key binding characteristics governing tubulin and L1-CDR interaction.

Displacement (Å)

0 1 2 3 4 5 6

Rb29L1

Energy* 434.76 751.84 383.90 −60.19 800.12 −101.62 −37.13

H-bonds 2 3 5 4 8 1 8

Salt-bridges – 1 – – – – –

Cation-pi – – 1 – – – –

T-stacking – – – – – – 1

Hydrophobic
contacts

27 69 33 45 57 60 58

C36L1

Energy* −41.64 −186.92 15.15 −59.66 −287.46 195.54 −271.06

H-bonds 7 2 2 2 6 – 4

Salt-bridges 1 1 1 1 1 – –

Cation-pi – – 1 – – – 1

T-stacking – – – – – – –

Hydrophobic
contacts

60 67 56 45 42 59 87

Rb44L1

Energy* 216.31 −169.17 −300.48 45.49 −70.64 −30.10 −165.28

H-bonds 4 2 6 3 1 3 3

Salt-bridges 1 – 2 – – – –

Cation-pi – – – – – – –

T-stacking – – – – – – –

Hydrophobic
contacts

51 57 61 47 47 56 64

Rb44L1-R1A

Energy* 253.99 45.25 −52.26 35.38 −37.68 −78.29 −125.58

H-bonds 2 3 3 – 2 3 4

Salt-bridges – – – – – – –

Cation-pi – – – – – – –

T-stacking – – – – – – –

Hydrophobic
contacts

41 53 51 46 47 56 64

Best poses are highlighted in bold (energy values in kJ/mol).*Predicted summed

electrostatic energy by atom-type pair according to Gasteiger partial charges.

observed. Apoptosis was recognized by the remarkable shrinkage
of the cytoplasm, roundup cells with pseudopodia retraction and
shriveling without cell lysis, genomic DNA condensation and
fragmentation, and exposure of phosphatidylserine at the surface
of peptide-treated cells (50). The intrinsic pathway involves the
functional deregulation of mitochondria, which may culminate
in activation of caspases and the cascade of events that drives to
cell death (51, 52). Early disruption of mitochondrial membrane
potential, as evidenced by time-lapse fluorescence microscopy
and TEM, together with later production of ROS, cleavage
of caspase-9, caspase-3, the PARP, upregulation of Bax and
downregulation of Bcl-2 were effects induced by Rb44L1, and
they are all consistent with the intrinsic pathway of apoptosis
(53, 54), strongly suggesting that this is themain in vitro cytotoxic
mechanism of the peptide in melanoma cells.

P53 is activated in response to different stresses leading
tumor cells to apoptosis and growth arrest (55). In this

regard, accumulation of active p53 may also be attributed to
disintegration of the cytoskeleton. Microtubule targeted-drugs
are one of the main stimuli able to increase levels and activate
p53 (56).

Themainmechanism that seems to be involved in the intrinsic
apoptosis by Rb44L1 peptide is the early disruption of the
microtubules in melanoma cells. Rb44L1 destabilized labeled
microtubules during early stages of incubation, as observed by
fluorescence microscopy. In contrast, Rb29L1 did not affect the
microtubule dynamics, under the same conditions.

The actin cytoskeleton integrity was also evaluated, as
observed by fluorescence microscopy. Rb44L1 induced the
degradation of actin filaments in melanoma cells to a maximum
effect after 3 h of tumor cell treatment with this peptide.
Alterations of actin dynamics are sufficient to induce apoptosis.
They involve changes in F-actin levels, in the flux of actin
through the filament pool, or both (57). In addition, F-actin
depolymerization has been implicated in reduced MMP and
elevated ROS production, together with shortening of cell
lifespan (58), as observed in melanoma cells treated with Rb44L1.
The peptide, however, did not directly interact with F-actin
to induce depolymerization as suggested by a late kinetics,
which follows microtubule depolymerization. In fact, the actin
cytoskeleton integrity has been shown to be highly dependent
on the microtubule dynamics (59, 60), which is crucial in tumor
cells constantly entering the mitotic program as compared to
non-tumorigenic cells (2). Cellular functions depend on the
crosstalk between microtubules and actin filaments, in which
specific proteins bind to microtubules and actin filaments
simultaneously, promoting co-organization and coupled growth
of both networks (61). Both cytoskeleton constituents are
intrinsically related and rearranged during the progress of
apoptosis. Important events are regulated by ROCK kinases
that actively regulate the actomyosin contractile ring, a process
facilitated by the early disruption of microtubules. Protrusions
of the plasma membrane also called apoptotic bodies or
blebs, are formed, with subsequent depolymerization of actin
filaments (62).

Rb44L1 interaction with microtubules and induction of
their depolymerization with subsequent degradation of actin
filaments increased the number of tumor cells in the G2/M
phase leading to a mitotic catastrophe. Such effects, coupled to
inhibited angiogenesis as observed in vitro, are consistent with
the described effects of other microtubule targeting drugs (2, 63).
A schematic illustration of the effects induced by Rb44L1 on
melanoma cells is detailed in the Figure 10.

Most importantly, this peptide showed a promising antitumor
protective effect against subcutaneously grafted melanoma, with
no systemic toxicity being observed.

Once proteins exist in equilibrium of multiple conformations
in solution, we used a theoretical approach that mixed analyses
of molecular dynamics and normal modes, to sample distinct
structural states of α/β-tubulin dimer. This hybrid methodology
allowed for the assignment of both local and collective
motions of the system, that are essential dynamic features
related to conformational selection and induced fit, respectively
(64–66).
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FIGURE 7 | Rb44L1 and C36L1 interactions with α/β-tubulin displaced by 2 Å and 4 Å, respectively. (A,B) surface complementarity; (C,D) hydrogen bonds formed;
(E,F) salt bridges form a tiny pocket demonstrated in navy blue surface; (G,H) hydrophobic contacts form pockets represented by orange surface. α-Tubulin is
represented in light-pink and β-tubulin in light-blue.

Microtubules are dynamic cellular structures that switch
between growing and pruning cycles both in vivo and
in vitro. Stabilization or destabilization of microtubule dynamics
is promoted by a number of endogenous and exogenous
compounds that regulate the process in different ways, either
by competition with GTP (67), structural modification of the
protein-protein interface between α and β monomers (8, 31, 68)
or by allosteric mechanisms (69). One of the most frequently
described mechanisms is the ligand binding at the colchicine site
on β-tubulin, which is spatially next to an α-tubulin nucleotide
binding site, with nonexchangeable, noncatalytic characteristics,
known as N-site. Therefore, we explored the exposition of both
binding sites as a molecular docking strategy, since their coupling

might trigger the structural destabilization of tubulin dimer
exerted by some L1-CDR peptides.

The tubulin heterodimer has two guanine binding sites:
at the exchangeable, catalytic site (E-site) on the β chain,
GTP is hydrolyzed to GDP during microtubule assembly; the
nonexchangeable, noncatalytic site (N-site), on the α chain,
is always occupied by GTP, suggesting that it may function
as a structural cofactor of tubulin (70). Divalent cations have
high affinity for both sites and their binding is associated to
the structural stability of tubulin dimer (71). Mg2+ is a well-
established ion required for microtubule assembly and stability,
and contributes to strong GTP binding to the E-site (72). Q-band
EPR and electron spin echo envelope modulation spectroscopy
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FIGURE 8 | CDR-L1 docking poses in relation to α/β-tubulin N-site and colchicine binding sites and energy re-score of docked complexes. (A) Rb44L1; (B) C36L1;
(C) Rb29L1 best docking pose highlighting their position in relation to residues at N-site and colchicine binding sites. α-Tubulin is represented in light-pink and
β-tubulin in light-blue. N-site and colchicine binding site residues are represented as purple and pale green, respectively, whereas those that interact with the CDRs
are hot pink and lime green for nucleotide and colchicine binding site, respectively. The camera was inverted 170◦ on the y-axis and 80◦ on the x-axis for better
visualization of the C36L1 and Rb29L1 interactions; (D) summed electrostatic energy of Rb29L1, Rb44L1, C36L1 and Rb44L1-R1A complexed with α/β-tubulin at
different displacements; (E) overlapping of Rb44L1 and C36L1 docked complexes. Residues 1R and 13K of Rb44L1 (blue) and C36L1 (red), respectively, occupy the
same region at the tubulin dimer interface, that is blocked by residues 70LEPT of α-tubulin and 243PGQL of β-tubulin at minimized structure (green surface); (F)
Rb44L1 binds to tubulin present in the lysate of B16F10-Nex2 cells. Dot-blottings were performed by coating the nitrocellulose membranes with 10 µg of C36L1,
Rb44L1, scrambled-Rb44L1 (Scr44), and vehicle (1% DMSO in milli-Q water). Experimental and control dot-blottings were performed as described in methods.
Quantitation of dots was performed using ImageJ, and are represented as arbitrary units.

showed that Mn2+ at both N and E-sites directly coordinated to
the triphosphate of GTP, proving that the divalent cation at both
sites directly interacts with GTP (73). Mn2+ slowly exchanged
for Mg2+ at the N-site and other divalent and trivalent cations
may also exchange at this site and play a role in the assembly of
microtubules (74, 75). Chelation of divalent cations in general,
inhibits the assembly of tubulin dimers.

L1-CDR peptides bound at the nucleotide/colchicine binding
site at the dimer interface, but most of the interactions were
made at the N-site. The best solution of Rb44L1 peptide was in
an α/β-tubulin semi-open state. We observed that the 1R is a

key residue for interaction with tubulin dimer. The mutation of
this residue for alanine, weakened the interaction, increasing the
free energy. This result was further corroborated by experimental
assays. Interestingly, the 13K of C36L1 used the same tubulin
cavity as that of 1R of Rb44L1, although C36L1 best docking pose
was observed in an open conformation. This polar pocket may
play an important role in tubulin depolymerization induced by
L1-CDR peptides since the inactive Rb29L1 did not present a
favorable interaction on this region.

The inactivity of Rb29L1 peptide is noteworthy, since its
sequence is quite similar to Rb44L1 except between residues 4
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FIGURE 9 | Effects of Rb44L1 on microtubule assembly. (A) Polymerization kinetics in presence of Rb44L1 and Scr44 (130µM) with purified fluorescent tubulin at 2
mg/ml. Inhibition by colchicine (50µM) was assayed alone or in combination with Rb44L1. (B) bar graph represents the percentage of tubulin assembly measured at
30min from kinetic curve demonstrated in (A). (C) Rb44L1, Rb29L1, and Rb44R1A were incubated with tubulin at 1 mg/ml and polymerization/destabilization was
measured. (D) bar graph represents the percentage of tubulin assembly measured at 140min from kinetic curve demonstrated in (C). *p < 0.05, **p < 0.01, and
***p < 0.001 in comparison to the control (E) structural alignment between the best pose from molecular docking and PDB 4O2B (chains A and B) illustrating the
possibility of Rb44L1 (green) and colchicine (red) interact concomitantly with α/β-tubulin at its interface. PDB4O2B was firstly aligned with PDB4TV9, and then the
comparison was made. α-Tubulin is represented in light-pink and β-tubulin in light-blue.

and 7, which is TSLL in the former peptide and QTIT in the
latter. Interestingly, the most favorable docking poses showed a
different interaction pattern with tubulin, since Rb44L1 QTIT
residues were less solvent exposed than Rb29L1 TSLL residues,
which are 70 Å2 more exposed to solvent. This is a direct
consequence of the observed R interaction pattern with buried
tubulin residues (69D and 11Q) in the N-site, and could be related
to the observed activity differences.

A dot-blotting assay showed that in the presence of both
GTP and Mn2+, but not with these agents added separately,
the Rb44L1 peptide bound with increased affinity to the tubulin
α-chains of monomeric, modified or dimeric substrates from a

tumor cell lysate. This may have occurred by the GTP-E site
induced oligomerization of tubulin dimers present in the cell
lysate during incubation, indicating that under the conditions
used, the dot-blotting assay with fixed peptide did not impair
tubulin assembly on the latter (Figure S6).

In contrast, what is the possible mechanism triggering
Rb44L1 depolymerization of tubulin? We found that
the surface overlapping of the docked conformation of
the peptide and the closed α/β-tubulin revealed that the
peptide represents a steric constraint to the protein in
this conformation. The effect noticed in the overlapping
regions of 1R, 3S, and 12N residues, and the peptide size

Frontiers in Oncology | www.frontiersin.org 16 January 2019 | Volume 9 | Article 25193

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Girola et al. A CDR-L1 Peptide Targets Melanoma Microtubules

FIGURE 10 | Schematic illustration of proposed Rb44L1 effects on melanoma cells. Rb44L1 peptide interacts at the tubulin monomers’ interface in microtubules
promoting depolymerization. Alteration of microtubule dynamics led to actin filaments degradation, disrupting the cytoskeleton integrity. In response to changes in the
environment, mitochondria produce high amounts of ROS and release co-factors that trigger intrinsic apoptosis. Upon activation by binding to and neutralization of
Bcl-2, insertion of Bax into mitochondrial outer membrane form pores to allow the passage of proteins from the intermembrane space to the cytosol. It involves the
disruption of mitochondrial membrane potential (1ψm) followed by release of cytochrome c in the cytosol that binds to Apaf-1, ATP, and pro-caspase 9 to form an
oligomeric apoptosome, which results in the caspase cascade initiation. Activation of caspase 3 by caspase 9 is responsible for the proteolytic cleavage of the nuclear
enzyme Parp-1, which abolishes its DNA repair ability and induces DNA fragmentation in cells undergoing apoptosis. In addition, Rb44L1 inhibited pro-angiogenic
structure formation in vitro and induced cell cycle arrest at G2/M. Abbreviations: Apaf-1, Apoptotic protease activating factor 1; Cyt-c, Cytochrome-c; ROS, Reactive
oxygen species; 1ψm, Mitochondrial membrane potential; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2 associated X protein; Parp-1, Poly [ADP-ribose] polymerase 1. The
illustration was designed by Carolina de Amat.

of 1675.0 Å3, which preclude the α/β-tubulin return to a
closed conformation, is a source of structure destabilization
(Video S2).

Taken together, we propose that Rb44L1 peptide is a novel
candidate to be developed as a drug, acting on the microtubule
network of tumor cells. Molecular docking on tubulin monomers
in opening motion, and the possible mechanisms of action
leading to microtubule depolymerization were explored in
comparison with other Ig CDR-L1 derived peptides, all tested
against in vitromodels of melanoma cells.
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Celastrol is a natural triterpene isolated from the Chinese plant Thunder God Vine with

potent antitumor activity. However, the effect of celastrol on the growth of ovarian

cancer cells in vitro and in vivo is still unclear. In this study, we found that celastrol

induced cell growth inhibition, cell cycle arrest in G2/M phase and apoptosis with the

increased intracellular reactive oxygen species (ROS) accumulation in ovarian cancer

cells. Pretreatment with ROS scavenger N-acetyl-cysteine totally blocked the apoptosis

induced by celastrol. Additionally, celastrol inhibited the growth of ovarian cancer

xenografts in nude mice. Altogether, these findings suggest celastrol is a potential

therapeutic agent for treating ovarian cancer.

Keywords: celastrol, reactive oxygen species, N-acetyl-cysteine, apoptosis, ovarian cancer

INTRODUCTION

Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of female
cancer-related deaths in the United States in 2018 (1). Because of the late stage diagnoses, the
prognosis of ovarian cancer remains poor, despite advances in aggressive surgery and combination
chemotherapy (2–4). Current treatments for ovarian cancer are far from satisfactory, therefore it
is of considerable interest to develop novel therapeutic agents to improve the outcomes of ovarian
cancer.

Celastrol is a natural triterpene isolated from the Chinese plant Thunder God Vine
(Tripterygium wilfordii),which has been reported with a wide range of bioactivities, such as
antitumor (5), anti-inflammatory (6), antidiabetic activities (7) and antihypertensive (8). Celastrol
has shown the potent antitumor activity in various cancers including prostate, breast, liver, colon,
and lung (9–13). Although celastrol is able to induce apoptosis and inhibit proliferation, migration
and invasion in ovarian cancer cells in vitro (14–16), the effect of celastrol on the growth of ovarian
cancer cells in vivo is still unknown. Here, we have comprehensively investigated the antitumor
activity of celastrol in ovarian cancer cells in vitro and in vivo.

MATERIALS AND METHODS

Cells Lines and Reagents
The human ovarian cancer lines A2780 and SKOV3 were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/ml) and
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streptomycin (100 ng/ml) at 37◦C with 5% CO2 in a
humidified incubator. Celastrol was purchased from
Shanghai Tauto Biotechnology. N-acetyl-L-cysteine (NAC)
and dihydroethidium (DHE) were purchased from Sigma-
Aldrich. Methythiazolyldiphenyl-tetrazolium bromide (MTT),
propidium iodide (PI) and other chemicals were purchased
from Shanghai Sangon Biotech. Anti-p27 (610241), Anti-
Cyclin B1 (554177), and Anti-Cyclin E (51-1459GR) antibodies
were from BD Biosciences. Anti-RAF1 (SC-133) antibodies
were from Santa Cruz Biotechnology. Anti-PARP (9542),
Anti-AKT (4691), Anti-pAKT S473 (4060), Anti-ERK (4695),
Anti-pERK T202/T204 (4370), Anti-JNK (9252), Anti-pJNK
T183/Y185 (4668), Anti-p38 (9212), Anti-pp38 T180/Y182
(4511) antibodies were from Cell Signaling Technologies.
Anti-GAPDH (LK9002T) antibodies were from Tianjin Sungene
Biotech.

MTT Assay
Cells were seeded into a 96-well plate at a density of 0.5 ×104

cells/well. Then, different concentrations of celastrol (10µL/well)
were added to designated wells. After 72 h, 10 µL of MTT was
added to each well at a final concentration of 0.5 mg/ml, and the
plate was further incubated for 4 h, allowing viable cells to change
the yellow MTT into dark-blue formazan crystals. Subsequently,
the medium was discarded and 50 µL of dimethylsulfoxide

FIGURE 1 | Celastrol inhibited the growth of ovarian cancer cells in vitro. (A) The growth curves, IC50 values and (B) phase-contrast images of A2780 and SKOV3

cells treated with the indicated concentrations of celastrol (0, 0.1, 0.3, 1, 3, and 10µM) for 72 h. Cell survival was measured by MTT assay, and the IC50 values of

celastrol in each cell lines were calculated.

(DMSO) was added to each well to dissolve the formazan crystals.
The absorbance in individual well was determined at 570 nm by
multidetection microplate reader 680 (BioRad, PA, USA).
The concentrations required to inhibit growth by 50%
(IC50) were calculated from survival curves using the Bliss
method (17).

Cell Cycle Analysis
Cells were harvested and washed twice with cold PBS and

then fixed with 70% ice-cold ethanol at 4◦C for 30min.
After centrifugation at 200 × g for 10min, cells were washed

twice with PBS, resuspended with 0.5mL PBS containing PI

(50µg/mL), Triton X-100(0.1%, v/v), 0.1% sodium citrate,
and DNase-free RNase (100µg/mL), and detected by flow

cytometry (FCM) after 15min incubation in the dark at
room temperature. Fluorescence was measured at an excitation
wave length of 480 nm through a FL-2 filter. Data were
analyzed using ModFit LT 3.0 software (Becton Dickinson)
(18, 19).

Apoptosis Analysis
Cell apoptosis was evaluated with FCM assay. Briefly, cells were
harvested and washed twice with cold PBS, then stained with
Annexin V-FITC and PI in the binding buffer, and detected by
FACSCalibur FCM (BD, CA, USA) after 15min incubation in
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the dark at room temperature. Fluorescence was measured at an
excitation wave length of 480 nm through FL-1 (530 nm) and FL-
2 (585 nm) filters. The early apoptotic cells (Annexin V positive
only) and late apoptotic cells (Annexin V and PI positive) were
quantified (20).

Western Blot Analysis
Cells were harvested and washed twice with cold PBS and
then resuspended and lysed in RIPA buffer (1% NP-40,
0.5% sodium deoxycholate, 0.1% SDS, 10 ng/mL PMSF, 0.03%
aprotinin, and 1µM sodium orthovanadate) at 4◦C for 30min.

FIGURE 2 | Celastrol induced cell cycle arrest in ovarian cancer cells. A2780 and SKOV3 cells were treated with celastrol with the indicated concentrations for 48 h,

then cell cycle was detected by FCM. The representative charts (A,C), quantified data (B,D), and Western blot results (E,F) of three independent experiments are

shown. *P < 0.05 and **P < 0.01 vs. corresponding control.
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FIGURE 3 | Celastrol induced apoptosis in ovarian cancer cells. A2780 and SKOV3 cells were treated with celastrol with the indicated concentrations for 48 h, then

cell apoptosis was detected by FCM. The representative charts (A,C), quantified data (B,D), and Western blot results (E,F) of three independent experiments are

shown. The same GAPDH image of Figure 2 has been used as loading control. **P < 0.01 vs. corresponding control.
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Lysates were centrifuged at 14,000 × g for 10min and
supernatants were collected. Proteins were separated on 12%
SDS-PAGE gels and transferred to polyvinylidene difluoride
membranes. Membranes were blocked with 5% BSA and
incubated with the indicated primary antibodies. Corresponding
horseradish peroxidase-conjugated secondary antibodies were
used against each primary antibody. Proteins were detected
using the chemiluminescent detection reagents and films (21,
22).

Reactive Oxygen Species Assay
Cells were incubated with 10µM of DHE at 37◦C for
30min, washed twice with PBS, and microphotographed
under a conventional fluorescent microscope (Olympus, Japan)
immediately. For each well, 5 fields were taken randomly. Then,
cells were rapidly digested, harvested and washed twice with cold
PBS, and detected by FCM. The DHE Fluorescence intensity was
measured and quantified at an excitation wave length of 518 nm
through PE filters (23, 24).

Nude Mice Xenograft Assay
Balb/c nude mice were obtained from the Guangdong Medical
Laboratory Animal Center and maintained with sterilized food
and water. This study was carried out in accordance with
the recommendations of the Guidelines for the Care and Use
of Laboratory Animals, and the protocol were approved by
the Institutional Animal Care and Use Committee of Jinan
University. Four female nude mice with 4–5 weeks old and
20–22 g weight were used for each group. Each mouse was
injected subcutaneously with A2780 cells (4 × 106 in 100 µl
of medium) under the left and right shoulders. Mice were
randomized into two groups, when the subcutaneous tumors
were approximately 0.3× 0.3 cm2 (two perpendicular diameters)
in size, and were injected intraperitoneally with vehicle alone
(0.5% methylcellulose) and celastrol (2 mg/kg) every day. The
body weights of mice and the two perpendicular diameters (A
and B) of tumors were recorded every day. The tumor volume
(V) was calculated as:

V = π/6 (1/2(A+ B))3

The mice were anaesthetized after experiment, and tumor tissue
was excised from the mice and weighted. The rate of inhibition
(IR) was calculated according to the formula:

IR=1-Mean tumor weight of experimental group/Mean
tumor weight of control group× 100% (25)

Statistical Analysis
A student’s t-test was used to compare individual data points
between two groups. A P-value of < 0.05 was set as the criterion
for statistical significance.

RESULTS

Celastrol Inhibited the Growth of Ovarian
Cancer Cells in vitro
To access the effect of celastrol on ovarian cancer cells,
we treated two ovarian cancer cell lines A2780 and SKOV3

with the increasing concentrations of celastrol range from
0.1 to 10µM for 72 h. As shown in Figures 1A,B, the
results of MTT assay revealed that the growth of two
ovarian cancer cell lines was similarly inhibited by celastrol
in a dose-dependent manner with the IC50 values were 2.11
and 2.29µM in A2780 and SKOV3 respectively. These data
suggested that celastrol inhibits the growth of ovarian cancer
cells.

Celastrol Induced Cell Cycle Arrest in
Ovarian Cancer Cells
To determine whether celastrol is able to induce cell cycle arrest,
cell cycle distribution was examined after celastrol treatment.
A2780 and SKOV3 cells were treated with 0.3, 1 and 3µM of
celastrol for 48 h, then stained with PI and examined by FCM.
As shown in Figures 2A–D, celastrol induced the accumulation
in Sub G1 and G2/M phase and reduction in G0/G1 and S
phase in two ovarian cancer cell lines. Next, the cell cycle
related proteins were detected by Western Blot. As shown in
Figures 2E,F, increased p27 and Cyclin B1 and decreased Cyclin
E proteins were detected in celastrol-treated A2780 and SKOV3
cells. Together, these results indicated that celastrol induces cell
cycle arrest in ovarian cancer cells.

Celastrol Induced Apoptosis in Ovarian
Cancer Cells
To determine whether celastrol could induce cell apoptosis,
A2780 and SKOV3 cells were treated with indicated
concentrations of celastrol for 48 h, apoptosis was assessed by
FCM with Annexin V/PI staining. As shown in Figures 3A–D,
celastrol dose-dependently induced early stage of apoptosis
(Annexin V+/PI–) and late stage of apoptosis (Annexin
V+/PI+) in both cells. Treatment of celastrol upregulated the
protein expressions of cleaved-PARP, pp38 T180/Y182 and
pJNK T183/Y185 but downregulated the protein expressions
of pERK T202/Y204, pAKT S473 and RAF1 (Figures 3E,F).
Consequently, these results suggest that celastrol induces cell
apoptosis in ovarian cancer cells.

ROS Generation Was Critical for
Celastrol-Induced Apoptosis in Ovarian
Cancer Cells
Numerous antitumor agents demonstrate antitumor activity via
ROS-dependent activation of apoptotic cell death (26, 27). It
has previously been reported that the elevated intracellular
ROS mediated celastrol-induced apoptosis in several human
cancer cells (28). Thus, we surmised that celastrol caused
apoptosis in ovarian cancer cells was due to excessive ROS
generation. Firstly, the cellular ROS was tagged by DHE
fluorescence staining in celastrol-treated cells. As shown in
Figure 4, celastrol enhanced the detectable red fluorescent signals
of DHE in both A2780 and SKOV3 cells, suggesting the
intracellular ROS levels were increased after celastrol treatment.
Then we pre-treated A2780 and SKOV3 cells with NAC
(a specific ROS scavenger), Celastrol-induced cell apoptosis
were totally attenuated by NAC in both ovarian cancer cells
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FIGURE 4 | Celastrol enhanced the intracellular ROS levels in ovarian cancer cells. A2780 and SKOV3 cells were treated with celastrol with indicated times

and concentrations, stained with DHE, photographed and quantified respectively under fluorescent microscope and FCM. The representative micrographs (A,C) and

quantified results (B,D) were shown. **P < 0.01 vs. corresponding control.

(Figure 5). Collectively, these results suggest that ROS generation
was critical for celastrol-induced apoptosis in ovarian cancer
cells.

Celastrol Inhibited the Tumor Growth of
Ovarian Cancer in Nude Mice
To confirm the antitumor effects of celastrol in vivo, A2780
subcutaneous xenograft tumors were generated in the nude
mice. As shown in Figures 6A–E, treatment of celastrol did
inhibit the growth of A2780 xenograft tumors with the
inhibition ratio of 28.60% by diminishing the tumor volumes
and weights. Furthermore, mice body weight in celastrol
group was close to that of control group, suggesting that
celastrol at the indicated dose did not cause toxicity in mice
(Figure 6C).

DISCUSSION

Natural products attract more and more attention in the
prevention and treatment of cancer in recent years. Products
from the plant Tripterygium wilfordii, including celastrol and
triptolide, are of special attention because of its superior anti-
tumor activities against a variety of cancer types, and therefore
are the traditional herb medicines considered to have the most
potential in modern cancer therapy. For the treatment of ovarian
cancer, triptolide has been shown to inhibit the proliferation,
migration and invasion of ovarian cancer in multiple pathways
(29–31) and demonstrated to exert efficacy in preclinical models
(32). Celastrol has also been reported to induce apoptosis and
inhibit proliferation, migration and invasion in ovarian cancer
cells in vitro (14, 16), but the mechanism for its anti-tumor
effect and the effect of celastrol on the growth of ovarian cancer
cells in vivo are not fully understood. In our present study,
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FIGURE 5 | NAC impeded celastrol-induced cell apoptosis. A2780 and SKOV3 cells were treated with 3µM celastrol for 48 h in the presence or absence of 5mM

NAC pretreated for 1 h. The apoptosis was detected by FCM. The apoptosis charts and quantified data (A,B) were shown. *P < 0.05 and **P < 0.01 vs.

corresponding control.

we have demonstrated that celastrol mediated dose-dependent
anti-growth effects on human ovarian cancer cell lines SKOV3
and A2780. The IC50 value after 72 h treatment with celastrol
ranged from 2 to 3µM in these two human ovarian cancer cell
lines, similarly to the IC50 value of celastrol of ovarian cancer
in other articles (15, 16). We have also shown that celastrol
induced both the early and late stage of apoptosis and cell cycle

arrest in G2/M phase with obvious up-regulation of cleaved-
PARP, pp38 T180/Y182, pJNKT183/Y185, p27 and Cyclin B1 and
down-regulation of pERK T202/Y204, pAKT S473, RAF1 and
Cyclin E in a dose-dependent manner. Similar with our results,
celastrol can induce the activation of JNK and inactivation of
AKT in multiple myeloma cells RPMI-8226 (33), activation of
p38 in ovarian cancer cells OVCAR-8 and colorectal cancer
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FIGURE 6 | Celastrol inhibited the tumor growth of ovarian cancer in nude mice. Each mouse was injected subcutaneously with A2780 cells (4 × 106 in 100 µl of

medium) under the left and right shoulders. When the subcutaneous tumors were approximately 0.3 × 0.3 cm in size, mice were randomized into two groups, and

received intraperitoneal injection of vehicle alone (0.5% methylcellulose) or celastrol (2 mg/kg) every day. The body weight and tumor volume were recorded every day.

After experiment, the mice were anesthetized, and tumor tissue was excised from the mice and weighted. The tumor volume (A), original tumors (B), body weight (C),

tumor weight (D), and summary data (E) were shown. *P < 0.05 vs. corresponding control.

cells SW620 cells (34) and inactivation of ERK in hepatoma
cells Hep3B (35). Furthermore, celastrol inhibited the growth of
A2780 ovarian cancer subcutaneous xenograft tumors in nude
mice by diminishing the tumor volumes and weights, and mice
body weight in celastrol group was close to that of control
group. These in vitro and in vivo data strongly indicate that
celastrol may be a appropriate candidate for treating ovarian
cancer.

Biological roles of ROS were intricate and important in
cancer cells (36). The intracellular ROS plays a significant role
in regulating multifarious cell physiological process such as
growth, differentiation, death and so on (37). ROS changes the
cellular redox condition, induces DNA damage and influences
the activities of tumor suppressor or oncogene, thereby involving
in the initiation and progression of cancer (38, 39). Lots
of studies have shown that cancer cells normally produce

more ROS than normal cells (40). Interestingly, accumulating
evidence suggests that cancer cells are more vulnerable to ROS-
induced death because they are under the increased oxidative
stress (41). A variety of agents like YM155, dinaciclib and
triptolide may be selectively toxic to tumor cells because they
enhanced intracellular oxidant stress and push these already
stressed cells beyond their limitation (24, 38, 42, 43). In
addition, previous studies have demonstrated that ROS plays a
pivotal role in celastrol-induced apoptosis in multiple cancers,
such as colon cancer, liver cancer, osteosarcoma, etc. (9,
28, 44). In this study, we have found that the intracellular
ROS levels were increased after celastrol treatment, and pre-
treated with ROS scavenger NAC totally attenuated celastrol-
induced cell apoptosis in ovarian cancer cells. It has been
reported that celastrol enhanced the intracellular ROS to
induce apoptosis by inhibiting mitochondrial respiratory chain
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complex I activity in lung cancer H1299 cells (45). Whether
celastrol induces ROS accumulation to trigger apoptosis in
the same way in ovarian cancer cells need to be further
investigated.

In summary, our data have shown that celastrol induced cell
growth inhibition, cell cycle arrest in G2/M phase and apoptosis
with the increased intracellular ROS accumulation in ovarian
cancer cells in vitro and in vivo. Pretreatment with NAC totally
blocked the apoptosis induced by celastrol. Altogether, these
findings suggest celastrol is a potential therapeutic agent for
treating ovarian cancer.
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Focal adhesion kinase (FAK) is a non-receptor kinase that facilitates tumor

aggressiveness. The effects of FAK inhibition include arresting proliferation, limiting

metastasis, and inhibiting angiogenesis. PF-573228 is an ATP-competitive inhibitor of

FAK. Treating lung cancer cells with PF-573228 resulted in FAK inactivation and changes

in the expressions of lamin A/C and nuclear deformity. Since lamin A/C downregulation

or deficiency was associated with cellular senescence, the senescence-associated

β-galactosidase (SA-β-gal) assay was used to investigate whether PF-573228 treatment

drove cellular senescence, which showed more SA-β-gal-positive cells in culture. p53

is known to play a pivotal role in mediating the progression of cellular senescence,

and the PF-573228-treated lung cancer cells resulted in a higher p53 expression

level. Subsequently, the FAK depletion in lung cancer cells was employed to confirm

the role of FAK inhibition on cellular senescence. FAK depletion and pharmacological

inhibition of lung cancer cells elicited similar patterns of cellular senescence, lamin

A/C downregulation, and p53 upregulation, implying that FAK signaling is associated

with the expression of p53 and the maintenance of lamin A/C levels to shape regular

nuclear morphology and manage anti-senescence. Conversely, FAK inactivation led

to p53 upregulation, disorganization of the nuclear matrix, and consequently cellular

senescence. Our data suggest a new FAK signaling pathway, in that abolishing FAK

signaling can activate the senescence program in cells. Triggering cellular senescence

could be a new therapeutic approach to limit tumor growth.

Keywords: non-small cell lung cancer, senescence, focal adhesion kinase, nuclear deformity, lamin A/C

INTRODUCTION

Focal adhesion kinase (FAK) is a multifunctional non-receptor tyrosine kinase that participates in
a variety of signaling axes (1–5). In response to extracellular stimuli, FAK translocates to the focal
adhesion complex, and mediates molecular signaling for cellular events (6–9). In focal adhesion,
FAK cascades signal the focal adhesion complex to promote cell proliferation and migration
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(4, 9, 10). In addition to the focal adhesion complex and
cytoplasm, FAK is also present in the cell nucleus (3, 11). Nuclear
FAK acts as a cotranscriptional factor in gene transcription and is
involved in p53 degradation, in contrast to its enzymatic function
in protein phosphorylation (3, 11, 12). Whereas, FAK in the focal
adhesion complex affects the expressions of cyclin B1 and cyclin
D1 to program tumor cell proliferation (6, 13, 14), nuclear FAK
elicits p53 degradation to drive cell cycle progression (11, 12).

The biological roles of FAK in cell migration and proliferation
have also been implicated in pathological progression and in
the development of cancer. There are several lines of evidence
suggesting that FAK activity can manipulate tumor phenotypes,
leading to uncontrolled proliferation, neovascularization, and
metastasis (5, 15, 16), and the FAK signaling to tumor cell
propagation represents tumorigenic capacity (5, 11). Given the
crucial roles of FAK in these malignant processes, FAK is
regarded to be a potential target for anti-cancer therapy (17, 18).
Experiments have shown that FAK depletion results in silencing
of cancer-promoting gene expressions in human hepatocellular
carcinoma (HCC) xenotransplants in nude and severe combined
immunodeficiency (SCID) mice (19). Moreover, the enzymatic
function of FAK involves in proliferation and metastasis (9, 15,
20). Suppressing the catalytic activity of FAK or sequestering FAK
in the cytoplasm has been reported to potentially perturb FAK
signaling, which implies that chemical inhibitors of the enzymatic
activity of FAKmay be a pharmacological strategy to limit cancer
growth and metastasis (6, 7, 21, 22).

Triggering cell apoptosis and arresting cell cycle progression
with pharmacological regimens are common strategies to limit
tumor cell growth. FAK inhibition represents an anti-cancer
therapeutic strategy, as FAK inhibitors have effects on anti-
angiogenesis, anti-proliferation, and anti-invasion effects (5, 15,
23). Besides, inducing cellular senescence in tumor cells could
be a new therapeutic approach to limit tumor cell growth (24).
Although therapy-induced senescence (TIS) in cancer cells may
result from deficient apoptosis (25), driving cancer cells to
cellular senescence could be a way to limit tumor propagation
(26). In general, chemotherapy-induced DNA damage, telomere
shortening, and oncogenic stress are the three main pathological
causes of senescence (24, 27–32), and the induction of cellular
senescence with these drug regimens is a side effect. Cases of β-
gal-positive lung cancer biopsies in response to chemotherapy
have been reported (24, 29, 33). Inducing cellular senescence
could be a new approach to limit cancer growth based on
phenotypic aging without DNA damage or genomic instability
(31, 34). Chromatin or nuclear skeleton disorganization could
be a cause of cellular senescence instead of oncogenic stress and
replicative failure (8, 26).

Recent pharmacological advances in cancer therapy have led
to an increased focus on developing chemical compounds that
are able to target specific molecules in tumor cells to both
improve efficacy and lower toxicity (4, 35). PF-573228, which
competes with ATP binding to abolish the catalytic function of
FAK, can inhibit the phosphorylation of FAK at tyrosine 576/577
and FAK kinase function (36, 37). Consequently, PF-573228
efficiently suppresses both the growth and metastasis of epithelial
carcinoma (4, 36). The pharmacological effects of PF-573228

have been characterized based on the inhibition of FAK catalytic
activity (36). In this study, we hypothesized that inhibiting
the enzymatic function of FAK would stop lung cancer cell
growth and invasion. Interestingly, the enzymatic inactivation
of FAK resulted in nuclear deformity. When we investigated
the cause and effect of nuclear deformity by PF-573228, we
observed that p53 upregulation, lamin A/C downregulation, and
cellular senescence in the lung cancer cells exposed to PF-573228.
Strikingly, perturbation of FAK signaling led to downregulation
of lamin A/C and cellular senescence rather than proliferative
arrest, and halted migration of the lung cancer cells. These
results showed that treatment with a FAK inhibitor could be
a therapeutic approach to abrogate tumor growth. In addition,
these findings revealed the crucial role of FAK signaling in anti-
senescence, and that inhibition of FAK resulted in the progression
of senescence.

MATERIALS AND METHODS

Materials
Detailed information on the materials is listed in
Supplementary Table S1.

Cell Culture and Drug Treatment
A549 cells, H1299 cells, and H460 cells were purchased
from ATCC. The cells were cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS) at 37◦C in a
humidified atmosphere at 5% CO2, and treated with PF-573228
(TOCRIS, Bristol, UK) at concentrations of 0, 0.1, 1, or 10µM.

Western Blot Analysis
The cells were harvested and lysed in 1x RIPA buffer (Merck,
Darmstadt, Germany) containing protease and phosphatase
inhibitors. The protein concentration was determined using
a Bio-Rad DC protein assay kit (Bio-Rad, California, USA).
For Western blot analysis, 30 µg of total protein was applied
to SDS-PAGE and transferred to a PVDF membrane. The
membranes were blocked in 5% skim milk for 2 h in TBST
buffer (20mM Tris-Cl, 150mM NaCl, 0.1% Tween 20, pH
7.4). After blocking, the membranes were probed with the
primary antibody overnight. Antibodies against FAK, p-FAK,
cyclin B1, p53, and lamin A/C were used in immunoblotting.
The given protein bands were identified by horseradish
peroxidase-conjugated secondary antibodies and developed with
an enhanced chemiluminescence solution.

Flow Cytometry Cell Cycle Analysis
The cells were harvested and washed with PBS buffer, and then
fixed in 70% (v/v) ethanol. The fixed cells were stained with
propidium iodide solution and injected into an Attune NxT Flow
Cytometer (Life Tech, California, USA) to analyze the cell cycle
profile.

Immunofluorescent Staining and
Immunofluorescent Microscopic Imaging
A Leica DMi8S epifluorescence microscope (Wetzlars, Germany)
equipped with an X-Cite XCT10A (Lumen Dynamics,
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Wiesbaden, Germany) light source, filters and objectives
(10x, 20x, 40x, and 63x) was used to observe fluorescent signals
in the cells. In addition to epifluorescence, confocal images
were captured using an OLYMPUS FV1000 confocal laser
scanning microscope equipped with a light source, filters and
objectives (10x, 20x, 40x, 63x, and 100x). Cells were seeded
on 12-mm coverslips in a 24-well culture plate. The cells were
harvested and fixed in 4% paraformaldehyde in PBS for 10min,
and permeabilized in 0.5% Triton in PBS for 5min. After
fixation, the cells were subjected to immunofluorescent staining
with antibodies recognizing FAK and emerin. Phalloidin-
TRITC was used as an additional reagent. Cell nuclei were
stained with 0.2µg/mL 4′, 6-diamidino-2-phenylindole
(DAPI).

Senescence-Associated β-Galactosidase
Staining
The cells were fixed with 4% paraformaldehyde for 15min.
After fixation, acidic β-galactosidase (SA-β-gal) was
assayed in senescence assay buffer (1 mg/mL 5-bromo-
4-chloro-3-indolyl β D-galactopyranoside (X-gal), 5mM
K3Fe(CN)6, 5mM K4Fe(CN)6, 2mM MgCl2, 150mM NaCl,
40mM citric acid, and 40mM Na2HPO4 at pH 6.0) in
the dark at 37◦C for 16 h. SA-β-gal activity was detected
based on SA-β-gal-hydrolyzed X-gal, which produces a
blue color. All chemical reagents were purchased from
Sigma-Aldrich.

Cell Growth Assay
The cells were trypsinized, resuspended in 1xPBS, and stained
with trypan blue (Sigma-Aldrich). The number of cells was
counted with a hemocytometer.

Lentiviral Production and Infection
Lentivirus-associated plasmids encoding luciferase, and FAK
short hairpin RNA (shRNA) were obtained from the National
RNAi Core Facility of Academia Sinica, Taiwan. The production
and infection of lentiviruses were performed according to the
guidelines of the National RNAi Core Facility.

Statistical Analysis
The experimental data were digitized and analyzed. Data
are presented as the mean ± the standard error of the
mean (SEM). One-way ANOVA was used to compare
digitized data and measurements from independent
experiments in two or more groups, and the Student’s
T-test was used to compare two independent samples. A
p < 0.05 was considered to indicate a statistically significant
difference.

RESULTS

PF-573228 Causes Cessation of the
Propagation of Lung Cancer Cells
Focal adhesion signaling is involved in cell proliferation, and
FAK plays a key role in the focal adhesion complex that
relays focal adhesion signals to the cell proliferation program

(9, 15). Given the role of FAK signaling in tumor growth
and metastasis, we hypothesized that inhibiting the catalytic
activity of FAK may disrupt FAK signaling and blunt tumor
cell proliferation. Therefore, we treated three distinct non-
small cell lung cancer cell lines (A549 lung adenocarcinoma
cells and H460 and H1299 large cell carcinoma cells) with
PF-573228, an enzymatic inhibitor of FAK. PF-573228 was
administered to the lung cancer cells for 4 days at three
doses: 0.1, 1, or 10µM. The growth curves showed that
10µM PF-573228 effectively induced cessation of cell growth
(Figures 1A–C).

We then examined the expression level of the cell cycle
regulator cyclin B1, which has been reported to be a downstream
effector of FAK signaling. Western blot analysis showed
that cyclin B1 expression levels were much lower after the
cells were exposed to 10µM PF-573228 (Figures 1D–F). To
further characterize the effect of PF-573228 treatment on
cell cycle progression, we analyzed the cell cycle distribution
using flow cytometry analysis. The results showed that a
low PF-573228 concentration had little influence on cell
cycle progression (Figures 1G–I), whereas a high PF-573228
concentration (10µM) halted cell cycle progression at the G2/M
transition (Figures 1J,K). This showed that PF-573228 treatment
effectively suppressed multiplication of lung cancer cells.

PF-573228 Administration Inactivates FAK
Since phosphorylation of FAK at Tyr-576 and Tyr-577 (p-FAK)
represents enzymatic activation of FAK (37), an antibody against
p-FAK was used to confirm the kinase activity of FAK and
verify the effect of PF-573228 on FAK inactivation. FAK activity
was practically blocked by 10µM PF-573228 in A549 cells
(Figures 2A,C). To further confirm the inactivation of FAK by
PF-573228 treatment, we also examined the phosphorylation of
tyrosine 397 in FAK (pTyr-397). The results showed that the
intensity of pTyr-397 was decreased after PF-573228 treatment
(Figure S1). FAK is a key regulator of integrin signaling for focal
adhesion assembly (38, 39). In addition to FAK inhibition, PF-
573228 has been shown to perturb integrin-based signaling for
focal adhesion maturation (36).

Treatment of the lung cancer cells with PF-573228 resulted
in failure of FAK activation, and translocation to focal adhesion
was observed in immunofluorescent imaging (Figure 2B). When
the cells were cultured in PF-573228-free medium, more FAK
translocated to focal adhesions, which appeared as plaque-like
patterns in the cell periphery that formed at the tips of stress
fibers, as visualized in cells stained with phalloidin-labeled F-
actin and an antibody against FAK (Figure 2B). By contrast,
in the A549 cells treated with PF-573228, only a few FAK
molecules translocated to focal adhesions, and tiny FAK-based
focal adhesions formed at the tips of F-actin bundles, indicating
failure of focal adhesion maturation (Figure 2B). The sizes of
focal adhesions were measured and the areas of FAK at the tips
of the actin stress fibers were digitized using Image Pro software.
The sizes of focal adhesions ranged from 12 to 28µm2 in the cells
without PF-573228 treatment, whereas the extent of FAK-based
focal adhesion was approximately 3–12 µm2 after PF-573228
treatment (Figure 2D).
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FIGURE 1 | PF-573228 inhibited lung cancer cell growth. Three different types of lung cancer cells, (A) A549 lung adenocarcinoma and (B) H460, and (C) H1299

large cell carcinoma, were selected for the PF-573228 administration regimen. Cell growth curves of the three lung cancer cell lines treated with various doses of

PF-573228 for 4 days were established. The administration of PF-573228 at 10µM to the lung cancer cells effectively suppressed cell growth in vitro, as proliferative

activity totally ceased in the cells exposed to 10µM PF-573228. (D) On the third day, PF-573228-treated cells were harvested and subjected to Western blot analysis

for cyclin B1. Cyclin B1 levels were much higher in A549 cells with 1µM PF-573228 or without PF-573228 treatment than in the cells treated with higher

concentrations of PF-573228. (E) After 10µM PF-573228 treatment, cyclin B1 levels declined markedly in H460 cells. (F) PF-573228 administration slightly reduced

cyclin B1 levels in H1299 cells. A549 cells were harvested and subjected to flow cytometry analysis for cell cycle profiling after PF-573228 treatment for 3 days. The

concentrations of PF-573228 were 0µM (G), 0.1µM (H), 1µM (I) and 10µM (J), respectively, (K) After 10µM PF-573228 treatment, the G2/M ratio was significantly

extended. The apoptotic ratio was also increased in A549 cells with 10µM PF-573228 treatment.
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FIGURE 2 | PF-573228 as a catalytic inhibitor inactivated the kinase function of FAK. (A) FAK expression levels and FAK activity, as measured by the phosphorylation

of FAK at tyrosine 576 and 577, were quantified by Western blot analysis after treatment of lung cancer cells with PF-573228 for 3 days. (B) The cells were stained

with phalloidin to visualize F-actin (red) and a FAK antibody to visualize the FAK distribution (green). In cells without PF-573228 administration, FAK translocated to

focal adhesions at the tips of actin stress fibers, and the focal adhesions were relatively large. When cells were exposed to 10µM PF-573228, FAK translocation to

focal adhesions was reduced, and the sizes of the focal adhesions were smaller. Nuclei in cells treated with PF-573228 were deformed, as visualized with DAPI

staining, whereas most nuclei in cells without PF-573228 treatment were oval shaped. (C) The p-FAK/FAK ratios in the cells with exposure to 1µM and 10µM

PF-573228 were reduced to less than half and one tenth compared with the cells without PF-573228 treatment, respectively. (D) The sizes of FAK-based focal

adhesions were 19 µm2 on average in the cells without PF-573228 treatment and 6.4 µm2 on average in the cells without PF-573228 treatment.

Aberrant Nuclear Appearance and Lamin
A/C Downregulation Occur Concurrently in
the Lung Cancer Cells Exposed to
PF-573228
In the absence of PF-573228, most cells contained oval or round
nuclei, as visualized by DAPI staining (Figure 2B). Interestingly,

a distorted nuclear morphology was observed in the A549 cells
treated with PF-573228 (Figure 2B). As DAPI staining was

insufficient to clearly visualize the nuclear appearance in detail,
an antibody against emerin (40), a nuclear inner membrane
protein, was used to visualize the nuclear shape in the PF-573228-
treated A549 cells. Emerin staining revealed that the cells without
PF-573228 treatment harbored oval-like nuclei. By contrast, most

nuclei were larger and had irregular shapes with invagination in

the cells upon exposure to 10µM PF-573228 (Figure 3A).

Lamin A/C is the nuclear skeleton responsible for maintaining
and stabilizing the nuclear architecture (41–44). Because
interrupting FAK signaling resulted in nuclear deformity

(Figure 2B), changes in lamin A/C expression levels were
assessed. The effects of FAK signaling on the expressions of lamin
A/C and other nuclear skeletal proteins inferred that the nuclear
deformity caused by PF-573228 was attributable to changes in
lamin A/C expression.

To investigate changes in lamin A/C expressions in cells
exposed to PF-573228, PF-573228-treated cells were harvested
and subjected toWestern blot analysis. Inhibition of FAK activity
led to lower p-FAK levels (Figures 3B,C) and deformed nuclei
in the lung cancer cells (Figure 3A). To quantify the expressions
of lamin A and C, the intensities of their protein bands were
normalized to β-actin (Figure 3B). The expressions of lamin A
and C were much lower in the A549, H460, and H1299 cells
treated with PF-573228 compared to those without PF-573228
treatment (Figure 3B and Figures S2A,B). The lamin A and
C band intensities were quantified and plotted in bar charts.
The ratios of lamin A/β-actin and lamin C/β-actin in A549
cells exposed to PF-573228 were reduced by one third and one
half, respectively, compared to A549 cells without PF-573228
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FIGURE 3 | Downregulation of lamin A and lamin C and nuclear deformity in A549 cells exposed to PF-573228. (A) After PF-573228 treatment of A549 cells, the cells

were fixed and stained with phalloidin to label F-actin (red) and an antibody against emerin (green) to outline the nuclear shape. Cells treated with PF-573228 were

extremely large and had deformed nuclei, whereas mostly oval-like nuclei were present in the cells without PF-573228 treatment. (B) The cells treated with 10µM

PF-573228 exhibited a decrease in p-FAK levels. Lamin A and lamin C expression levels were much lower in A549 cells exposed to 10µM PF-573228. (C) The

p-FAK/FAK ratios in A549 cells exposed to 1µM and 10µM PF-573228 were less than half and one tenth of those in A549 cells without PF-573228 treatment,

respectively. (D,E) Decreased lamin A and lamin C levels appeared in A549 cells treated with PF-573228.

treatment (Figures 3D,E). Similar trends of downregulation of
lamin A and lamin C by PF-573228 treatment were also detected
in the two other lung cancer cell lines (Figures S2A,B).

Lung Cancer Cells Are Destined to
Senescence After Inhibition of FAK
Enzymatic Function
Mutant LMNA, mutations that affect lamin A/C expression,
and lamin A/C depletion in cells have been associated with
premature aging and cellular senescence (8, 30, 32, 42, 45).
Based on the concurrent lamin A/C downregulation and
nuclear deformity observed in lung cancer cells exposed to

PF-573228 (Figures 3A,B), we examined the development of
cellular senescence in lung cancer cells treated with PF-573228.
The SA-β-gal activity in cells was assayed by in situ staining
using the chromogenic substrate X-gal, which colored SA-β-gal-
positive cells blue. As noted in Figure 4A, blue cells were clearly
visible in the cells treated with PF-573228 (Figure 4A), whereas
a sporadic distribution of blue-colored cells was observed
in the cells without PF-573228 treatment (Figure 4A). The
bar chart in Figure 4B shows that nearly 90% of the cells
exposed to a higher dose of PF-573228 were positive for SA-
β-gal, compared to ∼20% of the cells exposed to a lower
dose of PF-573228, and ∼1% of the cells without PF-573228
treatment.
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FIGURE 4 | Cellular senescence occurred in lung cancer cells after FAK inhibition. (A) A549 cells were exposed to 0, 1µM, or 10µM PF-573228 for 7 days.

SA-β-gal-positive cells appeared sporadically in cells without PF-573228 treatment. The cells treated with 1µM PF-573228 were slightly enlarged, with few

β-gal-positive cells. The cells treated with 10µM PF-573228 were quite large, and most were β-gal positive. (B) The ratio of SA-β-gal-positive cells to the total

population was calculated and plotted in a bar chart. SA-β-gal-positive cells represented <1% of the total A549 cell population without PF-573228 treatment, ∼21%

in the 1µM PF-573228-treated A549 cell population, and more than 80% in the 10µM PF-573228-treated A549 cell population. (C) A549 cells were treated with 0, 1,

or 10µM PF-573228 for 4 days. p53 was not obviously increased in 1µM PF-573228 treated-A549 cells and was significantly elevated in 10µM PF-573228-treated

A549 cells. (D) p53 levels approximately tripled in A549 cells exposed to 10µM PF-573228 compared to cells with or without 1µM PF-573228 treatment.

Upregulation of p53 in Cells Exposed to
PF-573228
Disruption of FAK signaling by PF-573228 caused cellular
senescence. However, the mechanisms by which inhibition of
FAK signaling affects senescence programming remain unclear.
Cellular senescence in chemotherapy-affected cancer cells has
been observed in several studies (24, 29, 46). In addition, clinical
studies have reported that p53 plays a role in the development
of cellular senescence in chemotherapy-affected cancer cells (46,
47). p53 is known to be a transcription factor in programed
senescence and cell cycle arrest (48), and it may play a similar role
in the cellular senescence program in lung cancer cells exposed to
PF-573228 as in cells in which FAK signaling is interrupted.

To investigate whether or not p53 plays a role in PF-573228-
induced cellular senescence, p53 expression levels were examined
in PF-573228-treated cells. Western blot analysis showed that
p53 expression levels increased significantly by more than 3-
fold compared to cells without PF-573228 treatment and cells
treated with a low concentration of PF-573228 (Figures 4C,D,
and Figure S3).

Engagement of FAK Signaling With Nuclear
Integrity and p53 Expression
FAK is not the only molecule targeted by PF-573228 (36).
Although FAK enzymatic activity was blocked by PF-573228

administration, off-target effects could also have turned off
other kinases, for example, cyclin-dependent kinases. Therefore,
signaling perturbations of other kinases may have caused the
pathogenic senescence in the lung cancer cells.

If FAK has an anti-senescence effect, FAK depletion would
cause anti-senescence to fail and escalate senescence programing.

To clarify the role of loss of FAK signaling in the development
of cellular senescence and nuclear deformity with changes in
lamin A and lamin C expressions, we used an shRNA targeting
FAK to deplete the expression of FAK in lung cancer cells.
After introducing shFAK into lung cancer cells, cells harboring
shFAK were selected. To assess FAK knockdown, two shFAK
clones were selected for Western blot analysis and senescence
assays, which showed that shFAK successfully caused FAK
depletion in A549, H460, and H1299 cells (Figure 5A and
Figure S4A). In addition, the impact of FAK depletion on the
downregulation of lamin C and cyclin B1 and upregulation of
p53 was validated (Figure 5A and Figure S4A). We also assessed
nuclear appearance using emerin staining, which revealed that
A549 cells without FAK depletion harbored oval-like nuclei. By
contrast, the ratio of nuclei harboring slightly larger and irregular
shapes was increased in the cells with FAK depletion (Figure 5B).

Similar results were obtained in the H460 and H1299 cells

(Figures S4B,C). In addition, lung cancer cells harboring shLuc

or shFAK were subjected to senescence assays, which revealed
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FIGURE 5 | FAK depletion resulted in nuclear deformity and cellular senescence. (A) A549 cells with FAK depletion by shRNA were seeded and incubated for 7 days.

Western blot analysis revealed low FAK levels in the cells with shFAK and higher levels in the cells with shLuc. Upon FAK depletion, lamin C and cyclin B1 levels

decreased, and p53 expression levels increased. (B) The cells were fixed and stained with an antibody against emerin (green) to outline the nuclear shape. Cells with

FAK depletion were slightly larger, with a higher proportion of deformed nuclei (arrowhead), whereas mostly oval-like nuclei were present in cells without FAK depletion.

(Scale bar, 50µm) (C) SA-β-gal-positive cells were sporadically visible in A549 cells with shLuc. By contrast, more SA-β-gal-positive cells were observed among cells

with shFAK. (Scale bar, 100µm) (D) The bar chart shows that <1% of the cells in the shLuc population were SA-β-gal-positive, whereas more than 10% of the shFAK

cell population was SA-β-gal positive.

more SA-β-gal-positive A549 cells harboring shFAK (Figure 5C).

By contrast, few SA-β-gal-positive cells were visible in those
harboring shLuc. The SA-β-gal-positive cells represented ∼0.7%
of the shLuc A549 population. In the two shFAK cell clones,
SA-β-gal-positive cells represented ∼11 and 15%, respectively
(Figure 5D). Similar results were observed in H460 and H1299
cells (Figures S4D–F). However, H460 cells grew in single and
multiple layers (Figure S4D), and it was difficult to measure the
ratio of SA-β-gal-positive cells.

Senescent Cells Reactivate Their
Proliferative Activity After PF-573228
Withdrawal From Cell Culture
Aging and cellular senescence are often present in replicative
failure, oncogenic induction, and telomere shortening (8, 34, 49).
In clinical cases, chemotherapy or radiation has been shown
to induce cellular senescence, and DNA damage or genomic
instability is thought to be the pathological cause. Therapy-
induced senescence can be classified as replicative senescence

(24, 27, 33, 48), and replicative senescence is able to cease tumor
growth (47, 50). However, this cellular senescence is reversible
(31, 51, 52). Senescent cells expressing low levels of p16 have been
shown to reversibly exit senescence when p53 expression levels
fall (52).

In this study, FAK signaling downregulated the expression of
p53, and inhibition of FAK signaling upregulated the expression
of p53 in A549 cells (Figures 4C,D, 5A). The A549 cells that
entered senescence due to PF-573228 administration exhibited
regrowth and return to a non-senescent state after withdrawal
of PF-573228 from the culture (Figures 6A–C). The proliferative
activity of A549 cells was based on cyclin B1 expression after the
cells were incubated in PF-573228-free medium (Figure 6D).

Restoration of Lamin a and Lamin C
Expressions in Senescent Lung Cancer
Cells After PF-573228 Withdrawal
We then tested whether senescence in lung cancer cells with
FAK inhibition was reversible or irreversible. The three lung
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FIGURE 6 | Recovery of the proliferative activity of lung cancer cells after PF-573228 withdrawal. (A) The population of SA-β-gal-positive A549 cells declined after the

cells were released from PF-573228 inhibition. (B) The proportion of SA-β-gal-positive A549 cells was ∼80% when cells were exposed to PF-573228, and only 25%

after PF-573228 withdrawal. (C) Initially, the cells were senescent, and proliferation ceased in the three lung cancer cell lines with PF-573228 treatment. After

PF-573228 withdrawal, the A549 cells grew exponentially, H1299 cells grew linearly, and H460 cells continued to exhibit cessation of division. (D) When cells were

exposed to PF-573228, cyclin B1 expression level was extremely low. After the cells were released from PF-573228 inhibition, cyclin B1 levels gradually increased in

A549 cells and H1299 cells. However, cyclin B1 remained at low levels in H460 cells after PF-573228 withdrawal. *P < 0.05.

cancer cells lines were cultured in medium containing 10µMPF-
573228 to induce cell senescence in a 5-day induction course,
after which the expressions of lamin A and lamin C decreased
(Figure 7A). After the induction of senescence, PF-573228
withdrawal was scheduled over 6 days. Lamin A and lamin C
expressions in A549 cells and H1299 cells gradually recovered
after PF-573228 withdrawal (Figures 7A,B). By contrast, lamin
A and lamin C levels in H460 cells remained lower when
senescent H460 cells were incubated in PF-573228-free medium
(Figures 7A,B). After PF-573228 withdrawal, senescent A549
cells escaped from senescence, as the SA-β-gal-positive A549 cell
population declined to nearly half by the fifth day of PF-73228
withdrawal (Figure 8A).

DISCUSSION

FAK is a signaling mediator of integrin-based signaling and
is associated with epidermal growth factor receptor (EGFR)

signaling (23, 53). FAK-associated cross-talk between EGFR and
integrin pathways have been shown to lead to tumor growth
and metastasis in lung cancer (39, 53–55). Phosphorylation at
tyrosine 576/577 (p-FAK) has been reported to result in catalytic
activity and to be involved in tumor cell proliferation and
metastasis (2, 12, 15, 16). Therefore, inhibition of the enzymatic
function of FAK has been proposed to be a therapeutic strategy
to limit tumor growth, angiogenesis, and metastasis (5, 7, 16, 23).
In the present study, we tested the pharmacological effect of PF-
573228 on inhibiting FAK activity and limiting lung cancer cell
growth. When lung cancer cells were treated with PF-573228,
an abnormal nuclear shape was observed. A similar cytological
phenomenon has been reported in previous studies (56), however
the molecular mechanism has not been clearly elucidated. In
addition, nuclear lobulation and distorted nuclear morphology
have been reported in cells with the LNMA mutation or lamin
A/C downregulation (41–43). The LNMAmutation or lamin A/C
downregulation has been shown to result in nuclear distortion
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FIGURE 7 | Restoration of lamin A and lamin C expressions in lung cancer cells after PF-573228 withdrawal (WD). (A) The senescent cells were released from

PF-573228 inhibition for the indicated period. Western blot analysis revealed that the expression levels of lamin A and lamin C were gradually restored in A549 cells

and H1299 cells. However, the lamin A and lamin C levels remained lower in H460 cells when senescent H460 cells were incubated in PF-573228-free medium. (B)

The expression levels of lamin A and lamin C in A549 cells increased after the cells were released from PF-573228 inhibition. However, H460 cells expressed lower

levels of lamin A and lamin C when exposed to PF-573228, and lamin A and lamin C expression in H460 cells remained lower when PF-573228-treated cells were

cultured in PF-573228-free medium. Lamin A and lamin C levels in H1299 cells decreased when cells were exposed to PF-573228. After PF-573228 withdrawal, the

expression levels of lamin A and lamin C gradually increased in H1299 cells previously treated with PF-573228.

with a pathogenic tendency to develop aging and senescence
(8, 30, 42, 57). The nuclear deformity in PF-573228-treated lung
cancer cells (Figures 2B, 3A–C) supports a pathophysiological
impact from the inactivation of FAK signaling to downregulate
lamin A/C.

In this study, we examined the expressions of lamin
A/C and assayed SA-β-gal activity in lung cancer cells
exposed to PF-573228. Our experimental results demonstrated
that FAK inhibition and FAK depletion elicited similar
downregulation of lamin A/C, upregulation of p53, and cellular
senescence (Figures 4A,C,D, 5A,C). These results imply that
FAK signaling regulates the expression of lamin A/C to maintain
a regular nuclear shape and activate anti-senescence programs
(Figure 8B). The finding that FAK signaling affects lamin
A/C expressions and influences the cellular context in which
lamin A/C organizes the nuclear architecture is an important
biological theme. The degradation of lamin A/C has recently
been reported to be regulated by Akt1 or cdk5 signaling (30, 58).
Akt signaling was shown to slightly alter the amount of lamin
A/C in cells, but this small change in lamin A/C expressions
did not seem to have a notable effect on nuclear shape. On
the other hand, nuclear FAK has also been shown to act as
a transactivator to regulate gene expressions and stem cell

differentiation rather than stem cell renewal (59). In addition,
nuclear FAK and Oct-4 have been shown to coordinate gene
expression programming with the expression of Oct-4 in stem
cell renewal. However, the role of nuclear FAK in gene expression
programming does not seem to be associated with changes in
lamin A/C expressions. Furthermore, we found that PF-573228
treatment does not dramatically affect nuclear translocation
of FAK in A549 cells (Figure S5). This implied that FAK-
mediated signaling to maintain lamin A/C expression may not
be through transcriptional regulation. By contrast, inactivation
of FAK signaling or nestin silencing (30) has been shown to
significantly downregulate lamin A/C and cause round or oval
nuclei to become lobulated or irregular in shape. Our results
indicated that FAK-mediated signaling is crucial to maintain
nuclear shape and, potentially, for chromatin reorganization.

In addition to the downregulation of lamin A/C, this study
showed that FAK inhibition-mediated p53 upregulation also
played a crucial role in cellular senescence, and that p53 was
increased during FAK inhibition either by a small compound or
shRNA-mediated downregulation. Lim et al. demonstrated that
nuclear FAK could promote p53 downregulation via enhanced
Mdm2-dependent p53 ubiquitination in a kinase-independent
manner (11). However, in our study, both the amount of
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FIGURE 8 | Disruption of FAK signaling with cellular senescence. Reactivation of FAK signaling was observed in A549 cells in which senescence was induced by 5

days of PF-573228 treatment after PF-573228 withdrawal. (A) The proportion of SA-β-gal-positive A549 cells declined to half when the senescent cells were cultured

in PF-573228-free medium. In addition, A549 cells grew exponentially after A549 cells were released from inhibition by 10µM PF-573228. *P < 0.05. (B) The

proposed scheme shows that integrin-based signaling activates FAK to trigger cell proliferation, to manage lamin A/C expression to maintain nuclear shape and

program anti-senescence. Blockade of FAK signaling by PF-573228 induced cell cycle arrest and senescence.

FAK protein and its enzymatic function affected the expression
level of p53. PF-573228 treatment suppressed the enzymatic
activity of FAK but did not significantly affect its abundance.
However, an obvious effect on cell senescence was observed in
the inhibitor treatment group. This result implies an important
role of FAK enzymatic function in suppressing senescence.
Downstream signaling such as the PI3K/Akt axis may play a
critical role in modulating Mdm2 function and p53 regulation,
and p53 activation may suppress cell proliferation and further
trigger senescence. However, FAK inhibition also repressed
the proliferation of p53 null cancer cells such as H1299 cells
and induced senescence. FAK inhibition also reduced lamin
A/C expressions in H1299 cells, with changes in chromatin
integrity followed by the induction of senescence. These
observations indicate that the induction of cellular senescence
by perturbations in lamin A/C-mediated chromatin alterations
is independent of p53 (30, 34, 60).

Downregulation or degradation of lamin A/C and
upregulation of p53 by PF-573228 treatment or FAK depletion
are the main causes of cellular senescence. Baell et al. reported
that inhibition of histone acetyltransferase could induce cellular
senescence (26), and that the pharmacological effects of VM-
8014 and VM-1119 on chromatin remodeling caused cellular
senescence (26). The induction of senescence by PF-573228,
VM-8014, and VM-1119 may also be due to defective chromatin
remolding. Because FAK and lamin A/C are also involved in
chromatin remodeling (43, 55, 61), this cellular senescence is
likely to be reversible (Figures 6A–C, 8A). Therefore, when the
enzymatic activity of FAK is restored, lamin A/C and cyclin B1
expression levels recover (Figures 7A,B, 6D).

Inhibition of FAK signaling may have a therapeutic role
in limiting cancer cell growth. In the present study, we
demonstrated that disruption of the FAK signaling pathway

led to cellular senescence in lung cancer cells. We also
tested the sensitivity of human normal lung epithelial cells,
BEAS-2B, to PF-573228 treatment. It appeared that a high
concentration of PF-573228 could attenuate the propagation of
BEAS-2B cells. However, the BEAS-2B cells cultured in medium
containing serum still underwent cell cycle progression with a
low proliferative rate (Figure S6A). This implies that oncogene
addiction occurs in lung cancer cells for FAK signaling (54). We
also evaluated whether FAK inhibition causes cellular senescence
in BEAS-2B cells. The results showed that a high dose of PF-
573228 treatment promoted cellular senescence in BEAS-2B cells
(Figures S6B,C). However, the ratio of SA-β-gal positive cells
was <3% (Figure S6C). This implies that normal cells are more
insensitive to high concentrations of PF-573228 than lung cancer
cells and FAK inhibitors have a therapeutic potential for cancer
treatment. However, there was no evidence showing that FAK
signaling can result in anti-senescence and convert senescent
cells to non-senescent cells upon FAK inhibitor withdrawal in
A549 cells (Figures 8A,B). We calculated the ratios of SA-β-
gal-positive and SA-β-gal-negative A549 cells after PF-573228
withdrawal and plotted curves with the timing of PF-573228
withdrawal. The slope of the curve for SA-β-gal-negative cells
over 5 days indicated a reduction of 5,402 cells per day in the
linear variation of SA-β-gal-negative cell numbers (Figure 8A).
SA-β-gal-negative cells increased exponentially after PF-573228
withdrawal in A549 cells, and the curves of the SA-β-gal-negative
cell growth were convergent with the growth curve of total A549
cells (Figure 8A). These results may be due to reversion of some
of the senescent cells to non-senescent cells, as described in the
schematic representation of FAK signaling in anti-senescence and
PF-573228 treatment signaling cellular senescence (Figure 8B).

Previously, therapeutic outcomes were measured in terms
of anti-angiogenesis, anti-proliferation, and anti-invasion
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(16, 39, 62). In this study, FAK inhibition limited lung
cancer cell propagation by inducing cellular senescence
(Figure 8B). Driving cell senescence programing is a new trend
for the treatment of tumor diseases (26), as this therapeutic
approach does not chemically elicit genomic evolution in
cancer cells and does not severely damage non-cancer cells
(63). Although cellular senescence does not kill tumor cells,
limiting cancer growth could eliminate cancer cell malignancy.
However, cellular senescence is an inducer of autophagy
(64) and increases susceptibility to cell-mediated cytotoxicity
by activated killer cells (65). Furthermore, FAK inhibition
also increases immune surveillance (66). Consequently,
FAK appears to be an attractive target for pharmacological
strategies for cancer therapy. Our data reveal a signaling
pathway for senescence and support a therapeutic strategy
for cancer.
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Objectives: Chordoma is a rare bone malignancy that affects the spine and skull base.
Treatment dilemma leads to a high rate of local relapse and distant metastases. Molecular
targeted therapy (MTT) is an option for advanced chordoma, but its therapeutic efficacy
and safety have not been investigated systematically. Therefore, a systematic review was
conducted on studies reporting MTT regimens for chordoma.

Methods: Clinical trials, case series and case reports on chordoma MTT were identified
using MEDLINE, Cochrane library and EMBASE, and systematically reviewed. Data on
clinical outcomes, such as median overall survival, progression-free survival, response
rate and adverse events (AEs) were extracted and analyzed.

Results: Thirty-three eligible studies were selected for the systematic review, which
indicated that imatinib and erlotinib were the most frequently used molecular targeted
inhibitors (MTIs) for chordoma. For PDGFR-positive and/or EGFR-positive chordoma,
clinical benefits were achieved with acceptable AEs. Monotherapy is preferred as the
first-line of treatment, and combined drug therapy as the second-line treatment. In
addition, the brachyury vaccine has shown promising results.

Conclusions: The selection of MTIs for patients with advanced or relapsed chordoma
should be based on gene mutation screening and immunohistochemistry (IHC).
Monotherapy of TKIs is recommended as the first-line management, and combination
therapy (two TKIs or TKI plus mTOR inhibitor) may be the choice for drug-resistant
chordoma. Brachyury vaccine is a promising therapeutic strategy and requires more
clinical trials to evaluate its safety and efficacy.

Keywords: molecular targeted therapy, bone tumor, chordoma, systematic review, imatinib, erlotinib
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INTRODUCTION

Chordoma is a relatively rare malignant bone tumor with an
incidence of 0.08 per 100,000 (1). It accounts for 1–4% of
all bone malignancies, and ∼20% of primary spine tumors
(2). Although it can occur at any segment of the spine, the
predominant site of chordoma are fused segments like clivus
and sacrococcyx (3). It is an indolent malignancy that progresses
slowly, but exhibits strong local aggressiveness and often grows
into huge masses that compress vital nerves and blood vessels
(4). In addition, since chordoma is usually unresponsive to the
conventional radiotherapy and cytotoxic chemotherapy, surgery
is the primary therapeutic option (1, 5). Large case series
including our previous one have shown that a total resection
of the tumor, with the goal of negative microscopic margins,
is crucial for long-term positive outcomes (6). However, the
complex anatomy of the spine and the relatively large tumor
volume make a clean resection technically challenging, leading to
a high rate of local relapse and distant metastases (7). Regarding
to this advanced setting, conventional therapeutic methods were
shown to be not highly effective (1). Therefore, novel therapeutic
strategies are needed to prolong patients’ survival and improve
the quality of life.

Pathologically, chordoma arises from residual notochord
cells within the vertebral body (8), as verified on the basis of
genetic and immuno-phenotypic biomarkers (9). New insights
into the molecular mechanism underlying chordoma have also
identified novel therapeutic targets (5). Molecular targeted
therapy (MTT) in chordoma includes (1) imatinib and dasatinib
against platelet-derived growth factor receptors (PDGFR) and
stem cell factor receptor (KIT) (10, 11); (2) erlotinib, lapatinib,
gefitinib, and cetuximab against epidermal growth factor
receptor (EGFR) and erbB-2/human epidermal growth factor
receptor 2 (HER2/neu) (12, 13); (3) sorafenib, pazopanib,
and sunitinib that target angiogenic factors like vascular
endothelial growth factor receptor (VEGFR) (14–16); and (4)
temsirolimus and sirolimus that target the phosphoinositide 3-
kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)
pathway (17).

The indications for MTTs in chordoma patients are largely
based on a few prospective clinical trials, small retrospective
studies, and even case reports (10–17). However, the efficacy and
safety of MTT regimens in chordoma patients, as well as the
underlying molecular mechanisms, lack systematic investigation.
Therefore, we conducted a systematic review on MTT regimens
in chordoma patients to determine the clinical outcomes and
underlying molecular mechanisms.

MATERIALS AND METHODS

Search Strategy
For this systematic review, we used standard procedures from
PRISMA guidelines (18). A comprehensive, systematic search
was performed using MEDLINE (via PubMed), Cochrane
Library and EMBASE. To find appropriate studies in MEDLINE,
we used a combination of terms related to the MeSH
terms “Chordoma/drug therapy” OR the free-text searching

“Chordoma” AND (“targeted therapy OR inhibitor OR inhibit
OR inhibition”). This search was further modified as appropriate
for Cochrane Library and EMBASE. Initial search was performed
on January 17, 2018 and repeated on July 1, 2018.

Eligibility Criteria
Studies were deemed eligible for the assessment of MTTs in
patients with chordoma, irrespective of previous and subsequent
other treatment. Only English language publications were
included. For clinical trials, case series and case reports published
exclusively in abstract or news form, only those containing
new data were analyzed. For literature reviews, new personal
unpublished data is also included. Reference lists of selected
studies and previous reviews associated with similar topics were
screened manually. New clinical trials for chordoma were found
from Chordoma Foundation, ClinicalTrials.gov, EU Clinical
Trials Register and WHO International Clinical Trials Registry
Platform. Although gray literature (such as unpublished reports,
conference abstracts and dissertations) might provide some
negative results and decrease the publication bias, we did not
access them, because they were usually not peer reviewed and
might be later published in peer-reviewed journals.

Data Extraction and Synthesis
After removal of duplicates, titles and abstracts of all identified
publications were systematically screened by two independent
reviewers (MT and YHB). Discrepancies between reviewers
were resolved by discussion. When eligibility criteria seemed
to be met, the two reviewers (MT and YHB) independently
assessed retrieved full texts and extracted information. If
disagreements were still remained, the third reviewer (SDW)
helped to reach an agreement. We contacted with the Chordoma
Foundation in order to get helpful information. Additionally,
we corresponded with researchers clarify study eligibility if the
published study was unclear, although responses were poor.
Extracted data were study characteristics (study design, first
author, year of publication), patient characteristics (total number,
history of treatment) and tumor characteristics (gene mutation
and immunohistochemistry), MTT information (type of agents,
dosage, course of treatment and adverse events), evaluation
criteria (Choi’s criteria, the response evaluation criteria in
solid tumor (RECIST), clinical and radiological or metabolic
response), and survival (duration of follow-up, progression-free
survival and overall survival).

RESULTS

Search Results
The flow-chart for the selection and exclusion of relevant
publications is shown in Figure 1. We identified 293 studies in
the initial screening, and after removing duplicates and papers
based on their titles and abstracts, selected 64 publications for
full-text assessment. Twenty-seven studies met our inclusion
criteria, and six more were included—three from manually
searching the reference list of the selected articles, two from
repeated search and one with the help of the Chordoma
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FIGURE 1 | PRISMA flow diagram of the study selection process.

Foundation. Finally, 33 studies were included in this systematic
review.

Study Characteristics
Among 33 studies, nine studies were clinical trials (10–
12, 14, 15, 19–22), with eight retrospective case series
(16, 17, 23–28), and 16 case reports (13, 29–43). Imatinib
was assessed in 18 studies with a total of 221 patients
(10, 16, 17, 19, 23–28, 32, 34–36, 38, 39, 41, 42), erlotinib
in 10 studies with 16 patients (13, 17, 22, 33, 35, 38, 40–42),
cetuximab in five studies (seven patients) (13, 30, 31, 33, 41),
sorafenib in four studies (65 patients) (15, 17, 21, 37), pazopanib
in four studies with seven patients (16, 28, 41, 43) and sunitinib
in three studies with 11 patients (14, 17, 28). Sirolimus,
thalidomide, bevacizumab, gefitinib, linsitinib, and everolimus
were accessed in two studies each (13, 22, 25, 28–31, 33, 34, 40–
42), whereas dasatinib (32 patients) (11), lapatinib (18 patients)
(12), rapamycin (one patients) (34), temosirolimus (one
patients) (17) and yeast-brachyury (GI-6301) vaccine (11
patients) (20) were only analyzed in one study each (Figures 2
and 3). Monotherapy of MTTs was reported in 24 studies

(10–12, 14–17, 20, 21, 23, 24, 26–28, 32, 34–39, 41, 43, 44) with
combination therapy in 13 studies (13, 19, 22, 25, 28–31, 33, 39–
42).

RECIST evaluation criteria was used in 19 studies (10–15, 17,
19, 20, 22, 25–28, 32, 40, 42, 43, 45) and Choi’s criteria is applied
in three studies (11, 12, 25). Twenty-one studies were evaluated
by clinical/radiological or metabolic responses (16, 23–27, 29–
43). Adverse events (AEs) were reported in 25 studies, including
hematological anomalies like anemia, thrombocytopenia, as well
as non-hematological AEs like fatigue, fever, anorexia, QTc
prolongation, abnormal liver function, nausea, and vomiting
(10–15, 19, 22, 23, 26–38, 40, 43, 45).

Efficacy and Safety of MTT Regimens in
Chordoma Patients
PDGFR Inhibitors (Table 1)
Imatinib mesylate (IM), a specific tyrosine kinase inhibitor (TKI)
targeting PDGFR and KIT (10, 46), was the most frequently-
used MTT in chordoma patients. Eighteen studies investigated
the therapeutic efficacy of IM on 221 patients (10, 16, 17, 19, 23–
28, 32, 34–36, 38, 39, 41, 42), including three clinical trials (10, 19,
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FIGURE 2 | Of the included studies, the proportion of studies reporting each
molecular targeted inhibitor.

FIGURE 3 | Of the included chordoma patients, the proportion of patients
received each molecular targeted inhibitor.

28), seven retrospective case series (16, 17, 23–27), and eight case
reports (32, 34–36, 38, 39, 41, 42). Fourteen studies (204 patients)
analyzed the efficacy of imatinib as monotherapy (10, 16, 17, 23,
24, 26–28, 32, 34–36, 39, 41), of which four studies (181 patients)
used RECIST and 3 were focused on PDGFRβ-expressing
chordoma. In these four studies, four patients achieved partial
response (PR) (2.2%), 133 cases sustained stable disease (SD)
(73.5%) and 44 cases experienced progressive disease (PD)
(24.3%) (10, 17, 26, 27, 32). Clinical/radiological or metabolic
responses were evaluated in 13 studies (85 patients), with 33
patients achieving PR (38.8%), 23 patients sustaining SD (27.1%)
and 29 patients experiencing PD (34.1%) (16, 23, 24, 26–28, 32,
34–36, 38, 39, 41). Five of the above studies (73 patients) focused
on PDGFRβ-expressing chordoma, with 45.2% PR, 31.5% SD,
and 23.3% PD cases (23, 24, 26, 27, 36), and eight studies included
12 patients that experienced PD within a short period of time.

Progression-free survival (PFS) and overall survival (OS) are
important indices of clinical outcome, and they were reported in

two large case-studies (10, 27). Stacchiotti et al. conducted a phase
II trial in 56 patients with chordoma, and the median PFS and OS
were 9 and 35 months, respectively (10). A retrospective study on
46 chordoma patients reported a median PFS of 9.9 months (27).

AEs were reported in eight studies (10, 23, 27, 32, 34, 36),
with skin rash being the most common, followed by oedema,
chronic anemia, fatigue and fluid retention (10, 26). Subacute
intraventricular hemorrhage was seen in one case of clivus
chordoma treated with imatinib (36).

Dasatinib, an inhibitor of PDGFR and Src, was evaluated
in a phase II study (NCT00464620) (11) on 32 patients. The
median PFS and 6 months PFS rate were 6.3 months and
54%, respectively. The 2- and 5-years OS rate were 43 and
18%, respectively. Six patients had an objective response (OR)
according to Choi criteria and one for RECIST. Fatigue, fever,
anorexia, nausea, and vomiting occurred in more than 5% of the
patients.

EGFR Inhibitors (Table 2)
Erlotinib was the most commonly used anti-EGFR agent and
was analyzed in 10 studies (16 patients) for the treatment of
chordoma (13, 17, 22, 32, 33, 35, 38, 40–42), including one clinical
trials (22), one retrospective case study (17) and eight case reports
(13, 17, 22, 32, 33, 35, 38, 40–42). Monotherapy with erlotinib
was used in five studies (nine patients) (17, 32, 35, 38, 42), three
(seven patients) of which were evaluated by RECIST (17, 32, 42),
reporting PR in two patients and SD in five patients. Three
case reports were evaluated by clinical/radiological or metabolic
responses (32, 35, 38). All achieved PR and significant tumor bulk
reduction was seen in two patients (70 and 46%, respectively).
Skin rashes were commonly seen in the erlotinib-treated patients.

Lapatinib monotherapy was evaluated in a phase II clinical
trial on 18 patients with EGFR-positive chordoma (12). Six
patients achieved PR and seven sustained SD, with the median
PFS of 6 months according to the Choi criteria. In contrast, all
patients had SD by RECIST criteria with the median PFS of 8
months. Most patients experienced G ≥ 2 AEs.

Combined therapy with EGFR inhibitors was used in seven
studies (eight patients) (13, 22, 30, 31, 33, 40, 41). Erlotinib
was also the most common agents used in the combined MTT
regimens (five studies, seven patients) (13, 22, 33, 40, 41).

Linsitinib, an inhibitor of IGF-1R/insulin receptor (INSR),
was evaluated in a phase I study in combination with erlotinib
(NCT00739453) (22). One patient with chordoma achieved
PR for 18 months according to RECIST, with a PFS of 5
years. AEs included QTc prolongation, abnormal liver function,
hyperglycemia and anorexia (22, 40).

The anti-EGFR monoclonal antibody (mAb) cetuximab was
applied in combination with erlotinib in one patient with EGFR-
positive chordoma, and he had a SD for 6 months (41). However,
four patients with EGFR-negative chordoma experienced PD
after receiving the same regimen. The treatment failure prompted
a switch to bevacizumab, an anti-VEGF mAb (13, 33). Following
this change, two patients achieved PR and another two presented
SD. Treatment-related fatigue was observed in one patient (13,
33). Combined regimen of cetuximab and gefitinib was also
effective in two cases of EGFR-positive chordoma (30, 31), where
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one achieved a PR for 9 months and the other had a 44%
reduction in tumor bulk. Pronounced AEs, such as rash, acne,
diarrhea, and skin defects, were reported in both cases (30, 31).

VEGFR Inhibitors (Table 3)
Sorafenib, a TKI against VEGFR and PDGFR, was assessed in
four studies (15, 17, 21, 37). A phase II trial was conducted on
27 patients with chordomas (NCT00874874) (15), and OR was
observed in one patient as per RECIST. The 12 months PFS and
OS rates were 73.0 and 86.5%, respectively. In a study on 11
patients treated with sorafenib, PR was obtained in one patient,
with SD in nine patients and PD in one patient according to
RECIST (17). Another study assessing sorafenib reported a PFS
of 12 months (37). However, sorafenib was limited by severe AEs
like thrombocytopenia and diarrhea, and the rates of grade 3 and
4 toxicity were 77.8 and 14.8%, respectively.

Sunitinib, a multi-targeting TKI against VEGFR and PDGFR,
was assessed in three studies (14, 17, 28). A phase II trial on
sunitinib was conducted on nine patients (14), four of which
achieved SD according to RECIST, concurrent to a qualitative
decrease in tumor density, along with a median PFS of 12
months (14). Two patients treated with sunitinib had at least SD
according to RECIST (17, 28), and one achieved a PR after a 27
months SD (28). The major toxicities were of grade 1 or 2 (14).

Pazopanib, another VEGFR inhibitor, was analyzed in seven
patients (16, 28, 41, 43), of which four sustained SD with the
median PFS of 15 months and the remaining three experienced
PD. Thalidomide, an inhibitor of VEGF, was used as a second-line
treatment for chordoma after failure of imatinib, rapamycin and
other chemotherapy (29, 34). While one patient achieved a 50%
tumor reduction, another experienced a PD (29, 34). In addition,
severe toxicities of grade 3 and 4 were reported in both cases.

Other Molecular Targeted Inhibitors (MTIs) (Table 4)
Monotherapy with the mTOR inhibitors rapamycin and
everolimus were ineffective in chordoma patients (34, 41). The
combined MTT regimen of everolimus and imatinib resulted in
sustained SD in one patient, with a PFS of 16 months (42). In
addition, IM plus sirolimus was used in 10 patients with IM-
refractory chordoma and activated mTOR (25). Nine patients
were assessed, of which one achieved PR, seven sustained SD
and one experienced PD according to RECIST. According to
Choi criteria, seven patients achieved PR, and one sustained
SD and one experienced PD. The same MTT regimen was also
used against IM- and sunitinib-refractory chordoma but was not
effective due to short of the mTOR expression (28). A phase I trial
evaluated the effect of IM plus metronomic cyclophosphamide
(MC)-based chemotherapy on 7 IM- and sunitinib-refractory
chordoma patients (19). The median PFS was 10.2 months,
and the 12 months PFS and OS rates were 42.9 and 85.7%,
respectively according to RECIST. No dose-limiting toxicity and
drug pharmacokinetic interactions were observed.

Brachyury Vaccine (Table 4)
A phase I dose-escalation trial using a recombinant
Saccharomyces cerevisiae (yeast) vaccine encoding brachyury
(GI-6301) was conducted on 11 patients (20), and 10 evaluable
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patients showed a median PFS of 8.3 months. One patient
achieved PR, with eight sustaining SD and one experiencing
PD at 3 months according to RECIST. Seven patients had no
evidence of PD, giving a clinical benefit rate of 70% at 5 months.
The most common AEs were injection site reactions.

Ongoing and planned clinical trials on chordoma MTT are
listed in Table 5.

DISCUSSION

Novel therapeutic strategies against chordoma are urgently
needed to prolong the overall survival and relieve symptoms.
Elucidation of the underlying molecular mechanisms of
chordoma have helped identify numerous potential therapeutic
targets (47, 48), and several anti-chordoma agents are currently
being tested in animal models and clinical trials. This systematic
review is focused on the pharmacological management of
chordoma patients and the clinical outcomes. Furthermore, the
molecular mechanisms of MTT action have also been assessed.

Molecular Targets
Chordoma is a genetically heterogeneous tumor with frequent
imbalances of large chromosomal regions. Somatic duplications
of the notochordal transcription factor brachyury (47, 48),
chromosomal copy loss of phosphatase and tensin homolog
(PTEN) (49), tuberous sclerosis complex (TSC) (50), cyclin-
dependent kinase inhibitor 2A and 2B (CDKN2A and CDKN2B)
(51), SMARCB1 (49), and PIK3CA (9) mutations are key aspects
of chordoma pathogenesis, and therefore potential targets.

RTKs are the key players in the development and progression
of chordoma, and their mutated forms can activate signaling
cascades resulting in dysregulation of many essential proteins.
Therefore, mutational analyses and IHC can greatly assist
oncologists to determine the optimal inhibitors (52–56). It needs
to be emphasized that mutations in the molecular targets are
clinically more relevant than their immunoreactivity, since target
overexpression is not always driven by the activation of the
corresponding signaling pathway. For example, high levels of
EGFR in the chordoma cell line JHC7 was not accompanied by
activated EGFR signaling (57).

Indications and Evaluation Criteria for
MTTs
MTTs are not the first treatment options for chordoma, and
only recommended for advanced or recurrent chordoma that are
unresponsive to either surgical resection or radiotherapy.

The outcomes of MTTs is often difficult to evaluate in
chordoma. Choi’s criteria is based on changes in tumor size
and density following contrast administration in CT or MRI
(58). A radiological PR is defined as ≥10% decrease in tumor
size or ≥15% decrease in tumor density/contrast enhancement
in CT/MRI. RECIST defines PR as ≥20% decrease in tumor
growth, which occurs later than that required for Choi criteria.
Therefore, RECIST is not fully adequate to evaluate the clinical
response in chordoma (59). Clinical/radiological and metabolic
responses include symptom relief, anti-tumor effects (such as
liquefaction) and changes in tumor density in the CT scan,
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reduction in contrast enhancement in MR, and maximum
standardized uptake (SUVmax) in PET (23). However, typical
tumor tissue characteristics like component and scirrhosity may
also affect tumor-related symptoms, even in the absence of any
changes in tumor size, resulting in incorrect readings.

MTTs for Chordoma
Imatinib was the first effective agent tested against chordoma, and
is currently the most commonly used MTIs (23). Most patients
with PDGFRβ-positive chordoma benefited from imatinib
treatment and avoided rapid PD, likely due to tumor necrosis
and intra-tumoral subacute bleeding that manifest as liquefaction
(36). A dosage of 800 mg/day is recommended, except in
cases of high toxicity. The major AEs associated with imatinib
include oedema, chronic anemia, fatigue and even subacute
intraventricular hemorrhage (36).

Several trials have also reported the ineffectiveness of imatinib
in chordoma (19, 28, 32, 35, 38, 42). In such cases, EGFR inhibitor
is the second line of treatment, since PDGFRβ activation can also
stimulate EGFR, given an EGFR gene copy number gain (CNG)
or strong intra-tumoral EGFR staining is detected. Around 40%
of chordoma patients show CNG of the chromosome band 7p12,
where EGFR is located. Erlotinib has shown a good clinical effect
EGFR-positive chordoma, and could serve as the second choice
for imatinib-refractory chordoma (32, 35). The combination of
gefitinib and cetuximab, two other inhibitors of EGFR, showed
improved clinical benefits and decreased AEs (30, 31).

HER2/neu is involved in EGFR dimer formation, and the
possibility of heterodimerization increases the sensitivity of
EGFR-positive chordoma to 54% (60). Lapatinib, a bi-specific
inhibitor blocking both EGFR and HER2/neu, achieved 33.3%
PR and 38.9% SD as per Choi criteria and 100% SD according
to RECIST in EGFR-positive chordoma (12). Afatinib, another
bi-specific inhibitor of EGFR and HER2/neu, was the only agent
which showed cytotoxic effects across multiple chordoma cell
lines in a drug sensitivity assessment (57). On this basis, a
new clinical trial on the effects of afatinib is currently enrolling
patients (NCT03083678).

IGF signaling is also important in chordoma tumorigenesis,
since IGF-1 and IGF-1R have been detected in 92 and 76% of
chordoma tissues (61), and are absent in benign notochordal cell
tumor and fetal notochord (52). Linsitinib, an IGF-1R inhibitor,
was assessed in two studies (22, 40), and effectively controlled
chordoma progression in combination with erlotinib (22, 40).

VEGF levels are significantly higher in chordoma tissues
and associated with angiogenesis (62). Five VEGFR or VEGF
inhibitors (sorafenib, sunitinib, pazopanib, thalidomide,
bevacizumab) were evaluated in this systematic review. Although
occasional severe AEs were observed occasionally, sorafenib,
sunitinib, and pazopanib monotherapy resulted in substantial
clinical effects. Although thalidomide was effective against
drug-resistant chordomas, severe toxicities limit its clinical
application. Bevacizumab can be used as a supplement for
erlotinib in drug-resistant chordomas, and their combination
showed good clinical effect and high tolerance. A new phase
II trial evaluating the efficacy and safety of regorafenib, a
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multi-kinase inhibitor of VEGFR, is ongoing in France for
metastatic bone sarcoma (NCT02389244).

Chordomas with indication of anti-RTK agents may also
relapse or progress early. In TKI-resistant chordomas, p-AKT is a
relative reliable indicator and its persistent expression following
tyrphostin treatment resulted in relapse and progression (54).
AKT is activated by mTOR, its downstream molecules (RPS6
and eIF4E), and Stat3. The combination of the antagonists
of upstream RTKs and downstream mTOR/PI3K/MAPK/Stat
not only synergistically reduced chordoma growth by avoiding
the negative feedback loop (63) and PI3K-dependent feedback
loop (64), but also significantly decreased the cytotoxicity of
either agent (65). For example, monotherapy of rapamycin or
everolimus was ineffective against tumor progression (34, 41),
while combining imatinib with everolimus or sirolimus induced
good clinical effects in 3 studies (12 patients) (25, 28, 42).
Therefore, the combined therapy can be considered for drug-
resistant chordoma.

Mutations in the downstream effectors of RTKs, like PTEN
and PIK3CA, also impair TKI response (66, 67). PTEN deficient
chordoma cell lines exhibit increased proliferation, reduced
apoptosis and enhanced migration in chordoma cell lines
(68). Reintroduction of PTEN in tumor cells increased their
therapeutic sensitivity to PDGFR inhibitors, and the combination
of histone deacetylase (HDAC) and PDGFR inhibitors effectively
reduced the growth and invasion of chordoma cells, irrespective
of PTEN status (69). On this basis, a new phase I trial of Imatinib
and LBH589 (a HDAC inhibitor) is ongoing in chordoma
patients (NCT01175109).

Chordomas frequently show deletions in the SMARCB1
locus (49). SMARCB1 directly antagonizes the histone
methyltransferase EZH2 and regulates the cell-cycle by
activating CDKN2A (45). A phase I trial on the EZH2 inhibitor
tazemetostat, confirmed complete or partial responses were
observed in two children with chordoma according to RECIST
(NCT02601937) (45). Therefore, another phase II clinical trial on
tazemetostat is ongoing in patients with SMARCB1/INI1 deleted
chordoma (NCT02601950).

The loss of chromosome 9 or 9p region, which contains
CDKN2A, has been reported in some chordoma patients (51).
The inactivation of CDKN2A universally activates the CDK4/6
and Rb pathways (70), which are highly expressed in the
chordoma tissues (71). The CDK4/6 inhibitors palbociclib and
LY2835219 inhibited chordoma cell growth and proliferation in
vitro efficiently (72, 73). A phase II clinical trial on palbociclib
is currently enrolling patients with chordoma (NCT031
10744).

Somatic duplications of the notochordal transcription factor
brachyury was demonstrated in chordoma, and enhanced tumor
growth by activating YAP (9, 47, 48). Preclinical studies have
shown that a recombinant Saccharomyces cerevisiae (yeast)
vaccine encoding brachyury (GI-6301) activates human T cells
in vitro. A phase II GI-6301 dose-escalation trial showed
a 70% clinical benefit rate in chordoma patients (20). A
phase II clinical trial on the combination of GI-6301 and
radiotherapy is currently enrolling chordoma patients in the

United States (NCT02383498). Additionally, a phase I trial of
a Modified Vaccinia Ankara (MVA)-brachyury and a fowlpox
(FPV)-brachyury vaccines is currently ongoing in patients with
solid tumors, including chordoma (NCT03349983).

Limitations
In order to decrease the selection bias, this systematic review
screened all published studies enrolling chordoma patients
treated with MTT, including clinical trials, case series and
even case reports, and provides the most detailed information.
However, there were some limitations that need to be addressed.
We included case reports on account of the rarity of chordoma
and the paucity of available studies. However, a case report might
overemphasize the final results due to lack of strong results.
In addition, we only included English language publications
which can also increase the selection bias. Furthermore, the
baseline conditions of the patients and the evaluation criteria
were not consistent across studies which is another factor
contributing to selection bias. Therefore, large prospective
randomized clinical trials are warranted to help clinicians
determine the optimum treatment modality for chordoma
patients.

CONCLUSIONS

The selection of MTIs for patients with advanced or relapsed
chordoma should be based on gene mutation screening
and immunohistochemistry (IHC). Monotherapy of TKIs is
recommended as the first-line treatment. Combined therapy (two
TKIs or TKI plus mTOR inhibitor) may be the choice for drug-
resistant chordoma. Brachyury vaccine is a promising therapeutic
strategy and requires more clinical trials to evaluate its safety and
efficacy.
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Cervical cancer is one of the most common gynecological tumors, and the majority
of early-stage cervical cancer patients achieve good recovery through surgical
treatment and concurrent chemoradiotherapy (CCRT). However, for patients with
recurrent, persistent, metastatic cervical cancer, effective treatment is rare, except for
bevacizumab combined with chemotherapy. Programmed cell death-1/programmed
cell death-ligand 1 (PD-1/PD-L1) inhibitors might be a novel choice to improve the
clinical outcomes of these patients. Thus far, some pivotal trials, including Keynote
028, Keynote 158 and Checkmate 358, have indicated established clinical benefit of
PD-1/PD-L1 inhibitors in cervical cancer. In light of these data, the FDA has approved
pembrolizumab for patients with recurrent or metastatic cervical cancer with disease
progression during or after chemotherapy. There are also some ongoing studies that
may provide more evidence for the PD-1/PD-L1 pathway as a therapeutic target in
cervical cancer. In this review, we have summarized the status and application of PD-
1/PD-L1 inhibitors in clinical trials for the treatment of cervical cancer and suggested
some future directions in this field.

Keywords: cervical cancer, programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1), immune
checkpoint inhibitors, immunotherapy, human papillomavirus (HPV)

INTRODUCTION

Cervical cancer is one of the most common gynecological tumors. More than 569,847 women are
diagnosed with cervical cancer annually worldwide, resulting in over 311,365 deaths (Bray et al.,
2018). Although the incidence of cervical cancer has been greatly reduced by the use of HPV
vaccines and cervical cancer screening (Goodman, 2015), cervical cancer is second in terms of
morbidity among gynecological tumors in developing countries (Sahasrabuddhe et al., 2012). Over
70% of cervical cancer cases diagnosed in developing countries are locally invasive or metastatic,
contributing to the high mortality rate of cervical cancer. The 5-year OS rate of local cervical
cancer can achieve approximately 75–85% through effective treatments such as surgery CCRT,
etc. (Chen et al., 2015). Nevertheless, the 5-year OS of recurrent, persistent, metastatic cervical
cancer is only approximately 15%. The poor prognosis is mainly due to limited therapeutic
options (Guitarte et al., 2014). The majority of these patients can only be treated with palliative

Abbreviations: AE, adverse event; APCs, antigen-presenting cells; CCRT, concurrent chemoradiotherapy; CRs,
complete responses; CRT, chemoradiotherapy; CTLA-4, cytotoxic T-lymphocyte-associated protein-4; hfRT, hyperfraction
radiotherapy; HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; mAb, monoclonal antibody;
NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival rate; PD-1/PD-L1, programmed cell
death-1/programmed cell death-ligand 1; PFS, progression-free survival; PRs, partial responses; SCCs, squamous cell cancers;
TILs, tumor infiltrating lymphocytes; uPRs, unconfirmed partial responses.

Frontiers in Pharmacology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 65237

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00065
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2019.00065
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00065&domain=pdf&date_stamp=2019-02-01
https://www.frontiersin.org/articles/10.3389/fphar.2019.00065/full
http://loop.frontiersin.org/people/648869/overview
http://loop.frontiersin.org/people/527895/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00065 January 30, 2019 Time: 17:59 # 2

Liu et al. PD-1/PD-L1 Inhibitors in Cervical Cancer

chemotherapy (Boussios et al., 2016), in which platinum-based
chemotherapies were the prior choice (Monk et al., 2009). In
2014, the GOG 240 trial indicated that when bevacizumab was
added to the chemotherapy, the ORR was improved from 36
to 48% (Tewari et al., 2014), and the OS could be prolonged
from 13 to 17 months for recurrent, persistent, metastatic
cervical cancer, thus laying the foundation for the first-line
choice of combining bevacizumab with chemotherapy for this
population (Tewari et al., 2017). However, for those who progress
during the first-line treatment, the lack of effective second-line
treatment remains to be the main reason for the high mortality
rate (Minion and Tewari, 2018). Currently, immune checkpoint
inhibitors (Schumacher and Schreiber, 2015), especially PD-
1/PD-L1 inhibitors (Constantinidou et al., 2018), have achieved
favorable efficacy in treating multiple solid tumors (Gettinger
et al., 2018), including cervical cancer (Borcoman and Le
Tourneau, 2017). Accumulating evidence has demonstrated that
PD-1/PD-L1 inhibitors may be a promising approach for cervical
cancer treatment.

IMMUNE CHECKPOINT INHIBITORS

Numerous immunomodulatory therapies are being investigated
in clinical trials with diverse potential targets, including PD-
1/PD-L1, CTLA-4, Tim-3, ICOS, 4-1BB, and OX-40. Among
these novel targets, ICOS (Amatore et al., 2018), 4-1BB (Compte
et al., 2018), and OX-40 (Polesso et al., 2018) are costimulatory
receptors, while PD-1/PD-L1 (Raedler, 2015), CTLA-4 (Lheureux
et al., 2018), and Tim-3 (Gorris et al., 2018) are negative
immune regulators of T cells. Currently, only CTLA-4 inhibitors
(Hodi et al., 2010) and PD-1/PD-L1 inhibitors (Bagcchi, 2014)
have been approved by the FDA. CTLA-4 integrates with the
costimulatory molecules CD80 (B7-1) and CD86 (B7-2) that
express on the surfaces of APCs (Fife and Bluestone, 2008), while
PD-L1 is expressed on a wide variety of cell types, including
tumor-associated fibroblasts, tumor cells, APCs, etc. (Boussiotis,
2016). As a result, CTLA-4 inhibits T cell activation within
secondary lymphoid organs (Kurup et al., 2017), but PD-1/PD-L1
chiefly regulates T cell function within peripheral tissues and the
tumor microenvironment (Pardoll, 2012). Therefore, PD-1/PD-
L1 signaling is more specific to tumor than CTLA-4 signaling,
and inhibitors of PD-1/PD-L1 may cause less damage to healthy
tissue (Boussiotis, 2016; Minion and Tewari, 2018) (Figure 1).

Based on the above mechanism, ipilimumab (monoclonal
anti-CTLA-4), the first immune checkpoint inhibitor, approved
for melanoma, had little clinical benefit until the emergence of
pembrolizumab, and the combination of the two drugs further
improved treatment efficacy in malignant melanoma (Wang
et al., 2017). To date, another mAb for CTLA-4, tremelimumab,
has not been approved for the treatment in any type of cancer.
However, mAbs targeting PD-1 [pembrolizumab (Paz-Ares et al.,
2018), nivolumab (Long et al., 2018), and cemiplimab (Sidaway,
2018)] and PD-L1 [atezolizumab (Hsu et al., 2018), durvalumab
(Siu et al., 2018), and avelumab (Le Tourneau et al., 2018)] have
presented clinical advantages in malignant melanoma, advanced
NSCLC, urothelial cancer (Zhang and Li, 2018) and other tumors

(Lim et al., 2018) (Table 1). In addition, extensive research has
been carried out on gynecological tumors, such as ovarian cancer
(Liu and Zamarin, 2018) and breast cancer (Julia et al., 2018),
and clinical researches on cervical cancer are ongoing. At present,
some initial results have been achieved.

THEORETICAL BASIS FOR PD-1/PD-L1
INHIBITORS IN CERVICAL CANCER

The PD-1/PD-L1 axis is one of the most well-known immune-
checkpoint pathways with a mechanism of immune evasion for
cancer cells and thus inhibiting the immune response in various
kinds of solid tumors, including cervical cancer Cancer Genome
Atlas Research Network et al. (2017). In brief, PD-L1 expresses on
the surface of cervical tumor cells, APCs and TILs, while the PD-
1-positive cells were mostly identified as T cells in the stroma of
cervical tumors. For the expression of PD-1 in the tumor stroma
of cervical cancer, Meng et al. (2018) reported that 60.82% (59/97)
of the patients exhibited PD-1 expression, while another study
showed PD-1 expression in 46.97% (31/66) of the patients (Feng
et al., 2018).

To date, numerous studies have investigated the expression
of PD-L1 in cervical cancer (Yang et al., 2013; Chen et al.,
2016). The expression of PD-L1 has been reported in 34.4–
96% of cervical carcinoma tissues, while expression of PD-L1 in
histologically normal cervical tissues was rarely found (Enwere
et al., 2017). Opal Reddy et al. (2017) showed that PD-L1
expression was positive in 32 of 93 (34.4%) cervical carcinoma
samples, subcategorically in 28 of 74 (37.8%) SCCs, 2 of 7 (28.6%)
adenosquamous carcinomas, and 2 of 12 (16.7%) endocervical
adenocarcinomas. In another study, PD-L1 expression was found
in 96% of the samples (Enwere et al., 2017). Specifically, for
cervical SCC, PD-L1 expression was found in 80% (56/70) cases
(Mezache et al., 2015). In the TCGA database for cervical SCCs,
the amplification or gain of PD-L1 was found in 28 of 129
(22%) cases (Dijkstra et al., 2016). In addition, PD-L1 can also
be expressed on TILs, which plays a role in antitumor response
inhibition. A study found that for cervical SCCs samples, the
expression rates of PD-L1 on cancer cells and TILs were 59.1
and 47.0%, respectively (Feng et al., 2018). Collectively, these
data suggest that both PD-L1 and PD-1 are widely expressed
in cervical cancer tumor cells and stroma, providing potential
therapeutic targets for PD-1/PD-L1 inhibitors.

Notoriously, persistent HPV infection is involved in the
pathogenesis of cervical cancer and is related to its prognosis.
Several teams have interrogated whether HPV infection could
affect PD-L1 expression in cervical cancer and found that
HPV positivity was positively correlated with increased PD-L1
expression (Mezache et al., 2015; Liu et al., 2017).

Considerable effort has been made to dissect the underlying
mechanism of the association between HPV status and PD-L1
expression in HPV-related solid tumors, mainly HNSCC and
cervical cancer. In HPV-HNSCCs, membranous expression of
PD-L1 and significant increased levels of mRNA of IFN-γ were
found in the tonsillar crypts, As tonsillar crypts witnesses the
initial HPV infection, and IFN-γ induces PD-L1 expression, this
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FIGURE 1 | The CTLA-4 and PD-1/PD-L1 pathways in cervical cancer.

evidence might support the role of the PD-1/PD-L1 interaction in
creating an “immune-privileged” site for initial viral infection and
subsequent adaptive immune resistance (Franzen et al., 2018).
In another study, DNA methylation of PD-L1 was inversely
correlated with PD-L1 mRNA expression (p ≤ 0.002) and was
further significantly associated with HPV infection in the TCGA
cohort, indicating that DNA methylation of PD-L1 is associated
with transcriptional silencing and HPV infection in HNSCCs

(Balermpas et al., 2017). In cervical cancer, Qin et al. (2017)
indicated that HPV-induced somatic mutations and a multitude
of neoantigens, which played a crucial role in the inhibitory
tumor microenvironment and could lead to notable alterations
among checkpoint-related genes such as CTLA-4, PD-1, and
PD-L1. Specifically, PD-L1 showed a positive correlation with
ENO1, PRDM1, OVOL1, and MNT, all of which are related
master regulators of HPV16 E6 and E7 (Qin et al., 2017). Of

TABLE 1 | The characteristics of the clinical application of monoclonal antibodies (mAbs) of immune checkpoint inhibitors in cervical cancer.

Target Drug (trade
name)

Antibody type Formerly name Manufacturer Time to market
(FDA)

Indications

CTLA-4 Ipilumumab
(Yervoy)

IgG1 – BMS March, 2011 Melanoma, colorectal cancer, renal cell
carcinoma

Tremelimumab IgG2 Ticilimumb,
CP-675,206

Pfizer – Undergoing human trials has not attained
approval for any

PD-1 Pembrolizumab
(Keytruda)

IgG4 MK-3475
Lambrolizumab

MSD September, 2014 Advanced melanoma, non-small cell lung
cancer, Hodgkin’s lymphoma, and head
and neck SCC1

Nivolumab
(Opdivo)

IgG4 BMS-9365580
NO-4538

BMS December, 2014 Metastatic melanoma, squamous non-small
cell lung cancer, renal cell carcinoma

Cemiplimab
(REGN2810)

IgG4 – Sanofi September, 2018
(EMA2)

squamous cell skin cancer
(EMPOWER-CSCC 1)

PD-L1 Durvalumab
(Imfiniz)

IgGlK – AstraZeneca May, 2017 Bladder cancer, NSCLC3

Atezolizumab
(Tecentriq)

IgGl – Roche April, 2016 Lung cancer, bladder cancer, advanced
triple negative breast cancer

1SCC, squamous cell cancers; 2EMA, European Medicines Agency; 3NSCLC, non-small cell lung cancer.
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TABLE 2 | Clinical research outcomes on PD-1/PD-L1 inhibitors in cervical cancer.

Study Author Study
population (n)

Phase Treatment arm(s) Principal results Toxicity Significance

REGN2810 Papadopoulos
et al., 2016

Advanced solid
tumors

I Cemiplimab 62.8% patients had
disease control

No dose-limiting
toxicities

Higher response rate
when combined with
radiation suggesting
abscopal responses

Keynote
028

Frenel et al.,
2017

Recurrent cervical
cancer with PD-L1
positive tumors (24)

Ib Pembrolizumab
10 mg/kg q2w

ORR1 17% (95%
CI: 5–37%)

Grade=3 AE2

including rash and
proteinuria

Well-tolerated and
active in cervical cancer

Keynote
158

Schellens et al.,
2017

Recurrent cervical
cancer with
progression or
intolerance to
standard therapy
(82)

II Pembrolizumab
200 mg/kg q2w

Preliminary results:
ORR1 17% (95%
CI: 8–31%);
patients with
>27 weeks of
follow up, ORR
27% (95% CI:
8–55%)

Grades 3–4 AE2

included AST/ALT3

elevation and
pyrexia

Demonstrates activity in
cervical cancer and
increasing response
with a longer duration
of follow-up

Checkmate
358

Hollebecque
et al., 2017

Recurrent or
metastatic
HPV4-related
cancers (19)

I–II Nivolumab 240 mg
q2w

Preliminary results:
ORR1 26% (95%
CI: 9.1–51.2%) in
cervical cancer
patients

Grade 3–4 AE2

included
hyponatremia,
syncope, diarrhea
and hepatocellular
injury

Durable responses
demonstrated in
cervical cancer
patients, with at least
6 months duration

1ORR, objective response rate; 2AE, adverse event; 3AST/ALT, aspartate transaminase/alanine transaminase; 4HPV, human papillomavirus.

note, a single-arm, phase II study investigated durvalumab in
patients with recurrent/metastatic HNSCCs (n = 112) and found
that HPV-positive patients had a higher response rate and better
survival than that of the HPV-negative patients (Zandberg et al.,
2018). Nevertheless, for cervical cancer, the association of HPV
status and the efficacy of PD-1/PD-L1 inhibitors is not yet certain
due to the paucity of available data.

Several studies have probed the role of PD-L1 expression
in the prognosis and therapeutic efficacy of cervical cancer.
These results separately proved that an increase in PD-L1
expression was positively associated with tumor metastasis
(Yang et al., 2017), tumor progression (Hsu et al., 2018) and
poor prognosis in cervical cancer (Heeren et al., 2016). In
this regard, the negative relationship between HPV infection
and the clinical outcomes of cervical cancer may be partially
attributed to the PD-L1 expression induced by HPV infection
(Yang et al., 2017). For patients with locally advanced cervical
adenocarcinoma and adenosquamous carcinoma treated with
CRT, the underexpression of PD-L1 was a prognostic factor for
tumor relapse (p = 0.041), indicating that PD-L1 expression
might be a novel biomarker for CRT outcome (Lai et al., 2017).

CLINICAL RESEARCH OUTCOMES OF
PD-1/PD-L1 INHIBITORS IN CERVICAL
CANCER

Since 2015, multiple clinical trials have been conducted to explore
the application of PD-1/PD-L1 antibodies in cervical cancer.
To date, four studies have yielded preliminary results (Table 2).
Keynote 028 (a phase Ib study) and Keynote 158 (a phase II study)
evaluated pembrolizumab at the dose of 10 mg/kg and 200 mg/kg,
respectively, in recurrent, metastatic cervical cancer. In Keynote

028 (Frenel et al., 2017), 24 patients were enrolled, and the overall
response rate (RECIST v1.1) was 17% (95% CI: 5 to 37%). In
terms of toxicity, 5 patients experienced grade 3 AEs (NCI-
CTCAE 3.0), while no grade 4 AEs was observed. In Keynote 158
(Schellens et al., 2017), 98 patients with recurrent or metastatic
cervical cancer were enrolled. With a median follow-up time of
11.7 months, the ORR in 77 patients was 14.3% (95% CI: 7.4 to
24.1%), including 2.6% of the patients with CRs and 11.7% of
patients with PRs, whereas no response was observed in patients
without PD-L1 expression in tumor cells. The most frequent
serious adverse reactions included anemia (7%), fistula (4.1%),
hemorrhage (4.1%), and infection (4.1%). Based on Keynote
158, the FDA approved pembrolizumab on June 12, 2018, for
advanced cervical cancer with disease progression during or
after chemotherapy1. Checkmate 358 (Hollebecque et al., 2017)
(phases I–II studies) adopted nivolumab (200 mg/kg q2w) for the
treatment of recurrent, metastatic cervical cancer and resulted
in an ORR of 26.3%. The disease control rate was 70.8%. The
related grades 3–4 toxic effects included hyponatremia, syncope,
diarrhea, and hepatocellular injury. From these three studies,
pembrolizumab and nivolumab showed promising antitumor
effects and were well-tolerated in patients with recurrent or
metastatic cervical cancer. However, due to a limited follow-up
time, PFS and OS were not reported. Additionally, the REGN2810
study (Papadopoulos et al., 2016), a phase I multicenter study,
assessed REGN2810 (a PD-1 mAb) as a monotherapy and in
combination with hfRT, in combination with cyclophosphamide
(CTX) or with CTX + hfRT in patients with advanced solid
tumors, including cervical cancer. This study adopted a dose
escalation design, and as of February 2016, no dose-limiting

1https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm610572.
htm
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TABLE 3 | Ongoing clinical research on PD-1/PD-L1 in cervical cancer.

Clinical trial
code

Study Study population
(n)

Phase Treatment arm(s) Primary outcome
measures

Secondary
outcome
measures

NCT02257528 Nivolumab in Treating Patients with Persistent,
Recurrent, or Metastatic Cervical Cancer
(NRG-GYO-02)

Recurrent or
metastatic cervical
cancer (25)

II Nivolumab ORR1 [5 y]; AE2

[100 d]
PFS3 [5 y], OS4 [5
y]

NCT03298893 Nivolumab in Association with Radiotherapy
and Cisplatin in Locally Advanced Cervical
Cancers Followed by Adjuvant Nivolumab for
up to 6 Months (NiCOL)

Locally advanced
cervical cancer (21)

III Nivolumab DLT5 [11 w] ORR1 [2 m], PFS3

[2 y], DFS6 [2 y],
SAE7 [100 d], AE2

[100 d], etc.

NCT03257267 Study of REGN2810 in Adults with Cervical
Cancer (GOG 3016/ENGOT-cx9)
(EMPOWER-Cervical)

Recurrent or
metastatic
platinum-refractory
cervical cancer
(436)

III Cemiplimab
(REGN2810)

OS4 [32 m] PFS3 [32 m], ORR1

[32 m], DOR8 [32
m], Quality of life
(QOL) [100 w]

NCT03104699 Phase 1/2 Study of AGEN2034 in Advanced
Tumors and Cervical Cancer

Advanced cervical
cancer (75)

I–II AGEN2034 DLTs5 [3 w], MTD9

[1 y], BOR10 [1 y]
Cmax11 [1 y],
AUC12 [1 y], PFS3

[1 y], DOR8 [1 y],
OS4 [1 y]

NCT03518606 Metronomic Oral Vinorelbine Plus
Anti-PD-L1/Anti-CTLA4 ImmunothErapy in
Patients with Advanced Solid Tumors (MOVIE)

Advanced solid
tumors (150)
including cervical
cancer

I–II Durvalumab
+Tremelimumab
+metronomic
Vinorelbine

Phase I: MTD9 and
RP2D13 [9 m]
Phase II: CBR14 [24
m]

None

NCT03556839 Platinum Chemotherapy Plus Paclitaxel with
Bevacizumab and Atezolizumab in Metastatic
Carcinoma of the Cervix

Carcinoma of the
cervix, stage IVB
(404)

III Atezolizumab OS4 [48 m] PFS3 [48 m], ORR1

[48 m], DOR8 [48
m], AE2 [48 m], etc.

NCT01975831 A Phase 1 Study to Evaluate MEDI4736 in
Combination with Tremelimumab

Solid tumors (106)
including cervical
cancer

I MEDI4736
(Durvalumab)+Trem
elimumab

AE2 [1 y] AUC12, Cmax11 [15
m], PFS3 [15 m],
OS4 [15 m], etc.

NCT02914470 Pilot Study of Durvalumab and Vigil in
Advanced Women’s Cancers (PROLOG)

Solid tumors (12)
including cervical
cancer

I Durvalumab and
Vigil

Toxicity [30 d] ORR1 [120 m]

NCT02725489 Pilot Study of Durvalumab and Vigil in
Advanced Women’s Cancers

Solid tumors (15)
including cervical
cancer

II Vigil+durvalumab AEs2 [90 d] ORR1 [12 m],
Disease status [12
m], IFNγ-ELISPOT
conversion rate [12
w]

NCT02921269 Atezolizumab and Bevacizumab in Treating
Patients with Recurrent, Persistent, or
Metastatic Cervical Cancer

Recurrent,
persistent, or
metastatic cervical
cancer (22)

II Atezolizumab
+Bevac izumab

ORR1 [2 y] PFS3 [2 y], OS4 [2
y] AE2 [30 d],
PD-L1, etc.

NCT03635567 Efficacy and Safety Study of First-line Treatment
with Pembrolizumab (MK-3475) Plus
Chemotherapy Versus Placebo Plus
Chemotherapy in Women with Persistent,
Recurrent, or Metastati Cervical Cancer
(MK-3475-826/KEYNOTE-826)

Cervical cancer
(600) c

I–II Pembrolizumab PFS3 [2y] OS4 [2 y] ORR1 [2 y], DOR8

[2 y], etc.

NCT03144466 A Study of Pembrolizumab And Platinum with
Radiotherapy in Cervix Cancer (PAPAYA)

Cervical cancer (26) I Pembrolizum MTD9 [2 y] ab
Efficacy [2 y]

OS4 [2 y], PFS3 [2
y], etc.

NCT03255252 Assessment Study to Evaluate Specific Immune
Response in Locally Advanced Cervix Cancer
After Radio-chemotherapy (IMMUVIX)

Cervical cancer
(100)

II Cisplatin Expression of
CD8+CD39+PD1+

Effect on 1-year
DFS6 of other
putative biomarkers
(CD73, CD39, PD1
and Tim3)

NCT03559803 A Prospective Study of Monitoring Immune
Response in Locally Advanced Cervix
Cancer(GHR002)

Cervical cancer(50) Not
appli
cable

Cisplatin PD-L1 [3w, 2 m] PD1+CD4+T [3w, 2
m], PD1+CD8+T
[3w, 2 m], TCR[3w,
2 m]

1ORR, objective response rate; 2AE, adverse event; 3PFS, progression-free survival; 4OS, overall survival rate; 5DLT, dose limiting toxicity; 6DFS, disease-free survival;
7SAE, serious adverse event; 8DOR, duration of response; 9MTD, maximum tolerated dose; 10BOR, best overall response; 11Cmax, maximum plasma concentration;
12AUC, area under curve; 13RP2D, phase II recommended dose; 14CBR, clinical benefit response.
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toxicity (DLT) was observed. The most common treatment-
related AEs were fatigue (n = 14, 24.1%), arthralgia (n = 7,
12.1%), and nausea (n = 6, 10.3%). Additionally, 4 patients
experienced grade ≥ 3 AEs. For 9/22 (40.9%) patients who
received REGN2810 + hfRT and 2/21 (9.5%) patients who
received REGN2810 monotherapy, they were determined to
have partial/uPRs, suggesting that the treatment response was
augmented by the addition of hfRT.

ONGOING CLINICAL RESEARCH ON
PD-1/PD-L1 IN CERVICAL CANCER

As of September 2018, 11 clinical trials have been conducted,
mainly in patients with persistent, recurrent, or metastatic
cervical cancer, with only three studies on patients with locally
advanced cervical cancer. Twenty to thirty cases were intended
to be included in the majority of these studies, while there were
only three studies (Keynote 826, GOG 3016/ENGOT-cx9, and
NCT03556839) in which more than 200 cases were intended to
be included. Except for the two studies (IMMUVIX, GHR002)
aimed at exploring the immune status of PD-1/PD-L1 in patients
with locally advanced cervical cancer, the remaining 12 studies all
looked into the applicability of PD-1/PD-L1 inhibitors in cervical
cancer. Of these 12 studies, there are 2 studies on nivolumab,
2 on pembrolizumab, 4 on durvalumab, 2 on atezolizumab, 1
on cemiplimab (REGN2810) and 1 on AGEN2034. For PD-1
inhibitors, the difference between the 2 studies on nivolumab is
the study population. NRG-GYO-02 was conducted in patients
with persistent, recurrent, or metastatic cervical cancer, while
the NiCOL study enrolled more patients with locally advanced
cervical cancer. The main difference between the two studies on
pembrolizumab is that KEYNOTE-826 adopted pembrolizumab
in combination with chemotherapy versus placebo, while
PAPAYA mainly adopted pembrolizumab in combination
with platinum and radiotherapy. The GOG 3016/ENGOT-
cx9 (EMPOWER-Cervical) study is an important phase III
clinical study to advance the clinical application of cemiplimab
(REGN2810) in advanced cervical cancer. NCT03104699 is a
phase I/II clinical study on AGEN2034, another PD-1 inhibitor,
in advanced solid tumors that includes 75 cases of cervical cancer.
In terms of treatment combinations, tremelimumab (a fully
human mAb against CTLA-4), Vigil vaccine for cervical cancer,
bevacizumab, and chemotherapy were paired with PD-1/PD-L1
inhibitors throughout these studies (Table 3).

CONCLUSION

Although there are a few studies suggesting the potential
feasibility of PD-1/PD-L1 inhibitors for the treatment of

cervical cancer, a consideration should be made for the clinical
application of PD-1/PD-L1 inhibitors. The inadequate number
of cases included and the insufficient follow-up time are the
main defects of all the studies, leading to the unavailability of
data regarding OS, PFS, AEs, drug resistance and the treatment
mechanism as well. These data are very pivotal not only
for obtaining a more convincing result, but also for guiding
physicians to select the appropriate patients for PD-1/PD-L1
inhibitors.

Currently, most of these studies, including ongoing studies,
are mostly limited to recurrent, persistent, metastatic cervical
cancer, which accounts for only a minor portion of patients with
cervical cancer. There are several future directions that can be
given more attention. First, the latest evidence suggests a clinical
benefit of PD-1/PD-L1 inhibitors as neoadjuvant therapy in lung
cancer (Lommatzsch et al., 2018). For patients with early-stage
cervical cancer, studies in a small sample size can be conducted
to investigate PD-1/PD-L1 inhibitors with attempted surgical
treatment or to prevent post-operative recurrence. Second, for
patients with locally advanced cervical cancer who are not
sensitive to CCRT or who relapse in the short term after initial
treatment, PD-1/PD-L1 inhibitors may be a useful treatment, and
we are looking forward to the research targeting this population.
Third, for locally advanced cervical cancer patients, whether
PD-1/PD-L1 inhibitors can achieve better therapeutic efficacy in
tumors with higher PD-L1 expression before CCRT begins will
provide a better understanding of the effects of these inhibitors.
Finally, since PD-L1 expression is correlated with HPV status,
more studies are warranted to provide further insights into
the association of HPV status and the efficacy of PD-1/PD-L1
inhibitors in patients with cervical cancer. Combining the level of
HPV DNA with the expression of PD-L1 may also provide a novel
predictive biomarker of the efficacy of PD-1/PD-L1 inhibitors
and the prognosis of patients with cervical cancer.
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The CXCL8-CXCR1/2 Axis as a
Therapeutic Target in Breast Cancer
Stem-Like Cells
Pier Adelchi Ruffini*
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Cancer stem-like cells (CSC) have been targeted by different strategies over the last
decade. This mini review focuses on preclinical and clinical results obtained by interfering
with chemokine receptors CXCR1 and CXCR2 in breast cancer. This strategy is currently
being tested in a randomized, double blind phase 2 clinical trial.

Keywords: CXCR1, CXCL8, cancer stem-like cells, reparixin, breast cancer

Cancer stem-like cells (CSC) have been the focus of several clinical investigations testing different
strategies for amore effective anticancer treatment through inhibition of this unique cell population
(1). Targeting the CXCL8-CXCR1/2 axis is one such strategy that has moved from preclinical
models to an ongoing randomized phase 2 clinical trial in breast cancer.

CXCL8 (formerly IL-8) is a chemokine whose biological effects are mediated by two
G-protein-coupled receptors: CXCR1 and CXCR2 (2). CXCL8 has been reported to play multiple
roles in cancer, such as increasing proliferation, angiogenesis, invasion, and metastases (3). In
breast cancer, recent evidence points to this chemokine as a key regulator of CSC activity (4).

PRECLINICAL EVIDENCE IN BREAST CANCER

In breast cancer, tumor cells capable of forming tumors in immunocompromised mice (i.e.,
CSC by a functional definition) are identified by the expression of either the enzyme aldehyde
dehydrogenase (ALDH) (5) and/or the CD24−/CD44+ phenotype (6), representing two largely
non-overlapping cell populations. CXCR1 was identified as a druggable target on breast cancer
CSC identified by the expression of ALDH, while its expression was almost undetectable on bulk
(i.e., non-CSC) tumor cells (7). In keeping, breast cancer CSC were shown to proliferate in vitro
in response to the addition of exogenous CXCL8 while a small molecular weight antagonist of
CXCR1/2 (reparixin) (8) or a blocking anti-CXCR1 (but not anti-CXCR2) monoclonal antibody
were both able to deplete CSC in vitro (9). A FAS-FASL mediated bystander effect killed the
vast majority of bulk tumor cells in vitro, suggesting the possibility of synergistic effects with
chemotherapy (9). In human breast cancer cell lines or breast cancer patient-derived xenografts
orthotopically implanted in mice, the combination of weekly docetaxel and reparixin for 4 weeks
was more effective than either treatment alone in reducing tumor size (9). However, in tumors
recovered from mice that had been treated with reparixin, either alone or in combination with
chemotherapy, CSC proportion was far lower than in tumors recovered from mice receiving
chemotherapy alone (9). These results were framed in a model where, following administration
of chemotherapy, CXCL8 and FASL are released by dying bulk tumor cells. Engagement of
CXCR1 on the surface of CSC by CXCL8 shelters CSC from apoptotic signals delivered by FASL.
To the contrary, when CXCR1 signaling on CSC is blocked by reparixin these cells undergo
FASL-mediated apoptosis. Evidence provided later by independent laboratories supports this
model. First, as originally reported by Ginestier and coworkers, tumor cells exposed to taxane
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in vitro release CXCL8 (10). Also, Triple-Negative Breast Cancer
(TNBC) tumor cells recovered from immunocompromised mice
following two doses of paclitaxel displayed a marked and dose-
dependent increase in mammosphere forming efficiency as
compared with untreated mice (10). Furthermore, and again
in line with the original report by Ginestier, administration
of a CXCR1 inhibitor reduced CSC percentage in vitro.
Consistent findings were later reported by an independent group
(11). Second, in breast cancer patients with pleural effusions
and/or ascites CXCL8 levels were measured and tumor cells
recovered and cultured in vitro (4). A direct correlation was
observed between CXCL8 levels and CSC activity by means of
mammosphere formation (4). Surface CXCR1 was detected on
the majority of mammosphere cells, and the effects of exogenous
CXCL8 onmammosphere formation were blocked by a CXCR1/2
inhibitor, SCH563705 (4).

The relative contribution of CXCR1 inhibition and paclitaxel
in this model were further investigated in CSC-enriched
mammospheres from the human TNBC cell line MDA-MB231.
The combination treatment displayed a synergistic effect on
mammosphere number and an additive effect on mammosphere
volume as compared with either treatment alone (12). Different
than paclitaxel, which increased the number of dead cells,
reparixin increased the number of non-proliferating cells, and the
combination treatment exerted both effects (12). In keeping with
previous reports (9), also in MDA-MB231-derived tumorspheres
reparixin activity was mediated by inhibition of the FAK/AKT
pathway which is unaffected by paclitaxel. When the effects
on cell cycle were investigated, a shift of tumor cells in S
phase or a block in G2 phase were observed upon paclitaxel
and combination treatment, respectively. In keeping, cyclin B1,
which is responsible for the cell cycle progression from G2
to S phase, was also inhibited by the combination treatment
(12). Furthermore, paclitaxel + reparixin treatment induced
“cell senescence by decreasing PI3K-Akt activation paralleled
by a decrease of the cytosolic p-FOXO3A (inactive) and by
an increase of p27” (12). The effects on cell cycle, cyclin B1
and p-FAK levels recorded upon exposure to reparixin were
reproduced using neutralizing anti-CXCR1 and anti-CXCL8
monoclonal antibodies, thus providing indirect evidence of the
ability of reparixin to downregulate CXCL8-CXCR1signaling
pathway (12).

Another set of experiments aimed at testing the hypothesis
that inhibition of CSC would reduce metastatic spread. First,
it was shown that reparixin administration reduced metastasis
formation in mice following injection of luciferase-transfected
human breast cancer cells into the bloodstream (9). Second,
the suppressive activity of CXCR1 inhibition on the metastatic
process was tested in a mouse model of brain metastases by the
TNBC cell line MDA-MB231. In the absence of brain metastases,
reparixin does not cross the blood brain barrier (BBB). However,
in the presence of brain metastases and an allegedly damaged
BBB, reparixin can be found in the central nervous system (12).
When treatment was started on the same day when tumor cells
were injected, a significant decrease of both the number and
the volume of brain metastases was observed following single
agent (i.e., reparixin or paclitaxel) as well as the combination

treatment. When treatment was started at day 7 following tumor
cell injection and continued until day 21, a significant reduction
of the number of brain metastases was observed only following
combination treatment, which also showed a trend toward an
inhibitory effect on metastases volume (12).

PRECLINICAL EVIDENCE IN TUMORS
OTHER THAN BREAST CANCER

Anti-tumor and anti CSC activity of reparixin has been
demonstrated in human epithelial thyroid cancer in vitro and
in vivo (13). Reparixin ability to inhibit stemness (evaluated by
stemness marker expression and tumorsphere formation) and
epithelial-mesenchymal transition (EMT) (evaluated at both the
biochemical and functional level) of thyroid cancer was shown to
be dependent, different than in breast cancer (9), on its activity
on both CXCR1 and CXCR2 (13).

In malignant melanoma, CXCR1/2 inhibition reduced the
percentage of ALDH+ cells in human tumors growing in nude
athymic mice (14).

In pancreatic cancer (15) a positive correlation was found
between CXCR1 and both CD44 and CD133 stemness marker
expression. Exogenous CXCL8 added to pancreatic cancer cells in
vitro increased their invasion ability, tumorsphere formation, and
CSC population and addition of a CXCR1-blocking monoclonal
antibody was able to revert all these effects (15).

CLINICAL TRIALS IN BREAST CANCER

In a phase Ib study (NCT02001974) (16), patients with HER-
2 negative metastatic breast cancer not known to be refractory
to paclitaxel who had received no more than three lines of
cytotoxic chemotherapy in the metastatic setting were enrolled in
cohorts of 3–6 patients to receive escalating doses of the CXCR1/2
inhibitor reparixin oral tablets three times per day (t.i.d.) from
day 1 to 21 in combination with a fixed dose of weekly paclitaxel
(80 mg/m2) on days 1, 8, and 15 of a 28-days cycle, for
as long as clinical benefit was observed. Primary objectives
were the assessment of the safety of the combination and the
pharmacokinetic (PK) profile of oral reparixin. Expansion of the
highest dose cohort was foreseen to gain additional PK and safety
data. Cohorts 1–3 received reparixin 400, 800, and 1,200mg t.i.d.
respectively. In cycle 1 only, patients received a 3 days course
of reparixin alone (day −3 to −1) at the assigned dose for the
cohort, for purpose of obtaining single agent PK data.

Thirty-three patients were enrolled in the study. Eighty-three
percent of patients had visceral disease, and the majority had
two or more sites of metastasis. 20/33 patients had received
prior (neo)adjuvant chemotherapy, and 16 of these patients had
received a taxane in the (neo)adjuvant setting. 19/33 had received
chemotherapy in the metastatic setting, with 11 having one prior
metastatic regimen and eight having two or more chemotherapy
regimens. Thirty patients were evaluated for safety. There were
no dose limiting toxicities in any cohort. Most adverse reactions
(ADR) were of grade 1 (79.8%), with only 2.7% grade 3 ADR.
There was no apparent dose effect of increasing reparixin dose
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on the incidence, severity or profile of treatment emergent
adverse events (TEAE) experienced by the treatment groups,
and there were no clinically significant differences between the
treatment groups with regards to laboratory measurements, vital
signs, ECG, and physical examination assessments. Twenty-
seven patients were evaluated for antitumor activity. In total,
8/27 patients had a confirmed RECIST response. Of responding
patients, all but one were from cohort 3. Median time to
progression (TTP) (95% C.I.) for the 3 cohorts were 58
days (44-infinity) for cohort 1, 67 days (58–82) for cohort 2
and 162 days (60–229) for cohort 3. Remarkably, there were
long term remissions among patients treated (16). In this
trial, it was not possible to obtain optional serial biopsies of
tumor tissue at study entry and during treatment from any
patient. However, blood-based biomarkers of CSCwere explored.
The circulating biomarkers included Circulating Tumor Cell
(CTC) enumeration, evaluation of ALDEFLUOR, and EMT
transcription factors in peripheral blood, and serum cytokine
measurements. Unfortunately, no clear pattern of change in any
of these markers was observed. This is likely related to multiple
issues, including but not limited to small sample size, low CTC
number in the enrolled patient population leading to limited
tumor material for testing, and high baseline heterogeneity in the
measurements.

Operable breast cancer is a more suitable clinical setting to
evaluate the ability of a novel agent to reduce the number of CSC
following treatment, as they can be measured on readily available
tumor tissue. Thus, after reviewing safety data from the second
cohort of the above trial, a window-of-opportunity, pilot trial
(NCT01861054) of single agent reparixin was started (17).

Patients with previously untreated HER-2 negative operable
breast cancer not eligible for neo(adjuvant) treatment were
divided into two cohorts, i.e., group A: histologically proven ER+

and/or PgR+ and group B: ER−/PgR− breast cancer (i.e., TNBC).
This design allowed potential to identify the cohort of patients
who might benefit the most from this treatment in later stage
clinical trials. Oral reparixin was administered at 1,000mg t.i.d.
for 21 consecutive days before curative surgery. Core biopsies
were taken at baseline (day −14 to 0) and at the completion
of therapy (day 21). The primary objectives of this study were
to evaluate the effects of orally administered reparixin on CSC
in the primary tumor and the tumor microenvironment and to
evaluate the safety of oral reparixin. Signal of activity was defined
as a ≥20% reduction of CSC (defined by either the ALDH+ or
CD24−/CD44+ phenotype) in tumor tissue from baseline values
as measured by flow cytometry accompanied by a consistent
reduction of the same cell population by immunohistochemistry
(IHC).

A total of 20 patients were enrolled, 18 of whom in group
A. Signal of activity was detected by flow cytometry in the
majority of patients (18), but the very low numbers of CSC
hindered the possibility to confirm flow cytometry results by
IHC. However, the later published evidence that the two breast
cancer CSC populations (i.e., ALDH+ and CD24−/CD44+)
investigated reside in different areas of primary breast tumors
and can transition from one phenotype to the other (19) might
affect the reliability of CSC counts in this patient population.

More in general, the clinical relevance of a ≥20% reduction
of CSC following a single 21-day course of reparixin in this
patient population is unknown and was beyond the scope of this
trial.

From a safety standpoint, also in this trial reparixin appeared
to be well-tolerated with 10/20 patients experiencing one or
more ADR, all of which of grade ≤2. Neither TEAE leading to
treatment discontinuation nor delays in surgery due to TEAE
were recorded.

CONCLUSIONS

Evidence for a CXCL8-CXCR1/2 axis in CSC has been
reported by independent laboratories and offers a potential
therapeutic target. Clinical trials aimed at testing the effective
targeting of CSC through this axis have been conducted
in breast cancer, where the most information is available
from preclinical research. Reparixin appeared to be well-
tolerated, however, such trials were faced with several issues
for efficacy evaluation, e.g., the very low numbers of CSC in
primary operable breast cancer. To circumvent this limitation,
circulating markers for monitoring the effect of anti-CSC
agents were explored but these assays turned out to be
inadequate.

Future prospects for CSC targeting agents include the
development of reliable assays to measure stem cell number
and/or activity (20) in serial biopsies from accessible
tumors (e.g., window-of-opportunity trials), and alternative
endpoints in clinical trials in the metastatic setting. One
possible endpoint is the development of metastases at
new sites (21), which can have also clinical significance
(22). In keeping with preclinical findings (9, 12), it is
hypothesized that an effective anti-CSC treatment will impact
on development of new metastases while progression of
pre-existing metastases is more consistent with proliferation
of non-CSC, bulk tumor cells that should be addressed by
chemotherapy.

As concerns CXCR1/2 inhibition, a randomized, placebo-
controlled clinical trial (NCT02370238) of weekly paclitaxel with
and without reparixin in front line treatment of metastatic
TNBC has completed enrolment. Identification of clinical (e.g.,
disease sensitivity to chemotherapy) and/or cellular/molecular
biomarkers of patients most likely to benefit from treatment
represents a future direction of research, while analysis of time
to new metastasis may fuel development of this strategy in the
(neo)adjuvant setting, also leveraging on safety data generated in
metastatic patients.
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Combination therapy which enhances efficacy and reduces toxicity, has been
increasingly applied as a promising strategy for cancer therapy. Here, a reactive
oxygen species (ROS) that enhanced combination chemotherapy nanodevices was
fabricated based on the Fe-chelated polydopamine (PDA) nanoparticles (NPs). The
structure was characterized by dynamic light scattering-autosizer, transmission electron
microscopy, energy dispersive spectroscopy, and Fourier-transform infrared (FT-IR)
spectrophotometer. The in vitro drug release profile triggered by low intracellular
pH indicated that the system demonstrated controlled therapeutic activity. In vitro
cell uptake studies showed that doxorubicin (DOX)-loaded Fe-PDA/ folic acid (FA)-
polyethylene glycol (DOX@Fe-PDA/FA-PEG) had a strong uptake capacity and can
be rapidly internalized by MCF-7 cells. The in vitro experiments demonstrated
that DOX@Fe-PDA/FA-PEG triggered the intracellular ROS overproduction, thereby
enhancing its therapeutic effect on breast cancer. In summary, this experiment
demonstrated the novel DOX-loaded composite NPs used as a potential targeted
nanocarrier for breast cancer treatment, which could be a promising therapeutic strategy
against breast cancer.

Keywords: polydopamine, combination therapy, reactive oxygen species, doxorubicin, breast cancer

INTRODUCTION

As one of the most common malignant tumors among women, breast cancer is the second
and common cause of cancer-related death in women (Wood et al., 2017; Bray et al., 2018).
Chemotherapy has become one of the most mature and common treatment option for breast
cancer (Fisher et al., 1998; Miller et al., 2016; Spiegel and Koontz, 2018). Doxorubicin (DOX)
is an anthracycline non-specific broad-spectrum anticancer drug that is widely used to treat
breast cancer. Doxorubicin can exert its effects by elevating reactive oxygen species (ROS) thereby
activating of caspase and ultimately leading to apoptosis (Russell and Cotter, 2015; Chakravarti
et al., 2016). However, serious side effects, such as myelosuppression, cardiotoxicity, and drug
resistance, are the major clinical chemotherapeutic drawbacks of DOX.
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It has been proposed that combination therapeutics plays
a synergistic effect and can enhance efficacy and reduce the
toxicity of chemotherapy (Xu et al., 2015; Camacho et al.,
2016; Kemp et al., 2016; Seo et al., 2017). Dayton et al. (2011)
reported that the use of HO-3867, which is a synthetic curcumin
analog, combined with DOX, in low doses to achieve enhanced
cell death and reduced myocardial toxicity. And the increased
generation of ROS, thereby resulting in oxidative damage to the
cellular constituents, is widely exploited for therapeutic benefits
on cancer (Matés and Sánchez-Jiménez, 2000; Schumacker Paul,
2015; Zhou et al., 2016). Fe, which plays a role in several types
of cell death, has long been associated with toxicity because
it induces hydroxyl radical (OH·), which is a ROS formed via
Fenton reaction (Dixon and Stockwell, 2013; Shen et al., 2018;
Zhang et al., 2018). Using ROS-producing agents could enhance
the anticancer activity of DOX in cancer therapy through ROS-
mediated apoptosis (Xia et al., 2017; Wu et al., 2017), autophagy
(Fong et al., 2012), and ferroptosis (Zheng et al., 2017). Fan
et al. (2014) identified the synergistic effect of DOX/ selenocystine
sensitized to DOX by through ROS overproduction. Dai et al.
(2018) fabricated assembled metal-phenolic network Nps as a
novel ROS promoted synergistic nanomedicine platform for
cancer therapy. This observation inspires us to import an iron-
supply system in combination with DOX to elicit a synergistic
effect on the cancer therapy.

Recently, researchers attempted to build some drug carrier
systems to load and transport DOX overcoming the low
bioavailability, poor absorption, and high toxicity of DOX
(Xu et al., 2015; Kemp et al., 2016; Indermun et al., 2018).
Particularly, polydopamine (PDA), which is a natural-inspired
polymer, is an appealing material as drug carrier due to its good
biocompatibility (Lynge et al., 2015; Indermun et al., 2018; Ryu
et al., 2018). Considering its abundant aromatic rings, PDA NPs
could be an efficient platform for loading DOX through π–
π stacking and hydrogen-bonding interactiron. Meanwhile, the
existence of phenolic hydroxyl groups on the surface makes it
suitable for further modification with PEG, which could endow
nanoparticles excellent physiological stability of NPs (Liu et al.,
2014). More attractively, the phenolic surface have excellent
chelating ability with metal ions such as Mn (Miao et al., 2015;
Xi et al., 2017), Cu (Ge et al., 2017), and Fe (Li et al., 2016).

Keep all the issues in mind, we hypothesized that the Fe-
chelated PDA nanoparticles with DOX loading could act as
an Fe-supply system used for Fe and DOX combined cancer
theranostics, as shown in Figure 1. The designed DOX@Fe-
PDA/folic acid (FA)-PEG could be provided with several
advantages, as follows: (Wood et al., 2017) Combination therapy.
The chemotherapy drug DOX undergoes redox cycles to generate
and increase H2O2 in living cells. The released Fe from PDA
further reacts with H2O2 to generate hydroxyl radical via Fenton
reaction and induces cell death. In combination with Fe, DOX
was prone to kill cancer cells efficiently (Bray et al., 2018).
Biocompatibility and safety. PDA, which is a natural biopolymer,
possesses biocompatibility. The coated PEG and chelated Fe
of PDA Nps were metabolic. Meanwhile, the pH-triggered
release performance of PDA in tumor microenvironment, avoids
damage to surrounding tissues. The PEG-coating can help

Nps to ameliorate long-term circulation (Fisher et al., 1998).
Tumor targeted. Considering folate receptor overexpression
on the surface of breast cancer cells, the FA conjugated NPs
may improve cell uptake via receptor mediated endocytosis.
In summary, the DOX@Fe-PDA/FA-PEG system could be used
as potential combination chemotherapy nanodevice for breast
cancer treatment.

MATERIALS AND METHODS

NPs Synthesis
The synthesis of NPs was modified based on the previously
introduced procedure (Li et al., 2016). In brief, 4.08 mg FeCl3
and 15 mg dopamine plus 10 mL of water were mixed and stirred
at room temperature for 1 h. Then 500 mg Tris was added,
and the mixture was stirred at room temperature for 1.5 h. The
mixture was centrifuged at 12000 rpm for 15 min to obtain Fe-
PDA NPs. A total of 3.85 mL Fe-PDA NPs (5.2 mg/mL) were
mixed with 20 mg FA-PEG-SH, 4.7 mg Tris, and 100 µL tris(2-
carboxyethyl)phosphine (8 mg/mL). The mixture was vigorously
stirred for 1 h at room temperature. Then, the FA-PEG modified
NPs (Fe-PDA/PEG-FA) were purified via centrifugation and
washed with deionized water.

Drug Loading
A total of 2 mg adriamycin hydrochloride were added into
300 µL of dimethyl sulfoxide and 8.2 µL of triethylamine was
added. The mixture was stirred in dark at room temperature
for 12 h to desalinate hydrochloride. Then, the neutral DOX
(2 mg) above-mentioned was added dropwise to 1 mL of Fe-
PDA/FA-PEG NPs (10 mg/mL). Afterward, Tris (2.42 mg) was
added and volume of 3 mL was obtained by adding distilled
water. After vigorous stirring for 24 h in the dark, free DOX
was removed via centrifugation at 12000 rpm for 10 min, then
washed with phosphate buffer solution (PBS) and stored at 4◦C
in the dark. The DOX loading capacity of NPs was determined
by UV-Vis spectrophotometer at the wavelength of 480 nm.
The encapsulation efficiency (EE) of DOX was calculated by the
following equation: EE = (initial amount of feeding drugs – free
drugs)/initial amount of feeding drugs.

NPs Characterization
The size and Zeta potential of the prepared NPs were measured
by dynamic light scattering-autosizer (DLS) on Zetasizer Nano
ZS90 (Malvern Instruments, Malvern, United Kingdom).
The liquid sample was sonicated before measurement.
Three independent test results were recorded. The shape
and surface morphology of the NPs were imaged by a
transmission electron microscope (TEM, JEM-1230; JEOL,
Tokyo, Japan). TEM, energy dispersive X-ray spectroscopy
(EDS) and corresponding EDS-mapping were adopted for
morphology and elemental distribution analyses on the
JEM-1230 electron microscope operated at 200 kV. The
chemical composition and structural changes of NPs were
analyzed by Fourier transform infrared (FT-IR) spectroscopy
(VERTEX 70; Bruker, Bremen, Germany). The IR spectra
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FIGURE 1 | Schematic representation of DOX@Fe-PDA/PEG-FA synthesis, targeted cell uptake and intracellular drug release and combination therapy.

of the samples were obtained in the range of 4000 and
500 cm−1.

In vitro Drug Release Profiles
The in vitro DOX release behavior of DOX@Fe-PDA/FA-PEG
was tested as reported previously (Liu et al., 2014). Briefly,
DOX@Fe-PDA/FA-PEG was dispersed in 2 mL PBS with the pH
of either 7.2 or 5.5. The tube was shaken at 37◦C with 100 rpm
in dark. At appropriate time points, the full release buffer was
collected via centrifugation at 12000 rpm for 10 min, and replaced
with 2 mL of fresh PBS. The amount of released drug DOX
was quantified by a UV spectrophotometer at the wavelength of
480 nm. The correlation between the accumulative DOX released
from NPs and time was plotted.

Cell Culture
The in vitro cell cytotoxicity cellular uptake and ROS
measurement were assessed on human breast cancer cell
line MCF-7, which was purchased from American Type Culture
Collection. Cells were incubated at 37◦C with modified Eagle’s
medium (MEM) containing 10% fetal bovine serum (FBS),
100 U/mL penicillin, and 100 mg/mL streptomycin in a 5% CO2
atmosphere.

Cellular Uptake Study
A total of 2 × 105 cells/well MCF-7 cells were seeded in 6-well
plates for 24 h. Then, the samples (free DOX, DOX@Fe-PDA/FA-
PEG) were added to each well (equivalent DOX concentration
of 10 µg/mL) and the cells were incubated at 37◦C for an
appropriate time at an additional of 24 h. Afterward, the cells
were washed with PBS and stained by Hoechst 33342 (Sangon
Biotech, Shanghai, China). Confocal laser scanning microscopy
(CLSM) imaging was performed on LSM 410 fluorescence
microscope (Zeiss, Jena, Germany). The fluorescence signal of

DOX was excited at 488 nm and measured at 610 nm. The
fluorescence signal stained by Hoechst 33342 was excited at
405 nm and detected at 490 nm.

In vitro Cytotoxicity by Using MTT Assay
MCF-7 cells were seeded in 96-well plates at a density of
5000 cells per well and incubated in 100 mL of medium for
24 h to allow attachment. Then, the cells were incubated with
free DOX and DOX@Fe-PDA/FA-PEG (DOX concentration of
0.1093, 0.2187, 04375, 0.875, 1.75, and 3.5 µg/mL) for 24 and
48 h, respectively. A total of 20 µL MTT solution (5 mg/mL)
were added to each well and incubated for 4 h. The crystals were
dissolved by adding DMSO. The optical density value of each
well was measured at 490 nm by an iMark plate reader (Bio-
Rad, Berkeley, CA, United States). All data were obtained in
quadruplicate.

Intracellular ROS Content Measurement
MCF-7 cells were seeded on 6-well plates at a density of
2 × 105 cells per well. Then the cells were incubated
with free DOX and DOX@Fe-PDA/FA-PEG (equivalent DOX
concentration of 10 µg/mL) for 8 h at 37◦C. Afterward,
diluted 2′,7′-dichlorofluorescein diacetate (DCFH-DA; Solarbio,
Beijing, China), which is a cell-permeable fluorescent probe,
were added. Then, the cells were placed in a 6-well plate
at 37◦C and incubated for another 30 min. The cells were
washed for three times with serum-free medium to remove
DCFH-DA completely and finally observed using fluorescence
microscope.

Data Analysis Methodology
All experiments were performed at least three times unless
otherwise stated. All experimental data were expressed as
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mean± SD and both were treated with SPSS 18.0 (SPSS, Chicago,
IL, United States).

RESULTS AND DISCUSSION

DOX@ Fe-PDA/FA-PEG Synthesis and
Characterization
The design and synthetic strategy of DOX@Fe-PDA/FA-PEG is
shown in Figure 1. First, the Fe-PDA was synthesized using
an oxidative self-polymerization method according to previously
literature (Li et al., 2016). In addition, folic acid conjugated
PEG was introduced to modify the PDA in enhancing the
targeting effect and improving the stability of the NPs. Finally,
DOX was loaded via diffusion in an aqueous media. The mean
hydrodynamic sizes of DOX@PDA/FA-PEG, DOX@Fe-PDA/FA-
PEG and the unloaded Fe-PDA/FA-PEG were 239.5 ± 28.82,
267.7 ± 34.16, and 283.22 ± 21.6 nm, respectively, with a
narrow size distribution as demonstrated in Figure 2A. This
particle size is theoretically suitable for cellular uptake and
tumor cell permeation duo to EPR effect (Maeda, 2015). Zeta
potential plays a key role in the stability and penetration through
cell membranes for Nps (Bhattacharjee, 2016). Considering the
presence of the carboxyl group of FA, the zeta potentials of all
NPs are negative (Supplementary Figure 1), thereby indicating
that these Nps were stable in vivo by electrostatic repulsion,
which is the basis of drug delivery (Wu et al., 2011). The
zeta potential of Fe-PDA/FA-PEG (−30 mV) is slightly lower
than that of Fe-PDA/FA-PEG loaded with DOX (−27.2 mV)
(Supplementary Figure 1), thereby suggesting that the positively

charged amino groups on DOX partially neutralized the negative
charge.

The morphologies of Fe-PDA/FA-PEG (wihout DOX loaded),
DOX@PDA/FA-PEG (without Fe chelated), DOX@Fe-PDA/FA-
PEG were observed by TEM. The results revealed that the
DOX-loaded PDA/FA-PEG exhibited a spherical and uniform
morphology (Figure 2B). The particle size observed by TEM
was substantially the same as the particle size measured by
DLS. Scanning electron microscopy used to perform accurate
elemental analysis of Nps. Using dark field image (DFI)
characterization, electron energy loss spectroscopy (EELS),
energy dispersive spectroscopy (EDS), and corresponding
element mapping (EDS mapping) (Figure 3) clearly show the
morphological structure of the nanoparticles and distribution
of four elements (C, N, O, Fe). The results showed that the
coexistence of C, N, O, and Fe signals coexisted in the EDS spectra
of Fe-PDA and Fe-PDA/FA-PEG. The uniform distribution of
C, N, O, and Fe was confirmed by EDS element mapping. This
result indicated the success and dispersion loads of Fe, PDA,
and PEG in the DOX-loaded Fe-PDA/FA-PEG and unloaded Fe-
PDA/FA-PEG. However, in the EDS element mapping of PDA,
only C, N, and O signals coexisted and were distributed, thereby
indicating the success and dispersion load of PDA and PEG in the
DOX-loaded PDA/FA-PEG. Further, the FR-IR was performed to
evaluat the surface characterization. As shown in Supplementary
Figure 2, the, the characteristic peaks of N-H bending vibration
appearing at 1512, 1589, and 3250 cm−1. The peaks at 1493 and
1445 cm−1 can be ascribed to the existence of FA. Compared with
PDA, the peaks of PEG at 1128 cm−1 (C-O-C stretching) were
observed.

FIGURE 2 | The characterization of different nanoparticl nanoparticles. (A) Size distributions of Fe-PDA/FA-PEG, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG.
(B) TEM image of PDA/FA-PEG, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG. Scale bar: 100 nm.
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FIGURE 3 | Dark-field image, and corresponding area-elemental mappings of PDA/FA-PEG, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG. Scale bar: 50 nm.

In vitro pH-Stimuli Release Study
At a drug to Fe-PDA/FA-PEG feeding ratio of 1:5 in weight,
the encapsulation efficiency of DOX in the Fe-PDA/FA-
PEG was 76.6 ± 5.2% determined by UV-Vis absorption
spectrophotometer. As PDA NPs exist abundant aromatic rings
and phenolic hydroxyl groups, the DOX was loaded through
π–π stacking and hydrogen-bonding interaction. Subsequently,
the pH dependent release capability of DOX@Fe-PDA/FA-PEG
was investigated at 37◦C under the pH levels of 7.2 and 5.5.
The accumulative drug release kinetics curves are shown in
Figure 4. The drug release of both the DOX-loaded Fe-PDA/FA-
PEG was significantly pH-dependent. As shown in Figure 4,
the release of the drug was as low as 25.5% at the of pH 7.2
within 36 h, and even 30.1% within 48 h. However, under acidic
conditions, the release amount reached 34.6% within 8 h at
the pH of 5.5, and the release rate at 48 h was 47.2%. This
indicated that the drug-loaded Nps can cause the drug release
under acidic condition, mainly due to the extremely high pH
responsiveness of the PDA-modified NPs. This phenomenon
allowed the rapid drug release at low pH. Considering the
acidic microenvironment of the tumor and intracellular acidic
endosomes and lysosomes, drugs are released only after being
phagocytized by lysosomes in tumor cells, thereby effectively
reducing drug waste and enhancing the antitumor effects by
rapidly increasing the lysosome concentration (Duo et al., 2017).

Cellular Uptake
To study the cellular uptake and the intracellular distribution,
we investigated the intracellular delivery of free DOX by using a
confocal microscopy. Figure 5A shows the fluorescence of DOX
distrubuted in the cytoplasm and cell nuclei after incubation

FIGURE 4 | In vitro drug release profile of DOX@Fe-PDA/FA-PEG in media
with different pH value (pH 7.2 and 5.5).

with free DOX for 1 h. However the red flourescence with NPS
observed in nucleus was not obvious. Based on the different
intracellular fates of DOX, it was indicated that the NPs
were internalized into cell mainly via endocytic pathway. And
then we continued to incubate for another 9 h and observed
under a fluorescence microscope as shown in Figure 5B.
Apparently, the uptake intensities of DOX-loaded NPs was
higher than that of free DOX, and it was contributed by the
targeting effect of folate receptor. Moreover, the cell uptake
intensities of DOX-loaded NPs were positive correlation with
incubation time. While the fluorescence intensity of free DOX
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FIGURE 5 | Confocal laser scanning microscopy (CLSM) images of MCF-7 cells after incubation with free DOX, DOX-@ Fe-PDA/FA-PEG for 1 h (A), and 9 h (B). The
cells were stained by Hoechst (blue) and drug DOX was red.

FIGURE 6 | Relative viabilities of MCF-7 cells after incubated with PDA/FA-PEG for 48 h (A) and free DOX and DOX@Fe-PDA/FA-PEG at different concentrations
24 h (B) and 48 h (C).

in the cells is weaker than that of the doxorubicin-loaded
NPs, indicating that the intracellular free DOX decays with
time. According to the in vitro drug release profiles, this
phenomenon proves that the DOX-loaded Nps have a sustained
release effect, which may help to enhance the cytotoxicity
of DOX.

Cytotoxicity of DOX-Loaded NPs
To assess the cytotoxicity of DOX@Fe-PDA/FA-PEG, we
performed the MTT assays. In order to confirm the high

biocompatibility and safety of the NPs, we incubated the Fe-
PDA/FA-PEG NPs with MCF-7 cells. As shown in Figure 6A,
the Fe-PDA/FA-PEG NPs without drug-loading exhibited
a negligible cytotoxicity the concentration ranging from 0
to 250 µg/mL for 48 h. This result suggested that the
prepared material possessed high biocompatibility and low cell
cytotoxicity. Then, we compared the results of cytotoxicity of free
DOX and DOX-loaded Nps at 24 and 48 h. Figures 6B,C shows
the cytotoxicity of DOX on MCF-7 was time and dose-dependent.
As the DOX concentration and incubation time prolonged, the
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greater the toxicity of the drug to MCF-7 cell. Apparently, the
cytotoxicity of DOX-loaded Fe-PDA/FA-PEG NPs was greater
than that free DOX, thereby demonstrating that Fe enhanced
the killing effect of DOX on the MCF-7 cells. And it was found
that the 48 h of incubation exhibited a considerable killing effect
on MCF-7 cells than 24 h. This result further confirmed the
sustained release of NPs.

ROS Detection
Reactive oxygen species -induced cell death has been a widely
uesed strategy for tumor therapy (Matés and Sánchez-Jiménez,
2000; Dixon and Stockwell, 2013; Schumacker Paul, 2015; Zhou
et al., 2016). As we know, DOX could activate nicotinamide
adenine dinucleotide phosphate oxidases, and further produce
ROS, which contribute to anticancer drug-induced toxicity
(Chakravarti et al., 2016; Seo et al., 2017). Recently, synergistic
approaches by using ROS-producing agents with DOX have
attracted considerable attention (Xia et al., 2017). Intriguingly,
the presence of Fe (II and III) contributes to the enhanced
chemotherapy efficacy by converting the accumulated H2O2
to the hydroxyl radical via Fenton reactions (Dixon and
Stockwell, 2013). To explore the underlying mechanism of
enhanced antiproliferating effects of DOX@Fe-PDA/FA-PEG
further, we quantified the intracellular ROS by using 2′-7′-
dichlorofuorescin diacetate. Compared with the control group,
green fluorescence was observed after incubation with DOX
and DOX@Fe-PDA/FA-PEG (Figure 7). In addition, cells treated
with DOX-loaded Fe-PDA/FA-PEG had the highest fluorescence
intensity, thereby indicating the highest ROS production. The
results showed that the cells treated with DOX loaded Fe-
PDA/FA-PEG can synergistically produce ROS to kill tumor
cells. DOX used to undergo redox cycles to generate high
H2O2 levels inside the cancer cells. After endocytosis by
tumor cells, the DOX@Fe-PDA/FA-PEG was decomposed by
the acidic microenvironment. The elevated H2O2 of DOX
can be further catalyzed by Fe ions via Fenton reaction to
generate abundant highly toxic resulting in enhancing anticancer
effects of DOX through oxidative damage to DNA, protein,

and lipid (Matés and Sánchez-Jiménez, 2000; Schumacker Paul,
2015; Zhou et al., 2016). Previous investigations have developed
iron-based nanomaterials, including iron nanometallic glasses
and iron oxide, have been employed to upregulation of
ROS by using the situ Fenton reaction (Zhang et al., 2016;
Liu et al., 2018; Tang et al., 2018). However, current iron-
based nanomaterials is far from satisfactory. Some of the
nanomaterials such as Fe0 nanoparticles (Zhang et al., 2016)
and iron oxide nanoplatform (Liu et al., 2018), are difficult to
fabricate and the synthetic conditions generally are harsh and
complicated. In this work, we synthesized the iron-chelated PDA
NPs via a one-pot reaction and the FA-PEG as the surface
ligand for tumor homing with a low cost and biocompable
biocompatibility. And the pH-stimuli release profiles included
being highly selective and logical, and amenable to activation
by endogenous stimuli. This strategy present an approach for
synergistic combination of ROS and chemotherapy to enhance
the anticancer efficacy.

CONCLUSION

In this study, we successfully fabricated a novel nanocarrier
on the basis of Fe-chelated PDA nanoparticles used for Fe
and DOX combined cancer theranostics through ROS over-
generation. The obtained DOX@Fe-PDA/FA-PEG Nps had
a hydrodynamic size of about 250 nm, and the structure
was characterized by DLS, TEM, EDS, and FT-IR. The
in vitro drug release profile triggered by low intracellular
pH indicated that the system demonstrated controlled
therapeutic activity. Further, in vitro cell uptake studies
indicate that DOX-loaded Fe-PDA /FA-PEG can be internalized
by MCF-7 cells and exhibited high targeting efficiency due to
specific recognition. The in vitro experiments demonstrated
that DOX@Fe-PDA/FA-PEG trigged the intracellular ROS
overproduction, thereby enhancing the therapeutic effect on
breast cancer. Taken together, this study provides a strategy to
harness Fe-PAD nanocarrier for Fe and DOX combined cancer
theranostics.

FIGURE 7 | The intracellular ROS stained with DCFH-DA in MCF-7 cells after incubation with free DOX, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG for 8 h were
measured by fluorescence microscopic.
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Oxaliplatin/Capecitabine in Patient
With Refractory and Recurrent
Mucinous Adenocarcinoma of the
Appendix: A Case Report
Wenzhi Liu 1†, Lili Liu 2†, Ruoyu Wang 1†, Guanyu Gong 1,3, Xinjia Ding 4, Bin Yang 3,5,

Yun Bao 1, Zhiqiang Wang 1, Bo Zhang 4, Dewei Zhao 1, Fei Wu 1* and Yan Ding 1,5*

1 The Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, China, 2Department

of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China, 3Genomic Future Inc., Lexington, MA,

United States, 4Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China,
5Department of Pediatrics, Children’s Hospital of Boston, Harvard Medical School, Boston, MA, United States

Primary appendiceal adenocarcinoma with peritoneal pseudomyxoma (PPM) has a high

recurrence rate and refractory to medical interventions such as repetitive debulking

surgery and systemic chemotherapy. Genome-based targeted therapy for such cases

has not been well-documented. Here we present a 63-years-old women, who was

diagnosed with recurrent mucinous adenocarcinoma of the appendix with local invasions

and peritoneal carcinomatosis, was refractory to systemic chemotherapy after surgery.

We used a regime developed using whole exome sequencing. Somatic mutations in

the genes encoding VEGFR2, FGFR1, FGFR2, FGFR3, and KRAS were identified in the

patient’s tumor tissue. The patient was then treated with bevacizumab plus oxaliplatin.

After 4 months of treatment, pelvic CT showed dramatic reduction of pseudomyoma

and a decline of CA199 level from 5436.7 to 1121.4 U/ml. Continual treatment with

bevacizumab-capecitabine remained effective and the patient’s CA199 level further

decreased to 401.26 U/ml according to the follow-up examination on Aug 15th, 2018.

Results from this study show the evidence of gene mutations involving VEGF signal

activation in the recurrence of appendiceal adenocarcinoma. Our results also suggest

the association of these mutations with the effectiveness of anti-VEGF treatment using

bevacizumab. Therefore, the screening of gene mutations involved in VEGF signaling

and targeted therapy with anti-VEGF drugs may provide a new option to manage

refractory/recurrent advanced-stage appendiceal adenocarcinoma.

Keywords: appendiceal adenocarcinoma, peritoneal carcinomatosis, next generation sequencing, bevacizumab,

targeted therapy

BACKGROUND

Primary adenocarcinoma of the appendix is a rare malignancy and accounts for 0.4% of
gastrointestinal tumors, according to a report of national cancer institute (NCI) (1). Mucinous
adenocarcinoma is themost common histological subtype (37%), followed by colonic and carcinoid
subtypes (2). The clinical presentations of appendiceal cancer are vague until advanced stage. As a
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result, early diagnosis of appendiceal cancer is often difficult.
Common complications of late stage disease include rupture and
acute appendicitis (accounting for ∼1% appendectomy cases)
(3), local invasion and peritoneal carcinomatosis (PC)/peritoneal
pseudomyxoma (PPM) (4, 5). The advanced stage has a poor
overall survival rate with median survival time of 5.2–12.6
months (5). Currently there is no standard medical care for
the disseminated late-stage appendiceal cancer with PC/PPM.
It has been generally recommended to perform cytoreductive
surgery (CRS) combined with perioperative hyperthermic
intraperitoneal chemotherapy (HIPEC) or postoperative
intraperitoneal chemotherapy (EPIC) with mitomycin C,
cisplatin, 5-FU, or a combination (5, 6). Unfortunately, most
appendiceal cancer patients with PC/PPM experience recurrent
and refractory to treatment, and fail to repetitive surgery and
systemic chemotherapy (6).

Targeted therapy has been successfully used to treat many
types of cancers including colorectal cancer. However, to the
best of our knowledge, genome-based targeted therapy for the
appendiceal cancer has never been reported. In the present
case, a patient was diagnosed with mucinous adenocarcinoma
of the appendix with peritoneal carcinomatosis and multiple
local invasions. The patient received routine treatments by
CRS-HEPIC-EPIC but relapsed after 1 year. Then the patient’s
condition deteriorated continuously and experienced recurrent
and refractory to the treatment. Using whole exome sequencing
and targeted medicine, optimal therapeutical efficacy was
achieved with a gradual remission and remains progression-free
until now.

CASE PRESENTATION

A 63-years-old Chinese female presented with asymptomatic
palpable abdominal mass, increased carbohydrate antigen
19-9 (CA-199) level and pelvic mass on CT scan. An opening
surgery observed an appendiceal mass involving the entire
layer of the appendix, rupture, invasion of bilateral ovaries,
wide-spreading nodular implantations with pseudomyxoma in
peritoneal cavity, greater omentum, small intestine mesentery
and hepatic and splenic regions. Debulking surgery with
peritoneal nodule ablation and mucus reduction was performed
in Beijing 301 Hospital. Postoperative pathology confirmed
mucinous adenocarcinoma of the appendix T4NxM1, stage IV
with peritoneal carcinomatosis (Figure 1). After surgery, the
patient received one time standard perioperative hyperthermic
intraperitoneal chemotherapy (HIPEC) with mitomycin
C. Because of the excessive peritoneal carcinomatosis, the
patient was given three cycles of postoperative intraperitoneal
chemotherapy (EPIC) with 5-FU plus mitomycin C. The
patient remained symptom free for 1 year until she developed
progressive abdominal distension, loss of appetite and worsening

Abbreviations: CT, computed tomography; PC, peritoneal carcinomatosis; PPM,

peritoneal pseudomyxoma; CRS, cytoreductive surgery; HIPEC, hyperthermic

intraperitoneal chemotherapy; EPIC, intraperitoneal chemotherapy; VEGFR,

Vascular endothelial growth factor receptor; FGFR, Fibroblast growth factor

receptor.

TABLE 1 | Mutated genes identified in the present case of mucinous

adenocarcinoma.

AKT1 ATM CSFIR ERBB2 FGFR1 FGFR2 FGFR3 FLT3

GNA11 JAK3 KDR KIT KRAS NOTCH1 PIK3CA PET

SMARCB1 SMO STK11 TP53

nourishment. The patient failed to response to further systemic
chemotherapy, and a large number of PPM (Figures 2A,B).
Then a second surgery was performed, intestinal obstruction
by mucous cavities was observed, and a colostomy was given.
Shortly after operation, cetuximab, a monoclonal antibody
binding to and inhibiting EGFR, was given to the patient for 20
days (yet without gene testing) at a local hospital, but failed to
show any improvement. By then the patient had tried all available
approved options and became refractory to the treatments.

At the time when the patient visited us, she was severely
wasted, with progressive abdominal distension and elevated
CA-199 level at 5436.7 U/ml. Considering her weak constitution
and failure of previous interventions, alternative treatment
strategies, especially a rationally designed targeted therapy,
emerged to be the last-ditch option to the patient. Targeted
therapy is usually based on a patient’s genomic profile by
genetic testing. In order to find the accurate target, we decided
to use the paraffin-embedded surgical tumor tissue from
the patient, and detect gene mutations using the TruSeq
Rapid Capture Exome Kit for whole exome sequencing
(WES) on the Illumina NextSeq500 sequencing platform.
The WES data was then analyzed using OncoDecoderTM

(Genomic Future, Inc. USA). Several key gene mutations were
identified including a missense mutation p.Gln472His (exon
11) in KDR/VEGFR-2, a missense mutation p.Arg281Gln
(exon 8) in FGFR1, a missense mutation p.Lys296Arg
(exon 7) in FGFR2, a missense mutation p.Thr654Ser
(exon 14) in FGFR3 and a missense mutation p.Gly12Asp
(exon 2) in KRAS. Additional 38 gene mutations including
TP53, ERBB2, KIT, GNA11, and JAK3 were also detected
(Table 1).

Although no NCCN-guided targeted therapy regime for
appendiceal mucinous adenocarcinoma is documented as of
to-date, there are two approved drugs for colorectal cancer
may be considered as potential candidates: bevacizumab and
cetuximab. Bevacizumab is a monoclonal antibody blocking the
VEGF ligand, and bevacizumab in combination with standard
chemotherapy has been approved by FDA as first line treatment
for metastatic colorectal cancer (7, 8). We predicted that
bevacizumab may be a suitable targeted drug candidate for our
case based on the following three reasons: Firstly, the gene
testing results showed several mutations involving KDR/VEGFR-
2, FGFR1, FGFR2, and FGFR3. Although these mutations
are currently classified as variation of uncertain significance
(VUS), hyperactive VEGF pathway is a common event in
colorectal cancer and contributes to tumor metastatic activity
(9). A recent study from the MD Anderson cancer center
showed improved average overall survival and progression-free
survival by providing anti-VEGF treatment to patients diagnosed
with unresectable appendiceal epithelial neoplasm (yet no gene
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FIGURE 1 | Low (A, 40X) and high (B, 100X) magnification pictures of appendiceal mucinous adenocarcinoma. H&E stained.

testing was performed) (10). This finding suggests that VEGF
hyperactivity could be a common event in appendiceal cancer,
and bevacizumab could be a promising targeted drug. Next, it
has been known that the efficacy of certain EGFR monoclonal
antibody drugs, including cetuximab and panitumumab, could
be affected by KRAS mutation (6). Indeed, in the present
case, we identified KRAS p.Gly12Asp missense mutation, which
could cause inefficient response to cetuximab (11). However,
the efficacy of bevacizumab for colorectal cancer treatment has
been testified to be independent from KRAS mutation (8).
Thirdly, there was no contraindication of bevacizumab usage
to the patient. The common risk factors include low WBC
count, high blood pressure, impaired heart function and poor
renal function.

Under our advice, the patient received treatment of
bevacizumab (7.5 mg/Kg, in total 450mg, IV-GTT) plus
oxaliplatin (130 mg/m2, in total 200mg IV-GTT) on day 1 every
3 weeks for 6 cycles since August, 2016. Follow-up examination
after treatment showed significant improvement of the patient’s
condition, and CT scan imaging results showed dramatic
reduction of her peritoneal mucus (as shown in Figures 2C,D).
In addition, the patient’s CA-199 level decreased from 5,436.7
U/ml (before treatment) to 1121.4 U/ml (after treatment).
Afterwards, the patient received continuous maintenance
treatment using bevacizumab (7.5 mg/Kg, in total 450mg,
IV-GTT on day 1 each 3 weeks) plus capecitabine (1,500mg,
oral, twice a day) for days 1 to 14 until now. The patient has
been followed up routinely to evaluate the treatment efficacy and
to monitor the adverse effects. The main adverse effects were
numbness in the hands and feet, dry nose and epistaxis, dry
throat, fatigue, loss of appetite. The patient has been progression-
free as of recent follow-up on September 26th, 2018 with the
most recent CA-199 being 401.26 U/ml on August 15th, 2018.

DISCUSSION

Primary adenocarcinoma of the appendix is a rare neoplasm
with an incidence of 1.2 cases per 100,000 people each year
(12). The prognosis of appendiceal adenocarcinoma varies

depending on the histology types, including colonic-type
adenocarcinoma, typical carcinoid, mucinous adenocarcinoma,
and singlet ring cell adenocarcinoma (3). The mucinous
adenocarcinoma is similar to the ovarian adenocarcinoma, and
peritoneal dissemination is a frequent metastatic route (12).
Like most colorectal cancers, the appendiceal adenocarcinoma
presents with non-specific symptoms and is difficult to be
diagnosed preoperatively (4, 5). As a result, it is often found
at an advanced stage in which the disease has already spread
within abdomen (5). Appendiceal adenocarcinoma-derived
peritoneal carcinomatosis (PC) or peritoneal pseudomyxoma
(PPM) is a very poor prognostic factor with average life
expectancy between half and 1 year (5). In the present case,
the patient presented with asymptomatic abdominal mass, local
invasions to greater omentum and fallopian tubes and peritoneal
carcinomatosis with multiple pseudomyxoma cavities at the
initial visit.

The management of mucinous appendiceal adenocarcinoma
varies depending on the stages and does not have standard
guideline. Right hemicolectomy remains the treatment of
choice for the early stage local or regional appendiceal
adenocarcinoma (5, 6). CRS-HIPEC or EPIC is usually
recommended for the appendiceal or colonic-type carcinoma
with confined peritoneal metastasis (5). However, there is
no standardized protocol for HIPEC or EPIC (5), and it
only achieved complete response in some patients (5, 6).
In our case, the patient received CRS-HIPEC-EPIC regime
but relapse of peritoneal carcinomatosis occurred 1 year
later. Systemic 5-fluorouracil-based chemotherapy was
barely beneficial.

Recently, genome-based precision medicine has made great
progress to treat a variety of cancers, including colorectal
cancer (13). Targeted drugs feature high efficiency and low
toxicity. To the best of our knowledge, genome-based targeted
therapy for metastatic appendiceal adenocarcinoma has not
yet been reported. In order to seek for appropriate targeted
therapy for the patient with recurrent and refractory appendiceal
cancer, we performed whole exome sequencing with the patient
surgical pathology tissue at our genetic testing lab. Several
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FIGURE 2 | Pelvic CT images before (A,B) vs. after (C,D) targeted therapy. (A,B) Prior to targeted therapy, images showed intraperitoneal multiple nodules, and a

large number of peritoneal cavities filled up with mucus. (C,D) After targeted therapy using bevacizumab and oxaliplatin, image on the same sections showed

significantly reduced peritoneal nodules and mucous cavities, suggesting stabilization of disease progression and partial response.

candidate target gene mutations involved in the angiogenesis
pathway including KDR/VEGFR-2 and FGFR1, FGFR2, FGFR3
were identified. Both VEGF and FGF pathways function
as angiogenetic mediators to promote metastasis of many
neoplasms (9). Based on the gene mutation profile, the patient
received the bevacizumab-oxaliplatin regime and then the
bevacizumab-capecitabine as maintenance treatment. The results
showed great effectiveness of the treatment and the patient
remains progression-free and continuous decrease of CA-199
level as of to-date. The use of bevacizumab for metastatic
appendiceal cancer treatment has been reported in a recent study
(10). However, the treatment achieved therapeutical benefits in
some patients but not the others, owing to the fact that no
gene testing was performed before treatment (10). Therefore,

our case report is the first study demonstrating evidence-based
therapy for metastatic mucinous appendiceal adenocarcinoma.
Indeed, we argue that certain level of cost-effective gene testing
may be necessary prior to administration of targeted drugs
in order to avoid the abuse of targeted medicines. A good
example could be found in our case that the blind usage of
anti-EGFR drug cetuximab without prior detection of KRAS
mutation from the patient pathology tissue failed to achieve any
treatment benefit.

In conclusion, accurate detection of gene mutation can
help clinicians to make the optimal choice of individualized
targeted drugs, and improve the prognosis and life quality
of patients. The present report is one case and limited and
waits for more cases to be filled in to expand our knowledge
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about the genome mutations and personalized medicine of
appendiceal cancer.
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Coptis, a traditional medicinal plant, has been used widely in the field of traditional
Chinese medicine for many years. More recently, the chemical composition and
bioactivity of Coptis have been studied worldwide. Berberine is a main component of
Rhizoma Coptidis. Modern medicine has confirmed that berberine has pharmacological
activities, such as anti-inflammatory, analgesic, antimicrobial, hypolipidemic, and blood
pressure-lowering effects. Importantly, the active ingredient of berberine has clear
inhibitory effects on various cancers, including colorectal cancer, lung cancer, ovarian
cancer, prostate cancer, liver cancer, and cervical cancer. Cancer, ranked as one of
the world’s five major incurable diseases by WHO, is a serious threat to the quality
of human life. Here, we try to outline how berberine exerts antitumor effects through
the regulation of different molecular pathways. In addition, the berberine-mediated
regulation of epigenetic mechanisms that may be associated with the prevention of
malignant tumors is described. Thus, this review provides a theoretical basis for the
biological functions of berberine and its further use in the clinical treatment of cancer.

Keywords: berberine, biological activities, antitumor, autophagy, epigenetic effects

INTRODUCTION

Natural medicine plays a very important role in novel drug discovery (Zhang et al., 2013; Zhang L.
et al., 2017). In recent years, many natural products have been confirmed to play an important
role in cancer prevention and therapy (Tao et al., 2015; Zhang et al., 2015, 2016; Meng et al.,
2018). Coptis chinensis is a valuable Chinese medicine used commonly in China. The medicinal
parts are the dried rhizome of Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng, and P.K.Hsiao,
or Coptis teeta Wall (Wang et al., 2015b). It has been reported that Coptis exerts antibacterial,
immune-enhancing, anti-ulcer, hypoglycemic, detoxifying, antitumor, and other pharmacological

Abbreviations: AP-1, activating protein 1; AMPK, AMP-activated protein kinase; BTG2, B-cell translocation gene 2;
Bax, BCL2 associated X; BBC3, BCL2-binding component 3; CCNB, cyclin B; CCND, cyclin D; CCNE, cyclin E;
CDK, cyclin-dependent kinases; CDKN1A/p21, cyclin-dependent kinase inhibitor; COX2, cyclooxygenase-2; DNMT, DNA
methyltransferase; EGFR, epidermal growth factor receptor; GMCSF, granulocyte-macrophage colony-stimulating factor;
GADD45, growth arrest and DNA damage-inducible 45; HCC, hepatocellular carcinoma cells; HAT, histone acetyltransferase;
HDAC, histone deacetylase; HIF1α, hypoxia-induced factor α; INOS, inducible NO synthase; IL-8, interleukin-8; MMPs,
matrix metalloproteinases; NSCLC, non-small cell lung cancer cells; NF-κB, nuclear factor kappa B; PARP, poly-ADP ribose
polymerase; PGE2, prostaglandin E2; STAT3, signal transducer and activator of transcription 3; SIRT, sirtuins; Bcl-2, the
B cell lymphoma-2; TNF, tumor necrosis factor; uPA, urokinase-type plasminogen activator; VEGF, vascular endothelial
growth factor.
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effects (Imenshahidi and Hosseinzadeh, 2016). Coptis is mainly
used for the adjuvant treatment of depression, coronary heart
disease, diabetes, liver cancer, and other malignant tumors.
There are several active ingredients of Coptis chinensis,
such as berberine (BBR), palmatine, coptisine, jatrorrhizine,
worenine, columbamine, cedarone, obakunone, obakulactone,
magnoflorine, and ferulic acid; berberine is the main bioactive
component of Coptis chinensis and is present at a content of
5.20–7.69%. Consequently, it has become one of the natural
small-molecule drugs used commonly in the clinical setting
treatment for chronic disease such like diabetes (Cicero and
Baggioni, 2016; Tabeshpour et al., 2017).

Berberine hydrochloride, the more commonly available salt
form of berberine, is a quaternary ammonium isoquinoline
alkaloid with the chemical formula C20H18ClNO4 (Figure 1) that
forms yellow needle-like crystals (Neag et al., 2018). Berberine
was originally used as a broad-spectrum antibacterial drug.
Extensive research revealed a wide range of pharmacological
activities, including antibacterial, anti-inflammatory,
antihypertensive, hypolipidemic, and antidiarrheal effects.
In addition, berberine exhibits inhibitory effects on a variety of
tumors (Xu et al., 2017), such as esophageal cancer. Many studies
(Kumar et al., 2015; Foroutan F. et al., 2018; Foroutan T. et al.,
2018; Mirhadi et al., 2018) have confirmed that berberine affects
the development of tumor cells through the inhibition of tumor
cell growth and the induction of apoptosis and cell cycle arrest
(Iizuka et al., 2000; Kong et al., 2004; Tang and Feng, 2009; Xue
et al., 2013; Signorelli et al., 2017).

It is reported that 8.2 million people die of cancer every year
globally and that this number is continuously rising; according
to the American Cancer Society, cancer is the cause of more
than 600,000 deaths every year in the United States, a mortality
rate second only to heart disease (Khalil et al., 2016; Walker
et al., 2017). Owing to the seriousness of this situation, scientific
approaches to the prevention and control of cancer have become
a major public health issue (Gu et al., 2015; Viegas et al., 2017).

It has long been believed that the occurrence and development
of tumors are attributable to only genetic abnormalities, which
include gene mutations, translocations, and chromatin insertions
(Dupont et al., 2009; Li et al., 2018). However, in recent years, the
emergence and progress of genome sequencing technology have
led to the rapid development of epigenetics and many researchers
have determined that epigenetics plays an important role in

FIGURE 1 | Coptis chinensis Franch. and chemical structure of berberine.

the regulation of tumors. Epigenetic changes are reversible,
heritable changes in gene expression and protein function in
which the genomic DNA sequence remains unchanged (Biswas
and Rao, 2018). Epigenetic changes can regulate gene expression
at multiple levels, for example, at the DNA level through
DNA methylation, at the RNA level through non-coding RNA
regulation, at the protein level through histone modification,
and at the chromatin level through chromatin remodeling.
The continuous presence of these mechanisms in cell division
allows cells to retain their respective characteristics, respond to
intrinsic cellular signals, and participate in cell evolution and
adaptation to environmental changes. Many research studies
have confirmed that epigenetic mechanisms are implicated in
tumorigenesis through the regulation of oncogene activation
and tumor suppressor gene inactivation. For example, DNA
methylation can inactivate tumor suppressor genes, abnormal
histone acetylation can change tumor-associated gene expression,
and non-coding microRNAs can result in dysregulation of tumor
suppressor genes (Blandino et al., 2014; Wong and Chim, 2015).
It is of note that different epigenetic modifications in cells often
interact with each other in a synergistic manner to maintain
body’s homeostasis through the regulation of the expression of
key genes, and that when abnormal changes occur, they may
cause a variety of diseases, including tumors (Vijayaraghavalu
et al., 2013). Recent evidence has suggested that epigenetic
modifications may be involved in the processes tumor cells use to
shape a microenvironment suitable for their own growth (Honda
et al., 2006). There are a large number of active substances,
such as growth factors, inflammatory factors, and proteases,
in the tumor microenvironment and these participate in the
various processes of tumorigenesis through their own functional
properties or mediated signaling pathways (Booth and Gutierrez-
Hartmann, 2015). Epigenetic modifications are involved in the
regulation of the secretory processes of these biomolecules or
their mediated signaling pathways (Li et al., 2018). From the
perspective of the tumor development process, the regulation of
epigenetic modification in the tumor microenvironment occurs
at various stages of tumorigenesis, progression, and metastasis,
and is one of the important tools for diversifying between
tumor cells and the tumor microenvironment. That is to say,
tumors may have specific epigenetic modification characteristics
that may lead to changes in cell biological characteristics
and malignant transformation. Therefore, an exploration the
mechanism of tumor biology from the perspective of epigenetics
is of great significance.

THE BIOLOGICAL EFFICACY OF
BERBERINE

Berberine Inhibits the Migration and
Invasion of Tumor Cells
Migration and invasion are the basic characteristics of tumor
cells. Therefore, it is valuable to study whether berberine can
affect the migration and invasion ability of tumor cells. It is
well known that E-cadherin and N-Cadherin proteins are closely
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related to cell migration and invasion. Moreover, E-cadherin is
not only an important mediator that regulates cell-cell adhesion,
but also an important molecule in the maintenance of the
morphology and structural integrity of epithelial cells (Qi et al.,
2014; Shi et al., 2017). There is a large amount of experimental
evidence suggesting that berberine can inhibit the migration
and invasion of tumor cells. In human lung cancer A549 cells,
berberine increased the expression of E-cadherin protein in a
concentration- and time-dependent manner (Li et al., 2018), and
significantly downregulated the expression of N-cadherin; these
changes inhibited invasion and metastasis. MMPs are a class
of important proteins that are involved in that the degradation
of the extracellular matrix barrier, which is the first step in
tumor cell metastasis (Hao et al., 2017). Studies have shown
that berberine inhibits the expression of MMP2 and MMP9 in
a time- and concentration-dependent manner. Simultaneously,
berberine also regulates the expression of MMPs through the
inhibition of the transfer of p-STAT3 to the nucleus, which affects
its activity. Wang X et al. found that berberine was an effective
inhibitor of the invasion and migration of HCC cells. Berberine
treatment of HCC cells downregulated the expression of cox-2,
NF-κB, uPA, and MMP9 in a dose-dependent manner (Sengupta
et al., 2017). In summary, the data strongly suggest that berberine
has an important role in the regulation of cadherin- and
MMP-mediated pathways, which leads to inhibitory effects on
cancer migration and invasion (Table 1).

Furthermore, Jin Y. et al. (2017) showed that the effect of
berberine on the metastatic potential of cancer cells may be
mediated by the activation of the AMPK signaling pathway,
which reduces the activity of ERK and the expression of COX-2,
thereby inhibiting the adhesion, migration, and invasion of
tumor cells. Moreover, berberine inhibited tumor cells through
signaling pathways, including the NF-κB and AMPK pathways.
Studies have demonstrated that berberine prevents tumor cells
from producing IL-8 and blocks NF-κb signaling pathway,
ultimately inhibiting endometrial cancer metastasis, and that
colon cancer cell migration was inhibited by targeting AMPK
signaling (Li et al., 2014).

Vascular endothelial growth factor, the most important
angiogenic factor secreted from tumor cells, stimulates tumor
neovascularization through an increase in the mitogenic and
survival properties of vascular endothelial cells. Berberine not
only reduces the expression of SC-M1 cells with normal oxygen
content and low oxygen content. VEGF also directly inhibits
the proliferation and migration of umbilical vein epithelial
cells. Berberine treatment in B16F-10 melanoma cells reduced
the expression of VEGF mRNA and inhibited angiogenesis.
Inflammation plays an important role in tumor angiogenesis,
which is mainly manifested through the activation of NF-κB
to regulate VEGF, and results have shown that berberine
treatment of tumor cells significantly inhibited NF-κB and
ultimately decreased the expression of VEGF and IL-8 in tumor
cells (Hamsa and Kuttan, 2011; Siveen and Kuttan, 2011). In
addition, berberine significantly inhibited the VEGF-induced
migration and invasion of human umbilical vein endothelial
cells HUVEC in a dose-dependent manner, and significantly
reduced the expression of COX-2, Inos, and VEGF mRNA and

downregulated pro-angiogenic factors to inhibit angiogenesis
(Naveen et al., 2016; Wang et al., 2018). These results indicated
the critical effects of berberine on the HIF1α/VEGF pathway.

Angiogenesis plays an important role in tumor growth, as
progression and metastasis are prerequisites for solid tumor
growth. The angiogenic process is therefore a target for the
inhibition of tumor growth and metastasis (Ma et al., 2008)
Studies have shown that berberine can reduce the levels of IL-1β,
IL-6, TNF, and GMCSF in the serum of tumor-inoculated animals
and inhibit the elevation of NO and TNF-α, inflammatory
mediators involved in angiogenesis. Wang Y et al. inferred that
berberine suppressed the growth and metastasis of endometrial
cancer cells via miR-101/COX2, and berberine is also known
to inhibit tumors via the COX-2/PGE2 signaling pathway. The
transcription of miR-101 is up-regulated by berberine through
AP-1 to regulate the transcription of COX-2 in EC cells (Wu
et al., 2012). The high expression of p-STAT3 in malignant tumor
cells and the expression level of p-STAT3 in tumor tissues, the
more obvious the proliferation and metastasis of tumor cells
(Munir et al., 2000).

Berberine Inhibits Tumor Cell
Proliferation (Autophagy, Apoptosis)
Apoptosis is an ideal form of cell death in cancer therapy because
it generally does not cause an inflammatory response. Thus,
the induction of apoptosis is one of the various mechanisms
that inhibit the growth of tumor cells (Yakata et al., 2007).
It has also been reported that berberine significantly inhibited
the proliferation of human prostate cancer PC3 cells (Huang
et al., 2015). In recent years, studies have shown that the
proliferation of renal cell cancer cells can be effectively inhibited
by berberine; when a certain concentration of berberine is treated
to renal cell cancer cells, the effects continue for some time.
The inhibitory effect of berberine on the tumor cells gradually
increased, and it was found that the effect of inhibitory effect
was greatest for treatment times of up to 48 h. In addition,
the total apoptotic rate of renal tumor cells detected by a
double staining method showed that after treatment of renal cell
cancer cell lines A498 and 786-0 with different concentrations of
berberine, the rate of total apoptosis in cells gradually increased
as the concentration of the drug increased (Wang et al., 2015a;
Liu et al., 2017a,b, 2018).

Berberine induces apoptosis in tumor cells, mainly through
upregulation of pro-apoptotic genes and downregulation
of apoptosis-inhibiting genes. For example, berberine can
upregulate the expression of the pro-apoptotic protein BAD in
HL-60 cells and downregulate the expression of anti-apoptotic
protein Bcl-2 to achieve regulation of tumor cell apoptosis. In
addition, apoptosis can be induced by the mitochondrial/caspase
pathway, DNA cleavage induces tumor cell apoptosis, tumor cell
apoptosis is induced by inflammatory factors, and tumor cell
apoptosis is induced by cyclooxygenase. For example, berberine
treatment of liver cancer cells revealed that DNA fragments,
caspase-3, and caspase-8 were activated, which was followed by
the activation of PARP, and the release of cytochrome c to inhibit
tumor metastasis (Mistry et al., 2017).
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Studies have showed that berberine can regulate apoptosis-
associated proteins. Caspase cleavage is a typical phenomenon
in apoptosis cells. Thus, numerous reports have used the
detection of this cleavage to clarify the role of berberine in
the induction of apoptosis. For example, berberine decreased
the expression of Bcl-2 and survivin and, conversely, increased
the expression of the pro-apoptotic genes Bax and cleaved
caspase-3 in a dose-dependent manner in human ovarian cancer
SKOV3 cells (Su et al., 2015). Moreover, the treatment of
berberine to treat human colorectal adenocarcinoma (HCT-15)
cells significantly increased the expression of spliced caspase-3
and the mitochondrial apoptosis-related protein Bax, and
significantly decreased the expression of Bcl-2 and survivin,
finally inducing apoptosis (Agnarelli et al., 2018). Berberine
inhibited the proliferation of human cervical cancer Ca Ski
cells through alteration of the ratio of p53 and Bax/Bcl-2
proteins, upregulation of ROS, and enhancement of caspase-3
activity to induce apoptosis (Kalaiarasi et al., 2016). In addition,
berberine induced the proliferation of BIU-87 and T24 cells
through the inhibition of protein expression, the induction of
G1 cell cycle arrest, and the induction of apoptosis via the
caspase-3 and caspase-9 pathways (Lu et al., 2015). Agnarelli
A et al. treated U343 cells and MIA PaCa-2 cells with
50 µM berberine for 48 h, and found that the activity
of caspase-3 was decreased in U343 cells and increased in
MIA PaCa-2 cells. Therefore, they concluded that berberine
promoted the apoptosis of tumor cells (Katona et al., 2014).
It has been reported that berberine induces Bax activation
in human lung cancer A549 cells, enables p53 pathway-
mediated cytochrome c release, and leads to the activation
of caspase signaling ultimately causing apoptosis (Shi et al.,
2013). The reported data also showed that berberine induced
cancer cell apoptosis mainly through the regulation of the
expression of caspases and Bcl-2; this results in the release
of cytochrome c and the activation of the mitochondria-
dependent apoptotic pathway to promote apoptosis in PC3 cells
(Wang et al., 2017).

Autophagy is one type of cellular self-protection mechanism,
consisting mainly of the degradation of macromolecular material
and damaged organelles in cytoplasm after autophagosome
formation with lysosomes. The products of degradation are
used to restore cell homeostasis. There are three forms of cell
autophagy: macro-autophagy, micro-autophagy, and autophagy,
which are mediated by different molecular chaperones.
Autophagy is involved in many of the physiological and
pathological processes of cells, and there is a close relationship
between autophagy and tumorigenesis. The effects of autophagy
vary in different cell lines and maybe inhibitory or stimulatory.
In addition, the occurrence of autophagy is regulated by
various signal pathways. Recent experimental studies have
shown that berberine inhibits the proliferation of colon cancer
cells through the downregulation of the expression of EGFR
and that it activates autophagy and apoptosis through the
p38 signaling pathway to inhibit the proliferation of HCT-
15 cells. Similarly, in berberine-treated HCT-15 cells, the
autophagy marker proteins ATG5 and LC3 were upregulated
in a time-dependent manner (Zhang L. et al., 2017), indicating

that berberine induced autophagy in HCT-15 cells. These
data demostrate a role of Berberin in regulating cancer cell
proliferation (Tables 1, 2).

Berberine Arrests Tumor Cell Cycle
Many studies have shown that low concentrations of berberine
arrest human osteosarcoma U20S cells in the G1 phase through
the induction of DNA double-strand breaks that activate the
p53-p21 pathway. In contrast to low concentrations of berberine,
high concentrations induce arrest in the G2/M phase, but do
not depend on the p53-p21 pathway (Yang et al., 2015; Li et al.,
2017). Other studies demonstrated that berberine significantly
inhibited human ovarian cancer cells (HEY and SKOV3 cells)
in a time- and dose-dependent manner. It is demonstrated that
that berberine exerts a significant inhibitory effect on human
gastric cancer MGC 80 3 cells in a dose-dependent manner. Using
laser confocal microscopy, the nucleus condenses, and apoptotic
bodies are seen, which indicate that berberine can inhibit the
proliferation of MGC 80 3 cells and arrest cells in the G0/G1
phase to inhibit the proliferation of tumor cells in vitro.

B-cell translocation gene 2 is a transient early-response gene
induced by p53. It is a member of the gene family that regulates
cell proliferation and is an important bridge molecule that links

TABLE 1 | Inhibitory effects of berberine on tumor migration and invasion.

Cell lines Mechanism Reference

Human non-small cell lung
cancer (A549)

N-Cadherin↓

E-cadherin↑

Li et al., 2018

Hepatocellular carcinoma
(HCC) cells

COX-2↓,NF-κB↓

UPA,MMP-9↓

Sengupta et al.,
2017

Endothelial canjcer colon cells IL-8↓, NF-κB↓

AMPK↑

Li et al., 2014

Mouse melanoma cell
(B16F-10)

VEGF mRNA↓ Siveen and Kuttan,
2011; Hamsa and
Kuttan, 2011

Human umbilical vein
endothelial cells (HUVEC)

COX-2↓, iNOS↓,
VEGF mRNA↓

Ma et al., 2008

Human endometrial cancer cell
lines(AN3 CA and HEC-1-A)

COX-2↓ PEG-2↓ Wu et al., 2012

TABLE 2 | Inhibitory effects of berberine on tumor cell proliferation.

Cell Lines Mechanism Reference

Liver cancer cells Caspase-3↑,
Caspase-8↑,PARP↑

Mistry et al., 2017

Human ovarian cancer cell
(SKOV3)

Bcl-2↓ Bax↑,
Cleaved-Caspase-3↑,

Su et al., 2015

Colorectal adenocarcinoma
cell line (HCT-15)

EGFR↓, Bcl-2↓,
Survivin↓ ATG5↑,
Bax↑, LC3↑

Agnarelli et al.,
2018

Human cervical cancer cell
(CaSki)

p53↑, Bax/Bcl-2↑

ROS↑, Caspase-3↑

Kalaiarasi et al.,
2016

Human bladder cancer cell
(BIU-87, T24)

Caspase-3↑,
Caspase-9↑

Lu et al., 2015

Human pancreatic
carcinoma cell (MIA
PaCa-2)

Caspase-3↑ P53↓ Katona et al., 2014
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p53, pRB, the cell cycle, cell proliferation, and differentiation.
The current body of evidence indicates that berberine can
promote the cell cycle arrest of human hepatoma HEPG2
cells in the G1 phase through the upregulation of BTG2 and
the downregulation of cyclin D1, consequently inhibiting the
proliferation of hepatoma cells and inducing apoptosis.

Cyclin is one of the target proteins that regulate the G1 phase.
As a proto-oncogene, it is involved in the regulation of the cell
cycle, and its overexpression is closely related to the occurrence
and development of tumors. Berberine has a variety of effects
on the cell cycle; for example, it can arrest the G2/M phase in
the cell growth cycle through a reduction in the expression of
cyclin B1 and increase in the expression of Wee1, which stops the
tumor cells in the early stage of DNA synthesis (G1) and late DNA
synthesis (G2). The induction of tumor cell apoptosis through
the downregulation of cyclin E expression and upregulation of
p21 expression, which causes G1 arrest in HEY and SKOV3
cells and downregulates Bcl-2 protein expression and upregulates
Bax protein expression. Berberine treatment of MDA-MB-231
and MCF-7 human breast cancer cells dose-dependently caused
G0/G1 arrest, which was possibly associated with a decrease in the
cell cycle regulation protein cyclin B1. Furthermore, it increased
the expression of CDC4 and cyclin B1 through an increase in the
expression of CDC2 and caspase-3 in human hepatoma HepG2
cells, causing arrest in the S and G2/M phases, and activating
the AMPK signaling pathway to induce the apoptosis of HepG2
cells (Chidambaram et al., 2012; Murthy et al., 2012; Balestrieri
et al., 2018). Li et al. demonstrated that berberine regulates the
PI3K-AKT and MAPK signaling pathways in PTC (the most
common subtype) and ATC (the most malignant and aggressive
subtype), leading to mitochondrial apoptosis, G0/G1 cell cycle
arrest, increased Bax/Bcl-2, cleaved caspase-3, p21, and decreased
cyclin E1, CDK2, and vimentin were verified by western blotting
(Waterbeemd et al., 2013). The combination of drugs upregulated
the expression of the cell cycle-dependent kinase inhibitory
proteins p27 and p21, and downregulated the expression of cyclin
D1, CDK2, and CDK4-cyclin.

In addition, studies have reported that berberine can bind to
topoisomerase (TOP1), which hinders the synthesis of S phase
cells and prevents cell proliferation.

Effects of Berberine in Compatibility
With the identification of numerous anti-tumor drugs, research
of cancer therapy has gradually shifted from a focus on
monotherapy to combined therapy. More and more reports
have demonstrated that berberine combined with radio-therapy
or chemotherapy drugs can achieve better anti-tumor effect.
For instance, berberine combined with gamma-radiation
enhance the anti-cancer effects, including inducing apoptosis
and ROS generation (Jung-Mu et al., 2009). Also, berberine
sensitizes lung cancer cells to radiation via autophagy both
in vitro and in vivo (Peng et al., 2008). Indicated an adjuvant
role in radio-therapy of cancer. Another major anti-cancer
therapy is chemotherapy, several novel chemotherapy drugs
such like doxorubicin, rapamycin were texted combined
with berberine, and showed a more effective result. It is
reported that berberine sensitizes mutliple human cancer cells

to the anticancer effects of doxorubicin (Tong et al., 2012).
More details and drugs were summarized in Table 3, which
clarified that berberine synergistic work with chemotherapy
drugs in anti-tumor proliferation through inducing cell
cycle arrest, apoptosis, as well as autophagy. These data
have laid theoretical foundation for the combined therapy
in clinic trial.

EPIGENETIC EFFECTS OF BERBERINE
ON TUMORS

For many years, researchers have been studying and developing
drugs for cancer prevention and treatment. Chinese medicines,
such as berberine, are commonly used as drugs. As an active
ingredient of Coptis, berberine is inevitably closely related to
the occurrence and development of tumors (Wang-Johanning
et al., 2008; Coward et al., 2014; Delga-docruzata et al., 2015;
Dkhil et al., 2015). Extensive research has led scholars to
conclude that, ultimately, the antitumor effect of berberine
may be related to epigenetic effects. The following is a brief
description of the methods through which berberine regulates
tumor cells, including migration, proliferation, and apoptosis,
through epigenetic mechanisms.

DNA Methylation
DNA methylation refers to the covalent attachment of the
fifth carbon atom of cytosine on the CpG dinucleotide to
the methyl group through the action of DNMT, which is
modified to 5-methylcytosine. DNA methylation is a potential
epigenetic mechanism involving a variety of biological processes.
The DNMT family consists of three main members: DNMT1,
DNMT3A, and DNMT3B. DNMT1 mainly maintains DNA
methylation status and DNMT3A and DNMT3B catalyze new
DNA methylations (Kalinkova et al., 2018; Li et al., 2018; Puneet
et al., 2018). Human CpG exists mainly in two forms: one is
dispersed in genomic DNA; the other is highly aggregated to
form CpG islands, which are present in the promoter region or
the first exon region of various genes. In the human genome,
the CpG site is usually in an unmethylated state in the CpG
islands, but in a methylated outside the CpG islands. When
tumors occur, the degree of unmethylation of CpG sites outside
CpG islands increases, whereas the CpG sites in CpG islands are
highly methylated, causing a decrease in the overall methylation
level of the genome, as well as certain gene CpG islands. Local
methylation levels are abnormally elevated, leading to genomic
instabilities, such as chromosomal instability, the activation of
proto-oncogenes, and the silencing of tumor suppressor genes
(Qing et al., 2014; Crawford et al., 2018; Lee and Gang, 2018;
Sanna et al., 2018). DNA methylation abnormalities are mainly
divided into the hypomethylation state of proto-oncogenes
and the hypermethylation state of tumor suppressor genes.
The most studied of these is the hypermethylation of tumor
suppressor genes. It is of interest that berberine has been found
to inhibit the expression of human DNA methyltransferases
DNMT1 and DNMT3B in multiple myeloma U266 cells. For
example, berberine can alter the CpG methylation of p53
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TABLE 3 | Berberine combined with chemotherapy drugs.

Combined With Cells Mechnisms/Effect Reference

2-deoxy-D-glucose Human lymphoblastoid
TK6 cells

BBR combined with the glucose analog 2-deoxy-D-glucose
(2-dG) synergistic inducing the apoptosis of human
lymphoblastoid TK6 cells

Halicka et al., 2017

5-Fluorouracil Gastric cancer cells
AGS

BBR sensitized gastric cancer cells to 5-FU, the
combination shows a synergistic inhibition of surviving and
STAT3 level

Pandey et al., 2015

Cinnamaldehyde Lung carcinogenesis
A549 cell

BBR combined with cinnamaldehyde prevented A549 cell
substance permeability via AMPK-reduced AQP-1
expression

Meng et al., 2017

Cisplatin Breast cancer MCF-7 BBR sensitized MCF-7 cells to cisplatin through inducing
DNA breaks and caspase-3-dependent apoptosis

Zhao et al., 2016

D-limonene Human gastric
carcinoma cell line
MGC803

BBR in combination with d-limonene showed synergistic
anticancer effects on MGC803 cells through inducing
cell-cycle arrest, ROS production, and apoptosis via the
mitochondria-mediated intrinsic pathway

Zhang et al., 2014

Doxorubicin Murine melanoma
B16F10 cells

BBR combined with Doxorubicin inhibit melanoma tumor
growth through casepase-3 depentdent apoptosis

Mittal et al., 2014

Lung cancer cell lines BBR sensitizes lung cancer cells to Doxorubicin by
promoting STAT3 degradation, inhibiting doxorubicin
mediated STAT3 activation.

Zhu et al., 2015

Evodiamine Breast cancer MCF-7 BBR in combination with evodiamine inducing cell cycle
arrest and apoptosis, further inhibit MCF-7 prolieration

Du et al., 2017

Hsp90 inhibitor NVP-AUY922 Colorectal cancer BBR combined with NVP-AUY922 inhibit proliferation of
colorectal cancer via mutiple pathways

Su et al., 2015

Metformin NSCLC BBR combined with metformin synergistic induced cell
cycle arrest, as well as reduced migration and invasion of
NSCLC cells

Zheng et al., 2018

Rapamycin Human hepatoma cell
SMMC7721 cells

BBR combined with rapamycin can improve HCC therapy
through inhibiting the mTOR signaling pathway

Guo et al., 2014

S-allyl-cysteine (SAC) Human liver cancer
HepG2 cells

BBR combined with SAC effectively reduced
Rb-phosphorylation resulting insignificant nuclear E2F
presence, further inhibiting cancer cell proliferation

Sengupta et al., 2017

DEN+CCl4 induced
hepatocarcinoma

BBR in combination with SAC inhibited Akt mediated cell
proliferation, and inducing PP2A/JNK mediated apoptosis.

Sengupta et al., 2014

Sorafenib Human liver cancer
SMMC-7721 and
HepG2 cells

berberine combined with sorafenib inhibited the proliferation
of liver cancer cells by inducing cancer cell apoptosis.

Huang Y. et al., 2018

Tamoxifen Breast cancer MCF-7 BBR sensitized MCF-7 cells to tamoxifen via inducing the
G1 phase arrest and activating apoptosis.

Wen et al., 2016

Tetrahydropalmatine MDA-MB-231 breast
cancer cells

BBR combined with tetrahydropalmatine synergistic
inhibited the proliferation of MDA-MB-231

Zhao et al., 2014

TPD7 T-cell acute
lymphoblastic leukemia
cell

BBR combined with TPD7 induced G1 -phase cell-cycle
arrest of T-cell acute lymphoblastic leukemia cell.

Ma et al., 2017

DNA, affect the mRNA expression of key apoptosis-related
proteins, and increases apoptosis in U266 cells, and thereby
leads to cell cycle arrest. Although the hypomethylation of
the p53 promoter can regulate apoptosis-related genes, such as
GADD45, Bax, PMAIP1, BBC3, CCNB1, CCND3, and CCNE1.
Specifically, in the p53 pathway, CDKN1A, GADD45B, Bax,
PMAIP1, and BBC3 were upregulated, and CCNB1, CCND3,
and CCNE1 were downregulated, which suggested that berberine
activated the p53 signaling pathway through the impairment
of U266 cells. In addition, results have shown that treatment
of colorectal cancer cells with berberine results in a significant
increase in the expression of DNMT1 and DNMT3A in the
presence of TGF-β1; this hypermethylation in the promoter

CpG island leads to further silencing of TSG, which results in
tumor cell proliferation (Riaz et al., 2015; Asadi et al., 2018;
Nardi et al., 2018).

Histone Modification
Histones play an important role in gene expression and
tumorigenesis and development. The nucleosome is the basic
constituent unit of chromatin. A nucleosome is an octamer
composed of histones H2A, H2B, H3, and H4 and DNA
entangled on the outside of the 147 base pairs. Histones not
only protect the DNA structure and genetic information, but also
participate in the regulation of gene expression. The extracellular
amino terminus of histones can be modified by a variety of
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TABLE 4 | Epigenetic regulation of berberine on tumor.

Type of Regulation Cell Lines Mechanism Reference

DNA methylation Multiple myeloma DNMT1↓, DNMT3B↓ Asadi et al., 2018;
Riaz et al., 2015;
Nardi et al., 2018

CDKN1A↑, GADD45B↑

Bax↑, PMAIP1↑

U266 cells CCNB1↓, CCND3↓, CCNE1↓

Histone Modification Human non small cell
lung cancer A549

HDAC↓MMP2↓ MMP9↓ Huang et al., 2017

U266 cells CBP/P300↑ SIRT3↑ Sun et al., 2017

MicroRNA Human U266 multiple
myeloma cells

miRNA21, Bcl-2↓ Hashiguchi et al.,
2017

Colon cancer miR-152↓; Hu et al., 2013

miR-429↓

miR-29a↓

enzymes to form specific “histone codes” that alter the “open”
or “closed” state of the local chromatin structure, or determine
which proteins bind to specific DNA regions. Consequently, they
regulate the various functions of DNA, including transcription
and damage repair. Histone acetylation is highly dynamic
and is coordinated by HATs and HDACs, and occurs at the
amino-specific lysine residues of histones (Stevens et al., 1984;
Yan et al., 2001; Bhat et al., 2018; Georgoff et al., 2018; Liu
et al., 2018; Rahnamoun et al., 2018). Histone modification is
a major determinant of the epigenetic silencing of genes and
the regulation of cellular processes. Histone modifications often
occur at the amino terminus of histones, and modifications
of various chemical groups are acceptable due to exposure to
chromatin (Oliver et al., 2013; Bennetzen and Wang, 2014; Hoen
and Bureau, 2015; Yamada et al., 2015; Zhang et al., 2015; Li
and Zhao, 2016; Rayan et al., 2016; Jiang et al., 2018; Salimian
et al., 2018; Shang et al., 2018; Yan et al., 2018; Sahebi et al., 2018;
Zhang L. et al., 2018; Zhang S. et al., 2018). The most widely
studied are the acetylation and methylation of lysine K on histone
H3 and H4. Histone acetylation plays an important role in the
epigenetic theory proposed in recent years. Histone acetylation
can affect the chromatin structure in cells, and thus participate in
the transcriptional regulation of genes at specific sites, playing an
important role in cell growth and differentiation. With a deeper
understanding of the mechanism of histone acetylation in gene
transcriptional regulation, the role of HDAC inhibitors in tumor
therapy has received increasing attention (Sun et al., 2017).

CBP and p300 proteins with acetylase activity are
transcriptional coactivators and hematopoietic tumor
suppressors. Studies have shown that berberine can upregulate
the expression of CBP/P300 and SIRT3 in U266 cells, and
downregulate the expression of HDAC8; however, in HL-60/ADR
and KG1-α cells, CBP/P300 and SIRT3 were also upregulated,
but HDAC8 did not change significantly. Histone acetylation
maintains its balance through HAT and HDAC. Berberine
downregulated HDAC in human lung cancer A549 cells, which
resulted in decreased expression of the metalloproteinases
MMP-2 and MMP-9 mRNA and protein, inhibiting cell
migration and invasion (Huang et al., 2017). Simultaneously,
another study has shown that berberine treatment of A549 cells

significantly reduced the expression of class I, II-a, II-b, and IV
mRNA, histone H3, and H4 hyperacetylation.

MicroRNA
MicroRNAs (miRNAs) are short-chain non-coding RNAs of
19–22 nucleotides in length that bind to the 3′UTR in target
mRNAs, thereby degrading or blocking the translation of target
mRNAs. It plays an important role in the growth, differentiation,
apoptosis, and tumor cell development. miRNAs can regulate
the expression of multiple tumor-associated genes. In accordance
with the function of miRNAs, they can be divided into two types:
oncogenes or tumor suppressor genes (Hu et al., 2013). Not only
can it act directly as a proto-oncogene or a tumor suppressor
gene, but also regulate the expression of other proto-oncogenes
or tumor suppressor genes. miRNAs play a central role in many
cellular biology processes, and their dysregulation is a ubiquitous
feature in tumors. Epigenetic effects have been shown to be
a major cause of miRNA dysregulation in tumors (Hashiguchi
et al., 2017). In the TGF-β1-induced colorectal cancer model,
berberine significantly decreased the expression of miR-152

FIGURE 2 | Signaling pathways regulated by berberine.
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(targeting DNMT1), miR-429 (targeting DNMT3A), and
miR-29a (targeting DNMT3A/3B), which suggested that
berberine inactivates some tumor suppressor factors, including
DNMT1 and DNMT3A/3B, through the regulation of the
expression of the above miRNAs during colon cancer
development. Furthermore, other evidence has suggested
that berberine treatment of human U266 multiple myeloma
cells led to the inhibition of NF-κB nuclear translocation
via Set9-mediated lysine methylation, which resulted in
decreased miRNA21 and Bcl-2 expression, inducing the cells
to produce ROS and promoting cell apoptosis. Berberine
treatment of colorectal cancer cells increased the expression
of miR-200a-5p and decreased the expression of miR-429.
These epigenetic regulation affected by Berberine was briefly
summarized in Table 4.

SUMMARY AND FUTURE
PERSPECTIVES

The importance of epigenetic regulation in the occurrence
and development of tumors is now an established fact. An
increasing body of research has been devoted to the exploration of
epigenetic molecular markers for the early diagnosis, treatment,
and prognosis of tumors. Simultaneously, epigenetic drugs
provide a new direction for the treatment of tumors owing
to the reversibility and ease of regulation of epigenetics. At
present, the anticancer drugs that inhibit the proliferation
of malignant tumor cells via induction of apoptosis or that
regulate signal transduction are mostly multi-targeted (He
et al., 2010). Berberine is a natural isoquinoline alkaloid that
significantly contributed to the development of anticancer
drugs (Figure 2). Given the continuous development in
the field of medicine and the extension of research and
development in the field of medicine, berberine has gained
attention of researchers owing to the combination of multiple

effects. Berberine is not irreplaceable with respect to its
traditional pharmacological activities, such as antibacterial,
anti-inflammatory, and antiviral effects (Huang S.X. et al.,
2018). Moreover, the efficacy of the antihypertensive, antitumor,
and hypolipidemic effects has also become a “hot topic”
in contemporary research. Berberine regulates the molecular
mechanisms that cause tumor cells through a variety of signaling
pathways, confirming the potential therapeutic effects in a
variety of tumor cells. However, there are few reports on the
effects of berberine on the epigenetic functions of tumors.
Epigenetics is also the main controlling factor of oncogenes
in the development of cancer. Therefore, the application of
epigenetic properties of berberine in the treatment of malignant
tumors offers broad prospects for drug development. At the
same time, extended research into epigenetics has provided
a new strategy to understand the various characteristics
of tumors, optimize the early diagnosis of tumors, and
improve the prognosis of patients. In future, basic research
and clinical transformations in the epigenetics of cancer
will provide new strategies for the precise diagnosis and
treatment of cancer.
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Dietary lectins are carbohydrate-binding proteins found in food sources. We used a

panel of seven dietary lectins to analyze cytotoxicity against hematological cancers.

Wheat germ agglutinin (WGA), even at low doses, demonstrated maximum toxicity

toward acute myeloid leukemia (AML) cells. Using AML cell lines, we show time- and

dose-dependent killing by WGA. We also show that low doses of WGA kills primary

patient AML cells, irrespective of subtype, with no significant toxicity to normal cells.

WGA caused AML cell agglutination, but failed to agglutinate RBC’s at this dose. WGA,

primarily, binds to N-acetyl-D-glucosamine (GlcNAc) and is also reported to interact

with sialic-acid-containing glycoconjugates and oligosaccharides. After neuraminidase

pre-treatment, which catalyzes the hydrolysis of terminal sialic acid residues, AML cells

were less sensitive to WGA-induced cell death. AML cells were also not sensitive to

succinyl-WGA, which does not react with sialic acid. Incubation with LEL lectin, which

recognizes GlcNAc or SNA, which binds preferentially to sialic acid attached to terminal

galactose in α-2,6 and to a lesser degree α-2,3 linkage, did not alter AML cell viability.

These data indicate that WGA-induced AML cell death is dependent on both GlcNAc

binding and interaction with sialic acids. We did not observe any in vitro or in vivo

toxicity of WGA toward normal cells at the concentrations tested. Finally, low doses of

WGA injection demonstrated significant in vivo toxicity toward AML cells, using xenograft

mouse model. Thus, WGA is a potential candidate for leukemia therapy.

Keywords: WGA, leukemia, therapy, lectin, GlcNAc

INTRODUCTION

Lectins, carbohydrate-binding proteins, have been well characterized for more than 40 years (1).
Because they are present in many of our major staple foods, such as wheat, potato, soy, and tomato,
they play an important role for humans (2). Their true biological function is as a pesticide and
anti-fungal, preventing disease from spreading and killing the plant or organism (3). Lectins, also
present in animals and fungi, are classified by evolutionary origin, three-dimensional structure, and
binding specificity (4, 5). In the last 10 years, with technological improvements in protein structural
analysis, lectins have been organized into seven families. Most lectins are within the legume, chitin-
binding (hevein domain), type 2 ribosome-inactivating, and monocot mannose-binding lectin
families; but there are also jacalin-related, amaranthin, and Cucurbitacea phloem families (6).
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Lectins have wide-ranging biological activity at cellular, tissue,
and organism levels. In vitro, it has been demonstrated that
incubation with lectin from red kidney bean lead to T cell
proliferation and increased cytokine production (7). Haas et al.
demonstrated that certain dietary lectins can cause IL-4 and IL-
13 release from basophils (8), while Gong et al. demonstrated that
plant lectins can activate NLRP3 inflammasome in macrophages,
although at concentrations outside of normal physiological
conditions (9). Recently it has been shown that certain lectins can
activate toll-like receptors (TLRs) in a distinct, yet comparable,
fashion to activation by pathogens. Specifically, the lectin ArtinM
leads to TLR activation, resulting in increased pro-inflammatory
cytokine release (10). Since their first isolations, lectins have
been known to agglutinate cells, including red blood cells (11).
When lectins are ingested, they have effects on tissues and organs,
partially because they are not digested by gut enzymes (12) but
pass through the gut wall and enter the circulation (13, 14).
Lectins have also been shown to cause gut inflammation and
have been potentially linked to autoimmune disease, such as
rheumatoid arthritis (15). Besides this biological activity toward
normal tissues, lectins have been shown to exhibit specific effects
on cancer cells.

Many lectins have demonstrated cytotoxic and anti-
proliferative effect on cancer cells. In the early 1980s, it was
shown that lectin from Griffonia simplicifolia administered
to mice in vivo was cytotoxic toward ascites tumor cells (16).
Miyoshi et al. showed that rice bran agglutinin (RBA) caused
apoptosis and cell cycle disruption on human U937 monoblastic
leukemia cells (17). Lectins like Concanavalin A, Griffonia
simplicifolia (GSA-1A4), and Phaseolus vulgaris were shown to
be toxic toward melanoma cell lines (18). Finally, Wang et al.
looked at various lectins and their effects on cancers of the
liver, chorion, skin, and bone. They determined that lectins
from mushroom, soybean, and potato had varying impacts on
these cell lines (19). Of the lectins tested, wheat germ agglutinin
(WGA) had the most profound cytotoxic effects against these
cell lines.

WGA, the lectin derived from wheat germ, binds specifically
to N-Acetyl-D-glucosamine (GlcNAc). It has been reported that
WGA also binds N-acetyl-neuraminic (sialic) acid; however
more recently it has been characterized as interacting with sialic
acid residues on glyconjugates and oligosaccharides (20).WGA is
one of the most characterized and studied lectins. While studying
the effect of WGA on normal gut epithelium, it was determined
that WGA can bind the apical side of gut-like cells and alter the
cell membrane permeability (21). Pellegrina et al. also quantified
whether the amount of wheat consumed in the normal diet is
toxic. They concluded that in order to reach toxic levels more
than 1 kilogram of uncooked pasta would need to be consumed
in one meal (21). Despite the limited toxicity to normal tissues,
it has been shown that WGA is toxic to pancreatic, liver, bone
(osteosarcoma), and skin (melanoma) cancer in low doses (18,

Abbreviations: WGA, Wheat germ agglutinin; AML, acute myeloid leukemia,

ALL, acute lymphoid leukemia; NHL, non-Hodgkin Lymphoma; sWGA, Succinyl-

WGA; LEL, L. esculentum lectin; SNA, S. nigra; N-acetyl-D-neuraminic (sialic)

acid; GlcNAc, N-acetyl-D-glucosamine.

19, 22). WGA causes killing via apoptosis and cell cycle arrest
in melanoma and human monoblastic leukemia (14, 17). It may
also work in a novel apoptotic fashion that is Fas-, caspase-3,
Bax, and Bak independent (23). Recently, there is evidence that
WGA can kill via a completely different pathway. It has been
demonstrated that WGA induces paraptosis-like cell death in
cervical carcinoma cells (24). These different modes of killing,
dependent on target cells, makes WGA an intriguing protein
to study.

Because lectins, specifically wheat germ agglutinin, have
been shown to be cytotoxic toward pancreatic cancer,
osteosarcoma, hepatoma, etc. (19, 22), we screened three
hematological malignancies [acute myeloid leukemia (AML),
acute lymphoblastic leukemia (ALL), and non-Hodgkin
lymphoma (NHL)] against a panel of lectins. AML is a common
childhood leukemia. In patients who acquire the malignancy
in adulthood it has a low survival rate (25). ALL is the most
common pediatric cancer. If relapse occurs, patients have an
even lower survival rate (26). NHL is an umbrella term for many
different malignancies that originate in the lymphoid system
(27). Because of this broad category, NHL is one of the most
common cancers in the United States and the American Cancer
Society estimates that more than 70,000 cases will be diagnosed
in 2018 (28). Because these three cancer types are very common
impacting large numbers of people, we looked at the cytotoxic
effects of various lectins on these cancer cells.

METHODS

Cell Culture
Human acute myeloid leukemia cell lines, OCI-AML3 and
HL-60, obtained from DMSZ and American Type Culture
collection, respectively, were cultured in sterile RPMI-1640
medium (R8758) with 10% Serum Plus II and 5% penicillin
streptomycin. Human acute lymphoblastic leukemia cell lines,
ALL-1 and ALL-2, were cultured in MEMmedium (M4526) with
20% FBS. ALL-1 NSG cell line had been passaged through mice
before freezing and usage. Human non-Hodgkin lymphoma cell
lines, JVM2 and OCI-Ly10, were cultured in RPMI complete
medium and in Iscove’s DMEM (10-016CV) (20% SPII and 1%
Glutamax), respectively. Non-cancerous control cells, HEK293
and OP9, were cultured in DMEM (sc-224478) and MEM,
respectively. All cell lines were cultured at 37◦C and 5% carbon
dioxide. When cells reached confluency, they were passaged.

Patient Samples
Primary patient AML cells were ordered from the Hematopoietic
Stem Cell Core Facility at Case Western Reserve University
and cultured in RPMI-1640 complete medium (10% FBS).
Peripheral blood mononuclear cells (PBMCs), isolated from
blood, were obtained from the Hematopoietic Stem Cell Core
Facility at Case Western and cultured in RPMI-1640 complete
medium (10% Serum Plus II). Human blood was also obtained
from Hematopoietic Stem Cell Core Facility at Case Western
Reserve University.
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Lectins
Lectins from: Pisum sativum (L5380), Arachis hypogaea (L0881),
Triticum vulgaris (L9640), Glycine max (L1395), Phaseolus
vulgaris (61764), Agaricus bisprous (L5640), Lycopersicon
esculentum (L2886) were purchased from Sigma-Aldrich,
dissolved in sterile phosphate-buffered saline (PBS), and stored at
4◦C in a concentration of 1 mg/mL. Succinyl-WGA (W0110) and
wheat germ agglutinin FITC-conjugate (L4895), were purchased
at Vector Laboratories and Sigma-Aldrich, respectively. These
variants were also dissolved in sterile phosphate-buffered saline
(PBS) and stored at 4◦C in a concentration of 1 mg/mL. Lectin
from Sambucus nigra (ZB0106) was purchased from Vector
Laboratories. Detailed information on each lectin is included in
Table 1 and obtained from Sigma-Aldrich product sheets.

Reagents
Neuraminidase (N7885) was purchased from Sigma-Aldrich and
stored at 4◦C. Propidium Iodide/RNAase staining kit (P40875)
was obtained from Cell Signaling Technology. Annexin V
Apoptosis Detection Kit with PI (640914) was purchased from
BioLegend. Trypan blue (T8154) was purchase from Sigma-
Aldrich. Alsever’s Solution was prepared using Sally E. Grimes’s
protocol (29). Citric acid (1940) and Sodium chloride (BP-
358-10) was purchased from Sigma-Aldrich, while Sodium
citrate (S-4641) and D-glucose (G-5767) were purchased from
Fisher Scientific.

Cell Death Assay
HL60 and OCI cells were seeded in 12-well plates at a
concentration of 250,000 cells/mL (1mL per well). Cells were
treated with WGA at various concentrations on day 0, then
again at 24 h intervals up until the final day of measurement.
Two microliter PBS were added as a negative control. Cell count
and cell viability were assessed using 1:1 trypan blue staining
(Sigma-Aldrich) and an automated cell counter (Bio-Rad TC-20).
Measurements were conducted in triplicate. Data was graphed
and analyzed using GraphPad Prism 7.

Apoptosis Assay
Cells were treated with 2µg/mL WGA for 24 h. Cells were
centrifuged at 300 × g for 5min and the supernatant was
removed. The pellet was washed with PBS and resuspended in
100 µL Annexin V/ Propidium iodide (AV/PI) buffer. Samples
and positive controls were incubated with 3 µL of Annexin V
antibody and 10 µL of Propidium Iodide for 15min at room
temperature. The samples were run using fluorescence-activated
cell sorting (FACS BD AccuriTMC6). 20,000 events were recorded
per sample. AV/PI kit from Biolegend, USA was used to perform
apoptosis assay.

Cell Cycle Analysis
Cells were seeded at 250,000 cells permL in 4mL and treated with
WGA. Cells were spun at 600 rpm for 5min and washed with
PBS twice. Pellet was resuspended in PBS and vortexed to make
single cell suspension. While vortexing the sample, 1mL of ice-
cold 70% ethanol was added. Samples were incubated overnight
in −20◦C. Then, samples were pelleted, washed, resuspended

in PBS, and incubated with 100 µL of Propidium Iodide at
room temperature for 15min. Samples were analyzed with FACS,
counting 10,000 events. Events collected were gated on live cell
populations, avoiding debris and aggregate populations.

For cell aggregation/agglutination assay, HL-60, OCI, and
healthy human white blood cells (WBCs) were seeded in 12-well
plates at a concentration of 250,000 cells/mL (1mL per well).
Cells were treated with either 2µg/mLWGA or with 2µL PBS as
a negative control. After 20 h treatment, cells were assessed at 10x
magnification using bright field microscopy (Leica DM IL LED)
and captured using Leica LAS X imaging software.

WGA Binding
WGA-FITC working stock was made by diluting the 1µg/mL
stock solution. HL-60 AML cells were seeded at 250,000 cells per
mL and treated with 0.5µg/mLWGA-FITC at 37◦C. At each time
point, samples were washed with PBS and analyzed using FACS.

Sialic Acid-Based Treatments
Cells were treated with succinylated-WGA (sWGA) at 2µg/mL
at 37◦C for 24 h. Samples were counted using trypan blue. For
neuraminidase pre-treatment, the protocol described in Schwarz
et al. where 4 million cells in 2mL serum free media are
incubated with 50 mU/mL neuraminidase for 1 h at 37◦C was
used (22). Samples were washed twice in complete media and
seeded in wells at 250,000 cells/mL. Samples were treated with
WGA in the same manner as described above. Cells were stained
with Propidium iodide and cell viability was determined using
flow cytometry.

E-670 Cell Proliferation Assays
OCI AML-3 and HL-60 cell lines were labeled with 1mM cell
proliferation Dye eFluor 670TM (Thermo Fisher Scientific) as per
manufacturer’s instructions. After staining cells were washed two
times and cultured at 37

◦

C in media alone or in the presence of
2.5µg/mLWGA for the indicated times. Proliferation of live cells
was assessed via flow cytometry (Accuri 6C).

In vitro Toxicity
Two AML patient samples were treated in the absence or
presence of with 2µg/mL WGA for 24 h at 37◦C. The
samples were analyzed for viability by flow cytometry. OP9 and
HEK293 cells were plated and incubated for 24 h with doses of
WGA. Confocal images were acquired using EVOS R© XL Core
Imaging System.

Hemagglutination (HA) Assay
The protocol designed by Virapur R©was modified as follows (30).
Acquired mouse blood was stored in prepared Alsever’s solution.
After three washes in PBS, 10% blood stock solution was made
in PBS. A working stock (5%) solution was made using the 10%
stock and PBS. A serial dilution of WGA (50 µg to 0.09µg/mL)
was prepared using a round-bottomed 96-well plate. 0.0µg/mL
WGA was used as a negative control. The plate was incubated
for 30–60min at room temperature and images were taken. The
plates were analyzed by looking for “buttons” in each well. Diffuse
blood in the well is analyzed as hemagglutination. Experiments
were performed on human blood, as well, but the blood was
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TABLE 1 | All lectins used and their name, source, molecular weight, and sugar specificities.

Lectin Sourcea Molecular weightb (kDa) Sugar specificityc

Wheat germ agglutinin (WGA) T. vulgaris (wheat) 36 (GlcNAc)2 & NeuNAc

Succinyl-Wheat germ agglutinin (sWGA) T. vulgaris (wheat) 36 (GlcNAc)2

Pisum sativum agglutinin (PSA) P. sativum(pea) 49 α-man

Peanut agglutinin (PNA) A. hypogaea (peanut) 120 Gal-β(1→ 3)-GalNAc

Soybean agglutinin (SBA) Glycine max (soy) 110 GalNAc

Phytohemagglutinin (PHA) P. vulgaris (red kidney bean) 126/128 Oligosaccharide

Agaricus bisporus lectin (ABL) A. bisporus (mushroom) 58.5 β-gal(1→ 3)GalNAc

Lycopersicon esculentum lectin (LEL) L. esculentum (tomato) 71 (GlcNAc)3

Sambucus nigra lectin (SNA) S. nigra (elderberry) 140 αNeuNAc(2→ 6)gal & GalNAc

Information obtained from Sigma-Aldrich data sheets.
a,b,cAll values and specificities from Sigma Aldrich product information sheet.

not stored in Alsever’s solution because it already contains the
anti-coagulant heparin.

In vivo Toxicity
Twelve-week-old C57BL mice were given WGA (2 mg/kg) by
intraperitoneal injection on days 1, 4, and 8. Mouse weights were
also taken throughout the time of administration. After WGA
administration was completed, the mice were sacrificed and
spleen, kidney, and liver were harvested and fixed in formalin.
H&E staining was completed at the Immunohistochemistry Core
Facility at CWRU. Blood was collected in EDTA-coated tubes and
analyzed using HemaVet.

Xenograft in vivo Model
NSGmice were subcutaneously injected with 5× 106 HL-60 cells
to generate solid AML xenograft mice model, followed by three
intra-tumor injection of WGA or PBS.

Statistical Analysis
Data were analyzed using unpaired Student’s t-test. All
experiments were done in triplicate (n = 3). P-values in figures
correspond to: ns = non-significant (>0.05), ∗P < 0.05, ∗∗P <

0.01, ∗∗∗P < 0.001. All graphs were made and statistical analyses
were performed using GraphPad Prism program.

RESULTS

Lectins Demonstrate Variable Cytotoxic
Activity Toward Different Cancers
In order to determine how WGA killing compares to other
lectin treatment, we looked at a panel of varied lectins. Cytotoxic
effects of seven different dietary lectins at 2.0µg/mL were tested
toward AML, ALL, and NHL. Two cell lines from each disease
type were used. Wheat germ agglutinin (WGA) consistently
showed significant cytotoxicity toward all five cancer cell lines,
except OCI-Ly10. As shown in Figure 1, WGA-mediated cell
killing of OCI-AML3 (p = 0.0028), HL60 (p = 0.0005), ALL-
1 (p = 0.0058), ALL-2 (p = 0.03), and JVM2 (p = 0.009)
were statistically significant (Figures 1A–C). All other lectins
tested did not show significant cytotoxic activity toward these
cancer cells. Binding specificities of all these lectins are detailed
in Table 1.

WGA Binds and Kills Cancer Cells in a
Dose- and Time-Dependent Manner
We were interested at which dose and time WGA would be most
effective, so we looked at binding and killing at different doses
and time points. We utilized a FITC-labeled WGA at 0.5µg/mL,
in order to analyze cellular binding using flow cytometry at a sub-
lethal WGA dose. From the flow cytometry data, it is evident that
within 45min of incubation withWGA, the lectin is bound to the
surface of the OCI-AML3 cells. This binding is present up to 24-
h after incubation (Figure 2A). We also wanted to elucidate the
relationship between binding and killing, so we looked at binding
of WGA to OCI-Ly10 compared to HL-60 AML. We show
that there is a significant reduction in WGA-binding to OCI-
Ly10 (Figure 2B). This reduction in binding coincides with the
absence of WGA-induced cell killing of OCI-Ly10 (Figure 1C).

Sensitivity of AML cells to WGA up to 4 days was calculated
using OCI-AML3 andHL-60 cell lines, using four different doses.
Significant killing for HL-60, occurred at 1.0, 2.0, and 4.0µg/mL,
starting from day 1 of WGA treatment (Figure 2C). We analyzed
cell killing at day 1, 2, 3, and 4. At day 4, almost all cells were
killed except for 0.5µg/mL WGA treated wells. Viable cell count
data shows that most of the cells were killed at day 1 itself.
Dose kinetics of OCI-AML3 cells show significant killing at 2.0
and 4.0µg/ml WGA (Figure 2D). HL-60 was more sensitive to
WGA induced cell death, even at 1.0µg/ml, while OCI-AML3
was sensitive to 2.0µg/ml WGA.

WGA Kills Different Subtypes of Primary
Patient AML Cells
In order to further evaluate our findings using AML cell lines,
we tested if WGA has same effect on primary cells derived from
AML patients. AML can be divided into eight different subclasses
(M0-M7) based on the differentiation status, according to the
French-American-British (FAB) classification (31). AML also
can be divided into subtypes based on WHO classification of
genetic abnormalities (32). Primary acute myeloid leukemia
blood samples from two AML patients (subtype M1 and M5)
were treated with 2µg/mL WGA for 24 h and analyzed by
flow cytometry. The flow cytometry count of viable cells (as
determined by analyzing forward and side scatter) demonstrates
very significant cell killing at this dose of WGA for both
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FIGURE 1 | Lectins demonstrate variable toxicities to cancer types. (A) Viable cell count of AML (OCI-AML3 and HL-60) cells treated with different dietary lectins as

indicated. (B) Viable cell count of ALL (ALL-1 and ALL-2) cells treated with different dietary lectins as indicated. (C) Viable cell count of NHL (JVM2 and OCI-Ly10) cells

treated with different dietary lectins as indicated. All seven lectins administered at 2µg/mL for 24 h for all cell types. Un-labeled bars were non-significant compared to

control. *p < 0.05, **p < 0.01, ***p < 0.001, and ns > 0.05.

patient samples (p = 0.0001) (Figure 3A). Further, we analyzed
sensitivity of seven more different AML subtypes to WGA
induced killing and found that all six subtypes except M2 subtype
showed significant cell killing after exposure to 1.0 and 2.0µg/ml
WGA (Figure 3B). M2 subtype with MDS related changes
showed maximum killing, even after exposure to 1.0µg/ml
WGA (Figure 3B).

After confirming WGA induced cell death in different AML
cell lines and patient cells, we wanted to elucidate the specific
method of cell killing that WGA utilizes toward AML cells by
focusing on cell death and cell cycle. Annexin V (AV)/Propidium
Iodide (PI) stain can be used to distinguish between necrotic

and apoptotic cell death. AV staining works by binding to
phosphatidylserine, which normally resides on the inner cell
membrane. However, in early apoptosis, the cellular membrane
undergoes changes where phosphatidylserine is present on the
outer membrane. PI staining works due to cell membrane
rupture, which allows the stain to enter the cell which are
in late apoptotic phase or undergoing necrotic death. Flow
cytometry scatter demonstrates that at 2µg/mL there are AV+
and PI+ cells. There is a significant difference between AV–/PI–,
AV+, and AV+/PI+ of control and treated HL-60 AML cells
(p = 0.0002, p = 0.0068, p = 0.0006). However, there was no
statistical difference between PI+ (alone) of control and treated
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FIGURE 2 | WGA binds and kills in a dose- and time-dependent manner. (A) OCI-AML3 cells treated with WGA-FITC (500 ng/mL) and analyzed for binding using flow

cytometry. Binding to cells at 45min (blue peak) and 24 h (red peak) compared to control (black peak). (B) OCI-Ly10 and HL-60 cells treated with WGA-FITC

(500 ng/mL) for 30min and analyzed for binding using flow cytometry. (C,D) Viable cell count and percent viability of HL-60 (C) and (D) OCI-AML3 with WGA

treatment (0.5, 1.0, 2.0, and 4.0µg/mL) for 1–4 days, counted using trypan blue. ***p < 0.001.

(Figure 3C). There is also a significant difference between control
and treated cells if all positively staining populations (AV+,
AV+/PI+, PI+) are grouped together (p = 0.0002). Because
it has been shown in the literature that WGA can disrupt cell
cycle (14, 17), we tested AML cell cycle changes after being
incubated with WGA. Fixing cells and staining with PI allows
for the different phases of the cell cycle to be distinguished.
Flow cytometry analysis shows that OCI-AML3 cells incubated
with 2µg/mL WGA for 24 h have non-significant changes to
G0/G1, S, and G2/M phases compared to untreated control cells
(Figure 3D). In order to analyze the effect of WGA on cell
proliferation, we performed E-670 cell proliferation analysis of
OCI-AML3 and HL-60 cells before and after 16 and 24 h ofWGA

treatment (Figure 3E). We did not see any significant changes
in staining of these cells. Since WGA induced AML cell killing
is a rapid process happening within 24 h, we could not analyze
further time points.

WGA Induced AML Cell Death Depends on
Both Interaction With Sialic Acid and
GlcNAc Binding
WGA binds primarily to GlcNAc and also interacts with sialic-
acid containing glyconjugates and oligosaccharides. We tested
which binding activity of WGA contributes to its cancer killing
activity. Neuraminidase, also called sialidase, is an enzyme that
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FIGURE 3 | WGA is toxic to primary patient cells and kills AML cells without altering cell cycle. (A,B) Percent viability calculated using FSC/SSC live gating of primary

AML patient cells belonging to different subtypes (A) M1&M5 (B) M4Eo; inv16 (1), AML with MDS related changes (2), M2 with MDS-related changes (3), M2(4),

CEBPA;c-Kit;TET2(5), NPM1;IDH1(6), IDH1;DNMT3a;FLT3-TKD;trisomy8(7) all treated with or without 2µg/mL WGA for 24 h. Control was standardized to one

hundred percent. (C) Annexin V/Propidium Iodide staining of HL-60 cells treated with WGA (2.0µg/mL) for 24 h. (D) Cell cycle analysis of gated live OCI-AML3 cells

treated with WGA (2µg/mL) for 24 h. (E) E-670 cell proliferation assays using OCI-AML-3 and HL-60 cell lines in media alone or in the presence of 2.5 µg/mL WGA

for the indicated times. Proliferation of live cells was assessed via flow cytometry (Accuri 6C). **p < 0.01, ***p < 0.001, and ns > 0.05.

can catalyze the hydrolysis of sialic acid glycosidic linkages.
After neuraminidase pre-treatment, the sialic acid should be
cleaved off the cell membrane. Hence, to determine the role
of sialic acid interaction with WGA in WGA-mediated cancer
cytotoxicity, we pre-treated HL-60 cells with neuraminidase (50
mU/mL) for 2 h and then incubated with 4µg/mL WGA for
4 h. After treatment, we stained the cells with Propidium iodide
and analyzed using flow cytometry. There was a significant

increase in PI staining in the WGA-treated groups with and
without neuraminidase (p = 0.0001, p = 0.0002, respectively)
(Figure 4B). However, when the cells were pre-treated with
neuraminidase followed by WGA treatment, the amount of
PI staining is significantly reduced compared to cells treated
with WGA alone (p = 0.0033) (Figure 4B). We used FITC-
labeled WGA at sub-toxic levels (500 ng/mL) analyzed with flow
cytometry to confirm that neuraminidase reducedWGA binding.
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FIGURE 4 | WGA effect on AML is sialic acid dependent. (A) HL-60 cells treated with WGA-FITC (500 ng/mL) to analyze WGA binding using flow cytometry. Cells

untreated with neuraminidase (red peak) were overlaid with cells treated with neuraminidase (50 mU/mL) for 6 h. (B) Percentage Propidium iodide positive HL-60 cells

treated with WGA (4µg/mL) for 4 h were analyzed with flow cytometry. HL-60 cells were either untreated or pre-treated with neuraminidase (50 mU/mL) for 2 h. (C)

Viable cell count of OCI-AML3 cells treated with 2µg/mL WGA, sWGA, LEL, and SNA for 24 h counted using trypan blue. (D) HL-60, OCI, and healthy human white

blood cells (WBCs) treated with either 2µg/mL WGA or with 2 µL PBS as a negative control and after 20 h treatment, cells were assessed at 10× magnification using

bright field microscopy. Scale bar 100µm shown. *p < 0.05, **p < 0.01, ***p < 0.001, and ns > 0.05.

At 6 h, there was a noticeable reduction in binding to HL-60
cells (Figure 4A).

We also wanted to look at other lectins, specific for the
carbohydrate moieties WGA interacts with. Succinyl-WGA is
a modified form of WGA that only binds GlcNAc. We used
succinyl-WGA to determine the role of GlcNAc binding inWGA
cytotoxicity. We found a significant difference between OCI-
AML3 cells treated with succinylated-WGA and unmodified
WGA (p = 0.0237) (Figure 4C), showing that the sialic
acid interaction is important for WGA-induced killing. Cells
treated with 2µg/mL SNA lectin, which are specific for sialic
acid attached to terminal galactose in α-2,6 and to a lesser
degree α-2,3 linkage, are not affected compared to control
(Figure 4C). OCI-AML3 cells treated with 2µg/mL LEL, which
binds GlcNAc, are also not affected compared to control
(Figure 4C); however, HL-60 cells treated with LEL showed a
significant decrease (p = 0.0302) (Figure 1A). We also observed

cell aggregation/agglutination in HL-60 and OCI-AML3 cells
preceding cell death (Figure 4D). WGA did not agglutinate
normal white blood cells (WBC’s) at this concentration and time
point (Figure 4D).

WGA Exhibits Limited Toxicity to Normal
Cells in vitro and in vivo
At this point, we had demonstrated WGA kills leukemia cells
at 1.0–2.0µg/mL, but we could not discount indiscriminate
killing. Because of this concern, we tested various non-
cancerous cells with WGA. Propidium iodide staining and
flow cytometry analysis shows no significant changes between
peripheral blood mononuclear cells treated without WGA and
with 0.5, 1.0, and 2.0µg/mL WGA (Figure 5A). OP9, a stromal
cell line, was treated with 2.0µg/mL WGA and no significant
morphological changes were apparent microscopically. The cells
were not detached from the plates and maintained normal shape
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FIGURE 5 | WGA treatment exhibits little or no toxicity toward normal cells in vitro. (A) Viable peripheral blood mononuclear cells (PBMCs) treated with 0.5, 1.0, and

2.0µg/mL WGA for 24 h were calculated by PI uptake using flow cytometry. (B) Light microscopy of OP9 stromal cells showing phenotype. Cells were treated with

2.0µg/mL WGA for 24 h and imaged. Scale bar 400mm shown. (C) Light microscopy of HEK293 cells showing phenotype. Cells were treated with 2.0µg/mL WGA

for 24 h and imaged. Scale bar 400mm shown. (D) Hemagglutination assay on 96-well micro-plate of mouse and human blood using serial dilution of WGA (25 to 1.6

µg and 12.5 to 0.8 µg, respectively). Absence of lectin control (0.0 µg) for mouse and human blood are included. ns > 0.05.

(Figure 5B). HEK293 cells were also treated with 2.0µg/mL
WGA and imaged. There were no morphological changes after
incubation (Figure 5C). All these data points to the different
toxicity of WGA toward cancer cells and normal cells. Because
WGA is known to cause red blood cell (RBC) agglutination
(20), we wanted to test whether the WGA dose we are using for
the cytotoxic assay causes agglutination in mouse and human
RBCs. Hemagglutination assays of human and murine blood
after exposure to WGA demonstrated lack of hemagglutination
at the indicated doses used. This is evident by the button of blood
settled to the bottom of the well. A positive hemagglutination
result is diffuse blood in the well as shown in the higher doses
imaged (Figure 5D).

Finally, because we had determined effect of WGA on normal
cells in vitro, we tested whether WGA is toxic in vivo. We
conducted a study to obtain information of WGA dose toxicity
where WGA was injected (2 mg/kg) by IP to 2 C57BL/6 mice on
days 1, 4, and 8. Mice were sacrificed on day 9 for further analysis
(Figure 6A). Age and sex-matched, non-treated mice served as
controls. The mortality and changes to body weight, clinical
signs, gross observation, organ weight, and histopathology of
principal organs (spleen, liver and kidney) were monitored.
We found no mortalities, WGA treatment-related clinical signs,
changes to the body and organ weights, or gross and histo-
pathological findings (Figures 6B,C). Since some reports say
WGA can cross blood brain barrier (BBB) (33), we analyzed
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FIGURE 6 | WGA treatment demonstrated little toxicity to normal cells in vivo. (A) Treatment scheme where 2 mg/kg WGA was IP administered to two mice on days

1, 4, and 8. Mice were sacrificed on day 9. (B) Weights of mice treated with WGA during duration of treatment. (C) Histological analysis of WGA-treated tissues.

Spleen, liver, and kidney stained with H&E and imaged by light microscopy at 10X magnification. Scale bar 400µm shown (D) Histological analysis of

Hematoxylin&Eosin stained brain tissues from PBS and WGA (5 mg/kg) injected mice. Scale bar 100µm shown (E) HEMAVET blood toxicity analysis of treated mice

after sacrifice compared to control mice and normal values. Normal values were given with HemaVet instructions. ns > 0.05.

brain tissue from WGA (5 mg/kg) and PBS injected C57BL/6
mice. Histochemical stainings of brain sections showed normal
structures comparable to PBS injected mice, with no signs of
toxicity (Figure 6D).

We also analyzed different blood cells using HEMAVET.
WGA-treated mice displayed cell counts within normal ranges
as shown in Figure 6E, except for slightly reduced red blood cell
count values, such as RBC, hemoglobin, and hematocrit levels
(Figure 6E). These suggest that WGA at this dose is safe to
use in vivo.

WGA Induced AML Cell Killing in Xenograft
Mouse Model
We further evaluated WGA killing of AML cells in vivo using
a xenograft mouse model. Severely immunodeficient NSG mice
were used for this study. HL-60 AML cells were injected
subcutaneously (s.c.) into NSG mice and injected WGA intra-
tumorally at days 6, 8, and 10 (Figure 7A). Mice tumor volume
was measured every alternate day and WGA injected mice
showed a very significant inhibition in tumor progression,
compared to PBS injected mice (Figures 7B,C). We sacrificed

Frontiers in Oncology | www.frontiersin.org 10 February 2019 | Volume 9 | Article 100284

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ryva et al. WGA Kills AML Cells

FIGURE 7 | WGA induced AML cell killing in xenograft mouse model.

(A) Treatment scheme- HL-60 cells injected at day 1 and at day 6, 8 and 10

WGA 5mg/kg injected intratumorally and mice were sacrificed at day 24.

(B) Pictures of mice treated with PBS or WGA (C) Graph showing tumor

volume (mm3) of PBS and WGA injected mice. ***p < 0.001.

these mice at day 24. Tumors in PBS injected mice reached
volume upto 1,000 mm3, while there were no measurable tumors
in WGA injected mice. NSG mice lack mature lymphocytes
including B cells, T cells and NK cells, so it is highly likely that
AML cell killing by WGA lectin seen in this model is a direct
anti-leukemic effect by WGA. Mice injected with WGA did not
show any obvious signs of toxicity suggesting that this therapeutic
strategy may be safe, and it is worthy of further development for
AML, provided route of administration is optimized.

DISCUSSION

Dietary lectins, particularly wheat germ agglutinin, have been
shown to have important anti-cancer properties (18, 19,
22). However, knowledge of lectins’ impact on hematological
malignancies, such as AML, ALL, and NHL, is lacking. Because
these malignancies are in need of potential new treatments,
exploring dietary lectins can be a valuable starting point.
The panel of lectins chosen encompasses various carbohydrate
binding specifities and sizes, as well as sources of origin. We
demonstrated that lectins’ effects on cancer is variable, with the
vast majority of dietary lectins having no impact at all on cancer
cell viability. WGA showed significant cell killing against five
cell lines tested (out of six). WGA was ineffective against OCI-
Ly10. Normal cells were also insensitive to doses of WGA, where

it showed significant killing activity against cancer cells. High
concentrations of WGA will kill normal cells as well, so choosing
the right dose of WGA is key to the success of treatment. We
demonstrate the dose specificity ofWGAwith AML cells showing
a significant cytotoxic effect on AML cells but not with the
normal cells. WGA killed all AML subtypes tested except M2,
this has to be tested further using many M2 patient samples and
if WGA fails to kill this particular subtype, it has to be studied
further. The exact reasons for this specificity is not known. WGA
binds to GlcNAc and it also interacts with sialic-acid containing
glyconjugates and oligosaccharides. Since most of the cancer
cells are hyper O-GlcNAcylated and hyper silalylated (34–39),
we could speculate that it might be the differences in levels of
GlcNAc expression and presence of sialylation on cell membrane
in different cells which accounts for WGA’s cell binding and
toxicity specificity. At higher doses, the mechanism of cell killing
may be agglutination of cell membrane.

Our data and the literature show the importance of both
sialic acid and GlcNAc in the cytotoxicity of WGA. However,
the role of each carbohydrate moiety in the lectin-induced death
of cells might vary from cell to cell. Sialic acid-specific lectins
and GlcNAc-specific lectins were not able to kill AML cells
on their own, signifying both properties are necessary for cell
killing. If sialic acid is removed using neuraminidase, there
is a reduction in binding and killing. The dual interaction to
both carbohydrate moieties might be required because of the
different locations of the carbohydrates within the cells. The
sialic acid interaction may occur outside the cell on the cell
membrane, while the GlcNAc binding may occur within the cell
after internalization as proposed by Schwarz et al. (22). However,
this mechanism of action may be specific to the pancreatic
cancer cells used in the study. Further studies are required to
understand any AML cell specific mechanism. Sialic acid and
GlcNAc interaction within the cell upon internalization may also
be key to the cell killing effects. These cell specific differences
could also be why the method of killing varies by cancer
type. Mechanisms of cytotoxicity by WGA includes apoptosis,
necrosis, paraptosis, and cell cycle arrest. Our data demonstrates
WGA induces apoptosis and necrosis, but cell cycle analysis
revealed no significant differences.

WGA injected into the tumor arrested tumor growth in an
NSG xenograft AML model. PBS injected mice had large tumors
as expected, which excludes the possibility that intratumoral
injection procedure has any effect on tumor growth. Since we
used severely immune-compromised mice which lacks a proper
innate immune response, the AML killing effect observed might
be solely from WGA’s direct effect on AML. Studies in the
past suggested the possibility that WGA has harmful effects,
however, several recent studies have re-evaluated many of those
assumptions and suggested that WGA dangers are either non-
existent or have limited effects (40, 41). Importantly, the in vitro
and in vivo concentrations of WGA used in this study is very
low and no toxicity is reported using this low concentration.
Interestingly, more recently dietary lectins including WGA have
been associated with the beneficial effect on health, including
reduced risks of type 2 diabetes, cardiovascular disease, some
types of cancer and weight management (41). Chronic exposure
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of high doses of WGA can lead to toxic effects like development
of anti WGA antibodies, platelet aggregation or red blood cell
(RBC) agglutination. We used low doses of WGA and short
exposure timings, where these kind of toxicity is not a concern.
WGA has been shown to elicit pro-inflammatory conditions,
and its toxic effects could only be seen at a very high dose (of
7 g/kg body weight over a period of 10 days) in the normal
gastrointestinal tract of rats, suggesting that WGA being non-
toxic in a huge range (21, 40). A final word on toxicity or atoxicity
of WGA is pending due to lack of in vivo studies, whereas
microgram range of WGA used for targeting or carrier system
is unlikely to provoke toxic effects (40).

The current therapies for treatment of AML include
chemotherapy, radiation therapy, and stem cell transplant. These
therapies rely on cell killing and differentiation which lead to cell
death. AML treatment regimen can also change depending on
the age and health of the patient. In a young patient, induction
therapy of high doses of cytarabine and daunorubicin will be
used to clear as much of the tumor burden as possible. Once
the tumor is cleared, lower doses of these drugs will be used for
maintenance. In older and unhealthy patients, these high doses
are contraindicated because of their toxicity and potential life-
threatening effects. In the AML M3 subtype acute promyelocytic
leukemia (APL), ATRA and arsenic trioxide can be used (42).
Common side effects of cytarabine include headache, nausea,
vomiting, and low blood counts, while less common side effects
include flu-like symptoms, loss of appetite, and pain in the hands,
feet, and eyes (43). The side effects of daunorubicin’s include
nausea, vomiting, diarrhea, and hair loss (44). Because of the
complexity of AML and its multiple subtypes, the treatment of
AML has changed very little over the last few decades. Because
of these factors, exploring WGA as a potential therapeutic is
worthwhile. The side effects of WGA, such as adverse toxicity
and hemagglutination, could be curtailed if administered at
low doses.

We show that dietary lectins may be a unique therapeutic tool
against hematological malignancies because of their cytotoxic
potential and limited toxicity to normal cells and tissues.
We characterized the effects on one subtype, OCI-AML3,
leaving open the exploration of many other cancer types and
conditions, such as drug-resistance and relapse. Characterization
of WGA-killing may also lead to more information on novel
cell killing pathways. Insights into WGA as a drug-delivery

system (45, 46), might also be utilized in combination with
our findings to develop potential targeted treatments for

hematological malignancies.
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MiR-409-3p Inhibits Cell Proliferation
and Invasion of Osteosarcoma by
Targeting Zinc-Finger E-Box-Binding
Homeobox-1
Liang Wu†, Yiming Zhang†, Zhongyue Huang, Huijie Gu, Kaifeng Zhou, Xiaofan Yin and
Jun Xu*

Minhang Hosptial, Fudan University, Shanghai, China

Osteosarcoma (OS) is the most common bone cancer worldwide. There is evidence
that microRNA-409 (miR-409-3p) is involved in tumorigenesis and cancer progression,
however, its possible role in OS requires clarification. In the present study, we evaluated
the expression level, clinical significance, and mode of action of miR-409-3p in
OS. The miR-409-3p levels were diminished in the OS cells and tissues compared
with associated adjacent non-tumor tissues and a non-cancer osteoplastic cell line.
Low miR-409-3p expression levels were associated with clinical stage and distant
metastasis in patients with OS. Resumption of miR-409-3p expression attenuated OS
cell proliferation and invasion. Additionally, based on informatics analyses, we predicted
that zinc-finger E-box-binding homeobox-1 (ZEB1) is a possible target of miR-409-3p.
This hypothesis was confirmed using luciferase reporter assays, reverse transcription-
quantitative real-time polymerase chain reaction, and Western blot analyses. The
findings of the current study indicated that ZEB1 was up-regulated in the OS tissues
and cell lines, and that this up-regulation was inversely proportional to miR-409-3p
expression levels. Furthermore, down-regulation of ZEB1 decreased OS cell invasion
and proliferation, illustrating that the tumor suppressive role of miR-409-3p in OS cells
may be exerted via negative regulation of ZEB1. Taken together, our observations
highlight the potential role of miR-409-3p as a tumor suppressor in OS partially through
down-regulation of ZEB1 and suggest that miR-409-3p has potential applications in
OS treatment.

Keywords: osteosarcoma, microRNA-409, molecular mechanism, zinc-finger E-box-binding homeobox-1,
invasion

INTRODUCTION

Osteogenic sarcoma (osteosarcoma; OS) is among the most common forms of bone cancer globally.
The incidence ranges from 4 to 5 cases per million among children and teenagers (Gill et al.,
2013; Tang et al., 2014). The OS tumors are always located in the distal femur or proximal tibia,
and tumors in these regions present a high tendency to destroy adjacent normal tissues (Cates,
2016; Righi et al., 2016). Despite considerable advances in treatment strategies such as surgery,
radiotherapy, chemotherapy and new antineoplastic agent (Li et al., 2015), cases with metastatic
or recurrent OS have an inferior prognosis, and the likelihood of long-term survival for patients

Frontiers in Pharmacology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 137288

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00137
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2019.00137
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00137&domain=pdf&date_stamp=2019-02-21
https://www.frontiersin.org/articles/10.3389/fphar.2019.00137/full
http://loop.frontiersin.org/people/681600/overview
http://loop.frontiersin.org/people/681108/overview
http://loop.frontiersin.org/people/643733/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00137 February 19, 2019 Time: 17:27 # 2

Wu et al. miR-409-3p Inhibits Progression of Osteosarcoma

with advanced OS remains very low (Anderson, 2015; Isakoff
et al., 2015). Genetic and epigenetic variations and potential
environmental factors that block mesenchymal stem cell
differentiation into osteoblasts contribute to OS tumorigenesis
and tumor development (Sun et al., 2015; Li et al., 2018; Zhang
et al., 2018), however, the detailed and complex molecular
mechanisms underlying OS development remain largely
unknown. Therefore, the molecular mechanisms underlying OS
formation and progression require investigation to facilitate the
development of novel therapeutic approaches for application in
patients with OS.

MicroRNAs (miRNAs) are a subtype of endogenous, non-
coding, single-stranded, short RNAs, with an approximate range
in length of 19–25 nucleotides (Esteller, 2011). miRNAs can
regulate the expression of protein-coding genes by binding
to complementary sequences in the 3′-untranslated regions
(3′ UTRs) of target genes, causing translational repression
or mRNA cleavage (Bartel, 2004). miRNAs play key roles in
various cellular processes, including apoptosis, cell proliferation,
differentiation, angiogenesis, invasion, and metastasis (Gambari
et al., 2016). Recently, the abnormal expression of miRNAs has
been implicated in the etiology and development of various
human cancers (Chen et al., 2016; Li and Wang, 2016; Wang
et al., 2016). The potential biological roles of several miRNAs
abnormally expressed in OS during its tumorigenesis have also
been highlighted. For example, miR-422a expression is down-
regulated in OS cell lines and tissues. Conversely, high levels
of miR-422a expression can suppress OS cell invasion and
proliferation, and improve paclitaxel and cisplatin-mediated
apoptosis (Liu et al., 2016). Therefore, there is a need to explore
the potential role of miRNA expression in OS and to unravel the
underlying primary molecular mechanisms, which may provide
information useful for designing new and efficient therapeutic
strategies aimed at curing OS.

The effect of miR-409-3p has been investigated in various
human malignancies, including breast (Ma et al., 2016), gastric
(Zheng et al., 2012), colon (Tan et al., 2016), and prostate (Josson
et al., 2015) cancers, however, its role of miR-409-3p in OS
remains unclear. Latest study confirmed the interaction of miR-
409-3p and ZEB1 played a role in the progression process of non-
small cell lung cancer, indicating ZEB1 acted as a direct target of
miR409-3p and could be modulated by miR-409-3p (Qu et al.,
2018). Herein, we hypothesis there exists the miR-409-3p/ZEB1
axis in OS and report the first investigation of the expression
levels, clinical significance, and biological functions of miR-409-
3p in OS, as well as its underlying molecular mechanism.

MATERIALS AND METHODS

Ethics Statement
All study participants voluntarily provided written consent before
entering the study. We obtained the approval of The Ethics
Committee of the Minhang Hospital, Zhongshan Hospital, Fudan
University for Disease Control and Prevention. The methodology
used in this study completely conformed to the recommendations
of CONSORT 2010.

Tissue Specimens
Forty-nine pairs of osteosarcoma tumor and adjacent non-
tumor tissues were collected from patients with osteosarcoma
at Minhang Hospital, Zhongshan Hospital, Fudan University.
No participants underwent chemotherapy or radiotherapy before
surgery. All tissues samples were directly transferred into liquid
nitrogen and were stored at−80◦C until RNA extraction.

Cell Lines
OS cell lines, including HOS (GDC76) and MG63 (GDC074)
were obtained directly from the Chinese Academy of Medical
Sciences (Beijing, China) Cell Resource Center. A non-cancer
osteoblastic cell line (hFOB 1.19 CRL-11372) was obtained from
the American Type Culture Collection (ATCC; Manassas, VA,
United States). All cells were incubated in Dulbecco’s modified
Eagle medium (DMEM; Gibco, Invitrogen Life Technologies,
Carlsbad, CA, United States) supplemented with 10% fetal bovine
serum (FBS; Gibco, Invitrogen Life Technologies, Carlsbad, CA,
United States). All experimental cells were maintained at 37◦C in
5% (V/V) carbon dioxide (CO2) and passaged every 2–3 days.

Cells were then seeded in 6-well plates at a density
of 50–60% confluence for transfection. After overnight
incubation, cells were transfected with miR-409-3p mimics,
negative control miRNA mimics (miR-NC), ZEB1 siRNA,
or scrambled siRNA (GenePharma, Shanghai, China), using
Lipofectamine 2000 transfection reagent (Invitrogen, Carlsbad,
CA, United States), according to the manufacturer’s guidelines.
Post-transfection (6 h), the culture medium was changed to
DMEM containing 10% FBS.

Reverse Transcription-Quantitative
Real-Time Polymerase Chain Reaction
(RT–qPCR)
RNA was extracted using Trizol reagent (Invitrogen, Carlsbad,
CA, United States), following the manufacturer’s directions.
A TaqMan Micro-RNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, United States) was used to reverse-
transcribe miRNA, and qPCR performed using a TaqMan
Micro-RNA PCR Kit (Applied Biosystems, Foster City, CA,
United States). Reverse transcription of mRNA was performed
using the M-MLV Reverse Transcription system (Promega
Corporation, Madison, WI, United States). To determine
ZEB1 mRNA expression levels we used the primers: forward
5′-AGGCAATAGGTTTTGAGGGCCAT-3′ and reverse 5′-
TGCACCTTCTGTCTCGGTTTCTT-3′ and SYBR Premix Ex
Taq (TaKaRa, Dalian, China). Endogenous U6 small nuclear
RNA (primers: forward, 5′-CTCGCTTCGGCAGCACA-3′;
reverse, 5′-AACGCTTCACGAATTTGCGT-3′) was amplified
as an internal control for miR-409-3p, and β-actin (primers:
forward, 5′-AGCGAGCATCCCCCAAAGTT-3′; reverse,
5′-GGGCACGAAGGCTCATCATT-3′) was amplified as an
internal control for ZEB1 mRNA. All RT-qPCR experiments
were conducted using an ABI7500 Real-time PCR system
(Applied Biosystems, Carlsbad, CA, United States). Relative
mRNA or miRNA expression levels were quantified using the
2−11Ct method (Livak and Schmittgen, 2001).
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3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide (MTT)
Assay
Post-transfection (24 h), cells were re-seeded into 96-well plates
at 3,000 per well. Cells were maintained at 37◦C in 5% (V/V)
CO2 for 4 days. Then, cell proliferation was tested at the indicated
times using the MTT assay (Sigma, St. Louis, MO, United States).
In brief, 0.5 mg/mL MTT solution was added to cells, which were
then incubated at 37◦C for a further 4 h. Subsequently, we added
150.0 µL DMSO (Sigma, St. Louis, MO, United States) into each
to dissolve the formazan crystals. Spectrometric absorbance was
determined using a microplate reader (Bio-Rad Laboratories Inc.,
Hercules, CA, United States) at a wavelength of 490 nm.

Cell Invasion Assay
After 48 h transfection, cells were collected and suspended
in FBS-free culture medium. Then, 5 × 104 cells were added
into upper chambers of a 24-well Transwell Permeable Support
device (8-µm pores, Costar; Corning Incorporated, Corning, NY,
United States) coated with Matrigel (BD Biosciences, San Jose,
CA, United States), while 500.0 µL culture medium containing
20% FBS was added to the lower chambers and cells incubated
at 37◦C in 5% CO2 for 48 h. We removed cells in the upper
chambers using cotton swabs, then invaded cells were fixed with
methanol, stained with 0.5% crystal violet, washed, and dried
in air. An inverted microscope (Olympus Corporation, Tokyo,
Japan) (200 × magnification) was used to calculate the number
of invading cells in five randomly selected fields.

Prediction of miR-409-3p Targets and
Luciferase Reporter Assays
Two miRNA targeted-gene databases, TargetScan1 and
miRanda2, were used to predict target genes of miR-409-
3p. HEK293T cells (ATCC) were seeded into 24-well plates at
40–50% confluence. After 24 h, cells were transfected with miR-
409-3p mimics or miR-NC and pmirGLO-ZEB1-3′UTR-mutant
(Mut) (GenePharma) or pmirGLO-ZEB1-3′UTR-wild-type (Wt)
using Lipofectamine 2000. Cells were maintained at 37◦C in 5%
(V/V) CO2 for 48 h and luciferase reporter assays conducted
using the Dual-Luciferase Reporter Assay System (Promega
Corporation, Madison, WI, United States). Renilla luciferase was
used as an internal control.

Western Blot Analyses
Cells were harvested after transfection for 72 h and lysed
with RIPA Lysis Buffer (Beyotime Institute of Biotechnology,
Haimen, China). Protein concentrations were determined using
a BCA assay kit (PierceTM; Thermo Fisher Scientific, Inc.).
Equal amounts of protein were separated by SDS-PAGE,
transferred to polyvinylidene difluoride membranes (Millipore,
MA, United States), blocked with 5% skimmed milk for 2 h
at room temperature, then incubated overnight at 4◦C with
mouse anti-human GAPDH monoclonal antibody (sc-137179;

1http://www.targetscan.org/index.html
2http://www.microrna.org

1:1000 dilution; Santa Cruz Biotechnology) or mouse anti-human
ZEB1 monoclonal antibody (sc-81428; 1:1000 dilution; Santa
Cruz Biotechnology, CA, United States). Membranes were then
washed three times using Tris-buffered saline containing 0.1%
Tween-20 and probed with horseradish peroxidase-conjugated
secondary immunoglobulin G goat anti-mouse (catalog no, sc-
2005; 1:10,000) for 2 h at room temperature. Protein bands were
visualized using enhanced chemiluminescence reagents (Bio-
Rad Laboratories Inc., Hercules, CA, United States) and band
densities analyzed using AlphaEase FC software (version 4.0.1;
ProteinSimple, San Jose, CA, United States).

Statistical Analyses
Data were presented as means ± S.D. or box plots. We used
SPSS 17.0 software (SPSS Inc., Chicago, IL, United States)
for data analyses. Differences among groups were evaluated
using one-way ANOVA corrected for multiple comparisons or
Student’s t-tests. The χ2-test was used to evaluate associations
between miR-409-3p expression levels and clinicopathological
factors. Spearman’s correlation analysis was used to determine
the correlation between miR-409-3p and ZEB1 mRNA expression
levels. All statistical tests were two-sided; P < 0.05 were
considered statistically significant.

RESULTS

MiR-409-3p Was Downregulated in OS
Tissues and Cell Lines
RT-qPCR was used to evaluate miR-409-3p expression levels in
OS tumor and adjacent non-tumor tissues. Expression of miR-
409-3p was lower in OS tissues than that in adjacent non-tumor
and normal tissue controls (Figure 1A, P < 0.05). Moreover,
remarkable low levels of MiR-409-3p expression were detected in
two OS cell lines relative to those in a non-cancer osteoblastic cell
line (hFOB 1.19) (Figure 1B, P < 0.05).

Relationship Between miR-409-3p
Expression and OS Clinicopathological
Factors
We also determined the relationship between miR-409-3p
expression levels and OS clinicopathological factors. Our data
showed that low miR-409-3p expression levels were significantly
associated with advanced clinical stage (P = 0.035) and distant
metastasis (P = 0.030), however, there were no significance
associations with other clinicopathological factors, including sex
(P = 0.961), age (P = 0.804), and tumor size (P = 0.851) (Table 1).

MiR-409-3p Reduces OS Cell
Proliferation and Invasion
To investigate the role of miR-409-3p in OS, we transfected
MG63 and HOS cells with miR-409-3p mimics, and used RT-
qPCR to determine miR-409-3p expression levels (Figure 2A,
P < 0.05). We investigated the role of miR-409-3p in OS cell
proliferation using MTT assays conducted in MG63 and HOS
cells transfected with miR-409-3p mimics or miR-NC. Expression
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FIGURE 1 | Expression of miR-409-3p in OS tissues and cell lines. (A) Relative expression levels of miR-409-3p in 49 paired OS tumor and adjacent non-tumor
tissues were evaluated by RT-qPCR. (B) Expression of miR-409-3p in OS cell lines compared with that in a non-cancer osteoblastic cell line (hFOB1.19).
miR-409-3p, microRNA-409. OS, osteosarcoma. ∗P < 0.05, ∗∗P < 0.01 compared with the control group.

TABLE 1 | Correlation of microRNA-409 expression with clinicopathological
feature of osteosarcoma.

Variables Case number microRNA-409 expression P

Low High

Sex 0.961

Male 31 17 14

Female 18 10 8

Age (years) 0.804

< 20∗ 21 12 9

≥ 20 28 15 13

Tumor size (cm) 0.851

< 8 26 14 12

≥ 8 23 13 10

Clinical stage 0.035∗

I-II 23 9 14

III-IV 26 18 8

Distant metastasis 0.030∗

Present 24 17 7

Absent 25 10 15

∗These participants were above 16 years age. ∗P < 0.05.

of miR-409-3p led to a significant decline in MG63 and HOS
cell proliferation (Figure 2B, P < 0.05). Similarly, the invasion
capacity of HOS and MG63 cells transfected with miR-NC or
miR-409-3p mimics was estimated using a cell invasion assay. As
illustrated in Figure 2C, the introduction of miR-409-3p mimics
into HOS and MG63 cells resulted in a considerable decline of
invasion ability relative to the miR-NC group (P < 0.05). These
observations suggested that miR-409-3p has a crucial role in the
suppression of OS growth and metastasis.

A Potential miR-409-3p Target in OS
We then investigated the molecular mechanisms underlying the
tumor suppression caused by miR-409-3p in OS by predicting

its potential targets using bioinformatics analysis. The 3′ UTR
of ZEB1 was predicted to contain an miR-409-3p seed match
at position 1280-1286 and has previously been reported as
extensively upregulated in OS and participates in the regulation
of OS tumorigenesis and progression (Shen et al., 2012; Li et al.,
2016; Liu and Lin, 2016); therefore, we primarily focused on
ZEB1 (Figure 3A) in this study. To validate the prediction,
we performed luciferase reporter assays in HEK293T cells
transfected with plasmids containing Mut and Wt ZEB 3′ UTR,
along with miR-409-3p mimics or miR-NC. Luciferase activity
was markedly downregulated in cells transfected with Wt ZEB1-
3′ UTR and miR-409-3p mimics (Figure 3B, P < 0.01), however,
no significant difference was observed in cells transfected with
mutated ZEB1-3′ UTR and miR-409-3p mimics, suggesting
that miR-409-3p could directly target the 3′ UTR of ZEB1.
Additionally, RT-qPCR data showed that restoration of miR-409-
3p expression led to down-regulation of ZEB1 mRNA expression
in MG63 and HOS cells (Figure 3C, P < 0.01). Moreover,
Western blot analysis demonstrated that miR-409-3p reduced
ZEB1 protein expression in MG63 and HOS cells (Figure 3D,
P < 0.05). In vivo assay showed the protein levels in tumor tissues
were significantly lower than those in adjacent normal tissues
(Figure 3E, P< 0.01). To summarize, Our data demonstratedthat
ZEB1 is potentially a direct target gene of miR-409-3p in OS.

Upregulation of ZEB1 in OS Tissues and
Negative Correlation of Its Expression
With That of miR-409-3p
ZEB1 is recognized as a direct target gene of miR-409-3p
in OS; therefore, we next investigated whether miR-409-3p
expression levels were negatively correlated with those of ZEB1
in OS. Therefore, we performed RT-qPCR to evaluate ZEB1
mRNA expression levels and found that they were higher in
OS specimens than adjacent non-tumor tissues (Figure 4A,
P < 0.05). Moreover, Spearman’s correlation analysis indicated
an inverse relationship between miR-409-3p and ZEB1 mRNA
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FIGURE 2 | The effects of miR-409-3p overexpression on cell proliferation and invasion in OS. (A) Relative expression of miR-409-3p in MG63 and HOS cells
following transfection with miR-409-3p mimics or miR-NC. (B) MTT assays were performed to assess the effect of miR-409-3p overexpression on MG63 and HOS
cells proliferation. (C) Cell invasion assays were conducted in MG63 and HOS cells following transfection with miR-409-3p mimics or miR-NC. miR-409,
microRNA-409-3p (magnification, ×200). OS, osteosarcoma. miR-NC, negative control microRNA mimics. ∗P < 0.05, ∗∗P < 0.01 compared with the control group.

FIGURE 3 | ZEB1 is a direct target of miR-409-3p in OS. (A) ZEB1 3′ UTR sequences containing wild type and mutant miR-409-3p binding sites. (B) Luciferase
reporter assays performed in HEK293T cells co-transfected with miR-409-3p mimics or miR-NC, and pmirGLO-ZEB1-3′UTR Wt or pmirGLO-ZEB1-3′UTR Mut.
After transfection (48 h), cells were collected and luciferase activities measured. ZEB1 mRNA (C) and protein (D) were detected in MG63 and HOS cells transfected
with miR-409-3p mimics or miR-NC. miR-409, microRNA-409-3p. (E) Protein levels of ZEB1 in tumor tissues and adjacent normal tissues. OS, osteosarcoma.
miR-NC, negative control microRNA mimics. Wt, wild type. Mut, mutant. ZEB1, Zinc-finger E-box-binding Homeobox-1. ∗P < 0.05, ∗∗P < 0.01 compared with the
control group.
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FIGURE 4 | Inverse correlation between miR-409-3p and ZEB1 mRNA expression levels in OS tissues. (A) RT-qPCR analysis showing that ZEB1 mRNA levels were
increased in OS tissues. (B) Spearman’s correlation analysis of the association between miR-409-3p and ZEB1 mRNA in OS tissues. (C) Expressions of miR-409-3p
and ZEB1 mRNA in cell lines. miR-409, microRNA-409-3p. OS, osteosarcoma. ZEB1, Zinc-finger E-box-binding Homeobox-1. mRNA, message RNA. ∗P < 0.05,
∗∗P < 0.01 compared with the control group.

expression (Figure 4B, r = -0.4725, P = 0.0006) in OS tissue
samples. As shown in Figure 4C, we observed higher expression
of ZEB1 mRNA and lower expression of miR-409-3p in tumor
cell lines, when compared to normal cell line. Our results further
confirm ZEB1 as a potential target of miR-409-3p in OS.

Inhibition of ZEB1 Has Similar Effects to
Those of miR-409-3p Overexpression in
OS Cells
To explore the biological roles of ZEB1 in response to miR-409-
3p inhibition in OS, we investigated whether ZEB1 knockdown
mimicked the effects of miR-409-3p overexpression in OS cells.
ZEB1-targeting siRNA was used to knockdown ZEB1 expression
in HOS and MG63 cells. As shown in Figure 5A, ZEB1
protein was successfully knocked down in HOS and MG63 cells
transfected with ZEB1 siRNA (P < 0.01). MTT and cell invasion
assays showed that knockdown of ZEB1 by the introduction
of ZEB1 siRNA suppressed MG63 and HOS cell proliferation

(Figure 5B, P < 0.05) and invasion (Figure 5C, P < 0.05),
suggesting that negative regulation of ZEB1 may mediate the
tumor suppressive effects of miR-409-3p in OS cells.

DISCUSSION

Dysregulation of miRNAs is a frequent event in various types
of human cancer and has a pivotal role in the instigation
of tumorigenesis and tumor progression where miRNAs can
function as oncogenes or tumor suppressor genes (Fenger et al.,
2014; Vanas et al., 2016). Furthermore, targeting miRNA with
various types of chemically modified oligonucleotides has the
potential to alter miRNA functions, providing a theoretical
foundation for miRNA-based targeted therapy for specific human
cancers (Trang et al., 2010; Imani et al., 2017; Tsai et al.,
2017). Thus, research into the expression levels, biological roles,
and fundamental molecular mechanisms of miRNAs has the
potential to stimulate the development of novel approaches to
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FIGURE 5 | ZEB1 under-expression has similar effects to miR-409-3p over-expression on OS cell proliferation and invasion. (A) ZEB1 protein expression was
detected in MG63 and HOS cells transfected with ZEB1 siRNA or NC siRNA. MTT (B) and cell invasion (C) assays were conducted in MG63 and HOS cells
transfected with ZEB1 siRNA or NC siRNA. miR-409, microRNA-409-3p (magnification, × 200). OS, osteosarcoma. ZEB1, Zinc-finger E-box-binding Homeobox-1.
mRNA, message RNA. siRNA, small interfering RNA. NC, negative control. ∗P < 0.05, ∗∗P < 0.01 compared with the control group.

the treatment of different types of cancer. Our data demonstrated
that miR-409-3p expression levels were significantly down-
regulated in OS tissues and cells relative to adjacent non-tumor
tissues and a non-cancer osteoblastic cell line, respectively.
Our observations are consistent with the findings of Ma
et al. in breast cancer tissues and cell lines (Zheng et al.,
2012). Additionally, reduced miR-409-3p expression levels were
associated with clinical stage and distant metastasis in patients
with OS, and our results also demonstrate that expression of
miR-409-3p suppressed proliferation and invasion of OS cells.
Furthermore, our data suggest that ZEB1 is a functional target
of miR-409-3p in OS.

Recently, several studies have reported roles for abnormal
miR-409-3p expression in the initiation and progression of
various human cancers. For example, Josson et al. found that
miR-409-3p expression was elevated in prostate cancer and
that its re-expression in normal prostate fibroblasts resulted
in a cancer-associated stroma-like phenotype, and miR-409-3p
was released in extracellular vesicles to induce cancer initiation
and epithelial-to-mesenchymal transition both in vitro and
in vivo (Josson et al., 2015). Zheng et al. (2012) showed that
miR-409-3p expression levels were decreased in gastric cancer
and that they were negatively associated with tumor-node-
metastasis stage and lymph node metastasis in patients with
gastric cancer. Upregulation of miR-409-3p attenuated gastric
cancer cell motility in vitro and decreased their ability to induce
distal pulmonary metastases and peritoneal diffusion in vivo
(Zheng et al., 2012). Tan et al. (2016) found that miR-409-3p was
expressed at low levels in colon tumors and that its expression
was negatively correlated with resistance to oxaliplatin. Ectopic
expression of miR-409-3p improved the chemosensitivity of
oxaliplatin-sensitive and oxaliplatin-resistant colon cancer cells

(Tan et al., 2016). Therefore, miR-409-3p is a strong candidate for
a new therapeutic target for the treatment of cancer because of its
essential roles in cancer initiation and progression.

MiR-409-3p target identification is essential for understanding
its potential functions in OS and developing novel targeted
therapies for improving OS treatment. Potential miR-409-3p
target genes have been previously reported; for example, Beclin-
1 in colon cancer (Tan et al., 2016), radixin in gastric cancer
(Zheng et al., 2012), and Ras suppressor 1 and stromal antigen
2 in prostate cancer (Josson et al., 2015). In the current study,
we identified ZEB1 as a novel direct target of miR-409-3p in
OS. Based on bioinformatics analysis, we predicted that ZEB1
contains a miR-409-3p seed match at position 1280–1286 of
the ZEB1 3′ UTR. Luciferase reporter assays demonstrated that
miR-409-3p directly targeted the 3′ UTR of ZEB1. Furthermore,
Western blot and RT-qPCR analysis indicated that endogenous
miR-409-3p has a negative regulatory effect on ZEB1 mRNA
and protein expression in OS cells. Moreover, ZEB1 expression
was high in OS tissues and inversely associated with that
of miR-409-3p expression and knockdown of ZEB1 led to
decreased OS cell proliferation and invasion, similar to miR-409-
3p overexpression.

ZEB1, a member of the deltaEF1 family of two-handed
zinc-finger transcription factors, maps to the short arm of
human chromosome 10 (Zhang et al., 2019). ZEB1 expression
is abnormally upregulated in various types of human cancer,
including thyroid (Zhang et al., 2016), cervical (Ma et al., 2015),
gastric (Jia et al., 2012), endometrial (Feng et al., 2014), and
prostate (Drake et al., 2009) cancers. Accumulating evidence
shows that ZEB1 has crucial roles during cancer initiation
and progression (Kenney et al., 2011; Jia et al., 2012; Liu
et al., 2012). In OS, Shen et al. reported that ZEB1 is highly
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expressed in tumor tissues and that its levels are significantly
associated with lung metastasis. The signal network of ZEB1
involved in malignant transformation in various types of tumor
is complicated. All of the upstream and downstream molecules
participate in activating the signaling pathways in cell survival,
senescence, chemosensitivity and immune escape, which may
trigger the regulation of miR-409-3p. These findings suggest that
inhibition of OS has the potential to be a novel and effective
therapeutic target with the aim of curing this type of cancer.
The limitations of this study include that we did not investigate
the effects of ectopic ZEB1 over-expression on cell proliferation
and invasion activity of miR-409-3p-expressing osteosarcoma
cells and that the number of samples in this study is small thus
multi-center trial is still needed.

CONCLUSION

In conclusion, here we establish for the first time that miR-409-
3p expression is down-regulated in OS tissues and cell lines.
Decreased miR-409-3p expression levels were associated with
clinical stage and distant metastasis. MiR-409-3p targets ZEB1,
which may be associated with OS carcinogenesis and progression,
leading to inhibition of OS cell proliferation and invasion. Thus,

the miR-409-3p/ZEB1 axis can be considered a novel therapeutic
target for OS treatment. Further research is needed to explore
whether the potential of miR-409-3p/ZEB1 can be realized to
treat OS.
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Urokinase plasminogen activator receptor (uPAR), a member of the lymphocyte antigen 6

protein superfamily, is overexpressed in different types of cancers and plays an important

role in tumorigenesis and development. In this study, we successfully targeted uPAR

by CRISPR/Cas9 system in two human cancer cell lines with two individual sgRNAs.

Knockout of uPAR inhibited cell proliferation, migration and invasion. Furthermore,

knockout of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and doxorubicin

in these cells. Although there are several limitations in the application of CRISPR/Cas9

system for cancer patients, our study offers valuable evidences for the role of uPAR in

cancer malignancy and drug resistance.

Keywords: cancer, uPAR, CRISPR/Cas9, malignancy, drug resistance

INTRODUCTION

Urokinase plasminogen activator (uPA) receptor (uPAR), also known as CD87 and encoded
by PLAUR gene, is a member of the lymphocyte antigen 6 protein superfamily (1). uPAR
is a glycoprotein consisting of 313 amino acid residues with only the extracellular domain,
no transmembrane and intracellular structures, and is attached to the cell membrane via
glycosylphosphatidylinositol anchors (1). uPAR binds to and activates uPA to cleaving plasminogen
to plasmin, thus triggering the remodeling of extracellular matrix and playing a key role in cell
adhesion, migration, proliferation, and survival (2). Besides uPA, uPAR can interact with other
proteins, including vitronectin, integrins, and EGFR, etc to regulate multiple signal pathways (2).
Compared to normal tissues, uPAR is highly expressed in many human cancers including lung,
breast, gastric, colorectal, pancreatic, bladder, and prostate cancers, etc (3). The expression of uPAR
in these cancers promotes the proliferation, metastasis, and invasion of cancer cells (3). Therefore,
uPARmay be an important biomarker and target for cancers. Indeed, many inhibitors of uPAR have
been developed. The inhibitors blocks the interaction of uPARwith uPA, including: small molecules
UK1 (4), WX-UK1 (5), WX-671 (6), etc; peptides Mupain-1 (7), AE105 (8), ATF (9), etc; and
monoclonal antibody ATN-291 (10). In addition, there are inhibitors that inhibit the interaction
of uPAR with integrins, including: peptides P25 (11), a325 (12), H245A (13), etc; and monoclonal
antibody ATN-658 (14). However, the poor affinity and bioavailability limit the application of these
inhibitors in clinic. Consequently, it is necessary to develop new approaches to target uPAR for
treatment cancer and other diseases.
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The RNA-guided clustered regularly interspaced short
palindromic (CRISPR) in combination with a CRISPR-
associated nuclease 9 (Cas9) nuclease system is a novel gene
editing technology by delivering the Cas9 complexed with a
synthetic guide RNA (gRNA) into a cell to cut the desired
genome location, allowing existing genes to be removed and/or
new ones added (15). Due to the advantages of faster, cheaper,
more accurate, and efficient, CRISPR/Cas9 system has been
widely used as a basic biology research tool, development of
biotechnology products and potentially to treat diseases (16).
In this study, we used CRISPR/Cas9 system targeting uPAR to
verify the role of uPAR in cancers.

MATERIALS AND METHODS

Cells and Reagents
The two multidrug resistant cancer cell lines HCT8/T and
KBV200 were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% FBS, penicillin (100 U/ml) and streptomycin
(100 ng/ml) at 37◦C in a humidified atmosphere of 5%
CO2. Restriction endonuclease BsmBI was from New England
Biolabs. Polyetherimide (PEI) was from Ploysciences. Cisplatin
was from Shandong Qilu Pharmaceutical. 5-FU, docetaxel,
and doxorubicin were from LC Laboratories. Puromycin was
from Selleck Chemicals. Methylthiazolyldiphenyl-tetrazolium
bromide (MTT) was from ApexBio Technology. Anti-uPAR
(D121140) antibody was from Shanghai sangon biotech. Anti-
Vinculin antibody (BM1611) was fromWuhan Boster Biotech.

Vector Generation, Lentivirus Production,
and Transduction
LentiCRISPRv2 vector (fromAddgene #52961) was digested with
BsmBI and ligated with annealed oligonucleotides (uPAR-sg1-
F: 5′-CACCGGACCAACGGGGATTGCCGTG-3′, uPAR-sg1-
R: 5′-AA-ACCACGGCAATCCCCGTTGGTCC-3′; uPAR-sg2-F:
5′-CACCGGGACCACGATCGTGCGCTTG-3′, uPAR-sg2-R: 5′-
AAACCAAGCGCACGATCGTGGTCCC-3′). HEK293T were
transfected using PEI at 70% confluency with recombinant
vectors and packaging vectors pMD2G and psPAX2. Viral
supernatant was harvested 96 h after transfection and stored at
−80◦C. HCT-8/T and KBV200 cells were transducted with viral
supernatant containing 10µg/ml polybrene, and were selected
with 100 and 10µg/ml puromycin respectively to establish the
stable cell lines.

Genomic PCR and Sequencing Analysis
The genomic DNA of cells was extracted with the QuickExtract
DNA extraction kit following the manufacturer’s protocol
and amplified with a pair of primers (Detection 1-F:
5′-GACAACGGACAGACTGGAA-3′, Detection 1-R: 5′-
CCGAATCGCTCTAAGTGG-3′) designed for the target region
of interest using a Pfu DNA polymerase. Followed by agarose gel
electrophoresis and ethidium bromide staining, the purified PCR
products were sequencing with an ABI 3131xl Genetic analyzer.

Western Blot Analysis
Cells were harvested and lysed in RIPA buffer (1% NP-
40, 0.5% sodium deoxycholate, 0.1%SDS, 10 ng/ml PMSF,
0.03% aprotinin, 1µM sodium orthovanadate) at 4◦C for
30min. Lysates were centrifuged for 10min at 14,000×g and
supernants were stored at −80◦C as whole cell extracts. Protein
concentration was quantified using with Bradford assay. Proteins
were separated on 10% SDS-PAGE gels and transferred to
polyvinylidene difluoride membranes. Membranes were blocked
with 5% BSA and incubated with the indicated primary
antibodies. Corresponding horseradish peroxidase-conjugated
secondary antibodies were used against each primary antibody.
Proteins were detected using the chemiluminescent detection
reagents and films.

Cell Morphology Assay
Cells were seeded on glass cover slips for 24 h and then fixed in
4% paraformaldehyde for 20min and permeabilized with 0.1%
Triton X-100 for 15min at room temperature. The coverslips
were incubated in the dark with 100 nM rhodamine-phalloidin at
room temperature for 30min. Nuclei were counterstained with
100 nM DAPI. The coverslips were rinsed in PBS and inverted
on a drop of anti-fade mounting media on a glass slide. Then,
these slides were sealed with neutral balsam and viewed under
the confocal microscope.

Cell Viability Assay
Cells were seeded into a 96-well plate at a density of 5,000
cells/well and treated with various concentrations of agents
for 72 h. Then 10 µl MTT was added to each well at a final
concentration of 0.5 mg/ml. After incubation for 4 h, formazan
crystals were dissolved in 50 µl of DMSO, and absorbance
at 570 nm was measured by plate reader. The concentrations
required to inhibit growth by 50% (IC50) were calculated from
survival curves as previously described (17).

Sphere Formation Assay
Cells were trypsinized, suspended in medium containing 0.3%
agar and 10% FBS and seeded at a density of 5× 102 cells/well in
a 12-well plate. The agar–cell mixture was plated onto a bottom
layer with 0.5% agar. Then treated cells were incubated in a
humidified incubator and fresh medium was added every 3 days.
Two weeks later, colonies were analyzed microscopically.

Cell Migration Assay
Cells were seeded into a 6-well plate, and reached 80–90%
confluence, the cell monolayer was wounded using a sterilized
10 µl pipette tip and washed with PBS two times. Cells were
allowed to migrate for 12, 24, and 36 h in serum-free medium,
and the wounds were observed and captured. The gap lengths
were measured from the photomicrographs.

Cell Invasion Assay
Cell invasion assays were performed with a modified Boyden
chamber (Corning) containing matrigel-coated polycarbonate
membrane filter (6.5mm diameter, 8µm pore size). Cells
were plated in the upper chamber and the lower chamber
contained medium with 10% FBS, and incubated for 24 h

Frontiers in Oncology | www.frontiersin.org 2 February 2019 | Volume 9 | Article 80298

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Targeting uPAR by CRISPR/Cas9

at 37◦C in 5% CO2. Non-migrated cells were scraped
from the upper surface of the membrane, and migrated
cells remaining on the bottom surface were photographed
and counted.

Statistical Analysis
The experimental data of this paper are the results of three
independent repetitions. The data obtained is presented in the
form of an average and a standard deviation. Statistical analysis

FIGURE 1 | Knockout of uPAR by CRISPR/Cas9 system. (A) The map of lentiCRISPRv2 vector. (B) The locations and sequences of two sgRNAs of uPAR. (C) The

protein expression levels of uPAR were examined by Western blot, and vinculin was used as loading control. The genomic DNA of cells was amplified and sequenced

by the designed primers. The sequencing comparison and original data of HCT8/T (D) and KBV200 (E) cells are shown.
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of data differences using t-test method. A P-value of <0.05 was
set as the criterion for statistical significance.

RESULTS

Knockout of uPAR by CRISPR/Cas9
System
To target uPAR with CRISPR/Cas9 system, we firstly used
lentiCRISPRv2 vector which expresses both hSpCas9 and the
chimeric guide RNA (Figure 1A) linked respectively, with
two targeting sequences from exon 2 of human uPAR gene
(PLAUR) end with a 5′NGG3′ PAM (protospacer adjacent motif)
sequence (Figure 1B). Then, the two successfully generated
vectors expressed sgRNA1 (sg1) or sgRNA2 (sg2) to target
uPAR were identified by sequencing. To establish cell lines
stably expressed sgRNA to target uPAR, HCT8/T, and KBV200

cells were selected with puromycin after transduction with
LentiCRISPRv2 viral supernatant. As shown in Figure 1C, the
protein levels of uPAR were undetectable by western blot in
both HCT8/T and KBV200 cells stably expressed either sg1
or sg2. To further identify the genomic change of targeting
uPAR by CRISPR/Cas9 system, the genomic DNA of cells was
extracted and amplified using the designed primers by PCR
reaction. The sequencing results of PCR productions showed
that 1 base was inserted into the target position of HCT8/T
uPAR-sg1 cells and 3 base mismatches and a large deletion
in the target position of HCT8/T uPAR-sg2 cells (Figure 1D).
There were 16 base deletions and 12 base mismatches in
the target position of KBV200 uPAR-sg1 cells and 51 base
deletions and 3 base mismatches in the target position of
KBV200 uPAR-sg2 cells (Figure 1E). These data suggest that cells
with stable knockout of uPAR by CRISPR/Cas9 system were
successfully established.

FIGURE 2 | Knockout of uPAR alters cell morphology. The morphology of HCT8/T (A) and KBV200 (B) cells was obtained with confocal microscope.
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Knockout of uPAR Alters Cell Morphology
To explore the effect of knockout of uPAR on cell morphology,
we stained cells with Rhodamine-labeled phalloidin and DAPI.
The results showed that HCT8/T and KBV200 cells with uPAR
knockout underwent morphologic changes from spindle-shaped
phenotype to round phenotype (Figures 2A,B), indicating that
knockout of uPAR alters cell morphology.

Knockout of uPAR Attenuates Cell
Proliferation
To investigate the effect of knockout of uPAR on cell
proliferation, we detected cell proliferation by MTT and sphere
formation assays. As shown in Figure 3A, knockout of uPAR

inhibited the growth of HCT8/T and KBV200 cells. Further
sphere formation assay showed that knockout of uPAR reduced
the sphere number and size of HCT8/T and KBV200 cells
(Figures 3B–E). These results suggest that knockout of uPAR
attenuates cell proliferation.

Knockout of uPAR Inhibits Cell Migration
To examine the effect of knockout of uPAR by CRISPR/Cas9
on cell migration, wound healing assay was used to detect
cell migration. The results showed that cell migration was
reduced in HCT8/T and KBV200 cells with uPAR knockout
(Figure 4), indicating that knockout of uPAR inhibits
cell migration.

FIGURE 3 | Knockout of uPAR attenuates cell proliferation. (A) Cell proliferation was evaluated by MTT assay. Representative spheres images and quantification of

HCT8/T (B,C) and KBV200 (D,E) cells were determined by sphere formation assay. **P < 0.01 vs. corresponding control.
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FIGURE 4 | Knockout of uPAR inhibits cell migration. Cell migration was determined with wound healing assay. Representative migration images and quantification of

HCT8/T (A,B) and KBV200 (C,D) cells were shown. *P < 0.05 and **P < 0.01 vs. corresponding control.

Knockout of uPAR Inhibits Cell Invasion
To further evaluate the effect of knockout of uPAR by
CRISPR/Cas9 on cell invasion, transwell assay was used to
detect cell invasion. As shown in Figure 5, cell invasion
was reduced in HCT8/T and KBV200 cells with uPAR
knockout, suggesting that knockout of uPAR inhibits
cell invasion.

Knockout of uPAR Decreases Multidrug
Resistance
To study the effect of knockout of uPAR by CRISPR/Cas9
on multidrug resistance, four chemotherapeutical drugs
5-FU, cisplatin, docetaxel, and doxorubicin were used to
treat cells, and cell survival was detected by MTT assays.
As shown in Figure 6, the cell survival curves shifted
to downward, and IC50 values of these four drugs were
reduced in HCT8/T and KBV200 cells with uPAR knockout.
These data indicate that knockout of uPAR suppresses
multidrug resistance.

DISCUSSION

Recently, it has been demonstrated that knockout of uPAR
using CRISPR/Cas9 system in mouse neuroblastoma Neuro
2A cells inhibit cell proliferation, reduce the number of Ki-67
positive cells, and down-regulate the mRNA expression level
of TrkC receptor (18). In the current study, we successfully
targeted uPAR in two cancer cell lines by CRISPR/Cas9 system
with two individual sgRNAs. Knockout of uPAR suppresses
cell proliferation, migration and invasion. Moreover, knockout
of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and
doxorubicin in these cells. Previous studies have shown that high
expression of uPAR leads to small cell lung cancer, head and neck
squamous cell carcinoma, and malignant pleural mesothelioma
resistant to chemotherapy (19–21). uPAR promotes the resistance
to tamoxifen in breast cancer by activated ERK1/2 activity (22),
and confers the resistance to gefitinib in non-small-cell lung
cancer through activated EGFR/pAKT/survivin signal pathway
(23). Therefore, uPAR plays important roles not only in cancer
malignancy but also in drug resistance.

Frontiers in Oncology | www.frontiersin.org 6 February 2019 | Volume 9 | Article 80302

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Targeting uPAR by CRISPR/Cas9

FIGURE 5 | Knockout of uPAR inhibits cell invasion. Cell invasion was determined with transwell assay. Representative invasion images and quantification of HCT8/T

(A,B) and KBV200 (C,D) cells were shown. **P < 0.01 vs. corresponding control.

FIGURE 6 | Knockout of uPAR decreases multidrug resistance. Cells survival was measured by MTT assay. The representative growth curve of HCT8/T (A) and

KBV200 (B) cells treated with the indicated concentrations of 5-FU, cisplatin, docetaxel, and doxorubicin for 72 h were shown.
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CRISPR/Cas9 system has been widely applied in exploring
the molecular mechanism of tumorigenesis, generating the
models for cancer research and identifying the targets for cancer
treatment, etc. A genome-wide CRISPR screen shows that loss-
of-function mutations of some genes including NF2, PTEN,
CDKN2A, TRIM72, FGA, miR-152, miR-345, and so on are able
to drive tumor growth and metastasis in a mouse model (24).
Using CRISPR/Cas9 technology to target MAN2A1-FER fusion
gene inhibits tumor proliferation and metastasis in the mouse
models of prostate and liver cancer (25). Colorectal cancer from
normal human intestinal epithelium organoids are generated
by introducing mutations in the tumor suppressor genes APC,
SMAD4 and TP53, and oncogenes KRAS and/or PIK3CA with
CRISPR/Cas9 system (26, 27). Liver tumors in mice are occurred
by using hydrodynamic injection of CRISPR/Cas9 plasmids and
sgRNAs that directly target the tumor suppressor genes PTEN
and p53 (28). Mouse pancreatic ductal adenocarcinoma models
are established by introducing 13 sgRNAs of different tumor
suppressor genes into expression vectors and then transferred
them to mouse pancreatic tissue (29). CDC25A is identifies as
a determinant of sensitivity to ATR inhibitors by a genome-
wide CRISPR screen (30). Deletion of genes such as NF1 and
MED12 with CRISPR/Cas9 system is associated with resistance
to vemurafenib (31).Moreover, the combination of CRISPR/Cas9
gene editing technology and immunotherapy, especially with
CAR-T cell therapy, will have enormous therapeutic potential
in leukemia, lymphoma, and some solid tumors (32, 33). Using
CRISPR/Cas9 system can produce universal CAR-T cells by
simultaneously targeting TCR and HLA-I (34) and enhanced
CAR-T cells by deleting T cell inhibitory receptor or signaling
molecule genes such as PD1 and CTLA4 (33, 35). We previously
have demonstrated that targeting ABCB1 by CRISPR/Cas9-based

genome editing reverses ABCB1-mediated multidrug resistance
in cancer cells, resulting in the increase of the sensitivity
and intracellular accumulation of the anti-cancer drugs (36).
Although there are several limitations such as off-targets and
delivery in the clinical application of CRISPR/Cas9 technology, it
is believed that CRISPR/Cas9 system will benefit cancer patients
in the near future.

In summary, our results have demonstrated that targeting
uPAR by CRISPR/Cas9-based genome editing causes knockout
of uPAR in human cancer cell lines, resulting in attenuation of
cell proliferation, migration, invasion and multidrug resistance.
Our study offers valuable evidences for the role of uPAR in cancer
malignancy and drug resistance.
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Background and Purpose: Breast cancer is one of the leading causes of death
among women. RNA binding proteins (RBPs) play a vital role in the progression of many
cancers. Functional investigation of RBPs may contribute to elucidating the mechanisms
underlying tumor initiation, progression, and invasion, therefore providing novel insights
into future diagnosis, treatment, and prognosis.

Methods: We downloaded RNA sequencing data from the cancer genome atlas (TCGA)
by UCSC Xena and identified relevant RBPs through an integrated bioinformatics
analysis. We then analyzed biological processes of differentially expressed genes (DEGs)
by DAVID, and established their interaction networks and performed pathway analysis
through the STRING database to uncover potential biological effects of these RBPs.
We also explored the relationship between these RBPs and the prognosis of breast
cancer patients.

Results: In the present study, we obtained 1092 breast tumor samples and 113 normal
controls. After data analysis, we identified 90 upregulated and 115 downregulated RBPs
in breast cancer. GO and KEGG pathway analysis indicated that these significantly
changed genes were mainly involved in RNA processing, splicing, localization and
RNA silencing, DNA transposition regulation and methylation, alkylation, mitochondrial
gene expression, and transcription regulation. In addition, some RBPs were related to
histone H3K27 methylation, estrogen response, inflammatory mediators, and translation
regulation. Our study also identified five RBPs associated with breast cancer prognosis.
Survival analysis found that overexpression of DCAF13, EZR, and MRPL13 showed
worse survival, but overexpression of APOBEC3C and EIF4E3 showed better survival.

Conclusion: In conclusion, we identified key RBPs of breast cancer through
comprehensive bioinformatics analysis. These RBPs were involved in a variety of
biological and molecular pathways in breast cancer. Furthermore, we identified five
RBPs as a potential prognostic biomarker of breast cancer. Our study provided novel
insights to understand breast cancer at a molecular level.

Keywords: breast cancer, RNA binding protein, integrated bioinformatics analysis, survival, prognosis
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and a
main cause of cancer death among women. In 2018, there was
an estimated 2.1 million newly diagnosed female breast cancer
cases worldwide, accounting for about 25% of cancer cases among
women (Bray et al., 2018). In recent years, with great progress
in medical technology, the diagnosis incidence of breast cancer
has increased year by year, and the age of onset or diagnosis
has consequently become younger. Breast cancer is aggressive
and has a high recurrence rate. Currently, the diagnosis of
breast cancer mainly relies on pathological assessments, imaging
tests, and tumor markers (McDonald et al., 2016), which creates
difficulty for meeting clinical requirements. In order to reduce
the recurrence rate and mortality of breast cancer patients, and
to improve their quality of life, it is vital to increase ability in
surveillance, early detection and diagnosis. Over the years there
has been an increase of molecular research on early diagnosis,
drug resistance and prognosis, and it is therefore valuable to
find new molecular markers on the occurrence, progression, and
prognosis, to further expand this research.

RNA-binding proteins (RBPs) are abundant and ubiquitously
expressed in cells. They play a central and conserved role in
gene regulation (Gerstberger et al., 2014b), and act as important
participants and coordinators to maintain genome integrity
(Nishida et al., 2017). RBPs have extensive capabilities including
regulating stability, maturation, posttranscriptional regulation
of mRNA stability, splicing, editing and translation, mRNA
localization and polyadenylation, which ultimately impacts the
expression of every gene in the cell (Campos-Melo et al., 2014;
Gerstberger et al., 2014a). Although it is known that post-
transcription contributes to tumor initiation and progression,
the role of RBPs in cancer remain relatively unexplored
(Wurth and Gebauer, 2015).

There is a large number of Human RBPs, but very few have
been studied in depth, such as AGO2, Nova, PTB, HuR, AUF1,
TTP, CUGBP2 which are known for their role in many regulation
processes, including interacting with non-coding RNAs (Iadevaia
and Gerber, 2015), controlling intracellular localization of non-
coding RNAs (Glisovic et al., 2008), methylation (Harvey
et al., 2017), forming the RNA induce silencing complex
(Connerty et al., 2015), and alternative splicing (Paronetto
et al., 2010). RBPs participate in comprehensive biological
processes, such as reproductive development, tumorigenesis and
apoptosis, and is therefore closely related to many human
diseases. A systematic functional study of RBPs will be
helpful to understand the function and mechanism of non-
coding RNA, but will also have a significant applied value in
studying the pathogenesis of diseases and in the screening of
innovative drug targets.

Currently, genes and signaling pathways that participate
in breast cancer tumorigenesis and progression remain to
be further investigated. Exploring new genes and pathways
associated with breast cancer may help to identify potential
molecular mechanisms, diagnostic markers and therapeutic
targets (Wang et al., 2018). High-throughput genomic analysis
techniques can be applied to screening for differentially

expressed genes (DEGs) and to understand the relevant
pathways and protein interaction networks (Vogelstein et al.,
2013). In this study, we downloaded breast cancer data from
the cancer genome atlas (TCGA), and selected differential
expressed RBPs to perform gene ontology (GO), KEGG
pathways and an interaction network and survival analysis.
The study identified a number of RBPs involved in breast
cancer. Some of which might be used as potential prognostic
biomarkers in the future.

RESULTS

Identification of Differently Expressed
RBPs (DEGs)
The database analysis contained 1092 breast tumor samples and
113 no-tumor control samples. We conducted a deep analysis of
1912 RBPs and a total of 205 RBPs were identified, including
90 upregulated and 115 downregulated RBPs (Supplementary
Table S1). We also constructed an expression heat map for all
DEGs (Figure 1).

Functional and Pathway Enrichment
Analysis of DEGs
To determine the function and mechanisms of these RBPs, all
DEGs were divided into two groups (upregulated group and
down-regulated group), and submitted to the David database for

FIGURE 1 | Differentially expressed RBPs in BRCA cancer. Unsupervised
clustering analysis was performed using the pheatmap function, using
complete and Euclidean as metrics in R, based on log2-transformed FPKM
values. The columns are samples and the rows are RBPs. The blue represents
down-regulation, while red represents up-regulation.
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GO analysis. We then conducted a KEGG pathway analysis for
all DEGs. We found that upregulated DEGs were significantly
enriched in RNA processing, RNA binding, mRNA binding, and
located in the non-membrane-bounded organelle, intracellular
non-membrane-bounded organelle, ribonucleoprotein complex,
intracellular organelle lumen, organelle lumen, membrane-
enclosed lumen, nuclear lumen, and the nucleolus (Table 1).
The GO result of down-regulated DEGs were significantly
enriched in the RNA processing, posttranscriptional regulation
of gene expression, mRNA metabolic process, mRNA processing,
regulation of translation and the RNA binding, and these
genes mainly consisted of the chromatoid body, P granule,
germ plasm, pole plasm, intracellular non-membrane-bounded
organelle and the non-membrane-bounded organelle (Table 1).

TABLE 1 | GO enrichment analysis results of differentially up-regulated genes and
down-regulated genes (DEGs).

Term P value FDR

Up-regulated
genes (DEGs)

RNA processing 3.23E-06 0.00478286

Non-membrane-bounded
organelle

4.53E-13 5.56E-10

Intracellular
non-membrane-bounded
organelle

4.53E-13 5.56E-10

Ribonucleoprotein complex 5.00E-11 6.15E-08

Intracellular organelle lumen 1.81E-09 2.22E-06

Organelle lumen 3.09E-09 3.80E-06

Membrane-enclosed lumen 4.90E-09 6.02E-06

Nuclear lumen 1.32E-06 0.00162684

Nucleolus 1.59E-06 0.00194848

RNA binding 5.78E-16 6.77E-13

mRNA binding 2.37E-05 0.02904478

Down-
regulated
genes (DEGs)

RNA processing 1.41E-10 2.21E-07

Posttranscriptional regulation of
gene expression

2.29E-09 3.58E-06

mRNA metabolic process 1.81E-08 2.82E-05

mRNA processing 2.40E-07 3.74E-04

Regulation of translation 1.05E-06 0.00164623

Chromatoid body 2.05E-06 0.00250038

P granule 3.57E-06 0.00436073

Germ plasm 3.57E-06 0.00436073

Pole plasm 3.57E-06 0.00436073

Intracellular
non-membrane-bounded
organelle

1.94E-05 0.02370618

Non-membrane-bounded
organelle

1.94E-05 0.02370618

RNA binding 1.46E-23 1.83E-20

TABLE 2 | The KEGG pathway analysis of all DEGs.

Term P value

Dorso-ventral axis formation 4.18E-03

Fatty acid elongation in mitochondria 3.11E-02

Pathogenic Escherichia coli infection 2.06E-02

According to the KEGG pathway enrichment analysis, all DEGs
mainly participated in Dorso-ventral axis formation, fatty acid
elongation in mitochondria and pathogenic Escherichia coli
infection (Table 2).

Protein-Protein Interaction Network
Building and Interrelation Analysis
Between Pathways
To better understand the role of these differentially expressed
RBPS in breast cancer development, we constructed co-
expression networks. All DEGs were submitted to STRING
10.5, we obtained 294 PPI nodes, 174 edges, and a p-value
of PPI concentration <1.00–16, while also including the result
of the GO and KEGG pathway. In the biological process,
there was mainly enrichment in the regulation of transcription,
translation level and epigenetics, and it also played an important
role in histone modification, mitochondrial gene expression,
cell metabolism, production of inflammatory mediators and
estrogen response. The cellular components are significantly
located in the ribosome, mitochondria, chromosomes, and
the telomeres, etc. Molecular functions showed that they
can bind to a variety of RNA and specific regions, and
were closely related to regulated enzymes activity, including
various metabolic and gene expressions, modification and
regulation of enzymes, and also bound to steroid hormones and
estrogen receptors. For KEGG pathway analysis, it was mainly
enriched in Glycolysis/Gluconeogenesis, mRNA surveillance
pathway, RNA degradation and pathogenic E. coli infection.
Then, we constructed the PPI network of these DEGs using
Cytoscape (Figure 2A). Two topological features, degree and
betweenness, were calculated to identify candidate hub nodes.
The higher the two quantitative values of a gene, the greater
the importance within the network (Liu et al., 2018b). The
co-expression network revealed that ELAVL2, VIM, MRPS12,
HSPE1, EZH2, HIST1H4B, and MRPL13 played a vital role in the
progression of breast cancer, and we further selected important
modules of target genes through MCODE (Figures 2B,C).
Finally, we used the ClueGO to externalize all biological
processes (Figures 3A,B) and the interaction modes of molecular
functions (Figures 4A,B).

Survival Analysis
The correlation between RBP expression and overall survival was
assessed using both the Cox regression analysis and the Kaplan-
Meier estimation method. Then, survival correlation P < 0.05
and key RBPs were selected to analyze their correlation with
survival prognosis. After that we used both the Kaplan-Meier
estimates and the log-rank test to assess the significant differences
of the two-group survival curves. As shown in the Figure 5, the
expression of selected target genes in tumor and normal tissues
was significantly different. In addition, patients with highly
expressed RBPs of EZR, DCAF13, and MRPL13 showed lower
survival, but patients with highly expressed RBPs of APOBEC3C,
EIF4E3 showed better survival (Figure 5). Therefore these genes
could be potential biomarkers for breast cancer prognosis.
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FIGURE 2 | Construction of protein-protein interaction (PPI) network. (A) Modules inferred from protein-protein interaction network. Elected important modules of
target gene (B,C) MCODE score >4, nodes >4.

MATERIALS AND METHODS

Data Sources Analysis
The corresponding clinical data was downloaded from the
following website http://gdac.broadinstitute.org/. Combined
with the RNA-seq expression data set, 1075 patients had
clinical information available including age, gender and
disease stage. The details have been listed in Supplementary
Table S1. We downloaded the RBPs expression data (TOIL
RSEM expected count and FPKM) processed by the Toil
pipeline (Vivian et al., 2017) based on RNA sequencing
(RNA-Seq) for TCGA Pan-Cancer cohort from the website
https://xena.ucsc.edu/. The data included the 60498 genes
annotated by GENCODE version 23. We then used
custom Perl script to extract the data from BRCA cancer,
for subsequent analysis. We applied the Voom function

(Law et al., 2014) in the Limma package, to estimate DEGs
between tumor and normal tissues for BRCA cancer. Those
with a fold change ≥ 1 and FDR < 0.05 were considered
to have statistical significance. We further identified
significantly dysregulated RBPs based on our RBP catalog.
Unsupervised clustering of differentially expressed RBPs was
performed based on log2-transformed FPKM values using the
“pheatmap” package in R.

GO Functional and Pathway Enrichment
Analysis
In order to comprehensively analyze the biological functions
of these RBPS, we used the GO and kyoto encyclopedia
of genes and genomes (KEGG) analysis by The database
for annotation, visualization and integrated discovery
(DAVID) version 6.7. The GO Term analysis included the
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FIGURE 3 | Interrelation analysis between pathways (biological process). (A) Interrelation between biological process pathways. (B) The proportion of each pathway.

biological process, cellular component and the molecular
function. Both P < 0.05 and FDR < 0.05 were considered
statistically significant.

Protein Interaction Network (PPI) and
Pathways Interaction Analysis Building
SRTING version 10.5 was used to evaluate the protein
interaction information of all DEGs, and their biological
functions were also obtained. Then, the interaction
network of these proteins was visualized by Cytoscape3.6.0,

and important modules both MCODE score and node
number > 4 were selected by the MCODE plug in
to Cytoscape version 3.6.0. Furthermore, the pathway
enrichment of P < 0.05 was analyzed by the ClueGO plug
to Cytoscape version 3.6.0.

Statistical Analysis
The correlation of RBP expression and overall survival was
assessed using both the Cox regression analysis and the
Kaplan-Meier estimation method, based on the “survival”
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FIGURE 4 | Interrelation analysis between pathways molecular functions. (A) Interrelation between molecular functions pathways. (B) The proportion of each
pathway.

package in R. For the Cox regression analysis, the RBP was
evaluated as a continuous variable with age and gender as
additional covariables. For the Kaplan-Meier estimates, we
defined the high-expression group and low-expression group

using the median RBP expression value as a cut-off point.
A significant difference of two-group survival curves was
assessed by a log-rank test. P < 0.05 was considered as
statistically significant.
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FIGURE 5 | Survival Kaplan-Meier Estimate (EZR p = 0.035, DCAF13 p = 0.026, MRPL13 p = 0.014, APOBEC3C p = 0.013, and EIF4E3 p = 0.026). Expression of
selected target genes in tumor and normal tissues was significantly different.

DISCUSSION

Currently, cancer causes more death than coronary heart
diseases or stroke does (Lin et al., 2017a). In recent
years, although molecular targeted therapy has improved
treatment effect, breast cancer is still the primary cause of

death among women. During clinical practice, biomarkers
that indicate the grade malignancy, metastasis and the
prognosis of breast cancer are needed. Microarray and
high-throughput sequencing technologies provide effective
tools for deciphering key genetic or epigenetic changes in
the occurrence of cancer, as well as promising biomarkers
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for cancer diagnosis, treatment, and prognosis (Kulasingam
and Diamandis, 2008; Cancer Genome Atlas Research
and Network, 2014). Our study integrated TCGA RNA
sequencing data, and identified DEGs between tumor and
normal tissue. We analyzed relevant biological pathways,
constructed protein interaction networks and performed
survival analyses to explore biological functions and clinical
application of these RBPs.

The biological functions of these DEGs were obtained
using the GO and KEGG pathway analysis. Firstly, the
enrichment of cell components is mainly located in the ribosome,
exonuclease, endonuclease, spliceosome and the ribonuclease,
which are important sites protecting the transmission of
biological information. The ribosome is a key organelle that
performs protein synthesis. The mutation of the ribosomal
protein regulates the translation and activity of p53, finally
resulting in diseases, and cancers (Goudarzi and Lindstrom,
2016). A number of RBPs exist in exonuclease, endonuclease
and sites with DNA damage, which may participate in DNA
damage repair (Goudarzi and Lindstrom, 2016). In addition,
RBPs are widely present in spliceosome. Expression of eukaryotic
genes is often accompanied by the RNA splicing process,
especially in the alternative splicing of RNA, which could
produce tissue and development specific mRNA. For example,
Sam68 can result in drug resistance and poor prognosis by
regulating the expression ratio of cyclinD1, an alternative
splicing in breast cancer (Paronetto et al., 2010). Some RBPs
also expressed in the telomere and telomerase and regulate
their activity. Telomere play an important role in regulating
cell growth and division. Some studies have found that
telomerase activity was suppressed in normal tissues but was
reactivated in tumors. Telomerase is overexpressed in 80–95%
of cancers and is likely to participate in cell malignant
transformation (Ruden and Puri, 2013). During the analysis
of cellular components, we also found the occurrence of
RBPs in the exosome, which could cause tumor invasion
and metastasis, immune escape and therapeutic resistance.
For example, SYNCRIP, as a component of the miRNA
sorting mechanism, in hepatocyte exosomes, can directly bind
to specific miRNA rich in exosomes, and regulates miRNA
localization (Santangelo et al., 2016).

Secondly, in terms of molecular function, RPBs can bind to
various RNAs such as pre-mRNA, Sn RNA, tRNA, mRNA
and regulates the activity of various enzymes, such as
hydrolytic enzyme, purine metabolic enzyme, and enzymes
involved in DNA synthesis, repair, and RNA metabolism.
Furthermore, some RBPs also bind to estrogen and steroid
hormone receptors. For example, MSI2 is highly expressed
in ER(+) breast cancer, and its expression is significantly
correlated with ESR1 expression, which affects the growth
of breast cancer cells, by changing the function of ESR1
(Kang et al., 2017).

Next, for the biological process, the function enrichment
of differential RBPs mainly occurred in RNA processing,
splicing, localization, transport, hydrolysis, and RNA silencing.
It participates in transposition regulation, methylation, and
alkylation of DNA. Some RBPs were also related to histone

H3K27 methylation, inflammatory mediators, and translation
regulation. Our findings are consistent with the consensus
that multiple genes, multiple molecules, and multiple pathways
are involved in breast cancer. Although the relationship with
breast cancer remains unclear, some RBPs have been reported
in other cancers. HuR can promote the growth of colorectal
cancer cell by regulating mRNA expression (Lopez de Silanes
et al., 2003). CRD-BP can regulate many mRNAs with coding
for cancer-related genes, including Gli1, PTEN, PTEN, ptlcp1,
MAPK4, MDR1, IGF2, H19, c-myc, etc. (Fakhraldeen et al.,
2015). HNRNPA2B1 controls the replacement splicing for the
pre-mRNA of cancer-related genes, and which is up-regulated
in diverse cancers (Stockley et al., 2014). HuR can bind with
DNMT3b and maintain its stability, thus affecting abnormal
DNA methylation (Lopez de Silanes et al., 2009). Numerous
studies reported that a change of mitochondrial function plays
a key role in all kinds of cancers (Tao et al., 2015; Lin et al.,
2017b; Zhang J.Y. et al., 2017; Zhang J. et al., 2017), and
RBPs involved in the expression and transcription regulation
of mitochondrial genes, such as LRPPRC, GRSF1, SLIRP, and
other RBPs can interact with mt-RNA to affect the expression
and metabolism of mitochondrial transcripts (Dong et al., 2017).
The incidence of breast cancer and female estrogen levels
are closely related. Some RBPs can respond with estrogen,
for example, through Nova1, 17-b estradiol can regulate the
replacement splicing of estrogen receptor b in the brain of
aging female mice (Shults et al., 2018). Then, the results
of the KEGG pathway analysis indicated that these RBPs
may affect the occurrence and development of breast cancer
through glycolysis, glycosylation, mRNA monitoring pathways,
and RNA degradation regulation. RPBs have various basic
biological functions, especially the function of RNA which has
been studied widely. Other RBPs functions should therefore be
studies further.

By constructing a protein network for DEGs, we found that
breast cancer is associated with immune response, splicing,
transcript regulation, and intercellular signaling transduction.
HSPE1 is a member of the heat shock protein family (Hsp10)
E, which usually acts as a chaperone to assist protein folding
in the mitochondria, which is highly expressed in various
cancers, such as lung cancer, pancreatic cancer and bladder
cancer. Some studies reported that it may protect cancer
cells from apoptosis, and facilitate the immune escape of
cancer, by down-regulating the immune response (Rappa
et al., 2016; Liu et al., 2018a). ELAVL2 is a neurospecific
RNA binding protein, which is involved in splicing and
transcript trafficking to regulate protein localization (Berto
et al., 2016). Elevated methylation of ELAVL2 was shown
in high Gleason scores of prostate tumors (Wu et al.,
2016). VIM is expressed in a variety of cell types and is
responsible for maintaining cell shape, cytoplasmic integrity,
and stabilizing cytoskeletal. It is also involved in immune
responses, attachment, migration, and cell signaling in tissues.
Previous studies have shown that vimentin regulated Ras,
Slug and TGF glows in cancer cells, which is necessary for
EMT induction. It is also highly expressed in various tumors
such as lung cancer, breast cancer and gastric cancer, and is
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closely related to invasion, metastasis and the poor prognosis
of tumors (Satelli and Li, 2011; Virtakoivu et al., 2015). High
expressions of EZH2 is associated with malignancy and hyper-
invasiveness in a variety of cancers. EZH2 can activate NF-
κB targets and NOTCH1 in breast cancer cells, which has
also been implicated in the transcriptional activation of gene
expression in breast cancer. Research has shown that it induces
the expression of genes that are regulated by the estrogen
receptor (ER) and Wnt signaling transcription factors, by
physically bridging between the ER and components of Wnt
signaling (Kim and Roberts, 2016).

These RBPS may lead to breast cancer by regulating
mitochondrial translation, splicing of pre-mRNA, activation
of RNase L, and histone modifications through two modules
selected from the PPI network. It has been reported that
the upregulation of mitochondrial translation may meet the
energy needs of cancer cells in human tumors, but the
mechanism of its tumorigenesis remains unclear. There are many
studies targeting the inhibition of mitochondrial translation in
various cell types, to obliterate cancer stem cells. Currently,
suppressing mitochondrial translation is considered a valuable
therapeutic target (Kim et al., 2017). RNase L was activated
through the synthesis of 2′, 5′ -oligoadenylic acid by OAS
(OAS1, OAS2, and OAS3). It was found that the activated
OAS-RNase L system can degrade virus and cell RNA,
promote cell apoptosis, and inhibit protein synthesis (Bhosle
et al., 2016). In addition, single nucleotide polymorphisms
of OAS are associated with cancer, such as OAS1 SNP
rs2660 AA (Mandal et al., 2011). However, no studies
reported the exact role of OAS in breast cancer. As we
know, epigenetic change is involved in the initiation and
progression of cancer, which includes histone modifications
and DNA methylation. Studies have shown that the regulation
of histone is gene specific, but their function is diversified.
Histone cluster 1 can interact with some regulatory factors,
such as inhibiting p53-dependent chromatin transcription, and
maintaining or establishing specific DNA methylation patterns
(Perez-Magan et al., 2010). It has been demonstrated that
the function of protecting DNA with histone may be an
independent prognostic factor for better survival of cervical
cancer patients (Li et al., 2017). Furthermore, splicing affects
the expression of most genes, and eventually influences the
levels of proteins. In the module, SNRPE, SNRPB, and ALYREF
participate in the splicing of pre-mRNA. Knockdown SNRPE
significantly reduces the expressed level of mTOR mRNA
and protein, and is accompanied by the imbalance of the
mTOR pathway, which activates abnormal mTOR signaling
and which can result in the growth and metastasis of tumor
cells (Quidville et al., 2013).

Finally, we performed a survival analysis and found five
genes that are associated with survival in breast cancer patients.
The overexpression of DCAF13, EZR, and MRPL13 in patients
were associated with lower survival, which reveals that these
genes might be associated with tumor invasion, progression
and poor prognosis. Whereas, overexpression of APOBEC3C
and EIF4E3 in patients were associated with better survival,
suggesting their potential role as tumor suppressor genes.

DCAF13 is amplified in all kinds of cancers. Studies have shown
that overexpression of DCAF13 in hepatocellular carcinoma
is significantly correlated with low survival and it may be
involved in the regulation of cell cycle (Cao et al., 2017). It
also reported that the E3 ligase formed by DCAF13, CUL4B
and DDB1, could induce ubiquitination of tumor suppressor
PTEN in vivo and in vitro (Chen et al., 2018). Mutated or
inactivated PTEN was helpful to infiltrate and spread cancer
cells. As a member of the ERM protein family, Ezrin has
been linked to molecules that control the phosphatidylinositol-
3-kinase, AKT, Erk1/2 MAPK and Rho pathways, which are
functionally involved in regulating cell survival, proliferation
and migration, and it is an indicator of poor prognosis of
multiple cancers (Hunter, 2004). It has been shown that
overexpressed EZR in a nude mice phantom of pancreatic
cancer, can increase the number of metastasis and is closely
related to the progression of malignant cancer (Meng et al.,
2010). MRPL13 is a mitochondrial ribosomal protein. Loss
of MRPL13 can lead to the loss of mitochondrial DNA, and
eventually lead to the loss of the ability of mitochondrial
coding proteins (Gruschke et al., 2010). In a study, reduced
MRPL13 expression in hepatocellular carcinoma was a key factor
in the regulation of mitochondrial ribosome and subsequent
OXPHOS deficiency, which regulates the aggressive activity
of liver cancer cells (Lee et al., 2017). APOBEC can mediate
c-to-t mutagenesis in various cancers, while the APOBEC3
gene family is overexpressed in breast cancer and other cancer
cells and tissues. Some studies suggest that it is regulated by
estrogen in breast cancer (Long et al., 2013). At present, there
are few studies about APOBEC3C in breast cancer, and some
studies have found that it should play a positive role in the
invasiveness and prognosis of hepatocellular carcinoma (Zhang
et al., 2015). EIF4E3 belongs to the EIF4E family of translational
initiation factors that interact with the 5-prime cap structure
of mRNA. A study demonstrated that EIF4E3 relies on cap-
binding activity to act as a tumor suppressor and compete
with the growth-promoting functions of EIF4E. In fact, reduced
EIF4E3 levels in high-expressed EIF4E cancers suggests that
EIF4E3 underlies a clinically relevant inhibitory mechanism
that is lost in some malignancies (Osborne et al., 2013).
Other studies also found that EIF4E3 can impede oncogenic
transformation (Volpon et al., 2013).

Over all, we identified key genes and related pathways
through bioinformatics analysis of differential expressions
of RBPs in breast cancer. These RBPs may be involved
in the occurrence, development, invasion and metastasis
of breast cancer. The survival analysis suggested that
DCAF13, EZR, MRPL13, APOBEC3C, and EIF4E3
might have a prognostic value for breast cancer. Future
in vitro and in vivo studies are needed to verify the
functions of these genes.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: https://xena.ucsc.edu/.

Frontiers in Pharmacology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 140314

https://xena.ucsc.edu/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00140 February 28, 2019 Time: 17:44 # 10

Wang et al. RBPs in Breast Cancer

AUTHOR CONTRIBUTIONS

LL and KW conceived and designed the experiments. LF, YY, TZ,
and HD analyzed the data. LL, YZ, and FY wrote the manuscript.
All authors reviewed and approved the final manuscript.

FUNDING

This study was supported by the Natural Science Foundation
Project of Yongchuan People’s Hospital of Chongqing (Grant No.

YCPH2019001). Chongqing Health and the Health Committee
and Chongqing Science and Technology Commission (Grant No.
2018MSXM020) and the Natural Science Foundation Project of
Yongchuan (Grant No. Ycstc.2017nc5020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphar.
2019.00140/full#supplementary-material

REFERENCES
Berto, S., Usui, N., Konopka, G., and Fogel, B. L. (2016). ELAVL2-

regulated transcriptional and splicing networks in human neurons
link neurodevelopment and autism. Hum. Mol. Genet. 25, 2451–2464.
doi: 10.1093/hmg/ddw110

Bhosle, S. M., Hunt, A., and Chaudhary, J. (2016). A modified coupled
spectrophotometric method to detect 2-5 oligoadenylate synthetase activity in
prostate cell lines. Biol. Proced. Online 18:9. doi: 10.1186/s12575-016-0038-x

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. CA Cancer. J. Clin. 68,
394–424. doi: 10.3322/caac.21492

Campos-Melo, D., Droppelmann, C. A., Volkening, K., and Strong, M. J.
(2014). RNA-binding proteins as molecular links between cancer and
neurodegeneration. Biogerontology 15, 587–610. doi: 10.1007/s10522-014-
9531-2

Cancer Genome Atlas Research and Network (2014). Comprehensive molecular
characterization of gastric adenocarcinoma. Nature 513, 202–209. doi: 10.1038/
nature13480

Cao, J., Hou, P., Chen, J., Wang, P., Wang, W., Liu, W., et al. (2017). The
overexpression and prognostic role of DCAF13 in hepatocellular carcinoma.
Tumour Biol. 39:1010428317705753. doi: 10.1177/1010428317705753

Chen, Z., Zhang, W., Jiang, K., Chen, B., Wang, K., Lao, L., et al.
(2018). MicroRNA-300 regulates the ubiquitination of PTEN through the
CRL4B(DCAF13) E3 ligase in osteosarcoma cells. Mol. Ther. Nucleic Acids 10,
254–268. doi: 10.1016/j.omtn.2017.12.010

Connerty, P., Ahadi, A., and Hutvagner, G. (2015). RNA Binding Proteins in the
miRNA Pathway. Int. J. Mol. Sci. 17:31. doi: 10.3390/ijms17010031

Dong, Y., Yoshitomi, T., Hu, J. F., and Cui, J. (2017). Long noncoding
RNAs coordinate functions between mitochondria and the nucleus. Epigen.
Chromatin 10:41. doi: 10.1186/s13072-017-0149-x

Fakhraldeen, S. A., Clark, R. J., Roopra, A., Chin, E. N., Huang, W., Castorino, J.,
et al. (2015). Two isoforms of the RNA binding protein, coding region
determinant-binding protein (CRD-BP/IGF2BP1), are expressed in breast
epithelium and support clonogenic growth of breast tumor cells. J. Biol. Chem.
290, 13386–13400. doi: 10.1074/jbc.M115.655175

Gerstberger, S., Hafner, M., Ascano, M., and Tuschl, T. (2014a). Evolutionary
conservation and expression of human RNA-binding proteins and their role
in human genetic disease. Adv. Exp. Med. Biol. 825, 1–55. doi: 10.1007/978-1-
4939-1221-6-1

Gerstberger, S., Hafner, M., and Tuschl, T. (2014b). A census of human RNA-
binding proteins. Nat. Rev. Genet. 15, 829–845. doi: 10.1038/nrg3813

Glisovic, T., Bachorik, J. L., Yong, J., and Dreyfuss, G. (2008). RNA-binding
proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986.
doi: 10.1016/j.febslet.2008.03.004

Goudarzi, K. M., and Lindstrom, M. S. (2016). Role of ribosomal protein mutations
in tumor development. Int. J. Oncol. 48, 1313–1324. doi: 10.3892/ijo.2016.
3387

Gruschke, S., Grone, K., Heublein, M., Holz, S., Israel, L., Imhof, A., et al.
(2010). Proteins at the polypeptide tunnel exit of the yeast mitochondrial
ribosome. J. Biol. Chem. 285, 19022–19028. doi: 10.1074/jbc.M110.
113837

Harvey, R., Dezi, V., Pizzinga, M., and Willis, A. E. (2017). Post-transcriptional
control of gene expression following stress: the role of RNA-binding proteins.
Biochem. Soc. Trans. 45, 1007–1014. doi: 10.1042/BST20160364

Hunter, K. W. (2004). Ezrin, a key component in tumor metastasis. Trends Mol.
Med. 10, 201–204. doi: 10.1016/j.molmed.2004.03.001

Iadevaia, V., and Gerber, A. P. (2015). Combinatorial control of mRNA fates
by RNA-binding proteins and non-coding RNAs. Biomolecules 5, 2207–2222.
doi: 10.3390/biom5042207

Kang, M. H., Jeong, K. J., Kim, W. Y., Lee, H. J., Gong, G., Suh, N., et al. (2017).
Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast
cancer. Oncogene 36, 1745–1752. doi: 10.1038/onc.2016.327

Kim, H.-J., Maiti, P., and Barrientos, A. (2017). Mitochondrial ribosomes in cancer.
Semin. Cancer Biol. 47, 67–81. doi: 10.1016/j.semcancer.2017.04.004

Kim, K. H., and Roberts, C. W. (2016). Targeting EZH2 in cancer. Nat. Med. 22,
128–134. doi: 10.1038/nm.4036

Kulasingam, V., and Diamandis, E. P. (2008). Strategies for discovering novel
cancer biomarkers through utilization of emerging technologies. Nat. Clin.
Pract. Oncol. 5, 588–599. doi: 10.1038/ncponc1187

Law, C. W., Chen, Y., Shi, W., and Smyth, G. K. (2014). Voom: precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome Biol.
15:R29. doi: 10.1186/gb-2014-15-2-r29

Lee, Y. K., Lim, J. J., Jeoun, U. W., Min, S., Lee, E. B., Kwon, S. M.,
et al. (2017). Lactate-mediated mitoribosomal defects impair mitochondrial
oxidative phosphorylation and promote hepatoma cell invasiveness. J. Biol.
Chem. 292, 20208–20217. doi: 10.1074/jbc.M117.809012

Li, X., Tian, R., Gao, H., Yang, Y., Williams, B. R. G., Gantier, M. P., et al. (2017).
Identification of a histone family gene signature for predicting the prognosis of
cervical cancer patients. Sci. Rep. 7:16495. doi: 10.1038/s41598-017-16472-5

Lin, M., Bi, H., Yan, Y., Huang, W., Zhang, G., Zhang, G., et al. (2017a).
Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth
via B-Raf/MAPK/Erk pathway. Oncotarget 8, 23436–23447. doi: 10.18632/
oncotarget.15584

Lin, M., Tang, S., Zhang, C., Chen, H., Huang, W., Liu, Y., et al. (2017b). Euphorbia
factor L2 induces apoptosis in A549 cells through the mitochondrial pathway.
Acta Pharm. Sin. B 7, 59–64. doi: 10.1016/j.apsb.2016.06.008

Liu, X., Weng, Y., Liu, P., Sui, Z., Zhou, L., Huang, Y., et al. (2018a).
Identification of PGAM1 as a putative therapeutic target for pancreatic ductal
adenocarcinoma metastasis using quantitative proteomics. Onco Targets Ther.
11, 3345–3357. doi: 10.2147/OTT.S162470

Liu, X., Wu, J., Zhang, D., Bing, Z., Tian, J., Ni, M., et al. (2018b). Identification of
potential key genes associated with the pathogenesis and prognosis of gastric
cancer based on integrated bioinformatics analysis. Front. Genet. 9:265. doi:
10.3389/fgene.2018.00265

Long, J., Delahanty, R. J., Li, G., Gao, Y. T., Lu, W., Cai, Q., et al. (2013). A common
deletion in the APOBEC3 genes and breast cancer risk. J. Natl. Cancer Inst. 105,
573–579. doi: 10.1093/jnci/djt018

Lopez de Silanes, I., Fan, J., Yang, X., Zonderman, A. B., Potapova, O., Pizer, E. S.,
et al. (2003). Role of the RNA-binding protein HuR in colon carcinogenesis.
Oncogene 22, 7146–7154. doi: 10.1038/sj.onc.1206862

Lopez de Silanes, I., Gorospe, M., Taniguchi, H., Abdelmohsen, K., Srikantan, S.,
Alaminos, M., et al. (2009). The RNA-binding protein HuR regulates DNA
methylation through stabilization of DNMT3b mRNA. Nucleic Acids Res. 37,
2658–2671. doi: 10.1093/nar/gkp123

Frontiers in Pharmacology | www.frontiersin.org 10 March 2019 | Volume 10 | Article 140315

https://www.frontiersin.org/articles/10.3389/fphar.2019.00140/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2019.00140/full#supplementary-material
https://doi.org/10.1093/hmg/ddw110
https://doi.org/10.1186/s12575-016-0038-x
https://doi.org/10.3322/caac.21492
https://doi.org/10.1007/s10522-014-9531-2
https://doi.org/10.1007/s10522-014-9531-2
https://doi.org/10.1038/nature13480
https://doi.org/10.1038/nature13480
https://doi.org/10.1177/1010428317705753
https://doi.org/10.1016/j.omtn.2017.12.010
https://doi.org/10.3390/ijms17010031
https://doi.org/10.1186/s13072-017-0149-x
https://doi.org/10.1074/jbc.M115.655175
https://doi.org/10.1007/978-1-4939-1221-6-1
https://doi.org/10.1007/978-1-4939-1221-6-1
https://doi.org/10.1038/nrg3813
https://doi.org/10.1016/j.febslet.2008.03.004
https://doi.org/10.3892/ijo.2016.3387
https://doi.org/10.3892/ijo.2016.3387
https://doi.org/10.1074/jbc.M110.113837
https://doi.org/10.1074/jbc.M110.113837
https://doi.org/10.1042/BST20160364
https://doi.org/10.1016/j.molmed.2004.03.001
https://doi.org/10.3390/biom5042207
https://doi.org/10.1038/onc.2016.327
https://doi.org/10.1016/j.semcancer.2017.04.004
https://doi.org/10.1038/nm.4036
https://doi.org/10.1038/ncponc1187
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1074/jbc.M117.809012
https://doi.org/10.1038/s41598-017-16472-5
https://doi.org/10.18632/oncotarget.15584
https://doi.org/10.18632/oncotarget.15584
https://doi.org/10.1016/j.apsb.2016.06.008
https://doi.org/10.2147/OTT.S162470
https://doi.org/10.3389/fgene.2018.00265
https://doi.org/10.3389/fgene.2018.00265
https://doi.org/10.1093/jnci/djt018
https://doi.org/10.1038/sj.onc.1206862
https://doi.org/10.1093/nar/gkp123
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00140 February 28, 2019 Time: 17:44 # 11

Wang et al. RBPs in Breast Cancer

Mandal, S., Abebe, F., and Chaudhary, J. (2011). 2′-5′ oligoadenylate synthetase
1 polymorphism is associated with prostate cancer. Cancer 117, 5509–5518.
doi: 10.1002/cncr.26219

McDonald, E. S., Clark, A. S., Tchou, J., Zhang, P., and Freedman, G. M. (2016).
Clinical diagnosis and management of breast cancer. J. Nucl. Med. 57(Suppl. 1),
9S–16S. doi: 10.2967/jnumed.115.157834

Meng, Y., Lu, Z., Yu, S., Zhang, Q., Ma, Y., and Chen, J. (2010). Ezrin promotes
invasion and metastasis of pancreatic cancer cells. J. Transl. Med. 8:61. doi:
10.1186/1479-5876-8-61

Nishida, K., Kuwano, Y., Nishikawa, T., Masuda, K., and Rokutan, K. (2017). RNA
binding proteins and genome integrity. Int. J. Mol. Sci. 18:1341. doi: 10.3390/
ijms18071341

Osborne, M. J., Volpon, L., Kornblatt, J. A., Culjkovic-Kraljacic, B., Baguet, A., and
Borden, K. L. (2013). eIF4E3 acts as a tumor suppressor by utilizing an atypical
mode of methyl-7-guanosine cap recognition. Proc. Natl. Acad. Sci. U.S.A. 110,
3877–3882. doi: 10.1073/pnas.1216862110

Paronetto, M. P., Cappellari, M., Busa, R., Pedrotti, S., Vitali, R., Comstock, C., et al.
(2010). Alternative splicing of the cyclin D1 proto-oncogene is regulated by the
RNA-binding protein Sam68. Cancer Res. 70, 229–239. doi: 10.1158/0008-5472.
CAN-09-2788

Perez-Magan, E., Rodriguez de Lope, A., Ribalta, T., Ruano, Y., Campos-Martin, Y.,
Perez-Bautista, G., et al. (2010). Differential expression profiling analyses
identifies downregulation of 1p, 6q, and 14q genes and overexpression of 6p
histone cluster 1 genes as markers of recurrence in meningiomas. Neuro Oncol.
12, 1278–1290. doi: 10.1093/neuonc/noq081

Quidville, V., Alsafadi, S., Goubar, A., Commo, F., Scott, V., Pioche-Durieu, C.,
et al. (2013). Targeting the deregulated spliceosome core machinery in cancer
cells triggers mTOR blockade and autophagy. Cancer Res. 73, 2247–2258. doi:
10.1158/0008-5472.Can-12-2501

Rappa, F., Pitruzzella, A., Marino Gammazza, A., Barone, R., Mocciaro, E.,
Tomasello, G., et al. (2016). Quantitative patterns of Hsps in tubular adenoma
compared with normal and tumor tissues reveal the value of Hsp10 and Hsp60
in early diagnosis of large bowel cancer. Cell Stress Chaperones 21, 927–933.
doi: 10.1007/s12192-016-0721-5

Ruden, M., and Puri, N. (2013). Novel anticancer therapeutics targeting telomerase.
Cancer Treat. Rev. 39, 444–456. doi: 10.1016/j.ctrv.2012.06.007

Santangelo, L., Giurato, G., Cicchini, C., Montaldo, C., Mancone, C., Tarallo, R.,
et al. (2016). The RNA-binding protein SYNCRIP is a component of the
hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 17,
799–808. doi: 10.1016/j.celrep.2016.09.031

Satelli, A., and Li, S. (2011). Vimentin in cancer and its potential as a molecular
target for cancer therapy. Cell. Mol. Life Sci. 68, 3033–3046. doi: 10.1007/
s00018-011-0735-1

Shults, C. L., Dingwall, C. B., Kim, C. K., Pinceti, E., Rao, Y. S., and Pak, T. R.
(2018). 17beta-estradiol regulates the RNA-binding protein Nova1, which then
regulates the alternative splicing of estrogen receptor beta in the aging female rat
brain. Neurobiol. Aging 61, 13–22. doi: 10.1016/j.neurobiolaging.2017.09.005

Stockley, J., Villasevil, M. E., Nixon, C., Ahmad, I., Leung, H. Y., and Rajan, P.
(2014). The RNA-binding protein hnRNPA2 regulates beta-catenin protein
expression and is overexpressed in prostate cancer. RNA Biol. 11, 755–765.
doi: 10.4161/rna.28800

Tao, Y. W., Lin, Y. C., She, Z. G., Lin, M. T., Chen, P. X., and Zhang, J. Y.
(2015). Anticancer activity and mechanism investigation of beauvericin isolated

from secondary metabolites of the mangrove endophytic fungi. Anticancer
Agents Med. Chem. 15, 258–266. doi: 10.2174/187152061466614082511
2255

Virtakoivu, R., Mai, A., Mattila, E., De Franceschi, N., Imanishi, S. Y., Corthals, G.,
et al. (2015). Vimentin-ERK signaling uncouples slug gene regulatory
function. Cancer Res. 75, 2349–2362. doi: 10.1158/0008-5472.CAN-14-
2842

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., et al.
(2017). Toil enables reproducible, open source, big biomedical data analyses.
Nat. Biotechnol. 35, 314–316. doi: 10.1038/nbt.3772

Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A. Jr., and
Kinzler, K. W. (2013). Cancer genome landscapes. Science 339, 1546–1558.
doi: 10.1126/science.1235122

Volpon, L., Osborne, M. J., Culjkovic-Kraljacic, B., and Borden, K. L. (2013).
eIF4E3, a new actor in mRNA metabolism and tumor suppression. Cell Cycle
12, 1159–1160. doi: 10.4161/cc.24566

Wang, Y., Zhang, Y., Huang, Q., and Li, C. (2018). Integrated bioinformatics
analysis reveals key candidate genes and pathways in breast cancer. Mol. Med.
Rep. 17, 8091–8100. doi: 10.3892/mmr.2018.8895

Wu, Y., Davison, J., Qu, X., Morrissey, C., Storer, B., Brown, L., et al.
(2016). Methylation profiling identified novel differentially methylated markers
including OPCML and FLRT2 in prostate cancer. Epigenetics 11, 247–258.
doi: 10.1080/15592294.2016.1148867

Wurth, L., and Gebauer, F. (2015). RNA-binding proteins, multifaceted
translational regulators in cancer. Biochim. Biophys. Acta 1849, 881–886. doi:
10.1016/j.bbagrm.2014.10.001

Zhang, J. Y., Huang, W. J., Sun, H. M., Liu, Y., Zhao, X. Q., Tang,
S. L., et al. (2017). Structure identification and in vitro anticancer activity
of lathyrol-3-phenylacetate-5,15-diacetate. Molecules 22:1412. doi: 10.3390/
molecules22091412

Zhang, J., Lai, Z., Huang, W., Ling, H., Lin, M., Tang, S., et al. (2017). Apicidin
inhibited proliferation and invasion and induced apoptosis via mitochondrial
pathway in non-small cell lung cancer GLC-82 cells. Anticancer Agents Med.
Chem. 17, 1374–1382. doi: 10.2174/1871520617666170419120044

Zhang, Y., Delahanty, R., Guo, X., Zheng, W., and Long, J. (2015). Integrative
genomic analysis reveals functional diversification of APOBEC gene
family in breast cancer. Hum. Genomics 9:34. doi: 10.1186/s40246-015-
0056-9

Conflict of Interest Statement: YZ and FY were employed by company Yidu
Cloud Technology Co.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Wang, Li, Fu, Yuan, Dai, Zhu, Zhou and Yuan. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Pharmacology | www.frontiersin.org 11 March 2019 | Volume 10 | Article 140316

https://doi.org/10.1002/cncr.26219
https://doi.org/10.2967/jnumed.115.157834
https://doi.org/10.1186/1479-5876-8-61
https://doi.org/10.1186/1479-5876-8-61
https://doi.org/10.3390/ijms18071341
https://doi.org/10.3390/ijms18071341
https://doi.org/10.1073/pnas.1216862110
https://doi.org/10.1158/0008-5472.CAN-09-2788
https://doi.org/10.1158/0008-5472.CAN-09-2788
https://doi.org/10.1093/neuonc/noq081
https://doi.org/10.1158/0008-5472.Can-12-2501
https://doi.org/10.1158/0008-5472.Can-12-2501
https://doi.org/10.1007/s12192-016-0721-5
https://doi.org/10.1016/j.ctrv.2012.06.007
https://doi.org/10.1016/j.celrep.2016.09.031
https://doi.org/10.1007/s00018-011-0735-1
https://doi.org/10.1007/s00018-011-0735-1
https://doi.org/10.1016/j.neurobiolaging.2017.09.005
https://doi.org/10.4161/rna.28800
https://doi.org/10.2174/1871520614666140825112255
https://doi.org/10.2174/1871520614666140825112255
https://doi.org/10.1158/0008-5472.CAN-14-2842
https://doi.org/10.1158/0008-5472.CAN-14-2842
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1126/science.1235122
https://doi.org/10.4161/cc.24566
https://doi.org/10.3892/mmr.2018.8895
https://doi.org/10.1080/15592294.2016.1148867
https://doi.org/10.1016/j.bbagrm.2014.10.001
https://doi.org/10.1016/j.bbagrm.2014.10.001
https://doi.org/10.3390/molecules22091412
https://doi.org/10.3390/molecules22091412
https://doi.org/10.2174/1871520617666170419120044
https://doi.org/10.1186/s40246-015-0056-9
https://doi.org/10.1186/s40246-015-0056-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


ORIGINAL RESEARCH
published: 01 March 2019

doi: 10.3389/fonc.2019.00120

Frontiers in Oncology | www.frontiersin.org 1 March 2019 | Volume 9 | Article 120

Edited by:

Jian-ye Zhang,

Guangzhou Medical University, China

Reviewed by:

Frank Arfuso,

Curtin University, Australia

Kuzhuvelil B. Harikumar,

Rajiv Gandhi Centre for

Biotechnology, India

*Correspondence:

Yu Li

qlliyures@163.com

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 13 November 2018

Accepted: 11 February 2019

Published: 01 March 2019

Citation:

Li T, Wang X, Jing L and Li Y (2019)

MiR-1-3p Inhibits Lung

Adenocarcinoma Cell Tumorigenesis

via Targeting Protein Regulator of

Cytokinesis 1. Front. Oncol. 9:120.

doi: 10.3389/fonc.2019.00120

MiR-1-3p Inhibits Lung
Adenocarcinoma Cell Tumorigenesis
via Targeting Protein Regulator of
Cytokinesis 1
Tao Li, Xiuxiu Wang, Lijun Jing and Yu Li*

Department of Respiratory Diseases, Qilu Hospital of Shandong University, Jinan, China

Lung adenocarcinoma (LUAD) is one of the most lethal malignancies, posing a threat

to human health. However, the molecular mechanisms underlying LUAD development

remain largely unknown. In this study, we found that miR-1-3p was significantly

downregulated in human LUAD tissues and cell lines and played an inhibitory role in

LUAD cell tumorigenesis, as evidenced by the significantly reduced viability, migration,

and invasion of LUAD cells in response to miR-1-3p overexpression. Mechanistically,

microRNA (miR)-1-3p physically interacted with the 3
′

-untranslated region (UTR)

of protein regulator of cytokinesis 1 (PRC1) mRNA, leading to downregulation of

PRC1. Overexpression of PRC1 reversed the inhibitory effects of miR-1-3p on LUAD

cell tumorigenesis, suggesting that the miR-1-3p/PRC1 axis is majorly involved in

suppressing LUAD development and progression. Consistently, PRC1 was dramatically

induced in LUAD tissues and cell lines as well as associated with a poor prognosis

in LUAD patients. Taken together, our study identified the miR-1-3p/PRC1 axis as an

important regulatory mechanism contributing to LUAD inhibition and provided valuable

clues for the future development of therapeutic strategies against LUAD.

Keywords: lung adenocarcinoma, miR-1-3p, protein regulator of cytokinesis 1, malignant behavior, mechanism

INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer
(NSCLC), accounting for 80–85% of all lung cancers; worldwide, approximately 40% of all lung
cancer patients are diagnosed with LUAD (1). Compared to other subtypes of NSCLC, LUAD has
a higher incidence and a shorter survival time among patients, with a 5-year survival rate as low
as 10–15% (2, 3); thus, LUAD poses a serious threat to human health. Currently, chemotherapy is
a relatively effective therapeutic option for NSCLC (4). However, the existence and development
of intrinsic or acquired chemoresistance greatly limit the application of chemotherapy in cancer
treatment. Therefore, there is still an urgent need to develop novel therapeutic strategies against
LUAD that are based on the mechanisms underlying the development and progression of LUAD.

MicroRNAs (miRNAs) are a class of small endogenous non-coding RNA molecules (∼22
nucleotides) found in animals and plants that are responsible for the degradation or translation
repression of mRNAs by binding to the 3′-untranslated region (UTR) of target mRNAs (5). A
variety of miRNAs have been identified as novel biomarkers or promising therapeutic targets of
human malignant tumors. Among them, miR-1-3p plays an antitumor role in multiple cancer
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types, including rhabdomyosarcoma as well as lung, thyroid,
prostatic, bladder, colorectal, and hepatocellular carcinomas (6–
11). However, the role of miR-1-3p in LUAD has not yet
been investigated. In addition, the association between miR-1-
3p and its target genes may deepen our understanding of the
molecular mechanisms contributing to LUAD development, thus
facilitating the discovery of improved therapies for LUAD.

The microtubule-associated protein regulator of cytokinesis 1
(PRC1) has been found to bemajorly involved in the organization
of antiparallel microtubules in the central spindle during
cytokinesis. The human PRC1 gene, located on chromosome
15q26.1, encodes a 620-amino-acid protein with a molecular
weight of 71 kDa (3). An abnormally high expression of PRC1
has been observed in breast cancer (12), bladder cancer (13),
hepatocellular carcinoma (14), and pancreatic cancer (15), which
suggests a promotive role of PRC1 in tumorigenesis. However,
it remains largely unknown whether there is a functional
association between miR-1-3p and the regulation of PRC1 in
LUAD. In this study, we examined the role of miR-1-3p in LUAD
growth and metastasis as well as the underlying mechanism.

MATERIALS AND METHODS

Tissue Samples From LUAD Patients
Human LUAD tissues were collected from LUAD patients
undergoing pulmonary resection or bronchoscopy biopsy, and
normal tissues adjacent to cancer were collected from LUAD
patients undergoing pulmonary resection at Qilu Hospital
between May and September 2018. None of the patients had
received chemotherapy or radiotherapy prior to surgery. All the
fresh samples were stored in RNAlater Stabilization Solution
(Ambion) at −80◦C until use. This study was approved by the
Ethics Committee of Shandong University, and written informed
consent was obtained from all patients prior to enrollment in
the present study. The clinicopathological characteristics of the
patients are shown in Supplementary Table 1.

Cell Culture
Three LUAD cell lines (A549, H1299, and H1975 cells) and a
human alveolar epithelial cell line (HPAEpiC) were purchased
from the Cell Bank of the Type Culture Collection of the
Chinese Academy of Sciences (Shanghai, China). The cells were
maintained in RPMI 1640 medium (Gibco, USA) containing
10% fetal bovine serum (Gibco, USA), 100 U/mL penicillin, and
100µg/mL streptomycin in a humidified atmosphere of 5% CO2

at 37◦C. Cells in the exponential phase of growth were used for
the following experiments.

Construction of the miR-1-3p
Overexpression Cell Lines
The pre-miR-1-3p sequences were synthesized by Biosune
Biotechnology Company (Shanghai, China) and cloned into the
lentiviral vector pGIPZ. Lentivirus was produced in HEK293T
cells using the packaging vectors psPAX2 and pMD2.G. The cells
were infected with lentivirus for 24 h and then cultured for 1 week
in medium containing 2µg/mL puromycin (Merck Millipore,

USA) for screening to acquire cells with stable expression
of miR-1-3p.

Transient Transfection
The miR-1-3p mimic and its negative control (NC) were
chemically synthesized by GenePharma Co., Ltd. (Shanghai,
China). The cells were transiently transfected with 50 nM
miR-1-3p mimic or 50 nM NC (Boshang, Inc., China) using
Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific,
Inc.), according to the manufacturer’s protocol. The cells
were harvested at 24 or 48 h after the transfection. The NC
was a scrambled oligonucleotide that does not encode any
known miRNA. The transfection efficiency was confirmed by
detecting the miR-1-3p expression level using the SYBR green
(Takara)-based real-time quantitative polymerase chain reaction
(qPCR) system.

RNA Isolation and qPCR
Total RNA was extracted from the cells using Trizol reagents
(Invitrogen; Thermo Fisher Scientific, Inc.), according to
the manufacturer’s instructions. The cDNA of miRNA was
synthesized with the One Step PrimeScript miRNA cDNA
Synthesis Kit (Takara Biotechnology, Co., Ltd., Dalian, China).
qPCR was performed using the SYBR green Premix Ex
Taq II (Takara Biotechnology, Co., Ltd.) with the Step One
Plus Real-Time PCR System (Applied Biosystems; Thermo
Fisher Scientific, Inc.). The expression of U6 was used as an
internal control. The primers for miR-1-3p are indicated in
Supplementary Table 2.

Western Blot Analysis
The cells were lysed in ice-cold RIPA lysis buffer, and
the cell lysates were obtained by centrifugation at 12,000
rpm and 4◦C for 10min. The protein concentration was
determined using the bicinchoninic acid method. The protein
samples (5–10 µg) were separated by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis, followed by transfer to
polyvinylidene difluoride membranes, and then immunoblotted
with the indicated antibodies. After blocking with 5% nonfat
milk, the membranes were incubated with the respective
primary antibody overnight at 4◦C, followed by incubation
with the horseradish peroxidase-coupled secondary antibody for
1 h at room temperature. The protein bands were visualized
using enhanced chemiluminescence reagents (PerkinElmer)
with an ImageQuant LAS 4000 system (GE Healthcare Life
Sciences). The following antibodies were used: anti-PRC1, anti-
fibronectin, anti-N-cadherin, anti-vimentin, and anti-β-actin
(Cell Signaling Technology).

3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide
(MTT) Assay
The cells were seeded into 96-well plates at a density of 2,000
cells/well and grown for 5 days. After the addition of 100 µL
of 5 mg/mL MTT solution, the cells were incubated for an
additional 4 h at 37◦C, and then the supernatant was removed
and dissolved in 100 µL of dimethyl sulfoxide (Sigma-Aldrich).
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Cell viability was assessed on the 1st, 2nd, 3rd, 4th, and 5th day.
The absorbance of each well was measured in triplicate using an
iMark Microplate Absorbance Reader (Bio-Rad).

Luciferase Reporter Assay
Luciferase reporter constructs containing wild-type (WT) or
mutant PRC1 3′-UTR (pmirGLO-PRC1-WT or pmirGLO-
PRC1-mut, respectively) were generated by GenePharma Inc.
(Shanghai, China). The cells were cotransfected with 25 ng of
PRC1 3′-UTR reporter constructs and 20 nM miR-1-3p mimic
using Lipofectamine 2,000 (Invitrogen) in 24-well plates. At
24 h after transfection, luciferase assays were performed using

the Dual-Luciferase reporter assay system (Promega). Renilla
luciferase activity was used to normalize the luciferase activity of
the PRC1 3′-UTR reporter constructs.

In vivo Tumorigenicity Assays
Four-week-old male BALB/c nude mice were purchased from the
Shanghai Laboratory Animal Center of the Chinese Academy of
Sciences (Shanghai, China). The mice were randomly divided
into two groups and injected subcutaneously with A549 cells (2×
106 cells/mouse, n= 5 mice/group) that were infected with either
control lentivirus or miR-1-3p-overexpressing lentivirus. Tumor
growth was monitored by measuring the tumor diameter. Tumor

FIGURE 1 | Expression pattern of miR-1-3p in human LUAD tissues and cell lines. qPCR was performed to determine the expression levels of miR-1-3p in human

LUAD tissues (A) and cell lines (B), as indicated. *P < 0.05 in (A) (n = 30); *P < 0.05 vs. HPAEpiCs in (B) (n = 3).

FIGURE 2 | The effect of miR-1-3p overexpression on LUAD cell viability. (A) qPCR was performed to validate the overexpression efficiency of miR-1-3p in A549,

H1299, and H1975 cells. (B–D) The MTT assay was performed to measure the viability of miR-1-3p-overexpressing A549, H1299, and H1975 cells. *P < 0.05 vs. the

corresponding negative control (NC) groups (n = 3).
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volume was calculated according to the formula TV (cm3)= a×
b2 × π/6, where a is the longest diameter and b is the shortest
diameter. The mice were sacrificed after 3 weeks, and then
the tumors were excised and weighed. All animal experiments
were approved by the Shandong University Animal Care and
Use Committee.

Bioinformatics Analyses
PRC1 genetic alterations and copy number variation in LUAD
were retrieved from the cBioPortal for Cancer Genomics (http://
www.cbioportal.org/) (16, 17). The Cancer Genome Atlas RNA
expression data of LUAD tissues were processed and analyzed by
the Cancer Genomics Browser (https://xena.ucsc.edu/welcome-
to-ucsc-xena/) (18). The PRC1 expression levels and copy
number variation were analyzed by Proteinatlas (https://
www.proteinatlas.org/), Oncomine (www.oncomine.org) (19),
and Gene Expression Profiling Interactive Analysis (http://
gepia.cancer-pku.cn/) in LUAD and normal lung tissues
via immunohistochemistry. Kaplan–Meier plots (http://kmplot.
com/analysis/) (20) were used to analyze the overall survival of
the LUAD patients.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 6.0
(GraphPad Software, La Jolla, CA, USA). Data are expressed

as the mean ± standard deviation. Comparison between two
groups was performed using the Student’s t-test or the Mann-
Whitney U-test. The correlation between the expression levels
of miR-1 and PRC1 was analyzed using Pearson’s correlation
analysis. LUAD tissues with lower miR-1 and PRC1 expression
than the median expression were assigned to the low-expression
group, whereas those with higher miR-1 and PRC1 expression
than the median expression were assigned to the high-expression
group. Associations between the clinicopathological features and
the expression levels of miR-1 and PRC1 were analyzed using
the χ2 test. Overall survival curves were determined according
to the Kaplan–Meier method. A p < 0.05 was considered
statistically significant.

RESULTS

MiR-1-3p Is Downregulated in Human
LUAD Tissues and Cell Lines
To investigate the possible role of miR-1-3p in LUAD
development, we first examined the expression levels of miR-
1-3p in human LUAD tissues and cell lines. As shown in
Figure 1A, miR-1-3p expression was significantly decreased in
LUAD tissues, compared with the matched adjacent normal lung
tissues. Similarly, marked downregulation of miR-1-3p was also
observed in the human LUAD cell lines A549, H1299, andH1975,

FIGURE 3 | The effect of miR-1-3p overexpression on LUAD cell migration and invasion as well as epithelial-mesenchymal transition. Transwell assays for migration

(A) and invasion (B) of miR-1-3p-overexpressing LUAD cells. (C) Western blot assay for the expression of the indicated mesenchymal markers. β-Actin was used as

an internal control. (D) Quantification of the western blot assay results shown in (C). *P < 0.05 vs. miR-1-3p groups in (C) (n = 3).
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FIGURE 4 | The effect of miR-1-3p overexpression on tumorigenesis in vivo. (A) Overexpression of miR-1-3p reduced LUAD cell-derived tumor growth in a xenograft

model. (B) Summary of the tumor growth data; the error bars indicate the standard deviation. (C) miR-1-3p overexpression results in a decline of tumor weight.

*P < 0.05.

FIGURE 5 | PRC1 is a direct target of miR-1-3p in LUAD cells. (A) The putative miR-1-3p-binding sites in PRC1 3′-UTR and the mutated binding sites are shown.

(B,D) Western blot analysis of PRC1 expression in the nontransfected negative control (NC)- or miR-1-3p-transfected LUAD cells. β-Actin was used as an internal

control. (C) Quantification of the western blot assay results shown in (B). *P < 0.05 vs. HPAEpiCs (n = 3). (E) Quantification of the western blot assay results shown in

(D). *P < 0.05 vs. the miR-1-3p groups (n = 3). (F) Luciferase reporter assay for LUAD cells transfected with wild-type (WT) or mutated (MT) pGL3-3′-UTR. The

luciferase activity was normalized to Renilla luciferase activity. *P < 0.05 (n = 3).
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compared with the normal HPAEpiCs (Figure 1B). These in vivo
and in vitro results suggest that miR-1-3p may play an inhibitory
role in LUAD development.

Overexpression of miR-1-3p Suppresses
LUAD Cell Viability in vitro
Next, we sought to investigate whether miR-1-3p indeed plays a
role in suppressing LUAD development using a gain-of-function
assay. As shown in Figure 2A, transfection of the miR-1-3p
mimic led to a dramatic increase in miR-1-3p expression in
the LUAD cell lines A549, H1299, and H1975. Importantly,
overexpression of miR-1-3p significantly inhibited the viability
of these three cell lines in a time-dependent manner, compared
with the NC groups (Figures 2B–D). These results demonstrate
that miR-1-3p is sufficient to suppress LUAD cell growth in vitro.

Overexpression of miR-1-3p Inhibits LUAD
Cell Migration and Invasion in vitro
To further investigate whether miR-1-3p inhibits LUAD
progression, Transwell assays were performed to examine the
effects of miR-1-3p overexpression on LUAD cell migration and
invasion. As shown in Figures 3A,B, overexpression of miR-1-3p
resulted in a significant decrease in LUAD cell migration and
invasion abilities, compared with the NC groups. Consistently,
overexpression of miR-1-3p markedly suppressed epithelial-
mesenchymal transition (EMT), a process contributing to tumor
metastasis, as evidenced by downregulation of the mesenchymal
markers fibronectin, N-cadherin, and vimentin (Figures 3C,D).
These data suggest that miR-1-3p overexpression may
suppress LUAD progression through reducing LUAD
cell migration and invasion as well as inhibiting EMT in
these cells.

FIGURE 6 | Expression pattern of PRC1 in LUAD tissues and cell lines. (A) The data of copy number variation in LUAD from The Cancer Genome Atlas cohort.

(B) The mRNA expression of PRC1 in different TNM staging groups in Oncomine. (C) qPCR analysis of PRC1 expression in LUAD tissues (n = 30). (D) qPCR analysis

of PRC1 expression in LUAD cells and HPAEpiCs. (E) Representative images of the immunohistochemical staining of PRC1 from The Human Protein Atlas in LUAD

and normal lung tissues. *P < 0.05 in (C) (n = 30); *P < 0.05 vs. HPAEpiCs in (D) (n = 3).
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FIGURE 7 | Association between the miR-1-3p and PRC-1 levels in LUAD

patients. The PRC1 and miR-1 levels were determined by qPCR in LUAD

tissues and matched adjacent normal tissues (n = 30).

miR-1-3p Inhibits Xenograft Tumor Growth
of LUAD Cells
To further explore whether miR-1-3p overexpression could
suppress LUAD growth in vivo, human LUAD A549 cells
with and without miR-1-3p overexpression were subcutaneously
inoculated into nude mice. At 1 week after inoculation, all
mice had developed detectable tumors. However, at 3 weeks
after inoculation, the mice bearing tumors with miR-1-3p
overexpression demonstrated a dramatic decrease in the tumor
size and weight (Figures 4A–C), compared to the control groups.
These results show that overexpression of miR-1-3p inhibits
tumorigenesis in vivo.

PRC1 Is a Direct Target Gene of miR-1-3p
To further examine the mechanism underlying miR-1-3p-
mediated suppression of LUAD development and progression,
we employed the TargetScan computational algorithm to predict
the target genes of miR-1-3p (21). The results indicated

complementary base-pairing between miR-1-3p and the 3
′

-
UTR of PRC1 (Figure 5A), suggesting that PRC1 may be a
target gene of miR-1-3p. To verify this finding, we detected the
expression of PRC1 in LUAD cells. As shown in Figures 5B,C,
the protein expression of PRC1 was markedly induced in LUAD
cells, compared with normal HPAEpiCs, consistent with the
expression pattern of miR-1-3p in LUAD tissues and cells.
Importantly, miR-1-3p overexpression led to downregulation of
PRC1 in LUAD cells (Figures 5D,E), confirming that PRC1 is a
downstream target of miR-1-3. To determine whether PRC1 is
directly targeted by miR-1-3p, we performed a mutation assay
through introducing a PRC1 3′-UTR mutation in the pmirGLO
vector. The results demonstrated that the PRC1 3′-UTRmutation
had no significant effect on the luciferase activity in miR-1-
3p-transfected LUAD cells, compared with that in the NC-
transfected cells (Figure 5F), suggesting that WT PRC1 3′-UTR
is essential for the function of miR-1-3p. Taken together, our data
show that PRC1 is a direct downstream target gene of miR-1-3p.

PRC1 Is Induced in LUAD Tissues and Cell
Lines
To determine whether PRC1 contributes to LUAD development
and progression, we examined the expression profile of PRC1 in
LUAD tissues using the publicly accessible database Oncomine.
As shown in Figure 6A, the mRNA expression levels of PRC1
were significantly enhanced in the LUAD tissues, compared with
the normal lung tissues. In addition, we also analyzed the mRNA
expression of PRC1 in LUAD tissues using two microarray
datasets from the Hou and Selamat lung cancer groups, which
were downloaded from Oncomine. The results demonstrated
that the mRNA expression of PRC1 was significantly induced
in the LUAD tissues of these groups and positively correlated
with the tumor, lymph node, metastasis (TNM) staging of LUAD
(Figure 6B). These findings were further confirmed by our
mRNA expression data of PRC1 and the immunohistochemical
staining of PRC1 in human LUAD tissues and matched adjacent
normal lung tissues (Figures 6C,E). For the in vitro study, the
mRNA levels of PRC1 were dramatically increased in the LUAD
cell lines A549, H1299, and H1975, compared to those in normal
HPAEpiCs (Figure 6D). Collectively, these results suggest that
PRC1 may be involved in LUAD development and progression.

Correlation of miR-1-3p/PRC1 and
Clinicopathological Characteristics of
LUAD Patients
To investigate whether the miR-1-3p/PRC1 axis plays a role in
LUADdevelopment, we first analyzed the association between the
miR-1-3p and PRC1 levels in LUAD tissues. The results revealed
that themiR-1-3p levels were negatively correlated with the PRC1
mRNA expression (r=−0.5858; P< 0.01; Figure 7) in the LUAD
tissues. Importantly, low levels of miR-1-3p and high levels of
PRC1 were strongly associated with the TNM stage, lymph node
metastasis, and distant metastasis (Table 1). These data suggest
that LUAD development may be at least partially attributable to
the miR-1-3p/PRC1 axis.

miR-1-3p Inhibits LUAD Cell Metastasis via
PRC1
To determine whether miR-1-3p-mediated suppression of PRC1
expression is a major mechanism inhibiting LUAD development
and progression, we cotransfected LUAD cells with miR-1-
3p and a PRC1-overexpression plasmid for Transwell assays.
The plasmid transfection efficacy of miR-1-3p and PRC1 was
validated in Figures 8A,B. We found that miR-1-3p significantly
inhibited the migration and invasion of three LUAD cell lines and
that the inhibitory effects of miR-1-3p were markedly reversed
by PRC1 overexpression (Figures 8C–E), suggesting that miR-1-
3p inhibits LUAD cell metastasis in a PRC1-depedent manner
and the miR-1-3p/PRC1 axis is majorly involved in LUAD
development and progression.

Overexpression of PRC1 Is Associated
With a Poor Prognosis in LUAD Patients
MiR-1-3p functions through suppressing PRC1 expression,
suggesting a promotive role of PRC1 in LUAD development. To
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TABLE 1 | The clinicopathological characteristics of 30 lung adenocarcinoma patients.

Clinicopathological features n Percent (%) PRC1 expression p miR-1-3p expression p

Low (n = 9) High (n = 21) Low (n = 18) High (n = 12)

GENDER

Male 19 63.33 7 12 0.419 11 9 0.694

Female 11 36.67 2 9 – 7 3 –

AGE (YEARS)

≤60 13 43.33 6 7 0.123 8 5 1.000

>60 17 56.67 3 14 – 10 7 –

TUMOR SIZE

T1 and T2 6 20.00 1 5 0.637 4 2 1.000

T3 and T4 24 80.00 8 16 – 14 10 –

TNM STAGE

I and II 7 23.33 5 2 0.014 1 6 0.009

III and IV 23 76.67 4 19 – 17 6 –

LYMPHATIC METASTASIS

Negative 12 40.00 8 4 0.001 2 10 0.000

Positive 18 60.00 1 17 – 16 2 –

DISTANT METASTASIS

M0 12 40.00 7 5 0.013 3 9 0.002

M1 18 60.00 2 16 – 15 3 –

TNM, tumor, lymph node, metastasis stage.

FIGURE 8 | miR-1-3p inhibits LUAD cell migration and invasion via PRC1. (A,B) qPCR analysis of the transfection efficiency of the miR-1-3p mimic and the

PRC1-overexpression plasmid in LUAD cells. (C–E) Transwell assays for migration and invasion of LUAD cells transfected with the miR-1-3p mimic and/or the

PRC1-overexpression plasmid.
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FIGURE 9 | Overexpression of PRC1 is associated with a poor prognosis in LUAD patients. (A) The prognostic effect of PRC1 in LUAD patients was evaluated using

Kaplan–Meier plots. (B) The overall and disease-free survival rates in LUAD patients with different PRC1 expression patterns were evaluated for The Cancer Genome

Atlas (TCGA) cohort.

confirm this, we examined the prognostic effect of PRC1 in LUAD
patients from a public database by performing Kaplan–Meier
analysis (http://www.kmplot.com). The results showed that the
LUAD patients with a higher mRNA expression of PRC1 had
shorter overall and disease-free survival times than those with
a lower mRNA expression of PRC1 (Figures 9A,B). These data
suggest that PRC1 overexpression may serve as a biomarker
of a poor prognosis for LUAD patients, further supporting our
findings that miR-1-3p plays a key role in inhibiting LUAD
development through targeting PRC1.

DISCUSSION

Carcinogenesis of LUAD is a complex and multistage process
involving the regulation of a wide range of genes bymiRNAs (22–
24). Among them, miR-1-3p, a muscle-specific miRNA, has been
shown to play a key role in skeletal muscle differentiation and
have inhibitory effects on the growth, migration, and invasion
of LUAD (25). The present study revealed that miR-1-3p was
significantly downregulated in LUAD tissues and cells. Lower

levels of miR-1-3p were strongly associated with a higher TNM
stage, earlier lymph nodemetastasis, andmore distant metastasis.
Therefore, miR-1-3p is suggested as a tumor suppressor in LUAD.
The detection of miR-1-3p expression may be a valuable tool to
evaluate the invasion and metastasis of LUAD.

There are hundreds of possible target genes of miR-1-3p,
among which PRC1 is a critical protein in cytokinesis and
characterized as a mitotic spindle-associated cyclin-dependent
kinase substrate (26). Previous studies have provided evidence
that PRC1 is involved in different types of cancer (27, 28).
Loss of PRC1 leads to the accumulation of bi- and multi-
nucleated cells in lung cancer, which further supports its role
as the major central spindle organizer in cytokinesis (29). In
view of our findings that miR-1-3p overexpression inhibits LUAD
cell viability, there is a possibility that the function of PRC1
in apoptosis and senescence is due to induction of miR-1-3p.
In this study, we demonstrated that the function of miR-1-
3p could be suppressed by dysregulated expression of PRC1.
In accordance with the above-mentioned studies, we confirmed
that the overexpression of PRC1 significantly promoted the
viability, invasion, and migration of LUAD cells. A higher PRC1
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expression was also related to a worse outcome in patients
with LUAD. Because Wnt/β-catenin signaling is dysregulated in
lung cancer (30) and the overexpression of Wnt proteins (Wnt1
and Wnt5a) is significantly associated with adverse outcomes
in lung cancer patients (31), we speculate that the miR-1-
3p/PRC1 axis participates in dysregulation of Wnt/β-catenin
signaling in LUAD development (32); however, this hypothesis
requires further investigation. Although our study demonstrated
that the miR-1-3p/PRC1 axis is a major mechanism underlying
LUAD development, we do not exclude the possibility that
other miRNAs or protein regulators besides miR-1-3p/PRC1 are
also involved in LUAD pathogenesis. Therefore, more research
is needed.

In summary, we identified miR-1-3p as a novel regulator of
PRC1 in LUAD. A high PRC1 expression correlates with a poor
prognosis in LUAD patients. Thus, targeting miR-1-3p/PRC1
may be a potential therapeutic intervention for the treatment
of LUAD.

ETHICS STATEMENT

The Ethics Committee of Qilu Hospital at Shandong University
approved this study [KYLL-2018 (KS)-156]. All participants in
this study provided informed consent.

AUTHOR CONTRIBUTIONS

TL designed the questionnaire and drafted the manuscript. XW
did the statistical analysis. TL and LJ did the relationship analysis
and collected the data. YL conceived the study, supervised and
reviewed the entire study, and edited the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.00120/full#supplementary-material

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. (2017)

67:7–30. doi: 10.3322/caac.21387

2. Zhang W, Fan J, Chen Q, Lei C, Qiao B, Liu Q. SPP1 and AGER as potential

prognostic biomarkers for lung adenocarcinoma. Oncol Lett. (2018) 15:7028–

36. doi: 10.3892/ol.2018.8235

3. Jiang W, Jimenez G, Wells NJ, Hope TJ, Wahl GM, Hunter T, et al. PRC1:

a human mitotic spindle-associated CDK substrate protein required for

cytokinesis.Mol Cell. (1998) 2:877–85. doi: 10.1016/S1097-2765(00)80302-0

4. Peters S, Popat S, Reinmuth N, De Ruysscher D, Kerr KM, Peters S, et

al. Metastatic non-small-cell lung cancer (NSCLC): ESMO clinical practice

guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2012)

23(Suppl. 7):vii56–64. doi: 10.1093/annonc/mds226

5. Leva GD, Croce CM. The role of microRNAs in the tumorigenesis of ovarian

cancer. Front Oncol. (2013) 3:153. doi: 10.3389/fonc.2013.00153

6. Han C, Yu Z, Duan Z, Kan Q. Role of microRNA-1 in human

cancer and its therapeutic potentials. Biomed Res Int. (2014) 2014:428371.

doi: 10.1155/2014/428371

7. Li J, Guan J, Long X, Wang Y, Xiang X. mir-1-mediated paracrine

effect of cancer-associated fibroblasts on lung cancer cell proliferation and

chemoresistance. Oncol Rep. (2016) 35:3523–31. doi: 10.3892/or.2016.4714

8. Li SM, Wu HL, Yu X, Tang K, Wang SG, Ye ZQ, et al. The putative

tumour suppressor miR-1–3p modulates prostate cancer cell aggressiveness

by repressing E2F5 and PFTK1. J Exp Clin Cancer Res. (2018) 37:219.

doi: 10.1186/s13046-018-0895-z

9. Diniz GP, Lino CA,Moreno CR, Senger N, Barreto-ChavesMLM.MicroRNA-

1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid

hormone. J Cell Physiol. (2017) 232:3360–8. doi: 10.1002/jcp.25781

10. Gao L, Yan P, Guo FF, Liu HJ, Zhao ZF. MiR-1–3p inhibits cell proliferation

and invasion by regulating BDNF-TrkB signaling pathway in bladder cancer.

Neoplasma. (2018) 65:89–96. doi: 10.4149/neo_2018_161128N594

11. Zhu D, Sun Y, Zhang D, Dong M, Jiang G, Zhang X, et al. miR1

inhibits the progression of colon cancer by regulating the expression

of vascular endothelial growth factor. Oncol Rep. (2018) 40:589–98.

doi: 10.3892/or.2018.6463

12. Shimo A, Nishidate T, Ohta T, Fukuda M, Nakamura Y, Katagiri

T. Elevated expression of protein regulator of cytokinesis 1,

involved in the growth of breast cancer cells. Cancer Sci. (2007)

98:174–81.doi: 10.1111/j.1349-7006.2006.00381.x

13. Kanehira M, Katagiri T, Shimo A, Takata R, Shuin T, Miki T, et al. Oncogenic

role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer.

Cancer Res. (2007) 67:3276–85. doi: 10.1158/0008-5472.CAN-06-3748

14. Chen J, Rajasekaran M, Xia H, Zhang X, Kong SN, Sekar K, et al.

The microtubule-associated protein PRC1 promotes early recurrence of

hepatocellular carcinoma in association with the Wnt/beta-catenin signalling

pathway. Gut. (2016) 65:1522–34. doi: 10.1136/gutjnl-2015-310625

15. Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H, Murata K,

et al. Genome-wide cDNA microarray analysis of gene expression profiles

in pancreatic cancers using populations of tumor cells and normal ductal

epithelial cells selected for purity by laser microdissection. Oncogene. (2004)

23:2385–400. doi: 10.1038/sj.onc.1207392

16. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al.

Integrative analysis of complex cancer genomics and clinical profiles using

the cBioPortal. Sci Signal. (2013) 6:pl1. doi: 10.1126/scisignal.2004088

17. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et

al. The cBio cancer genomics portal: an open platform for exploring

multidimensional cancer genomics data. Cancer Discov. (2012) 2:401–4.

doi: 10.1158/2159-8290.CD-12-0095

18. Zhu J, Sanborn JZ, Benz S, Szeto C, Hsu F, Kuhn RM, et al.

The UCSC cancer genomics browser. Nat Methods. (2009) 6:239–40.

doi: 10.1038/nmeth0409-239

19. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et

al. ONCOMINE: a cancer microarray database and integrated data-mining

platform. Neoplasia. (2004) 6:1–6. doi: 10.1016/S1476-5586(04)80047-2

20. Gyorffy B, Surowiak P, Budczies J, Lánczky A. Online survival analysis

software to assess the prognostic value of biomarkers using transcriptomic

data in non-small-cell lung cancer. PLoS ONE. (2013) 8:e82241.

doi: 10.1371/journal.pone.0082241

21. Jiao D, Chen J, Li Y, Tang X, Wang J, Xu W, et al. miR-1–3p and miR-206

sensitizes HGF-induced gefitinib-resistant human lung cancer cells through

inhibition of c-Met signalling and EMT. J Cell Mol Med. (2018) 22:3526–36.

doi: 10.1111/jcmm.13629

22. Nadal E, Chen G, Gallegos M, Lin L, Ferrer-Torres D, Truini A, et al.

Epigenetic inactivation ofmicroRNA-34b/c predicts poor disease-free survival

in early-stage lung adenocarcinoma. Clin Cancer Res. (2013) 19:6842–52.

doi: 10.1158/1078-0432.CCR-13-0736

23. Yu QQ, Wu H, Huang X, Shen H, Shu YQ, Zhang B, et al. MiR-1

targets PIK3CA and inhibits tumorigenic properties of A549 cells. Biomed

Pharmacother. (2014) 68:155–61. doi: 10.1016/j.biopha.2014.01.005

24. Singh A, Happel C, Manna SK, Acquaah-Mensah G, Carrerero J, Kumar

S, et al. Transcription factor NRF2 regulates miR-1 and miR-206 to

drive tumorigenesis. J Clin Invest. (2013) 123:2921–34. doi: 10.1172/JCI

66353

25. Chiu KL, Lin YS, Kuo TT, Lo CC, Huang YK, Chang HF, et al.

ADAM9 enhances CDCP1 by inhibiting miR-1 through EGFR signaling

Frontiers in Oncology | www.frontiersin.org 10 March 2019 | Volume 9 | Article 120326

https://www.frontiersin.org/articles/10.3389/fonc.2019.00120/full#supplementary-material
https://doi.org/10.3892/ol.2018.8235
https://doi.org/10.1016/S1097-2765(00)80302-0
https://doi.org/10.1093/annonc/mds226
https://doi.org/10.3389/fonc.2013.00153
https://doi.org/10.1155/2014/428371
https://doi.org/10.3892/or.2016.4714
https://doi.org/10.1186/s13046-018-0895-z
https://doi.org/10.1002/jcp.25781
https://doi.org/10.4149/neo_2018_161128N594
https://doi.org/10.3892/or.2018.6463
https://doi.org/10.1111/j.1349-7006.2006.00381.x
https://doi.org/10.1158/0008-5472.CAN-06-3748
https://doi.org/10.1136/gutjnl-2015-310625
https://doi.org/10.1038/sj.onc.1207392
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1038/nmeth0409-239
https://doi.org/10.1016/S1476-5586(04)80047-2
https://doi.org/10.1371/journal.pone.0082241
https://doi.org/10.1111/jcmm.13629
https://doi.org/10.1158/1078-0432.CCR-13-0736
https://doi.org/10.1016/j.biopha.2014.01.005
https://doi.org/10.1172/JCI66353
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. miR-1-3p in LUAD

activation in lung cancer metastasis. Oncotarget. (2017) 8:47365–78.

doi: 10.18632/oncotarget.17648

26. Zhan P, Zhang B, Xi GM, Wu Y, Liu HB, Liu YF, et al. PRC1

contributes to tumorigenesis of lung adenocarcinoma in association with

the Wnt/beta-catenin signaling pathway. Mol Cancer. (2017) 16:108.

doi: 10.1186/s12943-017-0682-z

27. Brynychova V, Ehrlichova M, Hlavac V, Nemcova-Furstova V, Pecha V, Leva J,

et al. Genetic and functional analyses do not explain the association of high

PRC1 expression with poor survival of breast carcinoma patients. Biomed

Pharmacother. (2016) 83:857–64. doi: 10.1016/j.biopha.2016.07.047

28. Hanselmann S, Wolter P, Malkmus J, Gaubatz S. The microtubule-associated

protein PRC1 is a potential therapeutic target for lung cancer. Oncotarget.

(2018) 9:4985–97. doi: 10.18632/oncotarget.23577

29. Glotzer M. The 3Ms of central spindle assembly: microtubules, motors and

MAPs. Nat Rev Mol Cell Biol. (2009) 10:9–20. doi: 10.1038/nrm2609

30. Stewart DJ.Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer

Inst. (2014) 106:djt356. doi: 10.1093/jnci/djt356

31. Jin J, Zhan P, Qian H, Wang X, Katoh M, Phan K, et al. Prognostic value of

wingless-type proteins in non-small cell lung cancer patients: a meta-analysis.

Transl Lung Cancer Res. (2016) 5:436–42. doi: 10.21037/tlcr.2016.08.08

32. Anton R, Chatterjee SS, Simundza J, Cowin P, Dasgupta R. A systematic screen

for micro-RNAs regulating the canonical Wnt pathway. PLoS ONE. (2011)

6:e26257. doi: 10.1371/journal.pone.0026257

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Li, Wang, Jing and Li. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 11 March 2019 | Volume 9 | Article 120327

https://doi.org/10.18632/oncotarget.17648
https://doi.org/10.1186/s12943-017-0682-z
https://doi.org/10.1016/j.biopha.2016.07.047
https://doi.org/10.18632/oncotarget.23577
https://doi.org/10.1038/nrm2609
https://doi.org/10.1093/jnci/djt356
https://doi.org/10.21037/tlcr.2016.08.08
https://doi.org/10.1371/journal.pone.0026257~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 1

MINI REVIEW
published: 05 March 2019

doi: 10.3389/fphar.2019.00208

Edited by:
Yunkai Zhang,

Vanderbilt University Medical Center,
United States

Reviewed by:
Tomohiro Terada,

Shiga University of Medical Science,
Japan

Ning Ji,
Tianjin Medical University, China

Shinobu Ohnuma,
Tohoku University, Japan

*Correspondence:
Tappei Takada

tappei-tky@umin.ac.jp

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 25 December 2018
Accepted: 19 February 2019

Published: 05 March 2019

Citation:
Toyoda Y, Takada T and Suzuki H

(2019) Inhibitors of Human ABCG2:
From Technical Background

to Recent Updates With Clinical
Implications.

Front. Pharmacol. 10:208.
doi: 10.3389/fphar.2019.00208

Inhibitors of Human ABCG2: From
Technical Background to Recent
Updates With Clinical Implications
Yu Toyoda, Tappei Takada* and Hiroshi Suzuki

Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan

The ATP-binding cassette transporter G2 (ABCG2; also known as breast cancer
resistance protein, BCRP) has been suggested to be involved in clinical multidrug
resistance (MDR) in cancer like other ABC transporters such as ABCB1 (P-glycoprotein).
As an efflux pump exhibiting a broad substrate specificity localized on cellular
plasma membrane, ABCG2 excretes a variety of endogenous and exogenous
substrates including chemotherapeutic agents, such as mitoxantrone and several
tyrosine kinase inhibitors. Moreover, in the normal tissues, ABCG2 is expressed on
the apical membranes and plays a pivotal role in tissue protection against various
xenobiotics. For this reason, ABCG2 is recognized to be an important determinant
of the pharmacokinetic characteristics of its substrate drugs. Although the clinical
relevance of reversing the ABCG2-mediated MDR has been inconclusive, an appropriate
modulation of ABCG2 function during chemotherapy should logically enhance the
efficacy of anti-cancer agents by overcoming the MDR phenotype and/or improving their
pharmacokinetics. To confirm this possibility, considerable efforts have been devoted
to developing ABCG2 inhibitors, although there is no clinically available substance for
this purpose. As a clue for addressing this issue, this mini-review provides integrated
information covering the technical backgrounds necessary to evaluate the ABCG2
inhibitory effects on the target compounds and a current update on the ABCG2
inhibitors. This essentially includes our recent findings, as we serendipitously identified
febuxostat, a well-used agent for hyperuricemia as a strong ABCG2 inhibitor, that
possesses some promising potentials. We hope that an overview described here will
add value to further studies involving in the multidrug transporters.

Keywords: BCRP, cancer chemotherapy, drug repurposing, febuxostat, Ko143, multidrug resistance, tumor lysis
syndrome, vesicle transport

INTRODUCTION

Two decades ago, the ABC transporter G2 (ABCG2) was discovered in drug-resistant cancer cells
and human placenta (Allikmets et al., 1998; Doyle et al., 1998; Miyake et al., 1999). Thereafter,
many studies were conducted to determine the role of ABCG2 in developing MDR in cancer.
Moreover, in the first decade, in vivo studies using Abcg2 knockout mice (Jonker et al., 2002)

Abbreviations: ABC, ATP-binding cassette; BBB, blood–brain barrier; CML, chronic myeloid leukemia; EC50, half-maximal
effective concentration; FTC, fumitremorgin C; IC50, half-maximal inhibitory concentration; MDR, multidrug resistance;
TKI, tyrosine kinase inhibitor, TLS, tumor lysis syndrome.
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coupled with biochemical characterizations revealed the
importance of ABCG2 in the biological defense mechanisms
against xenobiotics (Vlaming et al., 2009). Indeed, ABCG2—a
655-amino acid protein working as a homodimer on cellular
plasma membranes (Robey et al., 2009)—is expressed not
only in cancer cells but also in several normal tissues, such as
brush border membranes of epithelium in the intestine and
of proximal tubules in the kidney, bile canalicular membranes
of the hepatocytes in the liver, luminal membranes of the
mammary gland epithelium, and blood-facing membranes
of the endothelial cells forming the BBB. In these tissues
ABCG2 plays a pivotal role in the extrusion of various
endogenous and exogenous substrates including drugs
(Mizuno et al., 2004, 2007; Adachi et al., 2005; Hirano
et al., 2005; Jonker et al., 2005; Ando et al., 2007). Hence,
this transporter is recognized as an important determinant of
the pharmacokinetic characteristics profiles of various drugs
(Giacomini et al., 2010).

In the next decade, after identifying ABCG2 as a
physiologically important urate transporter, a positive
relationship between ABCG2 dysfunction and increased
risk of human diseases, such as gout and hyperuricemia
was revealed (Matsuo et al., 2009; Woodward et al., 2009;
Ichida et al., 2012; Higashino et al., 2017). In addition to
the sulfate conjugates of endogenous steroids (Suzuki et al.,
2003) and porphyrins (Zhou et al., 2005; Robey et al., 2009),
phytoestrogen sulfate conjugates (van de Wetering and
Sapthu, 2012) and a uremic toxin indoxyl sulfate (Takada
et al., 2018) were added in the growing list of ABCG2
substrates. Contrary to these advances in understanding the
pathophysiological importance of ABCG2, the clinical relevance
of reversing ABCG2-mediated MDR has been inconclusive
(Robey et al., 2018).

ABCG2 overexpression can render the cancer cells
resistant to the ABCG2 substrate chemotherapy agents,
such as mitoxantrone, doxorubicin, SN-38, and several
TKIs. To the best of our knowledge, no published clinical
trial has ever succeeded in reversing the ABCG2-mediated
MDR. This is because, despite a lot of efforts in ABCG2
inhibitor development, chemical knock-out/down of
ABCG2 in clinical situations has not been achieved yet
due to the lack of an appropriate candidate molecule. We
herein describe some well-used experimental systems to
evaluate the ABCG2 inhibitory activity, followed by a recent
update on the ABCG2 inhibitors that includes a potent
substance, febuxostat.

TECHNICAL BACKGROUND FOR
FUNCTIONAL VALIDATION

Various experimental models are available to examine the
functions of the ABC transporters. Mainly focusing on ABCG2,
with a current update this section introduces some in vitro and
in vivo models that have been used in ABC transporter field.
Broadly, the in vitro models are classified into two types, namely
membrane-based systems and cell-based systems (Figure 1).

Plasma Membrane Vesicle-Based
Methods
Preparation of Plasma Membrane Vesicles
In mammals, most of the ABC transporters are membrane
proteins and work as an efflux pump involved in the transport
of its substrates from the cytosol, either to the extracellular space
or into organelles by an ATP-dependent manner. Therefore,
isolation of the target ABC protein-enriched cell membrane
is the first step for biochemical analyses. For ABCG2, sucrose
density gradient ultracentrifugation for the isolation of plasma
membrane fraction is generally employed to prepare plasma
membrane vesicles from ABCG2-expressing cells (related notes
are inscribed in the legend of Figure 1). For this purpose, not
only mammalian cells but also insect cells [e.g., baculovirus-
infected Sf9 cells (Saito et al., 2006)] could be used as
host cells. Nonetheless, for easy and convenient preparation
of ABCG2-expressing cells, we here recommend plasmid-
based overexpression in non-polarized cells exhibiting high
transfection efficiency, such as HEK293 cells (Miyata et al., 2016).

Vesicle Transport Assay
Vesicle transport assay is a well-established in vitro method
employed to quantitatively evaluate ABC transporter function.
The presence of ATP-dependent active transport across the cell
membrane was directly proved using this method (Ishikawa,
1989). In this assay, ATP-regeneration components—enough
amount of creatine phosphate and creatine kinase—are
employed to maintain ATP levels in the reaction mixtures during
prolonged incubation, and AMP is used as an alternative of
ATP for the ATP-deficient controls. After incubation for the
transport reaction, the plasma membrane vesicles are washed by
filtration and then the intravesicularly accumulated substances
are detected. To make this process more convenient and
sensitive, radiolabeled or fluorescent substrates are usually used;
alternatively, mass spectrometry is used (Toyoda et al., 2016;
Takada et al., 2018). With ABCG2, [14C]-urate (Miyata et al.,
2016; Stiburkova et al., 2016; Higashino et al., 2017) and [3H]-
estrone sulfate (Suzuki et al., 2003) are well-used radiolabeled
substrates that exhibit comparatively lower background signal
for the quantitative detection due to their relatively hydrophilic
properties. Additionally, non-radiolabeled experiments are
conducted by the combined use of hematoporphyrin (a
fluorescent ABCG2 substrate) and gel filtration techniques
(Tamura et al., 2006).

ATPase Assay
Since ABC protein is driven by the free energy of ATP
hydrolysis, ATPase activity is recognized as an indicator of
the substrate transport. In this assay, the release of inorganic
phosphate from ATP coupled with the transport of substrates
is estimated using a colorimetric method, such as malachite
green procedure (Baykov et al., 1988). This catalytic assay
is relatively convenient for estimating the activity of some
ABC proteins that prefer lipophilic compounds as their
substrates because the non-specifically adsorbed substrates
on the vesicles interfere with the measurement of direct
transport. Considering that ABCB1 activity has been well

Frontiers in Pharmacology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 208329

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 3

Toyoda et al. Current Update on ABCG2 Inhibitors

FIGURE 1 | Schematic illustrations of each in vitro assay. Generally used in vitro models which are classified into membrane-based systems and cell-based systems
(Hegedus et al., 2009) are shown. In the former systems, investigators can use culture cell-derived plasma membrane vesicles or reconstituted proteoliposomes as
described in the main text. In the latter systems, aside from a couple of exceptions using Xenopus laevis oocytes (Nakanishi et al., 2003; Woodward et al., 2009),
mammalian cells expressing target ABC protein are generally used. (A,B) Plasma membrane vesicle- or proteoliposome-based methods: vesicle transport assay (A)
and ATPase assay (B). Both plasma membrane vesicles and reconstituted proteoliposomes are applicable to the vesicle transport assay and the ATPase assay. Of
note, the final step of the vesicle preparation—gentle homogenization of isolated membrane fraction—is empirically important for the formation of inside-out plasma
membrane vesicles, whose outer faces are the cytoplasmic aspects of the parent membranes. Although the resulting plasma membrane vesicles are the mixture of
inside-out and right-side-out components, without any separation of the right-side-out vesicles they are generally stored at –80◦C and subjected to further assays.
This is because that in these in vitro assays, only ABC proteins embedded in the inside-out vesicles have their ABCs outside of the vesicles and can use ATP in the
reaction mixture for their transport function. In other words, the ABC proteins in the right-side-out vesicles cannot work due to an inaccessibility of the ABCs with
ATP. Additionally, ABCG2-enriched plasma membrane vesicles are used for a biochemical analysis to study interactions of candidate chemicals with ABCG2 at the
substrate-binding sites, known as the photoaffinity labeling of ABCG2 with [125 I]-iodoarylazido-prazosin (Shukla et al., 2006). (C,D) Cell-based methods: drug
resistance/accumulation test (C) and transcellular system (D). MDR, multidrug resistance.

studied based on the ATPase assay, this method will be
appropriate when investigators would need to compare the
inhibitory effects of target compounds on ABCB1 and ABCG2
(Zhang et al., 2016; Guo et al., 2018). Nonetheless, since the
ATPase assay does not evaluate the direct transport, regarding
ABCG2, we recommend the vesicle transport assay for more
precise evaluation.

Proteoliposome-Based Methods
An artificial lipid membrane system characterized by the
reconstitution of purified ABC protein into proteoliposomes
(Ambudkar et al., 1998; Jackson et al., 2018) is also a powerful
technique. The ABC protein-contained proteoliposomes
can be used as an alternative to the plasma membrane
vesicles, and their detailed preparation methods are described
previously (Geertsma et al., 2008). Additionally, this approach
serves as the first choice in the functional studies involving
the ABC proteins localized on the organelle membrane
(Okamoto et al., 2018).

Cell-Based Methods
Drug Resistance/Accumulation Test
The cells overexpressing MDR machinery show lower sensitivity
against its substrate drugs exhibiting cytotoxic or anti-
proliferative effects compared to their parent cells, indicating
that the ABC protein-expressing cells have higher half maximal
effective concentration (EC50) values for cytotoxic transporter
substrates. In such situations, co-treatment of the transporter
inhibitors with the substrate decreases the EC50 values, which is
depicted as a left-side shift of cell viability curve in the cytotoxic
assay. Additionally, if fluorescence transporter substrates are
available, flow cytometry analyses addressing their intracellular
accumulation will be useful for inhibitor screening (Murakami
et al., 2017; Wu et al., 2017).

Transcellular System
To investigate the transcellular transport of substances, mono-
layer culture of polarized cells expressing target transporter(s)
in Transwell R© inserts system has been used (Hegedus et al.,
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2009). For instance, using double-transfected Madin-Darby
canine kidney II cells overexpressing both organic anion-
transporting polypeptide 1B1 (OATP1B1, a basal uptake
transporter) and ABCG2 (an apical efflux transporter), an
earlier study has observed an enhanced vectorial transport of
[3H]estrone sulfate—an ABCG2 substrate that cannot passively
penetrate the plasma membrane—from the basal to the apical
side (Matsushima et al., 2005). A similar strategy employing
ABCG2-expressing polarized cells was used for in vitro studies
investigating the active secretion of drugs and toxins into milk
via ABCG2 (Wassermann et al., 2013; Ito et al., 2015). Of note, in
this transcellular system, endogenous transporters and metabolic
reactions in the cells may affect apparent transport activities of
target transporters.

In vivo Evaluation Methods
Xenograft Models
Athymic nude mice models with MDR-xenografts have been used
to test whether co-administration of a potential MDR inhibitor
with an anti-cancer agent can reverse the MDR phenotype
(Tiwari et al., 2013; Zhang et al., 2017, 2018). In such models, the
obtained results could be affected by the difference in the origin
of the transplanted cancer cells. This concern might be important
while xenograft models are studied.

Focusing on Pharmacokinetic Characteristics
To examine the in vivo effects of different chemicals on the
target ABC transporter, its pharmacokinetic role has been
focused (Robey et al., 2018). With ABCG2, the pharmacokinetic
parameters related to the intestinal absorption or the brain
distribution of ABCG2 substrate drugs will be good indicators
for ABCG2 activity in vivo. For example, pre-dosing of enough
quantity of ABCG2 inhibitors increased the bioavailability
of sulphasalazine—an ABCG2 substrate—in wild-type mice.
This was, however, not observed in Abcg2-knockout mice,
suggesting the in vivo inhibition of Abcg2 (Kusuhara et al.,
2012; Miyata et al., 2016). Interestingly, the utility of a
combination of brain-specific firefly luciferase transgenic
mice and D-luciferin, a chemiluminescent luciferase substrate
transported by ABCG2 (Zhang et al., 2007) to investigate the
in vivo inhibitory effects of test compounds on ABCG2 in
the BBB was reported (Bakhsheshian et al., 2016). Further
methodological progress will aid evaluation of in vivo
ABCG2 function.

Structure-Based in silico Approaches
A main approach to abolish MDR is to discover specific
inhibitors of the drug-efflux pump. For this purpose, quantitative
structure-activity relationship (QSAR) analysis among the series
of compounds can serve for the design of lead inhibitors (Nicolle
et al., 2009; Ishikawa et al., 2012; Marighetti et al., 2013; Shukla
et al., 2014). With ABCG2, since three-dimensional structures of
this protein determined by cryo-electron microscopy (EM) were
very recently presented (Taylor et al., 2017; Jackson et al., 2018), a
deeper understanding of the chemicals–ABCG2 interactions will
be achieved as described below.

HISTORY AND RECENT UPDATE OF THE
ABCG2 INHIBITORS

As a MDR machinery in cancer cells and an important drug
gatekeeper in tissues like the intestine and the brain, ABCG2
is involved in the efficacy of cancer chemotherapy in patients
treated with ABCG2 substrate anti-cancer drugs. To achieve
appropriate modulation of ABCG2 by small molecules, the
inhibitory potency of various compounds against ABCG2 activity
has been extensively evaluated. In this section, we highlight the
history and recent update of ABCG2 inhibitors.

Overview of the History of ABCG2
Inhibitors
The first ABCG2 inhibitor reported was FTC, a mycotoxin
produced by Aspergillus fumigatus (Rabindran et al., 1998, 2000).
The in vivo use of FTC was unfortunately precluded due to its
neurotoxicity. Among the FTC derivatives, Ko143 was identified
as a highly potent ABCG2 inhibitor in vivo as it was less
neurotoxic than the native FTC and was not overtly toxic to
mice (Allen et al., 2002). Cell-based assays showed that the
EC90 concentrations of Ko143 were 23 nM (Abcg2-mediated
mitoxantrone resistance), 5.5 µM (ABCB1-mediated paclitaxel
resistance) and >8 µM (ABCC1-mediated etoposide resistance),
respectively; these results indicated that Ko143 inhibits ABCG2
stronger than ABCB1 and ABCC1, but is not selective to ABCG2
(Allen et al., 2002). Furthermore, from a series of ABCB1
inhibitors, some ABCG2 inhibitors, such as elacridar (GF120918)
(Allen et al., 1999; Kruijtzer et al., 2002) and tariquidar (XR9576)
(Robey et al., 2004) are frequently used in basic research
as well as Ko143.

To date, the molecular bases relating to the chemical
inhibition of ABCG2 are not fully understood. The cryo-EM
structures of ABCG2 (Taylor et al., 2017) and ABCG2 bound
to Ko143 derivatives or tariquidar (Jackson et al., 2018) will be
an important to address this issue. Besides, another group of
researchers has revealed the structural characteristics of ABCG2
protein critical for its function based on a molecular modeling
approach combined with biochemical characterizations of
ABCG2 mutants (Khunweeraphong et al., 2017). Previous studies
employing the QSAR approaches predicted some structural
requirements of compounds for interacting with ABCG2 as an
inhibitor (Ishikawa et al., 2012; Mao and Unadkat, 2015); not
being true for all ABCG2 inhibitors, the representative features
are lipophilicity, planner structure, and amine bonded to one
carbon of a heterocyclic ring. Furthermore, a virtual screening
strategy employing a ligand-based in silico classification model
to predict the inhibitory potential of drugs toward ABCG2
presented some favorable outcomes (Montanari et al., 2017).
Integration of these findings will contribute to providing a basis
for the design of new ABCG2 inhibitors.

Hitherto, many studies focusing on the chemicals–ABCG2
interactions identified a large number of ABCG2 inhibitors with
diverse chemical structures (Mao and Unadkat, 2015; Wiese,
2015; Pena-Solorzano et al., 2017; Silbermann et al., 2019). An
expanding list of the ABCG2 inhibitors, which include ABCG2
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FIGURE 2 | Inhibitory effect of febuxostat against ABCG2 is stronger than that of Ko143 and elacridar, two well-used ABCG2 inhibitors. Febuxostat is known as an
oral hypouricemic agent inhibiting xanthine oxidoreductase, a key enzyme for uric acid production. (Left) Effect of each compound on the transport activity of
ABCG2 are shown. Data from our previous study under CC BY license (Miyata et al., 2016) are shown graphically, in which in the absence (vehicle control) or
presence of 100 nM of each compound, the ATP-dependent urate transport activities of ABCG2 were measured using the vesicle transport assay. Data are
expressed as the mean ± SD, n = 3. Of note, the half-maximal inhibitory concentration (IC50) of febuxostat against the urate transport activity of ABCG2 was 27 nM
in the previous study. (Right) Chemical structures of each compound are depicted.

substrates (competitive inhibitors), contains such drugs on the
market as TKIs and anti-HIV drugs [some of them are often
ABCG2 substrates (Polgar et al., 2008; Mao and Unadkat, 2015)]
and such dietary phytochemicals as flavonoids and rotenoids.
Nevertheless, to the best of our knowledge, the clinical use of
such chemicals for ABCG2 inhibition has not yet been achieved
probably due to concerns on safety and/or in vivo efficacy of
them, which may have been common reasons responsible for
the failure of the clinical development of ABCG2 inhibitors.
Recent studies importantly showed that two potential anti-cancer
compounds under clinical development could competitively
inhibit both ABCG2 and ABCB1 (Ji et al., 2018a,b).

Febuxostat, a Highly Potent ABCG2
Inhibitor Applicable in Clinical Situations
Regarding the difficulty in the clinical applications of
existing ABCG2 inhibitors, our recent study may open up
further avenues, in which febuxostat—an approved agent
for hyperuricemia globally used in clinical situations—was
serendipitously identified as a strong ABCG2 inhibitor both
in vitro and in vivo (Miyata et al., 2016). Using the vesicle
transport assay, we revealed that febuxostat inhibits ABCG2
more strongly than Ko143 and elacridar (Figure 2). This
indicates that febuxostat has a superior safety profile and
better inhibitory ability against ABCG2 compared to these two
compounds. Moreover, the study demonstrated that the IC50 of
febuxostat against urate transport activity of ABCG2 (0.027 µM)

was lower than its maximum plasma unbound concentrations
reported in humans (0.09 µM), suggesting that febuxostat
might inhibit human ABCG2 at a clinically used dose. Thus,
febuxostat can be a promising candidate as a potential ABCG2
inhibitor in humans. The structural characteristics and molecular
mechanisms of febuxostat as an ABCG2 inhibitor remain to be
elucidated, as well as the effects of febuxostat on the function of
other ABC transporters, including ABCB1.

Febuxostat will be used in cancer chemotherapy more
frequently because recently this drug has been approved in
Europe and Japan for the prophylaxis of TLS. TLS is a
potentially life-threatening condition caused by an abrupt
release of intracellular metabolites after tumor cell lysis in
cancer patients on chemotherapy (Alakel et al., 2017). It is
the most common treatment-related emergency in patients
with hematologic malignancies and characterized by metabolic
abnormalities including hyperuricemia that triggers several
mechanisms resulting in acute kidney injury. Appropriate control
of serum uric acid is therefore important in the prevention
of TLS. Recent studies demonstrated that febuxostat—an oral
hypouricemic agent—can successfully prevent TLS in cancer
patients (Spina et al., 2015; Tamura et al., 2016). In such
situations, since the patients will be treated with febuxostat before
and during chemotherapy, there would be drug-drug interactions
between febuxostat and ABCG2 substrate anti-cancer agents.

Importantly, ABCG2 is reportedly expressed on the malignant
hematopoietic and the lymphoid cells frequently; its expression
in several types of human leukemia has been investigated
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(Jordanides et al., 2006; Eechoute et al., 2011; Stacy et al., 2013).
Considering that initiating cells in CML arises from a multipotent
hematopoietic stem cell (HSC), together with high expression
of ABCG2 in human HSCs (Zhou et al., 2001; Scharenberg
et al., 2002), overexpression of ABCG2 has been considered to
confer drug resistance ability to the CML stem cell population
(Brendel et al., 2007). However, the clinical relevance of ABCG2
inhibition in CML patients from the view point of reversing MDR
remains to be clarified. Since several TKIs used for CML are
ABCG2 substrates (Hira and Terada, 2018), the combination use
of febuxostat may be a future research topic.

Additionally, ABCG2 expressed in tumor cells is reportedly
involved in the efflux of photosensitizers in 5-aminolevulinic
acid-based photodynamic therapy (Ishikawa et al., 2015).
Hence, febuxostat might enhance the efficacy of this minimally
invasive modality for treating solid cancers by accumulating
photosensitizers in the target cells. The details are discussed in
our previous report (Miyata et al., 2016).

CONCLUSION AND PERSPECTIVE

Here, we summarized some key experimental systems that
will continuously contribute to generating novel ABCG2
inhibitors and described an overview of the current update of
ABCG2 inhibitors. Among them, febuxostat will be one of the
most promising candidates for clinical use. Considering that
dysfunctional ABCG2 genotypes, which are summarized in a
recent review (Heyes et al., 2018), alter the pharmacokinetic
characteristics of ABCG2 substrate drugs such as several TKIs
(Hira and Terada, 2018) and rosuvastatin (Keskitalo et al., 2009),
ABCG2 inhibitors will also exert similar effects in humans.
As a beneficial application of this clinical possibility, we have
proposed a novel concept named febuxostat-boosted therapy
(Miyata et al., 2016), in which febuxostat is expected to enhance
the bioavailability of ABCG2 substrate drugs. For a similar
purpose, ritonavir and cobicistat are used as pharmacokinetic
boosters inhibiting cytochrome P450 3A4, a major pathway
of drug metabolism, to increase the plasma concentrations of
certain drugs (Shah et al., 2013). No pharmacokinetic enhancer
targeting transporter proteins has been, however, successfully

evaluated in clinical trials. In this context, the potential
benefits of the febuxostat-boosted therapy should be validated
in the near future. Furthermore, this concept could also be
applied to enhance the BBB penetration of ABCG2 substrate
drugs for brain cancer chemotherapy. Despite the potential
risks of adverse events in the combination therapy, further
clinical studies to elucidate whether febuxostat is beneficial
in enhancing the efficacy of pharmacotherapy via ABCG2
inhibition are warranted.

AUTHOR CONTRIBUTIONS

YT researched the data for the manuscript, provided substantial
contributions to discussion of its content, and wrote the
manuscript. TT contributed to the discussion and the writing
of the manuscript. HS critiqued the manuscript and provided
intellectual inputs. All the authors reviewed and edited the
manuscript before submission and have made final approval
of the manuscript.

FUNDING

This work and relating our findings were supported by the
JSPS KAKENHI Grant Numbers 15H05610 to YT, 16H1808
and 18KK0247 to TT, 22136015 to HS; TT has received
research grants from Gout Research Foundation, The Uehara
Memorial Foundation, Mochida Memorial Foundation for
Medical and Pharmaceutical Research, The Takeda Medical
Foundation, and MSD Life Science Foundation, Public Interest
Incorporated Foundation.

ACKNOWLEDGMENTS

The authors would like to acknowledge Drs. Hiroshi Miyata,
Hirotaka Matsuo, and Kimiyoshi Ichida for their contribution
to our studies highlighted in this mini-review article as well as
Drs. Toshihisa Ishikawa and Yuichi Sugiyama for their previous
mentorships and encouragements.

REFERENCES
Adachi, Y., Suzuki, H., Schinkel, A. H., and Sugiyama, Y. (2005). Role of breast

cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and
sulfate conjugates from enterocytes to intestinal lumen. Mol. Pharmacol. 67,
923–928. doi: 10.1124/mol.104.007393

Alakel, N., Middeke, J. M., Schetelig, J., and Bornhauser, M. (2017). Prevention
and treatment of tumor lysis syndrome, and the efficacy and role of rasburicase.
Onco Targets Ther. 10, 597–605. doi: 10.2147/OTT.S103864

Allen, J. D., Brinkhuis, R. F., Wijnholds, J., and Schinkel, A. H. (1999). The mouse
Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected
for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res. 59,
4237–4241.

Allen, J. D., Van Loevezijn, A., Lakhai, J. M., Van Der Valk, M., Van Tellingen, O.,
Reid, G., et al. (2002). Potent and specific inhibition of the breast cancer
resistance protein multidrug transporter in vitro and in mouse intestine by a
novel analogue of fumitremorgin C. Mol. Cancer Ther. 1, 417–425.

Allikmets, R., Schriml, L. M., Hutchinson, A., Romano-Spica, V., and Dean, M.
(1998). A human placenta-specific ATP-binding cassette gene (ABCP) on
chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58,
5337–5339.

Ambudkar, S. V., Lelong, I. H., Zhang, J., and Cardarelli, C. (1998). Purification
and reconstitution of human P-glycoprotein. Methods Enzymol. 292, 492–504.
doi: 10.1016/S0076-6879(98)92038-9

Ando, T., Kusuhara, H., Merino, G., Alvarez, A. I., Schinkel, A. H., and
Sugiyama, Y. (2007). Involvement of breast cancer resistance protein (ABCG2)
in the biliary excretion mechanism of fluoroquinolones. Drug Metab. Dispos.
35, 1873–1879. doi: 10.1124/dmd.107.014969

Bakhsheshian, J., Wei, B. R., Hall, M. D., Simpson, R. M., and Gottesman, M. M.
(2016). In vivo bioluminescent imaging of ATP-binding cassette transporter-
mediated efflux at the blood-brain barrier. Methods Mol. Biol. 1461, 227–239.
doi: 10.1007/978-1-4939-3813-1_19

Baykov, A. A., Evtushenko, O. A., and Avaeva, S. M. (1988). A malachite
green procedure for orthophosphate determination and its use in alkaline

Frontiers in Pharmacology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 208333

https://doi.org/10.1124/mol.104.007393
https://doi.org/10.2147/OTT.S103864
https://doi.org/10.1016/S0076-6879(98)92038-9
https://doi.org/10.1124/dmd.107.014969
https://doi.org/10.1007/978-1-4939-3813-1_19
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 7

Toyoda et al. Current Update on ABCG2 Inhibitors

phosphatase-based enzyme immunoassay. Anal. Biochem. 171, 266–270. doi:
10.1016/0003-2697(88)90484-8

Brendel, C., Scharenberg, C., Dohse, M., Robey, R. W., Bates, S. E., Shukla, S.,
et al. (2007). Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity
interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 21,
1267–1275. doi: 10.1038/sj.leu.2404638

Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., et al.
(1998). A multidrug resistance transporter from human MCF-7 breast cancer
cells. Proc. Natl. Acad. Sci. U.S.A. 95, 15665–15670. doi: 10.1073/pnas.95.26.
15665

Eechoute, K., Sparreboom, A., Burger, H., Franke, R. M., Schiavon, G., Verweij, J.,
et al. (2011). Drug transporters and imatinib treatment: implications for clinical
practice. Clin. Cancer Res. 17, 406–415. doi: 10.1158/1078-0432.CCR-10-2250

Geertsma, E. R., Nik Mahmood, N. A., Schuurman-Wolters, G. K., and
Poolman, B. (2008). Membrane reconstitution of ABC transporters and assays
of translocator function. Nat. Protoc. 3, 256–266. doi: 10.1038/nprot.2007.519

Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X.,
et al. (2010). Membrane transporters in drug development. Nat. Rev. Drug
Discov. 9, 215–236. doi: 10.1038/nrd3028

Guo, C., Liu, F., Qi, J., Ma, J., Lin, S., Zhang, C., et al. (2018). A novel
synthetic dihydroindeno[1,2-b] indole derivative (LS-2-3j) reverses ABCB1-
and ABCG2-mediated multidrug resistance in cancer cells. Molecules 23:E3264.
doi: 10.3390/molecules23123264

Hegedus, C., Szakacs, G., Homolya, L., Orban, T. I., Telbisz, A., Jani, M.,
et al. (2009). Ins and outs of the ABCG2 multidrug transporter: an
update on in vitro functional assays. Adv. Drug Deliv. Rev. 61, 47–56.
doi: 10.1016/j.addr.2008.09.007

Heyes, N., Kapoor, P., and Kerr, I. D. (2018). Polymorphisms of the multidrug
Pump ABCG2: a systematic review of their effect on protein expression,
function, and drug pharmacokinetics. Drug Metab. Dispos. 46, 1886–1899.
doi: 10.1124/dmd.118.083030

Higashino, T., Takada, T., Nakaoka, H., Toyoda, Y., Stiburkova, B., Miyata, H., et al.
(2017). Multiple common and rare variants of ABCG2 cause gout. RMD Open
3:e000464. doi: 10.1136/rmdopen-2017-000464

Hira, D., and Terada, T. (2018). BCRP/ABCG2 and high-alert medications:
biochemical, pharmacokinetic, pharmacogenetic, and clinical implications.
Biochem. Pharmacol. 147, 201–210. doi: 10.1016/j.bcp.2017.10.004

Hirano, M., Maeda, K., Matsushima, S., Nozaki, Y., Kusuhara, H., and Sugiyama, Y.
(2005). Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin.
Mol. Pharmacol. 68, 800–807. doi: 10.1124/mol.105.014019

Ichida, K., Matsuo, H., Takada, T., Nakayama, A., Murakami, K., Shimizu, T.,
et al. (2012). Decreased extra-renal urate excretion is a common cause of
hyperuricemia. Nat. Commun. 3:764. doi: 10.1038/ncomms1756

Ishikawa, T. (1989). ATP/Mg2+-dependent cardiac transport system for
glutathione S-conjugates. A study using rat heart sarcolemma vesicles. J. Biol.
Chem. 264, 17343–17348.

Ishikawa, T., Kajimoto, Y., Inoue, Y., Ikegami, Y., and Kuroiwa, T. (2015). Critical
role of ABCG2 in ALA-photodynamic diagnosis and therapy of human brain
tumor. Adv. Cancer Res. 125, 197–216. doi: 10.1016/bs.acr.2014.11.008

Ishikawa, T., Saito, H., Hirano, H., Inoue, Y., and Ikegami, Y. (2012). Human
ABC transporter ABCG2 in cancer chemotherapy: drug molecular design to
circumvent multidrug resistance. Methods Mol. Biol. 910, 267–278. doi: 10.
1007/978-1-61779-965-5_11

Ito, N., Ito, K., Ikebuchi, Y., Toyoda, Y., Takada, T., Hisaka, A., et al. (2015).
Prediction of drug transfer into milk considering breast cancer resistance
protein (BCRP)-mediated transport. Pharm. Res. 32, 2527–2537. doi: 10.1007/
s11095-015-1641-2

Jackson, S. M., Manolaridis, I., Kowal, J., Zechner, M., Taylor, N. M. I., Bause, M.,
et al. (2018). Structural basis of small-molecule inhibition of human multidrug
transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340. doi: 10.1038/s41594-
018-0049-1

Ji, N., Yang, Y., Cai, C. Y., Lei, Z. N., Wang, J. Q., Gupta, P., et al. (2018a). VS-
4718 antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing
cancer cells by inhibiting the efflux function of ABC transporters. Front.
Pharmacol. 9:1236. doi: 10.3389/fphar.2018.01236

Ji, N., Yang, Y., Lei, Z. N., Cai, C. Y., Wang, J. Q., Gupta, P., et al.
(2018b). Ulixertinib (BVD-523) antagonizes ABCB1- and ABCG2-mediated

chemotherapeutic drug resistance. Biochem. Pharmacol. 158, 274–285. doi: 10.
1016/j.bcp.2018.10.028

Jonker, J. W., Buitelaar, M., Wagenaar, E., Van Der Valk, M. A., Scheffer, G. L.,
Scheper, R. J., et al. (2002). The breast cancer resistance protein protects against
a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl.
Acad. Sci. U.S.A. 99, 15649–15654. doi: 10.1073/pnas.202607599

Jonker, J. W., Merino, G., Musters, S., Van Herwaarden, A. E., Bolscher, E.,
Wagenaar, E., et al. (2005). The breast cancer resistance protein BCRP (ABCG2)
concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med. 11,
127–129. doi: 10.1038/nm1186

Jordanides, N. E., Jorgensen, H. G., Holyoake, T. L., and Mountford, J. C. (2006).
Functional ABCG2 is overexpressed on primary CML CD34+ cells and is
inhibited by imatinib mesylate. Blood 108, 1370–1373. doi: 10.1182/blood-
2006-02-003145

Keskitalo, J. E., Zolk, O., Fromm, M. F., Kurkinen, K. J., Neuvonen,
P. J., and Niemi, M. (2009). ABCG2 polymorphism markedly affects the
pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86,
197–203. doi: 10.1038/clpt.2009.79

Khunweeraphong, N., Stockner, T., and Kuchler, K. (2017). The structure of the
human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.
Sci. Rep. 7:13767. doi: 10.1038/s41598-017-11794-w

Kruijtzer, C. M., Beijnen, J. H., Rosing, H., ten Bokkel Huinink, W. W.,
Schot, M., Jewell, R. C., et al. (2002). Increased oral bioavailability
of topotecan in combination with the breast cancer resistance protein
and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20, 2943–2950.
doi: 10.1200/JCO.2002.12.116

Kusuhara, H., Furuie, H., Inano, A., Sunagawa, A., Yamada, S., Wu, C., et al. (2012).
Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the
impact of curcumin as an in vivo inhibitor of BCRP. Br. J. Pharmacol. 166,
1793–1803. doi: 10.1111/j.1476-5381.2012.01887.x

Mao, Q., and Unadkat, J. D. (2015). Role of the breast cancer resistance protein
(BCRP/ABCG2) in drug transport–an update. AAPS J. 17, 65–82. doi: 10.1208/
s12248-014-9668-6

Marighetti, F., Steggemann, K., Hanl, M., and Wiese, M. (2013). Synthesis
and quantitative structure-activity relationships of selective BCRP inhibitors.
ChemMedChem 8, 125–135. doi: 10.1002/cmdc.201200377

Matsuo, H., Takada, T., Ichida, K., Nakamura, T., Nakayama, A., Ikebuchi, Y.,
et al. (2009). Common defects of ABCG2, a high-capacity urate
exporter, cause gout: a function-based genetic analysis in a Japanese
population. Sci. Transl. Med. 1:5ra11. doi: 10.1126/scitranslmed.300
0237

Matsushima, S., Maeda, K., Kondo, C., Hirano, M., Sasaki, M., Suzuki, H., et al.
(2005). Identification of the hepatic efflux transporters of organic anions using
double-transfected Madin-Darby canine kidney II cells expressing human
organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-
associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast
cancer resistance protein. J. Pharmacol. Exp. Ther. 314, 1059–1067. doi: 10.
1124/jpet.105.085589

Miyake, K., Mickley, L., Litman, T., Zhan, Z., Robey, R., Cristensen, B., et al. (1999).
Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-
resistant cells: demonstration of homology to ABC transport genes. Cancer Res.
59, 8–13.

Miyata, H., Takada, T., Toyoda, Y., Matsuo, H., Ichida, K., and Suzuki, H.
(2016). Identification of febuxostat as a new strong ABCG2 inhibitor: potential
applications and risks in clinical situations. Front. Pharmacol. 7:518. doi: 10.
3389/fphar.2016.00518

Mizuno, N., Suzuki, M., Kusuhara, H., Suzuki, H., Takeuchi, K., Niwa, T., et al.
(2004). Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-
4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance
protein (BCRP1/ABCG2) knockout mice. Drug Metab. Dispos. 32, 898–901.

Mizuno, N., Takahashi, T., Kusuhara, H., Schuetz, J. D., Niwa, T., and
Sugiyama, Y. (2007). Evaluation of the role of breast cancer resistance
protein (BCRP/ABCG2) and multidrug resistance-associated protein
4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide
metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-
5-one). Drug Metab. Dispos. 35, 2045–2052. doi: 10.1124/dmd.107.
016352

Frontiers in Pharmacology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 208334

https://doi.org/10.1016/0003-2697(88)90484-8
https://doi.org/10.1016/0003-2697(88)90484-8
https://doi.org/10.1038/sj.leu.2404638
https://doi.org/10.1073/pnas.95.26.15665
https://doi.org/10.1073/pnas.95.26.15665
https://doi.org/10.1158/1078-0432.CCR-10-2250
https://doi.org/10.1038/nprot.2007.519
https://doi.org/10.1038/nrd3028
https://doi.org/10.3390/molecules23123264
https://doi.org/10.1016/j.addr.2008.09.007
https://doi.org/10.1124/dmd.118.083030
https://doi.org/10.1136/rmdopen-2017-000464
https://doi.org/10.1016/j.bcp.2017.10.004
https://doi.org/10.1124/mol.105.014019
https://doi.org/10.1038/ncomms1756
https://doi.org/10.1016/bs.acr.2014.11.008
https://doi.org/10.1007/978-1-61779-965-5_11
https://doi.org/10.1007/978-1-61779-965-5_11
https://doi.org/10.1007/s11095-015-1641-2
https://doi.org/10.1007/s11095-015-1641-2
https://doi.org/10.1038/s41594-018-0049-1
https://doi.org/10.1038/s41594-018-0049-1
https://doi.org/10.3389/fphar.2018.01236
https://doi.org/10.1016/j.bcp.2018.10.028
https://doi.org/10.1016/j.bcp.2018.10.028
https://doi.org/10.1073/pnas.202607599
https://doi.org/10.1038/nm1186
https://doi.org/10.1182/blood-2006-02-003145
https://doi.org/10.1182/blood-2006-02-003145
https://doi.org/10.1038/clpt.2009.79
https://doi.org/10.1038/s41598-017-11794-w
https://doi.org/10.1200/JCO.2002.12.116
https://doi.org/10.1111/j.1476-5381.2012.01887.x
https://doi.org/10.1208/s12248-014-9668-6
https://doi.org/10.1208/s12248-014-9668-6
https://doi.org/10.1002/cmdc.201200377
https://doi.org/10.1126/scitranslmed.3000237
https://doi.org/10.1126/scitranslmed.3000237
https://doi.org/10.1124/jpet.105.085589
https://doi.org/10.1124/jpet.105.085589
https://doi.org/10.3389/fphar.2016.00518
https://doi.org/10.3389/fphar.2016.00518
https://doi.org/10.1124/dmd.107.016352
https://doi.org/10.1124/dmd.107.016352
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 8

Toyoda et al. Current Update on ABCG2 Inhibitors

Montanari, F., Cseke, A., Wlcek, K., and Ecker, G. F. (2017). Virtual screening of
DrugBank reveals two drugs as new BCRP inhibitors. SLAS Discov. 22, 86–93.
doi: 10.1177/1087057116657513

Murakami, M., Ohnuma, S., Fukuda, M., Chufan, E. E., Kudoh, K., Kanehara, K.,
et al. (2017). Synthetic analogs of curcumin modulate the function of multidrug
resistance-linked ATP-binding cassette transporter ABCG2. Drug Metab.
Dispos. 45, 1166–1177. doi: 10.1124/dmd.117.076000

Nakanishi, T., Doyle, L. A., Hassel, B., Wei, Y., Bauer, K. S., Wu, S., et al. (2003).
Functional characterization of human breast cancer resistance protein (BCRP,
ABCG2) expressed in the oocytes of Xenopus laevis. Mol. Pharmacol. 64,
1452–1462. doi: 10.1124/mol.64.6.1452

Nicolle, E., Boumendjel, A., Macalou, S., Genoux, E., Ahmed-Belkacem, A.,
Carrupt, P. A., et al. (2009). QSAR analysis and molecular modeling
of ABCG2-specific inhibitors. Adv. Drug Deliv. Rev. 61, 34–46.
doi: 10.1016/j.addr.2008.10.004

Okamoto, T., Kawaguchi, K., Watanabe, S., Agustina, R., Ikejima, T., Ikeda, K., et al.
(2018). Characterization of human ATP-binding cassette protein subfamily
D reconstituted into proteoliposomes. Biochem. Biophys. Res. Commun. 496,
1122–1127. doi: 10.1016/j.bbrc.2018.01.153

Pena-Solorzano, D., Stark, S. A., Konig, B., Sierra, C. A., and Ochoa-Puentes, C.
(2017). ABCG2/BCRP: specific and nonspecific modulators. Med. Res. Rev. 37,
987–1050. doi: 10.1002/med.21428

Polgar, O., Robey, R. W., and Bates, S. E. (2008). ABCG2: structure, function
and role in drug response. Expert Opin. Drug Metab. Toxicol. 4, 1–15.
doi: 10.1517/17425255.4.1.1

Rabindran, S. K., He, H., Singh, M., Brown, E., Collins, K. I., Annable, T., et al.
(1998). Reversal of a novel multidrug resistance mechanism in human colon
carcinoma cells by fumitremorgin C. Cancer Res. 58, 5850–5858.

Rabindran, S. K., Ross, D. D., Doyle, L. A., Yang, W., and Greenberger, L. M. (2000).
Fumitremorgin C reverses multidrug resistance in cells transfected with the
breast cancer resistance protein. Cancer Res. 60, 47–50.

Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., and Gottesman,
M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant
cancer. Nat. Rev. Cancer 18, 452–464. doi: 10.1038/s41568-018-0005-8

Robey, R. W., Steadman, K., Polgar, O., Morisaki, K., Blayney, M., Mistry, P., et al.
(2004). Pheophorbide a is a specific probe for ABCG2 function and inhibition.
Cancer Res. 64, 1242–1246. doi: 10.1158/0008-5472.CAN-03-3298

Robey, R. W., To, K. K., Polgar, O., Dohse, M., Fetsch, P., Dean, M., et al. (2009).
ABCG2: a perspective. Adv. Drug Deliv. Rev. 61, 3–13. doi: 10.1016/j.addr.2008.
11.003

Saito, H., Hirano, H., Nakagawa, H., Fukami, T., Oosumi, K., Murakami, K.,
et al. (2006). A new strategy of high-speed screening and quantitative
structure-activity relationship analysis to evaluate human ATP-binding cassette
transporter ABCG2-drug interactions. J. Pharmacol. Exp. Ther. 317, 1114–1124.
doi: 10.1124/jpet.105.099036

Scharenberg, C. W., Harkey, M. A., and Torok-Storb, B. (2002). The ABCG2
transporter is an efficient Hoechst 33342 efflux pump and is preferentially
expressed by immature human hematopoietic progenitors. Blood 99, 507–512.
doi: 10.1182/blood.V99.2.507

Shah, B. M., Schafer, J. J., Priano, J., and Squires, K. E. (2013). Cobicistat: a
new boost for the treatment of human immunodeficiency virus infection.
Pharmacotherapy 33, 1107–1116. doi: 10.1002/phar.1237

Shukla, S., Kouanda, A., Silverton, L., Talele, T. T., and Ambudkar, S. V. (2014).
Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette
drug transporters and BCR-ABL kinase using a three-dimensional quantitative
structure-activity relationship approach. Mol. Pharm. 11, 2313–2322. doi: 10.
1021/mp400762h

Shukla, S., Robey, R. W., Bates, S. E., and Ambudkar, S. V. (2006). The
calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug
resistance-linked ABC drug transporter, ABCG2. Biochemistry 45, 8940–8951.
doi: 10.1021/bi060552f

Silbermann, K., Shah, C. P., Sahu, N. U., Juvale, K., Stefan, S. M., Kharkar, P. S., et al.
(2019). Novel chalcone and flavone derivatives as selective and dual inhibitors
of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem. 164, 193–213.
doi: 10.1016/j.ejmech.2018.12.019

Spina, M., Nagy, Z., Ribera, J. M., Federico, M., Aurer, I., Jordan, K., et al. (2015).
FLORENCE: a randomized, double-blind, phase III pivotal study of febuxostat
versus allopurinol for the prevention of tumor lysis syndrome (TLS) in patients

with hematologic malignancies at intermediate to high TLS risk. Ann. Oncol.
26, 2155–2161. doi: 10.1093/annonc/mdv317

Stacy, A. E., Jansson, P. J., and Richardson, D. R. (2013). Molecular pharmacology
of ABCG2 and its role in chemoresistance. Mol. Pharmacol. 84, 655–669.
doi: 10.1124/mol.113.088609

Stiburkova, B., Miyata, H., Zavada, J., Tomcik, M., Pavelka, K., Storkanova, G., et al.
(2016). Novel dysfunctional variant in ABCG2 as a cause of severe tophaceous
gout: biochemical, molecular genetics and functional analysis. Rheumatology
55, 191–194. doi: 10.1093/rheumatology/kev350

Suzuki, M., Suzuki, H., Sugimoto, Y., and Sugiyama, Y. (2003). ABCG2 transports
sulfated conjugates of steroids and xenobiotics. J. Biol. Chem. 278, 22644–22649.
doi: 10.1074/jbc.M212399200

Takada, T., Yamamoto, T., Matsuo, H., Tan, J. K., Ooyama, K., Sakiyama, M., et al.
(2018). Identification of ABCG2 as an exporter of uremic toxin indoxyl sulfate
in mice and as a crucial factor influencing CKD progression. Sci. Rep. 8:11147.
doi: 10.1038/s41598-018-29208-w

Tamura, A., Watanabe, M., Saito, H., Nakagawa, H., Kamachi, T., Okura, I., et al.
(2006). Functional validation of the genetic polymorphisms of human ATP-
binding cassette (ABC) transporter ABCG2: identification of alleles that are
defective in porphyrin transport. Mol. Pharmacol. 70, 287–296.

Tamura, K., Kawai, Y., Kiguchi, T., Okamoto, M., Kaneko, M., Maemondo, M.,
et al. (2016). Efficacy and safety of febuxostat for prevention of tumor lysis
syndrome in patients with malignant tumors receiving chemotherapy: a phase
III, randomized, multi-center trial comparing febuxostat and allopurinol. Int. J.
Clin. Oncol. 21, 996–1003. doi: 10.1007/s10147-016-0971-3

Taylor, N. M. I., Manolaridis, I., Jackson, S. M., Kowal, J., Stahlberg, H., and Locher,
K. P. (2017). Structure of the human multidrug transporter ABCG2.Nature 546,
504–509. doi: 10.1038/nature22345

Tiwari, A. K., Sodani, K., Dai, C. L., Abuznait, A. H., Singh, S., Xiao, Z. J., et al.
(2013). Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-,
ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett.
328, 307–317. doi: 10.1016/j.canlet.2012.10.001

Toyoda, Y., Takada, T., and Suzuki, H. (2016). Halogenated hydrocarbon solvent-
related cholangiocarcinoma risk: biliary excretion of glutathione conjugates of
1,2-dichloropropane evidenced by untargeted metabolomics analysis. Sci. Rep.
6:24586. doi: 10.1038/srep24586

van de Wetering, K., and Sapthu, S. (2012). ABCG2 functions as a general
phytoestrogen sulfate transporter in vivo. FASEB J. 26, 4014–4024. doi: 10.1096/
fj.12-210039

Vlaming, M. L., Lagas, J. S., and Schinkel, A. H. (2009). Physiological and
pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout
mice. Adv. Drug Deliv. Rev. 61, 14–25. doi: 10.1016/j.addr.2008.08.007

Wassermann, L., Halwachs, S., Baumann, D., Schaefer, I., Seibel, P., and
Honscha, W. (2013). Assessment of ABCG2-mediated transport of xenobiotics
across the blood-milk barrier of dairy animals using a new MDCKII
in vitro model. Arch. Toxicol. 87, 1671–1682. doi: 10.1007/s00204-013-
1066-9

Wiese, M. (2015). BCRP/ABCG2 inhibitors: a patent review (2009-present). Expert
Opin. Ther. Pat. 25, 1229–1237. doi: 10.1517/13543776.2015.1076796

Woodward, O. M., Kottgen, A., Coresh, J., Boerwinkle, E., Guggino, W. B.,
and Kottgen, M. (2009). Identification of a urate transporter, ABCG2, with a
common functional polymorphism causing gout. Proc. Natl. Acad. Sci. U.S.A.
106, 10338–10342. doi: 10.1073/pnas.0901249106

Wu, C. P., Hsiao, S. H., Murakami, M., Lu, Y. J., Li, Y. Q., Huang, Y. H.,
et al. (2017). Alpha-mangostin reverses multidrug resistance by attenuating the
function of the multidrug resistance-linked ABCG2 transporter. Mol. Pharm.
14, 2805–2814. doi: 10.1021/acs.molpharmaceut.7b00334

Zhang, G. N., Zhang, Y. K., Wang, Y. J., Gupta, P., Ashby, C. R. Jr., Alqahtani, S.,
et al. (2018). Epidermal growth factor receptor (EGFR) inhibitor PD153035
reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer:
in vitro and in vivo. Cancer Lett. 424, 19–29. doi: 10.1016/j.canlet.2018.02.040

Zhang, W., Chen, Z., Chen, L., Wang, F., Li, F., Wang, X., et al. (2017). ABCG2-
overexpressing H460/MX20 cell xenografts in athymic nude mice maintained
original biochemical and cytological characteristics. Sci. Rep. 7:40064. doi: 10.
1038/srep40064

Zhang, Y., Bressler, J. P., Neal, J., Lal, B., Bhang, H. E., Laterra, J., et al. (2007).
ABCG2/BCRP expression modulates D-Luciferin based bioluminescence
imaging. Cancer Res. 67, 9389–9397. doi: 10.1158/0008-5472.CAN-07-0944

Frontiers in Pharmacology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 208335

https://doi.org/10.1177/1087057116657513
https://doi.org/10.1124/dmd.117.076000
https://doi.org/10.1124/mol.64.6.1452
https://doi.org/10.1016/j.addr.2008.10.004
https://doi.org/10.1016/j.bbrc.2018.01.153
https://doi.org/10.1002/med.21428
https://doi.org/10.1517/17425255.4.1.1
https://doi.org/10.1038/s41568-018-0005-8
https://doi.org/10.1158/0008-5472.CAN-03-3298
https://doi.org/10.1016/j.addr.2008.11.003
https://doi.org/10.1016/j.addr.2008.11.003
https://doi.org/10.1124/jpet.105.099036
https://doi.org/10.1182/blood.V99.2.507
https://doi.org/10.1002/phar.1237
https://doi.org/10.1021/mp400762h
https://doi.org/10.1021/mp400762h
https://doi.org/10.1021/bi060552f
https://doi.org/10.1016/j.ejmech.2018.12.019
https://doi.org/10.1093/annonc/mdv317
https://doi.org/10.1124/mol.113.088609
https://doi.org/10.1093/rheumatology/kev350
https://doi.org/10.1074/jbc.M212399200
https://doi.org/10.1038/s41598-018-29208-w
https://doi.org/10.1007/s10147-016-0971-3
https://doi.org/10.1038/nature22345
https://doi.org/10.1016/j.canlet.2012.10.001
https://doi.org/10.1038/srep24586
https://doi.org/10.1096/fj.12-210039
https://doi.org/10.1096/fj.12-210039
https://doi.org/10.1016/j.addr.2008.08.007
https://doi.org/10.1007/s00204-013-1066-9
https://doi.org/10.1007/s00204-013-1066-9
https://doi.org/10.1517/13543776.2015.1076796
https://doi.org/10.1073/pnas.0901249106
https://doi.org/10.1021/acs.molpharmaceut.7b00334
https://doi.org/10.1016/j.canlet.2018.02.040
https://doi.org/10.1038/srep40064
https://doi.org/10.1038/srep40064
https://doi.org/10.1158/0008-5472.CAN-07-0944
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 9

Toyoda et al. Current Update on ABCG2 Inhibitors

Zhang, Y. K., Zhang, G. N., Wang, Y. J., Patel, B. A., Talele, T. T., Yang, D. H.,
et al. (2016). Bafetinib (INNO-406) reverses multidrug resistance by inhibiting
the efflux function of ABCB1 and ABCG2 transporters. Sci. Rep. 6:25694.
doi: 10.1038/srep25694

Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J.,
et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety
of stem cells and is a molecular determinant of the side-population phenotype.
Nat. Med. 7, 1028–1034. doi: 10.1038/nm0901-1028

Zhou, S., Zong, Y., Ney, P. A., Nair, G., Stewart, C. F., and Sorrentino, B. P. (2005).
Increased expression of the Abcg2 transporter during erythroid maturation
plays a role in decreasing cellular protoporphyrin IX levels. Blood 105, 2571–
2576. doi: 10.1182/blood-2004-04-1566

Conflict of Interest Statement: TT and HS have a patent pending.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Toyoda, Takada and Suzuki. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 208336

https://doi.org/10.1038/srep25694
https://doi.org/10.1038/nm0901-1028
https://doi.org/10.1182/blood-2004-04-1566
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


ORIGINAL RESEARCH
published: 12 March 2019

doi: 10.3389/fonc.2019.00137

Frontiers in Oncology | www.frontiersin.org 1 March 2019 | Volume 9 | Article 137

Edited by:

Zhe-Sheng Chen,

St. John’s University, United States

Reviewed by:

Qi Xie,

University of California, San Diego,

United States

JiaXing Zhang,

Sun Yat-sen University, China

*Correspondence:

Li-Zhu Lin

lizhulin26@yahoo.com

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 09 December 2018

Accepted: 15 February 2019

Published: 12 March 2019

Citation:

Sun L-L, Chen C-M, Zhang J,

Wang J, Yang C-Z and Lin L-Z (2019)

Glucose-Regulated Protein 78

Signaling Regulates Hypoxia-Induced

Epithelial–Mesenchymal Transition in

A549 Cells. Front. Oncol. 9:137.

doi: 10.3389/fonc.2019.00137

Glucose-Regulated Protein 78
Signaling Regulates Hypoxia-Induced
Epithelial–Mesenchymal Transition in
A549 Cells
Ling-Ling Sun, Chang-Ming Chen, Jue Zhang, Jing Wang, Cai-Zhi Yang and Li-Zhu Lin*

Integrative Cancer Centre, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China

Objective: Metastasis and therapeutic resistance are the major determinants of
lung cancer progression and high mortality. Epithelial–mesenchymal transition (EMT)
plays a key role in the metastasis and therapeutic resistance. Highly expressed
glucose-regulated protein 78 (GRP78) is a poor prognostic factor in lung cancer and
possibly correlated with EMT. This study aims to examine whether the up-regulation
of GRP78 is involved in EMT in lung adenocarcinoma and explore the underlying
downstream molecular pathways.

Study Design: EMT was assessed by analysis of cell morphology and expression
of EMT protein markers in A549 cells under normoxia, hypoxia and silencing GRP78
conditions. The expression levels of Smad2/3, Src, and MAPK (p38, ERK, and JNK)
proteins were examined by Western blot analysis under hypoxia and treatments with
phosphorylation inhibitors.

Results: Under hypoxic conditions, the EMT morphology significantly changed and the
GRP78 expression was significantly up-regulated in A549 cells compared with those
in normoxia control. The expression and phosphorylation levels of smad2/3, Src, p38,
ERK, and JNK were also upregulated. When GRP78 was silenced, EMT was inhibited,
and the levels of phospho-smad2/3, phospho-Src, phospho-p38, phospho-ERK, and
phospho-JNK were suppressed. When the activation of Smad2/3, Src, p38, ERK, and
JNK was inhibited, EMT was also inhibited. The inhibition effect on EMT by these
phosphorylation inhibitors was found to be weaker than that of GRP78 knockdown.

Conclusions: Hypoxia-induced EMT in A549 cells is regulated by GRP78 signaling
pathways. GRP78 promotes EMT by activating Smad2/3 and Src/MAPK pathways.
Hence, GRP78 might be a potential target for treatment of lung adenocarcinoma.

Keywords: lung cancer, lung adenocarcinoma, epithelial mesenchymal transition, hypoxia, glucose-regulated

protein 78, GRP78

INTRODUCTION

Lung cancer is the leading cause of cancer death worldwide; according to the estimated data from
GLOBOCAN in 2012, one of five cancer deaths is due to lung cancer (1.59 million deaths, 19.4%
of the total cancer deaths) (1). Despite significant progress in the development of new therapies for
lung cancer, metastasis and therapeutic resistance remain the major determinants of lung cancer
progression and high mortality (2).
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Mounting evidence demonstrated that epithelial–
mesenchymal transition (EMT) is involved in the metastasis
and therapeutic resistance of lung cancer. EMT refers to the
biological process by which epithelial cells are transformed
into mesenchymal phenotypes through specific procedures.
EMT inhibits the expression of E-cadherin and cytokeratin in
epithelial cells, upregulates the expression of N-cadherin and
vimentin in mesenchymal cells and promotes the ability of cells
to secrete matrix metalloproteinase and fibronectin. EMT can be
induced by various factors, such as TGF-beta, which increases
the expression of key nuclear transcription factors including
Twist, Snail and ZEB (3) and causes phenotypic changes by
activating intrinsic cellular signal molecules including Src,
MAPK, Smad2/3, and other signals (4–6).

Hypoxia is a common hallmark of several human
malignancies and an independent and unfavorable prognostic
factor associated with the occurrence of EMT (7–9). Previous
studies found that cAMP-dependent protein kinase, hypoxia
factor Hif-1alpha(HIF1a) and unfolded protein response can
potentiate EMT; moreover, treatment with insulin-like growth
factor 1 receptor inhibitor reverses hypoxia-induced EMT
(8–11), However, the mechanisms of hypoxia-induced EMT
remain unknown. Understanding the biology of hypoxia-
induced EMT and their implications in therapeutic relapse may
provide new crucial approaches for development of improved
therapeutic strategies.

The 78-kDa glucose-regulated protein (GRP78), also known
as BiP and HSPA5, is highly expressed in many types of cancers,
including lung, hepatocellular cancer, and breast cancer (12–
15). It could inhibit apoptosis of cancer cells, and induce
chemoresistance of cancer (16–18). What’s more, it is closely
related to EMT. Zhang et al. (19) reported that high expressed
GRP78 induced EMT in hepatocellular carcinoma cell lines.
Lizardo et al. (20) that up-regulation of GRP78 in metastatic
cancer cells is necessary for lung metastasis in some highly
metastatic cell line models, such as osteosarcomas and murine
mammary adenocarcinoma. Zhang et al. (21) demonstrated that
overexpressing GRP78 facilitated the expression and secretion of
TGF-beta1, which further activated EMT. However, Chang et al.
(22) stated that overexpressing GRP78 inhibited the metastasis of
colon cancer through EMT biomarkers. Thus far, the relationship
between GRP78 expression and EMT remains controversial.
Whether GRP78 expression has causality link with EMT in
lung cancer also remains unknown. Hence, the present study
aims to examine the role of up-regulation of GRP78 in EMT
in lung adenocarcinoma and explore the downstream molecular
pathways involved.

METHODS

Cell Culture and Conditioning
Human lung adenocarcinoma A549 cells were purchased
from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) and cultured in RPMI-1640 medium (Gibco,
USA) supplied with 10% FBS (Gibco, USA) and 100 U/ml
penicillin/streptomycin in 5% CO2 incubator at 37◦C. The

medium was changed every 3 days. The cells were treated with
normal O2 as control.

A549 cells were cultured with 2% O2 for hypoxia condition.
The concentration of protein inhibitors for treatment of
A549 cells were as follows: 550 nM SB505124 (phospho-
Smad2/3 inhibitor), 25 nM KX2-391 (phospho-Src inhibitor),
100 nM JNK-IN-8 (phospho-JNK inhibitor), 2.5µM SB203580
(phospho-p38 inhibitor), and 1.5µM FR180204 (phospho-
ERK). All of the inhibitors were purchased from Celleck
Chemicals (USA).

Assessment of Cell Morphology
Morphological changes were examined using phase-contrast
microscopy (Olympus, Japan).

Real-Time Quantitative Fluorescent PCR
Experiments were performed following the methods in our
previous study. The cells were collected to extract total RNA
using Trizol method. The cDNA was synthesized with Prime
Script TMRT Master Mix (RR036A; Takara, Japan) through
reverse transcription and used as template to amplify target
genes with real-time quantitative fluorescent PCR with SYBR R©

Premix Ex TaqII (RR820A; Takara, Japan). The specific primers
(Invitrogen, USA) of each transcription factor (Snail1, Snail2,
Twist, ZEB1 and ZEB2) were also based on such study (23).
The reaction condition was 95◦C for 30 s, followed by 95◦C for
5 s and 60◦C for 30 s with 40 cycles. The amplified productions
were quantitatively analyzed with 2-11Ctmethod. All tests were
repeated three times.

Western Blot Analysis
Experiments were performed following the methods in our
previous study. The specific program and concentration of each
antibody were also based on such study (23). Briefly, the protein
was extracted with PIRA buffer and centrifuged at 12,000 g for
15min at 4◦C. Fiftymicrogram total proteins were separated with
10%SDS-PAGE. After electrophoresis, proteins were blotted to
polyvinylidene fluoride (PVDF) membranes and then blocked
with 5% skim milk powder with 0.1% Tween-20. The blots
were then probed at 4◦C overnight with the relevant primary
antibodies respectively, and incubated in 4◦C for overnight. The
membranes were rinsed with TBST for 3 times, 10min each
time. Then secondary goat anti-rabbit or anti-mouse IgG-HRP
antibodies were added for incubation in room temperature for
2 h. The membranes were rinsed with TBST for 3 times, and
10min per time. Then the membranes were developed with ECL
(Beijing Kangwei Biotech, China) and taken photos to analyze the
relative expression of proteins with GAPDH as internal referral.
All tests were repeated three times.

Immunofluorescence Staining
Cells were cultured on six-well chamber slides for
immunofluorescent staining. The cells were fixed in 4%
paraformaldehyde for 30min at room temperature. After
washing with PBS three times for 10min each time, the cells
were permeabilised with 0.1% Triton X-100 in PBS for 15min.
After three washes with PBS, the cells were blocked with 5%
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BSA for 30min at room temperature. The cells were incubated
with the indicated GRP78 antibody (1:250) overnight at 4◦C,
washed three times with PBS and incubated with fluorescent
secondary antibodies. Nuclear staining was performed in the
dark with DAPI at room temperature. Phase contrast and
fluorescent microscopy was performed using an NikonTi-U
Inverted Fluorescence Microscope (Nikon, Japan).

Plasmid Transfection and Identification
GRP78 short hairpin RNA(GRP78shRNA) eukaryotic expression
plasmid was designed and synthesized by Invitrogen, USA.
Transfection and identification were conducted according to
the protocol of Lipofectamine 3000. using previously published
methods (24). Briefly, 7.5 µl Lipofectamine 3000 Reagent was
diluted with 125 µl Opti-MEM media, then blended with a
diluted plasmid DNA which diluted by 10 µl P3000 Reagent and
125 µl Opti-MEM media. After incubating for 5min, the overall
mixture was added into the culture cells and cultured for 72 h.
The cells carrying green fluorescence are plasmids transfected
successfully in inverted microscope. 20µg/ml blasticidin was
used to screen the cells and the maintenance concentration of
blasticidin is 10µg/ml. Blank shRNA was used as a control. The
mRNA and protein expression levels of GRP78 decreased by 70
and 85.33%, respectively, suggesting successful transfection.

Statistical Analysis
Data were expressed as mean ± SD. Comparison between two
groups was performed with t-test for independent samples.
Comparison among multiple groups was performed with one-
way ANOVA following LSD (equal variances) or Dunnett’s t-test
(unequal variances). P<0.05 was set as the significance level. All
analyses were performed using SPSS 22.0 software.

RESULTS

Activation of EMT by Hypoxia in A549 Cells
A549 cells cultured under hypoxia condition for 72 h showed
morphological changes, from oblate fusiform-shaped epithelial
cells to elongated spindle-shapedmesenchymal cells (Figure 1A).
The expression levels of EMT-related genes including Snail1,
Snail2, Twist, ZEB1, and ZEB2 were increased by approximately
three times under hypoxic condition compared with that in the
control group. TheWestern blot analysis showed that the protein
expression of E-cadherin (biomarker of epithelial phenotype)
under hypoxia found to be approximately three times less than
that in the control group. The expression levels of vimentin
and fibronectin (biomarker of mesenchymal phenotype) were
increased by 1.48 and 1.22 times, respectively, under hypoxia
condition compared with that in the control group (P < 0.05
compared with Normoxia, Figures 1B,C).

Expression of GRP78 Under Normoxia and
Hypoxia Conditions
The expression and location of the GRP78 protein in A549
cells under hypoxia and normoxia conditions were determined
by immunofluorescence staining. Under normoxia condition,
GRP78 (green fluorescence) showed weak staining intensity and

wasmainly distributed in the cytoplasm (Figure 1A). By contrast,
under hypoxia, A549 cells showed an elongated spindle-shaped
mesenchymal phenotype, and GRP78 showed strong staining
intensity and was mainly distributed in the cytoplasm and cell
membrane (Figure 1A). The Western blot analysis showed that
the expression of GRP78 in A549 cells under hypoxia was found
to be 1.36 times more than that under normoxia (Figure 1B).

Effect of GRP78 Knockdown on the
Expression of EMT Markers
The expression of GRP78 in GRP78 knockdown A549 cells under
hypoxia was reduced by 70% compared with that under hypoxia.
In A549 cells transfected with GRP78 shRNA under hypoxia,
the expression levels of vimentin and fibronectin significantly
decreased by 52 and 60%, respectively. Meanwhile, the mRNA
expression levels of transcription factors (Snail1, Snail2, Twist,
ZEB1, and ZEB2) were significantly inhibited under hypoxia
condition and decreased by approximately 70% compared with
that in the normoxia group (Figures 1B,C). The significant
change in the expression of EMT biomarkers and its transcription
factor mRNAs after GRP78 knockdown indicated that GRP78
might play an important role in hypoxia-induced EMT.

Expression of Smad2/3, Src, p38, ERK and
JNK in A549 Cells Under Hypoxia Condition
The expression levels of phosphorylated Smad2/3, p38, and
JNK in A549 cells significantly increased by approximately 2.4
times under hypoxia condition compared with those under
normoxia condition, whereas the levels of the phosphorylated
Src and ERK increased by approximately 1.8 times (all p <

0.05, Figure 2A). Hence, these signaling pathways were activated
under hypoxia condition.

The inhibitors of Smad2/3, Src, p38, ERK, and JNK were used
to treat A549 cells under hypoxia condition to further verify
the relationship between these signaling molecules with hypoxia-
induced EMT. The expression levels of EMT proteinmarkers and
transcription factor mRNAs were also examined. The changes in
EMT protein markers and transcription factor mRNAs in A549
cells were approximately similar to that in the group treated with
Smad2/3 and Src inhibitors. The levels of vimentin, fibronectin
and mRNAs decreased by approximately 50%, whereas that of
E-cadherin increased by 2-fold compared with those in the cells
under hypoxia. The change in the three other groups was found
to be smaller than that in the group treated with Smad2/3 and
Src inhibitors. The levels of vimentin, fibronectin and mRNAs
were reduced by approximately 30%. Hence, EMT is inhibited
in A549 cells when the activation of Smad2/3, Src, p38, ERK, and
JNK proteins is inhibited under hypoxia (Figure 2B).

The changes in the expression of EMT protein markers were
compared in A549 cells transfected by GRP78shRNA or treated
by different protein inhibitors under hypoxia condition. The
changes in the mRNA expression of EMT markers and signaling
molecules were the most evident in GRP78 knockdown cells (P
< 0.05 compared with the other groups, Figures 3A,B). Similar
results were obtained on the protein expression of signaling
molecules (Smad2/3, Src, p38, ERK, and JNK). After GRP78
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FIGURE 1 | Up-regulation of GRP78 plays an important role in hypoxia-induced EMT in A549 cells. (A) A549 cells acquire spindle-shaped mesenchymal morphology
after 72 h of 2% O2 hypoxia (left, 100×). GRP78 (green fluorescence) is highly expressed in A549 cells with spindle-shaped mesenchymal morphology (right, 100×).
(B) EMT-related markers (E-cadherin, Vimentin and Fibronectin) and GRP78 were examined by Western blot analysis (left). GAPDH was used as internal control. The
protein relative value (GAPDH) is plotted in the right panel (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells under the condition of
normal oxygen, the expression of E-cadherin decreases, while those of Vimentin and Fibronectin increase in A549 cells under hypoxia (2% O2 72 h). The expression of
GRP78 also increases in A549 cells under hypoxia. #P < 0.05, compared with the A549 cells under the condition of hypoxia; the expression of E-cadherin increases,
and those of Vimentin and Fibronectin decrease in GRP78 knockdown A549 cells under hypoxia. (C) EMT-related genes including Snail1, Snail2, Twist, ZEB1, and
ZEB2 were examined by real-time quantitative PCR; mRNA expression relative value (control group) is plotted (mean ± SD in three separate experiments). *P < 0.05,
compared with A549 cells in the control group, the mRNA expression levels of EMT-related genes including Snail1, Snail2, Twist, ZEB1, and ZEB2 increase under
hypoxic condition (2% O2 72 h); #P < 0.05, compared with A549 cells under the condition of hypoxia, the mRNA expression levels of EMT-related genes decrease in
GRP78 knockdown A549 cells under hypoxia.
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FIGURE 2 | Activation of Smad2/3, Src, p38, ERK, and JNK is important in hypoxia-induced EMT in A549 cells. (A) Smad2/3, Src, p38, ERK, JNK, and their
phosphorylated forms were examined by Western blot analysis (left). GAPDH was used as internal control. The protein relative value (GAPDH) is plotted in the right
panel (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells in the normal oxygen environments, the Smad2/3, Src, and MAPK proteins of
A549 cells are highly regulated and activated in hypoxia environments. (B) EMT markers were examined by Western blot analysis (left). GAPDH was used as internal
control. The protein relative value (GAPDH) is plotted in the right panel (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells in the normal
oxygen environments, the EMT process of A549 cells under hypoxia is activated; #P < 0.05, compared with A549 cells in the hypoxia environments, the EMT process
of A549 cells under hypoxia is inhibited separately by Smad2/3, Src, p38, ERK, and JNK inhibitors. The expression levels of Fibronectin and Vimentin decrease, and
that of E-cadherin increases.

silencing, the expression of Smad2/3, Src, p38, ERK, and JNK and
their phosphorylated proteins in hypoxia cells was significantly
inhibited compared with that in the vehicle control under
hypoxia (P < 0.05, Figures 3C, 4A).

Different effects were observed on the expression of the
signaling molecules after inhibition of a particular pathway. After
Smad2/3 inhibition, the expression of the four other signaling
molecules did not significantly change (P > 0.05, Figures 4A,B).
After inhibition of Src, JNK, ERK, and p38 pathways, the
expression of Smad2/3 was not significantly changed (P>0.05,
Figures 4A,C). After inhibiting Src, the activation of p38, ERK,
and JNK (MAPK pathway) was also inhibited (P < 0.05,
Figures 4A,D).

DISCUSSION

This study shows that GRP78 highly expressed under hypoxia
condition is likely to play an essential role in hypoxia-
induced EMT in A549 cells. This main finding is supported

by the following observations: (1) the expression of GRP78
was significantly elevated under hypoxia condition and closely
associated with the changes in the EMT markers; (2) GRP78
silencing significantly inhibited hypoxia-induced EMT markers;
and (3) GRP78 silencing inhibited the expression of several
signaling molecules, especially Smad2/3. This work is the first
to demonstrate that GRP78 has a causal relationship with
hypoxia-induced EMT in lung adenocarcinoma. Hence, targeted
inhibition on GRP78 might could hamper EMT, which could
further inhibit metastasis and overcome therapeutic resistance.

GRP78 was highly expressed in lung cancer cells under
hypoxia condition; this finding is consistent with those reported
by Song and Pi (25, 26). Chronic hypoxia induced GRP78
in human cancer cells possibly through the protein kinase C-
epsilon/ERK/AP-1 signaling cascade (25).

A causal relationship between high GRP78 expression and
EMT was confirmed by the GRP78 knock-down experiment.
A very strong correlation was found between changes in the
expression of GRP78 and EMT markers. Previous studies
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FIGURE 3 | GRP78 is the upper reaches of the Smad2/3, Src and MAPK pathways in hypoxia-induced EMT in A549 cells. (A) The mRNA relative value (control
group) of EMT transcription factors is plotted (mean ± SD in three separate experiments). *P < 0.05, compared with EMT transcription factors in A549 cells under
hypoxia condition separately inhibited by Smad2/3, Src, p38, ERK, and JNK inhibitors, the expression is higher than that in GRP78 knockdown A549 cells under
hypoxia. (B) The protein relative value (GAPDH) of EMT markers was examined by Western blot analysis and plotted (mean ± SD in three separate experiments). *P <

0.05, compared with EMT markers of A549 cells under hypoxia condition separately inhibited by Smad2/3, Src, p38, ERK, and JNK inhibitors, the expression is
higher than that in GRP78 knockdown A549 cells in the hypoxia. (A,B) indicate that the inhibition effect of GRP78 silencing is more powerful than those of the five
other inhibitors. (C) The protein relative values (GAPDH) of Smad2/3, Src, p38, ERK, JNK, and their phosphorylated forms were examined by Western blot analysis
and plotted (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells under hypoxia, the expression levels of Smad2/3, Src, p38, ERK, JNK,
and their activation forms decrease compared with those in GRP78 knockdown A549 cells under hypoxia. After GRP78 silencing, the expression and activation of
these proteins are inhibited significantly.
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FIGURE 4 | Smad2/3 and Src/MAPK are two dependent signaling pathways in hypoxia-induced EMT in A549 cells. (A) Smad2/3, Src, p38, ERK, JNK, and their
phosphorylated forms were examined by Western blot analysis. (B) Compared with the expression levels of Src, JNK, p38, ERK, and their activation forms in A549
cells under hypoxia, their expression levels do not change after inhibiting the activation of Smad2/3. (C) Compared with the expression levels of Smad2/3 and
p-Smad2/3 in A549 cells under hypoxia, their expression does not change after inhibiting the activation of Src, JNK, ERK and p38. (D) *P < 0.05, compared with the
expression levels of p38, ERK, JNK (three forms of MAPK) and their activated forms in A549 cells under hypoxia, their expression levels decrease after inhibiting the
activation of Src. MAPK is the downstream pathway of Src.

suggested that other methods for silencing GRP78 could inhibit
EMT. For example, neutralization of endogenous GRP78 on
the cell surface with the anti-GRP78 antibody inhibited the
ability of adhesion and invasion of hepatocellular carcinoma
cell lines Mahlavu and SMMC7721 (19). The mitigation of
GRP78 up-regulation by using short hairpin RNA or treatment
with the small molecule IT-139 inhibited metastatic growth in
the lung microenvironment in four highly metastatic cell line
models (three human osteosarcomas and one murine mammary
adenocarcinoma) (20). However, no rational interpretation is
available regarding the inconsistency on the relationship between
GRP78 expression and EMT in colorectal cancer.

The mechanism of GRP78 downstream signaling for EMT
promotion has been demonstrated. Cell surface GRP78 can
accelerate breast cancer cell proliferation and migration by
activating STAT3 (27). We found two key molecular pathways

(Smad2/3 and Src/MAPK) of GRP78 that may play an important
role in hypoxia-induced EMT by using multiple protein
inhibitors. These findings were consistent with those of previous
works. Li et al. reported that overexpressing or knocking down
GRP78 induced the corresponding activation or inhibition of the
Smad2/3 pathway in colon cancer cells (28). Zhao et al. reported
that GRP78 interacted directly with Src, thereby promoting
the phosphorylation of Src in hepatocellular cancer cells (29).
Tanjore et al. also suggested that the combination of the Smad2/3
inhibitor (SB431542) and the Src kinase inhibitor (PP2) blocked
the EMT of alveolar epithelial cells induced by ER stress inducer
tunicamycin, which also induced high GRP78 expression (30). In
the present study, the activation of the Smad2/3 and Src/MAPK
pathways follows the same trend with the up-regulation of
GRP78; moreover, knockdown of GRP78 inhibited the activation
of Smad2/3 and Src, suggesting a causal link between GRP78
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FIGURE 5 | GRP78 mediates hypoxia-induced EMT through smad2/3 and SRC/MAPK signaling. Hypoxia induced the high expression of GRP78. High expressed
GRP78 activated the smad2/3 and Src/MAPK pathway. The pathway activated the expression of EMT transcription factor (snail, Twist and ZEB) and collaborated with
them to induce the expression of Fibronectin, Vimentin and inhibit the expression of E-cadherin.

and activation of the two pathways in lung cancer. Smad2/3
inhibition did not interact with the inhibition of Src, p38,
ERK, and JNK. By contrast, inhibiting the activation of Src was
accompanied by the inhibition of p38, ERK, and JNK. Hence,
the Smad2/3 and Src/MAPK pathways are two independent
downstream signaling pathways of GRP78 during hypoxia-
induced EMT in A549 cells. However, we did not perform
the knockdown experiment of Smad2/3 and Src, and the co-
immunoprecipitation experiment; as such, we cannot provide
additional evidence for such link. And the control shRNA
was not applied in the present study, which might limiting
its evidence.

Other pitfall of the present study is that we have not explored
the relationship between GRP78 and HIF1a, which is a key
regulator on hypoxia induced EMT. But there are some evidences
in other cell lines, that the expression of GRP78 is regulated by
HIF1a (31). What’s more, all the results in the study are limited
to one cell line, limiting its evidence.

In summary, this study demonstrated the possible
causal link between GRP78 and hypoxia-induced EMT
in A549 cells (Figure 5). Together with its roles in
anti-apoptosis and chemoresistance, it indicates that
GRP78 might be a potential target for treatment of
lung adenocarcinoma. Further, studies are needed
to elucidate the exact mechanisms involved in the
GRP78-EMT pathway in hypoxia and their relevant
clinical significance.
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Tissue factor (TF) is a transmembrane glycoprotein to initiate blood coagulation and

frequently overexpressed in a variety of tumors. Our previous study has showed that

the expression of TF is upregulated and correlated with prognosis in hepatocellular

carcinoma (HCC). However, the role and molecular mechanism of TF in the growth

of HCC are still unclear. In vitro and in vivo functional experiments were performed to

determine the effect of TF on the growth of HCC cells. A panel of biochemical assays

was used to elucidate the underlying mechanisms. TF could promote the growth of HCC

in vitro and in vivo by activating both ERK and AKT signaling pathways. TF induced EGFR

upregualtion, and inhibition of EGFR suppressed TF-mediated HCC growth. In addition,

TF protein expression was correlated with EGFR in HCC tissues. TF promotes HCC

growth by upregulation of EGFR, and TF as well as EGFR may be potential therapeutic

targets of HCC.

Keywords: hepatocellular carcinoma, tissue factor, epidermal growth factor receptor, AKT/ERK, tumor growth

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most lethal cancers worldwide, while China accounted
for more than half of all cases and deaths in 2012 (1). More than 400,000 people die from liver
cancer and over 450,000 new cases are diagnosed in China each year (2). Though the treatments
for HCC have been greatly advanced in recent years, the outcome of HCC is still unoptimistic.
Postoperative recurrence, the main reason for poor survival of HCC patients, mainly owes to
the tendency of the invasion and metastasis of HCC cells (3, 4). Therefore, understanding the
mechanism of HCC tumorigenesis and progression is critical to improve the clinical outcome of
HCC patients.

Tissue factor (TF, also known as platelet tissue factor, factor III, thromboplastin, or CD142,
encoded by the F3 gene) is a 47 kD transmembrane glycoprotein that contains 263 amino acid
residues totally including a 219 amino acid extracellular region, a 23 amino acid hydrophobic
transmembrane region, and a 21 amino acids C-terminal intracellular tail (5). Originally, TF is
found on the surface of intravascular cells, such as platelets, leukocytes, and endothelial cells and

346

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00150
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00150&domain=pdf&date_stamp=2019-03-15
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tshizhi@jnu.edu.cn
mailto:gdtrc@163.com
mailto:zhouqi@mail.sysu.edu.cn
https://doi.org/10.3389/fonc.2019.00150
https://www.frontiersin.org/articles/10.3389/fonc.2019.00150/full
http://loop.frontiersin.org/people/676865/overview
http://loop.frontiersin.org/people/655818/overview
http://loop.frontiersin.org/people/610371/overview
http://loop.frontiersin.org/people/687814/overview
http://loop.frontiersin.org/people/574687/overview
http://loop.frontiersin.org/people/609521/overview
http://loop.frontiersin.org/people/583575/overview
http://loop.frontiersin.org/people/542636/overview


Huang et al. TF-AKT/ERK-EGFR Pathway Suppresses HCC

functions as the principal initiator of the extrinsic coagulation
cascade by binding with circulating factor VII or VIIα
(FVII/VIIα) (6). Recently, TF is frequently overexpressed in a
variety of tumors, including breast cancer, colorectal carcinoma,
gastric cancer, non-small cell lung, and pancreatic ductal
carcinoma, etc. (7). We and other groups have reported that the
expression of TF is upregulated and correlated with prognosis in
HCC (8–10). In the current study, we investigate the role and
molecular mechanism of TF in the growth of HCC cells.

MATERIALS AND METHODS

Patients and Tissue Specimens
A total 144 HCC tissues were obtained from patients who
underwent curative resection between Jan 2008 and Dec 2010
at the First Affiliated Hospital, Sun Yat-sen University. None of
the patients received neoadjuvant radiotherapy or chemotherapy

FIGURE 1 | Knockdown of TF inhibits the growth of HCC. (A,B) Western blot analysis of the protein expressions in the indicated cells. (C) Cell growth of the indicated

cells as determined with MTT assay. (D) Representative images and (E) quantification of the indicated cells sphere as determined with sphere formation assay. (F) The

indicated subcutaneous tumors and (G) tumor weight of nude mice were shown. (H) Representative images of H&E and Ki-67 staining in the indicated tumor sections

as determined with IHC assay. Error bars, mean ± SD. *p < 0.05 and **p < 0.01 [two-tailed Student’s t-test (C,E,G)].

before surgery. Signed informed consents were obtained from all
patients. The study was approved by the ethics committee of the
First Affiliated Hospital, Sun Yat-sen University.

Cell Culture and Reagents
The human HCC cell lines HepG2, BEL-7402, SK-HEP1,
SMMC-7721, and normal hepatic cell line LO2 were from
China Center for Type Culture Collection and cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS), penicillin (100 U/ml) and
streptomycin (100 ng/ml) in a humidified incubator at 37◦C
with 5% CO2 atmosphere. U0126, LY294002, and Gefitinib were
from ApexBio. Anti-TF (ab17375) and Anti-Ki-67 (2724-1) were
from Abcam. Anti-pAKT (4060), Anti-AKT (4691), Anti-pERK
(4370), and Anti-ERK (4695) antibodies were fromCell Signaling
Technologies. Anti-EGFR (SC-03) and Anti-c-Myc (SC-40)
antibodies were from Santa Cruz Biotechnology. Anti-β-actin
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(LK9001T) and Anti-GAPDH (LK9002T) antibodies were from
Tianjin Sungene Biotech.

Plasmid Construction and Lentivirus
Production
The human TF cDNA was cloned into pLVX-AcGFP1-N1
lentiviral vector, and shRNA targeting human TF mRNA
(5′-GCGCUUCAGGCACUACAAA-3′) was cloned into pLKO.1
lentiviral vector. Lentivirus was packaged in HEK293T cells
and collected from the medium supernatant. Stable cell lines
were established by infecting lentivirus into cells, followed by
puromycin selection (11, 12).

siRNA Transfection
The EGFR siRNA (sense sequences:
5′- CUGACUCCGUCCAGUAUUGAU−3′) and negative
control siRNA were synthesized by Guangzhou Ribobio. Each
siRNA solution was mixed gently with the respective volume

of the X-tremeGENE siRNA Transfection Reagent and allowed
to form transfection mixture for 20min. Cells were cultured
in 6-well plate with DMEM until 50% of confluence and
added with the transfection mixture for 24 h before the next
experiment (13, 14).

Western Blot
Cells were harvested and washed twice with cold PBS, then
resuspended and lysed in RIPA buffer (1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS, 10 ng/ml PMSF, 0.03% aprotinin,
1µM sodium orthovanadate) at 4◦C for 30min. Lysates were
centrifuged for 10min at 14,000 × g and supernatants were
stored at−80◦C as whole cell extracts. Proteins were separated on
12% SDS-PAGE gels and transferred to polyvinylidene difluoride
membranes. Membranes were blocked with 5% BSA and
incubated with the indicated primary antibodies. Corresponding
horseradish peroxidase-conjugated secondary antibodies were
used against each primary antibody. Signals were detected using

FIGURE 2 | Overexpression of TF promotes the growth of HCC. (A,E) Western blot analysis of the protein expressions in the indicated cells. (B,F) Cell growth of the

indicated cells as determined with MTT assay. (C) Representative images and (D) quantification of the indicated cells sphere as determined with sphere formation

assay. Error bars, mean ± SD. *p < 0.05 and **p < 0.01 [two-tailed Student’s t-test (B,D,F)].
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the ChemiDoc XRS chemiluminescent gel imaging system (Bio-
RAD) (15, 16).

MTT Assay
Cells were seeded into a 96-well plate at a density of
0.5–1× 104 cells/well and treated with various concentrations
of agents. After 3 days, 3-(4, 5-dimethylthiazolyl-2)-2, 5-
diphenyltetrazolium bromide (MTT) was added to each well
at a final concentration of 0.5 mg/ml. After incubation for
4 h, the medium and MTT solution were removed from each
well, and formazan crystals were dissolved in 100 µl of DMSO.
Absorbance was measured at 570 nm by Multiscan Spectrum
(Thermofisher) (17, 18).

Sphere Formation Assay
Cells were trypsinized, suspended in medium containing 0.3%
agar and 10% FBS and seeded at a density of 5 × 102

cells/well in a 12-well plate. The agar–cell mixture was plated
onto a bottom layer with 0.5% agar. Then treated cells were
incubated in a humidified incubator and fresh medium was
added every 3 days. Two weeks later, colonies were analyzed
microscopically (19, 20).

Nude Mice Xenograft Tumor Assay
The female Balb/c nudemice with 5 weeks old and 16–18 g weight
were obtained from the Shanghai SLAC Laboratory Animal Co

and maintained with sterilized food and water. For xenograft
tumor assay, 4 × 106 cells in 100 µl of DMEM were injected
subcutaneously under the shoulder of six mice per group.
The mice were anesthetized after experiment, and tumors or
lungs were removed, weighed, and sectioned. All experimental
procedures were approved by the Institutional Animal Care and
Use Committee of Jinan University (21, 22).

Immunohistochemistry Assay
Immunohistochemistry (IHC) assay was performed with a
microwave-enhanced avidin-biotin staining method. Formalin-
fixed, paraffin embedded human HCC tissue array and
subcutaneous tumors in mice were stained with antibodies,
respectively, using a microwave-enhanced avidin-biotin staining
method. To quantify the protein expression, the following
formula was used: IHC score = percentage of positive cells ×
intensity score. The intensity was scored as follows: 0, negative
(no staining); 1, weak (light yellow); 2, moderate (yellow brown);
and 3, intense (brown) (23, 24).

Statistical Analysis
Statistical analyses were performed using SPSS 19.0 for Windows
(SPSS) and Graph-Pad Prism 6. Data were expressed as
the mean ± standard deviation (SD) from at least three
independent experiments. Quantitative data between two groups
were compared using the Student’s t-test. Categorical data

FIGURE 3 | TF promotes the growth of HCC by activating both ERK and AKT signaling pathways. (A) Western blot analysis of the protein expressions in the indicated

cells. SK-HEP1 shTF-Vector and SK-HEP1 shTF-TF cells were treated with/without U0126 and LY294002 at the concentration of 10µM for 24 h. (B–D) Western blot

and (E) MTT assay analysis of the protein expressions and cell growth. Error bars, mean ± SD. *p < 0.05 (two-tailed Student’s t-test E).
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were analyzed by the χ2 test or Fisher exact test. Correlations
between different protein expressions level were determined
using Spearman’s rank analysis. The p < 0.05 was considered
as statistical significance. ∗p < 0.05; ∗∗p < 0.01; NS: no
statistical significance.

RESULTS

Knockdown of TF Inhibits the Growth
of HCC
To explore the potential biological function of TF in HCC,
we first examined the protein expression of TF in human
HCC cell lines including HepG2, BEL-7402, SK-HEP1, SMMC-
7721, and normal hepatic cell line LO2. Notably, all HCC
cell lines displayed higher protein levels of TF than normal
hepatic cell line, and SK-HEP1 and SMMC-7721 cells showed
the highest protein levels of TF in all cells (Figure 1A). To
further investigate the role of TF in HCC malignancy, we
generated the cells with shRNA-mediated stable knockdown
of endogenous TF in both SK-HEP1 and SMMC-7721 cells
(Figure 1B). Knockdown of TF decreased the cell amounts,
sphere numbers and sizes in both SK-HEP1 and SMMC-
7721 cells as detected by MTT and sphere formation assays
(Figures 1C–E). Additionally, the data of subcutaneous tumor
models in nude mice showed that TF knockdown inhibited the
growth of SMMC-7721 xenografts by decreasing the volumes and
weights of tumors as well as the numbers of Ki67+ proliferating
cells (Figures 1F–H).

Overexpression of TF Promotes the
Growth of HCC
To confirm the effect of TF on HCC growth, we performed
rescue experiments by ectopic expression of TF in both
TF-silenced SMMC-7721 and SK-HEP1 cells (Figure 2A).
Ectopic expression of TF increased the cell amounts,
sphere numbers, and sizes in both TF-silenced SMMC-
7721 and SK-HEP1 cells (Figures 2B–D). Furthermore,
overexpression of TF increased the cell amounts in

LO2, HepG2, and BEL-7402 cells (Figures 2E, F). Taken
together, these results suggest that TF can promote the
growth of HCC.

TF Promotes the Growth of HCC by
Activating Both ERK and AKT Signaling
Pathways
To further explore the molecular mechanism of TF-promoted
HCC growth, we detected the downstream signaling pathway
of TF. As shown in Figure 3A, knockdown of TF decreased the
protein levels of phosphorylated ERK (pERK), phosphorylated
AKT (pAKT), and their downstream transcriptional factor c-
Myc in both SMMC-7721 and SK-HEP1 cells. While ectopic
expression of TF increased the protein levels of pERK, pAKT
and c-Myc in both TF-silenced SMMC-7721 and SK-HEP1 cells.
Interesting, the protein level of EGFR was downregulated in
TF-silenced HCC cells and upregulated in TF-overexpressed
HCC cells (Figure 3A). To define the roles of ERK and AKT
in TF-mediated HCC growth, we examined the effects of
MEK inhibitor U0126 and PI3K inhibitor LY294002 on the
growth of both SK-HEP1 shTF-Vector and -TF cells. Treatment
with U0126 or/and LY294002 decreased the protein levels of
EGFR, c-Myc, pERK or/and pAKT in both SK-HEP1 shTF-
Vector and -TF cells (Figures 3B–D). However, with U0126 or
LY294002 alone inhibited the growth only in SK-HEP1 shTF-
TF cells but not in SK-HEP1 shTF-Vector cells. After treating
with the combination of U0126 and LY294002 significantly

TABLE 1 | The correlation between TF and EGFR protein expressions in HCC

tissues.

TF expression P

High Low Total r

EGFR High 82 9 91 < 0.001

expression Low 23 30 53 0.668

105 39 144

FIGURE 4 | Inhibition of EGFR suppresses TF-mediated HCC growth. SK-HEP1 shTF-Vector and SK-HEP1 shTF-TF cells were transfected with siControl or siEGFR

or treated with/without gefinib at the concentration of 10µM for 24 h. (A) Western blot and (B) MTT assay analysis of the protein expressions and cell growth. Error

bars, mean ± SD. *p < 0.05 and **p < 0.01 (two-tailed Student’s t-test B).
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FIGURE 5 | TF protein expression is correlated with EGFR and poor HCC patient prognosis. TF and EGFR protein expressions in 144 HCC tissues were examined

with IHC assay. (A) Representative images of positive and negative expression of both TF and EGFR were shown at 4 X and 20 X magnification. (B) Representative

images of western blot analysis of TF and EGFR protein expression in the paired HCC tissues and adjacent normal tissues. (C) Spearman’s rank correlation test

showed the correlation between TF and EGFR protein expressions by Western blot.

inhibited the growth in both SK-HEP1 shTF-Vector and -
TF cells (Figure 3E). In short, these data suggest that TF
promotes the growth of HCC by activating both ERK and AKT
signaling pathways.

Inhibition of EGFR Suppresses
TF-Mediated HCC Growth
EGFR has been identified as a key player in the development
of HCC (25). To verify the role of EGFR in TF-mediated HCC
growth, we examined the effects of EGFR siRNA and EGFR
inhibitor gefitinib on the growth of both SK-HEP1 shTF-Vector
and -TF cells. EGFR siRNA or gefitinib decreased the protein
levels of EGFR in both SK-HEP1 shTF-Vector and -TF cells
(Figure 4A). Furthermore, EGFR siRNA or gefitinib inhibited
the growth more significantly in SK-HEP1 shTF-TF cells than in
SK-HEP1 shTF-Vector cells, indicating that inhibition of EGFR
suppresses TF-mediated HCC growth (Figure 4B).

TF Protein Expression Is Correlated With
EGFR in HCC Tissues
Our results clearly demonstrate that EGFR is regulated by TF in
cell culture. To determine whether this is also the case in tumor
tissues, we compared the protein levels of TF and EGFR in human
144 HCC tissues by IHC assay. High TF and EGFR staining were
present in 105 (72.9%) and 91 (63.2%) out of 144 HCC tissues,
respectively. Results of representative tissues with co-low or co-
high staining of TF and EGFR were shown in Figure 5A. The

expression of TF was highly correlated with the expression of
EGFR in HCC tissues (Table 1 and Figures 5B, C).

DISCUSSION

It has been demonstrated that TF-induced tumor progression
need the activation of intracellular signaling pathways, where
TF cytoplasmic domain couples to proteolytic activation of the
protease activated receptor (PAR) 2 and subsequently activates
ERK, AKT and other signaling pathways (26). For example, TF
was involved in retinoblastoma cell proliferation via activating
both ERK and AKT signaling pathways (27). Knockdown of TF
suppressed human lung adenocarcinoma growth in vitro and in
vivo through inhibiting both ERK and AKT signaling pathways
(28). Similarly, our results showed that TF promoted the growth
of HCC in vitro and in vivo by activating both ERK and AKT
signaling pathways. Inhibition of ERK and AKT blocked TF-
mediated growth of HCC. Therefore, activation of both ERK and
AKT signaling pathways is indispensable for TF-promoted the
growth of HCC.

EGFR is a member of ErbB/HER family of transmebrane
receptor tyrosine kinases. It is activated by specific ligands
resulting in the activation of multiple intracellular signaling
pathways including ERK, AKT. Those signaling pathways is
related to cell proliferation, migration and invasion (29–31).
The gene expression of EGFR is regulated by the transcription
factor c-Myc (32). In this study, we found that TF could enhance
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the expression of c-Myc and EGFR, and inhibition of ERK and
AKT could block TF-induced c-Myc and EGFR upregulation.
Phosphorylation of serine 62 amino acid residues by ERK
prevents c-Myc protein from degradation (33). AKT stabilizes
c-Myc protein by phosphorylation and inactivation of GSK-3β
which phosphorylated threonine 58 amino acid residues of c-Myc
to promote c-Myc degradation (33).

Inhibition of EGFR with either small molecule inhibitors
or specific antibodies has achieved promising results in the
preclinical HCCmodels. In human HCC cells, gefitinib, erlotinib
or cetuximab could induce growth inhibition, cell cycle arrest
and apoptosis (34–36). In the orthotopic HCC models, gefitinib
significantly inhibited the growth andmetastasis of HCC tumors,
and enhanced by the combination with cisplatin (37, 38).
However, the outcome of targeting EGFR in HCC was modest in
the clinical trials. When used as a single agent in HCC patients,
erlotinib only acquired moderate effects (39, 40), and cetuximab
showed no antitumor activity (41). Treatment failure with EGFR
inhibitors in HCC patients may cause by many reasons, such
as the levels and mutations of EGFR, EMT status of tumor
cells, etc. (42–44). In the current study, we found that treatment
with EGFR siRNA or gefitinib suppressed the growth more
significantly in the TF highly expressed HCC cells, suggesting
that the levels of TF in tumor cells may influence the effects of
EGFR inhibitors. Furthermore, our IHC data showed that both
positive ratios of TF and EGFR protein in the HCC tissue were
72.9% (105/144) and 63.2% (91/144), respectively. The expression
of TF was highly correlated with the expression of EGFR in
HCC tissues. Therefore, it may be valuable to investigate the
relation of TF expressions and EGFR inhibitors effects in the
future studies.

CONCLUSIONS

Our results provide proof-of-principle insights into a novel
mechanism driven by TF on HCC growth and suggest that TF
and EGFR may be potential therapeutic targets of HCC.
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MicroRNAs (miRNAs) play important roles in human diseases, such as cancer. Human

miRNA-7-5p is a tumor suppressor miRNA that inhibits tumor growth by regulating

multiple oncogenic signal pathways. Recently, studies revealed that plant miRNAs

could regulate mammalian gene expression in a cross-kingdom manner. Schistosoma

japonicum miRNA-7-5p (designated as sja-miR-7-5p) is conserved between the

parasites and mammals. Thus, we investigated whether sja-miR-7-5p has similar

antitumor activity to its mammalian counterpart. We first showed that sja-miR-7-5p was

detected in host hepatocytes during S. japonicum infection. The sja-miR-7-5p mimics

significantly inhibited the growth, migration, and colony formation of mouse and human

hepatoma cell lines in vitro, and induced G1/G0 cell cycle arrest. In a xenograft animal

model, the tumor volume and weight were significantly reduced in mice inoculated with

hepatoma cells transfected with sja-miR-7-5p mimics compared with those transfected

with NC miRNAs. Furthermore, the antitumor activity of sja-miR-7-5p was suggested

by cross-species downregulation of the S-phase kinase-associated protein 2 gene in

the host. Thus, sja-miR-7-5p is translocated into hepatocytes and exerts its anti-cancer

activities in mammals, implying that sja-miR-7-5p might strengthen host resistance to

hepatocellular carcinoma during schistosome infection.

Keywords: Schistosoma japonicum, microRNA, hepatoma cell, SKP2, cross-species regulation

INTRODUCTION

The primary pathology of schistosomiasis caused by S. japonicum is egg-induced granuloma and
fibrosis. The female adult worms living in the host mesenteric veins lay numerous eggs, and most
of them are trapped in the liver tissues via the portal venous system, causing a granulomatous
reaction and fibrosis. The parasite eggs in the granuloma are surrounded by host cells, including
immunocytes, hepatic mesenchymal cells, and hepatocytes (1). Our previous studies indicated that
S. japonicum secretes many microRNAs (miRNAs), including Schistosoma-specific and conserved
miRNAs (2), and parasite miRNA-containing exosomes (2).

354

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00175
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00175&domain=pdf&date_stamp=2019-03-22
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wqpan0912@aliyun.com
https://doi.org/10.3389/fonc.2019.00175
https://www.frontiersin.org/articles/10.3389/fonc.2019.00175/full
http://loop.frontiersin.org/people/700144/overview
http://loop.frontiersin.org/people/563315/overview


Hu et al. Parasite MicroRNA Inhibits Cancer Cell

MiRNAs are a class of highly conserved, small non-coding
RNAs, with a length of about 20–24 nucleotides (nt) that
post-transcriptionally regulate gene expression through complete
or incomplete binding to their target mRNAs (3). MiRNAs
have extensive effects on not only physiological processes,
but also on the progression of many human diseases, such
as cancers (4, 5). Aberrant miRNA expression promotes the
occurrence and development of various cancers (6–8); however,
some miRNAs can exert therapeutic effects on multiple cancers
through regulation of tumor-related genes, including those that
control tumor cell growth or apoptosis (9, 10). Interestingly,
miRNAs derived from plants can regulate the expression of their
target genes in mammals in a cross-kingdom manner (11–13).
For example, miR-159 derived from plants was detectable in
human sera and inhibited breast cancer growth by targeting the
human transcription factor 7 (TCF7) gene (13). Accumulating
evidence indicates that heterogeneous miRNAs can modulate
cell functions in mammals. However, it remains unclear
how the plant miRNAs can survive the passage through the
gastrointestinal tract following ingestion.

Unlike plant miRNAs, which need to pass through the
gastrointestinal tract before release into the host serum or
entering host cells, schistosomal miRNAs from eggs trapped in
liver tissue may be directly transferred to the neighboring host
cells. Thus, we hypothesized that parasite miRNAs from the
eggs might be translocated into neighboring hepatocytes to exert
various biological effects, including some that are beneficial to
the host, for example, strengthening the resistance of the host to
diseases such as cancer, as do plant-derivedmiRNAs (13). Human
miRNA-7-5p (designated as hsa-miR-7-5p) is a tumor suppressor
miRNA that regulates multiple oncogenic signal pathways and
reverses drug resistance in certain cancers (14–17). Our previous
study identified a S. japonicum miRNA-7-5p (designated as sja-
miR-7-5p) that is conserved between the parasite and mammals,
i.e., there is an identical seed sequence (2–8 nt at the 5

′

region)
in both parasites and mammalian miRNA-7-5p, despite there
being 6 nt differences in the rest of the sequence. Thus, it
would be interesting to investigate if sja-miR-7-5 secreted by
S. japonicum has a similar antitumor activity to hsa-miR-7-
5p. In the present study, we demonstrated that sja-miR-7-5p is
present in hepatocytes during the S. japonicum infection and
the sja-miR-7-5p exerts anticancer effects on multiple hepatoma
cells (assessed using in vitro and in vivo models) by targeting
the S-phase kinase-associated protein 2(SKP2) gene, which is a
component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin-ligase
complex. Previous studies have shown that overexpression of
the SKP2 gene was observed in many cancers, such as in liver
cancer (18), prostate cancer (19), lymphoma (20), melanoma
(21), and breast cancer (22), which plays an important role in
regulating cellular proliferation and cancer progression, mainly
by targeting cell cycle regulators in an ubiquitin-dependent

Abbreviations: S. japonicum, Schistosoma japonicum; HCC, hepatocellular cancer;

SKP2, S-phase kinase associated protein 2; P27(also known as CDKN1B), cyclin

dependent kinase inhibitor 1B; MMP9, matrix metallopeptidase 9; miRNA,

microRNA; siRNA, small interfering RNA; NC, negative control; Mock, mock

control.

manner, followed by 26S proteasome degradation (23). In
addition, the SKP2 overexpression also enhanced tumor cell
invasion (24), metastasis (25), and resistance to apoptosis (26),
and was associated with tumor aggressiveness (27) and poor
prognosis (28).

MATERIALS AND METHODS

Infection of Mice With S.

japonicum Cercariae
Animal experiments were performed in accordance with the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health, and approved by the Internal
Review Board of Tongji University School of Medicine. The
animal surgeries were undertaken under sodium pentobarbital
anesthesia. Cercariae of S. japonicum were provided by National
Institute of Parasitic Disease, Chinese Center for Disease Control
and Prevention (CDC). 36 six-week-old male C57BL/6J mice
(18–20 g, 3mice per group), purchased from experimental animal
center of the Second Military Medical University and housed
under specific pathogen-free conditions, were percutaneously
infected with 50 or 100 cercariae of S. japonicum per mouse
(50 for collection of infected hepatocytes and 100 for collection
of early stage parasites). For collection of parasites, the
hepatic schistosomula were isolated from the portal system and
mesenteric veins of infected mice at 7, 14, and 42 days post-
infection (dpi). In addition, 42 days male and female adult worms
were manually separated under a light microscope. The eggs were
isolated with a traditional method, as described by Cai et al.
(29). All the freshly isolated parasites were washed three times
with PBS (pH 7.4) and were immediately used for extraction
of total RNA or frozen at −80◦C until being subjected to
further analysis.

Isolation of Primary Mouse Hepatocytes
The primary mouse hepatocytes were isolated by a two-step
collagenase perfusion procedure, as described by He et al. (30)
with minor modifications. Briefly, after infection, livers of the
infected mice collected at various time points of 7, 9, 11, 14,
28, and 42 dpi (n = 5) along with the livers of uninfected mice
were initially in situ digested with 0.03% collagenase type IV and
then further digested with 0.08% collagenase type IV at 37◦C
in a shaking bath for 30min. The single cell suspensions were
harvested by filtration through 400-mesh sieves for removal of
the remaining tissue debris and parasite eggs. Next, hepatocytes
were isolated by centrifugation of the resulting cell suspensions
at 50×g for 4min and further purified by centrifugation at 50
× g for 4min. Purified hepatocytes were resuspend in DMEM
containing 20µg/ml Ribonuclease A (Sigma-Aldrich, USA) at
37◦C for 30min to eliminate any miRNA that might be released
by schistosome eggs. After washing with PBS for three times, the
cell pellet was immediately used for extraction of total RNA or
frozen at−80◦C until used.

Cell Proliferation Assay
Cells (2 × 105) were seeded in a 6-well plate overnight,
respectively. Then cells were transfected with sja-miR-7-5p
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mimics or NC mimics, respectively, four replicates per group.
And 24 h later, cells were digested and seeded in a 96-well plate
(2 × 103) for 1, 2, 3, and 4 d. At each indicated time, 10 µL
Cell Counting Kit-8(CCK-8, Dojindo, Japan) was added to each
well and cells were incubated for 1 h at 37 ◦C, then, using the
Microplate reader (Bio-Tek, USA) to measure the abosorbance at
450 nm.

Cell Cycle Analysis
Cells (1 × 105) were seeded in a 12-well plate overnight,
respectively. Then, cells were transfected with sja-miR-7-5p
mimics or NC mimics, respectively, three replicates per group.
And 48 h later, cells were collected and fixed with ice-cold

75%(v/v) ethanol and stored at 4◦C overnight, then, cells were
washed and resuspended in 200 µL phosphate-buffered saline
(PBS) contained with 0.05 mg/mL RNase A (Beyotime, China)
and 25 mg/mL propidium iodide (PI) (Beyotime, China), cell
cycle was determined by the FACSverse flow cytometer (BD
Biosciences, USA).

Colony Formation Assay
Cells (2 × 105) were seeded in a 6-well plate overnight, then
cells were transfected with sja-miR-7-5p mimics or NC mimics,
respectively. And 24 h later, cells were digested and 200 cells in
500 µL complete medium were seeded in 24-well plate, three
replicates per group. After incubation for 8 days, then cells were

FIGURE 1 | Detection of sja-miR-7-5p in infected hepatocytes. (A) A schematic diagram represents two sets of primers of reverse transcription stem-loop primer (RT)

and forward primer (FP) for sja-miR-7-5p or mmu-miR-7a-5p, respectively. (B,C) Preparation of RNA samples: a. 200 ng Schistosoma japonicum egg RNA; b. mixture

of equal amount of Schistosoma japonicum egg RNA (100 ng) and Hepa1-6 cell RNA (100 ng); c. 200 ng Hepa1-6 cell RNA. The three RNA templates were

transcribed into cDNA using the corresponding reverse transcription stem-loop primer, respectively, which were used for qRT-PCR by the corresponding forward

primer and common reverse primer, respectively. The PCR products were separated by polyacrylamide gel electrophoresis (PAGE). As shown in B and C, the two sets

of primers can effectively distinguished the sja-miR-7-5p and mmu-miR-7a-5p, e.g., the set of sja-miR-7-5p RT and forward primer FP amplified the sja-miR-7-5p

[(B), lane a and b] but not mmu-miR-7a-5p (lane c), while the set of mmu-miR-7a-5p RT and forward primer FP generated the mmu-miR-7a-5p but not the

sja-miR-7-5p (C). (D) Analysis of the RNA samples to ensure no contamination with parasite RNA: the RNA samples used for the above analysis were detected as

described in Method by PCR for presence of the NADH gene of S. japonicum. Lane 1: marker. Lane 2: parasite positive control: RNA samples of S. japonicum eggs

as described above. Lane 3–8: six samples of infected hepatocytes with RNase pre-incubation. Lane 9: negative control without the template. (E) qRT-PCR analysis

of sja-miR-7-5p in the infected hepatocytes at various days after infection; (F) 12% PAGE analysis showing sja-miR-7-5p PCR product (68 bp) from the infected

hepatocytes: Lane 1: marker; Lane 2: sja-miR-7-5p mimics positive control; Lanes 3 and 4: two uninfected hepatocyte samples with pre-incubation with RNase;

Lanes 5 and 6: two infected hepatocyte samples at day 11 post-infection with the pre-incubation. Data are presented as the mean ± SD, n = 3.
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fixed inmethanol for 30min, followed by staining in crystal violet
for 15min. The number of colonies containing > 50 cells was
counted under a light microscope.

Tumor Xenograft Animal Model
Male athymic nude mice were housed and manipulated
according to the protocols approved by the Shanghai Medical
Experimental Animal Care Commission. Hepa1-6 cells orHepG2
cells were transfected with sja-miR-7-5p mimics or NC mimics,
respectively. And 24 h later, for each mouse, 1 × 106 cells in 100
µL PBS after treated with sja-miR-7-5p mimics were injected
subcutaneously to the left scapula, while cells after treated with
NC mimics were injected subcutaneously to the right scapula,
respectively. Tumor volume was measured at 2, 4, 6, and 7 d after
injection, At day 7, the mice were sacrificed and tumors were
separated to measure their weight and volume. Tumor volume
was measured using the formula: 0.5×L×S2, where L is the
longest diameter of tumor and S is the shortest diameter of tumor.
The content of sja-miR-7-5p mimics transfected into the tumor
cells measured by quantitative real-time reverse transcription
PCR (qRT-PCR), the protein level of SKP2 was determined by
Western blotting. And also the expression of Ki67 in the tumor
was measured by immunohistochemistry (IHC) as described
under this section.

Immunohistochemistry
To determine Ki67 expression in xenograft tumor tissues from
the athymic nude mice, immunohistochemistry (IHC) was
performed as described previously (31), Antibody against Ki67
was used (1:50 dilution).

Statistical Analysis
All experiments were performed in triplicate and the results were
presented as mean ± standard deviation (mean ± SD). All data
were analyzed by one-way ANOVA using the software GraphPad
Prism 5.0(GraphPad Software, Inc. La Jolla, CA, USA). A value of
P < 0.05 was considered statistically significant.

RESULTS

Presence of sja-miR-7-5p in
Infected Hepatocytes
We first investigated whether sja-miR-7-5p was present in the
host liver cells during schistosome infection. For this purpose,
we designed a set of two sets primers that could distinguish the
sja-miR-7-5p from corresponding miRNA derived from mouse
(mmu-miR-7-5p) and human (hsa-miR-7-5p). The sja-miR-7-
5p has an identical seed sequence (2–8 nt at the 5’ region), but

FIGURE 2 | Sja-miR-7-5p inhibits cell proliferation and migration of Hepa1-6 and HepG2 cells in vitro. (A–F) Hepa1-6 and HepG2 cells were transfected with

sja-miR-7-5p mimics and NC (negative control) mimics, respectively, and 48 h later [except for the cell counting kit-8(CCK-8) assay, which was 24 h later], the

expression of sja-miR-7-5p was determined using qRT-PCR (A). Cell proliferation was evaluated by CCK-8 assay at 1, 2, 3, and 4 days (B), data are presented as the

mean ± SD, n = 3, *p < 0.05 or **p < 0.01 indicates the comparison between the two groups of sja-miR-7-5p and NC; #p < 0.05 or ##p < 0.01 indicates the

comparison between the groups of sja-miR-7-5p and Mock. Cell cycle was determined by flow cytometry analysis (C,D). Cell migration was evaluated using Transwell

inserts without matrigel coating (E). The ability to form cell clones was determined using a colony formation assay (F). Data are presented as the mean ± SD, n = 3,

*p < 0.05, **p < 0.01.
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there are 6 nt differences in the rest of the sequence among the
species (Figure 1A, and Figure S1), which allowed us to design
sets of specific primers for the mmu-miR-7a-5p (mmu-FP/RT)
and the sja-miR-7-5(sja- FP/RT). We first tested specificity of the
primers using the RNA samples derived from S. japonicum eggs
(a), mouse Hepa1-6 cell line (c), andmixture of equal amount of a
and c (b). As shown in Figures 1B,C, the sja-FP/RT pair primers
successfully generated the sja-miR-7a-5p from the samples of a
and b, but not c (Figure 1B), while the mmu-FP/RT pair primers
generated the mmu-miR-7a-5p from the sample b and c, but
not a (Figure 1C). These data indicated that the two sets of
primers can effectively distinguish the sja-miR-7-5p and mmu-
miR-7a-5p, and no cross reaction between the mmu-FP/RT and
sja-FP/RT primers. All the primers are listed in Table S1.

We next used the sja-FP/RT primers for detection of
presence of sja-miR-7-5p in the liver cells of infected mice with
S. japonicum. We prepared RNA samples from the infected
liver cells, and carefully analyzed the samples to ensure no
contamination with parasite RNA (Figure 1D). We showed that
sja-miR-7-5p was detected by using qRT-PCR in the hepatocytes
from infected mice at the early stage (i.e., days 9 and 11 post
infection) and the late stage of infection (day 42) (Figure 1E).
The presence of this parasite miRNA was further verified by PCR
(Figure 1F) and cloning and sequencing of the PCR product
showed identical sequence of sja-miR-7-5p (Figure S2A). In
addition, we showed that sja-miR-7-5p was expressed at all these
stages, and higher expression of sja-miR-7-5p was detected in
adult males compared with that in adult females (Figure S2B).

These findings indicated that this sja-miR-7-5p is present in the
host liver cells during schistosome infection.

Inhibition of Proliferation and Migration of
Hepatoma Cells by Sja-miR-7-5p
To investigated the effects of sja-miR-7-5p on the growth of
hepatoma cells in vitro, both mouse and human hepatoma
cells (e.g., Hepa1-6 cells and HepG2 cells) were transfected
with the sja-miR-7-5p mimics, NC (a negative control mimics
that has no target gene in mice and human) and Mock
(transfection reagents only). As shown in Figure 2A, the sja-miR-
7-5p mimics were effectively transfected into both cell lines. The
schistosomal miRNA significantly suppressed the proliferation
of both cell lines, as measured by the CCK-8 assay (Figure 2B),
and substantially arrested the cell cycle at G1/G0 phase, as
detected by flow cytometry (Figures 2C,D). We also showed that
transfection of the sja-miR-7-5p mimics significantly suppressed
cell migration, as assessed using the Transwell inserts without
matrigel coating (Figure 2E) and by the wound-healing assay
(Figures S3B,C) compared with the NC or Mock control cells.
Colony formation assays showed that sja-miR-7-5p inhibited
colony formation of hepatoma cells to a greater extent that
those in the NC group or Mock group (Figure 2F). In addition,
the Hepa1-6 cells transfected with sja-miR-7-5p mimics grew
bigger and rounder compared with those in the NC or Mock
control cells (Figure S3A). These data indicated that sja-miR-7-
5p inhibited growth, migration, and colony formation of both
mouse and human hepatoma cells and arrested their cell cycle

FIGURE 3 | Sja-miR-7-5p inhibits hepatoma cell growth in vivo. (A–F) Hepa1-6 and HepG2 cells were transfected with sja-miR-7-5p mimics or NC mimics,

respectively, and then the sja-miR-7-5p-treated cells (1 × 106) were injected subcutaneously to the left scapula of athymic nude mice, and the NC-treated cells were

injected subcutaneously into the right scapula (n = 5), respectively. Tumor volumes were measured at days 2, 4, 6, and 7 after injection. At day 7, the mice were

sacrificed and tumors were separated to measure their weight and volume, (A–C) for Hepa1-6 cells, (D–F) for HepG2 cells. Data are presented as the mean ± SD, n

= 5, *p < 0.05, **p < 0.01.

Frontiers in Oncology | www.frontiersin.org 5 March 2019 | Volume 9 | Article 175358

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Parasite MicroRNA Inhibits Cancer Cell

at G1/G0 phase in vitro, indicating that the schistosomal miRNA
is also a tumor suppressor.

Sja-miR-7-5p-Mediated Inhibition of
Hepatoma Cell Growth in vivo
To further investigate whether sja-miR-7-5p inhibits growth of
liver cancer cells in vivo, both Hepa1-6 and HepG2 cells were
transfected with sja-miR-7-5p mimics or NC mimics, and then
injected subcutaneously to the left and right scapula of athymic
nude mice to generate subcutaneous tumors. The tumor volume
was measured at days 2, 4, 6, and 7 after injection. At day 7, mice
were sacrificed and tumors were excised to measure their weight
and volume. The results showed that both the tumor volume and
weight were significantly reduced in the mice inoculated with
Hepa1-6 cells transfected with sja-miR-7-5p mimics compared
with those in mice receiving cells transfected with NC miRNAs
(Figures 3A–C). Similar results were obtained with the human
cell line of HepG2 (Figures 3D–F). These data indicated that
sja-miR-7-5p suppressed tumor growth in vivo.

SKP2 Is a Direct Target of Sja-miR-7-5p
To determine the molecular mechanisms by which sja-miR-7-5p
inhibits hepatoma cell growth, we used the online software
miRDB (32) (http://www.mirdb.org/miRDB/index.html),
MR-microT (33) (http://diana.imis.athena-innovation.gr/

DianaTools/index.php?r=mrmicrot/index) and RNAhybrid
(34) (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid?id=
rnahybrid_view_submission).

To search for potential targets of sja-miR-7-5p. We identified
the gene encoding S-phase kinase-associated protein 2(SKP2) as
a potential target for sja-miR-7-5p, because a binding site was
located at the 3’ UTR of the both murine and human SKP2 gene
that perfectly matched the seed sequence of sja-miR-7-5p. In
addition, the SKP2 gene in human has been characterized as an
oncogene during tumorigenesis (21, 35–38).

To investigate the relationship between sja-miR-7-5p and
SKP2 gene in both human and mouse, first, we constructed
two plasmids that contain the luciferase reporter gene: One was
the pmirGLO-SKP2-WT construct in which the firefly luciferase
gene is fused to the 3’ UTR of SKP2 gene; the other was
the pmirGLO-SKP2-MT in which the seven nucleotides in the
miRNA binding site were mutated (Figure 4A). The constructs
were simultaneously transfected with sja-miR-7-5p mimics or
NC mimics into both Hepa1-6 cells and HepG2 cells. As shown
in Figure 4B, the luciferase activity was significantly decreased in
the cells transfected with the pmirGLO-SKP2-WT but not with
the pmirGLO-SKP2-MT, indicating that sja-miR-7-5p mimics

could directly bind to the site in the 3
′

UTR of the SKP2
gene, while the mutations in the seed sequence abrogated the
inhibitory effect.

FIGURE 4 | SKP2 (encoding S-phase kinase-associated protein 2) is a direct target of sja-miR-7-5p. (A) A schematic diagram representing the wild-type or mutant 3’

untranslated region (UTR) sites of murine Skp2 and human SKP2 genes targeted by sja-miR-7-5p. (B) A dual-luciferase reporter assay was used to measure the

activity of the reporter gene, and the firefly luciferase activity was normalized to renilla luciferase activity. (C,D) The protein levels of murine SKP2 (C) and human SKP2

(D) were measured using western blotting after transfection with sja-miR-7-5p mimics or NC mimics, respectively. Data are presented as the mean ± SD, n = 3,

**p < 0.01.
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We then detected the level of the SKP2 protein in both Hepa1-
6 or HepG2 cells transfected with sja-miR-7-5p mimics using
Western blotting. We found that sja-miR-7-5p downregulated
the levels of SKP2 in both Hepa1-6 cells and HepG2 cells
compared with that in cells transfected with NC orMock controls
(Figures 4C,D).

Sja-miR-7-5p-Mediated Suppression of the
Hepatoma Cell Growth Through
Downregulation of SKP2 Expression
To investigate whether sja-miR-7-5p inhibits the growth of
hepatoma cells through inhibition of SKP2 expression, both
Hepa1-6 cells and HepG2 cells were transfected with the SKP2
small interfering RNAs (siRNAs). We showed that both murine
Skp2 siRNA (SKP2-786) and human SKP2 siRNA (SKP2-1291)
significantly reduced the SKP2 expression in Hepa1-6 cells
and HepG2 cells, respectively, at both transcriptional and
translational levels detected by qRT-PCR and Western blotting
(Figure 5A). Importantly, similar to the observations in the
sja-miR-7-5p mimics-treated cells, the transfected Hepa1-
6 cells and HepG2 cells with the siRNA showed cell cycle
arrest at the G0/G1 phase (Figures 5C,D), and inhibition
of cell proliferation (Figure 5B), cell migration (Figure 5E),

and colony formation (Figure 5F), whereas these inhibitory
effects were not observed in the cells treated with the NC
siRNA. The phenotypes of the cells treated with SKP2 siRNA
were similar to those of sja-miR-7-5p mimics-treated cells,
which suggested that the inhibitory effects of the schistosome

miRNA on hepatoma cells function by downregulating
SKP2 expression.

We also detected the expression of SKP2 gene in the

subcutaneous tumors generated by Hepa1-6 or HepG2 cells

transfected with sja-miR-7-5p or NC mimics, respectively.
As shown in Figures 6A,B, the transfected sja-miR-7-5p was
detectable in the tumors on day 7 after injection. We then
detected the SKP2 protein level using Western blotting,
which showed that the level of SKP2 was significantly
decreased in the tumors of both Hepa1-6 and HepG2 cells
receiving sja-miR-7-5p compared with that in tumors from cells
transfected with the NC control (Figures 6C,D). Meanwhile,
we evaluated the proliferation of the tumor cells using
immunohistochemistry (IHC) for Ki67, which showed that
the protein level of Ki67 was also significantly decreased in
tumor cells transfected with sja-miR-7-5p compared with that
in cells transfected with the NC control (Figure 6E). These
data further suggested that sja-miR-7-5p inhibited proliferation

FIGURE 5 | Knockdown of SKP2 inhibits cell proliferation and migration of Hepa1-6 and HepG2 cells in vitro. (A–F) Hepa1-6 and HepG2 cells were transfected with

SKP2 siRNA and negative control (NC) siRNA, respectively, and 48 h later (except for the cell counting kit-8(CCK-8) assay, which was 24 h later), the expression of

SKP2 was determined using qRT-PCR and western blotting (A). Cell proliferation was evaluated using the CCK-8 assay at 1, 2, 3, and 4 d (B), data are presented as

the mean ± SD, n = 3, *p < 0.05 or **p < 0.01 indicates the comparison between the two groups of sja-miR-7-5p and NC; #p < 0.05 or ##p < 0.01 indicates the

comparison between the two groups of sja-miR-7-5p and Mock. Cell cycle was determined using flow cytometry analysis (C,D). Cell migration was evaluated by

using Transwell inserts without matrigel coating (E). The ability to form cell clones was determined using a colony formation assay (F). Data are presented as the mean

± SD, n = 3, *p < 0.05, **p < 0.01.
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FIGURE 6 | Sja-miR-7-5p inhibits the expression of SKP2 and Ki67 within hepatoma cell tumors. (A,B)The content of sja-miR-7-5p mimics after transfection into

tumor cells was measured using qRT-PCR before inoculation (0 d) and after sacrifice (7 d), with U6 as the internal control, (A) for Hepa1-6 cells, (B) for HepG2 cells.

Data are presented as the mean ± SD, n = 5, **p < 0.01. (C,D) The protein level of SKP2 was determined by Western blotting, with glyceraldehyde-3-phosphate

(GAPDH) as the internal control, (C) for Hepa1-6 cells, (D) for HepG2 cells. (E) The level of Ki67 in tumors was determined using immunohistochemistry.

of both Hepa1-6 cells and HepG2 cells via downregulation of
SKP2 expression.

To further explore the molecular mechanism by which
sja-miR-7-5p exerts its antitumor activities, we detected the
expression of two downstream nodes of SKP2, e.g., P27 [also
known as cyclin dependent kinase inhibitor 1B (CDKN1B)] and
matrix metalloproteinase 9(MMP9), using Western blotting. We
found that sja-miR-7-5p downregulated the level of SKP2, which
led to significantly increased levels of P27 and reduced levels
of MMP9 in the cells receiving sja-miR-7-5p mimics compared
with those in the cells receiving the NC mimics (Figure 7A). In
addition, transfection of the hepatoma cells with the murine Skp2
siRNA generated a similar outcome to that in cells transfected
with sja-miR-7-5p mimics (Figure 7B). These data suggested
that sja-miR-7-5p exerts its antitumor activity by targeting SKP2
to elevate P27 levels, which led to suppression of tumor cell
growth, and reducing MMP9 levels, resulting in inhibition of
cell migration.

DISCUSSION

Hsa-miR-7-5p is well-characterized as a tumor suppressor
miRNA that suppresses survival, proliferation, invasion, and

migration of multiple cancer cells, as well as increasing the
sensitivity of resistant tumor cells to therapeutics. The molecular
mechanism underpinning its anticancer activities involves
regulation of multiple signaling related genes such as PI3K/Akt,
FAK, KLF4, and REGγ (10, 39–41). This miRNA has therapeutic
potential for human cancers (42). Our previous studies identified
a conserved miR-7-5p from S. japonicum, sja-miR-7-5p, that
has an identical seed sequence to those of hsa-miR-7-5p and
mouse mmu-miR-7-5p, although there are 6 nt differences in
the rest of the sequence of the miRNA among species. In this
study, we have demonstrated that the schistosome miRNA, sja-
miR-7-5p, is present in host hepatocytes during schistosome
infection, and the in vitro transfection of sja-miR-7-5p mimics
into hepatoma cells led to cell cycle arrest and inhibition of cell
proliferation, colony formation, and cell migration. Furthermore,
we showed that sja-miR-7-5p suppressed the growth of both
human and mouse hepatoma cells in a xenograft animal model.
Analysis of the molecular mechanisms revealed that sja-miR-
7-5p exerts its activities by targeting the SKP2 gene, which is
involved in regulation of cell viability and migration. Thus,
the present data indicated that the schistosome sja-miR-7-5p
is also a tumor suppressor miRNA that may have therapeutic
potential for human cancers. In addition, both the presence of
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FIGURE 7 | The molecular mechanism whereby sja-miR-7-5p exerts its antitumor activity in hepatoma cells. (A,B) In Hepa1-6 cells, the protein levels of SKP2, P27,

and MMP9 were measured by Western blotting after transfection with sja-miR-7-5p mimics (A) or Skp2 siRNA (B) and their corresponding negative controls, with

glyceraldehyde-3-phosphate (GAPDH) as the internal control. Data are presented as the mean ± SD, n = 3, **p < 0.01.

this miRNA in host hepatocytes and its antitumor effects on
human hepatoma cells suggest that schistosome non-small RNA-
mediated anticarcinogenic effects might exist in the host liver
during schistosome infection.

Infection with several parasites, such as Opisthorchis viverrini
and Clonorchis sinensis, has been reported to be associated with
cancer (43, 44). Schistosomiasis is a neglected tropical parasitic
disease, affecting approximately 210 million people worldwide.
Infection with Schistosoma haematobium is associated with
bladder cancer (43, 44). However, for infection with S. japonicum,
the association with hepatocellular carcinoma (HCC) is less
evident, although a potential association with colorectal cancer
was reported (45). The large retrospective epidemiological
surveys conducted in highly endemic areas for schistosomiasis
in China showed no correlation between HCC and S. japonicum
infection (46). Although several other epidemiological and case–
control studies proposed a potential association between HCC
and S. japonicum infection, the evidences for the association
remain a matter of debate because the schistosomiasis patients
are highly associated with HBV and HCV infections, which
are hepatic carcinogens (47). However, accumulating evidence
indicates that chronic inflammation plays an important role in
carcinogenesis (48). For S. japonicum infection, the liver-trapped
eggs induce severe hepatic chronic inflammation and fibrosis
that could be risk factors for HCC (49). These factors derived
from S. japonicum infection should contribute to HCC, but
this does not seem to happen in S. japonicum schistosomiasis.
Therefore, we speculated that the S. japonicum eggs trapped
in the liver might play a dual role in the HCC occurrence
and development, i.e., carcinogenic and anticancer activities,
similar to those reported for the protozoan Trypanosoma cruzi,

which has carcinogenic and anticancer activities during infection
(50). This study demonstrated that a non-coding small RNA
secreted by S. japonicum, sja-miR-7-5p, perhaps together with
other miRNAs derived from the parasite, could be translocated
into liver cells during parasitic infection, and exerts anticancer
activity, implying that the S. japonicum-producing non-coding
small RNAs may, in part, contribute to the anticancer activities
in the infected host.

As described above, mammalian miR-7-5p exerts its
anticancer activities through regulation of multiple target genes
such as PI3K/Akt, FAK and KLF4. To identify the target gene
of the parasite sja-miR-7-5p, we first used three online software
to search for its potential target genes. We found 5 target gene
candidates (Skp2, Psme3, Pik3cd, Klf4, and Hoxb5) that were
consistently predicted by the three software and involved in
tumor-related signaling pathway. Three of them (i.e., Pik3cd,
Klf4, Hoxb5) were excluded through analysis of their expression
in hepatoma cells transfected with the sja-miR-7-5p mimics.
Although both Skp2 and Psme3 genes were validated as target
gene by luciferase reporter assay, our experimental data with
Skp2 and Psme3 siRNA showed that only the hepatoma cell
transfected with the Skp2 siRNA produced similar phenotype to
that of sja-miR-7-5p mimics-treated cells. Thus, Skp2 gene has
been identified as the target gene of sja-miR-7-5p.

SKP2, also known as P45, FBL1, FLB1, and FBXL1, is a
component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin-ligase
complex. Many studies have reported that SKP2 is overexpressed
in various cancers of different organs, including the liver (18),
colon (51), breast (52), prostate (53), and stomach (54). SKP2
is characterized as an oncogene, and is involved in modulation
of the cell cycle, cell growth, and survival by regulation of
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its downstream node molecules, such as P27, P16, P21, P57,
E2F-1, and c-MYC in an ubiquitin-dependent manner, followed
by 26S proteasome degradation (23). Previous studies showed
that loss of SKP2 reduced the migration and invasion abilities
of oral squamous cell carcinoma cells by downregulating the
expression of MMP2 and MMP9 (55). The best-known substrate
of SKP2 is the cyclin dependent kinase (CDK) inhibitor, P27.
Overexpression of SKP2 leads to reduction of P27, which is
strongly associated with aggressive tumor behavior and poor
clinical outcome (19, 36, 56), while knockdown of SKP2 resulted
in the accumulation of P27, causing cell cycle arrest at G1/G0
phase (57). However, the relationship between miR-7-5p and
SKP2 has not yet been reported in HCC. In the present study,
we found that in liver cancer cells, including Hepa1-6 cells and
HepG2 cells, sja-miR-7-5p inhibited the growth and migration
of both mouse and human hepatoma cells by targeting SKP2
to elevate the expression of P27 and decrease the expression
of MMP9. These data were consistent with the results of
experiments using the SKP2 siRNA, and with the outcome of
a study in which miRNA-7-5p could suppress cell proliferation
of CHO cells partly by targeting skp2 (58). Therefore, our
data demonstrated that sja-miR-7-5p suppresses hepatoma cell
growth and migration by downregulating SKP2.

The present study demonstrated that sja-miR-7-5p is present
in infected hepatocytes, selectively affects the growth and
migration of human andmouse tumor cells by targeting the SKP2
gene, implying that sja-miR-7-5p might strengthen resistance of
host to cancer during schistosome infection.
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Epigenetic modifications, such as DNA methylation and histone modification, result in

heritable changes in gene expression without changing the DNA sequence. Epigenetic

regulatory enzymes such as DNA methyltransferases, histone methyltransferases, and

histone deacetylases are involved in epigenetic modification. Studies have shown that

the dysregulation caused by changes in the amino acid sequence of these enzymes

is closely correlated with tumor onset and progression. In addition, certain amino acid

changes in the metabolic enzyme isocitrate dehydrogenase (IDH) are linked to altered

epigenetic modifications in tumors. Some small molecule inhibitors targeting these

aberrant enzymes have shown promising anti-cancer efficacy in preclinical and clinical

trials. For example, the small molecule inhibitor ivosidenib, which targets IDH1 with a

mutation at R132, has been approved by the FDA for the clinical treatment of acute

myeloid leukemia. In this review, we summarize the recurrent “hotspot” mutations in these

enzymes in various tumors and their role in tumorigenesis. We also describe candidate

inhibitors of the mutant enzymes which show potential therapeutic value. In addition, we

introduce some previously unreported mutation sites in these enzymes, which may be

related to tumor development and provide opportunities for future study.

Keywords: DNMT, mutation, small molecule inhibitors, tumor, histone modification enzyme

INTRODUCTION

The term “epigenetics” describes inheritable changes of gene expression with no alteration of the
DNA sequence (1). As the field of epigenetics has expanded, the connection between epigenetic
changes and the occurrence and development of tumors has received more attention (2). The
structure of chromatin is the basis for modulating gene expression: euchromatin has an open
structure that is typically associated with active transcription, while heterochromatin is tightly
compacted and usually associated with transcriptional repression. Epigenetic modification such
as DNA methylation and histone modification are important for regulating chromatin structure
and therefore gene expression. These modifications are catalyzed by epigenetic regulatory enzymes,
including DNA methyltransferases, histone methyltransferases and histone deacetylases.

Recent studies have shown that the dysregulation (e.g., overexpression) of these enzymes
plays a crucial role in tumorigenesis. Some small molecule inhibitors targeting these aberrantly
expressed epigenetic regulatory enzymes have been approved by the FDA for the treatment of
certain cancers. For example, the small molecule inhibitor 5-azacytidine, which targets the DNA
methyltransferase DNMT3A, has been approved for clinical treatment of patients with acute
lymphoblastic leukemia (AML) (3), and belinostat, which targets histone deacetylases (HDACs)
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in peripheral T-cell lymphoma (PTCL), was approved for use in
2014 (4). In addition, the inhibitor EPZ6438, which targets EZH2,
a histone methyltransferase, has been approved for testing in the
clinic (5).

In recent years, increasing evidence has shown that epigenetic
regulatory enzymes are mutated in various types of cancer,
and mutations of these enzymes are closely related to the
malignant phenotype (6, 7). Hence, inhibitors that target these
mutant enzymes have gradually entered preclinical and clinical
research. In this review, we first summarize the epigenetic
regulatory enzymes and their mutations in different types of
tumors, and then we explain how the mutations are correlated
with tumorigenesis. Finally, we present some small molecule
inhibitors which target epigenetic regulatory enzymes, especially
their mutated forms, and may have potential therapeutic value in
the future.

DNMTS AND THEIR MUTATIONS
IN CANCER

DNMTs in Cancer
DNA methylation, which is one of the major epigenetic
regulatory mechanisms, plays a crucial role in many life processes
(8). In eukaryotic cells, DNA methylation is a stable gene
silencing modification that is copied during DNA replication
(9). DNA methylation predominately occurs at cytosine residues
in 5′-CpG-3′ dinucleotides, with S-adenosyl methionine (SAM)
as the methyl donor (10). In mammals, DNA methylation is
catalyzed by enzymes in the DNA methyltransferase (DNMT)
family, mainly DNMT1, DNMT3A, and DNMT3B. DNMT1
maintains the methylation status of newly replicated (hemi-
methylated) DNA, whereas DNMT3A and DNMT3B are
responsible for de novo DNA methylation (11). The mechanism
by which DNA methylation regulates gene expression involves
blocking the binding of transcription factors to DNA and
the recruitment of proteins containing a methylated CpG-
binding domain to inhibit gene expression in tumor cells (12).
The methylation profiles in different cells are not the same,
and this has functional consequences. In normal cells, gene
promoters containing CpG islands are usually unmethylated,
which maintains the chromatin in an open structure, and hence
enhances the transcription of the gene. However, in tumor cells,
the CpG island-containing promoters of tumor suppressor genes
are usually methylated, and thus the euchromatin is converted
to compacted heterochromatin (13). These findings indicate that
DNA methylation regulates tumorigenesis and progression by
inhibiting the expression of tumor suppressor genes.

DNMT Mutations in Cancer
Recently, studies have shown that mutations of DNMT family,
especially DNMT3A, are prominent features of many tumors
and can lead to malignant transformation (14). DNMT3A is
one of the most frequently mutated DNA methyltransferase in
AML (6) and myelodysplastic syndromes (MDS) (15). Some
reports have shown that mutations in DNMT3A are present
in up to 20% of AML cases and are associated with poor
prognosis (8, 16). Although a large number of mutations in

the DNMT3A have been reported, ∼50% of the changes are in
the catalytic domain at position R882 (most commonly R882H)
(8, 17, 18). Table 1 shows DNMT3A mutations, including
hotspots and non-reported mutation sites, in various tumors.
In addition, mutations in DNMT1 have been described in
colorectal (29), prostate and hematological malignancies (30).
The gene encoding DNMT3B was reported to be mutated
in immunodeficiency syndrome, but mutations have rarely
been reported in tumors (31). In addition, except DNMTs’
mutations in various cancers, DNA hydroxymethylase TET2,
which catalyzes the conversion of 5-methyl-cytosine to 5-
hydroxymethyl-cytosine, has been reported in recent years for
its mutations in various diseases, especially AML and MDS (32).
The above results indicated that the mutations in DNMT and its
related enzyme are frequent, which suggesting the potential role
of them in tumorigenesis.

Function of DNMT Mutations
Mutations in DNMTs are closely correlated with the biological
characteristics of malignant tumors and they increase the ability
of cancer cells to undergo proliferation, migration, colony
formation, and self-renewal. Recently, the relationship between
the DNMT3A R882C mutation and the migration of tumor
cells has been investigated in vitro (33). The results showed that
the OCI-AML3 cell line, which carries the R882C mutation,
had a greater migration ability than cell lines carrying wild-
type (WT) DNMT3A, and infiltrated into the meninges of mice
after intravenous infusion. This indicates that the DNMT3A
R882 mutation contributes to the enhanced migration of
malignant cells. It was also shown that the DNMT3A R882H
mutation increases the proliferative capacity of hematopoietic
cells and actively promotes the growth of monocytes and
macrophages (33). Mechanistically, DNMT3A R882 mutant
proteins interact with polycomb repressive complex 1 (PRC1)
to block the differentiation of hematopoietic stem cells and
lymphocytes by down-regulating differentiation-associated genes
(34). Furthermore, cells with DNMT3A R882 mutations have a
higher colony forming capacity than WT cells (34). In addition,
it was reported that DNMT3A R882 mutations may induce
chemotherapy resistance in AML patients. Guryanova et al.
reported that the DNMT3A R882H mutation increases the
risk of AML patients being resistant to anthracycline therapy
by dysregulating nucleosome remodeling (35). Some reports
have shown that the DNMT3A R882 mutation was negatively
correlated with the prognosis of AML patients. The 5-year
overall survival of AML patients with DNMT3A mutations
was significantly shorter than AML patients without such
mutations (36, 37). Accordingly, Delhommeau et al. reported
that TET2 mutations are early events in patients with some
MDS and secondary AML and confirmed the important role
of TET2 in maintaining the balance between hematopoietic cell
survival, growth and differentiation (38). Studies have shown that
leukemia-associated missense mutations impair the enzymatic
activity of TET2 and lead to a decrease in the genomic level of 5-
hydroxymethyl-cytosine, which disrupts normal hematopoiesis
and may accelerate leukemia formation (32). All of the above
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observations show that mutations in DNMT3A and TET2, to
some extent, promote oncogenesis, and tumor progression.

HMTS AND THEIR MUTATIONS IN CANCER

HMTs in Cancer
Histone methylation is involved in the regulation of
various biological processes such as gene expression, DNA
repair, differentiation, replication and growth (39). Histone
methyltransferases catalyze the transfer of the methyl group of
SAM to histone arginine or lysine residues. A number of HMTs
have been identified, including histone lysine methyltransferases
(HKMTs) and histone arginine methyltransferases (HRMTs),
which have specific substrates and residues. EZH2 belongs
to the HKMT family and is frequently overexpressed in
various cancerous tissue types such as breast, prostate and
lung (19, 20, 40).

HMT Mutations in Cancer
EZH2 is a histone methyltransferase that catalyzes the
trimethylation of arginine 27 in histone H3 (H3K27). Reports
of EZH2 mutations in cancer have increased in recent years.
Mutations in epigenetic regulatory enzymes are either gain-
of-function or loss-of-function (3). EZH2 gain-of-function
mutations were previously reported in lymphoma, and the
probability of EZH2 mutation in melanoma was recently
reported to be about 2%. Popov et al. found that 27% of follicular
lymphoma cases had EZH2 mutations at 3 recurrent hotspots
(Y646, A682, and A692) (24). Other gain-of-function hotspot
mutations including Y641, A677, and A687 in the catalytic SET
domain of EZH2 are prevalent, accounting for ∼10–24% of
non-Hodgkin’s lymphoma (26). In addition to these hotspot
mutations, we have summarized some non-reported mutation
sites that have yet to be studied, as shown in Table 1.

Function of HMT Mutations
The dysregulation of H3K27 trimethylation (H3K27me3) is
important in human tumorigenesis (25), and some reports have
shown that mutant EZH2 increases the level of H3K27me3 in
follicular lymphoma, germinal center B-cell type diffuse large
B-cell lymphomas (21, 24, 41) and metastatic skin melanoma
(42). The level of H3K27 monomethylation and dimethylation
in cancer cells and tumor tissues with heterozygous EZH2
mutations at Y641 and A677 is decreased, while the level
of H3K27 trimethylation is increased, resulting from the
changed substrate preference of the mutant enzymes (22, 41).
Barsotti et al. revealed that cells with a gain-of-function EZH2
mutation at Y641 displayed enhanced motility compared to
control cells, forming highly dynamic collective migrating chains
under 3D culture conditions (42). The Y641 EZH2 gain-of-
function mutant cells also had a significant growth advantage in
melanoma xenografts. Others have reported that mutations in
EZH2 can promote lymphocyte proliferation and maintain the
enhanced histonemethyltransferase activity in vivo, subsequently
increasing tumorigenicity (26). Somatic mutations in EZH2 have
been shown in many reports to correlate with poor prognosis
in patients with AML and myeloproliferative neoplasms (6, 43).

Thus, mutations in EZH2 may contribute to the enhancement of
the malignant phenotype.

HMT-RELATED ENZYMES AND THEIR
MUTATIONS IN CANCER

HMT-Related Enzymes in Cancer
Isocitrate dehydrogenase (IDH) plays a key role in the Kreb’s
cycle, catalyzing the conversion of isocitrate into α-ketoglutarate
(α-KG). The two major human IDH proteins, IDH1 and IDH2,
are not HMTs, but their mutant forms indirectly contribute to
effects on histone methylation by catalyzing the conversion of α-
KG to 2-hydroxyglutarate (2-HG). Accumulation of 2-HG can
inhibit the activity of a broad range of histone demethylases,
inducing hypermethylation which is observed in certain cancers
such as gliomas (44). In addition, high levels of 2-HG can inhibit
α-KG-dependent prolyl hydroxylase, which is important for the
degradation of hypoxia-inducible factor (HIF)-1α, a regulator of
histone demethylases (7, 23, 28). Mutated forms of IDH therefore
mimic the effects of HMTs.

HMT-Related Enzyme Mutations in Cancer
As mentioned above, specific mutants of IDH can catalyze
the conversion of α-KG to 2-HG, and 2-HG inhibits not only
histone demethylases but also TET DNA demethylases. This
can cause increased methylation of both DNA and histones
(3). Therefore, mutant IDH may be an oncoprotein and 2-
HG may be an “oncometabolite” (7). In recent years, hotspot
mutations in IDH1/2 have been reported in various tumors
(Table 1). It has been reported that mutations of IDH1 and IDH2
occur in the vast majority of low-grade gliomas and secondary
high-grade gliomas, and also in some cases of AML (27). In
addition, IDH mutations have been found in solid tumors such
as cholangiocarcinoma and prostate cancer (45, 46). The hotspot
mutation of IDH1 is located at R132, while the hotspot mutation
of IDH2 is located at R172, which is homologous to R132 in
IDH1. We also found that other mutations of IDH1, including
G339(E/W), R49C, R119(Q/W), and V294L, may be hotspot
mutations in various tumors (Table 1). In addition to mutations
in the enzyme of IDH family in the Kreb’s cycle, two other
metabolic enzymes involved in epigenetic regulation, SDH and
FH, have also been reported in recent years to mutate in germline
frequently. Ciccarone et al. concluded that SDH mutations
in germline are responsible for the formation of hereditary
paragangliomas and adrenal gland pheochromocytoma, whereas
FH mutations are typical of hereditary leiomyomatosis and renal
cell cancer (HLRCC) (47).

Function of HMT-Related
Enzyme Mutations
Several groups have investigated the effect of IDH hotspot
mutations, which mimic the activity of HMTs, in cancer. Cohen
et al. elucidated that mutant IDH can trigger tumorigenesis. In
detail, they found that somatic mutations in IDH1 at R132 or
IDH2 at R172 led to increased risk of glioma, hemangiomas
and chondrosarcoma, and they demonstrated that the mutated
IDH contributed to the increased cell proliferation, colony
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formation, and inability to differentiate (7). In addition, Fu
et al. showed that the IDH2 R172 mutation accelerated the
migration and growth of C6 glioma cells by increasing the
stability of HIF-1α (48). They also reported that IDH mutations
promoted glioma cell metastasis and resistance to chemotherapy
through up-regulation of the HIF-1α signaling pathway (49).
IDH mutations also play an important role in blocking cell
differentiation. Mutant IDH blocks hepatocyte differentiation by
inhibiting the HNF-4α pathway (50). Other studies have shown
that high levels of 2-HG caused by mutations in IDH can inhibit
histone and DNA demethylases, resulting in hypermethylation of
histones and DNA which eventually blocks cell differentiation
(51, 52). Interestingly, there is no significant difference in the
median overall survival rate of intrahepatic cholangiocarcinoma
patients with mutant or WT IDH (53). In general, mutated
IDH catalyzes the production of high levels of 2-HG, which
has multiple effects including the inhibition of α-KG-dependent
prolyl hydroxylase, which leads to the accumulation of HIF-1α
in cells. This results in the induction of HIF-1α target genes that
influence growth, migration, differentiation and angiogenesis as
well as cell apoptosis (7), ultimately promoting tumor onset and
progression (see Figure 1).

HDACS, HATS, AND THEIR MUTATIONS
IN CANCER

Histone acetylation is an important epigenetic modification that
mainly occurs in the N-terminal region of the histone tail.
This modification weakens the binding between histones and
DNA, which relaxes the chromatin and enhances gene expression
(54). Histone acetyltransferases (HATs) mediate the acetylation
in histones, whereas histone deacetylases (HDACs) catalyze the
removal of acetyl groups from histones. The HATs are mainly
divided into five major families, including GCN5/PCAF, MYST,
TAFII250, CBP/p300, and SRC (55). The HDACs are divided into
four classes. Class I HDACs include HDAC1, HDAC2, HDAC3,
HDAC8; class II HDACs are further divided into two groups,
class IIa (HDAC4, HDAC5, HDAC7, HDAC9) and class IIb
(HDAC6, HDAC10); class III contains SIRT1-7; and class IV
contains one enzyme, HDAC11 (56, 57). Class I, II, and IV
HDACs are all Zn2+-dependent enzymes, while class III HDACs
do not show any sequence similarity to the other three classes
and depend on NAD+ as a co-factor (56, 57). By reversing the
histone acetylation status, HDACs mostly regulate the expression
of tumor suppressor genes (4). The dysregulation of HATs and
HDACs is correlated with the occurrence and development of
various diseases, including cancer.

Mutations in genes encoding HDACs are associated with the
progression of tumors, owing to the abnormal transcription of
key genes that regulate important cellular functions such as cell
proliferation, cell cycle regulation and apoptosis. Some studies
have shown that HDACs are mutated in certain cancers. For
example, somatic mutations of HDAC1 were detected in ∼8%
of dedifferentiated human liposarcomas, and the dysfunction
of HDAC2 expression caused by a frame-shift mutation was
investigated in human epithelial cancers and in colorectal cancer
(58). Table 1 summarizes some of the mutated sites in HDAC2,

which may correlate with the development and progression of
tumors. However, most of the mutations in HDACs have not
been studied and require further investigation. In addition to
the discovery that HDACs are mutated in a variety of cancers,
there have been many reports in recent years that the HAT
CREBBP somatic mutations are more frequent in lymphomas,
lung cancer, urothelial carcinoma, and other human tumor types.
Jiang et al. reported that somatic mutations in CREBBP occur in
6.4–22.3% of patients with DLBCL and 30.8–68% of follicular
lymphoma. Their findings suggest that CREBBP mutation can
promote lymphomagenesis in vivo (59). Similarly, the results
of Jia et al. showed that CREBBP acts as a tumor suppressor
gene, and its inactivating mutations can promote tumorigenesis
of pre-neoplastic neuroendocrine cells and accelerate small cell
lung cancer in the autochthonous mouse model (60). The above
results suggested that the mutations in HATs and HDACs,
although relative low in frequency, might also be involved into
the carcinogenesis in various tumors.

INHIBITORS TARGETING MUTATIONS OF
EPIGENETIC REGULATORY ENZYMES

Inhibitors Targeting DNMT Mutants
The DNMT inhibitors 5-azacytidine and decitabine (5-aza-2′-
deoxycytidine) have already been approved by the FDA (3). These
inhibitors are nucleoside analogs which are incorporated into
DNA and then covalently trap DNMTs. The results of research
by Xu et al. showed that 5-azacytidine might be a suitable drug
for the treatment of AML with DNMT3A mutations (8). In a
study comparing small molecule inhibitors of DNMT3A R882H,
compound 9 (dichlone) displayed superior efficacy, indicating
its potential for targeting mutant DNMT3A (61). Interestingly,
a recent study showed that targeting DOT1L, a histone lysine
methyltransferase without a SET domain, also has an obvious
antitumor effect in DNMT3A mutant leukemia. Rau et al. found
that the DOT1L inhibitors SYC-52221 and EPZ004777 decreased
tumor cell proliferation and induced cell apoptosis, cycle arrest
and terminal differentiation in DNMT3A mutant cell lines in
a dose- and time-dependent manner (62). Furthermore, they
reported that the DOT1L inhibitor EPZ5676 showed promising
efficacy in a nude mouse xenograft model of AML with mutant
DNMT3A (62). Since pharmacological inhibitors of DOT1L
have been tested in clinical trials, DOT1L may be an indirect
therapeutic target for the treatment of AML with DNMT3A
mutations. These results suggesting a novel approach for treating
patients with DNMT3A mutations.

For the TET2, although inhibitors targeting TET2 mutations
have not yet been developed, the results of Bejar et al. indicated
that cells in MDS patients with TET2-deficient are more sensitive
to azacitidine treatment, and this suggests that patients with
MDS carrying the TET2 mutation can improve their response to
hypomethylating agents (63). However, the detailed mechanisms
mediating this process need further study.

Inhibitors Targeting EZH2 Mutants
Recently, studies have shown that small molecule inhibitors
can effectively target tumors driven by EZH2 mutations.
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FIGURE 1 | The IDH1 R132 mutant is shown as an example to illustrate how a gain-of-function mutation in an epigenetic enzyme affects the growth and

differentiation of cells. Ivosidenib, a specific inhibitor of the IDH1 R132 mutant, is shown at the right.

Knutson et al. have reported that the SAM-competitive EZH2
inhibitor EPZ005687, which is highly selective for EZH2 over
other methyltransferases, significantly reduced the viability
of lymphoma cell lines carrying the EZH2 Y641 and A677
mutations (64). McCabe et al. discovered that GSK126 is a SAM-
competitive small molecule inhibitor of EZH2 methyltransferase
activity that efficiently and selectively reduced H3K27me3 levels
and reactivated the silenced target genes of polycomb repressive
complex 2 (PRC2) (41). Their results also revealed that GSK126
effectively inhibited the proliferation of EZH2-mutant diffuse
large B-cell lymphoma (DLBCL) cell lines and retarded the
growth of EZH2-mutant DLBCL xenografts in mice (41). In
addition, EPZ-6438, another selective inhibitor of EZH2, exerted
potent antitumor activity against EZH2-mutant non-Hodgkin’s
lymphoma (65). Also, CPI-1205, an orally available selective
inhibitor of EZH2, killed cells in both EZH2-WT and EZH2-
mutant B-cell non-Hodgkin’s lymphoma by altering PRC2 target
gene expression in a dose- and time-dependent manner (5).
All of the above inhibitors markedly reduced the high level of
H3K27 trimethylation caused by EZH2 mutations, indicating
that inhibition of EZH2 methyltransferase activity may be an
effective way of treating EZH2 mutant lymphomas. EPZ005687
is currently in preclinical research, whereas GSK126, EPZ-6438
and CPI-1205 are under phase I/II investigation to assess their
efficacy in patients with non-Hodgkin’s lymphoma and certain
solid tumors (5). In view of the high rate of EZH2 mutation in
certain cancers, the application of these inhibitors in the clinic is
expected to be successful in the future.

However, in addition to focusing on the effects of the
EZH2 inhibitor itself on EZH2 mutant enzymes, we also need

to consider the use of EZH2 inhibitors in synthetic lethality.
Recently, targeting chromatin deficiency in cancer based on
synthetic lethality has been used in cancer treatment. Synthetic
lethality defines a relationship between two genes, where the
loss of either gene is compatible with cell viability, but the loss
of both genes causes cell death. Morel et al. summarized that
the deficiency of SMARCB1, ARID1A, SMARCA4, and PBRM1,
which constitute the chromatin remodeling complex SWI/SNF
subunit, led to an EZH2 oncogenic dependence in tumor cells,
and pharmacological EZH2 inhibitors such as tazemetostat
induced dramatic tumor shrinkage in these subunits-deficient
tumors (66). Therefore, synthetic lethality strategy may pave the
way to potential epigenetic drugs targets.

Inhibitors Targeting IDH Mutants
Inhibitors targeting mutant IDH enzymes have also been widely
investigated. In preclinical studies, it is reported that inhibitors
targeting mutated forms of IDH1 and IDH2 can inhibit the
growth of glioma cells and induce the differentiation of primary
human IDH mutant AML cells in vitro (67). Encouragingly,
clinical studies of inhibitors targeting mutated IDH have entered
the phase I stage, and two inhibitors have been approved by the
FDA for clinical use (68). For example, enasidenib (AG-221), a
novel-specific small molecule inhibitor targeting mutant IDH2,
was approved by the FDA in August 2017 for the treatment
of relapsed AML (69). Another novel specific small molecule
inhibitor, ivosidenib (AG-120), was approved by the FDA in
July 2018 for clinical treatment of relapsed and refractory AML.
Ivosidenib targets IDH1 with a mutation at the R132 site (see
Figure 1) (70). Three other small molecule inhibitors, AGI-881,
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IDH305, and FT-2102, are currently in phase I clinical trials.
AGI-881 is a non-specific small molecule inhibitor which can
target the mutant forms of both IDH1 and IDH2, whereas IDH-
305 and FT-2102 target mutant IDH1 (68). These inhibitors
prevent the reduction of α-KG to 2-HG by binding to the
active site of the mutated IDH enzyme. High levels of 2-
HG can inhibit DNA and histone demethylation, leading to
hypermethylation. Borodovsky et al. have demonstrated that
hypomethylating agents strongly induce differentiation, reduce
colony formation ability, and suppress the growth of IDH
mutant cells in vivo (71). Therefore, inhibitors targeting DNA
and histone modifications may have potential therapeutic value.
The DNA methyltransferase inhibitors decitabine (DAC) and
5-azacytidine have been approved by the FDA for clinical
application and may have a therapeutic effect on tumors caused
by IDH mutations (72). These findings also suggest that there
is crosstalk among different epigenetic regulatory enzymes.
In contrast to IDH mutation inhibitors, studies on inhibitors
targeting SDH and FH mutations are currently lagging behind,
which may lay the foundation for the development of new anti-
tumor drugs.

CONCLUSION AND PERSPECTIVES

DNA methylation and histone modification are common
epigenetic changes in eukaryotes, and the dysregulation of
epigenetic regulatory enzymes is closely related to the onset and
progression of various types of cancer.Mutations, especially gain-
of-function mutations, may be responsible for some changes
in epigenetic enzyme activity. Mutant epigenetic regulatory
enzymes, and mutant forms of IDH that affect epigenetic
changes, can enhance the ability of cancer cells to proliferate,
migrate and form colonies. Therefore, these mutations are closely

related to tumor onset and progression. Some inhibitors that
specifically target the mutant forms of epigenetic regulatory
enzymes and IDH have now entered clinical trials. The potential
therapeutic effects of these inhibitors on tumors caused by
mutations are summarized in Figure 1.

Many of the mechanisms by which mutations cause changes
in the activity or function of epigenetic regulatory enzymes
are not fully understood. Elucidation of these mechanisms
may drive our understanding of the characteristics of different
tumors. Further research into drugs that target these mutant
enzymes will also accelerate the process of individualized
treatment of tumors.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: http://www.cbioportal.org.

AUTHOR CONTRIBUTIONS

MH contributes to draft manuscript and analysis the data. LJ
contributes to draft manuscript. WL contributes to analysis the
data. LW andWC contribute to design and draft the manuscript.

FUNDING

This work was financially supported by the National Natural
Science Foundation of China (No. 81673652, 81572947,
81773780, 81773216), the Natural Science Foundation of
Liaoning Province (No. 20170540841, 20180550076), the
Scientific Research Fund of Liaoning Provincial Education
Department (No. 2017LFW01) and the Science Foundation of
Shenyang Pharmaceutical University (No. DFJJ2018210).

REFERENCES

1. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease

and prospects for epigenetic therapy. Nature. (2004) 429:457–63.

doi: 10.1038/nature02625

2. Lund AH, Lohuizen MV. Epigenetics and cancer. Genes Dev. (2004) 18:2315–

35. doi: 10.1101/gad.1232504

3. Carlberg C,Molnár F. Cancer epigenomics.HumEpigenomics. (2018) 159–74.

doi: 10.1007/978-981-10-7614-5_10

4. Mottamal M, Zheng S, Huang T, Wang G. Histone deacetylase inhibitors

in clinical studies as templates for new anticancer agents. Molecules. (2015)

20:3898–941. doi: 10.3390/molecules20033898

5. Gulati N, Béguelin W, Giulino-Roth L. Enhancer of zeste

homolog 2 (EZH2) inhibitors. Leuk Lymphoma. (2018) 59:1574–85.

doi: 10.1080/10428194.2018.1430795

6. Tatton-Brown K, Seal S, Ruark E, Harmer J, Ramsay E, Rahman N,

et al. Mutations in the DNA methyltransferase gene DNMT3A cause an

overgrowth syndrome with intellectual disability. Nat Genet. (2014) 46:385–8.

doi: 10.1038/ng.2917

7. Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas.

Curr Neurol Neurosci Rep. (2013) 13:345. doi: 10.1007/s11910-013-0345-4

8. Xu J, Wang YY, Dai YJ, Zhang W, Zhang WN, Xiong SM, et al.

DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia

through disturbing gene expression/DNA methylation in hematopoietic cells.

Proc Natl Acad Sci USA. (2014) 111:2620–5. doi: 10.1073/pnas.1400150111

9. Ballestar E. The impact of chromatin in human cancer: linking DNA

methylation to gene silencing. Carcinogenesis. (2002) 23:1103–9.

doi: 10.1093/carcin/23.7.1103

10. Singal R, Ginder GD. DNA methylation. Blood. (1999) 93:4059–70.

doi: 10.1016/S0887-7963(99)80035-2

11. Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer. Oncol

Rep. (2014) 31:523–32. doi: 10.3892/or.2013.2913

12. Boyes J, Bird A. DNA methylation inhibits transcription indirectly

via a methyl-CpG binding protein. Cell. (1991) 64:1123–34.

doi: 10.1016/0092-8674(91)90267-3

13. Costello JF, Frühwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, et al.

Aberrant CpG-island methylation has non-random and tumour-type–specific

patterns. Nat Genet. (2000) 24:132–8. doi: 10.1038/72785

14. Baylin SB, Jones PA. A decade of exploring the cancer epigenome —

biological and translational implications. Nat Rev Cancer. (2011) 11:726–34.

doi: 10.1038/nrc3130

15. Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y, Choi YL, et al.

Array-based genomic resequencing of human leukemia. Oncogene. (2010)

29:3723–31. doi: 10.1038/onc.2010.117

16. Elsayed GM, Fahmi AEA, Shafik NF, Elshimy RAA, Abd Elhakeem

HK, Attea SA. Study of DNA methyl transferase 3A mutation in acute

myeloid leukemic patients. Egypt J Med Hum Genet. (2018) 19:315–9.

doi: 10.1016/j.ejmhg.2018.05.005

17. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA,

Fulton R, et al. The R882H DNMT3A mutation associated with AML

Frontiers in Oncology | www.frontiersin.org 7 March 2019 | Volume 9 | Article 194372

http://www.cbioportal.org
https://doi.org/10.1038/nature02625
https://doi.org/10.1101/gad.1232504
https://doi.org/10.1007/978-981-10-7614-5_10
https://doi.org/10.3390/molecules20033898
https://doi.org/10.1080/10428194.2018.1430795
https://doi.org/10.1038/ng.2917
https://doi.org/10.1007/s11910-013-0345-4
https://doi.org/10.1073/pnas.1400150111
https://doi.org/10.1093/carcin/23.7.1103
https://doi.org/10.1016/S0887-7963(99)80035-2
https://doi.org/10.3892/or.2013.2913
https://doi.org/10.1016/0092-8674(91)90267-3
https://doi.org/10.1038/72785
https://doi.org/10.1038/nrc3130
https://doi.org/10.1038/onc.2010.117
https://doi.org/10.1016/j.ejmhg.2018.05.005
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Han et al. Mutation of Epigenetic Enzyme and Its Inhibitor in Cancer

dominantly inhibits wild-type DNMT3A by blocking its ability to form active

tetramers. Cancer Cell. (2014) 25:442–54. doi: 10.1016/j.ccr.2014.02.010

18. Pløen GG, Nederby L, Guldberg P, Hansen M, Ebbesen LH, Jensen UB, et al.

Persistence of DNMT3A mutations at long-term remission in adult patients

with AML. Br J Haematol. (2014) 167:478–86. doi: 10.1111/bjh.13062

19. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C,

SandaMG, et al. The polycomb group protein EZH2 is involved in progression

of prostate cancer. Nature. (2002) 419:624–9. doi: 10.1038/nature01075

20. Behrens C, Solis LM, Lin H, Yuan P, Tang X, Kadara H, et al. EZH2 Protein

Expression Associates with the early pathogenesis, tumor progression, and

prognosis of non-small cell lung carcinoma. Clin Cancer Res. (2013) 19:6556–

65. doi: 10.1158/1078-0432.ccr-12-3946

21. Zhou Z, Gao J, Popovic R, Wolniak K, Parimi V, Winter JN, et al. Strong

expression of EZH2 and accumulation of trimethylated H3K27 in diffuse large

B-cell lymphoma independent of cell of origin and EZH2 codon 641mutation.

Leuk Lymphoma. (2015) 56:2895–901. doi: 10.3109/10428194.2015.1

006220

22. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon

VM, et al. Coordinated activities of wild-type plus mutant EZH2 drive

tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27)

in human B-cell lymphomas. Proc Natl Acad Sci USA. (2010) 107:20980–5.

doi: 10.1073/pnas.1012525107

23. Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling

A, et al. Wiestler, B. (2015). IDH mutation status is associated with

a distinct hypoxia/angiogenesis transcriptome signature which is non-

invasively predictable with rCBV imaging in human glioma. Sci Rep. 5:16238.

doi: 10.1038/srep16238

24. Bodor C, Grossmann V, Popov N, Okosun J, O’Riain C, Tan K, et al. EZH2

mutations are frequent and represent an early event in follicular lymphoma.

Blood. (2013) 122:3165–8. doi: 10.1182/blood-2013-04-496893

25. Souroullas GP, Jeck WR, Parker JS, Simon JM, Liu J-Y, Paulk J, et al.

An oncogenic Ezh2 mutation induces tumors through global redistribution

of histone 3 lysine 27 trimethylation. Nat Med. (2016) 22:632–40.

doi: 10.1038/nm.4092

26. Majer CR, Jin L, Scott MP, Knutson SK, Kuntz KW, Keilhack H, et al. A687V

EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett.

(2012) 586:3448–51. doi: 10.1016/j.febslet.2012.07.066

27. Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia.

Trends Mol Med. (2010) 16:387–97. doi: 10.1016/j.molmed.2010.07.002

28. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ,

et al. Regulation of Jumonji-domain-containing histone demethylases

by hypoxia-inducible factor (HIF)-1α. Bioch J. (2008) 416:387–94.

doi: 10.1042/bj20081238

29. Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the

DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer

Lett. (2003) 192:75–82. doi: 10.1016/s0304-3835(02)00689-4

30. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat

Rev Cancer. (2015) 15:152–65. doi: 10.1038/nrc3895

31. Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CMR,

et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF

immunodeficiency syndrome. Proc Natl Acad Sci USA. (1999) 96:14412–7.

doi: 10.1073/pnas.96.25.14412

32. Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, et al.

Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and

differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci USA.

(2011) 108:14566–71. doi: 10.1073/pnas.1112317108

33. Xu J, ZhangW, Yan XJ, Lin XQ, LiW,Mi JQ, et al. DNMT3Amutation leads to

leukemic extramedullary infiltration mediated by TWIST1. J Hematol Oncol.

(2016) 9:106. doi: 10.1186/s13045-016-0337-3

34. Koya J, Kataoka K, Sato T, Bando M, Kato Y, Tsuruta-Kishino T,

et al. DNMT3A R882 mutants interact with polycomb proteins to block

haematopoietic stem and leukaemic cell differentiation. Nat Commun. (2016)

7:10924. doi: 10.1038/ncomms10924

35. Guryanova OA, Shank K, Spitzer B, Luciani L, Koche RP, Garrett-Bakelman

FE, et al. DNMT3A mutations promote anthracycline resistance in acute

myeloid leukemia via impaired nucleosome remodeling. Nat Med. (2016)

22:1488–95. doi: 10.1038/nm.4210

36. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al.

DNMT3A mutations in acute myeloid leukemia. New Engl J Med. (2010)

363:2424–33. doi: 10.1056/nejmoa1005143

37. Ferreira HJ, Heyn H, Vizoso M, Moutinho C, Vidal E, Gomez A, et al.

DNMT3Amutations mediate the epigenetic reactivation of the leukemogenic

factor MEIS1 in acute myeloid leukemia. Oncogene. (2015) 35:3079–82.

doi: 10.1038/onc.2015.359

38. Delhommeau F, Dupont S, Valle VD, James C, Trannoy S, Massé A, et al.

Mutation inTET2in Myeloid Cancers. New Engl J Med. (2009) 360:2289–301.

doi: 10.1056/nejmoa0810069

39. Wei S, Li C, Yin Z, Wen J, Meng H, Xue L, et al. Histone methylation in DNA

repair and clinical practice: new findings during the past 5-years. J Cancer.

(2018) 9:2072–81. doi: 10.7150/jca.23427

40. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in

cancer epigenetics. Mutat Res Fund Mol Mech Mutag. (2008) 647:21–9.

doi: 10.1016/j.mrfmmm.2008.07.010

41. McCabeMT,Ott HM,Ganji G, Korenchuk S, ThompsonC, VanAller GS, et al.

EZH2 inhibition as a therapeutic strategy for lymphomawith EZH2-activating

mutations. Nature. (2012) 492:108–12. doi: 10.1038/nature11606

42. Barsotti AM, Ryskin M, Zhong W, Zhang W-G, Giannakou A, Loreth C,

et al. Epigenetic reprogramming by tumor-derived EZH2 gain-of-function

mutations promotes aggressive 3D cell morphologies and enhancesmelanoma

tumor growth. Oncotarget. (2015) 6:2928–38. doi: 10.18632/oncotarg

et.2758

43. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira

A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. (2013)

27:1861–9. doi: 10.1038/leu.2013.119

44. Saldanha SN, Tollefsbol TO. Epigenetic approaches to cancer therapy.

Epigenet Hum Dis. (2018) 219–47. doi: 10.1016/b978-0-12-812215-0.

00007-8

45. Kipp BR, Voss JS, Kerr SE, Barr Fritcher EG, Graham RP, Zhang L, et al.

Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum

Pathol. (2012) 43:1552–8. doi: 10.1016/j.humpath.2011.12.007

46. Ghiam AF, Cairns RA, Thoms J, Dal Pra A, Ahmed O, Meng A,

et al. IDH mutation status in prostate cancer. Oncogene. (2011) 31:3826.

doi: 10.1038/onc.2011.546

47. Ciccarone F, Vegliante R, Di Leo L, Ciriolo MR. The TCA cycle as a bridge

between oncometabolism and DNA transactions in cancer. Sem Cancer Biol.

(2017) 47:50–6. doi: 10.1016/j.semcancer.2017.06.008

48. Fu Y, Zheng Y, Li K, Huang R, Zheng S, An N, et al. Mutations

in isocitrate dehydrogenase 2 accelerate glioma cell migration via

matrix metalloproteinase-2 and 9. Biotechnol Lett. (2011) 34:441–6.

doi: 10.1007/s10529-011-0800-8

49. Fu Y, Zheng S, Zheng Y, Huang R, An N, Liang A, et al. Glioma

derived isocitrate dehydrogenase-2 mutations induced up-regulation

of HIF-1α and β-catenin signaling: Possible impact on glioma cell

metastasis and chemo-resistance. Int J Biochem Cell Biol. (2012) 44:770–5.

doi: 10.1016/j.biocel.2012.01.017

50. Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN, Najem MS,

et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and

promote biliary cancer. Nature. (2014) 513:110–4. doi: 10.1038/nature13441

51. Figueroa ME, Abdel-Wahab O, Lu C,Ward PS, Patel J, Shih A, et al. Leukemic

IDH1 and IDH2 Mutations result in a hypermethylation phenotype, disrupt

TET2 function, and impair hematopoietic differentiation. Cancer Cell. (2010)

18:553–67. doi: 10.1016/j.ccr.2010.11.015

52. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O,

et al. IDH mutation impairs histone demethylation and results in a

block to cell differentiation. Nature. (2012) 483:474–8. doi: 10.1038/nature

10860

53. Goyal L, Govindan A, Sheth RA, Nardi V, Blaszkowsky LS, Faris

JE, et al. Prognosis and clinicopathologic features of patients with

advanced stage Isocitrate Dehydrogenase (IDH) Mutant and IDH wild-

type intrahepatic cholangiocarcinoma. Oncologist. (2015) 20:1019–27.

doi: 10.1634/theoncologist.2015-0210

54. Kelly AD, Issa JPJ. The promise of epigenetic therapy: reprogramming

the cancer epigenome. Curr Opin Genet Dev. (2017) 42:68–77.

doi: 10.1016/j.gde.2017.03.015

Frontiers in Oncology | www.frontiersin.org 8 March 2019 | Volume 9 | Article 194373

https://doi.org/10.1016/j.ccr.2014.02.010
https://doi.org/10.1111/bjh.13062
https://doi.org/10.1038/nature01075
https://doi.org/10.1158/1078-0432.ccr-12-3946
https://doi.org/10.3109/10428194.2015.1006220
https://doi.org/10.1073/pnas.1012525107
https://doi.org/10.1038/srep16238
https://doi.org/10.1182/blood-2013-04-496893
https://doi.org/10.1038/nm.4092
https://doi.org/10.1016/j.febslet.2012.07.066
https://doi.org/10.1016/j.molmed.2010.07.002
https://doi.org/10.1042/bj20081238
https://doi.org/10.1016/s0304-3835(02)00689-4
https://doi.org/10.1038/nrc3895
https://doi.org/10.1073/pnas.96.25.14412
https://doi.org/10.1073/pnas.1112317108
https://doi.org/10.1186/s13045-016-0337-3
https://doi.org/10.1038/ncomms10924
https://doi.org/10.1038/nm.4210
https://doi.org/10.1056/nejmoa1005143
https://doi.org/10.1038/onc.2015.359
https://doi.org/10.1056/nejmoa0810069
https://doi.org/10.7150/jca.23427
https://doi.org/10.1016/j.mrfmmm.2008.07.010
https://doi.org/10.1038/nature11606
https://doi.org/10.18632/oncotarget.2758
https://doi.org/10.1038/leu.2013.119
https://doi.org/10.1016/b978-0-12-812215-0.00007-8
https://doi.org/10.1016/j.humpath.2011.12.007
https://doi.org/10.1038/onc.2011.546
https://doi.org/10.1016/j.semcancer.2017.06.008
https://doi.org/10.1007/s10529-011-0800-8
https://doi.org/10.1016/j.biocel.2012.01.017
https://doi.org/10.1038/nature13441
https://doi.org/10.1016/j.ccr.2010.11.015
https://doi.org/10.1038/nature10860
https://doi.org/10.1634/theoncologist.2015-0210
https://doi.org/10.1016/j.gde.2017.03.015
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Han et al. Mutation of Epigenetic Enzyme and Its Inhibitor in Cancer

55. Marmorstein R, Roth SY. Histone acetyltransferases: function,

structure, and catalysis. Curr Opin Genet Dev. (2001) 11:155–61.

doi: 10.1016/s0959-437x(00)00173-8

56. Yanginlar C, Logie C. HDAC11 is a regulator of diverse immune

functions. Biochim Biophys Acta Gene Regul Mech. (2018) 1861:54–9.

doi: 10.1016/j.bbagrm.2017.12.002

57. Wang L, Beier UH, Akimova T, Dahiya S, Han R, Samanta A, et al.

Histone/protein deacetylase inhibitor therapy for enhancement of Foxp3+

T-regulatory cell function posttransplantation. Am J Transpl. (2018) 18:1596–

603. doi: 10.1111/ajt.14749

58. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human

cancer.Mol Oncol. (2007) 1:19–25. doi: 10.1016/j.molonc.2007.01.001

59. Jiang Y, Ortega-Molina A, Geng H, Ying H-Y, Hatzi K, Parsa S, et al.

CREBBP inactivation promotes the development of HDAC3-dependent

lymphomas. Cancer Disc. (2016) 7:38–53. doi: 10.1158/2159-8290.cd-

16-0975

60. Jia D, Augert A, Kim DW, Eastwood E, Wu N, Ibrahim AH, et al. Crebbp loss

drives small cell lung cancer and increases sensitivity to HDAC inhibition.

Cancer Disc. (2018) 8:1422–37. doi: 10.1158/2159-8290.cd-18-0385

61. Emperle M, Rajavelu A, Kunert S, Arimondo PB, Reinhardt R, Jurkowska

RZ, et al. The DNMT3A R882H mutant displays altered flanking

sequence preferences. Nucleic Acids Res. (2018) 46:3130–9. doi: 10.1093/nar/

gky168

62. Rau RE, Rodriguez BA, Luo M, Jeong M, Rosen A, Rogers JH, et al. DOT1L

as a therapeutic target for the treatment of DNMT3A-mutant acute myeloid

leukemia. Blood. (2016) 128:971–81. doi: 10.1182/blood-2015-11-684225

63. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld

J, et al. TET2 mutations predict response to hypomethylating agents

in myelodysplastic syndrome patients. Blood. (2014) 124:2705–12.

doi: 10.1182/blood-2014-06-582809

64. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus

CR, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and

kills mutant lymphoma cells. Nat Chem Biol. (2012) 8:890–6. doi: 10.103

8/nchembio.1084

65. Knutson SK, Kawano S, Minoshima Y, Warholic NM, Huang K-C, Xiao Y,

et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor

activity in EZH2-mutant non-hodgkin lymphoma. Mol Cancer Ther. (2014)

13:842–54. doi: 10.1158/1535-7163.mct-13-0773

66. Morel D, Almouzni G, Soria JC, Postel-Vinay S. Targeting chromatin

defects in selected solid tumors based on oncogene addiction, synthetic

lethality and epigenetic antagonism. Ann Oncol. (2016) 28:254–69.

doi: 10.1093/annonc/mdw552

67. Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward

development of targeted therapeutics. Ann Oncol. (2016) 27:599–608.

doi: 10.1093/annonc/mdw013

68. Montalban-Bravo G, DiNardo CD. The role of IDH mutations

in acute myeloid leukemia. Future Oncol. (2018) 14:979–93.

doi: 10.2217/fon-2017-0523

69. Kim ES. Enasidenib: first global approval. Drugs. (2017) 77:1705–11.

doi: 10.1007/s40265-017-0813-2

70. Popovici-Muller J, Lemieux RM, Artin E, Saunders JO, Salituro FG, Travins J,

et al. Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor

for the treatment of IDH1 mutant cancers. ACS Med Chem Lett. (2018)

9:300–5. doi: 10.1021/acsmedchemlett.7b00421

71. Borodovsky A, Salmasi V, Turcan S. 5-azacytidine reduces methylation,

promotes differentiation and induces tumor regression in a patient-

derived IDH1 mutant glioma xenograft. Oncotarget. (2013) 4:1737–47.

doi: 10.18632/oncotarget.1408

72. Roy DM, Walsh LA, Chan TA. Driver mutations of cancer epigenomes.

Protein Cell. (2014) 5:265–96. doi: 10.1007/s13238-014-0031-6

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Han, Jia, Lv, Wang and Cui. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 9 March 2019 | Volume 9 | Article 194374

https://doi.org/10.1016/s0959-437x(00)00173-8
https://doi.org/10.1016/j.bbagrm.2017.12.002
https://doi.org/10.1111/ajt.14749
https://doi.org/10.1016/j.molonc.2007.01.001
https://doi.org/10.1158/2159-8290.cd-16-0975
https://doi.org/10.1158/2159-8290.cd-18-0385
https://doi.org/10.1093/nar/gky168
https://doi.org/10.1182/blood-2015-11-684225
https://doi.org/10.1182/blood-2014-06-582809
https://doi.org/10.1038/nchembio.1084
https://doi.org/10.1158/1535-7163.mct-13-0773
https://doi.org/10.1093/annonc/mdw552
https://doi.org/10.1093/annonc/mdw013
https://doi.org/10.2217/fon-2017-0523
https://doi.org/10.1007/s40265-017-0813-2
https://doi.org/10.1021/acsmedchemlett.7b00421
https://doi.org/10.18632/oncotarget.1408
https://doi.org/10.1007/s13238-014-0031-6~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 02 April 2019

doi: 10.3389/fonc.2019.00185

Frontiers in Oncology | www.frontiersin.org 1 April 2019 | Volume 9 | Article 185

Edited by:

Yunkai Zhang,

Vanderbilt University Medical Center,

United States

Reviewed by:

Leyuan Liu,

Texas A&M University, United States

Zhenfang Du,

Vanderbilt University Medical Center,

United States

*Correspondence:

An Hong

tha@jnu.edu.cn

Xiaojia Chen

tchenxj@jnu.edu.cn;

carolcxj@qq.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 24 January 2019

Accepted: 04 March 2019

Published: 02 April 2019

Citation:

Nie C, Qin X, Li X, Tian B, Zhao Y,

Jin Y, Li Y, Wang Q, Zeng D, Hong A

and Chen X (2019) CACNA2D3

Enhances the Chemosensitivity of

Esophageal Squamous Cell

Carcinoma to Cisplatin via Inducing

Ca2+-Mediated Apoptosis and

Suppressing PI3K/Akt Pathways.

Front. Oncol. 9:185.

doi: 10.3389/fonc.2019.00185

CACNA2D3 Enhances the
Chemosensitivity of Esophageal
Squamous Cell Carcinoma to
Cisplatin via Inducing Ca2+-Mediated
Apoptosis and Suppressing PI3K/Akt
Pathways
Changjun Nie 1,2,3,4†, Xiaohui Qin 4†, Xiaoyan Li 1,2,3†, Baoqing Tian 1,2,3, Ying Zhao 1,2,3,

Yuan Jin 1,2,3, Yadan Li 1,2,3, Qiang Wang 1,2,3, Dingyuan Zeng 4, An Hong 1,2,3* and

Xiaojia Chen 1,2,3*

1Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China, 2National Engineering Research
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Resistance to platinum-based combination chemotherapy is the main cause of poor

prognosis in patients with advanced esophageal squamous cell carcinoma (ESCC).

Previously, we showed that CACNA2D3 (voltage-dependent subunit alpha 2 delta 3 of

a calcium channel complex) was significantly downregulated and functioned as a tumor

suppressor in ESCC, but its role in the chemosensitivity of ESCC to cisplatin remained

unknown. Here, we found that the expression of CACNA2D3 was significantly associated

with poor platinum response in ESCC patients from the Gene Expression Omnibus

database. Overexpression of CACNA2D3 increased sensitivity to cisplatin in ESCC in

vitro, whereas knockdown of CACNA2D3 increased cisplatin resistance. CACNA2D3

promoted cisplatin-induced apoptosis by modulating intracellular Ca2+ stores. In vivo

experiments further showed that overexpression of CACNA2D3 enhanced cisplatin

anti-tumor effects in a xenograft mouse model. CACNA2D3 overexpression also resulted

in the attenuation of PI3K and Akt phosphorylation. Treatment with the PI3K/Akt inhibitor

LY294002 restored the chemosensitivity of CACAN2D3-knockdown cells to cisplatin.

In conclusion, the results of the current study indicate that CACAN2D3 enhances

the chemosensitivity of ESCC to cisplatin via inducing Ca2+-mediated apoptosis and

suppressing PI3K/Akt pathways. Therefore, regulating the expression of CACNA2D3 is

a potential new strategy to increase the efficacy of cisplatin in ESCC patients.
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INTRODUCTION

Esophageal cancer (EC) is a fatal digestive tract malignancy
(1). EC is composed of two major histologic subtypes:
adenocarcinoma and squamous cell carcinoma. Esophageal

squamous cell carcinoma (ESCC) is more common in Southeast
and Central Asia (2, 3). China is a high incidence area for
ESCC, especially in Linzhou and Cixian of North China (4).

Esophagectomy is the usual method for the treatment of early
esophageal cancer. However, most ESCC patients are diagnosed
at an advanced stage when surgery is no longer effective.

Recently, the use of comprehensive perioperative therapies
has dramatically improved the therapeutic efficacy of ESCC,
particularly with respect to long-term survival (5–7). A cisplatin-
based regimen is widely used as the first-line treatment in
advanced ESCC (8–10). However, cisplatin chemotherapy is
often limited by natural and acquired resistance. Consequently,
it is critical to identify potential resistance mechanisms in order
to restore tumor cell sensitivity to cisplatin.

The human CACNA2D3 gene is located on the short arm
of chromosome 3 at position 3p21.1, a common region of
allelic deletion, and has been found to possess a potential
tumor suppressor function in multiple tumor types, including
gastric cancer (11–13), nasopharyngeal cancer (14), breast
cancer (15), renal cell cancer neuroblastoma (16), lung cancer
(17), and glioma (18). The promoter of CACNA2D3 was
shown to be highly methylated in gastric cancer, and this was
associated with a low survival rate (12). Similarly, suppression
of CACNA2D3 by methylation was found to promote the
metastatic phenotype of breast cancer (15). Another study
showed that CACNA2D3 could increase intracellular Ca2+

levels and promote apoptosis in nasopharyngeal cancer and
glioma, causing changes in the network of tumor-suppressive
properties and inducing upregulation of Nemo-like kinase (NLK)
through the non-canonical Wnt/Ca2+ signaling pathway (14,
18). In neuroblastomas with poor prognosis, the expression of
CACNA2D3 is often downregulated (19, 20). Our previous study
also identified CACNA2D3 as a tumor suppressor gene, and
methylation of its promoter and allele deletion could inhibit its
expression in ESCC (21). Recently, CACNA2D3 was implicated
in the development of chemoresistance. The downregulation of
CACNA2D3 was detected in five cytarabine-resistant leukemic
cell lines compared with parental cells (22). However, the
underlying mechanism by which CACNA2D3 might function in
chemosensitivity has not been identified.

In this study, we aimed to investigate the function of
CACNA2D3 in cisplatin-based chemotherapy of ESCC and
discover its underlying mechanisms. We found that the
expression of CACNA2D3 was significantly associated with
poor platinum response in ESCC patients. Overexpression
of CACNA2D3 significantly sensitized ESCC cell lines to
cisplatin, while CACNA2D3 knockdown induced cellular
resistance to cisplatin. Further research showed that CACNA2D3
overexpression enhanced cisplatin-induced apoptosis by
modulating intracellular Ca2+. Moreover, CACNA2D3
overexpression resulted in the attenuation of PI3K and Akt
phosphorylation. LY294002 is a commonly used PI3K/AKT

pathway inhibitor, and treatment with LY294002 could
restore the chemosensitivity of CACAN2D3-knockdown cells
to cisplatin.

MATERIALS AND METHODS

Cell Lines and Reagents
Six ESCC cell lines (KYSE30, KYSE140, KYSE180, KYSE410,
KYSE510, and KYSE520) were purchased from DSMZ, the
German Resource Centre for Biological Material (23). The
short tandem repeat (STR) analysis technique was used to
periodically identify all cell lines. Cell lines were cultured in
RPMI1640 medium (Hyclone, Logan, UT, USA) supplemented
with 10% fetal bovine serum and 1 × penicillin/streptomycin
(100 units/mL, 100µg/mL) (Gibco, NY, USA) at 37◦C in a
humidified incubator (5% CO2/95% air). Cisplatin was acquired
from Sigma. LY294002 was purchased from Selleck.

Plasmid Constructs and Stable
Transfection
CACNA2D3 cDNA was amplified from normal human
esophageal epithelial cells. The eukaryotic expression vector
pcDNA3.1 (+) (Invitrogen, Carlsbad, CA, USA) was used
for cloning the human CACNA2D3 gene. Then pcDNA3.1-
CACNA2D3 was transfected into the ESCC cell line KYSE30
using LipofectamineTM 3000 (Invitrogen, Carlsbad, CA, USA).
The empty vector was used as a negative control. KYSE30
cells stably expressing CACNA2D3 were screened with 500
µg/ml G418.

RNA Interference
Small interfering RNA (siRNA) (SR310953) targeting
CACNA2D3 and scrambled negative control siRNA (SR30004)
were purchased from OriGene. After transfection for 48 h, the
relative expression of CACNA2D3 was detected by quantitative
real-time PCR (qRT-PCR) and western blotting.

Cell Viability Assay
A Cell Counting Kit-8 (CCK-8) assay (Dojindo, Kumamoto,
Japan) was performed to measure cell viability. Cells were
seeded at a density of 1 × 104 cells/well in 96-well plates
and incubated with serial dilutions of cisplatin for 72 h. The
CCK-8 reagent and RPMI-1640 were diluted in a 1:9 ratio and
used to replace the original medium. After incubation at 37◦C
for 2.5 h, absorbance at a wavelength of 450 nm was measured
using a microplate reader. Three independent experiments were
conducted. Half maximal inhibitory concentration (IC50) was
calculated to evaluate cell resistance to cisplatin using GraphPad
Prism 5.0.

Colony Formation Assay
Cells were seeded at a density of 1.5 × 103 cells/well in six-well
plates and treated with respective concentrations of cisplatin.
After incubation for 10–14 days, the cell colonies were fixed
with ethanol for 30min and then stained with 0.1% crystal violet
for 15min. Colonies (≥50 cells) were counted. All assays were
independently performed in triplicate.
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Intracellular Calcium Assay
The fluorescent probe Fluo-3 AM assay (Beyotime, Haimen,
China) was used to measure intracellular Ca2+ concentrations.
Cells were washed twice with phosphate-buffered saline (PBS)
and then loaded with Fluo-3 AM (1µM) for 30min in the dark
at 37◦C. When Fluo-3 AM penetrates the cellular membrane, it
is hydrolyzed by cellular esterases to Fluo-3. Fluo-3 emits green
fluorescence when combined with Ca2+. The intracellular Ca2+

concentration was measured by flow cytometric analysis.

Apoptosis Assays
Apoptosis in ESCC cells treated with or without cisplatin were
evaluated using an Annexin V-FITC/propidium iodide (PI) kit
(Beyotime, Haimen, China). In brief, cells were digested, washed,
and centrifuged twice with cold PBS. After fixing in 75% ethanol
for 3 h, cells were stained with Annexin V-FITC and PI at
room temperature for 30min. Then, cells were measured by
flow cytometry with FL-1 (530 nm) and FL-2 (585 nm) at an
excitation wave length of 480 nm. The data were quantified using
the FlowJo software.

Mitochondrial Membrane Potential Array
The mitochondrial membrane potential (19m) was analyzed
using a JC-1 assay kit (Beyotime, Haimen, China). JC-1 is
a fluorescent probe for detecting mitochondrial membrane
potential; it accumulates in the mitochondrial matrix and forms a
red fluorescent polymer under high membrane potential. When
the mitochondrial membrane potential is low, JC-1 exists as
a monomer and produces green fluorescence. The cells were
trypsinized and stained with JC-1 (10mg/mL) at 37◦C for 20min.
After being washed twice in PBS, cells were analyzed by flow
cytometry using emission wavelengths of 590 and 525 nm.

Quantitative Real-Time PCR
Total RNA was extracted from ESCC cells using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). First-strand cDNA was
synthesized using the Reverse Transcription System (Promega,
Wisconsin, USA), and mRNA expression levels were measured
by qRT-PCR using a CFX96 TouchTM Real-Time PCR Detection
System with SYBR Green Dye mixes (Applied Biosystems,
Foster City, CA, USA). The PCR primers used for q-PCR
were as follows. CACNA2D3: forward (5′-AGGGATTCACGG
TTATGCCTT-3′), reverse (5′-GCCACACCTAAACCCTTT
GTC-3′); β-Actin, forward (5′-GCTTGTCCAAGAGTGCAT
GGT-3′), reverse (5′-CAGGGCTGGTTCTCGATGG-3′). The
amplification parameters were: 5min denaturation at 94◦C, 40
cycles of denaturation 15 s at 94◦C, 15 s annealing at 60◦C, and
15 s elongation at 72◦C, with final extension for 10min at 72◦C.
The results were normalized to an internal standard with β-actin,
and gene expression was analyzed using the 2−11CT method.

Tumor Xenograft Models
BALB/c nude mice (specific pathogen-free grade, 4–5 weeks
old, and 15–20 g in weight) were purchased from Guangdong
Medical Laboratory Animal Center (Guangzhou, China). The
animals were raised at Jinan University Experimental Animal

Management Center. KYSE30-CACNA2D3 cells and KYSE30-
vector cells (6 × 106) were subcutaneously inoculated into the
right armpit of each nude mouse. Tumor-bearing nude mice
were randomly assigned to one of two groups of five mice: the
treatment group mice received intraperitoneal injection cisplatin
(2 mg/kg, twice per week for 4 weeks), and the control group
mice were injected with PBS. Tumor volumes (mm3) were
calculated by the formula V = 0.5 × L × W2. The mice were
sacrificed and the tumors were isolated, weighed, and imaged.
This study was carried out in accordance with the principles of
the Basel Declaration and recommendations of the Guide for the
Care and Use of Laboratory Animals, US National Institutes of
Health (NIH Publication No. 85–23, revised 1996). The protocol
was approved by the Laboratory Animal Ethics Committee of
Jinan University.

Immunohistochemistry
Immunohistochemical staining was performed with primary
antibodies against CACNA2D3 (Novus Biological, Littleton, CO,
USA). Sections of xenografts from mice were deparaffinized with
xylene and rehydrated in alcohol baths, then incubated in 3%
hydrogen peroxide for 20min to block endogenous peroxidase
activity. Antigen retrieval was performed by microwave antigen
retrieval in a citric acid buffer (pH 6.0). The slides were
subsequently incubated with primary antibodies at 4◦C overnight
and then incubated with biotinylated secondary antibodies
at room temperature for 30min, followed by incubation
with horseradish peroxidase (HRP)-streptavidin for 30min.
Finally, diaminobenzidine (DAB) staining and hematoxylin
counterstaining were performed. All samples were observed
through a high-power light microscope.

TUNEL Analysis
A colorimetric TUNEL apoptosis assay kit (Beyotime, Haimen,
China) was used to identify apoptotic cells in the xenograft.
Sections of xenograft from mice were deparaffinized, rehydrated,
and incubated with proteinase K for 5min at 37◦C. Endogenous
peroxidase was inactivated by treatment with 0.3% hydrogen
peroxide for 20min at room temperature. The sections were
washed in PBS and incubated with a labeling buffer containing
TdT at 37◦C for 1 h, before being incubated with HRP-
streptavidin for 30min. Finally, the sections were incubated with
DAB solution for coloration. All samples were observed through
a high-power light microscope.

RNA Sequencing (RNA-seq) and
Sequencing Analysis
Equal amounts of RNA samples were used to construct strand-
specific RNA libraries, following the manufacturer’s standard
procedures. The libraries were sequenced on a HiSeq X Ten
(Illumina, San Diego, CA, USA) platform in PE150 mode.
The index of the reference genome was built using Bowtie
v2.2.3 (24). Differentially expressed genes (DEGs) were identified
using DESeq2 (25). The thresholds for DEGs were set as
false discovery rate (FDR) ≤0.05 and |log2 fold change| ≥1.
Gene ontology (GO; http://www.geneontology.org) classification
analysis was performed for DEGs, including molecular function,
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cellular component, and biological process information (26).
The Kyoto Encyclopedia of Genes and Genomes (KEGG; http://
www.kegg.jp) was used for systematic analysis of the signaling
pathways involving the DEGs (27), and related pathways were
evaluated by gene set enrichment analysis (GSEA; http://
software.broadinstitute.org/gsea/) (28).

Western Blot Assay
Western blot analysis was performed according to
conventional methods. Antibodies against Akt, phosphor-
Akt, PI3K, phosphor-PI3K, and GAPDH were from Cell
Signaling Technology.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 5.0 and
SPSS 19.0. Data were expressed as mean ± standard deviation
(S.D.). Significant differences between two independent groups
were identified by student’s t-test and expressed as ∗p < 0.05, ∗∗p
< 0.01, or ∗∗∗p < 0.001.

RESULTS

Downregulation of CACNA2D3 Is
Correlated With Chemoresistance in ESCC
To analyze the relationship between the expression of
CACNA2D3 and chemoresistance in ESCC, we screened
microarray data predicting the response of esophageal cancer
patients to neoadjuvant chemotherapy from the Gene Expression
Omnibus (GSE45670) (29). As shown in Figure 1A, the
expression of CACNA2D3 in the neoadjuvant chemotherapy
responder group was significantly higher than that in the
non-responder group (p < 0.05). We further investigated the
association of CACNA2D3 expression with chemotherapeutic
response in ESCC cell lines by calculating the IC50 values of
cisplatin during treatment. Six ESCC cell lines were treated
with different concentrations of cisplatin. The IC50 dose was
calculated in each cell, and qRT-PCR was used to determine
the expression level of CACNA2D3. The results showed that
the IC50 value of cisplatin was negatively correlated with
CACNA2D3 expression in ESCC cell lines (Figures 1B,C).
These observations indicated that CACNA2D3 might regulate
chemosensitivity in ESCC.

CACNA2D3 Enhances Cisplatin Sensitivity
in ESCC
To investigate the role of CACNA2D3 in regulating cisplatin
sensitivity in ESCC cells, a KYSE30 cell line stably expressing
CACNA2D3 (30-CAC) was constructed. Control cells were
transfected with empty vector (30-Vec). The expression of
CACNA2D3 was determined by western blotting and qRT-
PCR (Figure 2A). CCK8 assays showed that overexpression of
CACNA2D3 (30-CAC) could significantly increase the cells’
chemosensitivity to cisplatin compared with controls (30-Vec)
(Figure 2B). The sensitivity of 30-CAC cells to cisplatin was
more than twice that of 30-Vec control cells, based on the
IC50 value (Figure 2C). In colony formation experiments, we
also found that overexpression of CACNA2D3 combined with

cisplatin could inhibit the formation of clones more significantly
(Figure 2D). We next examined whether knocking down
CACNA2D3 would contribute to cisplatin resistance in ESCC.
The results showed that specific siRNA against CACNA2D3
could significantly suppress the expression of CACNA2D3 up
to 48 h after transfection in KYSE180 (Figure 2E). Knockdown
of CACNA2D3 (180-siCAC) significantly induced cisplatin
resistance compared with the scrambled siRNA (180-scr)
(Figure 2F). The IC50 value of 180-siCACwas higher than that of
180-scr cells (p < 0.001) (Figure 2G). CACNA2D3 knockdown
resulted in significantly higher colony formation efficiency in
180-siCAC cells than in control cells in the presence of cisplatin
(Figure 2H). Taken together, the data showed that CACNA2D3
sensitized ESCC cells to cisplatin.

CACNA2D3 Enhances Cisplatin-Induced
Apoptosis Through the
Mitochondria-Dependent Pathway
CACNA2D3, as a regulatory subunit, has been reported to elevate
the influx of extracellular Ca2+ into cells. In our study, Ca2+

levels were detected by Fluo-3 AM staining to evaluate their
relationship with CACNA2D3 expression levels. CACNA2D3-
overexpressing KYSE30 cells (30-CAC) showed significantly
increased intracellular Ca2+ compared with the control cells (30-
Vec), whereas knockdown of CACNA2D3 in KYSE180 cells (180-
siCAC) caused a decrease in intracellular Ca2+ levels compared
with control cells (180-scr) (Figure 3A). As Ca2+ can induce
mitochondrial permeability changes and regulate the initiation
phase of apoptosis, we performed an apoptosis assay to evaluate
the effect of CACNA2D3 on the apoptosis of ESCC cells.
Surprisingly, CACNA2D3 overexpression did not affect ESCC
cell apoptosis, but promoted cisplatin-induced apoptosis. The
percentage of apoptotic cells in 30-CAC cells increased by 24.8±
3.9% with cisplatin treatment, compared with 13.3± 1.7% in 30-
Vec cells. In KYSE180 cells, cisplatin increased apoptosis by 14.2
± 2.3% in 180-siCAC cells and by 32.3 ± 3.2% in 180-scr cells
(Figures 3B,C). In addition, the JC-1 probe was used to assess
changes in mitochondrial membrane potential in ESCC cells
treated with cisplatin. As shown in Figures 3D,E, with cisplatin
treatment, the membrane potential of 30-Vec cells decreased
by 14.3 ± 2.5%, while that of 30-CAC cells decreased by 25.5
± 1.6%. In KYSE180 cells, the membrane potential decreased
by 24.2 ± 1.8% in 180-scr cells and by 9.6 ± 3.4% in 180-
siCAC cells. Western blot analysis demonstrated that the ratios
of cleaved Caspase9/Caspase9 and cleaved Caspase3/Caspase3
in CACNA2D3-overexpressing KYSE30 cells were higher than
those in the control cells. Conversely, these ratios decreased
in 180-siCAC cells treated with cisplatin compared with 180-
scr cells (Figure 3F). Taken together, these results suggested
that CACNA2D3 sensitized ESCC cells to cisplatin through
enhancing mitochondria-mediated apoptosis.

CACNA2D3 Increases Cisplatin Sensitivity
in vivo
In order to better understand the role of CACNA2D3 in
cisplatin sensitivity in vivo, we established a subcutaneous
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FIGURE 1 | Downregulation of CACNA2D3 is associated with poor chemotherapy response in ESCC. (A) Box and whisker plot of CACNA2D3 mRNA levels in

neoadjuvant chemotherapy responder and non-responder groups (GSE45670). *p < 0.05. (B) IC50 values for cisplatin in six ESCC cell lines. Cells were treated with a

range of concentrations of cisplatin for 72 h, and IC50 was calculated. Data are represented as the mean ± SD of three independent experiments. (C) Correlation of

CACNA2D3 mRNA levels and IC50 values for cisplatin in six ESCC cell lines. r, Pearson correlation coefficient.

xenograft model by injecting CACNA2D3-overexpressing cells
and control cells into BALB/c-nude mice. When the tumor
volumes reached about 100 mm3, 2 mg/kg cisplatin was injected
intraperitoneally twice per week for 4 weeks, while the control
group received PBS. As shown in Figure 4A, we found that
overexpression of CACNA2D3 and cisplatin both inhibited the
growth of xenografts. However, CACNA2D3 overexpression
in combination with cisplatin could more significantly inhibit
the tumorigenic ability of ESCC cells. The mean tumor
size (Figure 4B) and weight (Figure 4C) in the CACNA2D3
overexpression group were significantly lower than those in
the vector control group after cisplatin treatment. Moreover,
immunohistochemical staining showed that the expression of
CACNA2D3 was increased in the CACNA2D3-overexpressing
tumors compared with the control tumors (Figure 4D). TUNEL
analysis also revealed that the apoptosis rate of CACNA2D3
overexpression cells was significantly higher than that of
the control cells after cisplatin treatment (Figure 4E). These
results together indicated that CACNA2D3 increased cisplatin
sensitivity in vivo.

CACANA2D3 Regulates the Sensitivity of
ESCC to Cisplatin Through Inhibiting the
PI3K/Akt Pathways
To better understand the molecular mechanism underlying
CACNA2D3-enhanced ESCC cisplatin sensitivity, we compared
the gene expression profiles of CACNA2D3 stably overexpressed
KYSE30 cells with those of control cells using RNA-seq after
cisplatin treatment, and identified 2439 DEGs (FDR < 0.05,
|log2 fold change| ≥1) between the two groups. A total of 1,137
genes were upregulated, and 1,302 genes were downregulated
(Figure 5A). We further explored the biological functions of
DEGs by GO, KEGG, and GSEA pathway enrichment analyses.
Using the DAVID online GO database for comprehensive
analysis, we found that CACNA2D3 was associated with multiple
processes, including metabolic processes, biological regulation,
regulation of biological processes, and response to stimulus

(Figure 5B). KEGG database analysis revealed that multiple
signaling pathway pathways were highly enriched, including
“PI3K-Akt signaling pathway,” “Pathways in cancer,” “MAPK
signaling pathway,” and “ABC transporters” (Figure 5C).
GSEA also showed that the CACNA2D3-regulated genes were
enriched in the cell growth pathway and PI3K-Akt-mTOR
signaling pathway (Figure 5D). Western blotting showed that
CACNA2D3 dramatically suppressed the phosphorylation
of PI3K and Akt, and the suppression persisted in the
presence of cisplatin (Figure 5E). These results indicated
that CACNA2D3 enhanced cisplatin sensitivity by inhibiting the
PI3K/Akt pathway.

LY294002 Restores the Sensitivity of ESCC
to Cisplatin in CACNA2D3-Knockdown
Cells
For the rescue experiments, we treated CACNA2D3-knockdown
cells with Akt inhibitor LY294002. Western blotting showed
that LY294002 inhibited Akt activation in 180-siCAC cells and
180-scr cells (Figure 6A). The CACNA2D3-knockdown cells
showed significantly higher sensitivity to cisplatin after treatment
with LY294002 (Figure 6B). The effect of LY294002 on the
IC50 reduction caused by cisplatin was significantly stronger in
180-siCAC cells than in 180-scr cells (Figure 6C). The colony
formation assays also demonstrated that the combination of
cisplatin and LY294002 suppressed colony formation more
significantly in 180-siCAC cells than in control cells (Figure 6D).
These results suggest that inhibition of the Akt signaling pathway
can restore the chemosensitivity of CACNA2D3-knockdown
cells to cisplatin.

DISCUSSION

ESCC is a cancer of the digestive system with high incidence in
China. Although therapeutic strategies for ESCC have advanced
considerably, its mortality rate remains high, and further efforts
are needed to improve patient prognosis. Cisplatin is widely used
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FIGURE 2 | CACNA2D3 promotes chemosensitivity to cisplatin in vitro. (A,E) Stable expression of CACNA2D3 in KYSE30 cells generated by pCDNA3.1-CACNA2D3

transfection and silencing of CACNA2D3 in KYSE180 cells by siRNA were examined by western blotting and qRT-PCR. GAPDH and β-Actin were employed as a

loading control. (B,F) CACNA2D3-overexpressing KYSE30 cells and CACNA2D3-knockdown cells were treated with cisplatin at the indicated concentrations for 72 h.

The number of viable cells was measured by CCK-8 assay. (C,G) IC50 values were calculated using linear or logarithmic regression (R2 > 0.9). Values are presented

as the mean ± SD of three wells. (D,H) Colony forming assays were used to determine colony forming ability after cisplatin treatment. Data are presented as the mean

± SD of three wells. **p < 0.01, ***p < 0.001.

in the clinical chemotherapy of various types of human tumors,
including esophageal, gastric, testicular, bladder, ovarian, and
lung cancers (30–32). However, cisplatin resistance is often the
biggest obstacle to the success of chemotherapy. Therefore, it
is extremely important to be able to predict cisplatin response
before chemotherapy, in order to select the most appropriate
treatment strategy for patients.

Calcium ions (Ca2+) are vital intracellular second messengers
involved in multiple functions of cells, including proliferation,
differentiation, fertilization, development, muscle contraction,
cell death, learning, and memory (33–35). The voltage-gated
calcium channel is a multi-subunit protein complex consisting of

a channel-forming α1 subunit and three regulatory subunits, α2δ,
β, and γ (36–38). CACNA2D3 encodes one of the α2δ subunits.
Our previous study identified CACNA2D3 as a novel tumor
suppressor gene for ESCC. Downregulation of CACNA2D3
predicted poor prognosis. Exogenous expression of CACNA2D3
can strongly inhibit cell growth, migration, and invasion, and
induce apoptosis (21). In the current study, we first found that
the expression of CACNA2D3 was higher in a platinum-based
neoadjuvant chemotherapy responder group than in the non-
responder group. Based on a serious of assays in vitro and in vivo,
we confirmed the effect of CACNA2D3 on the chemosensitivity
of cisplatin in ESCC cells.

Frontiers in Oncology | www.frontiersin.org 6 April 2019 | Volume 9 | Article 185380

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Nie et al. CACNA2D3 Enhances Chemosensitivity of ESCC

FIGURE 3 | CACNA2D3 enhances cisplatin-induced apoptosis through mitochondria-dependent pathway. (A) Intracellular Ca2+ levels were detected by

fluorescence-activated cell sorting (FACS) with Fluo-3 AM. (B,C) Annexin V/PI staining in CACNA2D3 overexpression and knockdown cell lines treated with cisplatin

for 48 h; apoptosis was analyzed by FACS. The percentages of apoptotic cells are presented as the mean ± SD of three independent experiments. (D,E) The

mitochondrial membrane potential was measured using fluorescent dye JC-1 after treatment with cisplatin for 48 h. Percentages of green fluorescence from JC-1 in

cells are presented as the mean ± SD of three independent experiments. (F) Levels of cleaved caspase-3, total caspase-3, cleaved caspase-9, and total caspase-9

proteins were analyzed by western blotting in CACNA2D3-overexpressing and knockdown cell lines treated with or without cisplatin. *p < 0.05; **p < 0.01; ***p <

0.001.

Cisplatin is a conventional chemotherapy drug. It is activated
upon entering the cell, when its chloride atoms are replaced by
water molecules. The resulting hydrolytic product is an effective
electrophilic reagent, which can react with any nucleophile,
including DNA, RNA, and proteins. DNA is the primary
target of cisplatin. Cisplatin tends to bind to the N7 site of
purine bases to form a DNA adduct, causing DNA damage in
cancer cells, blocking cell division, and leading to apoptosis
(39–41). Several mechanisms of cisplatin resistance have been

discovered, including reduced intracellular drug accumulation,
increased activity of efflux pumps, changed drug targets,
lost mismatch-repair ability, and escape apoptosis (42–44).
The voltage-dependent calcium channel α2δ subunits have
been found to regulate extracellular Ca2+ influx (45). Our
study consistently demonstrated that the overexpression of
CACNA2D3 increased the uptake of intracellular free Ca2+ in
ESCC. Apoptosis is closely related to increased intracellular Ca2+

concentration. Here, we found that CACNA2D3 overexpression
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FIGURE 4 | CACNA2D3 increases chemosensitivity of ESCC cells to cisplatin in vivo. (A) Representative images of xenografted tumors derived from Balb/c-nu mice

at day 33. (B) The mice in the treatment groups were intraperitoneally injected with 2 mg/kg every 3 days. Tumor volumes were measured at 4 days intervals. Data are

presented as mean ± SD. (C) Tumor weights were measured after mice were sacrificed. (D) Detection of CACNA2D3 from tumor sections by immunohistochemical

staining. Quantification was performed by calculating the percentage of the staining intensities using ImageJ. (E) TUNEL staining of tumor sections from each group;

the number of TUNEL-positive cells was quantified by counting. *p < 0.05; **p < 0.01; ***p < 0.001.

did not in itself affect the apoptosis rate of ESCC cells;
however, it significantly increased cisplatin-induced apoptosis.
Mitochondria often have a decisive role in stimulus-induced
apoptosis. Mitochondrial membrane destruction and infiltration
are common phenomena related to apoptosis. Excessive
Ca2+ accumulation inside mitochondria is thought to be a
powerful apoptosis stimulator that induces mitochondrial
membrane depolarization and activates downstream caspases
and finally induces apoptosis (46, 47). We confirmed that

ectopic expression of CACNA2D3 led to depolarization
of the mitochondrial membrane potential after cisplatin
treatment. Moreover, the immunoblotting results showed that
CACNA2D3 overexpression activated caspase-3 and caspase-
9 in ESCC cells. CACNA2D3 and cisplatin synergistically
induce apoptosis by increasing Ca2+-dependent collapse of
mitochondrial membrane potential, indicating that CACNA2D3
enhances cisplatin-induced apoptosis by activating the
mitochondrial pathway.
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FIGURE 5 | CACANA2D3 regulated the sensitivity of ESCC to cisplatin through inhibiting the PI3K/Akt pathways. (A) DEG heatmap and hierarchical clustering results

for CACNA2D3-overexpressing KYSE30 ESCC cells. Red and green indicate high and low gene expression, respectively. (B) GO enrichment analysis of the DEGs.

The genes were divided into three categories: cellular component, biological process, and molecular function genes. (C) KEGG pathway enrichment analysis

(Continued)
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FIGURE 5 | of differentially expressed pathways upon CACNA2D3 overexpression. The ordinates represent the enriched KEGG pathway. p < 0.05 was considered

statistically significant. (D) GSEA analysis of differentially expressed pathways upon CACNA2D3 overexpression. NES, normalized enrichment score. (E) Levels of

P-PI3K, PI3K, P-Akt, and Akt proteins were analyzed by western blotting in CACNA2D3-overexpressing and knockdown cell lines treated with or without cisplatin.

FIGURE 6 | LY294002 restores the sensitivity of ESCC to cisplatin in CACNA2D3-knockdown cells. (A) CACNA2D3-knockdown KYSE180 cells and control cells

were treated with cisplatin at the indicated concentrations with or without LY294002 for 72 h. Levels of P-Akt and Akt proteins were analyzed by western blotting. (B)

The number of viable cells was measured by CCK-8 assay. (C) IC50 values were calculated using linear or logarithmic regression (R2 > 0.9). Data are presented as

the mean ± SD from triplicate wells. (D) Colony forming assays were used to determine the colony forming ability after cisplatin with or without LY294002 treatment.

Data are presented as the mean ± SD from three wells. **p < 0.01.

To systematically investigate the underlying molecular
mechanism mediating CACNA2D3-induced ESCC cisplatin
sensitivity, we compared the expression profiles of KYSE30 cells
with and without CACNA2D3 overexpression after cisplatin
treatment using RNA-seq. By pathway enrichment analyses,
we found that CACNA2D3 could inhibit DNA replication
and block ESCC cells in the G2/M phase by inhibiting the
expression of p53, as shown in our previous study (21). We also
found the PI3K/Akt pathway to be inactivated in CACNA2D3-
overexpressing ESCC cells. The PI3K/Akt signaling pathway
has important roles in promoting cell growth, proliferation,
invasion, angiogenesis, and drug resistance. In-depth studies of
the relationship between the PI3K/Akt signaling pathway and
drug resistance have led to this pathway being considered as
a new target for chemotherapy drug resistance therapy (48,
49). Here, we found that the phosphorylation of PI3K and

Akt was blocked in CACNA2D3-overexpressing KYSE30 cells.
Consistently, when CACNA2D3 was knocked down in KYSE180
cells, the phosphorylation level of Akt showed a significant
increase. Interestingly, our data also showed that blockade of
the PI3K/Akt pathway by LY294002 in CACNA2D3-knockdown
cells could restore chemosensitivity to cisplatin.

In summary, in this work we first proved that the
expression of CACNA2D3 was associated with chemosensitivity
in ESCC patients treated with cisplatin-based therapy. Moreover,
CACNA2D3 increased chemosensitivity to cisplatin in cell
experiments and xenograft tumors, indicating that it could be
used as a tumormarker to predict and improve patients’ response
to cisplatin. We further found that CACNA2D3 regulated
cisplatin-induced apoptosis and decreased Akt phosphorylation.
Detection of CACNA2D3 expression might be helpful for
individualized treatment of ESCC patients.
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ROS-Mediated MAPK/ERK Signaling
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Copper chaperone for superoxide dismutase (CCS) is a critical component of oxidation–
reduction system and functions as a potential tumor promoter in several cancers. 
However, the function and clinical significance of CCS in breast cancer remain unclear. 
Here, we found CCS was highly expressed in breast cancer, where it promoted breast 
cancer cell proliferation and migration. Suppression of CCS expression was sufficient to 
attenuate the phosphorylation level of ERK1/2 and increase the accumulation of reactive 
oxygen species (ROS). Mechanistically, we found that knockdown of CCS decreases 
the activity of ERK1/2 mediated by the accumulation of ROS, which leads to the inhibition 
of cell proliferation and migration. In summary, these results indicated that CCS promotes 
the growth and migration of breast cancer cells via regulating the ERK1/2 activity 
mediated by ROS.

Keywords: breast cancer, CCS, ROS, MAPK/ERK, proliferation, migration

INTRODUCTION

Breast cancer is the leading cause of cancer-related deaths in women worldwide (Christofori, 
2006; Bray et al., 2018). Breast cancer patients with metastases have an extremely poor prognosis 
(Gupta et  al., 2005; Bacac and Stamenkovic, 2008; Thiery, 2009; Chaffer and Weinberg, 2011; 
Valastyan and Weinberg, 2011). Thus, exploring new targets for breast cancer treatment 
is important.

Copper, a redox-active transition metal essential for most living organisms, serves as a catalytic 
cofactor for enzymes that function in antioxidant defense, iron homeostasis, cellular respiration, 
and a variety of biochemical processes (Mandinov et al., 2003; Lowndes and Harris, 2005; Ashino 
et  al., 2010; Xu et  al., 2016; Sciegienka et  al., 2017). The uncontrolled accumulation of copper 
could lead to increased oxidative stress and inappropriate binding to macromolecules. Copper 
chaperone for superoxide dismutase (CCS) delivers copper to specific cellular destinations and 
to superoxide dismutase (SOD1) (Kawamata and Manfredi, 2008; Ulloa, 2009). Mounting evidences 
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suggest that CCS plays a crucial role in oxidative metabolism 
(Kawamata and Manfredi, 2008; Leitch et al., 2009; Suzuki et al., 
2013a; Wang et  al., 2015). Blockade of the copper-trafficking 
chaperone CCS contributes to the increased cellular reactive 
oxygen species (ROS) level due to the overall accumulation of 
copper inside the cells and the decreased SOD1 activity (Ulloa, 
2009). Wang et  al reported that inhibiting CCS blocks lung 
cancer and leukemia cell growth (Wang et al., 2015). In addition, 
they show that blocking copper trafficking induces cellular 
oxidative stress and reduces cellular ATP levels. The reduced 
level of ATP results in activation of the AMP-activated protein 
kinase that leads to reduced lipogenesis. However, the mechanisms 
underlying the relationship between CCS and tumorigenesis are 
still largely unknown, although the positive correlation between 
CCS and redox homeostasis has been revealed (Wang et  al., 
2015). Therefore, this study aimed to explore the critical role 
and molecular mechanism of CCS in migration and proliferation 
of breast cancer.

In aforementioned study by Wang et  al, a CCS inhibitor 
was developed and shown to have the same effect as knocking 
down CCS in cancer cells (Wang et  al., 2015). However, the 
precise role of CCS in migration and proliferation of breast 
cancer cells is unknown. In the present study, we  report that 
CCS is highly expressed in breast cancer tissues and invasive 
breast cancer cells and promotes cell proliferation and migration. 
Furthermore, we  found that inhibition of CCS by shRNA or 
an inhibitor blocks breast cancer proliferation and migration 
by triggering ROS mediated ERK activity. These results suggest 
that metastasis-prone breast cancer cells reprogram oxidative 
metabolism to promote cell proliferation and migration. Targeting 
CCS may represent a promising approach for selectively causing 
cell proliferation and migration in breast cancer cells.

MATERIALS AND METHODS

Reagents and Antibodies
DC_AC50, a CCS inhibitor, was provided by the Shanghai 
Institute of Materia Medica of the Chinese Academy of Sciences. 
U0126-EtOH (catalog number: S1102) was purchased from 
Selleck. Antibody against phospho-p44/42 MAPK (Erk1/2) 
(Thr202/Tyr204) (1:1000 times dilution) (catalog number: 4370S), 
p44/42 MAPK (Erk1/2) (1:1000 times dilution) (catalog number: 
4695S), phpspho-MEK1/2 (Ser217/221) (1:1000 times dilution) 
(catalog number: 9154S), MEK1/2 (1:1000 times dilution) 
(catalog number: 8727S), β-actin (1:1000 times dilution) (catalog 
number: 8457S), mouse IgG (1:3000 times dilution)  
(catalog number: 7076S), and rabbit IgG (1:3000 times dilution) 
(catalog number: 7074S) were from cell signaling technology. 

Anti-Superoxide Dismutase 4 (1:500 times dilution) (catalog 
number: ab167170) was from Abcam. Anti-Flag tag (1:1000 
times dilution) (catalog number: 66008) was from proteintech. 
CCS shRNA was purchased from Open Biosystems, Huntsville, 
AL. The sequence of targeted CCS shRNA was as follows: 
5′-CCGGCTGATTATTGATGAGGGAGAACTCGAGTTCTCCC 
TCATCAATA ATCAGTTTTTG-3′. Lipofectamine RNA iMAX 
was purchased from Invitrogen. The sequences of targeted CCS 
siRNA were as follows: sense: 5′-GUCUUGGUACACACCAC 
UCUA-3′; Antisense: 5′-UAGAGUGGUGUGUACCAAGAC-3′.

Cell Culture and Cell Lines
The human breast cancer cell lines MDA-MB-231, MCF-7, 
SUM159, and T47D were obtained from American Type Culture 
Collection (Manassas, USA). The human normal epithelial lung 
cell line BEAS-2B was gifted from Dr. Chenglai Xia (Guangzhou 
Medical University, Guangdong, China). MDA-MB-231, MCF-7, 
SUM159, and T47D cells were cultured in Dulbecco Modified 
Eagle Medium (DMEM) with 10% fetal bovine serum (FBS, 
ExCell Bio). BEAS-2B cells were cultured in RPMI 1640 medium 
with 10% FBS. For routine passages, cultures were split 1:3 
when they reached 80–90% confluences. All experiments were 
performed on exponentially growing cells.

Plasmid Construction and  
Lentivirus Packaging
Exogenous human CCS CDS sequence was inserted into  
pLVX-3FLAG plasmid. Primer sequences were as follows:  
pLVX-3FLAG-CCS: 5′-CGGGATCCATGGCTTCGGATTCGG-3′ 
(forward) and 5′-CCCTCGAGTCAAAGGTGGGCAGG-3′ 
(reverse). Exogenous pCDH-HA-MEK plasmid was gifted from 
Dr. ShiZhi (JinanUniversity, Guangdong, China). For transient 
transfections, cells were grown to 80% confluency and transfected 
with plasmids using PEI Transfection Reagent (Invitrogen, USA) 
according to the manufacturer’s protocol. Stable knockdown of 
endogenous CCS was achieved by using lentiviral vector  
harboring shRNA construct. 5′-CCGGCTGATTATTGATGAGG 
GAGAACTCGAGTTCTCCCTCATCAATAATCAGTTTTTG-3′. 
We  generated CCS stable knockdown cell lines by infected 
lentiviral shRNA and selected by antibiotic puromycin. The 
knockdown effective was confirmed by western blot. PLKO.1 is 
the name of the lentiviral vector as a control.

Small Interference RNA Transfection
MDA-MB-231, MCF-7, and BEAS-2B cells (2  ×  105) were 
seeded into 6-well plates and cultured in a humidified 
incubator at 37°C and 5% CO2 for 24 h. Cells were transfected 
with a negative control siRNA (NC-siRNA) and siRNA 
targeting CCS by Lipofectamine RNA iMAX (Invitrogen 
corporation). Transfected cells were cultured for 48°C before 
being used for further experiments. The sequences of targeted 
CCS siRNA were 5′-GUCUUGGUACACACCACUCUA-3′. 
The sequences of negative control siRNA were 
5′-UUCUCCGAACGUGUCACGUTT-3′(forward). All siRNA 
sequences were purchased from the Invitrogen Ribobio 
corporation of Guangzhou.

Abbreviations: AMP, Adenosine Monophosphate; ATP, Adenosine Triphosphate; 
CCS, Copper Chaperone for Superoxide Dismutase; ERK, Extracellular Regulated 
Protein Kinases; MAPK, Mitogen-Activated Protein Kinase; NAC, N-Acetyl-L-
cysteine; ROS, Reactive Oxygen Species; PCR, Polymerase Chain Reaction; PEI, 
Polymine; PVDF, Polyvinylidene Fluoride; qRT-PCR, Real-time Quantitative Reverse 
Transcription-PCR; SDS-PAGE, Sodium Dodecyl Sulfate Polyacrylamide Gel 
Electropheresis; ShRNA, Short Hairpin RNA; SiRNA, Small Interfering RNA; SOD1, 
Superoxide Dismutase; TCGA, The Cancer Genome Atlas.
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Real-Time Quantitative Reverse 
Transcription-PCR
Total cellular RNA was extracted using the Eastep & Super RNA 
Extract reagent Kit (Promega). cDNA was generated from purified 
RNA using PrimeSciptTM RT reagent Kit (Takara) according to 
the manufacturer’s instructions. Gene expression levels and PCR 
efficiency, along with its standard error, were calculated using 
the Bio-Rad CFX Manager, version 3.1 (Bio-Rad), The efficiencies 
were nearly 100%, allowing the use of the 2−△△Ct method for 
calculating the relative gene expression levels and reference gene 
normalization using β-actin. All PCR runs were performed in 
triplicate, and the data analyzed by CFX Manager software (Bio-Rad). 
Primer sequences were as following: CCS: 5′-CATCGAGG 
GAACTATTGACG-3′ (forward) and 5′-ATGCTCCATCAGGGT 
TAAAG-3′(reverse); β-actin:5′-ACGTGGACATCCGCAAAG-3′ 
(forward) and 5′-GACTCGTCATACTCCTGCTTG-3′ (reverse).

Cell Proliferation Assay
Cell proliferation assays were performed by seeding 5  ×  104 
cells in 6-well plates and culturing the cells at 37°C. Relative 
cell proliferation was determined by cell numbers recorded at 
4  days after being seeded and normalized to that of each of 
the cell lines at the starting time (t  =  0  h).

Western Blot Analysis
Cells were lysed with lysis buffer (1.5  M NaCl, 1  M HEPES 
[pH = 7.0], 1% NP40, 0.1 M Na4P2O7, 0.1 M NaF, 0.1 M Na3VO4, 
protease inhibitor) on ice 30 min and then centrifuged at 12,000 rpm 
for 15  min at 4°C. Protein samples were separated by 12%.

SDS-PAGE and transferred onto PVDF membranes 
(Millipore). The membranes were blocked with 5% non-fat 
milk for 2  h and then incubated overnight at 4°C with the 
primary antibody and 1 h at room temperature with secondary 
antibody. Signals were detected using luminol substrate solution.

Transwell Migration Assay
For the Transwell (24-well insert, 8  mm pore size with 
polycarbonate membrane; Corning Costar, Lowell, MA, USA) 
migration assays, 600-mL media supplemented with 10% FBS 
was added to the lower chamber, and the cells resuspended 
in serum-free media were added to the upper insert after 
transfection. Transwell membranes were fixed and stained using 
crystal violet after specified time. The cells adhering to the 
lower surface of the membrane were counted under a light 
microscope (Olympus, Tokyo, Japan) at a magnification of 200.

Wound Healing Assay
To determine cell motility, cells were seeded into 6-well plates 
and grown to 90% confluence. A monolayer of the cells was 
then scratched with a sterile micropipette tip, followed by 
washing with PBS to remove cellular debris. The cell migration 
was observed and counted under a light microscope (Olympus, 
Tokyo, Japan) at a magnification of 200. The cells that migrated 
across the black lines were counted in three randomly chosen 
fields from each triplicate treatment.

Intracellular Reactive Oxygen Species 
(ROS) Production
The amount of intracellular ROS was measured by detecting 
dichlorodihydrofluorescein, which is the cleavage product of 
carboxy-H2DCFDA (Invitrogen) by ROS. A total of 200,000 
cells were seeded in 6-well plate. Twenty-four hours after 
seeding, cells were washed with PBS and loaded with  
12.5  μM carboxy-H2DCFDA for 60  min. The cells were  
harvested, resuspended in PBS, and analyzed using a FACS  
(BD Biosciences; excitation and emission at 490 and  
530  nm, respectively).

Bioinformatics Analysis
The public Gene Expression Omnibus datasets (GSE9574 and 
GSE21422) and the TCGA (The Cancer Genome Atlas) dataset 
were used for bioinformatics analysis.

Statistical Analysis
The concentration of DC_AC50 required to reduce cell 
proliferation by 50% (IC50) was determined graphically using 
the Dose-response-Stimulation function in GraphPad Prism7 
(San Diego, CA, United States). Statistical analyses of the 
significance of differences between groups were performed 
using Student’s t-test with GraphPad Prism7. All data were 
obtained from three independent experiments performed in 
triplicate and were presented as the mean  ±  standard  
error. p  <  0.05 was considered to indicate a statistically 
significant difference.

RESULTS

Higher CCS Gene Expression in Breast 
Cancer Patients
Bioinformatics analysis has been used to discover previously 
unknown function of genes associated with cancer. To determine 
the role of CCS in human breast cancer, we  first examined 
the expression of CCS utilizing Gene Expression Omnibus 
(GEO) profiles; we  found that the expression of CCS was 
higher in breast cancer tissue than in noncancerous tissue 
(Figure 1A, GSE9574). We also confirmed these finding using 
The Cancer Genome Atlas (TCGA) dataset. CCS expression 
was also significantly higher in breast cancer tissue than in 
noncancerous tissue in the Cancer Genome Atlas (TCGA) 
(Figure 1B). In addition, we  also found that the expression 
of CCS was higher in invasive ductal carcinoma (IDC) than 
in ductal carcinoma (DCIS) (Figure 1A, GSE21422). To 
validate these findings, we checked CCS expression in various 
breast cancer cells lines. CCS was differentially expressed in 
several breast cancer cell lines, including MCF-7, T47D, 
MDA-MB-231, and SUM159. Of note, the expression of CCS 
was higher in T47D and MDA-MB-231 cell lines compared 
to MCF-7 and SUM159 cells (Figure 1D). All these findings 
indicate the potential role of CCS in tumor formation 
and progression.
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CCS Promotes Breast Cancer Cell 
Proliferation in vitro
We found that the expression of CCS was higher in breast 
cancer tissue than in noncancerous tissue, suggesting the 
potential role of CCS in breast cancer cell proliferation. To 
test our hypothesis, we  generated stable cell lines in which 
CCS was knocked down in MDA-MB-231 cells (Figure 2A 
lower) and exogenously expressed in MCF-7 and SUM159 
cells (Figures 2B,C lower). Cell number counting assays showed 
that knockdown of CCS reduced the proliferation of MDA- 
MB-231 cells (Figure  2A upper), while exogenous expression 
of CCS demonstrated the opposite effect (Figures 2B,C upper). 
To validate these findings, we  knocked down the expression 
of CCS in MDA-MB-231, MCF-7, and BEAS-2B cells using 
siRNA. Cell number counting assays showed that knockdown 
of CCS significantly inhibited the proliferation of metastasis-
prone breast cancer cell lines MDA-MB-231 but did not have 
any effect on the proliferation of breast cancer MCF-7 cells 
or normal BEAS-2B cells (Figures  2D–F). Real-time PCR 

was used to determine the knockdown efficiency of CCS by 
siRNA (Figure 2G). Next, we  sought to explore the role 
DC_AC50, a potent and selective CCS inhibitor, in breast 
cancer. DC_AC50 has been shown to inhibit the proliferation 
of acute leukemia cells (Wang et  al., 2015). We  treated cells 
with DC_AC50 and found that MCF-7 cells exhibited 
significantly higher resistance to DC_AC50 than MDA-MB-
231 cells (Figure 2H). Meanwhile, DC_AC50 treatment resulted 
in decreased cell proliferation of MDA-MB-231 cells in a 
time and dose-dependent manner (Figure 2I). These results 
imply that CCS plays an important role in breast cancer  
cell proliferation and suggests that CCS is a promising  
anti-cancer target.

CCS Promotes Breast Cancer  
Cells Migration
We found that the expression of CCS was higher in invasive 
ductal carcinoma than in ductal carcinoma (Figure 1C), suggesting 
the potential role of CCS in promoting breast cancer migration. 

A B

C D

FIGURE 1 | Up-regulation of CCS is associated with cell proliferation and metastasis in human breast cancer. (A) CCS expression was analyzed in normal and breast 
cancer cells using Gene Expression Omnibus (GEO) profiles (GSE9574). (B) CCS expression was determined in normal and breast cancer cells in TCGA. (C) CCS 
expression was analyzed in ductal carcinoma in situ (DCIS) and invasion ductal carcinoma (IDC) using Gene Expression Omnibus (GEO) profiles (GSE21422). (D) CCS 
protein levels were analyzed in the majority of a spectrum of diverse human breast cancer cells, including MCF-7, MDA-MB-231, SUM159, and T47D by western blotting. 
*p < 0.05; **p < 0.01.
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Next, we  explore the role of CCS in the motility of the breast 
cancer cells. We  performed a transwell migration assay that 
showed knockdown of CCS significantly inhibited breast cell 
migratory abilities in MDA-MB-231 (Figure 3A), while exogenous 
express CCS exhibited the opposite effects in MCF-7 and SUM159 

cells (Figures 3B,C). To validate these finding, we treated MDA-MB-
231 with CCS inhibitor, DC_AC50, and performed a transwell 
migration assay. We found that DC_AC50 blocked MDA-MB-231 
cell migration in a dose-dependent manner (Figure 3D). In 
addition, we also assessed migration of MDA-MB-231 in a wound 

A B C

D E F

G H I

FIGURE 2 | CCS promotes breast cancer cell proliferation. (A) Cell proliferation was determined by cell number counting assays in CCS stable knockdown MDA-MB-231 
cells, and the knockdown efficiency was determined by western blotting. (B) Cell proliferation was determined by cell number counting assays in CCS overexpressing 
SUM159 cells, and CCS expression was determined by western blotting. (C) Cell proliferation was determined by cell number counting assays in CCS overexpressing 
MCF-7 cells, and CCS expression was determined by western blotting. (D–F) Cell proliferation was determined by cell number counting assays in MDA-MB-231 cells (D), 
MCF-7 cells (E), and normal human BEAS-2B cells (F), which were transiently transfected with increasing concentrations of CCS siRNA and control siRNA. (G) The relative 
CCS mRNA level was determined by q-PCR in MDA-MB-231, MCF-7and BEAS-2B cells, which were transiently transfected with increasing concentrations of CCS siRNA 
and control siRNA. (H) The sensitivities of MDA-MB-231 and MCF-7 cells to DC_AC50 were determined by cell number counting assays when the cells were treated with 
increasing concentrations of DC_AC50 for 48 h. (I) Cell proliferation was determined by cell count assays in MDA-MB-231 cells treated with increasing concentrations of 
DC_AC50. All results performed above are presented as mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns: not significant.
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healing assay. We  found that knockdown or inhibition of CCS 
dramatically suppressed MDA-MB-231 cell migratory abilities 
(Figures 3E,F). To consolidate our findings, we  overexpressed 
FLAG tagged CCS in MCF-7 cells. As expected, overexpression 

of CCS accelerated breast cancer cell migration in a wound 
healing assay (Figure  3G). Taken together, our results suggest 
that CCS plays an important role in promoting breast cancer 
cells migration.

A B

C D

E

F

G

FIGURE 3 | CCS promotes breast cancer cell migration. (A) Cell migration in CCS knockdown and control MDA-MB-231 cells was determined by transwell 
migration assay (Boyden chamber assay). (B) Cell migration in CCS overexpressing and control SUM159 cells was determined by transwell migration assay.  
(C) Cell migration in CCS overexpressing and control MCF-7 cells was determined by transwell migration assay. (D) Cell migration in CCS overexpressing and 
control MDA-MB-231 cells with increasing concentrations of DC_AC50 was determined by transwell migration assay. (E) Cell migration in CCS knockdown and 
control MDA-MB-231 cells was also determined by wound healing assay. (F) Cell migration in MDA-MB-231 cells treated with increasing concentrations of  
DC_AC50 was determined by wound healing assay. (G) Cell migration in CCS overexpressing and control MCF-7 cells was determined by the wound healing 
assay. The modified migration assay was evaluated by calculating the ratio of the cell numbers through the chamber or wound closure after the wound healing 
assay. All results performed above are presented as mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns: not significant.
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CCS Promotes Breast Cancer  
Migration via MAPK/ERK Signaling
Activation of survival signaling has been shown to play an 
essential role in tumor development (Baud and Karin, 2001). 

Several studies have demonstrated that the MAPK/ERK signaling 
pathway is activated in cancer cells to promote cancer cell 
proliferation, migration, and invasion (Rajalingam et al., 2005; 
El Touny et  al., 2014). Therefore, we  examined whether 

A

D

E F

B C

FIGURE 4 | CCS promotes breast cancer cell migration and cell proliferation via ERK1/2 activity. (A) Phosphorylated ERK1/2 and total ERK1/2 levels were 
determined in CCS knockdown MDA-MB-231 cells by western blotting. (B) Phosphorylated ERK1/2 and total ERK1/2 levels were determined in CCS overexpressing 
MCF-7 cells by western blotting. (C) Phosphorylated ERK1/2 and total ERK1/2 levels were determined in CCS overexpressing MCF-7 cells treated with increasing 
concentrations of U0126 for 12 h by western blotting. (D) Cell migration in CCS knockdown and control MDA-MB-231 cells as determined by wound healing assay 
when overexpressing exogenous HA-tagged MEK. (E) Cell migration in CCS overexpressing and control MCF-7 cells treated with U0126 was determined by wound 
healing assay. The modified migration assay was evaluated by calculating the ratio of the cell numbers through the chamber or wound closure after the wound healing 
assay. (F) Cell proliferation was determined by cell number counting assays in CCS stable knockdown MDA-MB-231 cells with overexpression of exogenous  
HA-tagged MEK. All results performed above are presented as mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns not significant.
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MAPK/ERK signaling is involved in CCS mediated cell 
proliferation and migration. To test this hypothesis, 
we  examined the ERK1/2 and MEK1/2 activity in CCS 
knockdown MDA-MB-231 cells. Western blotting shows that 
the activity of ERK1/2 was drastically decreased in CCS 
knockdown MDA-MB-231 cells (Figure 4A). Additionally, 
overexpression of FLAG tagged CCS increased the activity 
of ERK1/2  in MCF-7 cells (Figure  4B), but the increased 
activity of ERK1/2 was blocked in MCF-7 with ERK inhibitor 
U0126 (Figure 4C). To validate the role of MAPK signaling 
in the process of CCS-induced migration and proliferation 
in breast cancer cells, we first reactivated ERK by transfecting 

exogenous HA tagged MEK into MDA-MB-CCS-KD cells. 
As expect, the replenishment of MEK in MDA-MB-231-CCS-KD 
cells could partially rescue the capability of migration in 
MDA-MB-231-CCS-KD cells due to the reactivation of ERK1/2 
(Figure 4D). Secondly, we  demonstrated that inhibition of 
MEK with U0126 treatment inhibited CCS-induced cell 
migration (Figure 4E). Thirdly, overexpression of MEK in 
MDA-MB-231-CCS-KD cells partially rescues the decreased 
cell proliferation in CCS knockdown MDA-MB-231 cells 
(Figure 4F). These results suggest that activation of the MAPK/
ERK pathway is essential for the CCS-promoted migration 
abilities and cell proliferation of breast cancer cells.

A

D

F

E

B C

FIGURE 5 | CCS promotes breast cancer cell migration and cell proliferation via ERK1/2 activity mediated by ROS. (A) Knockdown of CCS increased ROS level in 
MDA-MB-231 cells, which was rescued by treatment with 1 mM NAC. (B) Treatment with DC_AC50 (5, 10 μM) induced ROS elevation in MDA-MB-231 cells.  
(C) Western blot analysis of total and phosphorylated ERK1/2 levels. β-actin was used as a loading control. Reduced ERK1/2 activity by CCS knockdown was 
rescued by treatment with NAC (5, 10 mM) for 12 h. (D) H2O2 significantly abolished ERK1/2 activity in MDA-MB-231cells after 12 h. (E) Cell proliferation assays 
showed that NAC (1 mM) treatment partially rescued the decreased cell proliferation in CCS knockdown MDA-MB-231 cells. (F) Wound healing assays showed that 
NAC (1 mM) treatment partially rescued the decreased cell migration in CCS knockdown MDA-MB-231 cells. All results performed above are presented as 
mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns: not significant.
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CCS Activates MAPK/ERK  
Signaling via ROS
The inhibition of CCS leads to increased ROS levels. Thus, 
we  hypothesized that CCS regulates the activity of ERK1/2 
through ROS. To test this hypothesis, we  examined ROS levels 
in MDA-MB-231 cells treated with CCS shRNA or DC_AC50. 
Indeed, we  found that knockdown or inhibition of CCS 
significantly increases the cellular ROS levels (Figures 5A,B), 
while the increased ROS was blocked by treating cells with 
antioxidant N-Acetyl-L-cysteine (NAC; Figure 5A). In addition, 
we  also observed that NAC abrogates the decreased activity 
of ERK1/2 in CCS knockdown MDA-MB-231 cells (Figure 5C). 
Consistently, we also found that H2O2 impaired phosphorylation 
of ERK1/2  in a dose-dependent manner but did not affect 
the total expression level of ERK1/2 (Figure 5D). Finally, 
we found that NAC could rescue the decreased cell proliferation 
and migration of MDA-MB-231 CCS knockdown cells 
(Figures  5E,F). These results further support the idea that 
inhibition of CCS induces a ROS overload, which impairs 
MAPK/ERK signaling to attenuate cancer cell proliferation. 

The combined results presented here also establish CCS as a 
viable anticancer target and copper trafficking as a new pathway 
for future therapeutic development.

DISCUSSION

Rapid cellular growth and migratory abilities play a crucial 
role in tumorigenesis and metastasis, which have been recognized 
to be  associated with ROS levels (Aykin-Burns et  al., 2009; 
Doskey et  al., 2016). Those cells that survive oxidative stress 
stand a good chance to have acquired adaptive mechanisms 
to counteract the potential toxic effects of elevated ROS and 
to promote cell-survival pathways (Irmak et  al., 2003). CCS, 
a co-enzyme of SOD1, is a critical component of the oxidation–
reduction system in cancer, and its differential expression in 
different types of breast cancer suggests a relationship between 
CCS and cancer cell growth and migration (Figure 6). However, 
the link between CCS-activated ROS and the occurrence and 
development of tumors is still in its infancy.

FIGURE 6 | Proposed working model. Schematic model shows that the role and mechanism of CCS in promoting breast cancer cell proliferation and migration.
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In this study, we  utilized MDA-MB-231 cells (triple-negative 
breast cancer) and MCF-7 cells (estrogen receptor positive breast 
cancer) as human cell line models and identified a novel function 
and mechanism of CCS in facilitating breast cancer cell 
proliferation and migration. This novel mechanism provides a 
link between oxidative metabolism and survival signaling. Wang 
et  al. reported that inhibition of CCS leads to a selective 
suppression of cancer cell proliferation (Wang et  al., 2015). 
Consistent with this, we found that knockdown of CCS significantly 
reduced cell proliferation in MDA-MB-231 cells but not MCF-7. 
Interestingly, we  revealed a novel function of CCS in regulating 
migration of breast cancer cells by transwell and wound healing 
assays. In all, we  show that CCS not only plays a vital role in 
cell proliferation, but it also drives breast cancer migration.

Previous evidence has shown that CCS serves as a co-enzyme 
of SOD1 to activate its catalytic activity, which is a critical 
component of oxidation–reduction system (Suzuki et al., 2013b). 
Since ROS associated oxidative stress has been proven to play 
important roles in several cancer types and served as promising 
target for therapy (Perše, 2013; Sosa et al., 2013), we hypothesized 
that dysregulated ROS levels provide a second signal for 
CCS-induced proliferation and migration in breast cancer cells. 
In our study, we  showed that knockdown or inhibition of CCS 
led to increased total ROS levels in MDA-MB-231. ROS overload 
blocks the activation of the MAPK/ERK pathway, which plays 
a critical role in tumor formation and progression (Berger 
et  al., 2017; Mayo et  al., 2017). By mimicking oxidative stress 
with H2O2 treatment, we were able to suppress the phosphorylation 
level of ERK1/2, which could be  reversed upon treatment with 
antioxidant NAC. Furthermore, we  found that the activation 
of MAPK/ERK pathways was essential for CCS-induced cell 
proliferation and migration. Treatment of MCF-7 with U0126-
EtOH, a highly selective ERK kinase inhibitor, diminished 
CCS-induced migration. Conversely, overexpression of MEK 

enhanced the phosphorylation level of ERK1/2 and partially 
rescued migration in CCS knockdown MDA-MB-231 cells.

In summary, CCS-mediated ROS decreases the activation 
of ERK1/2, resulting in attenuation of cell proliferation and 
migration. Thus, CCS may be a therapeutic strategy to suppress 
tumor growth and metastasis.
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Matriptase is a transmembrane serine protease, synthesized as an inactive single-chain

zymogen on the endoplasmic reticulum and transported to the plasma membrane.

Matriptase is activated in different epithelial and some B-cell malignancies and changes

its conformation and activity is inhibited mainly by its endogenous inhibitor HAI-1.

Activated matriptase plays a key role in tumor initiation as well as tumor progression,

including invasiveness, and metastasis. To target the anti-mitotic toxin (monomethyl

auristatin-E) to activated matriptase, a novel antibody to activated matriptase was

conjugated with this toxin via a valine-citrulline-PABA linker. In a previous study, this

antibody-toxin conjugate was found to be effective against triple negative breast cancer

cell lines and xenografts, alone, or in combination with cisplatin (1). In this study, we

examined the anti-tumor effect of the antibody toxin conjugate (ADC) against activated

matriptase positive mantle cell lymphoma cell lines (JeKo-1, Maver, Mino, and Z138).

This ADC was cytotoxic to these cell lines with IC50s between 5 and 14µg/mL. The

ADC also showed a dose dependent anti-tumor effect on the JeKo-1 xenograft in mice

without toxicity.

Keywords: activated matriptase, antibody drug conjugate, monomethyl auristatin-E, mantle cell lymphoma,

xenograft

INTRODUCTION

Mantle Cell Lymphoma (MCL), represents 6- percent of all lymphoma cases, and currently the
survival time is 4–5 years, shorter compared to other hematologic malignancies (2–4). MCL
cells express CD20, aberrant expression of CD5, and due to a translocation t(11;14)(q13;q32),
overexpression of cyclin-D1, encoded by the CCND1 gene located on chromosome 11, which
mediates cell cycle progression through the G1 phase (5, 6). The currently used drugs to treat MCL
patients include bortezomib, ibrutinib, rituximab, bendamustine, and combinations of these drugs.

Matriptase, a glycoprotein (80–90 kDa), is a member of type II transmembrane serine proteases.
It is synthesized as a latent single-chain structure and with many regulatory mechanisms and
functions (7, 8), and is activated through an auto-activation step resulting in a disulfide-linked-two-
chain structure. Following activation, matriptase is rapidly inactivated by its endogenous inhibitor
HAI-1. This activated matriptase-HAI-1 complex remains present in most epithelial carcinomas
and some B-cell malignancies (9–11). Importantly, while matriptase is present in a latent form on
epithelial cells and B-cells, activated matriptase expression is mainly restricted to the membranes
of epithelial tumors, and some B-cell malignancies, in particular MCL (10–12).

Of importance, given the increase in reactive oxygen species (ROS) and the acidic environment
of solid tumors (ROS), these environments activate the matriptase zymogen (13–21).
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In this study we show that a novel anti-matriptase antibody
toxin (Monomethyl auristatin-E, MMAE) conjugate potently
inhibited growth of mantle cell lymphoma cell lines (JeKo-1,
Maver, Mino and Z138) and caused significant growth inhibition
of the JeKo-1 xenograft in vivo.

MATERIALS AND METHODS

Animals
NOD/SCID/IL2 receptor gamma chain null
(NOD/SCID/IL2rgnull, NSG) mice were obtained from the
Jackson Laboratory (Bar Harbor, ME).

Materials
For cell culture, RPMI 1640, and fetal bovine serum were from
Invitrogen (Fisher Scientific).

Cell Culture
The MCL cells (JeKo-1, Mino, Maver, and Z138) were cultured
in 1X RPMI Media 1,640 (Life Technologies) containing 10%
fetal bovine serum (FBS) at 37◦C and 5% carbon dioxide. All the
cell lines were obtained from American Type Culture Collection

(ATCC) and were checked for mycoplasma by MycoAlert
TM

mycoplasma detection kit (Lonza USA).

Western Blotting
The MCL cells were scraped into a micro centrifuge tube
from petri-dishes after 75% confluency. After centrifugation,
cell pellets were lysed in lysis buffer (20mM Tris, pH 7.4)
containing 1% triton-X100, a commercial protease inhibitor

cocktail (Roche) and 1mM 5,5
′

-dithio-bis(2-nitrobenzoic acid)
(DTNB). Since, DTNB interferes with the Bradford reagent (Bio-
Rad Laboratories), equal volume of protein samples was resolved
by 10% SDS-PAGE, without any boiling and under non-reducing
sample buffer conditions and transferred onto a nitrocellulose
membrane (Bio-Rad Laboratories). After blocking themembrane
with 5% non-fat dry milk prepared in Tris buffered saline
with 0.1% Tween-20 (TBST), the membrane was incubated
with the desired primary antibody M69 at 4◦C overnight. The
membrane was washed thrice in TBST and then incubated
for 2 h at room temperature with the appropriate peroxidase-
conjugated secondary antibody. Bands were visualized using an
enhanced chemiluminescence kit (Pierce). Anti-glyceraldehyde
3-phosphate dehydrogenase (GAPDH) (fromMillipore) and was
used as a control. Anti-HAI-1, anti-Vinculin and anti-mouse
secondary antibody were from Santa Cruz Biotechnologies.
Anti-mouse secondary antibody was used to probe the ADC
(mouse antibody recognizing human activated matriptase)
and also to probe GAPDH, HAI-1, and Vinculin which are
mouse generated.

Cytotoxicity Assay
Five thousand cells per well were plated in RPMI 1,640
media supplemented with 10% FBS. After overnight culture,
media was removed and fresh media containing the ADC was
added and incubated for different time periods. To assess cell
viability, the MCL cell lines with or without drug treatment

were collected and cell viability was determined using the

Vi-CELL
TM

Series Cell Viability Analyzer (Beckman Coulter,
Carlsbad, CA). The 50% inhibitory concentration (IC50; the
drug concentration required to obtain 50% cell kill compared
to control) was determined using the non-linear regression
curve fit of the graphs drawn by GraphPad Prism 4 software
(GraphPad Software Inc., CA). All experiments were performed
in triplicate, and all experiments were repeated at least
three times.

Migration Assay
MCL (suspension cells) cells were treated with ADC (IC50) for
48 h and washed twice with IX PBS. The cells were then serum
starved for 1.5 h in FBS-free RPMI at 37◦C and 5% carbon
dioxide in presence of ADC. Three hundred microliters of FBS-
free RPMI (8 × 105 cells) were added to the top chamber
of a cell culture insert (24-well format) of eight-micron pore
size (Corning). Cells were treated with ADC (IC50) throughout
the experiment (means ADC is present in FBS-free media in
inserts as well as in the lower well of that insert). Inserts
had been previously transferred to wells containing 700mL
of RPMI (containing 10% FBS) with or without ADC. After
24 h of incubation at 37◦C and 5% carbon dioxide, cells were
collected from both insert chamber and lower well (of 24-well

plate) and checked for viability using the Vi-CELL
TM

Series
Cell Viability Analyzer (Beckman Coulter, Carlsbad, CA). The
percent viable cells migrated toward FBS (in lower well) of
total viable cells added in insert, were plotted against ADC
treatment. Each experiment was done at-least three times and in
four replicates.

Animal Studies
The JeKo-1 cell line was used for anti-tumor studies. Cells (10
× 106) in 100 µL of PBS were injected subcutaneously into the
right flank of 6-week-old NSG female mice. Once tumors were
palpable, the mice were randomized to different groups. Mice
were treated i.p. with the ADC, and treatment periods were
indicated by arrows. Saline was used as a control treatment.
Tumor size and body weights were measured twice a week and
the tumor volume was calculated using the formula width2 ×

(length/2). Results are presented as mean± SEM.

Histologic Preparation and
Immunohistochemistry Staining
Samples were fixed in 4% formalin and paraffin-embedded.
Immunohistochemistry was performed on 4µm sections with
antibodies to Ki67 (Santa Cruz Biotechnologies, USA) and
Cleaved caspase-3 (Cell Signaling Technology USA #9661).
Sections were developed and stained with hematoxylin and
eosin using standard methods. All histological preparations
and immunostaining were conducted by the Rutgers
Cancer Institute of New Jersey Biospecimen Repository and
Histopathology Core.

Statistical Analysis
Statistical analysis was performed using Prism software
(GraphPad). In all cases, ANOVA followed by two-tailed,
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FIGURE 1 | (A) Western Blot analysis of activated matriptase expression in Mantle Cell Lymphoma cells (JeKo-1, MAVER, MINO, and ZI38). Equal volume of lysate

was loaded in 10% SDS-PAGE (see methods). (B) Activated matriptase to GAPDH ratio for all the four mantle cell lymphoma cell lines.

FIGURE 2 | Cytotoxicity of M69-MMAE conjugate (ADC) against different MCL cell lines. Five thousand cells/well were plated in a 96-well plate and the cells were

treated the next day with the ADC for 72 h. Cytotoxicity of the ADC was measured by trypan blue dye exclusion method using a Vi-Cell XR© cell viability analyzer

(Beckman Coulter). All the reading points were carried out in triplicates. The IC50 values (insert) are calculated using GraphPad Prism 4 software. Results are

presented as mean ± SEM.

unpaired Student t-tests was performed to analyze statistical
differences between groups. P-values of <0.05 were considered
statistically significant.

Antibody-Toxin Conjugate Preparation
and Characterization
The anti-matriptase antibody (M69) was generated against
purified activated matriptase-HAI complex from human milk
as described by Lin et al. (22). Seattle Genetics’ valine-
citrulline-PABA linker technology was used for conjugation of
a potent tubulin-inhibitor, monomethyl auristatin-E (MMAE)
to the M69 antibody. The valine-citrulline dipeptide based
linker has been shown to be stable in circulation but cleavable

by cathepsin B in the lysosome to generate free drug (23).
Copper free click chemistry is used to load the toxin in a
stoichiometrically controlled manner to M69 antibody under
very mild conditions. The technology involves conjugating
the linker-toxin with the lysine side chains on the antibody
surface. The conjugation procedure does not affect the disulfide
bridges between cysteines of the antibody, thus maintaining
the structure of the antibody without any loss of antibody
activity by misfolding or dissociation of antibody chains.
Analysis by mass spectrometry (HR-MALDI-TOF) showed
an increase of 7,000 Da average M.W. corresponding to an
average of 3.5 toxin (MMAE) molecules linked to each mAb
molecule (1).
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FIGURE 3 | Effect of ADC on migration of MCL cell lines in vitro. (A) JeKo-1 (B) Maver cells. Cells were treated with ADC for 48 h and washed twice with 1X PBS and

starved for 1.5 h in FBS-free RPMI and then added in a cell culture insert having 8-micron pore size in 300 µl of FBS-free RPMI (with and without ADC). The insert was

transferred to a well containing 700 µl of FBS-containing RPMI (with and without ADC) for 24 h at 37◦C and 5% carbon dioxide. Cells were checked for viability from

both insert and lower well using the Vi-CELLTM Series Cell Viability Analyzer (Beckman Coulter, Carlsbad, CA). The percent viable cells migrated toward the lower well

(having FBS-RPMI) of total viable cells added in insert were plotted against ADC treatment. Each experiment was done at-least three times and in four replicates.

Results are presented as mean ± SEM.

FIGURE 4 | Treatment of JeKo-1 xenografts in mice using different doses of matriptase-MMAE conjugate (ADC). (A) Xenograft studies with M69-MMAE. NOD/SCID

mice were inoculated with 10 × 106 JeKo-1 cells in PBS in the right flanks. When the tumor was palpable (100–200 mm3 ), mice (n = 19) were randomized into:

control (antibody alone), 1 and 5 mg/kg M69-MMAE treatment groups. M69-MMAE was administrated by i.p. weekly x 2. Tumor volume was measured twice a week.

Tumor volumes were calculated using the formula width2 x (length/2). Results are presented as mean ± SEM (B) Mice body weight change in the control and

treatment groups. Treatments are shown by arrows.

RESULTS

In vitro Cytotoxicity of M69-MMAE (ADC)
Against Mantle Cell Lymphoma (MCL)
Cell Lines
Activated matriptase expression was evaluated in different MCL
cell lines (JeKo-1, Mino, Maver, and Z138) by Western blotting
using the M-69 antibody that recognizes activated matriptase
alone or in complex with HAI-1. The four cell lines showed
increased levels of activated matriptase, although the level of
expression varied (Figure 1). The expression level of hepatocyte
growth factor activator inhibitor (HAI)-1 protein in mantle cells
is shown in Figure S1.

Cytotoxicity studies showed that the ADC decreased the
viability of all the cell lines (Figure 2) with IC50s at single digit

µg/ml of the conjugate. As 3.5 molecules of toxin are bound on
the average to each antibody molecule, the IC50 values for the
toxin ranged from 125 to 611 pM. Based on the IC50 values,
Mino, Maver and Z138 cells were 1.8–2.6-fold more sensitive
to ADC compared to JeKo-1. In order to check whether the
ADC is stable in media, the ADC was incubated (37◦C and
5% carbon dioxide) in complete media (RPMI with 10% FBS)
for 48 h before used for cytotoxicity test and it was found that
48 h incubated ADC and fresh ADC are equally effective against
Maver cell line as shown in Figure S2. In order to study the
role of matriptase in metastasis and invasiveness, the ADC was
found to inhibit the migration of JeKo-1 cells in vitro. Of interest,
only a small percent of cell from the Maver cell line migrated as
compared to the JeKo-1 cell line, and the ADC did not enhance
migration (Figure 3).
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FIGURE 5 | Treatment of JeKo-1 xenografts in mice using the matriptase-MMAE conjugate (ADC) and bortezomib. (A) Xenograft studies with M69-MMAE and

bortezomib. NOD/SCID mice were inoculated with 10 × 106 JeKo-1 cells in PBS in the right flank. When tumors were palpable, mice were randomized into control,

bortezomib, M69-MMAE, and bortezomib plus M69-MMAE treatment groups. M69-MMAE (5 mg/kg) was administrated by i.p. twice weekly for 3 weeks. Bortezomib

(0.75 mg/kg) was given i.p. weekly. Bortezomib and M69-MMAE were given together with the same dose schedule. Tumor volume was measured twice a week, and

the tumor volume calculated using the formula width2 x (length/2). Results are presented as mean ± SEM. (B) Mice body weight percentage during the treatment.

Treatments are shown by arrows.

FIGURE 6 | Immunohistochemistry staining of JeKo-1 tumors extracted from mice in Figures 4, 5 against various biomarkers. The tumors were harvested from

control, 1 and 5 mg/kg (i.p. weekly) M69-MMAE treatment groups from experiment four and Bortezomib and M69-MMAE combination (Bortezomib (0.75 mg/kg, i.p.

weekly and M69-MMAE, 5mg/kg i.p. twice weekly) from experiment five. Ki67 staining showing proliferation of JeKo-1; and Cleaved caspase-3 showing the apoptotic

cell death. The tonsil tissue was used as a positive control for various IHC staining.

JeKo-1 Xenograft Studies
To test the anti-tumor effects of the ADC in one of the MCL
tumors in a mouse model, we elected to test the JeKo-1 cell
line. We tested two dose schedules of the ADC: 1 vs. 5 mg/Kg
administered i.p. weekly. The 5 mg/Kg weekly dose was more
effective than the 1 mg/Kg dose. Even at the higher dose, there
were no signs of toxicity as measured by observation and weight
loss (Figure 4). Previous studies with the naked antibody showed
that it had no anti-tumor activity per se (1).

As bortezomib is used to treat MCL, alone and in
combination, we also tested the ADC in combination with
bortezomib in a JeKo-1 xenograft study. Using a similar

inoculum, this tumor grows rapidly in NOD-SCID-gammamice,
and the biweekly 5 mg/kg dose schedule, both bortezomib and
the ADC caused marked tumor growth inhibition (p = 0.006).
The combination of bortezomib and the ADC was more effective
than either drug alone (Figure 5).

We harvested the tumors at the end of the experiment
and then used immunohistochemistry to test for various
biomarkers. Figure 6 showed that there was no significant
change in Ki-67 staining; however, cleaved caspase-3
staining (apoptosis) showed a significant increase in the
combination group (ADC with bortezomib) compared to either
drug alone.
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DISCUSSION

Brentuximab vedotin (Adcetris), consisting of an antibody
that targets CD30, conjugated with MMAE is approved
for the treatment of Hodgkin disease, as well anaplastic
large cell lymphoma (ALCL) (24). CAT-3888 (BL22), another
immunotoxin, which targets the CD22 antigen on certain
lymphoma cells, attached to a bacterial Pseudomonas exotoxin,
PE38, has shown activity against hairy cell leukemia (HCL) in
early clinical trials (25). CAT-8015 (moxetumomab pasudotox),
an updated version of this drug, is now being studied for use
against lymphomas (26).

Our novel antibody against activated matriptase,
overexpressed in B-cell lymphoma and epithelial tumors
and involved in tumorogenesis, invasiveness and metastasis
(27–29), conjugated with the tubulin binding, mitotic inhibitor
toxin, monomethyl auristatin E (MMAE), demonstrates that
activated matriptase is a bonafide target for use with antibodies
that recognize activated matriptase, armed with a toxin. The
pre-incubated ADC was as potent as the non-incubated fresh
ADC, indicating that the ADC was stable in FBS and media.
The in vitro experiments also confirmed that this ADC showed
significant inhibition of migration of JeKo-1 cells. No observable
toxicity was found with this ADC, however, as this is a mouse
antibody that recognizes human, but not mouse matriptase,
other toxic effects of the ADC would not be noted. We currently
have constructed a chimeric matriptase antibody, suitable
for toxicity studies in a primate model and for Phase I trials
in humans.

Future plans are to use this ADC alone and in combination
with other chemotherapeutic drugs (bortezomib and ibrutinib)
in primary MCL xenografts with the goal of generating
additional sufficient preclinical data to allow for future
clinical development.
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Figure S1 | Western Blot analysis showing the hepatocyte growth factor activator

inhibitor (HAI)-1 expression in Mantle Cell Lymphoma cells (Lane1: JEKO-1, Lane

2: MAVER). 10% SDS-PAGE was used.

Figure S2 | Cytotoxicity of M69-MMAE conjugate (ADC) after 48 h incubation in

complete media against Maver cell line. Five thousand cells/well were plated in a

96-well plate and the cells were treated the next day with the ADC (fresh and 48 h

incubated one) for 72 h. Cytotoxicity was measured using an MTS assay. All the

reading points were carried out in triplicates. Results are presented as mean ±

SEM.
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Here we report the synthesis and in vitro characterization of a redox-sensitive,

magnetically inducible nanoparticle carrier system based on the doxorubicin (DOX) drug

delivery model. Each quantal nanocarrier unit consists of a magnetite Fe3O4 nanoparticle

core that is further encapsulated in self-assembled micelles of the redox-responsive

polyethylene glycol derivative, DSPE-SS-mPEG. The nanocarrier system was prepared

using a combination of ultrasonication and dialysis to produce the microenvironment

sensitive delivery system. The final synthesized and DOX-loaded magnetic nanocarriers

had an average size of ∼150 nm when assembled with a 6.9% DOX payload. The

release rate of DOX from these redox-responsive magnetic nanocarriers was shown

to be accelerated in vitro when in the presence of glutathione (GSH). Furthermore, we

demonstrated that more redox-responsive magnetic nanocarriers could be taken up by

HeLa cells when a local magnetic field was applied. Once internalized within a cell,

the micelles of the outer nanocarrier complex were broken down in the presence of

higher concentrations of GSH, which accelerated the release of DOX. This produces a

particle with dual operating characteristics that can be controlled via a specific cellular

environment coupled with an exogenously applied signal in the form of a magnetic field

triggering release.

Keywords: redox-responsive, Fe3O4, nanocarriers, drug delivery, HeLa cells

INTRODUCTION

Chemotherapy is the most commonly used approach to treating cancer. Traditionally, the
chemotherapeutic agents (doxorubicin, paclitaxel, etc.) are systemically delivered through
intravenous injection. While this is often an effective approach and can successfully eliminate
malignant cell populations, treatment-associatedmorbidity is often significant (1). Quite frequently
this is a result of unintended action of the therapeutic agent at non-specific cellular targets causing
injury to healthy somatic cells in addition to the desired effect on malignant cells (2–6). Despite
this large unintended effect on healthy cells of the patient, chemotherapy remains a pillar of cancer
treatment due to its efficacy, particularly when used as part of a multimodal treatment plan. At the
intersection of the potency of chemotherapy as a curative agent and the extensive side effect
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profile causing wide-ranging cytotoxicity lays a rationale that
suggests transport of the chemotherapeutic agent directly to
the tumor site, which avoids systematic exposure, may alleviate
unintentional cytotoxic effects on healthy tissue. This concept
has existed in the medical literature for quite some time, but
only recently has progress in functionalization of mesoscopic
carrier particles led to significant progress in realizing this
goal. There are now several readily available preparations for
a medical oncology approach to cancer treatment that utilizes
nanotechnology, in the form of nanoparticle assemblies, to
facilitate the transport of highly potent cytotoxic compounds
more selectively into tumor sites with restricted systemic
circulating concentrations (7–9). These nanoparticles can be
constructed such that they resist degradation or internalization
except at the target tissue of interest where they are then able to
deposit and release their payload at the site of the malignancy
and not in healthy tissue (10–12). These particles can also
be used to focus energy from external radiative sources into
tumor masses acting to physically damage the cancerous cells in
addition to the chemical damage affected by the pharmacological
agent (13). This is an elegant solution to the problem of how
to transport chemotherapeutic drugs to the tumor site without
leakage and subsequently release a drug into the tumor-specific
microenvironment is an important issue that needs to be solved
in the treatment of cancer. The rise of nanotechnology has
provided a new set of tools for use in solving this problem of
targeted drug delivery (14–17).

The use of nanoparticles as a carrier vehicle for the targeted
delivery of chemotherapeutic drugs has the potential to greatly
reduce collateral damage to non-cancerous human tissues and
organs (18, 19). For example, by modifying the surface of a
nanoparticle with intelligent molecules, the nano drug carriers
can stimulate drug release in response to the particular micro-
environment of pathological tissues to reduce the incidence
of healthy cell damage and selectively kill cancer cells (20–
22). The study of nano drug carriers provides a new direction
for the delivery of care in addition to the traditional cancer
treatment approaches already in use and possesses significant
potential for future clinical applications (20, 23, 24). In this
study, we constructed spherical nanoparticle carriers containing
doxorubicin (an antineoplastic drug) with a diameter of about
150 nm.We provide functional data to demonstrate that the entry
of the drug carriers into HeLa cells can be enhanced in amagnetic
field and the release of the drug can be facilitated by elevating the
concentration of glutathione (GSH), resulting in the demise of
HeLa cells. As several cancer cells have high intracellular GSH
concentrations, using the constructed nanoparticle carriers may
achieve satisfying efficacy in killing cancer cells, while causing
only minor damage in normal tissue (25–27).

MATERIALS AND METHODS

Materials
The Fe3O4 nanoparticles were prepared using a thermal
decomposition method described previously (28). DSPE-SS-
mPEG 2000 was purchased from Xi’an Ruixi Biotechnology
Co. (Xi’an, China), Doxorubicin hydrochloride (DOX·HCl) and

GSH were purchased from Sigma-Aldrich (St. Louis, MO, USA),
dimethyl sulfoxide (DMSO) and triethylamine (TEA) were
obtained from Shanghai Chemical Co. (Shanghai, China) (29).

Human cervical adenocarcinoma (HeLa) cells were purchased
from the China Center for Type Culture Collection (Wuhan
University) and cultured in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco Life, Grand Island, NY, USA) supplemented with
10% fetal bovine serum (FBS, HyClone, Logan, UT), 2× 10−3M
L-glutamine and 1% antibiotics mixture (10,000U of penicillin
and 10mg of streptomycin) (Gibco). The cells were incubated in
a humidified atmosphere containing 5% CO2 at 37

◦C.

Preparation of Nanocarriers
DOX-loaded redox-responsive magnetic nanocarriers were
prepared using an ultrasonication-dialysis method. Briefly,
DOX·HCl (10mg) was stirred in DMSO (5mL) with twice
the number of mole of TEA for 2 h to obtain the DOX base.
80mg of DSPE-SS-mPEG was added to the solution, which
was stirred at room temperature for another 2 h. Meanwhile,
the Fe3O4 nanoparticles (20mg) were dissolved in 10mL of
(tetrahydrofuran) THF. The above two solutions were mixed
and added to ultrapure water (25mL) with ultrasonication. The
mixed solution was then transferred into a dialysis tube and
dialyzed against ultrapure water for 48 h at room temperature.
Similarly, DOX-free nanocarriers were prepared using the above
mentioned protocol without the addition of DOX.

Characterization of Nanocarriers
The size of the nanocarriers in aqueous solution was measured
using a Zetasizer analyzer (Malvern Zetasizer Nano, Zen
3690+MPT2, Malvern, UK). Ultrastructural features and surface
geometry of the synthesized nanocarriers was observed by
transmission electron microscopy (TEM) (Tecnai G2 F20 S-
TWIN electron microscope, FEI company. the USA) at an
accelerating voltage of 200 kV.

DOX-loaded nanocarriers were dissolved in DMSO to
determine the total content of loaded drug. The DOX
content in DMSO was determined by high-performance liquid
chromatography (HPLC, Agilent) using a calibration curve
obtained from DOX/DMSO solutions containing a known
concentration of DOX.

For Fe3O4 content measurement, the weighed, freeze-dried
nanocarriers were digested in a 1M HCl solution. The resulting
digestion product was then analyzed for atomic species using
inductively coupled plasma-atomic emission spectroscopy (TCP-
AES, Thermo Electron, USA).

Redox-Triggered Disassembly of
Nanocarriers
The change in the size of redox-responsivemagnetic nanocarriers
in response to 20mMGSH in PBS (0.01M, pH 7.4) wasmeasured
using dynamic light scattering (DLS). Briefly, 20mM GSH was
added to 1.5mL of PBS containing nanocarriers within a glass
cell. The solution was then placed in a shaking water bath at
37◦C, oscillating at 150 rpm. At varying intervals following
agitation, the size of nanocarrier particles contained in solution
was assessed using DLS.
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In vitro Redox-Triggered Release of DOX
From DOX-Loaded Nanocarriers
The in vitro release profile of nanocarriers was investigated
using dialysis of DOX-loaded nanocarriers in two different
media: PBS or PBS supplemented with 20mM GSH. Each
solution was diluted to 1.5 mg/mL and 5mL of the solution
was transferred into a membrane tubing. The tubing with the
solution was immersed in a tube containing 50mL of the buffer
solution in a shaking water bath at 37◦C to acquire the “sink”
condition. At predetermined intervals, 20mL of the external
buffer was withdrawn and replaced with a fresh solution of
the corresponding buffer. The amount of DOX released was
determined using HPLC.

Cell TEM Imaging
For TEM imaging, HeLa cells were incubated with DOX-loaded
nanocarriers at a final DOX concentration of 5µg/mL in DMEM
for 2 h at 37◦C in the presence or absence of an externally applied
magnetic field. The culture medium was removed and the cells
were pre-fixed with 2.5% glutaraldehyde in PBS at 4◦C for 2 h
and post-fixed with 1% osmium tetroxide in PBS at 4◦C for
2 h. The cells were then dehydrated using serially increasing
concentrations of ethanol and flat embedded in Epon 812. After
polymerization at 60◦C for 48 h, ultrathin sections (60–80 nm)
were trimmed and further stained with uranyl acetate and lead
citrate. Micrographs of the stained samples were collected with
an FEI Tecnaio G220 TWIN Transmission Electron Microscope.

Cell Viability Assay
To evaluate the anti-tumor activity of DOX-loaded nanocarriers,
the cytotoxicity of DOX-loaded nanocarriers or free DOX against
HeLa cells was evaluated in vitro using the MTT assay. HeLa cells
were seeded into a 96-well plate at a density of 4.0× 103 cells/well
in 100 µL of complete DMEM. The cells were cultured for 24 h
at 37◦C in a 5% CO2 atmosphere. Subsequently, the cells were
incubated with DOX-loaded nanocarriers or free DOX for 24 h
at 37◦C with or without the presence of an external magnetic
field. DOX-loaded nanocarriers or free DOX were diluted in
complete DMEM to a final DOX concentration ranging from 0.4
to 40µg/mL. After the incubation, 10 µL of MTT solution (5
mg/mL in PBS 7.4) was added to each well and incubated for
4 h. The media with MTT solution was removed and 200 µL of
DMSO was added to dissolve the formazan crystals and further
incubated for 15min at 37◦C. The absorbance readings were
recorded using a microplate spectrophotometer (PowerWave
XS2, BioTek Instruments, USA) at a wavelength of 540 nm.
The cell viability was normalized to that of cells cultured in
complete DMEM. The dose-effect curves were plotted and data
are presented as the average± SD (n= 4).

Confocal Laser Scanning Microscopy
(CLSM) Observation
CLSM was used to examine the intracellular distribution of
DOX. HeLa cells were seeded on coverslips in the wells of a
24-well plate at a density of 4.0 × 104 cells/well in 1mL of
complete DMEM. The cells were incubated for 24 h at 37◦C in

TABLE 1 | Properties of DOX-free and DOX-loaded nanocarriers.

DOX-free nanocarriers DOX-loaded nanocarriers

Size

(nm)

PDI Fe content

(wt%)

Size

(nm)

PDI Fe content

(wt%)

PLC

(wt%)

131 0.26 14.7 150 0.19 13.3 4.6

a 5% CO2 atmosphere. The cells were incubated with DOX-
loaded nanocarriers at a final DOX concentration of 5µg/mL
in DMEM for 2 h at 37◦C with or without an external magnetic
field. After removal of the medium, the cells were washed three
times with cold PBS, fixed with 1mL of 4% paraformaldehyde
for 30min at 4◦C, and stained with 2-(4-amidinophenyl)-6-
indolecarbamidine dihydrochloride (DAPI, Roche) for 10min.
Finally, the slides were mounted with 10% glycerol solution
and viewed using a LeicaTCS SP8 (Leica Microscopy Systems
Ltd., Germany).

RESULTS AND DISCUSSION

Characterization of Nanocarriers
The particle size and polydispersity (PDI) of DOX-free or
DOX-loaded nanocarriers were determined by DLS, as shown
in Table 1. The prepared DOX-free nanocarriers and DOX-
loaded nanocarriers (Figure 1A) were determined to be 131
or 150 nm respectively, with a narrow size distribution,
thereby making them suitable as anticancer drug carriers. The
morphology of the redox-responsive magnetic nanocarriers was
observed using TEM. Figure 1B shows the morphology of the
nanocarriers. Because DSPE-SS-mPEG does not significantly
attenuate electron scattering under TEM, nanocarriers are largely
present as isolated clusters of Fe3O4 nanoparticles with a
spherical shape. The drug loading content values of DOX-loaded
nanocarriers was 4.6% (Table 1). Whereas, the Fe content of
DOX-free or DOX-loaded nanocarriers was 14.7 and 13.3%,
respectively (Table 1).

The Redox-Responsive Stability of
Nanocarriers
Disulfide linkages are known to be readily reduced into free
thiols in the presence of reducing agents. To demonstrate the
responsiveness, the size change of redox-responsive magnetic
nanocarriers in response to 20mM GSH in PBS was measured
by DLS. Figure 2 shows that the average size of the nanocarriers
gradually increased within the first 15min after the addition
of GSH. The size increased from 131 to 340 nm in 15min,
indicating the detachment of hydrophilic PEG shells from the
nanocarriers and the enhanced hydrophobic interaction of the
inner core. After 1 h, two populations at 547 nm and 1,038 nm
were observed, however, after 3 h, the complete destruction of the
nanocarriers was observed, and no nanoparticles were detected in
the solution.

In vitro Redox-Responsive DOX Release
The drug release behavior of the DOX-loaded nanocarriers was
investigated in PBS at 37◦C in the presence or absence of
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FIGURE 1 | The size distribution by DLS (A), and TEM micrographs (B) of redox-responsive magnetic nanocarriers.

FIGURE 2 | The size change of redox-responsive magnetic nanocarriers in

response to 20mM GSH in PBS determined by DLS measurement.

GSH (20mM). Figure 3 shows the accumulative drug release
profiles as a function of time. Figure 3 demonstrates that the
release of DOX from nanocarriers was markedly correlated with
the presence or absence of GSH. The release of DOX from
nanocarriers was accelerated by the addition of GSH to the
media. In the presence of 20mM GSH, nanocarriers rapidly
released DOX, such that 93.8% of the DOX dose was released
within 24 h. However, only 28.7% of DOX was released in
the absence of GSH. This difference might be due to cleavage
of disulfide bonds, thereby causing the destruction of the
nanocarriers and the accelerated release of encapsulated DOX.

Cell TEM Imaging
The rapid accumulation of DOX-loaded nanocarriers was found
to be magnetically inducible in vitro and was characterized using
TEM. When HeLa cells were incubated for 2 h with DOX-loaded

FIGURE 3 | Redox-triggered release of DOX from redox-responsive magnetic

nanocarriers in PBS with or without 20mM GSH. The standard deviation for

each data point was averaged over three samples (n = 3).

nanocarriers in either the presence or absence of a magnetic field,
the accumulation of nanocarriers was found to be altered. TEM
images demonstrating this observation are shown in Figure 4.
The heavily electro-dense iron-containing nanoparticles are
reproduced in the TEM images as a significantly darker
region in contrast to the cellular environment, which facilitated
identification of relative particle density between groups. The
number of magnetic nanoparticles in cells significantly increased
when a magnetic field was applied (Figure 4B), suggesting that
the presence of a magnetic field enhanced the accumulation of
nanocarriers in cells.

Cell Viability Assay
The in vitro cytotoxicity of DOX-loaded nanocarriers and free
DOX was evaluated using the MTT assay. Figure 5 shows the
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FIGURE 4 | TEM images of HeLa cells incubated with DOX-loaded nanocarriers in the absence (A) or presence (B) of a magnetic field. Scale bar is 1µm.

resulting levels of observed cytotoxicity measured as a function
of DOX concentration from 0.4 to 40µg/mL. All test conditions
exhibited a dose-dependent cytotoxic effect of the treatment on
the population of viable and metabolically active HeLa cells.
DOX-loaded nanocarriers exhibited lower cytotoxicity to HeLa
cells with or without the magnetic field, as compared to free DOX
at the same DOX dose (Figure 5A). As a control experiment, we
performed a group of experiments using nanocarriers without
DOX and examined cytotoxicity under magnetic and non-
magnetic conditions, suggesting that the nanocarriers alone did
not exhibit cytotoxicity (Figure 5B). Given that DOX is a small
molecule, it can be quickly transported into cells and enter
nuclei by passive diffusion. Furthermore, we found that the
presence of a local magnetic field could significantly increase
the cytotoxicity of DOX-loaded nanocarriers. This process
may be due to the magnetic field increasing cellular uptake
of nanocarriers, and once internalized, the redox-responsive
nanocarriers are destroyed by high levels of GSH. The DOX
is then rapidly released from the destroyed redox-responsive
nanocarriers. Taken together these results indicate that the DOX-
loaded nanocarriers can achieve both magnetic targeting and
reduction-sensitive release simultaneously.

In vitro Cellular Uptake of DOX-Loaded
Nanocarriers
The cellular uptake of the nanocarriers and the intracellular
location of the encapsulated DOX was monitored by CLSM in
HeLa cells. The nuclei of HeLa cells were stained with DAPI,
which presented blue fluorescence to distinguish from the red
fluorescence of the labeled DOX. Figure 6 shows CLSM images
of HeLa cells incubated with DOX-loaded nanocarriers for 2 h
with or without magnet field treatment. As shown in Figure 6, we
found that cells incubated with DOX-loaded nanocarriers with
applied magnetic field demonstrated stronger DOX fluorescence
compared to no applied magnetic field. This phenomenon is
primarily a result of the magnetic field increase in the cellular
uptake of the DOX-loaded nanocarriers. Our results indicate that
these nanocarriers are responsive to either magnetic or redox
stimulated activation and are therefore suitable for application as
anticancer drug carriers.

FIGURE 5 | Cytotoxicity of DOX-loaded magnetic nanocarriers and free DOX

in HeLa cells with or without magnetic field after incubation for 24 h (A). (B) In

control experiments, we examined cytotoxicity using magnetic nanocarriers

alone with or without magnetic field after incubation for 24 h, and found no

cytotoxicity. The standard deviation for each data point was averaged over

four samples (n = 4) for (A,B).

CONCLUSION

In this article, we use the amphiphilic copolymer DSPE-SS-
mPEG, which is connected by disulfide bonds. Afterward, the
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FIGURE 6 | CLSM images of HeLa cells after treatment with DOX-loaded magnetic nanocarriers for 2 h in the absence (A) or presence (B) of a magnetic field. Scale

bar is 15µm.

magnetic Fe3O4 nanoparticles and the hydrophobic drug are
made by the self-assembly of the amphiphilic copolymer. DOX is
encapsulated in the amphiphilic copolymer to form a magnetic
nano drug controlled release system which is sensitive and
responds to a reducing environment. This controlled release
system can dissociate the disulfide bonds in the presence
of dithiothreitol, thereby triggering the release system to
disintegrate and expel the drug.

When the DOX-loaded nanocarrier is transported into
the cell, intracellular GSH breaks the disulfide bonds,
resulting in the disintegration of the transport system and
the release of DOX. It is a well-designed enzyme-responsive
magnetic-field controlled release system and provides a new
foundation for building an efficient and safe nanoscale drug
delivery system.
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The introduction of targeted therapy is the biggest success in the treatment of

cancer in the past few decades. However, heterogeneous cancer is characterized

by diverse molecular alterations as well as multiple clinical profiles. Specific genetic

mutations in cancer therapy targets may increase drug sensitivity, or more frequently

result in therapeutic resistance. In the past 3 years, several novel targeted therapies

have been approved for cancer treatment, including drugs with new targets (i.e.,

anti-PD1/PDL1 therapies and CDK4/6 inhibitors), mutation targeting drugs (i.e., the

EGFR T790M targeting osimertinib), drugs with multiple targets (i.e., the EGFR/HER2

dual inhibitor neratinib) and drug combinations (i.e., encorafenib/binimetinib and

dabrafenib/trametinib). In this perspective, we focus on the most up-to-date knowledge

of targeted therapy and describe how genetic mutations influence the sensitivity of

targeted therapy, highlighting the challenges faced within this era of precision medicine.

Moreover, the strategies that deal with mutation-driven resistance are further discussed.

Advances in these areas would allow for more targeted and effective therapeutic options

for cancer patients.

Keywords: targeted therapy, cyclin-dependent kinases 4/6, somatic mutation, resistance, EGFR, PD-1/PD-L1

INTRODUCTION

Targeted therapies usually present with high selectivity, target precisely to specific gene
or protein, and exert a biological function with minimal side effects (1), which has
distinguished them from most conventional non-specific chemotherapeutic drugs. Targeted
therapy has thus been regarded as the biggest success in the treatment of cancer in the
past few decades. Many novel promising agents have been experimentally designed and
developed and are increasingly entering clinical evaluation. However, the frequently observed
alterations in the drug targets have posed a big challenge to successful cancer treatment.
Genetic mutations in cancer are resulted from both inherited and environmental factors.
In a recent report, it is demonstrated that a large proportion of cancer-related mutations
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are due to randomized DNA replication errors (2). Notably,
the mutations in cancer therapy targets can greatly affect drug
sensitivity. Mutation-driven drug resistance is very common in
cancer. The efficacy of targeted therapy is thus largely dependent
on themutation profile of tumors in patients. Accurate molecular
and genetic profiling of tumor cells is becoming a routine practice
before the introduction of targeted therapy in patients.

In recent years, great progress has been made in targeted
therapy discovery. Notably, many new drugs are designed
primarily based on specific genetic background. For instance,
nearly 40–50% of metastatic cutaneous melanoma possess
v-raf murine sarcoma viral oncogene homolog B1 (BRAF)
mutations (3), and ∼90% of these BRAF mutations are caused
by substitution of glutamic acid for valine at codon 600
(V600E) (4). Two selective BRAF inhibitors vemurafenib and
dabrafenib were approved for the treatment of patients with
BRAF-V600E mutation, showing improved progression-free
survival (5). In November 2018, the U.S. Food and Drug
Administration (FDA) approved an inhibitor of tropomyosin
receptor kinases (TRKs), larotrectinib, for treatment of any type
of solid tumors with TRK gene fusion (6). This is the second
targeted therapy approved not for specific cancer types but
for any cancers with specific mutations. Targeted therapies are
becoming more precise.

In this perspective, we focus on the updated knowledge of
targeted therapy in the last 3 years and describe how genetic
mutations influence sensitivity of targeted therapy, highlighting
the challenges faced within this era of precision medicine.
Moreover, the strategies dealing with mutation-driven resistance
are further discussed.

INFLUENCE OF GENETIC MUTATION ON
SENSITIVITY OF TARGETED THERAPY

It is well-acknowledged that mutations in therapeutic targets
can increase or decrease drug sensitivity (Table 1). The main
challenge of targeted therapy today is the identification of
particular cancer mutations which affect efficacy of targeted
therapies as well as the identification of a specific group of
patients most likely or unlikely to respond to certain targeted
therapies. Despite the great challenges, in the last 3 years, we have
seen significant progress in targeted therapy (Table 2), largely
owing to the rise of large-scale sequencing technology and big
data analysis. Several novel targets, including the programmed
death-1/programmed death-ligand 1 (PD1/PDL1) and cyclin-
dependent kinases 4 and 6 (CDK4/6), have been validated,
with several new targeted drugs being approved. Some newly
approved drugs are directly designed to deal with some known
activating mutations, such as the T790M mutation in epidermal
growth factor receptor (EGFR). Moreover, many new findings
have been added to our knowledge of how mutations influence
targeted therapies [e.g., the inhibitors of human epidermal
growth factor receptor 2 (HER2) and anaplastic lymphoma
kinase (ALK)]. Here, based on the most updated research in
the last 3 years, we summarize the recent advances of several
targeted therapies.

Anti-PD1/PDL1 Therapies
So far, there are a total of 6 anti-PD1/PDL1 therapies that have
been approved by the FDA. Notably, in 2017, a PD1 antibody
pembrolizumab was approved for the treatment of any solid
tumor with a mismatch repair deficiency or a microsatellite
instability. Monotherapy of PD1/PDL1 blockade has received
great success in many types of cancers (21, 22). However, there
are certain patients that are gradually developing resistance
after an initial response (23). Mutation-driven resistance of
anti-PD1/PDL1 therapies has recently been studied in a small
number of cancer patients. Zaretsky et al. reported that
mutations of JAK1/JAK2 led to the desensitization of cancer
cells to IFN-γ and contributed to an acquired resistance of
pembrolizumab in patients with melanoma (23). Moreover, in
one resistant patient, a frame-shift deletion in exon 1 of the
β-2-microglobulin was detected, which may result in the loss
of expression of surface the MHC class I (23). More studies
are advocated to explore the acquired resistance of immune
checkpoint inhibitors.

Resistance of CDK4/6 Inhibitors
Currently, three CDK 4/6 selective targeting inhibitors,
palbociclib, ribociclib, and abemaciclib have been approved
to treat breast cancer. CDK4/6 inhibitors are increasingly
used in clinical settings, but patients eventually show disease
progression and the major reasons remain unclear (24).
Dysregulation of cyclin D1-CDK4/6-retinoblastoma (Rb)
pathway has been implicated in hormone receptor positive
(HR+) breast cancer and in chemotherapeutic drug-resistance.
Rb is usually intact in HR+ breast cancer and is important
for the efficacy of CDK4/6-inhibitors in the treatment of
breast cancer (25). It is indicated that T47D cells that become
resistant to CDK4/6 inhibitors, develop CCNE1 amplification
or Rb1 loss (26). Moreover, the acquisition of multiple de novo
somatic Rb1 mutations in metastatic breast cancer patients
may result in the emergence of a resistance to CDK 4/6
inhibitors (24). Until now, there has been no report on CDK4/6
mutations in cancer patients and their effect on efficacy of
CDK4/6 inhibitors.

EGFR and Different Generation of Tyrosine
Kinase Inhibitors (TKIs)
EGFR is a prevalent target in several human cancers, such as
lung, breast, colorectal, thyroid, and melanoma cancer. In lung
cancer, several generations of small-molecular inhibitors have
been developed to target the EGFR tyrosine kinases (27), such
as inhibitors gefitinib, erlotinib, osimertinib, and necitumumab.
The EGFR mutation in non-small cell lung cancer (NSCLC) was
first identified in 2004, and the major missense and deletion
mutation of EGFR in NSCLC occurs in the tyrosine kinase-
coding domain in exons 18–21 (28). The L858R mutation
in the exon 21 and exon-19 frame deletion are the most
commonly detected mutation types of EGFR, representing 50
and 40% of tumor patients, respectively (7). These two types of
mutations are sensitive to EGFR tyrosine kinase inhibitors (TKIs)
in NSCLC. The first-generation TKIs, gefitinib and erlotinib,
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TABLE 1 | Therapeutic response of targeted therapy in mutant cancers.

Drugs Sensitivity Target mutations Cancer types Reference

Gefitinib + EGFR-L858R Lung cancer (7)

Erlotinib + EGFR-L858R Lung cancer (7)

Gefitinib – EGFR-T789M Lung cancer (8)

Osimertinib + EGFR-T790M Lung cancer (9)

Osimertinib – EGFR-L718Q Lung cancer (10)

Trastuzumab – HER2-A859T, -G776L Lung cancer (11)

Afatinib + HER2-p.Tyr772_Ala775dup Lung cancer (12)

Neratinib – HER2-T798I, -L869R Breast cancer (13)

Lapatinib – HER2-T798M Breast cancer (14)

Trastuzumab – HER2-T798M Breast cancer (14)

Neratinib + HER2-S310, -L755, -V777, -G778_P780dup, and -Y772_A775dup Breast, cervical and biliary cancers (15)

Crizotinib – ALK-C1156Y, -L1196M Lung cancer (16, 17)

Lorlatinib – ALK-L1198F Lung cancer (18)

2,4-Pyrimidinediamine derivative – EML4-ALK-C1156Y, -L1196M Lung cancer (19)

TAE684 – EML4-ALK-L1152R Lung cancer (20)

Dabrafenib + BRAF-V600E Melanoma (5)

TABLE 2 | Cancer targeted therapy approved by FDA in 2017 and 2018.

Drugs Targets Cancer types

Pembrolizumab (2017) PD-1 Solid tumor with mismatch repair deficiency or microsatellite instability

Cemiplimab (2018) PD-1 Squamous cell carcinoma

Durvalumab (2017) PD-L1 Urothelial carcinoma

Avelumab (2017) PD-L1 Merkel cell carcinoma, urothelial carcinoma

Brigatinib (2018) ALK ALK-positive NSCLC

Lorlatinib (2018) ALK ALK-positive NSCLC

Ribociclib (2017) CDK4/6 Breast cancer

Abemaciclib (2017) CDK4/6 Breast cancer

Niraparib (2017) PARP Ovarian cancer, peritoneal cancer

Dacomitinib (2018) EGFR NSCLC with EGFR exon 19 deletion or exon 21 L858R substitution mutations

Talazoparib (2018) PARP Breast cancer with germline BRCA mutations

Duvelisib (2018) PI3Kδ, PI3Kγ Chronic lymphocytic leukemia, small lymphocytic lymphoma

Larotrectinib (2018) TRKs Solid tumor with TRK gene fusion

Neratinib (2017) EGFR/HER2 HER2-amplified breast cancer

have a high selective inhibitory activity against both wild-
types and these sensitive mutant EGFR (29). Previous studies
show that gefitinib and erlotinib are important for the first-
line treatment of NSCLC patients with the sensitive EGFR
mutations (30, 31). On the other hand, another mutation T790M,
a secondary EGFR mutation emerging in NSCLC, can lead to
the resistance of more than half of patients’ TKIs treatment (32).
Very recently, the third-generation TKI inhibitor osimertinib has
been approved to effectively target to EGFR T790M mutation
with a response rate of 61% in NSCLC, significantly extending
the overall survival in patients with the T790M mutation (9).
However, the further mutation of a residue in the P-loop
(L718Q) has been found to cause resistance to osimertinib (10).
Nevertheless, though diverse EGFR mutations are present, the
overall survival of lung cancer patients is markedly improved
with TKI therapy.

HER2 and Its Inhibitors
In breast cancer, the overall HER2 mutation rate is ∼1.6% (25
out of 1,499 patients). In a study by Bose et al., seven HER2
somatic mutations including G309A, D769H, D769Y, V777L,
P780ins, V842I, and R896C, have been identified as activating
mutations (33). Several patients with HER2 activating mutations
are resistant to the reversible HER2 inhibitor lapatinib, but
sensitive to the irreversible HER2 inhibitor neratinib. Neratinib
as a dual inhibitor of HER2 and EGFR was approved by FDA
in 2017. It has been shown that the HER2 L755S mutation
results in an acquired resistance to lapatinib in breast cancer,
which could be overcome by the neratinib (34). In another
study, the HER2-T798I gatekeeper mutation in breast cancer
patients with a AHER2-L869R mutation was identified as a
mechanism of acquired resistance to neratinib (13). The trial
of neratinib has also been conducted in colorectal cancer
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(CRC) patients. The HER2 gene amplification and mutation
in CRC can lead to the resistance of EGFR-targeted therapies
cetuximab and panitumumab (35, 36). A negative effect of
neratinib monotherapy has recently been confirmed in 12 CRC
patients with different tumors harboring HER2 mutations (15).
There were no positive therapeutic response and the median
PFS was only 1.8 months, indicating that monotherapy with
neratinib is ineffective. The underlying mechanisms still require
further investigations.

ALK and Different Generation of
ALK Inhibitors
ALK has long been identified as a therapeutic target in cancer.
The first ALK inhibitor crizotinib was approved by the FDA in
2011 (37). Although most NSCLC patients respond to this drug,
tumors become resistant after 1–2 years of treatment. Around
1/3 of crizotinib-resistant tumors harbor mutations within the
ALK kinase domain. The most commonly observed mutations of
L1196M and G1269A lead to a decreased affinity for crizotinib
(38). Other ALK point mutations, such as L1152R, C1156Y,
I1171T, F1174L, G1202R, and S1206Y, are also associated with
crizotinib resistance (39). Another oncoprotein of fusion-type
tyrosine kinase, the EML4-ALK, results from the inversion within
the short arm of the human chromosome 2 in 4–5% of cases
of NSCLC (40). Two mutations of EML4-ALK, C1156Y, and
L1196M, confer a significant resistance to ALK inhibitors, such
as crizotinib and PDD (2,4-pyrimidinediamine derivative) (19).
The EML4-ALK C1156Y mutation can contribute to a higher
resistance to PDD than those in the L1196M mutant form. It
is reported that a candidate ALK inhibitor TAE684 can bind to
these mutant kinases, which may have potency in overcoming
the mutation-driven resistance (41). The new generation ALK
inhibitors lorlatinib and brigatinib were approved in 2018
for the treatment of patients with ALK-rearranged NSCLC.
Lorlatinib has been demonstrated to inhibit resistant ALK
mutations, including ALK G1202R (16). However, Shaw et al.
showed that an ALK L1198F mutation together with the
C1156Y mutation results in the resistance of lorlatinib in a
patient with metastatic ALK-rearranged NSCLC (18). However,
the L1198F mutation re-sensitized crizotinib treatment of a
resistant tumor. It was demonstrated that both lorlatinib and
brigatinib can overcome crizotinib resistance in NSCLC patients
(42, 43). Moreover, when brigatinib was combined with anti-
EGFR antibody, it was effective against EGFR triple-mutant cells
in vitro and in vivo (44).

STRATEGIES FOR OVERCOMING
MUTATION-DRIVEN RESISTANCE

Mutations in cancer therapy targets usually result in the loss
of functions and the accumulation of dysfunctional proteins
in tumors (45). Moreover, many mutants have oncogenic
gain-of-function (GOF) activities including increased tumor
proliferation, metastasis and drug resistance (46). Notably, tumor
cells that receive targeted therapy may lead to an overactivation
of the by-pass signaling pathways to develop resistance. In most
cases, multiple alterations are observed in a resistant tumor.

Recently, many strategies dealing with mutation-driven drug
resistance have been proposed and evaluated both experimentally
and clinically. The traditional chemotherapy concept of “one
ligand to one receptor” for a biological response is inadequate.
The treatment of a particular type of cancer with the
prescriptive drugs involves many special genes, interacting with
their respective targets and triggering a series of biological
responses. The concept of using multi-drug therapy and seeking
multifunctional compounds that can efficiently interact with
various targets might be feasible (47). Currently, to overcome
mutation-driven drug resistance, the main strategies include:
(1) the design of new mutation-targeted compounds to restore
wide-type protein activities, to delete mutants or to influence
downstream targets; (2) the application of combinational therapy
or new compounds for multiple targeting. Here, we give some
examples of how to overcome mutation-driven resistance of
targeted therapy.

Dacomitinib, an Irreversible Pan-ERBB
Inhibitor, Targeting EGFR
Activating Mutants
Recently, dacomitinib was approved to use for metastatic NSCLC
with EGFR exon 19 deletion or exon 21 L858R substitution
mutations. In a randomized, multicenter, open-label, phase
III trial (ARCHER 1050), the patients with newly diagnosed
advanced NSCLC and one EGFR mutation (exon 19 deletion
or L858R) received a 45 mg/day dose of oral dacomitinib or
a 250 mg/day gefitinib for 28 days. In the dacomitinib group,
the progression-free survival (14.7 months, 95% CI 11.1–16.6)
was significantly longer than that in the gefitinib group (9.2
months, 95% CI 9.1–11.0) (48). This investigation supports
the dacomitinib as the first line therapy for EGFR-mutation
NSCLC patients.

Dacomitinib is initially designed for irreversible pan-ERBB
inhibition. As a small-molecule covalent binding inhibitor of
enzymatically active HER family tyrosine kinases EGFR and
HER2, it may act as a potent inhibitor of EGFR T790M
mutation (49). Additionally, dacomitinib significantly inhibits
both wild-type and the gefitinib-resistant ERBB2 mutation in
lung cancer. Based on an in-depth investigation, dacomitinib
is an effective drug that may treat NSCLC patients with a
T790M-related acquired resistance to gefitinib or erlotinib (8).
It has been indicated that dacomitinib significantly improves
progression-free survival in EGFR-mutationNSCLC patients and
is considered as a new treatment option for this population.

Encorafenib/Binimetinib and
Dabrafenib/Trametinib for Dual Inhibition
of BRAF and MEK
The FDA approved dabrafenib plus trametinib for the anaplastic
thyroid cancer (ATC) with BRAF-V600E mutation in May
2018, as well as for the adjuvant treatment of BRAF V600E/K-
mutated melanoma in April 2018. Previous studies revealed that
dabrafenib plus trametinib have shown substantial antitumor
activity in patients with previously treated BRAF-V600Emutated
metastatic NSCLC and untreated BRAFV-600E mutated NSCLC
(50, 51). Trametinib is an orally administered MEK1/MEK2
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inhibitor that suppresses RAF-dependent MEK phosphorylation
and persistently inhibits phosphorylated ERK (a substrate of
MEK) (52). Dabrafenib is a reversible and high-efficiency ATP-
competitive inhibitor of RAF kinases, especially the mutant
BRAF (53). Subbiah et al. reported that the overall response
rate of dabrafenib plus trametinib applied in BRAF V600E-
mutated ATC (complete reaction plus partial reaction to the best
overall response) is 69% (54). In contrast to BRAF inhibitor
monotherapy, it has longer progression-free survival and overall
survival. Overall, the most common adverse events include
fatigue, pyrexia and nausea (54), consistent with previous
reports in advanced or metastatic melanoma and NSCLC (50).
Dabrafenib plus trametinib is the first regimen approved to have
significant clinical efficacy in BRAF V600E-mutated ATC.

In June 2018, the FDA approved the combination of BRAF
inhibitor encorafenib and the MEK inhibitor binimetinib
for treatment of patients with unresectable or metastatic
melanoma with a BRAF-V600E or -V600K mutation. It is the
third BRAF/MEK inhibitor combination approved following
the dabrafenib/trametinib and vemurafenib/cobimetinib
combinations (55). The main adverse events for encorafenib plus
binimetinib when applied to BRAF-V600 mutant melanoma
are gastrointestinal reactions, including nausea, diarrhea and
vomiting. Additionally, this combination has a lower calorific
value and photosensitivity than other available BRAF-MEK
inhibitor combinations do (56). Considerable evidence supports
that the median progression-free survival was 14.9 months with
encorafenib plus binimetinib, compared with 7.3 months with
vemurafenib (57). Therefore, it is an effective therapeutic option
in patients with unresectable or metastatic melanoma, with a
BRAF V600E or V600K mutation.

CONCLUSIONS

In the new era of targeted therapy, treatment options are
increasingly based on the precise molecular and genetic profiling

of tumor cells (58). Currently, the main challenge for further
novel drug development in targeted therapy is the clarification
of specific molecular mechanisms underlying the varied forms
of tumors in clinic. It has been acknowledged that cancer is
caused by a set of driver mutations. In this regard, it is of great
significance to: (1) identify and validate key mutant genes and
proteins in cancers as new targets; (2) identify patients most
likely and unlikely to benefit from certain targeted therapies;
(3) evaluate the mechanism of mutation-driven drug resistance.
In past decades, several key mutations which influence drug
sensitivity have been identified in various cancers. In order
to deal with mutation-driven drug resistance, new methods
and drugs have been discovered and approved for clinical
use (47). Even so, detailed individualized treatment strategies
targeting specific tumorigenesis and drug resistant mechanisms
are still required. Advances in these areas would allow for
more targeted and effective therapeutic options for more
cancer patients.
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Based on the structure of sanguinarine, fourteen phenanthridine derivatives were

designed and synthesized in the current study. The cytotoxic activities of synthesized

compounds were evaluated against five human cancer cell lines (MCF-7, PC3, Hela,

A549, and HepG2 cell lines) via MTT assay. Among all the compounds tested, molecule

8a exhibited significant cytotoxic activity against MCF-7 cells with a IC50 value of

0.28µM. A following up enzymatic assay indicated that compound 8a could inhibit the

activity of DNA topoisomerase I/II. Further mechanistic studies performed in the MCF-7

cell line revealed that compound 8a could arrest cell cycle in S phase and induce cell

apoptosis via downregulation of Bcl-2 and upregulation of Bax. Collectively, a potent DNA

topoisomerase inhibitor (8a) was discovered, which exhibited potential as a candidate

chemotherapeutic agent for the management of tumors in the present study.

Keywords: phenanthridine, anticancer, topoisomerase, apoptosis, cell cycle arrest

INTRODUCTION

Sanguinarine (SA) belongs to the chrysene-skeleton-based heterocyclic benzo [c] phenanthridine
alkaloids family (Figure 1), which are widely distributed in plants, such as Sanguinaria canadensis
and Papaveraceae (1–3). Although SA was isolated in the late 1940s (4), extensive research focusing
on the molecular mechanism of its anti-tumor effects has commenced only recently (5). SA has
attracted extensive attention because of its significant biological activities, including anti-tumor
(6, 7), anti-inflammatory, anti-angiogenesis, antiplatelet, antiviral, and anti-fungal effects (8–11).
The flat polyaromatic structure of SA enabled it to directly interact with DNA (12). SA-induced
cell cycle arrest and apoptosis was found to not only be caused by DNA damage, but also to
be a combined result of targeting other cell structures, such as topoisomerases (Top) (13, 14),
antiapoptotic protein (6, 15, 16), and mitochondrial membranes (17, 18).

Previous studies reported that SA might interfere with mitochondrial membranes and induce
apoptosis in the CEM leukemia cell line HL-60 (18, 19) and KB carcinoma cell line (17). The
potential mechanism was associated with nuclear factor (NF-κB) activation (1), mitochondria
damage induced caspase activation (20), and increased expression of Bax/Bcl-2 (21, 22). The
proapoptotic effects of SA have significant potential in the development of novel antitumor
agents with SA as a lead compound. In addition, SA elicited G0/G1 cell cycle arrest (23), which
can be associated with the translocation of cyclin D1 and Top II from nucleus to cytoplasm
(24, 25). Additionally, NF-κB, AP-1, MMP-9, and STAT3 inhibition were also observed following
SA treatment (26–28) and subsequently resulted in suppressed cancer cell metastasis. Moreover,
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FIGURE 1 | The structures of SA and phenanthridine.

abolishment of VEGF-induced AKT activation was also proposed
as another potential mechanism for the antiangiogenic activity of
SA (29, 30), which was believed to contribute to its anti-tumor
effects in the animal models of melanoma (31) and colorectal
cancer (26).

SA exhibited significant potential in the development of new
antitumor drugs, as indicated from the results of a wide range
of in vitro and in vivo investigations. Due to the structure of
multiple aromatic rings, further development of SA as antitumor
agent is restricted by its low solubilities and severe side effects.
To discover SA analogs with improved solubilities and activities,
a series of phenanthridine derivatives with reduced aromaticities
were designed and synthesized using phenanthridine as a core
scaffold. All the derived compounds were identified with 13C
NMR, 1H NMR, HRMS, and biologically evaluated against
MCF-7 (human breast cancer), PC3 (human prostatic cancer),
Hela (human cervical cancer), A549 (human lung cancer), and
HepG2 (human hepatocellular carcinoma) cell lines. During
further investigation of the underlying mechanism, molecular
techniques such as flow cytometry, hoechst 33258 staining and
western blotting were utilized with the representative compounds
synthesized in the current study.

Chemistry
The synthetic pathway of phenanthridine derivatives is shown
in Scheme 1. As illustrated, amino protection of starting
material 1 was performed to afforded compound 2. The
following bromine substitution and deprotection of amino
group were carried out to generate intermediate 4. Preparation
of intermediate 5 was performed by Suzuki coupling of 2-
bromoaniline derivatives with corresponding phenylboronic
acids. Treatment of intermediate 5 under acidic condition yielded
compound 6, and subsequent dehydration of compound 6

afforded 2-isocyanobiphenyls derivatives 7a-t. In the presence of
benzoyl peroxide, phenanthridine derivatives 8a-n were derived
by reacting of 2-isocyanobiphenyls derivatives with carbon
tetrachloride (32).

Cytotoxicity Assay
The cytotoxicity of synthesized compounds was evaluated against
five tumor cell lines (A549, PC3, MCF-7, HepG2, and Hela)
via MTT assay. Initially, two doses of each compound (5 and 1
µmol/L) were evaluated. As shown inTable 1, compounds 8a, 8b,
8d, 8e, 8l, 8m, and 8n exhibited significant inhibitory activities
against MCF-7, PC3, and Hela cells at the dose of 5 µmol/L.

However, when compared with the lead compound SA, molecule
8d, 8l, and 8n exhibited lower inhibitory activity at the dose of
1 µmol/L.

Based on the data mentioned above, compounds 8a, 8b, 8e,
and 8m were selected for further test with more doses against
the tumor cell lines. The IC50 values of these compounds were
summarized in Table 2, all the four compounds exhibited potent
cytotoxicity against the five tumor cell lines tested compared
with the positive control SA and clinically used antitumor drug
Etoposide (VP 16). The results indicated that compounds 8a and
8m exhibited potent activities against all the tested cancer cell
lines. Molecule 8a (IC50 = 0.28 ± 0.08) showed potency of over
6 times higher than SA (IC50 = 1.77 ± 0.06) in the inhibition of
MCF-7 cells, and molecule 8m (IC50 = 0.39 ± 0.08) exhibited
8.9 times of potency comparing to SA (IC50 = 3.49 ± 0.41) in
the inhibition of HepG2 cells. Therefore, 8a, 8b, 8e, and 8m were
selected for further mechanistical studies.

Topoisomerase Inhibition Assay
To elucidate the target profiles of the cytotoxic compounds (8a,
8b, 8e, and 8m), the inhibitory effects of these compounds
were tested against human DNA Top I and IIα by relaxing
assay using pBR322 DNA. 10-hydroxy camptothecin (OPT)
and VP 16 were used as a positive control for Top I and IIα
inhibition, respectively. The Top I/II were able to completely
convert the supercoiled DNA to open circular form in the absence
of inhibitors (Figure 2, lane B). In contrast, positive control
(OPT/VP 16) and active compounds inhibited the activity of Top,
which affected the unwinding of the supercoiled DNA, leading
to a band pattern similar to the negative control (Figure 2). As
shown in Figure 2A, positive control OPT and SA inhibited the
activity of both Top I and Top IIα. Compound 8a exhibited weak
Top I inhibition, which was similar to OPT. In the Top IIα test, all
the tested compounds exhibited potent DNA Top IIα inhibitory
activities at the concentration of 100µM (Figure 2B). Based on
the above findings, molecule 8awithmost potent cytotoxicity and
enzymatic inhibitory activities is chosen as a potential candidate
for further investigation.

Cell Cycle Analysis
To elucidate the effects of molecule 8a on cell cycle distributions,
MCF-7 cells were treated with various doses of molecule 8a (0,
0.15, 0.3, and 0.6µM) for 24 h. As shown in Figure 3, compound
8a treatment led to significant accumulation of MCF-7 cells at S
phase (from 18.86 to 42.99%) dose-dependently. While reduced
cells at the G2/M phase was detected from 23.46 to 10.45%
(0.15µM), 8.69% (0.3µM), and 5.62% (0.6µM) following
treatment with compound 8a dose-dependently. These results
suggest that compound 8a exhibited a significant antitumor
effect and led to MCF-7 cell cycle arrest at the S phase in a
dose-dependent manner.

Cell Apoptosis Assay
To further investigate the role of apoptosis in the antitumor
effect of compound 8a, Hoechst 33258 staining was performed
to investigate the nuclear morphological changes following
molecule 8a treatment on MCF-7 cells. Hoechst 33258 is a
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SCHEME 1 | Synthesis of SA derivatives 8a-n: (i) IPA, Boc2O, ice-bath; (ii) ACN, NBS; (iii) DCM, TFA; (iv) [Pd], K2CO3, DME, 80◦C; (v) HCOOH, THF, 60◦C; (vi)

POCl3, NEt3, THF, 0
◦C; (vii) BPO, AcONa, reflux.

fluorescent stain used to label DNA; live cells nuclei will be
stained with uniformly light blue and apoptotic cells nuclei will be
stained with bright blue because of chromatin condensation. As
shown in Figure 4A, higher levers of apoptotic cells with nuclear
condensation, nuclear fragmentation and enhanced brightness
were detected in the cells following treatment with various doses
of molecule 8a (0.15, 0.3, and 0.6µM). To quantify the number of
apoptotic cells and to distinguish early apoptosis and secondary
necrosis, MCF-7 cells were stained with annexin V-FITC/PI.
As shown in Figure 4B, after treatment with difference doses
of compound 8a (0, 0.15, 0.3, and 0.6µM), the percentage of
apoptotic cells were significantly increased from 11.16% of the
control to 14.35, 22.79, and 28.98%, respectively, indicating that
induction of cell apoptosis contributes to the antitumor effect of
compound 8a.

Protein Expressions of Bcl-2 and Bax
Apoptosis is a heavily regulated cell death process influenced
by a series of regulatory molecules (33). The mitochondria-
dependent pathway has been described as an important signaling
pathway of cell apoptosis regulated by the Bcl-2 family including
the pro- and anti-apoptotic proteins such as Bax (pro-apoptotic

protein) and Bcl-2 (anti-apoptotic protein) (34–36). Moreover,
the ratio of Bax/Bcl-2 is important for apoptosis induced by
the mitochondrial pathway. Therefore, the effect of compound
8a on the levels of Bax and Bcl-2 was evaluated in MCF-7
cells. The results indicated that compound 8a could significantly
downregulate Bcl-2 levels and upregulate Bax levels in MCF-
7 cells, increasing the ratio of Bax/Bcl-2 in a dose-dependent
manner (Figure 5). Collectively, these results suggest that
compound 8a induced apoptosis by regulating the expression of
apoptosis-related proteins.

CONCLUSIONS

Based on the structure of sanguinarine, fourteen phenanthridine
derivatives 8a-m were synthesized and evaluated for their
cytotoxic activity against five different human cancer cell
lines. Among the evaluated compounds, 8a exhibited a
broad spectrum of anti-proliferative activities against all the
tested cancer cell lines. Further mechanistic assay revealed
that compound 8a could inhibit the activity of both DNA
Top I and Top II, as well as preventing cell transition
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TABLE 1 | The inhibitory activity on tumor cell of phenanthridine derivativesa.

Compoundb MCF-7 (%) PC3 (%) Hela (%)

5 µM 1 µM 5 µM 1 µM 5 µM 1 µM

8a 95.66 71.50 91.21 78.47 88.50 58.76

8b 93.66 58.29 89.77 64.16 84.90 54.01

8c 25.06 19.56 25.32 <5 19.66 16.00

8d 83.17 27.48 81.72 43.50 58.92 28.78

8e 95.36 60.07 88.65 73.04 83.80 23.52

8f 36.73 15.99 15.65 <5 16.26 <5

8g 18.23 23.76 <5 <5 <5 <5

8h 31.23 16.30 26.40 <5 15.74 8.61

8i 16.15 13.60 <5 <5 <5 <5

8j 62.18 14.00 64.62 <5 37.46 7.47

8k 19.74 32.60 12.81 <5 8.14 <5

8l 94.05 34.75 89.37 42.52 81.62 32.25

8m 97.83 89.34 95.26 88.75 87.57 80.26

8n 72.26 49.63 64.61 <5 30.69 9.72

SA 98.29 53.86 96.42 95.60 96.13 64.41

VP16 41.84 13.67 38.39 22.39 29.18 17.42

aValues are average of three determinations and deviation of data results is <20%.
bAll compounds were dissolved in DMSO for testing.

TABLE 2 | The ICa
50 of phenanthridine derivatives.

Compound IC50 (µM) a

MCF-7 PC3 Hela A549 HepG2

8a 0.28 ± 0.08 0.30 ± 0.06 0.48 ± 0.07 0.89 ± 0.07 0.70 ± 0.09

8b 0.77 ± 0.04 0.76 ± 0.01 0.66 ± 0.12 0.85 ± 0.03 1.23 ± 0.08

8e 0.61 ± 0.03 0.45 ± 0.04 1.93 ± 0.02 0.89 ± 0.09 2.21 ± 0.14

8m 0.24 ± 0.08 0.22 ± 0.04 0.49 ± 0.02 0.85 ± 0.04 0.39 ± 0.08

SA 1.77 ± 0.06 1.67 ± 0.33 1.07 ± 0.06 2.68 ± 0.18 3.49 ± 0.41

VP16 >10 >10 >10 >10 >10

a IC50 values are represented as mean ±SD (n = 3).

FIGURE 2 | Effects of phenanthridine derivatives and positive control on human Top I (A)/IIa (B). Native superhelix pBR322 was incubated at 37◦C for 30min with 2

units of human Top I/IIα in the absence (lane 2) or presence of compound at concentration 100µM. One hundred micromolar OPT, VP 16, and SA were used as

positive controls, respectively. Negatively supercoiled pBR322 (SC) and relaxed DNA (RLX) were shown. DNA samples were run on agarose gel followed by

Genecolour I TM staining.

from S to G2 phase dose-dependently. Apoptosis studies
against MCF-7 cells indicated that downregulation of Bcl-2
and upregulation of Bax expression may contribute to the

anti-proliferative activities. In summary, these findings suggest
that molecule 8a is a potent lead compound in the derived
phenanthridine derivatives. Further molecule 8a based structural
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FIGURE 3 | Cell cycle analysis using PI staining of compound 8a on MCF-7

cells. Cells were treated with compound 8a at 0.15 (B), 0.3 (C), and 0.6 (D)

µM for 24 h, compared with the control (A). Cell cycle were detected by flow

cytometry.

modification may be beneficial in the discovery of novel
anticancer agents with improved antitumor activity and reduced
side effects.

MATERIALS AND METHODS

Chemistry
All chemicals were obtained from commercial suppliers and used
without further purification. Reactions progress was detected by
thin layer chromatography (TLC) and visualized under UV light.
Two hundred to three hundred mesh silica gel was used for
column chromatography. All compounds were characterized by
13C NMR, 1H NMR, and HRMS. 1H and 13C NMR spectra were
recorded on Mercury Plus-400 with internal standard used TMS
and recorded in parts per million (ppm). Date were reported
as s (singlet), br (broad), s (singlet), d (doublet), t (triplet), q
(quartet), m (multiplet), and coupling constant (J) in hertz (Hz).
Melting point was determined by MP 100 Automatic Melting
Point Apparatus.

Representative Procedure for the Synthesis of

Compounds 7a-t
To dissolve compound 6, THF and NEt3 was added, the solution
was added to POCl3 (11 mmol) until the solution was cooled
to 0◦C. The reaction was quenched by saturated Na2CO3 until
complete consumption of starting material, monitored by TLC.
The solution of the crude product was extracted with ethyl

acetate, and organic layer was dried over Na2SO4 and evaporated
to dryness. The residue was purified by column chromatography
with silica gel (200–300 mesh).

2-isocyano-3′,4′-Methylenedioxy-4,5-methylenedioxy-1,1′-
biphenyl

(7a)
Yellowish -white solid, Yield 78%;Mp (154.4–156.1◦C); 1HNMR
(400 MHz, CDCl3) δ 6.90 (d, J = 8.9Hz, 4H), 6.78 (s, 1H), 6.05
(s, 2H), 6.01 (s, 2H).

2-isocyano-4,5-methylenedioxy-1,1′-biphenyl (7b)
Brown solid, Yield 80%; Mp (90.1–90.3◦C); 1H NMR (400 MHz,
CDCl3) δ 7.54–7.30 (m, 5H), 6.91 (s, 1H), 6.82 (s, 1H), 6.05
(s, 2H).

2-isocyano-4,5-methylenedioxy-4′-methoxy-1,1′-biphenyl
(7c)
White solid, Yield 81%; Mp (132–133.1◦C);1H NMR (400 MHz,
CDCl3) δ 7.39 (d, J = 8.7Hz, 2H), 6.98 (d, J = 8.7Hz, 2H), 6.90
(s, 1H), 6.80 (s, 1H), 6.05 (s, 2H), 3.85 (s, 3H).

2-isocyano-4,5-methylenedioxy-2′-methoxy-1,1′-biphenyl

(7d)
Yellowish-white solid, Yield 82%; Mp (139.4–140.7◦C); 1HNMR
(400 MHz, CDCl3) δ 7.43–7.34 (m, 1H), 7.20 (dd, J = 7.5, 1.8Hz,
1H), 7.07–6.96 (m, 2H), 6.90 (s, 1H), 6.79 (s, 1H), 6.05 (s, 2H),
3.83 (s, 3H).

2-isocyano-4,5-methylenedioxy-2′,4′-dimethoxy-1,1′-

biphenyl
(7e)
Brown solid, Yield 79%; Mp (161.4–161.9◦C); 1H NMR (400
MHz, CDCl3) δ 7.10 (s, 1H), 6.88 (s, 1H), 6.77 (s, 1H), 6.56 (dt, J
= 5.2, 2.5Hz, 2H), 6.04 (s, 2H), 3.85 (s, 3H), 3.81 (s, 3H).

2-isocyano-3′,4′-methylenedioxy-5-methoxy-1,1′-biphenyl

(7f)
Yellowish-white solid, Yield 81%; Mp (119.6–120.1◦C); 1HNMR
(400 MHz, CDCl3) δ 7.58 (d, J = 8.6Hz, 1H), 7.12 (d, J = 1.7Hz,
1H), 7.09–6.95 (m, 4H), 6.10 (s, 2H), 3.84 (s, 3H).

2-isocyano-5-methoxy-1,1′-biphenyl (7g)
Black oil, Yield 83%; 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J =
8.7Hz, 1H), 7.58–7.42 (m, 5H), 7.08–6.99 (m, 2H), 3.85 (s, 3H).

2’-isocyano-3,4-methylenedioxy-1,1′-biphenyl (7h)
Green solid, Yield 85%; Mp (71.6–73.9◦C); 1H NMR (400 MHz,
CDCl3) δ 6.02 (s, 2H), 7.02–6.94 (m, 2H), 6.94–6.87 (m, 1H), 7.46
(d, J = 9.3Hz, 1H), 7.43–7.30 (m, 3H).

2’-isocyano-2,4-dimethoxy-1,1′-biphenyl (7i)
Yellowish-white solid, Yield 79%; Mp (90.1–90.5◦C); 1H NMR
(400 MHz, CDCl3) δ 7.41 (ddd, J = 8.9, 7.4, 1.8Hz, 2H), 7.38–
7.29 (m, 2H), 7.18–7.10 (m, 1H), 6.58 (dd, J = 5.7, 2.2Hz, 2H),
3.86 (s, 3H), 3.81 (s, 3H).
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FIGURE 4 | Pro-apoptotic effect of compound 8a on MCF-7 cells. (A) Apoptotic assay by Hoechst 33258. MCF-7 cells were treated with compound 8a at 0.15, 0.3,

and 0.6µM for 24 h, and then cells were stained with Hoechst 33258 and visualized under a fluorescent microscope. (B) Apoptotic assay by flow cytometry. MCF-7

cells were treated with compound 8a at 0.15, 0.3, and 0.6µM for 24 h. Then cells were stained with Annexin V-FITC/PI and were detected by flow cytometry analysis.

FIGURE 5 | Effects of 8a on the expressions of Bcl-2 (A), Bax (B) and the expression ratio (C) in MCF-7 cells. The cells were treated with different concentrations

(0.15, 0.3, and 0.6µM) for 24 h; β-actin served as an internal control. All date were represented as mean ± SD (n = 3). **p < 0.01, compared with control group.

2′-isocyano-2,4,5′-trimethoxy-1,1′-biphenyl (7j)
Yellow solid, Yield 80%; Mp (104.6–104.9◦C); 1H NMR (400
MHz, CDCl3) δ 7.35 (d, J = 8.4Hz, 1H), 7.14 (d, J = 8.9Hz, 1H),
6.88–6.79 (m, 2H), 6.58 (dd, J = 5.4, 2.3Hz, 2H), 3.86 (s, 3H),
3.82 (s, 6H).

2-isocyano-3′,4′-methylenedioxy-4-methoxy-1,1′-biphenyl
(7k)
Yellowish-white solid, Yield 75%; Mp (120.6–120.9◦C); 1HNMR
(400 MHz, CDCl3) δ 7.28 (d, J = 8.4Hz, 1H), 7.02–6.86 (m, 5H),
6.02 (s, 2H), 3.85 (s, 3H).

2-isocyano-4-methoxy-1,1′-biphenyl (7l)
Yellow solid, Yield 78%; Mp (117.3–117.6◦C); 1H NMR
(400 MHz, CDCl3) δ 7.53–7.43 (m, 4H), 7.43–7.36
(m, 1H), 7.33 (d, J = 9.0Hz, 1H), 7.05–6.97 (m, 2H),
3.86 (s, 3H).

2-isocyano-4,4′-dimethoxy-1,1′-biphenyl (7m)
Yellowish brown solid, Yield 83%; Mp (102.4–102.8◦C); 1H
NMR (400 MHz, CDCl3) δ 7.44–7.37 (m, 2H), 7.30 (d,
J = 9.0Hz, 1H), 6.99 (d, J = 9.0Hz, 4H), 3.85 (d,
J = 4.0Hz, 6H).
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2-isocyano-2′,4-dimethoxy-1,1′-biphenyl (7n)
White solid, Yield 82%; Mp (125.5–126◦C); 1H NMR (400 MHz,
CDCl3) δ 7.48–7.34 (m, 1H), 7.33–7.17 (m, 2H), 7.08–6.94 (m,
4H), 3.84 (d, J = 5.4Hz, 6H).

2-isocyano-2′,4,4′-trimethoxy-1,1′-biphenyl (7o)
Yellowish-white solid, Yield 80%; Mp (105.9–107.3◦C); 1HNMR
(400 MHz, CDCl3) δ 7.26 (d, J = 1.7Hz, 1H), 7.12 (d, J = 8.9Hz,
1H), 7.01–6.93 (m, 2H), 6.61–6.53 (m, 2H), 3.90–3.79 (m, 9H).

2-isocyano-3′,4′-methylenedioxy-4,5-dimethoxy-1,1′-

biphenyl
(7p)
Brown solid, Yield 84%; Mp (171.7–172.3◦C); 1H NMR (400
MHz, CDCl3) δ 6.99–6.86 (m, 4H), 6.80 (s, 1H), 6.02 (s, 2H), 3.91
(d, J = 2.5Hz, 6H).

2-isocyano-4,5-dimethoxy-1,1′-biphenyl (7q)
Yellowish-white solid, Yield 82%; Mp (139.4–139.9◦C); 1HNMR
(400MHz, CDCl3) δ 7.27 (s, 1H), 7.01 (s, 1H), 3.85 (d, J = 3.7Hz,
5H), 7.58–7.47 (m, 3H), 7.47–7.39 (m, 1H).

2-isocyano-4,4′,5-trimethoxy-1,1′-biphenyl (7r)
Yellowish brown solid, Yield 84%;Mp (102.7–103.7◦C); 1HNMR
(400 MHz, CDCl3) δ 7.43 (d, J = 8.7Hz, 2H), 7.00 (d, J = 8.7Hz,
2H), 6.93 (s, 1H), 6.82 (s, 1H), 3.92 (d, J = 1.5Hz, 6H), 3.86
(s, 3H).

2-isocyano-2′,4,5-trimethoxy-1,1′-biphenyl (7s)
Yellow solid, Yield 83%; Mp (103–103.6◦C); 1HNMR (400 MHz,
CDCl3) δ 7.44–7.35 (m, 1H), 7.28–7.20 (m, 1H), 7.09–6.98 (m,
2H), 6.94 (s, 1H), 6.82 (s, 1H), 3.94–3.82 (m, 9H).

2-isocyano-2′,4,4′,5-tetramethoxy-1,1′-biphenyl (7t)
Yellowish-white solid, Yield 82%; Mp (123.4–123.9◦C); 1HNMR
(400 MHz, CDCl3) δ 7.15 (d, J = 8.9Hz, 1H), 6.92 (s, 1H), 6.79
(s, 1H), 6.57 (dq, J = 4.2, 2.4Hz, 2H), 3.91 (s, 3H), 3.88 (s, 3H),
3.86 (s, 3H), 3.82 (s, 3H).

Representative Procedure for the Synthesis of

Compounds 8a-8n
A mixture was produced of 2-isocyanobiphenyls derivatives (0.5
mmol), benzoyl peroxide (0.6 mmol), AcONa (1.0 mmol) in CCl4
(2mL) under an atmosphere of N2. The reaction was stirred
under reflux until complete consumption of starting material,
monitored by TLC (about 16h). The solution of the crude product
was extracted with ethyl acetate. The organic layers were washed
with a saturated solution of NaHCO3 and dried over Na2SO4

and evaporated to dryness. The residue was purified by column
chromatography with silica gel (200–300 mesh) to afford the
product 6-trichloromethylphenanthridine.

2,3-methylenedioxy-8,9-methylenedioxy-6-

(trichloromethyl)phenanthridine
(8a)
Yellow solid, Yield 40%; Mp (198.7–199.6◦C); 1H NMR (400
MHz, CDCl3): δ 8.23 (s, 1H), 7.77 (s, 1H), 7.67 (s, 1H), 7.53
(s, 1H), 6.18 (d, J = 8.5Hz, 4H); 13C NMR(101 MHz, DMSO):

δ 151.43, 150.27, 149.97, 149.09, 148.77, 147.57, 133.32, 129.68,
128.98, 115.89, 107.21, 104.01, 103.18, 102.90, 101.57, 100.33;
HRMS (ESI)m/z 383.9592 (M+H).

2,3-methylenedioxy-6-(trichloromethyl)phenanthridine (8b)
Yellowish solid, Yield 39%; Mp (175.4–176.5◦C); 1H NMR(400
MHz, CDCl3): δ 8.92 (d, J = 8.4Hz, 1H), 8.49 (d, J = 8.2Hz,
1H), 7.91–7.78 (m, 2H), 7.68 (t, J = 7.6Hz, 1H), 7.60 (s, 1H), 6.19
(s, 2H); 13C NMR(101 MHz, DMSO): δ 150.59, 150.37, 150.29,
137.46, 134.81, 131.31, 127.60, 127.04, 124.18, 121.88, 119.36,
107.77, 103.08, 100.50; HRMS (ESI)m/z 339.9696 (M+H).

2,3-methylenedioxy-8-methoxy-6-

(trichloromethyl)phenanthridine
(8c)
Brown solid, Yield 41%; Mp (93.8–95.0◦C); 1H NMR(400 MHz,
CDCl3) δ 8.12–8.05 (m, 8H), 7.80 (s, 1H), 7.67 (t, J = 7.5Hz,
4H), 6.17 (s, 2H), 4.01 (s, 3H); 13C NMR(101 MHz, DMSO)
δ 167.67, 163.08, 162.77, 135.60, 134.08, 133.34, 131.07, 130.82,
129.93, 129.87, 129.78, 129.70, 129.31, 129.01, 128.45, 124.97;
HRMS (ESI)m/z 369.9804 (M+H).

2,3-methylenedioxy-10-methoxy-6-
(trichloromethyl)phenanthridine(8d)
Yellow solid; Yield 38%; Mp (219.7–222.3◦C); 1H NMR (400
MHz, DMSO) δ 7.95 (d, J = 6.3Hz, 1H), 7.81 (t, J = 8.3Hz, 1H),
7.59 (d, J = 3.6Hz, 2H), 7.31 (t, J = 7.8Hz, 1H), 6.32 (s, 2H), 3.69
(s, 3H); HRMS (ESI)m/z 369.9804 (M+H).

2-methoxy-6-(trichloromethyl)phenanthridine (8e)
Yellowish-white solid; Yield 37%; Mp (119–120.9◦C); 1H NMR
(400 MHz, CDCl3): δ 8.96 (d, J = 8.2Hz, 1H), 8.65 (d, J =

8.4Hz, 1H), 8.19 (d, J= 9.0Hz, 1H), 7.94–7.83 (m, 2H), 7.80–7.71
(m, 1H), 7.42 (dd, J = 9.0, 2.7Hz, 1H), 4.05 (s, 3H); 13C NMR
(101 MHz, DMSO): δ 160.62, 149.93, 135.31, 134.27, 132.51,
131.38, 128.05, 127.82, 126.70, 124.59, 120.53, 120.27, 104.00,
98.71, 56.46; HRMS (ESI)m/z 325.9901 (M+H).

8,9-methylenedioxy-3-methoxy-6-

(trichloromethyl)phenanthridine
(8f)
Brown solid; Yield 32%; Mp (197.5–197.8◦C); 1H NMR (400
MHz, CDCl3) δ 8.36–8.19 (m, 2H), 7.91 (s, 1H), 7.59 (d, J
= 2.7Hz, 1H), 7.35 (dd, J = 9.1, 2.7Hz, 1H), 6.20 (s, 2H),
4.00 (s, 3H); 13C NMR (101 MHz, DMSO): δ 160.32, 151.87,
141.76, 133.80, 124.77, 120.86, 119.65, 115.39, 109.96, 108.77,
104.45, 103.88, 103.25, 101.29, 100.64, 56.08; HRMS (ESI) m/z
369.9798 (M+H).

3-methoxy-6-(trichloromethyl)phenanthridine (8g)
Yellow solid; Yield 26%; Mp (175.1–175.3◦C); 1H NMR (400
MHz, CDCl3): δ 8.93 (d, J = 8.7Hz, 1H), 8.62 (d, J = 8.4Hz, 1H),
8.48 (d, J = 9.1Hz, 1H), 7.90–7.81 (m, 1H), 7.72–7.63 (m, 2H),
7.44–7.36 (m, 1H), 4.02 (s, 3H). 13C NMR (101 MHz, DMSO):
δ 160.81, 152.92, 142.01, 135.11, 131.94, 127.91, 126.82, 124.58,
123.65, 120.95, 119.09,119.06, 110.67, 98.60, 56.13. HRMS (ESI)
m/z 325.9899 (M+H).
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3,8-dimethoxy-6-(trichloromethyl)phenanthridine (8h)
Yellow solid; Yield 40%; Mp (146.7–147.2◦C); 1H NMR (400
MHz, CDCl3): δ 8.52 (d, J = 9.2Hz, 1H), 8.39 (d, J = 9.1Hz, 1H),
8.28 (d, J = 2.6Hz, 1H), 7.63 (d, J = 2.7Hz, 1H), 7.50 (dd, J =
9.2, 2.6Hz, 1H), 7.38 (dd, J = 9.1, 2.7Hz, 1H), 4.01 (d, J = 2.4Hz,
6H); 13C NMR (101 MHz, DMSO): δ 160.06, 157.07, 151.84,
141.12, 129.60, 125.46, 124.08, 122.20, 121.18, 120.32, 119.35,
110.40, 108.81, 56.07, 55.91; HRMS (ESI)m/z 356.0009 (M+H).

3,10-dimethoxy-6-(trichloromethyl)phenanthridine (8i)
Yellow solid; Yield 37%; Mp (149.9–150.9◦C). 1H NMR (400
MHz, CDCl3): δ 9.46 (d, J = 9.5Hz, 1H), 8.60 (d, J = 8.5Hz, 1H),
7.72–7.56 (m, 2H), 7.41–7.29 (m, 2H), 4.16 (s, 3H), 4.02 (s, 3H);
13C NMR (101 MHz, DMSO) δ 159.78, 157.90, 152.59, 142.64,
129.33, 127.12, 125.28, 120.88, 120.27, 120.03, 118.54, 113.19,
110.92, 56.63, 55.97; HRMS (ESI)m/z 356.0009 (M+H).

3,8,10-trimethoxy-6-(trichloromethyl)phenanthridine (8j)
Yellow solid; Yield 35%; Mp (97–97.3◦C); 1H NMR (400 MHz,
CDCl3): δ 7.98 (d, J = 2.3Hz, 1H), 7.70–7.60 (m, 3H), 7.35 (dd, J
= 9.5, 2.9Hz, 1H), 4.12 (s, 3H), 4.01 (d, J = 2.9Hz, 6H); 13CNMR
(101 MHz, DMSO): δ 162.77, 159.25, 159.09, 157.44, 135.58,
130.82, 129.78, 129.00, 128.38, 120.61, 120.42, 110.71, 103.67,
101.47, 56.84, 55.95, 55.92; HRMS (ESI)m/z 386.0112 (M+H).

8,9-methylenedioxy-6-(trichloromethyl)phenanthridine (8k)
Yellowish solid; Yield 32%; Mp (164.4–165◦C); 1H NMR (400
MHz, CDCl3) δ 8.43–8.36 (m, 1H), 8.30 (s, 1H), 8.27–8.20
(m, 1H), 8.02 (s, 1H), 7.73 (tt, J = 7.1, 5.3Hz, 2H), 6.24 (d,
J = 16.4Hz, 2H); 13C NMR (101 MHz, DMSO) δ 151.82,
151.22, 148.15, 140.03, 133.36, 130.68, 129.57, 125.30, 123.39,
118.56, 116.49, 114.73, 104.69, 103.41, 101.84; HRMS (ESI) m/z
339.9697 (M+H).

2,3-dimethoxy-6-(trichloromethyl)phenanthridine (8l)
Yellow solid; Yield 43%; Mp (174.5–176.1◦C); 1H NMR (400
MHz, CDCl3): δ 8.95 (d, J = 8.6Hz, 1H), 8.58 (d, J = 8.4Hz,
1H), 8.16–8.08 (m, 4H), 7.86 (s, 2H), 7.74–7.58 (m, 4H), 7.49
(t, J = 7.8Hz, 4H), 4.16 (s, 3H), 4.11 (s, 3H); 13C NMR (101
MHz, DMSO): δ 167.75, 151.93, 151.86, 133.29, 131.16, 129.69,
128.99, 127.70, 126.77, 124.17, 119.98, 119.33, 110.56, 102.99,
56.68, 56.30; HRMS (ESI)m/z 356.0010 (M+H).

2,3,8-trimethoxy-6-(trichloromethyl)phenanthridine (8m)
Yellow solid; Yield 39%; Mp (125.5–126.9◦C); 1H NMR (400
MHz, CDCl3): δ 8.48 (d, J = 9.1Hz, 1H), 8.29 (d, J = 2.5Hz,
1H), 7.77 (s, 1H), 7.62 (s, 1H), 7.50 (dd, J = 9.2, 2.6Hz, 1H), 4.14
(s, 3H), 4.09 (s, 3H), 4.02 (s, 3H); 13C NMR (101 MHz, DMSO):
δ 157.06, 152.00, 151.26, 149.05, 135.36, 129.09, 128.95, 126.01,
121.63, 120.63, 120.29, 110.36, 108.35, 102.47, 56.64, 56.23, 55.89;
HRMS (ESI)m/z 386.0115 (M+H).

8,10-dimethoxy-6-(trichloromethyl) phenanthridine (8n)
Yellow solid; Yield 39%; Mp (161.3–162◦C); 1HNMR (400 MHz,
CDCl3): δ 9.45–9.38 (m, 1H), 8.28–8.21 (m, 1H), 8.01 (d, J =
2.3Hz, 1H), 7.71 (dd, J = 6.5, 3.5Hz, 2H), 7.00 (d, J = 2.4Hz,
1H), 4.13 (s, 3H), 4.02 (s, 3H); 13C NMR (101 MHz, DMSO):
δ 160.02, 158.37, 151.25, 139.93, 130.95, 130.05, 128.51, 127.15,

124.74, 122.76, 119.71, 103.62, 101.98, 99.01, 56.93, 56.04; HRMS
(ESI)m/z 356.0007 (M+H).

Pharmacology
Cell Culture
A549, PC3, MCF-7, HepG2 and Hela cell lines were obtained
from the Chinese Academy of Sciences Cell Bank. A549, Hela
and PC3 were cultured in RPMI-1640 medium supplemented
with 10% FBS, MCF-7 cells were maintained in MEM medium
supplemented with 10% FBS, HepG2 cells were cultured in
DMEM medium supplemented with 10% FBS. All the cell lines
were cultured at humidified atmosphere containing 5% CO2 at
37◦C. The stock solutions (20mM) of phenanthridine derivatives
were prepared in DMSO and added at desired concentrations to
the cell culture. DMSO concentration did not exceed 1:1,000 in
the final culture.

MTT Assay
Cytotoxic activities of the phenanthridine derivatives was
evaluated by MTT assay. The stock solutions of phenanthridine
derivatives were diluted with culture medium. The cells were
seeded in 96-well plates at a density 5 × 103 cells per well and
incubated until confluency 90–95%, then each well was treated
with 100 µL medium containing the desired concentrations
of phenanthridine derivatives and incubated for 48 h. 20 µL
MTT working solution (5 mg/mL) was then added to each
well and incubated for another 4 h. At the end of incubation,
the medium was carefully removed, and 200 µL DMSO was
added. The optical density at 490 nm and 630 nm were then
measured with a microplate reader (MODEL). The percentage
of cell growth inhibition was calculated with the following
equation: % inhibition = [1–(Sample group OD490 - Sample
group OD630)/(Control group OD490-Control group OD630)] ×
100%. The IC50 values were calculated with Origin 7.5 software,
and standard deviations of the IC50 values were obtained from at
least 3 independent experiments.

DNA Top I and IIα Relaxation Assay In vitro
The human Top I and IIα inhibitory activity was determined by
agarose gel electrophoresis. Reaction mixture was prepared with
0.5 µg pBR322 supercoiled DNA (TaKaRa) and human Top I
(TaKaRa) or IIα (TopoGEN) enzyme in the absence or presence
of compound in the Top reaction buffer (Top I: DNATop I buffer
2 µL, DNA Top I 1U, 0.1% BSA 2 µL and sterile water up to 20
µL; Top IIα: DNA Top IIα buffer A 2µL, DNATop IIα buffer B 2
µL, DNA Top IIα 1U and sterile water up to 20µL). After 30min
of incubation at 37◦C, the reaction mixture was electrophoresed
on 0.8% agarose gel at 80V for 50min with TAE running buffer.
The gel was then immersed in the Genecolour I TM staining
solution for 45min and photographed under UV light.

Cell Cycle Assay
MCF-7 cells in logarithmic growth phase were seeded in 6-well
plates (6 × 105 cells/well) and incubated with different doses of
compound 8a (0, 0.15, 0.3, and 0.6µM) for 24 h. Cells were then
washed twice with cold PBS and fixed in 70% precooled ethanol at
4◦C for 12 h. After the fixation, cells were washed again with PBS
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and stained with PI/RNase A for 30min at room temperature,
and eventually subjected to flow cytometry (CytoFLEX, Beckman
Coulter). for cell cycle distribution determination.

Hoechst 33258 Staining
MCF-7 cells in logarithmic growth phase were seeded in 6-well
plates (4 × 105 cells/well) and incubated with different doses of
compound 8a (0, 0.15, 0.3, and 0.6µM) for 24 h. Cells were then
washed twice with PBS and stained with Hoechst 33258 working
solution for 30min at 37◦C under 5% CO2. The morphological
changes of apoptotic cells were observed with a fluorescence
microscope (Leica DMI 4000B) with blue filter.

Annexin V/PI Detection
MCF-7 cells in logarithmic growth phase were seeded in 6-well
plates (4 × 105 cells/well) and incubated with different doses
of compound 8a (0, 0.15, 0.3, and 0.6µM) for 24 h. After the
incubation, cells were washed with PBS, collected, resuspended
with binding buffer from the Annexin V-FITC kit (Thermo fisher
Co., USA), and then added with 5 µl annexin V-FITC and mixed
gently. After 10min of incubation, 1 µl PI was added to each
sample and mixed gently. After incubation at room temperature
for another 20min in the dark, cells were subjected to flow
cytometer (CytoFLEX, Beckman Coulter).

Western Blotting
MCF-7 cells were incubated with different doses of compound
8a (0, 0.15, 0.3, and 0.6µM) for 24 h, and then total cell
proteins were extracted with RIPA buffer supplemented with
1:100 protease inhibitor (info) and phosphatase inhibitor (info).
Sample protein concentrations were determined with BCA assay
(ComWin Biotech Co., Beijing, China), then equal amounts of
protein (30 µg) were mixed with sampling buffer and denatured
for 5min at 100◦C. Resulting samples were then subjected to
Sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-
PAGE). After electrophoresis, proteins were transferred to
polyvinylidene difluoride (PVDF) membrane (Millipore) and

blocked with 5% fat-free dry milk in 1×Tris-buffered saline
(TBST) for 2 h at room temperature. Membranes were then
probed with Bcl-2 (rabbit, 1:1,000, Santa Cruz, CA), Bax (rabbit,
1:1,000, Santa Cruz, CA) and β-actin antibodies at 4◦C overnight.
The membranes were then washed with TBST three times and
incubated with anti-rabbit secondary antibody (Santa Cruz, CA)
and visualized with ECL-detecting reagents (ComWin Biotech
Co., Beijing, China). The images were obtained from 6000 pro
(Clinx Science Instruments Co., Ltd., Shanghai, China) and
analyzed with Image Studio Lite software.

Statistical Analysis
Results were expressed as mean ± standard deviation (SD) of
three independent experiments performed in triplicates (n =

3). SPSS 19.0 software were used for statistical analysis and
the means between two groups were compared by one way
analysis of variance (ANOVA) with Dunnett’s test, P < 0.05 was
considered significant.
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Diverse Mechanisms of BRAF
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Stephen A. Luebker* and Scott A. Koepsell

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States

BRAF inhibitor therapy may provide profound initial tumor regression in metastatic

melanoma with BRAF V600 mutations, but treatment resistance often leads to disease

progression. A multi-center analysis of BRAF inhibitor resistant patient tissue samples

detected genomic changes after disease progression including multiple secondary

mutations in the MAPK/Erk signaling pathway, mutant BRAF copy number gains, and

BRAF alternative splicing as the predominant putative mechanisms of resistance, but

41.7% of samples had no known resistance drivers. In vitro models of BRAF inhibitor

resistance have been developed under a wide variety of experimental conditions to

investigate unknown drivers of resistance. Several in vitro models developed genetic

alterations observed in patient tissue, but others modulate the response to BRAF

inhibitors through increased expression of receptor tyrosine kinases. Both secondary

genetic alterations and expression changes in receptor tyrosine kinases may increase

activation of MAPK/Erk signaling in the presence of BRAF inhibitors as well as activate

PI3K/Akt signaling to support continued growth. Melanoma cells that develop resistance

in vitro may have increased dependence on serine or glutamine metabolism and

have increased cell motility and metastatic capacity. Future studies of BRAF inhibitor

resistance in vitro would benefit from adhering to experimental parameters that reflect

development of BRAF inhibitor resistance in patients through using multiple cell lines,

fully characterizing the dosing strategy, and reporting the fold change in drug sensitivity.

Keywords: melanoma, BRAF inhibitor, vemurafenib, dabrafenib, cell line, drug resistance, metabolism, invasion

INTRODUCTION

Melanomamakes up 6% of estimated new cancer cases inmen and 4% in women, and incidence has
been increasing since 1975 (1). BRAF mutations occur in more than 50% of cutaneous melanomas,
and BRAF V600E occurs most frequently, which confers constitutive monomeric activation of
BRAF kinase activity (2, 3). The identification of oncogenic BRAF signaling increased interest
in targeted inhibitors toward mutant BRAF variants, and the FDA has approved two targeted
BRAF inhibitors, vemurafenib in 2011 and dabrafenib in 2013, for treatment of non-resectable
BRAF V600E/K mutant melanoma. Despite the rapid response and short-term increases in patient
survival, resistance to BRAF inhibition persists. In 2017, combination therapy of dabrafenib plus
the MEK inhibitor, trametinib was FDA approved for treatment of melanoma to forestall the
development of BRAF inhibitor resistance. This review summarizes the potential events driving
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BRAF inhibitor resistance detected in patient tissue and contrasts
them with in vitro studies of BRAF inhibitor resistance through
comparison of methods and results.

BRAF Inhibitor Resistance in Patients With
Melanoma
Phase-3 clinical trials of vemurafenib treatment for BRAF
V600E/K melanoma demonstrated improvements in median
progression-free survival relative to dacarbazine (6.9 months
vs. 1.6 months) and increased median overall survival (13.6
vs. 9.7 months) (4). Phase-3 clinical trials of dabrafenib
treatment for BRAFV600E melanoma observed improvements
in median progression free survival relative to dacarbazine
(5.1 vs. 2.7 months) (5). Phase-3 clinical trials of dabrafenib
and trametinib combination therapy vs. dabrafenib alone found
increased median progression-free survival (11.1 vs. 8.8 months)
and increased median overall survival (25.1 vs. 18.7 months)
(6). Treatment with BRAF/MEK inhibitors often provides
remarkable disease regression initially, but resistance to therapy
frequently develops within 12 months as indicated by median
progression-free survival.

BRAF inhibitor resistance in melanoma is supported through
recovery of MAPK/Erk signaling or activation of PI3K/Akt
signaling. These pathways may be activated through mutations,
copy-number alterations, or changes in expression. A summary
diagram including these signaling pathways and a breakdown
of common alterations supporting BRAF inhibitor resistance are
illustrated in Figure 1. A multi-center analysis of BRAF inhibitor
resistance combining three comprehensive genome sequencing
studies of pre-treatment and post-progression cases of melanoma
identified resistance driving events in 58.3% (77/132) of samples
obtained from 100 individuals, but failed to identify any known
mechanism of resistance in the remaining 41.7% of samples
(7). Johnson et al. provide a complete breakdown of the
frequency of the resistance mechanisms within this combined
data set. Multiple resistance mechanisms were observed within
individual samples and unique resistance mechanisms were
observed between samples from the same patient. BRAF
amplification and alternative splicing were observed most
frequently followed by NRAS mutations and MEK1/2 mutations.
Mutations in the PI3K/Akt pathway are less frequently observed
in patient samples. Despite increased median progression-free
survival when treating patients with dabrafenib plus trametinib
relative to dabrafenib alone, treatment resistance still develops.
Patients treated with dabrafenib/trametinib combination therapy
developed alterations in the same genes that support single-agent
resistance including MEK1/2 mutations, BRAF amplification,
BRAF alternative splicing, and NRAS mutations between pre-
treatment and post-progression samples (8, 9). Clinical studies
of BRAF inhibitor resistance leave an incomplete picture of the
diverse set of mechanisms supporting BRAF inhibitor resistance.
This review summarizes recent studies in which BRAF inhibitor
resistance was induced stochastically in cell lines via prolonged
exposure to a BRAF inhibitor. Major mechanisms identified in
these studies are included in Figure 1 and discussed in more
detail in this review.

BRAF Inhibitor Resistance in Melanoma
Cell Lines
Receptor Tyrosine Kinase Expression
Receptor tyrosine kinases may act as upstream activators
of MAPK/Erk signaling, and increased expression in BRAF
inhibitor resistant cells has been described in multiple studies.
Shaffer et al. demonstrated that resistance to BRAF inhibitors
in WM989 and WM983B cells occurs through non-heritable,
transient expression of multiple resistance-associated genes
including receptors like AXL receptor tyrosine kinase (AXL),
epidermal growth factor receptor (EGFR), fibroblast growth
factor receptor 1 (FGFR1), and platelet-derived growth factor
receptor beta (PDGFRB) among others (10). Other studies
have detected expression changes in these genes but do not
point to a single pattern of expression change. Nazarian et al.
demonstrated that increased expression of PDGFRB conferred
resistance to M229 and M238 cells, but Jazirehi et al. found
that resistant M238 cells had increased expression of EGFR and
decreased expression of PDGFRB (11, 12). Shao et al. found
resistant WM793 and M238 cells both had increased PDGFRB
but decreased Insulin-like growth factor 1 receptor (IGF1R)
expression (13). Increased PDGFRB expression has also been
described in resistant A375 cells (14). In two other studies
using A375 cells, increased expression of fibroblast growth
factor receptor 3 (FGFR3) expression was associated with BRAF
inhibitor resistance (15, 16). Resistant A375 cells have also been
shown to increase expression of IGF1R while resistant SKMEL28
cells increased expression of PDGFRB (17). In a separate
study, resistant SKMEL28 cells had increased expression of both
EGFR and PDGFRB (18). Jazirehi et al. found that resistant
M249 cells had increased expression of EGFR, KIT proto-
oncogene receptor tyrosine kinase (KIT), MET proto-oncogene
receptor tyrosine kinase (MET), and PDGFRB with decreased
IGF1R (11). Resistance-associated gene expression may occur
through loss of SOX10 expression and gain of JUN, AP-1,
and TEAD transcription factor activity (10). EGFR expression
may be regulated through MITF expression, but both increased
and decreased MITF expression have been observed in BRAF
inhibitor resistant cell lines (19, 20). Sun et al. demonstrated
that miR-7 was significantly downregulated in resistant A375 and
MEL-CV cells, and exogenous expression could reduce resistance
with EGFR, IGF1R, CRAF, and AXL as potential targets (21).
Overall, changes in growth factor expression are inconsistent
between studies using the same cell lines. Increased expression
of any growth factor receptor that activates MAPK/Erk may
potentially drive resistance in melanoma.

Secondary MAPK/Erk Mutations
In addition to upstream activation of MAPK/Erk through
receptor tyrosine kinases, increased MAPK/Erk signaling
may be achieved through direct alteration to members of
the RAS/RAF/MEK/Erk signaling cascade. Secondary BRAF
mutations and alternative BRAF splicing have been shown to
induce vemurafenib resistance in multiple cell lines (19, 22).
In a patient derived xenograft model, increased BRAF V600E
expression sustained resistance, and cells demonstrated
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FIGURE 1 | Mechanisms supporting BRAF inhibitor resistance in melanoma. Receptor tyrosine kinases (RTK) include AXL receptor tyrosine kinase (AXL), epidermal

growth factor receptor (EGFR), fibroblast growth factor receptor 1 (FGFR1), fibroblast growth factor receptor 3 (FGFR3), platelet-derived growth factor receptor beta

(PDGFRB), MET proto-oncogene receptor tyrosine kinase (MET), and KIT proto-oncogene receptor tyrosine kinase (KIT). Growth factors (GF) correspond to the

specific receptor tyrosine kinase. The MAPK/Erk pathway includes the Ras GTPases (N/K/HRAS), Serine/threonine-protein kinase B-raf (BRAF), RAF proto-oncogene

serine/threonine-protein kinase (CRAF), mitogen-activated and extracellular signal-regulated kinase kinase 1 or 2 (MEK1/2), extracellular signal-regulated kinase 1 or 2

(ERK1/2), cancer Osaka thyroid (COT), and dual specificity protein phosphatase 4 (DUSP4). The PI3K/Akt pathway includes phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit alpha (PIK3CA), phosphatidylinositol 3-kinase regulatory subunit 1 or 2 (PIK3R1/2), phosphatidylinositol 4,5-bisphosphate (PIP2),

phosphatidylinositol 3,4,5-trisphosphate (PIP3), phosphatase and tensin homolog (PTEN), AKT serine/threonine kinase 1 or 2 (AKT1/2), mammalian target of

rapamycin complex 1 (mTORC1). Src signaling factors include SRC proto-oncogene non-receptor tyrosine kinase (SRC) and focal adhesion kinase 1 (FAK1).

Transcription factors include signal transducer and activator of transcription 3 (STAT3), TEA domain transcription factor protein family (TEAD), activator protein 1

complex (AP-1), Jun proto-oncogene AP-1 transcription factor subunit (JUN), SRY-box 10 (SOX10), melanocyte inducing transcription factor (MITF), cyclic AMP

responsive element binding protein family (CREB), FOS like 1 AP-1 transcription factor subunit (FOSL1), GLI family zinc finger 1 or 2 (GLI1/2), transforming growth

factor beta (TGFβ), SMAD family member 3 (SMAD3). Cell cycle regulators included cyclin D1 (CCND1), cyclin dependent kinase 4 or 6 (CDK4/6). Non-canonical Wnt

signaling mediators include receptor like tyrosine kinase (RYK), frizzled class receptor 7 (FZD7), and Wnt family member 5A (WNT5A).

drug-dependence for continued proliferation (23). Resistant
tumors derived from 1205LU cells in a mouse xenograft model
contained distinct alternative BRAF splicing events in two
tumors and HRAS Q61K mutation in one tumor (24). Other
alterations within RAS/RAF/MEK/Erk cascade have been
observed in SKMEL28, A375, COLO829, and M249 cells,
including COT overexpression and NRAS Q61K mutation
(12, 17). Dabrafenib resistant A375 and MEL-RMU cells were
found to have mutations in MEK1 and NRAS as previously

described in vemurafenib resistant cells (25, 26). NRAS
mutations may also make cell lines cross-resistant to MEK
inhibitors due to elevated PI3K/Akt signaling (27). Resistant
A375 cells were found to have an NRAS G13R mutation, high
expression of CRAF, and increased Akt phosphorylation (28).
Resistant A375 cells with a KRAS K117N also had elevated
expression of CRAF and activation of Akt (29). Resistant M249
cells and M376 cells with secondary NRAS mutations had
increased Akt activation (30). Resistant WM793 cells with
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secondary NRAS Q61K mutation require CRAF expression and
SHOC2 scaffold protein to re-activate MAPK/Erk (31). In vitro
models of BRAF inhibitor resistance indicate that secondary
mutations may support increased activation of MAPK/Erk in
the presence of inhibitor or support sustained growth through
activation of PI3K/Akt signaling.

Alternative Resistance Pathways
Downstream effectors of PI3K/Akt activation promote survival of
resistant cells. PI3K/Akt activation upregulates AEBP1 through
increased CREB binding, and increased AEBP1 leads to IκBα

degradation and NF-κB activation (32). A375, SKMEL28, and
WM239 cells resistant to either dabrafenib or vemurafenib
all had increased expression of Mcl-1 relative to their pre-
treatment counterparts, which promotes cell survival through
inhibition of apoptosis, and Mcl-1 expression may be regulated
by STAT, cAMP, and NF-κB binding sites (33). Growth factor
receptors may also cross activate PI3K/Akt separately or
in addition to MAPK/Erk activation. Resistance induced in
SKMEL28 cells increased expression of EGFR and activated
Akt (34). Resistant LM17 cells had increased IGF1R expression
as well as increased Akt phosphorylation (35). Increased
expression of WNT5A in A375 and MEL-264 was correlated
with increased phosphorylation of Akt and activation of RYK
and FZD7 receptors supporting non-canonical Wnt signaling
(36). PI3K/Akt activation in multiple BRAF inhibitor resistant
melanoma cell lines also up-regulates of FOSL1, which drives
secretion of multiple factors from tumor cells that support
surrounding tumor growth (37). Melanoma cells may support
the resistance of surrounding cells in addition to other stromal
cells. Hepatocyte growth factor (HGF) secretion by surrounding
stromal cells in co-culture supports tumor growth in the
presence of BRAF inhibitors through activation of the MET
receptor tyrosine kinase and downstream MAPK/Erk activation
(38). The adaptive resistance of melanoma cells may be
supported through both neighboring cancer and non-cancer
cells. MAPK/Erk signaling and/or PI3K/Akt signaling may be
activated in BRAF inhibitor resistant cells frequently through
common mechanisms.

Phenotypic Changes in BRAF Inhibitor
Resistant Cell Lines
Increased Motility and Invasion
Resistant cell lines acquire a more invasive phenotype
characterized by increased cell motility and metastatic capacity.
Multiple studies have noted increased invasive capacity of BRAF
inhibitor resistant melanoma cell lines, and recent proteomic
studies of melanoma cell lines before and after developing
BRAF inhibitor resistance have specifically characterized
differences in kinase expression and changes in phosphorylation.
Quantitative phosphoproteomics of vemurafenib resistant LM-
MEL-28 cells demonstrated increased activation of MAPK/Erk
signaling and de-phosphorylation of key cytoskeletal regulators
(39). Activity-based protein profiling of kinases in WM164,
WM793, A375, and 1205LU cells detected increased ATP
uptake by FAK1, SLK, LYN, PRKDC, and KCC2D, but overall
changes between cell lines showed differences in differential

phosphorylation (40). Phospho-array analysis and quantitative
phosphoproteomics identified increased EGFR phosphorylation
in vemurafenib resistant A375 and COLO829 cell lines leading to
Src family kinase phosphorylation and STAT3 activation, which
was associated with increased invasion and phosphorylation
of cytoskeletal proteins (41). The increase in cytoskeletal
remodeling also has downstream effects in cell signaling. For
example, actin remodeling has been shown to increase YAP/TAZ
nuclear localization in BRAF inhibitor resistant melanoma
cells, and YAP/TAZ nuclear localization increases expression of
EGFR, AKT, and MYC (42). The expression of receptor tyrosine
kinases is associated with the invasive behavior of melanoma
cell lines through increased metalloprotease expression.
EGFR signaling was found to drive resistance in SKMEL28
cells, and resistance was also associated with upregulation of
MMP2 and downregulation of the MMP regulator, TIMP2
(43). Increased expression of EGFR in SKMEL28 cells was
also correlated with increased activation of Non-canonical
Hedgehog Signaling (GLI1, GLI2, TGFβ, and SMAD3), and
inhibition of GLI1 and GLI2 increased vemurafenib sensitivity
while decreasing invasiveness (44). Dabrafenib resistant A375
cells had increased expression of epithelial to mesenchymal
transition markers including CD90 and decreased expression of
E-cadherin with increased cell motility (45). A separate study of
dabrafenib resistant A375 cells also detected increased secretion
of VEGFA and MMP9, which was associated with increased
invasiveness (46).

Metabolism
Alterations in the metabolism of BRAF inhibitor resistant cells
have also been described, including increased dependence on
serine or glutamine. Vemurafenib resistant SKMEL28 were
dependent on serine metabolism, and knockout of PHGDH or
depletion of serine in the media reduced viability of resistant cells
(47). Additionally, vemurafenib resistantM229 andM249 cells or
vemurafenib/selumetinib dual treatment resistantM249 cells had
increased glutamine uptake and were dependent on glutamine
for survival independently of the underlying mechanism of
resistance (48). More complex metabolic reprogramming may
occur during the development of BRAF inhibitor resistance.
Gene set enrichment of KEGG pathways using quantitative
phosphoproteomic analysis of vemurafenib resistant LM-MEL-
28 cells detected enrichment inDNA replication and cell cycle but
decreases in glycolysis/gluconeogenesis, fatty acid metabolism,
valine/leucine/isoleucine degradation, pyruvate metabolism, and
tryptophan metabolism (39).

Future Directions of in vitro Research
McDermott et al. have recently published a general review of
important considerations for developing in vitro resistance to
targeted inhibitors and chemotherapeutic agents in cancer cell
lines (49). Important considerations for in vitromodels of BRAF
inhibitor resistance in melanoma cell lines include choice of
cell line, dosing strategy, and resistant cell selection criteria.
Examples of current methods that have been applied to A375 cells
are summarized in Table 1. This review focuses on studies that
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develop resistant cell lines through drug treatment and excludes
studies of primary resistance or genetically induced resistance.

Selecting Cell Lines
The first major consideration in this type of model is the
degree of heterogeneity between cells. There is a great deal of
cell-to-cell heterogeneity in melanoma in vivo (51). Sub-clones
may harbor mutations conferring primary resistance to BRAF
inhibitors. Selection of single-cell derived clones may reduce the
heterogeneity observed within a single cell line. Studies show
that there are genetic differences between cell lines and tumors
in vivo, and only a few cell lines are most frequently used (52–
56). In vitro resistance studies would benefit from using multiple
cell lines to compare resistance mechanisms and potential novel
combination therapy outcomes. The use of multiple cell lines also
helps verify findings by highlightingmechanisms observed across
cells types as opposed to findings that are specific only to that
clone or test system.

Treatment Strategy
The treatment strategy employed to induce resistance in cell lines
in vitro may or may not represent how the drug is administered
clinically. Vemurafenib is administered as 960mg tablets twice
daily and reaches an average maximum plasma concentration
of 4.8 ± 3.34µg/ml after 8 h and 61.4 ± 22.76µg/ml after
168 h with a half-life of 34.1 ± 19.66 h (57). Dabrafenib is
administered as 150mg oral tablets twice daily and reaches
an average maximum plasma concentration of 986 ng/ml in
a median 2 h with a half-life of 5 h (58). Both dabrafenib
and vemurafenib quickly reach a high plasma concentration
and have long half-lives, which would be best represented by
continuously treating cells to develop resistance. Fofaria et al.
employed a pulsed treatment strategy, which includes a treatment
window followed by a recovery period, to generate vemurafenib
resistant cell lines (33). A pulsed treatment strategy does not
reflect how the drug is administered clinically. However, it
has been shown that lower vemurafenib plasma concentration
was significantly associated with higher likelihood of tumor
progression, and patients had high inter-individual variability
in vemurafenib plasma concentration (13.0–109.8µg/ml) (59).
Others have noted that the melanoma cell lines may become
dependent on the presence of the BRAF inhibitor for continued
growth and continuous treatment is often required, which may
potentially be mitigated through a pulsed treatment method (13,
28, 34, 60). Mechanisms regulating development of resistance
in each type of model may be different, and clear distinctions
should be made between which type of model was employed.
Data obtained from studies that use drug exposure methods
never observed in patients should be interpreted with caution.

Defining Resistance
There is no standard for defining when a cell line is drug resistant.
The selection criteria used to define treatment resistance critically
influences results. Ideally the fold change in drug sensitivity
should be reported along with the duration of drug exposure.
Treatment durations for studies of A375 cells range from 6
days to 1 year of treatment, and fold change in drug sensitivity
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ranges from 3x to more than 100x (Table 1). Correlation to drug
levels observed in patients should also be considered. Care must
also be taken when reporting drug sensitivity since common
colorimetric assays may not be accurate or reproducible due
to variations in growth rate; a cell counting based method
should be employed when possible (61, 62). Multiple studies
have observed changes in cell line growth rate after developing
treatment resistance, which may be dependent on the presence
of drug (13, 34, 47, 60). Growth rate changes may confound the
measurement of drug sensitivity between treatment resistant and
pre-treatment cells.

CONCLUSION

Although treatment with BRAF inhibitors provides rapid
response in most patients, treatment resistance persists. The
few clinical studies of BRAF inhibitor resistance in patients
indicate that genetic alterations that activate MAPK/Erk make
up half of resistance mechanisms. Preclinical studies of BRAF
inhibitor resistance in melanoma support the mechanisms
observed in patients and indicate that the development of
resistance is more complex than single mutations. In vitro
models may be very helpful in studying mechanisms in the
other half of patients with no known genetic driver of BRAF
inhibitor resistance. Overall, BRAF inhibitor resistance depends
on oncogenic signaling through reactivation of MAPK/Erk or

activation of PI3K/Akt, which may be acquired by directly
affecting genes in each pathway, by upregulation of receptor
tyrosine kinases, or by affecting downstream signaling. BRAF
inhibitor resistance increases invasiveness through changes in
phosphorylation actin cytoskeleton regulators and increased
extracellular matrix metalloprotease expression. Resistant cells
have also been shown to undergo metabolic reprogramming
characterized by increased glutamine or serine dependence.
A375 cells have been used to model BRAF inhibitor resistance
across multiple studies, but the methods and conclusions vary.
To improve preclinical in vitro research, future studies of
BRAF inhibitor resistance in melanoma should include multiple
cell lines, consider a continuous-dose treatment strategy, and
report drug sensitivity in order to facilitate better comparison
across studies.
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IPO-38 is a potential biomarker for early diagnosis of gastric cancer that we recently

identified. Although we characterized its chemical nature as a nucleosome histone,

we suspected the existence of histone modification for the IPO-38 antibody-labeled

protein. Here, we used a commercially available modified histone peptide array to

identify the type and site of histone modification labeled by the IPO-38 monoclonal

antibody. In protein array analysis, the citrulline modification of histone 3 on arginine 26

(H3R26Cit) yielded the strongest signal. Although peptidyl arginine deiminase-2 and -4

(PADI2 and PADI4, respectively) can catalyze the conversion of arginine to citrulline, we

observed that only PADI4 expression correlated with the citrulline histone modification of

H3R26Cit. Overexpression of PADI4, via transfection of a eukaryotic expression vector,

and knockdown of PADI4 gene expression, by a PADI4 CRISPR/Cas9 vector, confirmed

the crucial function of PADI4 on the increased level of H3R26Cit in gastric cancer cell

lines. By immunoprecipitation and immunoblotting, we found an interaction between

H3R26Cit and H3K27me3. Our study established the first link between the IPO-38

antigen and citrullinated histone 3, and clarified the upstream regulatory enzyme PADI4.

The new findings suggest an important role for the citrullination modification of histone in

gastric cancer biology, and should help us optimize the development of a sensitive and

specific diagnostic reagent.

Keywords: IPO-38, histone modification, citrullination, PADI4, biomarker

INTRODUCTION

Gastric cancer is a disease with high morbidity and mortality rates worldwide, especially in East
Asia. Data from GLOBOCAN 2018 show there are 1,033,701 new cases and 782,685 death cases of
gastric cancer all over the world (1). Currently, methods are limited for early diagnosis of gastric
cancer. Patients are often diagnosed with gastric cancer at an advanced stage with poor prognosis.
Therefore, early diagnosis is a key to improving the outcome of patients. Our group proposed
a candidate biomarker IPO-38 for diagnosis of gastric cancer (2). Assaying IPO-38 provides
significantly higher specificity and sensitivity (56.7 and 93.3%, respectively), over routinely used
biomarkers CEA, CA199, and CA72-4. IPO-38 has long been used as a cell proliferation nuclear
antigen (3, 4). Although we identified it as a member of the histone protein family based on mass
spectrometry, we considered that the histone was modified chemically (2).
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Protein function is specified by appropriately folded
secondary structure and post-translational modifications,
including acetylation, methylation, phosphorylation, and
citrullination (5). Histone modification plays an important
role in maintaining homeostasis. Disorders of histone
modification associate with cancer, neurological diseases, as
well as autoimmune diseases (6, 7). Histone modifications
potentially alter the electrical charge between histones and DNA
duplexes, impacting chromatin organization and transcription.
Histone modifications also affect gene regulation by modulating
binding with transcription factors (6–8). In addition, histone
modifications are involved in the formation of neutrophil
extracellular traps (NETs), a crucial process for microbe
clearance (9), which also plays a role on cancer metastasis
through protein citrullination in peripheral blood (10–12).

Specific antibody analysis and mass spectrometry are
commonly used for detection of histone modifications. However,
the number of histone-specific antibodies is limited, which
has restricted progress in studying histone modifications
and functions. Mass spectrometry potentially overcomes
the defect of insufficient antibodies to some extent, but
trypsin digestion in the sample pretreatment step often
destroys many modification sites, and ultimately reduces
sensitivity (13). In 2010, a new histone modified peptide
array was developed, promoting research to understand
the function, metabolism, and significance of histone
modifications (14–16).

To clarify the histone modification characteristics and
biological significance of the IPO-38 antigen, we used the
modified peptide array to identify the IPO-38 monoclonal
antibody-binding protein. We characterized the novel modified
histone H3, and identified that PADI4 is a key enzyme catalyzing
citrullination modification of histone 3.

MATERIALS AND METHODS

Modified Histone Peptide Array Analysis
MODifiedTM Histone Peptide Array from Active motif (Active
Motif, California, USA) is a histone modified polypeptide
chip of 59 single-site histone modifications and different
permutations in 384 dot matrixes. Each chip is divided
into left and right wings and repeating lattice arrangement.
The chip was first blocked with 5% BSA (Sangon Biotech,
Shanghai, China) for 1 h at room temperature, and then
incubated with IPO-38 monoclonal antibody (1:1000,
Thermo Fisher, Massachusetts, USA) overnight at 4◦C. The
next day, the chip was washed three times with 1×PBST
[1×PBS with 0.1% (v/v) Tween-20], and then incubated
with HRP-labeled goat anti-mouse IgM second antibody
for 1 h at room temperature (1:5000, Sangon Biotech,
Shanghai, China). After incubation, the chip was again
washed with 1×PBST three times and the signal was detected
using ECL luminescent reagent (Meilun, Shanghai China),
in a chemiluminometer (Tanon, Shanghai, China). The
histone modification sites and signal intensity analysis were
conducted with the special software provided by Active
Motif (https://www.activemotif.com/catalog/668).

Cell Culture
Gastric cancer cell lines, SGC7901, MKN45, HGC27, and
BGC823, were purchased from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). Gastric cancer cell
lines, Hs746T, AGS, and NCI-N87, were purchased from
the American Type Culture Collection (ATCC, Maryland,
USA), and the human gastric mucosal cells, GES1, and
293T cells were preserved in our laboratory. Cell lines were
cultured in 37◦C culture incubator with 5% carbon dioxide
using RPMI 1640 or DMEM medium (Hyclone, Utah, USA)
containing 10% FBS (Gibco, New York, USA) according to the
manufacturer’s instructions.

Construction of PADI2 and PADI4
Eukaryotic Expression Vectors and PADI4
CRISPR/Cas9 Vector
Primers were designed for the coding region sequences of
the PADI2 (NM_007365.2), PADI4 (NM_012387.2), and the
restriction sites for the eukaryotic expression vector pCDH-
CMV-MCS-EF1-Puro (SBI, California, USA). The high-fidelity
PCR enzyme KOD plus neo (Toyobo, Osaka, Japan) was used
to amplify the coding region sequences of PADI2 and PADI4
from a 293T cell cDNA library. Agarose gel (1%) electrophoresis
was used to confirm the PCR product size, and T4 ligase
(NEB, Massachusetts, USA) was used to link the target fragment
to the empty linear vector after digestion. Competent TNF5α
cells (Tiangen, Shanghai, China) were transformed with the
expression vectors, and three positive colonies were selected for
sequencing to verify the plasmid.

CRISPR/Cas9 vector targeting PADI4 (NM_012387.2) was
constructed using the lentiCRISPRv2 vector, which was a gift
from the Feng Zhang lab at MIT. The online guide RNA
design website (http://crispr.mit.edu) was used to design the
target sequence near the transcription start site of PADI4. The
top two scored sequences were selected as the gene editing
sites for primers (gRNA1: 5′-GGGACGAGCTAGCCCGACGA-
3′; gRNA2: 5′-TCACACGGATCAATGTCCCC-3′). In this study
we adopted an all-in-one method. Primers designed according to
the two gRNA sequences and the tracRNA-U6 vector sequences
were used to produce a gRNA1-tracRNA-U6-gRNA2 fragment.
Then the proper fragment was ligated into the lentiCRISPRv2
vector and verified by sequencing.

Lentiviral Packaging and Stable Cell
Line Screening
The constructed eukaryotic expression vector and gene
knockdown vector were transfected into the 293T cells with the
packaging plasmids psPAX2 and pMD2.G using Lipofectamine
2000 (Thermo Fisher, Massachusetts, USA). The lentivirus was
harvested 48 h after transfection, and the lentivirus supernatant
was filtered using a 0.45µm filter. One day prior to infection,
the three cell lines (AGS, SGC7901, and MKN45) were plated
at 2 × 105 cells per well in 6-well tissue culture plates. The
lentivirus was added into the separate cell lines, and polybrene
was added at a density of 6 ng/ul (Sigma, California, USA).
After 24 h, the infection medium was removed and replaced
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with normal culture medium. After 48 h, the cell lines were
screened using 2 ng/µl puromycin (Sangon Biotech, Shanghai,
China), and a stable cell line was formed after 1 week of
continuous selection.

Western Blot
Whole cellular protein was extracted using RIPA lysis buffer
(Beyotime, Shanghai, China) containing a protease inhibitor
cocktail (Roche, Basel, Switzerland). The cytoplasmic and
nuclear protein fractions were isolated using a Nuclear
and Cytoplasmic Protein Extraction Kit (Beyotime, Shanghai,
China) according to the manufacturer’s instructions. Protein
samples were separated by SDS-PAGE gel containing 10%
acrylamide, electrophoresis and transferred to a 0.45µm PVDF
membrane (Millipore, Massachusetts, USA). The transferred
membranes were blocked with 5% BSA for 1 h at room
temperature. Then the membranes were incubated with the
corresponding primary antibodies: mouse anti-human IPO-38
monoclonal antibody (1:1000, Thermo Fisher, Massachusetts,
USA); rabbit anti-human H3K27ac polyclonal antibody, rabbit
anti-human H3R26Cit/H3K27me3 monoclonal antibody, and
mouse anti-human PADI4monoclonal antibody (1:1000, Abcam,
Cambridge, UK); rabbit anti-human EZH2monoclonal antibody
(1:1000, CST, Boston, Massachusetts USA), rabbit anti-human
PADI2 polyclonal antibody, (1:1000, Proteintech, Chicago,
Illinois, USA), and HRP-labeled mouse anti-human GAPDH
monoclonal antibody (1:2000, Proteintech, Chicago, Illinois,
USA), and mouse anti-human histone H3 monoclonal antibody
(1:1000, Abcam, Cambridge, UK) as an internal reference
antibody overnight at 4◦C. The next day, 1×TBST buffer
[10mM Tris-HCl, pH 8.0, 150mM NaCl, 0.1% (v/v) Tween-
20] was used to wash the membranes 3 times for 10min
each time at RT. HRP-labeled goat anti-rabbit or mouse
IgG secondary antibody (1:5000, Proteintech, Chicago, Illinois,
USA) of the corresponding species was incubated for 1 h at
RT. HRP-labeled goat anti-mouse IgM secondary antibody
(Sangon Biotech, Shanghai, China) was used as the second
antibody for the IPO-38 IgM monoclonal antibody. After
the incubation of the secondary antibody, the membranes
were washed 3 times for 10min each time at RT with
1×TBST buffer, and then the signal was detected in the
chemiluminometer using ECL luminescent solution (Meilun,
Shanghai China).

Histone Immunoprecipitation
To reduce the interference of non-histone proteins and
nucleotides, we used enzymatic digestion to obtain histones for
further immunoprecipitation. After collecting the cell pellet, we
used the hypotonic buffer [0.3M sucrose, 60mM KCl, 15mM
NaCl, 5mM MgCl2, 0.1mM EGTA, 15mM Tris-HCl pH 7.5,
5mM sodium butyrate, 0.4% NP40, and CompleteTM EDTA-free
protease inhibitor mixture (Roche, Basel, Switzerland)] to
rupture the cell membrane, and then collected the nuclear
pellet. Nuclear deposition concentration was measured by
nanodrop (Thermo Fisher, Massachusetts, USA), and 200
U/5 µg of micrococcal nuclease (NEB, Massachusetts, USA)
was used to digest the nucleosome at 37◦C for 6min. EDTA

(Sigma, California, USA) was added to stop the reaction.
After centrifugation, the supernatant, which contains histone
DNA complexes, namely nucleosomes, was collected, and
concentration was measured. The appropriate amount of
lysate was taken as input, and the remainder was divided
into 3 groups, and 20 µl of protein A/G magnetic beads
(Thermo Fisher, Massachusetts, United States), and 5 µg
of anti-H3K27me3 antibody, anti-H3K27ac antibody, or
normal rabbit IgG (CST, Boston, Massachusetts, USA) was
added to each sample of lysate. After incubating overnight
at 4◦C on a shaker, the complexes were washed with RIPA
buffer three times in the magnetic frame (Invitrogen,
California, USA). Finally, the bound proteins were eluted
into 1×SDS loading buffer (Beyotime, Shanghai, China). The
subsequent steps followed the immunoblotting protocol
described above, and the rabbit anti-human H3R26Cit
polyclonal antibody was used to detect the corresponding
histone modification.

Immunofluorescence
The MKN45 and SGC7901 cancer cell lines (5 × 103 cells per
plate) were seeded on a fluorescence chamber culture plate.
After the cells fully stretched and adhered to the plate 12 h later,
they were fixed in 4% paraformaldehyde for 15min at RT, and
the cell and nuclear membranes were permeabilized in 0.5%
Triton X-100 (Sangon Biotech, Shanghai, China) for 20min at
RT. The plate was washed 3 times for 5min with 1×PBS. Goat
serum (Sangon Biotech, Shanghai, China) was used for antigen
blocking for 1 h at RT. After blocking, the samples were incubated
with mouse anti-human PADI4 monoclonal antibody (1:100)
and rabbit anti-human PADI2 polyclonal antibody (1:100) at
4◦C overnight in a wet box. The plate was then washed
with 1×PBST three times for 5min each, and incubated with
Alexa Fluor 488 goat anti-mouse red fluorescent secondary
antibody and Alexa Fluor 555 goat anti-rabbit green fluorescent
secondary antibody (1:250, Invitrogen, California, USA) at RT
in the dark for 1 h. Nuclei were stained for 5min at room
temperature in the dark with DAPI (Sigma, California, USA).
Finally, plates were washed 3 times for 5min with 1×PBST.
Fluorescence signal could be observed and the fluorescent
images were taken with a fluorescence microscope (Nikon,
Tokyo, Japan).

Real-Time PCR
Total mRNA was extracted from the cell lines using Trizol
(Invitrogen, California, USA), according to the manufacturer’s
protocol. The obtained mRNA was reverse transcribed using
the ReverTra Ace R© qPCR RT Kit (Toyobo, Osaka, Japan). The
mRNA levels of PADI2, PADI4, EZH2, KDM6A, KDM6B, and
GAPDH were detected using the following specific primers:
Primers for PADI2, forward: 5′- GCACCTACCTCTGGACC
GAT-3′, reverse: 5′-ACACGTGTTCCGAGTGCTTC-3′, product
length 81 bp; primers for PADI4, forward: 5′- GACCCCC
AAGGACTTCTTCA-3′, reverse: 5′-GCTGCACTTGG
AGGACAGTT-3′, product length 115 bp; primers for EZH2,
forward: 5′-CATACGCTTTTCTGTAGGCGA-3′, reverse:
5′-TCCGCTTATAAGTGTTGGGTG-3′, product length 82
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bp; primers for KDM6A, forward: 5′-TCTCCAAAAGTCCT
TGGAAGC-3′, reverse: 5′-AAGGCATCCTGAACTTTCCC-3′,
product length 96 bp; primers for KDM6B, forward: 5′-TACAGA
CCCTCGAAATCCCA-3′, reverse: 5′-CAGGGTCTTGGTGG
AGAAGA-3′, product length 88 bp; and primers for GAPDH,
forward: 5′-ACGGATTTGGTCGTATTGGGCG-3′, reverse:
5′-CTCCTGGAAGATGGTGATGG-3′, product length 212 bp.
The qPCR reaction was carried out in a Roche Light cycler 480
PCR machine (Roche, Basel, Switzerland) using SYBR Green
PCR master mix (Life Technologies, California, USA).

Statistical Analysis
The mRNA expression data analysis was performed by Student’s
t-test using GraphPad Prism 8.0.1 software (GraphPad Software,
San Diego, California, USA). Differences were considered
statistically significant when P < 0.05.

RESULTS

Identification of Histone Modifications
Marked by the IPO-38
Monoclonal Antibody
The IPO-38 monoclonal antibody detects proteins with a
molecular weight around 15 kDa in total cellular protein
lysates of human gastric epithelial cells (GES1) and gastric
cancer cell lines (SGC7901 and NCI-N87) (Figure 1A). After
incubating the modified histone peptide chip with the IPO-
38 monoclonal antibody, 10 high intensity signals were
obtained that corresponded to: H3R26Cit-K27me2, H3R26Cit-
K27me1, H3R26Cit-K27me3, H3R26Cit, H3K27ac, H3R26me2a-
K27ac, H3K12ac-K16ac-K20ac, H3R26me2s-K27ac, H3K16ac-
K20ac, and H3K12ac-K16ac-K20me2 (Figures 1B–D). Results
were duplicated on the left and right wings of the chip
(Figure 1B), and signal intensities aligned well and showed
good consistency (Figure 1C). Specific analysis of modified
histone peptides revealed that the highest specificity of IPO-
38 antibody-binding was for H3R26Cit, followed by the
H3K27me2 modification (Figure 1E). We noticed that the
signal intensity of H3R26Cit site was significantly enhanced
when the adjacent site H3K27 was methylated. In particular,
the presence of K27me2 modification resulted in 3-fold up-
regulation of signaling intensity than that of R26Cit alone
based on signaling intensity analysis. Immunoblotting using an
antibody specific for H3R26Cit correlated well with protein levels
detected using the IPO-38 antibody in the gastric cancer cell
lysates (Figure 1F).

Expression Levels of H3R26Cit and Related
Catalytic Enzyme PADIs
Since PADI2 or PADI4 catalyzes the conversion of arginine to
citrulline in humans, we examined the protein levels of PADI2,
PADI4, and H3R26Cit in several human gastric cancer cell lines.
We observed that the basal expression level of H3R26Cit was
higher in SGC7901 and MKN45 cells, and basal expression of
PADI4 was also higher in those cancer cell lines. No significant
difference of PADI2 was found in those cancer cell lines

(Figure 2A). The mRNA expression level of PADI2 and PADI4
was lower in cancer cell lines, compared to GES1 control cells,
by q-RT-PCR (Figure 2B), though PADI4 protein levels were
higher in SGC7901 and MKN45 cells. There was discrepancy
between the mRNA and protein levels of PADI2 and PADI4. By
immunofluorescence microscopy, PADI2 was shown to localize
in both the cytoplasm and nucleus, whereas PADI4 was found
only in the nucleus (Figure 2C).

The Impact of PADI2 and PADI4
Overexpression and Knockdown on
H3R26Cit Level
PADI2 and PADI4 eukaryotic expression vectors were packaged
with lentivirus. Although PADI4 protein level was higher in
SGC7901 andMKN45 cell lines (Figure 2A), but they took longer
exposure time with ECL luminescence reagent (2min). Then
we chose a PADI4 low expression AGS cell line and a PADI4
moderate expression SGC7901 cell line for the overexpression
study, and SGC7901 and MKN-45 cells were used for the
knockdown study. After PADI2 and PADI4 were successfully
expressed, we examined the expression level of H3R26Cit
(Figures 3A,B). Overexpression of PADI4 significantly increased
intracellular expression of H3R26Cit, compared to PADI2
overexpression, shown by both Western blot with shorter
exposure time (2 s) (Figure 3C).

The “all-in-one” single plasmid dual target PADI4 gene
knockdown system was constructed using CRISPR/Cas9
technology, which targeted a dual target near the PADI4
transcription start site (Figure 3D). The plasmid was packaged
with lentivirus and SGC7901 and MKN45 cell lines were
infected. The puromycin was used to select a stable cell line.
The significant decrease in the expression level of PADI4
in experimental cells was accompanied by a decrease in the
expression level of H3R26Cit (Figure 3E).

Analysis of Interaction Between H3R26Cit
and Other Post-translational Modification
Since H3K27ac and H3K27me3 were also highlighted in the
modified histone peptide array, we analyzed the interaction
between H3R26Cit and other histone modifications. As shown
in Figure 4A, overexpression of PADI4 resulted in a significant
decrease of H3K27me3 levels in AGS and SGC7901 cells, but
led to increased expression of H3K27ac. To clarify the potential
crosstalk between H3R26Cit and H3K27me, we extracted
nucleosomes from cell nucleus by means of the micrococcal
nuclease method, and performed immunoprecipitations using
H3K27me3 and H3K27ac antibodies. H3R26Cit was not detected
in the H3K27me3 pull-down product, but co-precipitated
with H3K27ac (Figure 4B), which supports an interaction
between H3R26Cit and H3K27ac. We further examined
expression levels of EZH2, an H3K27me3 methyltransferase,
and KDM6A/KDM6B demethylases after PADI4 overexpression.
The expression level of EZH2 was significantly decreased in
SGC7901 and AGS cells (P < 0.001), while the expression
level of KDM6A was significantly increased (P = 0.037; P =

0.0046, for SGC7901 and AGS cells, respectively). The expression
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FIGURE 1 | Analysis of histone modification peptide array using IPO-38 monoclonal antibody. (A) The protein expression of IPO-38 in gastric mucosal cell GES-1 and

gastric cancer cell lines. (B) Presentation of signal intensity on modified histone peptide array based on incubation with the IPO-38 monoclonal antibody. (C) The

consistency assay of two repeated detections on the modified histone peptide array. (D) The top 10 histone modifications with the strongest binding to the IPO-38

monoclonal antibody. (E) The top 10 histone modification sites with the best specificity for IPO-38 monoclonal antibody binding. (F) Comparison of H3R26Cit and

IPO-38 protein levels in three gastric cancer cell lines.

FIGURE 2 | Analysis of basal expression of H3R26Cit and its catalytic enzymes PADIs. (A) The protein expression of H3R26Cit, PADI2, and PADI4 in GES-1 gastric

mucosa cells and several gastric cancer cell lines. (B) The expression of PADI2 and PADI4 mRNA in GES-1 gastric mucosa cells and several gastric cancer cell lines.

(C) Subcellular localization of PADI2 and PADI4 proteins in SGC7901 and MKN45 gastric cancer cell lines.
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FIGURE 3 | The influence of PADI2 and PADI4 overexpression or knockdown on H3R26Cit. (A) Detection of protein level changes after overexpression of PADI2 and

PADI4. (B) Detection of mRNA level changes after overexpression of PADI2 and PADI4 (*** indicates P < 0.001). (C) The protein level of H3R26Cit is significantly

increased after enforcing PADI4 expression, compared to enforcing PADI2 expression. (D) Schematic diagram of the construction of CRISPR/Cas9 all-in-one plasmid

system with a double target on the PADI4 gene. (E) The protein level of H3R26Cit is significantly decreased after knockdown of PADI4 in both SGC7901 and MKN45

gastric cancer cell lines.

level of KDM6B was increased to some extent (P = 0.46; P =

0.012) (Figure 4C). A significant down-regulation of EZH2 in
the nucleus was found; as internal controls, GAPDH was only
expressed in the cytoplasm and histone 3 was only expressed
in nucleus (Figure 4D). The results suggest that PADI4 not
only catalyzes H3R26Cit modification, but also influences the
activities of EZH2, KDM6A, and KDM6B, as reflected in the
decreased level of H3K27me3 in the nucleus (Figure 4E).

DISCUSSION

IPO-38 is a diagnostic biomarker for gastric cancer identified
in our previous clinical proteome study. We proposed that
the protein labeled by IPO-38 monoclonal antibody was a
nucleosome histone and suspected it was a modified histone H2B
(2). We could not, however, clarify the exact histone modification
due to insufficient methods.

In recent years, the relationship between histone modification
and tumorigenesis has attracted greater attention. Technologies
for detecting and studying histone modifications have
been developed and greatly improved. Using the self-
developed chromatin immunoprecipitation-based microarray
method (ChIP-chip) technology, Heintzman and coworkers
demonstrated that cell-specific histone modifications bound
to cell-specific enhancers affect cell-specific gene expression
spectrum (17). Cejas et al. developed fixed-tissue chromatin
immunoprecipitation sequencing, which enables reliable

extraction of soluble chromatin from formalin-fixed paraffin-
embedded tissues for accurate detection of histone marks. By
using multiple histone marks, they generated chromatin state
maps and identified cis-regulatory elements in clinical samples
for various tumor types (18).

In the current study, a modified histone peptides array was
used. This protein array covers 59 different combinations of
post-translational modifications such as methylation, acetylation,
phosphorylation, and citrullination in up to four different
modifications per peptide (15, 16). This array is suitable for
assessing the specificity of histone-modified antibodies and for
analyzing interactions between different histone modification
sites. The processing is straightforward, similar to Western
blotting, and used in different molecular oncology laboratories
(15, 16, 19). By means of this protein array, we characterized
the antigen labeled by the IPO-38 antibody as H3R26Cit, which
could interact with H3K27me and form a H3R26Cit-H3K27me
complex. This new finding suggests that detection of H3K27me
may be helpful to recognize H3R26Cit indirectly.

Previously, most studies on histone modifications focused
on acetylation, methylation, and phosphorylation. The studies
of histone citrullination are limited, especially for gastric
cancer. Protein citrullination, also known as deamination,
refers to a post-translational modification of arginine to
citrulline (20, 21). Studies on the relationship between histone
citrullination and tumors have mainly focused on histone
H3. Thalin and coworkers reported that elevated H3Cit in
peripheral blood predicted poor prognosis for advanced cancer
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FIGURE 4 | Interaction assay of H3R26Cit and other post-translational modifications. (A) An increase in the level of H3K27ac protein and decreased H3K27me3

protein level were observed in both AGS and SGC7901 gastric cancer cell lines in which PADI4 was overexpressed. (B) Immunoprecipitation was performed by

H3K27me3 and H3K27ac antibodies. H3R26Cit was not detected in the H3K27me3 pull-down product, but was found in the H3K27ac pull-down product. (C) Effect

of PADI4 overexpression on mRNA expression of the H3K27 methyltransferase EZH2 and demethylases, KDM6A and KDM6B (*, **, and *** represent P < 0.05,

P < 0.01, and P < 0.001, respectively) (D) EZH2 expression assay revealed that the protein was located in nucleus, and its expression level was decreased after

PADI4 overexpression, with histone 3 and GAPDH serving as internal controls. (E) Schematic diagram of influences on histone modifications of H3R26Cit and

H3K27me3 after PADI4 overexpression.

patients including colorectal cancer, gastric cancer, and breast
cancer (10). Neutrophil extracellular traps (NETs) could be a
source of citrullinated histones in the blood. PADI4 mediates
histone citrullination in NETs formation (11, 22, 23). Protein
citrullination also participates in the regulation of stem cell
pluripotency, cancer-related genes, and immune responses (24–
27). Although we characterized the antigen labeled by IPO-38
antibody, the exact clinical significance of citrullinated histone 3
needs further investigation.

The protein citrullination refers to a chemical conversion
of arginine to citrulline, which is catalyzed by peptidylarginine
deiminases (PADIs) in human beings (28). Among PADIs family,
PADI4 carries a nuclear localization signal, and is mainly
located in the nucleus (29). PADI2 might also undergo nuclear
translocation in some cells to modify histones (26). Since both
PADI4 and PADI2 might be involved in the citrullination of
histones, we examined the expression levels of H3R26Cit, PADI4,
and PADI2 synchronously and confirmed that PADI4, but not
PADI2, regulates H3R26Cit formation. In addition, we found
that the expression levels of mRNA and protein of PADI2
and PADI4 was inconsistent, which might be attributed to
post-transcriptional modification of mRNA or post-translational
modification of protein (30, 31).

In addition to intracellular histone citrullination, PADI4
in neutrophils can facilitate histone citrullination of NETs.

This kind of extracellular histone modification facilitated
ovarian cancer premetastatic niche formation in the omentum.
Interfering NETs formation could inhibit cancer metastasis (32).
Yuzhalin and colleagues indicated that extracellular histone
modifications can promote liver metastasis of colorectal cancer
(12). Therefore, protein citrullination of the extracellular matrix
and microenvironment may play an important role on tumor
progression. Higher levels of PADI4 have been reported in
peripheral blood in several types of cancers (33).

Histone modification is a complex area. The precise
correlation of H3R26Cit and H3K27me3 or H3K27ac is largely
unknown. In this paper, we identified the crosstalk between
H3R26Cit and H3K27me3, which was mentioned by other
study before (34). According to our results, the binding ability
of IPO-38 antibody to antigen might be affected by their
crosstalk, but more experiments need to be done. EZH2 is an
enzyme that mediates methylation of H3K27me3 (34). EZH2
was found up-regulated in melanoma, lymphoma, breast cancer,
and prostate cancer, and related to promoting tumorigenesis,
cell proliferation, and epithelial mesenchymal transition (35).
KDM6A and KDM6B are enzymes involved in demethylation
of H3K27me3 (36). Although we found that overexpression
of PADI4 influences the expression levels of H3K27me3 and
H3R26Cit, we did not find a confirm correlation between
expression of PADI4 and methylation-related enzymes such as
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EZH2, KDM6A, and KDM6B. Our study clarified that PADI4
is a main regulatory enzyme of histone citrullination, at least
in gastric cancer. This discovery will be used to optimize the
sensitivity and specificity of IPO-38 as a diagnostic reagent for
gastric cancer.

Since the technical limitations, we did not analyze the
clinical correlations. Next, we prepare to immunize mice with
synthetic histone-modified polypeptide antigen to obtain specific
monoclonal antibody, and then perform immunohistochemistry
by new developed specific monoclonal antibody. We will
establish a sandwich ELISA reagent to examine blood samples
from patients.
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The human genetic code encrypted in thousands of genes holds the secret for synthesis
of proteins that drive all biological processes necessary for normal life and death.
Though the genetic ciphering remains unchanged through generations, some genes
get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current
treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available
for no more than 500 diseases—neither cure nor prevent genetic errors but often cause
many side effects. However, gene therapy, colloquially called “living drug,” provides a
one-time treatment option by rewriting or fixing errors in the natural genetic ciphering.
Since gene therapy is predominantly a viral vector-based medicine, it has met with
a fair bit of skepticism from both the science fraternity and patients. Now, thanks to
advancements in gene editing and recombinant viral vector development, the interest
of clinicians and pharmaceutical industries has been rekindled. With the advent of more
than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal
disorders, this emerging experimental medicine has yet again come in the limelight.
The present review article delves into the popular viral vectors used in gene therapy,
advances, challenges, and perspectives.

Keywords: gene therapy, viral vectors, modern medicines, diseases and disorders, clinical trials

INTRODUCTION

The human genome contains ∼25,000 genes that encode a wide variety of proteins colloquially
called the building blocks and workhorses of the cell to drive every biological process necessary for
life and death (1–4). Though the genetic ciphering remains largely unchanged through generations,
some genes go awry due to mutations, and disruptions or deletions (5). These underlying and
inevitable genetic changes translate into altered protein functions affecting normal cell structures,
functions, and their physiological roles manifesting into a serious disease or deficiency or disorder
(6, 7). According to the Genetic and Rare Diseases Information Center (GARD) and Global
Genes R©, the leading rare disease patient advocacy organization in the world, dysfunctional genes
account for 80% of the total 7,136 diseases reported to date. Nearly 30 million people in the
United States alone and more than 300 million people in the rest of the world are affected by
genetic diseases; unfortunately, half of them are estimated to be children. According to the National
Center for Advancing Translational Sciences (NCATS), only 500 human diseases are treatable with
an estimated 10,000 drugs available to date, underscoring the necessity to develop new drugs and
treatment options.
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Although a significant advancement has been made in
developing modern medicine, including chemotherapy,
radiation, and surgery, many drugs are synthetic chemicals
designed to alter the body’s chemistry and create dependency
overtime, and offer only temporary relief by reducing disease
symptoms and increasing lifespan. These issues are partly
addressed by developing protein therapy based on transcription
factors, signaling proteins, gene editing enzymes, growth
factors, engineered protein scaffolds, hormones, blood factors,
thrombolytes, antibodies, and antigens. Some of them, especially
the monoclonal antibody-based drugs including Humira,
Rituxan, Avastin, Herceptin, Remicade, Lucentis, Enbrel,
Synazis, and several others, are being used to treat cancer,
diabetes, autoimmune disorders, infectious diseases, and others
(8). In fact, both protein and peptide-based drugs have emerged
as a major class of therapeutics with nearly 380 marketed
pharmaceuticals available in the world (9). However, these
protein-based therapies are facing many challenges including
low solubility and bioavailability, in vivo physicochemical
instability, short circulating half-life, penetrability in vivo,
biodistribution, and causing toxicity in large amounts (10–15).
Another adverse effect of introducing therapeutic proteins
into a patient’s body is that it may result in severe immune
responses, inflammation, and fever (16). To add to the woes,
the production and manufacturing of high quality therapeutic
proteins have become highly complex activity (17). In fact,
more than 5,000 critical steps are involved in developing
a single therapeutic protein (8). Therefore, the quotient of
unpredictability is very high in developing both chemical and
protein-based therapies. Gene therapy, on the other hand, leads
to long-lasting production of the desired therapeutic protein
and can localize protein expression to an area of the body,
fixing the problem at its source (18). Also, prognosis for a
large number of incurable diseases appears grim, which is why
gene therapy presents itself as a breakthrough alternative with
immense potential to provide a one-time treatment option for
a complete cure as well as disease and disorder prevention.
Gene therapy is an emerging experimental treatment that
delivers functional genes into a patient’s body to counter or
replace malfunctioning ones, thus curing disease without
pharmacological intervention, radiotherapy, or surgery. This
modern approach has the potential to offer complete protection
against lethal nerve gases (13, 19–22) and treat monogenic and
cardiovascular diseases, immunodeficiency, cancer, and more
(23–27). Apart from genetic defects, several other diseases that
cannot be treated with drugs or antibodies can be cured with
gene therapy. In addition, every prescribed and non-prescribed
drug comes with unwanted side effects, ranging from minor
discomfort to death. According to Drugwatch R©, a non-profit
drug information network and organization, an estimated four
million patients in the USA alone visit doctors annually due
to adverse effects of prescription drugs. Hence, gene therapy
that aligns with the natural human genetic transcriptome has
the potential to become an unquestionable choice for complete
treatment of diseases, disorders, and infectious diseases.

Gene therapy appears simple in principle but involves
identification of affected gene(s), cloning and loading of a wild

type or recombinant healthy version in a suitable vector for
optimal delivery and expression in the target cells or tissue and
thus has seen its fair share of hurdles. Because it often uses
repurposed viruses to deliver therapeutic genes, gene therapy
has been caught in a vicious cycle for nearly two decades owing
to immune response, insertional mutagenesis, viral tropism, off-
target activity, unwanted clinical outcomes (ranging from illness
to death of participants in clinical trials), and patchy regulations
(23, 28–31). This led to a sharp decline in research funding
for basic, preclinical development and vector production via
individual investigators grants such as R01 and program grants.
Thus, with limited information of preclinical data and vector
production, the number of clinical trials conducted worldwide
did not rise steadily from 1999 to 2015 (32). Furthermore,
funding of the actual clinical trial was not guaranteed even
vectors have been produced and certified for human use at
significant cost. The American Society of Gene Therapy has
taken lead in fixing this fragmented funding method by making
many recommendations including the elimination of redundant
regulatory processes and establishment of the National Gene
Vector Laboratories (NGVL) to review vector production and
toxicology. Now, with new technological advances in gene
delivery and editing methods, increased enthusiasm of clinicians
and drug companies, the advent of several viral-based drugs in
the market, and the potential to provide a one-time treatment
option without corrupting the genetic code, gene therapy is
breaking free of this cycle. Undoubtedly, the resurgent interest
in offering gene therapy-based treatments is one of the most
defining developments in the pharmaceutical industry and is
expected to have far-reaching implications on curing dangerous
diseases in the future.With an estimated US $11 billion market in
the next 10 years, both clinical trials and pharmaceutical industry
are anticipated to benefit immensely from gene therapy. Here,
we describe popular viral vectors used in gene therapy and gene
therapy drugs available in the market.

GENE THERAPY AND ITS KINDS

While the idea of gene therapy has been around for the
past 80 years, Professor William Szybalski’s demonstration
in 1962 on correcting a genetic defect by delivering foreign
DNA into mammalian cells is regarded as its birth (33). The
Food and Drug Administration (FDA) defines gene therapy
as products that “mediate their effects by transcription and/or
translation of transferred genetic material and/or by integrating
into the host genome and that are administered as nucleic
acids, viruses, or genetically engineered microorganisms,” and
the European Medicines Agency (EMA) describes gene therapy
medicinal product (GTMP) as a “biological medicinal product
that contains an active substance which contains or consists of
a recombinant nucleic acid used in or administered to humans
to regulate, repair, replace, add or delete genetic sequences
and its therapeutic, prophylactic or diagnostic effect relates
directly to the recombinant nucleic acid sequence it contains,
or to the product of genetic expression of this sequence” (32,
34). Typically, DNA, mRNA, siRNA, miRNA, and anti-sense
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oligonucleotides are the genetic materials used for therapeutic
delivery into a defective target cell or tissue to restore a specific
gene function or turn off a gene responsible for disease or
disorder development (35). Other methods include swapping
the mutated gene for a functional gene using homologous
recombination, repairing the mutated gene using selective
reverse mutation, and regulating the mutated gene (36). Gene
therapy allows the delivery of therapeutic genetic material to any
specific cell or tissue and or organs of the body for treatment.

Based on the type of cells or tissues targeted for gene delivery
and treatment, gene therapy is divided into germ-line and
somatic cell gene therapies. Germ-line gene therapy involves
genetic manipulation of the reproductive cells sperm and egg
to make heritable changes. The potential of germ line therapy
was successfully demonstrated in mouse, rat, rabbit, sheep, cattle,
goat, and pig (37–40) but not in humans because of amoratorium
due to ethical reasons, lack of advanced tools, and societal
consensus (41–46). However, with recent technological advances
in genome editing and gene delivery methods, renewal of debates
on revisiting germ line therapy appears not far from reality (47–
50). Therefore, the present review is focused on somatic cell
gene therapy.

SOMATIC CELL GENE THERAPY

In somatic cell gene therapy, every cell except sperm and
egg is targeted for therapeutic treatment. It is considered safe
because genetic changes remain in the patient and are not passed
onto the offspring. However, the requirement of skill set and
sophistication in delivering a therapeutic gene into the target cells
or tissue of the patient elevates the quotient for an unpredictable
clinical outcome. Therefore, many advanced methods are being
developed to deliver therapeutic genetic materials, and they are
broadly divided into ex vivo, in situ, and in vivomethods. Ex vivo,
also called “outside the living body” method, involves isolating
the cells to be treated from the patient, modifying them with
a therapeutic gene, and re-introducing into the patient’s body.
Hepatocytes in the liver, retina photoreceptors in the eye, stem
cells in the bone marrow, and T lymphocytes have been the
focus of this method (43). Recently, the FDA has approved
KymriahTM, a groundbreaking prescription cancer treatment that
uses the patient’s own white blood cells or T cells for inserting
the CD19 gene ex vivo (51). After being re-introduced into
the patient’s blood, these genetically engineered T cells will
have greater ability to target cancer cells. Less side effects than
other methods, no risk of reaching germ-line cells, minimized
immune response, and less renal clearance are other advantages
of ex vivo method (52–54). ZalmoxisTM is another advanced
somatic cell therapy product recently approved by the EMA for
treating serious blood cancers such as certain types of leukemia
and lymphomas. ZalmoxisTM consists of donor lymphocytes
transfected with Herpes simplex virus-1 thymidine kinase (HSV-
TK) and truncated low affinity nerve growth factor receptor
(1LNGF). In situ delivery, or “in position” delivery, involves
administration of the desired genetic material directly into the
target cells or tissue. For example, Neovasculgen R©, a plasmid

vector carrying vascular endothelial growth factor (VEGF) gene,
is directly injected into the target ischemic tissue to stimulate
blood vessel growth (55–57). This method is being explored to
cure cystic fibrosis, muscular dystrophy, and cancer but still
requires more technological advancement in delivery methods
for a successful clinical outcome (58–60). Though delivering
genetic material by this method works well for localized
conditions, it cannot be used for treating systemic disorders. The
last and most important method of gene delivery is in vivo, or
“in the living body.” In this method, viral, or non-viral vectors
are used to deliver the therapeutic material to the defective
target cells or tissue in the body (Figure 1). A wide variety of
physical and chemical methods including needles, gene guns,
electroporation, sonoporation, photoporation, magnetofection,
hydroporation, mechanical massage, lipid, calcium phosphate,
silica, and gold nanoparticles are being used to deliver genetic
material to target cells. However, none of them is more efficient
than viruses in delivering therapeutic genetic materials to the
target cells due to their inherent shortcomings and operational
complexity. The present review article is focused on viral
vectors only.

VIRUSES IN DELIVERING THERAPEUTIC
GENES

There has been a quite bit of resentment in availing the benefits
of viruses due to ignorance, bad rap, and skewed view. In
fact, the human body offers shelter to viruses, fungi, protozoa,
and worms by adopting appropriate mechanisms for mutual
benefits in order to survive and thrive (61). For example, viruses
offer immunity against bacterial pathogens and tumor cells, and
modulate gut bacterial genes to improve host digestion (62).
Though the word virus implies mortality and morbidity, viruses
are considered nature’s genetic engineers because of their ability
to infect most kinds of organisms including bacteria, humans,
animals, and plants. Also, viruses help certain plants to survive
in extreme weather conditions (62). We have identified powerful
viral promoters and enhancer elements that can be used to
construct plasmid vectors for high level expression of foreign
proteins (63, 64). They have an advantage over others by carrying
several genes encoding structural and non-structural proteins to
infect and propagate in host cells. Some viruses have the ability
to transduce the cells they infect, i.e., stably express a gene along
with the host’s genome. They allowmanipulation of their genome
and removal of virulent genes without losing the ability to infect
host cells. This makes them nearly dead or not alive, and the
versatile biological entities, a pragmatic reason to accept them
as sophisticated biological tools for delivering foreign genetic
materials into eukaryotic cells. For example, we havemanipulated
and reconstituted Sendai viral envelopes containing only the
fusion glycoprotein to deliver a reporter gene to liver in vivo (65).
In fact, viral vectors were the first carriers of nucleic acids used in
gene therapy (18).

Because of their abundance on the earth and difference in
genetic makeup, many viruses are being used in preclinical
and clinical investigations but each comes with its own unique
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FIGURE 1 | Different methods to deliver therapeutic DNA and proteins to target cells. Non-viral gene delivery methods have many advantages over viral vectors in
gene therapy. They do not cause immunogenicity and carcinogenicity, and can deliver a large size of therapeutic DNA efficiently with a low price tag. As no
one-size-fits-all solution to therapeutic DNA delivery exits, development, and formulations remain the main focus of research on non-viral methods.

advantages and disadvantages. Therefore, finding a suitable
vector to deliver therapeutic genetic material has become a
challenge to make gene therapy a viable and better treatment
option than conventional methods. Part of the challenge is
therapeutic DNA’s inability to pass through the cell membrane
because of its large size and negative charge. Also, the therapeutic
DNA needs to escape the cellular endonucleases and renal
clearance. An ideal vector should have enough space to transport
large therapeutic genes, high transduction efficiency, and the
ability to provide long-term and stable expression, as well as
target specific cells, avoid random insertion of the therapeutic
gene into the host genome, and infect mitotic as well as post-
mitotic cells. It should not be immunogenic or pathogenic,
should not cause inflammation and should possess the ability
to be manufactured on a large scale. Research on developing
novel viral vectors is advancing steadily with a special focus
on substituting pathogenic genes with therapeutic DNA (66).
In fact, non-pathogenic, replication-defective, and human-
friendly viral vectors are being used in more than 70% of
the ongoing gene therapy clinical trials worldwide (67). One
particularly popular use of viral vectors, such as adenovirus,
Seneca Valley virus, poliovirus, vaccinia virus, herpes simplex
virus, reovirus, Coxsackievirus, parvovirus, Newcastle disease
virus, vesicular stomatitis virus, and measles virus, is in the
form of oncolytic viruses (OV). In 2016 alone, more than
40 clinical trials using OV were conducted (68). OV destroy
malignant cancer cells by specifically replicating in those cells
to effectively lyse them as well as induce a robust antitumor

immune response. OV selectively replicate in tumor cells through
a variety of methods such as virus-specific receptors on the cells.
They can be used to deliver anti-angiogenesis genes, suicide
genes, immunostimulatory genes, and DNA encoding small
nucleic acids. Apart from carrying immunostimulatory genes,
OV can induce an immune response by releasing cell debris
and viral antigens (68). Many other innovative approaches are
being developed to use viral vectors for treating diseases and
disorders. Since Edward Tatum’s initial proposal to repurpose
viruses for therapeutic gene delivery in 1966, gene therapy
has come a long way from the construction of many types
of viral vectors to their use in more than 3,000 clinical
trials to date (32, 69, 70). However, during this incredible
journey with obscure regulations, gene therapy has experienced
a few undesired clinical outcomes due to off-target effects,
cytotoxicity, viral transmissibility, impurity, and an immune
response to the viral vector itself (68). Nonetheless, diseases
for which a cure has been attempted include β-thalassemia, X-
linked severe combined immunodeficiency (X-SCID), adenosine
deaminase deficiency (ADA-SCID), cystic fibrosis, hemophilia,
liver enzyme ornithine transcarbamylase (OTC) deficiency, head
and neck cancer, metastatic melanoma, HIV, Leber’s congenital
amaurosis, Wiskott-Aldrich syndrome (WAS), metachromatic
leukodystrophy (MLD), and severe lipoprotein lipase deficiency
disorder (LPLD) (52, 71). In fact, the possibilities for gene
therapy-mediated treatments are endless because virtually every
cell in the human body is a potential target for genetic
manipulation. Viruses display specificity in infecting cell types;
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therefore, viral vectors can be selected based on the type of cell
that needs gene delivery. Here, we describe somewidely used viral
vectors in gene therapy.

ADENOVIRUS (AV)

AV was the first viral vector developed for gene therapy and was
approved for clinical trials in 1990. It was isolated from human
adenoid tissue-derived cell cultures for the first time in 1953,
hence the term adenovirus, and included in a diverse family
of non-enveloped double-stranded DNA (dsDNA) viruses called
Adenoviridae (72). According to the Centers for Disease Control
and Prevention (CDC), AV rarely causes serious illness and death
in healthy individuals but immuno-compromised individuals
may develop a wide range of illnesses including the common
cold, sore throat, bronchitis, pneumonia, diarrhea, conjunctivitis,
fever, and neurologic disease. As of today, there are 57 human
AV serotypes isolated and classified into seven categories based
on their properties of agglutination (73, 74). AV carries a linear
dsDNA ranging from 26 to 45 kb in a medium sized (∼100 nm)
non-enveloped icosahedral viral particle composed of penton
and hexon subunits. While the hexon subunits form a major
part of the viral capsid coat and carry antigenic motifs, the
penton subunits constitute fiber and knob domains required for
infection (75). The fiber knob domain initiates AV infection by
binding to a variety of proteins such asMHC-1 α2 subunit, CD46,
sialic acid saccharides on glycoproteins, coxsackievirus, and AV
receptor (CAR) expressed on cell surface (76). The interaction
between arginine-glycine-aspartic acid (RGD) sequence of the
fiber penton subunit and αν integrins on the cell surface drives
endocytosis of viral particle and completion of viral infection
(77–79). This creates broad tissue tropism and a nodal for AV
transduction efficiency, giving an opportunity to manipulate
binding sites for CAR and other ligands to de-target AV infection,
an essential feature of popular viral vectors used in gene therapy.
Therefore, since its discovery, AV has been repurposed through
the deletion of its pathogenic genes.

Based on the expression of AV genes during infection and
multiplication, its genome is organized into early (E1, E2a, E2b,
E3, and E4), intermediate (IVA2 and IX), and late genes (L1, L2,
L3, L4, and L5). Also, its genome carries non-coding inverted
terminal repeat (ITR) sequences, ψ packaging sequences, and
many viral RNAs (75, 80, 81). The genome of AV has been
manipulated many times to develop safe and efficient vectors
for gene therapy applications. The first-generation vectors with
a partial deletion of E1 or E3 genes do not replicate or
display oncogenicity but can deliver less than an 8 kb gene
and display leaky expression of viral proteins, strong immune
response, and contamination with replication-competent virus
(82). To circumvent this, second-generation vectors were created
by deleting E2A, E2B, and E4 from the genome of the first-
generation AV vectors. However, their production has become
complicated, and they do not prevent leaky expression of viral
proteins and rapid loss of therapeutic gene expression, and thus
have lost enthusiasm for their widespread use in gene therapy (83,
84). The third-generation vectors, otherwise known as gutless or

helper-dependent AV vectors, lack all viral genes except the ψ

and ITR sequences. They have received special attention because
of their capacity to carry larger therapeutic genes (up to 37 kb
in size), their ability to display long-term transgene expression,
and lesser contamination with replicating virus particles. They
are also less immunogenic than first- and second-generation
vectors (85). The third-generation vectors were successfully used
to express transgenes for about 2 years in animals with no adverse
effects (86, 87). Co-transduction of these vectors with Sleeping
Beauty transposon along with FLP recombinase was used to
insert a FIX gene in the chromosome of dogs suffering from
hemophilia B and expressed for up to 960 days (88, 89). Recently,
they were successfully used for the long-term expression of a
gene encoding an alanine-glyoxylate aminotransferase (AGT) in
patients with primary hyperoxaluria type 1 (PH1), a rare kidney
disorder that causes recurrent kidney stones (90).

Since AV vectors allow episomal or stable insertion of
therapeutic genes, they carry advantages over vectors that
integrate into cellular DNA. This provides clinicians an
opportunity to offer appropriate treatment for patients with
different diseases or disorders. For instance, AV is suitable for
treating cancers and offering bioscavenger-mediated short-term
protection against nerve gases and other chemical weapons. As
depicted in Figure 2, we have demonstrated an AV-mediated
episomal insertion of PON1, BChE, and PD bioscavenger genes
in the liver to express and secrete proteins to detoxify the
circulating lethal nerve gases for 10–15 days in mice (13, 20–
22, 36). Since the immune system has the natural ability to
detect and destroy abnormal cells in our body, new AV vectors
that can induce immune response and destroy target cells have
been developed. For example cancer cells can go undetected by
reducing the expression of tumor antigens on their surfaces,
inducing immune cell inactivation, and releasing substances in
the microenvironment to promote their growth and survival.
Therefore, new oncolytic adenoviruses that effectively induce
immune response, and specifically target and lyse tumor cells
are being created by replacing their native E1A promoter with
tumor-specific promoters and genetically modified CAR, a highly
expressed AV receptor in tumor cells (68, 91). For example, the
CV706 and OBP-30 AV vectors carry the viral E1A gene under
prostate cancer-specific antigen promoter and telomerase reverse
transcriptase promoter, respectively (92). Other engineered
oncolytic adenoviruses target the components of tumor cells
and their microenvironment and inhibit their proliferation by
expressing antibodies, relaxin, hyaluronidase, and inhibitors of
metalloproteinases to hinder angiogenesis and proper function
of the extracellular matrix (91, 93). Oncolytic adenoviral vectors
that induce autophagy-related immunogenic cell death were also
developed to treat cancer (94). A novel oncolytic AV vector
expressing an interfering long non-coding RNA (lncRNA) to
inhibit 12 oncogenic miRNAs has been constructed in order
to perform selective killing of tumor cells (95). AV vectors
carrying complementary sequences of liver-specific miRNA-122a
incorporated into 3’-UTR of E2A, E4, or pIX to reduce the
leaky expression of viral genes and hepatotoxicity were developed
(96). In addition, AV vectors with E1A carrying mutations
complementary to retinoblastoma (RB) or p53 gene mutations
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FIGURE 2 | Mechanism of adenovirus-mediated delivery of a therapeutic DNA. Upon infection, adenovirus delivers the encapsulated therapeutic DNA into the
cytoplasm of the target cells. Various stages of viral gene delivery, viz cell attachment, internalization, endocytosis, uncoating, transcription and translation of the
therapeutic protein, are shown.

in tumor cells that can specifically replicate and lyse tumor cells
were created (92).

Despite many technological improvements made in vector
design and production, there are still certain issues that have to
be addressed for better clinical outcome. For example, infecting
target cells with the optimal amount of highly purified AV
particles is critical for the successful insertion of a therapeutic
gene. Recently, it was shown that 1010-1012 AV particles per
patient are required for a successful Ebola vaccination (97).
Production of such high titer virus with no or minimal empty
vector contamination is still a formidable challenge. Also, high
prevalence of anti-AV vector immunity in the human population
and differential expression of CAR and other receptor proteins
on target cells have been serious issues in clinical trials (98, 99).
For example, the transduction efficiency of the widely used AV
serotype 5 in gene therapy is dampened by the prevalence of
neutralizing antibodies in the human population (100, 101).
An estimated 80% of the human population is believed to
carry antibodies against AV serotype 5, resulting in a significant
transduction deficiency and stimulation of inflammatory shock
(102). There has been a positive correlation between body fat
and the presence of circulating antibodies against AV serotype
36 in humans (103). In addition, during systemic administration,

the tendency of AV vectors to undergo sequestration in the
liver has prevented efficient transgene transduction and displayed
severe hepatotoxicity, even causing the death of a clinical trial
participant (104, 105). This was due to the binding of blood
coagulation factor FV and FX to the hyper variable region
(HPV) of AV hexon subunit (106, 107). Therefore, mutating the
HPV site in such a way that it neither activates complementary
pathway nor interacts with FX could be an ideal way to resolve the
liver sequestration issue. Attempts are being made to improve the
safety of AV vectors by treating with chemicals and developing
chimeric and hybrid vectors to minimize inflammation and
immunogenicity (108, 109). For example, the chimeric AV
serotype 5 vector carrying receptor-binding epitopes derived
from other human AV serotype 3, serotype 35, and serotype 43
displayed low seroprevalence and low affinity for CAR (110, 111).
Similarly, the chimeric human AV serotype 5/3, consisting of
receptor epitopes derived from serotype 3 and 5, showed high
binding affinity for CD46, an AV receptor commonly expressed
on many solid tumors. It was thus found to be particularly useful
in targeting solid tumors (112, 113). Another CD46-targeted
chimeric AV vector derived from human serotype 5 and 35
has been shown to be suitable for transducing vascular smooth
muscle cells, treating colorectal cancers, and ischemic wounds
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as well as manipulating T-cells (114–117). Novel chimeric AV
vectors developed from AV serotypes 5 and 11 and 3 and 11
were found very effective in exclusively targeting glioma and
colon cancer cells, respectively (118, 119). Other types of chimeric
vectors were also derived entirely from low prevalent human
and non-human AV serotypes such as human AV serotype
26, canine AV serotype 2, and chimpanzee serotype 3. For
example, the chimeric AV vector developed from human AV
serotype 26 and chimpanzee AV serotype 5 has been used
successfully for Ebola vaccination in animal models (120, 121).
A novel hybrid vector developed from AV serotype 5 and alpha
virus was found very useful for the expression of transgenes
in malignant hematopoietic cells (122). Many laboratories have
developed a library of AV vectors that carry random-peptides on
their fiber knobs in order to overcome the paucity of cancer-
specific ligands (123–125). This resulted in the generation of
many AV vectors that are specific to prostate and pancreatic
cancer as well as glioma (123, 125–128). One such vector
carrying pancreatic cancer-targeting ligand has shown strong
oncolytic effect in primary pancreatic neuroendocrine tumors
and appears promising as a next-generation therapy (129). Given
the advancements made in developing safe and efficient AV
vectors, their choice for delivering therapeutic genes has become
apparent in clinical trials.

ADENO-ASSOCIATED VIRUS (AAV)

AAV is yet another popular viral vector used in gene therapy.
This small microbe was first isolated as a contaminant in the
simian adenovirus preparation and then named adeno-associated
virus (AAV) by the Bob Atchison group at Pittsburgh University
and the Wallace Rowe group at the NIH (130, 131) and later
found in a wide range of animal samples including human, non-
human primates, avian, bovine, reptiles, pigs, sea lions, bats, and
caprine samples. The 4.7-kb-long single-stranded DNA (ssDNA)
packed inside a non-enveloped viral particle carries p5, p19,
and p40 promoters as well as rep and cap genes flanked by
two 145 nucleotide-long inverted terminal repeats (ITR) and
no polymerase gene (132, 133). While ITRs having palindromic
sequences base pair to allow synthesis of cDNA, both rep and cap
genes undergo alternate splicing to express replication proteins
(Rep78, Rep68, Rep52, and Rep40), capsid or virion proteins
(VP1, VP2, and VP3), and an assembly activating protein (AAP),
respectively (134). Being a non-structural protein, AAP assists
virion proteins in capsid formation (135). VP1, VP2, and VP3
expressed from p40 promoter at a ratio of 1:1:10 form the outer
capsid of the virion. These capsid proteins carry phospholipase
domain to protect virions from the onslaught of intracellular
protease system (136). Unlike other viruses, AAV requires a
few other helper proteins, agents or viruses such as AV, herpes
simplex virus type I/II, pseudorabies virus, cytomegalovirus,
genotoxic agents, UV radiation, or hydroxyurea to infect cells
and complete replication (137). AAV can also be generated
by providing the missing genes E1a, E1b, E2a, E4orf6, and
VA that are needed for viral infection. These genes are often
cloned in pXX6 helper plasmid and used to co-transfect HEK293

cells along with AAV expression plasmid (rep-cap plasmid) to
produce AAV (134, 138). Therapeutic genes are cloned in the
AAV expression plasmid carrying ITR sequences, and their size
can be increased by cotransfecting another plasmid carrying rep-
cap genes or by generating virus in rep-cap stable cells. Since the
formation of dsDNA from its ssDNA is the rate-limiting step of
viral infection, gene delivery, and expression in the target cells, a
self-complementary viral dsDNA (scAAV) is developed; however,
it reduces the capacity of AAV vectors to deliver a therapeutic
gene (139, 140). AAV inserts a therapeutic gene in the genome
of target cells to provide long-term transgene expression. For
instance, the gene expressing FIX blood coagulation factor in one
individual of a cohort persisted for more than 10 years during
a clinical trial (141). AAV inserts a therapeutic gene in the host
genome at a specific location on the q arm of chromosome 19
(142, 143). Despite having no large homology regions, more than
70% of the transgene integration events occur within this site;
however, the underlyingmechanism remains unknown. But AAV
lacking its rep-cap genes can deliver a therapeutic gene in the
episomal form without inserting into the genome of the target
cells. The therapeutic gene in the episomal form can develop
into a chromatin-like structure and remain quiescent in cells for
months to years without damaging the patient’s body. Recently,
we have used AAV vectors to make episomal insertion and
expression of a bioscavenger gene in the liver cells for about
6 months (unpublished results). This allows clinicians to apply
AAV-mediated gene therapy to treat a wide variety of diseases
or disorders.

AAV displays broad tropism but requires the expression
of heparin sulfate proteoglycan, αvβ5 integrin, α5β1 integrin,
fibroblast growth factor receptor 1, platelet-derived growth factor
receptor, hepatocyte growth factor receptor, epidermal growth
factor receptor, laminin receptor, and sialic acid moieties on
the surface of target cells for efficient transduction and delivery
of a therapeutic gene. Recently, AAVR has been identified as a
universal host cell receptor for AAV infections (144). Although
every serotype has the ability to infect cells, transport to nucleus,
uncoat, and insert its genome into the host’s chromosome or leave
in the episomal form, not all 13 AAV serotypes isolated to date
use the same receptor repertoire on host cell surface for infection
(145, 146). This makes AAV a very useful system for a specific
cell or tissue type transduction. For example, AAV1 displays high
transduction efficiency of muscles, neurons, heart, and retinal
pigment epithelium. AAV2 has been shown to infect many types
of cancer cells, neurons, kidney, retinal pigment epithelium, and
photoreceptor cells. AAV2 is the only serotype that can infect and
delivery a therapeutic gene to kidney. AAV4 and AAV5 serotypes
infect retina and retinal pigment epithelium, respectively. While
AAV6 displays strong tropism for heart, AAV7 has some bias for
liver (147). AAV6 is also effective in infecting airway epithelial
cells (148). AAV8 and AAV9 have displayed successful infection
of lymphoma and HPV tumors, respectively (149). AAV8 is the
only serotype that infects pancreas, and it was extensively used
to express a therapeutic FIX in the liver to treat hemophilia
in clinical trials (150). AAV tropism was further refined by
mixing the capsid proteins of one serotype with the genome
of another serotype. For example, AAV2/5 serotype, which
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transduces neurons more efficiently than the parental AAV2, was
generated by packaging AAV2 genome in AAV5 capsid proteins.
Another example, the pseudotyped AAV8 and AAV9, can cross
the endothelial barrier of blood vessels to target muscles (66).
For increasing transduction efficiency, hybrid AAV serotypes
were also generated by mixing the capsid proteins of multiple
serotypes with the genome of another serotype. For example,
AAV-DJ serotype that consists of a hybrid capsid is generated
by mixing the capsid proteins of eight different AAV serotypes.
This made AAV-DJ to display higher transduction efficiency than
any other wild type serotype in vitro and high infectivity of a
broad range of tissue in vivo. Its mutant, AAV-DJ8 serotype,
displays high infectivity of brain. AAVHSC, a new class of genetic
vector isolated from hematopoietic stem cells, has been shown
to be ideal for manipulating stem cells (151). Since more than
50% of the adult human population carries AAV neutralizing
antibodies, a wide range of mosaic or hybrid vectors were
generated by engineering and de novo shuffling of capsid proteins
(152, 153). For example, the AAV2.5 hybrid vector generated
by combining the muscle tropism determinants of AAV1 with
parental AAV2 displays immune evasion of their neutralizing
antibodies (154). The other hybrid vectors AAV6.2, AAV2i8,
AAVrh10, andAAVrh32.33 were found beneficial for intravenous
delivery, reduction of liver sequestration, and T-cell response
in the clinic, respectively (138, 155–157). Since CpG motifs are
responsible for immune response and failure of many clinical
trials, AAV vectors were further refined by deleting CpG motifs,
known ligands of Toll-like receptor 9 (TLR9), to reduce immune
response for maximal expression of a transgene in clinical trials
(158). Cre-recombination-based AAV variants are also developed
to allow efficient transgene expression in the central nervous
system,muscle, and liver (159, 160). Also, the AAV-CRISPR/Cas9
system has been developed to perform in vivo genome editing and
broaden therapeutic horizons (161).

HERPES SIMPLEX VIRUS (HSV)

Herpes simplex viruses are believed to have tremendous potential
as a preventative and therapeutic vaccine against cancer and
other diseases because of their ability to evade the immune
system and circulating anti-viral drugs, deliver multiple genes,
infect a wide variety of cells, pose low risk of adverse health
effects, and multiply specifically in tumor cells. They are large
enveloped viruses that carry a linear dsDNA of 120–240 kb and
infect reptiles, birds, fish, amphibians, and mammals. There are
eight known human herpesviruses: herpes simplex virus-1 (HSV-
1), herpes simplex virus-2 (HSV-2), human cytomegalovirus
(HCMV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV),
Kaposi’s sarcoma-associated herpesvirus (KSHV), and human
herpesviruses 6 and 7 grouped under alpha, beta, and gamma
genera. Though they share common virion structure and
replication cycle, and many other biological properties, there
is a significant difference in their tropism, infection, and
clinical manifestations. Some of their genes show homology with
regions of human chromosomes. Here, we delve into HSV that
infects ∼60% of the human population worldwide and mainly

transmits through contact, especially oral-oral contact (162).
After infecting oral or genital epithelial cells, HSV enters neurons
to establish lifelong latent infection and reactivates periodically
causing fever, blisters, cold sores, genital herpes stromal keratitis,
blindness, cancer, and encephalitis. Both HSV-1 and HSV-2 carry
envelope and sub-envelope structures called tegument and a
regular icosahedral capsid consisting of a relatively large dsDNA
of 153 kb encoding ∼200 proteins (163). Nearly half of the total
84 genes present in the HSV genome encode proteins required
for virus replication, and many were found unnecessary for
delivering therapeutic genes. Several genes involved in virulence
and immune evasion, and those considered non-essential for
viral life cycle in vivo were also identified. HSV-1 is relatively
less pathogenic than HSV-2 and is, therefore, ideal for vector
development and gene therapy (164). HSV infects cells by using
its envelope glycoprotein B, glycoprotein C, and glycoprotein
D to bind cell surface particles and transmembrane receptors
such as heparin sulfate, herpesvirus entry mediator (HVEM),
nectin-1, and 3-O sulfated heparin sulfate. While the nectin
receptors provide a strong point of viral interaction with the
host cell, the other viral envelope proteins, especially glycoprotein
B, glycoprotein D, glycoprotein H, glycoprotein L, and HVEM,
create an entry pore for the viral capsid. The viral capsid enters
through capsid pore and travels through the cytoplasm to the
nucleus in order to inject its DNA content. HSV evades the
immune system by secreting its immediate-early protein, ICP47,
and inducing a transporter associated antigen processing (TAP)
protein to block MHC class I antigen presentation on the cell
surface. HSV-1 infects many types of mitotic and post-mitotic
cells including neurons (36). After infection, HSV induces the
expression of the virion host shutoff protein (VHS or UL41)
to inhibit protein synthesis by degrading the host mRNA. This
makes way for viral replication and lysis of the host cells.

The HSV genome carries immediate-early, early, and
late genes for replication and allows creation of replication-
competent, replication-incompetent, and helper-dependent
vectors, or amplicon vectors, for preclinical and clinical studies.
The replication-competent vectors have the capacity to deliver
transgenes up to 50 kb in size or the entire locus since treatment
of certain diseases requires huge therapeutic gene cassettes
carrying complex regulatory elements. These vectors can
replicate selectively in cancer cells and have less virulence
because of deleted genes. They do not insert transgenes in the
host chromosomes and are therefore used primarily as oncolytic
viruses to treat glioma, melanoma and ovarian cancers and to
stimulate an immune response (66). They are further refined by
using tumor specific promoters to express viral genes and target
tumor-specific receptors. These vectors with robust replication
capacity are believed to enhance intramural vector distribution
and lyse tumor cells very effectively. These vectors are generally
constructed by homologous recombination in eukaryotic cells
by co-transfecting the viral genome and a plasmid carrying the
therapeutic gene flanked by the sequences homologous to the
target locus on viral genome to undergo recombination. The
replication-incompetent vectors are created by either mutating
or deleting several immediate early genes including ICP4 and
ICP27 that are essential for replication and, therefore, can grow
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only in specifically designed cell lines complemented transiently.
For example, Vero-7b cell line is capable of providing in trans
the proteins encoded by deleted viral genes (165). They are safe
and non-inflammatory advanced vector platforms known to
persist and express in the nerve cells for life and therefore used
to treat neuropathic, inflammatory, and cancer-associated pain
(166–168). The helper-dependent HSV vectors, or amplicon
vectors, carry deletions in one or more non-essential genes and
retain the ability to replicate in vitro but are compromised in
vivo in a context-dependent manner (169, 170). These viruses
are the same as wild type HSV, with plasmids containing a
packaging signal and the gene of interest. Amplicons have the
ability to accommodate a very large therapeutic sequence up
to 100 kb in size but have production and stability issues. The
replication-incompetent vectors and amplicons have been used
to express genes in the nervous system, muscle, heart, and liver.

RETROVIRUS (RV)

Retroviruses are spherical (∼100 nm in diameter) and enveloped
microbes belonging to a Retroviridae family that comprises
foamy virus, human immunodeficiency virus (HIV-1), simian
immunodeficiency virus (SIV), bovine immunodeficiency virus,
feline immunodeficiency virus, equine infectious anemia virus
(EIAV), murine leukemia virus (MLV), bovine leukemia virus,
Rous sarcoma virus (RSV), spleen necrosis virus (SNV), and
mouse mammary tumor virus. Unlike all other RNA viruses,
these viruses are capable of reverse transcribing their genetic
blueprint of positive, single-stranded RNA into dsDNA, and
inserting it into the host cell genome. RVs carry a non-covalently
linked dimers (two copies) of RNA genetic material probably as a
fail-safe mechanism for producing genomic DNA and increasing
viral RNA diversity due to interstrand recombination (171).
Thus, RNA dimerization has been viewed as a prerequisite for RV
genome encapsidation and life cycle. With restricted vertebrate
hosts, these viruses are divided into exogenous retroviruses
(XRV) and endogenous retroviruses (ERV). While the XRVs
transmit horizontally among hosts, the ERVs inherit vertically
in the genome of their hosts (172). By scattering all over
chromosomes and comprising nearly eight percent of the human
genome, the ERVs are thought to be relics of ancient retroviral
germline infections and believed to play a role of friend or
foe in human life (173–175). The two most common types
of retroviruses are gammaretrovirus and lentivirus, which are
derived from MLV and HIV-1, respectively. The genome of
gammaretrovirus has three essential genes, gag, pol and env, and
is flanked on both sides by long terminal repeats (LTRs). Gag
inserts viral genome mRNA into virions when assembling, pol is
the reverse transcriptase, integrase, and protease encoding gene,
and env encodes the surface and the transmembrane glycoprotein.
Also, RV genome carries a cis-acting ψ packaging element that
involves in regulating the essential process of packaging the
RV mRNA into viral capsid during replication. In addition,
RV genome carries RNA dimerization signal element. With U3,
R, U5 elements, the LTRs display promoter/enhancer activity
for gene transcriptional regulation. RVs use their envelope

proteins to bind a variety of receptor molecules such as murine
cationic amino acid transporter (mCAT), a sodium-dependent Pi
transporter (PiT2), xenotropic and polytropic retrovirus receptor
1 (XPR1), CD4, CD46, CD150, and the RD114-and-D-type-
retrovirus/alanine-serine-cysteine transporter 2 (RDR/ASCT2)
expressed on different cell surfaces to initiate infection, a critical
step in determining the target cell tropism of the virus. This leads
to a conformational change in the envelope proteins, leading to
the entry of virus into the cytoplasm via fusion or endocytosis.
With the help of the host cell proteins, the endosome travels
through cytoplasm to eject its RNA. After the RNA reverse
transcription takes place, viral DNA is integrated into the host
cell chromatin, transcribed into RNA with 5’ Cap and 3’ poly(A)
tail, and translated into viral proteins that assemble and bud from
the plasmamembrane to complete the life cycle with extracellular
maturation (171). The matured RVs can infect a wide variety
of somatic cells including embryonic stem cells, hematopoietic
and neural stem cells. With active nuclear elements, these vectors
can transduce therapeutic genes into proliferating cells only
and are, therefore, ideal for targeting specifically cancer cells.
A downside to gammaretrovirus is that it has broad species
specificity, leaving the possibility of transducing undesired cells,
faulty reverse transcription, intracellular restriction factors, and
risk of insertional mutagenesis. The major difference between
gammaretrovirus and lentivirus is that lentivirus can infect post-
mitotic cells. It requires four plasmids for production: the gag
and pol plasmid, the rev plasmid to transport mRNA into the
cytoplasm, VSV-G for membrane fusion and the gene of interest.
Other retroviruses require three plasmids: the gag and pol
plasmid, the VSV-G plasmid and the gene of interest. Transient
or stable co-expression of all these plasmids in HEK293T
packaging cell lines produces RV vector particles carrying no
replication-competent virions that are essential for research and
therapeutic purposes. Using these cell lines, methods to produce
clinical grade RV particles at a concentration of 106 to107/ml are
optimized (176). As gag/pol and env expression constructs carry
no ψ packaging and RNA dimerization element, viral structural
proteins only recognize the ψ-containing RV vector construct
resulting in a preferential packaging of RV vector genomes into
infectious particles. After entry of the particle into the host cell,
only the RNA of the RV vector construct is reverse transcribed
and stably integrated into the host genome. Thismethod prevents
generation of replication competent retroviral vector progeny
during therapeutic viral particles production. Lentivirus has been
used to treat X-SCID, cancers and monogenic diseases. For
example, self-inactivating lentiviral vectors can engineer T cells
with receptors to better target tumors when treating cancer.
Recently, we have successfully used lentiviral vectors to deliver
an anti-angiogenic Kininogen gene to budding blood vessels
(177, 178). There have been no reports of significant adverse
effects from the lentivirus (37).

Some advantages of using retroviruses are that they can
accommodate a 9–12-kb-large insert size for the gene of interest
and produce high titers. The most significant disadvantages
are lack of cell specificity and the possibility of insertional
mutagenesis (18). The enzyme “integrase” inserts copies of the
retroviral genome into the host cell chromosomes but there
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is a risk of inserting the genome copy into an unfavorable
location such as a tumor suppressor gene or an oncogene, which
would lead to uncontrolled cell division (36). It is critical to
evaluate the risk of insertional mutagenesis for each retroviral
vector. Gammaretroviral vectors have a tendency to integrate
near gene regulatory regions, which can pose a significant risk.
For example, patients in a cohort of 20 died due to leucosis
development in a clinical trial (179). On the other hand, lentiviral
vectors tend to integrate into the body of genes, leading to
lower risk of genotoxicity (52). A possible step to address this
issue would be to use self-inactivating retroviral vectors that
are transcriptionally inactive. Since mature T cells are relatively
resistant to oncogenic transformation by RV, developing T cell-
based therapeutic approaches to treat cancer and other diseases
would be another approach to avoid insertional mutagenesis.
Recently, a non-integrating RV-based CRISPR/Cas9 vectors have
been created for targeted gene knockout (180). Creating such
vectors to target specific genes would help developing therapeutic
approaches without insertional mutagenesis issue. Renal fibrosis
was treated by using high-fidelity RV-based CRISPR/Cas9 vectors
(181). Development of similar vectors would not only address
insertional mutagenesis issue but also radically transform basic
and applied biomedical research. Also, using AAV vector which
inserts a therapeutic gene selectively into known chromosome
19 sequences would be another possibility. Using zinc finger
nucleases or including certain sequences such as the β-globin
locus control region to direct the site of integration to specific
chromosomal sites is yet another way to minimize the risks.
However, further studies are needed to address this issue by
designing specific vectors and understanding the frequency of
insertional mutagenesis, and role of other factors involved.
Insertional mutagenesis is an issue that will likely be solved in
the coming years. Until then, the use of retroviruses remains a
concern. Nonetheless, over 500 gene therapy clinical trials have
been conducted using retrovirus to date.

GENE THERAPY DRUGS IN THE MARKET

Despite many technological challenges and barriers, more than
a dozen gene therapy-based drugs have entered the world
pharmaceutical market to date (Figure 3). The first gene
therapy drug, GendicineTM, was developed by Shenzhen SiBiono
GeneTech for the treatment of patients with tumors carrying a
mutated p53 gene, a common cause for more than 50% of all
types of human cancers. The State Food Drug Administration
of China approved GendicineTM for the treatment of head and
neck squamous cell carcinoma on October 16, 2003 (182, 183).
However, the USFDA has turned down Introgen’s Advexin,
another AV-based viral drug that uses p53 due to concerns
about the safety of the AV vectors after Jesse Gelsinger died in
1999 while participating in a clinical trial but no information is
available about the submission of GendicineTM clinical data for
approval from the USFDA to date. GendicineTM, a replication
defective AV loaded with wild-type p53 gene, is given to patients
by less invasive intramural injections and or intracavity infusions.
According to the manufacturer, a single dose of this viral drug,

costing less than US $400, is given to patients once a week
for 8 weeks as a cure. After injection, the therapeutic activity
of p53 activated by target tissue cellular stress induces cell-
cycle arrest, DNA repair, apoptosis, senescence, and autophagy
to cause tumor growth regression. GendicineTM has been given
to more than 30,000 cancer patients, and it has displayed an
exemplary safety record with no significant side effects to date
(14). According to the manufacturer, GendicineTM has shown
a higher response rate when combined with chemotherapy
and radiotherapy in comparison with standard therapies alone.
Because GendicineTM is injected directly into tumors and
becomes useless for treating tumors neither detectable nor
accessible, other advanced replication-defective AV-based drugs,
such as Advexin and SCH-58500, that carry wild type p53
gene were developed to target all tumors in the patient’s
body in an intravenous injection; however, neither Advexin
and SCH-58500 has entered the pharmaceutical market to
date. However, OncorineTM, another replication defective AV-
based drug that carries p53 gene to cure head and neck
cancer, made it to the Chinese pharmaceutical market in
2005. According to the manufacturer, Shanghai Sunway Biotech
Co., the curative effective of OncorineTM combined with
chemotherapy is superior to chemotherapy alone with a good
safety profile. Since low transduction is a major issue with these
approved replication defective AV drugs, more advanced tumor-
specific p53-expressing conditionally replicating AV vectors such
as ONYX 015, AdDelta24-p53, SG600-p53, H101, and OBP-702
have been developed but none of them is approved for cancer
treatment to date. As many clinicians prefer cancer management
rather than a cure due to the complex nature of the disease, the
future of oncolytic viral therapy demands further advancement
in vector design and discovery of appropriate therapeutic genes
for better treatment.

The next advanced gene therapy drug, Rexin-GTM, a chimeric
retrovector loaded with a cytocidal dominant negative cyclin
G1 gene to target and kill solid tumors, was approved by
the Philippines FDA in 2005. Rexin-GTM developed by Epeius
Biotechnologies Corporation was designated by the US FDA
as an orphan drug for pancreatic cancer. After intravenous
injection, this viral drug carrying a motif derived from von
Willebrand coagulation factor (vWF) on its surface selectively
binds receptors and collagenous proteins exposed heavily in
tumor microenvironment in order to fuse, enter, uncoat, and
insert its genetic material randomly in the chromosomes of the
actively dividing tumor cells only (184). Recent clinical studies
confirmed its safety, anti-tumor activity, and potential to increase
survival time and survival rate of patients. Recently, another
retrovirus-based drug, StrimvelisTM, was approved in Europe to
treat an ultra-rare immunodeficiency syndrome, ADA-SCID, or
Bubble Boy Syndrome, a fatal and life-threatening disease due
to lymphopenia, and recurrent and opportunistic infections. A
bone marrow transplant from a young child donor with matched
leukocyte antigen is the recommended treatment for ADA-SCID
patients, but the availability of a suitable donor is challenging.
Therefore, StrimvelisTM is designed and developed to offer ex
vivo gene therapy and involves use of RV to insert copies of the
ADA gene into the chromosomes of stem cells extracted from the
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FIGURE 3 | Gene therapy drugs in the pharmaceutical market and a timeline of their approval.

bone marrow of patients. The stem cells carrying the ADA gene
are then reintroduced into the patients whose bodies can express
protein to repair their immune system on their own. This drug,
with a list price of $714,000, is available for ADA-SCID patients
without a donor that has matched human leukocyte antigen
(HLA). Clinical studies revealed a 100% remission rate for
StrimvelisTM (Table 2). Nonetheless, there is now a push toward
using self-inactivating retroviral vectors that have less risk of
insertional mutagenesis, especially self-inactivating HIV-1-based
lentiviral vectors (185). A few months ago, the FDA approved
KymriahTM, a lentivirus-based chimeric antigen receptor T cell
(CAR-T) therapy for acute lymphoblastic leukemia (186). The
underlying mechanism of this cancer type disease development
still remains unknown, but patients carry abnormal lymphocytes
in many of their body parts. KymriahTM was developed by
Novartis in collaboration with the University of Pennsylvania
to treat patients with non-Hodgkin lymphoma (NHL) and B-
cell acute lymphoblastic leukemia (ALL). KymriahTM is a novel
immunocellular therapy that uses a patient’s own reprogrammed
T cells with a transgene encoding CAR to identify and eliminate
CD19-expressing malignant and non-malignant cells; overall
remission rate with the therapy is 83% (Table 2). The autologous
peripheral blood T cells are reprogrammed to carry intracellular

4-1BB and CD3-zeta costimulatory domains fused with a murine
single-chain antibody fragment in its CAR to recognize CD19
increase, cellular expansion, and persistence. YescartaTM is
another retrovirus-based CAR-T cell immunotherapy developed
by Kite, a Gilead company, and approved by the FDA in 2017.
This breakthrough hematologic cancer drug is a customized
treatment generated using an NHL patient’s own T-cells to
help fight lymphoma. The patient’s T-cells are collected and
genetically modified using a RV to generate a CAR consisting
of anti-CD19 CAR-T cells linked to CD28 and CD3-zeta co-
stimulatory domains. This drug is specifically designed to treat
diffuse large B-cell lymphoma (DLBCL), a common aggressive
NHL that accounts for three out of every five cases. According
to the manufacturer, ∼7,500 patients with refractory DLBCL are
qualified to receive Yescarta treatment in the USA alone. With
a list price of $373,000 in the USA, Yescarta is believed to get
approval for the European market in the near future. Zalmoxis
is another T-cell based medicine designated an orphan drug
and approved by the EMA for treating certain leukaemias and
lymphomas. This is used as an add-on treatment in patients
who received hematopoietic a stem cell transplant (HSCT) from
a partially matched donor to restore the immune system. This
is a somatic cell therapy product consisting of T-cells that
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are genetically modified using a RV to express 1NGFR and
HSV-TK Mut2 suicide genes. This drug sometimes attacks the
patient’s body by causing graft-vs.-host disease, but the suicide
gene makes these T cells become susceptible to ganciclovir or
valganciclovir medicine commonly given to treat and prevent
further disease development.

NeovasculgenTM, a non-viral first-in-class gene therapy drug
developed by the Russian Human Stem Cells Institute, has
been available since 2012 for the treatment of atherosclerotic
peripheral arterial disease (PAD) including critical limb ischemia.
Intramuscular injection of a single dose of this drug, costing
less than $50, delivers a plasmid DNA-carrying VEGF gene
cloned under a CMV promoter and stimulates angiogenesis
and blood supply to decrease the risk of amputation and
death in patients suffering from PAD. A recent post-marketing
surveillance study revealed a significant increase in pain-free
walking distance by PAD patients and confirmed the therapeutic
efficacy of this drug (56, 57). Recently, Spinraza R© has become
the first approved treatment for the rare and often fatal disease
spinal muscular atrophy (SMA). SMA patients suffer muscle
strength affecting their ability to sit, stand, and breathe. SMA
is caused by widespread splicing defects due to mutations in
survival motor neuron 1 (SMN1), a ubiquitously expressed
cytoplasmic and nuclear protein involved in transcriptional
regulation, biogenesis of small ribonucleoproteins, telomerase
regeneration, and intracellular trafficking. Although the SMA
patients carry its paralog SMN2, low-level expression due to
alternative pre-mRNA splicing appears responsible for this
disease development. Therefore, Spinraza carrying SMN2-
directed antisense oligonucleotides is designed and developed to
resurrect normal SMN2 protein expression in SMA patients. This
non-viral drug developed by Biogen Inc. has received orphan
drug status and was approved for treating all types of SMA
in the USA, Canada, Japan, the European Union, Switzerland,
Australia, South Korea, Chile, and Brazil. Spinraza solution upon
intravenous and or intrathecal administration enters many cells
in the body and induces SMN2 protein expression. According to
the manufacturer, this medicine, with a list price of $125,000 per
injection, costs $750,000 per year for the first year and hundreds
of thousands of dollars every year for the rest of patient’s life.
An AAV-mediated drug designed to express SMN1 protein in
patients was developed by a Novartis company, AveXis Inc.,
and may become available for the treatment of SMA in the
near future.

The first AAV1-based drug, Alipogene tiparvovec, or
GlyberaTM, was approved by the EMA to treat LPLD, a rare
monogenic genetic disorder characterized by accumulation of
triglycerides in plasma due to mutations in LPL. GlyberaTM

carrying correct copies of LPL was developed by UniQure Inc.,
and widely heralded as the “the first gene therapy” in theWestern
world (Figure 3). However, only one or two people in every
one million are estimated to carry LPLD, and despite Glybera’
s demonstrated potential in curing LPLD, it was withdrawn
from the market due to low patient demand. Recently, another
AAV-based drug has entered the pharmaceutical market to treat
Leber congenital amaurosis, an inherited visual dysfunction
characterized by pigmented retina, wandering nystagmus, and

amaurotic pupils and caused by a mutation in the RPE65 (187).
Upon completion of the late-stage clinical trials, this AAV2-
based voretigene neparvovec, LuxturnaTM, has been designated
by the FDA as a breakthrough therapy and an orphan drug
for the treatment of choroideremia. Clinical trials revealed a
remarkable improvement in the patients’ ability to see in dim
light (188). According to the manufacturer, Spark Therapeutics,
Inc., Philadelphia, USA, LuxturnaTM has successfully cured one
blind America’s Got Talent semifinalist, Christian Guardino.
Recently, LuxturnaTM has become the first viral-based drug
approved by the FDA to treat blindness. LuxturnaTM, loaded
with wildtype RPE65, will be given to patients with confirmed
biallelic RPE65 mutation-associated retinal dystrophy to restore
their vision within a few months. Since LuxturnaTM comes with
a record sticker price, the manufacturing company offers an
outcome-based rebate arrangement with a long-term durability
measure and payment option over multiple years. Another AAV-
based drug is poised to enter the pharmaceutical market in
the near future to treat choroideremia, an X-linked inherited
retinal dystrophy that causes night blindness and a constricted
visual field.

Recently, the USFDA approved an HSV-based drug called
T-VEC (ImlygicTM) Talimogene Laherparepvec, developed by
BioVex Inc., and now acquired by Amgen for melanoma
treatment. T-VEC directly kills metastatic melanoma cells and
enhances the immune response against them. According to
the manufacturer, this advanced oncolytic virus replicates in
the tumor cells and synthesizes granulocyte-macrophage colony
stimulating factor (GM-CSF), resulting in tumor-lysis and release
of tumor antigen, which can then trigger an immune response.
The target areas include cutaneous, subcutaneous and nodal
lesions. ImlygicTM also serves as an in-situ vaccine (189). The T-
VEC treatment course involves a series of HSV injections into the
melanoma lesions for 6 months for a complete cure. T-VEC was
approved also in Europe and Australia for melanoma treatment.
G471 or DS-1647 is a third generation oncolytic HSV developed
by Daiichi-Sankyo Ltd., Japan, and Professor Tomoki Todo at
the University of Tokyo for the treatment of malignant glioma.
This has shown excellent safety and efficacy in treating glioma
in preclinical and clinical studies and has been designated as
an orphan drug and “Sakigake,” or ahead of the world, by the
Ministry of Health, Labor and Welfare of Japan (190). However,
this drug is not available for the treatment of cancer patients to
date. In addition, a fewmore drugs are available in the market for
treating different diseases (Table 2).

GENE THERAPY DRUGS IN CLINICAL
TRIALS

The world’s first gene therapy clinical study was conducted
to test a viral-mediated drug at the NIH in 1989, and now
3704 gene therapy studies from 204 countries are listed in the
US Government’s clinical trials database to date (Figure 4A).
More than 50% of them are being conducted in the USA
alone. Recently, the US government has removed NIH special
oversight rules on gene therapy studies, and the USFDA has
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decided to consider gene therapy drugs like other medications
for approval in order to make gene therapy a therapeutic reality
for patients. These clinical studies are testing both viral and
non-viral gene therapy drugs to find cures for a wide variety
of human diseases, disorders, and infectious diseases. While the
majority of these clinical studies are focused on treating cancer,
and immune and digestive diseases, skin diseases are yet to
receive momentum (Figure 4B). These ongoing gene therapy
clinical studies are delivering a wide variety of therapeutic
cytotoxic/suicide, tumor suppressor, vaccine antigen, cytokine,
receptor, replication inhibitor, and anti-angiogenic genes. Some
of the therapeutic genes, vectors, targeted diseases, and their
manufacturers are mentioned in Table 1. A large number of non-
viral vectors are being used to deliver these therapeutic genes,
but viruses dominate as successful vectors in the ongoing clinical
studies. The most popular viral vectors being used in clinical
studies are AV, AAV, HSV, and RV.

AV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

Both AV and RV vectors are being used in more than 50%
of the ongoing viral-mediated clinical studies (Figure 4C).
The main focus of these are on vaccination and oncolytic
therapies. For example, an AV-mediated Theragene (Ad5-
yCD/mutTKSR39rep-ADP) delivers a double suicide gene to
target stage III pancreatic cancer. AV is being used to
deliver the p53 gene in phase II trials to treat recurrent
ovarian epithelial, fallopian tube, and primary peritoneal cancer
as well as hepatocellular carcinoma (NCT02435186). Also,
AV vectors are being used to deliver anti-angiogenic and
immunostimulatory genes to treat prostate cancer and malignant
pleural mesothelioma (NCT02555397 and NCT01119664). A
significant antitumor activity has been demonstrated in phase
I-III clinical trials when an AV-based Onyx-015 that undergoes
replication selectively in tumors was applied in combination
with chemotherapy (14, 191). Vaccination using AV, along
with other viruses such as the modified vaccinia Ankara virus
(MVA), retrovirus, Sendai virus, and vaccinia virus, is being
tested in many clinical trials. AV vectors are also being tested
in delivering therapeutic genes for treating malaria, anthrax,
HIV, influenza, hepatitis B and C, and severe hemophilia, as
well as cardiovascular and many more diseases. AV vectors
carrying site-specific endonucleases are being used to edit the
CCR5 gene in hematopoietic stem or progenitor cells in AIDS
clinical trials (192). The lack of functional dendritic cells in the
brain has been attributed to the growth of one of the most
aggressive and malignant tumors called gliomas. AV vectors
are being used to empower the immune system by expressing
the HSV-1 derived thymidine kinase (HSV-1 TK) and cytokine
fms-like tyrosine kinase 3 ligand (Flt3L) in the brain. While
HSV-1 TK converts ganciclovir into phospho-ganciclovir, a
toxic compound to dividing glioma cells, Flt3L differentiates
precursors into dendritic cells and acts as a chemokine for
dendritic cells resulting into killing of glioma cells and release
of tumor antigens in the tumor microenvironment. This follows

release of HMGB1, a TLR2 agonist that activates dendritic cells
and stimulates dendritic cells loaded with glioma antigens to
migrate to the cervical lymph nodes to prime a systemic CD8+
T cytotoxic killing of glioma cells without causing brain toxicity
and autoimmunity (193). The median survival of glioma patient
is under 2 years and the ongoing clinical trials with DNX-
2401, a replication-competent oncolytic AV capable of infecting
and killing glioma cells by stimulating an anti-tumor immune
response revealed favorable safety profile and prolonged survival
of glioma patients (194, 195). Enadenotucirev, a non-natural
chimeric oncolytic AV that can retain anti-tumor activity despite
intravenous delivery, showed a predictable andmanageable safety
profile in several advanced cancer patients in phase I clinical
studies (196). With encouraging clinical outcome being observed
in a large number of ongoing clinical trials, especially in treating
cancer, AV-mediated gene therapy is anticipated to make a
significant impact on eradicating cancer in the near future.

Although the AV-mediated gene therapy carries a unique
advantage over other systems, several concerns must be
addressed to offer treatment without side effects. For instance,
further improvement in vector development technologies
is essential to avoid activation of the endogenous signal
transduction pathways and production of cytokines due to anti-
vector immune responses that can potentially complicate the
clinical outcomes. The necessity of integrin and CAR protein
expression on the surface of target cells or tissue to allow
efficient infection of AV limits the prospects of treating many
diseases. Therefore, generation of novel AV vectors that can
infect and transduce target cell or tissue with high specificity,
express transgenes up to the therapeutic requirement, induce
low organ toxicity and inflammation, and can be detected
easily in vivo is the need of the hour. Understanding the
disease-specific biomarkers, designing and engineering novel
AV capsids carrying cell or tissue-specific receptor binding
epitopes can reduce the occurrence of unwanted clinical
outcome. Since the presence of AV-neutralizing antibodies varies
from patient to patient, designing and developing personalized
patient-specific capsids can be a promising approach to cure
diseases in the future. Development of AV particles that
resist inactivation by serum proteins is necessary to promote
intravenous administration of therapeutic particles during
treatment. Development of strategies to avoid dose-associated
toxicity is needed. In addition, contamination with replication-
competent virus still remains a serious issue in large scale
production of AV preparation for therapeutic purposes (197).
Therefore, further advancement in the production of purified AV
and AV-based gene delivery technologies is required for using
gene therapy to its full potential.

AAV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

AAV vectors are being used in more than 200 ongoing clinical
studies to treat a wide variety of diseases and disorders
worldwide. After the approval of the AAV-based drugs Gendicine
and Luxturna, another AAV-based drug is poised to enter the
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TABLE 1 | Naked DNA and viral-mediated drugs in clinical trials.

Viral Drug/ Intervention Company/Sponsor Gene/Ab/Ligand Disease/Disorder Vector Currentstatus Clinical trial number

Theragene® SNUBH CD/TKrep Cancer AV Phase I NCT02894944

Ad5-Gag BDHCMU Gag AIDS vaccine AV Phase I NCT02762045

AdMA3 BCCA MG1MA3 Solid tumor AV Phase I NCT02285816

Ad/L523S CCF L523S Lung Cancer AV Phase I NCT00062907

AdAg85A MUMC Ag85A Tuberculosis AV Phase I NCT02337270

Ad35.CS.01 SUSM CS.01 Malaria AV Phase I NCT00371189

dAd5GNE WCMC GNE Cocaine AV Phase I NCT02455479

ChAd63-METRAP CCVTM METRAP Malaria AV Phase I NCT03084289

Ad5FGF-4 Angionetics FGF Angina AV Phase III NCT02928094

AAV5-hFIX UniQure hFIX Hemophilia B AAV Phase I/II NCT02396342

AAV2-GDNF NIH GDNF Parkinson’s AAV Phase I NCT01621581

AAV OPTIRPE65 MEH OPTIRPE65 Eye Diseases AAV Phase I/II NCT02946879

AAV2hAQP1 NIH hAQP1 AADC AAV Phase I NCT02852213

rAAV1-PG9DP SCRC PG9DP HIV AAV Phase I NCT01937455

scAVV9.CB.CLN6 NCH CB.CLN6 Batten Disease AAV Phase I/II NCT02725580

SPK-8011 Spark Thera. FVII Hemophilia A AAV Phase I/II NCT03003533

scAAV9.U1ahSGSH Abeona Thera. SGSH MPS III AAV Phase I/II NCT02716246

LentiGlobin BB305 Bluebird Bio HBB β Thalassemia LV Phase III NCT03207009

Sin-γ- RV-ADA BCH ADA SCID-X1 γ-RV Phase I/II NCT01129544

Anti-MAGE-A3-DP4 NIH TCR Cancer RV Phase II NCT02111850

Anti-EGFRvIII CAR PBL NIH CAR Glioma RV Phase I/II NCT01454596

Filgrastim FHCRC Filgrastim FA RV Phase I NCT01331018

MO32(NSC 733972) UA IL-12 Gliosarcoma HSV-1 Phase I NCT02062827

OrienX010 Oriengene Bio GM-CSF Melanoma HSV-1 Phase I NCT03048253

HSV1716 NCH ICP34.5 Neuroblastoma HSV Phase I NCT00931931

NP2 Diamyd Inc. PENK Cancer Pain HSV-1 Phase I NCT00804076

G207 UA + radiation Brain tumor HSV-1 Phase I NCT02457845

SGT-94 SynerGene RB94 Solid tumors DNA Phase I NCT01517464

CYL2-02 InvivoGen SST2+DCK Cancer DNA Phase II NCT02806687

SNUBH, Seoul National University Bundang Hospital; BDHCMU, Beijing Ditan Hospital of Capital Medical University; BCCA, Vancouver Cancer Centre Vancouver, British Columbia

Canada; CCF, Cancer Center of Florida; MUMC, McMaster University Medical Center; SUSM, Stanford University School of Medicine; WCMC,Weill Medical College of Cornell University;

CCVTM, Centre for Clinical Vaccinology and Tropical Medicine; MEH, Moorfield’s Eye Hospital; AADC, Aromatic L-amino Acid Decarboxylase Deficiency; SCRC, Surrey Clinical Research

Centre; NCH, Nationwide Children’s Hospital; BCH, Boston Children’s Hospital; TCR, T cell receptor; FHCRC, Fred Hutchinson Cancer Research Center; FA, Fanconi Anemia; UA,

University of Alabama; Oriengene Bio, Oriengene Biotechnology Ltd; PENK, Preproenkephalin.

pharmaceutical market in the near future to treat Choroideremia,
an X-linked inherited retinal dystrophy that causes night
blindness and a constricted visual field. Mutations in REP1
encoding Rab escort protein 1, a protein involved in lipid
modification of Rab proteins, have been implicated in the
development of Choroideremia. Patients that received AAV-
REP1 therapy showed a significant increase in their visual acuity
(198). The product of CNGB3 provides instructions for making
the β-subunit of the cone photoreceptor cyclic nucleotide-
gated (CNG) channel, but mutations lead to a defective
photoreceptor, decreased visual acuity, and total color blindness,
or achromatopsia. In a phase I/II clinical trial sponsored by
Applied Genetic Technologies Corporation, AAV was used to
deliver CNGB3 for the successful treatment of achromatopsia
(187). AAV is being tested to cure another eye disease, Leber’s
hereditary optic neuropathy (LHON), a maternally transmitted
common mitochondrial disorder caused by point mutations in

mitochondrial DNA and impairment of ATP generation. The
LHON disease is characterized by apoplectic, bilateral, and severe
visual loss. In an ongoing phase I interventional clinical trial,
scAAV2 is being used to deliver the P1ND4 gene to rescue
visual loss in five legally blind patients (NCT02161380). P1ND4
is a synthetic nuclear encoding gene involved in mitochondrial
oxidative phosphorylation. The initial results obtained from
this study have showed an improved acuity in two of five
patients with no serious adverse events (199). Since treating
diseases of the central nervous system is challenging due to
the blood brain barrier (BBB), many AAV vectors, especially
AAV1, AAV2, AAV5, AAV8, and AAV9, are found to be very
useful in transducing neurons (200), and therefore, many AAV-
mediated treatments are being tested to cure lysosomal storage
disorders, Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis (ALS), epilepsy, spinal muscular atrophy
type 1, metachromatic leukodystrophy, aromatic L-amino acid
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TABLE 2 | The cellular and gene therapy products available in the market.

Drug Company Therapeutic Disease/Disorder Remission

LuxturnaTM

KymriahTM

Glybera®

Gendicine®

StrimvelisTM

OncorineTM

NeovasculogenTM

SPRS-therapy®

laVivTM

ProvengeTM

ImlygicTM

CarticelTM

Rexin-GTM

Spark Therapeutics
Novartis
uniQure
Benda Pharmaceutical
GlaxoSmithKline
Shanghai Sunway Biotech
Human Stem Cell Institute
Human Stem Cell Institute
Fibrocell Science
Valeant Pharmaceuticals
Biogen

Genzyme
Epeius Biotechnologies

RPE65

CAR-T
LPL

p53

HSC
p53

VEGF

Fibroblasts
Fibroblasts
Dendritic cells
ICP34.5 &
GM-CSM
Chondrocyte
Cyclin G1

Inherited blindness
Leukemia (ALL)
LPLD
Head and neck cancer
ADA-SCID
Head and neck cancer
PAD and CLI
Skin damage
Nasolabial fold Wrinkles
Prostate cancer
Melanoma

Knee cartilage injury
Breast cancer, Sarcoma

93%
80%
NA
67%
100%
NA
90%
75%
57%
38%
50%

92%
40%

CAR-T, Chimeric antigen receptor T- cell; ALL, Acute lymphoblastic leukemia; LPL, Lipoprotein lipase; LPLD, Lipoprotein lipase deficiency; ADA, SCID—Adenosine deaminase severe

combined immunodeficiency; HSC, Hematopoietic stem cell; VEGF, Vascular endothelial growth factor; PAD, Peripheral arterial disease; CLI, Critical limb ischemia; ICP34.5, Infected

cell protein 34.5; GM, CSF-Granulocyte-macrophage colony stimulating factor.

FIGURE 4 | Recent trends in gene therapy research and clinical trials. (A) Different diseases being treated by gene therapy in clinical trials. The clinical studies
database was searched for the total number of gene therapies conducted in the world to treat different diseases to date. The main focus of the clinical trials was found
to be treating cancer, immune, digestive, and genetic diseases. (B) Clinical trials actively recruiting patients for testing gene therapy-mediated medicines in curing
diseases. This includes both viral and non-viral vector-mediated gene therapies. A relatively large number of clinical trials are recruiting cancer patients for testing
different gene therapy-based medicines. (C) Different recombinant viral vectors being tested in gene therapy-based treatments.

decarboxylase (AADC) deficiency, and Batten disease. Like AV,
AAV is yet another useful viral vector for cancer gene therapy.
Several AAV vectors are being used to test the expression of anti-
angiogenic, cytotoxic, cytokine, and tumor suppressor genes,

small RNAs, antigens, and antibodies for cancer cures. A large
number of preclinical studies revealed successful treatment with
AAV-mediated gene therapy for improved tumor regression
(201–206). AAV is considered a powerful vector in targeting
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the liver for treating hematological diseases. Complete treatment
of severe hemophilia B by delivering FIX in patients was
described as the “holy grail” of gene therapy clinical application
(207). In ongoing phase I/II clinical trials, FVIII and FIX are
being delivered to hemophilia A and B patients, respectively
(NCT03003533, NCT02484092).

Although AAV vectors are non-pathogenic and safe, and
found among the commonly used platforms for gene delivery
in preclinical and clinical studies, their potential application
in gene therapy is limited by the inability to deliver a
therapeutic gene more than 5.0 kb in size, immunogenicity
of capsid proteins, difficulty in producing a large supply,
requirement of large doses of highly purified vectors, broad
tropism, and presence of an extensive anti-AAV immunity
in human populations (208–211). Adding empty vectors of
AAV to the final vector preparations to serve as a decoy
and developing new vectors with high transduction and gene
expression potential as well as better understanding of T-
cell response to all AAV serotypes in clinical settings would
reduce inflammation, immune response, and other viral particle-
associated side effects because capsid is the primary interface with
the target cell that defines pharmacological, immunological, and
molecular properties (150, 207, 212, 213). Therefore, designing
and developing more chimeric capsid proteins are critical to
generate disease- and cell- or tissue-specific viral particles. For
example, substitution of tyrosine to phenylalanine in the AAV
capsid protein has enhanced the transduction efficiency with
reduced toxicity (214). Better understanding of the underlying
mechanisms of intracellular transportation of AAV particles
in a disease-specific setting will help developing strategies to
improve gene delivery efficacy. AAV vectors are commonly
delivered to patients by systemic, intramural, central nervous
system, cardiac, and pulmonary delivery but certain sites of
the human body elicit no immune response to injection
of antigens or viral particles because the BBB prevents the
entry of antibodies or resting lymphocytes and the absence of
traditional antigen-presenting cells. Therefore, applying AAV
particles to patients through immune-privileged sites, such as
the central nervous system, mucosal surfaces, eye, placenta,
fetus, testicles, and articular cartilage, could be a better option
to avoid T-cell response. For example, AAV vectors injected
intraparenchymally into the central nervous system to treat
Batten’s, Canavan, and Parkinson’s diseases showed little or no
adaptive immune response in many clinical trials (155, 215–
218). Monitoring T-cell response in patients by using advanced
tools especially multicolor flow cytometry, mass cytometry, and
enzyme-linked immunospot (ELISpot) assay will minimize the
risk of the unexpected clinical outcome (209). Also, for reduced
T-cell response and optimal expression of a therapeutic gene,
intramuscular instead of systematic injection of AAV particles is
recommended because healthy muscles express only low levels
of MHC class I antigens (209, 219). Use of immunosuppressive
drugs was found safe to maintain therapeutic gene expression
in many clinical trials (150, 220, 221), and their use could
be an option for better clinical outcome, but maintenance
of transgene expression remains unpredictable. Although AAV
offers the expression of a therapeutic gene for nearly 1 year

without integrating into the host’s chromosomes, applying
CRISPR/Cas9 technology would resolve long-term expression
and mutagenesis issues. Production of high titers of purified
AAV particles by employing ionic iodixanol gradients and ion
exchange chromatography instead of using the toxic CsCl is
also important for the success of gene therapy (222, 223).
Recent developments in the production of high quality AAV
particles from transfection efficient HEK293 cell suspensions
in shaker flasks and WAVE bioreactors free of all animal and
human products will certainly improve the success of gene
therapy application (224). This system was further improved by
changing the NaCl concentration in the medium and optimizing
conditions for Expi293F cell infection by helper herpes simplex
virus (HSV) (225). However, contamination of the final AAV
particle preparation with HSV cannot be ruled out. The AAV
particles generated from the baculovirus expression system carry
low levels of VP1 capsid protein, so high doses are used in
clinical trials to increase transduction efficiency at the expense of
immune response (226). No disease caused by AAV infection has
been reported to date but repression of PPP1R12C gene promoter
in host cells by the rep proteins of AAV2 is clearly a concern
(227). Therefore, more efforts are necessary to smooth out the
landscape surrounding AAV for its more pronounced clinical
benefits in gene therapy.

HSV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

More than 90 gene therapy clinical trials have been conducted
using HSV as a vector to deliver therapeutic genes for curing
various diseases to date. They have been extensively used for
tumor therapy and vaccine development. After the advent of
HSV-based T-VEC drug for melanoma treatment, many HSV
vectors are being used to deliver suicide genes to treat anaplastic
thyroid cancer (228). Since immunotherapy is currently a hot
topic in cancer research and gaining more attention; oncolytic
viruses are often combined with immune checkpoint blockades
such as T-VEC combined with anti-PD1 Pembrolizumab,
anti-CTLA-4 Ipilimumab, and neoadjuvant to increase their
therapeutic potential (68). Also, the oncolytic HSV-1 carrying
four copies of miR-145 target sites combined with radiation has
been shown to be more effective than radiation alone (122, 229).
A current phase I clinical trial uses an engineered HSV rRp450
designed to kill cancer cells in order to treat liver metastases
and primary liver tumors (NCT01071941). HSV is also used as
a transneuronal tracer defining connections among neurons by
virtue of traversing synapses (230). HSV has much potential in
treating problems of the urinary system. A recent study reports
HSV-1 as a vector for delivering poreless TRPV1 channels or
protein phosphatase 1α to reduce bladder over-activity in rats
(231). HSV-mediated treatment also alleviated bladder pain.
These have the potential to offer treatment to cases of overactive
bladder (OAB) and interstitial cystitis/bladder pain syndrome
(IC/BPS). However, infectivity of solid tumors, leakage, off target
viral replication, sequestration, and delivery methods are still
hampering the progress of HSV-mediated oncolytic viral therapy.
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Although the nervous system is the natural site for HSV latency,
the full potential of HSV-mediated gene therapy in treating nerve
diseases is yet to be discovered. Several studies treating chronic
pain were successful in animal models but very few have reached
clinical trials to date. HSV vectors have certainly promising
perspectives in clinic trials but detailed understanding of virus-
host interaction will minimize cytotoxicity and biohazards
generation. Recently, strategies to develop transduction efficient,
alternate vector entry and transcriptionally retargeted oncolytic
HSV viruses were reviewed (232–234). The therapeutic potential
of amplicons is still undermined by production and stability
issues; therefore, focus needs to be on improving vector design,
construction, and production technology. Developing new HSV
vectors carrying genes that enhance tumor cell lysis will increase
oncolytic therapeutic efficacy.While gliomas do not express miR-
124, it is highly expressed in normal brain, and designing HSV
vectors carrying the same could be a promising approach to treat
glioma. The full potential of expression libraries created by using
HSV vectors in regenerative medicine is yet to be seen in curing
human diseases (235). Since oncolytic virus therapy is considered
a major breakthrough in treating cancer after the success of
radiation and immunotherapies, development of safe and tumor-
selective new HSV vectors is necessary for its promising future.
Optimizing vector delivery methods especially to solid tumors
and in immune-compromised patients will certainly improve
oncolytic viral therapy. Exploring their roles in gene editing and
repair will expand the horizons of gene therapy.

RV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

RV vectors can be applied to cure a wide variety of diseases
and disorders such as cancer, HIV, ADA-SCID, melanoma, WAS,
and many others. Though the majority of retinal gene therapy
trials use AAV, some use lentivirus because of its larger gene
capacity. For example, Usher syndrome causes hearing loss, less
vestibular function, and a pigmented retina (187). Currently,
a phase II trial is underway to use lentivirus to deliver a 5.0-
kb MYO7A. Additionally, a phase II trial that is projected
to deliver ABCA4 by lentivirus to treat Stargadt disease, an
inherited macular degeneration that causes cell degeneration, is
underway (187). Furthermore, lentivirus is a favorable vector
to treat sickle cell anemia because of the advantages it offers,
including a large transgene capacity, stable long-term expression,
and safer integration (236). A single base substitution in the
β-globin gene causes the erythrocyte sickling characteristic
of sickle cell anemia. Treatments for sickle cell anemia are
transitioning into self-inactivating lentivirus with a deletion in
the U3 region of the 3’ LTR, which has a safer integration
profile (236). A clinical trial sponsored by Bluebird Bio used
LentiGlobin BB305, which delivered β-globin T87Q. Clinical
results showed 24% anti-sickling (NCT03207009). For treating
immunodeficiency, there have been adverse effects reported in
the past by gammaretroviral vectors. In the treatment of X-
linked SCID, CD34+ hematopoietic stem cells were transduced
with murine gammaretroviral vector, which led to an increase

in immune function, but 5 patients developed T cell leukemia
because of insertional mutagenesis into oncogenes (185). In
the treatment of WAS, a gammaretroviral vector expressing
WAS transgene delivered to patients caused 7 out of 10 to
develop leukemia (185). Recently, self-inactivating lentivirus was
used to treat five patients with X-linked SCID. Two patients
had restoration of immune function even 2–3 years after
treatment (237). A current phase I/II clinical trial is using a self-
inactivating gammaretrovirus to treat SCID-X1 (NCT01129544).
Other current clinical trials include a phase II trial using a
retroviral vector to transfer ADA into hematopoietic stem cells
to treat ADA-SCID (NCT00598481). A replicating Toca 511
RV vector is being used in a phase I trial to treat recurrent
high-grade glioma (NCT02598011). RV is being used in a phase
I/II trial to transduce white blood cells with the CAR-T cell
receptor to target mesothelin for patients with metastatic cancer
(NCT01583686). Donor T cells are being transduced with RV to
express the caspase-9 suicide gene in a phase I trial to treat cancer
(NCT01494103). Duchenne muscular dystrophy occurs when a
lack of dystrophin expression causes muscle degeneration. In a
proof-of-concept study, the full-length sequence of dystrophin
was spread over two co-packaged RNA copies and delivered
via a lentiviral vector. The vector integrated and gave long-
term expression of dystrophin (238). Additionally, a RV vector
expressing MazF endoribonuclease is being used to transduce
CD4+ T cells to treat HIV in a phase I trial (NCT01787994).
AIDS-related non-Hodgkin lymphoma is being treated in a
phase I clinical trial that transduces stem cells with genes
for HIV RNA using lentivirus in order to evoke an immune
response (NCT01961063).

Since immunity is the primary barrier for the success of
viral gene therapy, it is critical to design viral vectors that
can subvert the complement system. The LTRs of RV serve as
promoters, enhancers, binding sites for various nuclear proteins,
chromatin modulators, and polyadenylation signals. Therefore,
applying genetic engineering and CRISPR technology will avoid
exacerbating the insertional mutagenesis issue. This issue can
also be avoided by using non-integrating RV vectors or integrase
inhibitors during treatment. The RV-mediated gene therapy
will immensely benefit from developing technologies to guide
and monitor transgene insertion in the host cell chromatin.
Although RV vectors can deliver a transgene up to 10 kb in
size, production of high titer virus, chromatin structure, and
epigenetic modification near the insertion site still remain issues
in clinical applications. Thus, better RV vectors are needed for
future gene therapy applications. Since viral infection depends on
the expression of target cell surface receptors and viral envelope
protein, designing and constructing to produce efficient and cell-,
tissue- and disease-specific recombinant RV vectors are necessary
to obtain the expected clinical outcome. New RV vectors
with optimized LTRs, created by replacing promoter/enhancer
elements with cell- and tissue-specific promoters and enhancer
sequences, will boost their use in curingmany diseases with fewer
or no side effects. Novel RV vectors are needed to transduce
heart and other body organs for their wide spread use in gene
therapy. Introduction of miRNA binding sites in the viral RNA
has been suggested to control posttranscriptional regulation of
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disease-causing genes (239). The use of advanced RV vectors
carrying the woodchuck posttranscriptional regulatory element
(wPRE) to increase transgene mRNA stability, export, and
translatability will help to accomplish better clinical outcome
(240). As delivering genetic information in the form of RNA
is an increasingly popular method, RVs carrying no RT or
integrase are poised to play a significant role in a gene editing,
vaccination, tumor therapy, gene therapy, transdifferentiation,
reprogramming, and other biotechnological applications in the
near future (241).

RISKS ASSOCIATED WITH VIRAL
VECTORS

Since an estimated 1031 virus-like particles exist on the Earth
and they are present in the blood, nose, mouth, lung, vagina,
gastrointestinal tract, conjunctiva, skin, and the mammalian
genome, viruses appear to play a major role in human life
(242, 243). The general concerns with viral vectors are the risks
of an immune response, off-target effects, inflammation, and
insertional mutagenesis. An immune response could make a viral
treatment less efficient, or the resulting creation of antibodies
could preclude a second dosage of the same virus (244–248).
Inflammation was seen as a worst-case scenario in the 1999 death
of Jesse Gelsinger caused by a very high dosage of adenovirus
(249). Tailoring the viral dose to the patient, however, can better
control this risk. Also, insertional mutagenesis is a major obstacle
that the gene therapy field must overcome. The risk of inserting
a gene into a tumor suppressor gene or activating an oncogene is
present for the vectors that integrate into the unwanted locations
of the genome, such as retrovirus. To counter this, vectors can be
used that do not integrate readily into the genome. Additionally,
self-inactivating vectors can be manufactured that do not contain
their own promoter; rather, another internal promoter in the cell
is used. This leads to less genotoxicity and is a safer alternative
to traditional integrating vectors (52). Other concerns are that
viral vectors are only relevant for monogenic disorders because
of their limited DNA-carrying capability. However, HSV-1 is
an example of a virus that has enough carrying capacity for
multiple genes. Additionally, dual vector systems, such as dual
vector adeno-associated virus, have larger transgene capacities.
Also, finding the appropriate virus to infect the desired cells is
often difficult, and there is the risk that the virus could cross
the Weismann barrier and infect germ line cells. Furthermore,
viruses are generally susceptible to genetic variations. Integration
into undesirable sites such as regulatory, oncogenes or tumor-
suppressor genes would be undesirable. Deletion of virulence
genes may affect their ability to infect or integrate with the host
chromosome, thus compromising their effectiveness as vectors.
Additionally, a social stigma is associated with viral therapy.
Most patients would be concerned about being infected by a
live virus—a concern also held about viral vaccines. Since their
ubiquitous presence is a reality, why shouldn’t humankind start
accepting them as wonderful molecular biological tools with
which to build novel and powerful medicine?

CHALLENGES AND THE WAY FORWARD

Since its birth in the 1960s, gene therapy has come quite
a long way by providing an alternate one-time treatment
option for cancer, metabolic disorders, and neuronal,
immune, and infectious diseases. Notably, it has been able
to treat beta thalassemia, Leber’s congenital amaurosis, severe
immunodeficiency diseases such as ADA-SCID, and more.
However, the full potential of gene therapy is yet to be witnessed
in regenerative medicine, a branch of translational medicine
where engineering or regenerating human cells, tissue or organs
enables restoration or establishment of normal function. With
recent impressive results observed in vaginal gene therapy in
preclinical trials, gene therapy is poised to enter the clinical phase
for treating infectious diseases in the near future (250). Both
viral and non-viral vectors can be used to deliver DNA, each of
which has its own advantages and disadvantages. Additionally,
genome-editing technology is an up-and-coming method of
delivering DNA to specific parts of the genome. With all of
these breakthroughs have come hurdles, such as the death of
Jesse Gelsinger in 1999 and the development of leukemia in
patients who have been treated for WAS and ADA-SCID. The
ethical concerns of patients must be heeded as well. However,
these challenges do not reflect a flaw in the concept. Simply,
more research is needed to avoid technical issues such as the
production of viral particles in large scale, formulations for
long-term storage stability, immune responses, and insertional
mutagenesis. Loading of viral particles with a therapeutic gene
during production is mostly done by transient transfections,
a rate-limiting step in large scale production of viral particles.
Alternate approaches such as stable cell lines expressing
capsid proteins and insect cells based baculovirus expression
systems would be useful for mass production of viral particles.
This underdeveloped modern medicine needs discovery and
engineering of better viral vectors to deliver therapeutic genes
precisely to the target diseased cells or tissue.

Gene therapy is a rapidly expanding field, and it seems
that scientists have only scratched the surface of its potential.
The more that is discovered about how to optimize gene
delivery vectors, the closer this field gets to delivering wide-
scale solutions to modern medicine. The future of gene
therapy moves toward engineering safer and more efficient
vectors, combining multiple existing strategies such as viral
vectors with genetic engineering technologies, and personalizing
all characteristics of gene therapy treatments to the patient,
as it has been shown that host genetic variants affect the
efficacy of vector-mediated gene delivery (251). This includes
understanding of the repertoire of receptors on a target cell
in diseased conditions to help in designing appropriate capsid
proteins for viral particles. Although the full panoply of gene
therapy’s might is yet be witnessed, it has enormous potential
to shed light on human afflictions, add value to patients’
lives, and contribute to future economic growth. Although
gene therapy currently shares less than one percent of the
total $1.2 trillion world annual pharmaceutical market, it is
expected to create approximately a $12 billion market in the
next 10 years. According to a market research and advisory
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company, Allied Market Research, cancer gene therapy alone
has created a $289 million market in 2016 but it is expected
to reach $2,082 million by 2023. Gaining popularity among
the global medicinal community, gene therapy has become
an attractive market for companies and investors. However,
the ethical acceptance and advancement in the technology to
avoid unwanted clinical outcomes are critical for driving its
market growth. Also, the translation of laboratory studies to
animal studies and then to clinical trials is a long, tedious,
and expensive process to ensure the safety of patients. As a
result, if the USFDA, with its patchy regulations, continues its
approval rate, providing gene therapies for all the genetic diseases
will take many years to come. Therefore, a new perspective on
creating a conducive atmosphere for improving this modern
cutting-edge gene therapy technology is necessary to transform
the lives of patients with severe genetic illnesses, infectious
diseases, and disorders. As mentioned elsewhere, knowledge has
no boundaries, and there exist unlimited methods to develop
a novel invention; every bump in the investigating path can
be considered an inspiration and source of energy to advance
research, a never-ending learning process.
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Antibody–drug conjugates (ADCs) have developed rapidly in recent decades. However,
it is complicated to map out a perfect ADC that requires optimization of multiple
parameters including antigens, antibodies, linkers, payloads, and the payload-linker
linkage. The therapeutic targets of the ADCs are expected to express only on the surface
of the corresponding target tumor cells. On the contrary, many antigens usually express
on normal tissues to some extent, which could disturb the specificity of ADCs and
limit their clinical application, not to mention the antibody is also difficult to choose.
It requires to not only target and have affinity with the corresponding antigen, but it
also needs to have a linkage site with the linker to load the payloads. In addition, the
linker and payload are indispensable in the efficacy of ADCs. The linker is required to
stabilize the ADC in the circulatory system and is brittle to release free payload while the
antibody combines with antigen. Also, it is a premise that the dose of ADCs will not kill
normal tissues and the released payloads are able to fulfill the killing potency in tumor
cells at the same time. In this review, we mainly focus on the latest development of
key factors affecting ADCs progress, including the selection of antibodies and antigens,
the optimization of payload, the modification of linker, payload-linker linkage, and some
other relevant parameters of ADCs.

Keywords: antibody–drug conjugates, precision choice antibody and antigen, elaborate modification linkers,
proper payloads, optimized linker-payload linkage

INTRODUCTION

In traditional tumor treatment, chemotherapy is one of the main treatment strategies. However,
the toxicity from non-specific accumulation in normal tissues, narrow therapeutic window and
low tolerance all limit chemotherapy drug development in the tumor treatment process (Atkins
and Gershell, 2002; Alley et al., 2010; Ashley et al., 2011). In recent decades, scientists have
gained an in-depth understanding of cancer biology, taking advantage of some unique features

Abbreviations: ADCs, antibody–drug conjugates; ALCL, anaplastic large cell lymphoma; AML, acute myeloid
leukemia; DAR, drug-to-antibody ratio; MDR, multiple drug resistance; MMAE, monomethyl auristatin E; PDBs,
pyrrolobenzodiazepine dimers; PEG, polyethylene glycol; PHF, hydroxymethyl-formal; SMCC, succinimidyl-4-(N-
maleimidomethyl)-cyclohexane-1-carboxylate; SMCC-DM1, succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-
carboxylate-maytansinoid; sulfo-SPDB-DM4, N-succinimidyl-4-(2-pyridyldithio)-2-sulfo butanoate-maytansinoid;
val-cit-PABC-MMAF, valine-citrulline-p-aminobenzyl-carbamate-monomethyl auristatin F.
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of tumor cells to transform cancer treatment from previous
chemotherapy drugs to tumor-targeted therapies. Monoclonal
antibodies and polypeptides which bind to specific markers
on the tumor cell’s surface provide targeted therapeutic
approaches and are both less toxic. However, whether they are
monoclonal antibodies or peptides, they both lack potency in
killing tumor cells.

The treatment strategy of antibodies armed with toxins to
selectively kill target cells was first proposed in 1970 (Moolten
and Cooperband, 1970). The tumor-targeting drug conjugates
integrate targeted biomolecules with therapeutic small molecule
toxins to specifically recognize the tumor tissues and kill the
tumor cells, thereby improving the therapeutic index of the
toxins and the insufficient efficacy of antibodies or peptides.
The tumor-targeting drug conjugates mainly compose of ADCs
that generally couple antibodies which specifically recognize
the surface antigens of tumor cells with chemical toxins which
effectively kill tumor tissues through linkers, and ADCs exert
killing activity by bringing the chemical toxins into the tumor
cells. In general, the antibody specifically binds to the tumor
cell surface antigen, and the antigen mediates the endocytosis
of the ADC and then releases free toxins (Figure 1), but the
downsides are that immunogenicity, poor internalization and the
instability of the linker give rise to insecurity and ineffectiveness
(Chari, 2008). More than 60 ADCs have been in the process of
clinical development until 2016 (Carter and Lazar, 2017), there
are almost 204 ADCs (Supplementary Table S1) that aim for
cancer in clinical development by 2018, including at least nine of
which have entered phases III and IV clinical trials1. It indicates
that ADCs are coming to the center-stage of research field in
recent years especially in North America (Figure 2). However,
until today, only ado-trastuzumab emtansine (T-DM1, Kadcyla@)
and brentuximab vedotin (Adcetris@) are approved by FDA and
on the market (Mullard, 2013; Thomas et al., 2016). There are
many reasons for the dilemma, including the complexity of the
composition of the ADC itself, and the fact that the tumor
microenvironment or physiological conditions in animals are
different from the human so that the evaluation of ADC efficacy
by animal models is not applicable to humans. Beck et al. (2017)
published a review paper about the strategies and challenges
for the next generation of ADCs in 2017. However, ADCs are
developing rapidly and some novel technologies may bring new
considerations. Thus, this review mainly focuses on imperative
factors that are associated with ADC efficacy (Figure 3).

THE SELECTION OF ANTIBODY AND
ANTIGEN

Normally, the antigen specific to the cancer cell should be
a priority after determining the indications for ADC. Ideally,
the antigen should express highly and homogeneously on the
surface of the cancer cells (Sievers and Senter, 2013; Damelin
et al., 2015). When the antibody combines with the antigen
specifically, the antibody-antigen complex should be internalized

1https://clinicaltrials.gov

by antigen-mediated endocytosis, and then the free payloads are
released through lysosomal trafficking. As a result, the payloads
are concentrated in cancer cells and exert the cytotoxic effect
(Erickson et al., 2006). Currently, the predominant therapeutic
limitations are the ineffectiveness and the off-target toxicities
of ADCs, which are caused by the finite internalization and
the low expression of antigens to some extent. Therefore, some
researchers came up with some approaches to counteract these
problems such as utilizing the anti-tumor angiogenesis antibody,
non-internalizing ADC, or bispecific antibody.

The Utilization of Anti-tumor
Angiogenesis Antibody
Some researchers proposed a strategy that using an anti-tumor
angiogenesis ADC to selectively kill cancer cells due to the
process without the involvement of internalization, which could
improve the deficient efficacy caused by finite internalization. For
example, Palumbo et al. (2011) reported that the ADC composes
of an anti-angiogenesis LC19 antibody to selectively target to the
tumor blood vessels, the strategy showed a long-term anti-tumor
effect. However, ADCs of the anti-tumor vessel may elicit off-
target toxicities to normal tissues due to non-specificity of antigen
expression and resistance of vessel co-option in some particular
tumor tissues (Kuczynski et al., 2016). This requires choosing
antibodies based on proper antigens. Seaman et al. (2017) applied
the anti-CD276 antibody to the ADC to improve the non-
specificity. The CD276 expresses in angiogenic tumor vessel,
existed vasculature and tumor cells. Moreover, the anti-CD276
antibody is capable of identifying the normal and pathological
angiogenesis. The anti-CD276 ADC evaded the vessel co-option
and displayed a dual-targeting ability thus displaying effective
anti-tumor activity (Seaman et al., 2017).

Preparing Non-internalizing ADCs
An approach to prepare non-internalizing ADCs to target
corresponding antigens needed to be developed. For instance, the
ADC took advantage of a diabody without an Fc region to target
the matching antigen and an additional chemical activator to cut
the linker, and then release the free payload to penetrate into
tumor cells (Rossin et al., 2018). This strategy is able to increase
the anti-tumor activity and avoid some factors can sacrifice
the efficacy of ADCs such as interstitial pressure and epithelial
barriers from the tumor cells.

The Selection of the Bispecific Antibody
On one hand, in terms of the deficiency of internalization, Li et al.
(2016) used a bispecific antibody to target two non-overlapping
epitopes of one antigen, which increased the affinity between
antibody and antigen. For example, an anti-HER2 biparatopic
antibody displayed better internalization, lysosomal trafficking,
and degradation of the antibody-antigen complex relative to the
traditional T-DM1 (Li et al., 2016). However, the superior affinity
also may trigger a controversy about whether the biparatopic
ADC would induce on-target toxicities to healthy tissues. Though
this study also further indicated that the biparatopic ADC has
an acceptable safety profile due to the threshold of antigen.
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FIGURE 1 | The process of ADCs exerting activity. (a) ADCs specifically recognize cancer-associated antigens in the blood system. (b) ADCs are internalized into
tumor cells during the formation of antibody-antigen complex. (c) ADCs are normally transported to lysosome from endosome. (d) The linker or antibody are broken
in the lysosome conditions to release free toxins. ADCs, antibody drug conjugates.

FIGURE 2 | The map and statistical graph depict regions where developed antibody–drug conjugates. The numbers in the figure indicate the amounts of ADCs in
the clinical phase of the region. The data comes from ClinicalTrials.gov.
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FIGURE 3 | The key parameters associated with efficacy and toxicities with ADCs.

It is unable to form the antibody-antigen complex if the
expression level of antigen below the threshold. However, it seems
arduous to avoid the problem due to the uncertain threshold.
Theoretically, a higher affinity antigen–antibody could make
more ADC molecules combine with tumor cells thus having more
accumulation, but a lower affinity may allow ADCs to penetrate
into tumor cells more effectively. Scientists are still looking for
antigen–antibody with proper affinity (Rudnick et al., 2011). It
needs further research (Tsumura et al., 2018).

Also, some researchers proposed to use the probody of
antibody to solve the on-target toxicities, which may also be
applied to ADCs. This strategy used masking peptide to cover
up the active sites of the antibody then hydrolysis of the shelter
to expose the antibody to target cancer tissues to exert activity
(Desnoyers et al., 2013), which allays the indistinct recognition of
ADCs in the blood circulation.

On the other hand, the bispecific antibody is able to
selectively bind two distinct antigens on a cancer cell to
avoid the off-target toxicities. For example, the bispecific
antibody simultaneously targets the HER2 and PRLR double
positive (HER2+/PRLR+) breast cancer cells to enhance the
internalization and activity of the ADC, and to decrease
the off-target toxicities to the healthy cells (Andreev et al.,
2017). Nevertheless, targeting double-antigens is ineligible
for most heterogeneous tumor cells, since it may trigger
their escape mechanism. Furthermore, the bispecific antibody
could be used to target the immunosuppressive molecule
and tumor-specific antigen on the tumor cells simultaneously
to improve the efficacy of ADC. The ADC targeting CD47
that an immunosuppressive receptor and TAA double
positive (CD47+/TAA+) tumor cells could block the
immunosuppression to augment the killing activity of the
ADC (Dheilly et al., 2017). Currently, there are more than
70 bispecific antibodies applied in clinical trials (see text
footnote 1), two of them have used on the market. These
specific antibodies seem to change some imperfect phenomena
of ADCs (Piccione et al., 2015). Moreover, the trifunctional
antibody also could be used to ADC (Krishnamurthy and
Jimeno, 2018), which possess an arm to target the tumor
cells, the second is used to target T cells, the remaining Fc

region to recruit some immune cells. Using the trifunctional
antibody to link a small molecule toxin seems to improve
the deficient specificity and the killing potency of ADCs.
Though the bispecific or trifunctional prospect is promising
to improve potency and specificity to increase market
competitiveness of ADCs, the challenge of determining the
target combination still remains.

The Bystander Effect to Heterogeneous
Tumors
Some reports also demonstrated that some ADCs may take
advantage of the physical and chemical properties of linkers and
the microenvironment of the tumor to release free payloads to
kill those adjacent negative-antigen cancer cells. The process is
the bystander effect (Kovtun et al., 2006; Okeley et al., 2010).
ADC was metabolized to release uncharged and membrane-
permeable toxic metabolites after being internalized in positive-
antigen cancer, which is able to kill adjacent antigen-negative
cancer cells by membrane-penetration (Kellogg et al., 2011).
This has a great significance for some heterogeneous tumor
cells. Admittedly this was that the bystander effect may
also cause non-specific killing of normal cells. Therefore, it
requires to have rational selection and design of payloads and
linkers based on the target to avoid the adverse effects from
bystander effect.

The Selection of Antibody Isotype
Within IgG isotypes, IgG1, IgG2, IgG4 have been used to
develop therapeutics, but IgG3 isotypes are not used as
therapeutics owing to a significantly faster clearance rate
(Jefferis, 2007). Further, most ADCs use IgG1 isotype
currently (Beck et al., 2017). IgG1 isotype may exert ADCC
(antibody-dependent cell-mediated cytotoxicity) and CDC
(complement-dependent cytotoxicity) to improve ADCs
activity further, whereas IgG2 and IgG4 are typically deficient
in their effector functions (Salfeld, 2007). However, the
PD-1 antibodies (Nivolumab and Pembrolizumab) used
IgG4 isotype, which may be due to the PD-1 antibody only
needing to block the interaction between PD-1 and PD-L1
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FIGURE 4 | The pie chart shows the antigens applied to the clinical phase
III/IV trials of ADCs. ADCs, antibody drug conjugates; MDR, multiple drug
resistance; DAR, drug-to-antibody ratio.

to increase immune system function to produce anti-tumor
activity, which is needed to avoid the toxicity to T cells from
ADCC and CDC. Therefore, the choice of isotype also needs
careful consideration.

The Consideration of Antigen
Glycosylation of antigen also could affect the design of ADCs.
On the one hand, if glycosylated antigen specifically exists on the
tumor cell surface, it will have an important implication to be a
target of an ADC. For example, a monoclonal antibody targeting
glycosylated PD-L1 (gPD-L1) to disrupt PD-L1/PD-1 interaction.
The gPD-L1 is mainly expressed on tumor tissues, which
improves non-specific expression of PD-L1 in some immune cells
to limit toxicity (Li et al., 2018). On the other hand, the steric
structure of a glycosylated antigen plays a certain protective role,
which will block the interaction between the antibody and specific
sites on the antigen surface. Therefore, we need to have a more
comprehensible understanding on designing ADCs.

Most ADCs utilize the antigens on the tumor cells surface,
which are limited in their specificity relative to intracellular
antigens. Taking advantage of the antigen presentation feature of
MHC that caused tumor-specific endogenous antigen expression
on the cell surface overcomes the inaccessibility of intracellular
antigens. Further, the MHC-I/peptide complex is recognized by
the ADCs that mimic the characterization of TCR, which will
produce superior specificity and potency (Lai et al., 2018). Table 1
and Figure 4 showed the antigens used in phase III/IV trial
currently (see text footnote 1).

THE SELECTION OF PAYLOADS

Once the target is determined, the proper choice of payload
becomes a critical part of ADC. The final potency of ADCs mainly
depends on the concentration of payloads in tumor cells; thus
some researchers are dedicated on improving the DAR of ADCs
to increase the accumulation of drugs in tumor cells. Zhang
et al. (2018b) indicated that activity of the ADC still remains
constant though augmenting the payload concentration, and this
also could magnify the toxicity to normal tissues at the same
time. This suggests that the threshold of payload concentration

also needs consideration. In summary, choosing the applicable
payloads and designing the appropriate DAR is important for the
final concentration of the payloads in tumor cells.

Improving the Efficacy of ADCs
Early ADCs used drugs that have been approved for clinical
use such as vinblastine and doxorubicin, but the low clinical
activity of these drugs resulted in suboptimal ADCs efficiency.
Some cytotoxins were too toxic to be non-target agents in
clinical application, but they seemed to be more promising as
payloads for ADCs. At present, the dose of the payloads in
tumor cells is required to be the picomolar range to kill these
cancer cells (Chari et al., 2014). Also, payloads must possess
acceptable solubility and decent sites to react with linkers.
These all limited the selection of payloads. Currently, most
payloads are derivatives of the microtubule inhibitor family, such
as the auristatin and maytansine (Beck and Reichert, 2014).
Brentuximab vedotin (Adcetris@), approved by FDA in 2011,
composes of MMAE and cAC10 mAb (chimeric IgG1 antibody)
via a protease-cleavable dipeptide linker to target tumor antigen
CD30 (also known as TNFRSF8) for the treatment of Hodgkin’s
lymphoma and ALCL (ki-1 lymphoma) (Senter and Sievers, 2012;
Younes et al., 2012). Ado-trastuzumab emtansine (Kadcyla@),
approved in 2013, consists of a stable thioether linker (SMCC)
attached to trastuzumab (anti-human epidermal growth factor
receptor-2 antibody, anti-HER2 antibody) and DM1 (maytansine
derivative) for the treatment of advanced breast cancer (Lambert
and Chari, 2014). Both adopted the microtubule inhibitor family
as payloads, yet auristatins and maytansines are only able to
exert activity in cell proliferation and they are hydrophobic,
which will disturb their activity. Thus, some novel payloads
or the original payload structural modifications such as the
improvement of hydrophilicity will become the hotspots of the
future payload research (Burke et al., 2017). At present, some
novel ADCs have better activity and have been through clinical
phase III/IV (Table 1).

The first commercially available ADC was gemtuzumab
ozogamicin (GO) that consists of calicheamicins which damage
DNA (Walker et al., 1992) for the treatment of AML. However,
GO showed no significant improvement in overall survival
(OS) compared with the calicheamicin agent alone, and had a
higher mortality rate and was recalled in 2010 (Petersdorf et al.,
2013; Kharfan-Dabaja, 2014). This is because calicheamicin is
hydrophobic in that almost only 50% could be conjugated, and
only approximately 50% of free drugs are eventually released
in the conjugated drugs (Beck et al., 2010; Senter and Sievers,
2012), resulting in a significant decrease in potency. To overcome
these limitations, some novel targeted DNA agents have been
broadly developed. Pyrrolobenzodiazepine dimers (PBDs) have
already become a new choice, it may attach to the linker that
conjugated to the antibody, and has the ability to overcome
MDR relative to the commonly used calicheamicin as a substrate
of P-glycoprotein (Kung Sutherland et al., 2013; Stein et al.,
2018). The IMGN779 (NCT02674763) utilized DGN462 that a
novel drug with DNA-alkylating activity also demonstrated better
anti-tumor activity and tolerability (Kovtun et al., 2018).
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TABLE 1 | Current clinical phase III/IV trials of ADCs.

NCT number Name Conditions Payloads Target

NCT03523585 DS-8201a Breast cancer Topoisomerase I inhibitor HER2

NCT03734029 DS-8201a Breast cancer topoisomerase I inhibitor HER2

NCT03529110 DS-8201a Breast cancer topoisomerase I inhibitor HER2

NCT03262935 SYD985 Metastatic breast cancer DUBA HER2

NCT03474107 Enfortumab vedotin Ureteral cancer| urothelial
cancer| bladder cancer

MMAE Nectin-4

NCT02631876 Mirvetuximab soravtansine
(IMGN853)

Epithelial ovarian cancer|
primary peritoneal
carcinoma| fallopian tube
cancer| ovarian cancer

DM4 FRα

NCT02785900 Vadastuximab talirine
(SGN-CD33A; 33A)

Acute myeloid leukemia PBD CD33

NCT01990534 Brentuximab Vedotin Hodgkin lymphoma MMAE CD30

NCT03677596 Inotuzumab ozogamicin Leukemia| precursor b-cell
lymphoblastic
leukemia-lymphoma| acute
lymphoblastic leukemia

Calicheamicins CD22

NCT02573324 Depatuxizumab mafodotin
(ABT-414)

Glioblastoma MMAF EGFR

NCT01100502 Brentuximab vedotin
(SGN-35)

Disease, Hodgkin MMAE CD30

NCT01777152 Brentuximab vedotin Anaplastic large-cell
lymphoma| non-Hodgkin
lymphoma| T-cell lymphoma

MMAE CD30

NCT01909934 Brentuximab vedotin Anaplastic large-cell
lymphoma

MMAE CD30

NCT03419403 Depatuxizumab mafodotin
(ABT-414)

Glioblastoma multiforme MMAF EGFR

NCT01712490 Brentuximab vedotin Hodgkin lymphoma MMAE CD30

NCT02166463 Brentuximab vedotin Hodgkin lymphoma MMAE CD30

DUBA, duocarmycin-hydroxybenzamide-azaindole; MMAE, monomethyl auristatin E; MMAF, monomethyl auristatin F; DM4, maytansine 4; PBD,
pyrrolobenzodiazepine dimers.

Avoiding MDR
The MDR has always been a barrier and one of the important
factors affecting the therapeutic effect in the cancer treatment.
The MDR is still an impeditive factor of using ADCs. This
is because the essence of ADC’s activity is that the payloads
in tumor cells exert cytotoxicity, and these payloads may be
affected by MDR. Many studies concentrate on the modification
of drug-linker that, by increasing hydrophilicity, circumvents
MDR caused by the overexpression of efflux pumps because the
substrates of MDR1 were hydrophobic in general. Moreover,
some novel payloads such as PBD, DGN462, and tubulysins
cooperate with ADCs to display better anti-tumor activity in
MDR+ tumor cells (Burke et al., 2018; Kovtun et al., 2018;
Stein et al., 2018). ADCs are susceptible to hydrophobicity to be
insensible to MDR+ cells, thereby it is essential to improve the
hydrophilicity to escape from MDR to increase the activity of
ADCs (Kovtun et al., 2010).

THE MODIFICATION OF LINKER

Although the linker may be not directly correlated with the final
potency of ADC (Lee et al., 2018b), the potency of ADC is

dictated by the concentration of payload accumulated in tumor
cells, and the payload release is determined by the stability of
the linker. Thus, the linker is crucial for a perfect ADC, and it
determines the stability, efficacy, and even the ability to overcome
MDR. The basic requirement of the linker is to make the payload
attach to the antibody, stabilize the payload in the circulation
system, and is labile to release the free payload into cancer cells
when the antigen–antibody complex is formed (Doronina et al.,
2006). Currently, linkers are mainly divided into the cleavable
linkers and the non-cleavable linkers.

The Comparison of Cleavable Linkers
With Non-cleavable Linkers
The cleavable linkers normally take advantage of the difference
of tumor microenvironment and normal physiological
environment to release the payloads that may be membrane-
permeable and can produce the bystander effect. The
non-cleavable linkers need to meet the requirement that
the antibody and linker must be disconnected after the formation
of the antigen–antibody complex enter the lysosomal trafficking.
This may cause the bystander effect that is a passive transport
process to weaken, caused by the membrane-impermeability
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of linker-payloads connected with polar amino acids. Both
types of linkers have their advantages and disadvantages, which
are applied to the clinical trials (Chari et al., 2014; Bialucha
et al., 2017). However, about 2/3 ADCs used cleavable linkers
in the current clinical trials (Lambert and Berkenblit, 2018), in
which mainly are dipeptide linkers and disulfide linkers. The
non-cleavable linkers are not only more stable to escape from
the off-target toxicities than cleavable linkers (Lu et al., 2016),
but also may overcome the barrier of multiple-drug resistance
(MDR) (Shefet-Carasso and Benhar, 2015; Beck et al., 2017;
Nasiri et al., 2018) for the reason that the payload connected
with polar amino cannot be a substrate of MDR1, which will
improve the MDR phenomenon. However, the non-cleavable
linkers need a more elaborate process to produce activity such
as the internalization and metabolism of the antibody in the
lysosome, which is a prerequisite to release active payloads to
exert killing activity (Rosenberg, 2006; Lambert and Berkenblit,
2018), and the polar amino-linker-payload also needs a distinct
transporter to carry it from the lysosome to cytoplasm to work
(Hamblett et al., 2015; Kinneer et al., 2018; Lee et al., 2018b),
which makes the design of ADC more complex to limit the
utilization of non-cleavable linkers. The cleavable linkers are
more vulnerable to lead to off-target toxicities, but the process
of exerting effects is more comprehensible thus researchers
are dedicated to modifying the cleavable linkers to overcome
their weakness and to increase their stability in the circulation
(Sanderson et al., 2005; Kellogg et al., 2011).

The Analysis of Cleavable Linkers
The cleavable linker can metabolize some cell-permeable
metabolites to exert the bystander killing effect. The cleavable
sulfo-SPDB-DM4 linker produced cell-permeable catabolites to
display a better activity than non-cleavable SMCC-DM1 linker
(Bialucha et al., 2017). Also, the application of the sulfonate group
improved hydrophilicity to increase the exposure of ADC to the
antigen to promote killing activity. The brentuximab vedotin
(SGN-35) took advantage of a cleavable dipeptide linker to release
free MMAE, and the MMAE may permeate adjacent cells to
exert killing activity which is important to some heterogeneous
tumor cells. Moreover, the dipeptide linker offers ADC better
stability in the circulation, and is more specific to tumor cells
(Katz et al., 2011). The protease cleavage pathway is not restricted
to cathepsin B, various cysteine cathepsins can cleavage the
dipeptide linker, such as cysteine cathepsins B, K, L, and S. It
seems to explain why the dipeptide linkers cannot be insensitive
to tumors, caused by the insufficient expression of protease
(Caculitan et al., 2017), which is one of the reasons why some
protease-sensitive linkers are widely used by ADCs.

In particular, the design of the valine-citrulline (val-cit) linker,
the most frequent in dipeptide linkers, needs to consider the
connection to the phenol-containing payloads; diverse electron
groups affect the degrees of immolation of the linker to influence
the different potency of an ADC (Zhang et al., 2018a). However,
the val-cit dipeptide linker is not conducive to preclinical
research to appraise the efficacy of ADCs due to instability
in mice (Dokter et al., 2014). Anami et al. (2018) reported
a glutamic acid-val-cit linker replaced val-cit dipeptide linker,

which could alleviate the flaw of instability in the mice plasma
and retain the cathepsin-mediated cleavage mechanisms, thus
boosting preclinical application of some ADCs. The acidic
tripeptide linker could increase the polarity of ADCs to improve
solubility to increase the therapeutic potency (Anami et al.,
2018). However, one of the studies suggests that activity of the
ADC with cleavable valine-citrulline-p-aminobenzyl-carbamate-
monomethyl auristatin F (val-cit-PABC-MMAF) is much less
than the ADC with non-cleavable maleimidocaproyl-MMAF
(Doronina et al., 2006), which may be due to the character
of payloads rather than the linker. The metabolites of some
payloads are more effective than the prototypes. The non-
cleavable linkers are not widely applied to ADCs since many
payload derivatives attached to an amino cannot satisfy the killing
potency of ADCs.

The disulfide linker utilized the difference of glutathione
(GSH) levels between the tumor microenvironment and the
physiological environment of normal tissues to produce activity
(Meister and Anderson, 1983; Dubikovskaya et al., 2008), which
is more labile in tumoral hypoxia conditions (de Groot et al.,
2001). At present, the main obstacle of the disulfide linker is
the instability, which is mainly improved by increasing steric
hindrance to relieve the vulnerability. ADCs using the disulfide
linkers have inferior potency in vivo due to the more rapid
clearance of payloads compared with the non-cleavable thioether
linkers that displayed more potent activity (Lewis Phillips et al.,
2008). The trastuzumab emtansine (T-DM1) consists of non-
cleavable thioether linker and a maytansine derivate, which
has better anti-breast cancer activity. The linker contained a
cyclohexane carboxylate and a maleimidomethyl group. The
ionized metabolite cannot kill surrounding normal cells due to
its impermeability after ADC metabolized, thus the ADC has a
better safety (LoRusso et al., 2011). The non-cleavable linkers
are stricter in the choice of antigens compared with cleavable
linkers, yet fewer toxicities (Polson et al., 2009). Zhang et al.
(2016) reported that using methy- and cyclobutyl-substituted
disulfide with efficient immolation demonstrated more potent
killing activity than cyclopropyl-substituted disulfide with non-
immolation. Also, this reflects that the immolation of the linker
is imperative to the potency of ADC (Zhang et al., 2016).
However, the anti-tumor activity is more determined by the
cleavage of the linkers only when payloads require complete
cleaving to exert activity (Caculitan et al., 2017). Thus, new
research could focus on developing payloads that do not require
the production of pharmacological effects with prototype drugs.
Also, future studies could focus on developing some novel
technologies of payload-linker to improve the activity of ADCs
such as SYD985 based on a cleavable linker-duocarmycin payload
(NCT03262935) (Dokter et al., 2014).

THE PAYLOAD-LINKER LINKAGE

With the development of ADCs, the drug-linker linkage that
goes hand in hand with the efficacy of ADCs is more critical
(Nasiri et al., 2018). In order to give full play to ADCs’ activity in
tumor cells, it is necessary to effectively design the payload-linker
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according to the physicochemical properties of the payloads and
the characteristics of the linkers.

The Consideration of the Sites of
Payload-Linker
The sites of the payload-linker are essential conditions to consider
due to the attaching-sites being correlated with homogeneity
that is related to the therapeutic index. In the early stages of
ADCs development, the lysine on the antibody was used as
the site to attach the linker, which caused great heterogeneity.
Later, Adcetris@ used the cysteine that only eight free cysteines
per antibody to link through disulfide bonds, which reduced
the ADCs heterogeneity. In recent years, to ensure ADC
homogeneity, researchers have developed some site-specific
methods, such as THIOMAB (Junutula et al., 2008; Chudasama
et al., 2016).

The Modification of Payload-Linker
The drug-linker linkage determines the DAR that are related to
the efficacy of ADC. Generally, the therapeutic potency of ADC
gradually increases in vitro with the increase of DAR whereas
the therapeutic index in vivo decreases (Hamblett et al., 2004),
which may due to with the enhancement of DAR accelerates the
clearance of ADC which is closely related to the hydrophobicity
of ADC (Lyon et al., 2015). The hydrophobicity is determined by
the amounts of payloads per antibody and the design of drug-
linker (Doronina et al., 2014). It is the main reason for the
failure of ADC in the clinical application that the concentration
of payload is deficient to treat tumors on account of the DAR of
ADC in clinical stage generally control to 3.5–4 (Beck et al., 2017).
Thus, augmenting the hydrophilicity of ADC with high DAR by
the design of drug-linker exquisitely will improve the efficacy
in vivo (Pabst et al., 2017). Some hydrophilic groups such as PEG
or PHF may improve this dilemma. Accurately connecting these
hydrophilic groups to a linker will effectively improve the efficacy
of the ADCs. For example, Trastuzumab–PHF–Vinca ADC with
DAR of 20 demonstrated a potent anti-tumor activity and decent
pharmacokinetic profile due to the high hydrophilicity of PHF
(Yurkovetskiy et al., 2015).

At the same time, MDR+ tumor cells are insensible to some
ADCs due to the fact that many payloads applied to ADCs are
hydrophobic, which are the substrates of the MDR1 transporter.
By improving the hydrophobicity of the drug-linker, it seems to
be able to bypass MDR (Kovtun et al., 2010; Shefet-Carasso and
Benhar, 2015).

OTHER PARAMETERS CORRELATED
WITH THE EFFICACY OF ADCs

The Relationship Between the Internal
Environment and Activity of ADCs
Normally, we consider the internalization that influences the
efficacy of ADCs to be regulated by antigen. Recently, Lee et al.
(2018a) demonstrated that the internalization may be mainly
determined by the cellular environment rather than the antigen,

which brought another hint that the development of the ADCs
has to consider a variety of parameters besides the choice of
target and the design of the linker. The characteristics of tumor
cells also affect the activity of ADCs, including the endothelium,
interstitial, and epithelial barriers which could limit ADCs uptake
in the tumor, resulting in a small fraction of the injected dose
reaching the desired tumor target (Perez et al., 2014). Intra-
tumor distribution of ADCs also affects the anti-tumor efficacy
(Tsumura et al., 2018).

Sometimes the efficacy of the ADCs does not have a positive
correlation with the dose of the injection of ADCs. In addition
to being interfered by the payload concentration threshold, the
activity of ADCs could be affected by the saturation of the
antigen–antibody combination, which causes the concentration
of the ADCs in the circulation to be higher than the concentration
of the corresponding receptors (Mager, 2006). Some antigens
may shed from the tumor cells and circulate in the blood
system to alleviate invalid combination with antibodies, which
is also able to enhance the efficacy of ADCs (Pak et al., 2012).
These internal factors seem to be imperative considerations when
designing ADCs in the future.

The External Conditions Related to
Activity of ADCs
Another point worth attention is the choice of assessment
method of safety and efficacy of ADCs. Owing to the ADC
subjects to some physical and chemical conditions such as
storage conditions, which is able to cause degradation or
aggregation of ADCs to influence the assessment of ADCs’
activity (Mohamed et al., 2018). Therefore, the assessment
method must be considered to some extent.

CONCLUSION AND PERSPECTIVE

With in-depth understandings of antibodies, linkers, and
payloads, ADCs have also achieved great development. The
linkage strategy and target diversity have already improved
the delivery of the payloads to tumor tissues and reduced
exposure to normal tissues. With the development of payloads,
some novel potent payloads are used by ADCs, which allows
researchers to exploit novel linkers to attach the antibody and
payloads without disturbing their potency (Dragovich et al.,
2018). Furthermore, some irrelevant antigen-target ADCs also
may exert toxicity to tumor cells due to the vascular gap of
tumors relative to the normal tissues, which is big enough to
make ADCs penetrate into tumor cells (Cardillo et al., 2011),
indicating the specific recognition of ADCs by tumor tissues
on another aspect.

Some prodrug strategies also are used in ADCs design, which
modified the toxic payloads to inactive prodrugs, then utilized
self-immolation groups and took advantage of the intratumoral
environment to reduce the prodrugs to prototype drugs to
exert intrinsic activity (Pei et al., 2018). Moreover, nanoparticles
combining with the strategy of ACD prodrugs could also increase
the activity and circumvent MDR (Qi et al., 2017). The key
issues of ADCs are optimization of the appropriate antibody,
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the choice of proper antigen, the selection of high-activity
cytotoxic payloads, stable linkage technology and optimization
of DAR in future development. These strategies will improve
the efficacy of ADCs that give them a larger market share
to replace chemotherapy drugs in medical therapy in the
future. At present, ADCs in clinical trials mainly focus on
hematological tumors especially Hodgkin lymphoma, because
the CD30 is an ideal target, overexpressed in Hodgin lymphoma
consistently. With the deep investigation of the target, more
ADCs to cure other types of cancer will expand to clinical
applications. However, the development of ADCs is costly to
make, marked by Adcetris@ and Kadcyla@ imposing more family
burdens on patients.

In recent years, peptide-drug conjugates (PDCs) are also
on the stage of targeted-drug conjugation therapy and are
considered as part of ADCs. PDCs replace antibodies with
peptides, which minimize the molecular weight to alleviate
the reduction of tumor cell absorption caused by the larger
molecular weight of the ADCs. Also, PDCs could possess
better homogeneity due to the few of the attached sites of
the peptides. The cost-effectiveness of PDCs is critical to
alleviate the pressure on patients during treatment. However,
PDCs also have some weaknesses that need to be improved.
The vulnerability of PDCs in the blood system is a non-
negligible obstacle, but it is difficult to improve half-life and
reduce off-target toxicity by modifying structure of PDCs
without destroying activity. Therefore, we must master more
comprehensive knowledge to improve ADCs or PDCs. Whether
used alone or in combination with other therapies, the toxicity
of ADCs and PDCs must be better understood to adjust the
therapeutic index based on the minimum effective dose of

the drug in tumor cells and the maximum tolerated dose
for normal tissues.
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Multidrug resistance (MDR) is one of the leading causes of treatment failure in cancer

chemotherapy. Onemajor mechanism of MDR is the overexpressing of ABC transporters,

whose inhibitors hold promising potential in antagonizing MDR. Glesatinib is a dual

inhibitor of c-Met and SMO that is under phase II clinical trial for non-small cell lung

cancer. In this work, we report the reversal effects of glesatinib to P-glycoprotein (P-gp)

mediated MDR. Glesatinib can sensitize paclitaxel, doxorubicin, colchicine resistance

to P-gp overexpressing KB-C2, SW620/Ad300, and P-gp transfected Hek293/ABCB1

cells, while has no effect to their corresponding parental cells and negative control

drug cisplatin. Glesatinib suppressed the efflux function of P-gp to [3H]-paclitaxel and

it didn’t impact both the expression and cellular localization of P-gp based on Western

blot and immunofluorescent analysis. Furthermore, glesatinib can stimulate ATPase

in a dose-dependent manner. The docking study indicated that glesatinib interacted

with human P-gp through several hydrogen bonds. Taken together, c-Met/SMO

inhibitor glesatinib can antagonize P-gp mediated MDR by inhibiting its cell membrane

transporting functions, suggesting new application in clinical trials.

Keywords: multidrug resistance, P-gp, glesatinib, reversal effects, mechanism

INTRODUCTION

Multidrug resistance (MDR) is the one of the major challenges in cancer treatment (1). MDR refers
to a phenomenon that cancer cell once becomes resistant to one chemotherapeutic, accompanied
by cross resistant to other chemotherapeutics that are structurally and mechanistically different
(2). MDR is one of the major causes of failure in cancer treatment. The mechanisms of MDR
involve dynamic ATP-binding cassette (ABC) transporters (3, 4), oncogenes mutations (5),
microenvironment changes (6), reprogramed cancer cell metabolism (7, 8), efficient DNA repairing
(9, 10), survived cancer stem cells (11, 12), and activated detoxifying systems (13, 14). Novel
effective remedies are urgently needed to circumvent MDR.
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ABC transporters are a group of active transporter proteins
that have diverse functions and are present in the membrane of
both prokaryotes and eukaryotes, acting as protecting enzymes
against xenobiotic, including many chemotherapeutics (15, 16).
One of the most well studied ABC transporters is P-glycoprotein
(P-gp), which is encoded by ABCB1 genes. P-gp contributes in
pumping out many different kinds of anticancer drugs, namely,
taxanes, anthracyclines, vinca alkaloids, and epipodophyllotoxins
(17–24). To counteract the negative regulation of chemotherapy
by P-gp, three generations of inhibitors (both specific and non-
specific) have been developed and some of them have been
introduced into clinical trials (25). However, due to unexpected
adverse effects or severely drug-drug interaction, none of them
have been approved by FDA (3, 26). There is an unmet need
for effective and safe reversal agents for clinical use. Recently,
certain tyrosine kinase inhibitors (TKIs) have been found to
exert MDR reversal effect via regulating P-gp at non-toxic
concentration (27–31), suggesting new regimens in the treatment
of resistant cancer. TKI glesatinib (Figure 1A), a c-MET/SMO
dual inhibitor (32, 33), is now under Phase II clinical trials
in combination with Nivolumab in treatment of the non-small
cell lung cancer (NSCLC). More importantly, we found that
glesatinib can antagonize P-gp mediated MDR. Here, we report
the reversal effects of glesatinib and the underlying mechanisms.

MATERIALS AND METHODS

Chemicals
Glesatinib (99% purity as measured by high performance
liquid chromatography) was purchased from ChemieTek
(Indianapolis, IN). Dulbecco’s modified Eagle’s Medium
(DMEM), bovine serum albumin (BSA), fetal bovine serum
(FBS), penicillin/streptomycin and trypsin 0.25% were purchased
from Hyclone (GE Healthcare Life Science, Pittsburgh, PA).
The monoclonal antibodies for ABCB1 (C219) and GAPDH
(MA5-15738), Alexa Fluor 488 conjugated goat anti-mouse
IgG secondary antibody were purchased from Thermo Fisher
Scientific Inc (Rockford, IL), dimethylsulfoxide (DMSO),
3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide
(MTT), Triton X-100, 4’,6-diamidino-2-phenylindole (DAPI),
paraformaldehyde, paclitaxel, doxorubicin, colchicine, cisplatin,
verapamil and Ko 143 were purchased from Sigma-Aldrich (St.
Louis, MO). [3H]-paclitaxel (15 Ci/mmol) was purchased from
Moravek Biochemicals, Inc (Brea, CA). All other chemicals were
purchased from Sigma Chemical Co (St. Louis, MO).

Cell Lines and Cell Culture
The human epidermoid carcinoma cell line KB-3-1 and its
colchicine-selected P-gp-overexpressing KB-C2 cells, the human
colon cancer cell line SW620 and its doxorubicin-selected P-gp-
overexpressing SW620/Ad300 cells, the NSCLC cell line NCI-
H460 and its mitoxantrone-selected ABCG2-overexpressing
NCI-H460/MX20 cells, were used for P-gp and ABCG2 reversal
study, respectively. The HEK293/pcDNA3.1, HEK293/ABCB1
cells lines were established by transfecting HEK293 cells with
either the empty pcDNA3.1 vector or the vector containing
full length ABCB1 (HEK293/ABCB1), and were cultured in a

medium containing 2 mg/mL of G418. All cell were cultured at
37◦C, using 5% CO2 with DMEM containing 10% FBS and 1%
penicillin/streptomycin. All drug resistant cell lines were grown
as adherentmonolayer in a drug-free culturemedia formore than
2 weeks prior to their use.

Cytotoxicity and Reversal Experiments
The cytotoxicity and reversal experiments of glesatinib to
KB-3-1, KB-C2, SW620, SW620/Ad300, HEK293/pcDNA3.1,
HEK293/ABCB1 cells were performed by using the MTT
colorimetric assay (34). For reversal experiments, the applied
concentrations of glesatinib were 1 and 3µM according to
the results of cytotoxicity experiments. All of the experiments
were repeated at least three times, and the mean and standard
deviation (SD) values were calculated. Verapamil (3µM) was
used as a positive control inhibitor of P-gp, Ko 143 was used
as a positive control inhibitor of ABCG2, cisplatin, a non-P-gp
substrate, was used as a negative control.

Western Blot Analysis
Dose-dependent (0, 0.3, 1, 3µM) and time-dependent (0, 24, 48,
72 h) of glesatinib on the expression of P-gp were determined.
Twenty microgram protein cell lysates were loaded in each
lane. The presence of P-gp was determined using monoclonal
antibody C219 (dilution 1:200). GAPDH was used to confirm
equal loading in each lane in the samples prepared from cell
lysates. The resulting protein bands were quantified by using
Image J software. The detailed protocol of Western blot analysis
was carried out as previously described (35).

Immunofluorescence Analysis
SW620, SW620/Ad300 cells were seeded (1× 104/well) in 24-well
plates and cultured at 37◦C for 24 h, followed by incubation with
3µM glesatinib for 0, 24, 48, and 72 h, respectively. Then cells
were fixed in 4% paraformaldehyde for 5min and permeabilized
by 0.1% Triton X-100 for 5min before blocked with 6% BSA
for 1 h at 37◦C. The presence of P-gp was determined using
monoclonal antibody F4 (dilution 1:1000) for incubation at
4◦C overnight. Alexa Fluor 488 conjugated secondary antibody
(1:1000) was used for incubation at 37◦C for 1 h. After washing
with iced PBS, DAPI (1µg/mL) was used to counterstain the
nuclei. Immunofluorescence images were collected using an
EVOS FL Auto fluorescence microscope (Life Technologies
Corporation, Gaithersburg, MD).

ATPase Assay
The vanadate-sensitive ATPase activity of ABCB1 in membrane
vesicles of High Five insect cells was measured as previously
described (36). Briefly, the membrane vesicles (10 µg of protein)
were incubated in ATPase assay buffer [composed by 50 mmol/L
MES (pH 6.8), 50 mmol/L KCl, 5 mmol/L sodium azide, 2
mmol/L EGTA, 2 mmol/L DTT, 1 mmol/L ouabain, and 10
mmol/L MgCl2] with or without 0.3 mmol/L vanadate at 37◦C
for 5min, then were incubated with different concentrations
(ranging from 0 to 40µM) of glesatinib at 37◦C for 3min.
The ATPase reaction was induced by the addition of 5mM of
Mg-ATP, and the total volume was 0.1mL. After incubation
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FIGURE 1 | The structure of glesatinib and its cytotoxic effects to three P-gp overexpressing cancer cells. (A) Chemical structure of glesatinib. (B) Concentration

-dependent viability curves for KB-3-1 and KB-C2 cell lines incubated with different concentration of glesatinib for 72 h. (C) Concentration-dependent viability curves

for SW620 and SW620/Ad300 cell lines incubated with different concentration of glesatinib for 72 h. (D) Concentration-dependent viability curves for

HEK293/pcDNA3.1 and HEK293/ABCB1 cells incubated with different concentration of glesatinib for 72 h. The cell viability was determined by MTT assay. Data are

expressed as mean ± SD, and representative of three independent experiments in triplicate are shown.

at 37◦C for 20min, the reaction was allowed to continue for
another 20min at 37◦C and then terminated by adding 100
µL of a 5% SDS solution to the reaction mix. The amount of
inorganic phosphate (IP) release was detected at 880 nm using
a spectrophotometer.

[3H]-Paclitaxel Accumulation and
Efflux Assay
Since glesatinib reversed MDR mediated by P-gp, the reversal
mechanismmay be related to change of the protein expression or
location of P-gp, we used the drug accumulation and efflux assays
to determine the reversal mechanism as previously described
(27). The accumulation and efflux of [3H]-paclitaxel in KB-3-
1 and KB-C2 cells were measured in the absence or presence
of glesatinib (1, 3µM), and verapamil (3µM) was used as
positive control.

Molecular Modeling of Human ABCB1
Homology Model
To reveal more details of the interaction between glesatinib and
P-gp, we conducted docking study. All docking experiments
were performed following the reported protocols with software
Schrodinger 2018–1 (Schrödinger, LLC, New York, NY, 2018)
on a Mac Pro 6-core Intel Xenon X5 processor with Macintosh
Operating System (OS X El Capitan) (28, 37). Ligand preparation
was essentially performed. Human P-gp homology model
(4M1M) was established by Dr. S. Aller based on improved

mouse P-gp (3G5U). Single-wavelength anomalous diffraction
(SAD) phasing was conducted to the full 3.8 Å resolution of
the dataset. Non-crystallographic symmetry (NCS) operators
were determined from the mouse P-gp structure with the
phenix.python script simple_ncs_from_pdb.py. Refinement was
conducted with phenix.refine using NCS and secondary structure
restraints, restraining NCS-related B-factors, group B-factor and
individual B-factor (38). The centroid of some important residues
including H61, G64, L65, M68, L339, A342, L975 C343, F942,
T945, Q946, Y950, L975, V982, and A985 (39–41). Glide XP
docking was performed and the receptor grid for induced-fit
docking (IFD) was generated by selecting residues. Then IFD was
conducted with the default protocol.

Statistical Analysis
All data are expressed as the mean ± SD. All experiments were
repeated at least three times and the data were analyzed using a
one-way or two-way ANOVA by GraphPad Prism 7.00 software.
Differences were considered significant when P < 0.05.

RESULTS

Glesatinib Antagonized MDR in P-gp
Overexpressing Cancer Cells
First, the cytotoxicity of glesatinib to P-gp overexpressing cancer
cells KB-C2, SW620/Ad300, HEK293/ABCB1, and their parent
cells KB-3-1, SW620, HEK293 cells were determined by MTT
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assay. As shown in Figures 1B–D, the IC50s fell between 5
and 10µM. Therefore, the non-toxic concentration (IC20) of
glesatinib applied in the reversal effects evaluation were 1 and
3 µM.

The reversal effects of glesatinib to P-gp substrates, including
doxorubicin, paclitaxel and colchicine were further tested in the
aforementioned cancer cells. The non-selective P-gp inhibitor,
verapamil was used as a positive control (42), and non-substrate
cisplatin was used as a negative control (43). Pretreatment with
or without glesatinib with these substrates to P-gp overexpressing
cancer cells and their sensitive parent cells were tested to obtain
their IC50s.

As shown in Tables 1, 2, the parent cells were sensitive to
doxorubicin, paclitaxel and colchicine, and the IC50s were as low
as nano-mole. While P-gp overexpressing cancer cell exhibited
resistant properties to these chemotherapeutics, resistance fold
ranged from 77 to 438. Pretreatment with glesatinib significantly
lowered the IC50s of all these three chemotherapeutics to resistant
cancer cells. More importantly, glesatinib exhibited similar re-
sensitizing effects to P-gp transfected HEK293/ABCB1 cells,
suggesting its mechanisms of re-sensitizing to chemotherapeutics
were directly or indirectly related to P-gp. In addition, in ABCG2
overexpressing cancer cells NCI-H460/MX20 cells, gleasatinib
failed to reverse topotecan (an ABCG substrate) resistance
(Table 2). These results indicated that glesatinib could antagonize
cancer MDR mediated by P-gp, but not MDR mediated
by ABCG2.

Glesatinib Did Not Impact the P-gp
Expression and Subcellular Localization
The down-regulation or re-localization of P-gp (from
cellular membrane to cytosol) may lead to re-sensitization

of chemotherapeutics as a result of less extent of efflux or
unable to exert its functions (17, 44). We further determined the
interaction mechanism of glesatinib with P-gp by examining the
P-gp expression and cellular location through Western blotting
and immunofluorescence assay. P-gp overexpressing KB-C2 cells
were treated with glesatinib at different concentration (0.3, 1,
3µM for 72 h) or at different time (3µM for 24, 48, 72 h) and
the P-gp expression was examined. SW620/Ad300 cells were
treated with 3µM for 0, 24, 48, 72 h to examine the localization
of P-gp. KB-3-1 and SW620 cells were used as negative control
in this experiment.

As shown in Figure 2, P-gp expression was not impacted
by glesatinib either dose- or time-dependently. The
immunofluorescence assay results of Figure 3 showed that
after treatment of glesatinib, localization of P-gp had not
changed and remained to localize on the cell membrane. These
results suggested that glesatinib could not impact the expression
and localization of P-gp. We next tested the effects of glesatinib
to the efflux functions of P-gp.

Glesatinib Increased the Intracellular
[3H]-Paclitaxel Accumulation and Inhibited
[3H]-Paclitaxel Efflux in Cancer Cell Lines
Overexpressing P-gp
As glesatinib did not alter either P-gp expression or its
localization, we set out to test the transporting function of
P-gp by examining the cellular accumulation of radioactive
[3H]-paclitaxel. As shown in Figures 4A,B, in KB-3-1
cells that barely expressed P-gp, [3H]-paclitaxel had not
been impacted, and glesatibin had no effects to either
the drug accumulation (Figure 4A) or efflux (Figure 4B).

TABLE 1 | Glesatinib sensitized paclitaxel, colchicine, and doxorubicin to P-gp-overexpressing cell lines (KB-C2 and HEK293/ABCB1 cells).

Treatment IC50± SDa (RFb)

KB-3-1 (µM) KB-C2 (µM) HEK293 (µM) HEK293/ABCB1 (µM)

Paclitaxel

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.004 ± 0.002 (1.00)

0.004 ± 0.001 (1.00)

0.003 ± 0.001 (0.75)

0.003 ± 0.001 (0.75)

1.755 ± 0.057 (438.75)

0.220 ± 0.026 (55)*

0.015 ± 0.001 (3.75)*

0.010 ± 0.002 (2.5)*

0.073 ± 0.027 (1.00)

0.122 ± 0.050 (1.67)

0.100 ± 0.020 (1.37)

0.068 ± 0.003 (0.95)

3.757 ± 0.312 (51.46)

0.255 ± 0.084 (3.49)*

0.047 ± 0.004 (0.64)*

0.094 ± 0.003 (1.9)*

Doxorubicin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.032 ± 0.013 (1.00)

0.029 ± 0.003 (0.91)

0.028 ± 0.004 (0.88)

0.024 ± 0.006 (0.75)

2.504 ± 0.487 (78.25)

0.118 ± 0.061 (3.69)*

0.023 ± 0.010 (0.72)*

0.024 ± 0.005 (0.75)*

0.061 ± 0.020 (1.00)

0.060 ± 0.029 (0.98)

0.066 ± 0.009 (1.08)

0.061 ± 0.008 (1.00)

0.631 ± 0.150 (10.34)

0.072 ± 0.006 (1.18)*

0.064 ± 0.021 (1.05)*

0.084 ± 0.009 (1.38)*

Colchicine

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.009 ± 0.002 (1.00)

0.006 ± 0.002 (0.67)

0.007 ± 0.001 (0.78)

0.009 ± 0.001 (1.00)

3.231 ± 0.260 (359.00)

0.993 ± 0.183 (110.33)*

0.088 ± 0.020 (9.78)*

0.116 ± 0.035 (12.89)*

0.066 ± 0.001 (1.00)

0.058 ± 0.007 (0.88)

0.048 ± 0.009 (0.73)

0.056 ± 0.006 (0.85)

1.538 ± 0.090 (23.30)

0.126 ± 0.106 (1.91)*

0.047 ± 0.021 (0.71)*

0.050 ± 0.008 (0.76)*

Cisplatin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

2.508 ± 0.432 (1.00)

1.990 ± 0.452 (0.79)

2.031 ± 0.364 (0.81)

2.309 ± 0.641 (0.92)

3.027 ± 0.343 (1.21)

2.676 ± 0.443 (1.07)

2.120 ± 0.152 (0.85)

2.098 ± 0.230 (0.84)

2.660 ± 0.430 (1.00)

1.982 ± 0.253 (0.75)

1.903 ± 0.361 (0.72)

2.388 ± 0.452 (0.90)

3.336 ± 0.451 (1.25)

3.272 ± 0.254 (1.23)

3.394 ± 0.353 (1.28)

3.115 ± 0.433 (1.17)

*P < 0.05 vs. no inhibitor group.
a IC50 values represented the mean ± SD of three independent experiments performed in triplicate.
bResistance fold (RF) was calculated by dividing the IC50 values of substrates in the presence or absence of an inhibitor by the IC50 values of parental cells without an inhibitor. Gle,

Glesatinib; Vera, verapamil.
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TABLE 2 | Glesatinib sensitized paclitaxel, colchicine, and doxorubicin to P-gp-overexpressing cell line (SW620/Ad300 cells), but not topotecan to

ABCG2-overexpressing cells (NCI-H460/MX20 cells).

Treatment IC50 ± SDa (RFb) Treatment IC50 ± SDa (RFb)

SW620 (µM) SW620/Ad300 (µM) NCI-H460 (µM) NCI-H460/MX20 (µM)

Paclitaxel

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.091 ± 0.015 (1.00)

0.067 ± 0.013 (0.74)

0.060 ± 0.020 (0.66)

0.097 ± 0.031 (1.07)

21.190 ± 6.25 (232.86)

1.969 ± 0.160 (21.63)*

0.257 ± 0.072 (2.82)*

0.646 ± 0.173 (7.10)*

Topotecan

+ Gle (1µM)

+ Gle (3µM)

+ Ko 143 (3µM)

0.063 ± 0.020 (1.00)

0.060 ± 0.015 (0.95)

0.040 ± 0.021 (0.63)

0.051 ± 0.013 (0.81)

6.010 ± 0.530 (95.49)

6.360 ± 0.127 (100.95)

7.160 ± 1.193 (113.65)

0.520 ± 0.130 (8.25)*

Doxorubicin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.031 ± 0.014 (1.00)

0.033 ± 0.007 (1.06)

0.029 ± 0.012 (0.94)

0.023 ± 0.007 (0.74)

9.950 ± 2.023 (320.97)

2.397 ± 0.041 (77.32)*

0.271 ± 0.020 (8.74)*

0.288 ± 0.155 (9.29)*

Cisplatin

+ Gle (1µM)

+ Gle (3µM)

+ Ko 143 (3µM)

1.640 ± 0.185 (1.00)

1.699 ± 0.392 (1.04)

1.513 ± 0.218 (0.92)

1.686 ± 0.152 (1.03)

2.150 ± 0.498 (1.31)

1.926 ± 0.297 (1.17)

2.049 ± 0.187 (1.25)

2.285 ± 0.138 (1.39)

Cisplatin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

1.481 ± 0.676 (1.00)

1.266 ± 0.189 (0.85)

1.166 ± 0.079 (0.79)

1.164 ± 0.107 (0.79)

1.514 ± 0.398 (1.02)

1.676 ± 0.138 (1.13)

1.587 ± 0.329 (1.07)

1.851 ± 0.364 (1.25)

*P < 0.05 vs. no inhibitor group.
a IC50 values represented the mean ± SD of three independent experiments performed in triplicate.
bResistance fold (RF) was calculated by dividing the IC50 values of substrates in the presence or absence of an inhibitor by the IC50 values of parental cells without an inhibitor. Gle,

Glesatinib; Vera, verapamil.

FIGURE 2 | Glesatinib did not affect the protein expression of P-gp transporters in ABCB1 overexpressing cell lines. Detection and relative intensity of ABCB1

expression in KB-C2 cells incubated with 0.3, 1, 3µM for 72 h and 3µM for 0, 24, 48, 72 h. Data are mean ± SD, representative of three independent experiments. *p

< 0.05, compared with control group.

While in P-gp overexpressing KB-C-2 cells, [3H]-paclitaxel
accumulation decreased significantly as shown in Figures 4A,C.
Pretreatment of glesatinib may significantly increase the
[3H]-paclitaxel accumulation and inhibited the drug efflux
of P-gp. These results indicated that glesatinib may exert
its re-sensitizing effects by thwart the transporting function
of P-gp.

Glesatinib Stimulated the ATPase Activity
of P-gp
ATP hydrolyzed by ATPase was used by P-gp to provide
the energy to transport its substrates (45, 46). To further
reveal the P-gp inhibitory mechanisms, we determined
the effect of glesatinib on the ATPase activity of P-gp

transporters by measuring P-gp-mediated ATP hydrolysis
in the presence or absence of glesatinib (0–40µM). As
shown in Figure 5, Glesatinib stimulated the ATPase activity
of P-gp transporters in a dose-dependent manner. The
concentration of 50% stimulation was 3.2µM, and the
maximum stimulation was 5.59-fold greater than that of
basal level.

Induced-Fit Docking (IFD) Simulation
Interactions Between P-gp and Glesatinib
We investigated the potential interaction of glesatinib with P-gp
by conducting docking analysis. The best docking score of the
binding of glesatinib and human P-gp was−12.639 kcal/mol. The
best-scored docked position of glesatinib with P-gp was showed

Frontiers in Oncology | www.frontiersin.org 5 April 2019 | Volume 9 | Article 313486

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Cui et al. Glesatinib Antagonizes P-gp Mediated MDR

FIGURE 3 | Glesatinib did not affect the localization of ABCB1 transporters in ABCB1 overexpressing cell lines. Sub-cellular localization of ABCB1 expression in

SW620/Ad300 cells incubated with 3µM of glesatinib for 0, 24, 48, and 72 h. ABCB1, green and DAPI (blue) counterstains the nuclei. SW620 cells represented the

control group.

FIGURE 4 | Glesatinib increased the accumulation and inhibited the efflux of [3H]-paclitaxel in P-gp overexpressing KB-C2 cells. (A) The effect of glesatinib on the

accumulation of [3H]-paclitaxel in KB-3-1 and KB-C2 cell lines. (B) The effect of glesatinib on efflux of [3H]-paclitaxel in KB-3-1 and (C) KB-C2. Verapamil (3µM) was

used as positive controls. Data are mean ± SD, representative of three independent experiments. *p < 0.05, compared with control group. Gle, Glesatinib; Vera,

verapamil.

in Figure 6. There were two hydrogen bonds between glesatinib
and human P-gp, including the hydrogen binding between the
amide group of glesatinib and Tyr950 (C=O. . .HO-Tyr950), in
addition with the hydrogen bond between the methoxy group
and Asn721 (H3C-O. . .H2N-Asn721). The fluorophenyl group
of glesatinib has π-π interaction with both Phe336 and Phe983
of P-gp protein. The thienopyridine group has π-π interaction
with the residues Phe728 and Phe983. Interestingly, the acidic
microenvironment of tumor (47) could result in the ionization
of glesatinib, and the amine cation could form a hydrogen bond
with Tyr307 and a π-cation bond with Phe303. These formed

various bonds between glesatinib and human P-gp may finally
lead to the collapsed P-gp.

DISCUSSION

ABC transporter P-gp functions as the protective enzyme that
pumps out xenobiotics including many chemotherapeutics
that are its substrates, causing MDR in cancers (3). To
counter that, many P-gp inhibitors have been developed
and some of them have been tested in clinical trials,
while all of them have failed to get approved by US
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FIGURE 5 | Glesatinib stimulated the ATPase activity of P-gp. Effect of various concentrations of glesatinib on the ATPase activity of P-gp. The inset graphs illustrate

the effect of 0–10µM glesatinib on the ATPase activity of P-gp. Data are mean ± SD, representative of three independent experiments.

FIGURE 6 | The molecular modeling study of glesatinib with human homology ABCB1. (A) Overall view of glesatinib-P-gp complex. (B) 3D figure of Docked position

of glesatinib within the drug-binding site of human P-gp homology model. Glesatinib was showed as ball and stick mode with the atoms colored: carbon-cyan,

nitrogen-blue, oxygen-red, fluorine-green, sulfur-yellow, hydrogen-purple. Important residues were showed as sticks, with the color pattern: carbon-gray,

nitrogen-blue, oxygen-red, hydrogen-purple. π-π stacking interactions are indicated with cyan dotted line. π-cation bond is indicated with green dotted line. Hydrogen

bonds were showed by the yellow dotted line. (C) 2D figure of Docked position of glesatinib within the drug-binding site of human P-gp homology model. The cyan

bubbles indicate polar residues and the green bubbles indicate hydrophobic residues. Hydrogen bonds are shown by the purple dotted arrow. π-π stacking

interactions are shown by the green lines and π-cation bond is indicated with red line.

FDA due to severely adverse effects (48, 49). Recent
studies indicate that certain TKIs may work as regulators
of P-gp (2, 50), either inhibiting its expression (51) or

impact its functions (35). Combinations of these TKIs and
chemotherapeutics hold promising potential in the treatment of
MDR cancers.
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In this work, we found that MET/SMO dual inhibitor
glesatinib, a drug candidate that is now under clinical trials,
antagonized P-gp mediated MDR in cancer cells overexpressing
P-gp. As shown in SW620/Ad300 and KB-C2 cells, glesatinib
could antagonized P-gp mediated resistance by significantly
reducing the IC50s of doxorubicin, paclitaxel and colchicine,
while had no effects to cisplatin which was not a substrate
of P-gp. To confirm these effects were mediated by P-gp, we
further tested its reversal effects to P-gp transpected HEK293
cells. Glesatinib exhibited similar effects in HEK293/ABCB1
cells, indicating the effects were mediated by regulating P-
gp. We further confirmed that glesatinib did not affect the
expression and sub-cellular localization of P-gp, while it could
stimulate ATPase, similar as P-gp inhibitor verapamil (45).
Importantly, our results showed gleastinib significantly increased
the intracellular accumulation of [3H]-paclitaxel and suppressed
the efflux effects, which may contribute to the increased cytotoxic
effects when used by combination. Finally, the docking study
indicated that glesatinib might have strong interaction with P-
gp via hydrogen bonds and π-π interaction, leading to the
efflux inhibition. This docking result may provide valuable
information to develop glesatinib derivatives for better targeting
and/or binding.

In conclusion, MET/SMO dual inhibitor Glesatinib
antagonized P-gp mediated MDR by inhibiting its efflux
functions. This work provided important information for further
clinical trials.
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The protein lysine methyltransferase SMYD2 has recently emerged as a new enzyme

modulate gene transcription or signaling pathways, and involved into tumor progression.

However, the role of SMYD2 in drug resistant is still not known. Here, we found that

inhibition of SMYD2 by specific inhibitor could enhance the cell sensitivity to cisplatin

(CDDP), but not paclitaxel, NVB, and VCR in non-small cell lung cancer (NSCLC). Further

study showed that SMYD2 and its substrates were overexpressed in NSCLC resistant

cells, and the inhibition of SMYD2 or knockdown by specific siRNA could reverse the cell

resistance to cisplatin treatment in NSCLC/CDDP cells. In addition, our data indicated

that the inhibition or knockdown SMYD2 inhibit tumor sphere formation and reduce

cell migration in NSCLC/CDDP cells, but not in NSCLC parental cells. Mechanistically,

inhibition of SMYD2 could enhance p53 pathway activity and induce cell apoptosis

through regulating its target genes, including p21, GADD45, and Bax. On the contrary,

the sensitivity of cells to cisplatin was decreased after knockdown p53 or in p53 deletion

NSCLC cells. The synergistically action was further confirmed by in vivo experiments.

Taken together, our results demonstrate SMYD2 is involved into cisplatin resistance

through regulating p53 pathway, and might become a promising therapeutic target for

cisplatin resistance in NSCLC.

Keywords: SMYD2, cisplatin resistance, lung cancer, p53, apoptosis

INTRODUCTION

The incidence and mortality of lung cancer ranks at the NO.1 among all kinds of cancer (1).
Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancer (1, 2). The surgery,
radiotherapy, chemotherapy, molecular targeting therapy, and immunotherapy are possible choice
for NSCLC treatment (2). However, most of NSCLCs are found at advanced stage, so drug-based
therapy, mainly including chemotherapy, is considered as the most important approach to treat
NSCLCs (3).

The platinum-based chemotherapy, such as cisplatin plus paclitaxel, cisplatin plus NVB,
and cisplatin plus VCR, is the first-line treatment approach in NSCLCs (2, 3). However, drug
resistance will be inevitable happened after treatment for 1–2 years, which limit the application
of chemotherapeutic agents (4, 5). To solve this problem, we should first understand the resistant
mechanisms for chemotherapy in NSCLCs. In fact, many previous studies have shown that the
upregulation of efflux protein, the mutation of drug target, the activation of by-pass oncogenic
pathway, and the accumulation of phenotype change cells contributed to the resistance of
chemotherapeutic agents in NSCLCs (6, 7). However, there is still unknown for a large part of
NSCLC resistant patients.
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SMYD2 was identified as protein methyltransferase
which adds methyl-group to its histone and non-histone
substrates and epigenetically regulates their function (8, 9).
Recently, SMYD2 was observed to involve into the upset and
progression of various tumors including leukemia, breast cancer,
teratocarcinoma, gastric cancer, and head and neck cancer
(10–14). Mechanistically, SMYD2 was found to prompt cell
proliferation, block apoptosis, and enhance cell migration and
invasion through regulating its substrates methylation status,
such as p53 and histone4 (13–15). However, whether this enzyme
is involved into drug resistance is still not known.

Here, NSCLC was used to as an example to investigate the role
of SMYD2 in chemotherapeutic resistance. Our data showed that
SMYD2 was involved into cisplatin resistance, but not paclitaxel,
NVB, and VCR. Further study indicated that SMYD2 expression
and its activity were increasing in cisplatin resistant NSCLC
cells. Mechanistically, SMYD2 prompt cell migration, increase
the tumor sphere and block apoptosis, which is dependent on the
methylation of p53K370. The inhibition or knockdown of SMYD2
model would result in the increasing of sensitivity to cisplatin
in vitro and in vivo. Our results not only elucidate the role of
SMYD2 in cisplatin resistance and provide a potential method
to reverse cisplatin resistance in NSCLC.

MATERIALS AND METHODS

Cell Lines, Cell Culture, and Treatment
A549 (p53 wide type, KRAS mutation), NCI-H460 (p53
wide type, KRAS mutation), and NCI-H1299 (p53 deletion,
KRAS wide type) human lung adenocarcinoma cell lines
were purchased from the American Type Culture Collection
(ATCC; Manassas, VA, USA). These cancer cells were routinely
cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco) and
were maintained at 37◦C in a humidified incubator with 5% CO2.
The cells were treated with Cisplatin (J&K Scientific Ltd, Beijing,
China) at increasing concentrations (ranging from 0.5 to 4µM)
for 3 months.

Compounds and Reagents
BAY-498(SMYD2 inhibitor), AZ505(SMYD2 inhibitor),
Cisplatin(CDDP), Vinorelbine(NVB), Paclitaxel (Taxol),
and Vincristine sulfate(VCR) was obtained from MedChem
Express (Princeton, NJ, USA). The primary antibodies against
SMYD2, p53, Cleaved-PARP, and β-actin were obtained from
Cell Signaling Technology (Danvers, MA, USA), and the primary
antibodies against p53K370Me was purchased from Immunoway
Technology (Plano, TX, USA). The pcDNA3-p53 vector was
obtained from Addgene.

Cell Viability Assay
In vitro cell viability was determined using the MTT assay.
Cells (1 × 105 cells/ml) were seeded in 96-well culture plates.
After incubating overnight, the cells were treated with various
concentrations of the appropriate agents for 48 h, after which
10 µl of MTT solution (2.5 mg/ml in PBS) was added to each
well, and the plates were incubated for an additional 4 h at 37◦C.

After the samples were centrifuged (2,500 rpm, 10min), the
medium supplemented with MTT was aspirated, and then 100
µl of DMSO was added to each well. The optical density of each
well wasmeasured at 570 nmwith a Biotek SynergyTM HTReader
(BioTek Instruments, Winooski, VT, USA).

Western Blot Analysis
Western blotting was performed as previously described (14).
Briefly, equal amounts of total protein extracts from cultured
cells or tissues were fractionated by 10–15% SDS-PAGE before
being electrically transferred onto polyvinylidene difluoride
(PVDF) membranes, which were sequentially incubated with
mouse or rabbit primary antibodies and horseradish peroxidase
(HRP)-conjugated secondary antibodies designed to detect the
proteins of interest. The indicated secondary antibodies were
subsequently reacted with ECL detection reagents (Pierce,
Thermo Fisher Scientific, Waltham, MA, USA) and then
incubated in a dark room. The relative expression levels of the
indicated proteins were normalized to those of β-actin.

Flow Cytometry Analysis
Analyses for apoptosis were conducted with an Annexin V-FITC
Apoptosis Detection Kit (BioVision, Mountain View, CA, USA).
Cells (1 × 106) were exposed to various inhibitors for 48 h.
They were collected by centrifugation and resuspended in 500
µL of 1 × binding buffer. Annexin V-fluorescein isothiocyanate
(FITC; 5 µL) and PI (5 µL) were added to the cells. After
incubation at room temperature for 5min in the dark, cells were
analyzed by FACS using a flow cytometer (BD Biosciences, San
Jose, CA, USA). Cells that stained Annexin V-FITC (apoptosis)
were analyzed.

siRNA-Mediated Gene Knockdown
SMYD2 and p53 knockdown was performed using specific
siRNAs purchased from Santa Cruz Biotechnology (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Scramble non-target
siRNAs served as negative controls. siRNA was introduced into
the indicated cell lines with Lipofectamine RNAiMAX reagent
(Thermo Fisher Scientific), according to the manufacturer’s
instructions, and knockdown efficiency was assessed by
western blotting.

Transwell Migration Assay
NCI-H460/CDDP and its parental cell lines migration capacities
were tested by Corning transwell assay, according to the
manufacturer’s instructions. Briefly, the indicated lung cancer
cells were treated DMSO, BAY-598 (200 nM), Scramble siRNA,
and SMYD2 siRNA (50 nM) for 48 h and then seeded in the upper
chamber of the system at a density of 5× 104 cells/well in serum-
free medium (100 µl). The wells in the lower chamber of the
system were filled with complete medium. After incubating for
48 h, the cells remaining in the upper chamber were carefully
removed with a cotton swab, and the cells that had migrated
through the membrane and adhered to its lower surface were
fixed with 100% methanol and stained with 0.2% crystal violet.
The membrane was then photographed under a microscope,
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FIGURE 1 | Effects of the combination of chemotherapeutic agents and SMYD2 inhibitor on cell growth in NSCLC cells. The growth of A549 and NCI-H460 cells

treated with chemotherapeutic agents, including CDDP, Taxol, NVB, and VCR at different concentrations or combination with SMYD2 inhibitor BAY-598. Cell lines

treated with DMSO were used as controls.

and the cells in five predetermined fields were counted at
200×magnification.

Tumor Sphere Formation Assay
NCI-H460/CDDP and its parental cell lines were treated
DMSO, BAY-598 (200 nM), Scramble siRNA, and SMYD2 siRNA
(50 nM) for 48 h, after which single cells prepared by mechanical
and enzymatic dissociation were seeded in 6-well ultra-low
attachment plates (Corning, NY, USA) at a density of 1,000
cells/well in serum-free DMEM/F-12 medium supplemented
with B27 (1×, Invitrogen, Thermo Fisher Scientific), 20 ng/ml
human recombinant bFGF (PeproTech, Rocky Hill, NJ, USA),
and 20 ng/ml EGF (PeproTech) for 10–14 days. The cells were
then photographed under a microscope.

Luciferase Reporter Gene Assays
NCI-H460/CDDP and its parental cells were plated in 96-well
plates. Cells in 96-well plates were transfected with 2 ng pRL-
tk (Promega) and 50 ng p53 reporter plasmid (Addgene) for
24 h with the lipofectamine 3000. Cells were treated with DMSO
or BAY-598 at indicated concentrations for 24 h. Luciferase
activities were evaluated with the Berthold LB960 system
(Berthold, DE).

Quantitative PCR Analysis
Total RNA was isolated using an RNeasy Mini Kit (Qiagen,
Hilden, Germany), as described in the product insert, and
then reverse transcribed with a RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific). PCR was performed

with iQ SYBR Green SuperMix (Bio-Red Laboratories, Hercules,
CA, USA) and a CFX96 Real-Time PCR Detection System
(Bio-Rad Laboratories). The following primers were used
for the experiment: glyceraldehyde-3-phosphate dehydrogenase
(GAPDH): reverse: 5′-CCCTCAACGACCACTTTGTCA-3′ and
forward: 5′-TTCCTCTTGTGCTCTTGCTGG-3′; p21 forward:
5′-TGTACCCTTGTGCCTCGCTC-3′ and reverse: 5′- TGGAGA
AGATCAGCCGGCGT-3′; Bax forward: 5′- TTTGCTTCAGGG
TTTCATCC-3′ and reverse: 5′- CAGTTGAAGTTGCCGTCA
GA-3′; and GADD45 forward: 5′-GGATGCCCTGGAGGAAGT
GCT-3′ and reverse: 5′- GGCAGGATCCTTCCATTGAGATGA
ATGTG-3′.

Xenografts in Mice
To assess the characteristics of chemotherapy-resistant tumors,
we subcutaneously injected viable NCI-H460/CDDP cells (5 ×

106/100µl PBS per mouse), as confirmed by trypan blue staining,
into the right flank of 7–8 weeks-old male BALB/C mice. When
the average tumor volume reached 100 mm3, the mice were
randomly divided into the following four treatment groups: a
control group (saline only, n= 6), a AZ505 group (40 mg/kg/qd,
i.p.; n = 6), an CDDP group (4.0 mg/kg/3 day, i.p.; n = 6),
and a combination treatment group (AZ505 plus CDDP). After
2 weeks, the mice were sacrificed, and the tumors were excised
and stored at −80◦C. These experiments were performed in
strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes
of Health, and the corresponding protocol was approved by the
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Animal Experimental Ethics Committee of Shenyang Medical
College (Shenyang, Liaoning Province, China).

Statistical Analysis
Differences between the indicated experimental groups were
evaluated by one-way ANOVA or Turkey’s post hoc test with
the SPSS 11.5 software package for Windows (SPSS, Chicago, IL,
USA). P< 0.05 were considered statistically significant (P < 0.05,
two-tailed test).

RESULTS

The Inhibition of SMYD2 Enhanced the
Antigrowth Action of Cisplatin in NSCLC
Cells
To explore the possible action of SMYD2 in chemotherapeutic
agents in NSCLC, A549 and NCI-H460 cells were treated with
various concentrations of the first-line chemotherapeutic
agents, including CDDP, Taxol, NVB, and VCR, and
combined treatment with SMYD2 inhibitor BAY-598 with
non-cytotoxicity concentration (2µM, cell viability>90%,
Supplementary Figure 1A). As shown in Figure 1, single
treatment with CDDP, Taxol, NVB, and VCR could inhibit cell
growth at concentration-dependent manner in both cell lines.
Addition of SMYD2 inhibitor had no effect on the cell viability
when combined with Taxol and VCR, and owned a slightly
enhanced inhibition when combined with NVB. Notably, the
combination of BAY-598 and CDDP could significantly retard
cell growth in both A549 and NCI-H460 cells (P < 0.05),
suggesting SMYD2 inhibition might be involved into the cell
sensitivity to CDDP but not Taxol, VCR, and NVB.

The Expression and Function of SMYD2 in
Cisplatin Resistant NSCLC Cells
To clarify the role and function of SMYD2 in CDDP sensitivity
of NSCLC cells, we established A549 and NCI-H460 CDDP
resistant cell lines. First, we detected the expression level of
SMYD2 in parental cell lines and resistant cell lines. Western
blot data indicated that SMYD2 was increased in both resistant
cell lines as compared to parental cell lines. In consistent with
the SMYD2 upregulation in resistant cell lines, the non-histone
substrate of SMYD2, p53K370me, was also increased in resistant
cell lines. The above data demonstrated that the expression and
activity of SMYD2 were increased in CDDP resistant cells. Next,
to further elucidate the role of SMYD2 in CDDP resistance, we
measured the cell viability of NCI-H460/CDDP cells to CDDP
after suppression of SMYD2 by specific inhibitor and siRNA.
Our data showed, whether inhibition by SMYD2 inhibitor BAY-
598 or knockdown by specific siRNA, the cell sensitivity to
CDDP would be significantly increased as compared to DMSO
or Scramble treated groups (P < 0.05). The above data was
confirmed by flow cytometry experiments. Treatment with BAY-
598 at non-cytotoxic concentration would prompt the apoptosis
induced action of CDDP in NCI-H460/CDDP cells. Similarly,
knockdown SMYD2 also resulted in the increase of cell apoptosis
in CDDP treated NCI-H460/CDDP cells when compared to

scramble treated cells. Notably, although the addition of SMYD2
inhibitor or knockdown of SMYD2 could enhance the induction
of apoptosis by CDDP in NCI-H460 cells, the level was decreased
as compared with resistant cells (Figure 2C). The above data
indicated that SMYD2 play an important role in CDDP resistance
of NSCLC cells.

Inhibition of SMYD2 Reversed Malignant
Phenotype of Cisplatin Resistant NSCLC
Cells
To further elucidate the role of SMYD2 in CDDP resistance
of NSCLC cells, we next assessed the effect of inhibition or
knockdown of SMYD2 on cell migration and tumor sphere
formation, which are considered as the crucial characteristics
of CDDP resistant NSCLC cells (16, 17). Our results showed
that cell migration number of NCI-H460/CDDP cells was
significant decreased after treated with SMYD2 inhibitor or
SMYD2 siRNA as compared to DMSO and Scramble siRNA
control, respectively. Furthermore, tumor sphere number of
NCI-H460/CDDP cells was also obviously reduced by SMYD2
inhibitor and SMYD2 siRNA. It should be noted that whether
addition of BAY-598 or specific siRNA could not significantly
affect cell migration number and tumor sphere ability in
NCI-H460 cells (Supplementary Figures 1B–D). The above
results demonstrated that SMYD2 was also involved into
the formation of malignant phenotype in CDDP resistant
NSCLC cells.

SMYD2 Mediated Cisplatin Resistance
Dependent on p53 Regulation in NSCLC
Cells
In view of the crucial role of p53 and its epigenetic regulation
by SMYD2 (18), we next explore possible role of p53 in SMYD2
mediated CDDP resistance. As shown in Figure 4A, knockdown
p53 by specific siRNA contributed to the decrease of cell
sensitivity to CDDP in NCI-H460/CDDP cells, which owned
wide type p53 expression. In addition, the restore of p53 in
NCI-H1299 cells (p53 deletion) could lead to the increase of cell
sensitivity to CDDP. The above data indicates that the status and
expression level of p53 will affect the cell sensitivity of NSCLC
cells to CDDP.

In order to explore the effect of SMYD2 on p53 activity,
we detected the transcriptional regulation activity of p53 by
luciferase assay after treated with BAY-598 in NCI-H460/CDDP
and its parental cells. The results showed that BAY-598 could
concentration-dependently enhance p53 reporter activity in
NCI-H460/CDDP cells (Figure 4B). In consistent with reporter
assay, BAY-598 treatment also significantly resulted in the
upregulation in mRNA level of p53 targeting genes, including
p21, GADD45, and Bax (Figure 4C), in NCI-H460/CDDP cells.
In consistent with resistant cell lines, BAY-598 also could increase
p53 reporter activity, p21 and GADD45 expressions in NCI-
H460 cells to some extent (Figure 4B). On the contrary, BAY-
598 treatment could not induce the BAX expression in NCI-
H460 cells, suggesting the role of SMYD2 in BAX regulation is
different in parental and resistant cells (Figure 4C). Furthermore,
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FIGURE 2 | The expression level of SMYD2-related proteins and the effects of genetic or chemical manipulation of SMYD2 on the cell growth of CDDP-resistant and

parental NSCLC cells. (A) SMYD2, p53, and p53K370me expression levels were measured in CDDP resistant and parental NSCLC cell lines. β-actin was used as a

loading control. (B) Cell viability was measured in BAY-598-treated or SMYD2-knockdown NCI-H460/CDDP cells treated with CDDP at different concentrations for

36 h. Scramble siRNA or DMSO was used as a control. The efficacy of genetic or chemical manipulation of SMYD2 was confirmed by Western blot in

NCI-H460/CDDP cells. (C) Cell apoptosis was assessed using Annexin V/PI double staining in BAY-598-treated or SMYD2-knockdown CDDP resistant and parental

NCI-H460 cells after treated with CDDP at 10µM for 48 h. *P < 0.05, compared to corresponding control cells.

we also detected the cell apoptosis status of NCI-H460/CDDP

and NCI-H460 cells after treated with BAY-598. Our results

indicated BAY-598 at 10µM could induce cell apoptosis in

NCI-H460/CDDP cells, but not in NCI-H460 cells (Figure 4D),
which confirmed the regulation action of Bax, a pro-apoptosis

gene, by SMYD2. Taken together, our data suggested that

the SMYD2 mediated CDDP resistance through epigenetic
regulation of p53.

Inhibition of SMYD2 Sensitized Cisplatin
Through Epigenetic Regulation of p53
in vivo
To clarify the therapeutic meaning of the above finding, we
assessed anti-tumor effect of the combination of SMYD inhibitor
and CDDP in NCI-H1299/CDDP xenograft mice. As shown
in Figure 5A, single treatment with CDDP has no significant
effect on tumor growth, indicating the resistant phenotype of
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FIGURE 3 | Effects of genetic or chemical manipulation of SMYD2 on the biological characteristics of CDDP-resistant NSCLC cells. (A,B) Cell migration was

measured in NCI-H460/CDDP cells treated with 2µM BAY-598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used as a control. (C,D) Tumor sphere was

counted in NCI-H460/CDDP cells treated with 2µM BAY-598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used as a control. (Scale bars, 100µm)

*P < 0.05, **P < 0.001, compared to corresponding control cells.

NCI-H1299/CDDP xenograft mice. Similar to CDDP single
treatment, single treatment with AZ505, an in vivo available
SMYD2 inhibitor, only displayed a slightly inhibition on tumor
growth. Interestingly, the combination of AZ505 and CDDP
could obviously inhibit tumor growth of NCI-H1299/CDDP
xenograft mice when compared to vehicle control and single
treatment group. In addition, we didn’t find the body weight loss
in the combination treated group (data not shown), suggesting
the combination has no effect on gross toxicity. Next, we
further explored the underlying mechanisms using tumor tissue.
Western blot data showed that AZ505 single treatment could lead
to the decrease of p53K370me, whereas CDDP single treatment
could slightly increase the level of p53K370me (Figure 5B). The
combination treatment contributed to a decrease of p53K370me. In
addition, we found the expression of the clv-PARP, an apoptosis
biomarker, was increased in the combination group (Figure 5B).
In summary, our in vivo data showed the inhibition of SMYD2
by AZ505 could sensitize cisplatin antitumor action through
epigenetic regulation of p53.

DISCUSSION

Cisplatin(CDDP) is the first line drug for NSCLC patients,
therefore, understanding and preventing CDDP resistance

are considered as the crucial issue with respect to the
treatment of NSCLC (5). Here, we found that SMYD2, a
protein methyltransferase, was involved into cisplatin resistance.
Furthermore, out data showed that SMYD2 expression and
its activity were increasing in cisplatin resistant NSCLC cells.
Mechanistically, SMYD2 prompt cell migration, increase the

tumor sphere, and block apoptosis, which is dependent on the

methylation of p53K370. The inhibition or knockdown of SMYD2
model would result in the increasing of sensitivity to cisplatin

in vitro and in vivo. Our findings provide us with a novel
perspective epigenetic regulation mechanisms underlying CDDP

resistance and define that the combination of SMYD2 inhibitor
and CDDP may have promise as treatments for patients with
CDDP-resistant NSCLC.

SMYD2 is a protein methyltransferase that catalyzes the

methylation of histone substrates, such as H3K4 and H3K36
(18), and non-histone substrates, including p53 (19), Rb (20),
HSP90 (21), STAT3, and NF-κB (22). It has been reported

that SMYD2 was involved into the upset and progression
of various tumors, including leukemia, breast cancer, gastric

cancer, and head and neck cancer. Recently, Wang et al.
reported SMYD2 inhibition also led to the suppression of
cell growth in NSCLC cells (23), suggesting SMYD2 might be
involved into lung cancer. Our results demonstrated that SMYD2
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FIGURE 4 | Epigenetic regulation of p53 and its role in CDDP resistance in NSCLC. (A) Cell viability in NCI-H460/CDDP (p53 wide type) and NCI-H1299(p53 deletion)

cells, with p53 gene manipulation, which were treated with CDDP at different concentrations for 48 h. Scramble siRNA or mock vector was used as a control. The p53

knock-down or restoration efficacy was confirmed by Western Blot. (B) The p53 reporter activity was measured in CDDP resistant and parental NCI-H460 cells after

treated with BAY-598. The relative luciferase unit was calculated by Luciferase/Renilla and DMSO was considered as 100%. (C) The mRNA expression levels of p21,

GADD45, and Bax were assessed by real-time RT-PCR in CDDP resistant and parental NCI-H460 cells treated with 10µM BAY-598. GAPDH was used as a control.

(D) Cell apoptosis was assessed using Annexin V/PI double staining in CDDP resistant and parental NCI-H460 cells which were treated with BAY-598 at 10µM

concentrations for 48 h. *P < 0.05, compared to corresponding control cells.
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FIGURE 5 | Effects of SMYD2 inhibition and/or CDDP on tumor growth in an CDDP-resistant xenograft model. (A) Tumor volume was measured in NCI-H460/CDDP

xenografts treated with AZ505, CDDP, or the combination of AZ505 and CDDP. (B) The p53 and p53K370me, and cleaved PARP(clv-PARP) expression levels were

measured in NCI-H460/CDDP xenograft tumor tissues. β-actin was used as a loading control. *P < 0.05, combined treatment group compared to single treatment

group and vehicle control.

expression and enzymatic activity levels were upregulated in
NSCLC CDDP-resistant cells as compared to parental cells.
In addition, either suppressing SMYD2 activity or knocking
down SMYD2 would contribute to the increases in sensitivity
to CDDP, and the reduction in cell migration and self-
renewal ability in CDDP-resistant NSCLC cells, indicating
that SMYD2 executes a crucial role in CDDP resistance
of NSCLC.

SMYD2 methylates H3K4 and H3K36 would contribute the
change of chromatin structure, and subsequently lead to the
alteration of its target genes (18). In fact, the important function
of SMYD2 was reported to related methylate to its non-histone
substrates (9, 24). SMYD2 monomethylates Lys-370 of p53,
leading to decreased DNA-binding activity and subsequent
transcriptional regulation activity of p53. We found that, as
long as the SMYD2 upregulation, the p53K370me level was also
increased in CDDP resistant NSCLC cells. Importantly, our data
showed that cell sensitivity to CDDP was dependent on wild
type p53 level. Inhibition of SMYD2 could induce the increasing
of p53 transcription activity and its target gene expression.
Taken together, these findings indicate that epigenetic regulation
by SMYD2 plays an important role in p53 transcriptional
activity and is involved in processes associated with
CDDP resistance.

K-RAS is one of the most frequently mutated in human
NSCLC (25). Mutation of K-RAS usually results in the
activation of oncogenic signaling molecules that regulate cell
growth, survival and differentiation by coupling receptor
activation to downstream effector pathways (25), and leads to
the resistance to tyrosine kinase inhibitors such as gefitinib
and erlotinib (26). Therefore, chemotherapy is the standard
of treatment for K-RAS mutant NSCLC tumors. Here, our
data shown that inhibition of SMYD2 by specific inhibitor
can sensitize CDDP efficacy in K-RAS mutated A549 and
NCI-H460 cell lines, suggesting epigenetic manipulation
might be a promising adjuvant approach to treat K-RAS
mutant tumors.

In conclusion, the present study elucidated that the
activity of SMYD2 in NSCLC may affect the cell sensitivity
to chemotherapeutic agents, especially to CDDP. The
elevated SMYD2 mediated CDDP resistance and malignant
phenotype in NSCLC, indicating that SMYD2 may be a useful
biomarker of CDDP resistance in NSCLC. Inhibition of
SMYD2 contributes to the methylation-related activation
of p53 and thus results in cell apoptosis. Furthermore,
combination treatment with CDDP and an SMYD2 inhibitor
had a synergistically antitumor effects in a xenograft model
in vivo. Given that SMYD2 has reversible effects and is a
targetable protein methyltransferase, treatments targeting
the protein may be useful for reversing CDDP resistance
in NSCLC.
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Supplementary Figure 1 | The effects of genetic or chemical manipulation of

SMYD2 on the cell growth, migration, and tumor sphere ability of NCI-H460 cells.

(A) The growth of A549 and NCI-H460 cells treated with various concentrations

SMYD2 inhibitor BAY-598. Cell viability was detected by MTT assay. (B) The

efficacy of genetic or chemical manipulation of SMYD2 was confirmed by Western

blot in NCI-H460 cells. p53K370me and SMYD2 expression levels were measured

in NCI-H460 cell lines. The p53 or β-actin was used as a loading control.

(C) Cell migration was measured in NCI-H460 cells treated with 2µM BAY-

598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used as a

control. (D) Tumor sphere was counted in NCI-H460 cells treated with 2µM

BAY-598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used

as a control.
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Ubiquitin specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUB) that
erases ubiquitin and protects substrate protein from degradation. Full activity of USP7
requires the C-terminal Ub-like domains fold back onto the catalytic domain, allowing
the remodeling of the active site to a catalytically competent state by the C-terminal
peptide. Until now, numerous proteins have been identified as substrates of USP7,
which play a key role in cell cycle, DNA repair, chromatin remodeling, and epigenetic
regulation. Aberrant activation or overexpression of USP7 may promote oncogenesis
and viral disease, making it a target for therapeutic intervention. Currently, several
synthetic small molecules have been identified as inhibitors of USP7, and applied in
the treatment of diverse diseases. Hence, USP7 may be a promising therapeutic target
for the treatment of cancer.

Keywords: deubiquitination, USP7, structure, immune, DNA damage

INTRODUCTION

Post-translational modification (PTM) is generally enzymatic modification of proteins following
protein biosynthesis. Examples of PTM include methylation, acetylation, phosphorylation,
glycosylation, ubiquitination, S-nitrosylation, and so on (Chatterjee and Thakur, 2018). As one
of the most studied PTMs, ubiquitination involves in the intracellular proteolytic machinery and
regulates numerous physical activities in the cell (Dybas et al., 2018). The process of the addition
of ubiquitin to a substrate protein is named ubiquitination, which may contribute to the protein
degradation. Ubiquitination of target protein can be catalyzed by a cascade reaction comprising
the ubiquitin-activating enzymes (E1), the ubiquitin conjugation enzymes (E2) and the ubiquitin
ligases (E3). First, ubiquitin is activated by E1 with the participation of ATP and transferred to
E2 through a trans-thiolation reaction, and then conjugated to a lysine or α-amino group of the
substrate protein in the presence of E3 (Cheon and Baek, 2006). Eventually, proteins labels with
more than four ubiquitin molecules can be recognized and subjected to the 26S proteasome at
which they are degraded, generating small polypeptides (Figure 1).

Deubiquitinating enzymes (DUBs) are responsible for the removal of ubiquitin and keeping
the stability of the substrate by rescuing them from degradation (Nijman et al., 2005; Clague
et al., 2013). Until now, approximately 100 DUBs have been identified and can be classified
into five subclasses based on their Ub-protease domains: ubiquitin-specific proteases (USPs),
ubiquitin C-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs), Machado-Joseph
disease proteases (MJDs) belonging to cysteine-dependent proteases, and JAB1/MPN/Mov34
(JAMMs) belonging to zinc metalloproteases (Zhou et al., 2018). With approximately 50 members,
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the USPs family is the largest one among all the DUB
subfamilies. All these members include conserved domains, i.e.,
three primary functional domains of Cys, His and Asp/Asn
boxes which are in charge of the reorganization of ubiquitin
conjugated molecules.

Among the members of USP family, ubiquitin specific
protease USP7, also known as herpes-associated ubiquitin-
specific protease (HAUSP), is a unique deubiquitinating enzyme
which was identified in 1997, and it characterized as a novel
member of the ubiquitin-specific protease family to interact with
herpes simplex virus type 1 immediate-early protein (Vmw110)
of the herpes simplex virus type 1 (HSV-1) regulatory protein
(Everett et al., 1997). Later, USP7 was found to interact with
other viral proteins such as the Epstein-Barr nuclear antigen
1 (EBNA1) of Epstein-Barr virus (EBV) and the vIRF1 (viral
interferon regulatory factor 1) protein of Kaposi’s sarcoma
associated herpesvirus (KSHV) (Holowaty et al., 2003), therefore
indicating it as a general target of herpes viruses and giving it
the name herpes-associated ubiquitin specific protease. Up to
now, USP7 is the most widely studied deubiquitinating enzymes,
and is considered as an oncogene by promoting tumor growth
and negatively affecting the patient immune response to tumors
(Everett, 2014; Lu et al., 2016).

STRUCTURE OF USP7

The full length USP7 includes 1102 amino acids. There are
four domains: an N-terminal poly-glutamine stretch (poly
Q), the tumor necrosis factor receptor- associated factors
(TRAF) domain (amino acids 62–205), the catalytic domain
(amino acids 208–560), and the C-terminal tandem ubiquitin-
like (Ubl) domain (amino acids 560–1102) (Kim and Sixma,
2017) (Figure 2A).

As reported, the amino acids 62–205 of USP7 (Figure 2B)
bind to EBNA1 (Holowaty et al., 2003), mouse double minute
2 homolog (MDM2) and p53 (Hu et al., 2006; Sheng et al.,
2006) through a PA-x-x-S motif (Saridakis et al., 2005), and the
TRAF (amino acids 62–205) domain contributes to the nuclear
localization of the USP7 (Fernandez-Montalvan et al., 2007).
Besides, the USP7 truncation (amino acids 208–1102) performed
similar activity as the full length protein (Ma et al., 2010).

Hu et al. (2002) identified a 40 kDa fragment of USP7 as
the catalytic domain (amino acids 208–560), which mediates
ubiquitin binding and deubiquitination of the substrate. The
structure of the catalytic core domain reveals novel three-domain
architecture, including Fingers, Palm, and Thumb domains
(Figure 2C). This catalytic core domain binds to ubiquitin
aldehyde, which reveals a conformational change in the active site
(Hu et al., 2002). With the aid of molecular dynamics simulations,
it is found that the transition of USP7 from the inactive to the
active can only be captured when H294 was neutralized with a
deprotonated C223 and charged H464. In the inactive apo state,
positively charged H294 stabilizes an electrostatic network with
W285, E298, and Y224. However, neutral H294 in the active state
cannot make charge interactions, so the electrostatic network is
disrupted. That would results in the C223 unfavorable backbone

angles improved by helical refolding, thus, the active site is
formed (Ozen et al., 2018).

Ubl shares the ubiquitin β-grasp fold, however, it lacks the
C-terminal Gly–Gly residues that are required for conjugation to
a target and is located outside the boundaries of the catalytic core
domain (Faesen et al., 2011). There are five Ubl domains that are
detected in the C-terminal and are organized in a 2-1-2 manner as
Ubl-12, Ubl-3, and Ubl-45 (Figure 2D) (Zhu et al., 2007). Among
them, Ubl-45 is sufficient to reconstitute the USP7 activation
in vitro and in vivo. In the C-terminal, the 19 residues of USP7
(amino acids 1084–1102) are conserved across species (Faesen
et al., 2011). Rouge et al. (2016) revealed how the C terminal 19
amino acids of the USP7 contribute to the enhancement of USP7
activity by stabilizing the ubiquitin binding conformation of the
catalytic domain. And the individual point mutations at residues
I1100 or I1098 are able to abolish the deubiquitinase activity of
USP7 (Rouge et al., 2016).

USP7: ONE PROTEIN, MULTIPLE ROLES

Many proteins have been identified as potential substrates and
binding partners of USP7, such as viral proteins, transcription
factors, and epigenetic modulators (Figure 8), and most of these
substrates play important roles in viral replication, immune
response, tumor suppression, epigenetic control, and DNA
repair. Here, functions of USP7 on these substrate are as detailed
below (Table 1).

Viral Proteins
EBNA1
EBNA1 of EBV is important for the replication, segregation, and
transcriptional activation of latent EBV genomes, it has been
implicated in host cell immortalization, and avoids proteasome
processing and cell-surface presentation. The amino acids 395–
450 of EBNA1 bind to the USP7 N-terminal domain with
a dissociation constant of 0.9–2 µM. The 4395–450 mutant
that selectively disrupted the binding to USP7 was found to
increase fourfold EBNA1 replication activity than wild-type,
but performed no impact on EBNA1 turnover and cell-surface
presentation (Holowaty et al., 2003). As p53 and EBNA1 share
similar binding sites with USP7, EBNA1 peptide efficiently
competes with p53 peptide for USP7 binding, which results the
decreasing stability of p53, and protects cells from apoptosis
(Saridakis et al., 2005).

ICP0
Infected cell protein 0 (ICP0) of HSV is a multifunctional protein
containing 775 amino acids that acts as a promiscuous trans-
activator linked to the degradation of several proteins. The
618PRKCARKT625 of ICP0 binds to a negatively charged region
on Ubl2, where the residues K620 and K624 of ICP0 form direct
contacts with residues D762 and D764 in Ubl2 of USP7 (Pfoh
et al., 2015). Overexpression of USP7 had no effect on the mRNA
level of ICP0, but could accelerate the mRNA accumulation of
thymidine kinase (TK) and gI, which are important for HSV
infection of non-replicating cells. The mutations at residues 620
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FIGURE 1 | Schematic of the ubiquitin-proteasome system. Ubiquitin is activated by E1 in the presence of ATP and transferred to E2 and then conjugated to a lysine
or α-amino group of the substrate protein with the aid of E3. Polyubiquinated targets are recognized and degraded by the 26S proteasome, while the ubiquitin on
the substrate can be erased by DUBs to protect it from degradation.

FIGURE 2 | Structure analysis of USP7. (A) USP7 primary sequence map. (B) Structure of the USP7 N-terminal domain (PDB 2F1W). (C) Structure of USP7
catalytic domain and five UBl-domains (PDB 1NB8). (D) Structure of the inactive state of USP7 catalytic domain (PDB 5FWI).

to 626 of ICP0 (named as R6702) can abolish the interaction
between USP7 and ICP0, and the replication of R6702 in cells
cannot be impaired (Kalamvoki et al., 2012). Hence, inhibition
of USP7 and/or its interaction with ICP0 using small molecule
inhibitors may decrease the virulence of HSV.

vIRFs
Among the vIRFs, vIRF1 could interact with the TRAF domain
of USP7 via EGPS motif. The vIRF1 interaction with USP7
can decrease p53 levels by blocking the deubiquitination and
stabilization of USP7 on p53. Thus the KSHV could have a
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TABLE 1 | Proteins regulated by USP7.

USP7
substrates

Processes Related cancer References

EBNA1 Viral proteins Holowaty et al., 2003

ICP0 Pfoh et al., 2015

vIRFs Chavoshi et al., 2016;
Xiang et al., 2018

LANA Jager et al., 2012

E1B-55K Ching et al., 2013

Tat Ali et al., 2017

Foxp3 Immune
response

Non-small cell lung
cancer

van Loosdregt et al., 2013;
Wang L. et al., 2016

TRIM27 Cervical carcinoma Cai et al., 2018

NLRP3 Leukemia Palazon-Riquelme et al.,
2018

C-Myc and
N-Myc

Oncoproteins Neuroblastoma Bhattacharya and Ghosh,
2015

p53 Tumor
suppressor
proteins

Ovarian cancers Oliner et al., 1992; Li et al.,
2002

DAXX Breast cancer Tang et al., 2006

PTEN Chronic lymphocytic
leukemia

Morotti et al., 2014

FOXOs family Lung carcinoma Huang et al., 2005

DNMT1 Epigenetics Colon cancer Du et al., 2010; Bronner,
2011

SUMO Lecona et al., 2016

LSD1 Medulloblastoma Yi et al., 2016

CHK1 DNA damage
and repair

Alonso-de Vega et al., 2014

UVSSA Sarasin, 2012; Zhang et al.,
2012

ANXA1 Hela Park et al., 2015

XPC He et al., 2014

HLTF, Rad18 Qing et al., 2011

Polη Qian et al., 2015

RNF168 Breast cancer Malapelle et al., 2017

PHF8 Breast cancer Wang Q. et al., 2016

MDC1 Cervical cancer Su et al., 2018

Wnt/β-catenin
signaling
pathway

Several
canonical
signaling
pathways

Colorectal cancer Novellasdemunt et al.,
2017

NF-κB signaling
pathway

Multiple myeloma Colleran et al., 2013

NOTCH
signaling
pathway

Lymphoblastic
leukemia

Shan et al., 2018

lifelong infection when p53 is destabilized by USP7 coupled
with vIRF1 (Chavoshi et al., 2016). Besides, vIRF3 is expressed
in human herpes virus 8 (HHV-8) – infected primary effusion
lymphoma (PEL) cells. The vIRF3 has two copies of EGPS, and
both support the vIRF3 – USP7 interaction. This interaction plays
important roles in PEL cell growth and viability and contributes
to the suppression of productive virus replication (Xiang et al.,
2018). For another vIRF family member, amino residues 210–216
of KSHV vIRF4 bind to the same surface groove of the USP7

TRAF domain as that can be recognized by MDM2 and p53.
Moreover, the amino residues 202–208 of vIRF4 interact with
the β-sheet in TRAF domain. The vIRF4-derived vif1 and vif2
peptides can restore p53 dependent apoptosis in wild-type p53
cancer cells by suppressing the USP7 activity. Thus the two
peptides may be considered as potential backbones for peptide
mimic small molecule inhibitors development for anti-cancer
therapies (Lee et al., 2011).

LANA
The viral latency-associated nuclear antigen 1 (LANA) is
expressed in all latency KSHV-infected cells and involves in viral
latent replication and maintenance of the viral genome. The
amino residues 971–986 of LANA interact with TRAF domain
of USP7 with similar binding sites as EBNA1, while the 4971–
986 mutant shows an enhanced ability to replicate latent viral
DNA. These results indicate that USP7 may influence accessibility
of the viral DNA for latent replication or LANA-mediated viral
persistence (Jager et al., 2012). Because of the role of USP7 in
EBNA1 – dependent latent replication of EBV, USP7 may play the
same role in the replication of latent viral DNA among gamma-1
and gamma-2 herpesviridae.

E1B-55K
Adenovirus E1B protein refers to one or two proteins transcribed
from the E1B gene of the adenovirus: a 55 kDa protein and
a 19 kDa protein. The N-terminal 79 amino acids of E1B-55K
interact with the TRAF domain of USP7. Abrogation of USP7
decreases the protein level of E1B-55K and reduces progeny viral
production. Therefore, the small inhibitors of USP7 may be used
to treat adenovirus infections (Ching et al., 2013).

Tat
Human immunodeficiency virus (HIV) Tat is synthesized
early after infection and mainly responsible for enhancing
viral production. USP7 deubiquitinates and stabilizes Tat and
enhances HIV-1 production. In turn, HIV-1 infection leads to
the overexpression of USP7. These results show that the small
inhibitors of USP7 can be used as a novel anti-HIV approach
(Ali et al., 2017).

In sum, these results show that USP7 is recruited by these
viruses to promote their survival in the host. So we speculate that
USP7 may be an attractive target for controlling infection and
other malignancies caused by these viruses.

Immune Response
Foxp3
Recent years, more and more reports have identified the
importance of USP7 on keeping T regulatory cells (Treg)
functions. As the major factor that restrains autoimmune
responses, Treg cell expresses the forkhead transcription
factor Foxp3, which is necessary for Treg cell development
(Bettelli et al., 2005; Laurence et al., 2013). According to
a report in 2016, five distinct lysine residues (K249, K251,
K263, K267, and K393) in Foxp3 were identified to be
ubiquitinated, and Foxp3 can be stabilized by USP7 mediated
deubiquitination, resulting in the maintenance of Treg cell
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number and function (Wang L. et al., 2016). In fact, a study in
2013 showed that aberrant USP7 overexpression decreases Foxp3
polyubiquitination and protects it from proteasome degradation,
resulting in Treg-cell-mediated suppression and tumor growth.
On the contrary, USP7 knockdown decreases Foxp3 level
and abrogates Treg cell-induced suppression of autoimmune
responses in vitro and in vivo (van Loosdregt et al., 2013).

Later studies gave the mechanism how the level of Foxp3 is
regulated. Foxp3 could be ubiquitinated and degraded by the
E3 ubiquitin ligase stress inducible protein 1 homology and
U-Box containing protein 1 (STUB1). In addition, Foxp3, Heat
Shock Protein 70 (Hsp70) and STUB1 associate together as a
complex, indicating that these proteins bind and promote Foxp3
ubiquitination (Figure 3) (van Loosdregt and Coffer, 2014).
Moreover, it is found that mesenchymal stem cells (MSCs) –
induced Treg cells express high level of USP7 and low level
of STUB1. Besides, Foxp3 mRNA expression was positively
associated with USP7 and negatively associated with STUB1
(Khosravi et al., 2018). So, it provides us an opportunity to find a
new way to study the unique role of USP7 in Treg cells and makes
USP7 as a target in immunology.

TRIM27
Among the binding partners of USP7, tripartite motif 27
(TRIM27) is an ubiquitin E3 ligase that negatively regulates
antiviral signaling by promoting the ubiquitination and
degradation of TRAF family member-associated NF-κ-B
activator – binding kinase 1 (TBK1). USP7 interacts with
TRIM27 and forms the USP7-TRIM27-TBK1 complex, and the
interaction between USP7 and TRIM27 can be enhanced after
Sendai virus (SeV) infection. When USP7 was overexpressed,
TRIM27 can be protected from degradation, which contributed
to the ubiquitination and degradation of TBK1, resulting in
decreased type I interferons (IFNs) signaling (Cai et al., 2018).
As IFNs are a series of signaling proteins which are produced

FIGURE 3 | Regulation of Foxp3 by USP7. Foxp3 is ubiquitinated by STUB1
and then produces a complex containing Foxp3, Hsp70 and STUB1, which
leading to proteasome degradation of Foxp3. USP7 can remove the ubiquitin
on Foxp3 and stabilize it.

and released by host cells to cope with the presence of pathogens,
USP7 can enhance the effects of TRIM27 on TBK1-induced
IFN – stimulated response element (ISRE) and IFN-β activation
(Zaman et al., 2013). Therefore, USP7 may act as a significant
host protein to bridge the viral proteins with the antiviral
immune response. Therapeutic methods against the USP7-
TRIM27 complex may overcome the immune escape mediated
by various viruses.

NLRP3
USP7 may also impact on regulating NLR family pyrin domain
containing 3 (NLRP3) inflammasome activation. NLRP3 is
expressed primarily in macrophages as a component of the
inflammasome to monitor products of damaged cells such as
extracellular ATP and crystalline uric acid. The ubiquitination
status of NLRP3 itself can be altered by USP7 and USP47.
Furthermore, researchers discovered that the activity of USP7 and
USP47 were augmented once the inflammasome was activated.
In the meantime, they discovered that abrogation of both USP7
and USP47 resulted in reduction of inflammasome activation
(Palazon-Riquelme et al., 2018).

To sum up, there is a remarkable connection between
USP7 and immune-associated proteins, and so many studies
have shown that the important roles of USP7 on regulating
these proteins. It’s worth thinking about USP7 inhibitors in
combination with immunotherapy will be applied to cancer
therapy so that the antitumor effect can be promoted. We hope
to see their potential dual antitumor activity will be applied to
clinical trials on day.

Oncoproteins
C-Myc and N-Myc
There are three members in Myc family: C-Myc, l-Myc,
and N-Myc. Myc family is the most frequent amplified
oncogene in human, which contributing to the formation of
cancer. Among them, C-Myc and N-Myc are the substrates
of USP7. USP7 overexpression can promote C-Myc stability
by deubiquitination as well as transformation/transcription
domain-associated protein (TRRAP), which is an adaptor
protein known as a regulator of C-Myc. On the other hand,
C-Myc mRNA can be accumulated by TRRAP indirectly
(Bhattacharya and Ghosh, 2015).

N-Myc is another transcription factor that can be stabilized
by USP7 via deubiquitination (Tavana et al., 2016). Hence, USP7
inhibitor p5091 was applied to decrease N-Myc expression in
a dose dependent manner in neuroblastoma (Tavana et al.,
2016). As a consequence, USP7 can be considered as a drug
target to modulate C-Myc and N-Myc amount in order to block
tumor development.

Tumor Suppressor Proteins
p53
p53 participates in cell cycle arrest, DNA repair, apoptosis,
senescence and plays a key role in maintaining normal cell growth
(Levine, 1997). USP7 plays a paradoxical role in regulating
p53 functions through a variety of mechanisms. On one hand,
p53 binds to TRAF domain and C-terminal (amino acids
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880–1050) of USP7, and then USP7 ubiquitinates p53 directly
and prevents it from degradation. On the other hand, TRAF
domain and C-terminal (amino acids 801–1050) of USP7 can
interact with MDM2 to increase its stability by erasing the
ubiquitin on MDM2, an E3 ligase of p53 (Oliner et al., 1992),
and protect it from proteasome degradation. Subsequently,
MDM2 ubiquitinates p53 and causes its proteasome degradation,
resulting in low expression of p53 in cancer cells (Figure 4)
(Li et al., 2002, 2004). In addition, MDM2 can also inhibit the
transcription of p53 (Wade et al., 2013). Therefore, inhibition
of the interaction between MDM2 and p53 can stabilize p53
(Vassilev et al., 2004). It is noteworthy that, crystal structures
analysis and binding studies suggest that the MDM2 peptide
and p53 peptide bind to the same surface groove in USP7, but
MDM2 performs more extensive interaction and stronger affinity
(Hu et al., 2006). Taken together, the activation of USP7-MDM2-
p53 interaction can promote the occurrence and development of
tumors. The design of small molecules that disrupt or prevent
the interaction may be an important target for cancer therapy by
regulating p53 pathway.

DAXX
Death-domain-associated protein (DAXX) is a highly conserved
and developmentally essential nuclear protein, which participates
in many cellular processes (Lindsay et al., 2008). The N-terminal
160 amino acids and amino acids 347–570 of DAXX associate
with USP7, which are far from the binding sites of MDM2 on
DAXX. In unstressed cells, DAXX interacts with USP7 and
MDM2, and mediates the stabilization of USP7 on MDM2,
thus blocking p53 activation. In response to DNA damage,

self-ubiquitination of MDM2 is accelerated when MDM2 is
stripped from DAXX and USP7. That is to say, DAXX directs
the ligase activity of MDM2 through regulating USP7 (Tang
et al., 2006). Recent reports also show that USP7 and DAXX
are critical in regulating the correct execution of mitosis by
forming a tertiary complex as MDM2/DAXX/USP7 (Zhang
et al., 2010). DAXX binding increases USP7 activity toward
MDM2. Disassemble the MDM2-DAXX-USP7 complex
can increase MDM2 self-ubiquitination and degradation,
which leads to the stabilization and accumulation of p53
(Kumar et al., 2018).

PTEN
Phosphatase and tensin homolog (PTEN) is a tumor suppressor
gene that displays dual specific phosphatase activity. PTEN
inhibits the proliferation and migration of tumor cells (Blanco-
Aparicio et al., 2007). It is reported that nuclear PTEN import
is promoted by its mono-ubiquitination (Trotman et al., 2007).
However, USP7 can remove the mono-ubiquitination of PTEN,
triggering its nuclear exclusion and PTEN inactivation (Morotti
et al., 2014). Likewise, USP7 inhibitor, P5091, regains PTEN
nuclear pool and restores its tumor suppressive functions in
chronic lymphocytic leukemia (CLL) (Carra et al., 2017). In
addition, PTEN deletion leads to accumulation of activated AKT,
and subsequent phosphorylation of MDM2 by AKT (Blanco-
Aparicio et al., 2007), which results in the ubiquitination and
degradation of p53 (Freeman et al., 2003). Therefore, PTEN
deficiency causes p53-dependent cancer-promoting processes.
This suggests how important it is to inhibit USP7 to ensure PTEN
protein localization and activity.

FIGURE 4 | USP7-p53-MDM2 axis interactions control the stability of p53 and MDM2. USP7 can stabilize p53 by deubiquitination, meanwhile, USP7 can also
remove the ubiquitin of MDM2, which promotes to p53 degradation.
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FOXOs Family
The Forkhead box O (FOXO) family members, including
FOXO1, FOXO3, FOXO4 and FOXO6, are transcription factors
that take part in regulating several cellular responses, including
cell cycle progression and apoptosis and so on (van der Horst
and Burgering, 2007). It is reported that USP7 can remove
ubiquitin from FOXO1, which is written by Skp2 as an E3
ligase (Huang et al., 2005). Besides, mono-ubiquitination FOXO4
localizes in the nucleus and exhibits stronger transcriptional
promotion activity (Brenkman et al., 2008). USP7 can suppress
FOXO4 activity due to its deubiquitination and re-localization
(van der Horst et al., 2006). In a word, USP7 affects tumor
progression by interacting with FOXOs and affecting their
activity and localization.

Epigenetics
DNMT1
DNMT1 (DNA methyltransferase 1) contributes to the
maintenance of DNA methylation. As reported, USP7 can
deubiquitinate and stabilize DNMT1 when its acetylation is
erased by histone deacetylase 1 (HDAC1), which protects
DNMT1 from proteasome degradation (Bronner, 2011). When
the KG linker of DNMT1 is acetylated by Tip60, USP7 breaks
away from DNMT1 and results in the degradation of DNMT1
mediated by proteasome system (Figure 5) (Du et al., 2010).
Thus, HDAC and USP7 inhibitors can be applied in combination
for cancer treatment (Cheng et al., 2015).

SUMO
Small ubiquitin related modifier (SUMO) is a ubiquitin-like
molecule, which binds to its substrate by E3 SUMO ligase in
a similar way as ubiquitination (Geoffroy and Hay, 2009). Like
ubiquitin, proteins can be SUMOylated as mono-SUMOylation
or poly-SUMOylation, but differently, poly-SUMOylation cannot
lead to target degradation directly (Smits and Freire, 2016).
Recent research shows that USP7 is associated with DNA
synthesis (Smits and Freire, 2016). USP7 associates with an active
DNA replication fork and inhibition of USP7 can reduce DNA
replication. Moreover, Lecona et al. (2016) identified SUMO2
as a new USP7 substrate and demonstrated that USP7 can
deubiquitinate SUMO2 in vitro and in vivo. However, the fate of
SUMO2 after deubiquitination and its biological function are still
unclear (Lecona et al., 2016).

LSD1
Histone lysine specific demethylase 1 (LSD1) is the first histone
demethylase identified in 2004 and can remove methyl groups of
histone H3K4, H3K9 (Shi et al., 2004). As reported, LSD1 can
be ubiquitinated by E3 ligase JADE2 (Han et al., 2014). Since
ubiquitination of LSD1 is considered as reversible process as
ubiquitination and deubiquitination always exit in pair, LSD1
was identified to be deubiquitinated by USP7 and protected it
from proteasome degradation (Yi et al., 2016). Besides, patients
with high expression of USP7, REST, and LSD1 performed poorer
outcomes in medulloblastoma (Callegari et al., 2018). And they
found that p53 was a vital downstream transcription factor in the
action of USP7 and LSD1.

DNA Damage and Repair
CHK1
USP7 can regulate CHK1 in three manners. The first one is
the indirect regulation, USP7 deubiquitinated and prolonged
the half-life of Claspin, which leaded to the sustaining
phosphorylation of checkpoint kinase 1 (Chk1) in response
to genotoxic stress (Faustrup et al., 2009). For the rest
two manners, in DNA damage, USP7 deubiquitinates and
stabilizes Chk1 via direct deubiquitination in the presence
of zinc finger E-box binding homeobox 1 (ZEB1) (Zhang
et al., 2014) or not (Alonso-de Vega et al., 2014), while
ZEB1 binds to USP7 may result in promoting homologous
recombinant-dependent DNA repair and resistant to radiation.
In addition, USP7 can also directly regulate the stability of
CDC25A, a Cdk-activating phosphatase as the substrate of
CHK1, with the aid of brain and reproductive organ expressed
protein (BRE). These results show that USP7 is an important
modulator of Chk1.

CHFR
Checkpoint with Forkhead and Ring domains (CHFR), a RING
family Ub-ligase, is a mitotic checkpoint that delays the transition
to metaphase in response to mitotic stress. USP7 binds with
CHFR in vivo and regulates its stability (Figure 6). These results
indicate that USP7 may play a role in the cell cycle progression
via the deubiquitination of CHFR (Oh et al., 2007).

UVSSA
Transcription-coupled nucleotide excision repair (TC-NER)
removes DNA damage of actively transcribed genes. Defect
in TC-NER is associated with cockayne syndrome (CS) and
ultraviolet – sensitive syndrome (UVSS). Cockayne syndrome B
(CSB/ERCC6) and UVSS protein are two important proteins in
TC-NER. UVSSA binds with USP7 to stabilize CSB and restores
the hypophosphorylated form of RNA polymerase II after UV
irradiation (Figure 6) (Zhang et al., 2012). UVSSA and USP7
play roles in controlling the fate of stalled RNA polymerase II,
the steady-state level of CSB, the efficiency of TC-NER and cell
survival following DNA damage (Sarasin, 2012).

ANXA1
ANXA1 is a 37-kDa protein identified as the first member of the
annexin superfamily. In response to DNA damage, ANXA1 is
cleaved and generates the N-terminal fragment (Ac2-26) and the
cleaved form of ANXA1. Both the full length of ANXA1 and Ac2-
26 can be translocated to the cell membrane and induce apoptotic
cell clearance through recruiting monocytes. The N-terminal of
ANXA1 shares the USP7-binding motif sequences (AMVS and
ALLS) and interacts with USP7. Hence, USP7 can deubiquitinate
and stabilize ANXA1 (Figure 6). USP7 may participate in the
DDR after UV-induced DNA damage in certain types via ANXA1
(Park et al., 2015).

XPC
Xeroderma pigmentosum complementation group C (XPC) is a
critical damage recognition factor which binds to helix-distorting
DNA lesions and initiates nucleotide excision repair (NER).
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FIGURE 5 | USP7 and HDAC1 protect DNMT1 from degradation while Tip60 acetylates DNMT1 and promotes its degradation.

FIGURE 6 | USP7 interacts with a number of substrates in DNA damage response.

During the early stage of NER of UV light-induced DNA lesions,
XPC is ubiquitinated. Ubl1 domain (amino acids 560–644) of
USP7 can bind and erase the ubiquitination on XPC and prevents

XPC from proteolysis (Figure 6). Taken together, USP7 plays
a vital role in regulating NER through deubiqitinating XPC
(He et al., 2014).
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FIGURE 7 | USP7 functions in several canonical signaling pathways. USP7 functions in Wnt/β-catenin signaling pathway (left), NF-κB signaling pathway (middle),
NOTCH signaling pathway (right).

FIGURE 8 | Overview of USP7 functions.

HLTF, Rad18, and Polη
Helicase-like transcription factor (HLTF) is a double-stranded
DNA translocase that can promote the polyubiquitination of
proliferating cell nuclear antigen (PCNA), while Rad6–Rad18
monoubiquitinates PCNA, both of which make PCNA work
as a molecular switch between various DNA damage bypass
processes. On one hand, USP7 stabilizes HLTF after genotoxic
stress, resulting in prolonging the half-life of HLTF, thus in
turn increases polyubiquitination of PCNA (Figure 6) (Qing
et al., 2011). Besides, USP7 and DNA polymerase eta (Polη),
a key player in several DNA damage-tolerance pathways,
interact with each other, and USP7 increases UV-induced PCNA
ubiquitination through stabilizing Polη and in turn facilitates
the recruitment of DNA translesion synthesis (TLS) polymerases

to bypass DNA lesions. Therefore USP7 promotes monoUb-
PCNA mediated stress-tolerance pathways via the stabilization
of Polη. These results provide new mechanistic for USP7-related
tumorigenesis and therapeutic strategy (Qian et al., 2015). On
the other hand, the amino acids 110–251 of Rad18 interact
with USP7 and contain two USP7-binding motifs. Loss of
USP7 destabilizes Rad18 and compromises UV-induced PCNA
monoubiquitylation and Polη recruitment to stalled replication
forks (Zlatanou et al., 2016).

RNF168
During DDR, histone ubiquitination by RNF168 orchestrates
the recruitment of downstream DDR factors, e.g., breast cancer
type 1 susceptibility protein (BRCA1) and p53 binding protein
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FIGURE 9 | Chemical structures of USP7 inhibitors.

1 (53BP1). The Ubl1 domain of USP7 binds to RNF168
(Figure 6). USP7 regulates H2A monoubiquitination and H2A/X
polyubiquitination via its regulation on RNF168. In summary,
USP7 plays a vital role in regulation of Ub-dependent signaling
in DDR via monitoring RNF168 (Malapelle et al., 2017).

PHF8
Plant homeodomain finger-containing protein 8 (PHF8) consists
of an N-terminal plant homeodomain and recognizes and binds
tri-methyl histone 3 lysine 4 at transcription start sites. The
C-terminal region of PHF8 binds with the TRAF domain
of USP7, and USP7 promotes the stability of PHF8 via

deubiquitinase activity and contributes to the maintenance of
genome integrity, which is implemented in DDR (Figure 6).
The USP7/PHF8 is involved in breast carcinogenesis, indicating
these molecules may be as potential targets for breast cancer
intervention (Wang Q. et al., 2016).

MDC1
DNA damage checkpoint protein 1 (MDC1) is important
for the initiation and amplification of the DDR. USP7
deubiquitinates and stabilizes of MDC1, resulting in sustaining
the DDR, while depletion of USP7 influences the engagement
of MRE11-RAD50-NBS1(MRN)-MDC1 complex and the
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FIGURE 10 | Co-crystal structures of USP7 in complex with inhibitors. The
electrostatic surface representation of the CD of USP7 is shown along with
compounds (A) USP7-GNE6640 (PDB code 5UQV). (B) USP7-GNE6776
(PDB code 5UQX). (C) USP7-FT827 (PDB code 5NGF). (D) USP7-FT671
(PDB code 5NGE). The images were generated with molecular operating
environment (MOE).

recruitment of the downstream factors 53BP1 and BRCA1
at DNA lesions. USP7 promotes cervical cancer cell survival
and confrere cellular resistance to genotoxic insults via the
stabilization of MDC1 (Su et al., 2018).

In a nutshell, USP7 plays a vital role in the DNA damage
response (Figure 6), and it can be targeted for the treatment of
malignancies with DDR defects. Besides, USP7 inhibitors can be
combined with genotoxic agents as a novel therapeutic strategy
for the treatment of cancer.

USP7 stabilizes HLTF to result in polyubiquitination of
PCNA and induces monoubiquitination of PCNA through
regulating Rad18. USP7 plays a role in DDR through regulating
MDC1, CHFR, XPC, ANXNA1, RNF168, and PHF8. USP7 and
UVSSA interact with each other to control steady state of CSB
following DNA damage. USP7 can regulate stability of CDC25A
via deubiquitination CDC25A directly and through regulating
Claspin and CHK1 expression.

Several Canonical Signaling Pathways
Wnt/β-Catenin Signaling Pathway
Wnt signaling was initially found for its function in cancer
and embryonic development and then was found responsible
for tissue regeneration in adult bone marrow, skin and
intestine. β-Catenin, a key element in Wnt signaling pathway,
is regulated by diverse PTMs, including ubiquitination (Ma
et al., 2014). According to a research in 2017, β-catenin can
be deubiquitinated and stabilized by USP7 in adenomatous
polyposis coli (APC) truncating mutated colorectal cancer
(CRC) but not APC wide type CRC, which resulting in the
activation of Wnt pathway (Novellasdemunt et al., 2017).

Mechanism study suggested that APC β-catenin inhibitory
domain (CID) protects β-catenin from USP7-mediated
deubiquitination, while APC lacking CID exposes β-catenin
to USP7 for deubiquitination. Hence, abrogation of USP7 in
APC-mutated CRC suppresses Wnt activation by regaining
β-catenin ubiquitination, which leads to the cell differentiation,
and inhibits tumor growth (Novellasdemunt et al., 2017). With
the aid of USP7 inhibitor P5091, Wnt pathway can be inactivated
by improving ubiquitination and degradation of β-catenin,
which provides evidence for the rationality for developing USP7
inhibitors as anti-CRC agent (Figure 7A) (An et al., 2017).
In a nutshell, USP7 can be considered as a Wnt activator for
tumor-specific therapeutic target for most CRCs.

NF-κB Signaling Pathway
Nuclear factor kappa B (NF-κB) signaling pathway is responsible
for the transcription of a series of genes that controlling
inflammation and immunity. As an essential regulator of Toll-
like-receptor (TLR) and tumor necrosis factor receptor (TNFR)-
inducible inflammatory gene expression, NF-κB is regulated by
USP7 in a research in 2013. Different from other USP7 partners
and substrates, NF-κB p65 and USP7 interact together after USP7
is recruited to NF-κB target promoters. Besides, the inhibition
of USP7 lead to decreased TLR and TNFR-induced expression
of Interleukin (IL-6), TNFα (NF-κB reporter) indicates that
the deubiquitination of NF-κB by USP7 may have therapeutic
potential (Figure 7B) (Colleran et al., 2013).

In 2018, some researchers found that knockout of USP7
dramatically increased the sensitivity of multiple myeloma (MM)
cells to bortezomib (BTZ) which led to myeloma cell death
and inhibited NF-κB activation by stabilizing IκBα. As expected,
usage of USP7 inhibitors also inhibited the activation of NF-
κB and the combination of USP7 inhibitor with BTZ triggered
the synergistic antitumor activity in bortezomib-resistant MM
cells. Taken together, this study provides a new application for
USP7 inhibitors alone or in combination with BTZ to overcome
BTZ resistance and improve the patient prognosis in MM
(Yao et al., 2018).

In all, several reports have illustrated the mechanism that how
USP7 and its related proteins regulate NF-κB signaling pathway.
However, more deep studies should be conducted to make the
mechanism more clearly and logically and there are still great
challenges for researchers to face.

NOTCH Signaling Pathway
Notch signaling pathway is highly conserved and presents in
most multicellular organisms. This intercellular signaling cascade
is involved in cell differentiation, proliferation, and contributes
to the fate of cells and occurs in multiple organisms and tissues,
containing early T cell development in the thymus and peripheral
T cell differentiation (Auderset et al., 2012; Bailis et al., 2013;
Amsen et al., 2015). There are four notch receptors in mammals
possessing NOTCH1-4 in which NOTCH1 can be stabilized
through USP7-mediated deubiquitination. Previous studies have
revealed that ubiquitination regulates the stability, activity, and
localization of NOTCH1. However, the specific deubiquitinase
that affects NOTCH1 protein stability was clarified recently.
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Researchers reported that USP7 can deubiquitinate and stabilize
NOTCH1 in vivo and in vitro, on the other hand, knockdown
of USP7 increased the ubiquitination of NOTCH1. Used up of
USP7 significantly restrained the proliferation of T-cell acute
lymphoblastic leukemia (T-ALL) cells in vitro and in vivo,
accompanied by downregulation of the NOTCH1 protein
level, suggesting that targeting the USP7/NOTCH1 axis is
a novel strategy to combat T-ALL and other NOTCH1-
related malignancies (Figure 7C) (Shan et al., 2018). Almost
at the same time, researchers found USP7 can bind several
oncogenes by interacting and stabilizing NOTCH1 and JmjC
Domain-Containing Protein 3 (JMJD3) in order to control
leukemia growth. What’s more, USP7 and NOTCH1 bind T-ALL
superenhancers, and inhibition of USP7 leads to a decrease of the
transcriptional levels of NOTCH1 targets and T-ALL cell growth
in vitro and in vivo. Therefore, USP7 cooperating with NOTCH1
can improve the oncogenic transcriptional program in T-ALL
(Jin et al., 2018).

The functions of USP7 on different signaling pathways
indicate the brand new role of USP7 as a great target. To be
sure, other classical signaling pathways which may be regulated
by USP7 is yet to be found. It provides us a great challenge
to find the new mechanisms between USP7 and other classical
signaling pathways.

USP7 in Cancer
USP7 is highly expressed in a wide variety of cancers and affects
the progression of cancer diseases. Moreover, USP7 assumes
different roles in different tumors. In prostate cancer, high
expression of USP7 is directly related to tumor invasion (Song
et al., 2008). USP7 plays a key role in carcinogenesis via p53-
dependent pathways in non-small cell lung carcinoma (NSCLCs)
(Masuya et al., 2006). Studies have shown that changes of USP7
regulate colon carcinoma growth and apoptotic sensitivity in vivo
(Becker et al., 2008). USP7 maintains DNA damage response
and promotes cervical cancer, and is positively correlated with
poor survival rate in patients with cervical cancer (Su et al.,
2018). USP7 regulates human terminal erythroid differentiation
by stabilizing GATA1, providing a certain treatment for leukemia
(Liang et al., 2019). In short, USP7 plays an important role
in a variety of pathologies and is a good target from a
therapeutic point of view.

USP7 INHIBITORS

USP7 is a promising target not only for its roles in cellular
pathways including regulators of viral proteins, immune
response, oncogenes, and DNA damage but also because of its
aberrant expression in various cancers. Due to lack of co-crystal

structures between USP7 and small molecule inhibitors, there is
no potent and selective USP7 inhibitor for a long time (Colland
et al., 2009; Altun et al., 2011; Chauhan et al., 2012; Reverdy
et al., 2012) (Figure 9). However, several groups reported the
structures of USP7 in complex with small molecule inhibitors last
year (Kategaya et al., 2017; Turnbull et al., 2017) (Figure 10) and
these structures gives guidance to obtain structure-based small
molecule inhibitors.

CONCLUSION AND FUTURE
PERSPECTIVES

This review illustrates our current knowledge of USP7, including
its source and characterization, structure, binding partners and
substrates in various biological processes. Besides, how USP7
regulates various aspects of a cell under both normal and
pathological states are elaborated in detail. As the processes
of ubiquitination and deubiquitination are extremely dynamic
and context-specific, a series of studies have linked USP7 to
different cancers. The biology, particularly the immune oncology
mechanisms, reveal that USP7 inhibitors would be useful drugs,
thus it is vital to develop highly selective and specific inhibitors of
USP7. The association of USP7 with several canonical signaling
pathways still needs characterized in order to search new targets
and regulatory mechanisms. Last but not least, USP7 may be
a promising target for cancer therapy and it therefore merits
further studies.
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Medical University, Ganzhou, China

Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that specifically causes
cancer and is widely distributed in the environment. Poly (ADP-ribosylation), as a
key post-translational modification in BaP-induced carcinogenesis, is mainly catalyzed
by poly (ADP-ribose) glycohydrolase (PARG) in eukaryotic organisms. Previously, it is
found that PARG silencing can counteract BaP-induced carcinogenesis in vitro, but the
mechanism remained unclear. In this study, we further examined this process in vivo by
using heterozygous PARG knockout mice (PARG+/−). Wild-type and PARG+/− mice
were individually treated with 0 or 10 µg/m3 BaP for 90 or 180 days by dynamic
inhalation exposure. Pathological analysis of lung tissues showed that, with extended
exposure time, carcinogenesis and injury in the lungs of WT mice was progressively
worse; however, the injury was minimal and carcinogenesis was not detected in the
lungs of PARG+/− mice. These results indicate that PARG gene silencing protects mice
against lung cancer induced by BaP inhalation exposure. Furthermore, as the exposure
time was extended, the protein phosphorylation level was down-regulated in WT mice,
but up-regulated in PARG+/− mice. The relative expression of Wnt2b and Wnt5b mRNA
in WT mice were significantly higher than those in the control group, but there was no
significant difference in PARG+/− mice. Meanwhile, the relative expression of Wnt2b
and Wnt5b proteins, as assessed by immunohistochemistry and Western blot analysis,
was significantly up-regulated by BaP in WT mice; while in PARG+/− mice it was not
statistically affected. Our work provides initial evidence that PARG silencing suppresses
BaP induced lung cancer and stabilizes the expression of Wnt ligands, PARG gene and
Wnt ligands may provide new options for the diagnosis and treatment of lung cancer.

Keywords: benzo(a)pyrene, ADP-ribosylation, poly (ADP-ribose) glycohydrolase, Wnt signaling pathway,
lung cancer
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INTRODUCTION

Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that
is known to be carcinogenic. It is mainly produced by pyrolysis
and incomplete combustion of carbonaceous materials and is
widely distributed in both the working and living environment
(Liu et al., 2008). A large number of experiments have shown
that BaP can induce cancer in various animals (IARC Working
Group on the Evaluation of Carcinogenic Risks to Humans, 2010;
Kasala et al., 2016). Furthermore, epidemiological studies suggest
that BaP is closely associated with human lung cancer (Rojas
et al., 2004; Alexandrov et al., 2010; Widziewicz et al., 2018).
On the basis of these studies, BaP was classified as a human
class I carcinogen by the International Agency for Research on
Cancer in 2006 (IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans, 2012).

Lung cancer is the most common malignant tumor in the
human respiratory system and is extremely harmful to human
health. Globally, the morbidity and mortality of lung cancer
are among the highest (Ferlay et al., 2015). According to the
American Cancer Society, lung cancer leads to the highest
number of deaths in both men and women. Recent evidence
suggests that the incidence of lung cancer in China is the
highest and the mortality is increasing at a rate of 4.5% per
year (Chen et al., 2016).

The occurrence of lung cancer is the result of a combination
of both environmental and genetic factors, including epigenetic
changes which have been proved to contribute to lung
cancer development (Hagood, 2014). ADP-ribosylation, as an
epigenetic modification, plays a critical role in cell survival and
disease development, including cancers (D’Amours et al., 1999;
Min et al., 2010; Huang et al., 2012). Poly-ADP-ribosylation
can convert nuclear chromatin to a loose state, allowing
accessibility of DNA damage repair enzymes to the injury site,
thereby promoting DNA damage repair against cytotoxicity and
genetic damage. Poly-ADP-ribose glycohydrolase (PARG) can
hydrolyze poly (ADP-ribose) on poly (ADP-ribose) polymerase-
1 (PARP-1), which promotes the degradation of intracellular
poly (ADP-ribose) (PAR) (Rouleau et al., 2004). It is the
only known enzyme that can hydrolyze poly (ADP-ribose)
in the nucleus (Meyer et al., 2007). Recent studies have
shown that PARG gene silencing can increase intracellular
poly-ADP-ribosylation to protect cells against cytotoxicity.
Li et al. (Li et al., 2016) found that BaP can induce
chromosomal aberrations, micronucleus formation, chromatin
structure changes and malignant transformation of normal
16HBE cells, but PARG gene silencing can inhibit these
abnormalities. Studies have shown that PARG also is associated
with tumorigenesis (Miwa and Masutani, 2007), but the exact
mechanism of PARG on tumor promotion has not been
fully clarified.

In our previous study, 16HBE cells and PARG-deficient cells
were treated with 40 µmol/L BaP for a period of time to
induce malignant transformation, and by using MeDIP-sequence
analysis, it is found that the methylation levels of Wnt2b
and Wnt5b genes in the two cells were significantly different.
Wnt2b and Wnt5b are key players in the Wnt/β-Catenin

signaling pathway (Klaus and Birchmeier, 2008), which has
been highly conserved in evolution and is known to control
cell growth, differentiation, apoptosis, and self-renewal. This
pathway is activated by binding of Wnt ligands to receptors,
which increases the stability of β-catenin in the cytoplasm and
promotes its translocation to the nucleus, where it modulates
the expression of target genes that lead to tumorigenesis (Klaus
and Birchmeier, 2008). Studies have shown that this pathway
is abnormally activated during the development of lung cancer
and may coordinate or antagonize other signaling pathways to
regulate proliferation, migration, and invasion in lung cancer
(Reya and Clevers, 2005; Berndt and Moon, 2013). Recently,
30–40% of cells in tumor tissues have been shown to express
Wnt ligands, which create a microenvironment that is suitable
for tumor cells. In a human lung adenocarcinoma model, 70%
of cells have abnormal activation of the Wnt pathway, and
80% of cells may be involved in the formation of the tumor
microenvironment, which is critical for the progression of lung
cancer (Tammela et al., 2017).

Given the decisive role of the Wnt signaling pathway in
the development of lung cancer, inhibition of Wnt ligands
provides a viable approach for reducing the expansion of
lung cancer cell lines. The purpose of this study was to
investigate whether PARG gene silencing can inhibit lung
cancer development induced by BaP and whether it can
regulate the Wnt ligands to inhibit the development of lung
cancer. On the basis of our findings, PARG gene and Wnt
ligands may constitute a new option for the diagnosis and
treatment of lung cancer.

MATERIALS AND METHODS

Materials
BaP (CAS50-32-8, purity ≥96%) was purchased from American
Sigma Company, and dissolved in dimethylsulfoxide (DMSO).
Other chemicals were purchased from Sigma–Aldrich (St Louis,
MO, United States) or Thermo Fisher Scientific (Shanghai,
China), unless otherwise stated.

Animals and Treatment
The PARG knockout mice [B6N (Cg)-Pargtm2b(KOMP)Mbp/J]were
purchased from the Jackson Laboratory, and WT mice
(C57BL/6J) were purchased from Guangdong Medical Lab
Animal Center. PARG knockout mice were generated by the
targeted mutation 2b of the Parg gene resulting in deletion
of the full-length isoform of PARG protein (PARG110). The
strategy of gene targeting is Cre-mediated excision of the
parental Pargtm2b(KOMP)Mbp allele resulted in the removal of the
promoter-driven neomycin selection cassette and critical exon(s)
leaving behind the inserted lacZ reporter sequence. We screened
for heterozygous PARG knockout mice (PARG+/−) in our study
since death of homozygous PARG knockout mice (PARG−/−)
occurring before the normal life span of an organism, occurring
during pregnancy, parturition or lactation. The mice were
maintained under semi-specific-pathogen-free conditions with
the temperature controlled at 23 ± 2◦C and a 12-h light/dark
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cycle. We selected 2-month-old PARG+/− and WT mice for
this study. The mice were randomly divided into two groups
with 6 per group referring to the principles of experimental
animal selection and references. And then, they were treated
with 0 or 10 µg/m3 aerosols through respiratory tract by a
dynamic inhalation cabinet (Jiufang Company, Guangzhou)
for 90 or 180 days. The dynamic inhalation device makes
liquids into aerosols with a diameter of only a few micrometers,
which is in line with the actual human exposure to BaP in
the air. At the end of the experiment, mice were anesthetized
with ether and blood was collected by eyeball sampling. The
mice were then euthanized and the lungs were excised rapidly.
Half of each lung was stored in 4% paraformaldehyde, and
the other half was stored at −80◦C. All animal experiments
and procedures were approved by the Shenzhen Center for
Disease Control and Prevention. Efforts were made to minimize
animal suffering and reduce the number of mice used in
the experiments.

Genotyping of PARG Knockout Mice
Genomic DNA was purified from mouse tails using TianAMP
genomic DNA kits (Tiangen, Beijing, China). The concentration
and the quality of DNA were assessed by ultraviolet (UV)
absorbance using a NanoDrop ND-2000 spectrophotometer
(Thermo Fisher Scientific). The DNA was then amplified by
PCR (94◦C for 2 min; 10 cycles of 94◦C for 20 s, 65◦C for
15 s, and 68◦C for 10 s; 10 cycles of 94◦C for 15 s, 60◦C
for 15 s, and 72◦C for 10 s; 72◦C for 2 min, 10◦C hold)
using primers provided by the Jackson Laboratory (Wild-type
Forward: 5′-GAG ATA TCT AAG TCA GAG AAA GGT GGT-
3′, Wild-type Reverse: 5′-CCT CCT CTG GTG TGT CTG
AAG-3′, Mutant Forward: 5′-CGG TCG CTA CCA TTA CCA
GT-3′, Mutant Reverse: 5′-GGT ATC AGC GAT GGT TGT
TC-3′). The PCR products were 279 bp for the WT sample,
and 279 and 507 bp for the heterozygous PARG knockout
(PARG+/−) sample.

Hematoxylin and Eosin Staining
Mouse lung tissues were fixed in 4% paraformaldehyde for
48 h, dehydrated in ethanol and embedded in paraffin by
using a TissueWaveTM 2 Microwave Processor (Thermo Fisher
Scientific). Paraffin-fixed tissues were sliced into 5 µm sections,
mounted on glass slides, and dried for 1 h. After dewaxing
and rehydration, sections were stained with hematoxylin and
eosin (Sigma-Aldrich) and examined by light microscopy. The
pathology was evaluated by a blinded observer to detect the
degree of malignancy.

Real-Time Quantitative PCR
Total RNA was extracted from frozen lung samples with
miRNeasy mini kits (Qiagen, China) according to the
manufacturer’s instructions. Complementary DNA (cDNA)
was synthesized from 500 ng of total lung RNA (n = 3 per
group) using the PrimeScriptTM RT reagent kit (Takara,
China). Quantitative PCR (qPCR) was performed on
the ABI Prism 7500 system (Applied Biosystems, Foster
City, CA, United States) using SYBR select master mix.

The mRNA primers were purchased from Sangon Biotech
(Shanghai, China) and are listed in Supplementary Table S1.
Experiments were repeated at least 3 times. The relative
level of mRNA for each gene was determined using the
2−11Ct method (Schmittgen and Livak, 2008), and P-values
were calculated using the Student’s t-test on replicate 2−1Ct

values for each gene in each treatment group compared to
the control group.

Immunohistochemistry
Mouse lung tissues were fixed in 4% paraformaldehyde
for 48 h, dehydrated in ethanol and embedded in paraffin
by using a TissueWaveTM Microwave Processor (Thermo
Fisher Scientific). After dewaxing and rehydration, 5 µm-
thick coronal sections were incubated in 0.01 M citrate
buffer (pH 6.0) with 0.1% Tween-20 at 95–100◦C for
10 min for antigen retrieval. For immunochemistry of
Wnt2b and Wnt5b (n = 3 per group), the sections were
incubated at 4◦C overnight with primary antibody (Wnt2b
at 1:200 or Wnt5b at 1:50). After being washed with PBST,
the sections were stained using the mouse and rabbit-
specific HRP/DAB (ABC) detection IHC kit (Abcam,
ab64264) and analyzed using an Olympus BX60 compound
microscope (Tokyo, Japan).

Western Blot Analysis
Lung proteins (n = 3 per group) were extracted from 30 mg
lung tissue with 600 µL lysis buffer (Beyotime, China) and
6 µL protease and phosphatase inhibitor cocktail (Thermo
Fisher Scientific, United States) on ice, and then centrifuged
and collected. The protein concentration was measured with a
BCA protein assay kit (Thermo Fisher Scientific, United States).
Each protein sample was combined with loading buffer and
heated for 8 min at 100◦C. Protein samples were separated
on 10% PAGE gels with 5% stacking gels and transferred
to PVDF membranes. The membranes were incubated in
TBST buffer containing 5% milk at room temperature for
2 h. Subsequently, they were incubated with anti-PARG
(mouse monoclonal antibody, 1:100), anti-phosphotyrosine
(PY20, mouse monoclonal antibody,1:1000), anti-Wnt2b (rabbit
monoclonal antibody, 1:3000), anti-Wnt5b (mouse monoclonal
antibody,1:500), or anti-α-tubulin (mouse monoclonal antibody,
1:3000) in TBST buffer for 1.5 h at room temperature.
After washing with TBST three times, the membranes were
incubated with homologous secondary antibody (anti-rabbit
or anti-mouse IgG HRPs) in TBST buffer for 60 min. The
membranes were then repeatedly washed with TBST buffer,
developed using chemiluminescence reagents from an ECL kit
(Pierce ECL, Santa Cruz, CA, United States) and detected on a
phosphorimager. The images of the membranes were analyzed
by ImageJ software.

Statistical Analysis
The histograms and statistical analyses of the relative expression
of each group were completed using Graph-Pad prism 7.0
software (GraphPad Software, Inc.). Data are presented
as mean ± SD. Comparisons between two groups were
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conducted with the Student’s t-test. P < 0.05 was considered
statistically significant.

RESULTS

Genotyping of PARG Knockout Mice
The heterozygous PARG knockout mice were used to characterize
the role of PARG in protecting mice from BaP-induced lung
cancer. According to the law of Mendelian inheritance, the
genotype of the progeny mice may be WT (PARG+/+),
heterozygous (PARG+/−), or homozygous (PARG−/−). Based
on genomic DNA purified from mouse tails, PARG+/− mice
were screened for our study as PARG−/− mice cannot survive to
maturity. The PCR product from WT mice was 279 bp, and the
PCR products from PARG knockout heteroygotes (PARG+/−)
were 279 and 507 bp, as shown in Figure 1A. After BaP
exposure, proteins from the lung tissues were extracted and
Western blotting were performed to verify the expression of
full-length isoform (PARG110). As expected, the expression of
PARG110 was significantly greater in WT mice than in PARG+/−

mice (Figure 1B). The results confirm that heterozygous PARG
knockout mice were successfully bred in our experiments.

PARG+/− Mice Are Protected From
Pathological Changes in Lung Tissues
Induced by BaP
To establish a lung cancer model for assessing the effects of
heterozygous PARG silencing, we exposed mice to long-term
inhalation of BaP and then prepared paraffin sections of lung
tissues. Hematoxylin and eosin staining were used to analyze the
pathological changes that were observed under light microscopy.
As shown in Figure 2A, in the lungs of WT mice exposed for
90 days, alveolar diffuse interstitialization occurred, though the
alveolar structure was visible; in contrast, the degree of injury in
PARG+/− mice was mild with no obvious pathological damage.
The results were similar in both male and female mice. After 180-
day exposure to BaP, the lungs of the WT mice treated with BaP
showed severe alveolar diffuse interstitialization, and the alveolar
structure was severely damaged with obvious inflammatory
infiltration and abnormal nodules (Figure 2B). Comparison
between the 90- and 180-d pathology suggests that the degree of

lung injury in WT mice treated with BaP was positively correlated
with the time of exposure. In PARG+/− mice after 180 days,
however, some alveolar interstitial thickening appeared while the
alveolar structure was still visible. This suggests that PARG+/−

mice were protected from the effects of BaP on lung pathology.
A higher magnification was used to examine tumor formation.
In WT mice, the number of cells increased abnormally and
tumorigenesis could be observed (Figure 2C); however, no tumor
tissue was found in PARG+/− mice. These results demonstrate
that heterozygous PARG gene silencing can inhibit the induction
of lung cancer by BaP in mice.

PARG+/− Mice Express Elevated Levels
of Phosphorylated Proteins in Lung
Tissues After BaP Inhalation Exposure
To determine whether heterozygous PARG silencing affects the
overall protein phosphorylation level, we performed Western
blot assays using the universal anti-tyrosine phosphorylation
monoclonal antibody PY20 with protein extracted from
lung tissues. As shown in Figure 3A, the levels of total
phosphorylated proteins in WT and heterozygous PARG
knockout mice were not significantly different from that
of the control group after exposure to BaP for 90 days
(P > 0.05). After 180-d exposure, however, the level of
phosphorylated proteins was significantly down-regulated in
WT mice (∗P < 0.05), but was significantly up-regulated in
PARG+/− mice compared with the control group (∗P < 0.05).
These results indicate that, at an extended BaP exposure
time, PARG affects phosphorylation of proteins, which could
potentially be associated with the ability of PARG+/− mice to
resist tumorigenesis.

PARG Silencing Inhibits the Relative
Expression of Wnt2b and Wnt5b
mRNA in Lung Tissues After BaP
Inhalation Exposure
To further elucidate whether ADP-ribosylation affects the Wnt
pathway in PARG+/−mice, we first performed real-time qPCR to
detect the relative expression of the Wnt2b and Wnt5b genes. The
relative expression of Wnt2b and Wnt5b mRNA was significantly
higher in WT mice than in control mice at 90 and 180 days

FIGURE 1 | Genotyping of poly (ADP-Ribose) glycohydrolase (PARG) knockout mice. Genotyping of PARG+/− mice. (A) Genotyping by PCR. Lane M, 100 bp DNA
Marker; Lane 1, blank control; Lane 2, WT mice; and Lane 3, PARG+/− mice. (B) Genotyping by Western blotting. The expression of PARG110 protein was
assessed in lungs from WT and PARG+/− mice.
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FIGURE 2 | PARG+/− mice are protected from pathological changes in lung tissues induced by BaP inhalation exposure. Pathological changes in lung tissues of
WT and PARG+/− mice after benzo(a)pyrene inhalation exposure (A) 90-day exposure (×100). (B) 180-day exposure to BaP (×100). The red arrows show
abnormally increased numbers of cells. (C) The magnification of the place pointed by the red arrow in B, pathological signs of tumorigenesis (×200). Results are
representative of 3 mice from each group.

(∗∗∗P < 0.001), but there were no significant differences in the
PARG+/− mice (P > 0.05) (Figure 4).

PARG Silencing Inhibits the Expression
of Wnt2b and Wnt5b Protein in Lung
Tissues After BaP Inhalation Exposure
The expression of Wnt2b and Wnt5b at the level of the
protein were further confirmed by performing Western
blotting and immunohistochemistry. The expression of
Wnt2b protein was up-regulated in lungs from WT mice
that were treated with BaP for 90 and 180 days (∗P < 0.05,
compared with the control group); however, for PARG+/−

mice, no statistically significant differences were observed
(P > 0.05) (Figure 5A). In immunohistochemistry assays,
Wnt2b protein (brownish yellow staining) was localized to
the cytoplasm, and after 90 and 180 days of BaP inhalation
exposure, the expression levels in WT male and female
mice were higher for treated vs. control mice; however,
for PARG+/− mice, there were no significant differences
(Figure 5B). Similar results were observed for Wnt5b,
though the effect on Wnt5b expression was more obvious
at 180 days than at 90 days (Figures 5C,D). These findings

suggest that PARG gene silencing stabilizes the expression of
Wnt2b and Wnt5b after BaP exposure, possibly inhibiting the
progression of lung cancer.

DISCUSSION

Metabolically activated BaP is known to cause cytotoxic,
teratogenic, genotoxic, mutagenic and carcinogenic effects in
many different tissues and cell types from numerous mammalian
studies (Miller and Ramos, 2001; van Delft et al., 2010).
BaP in cigarette smoking is implicated as one of the main
factors in lung cancer (Rubin, 2001). The occurrence of cancer
includes three stages: initiation, promoting and progressing.
Epigenetic modification, as a bridge between these stages, can
involve DNA methylation, microRNA, chromatin remodeling,
and histone modification (Bird, 2007). ADP-ribosylation is
one of the most important post-translational modifications in
tumorigenesis (Klaus and Birchmeier, 2008). Studies showed
that the use of PARG inhibitor to suppress PARG activity
facilitates oxidative damage-induced PARylation as well as DNA
damage repair (Zhang et al., 2015). PARG gene silencing
increases the level of poly (ADP-ribosylation) to regulate DNA
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FIGURE 3 | PARG+/− mice express elevated levels of phosphorylated proteins in lung tissues after BaP inhalation exposure. Expression of phosphorylated proteins
in lung tissues of mice after BaP inhalation exposure. (A) The overall phosphorylation level of proteins in WT and PARG+/− mice that were untreated or were treated
with exposure to BaP for 90 days. (B) Expression of phosphorylated proteins after 180-day exposure to BaP. Female-C, control untreated female mice; Female-T,
treated female mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗P < 0.05, ∗∗∗P < 0.001, significant difference in treated compared to
untreated mice. Results represent the mean ± SD of 3 mice from each group. Quantification of the phosphorylation levels was performed using ImageJ software.

damage repair and genome stability (Koh et al., 2004). In
our previous study, it is determined that in vitro PARG
silencing inhibits tumorigenesis by dramatically reducing DNA
damage, chromosome abnormalities, micronuclei formations,
and malignant transformation. To further investigate the possible
in vivo role of PARG gene silencing, heterozygous PARG
knockout mice were utilized. We exposed WT and PARG+/−

mice to BaP by dynamic inhalation for 90 and 180 days.
Pathological analysis showed that carcinogenesis appeared in
the lungs of WT mice and the injury was progressive for
180-day vs. 90-day treatment, while PARG+/− mice showed
no carcinogenesis and minimal signs of lung injury. These
results suggest that PARG gene silencing can inhibit lung
cancer induced by BaP in mice, which is consistent with our
in vitro results.

In our previous vitro study, we identified two distinct Wnt
ligands (Wnt5b and Wnt2b) that are modulated by PARG by
using the MeDIP-sequence techniques. This raises the possibility

that ADP-ribosylation may affect the carcinogenesis of BaP
by regulating the activation of the Wnt signaling pathway
after PARG gene silencing. The Wnt pathway consists of
three components: the Wnt/β-catenin canonical pathway, the
Wnt/Ca2+ pathway and the Wnt/polarity pathway (Wodarz
and Nusse, 1998). After activation of the canonical pathway,
Wnt ligands bind to Frzzled and LRP5/6 on the cell surface
to form a trimer, which weakens the stability of a destruction
complex composed by β-catenin, Axin, GSK-3β, and APC
to prevent the phosphorylated degradation of β-catenin. The
concentration of β-catenin increases in the cytoplasm and
then is transferred into the nucleus which ultimately activate
the expression of downstream target genes (Veeman et al.,
2003). During this process, protein phosphorylation, especially
tyrosine phosphorylation (P-Tyr), as a major mode of cell
signal transduction and regulation of enzyme activity, plays
an vital role in the regulation of β-catenin (Ikeda et al.,
1998). ADP-ribosylation can promote phosphorylated proteins
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FIGURE 4 | PARG silencing inhibits the relative expression of Wnt2b and Wnt5b mRNA in lung tissues after BaP inhalation exposure. Relative expression of Wnt2b
and Wnt5b mRNA in lung tissues of WT and PARG+/− mice after BaP inhalation exposure. The mRNA expression in lungs from WT and PARG+/− mice was
measured by real-time quantitative PCR after 90 days (panels A,B) or 180 days (panels C,D) of BaP inhalation exposure. Female-C, control untreated female mice;
Female-T, treated female mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗∗∗P < 0.001, significant difference was found in treated compared
to untreated mice. Results represent the mean ± SD of 3 mice from each group.

to bind to Axin scaffolding proteins, affecting the stability
of the key protein β-catenin and regulating the activation
of the Wnt pathway (Yang et al., 2016). In the current study,
the level of total phosphorylated protein in WT mice and
PARG+/− mice was not significantly different after 90-
day exposure to BaP. However, after 180 d, phosphorylated
protein was significantly reduced in WT mice but was up-
regulated in PARG+/− mice compared with the control
group. These findings are consistent with the possibility
that, as the exposure time of BaP extended, loss of PARG
promotes phosphorylation of proteins, which possibly leads
to phosphorylated degradation of key proteins in the Wnt
pathway; supported by the following studies (Zeng et al., 2005;
Kim et al., 2013; Yang et al., 2016). We will try to explore
how does PARG regulates protein tyrosine phosphorylation to
regulate the Wnt signaling against the progression of lung cancer
in our next study.

Wnt ligands play a vital role in the development of
lung cancer, and inhibition of Wnt ligands may reduce the
expansion of lung cancer cell lines (Tammela et al., 2017).
Our results demonstrate that the relative expression of Wnt2b
and Wnt5b mRNA was up-regulated in lung tissues of WT

mice compared with the control group after 90- and 180-
day exposure to BaP. Furthermore, the expression of Wnt2b
and Wnt5b protein was up-regulated, though there were
no significant differences in Wnt2b and Wnt5b mRNA and
protein expression in PARG+/− mice. It suggested that loss
of PARG stabilized the expression of Wnt ligands, probably
suppressing the activation of the Wnt pathway against the
progression of lung cancer.

Wnt2b and Wnt5b are two ligands of the Wnt signaling
pathway. Wnt2b mainly acts through the canonical Wnt pathway
and binds to receptors on the cell membrane to increase
the stability of β-catenin in the cytoplasm and promote its
translocation to the nucleus to activate downstream target
genes that lead to tumorigenesis (Roelink et al., 1992). Studies
have shown that Wnt2b is overexpressed in various cancers
(Katoh, 2001; Huang et al., 2015). Wnt5b, on the other
hand, is a non-canonical Wnt pathway factor that activates
the Wnt/Ca2+ pathway or blocks the down-regulation of
β-catenin by GSK-3β to prevent the classical Wnt pathway
(Kohn and Moon, 2005). Studies have shown that Wnt5b
plays different roles in different types of cancers. In some
cancers, such as lung cancer, it promotes tumorigenesis, and
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FIGURE 5 | PARG silencing inhibits the expression of Wnt2b and Wnt5b protein in lung tissues after BaP inhalation exposure. Expression of Wnt2b and Wnt5b
protein in lung tissues detected by Western blotting and immunohistochemistry. (A) Western blotting of Wnt2b expression. (B) Immunohistochemical staining of
Wnt2b (×200). Protein expression levels are reflected by the area and depth of brownish yellow. (C) Western blotting of Wnt5b expression. (D) Immunohistochemical
staining of Wnt5b (×200). Red arrows indicate Wnt2b and Wnt5b localization in the cytoplasm. Female-C, control untreated female mice; Female-T, treated female
mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗P < 0.05, ∗∗P < 0.01, significant up-regulation in treated vs. control mice.
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FIGURE 6 | Schematic model of the Wnt/β-catenin signaling pathway regulated by PARG gene silencing during BaP-induced lung cancer. After activation of the
canonical pathway, Wnt ligands bind to Frzzled and LRP5/6 on the cell surface to form a trimer, which weakens the stability of a destruction complex composed by
β-catenin, Axin, GSK-3β, and APC to prevent the phosphorylated degradation of β-catenin. The concentration of β-catenin increases in the cytoplasm, and then
transfers into the nucleus to ultimately activate the expression of downstream target genes. PARG gene silencing may promote binding of phosphorylated proteins to
the Axin scaffolding proteins, affecting the stability of the key protein β-catenin, and then suppressing the activation of the Wnt/β-catenin pathway to stabilize the
expression of Wnt2b against the progression of lung cancer.

in other cancers, it suppresses tumorigenesis (Kikuchi and
Yamamoto, 2008; Harada et al., 2017). On the basis of its
different roles in different cancers, Wnt5b may constitute a
specific marker for lung cancer screening. In our study, it
is found that the up-regulation of Wnt2b was similar at 90
and 180 days, while the up-regulation times of Wnt5b was
more obvious at 180 days than at 90 days. These findings
may suggest that the Wnt non-canonical pathway increased
with extended exposure times, while the classical pathway
remains activated at both 90 and 180 days. Specific mechanisms
of interaction between the two pathways remains to be
further studied.

In conclusion, in the development of lung cancer induced
by BaP, the expression of Wnt ligands are up-regulated, which
is consistent with current understanding of the role of this
pathway. Additionally, PARG gene silencing may regulate the
phosphorylation level of proteins to stabilize the expression of
Wnt2b, possibly inhibiting the ability of Wnt/β-catenin pathway
to drive lung cancer progression as shown in the schematic
model in Figure 6. The mechanism how PARG gene silencing

affects the expression of Wnt5 remains to be futher explored.
Understanding of the unresolved issue will contribute to the
development of applications of PARG for cancer therapy. Lung
cancer is one of the world’s most serious threats to human
health and has become a global public health problem (Siegel
et al., 2018). Therefore, studying the mechanisms of lung
cancer provides increased understanding that is relevant to
its diagnosis and treatment. Though epigenetic modification
is extensive, basic and reversible, its theory and results are
gradually being applied to the diagnosis and treatment of
cancer (Dawson and Kouzarides, 2012). In this study, it is
shown that PARG gene silencing can prevent the occurrence
of lung cancer induced by BaP. Our results demonstrate that
PARG may be a target for the diagnosis and treatment of
lung cancer. Furthermore, the inhibition of Wnt ligands may
inhibit lung cancer. These results provide a new potential
approach for the treatment of lung cancer. In concludsion, the
use of Wnt ligands in the diagnosis of lung cancer and the
use of PARG inhibitors as a potential therapeutic against lung
cancer is supported.
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Overexpression of ABC transporters in cancer cells is an underlying mechanism
of multidrug resistance (MDR), leading to insensitive response to chemotherapeutic
strategies. Thus, MDR is often results in treatment failure in the clinic. In this study,
we found midostaurin, a Food and Drug Administration (FDA)-approved anti-leukemia
drug, can antagonize ATP-binding cassette subfamily B member 1 (ABCB1)-mediated
MDR. Our results indicated that midostaurin has the capacity to antagonize ABCB1-
mediated MDR, while no significant reversal effect was found on ATP-binding cassette
subfamily Gmember 2 (ABCG2)-mediated MDR. Our subsequent resistance mechanism
studies showed that midostaurin directly inhibited the efflux function of the ABCB1
transporter without alteration of the expression level or the subcellular localization of
ABCB1 transporter. In addition, midostaurin inhibited the ATPase activity of ABCB1
transporter in a dose-dependent manner. Moreover, our in silico docking study predicted
that midostaurin could interact with the substrate-binding sites of ABCB1 transporter.
This novel finding could provide a promising treatment strategy that co-administrating
midostaurin with anticancer drugs in the clinic could overcome MDR and improve the
efficiency of cancer treatment.

Keywords: midostaurin, multidrug resistance, ATP-binding cassette (ABC) transporter, ABC, chemotherapy

INTRODUCTION

Multidrug resistance (MDR) in cancer, a phenomenon leading to synchronous resistance of cancer
cells to structurally unrelated antineoplastic drugs, is one of the most critical factors responsible for
the failure of chemotherapeutics and the poor survival rate of patients (1). Several mechanisms are
involved in cancer MDR, including reduced apoptosis, advanced DNA damage repair mechanisms,
or altered drug metabolism. However, the most prominent factor is ABC transporter-mediated
efflux of antineoplastic drugs (3, 51).

The transport system superfamily of ABC transporters plays critical roles in physiological
and pharmacological processes (2). The human ABC protein family has been divided into seven
subfamilies (ABCA to ABCG). The ABC transporter family has 49 ABC proteins and 48 of them
have identified functions (3, 4). As one of the main contributors, ABCB1 (P-gp/MDR1) is widely
expressed not only in the placenta, but in the blood-brain barrier (BBB), intestines, livers and
kidneys, in order to protect the body from xenobiotics (5, 6). The ABCB1 transporter also mediates
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the transport of a wide range of physiological substrates like
lipids, porphyrins, and sterols (7). Furthermore, a broad
range of chemotherapeutic drugs are substrates of the ABCB1
transporter, such as taxanes and anthracyclines. ABCB1
transporter significantly increases the efflux of such anticancer
drugs, a major reason leading to ABCB1-mediated MDR (8).
It has been documented that ABCB1 is strongly related to the
chemotherapy prognosis and the progression of malignancy
(9). Thus, it is critical to elude MDR by either decreasing the
expression level of ABCB1 proteins or inhibiting the efflux
function of ABCB1 through specific and potent inhibitors.

Midostaurin, a multi-kinase inhibitor that was originally
developed as a protein kinase C (PKC) inhibitor for treatment of
patients with solid malignancy (10), has already been approved
by the FDA for treatment of acute myelocytic leukemia (AML)
with Fms-like tyrosine kinase 3 (FLT3)-mutant subtype (11). It
has recently been reported that the combination of midostaurin
with standard chemotherapy can significantly prolong overall
and event-free survival in patients who suffer from AML with
a FLT3 mutation (12). Here, we report the reversal effects of
midostaurin on ABCB1-mediated MDR when co-administrated
with conventional antineoplastic drugs.

MATERIALS AND METHODS

Chemicals
Midostaurin was obtained from Thermo Fisher Scientific Inc.
(Rockford, IL). Bovine serum albumin (BSA), fetal bovine
serum (FBS), Dulbecco’s modified Eagle’s Medium (DMEM),
penicillin/streptomycin and 0.25% trypsin were products from
Corning Incorporated (Corning, NY). The monoclonal antibody
for GAPDH (catalog numberMA5-15738, lot number SA247966,
clone GA1R), Alexa Fluor 488 conjugated goat anti-mouse
IgG secondary antibody, were purchased from Thermo Fisher
Scientific Inc. (Rockford, IL). Paclitaxel, doxorubicin, colchicine,
cisplatin, mitoxantrone, verapamil, the monoclonal antibodies
for ABCB1 (catalog number P7965, lot number 067M4761V,
clone F4), dimethylsulfoxide (DMSO), 3-(4,5-dimethylthiazol-
yl)-2,5-diphenyltetrazolium bromide (MTT), Triton X-100, 4’,6-
diamidino-2-phenylindole (DAPI), and paraformaldehyde, were
obtained from Sigma-Aldrich (St. Louis, MO). HRP-conjugated
rabbit anti-mouse IgG secondary antibody (catalog number
7076S, Lot number 32) were obtained from Cell Signaling
Technology Inc. (Danvers, MA). Ko143 was a product from Enzo
Life Sciences (Farmingdale, NY). [3H]-paclitaxel (15 Ci/mmol)
was purchased from Moravek Biochemicals, Inc. (Brea, CA). All
other chemicals were purchased from Sigma Chemical Co (St.
Louis, MO).

Cell Lines and Cell Culture
The ABCB1-overexpressing KB-C2 cell line was created by
gradually adding colchicine to parental human epidermoid
carcinoma KB-3-1 cells, and was kindly provided by Dr.
Shin-ichi Akiyama (Kagoshima University, Kagoshima, Japan).
The KB-C2 line was cultured in medium containing 2µg/mL
colchicine (13) to maintain its drugresistant characteristics. The
SW620/Ad300 cells were cultured in medium with 300 ng/mL

doxorubicin (14). KB-3-1, KB-C2, SW620, and SW620/Ad300
cells were used for ABCB1 reversal study. The human non-
small cell lung cancer (NSCLC) NCI-H460 cell line and its
subline of ABCG2-overexpressing NCI-H460/MX20 cells were
used for ABCG2 reversal study. The NCI-H460/MX20 cells
were selected by using a high dose of mitoxantrone and
maintained in medium with 20 ng/mL mitoxantrone (15).
HEK293/pcDNA3.1 and HEK293/ABCB1 were established by
transfecting the human embryonic kidney HEK293 cells with
empty and ABCB1 expressing vector, respectively (16). SW620
and SW620/Ad300 cells, NCI-H460 and NCI-H460/MX20
cells, were kindly provided by Drs. Susan Bates and Robert
Robey (NCI, NIH, Bethesda, MD). HEK293/ABCB1 were
kindly provided by Dr. Suresh V. Ambudkar (NCI, NIH,
Bethesda, MD). All aforementioned cell lines were maintained
in DMEM medium containing 10% fetal bovine serum and
1% penicillin/streptomycin at 37◦C in a humidified atmosphere
containing 5% CO2. All cells were grown as an adherent
monolayer and drug-resistant cells were grown in drug-free
culture media for more than 20 days before assay.

MTT Cytotoxicity Assay
Cell viability was determined by MTT assay as we previously
described (17). Each type of cell was harvested and resuspended
before being seeded onto a 96-well plate at a final quantity
of 5×103 cells per well in 160 µL of medium, and was then
incubated overnight. Midostaurin and positive control drugs
were added 2 h prior to incubation with or without anticancer
drugs. After 72 h of further incubation, MTT solution (4 mg/mL)
was added to each well and the cells were incubated for
an additional 4 h at 37◦C. Subsequently, the supernatant was
discarded and 100 µL of DMSO was added to each well in
order to dissolve the formazan crystals. An accuSkanTM GO
UV/Vis Microplate Spectrophotometer from Fisher Sci. (Fair
Lawn, NJ) was used to determine the absorbance at 570 nm.
The concentration for 50% inhibition of cell viability (IC50)
of the anticancer drug was calculated as previously described
(18). For positive control drugs, verapamil (3µM) and Ko143
(3µM) were used as reference inhibitors to reverse ABCB1- and
ABCG2-mediated MDR, respectively. Cisplatin, which is not a
substrate of ABCB1 or ABCG2, was used as a negative control
chemotherapeutic drug.

Western Blotting and
Immunofluorescence Analysis
Western blotting analysis was performed as previously described
(19). Briefly, cells were lysed after incubated with or without
midostaurin (500 nM) for varying amounts of time (0, 24, 48,
and 72 h). The concentration of protein was determined by BCA
Protein Assay Kit from Pierce (Rockford, IL). Equal amounts (20
µg) of proteins were subjected to 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to PVDF membranes from Millipore (Billerica, MA). The
presence of ABCB1 was determined using monoclonal antibody
F4 (dilution 1:500). GAPDH was used as a loading control. The
resulting protein bands were analyzed using Image J software.
The immunofluorescence assay was performed as previously
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described (17). Briefly, after being cultured overnight in 24-
well plates, cells (2×104/well) were treated with midostaurin
for 72 h at 500 nM concentration. Then, cells were fixed in
4% paraformaldehyde for 10min and permeabilized by 0.1%
Triton X-100 for 10min before being blocked with 6% BSA
for 1 h at 37◦C. The presence of ABCB1 was determined
using monoclonal antibody F4 (dilution 1:100) for incubation
at 4◦C overnight. Cells were washed with iced PBS after each
incubation time. Alexa Fluor 488 (Ex = 499 nm, Em = 519 nm)
conjugated secondary antibody (1:1,000) was used after washing
with iced PBS. DAPI (Ex = 345 nm, Em = 455 nm) was used to
counterstain the nuclei. The cells were washed with ice-cold PBS
before being imaged. Immunofluorescence images were collected
using an EVOS FL Auto fluorescence microscope from Life
Technologies Corporation (Gaithersburg, MD).

Doxorubicin Accumulation and
Fluorescence Microscopic Analysis
Cells were grown in 6-well plates and washed twice with
phosphate-buffered saline (PBS) before the pre-treatment of
500 nM of midostaurin. After 1 h of midostaurin pretreatment,
10µM of doxorubicin was then added to each well for
further incubation (1 h). Immunofluorescence images were
collected using an EVOS FL Auto fluorescence microscope from
Life Technologies Corporation (Gaithersburg, MD). Excitation
and emission wavelengths of doxorubicin were 475 and
585 nm, respectively.

[3H]-Paclitaxel Accumulation and
Efflux Assay
We conducted [3H]-paclitaxel accumulation assay using KB-
3-1 and its drug-resistant subline KB-C2 cells. As previously
described (20), 5×105 cells/well were cultured in 24-well plates
overnight before the assay, and midostaurin was added 2 h
prior to the addition of [3H]-paclitaxel. After incubating with
[3H]-paclitaxel with or without midostaurin for 2 h at 37◦C,
cells were washed twice with iced PBS, and lysed with 0.25%
trypsin before being placed in 5mL scintillation fluid, and
radioactivity was measured in the Packard TRI-CARB 1900CA
liquid scintillation analyzer from Packard Instrument (Downers
Grove, IL).For the efflux assay, KB-3-1 and KB-C2 cells (20)
were incubated with midostaurin for 2 h followed by incubation
with [3H]-paclitaxel, with or without midostaurin for 2 h at
37◦C. The cells were washed with iced PBS twice and then lysed
at various time points (0, 30, 60, and 120min) with trypsin.
Subsequently, cells were placed in 5mL of scintillation fluid and
radioactivity was measured in the Packard TRI-CARB 1900CA
liquid scintillation analyzer from Packard Instrument (Downers
Grove, IL).

ATPase Assay
The ABCB1-associated ATPase activities were measured using
PREDEASY ATPase Kits from TEBU-BIO nv (Boechout,
Belgium) with modified protocols. Briefly, cell membranes
that overexpressed ABCB1 were thawed and diluted before
use. Sodium orthovanadate (Na3VO4) was used as an ATPase
inhibitor. Various concentrations of midostaurin were incubated

with membranes for 5min. The ATPase reactions were initiated
by adding 5mM Mg2+-ATP. Luminescence signals of Pi
were initiated and measured after incubation at 37◦C for
40min with brief mixing. The changes of relative light units
were determined by comparing Na3VO4-treated samples with
midostaurin-treated groups.

Molecular Modeling of Human ABCB1
Homology Model
In silico docking analysis was conducted using software Maestro

11.5 (Schŕ’odinger, LLC, New York, NY, 2018) (21). Human
ABCB1 homology model was established by Dr. Aller based on
refined mouse ABCB1 (PDB ID: 4M1M) (22). Afterwards, the
docking grid at the drug-binding pocket was generated (23). The
ligand was essentially prepared to perform glide XP docking with
the default protocols.

Statistical Analysis
All data are expressed as the mean± SD and were analyzed using
one-way ANOVA. All experiments were repeated at least three
times. Differences were considered significant when P < 0.05.

RESULTS

Midostaurin Significantly Antagonized
ABCB1-Mediated MDR in
ABCB1-Overexpressing Cancer Cells
Firstly, to avoid cytostatic-induced reversal phenomenon,
we conducted MTT assays to evaluate the cytostatic effects
of midostaurin in the ABCB1-overexpressing cells and
corresponding parental cells that we would use. Hence, we
could choose concentrations that would not significantly
influence cell viability. We conducted further experiments with
200 and 500 nM doses of midostaurin (Figure 1).

As shown in Figure 2, midostaurin significantly sensitized
ABCB1-overexpressing cancer cells KB-C2 (Figures 2A–C)
and SW620/Ad300 (Figures 2E–G) to ABCB1 substrates
(doxorubicin, paclitaxel, and colchicine), compared with their
control resistance cells, and this sensitization occurred in a
dose-dependent manner. At 200 or 500 nM, midostaurin could
not alter the IC50 values of the above chemotherapeutic
drugs to parental KB-3-1 (Figures 2A–C) and SW620
(Figures 2E–G) cells. In addition, when combined with
cisplatin, a platinum drug which is known to not be a substrate
of ABCB1, midostaurin showed no significant difference in
its cytotoxic effect in neither the resistant cell lines nor the
parental cell lines (Figures 2D,H). In this study, verapamil,
a potent ABCB1 inhibitor, was used as a positive control
drug (24).

Midostaurin Significantly Antagonized
ABCB1-Mediated MDR in
ABCB1-Gene-Transfected Cells
We next evaluated the reversal effect of midostaurin on ABCB1-
gene-transfected cells. As shown in Figure 3, midostaurin could
significantly lower the IC50 values of ABCB1 substrate-drugs
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FIGURE 1 | Dose-viability curves of cells used in this study incubated with midostaurin for 72 h. Dose-viability curves for (A) KB-3-1 and KB-C2, (B) SW620 and
SW620/Ad300, (C) HEK293/pcDNA3.1 and HEK293/ABCB1, and (D) NCI-H460 and NCI-H460/MX20.

FIGURE 2 | The reversal effect of midostaurin on ABCB1-mediated MDR in ABCB1-overexpression cancer cells. IC50 values of (A) doxorubicin, (B) paclitaxel,
(C) colchicine, and (D) cisplatin in parental KB-3-1 and drug-selected ABCB1-overexpression resistant KB-C2 cells with or without treatment of midostaurin. IC50 of
(E) doxorubicin, (F) paclitaxel, (G) colchicine, and (H) cisplatin in parental SW620 and drug-selected ABCB1-overexpression resistant SW620/Ad300 cells with or
without treatment of midostaurin. Data are expressed as mean ± SD, representative of at least three independent experiments. *p < 0.05, compared with control
group.

(doxorubicin, paclitaxel, and colchicine) to HEK293/ABCB1
cells at 200 and 500 nM in a concentration-dependent manner
(Figures 3A–C). More importantly, midostaurin did not

significantly alter the efficacy of these ABCB1-substrate
chemotherapeutic drugs in parental HEK293/pcDNA3.1
cells (Figures 3A–C). Furthermore, at 200 or 500 nM,
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FIGURE 3 | The reversal effect of midostaurin on ABCB1-mediated MDR in ABCB1-gene-transfected cells. IC50 values of (A) doxorubicin, (B) paclitaxel,
(C) colchicine, and (D) cisplatin in parental HEK293/pcDNA3.1 and transfected ABCB1-overexpression HEK293/ABCB1 cells with or without treatment of
midostaurin. Data are expressed as mean ± SD, representative of at least three independent experiments. *p < 0.05, compared with control group.

midostaurin did not significantly change the IC50 values of
cisplatin (Figure 3D).

Midostaurin Did Not Reverse
ABCG2-Mediated MDR
As shown in Figure 4, midostautrin (200 and 500 nM) could
not significantly lower the IC50 value of mitoxantrone, a known
substrate of ABCG2-mediated MDR, to drug-selected NCI-
H460/MX20 cells. In this study, we chose Ko143 as a positive
control drug because it is a potent ABCG2 inhibitor (21).
Cisplatin was used as a negative substrate drug as previously
described (25).

Midostaurin Did Not Influence the Protein
Expression Level or Subcellular
Localization of ABCB1 Transporters
The next step was to figure out the mechanism of action
of midostaurin. Theoretically, there are varied mechanisms
involved in the reversal of ABCB1-mediatedMDR. For examples,
the reversal effect could be due to down-regulation of ABCB1
protein expression level and/or the change of ABCB1 transporter
subcellular localization. To evaluate the effect of midostaurin on
the protein level of ABCB1 transporter, we conducted Western
blotting and immunofluorescence assays to detect whether
midostaurin could impact the ABCB1 protein expression

and/or subcellular localization. As shown in Figure 5A, after
incubation for 24, 48, and 72 h, respectively, midostaurin
did not significantly change the expression level of ABCB1
protein (170 kDa) in ABCB1-overexpressing KB-C2 cells.
Furthermore, midostaurin did not change the localization of
ABCB1 at the subcellular level after incubating for up to 72 h
in ABCB1-overexpressing KB-C2 cells (Figure 5B). These results
suggested that midostaurin influenced neither the expression
level nor the subcellular localization of ABCB1 protein even at
high concentrations.

Midostaurin Significantly Increased the
Intracellular Drug Accumulation in
ABCB1-Overexpressing Cancer Cells
The above results indicated that midostaurin could reverse
ABCB1-mediated MDR without altering the protein expression
level or subcellular localization in ABCB1-overexpressing cancer
cells. We then conducted our drug accumulation assay to further
understand the mechanism of the reversal effect of midostaurin.
Firstly, we conducted our doxorubicin accumulation assay with
500 nM of midostaurin. As shown in Figure 6A, midostaurin
significantly enhanced the accumulation level of doxorubicin
in ABCB1-overexpressing KB-C2 cells. We also conducted our
[3H]-paclitaxel accumulation assay to get a digitized result.
The intracellular level of [3H]-paclitaxel was measured in
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FIGURE 4 | The reversal effect of midostaurin on ABCG2-mediated MDR in ABCG2-overexpression cancer cells. (A) IC50 values of mitoxantrone in parental
NCI-H460 cells and resistant NCI-H460/MX20 cells. (B) IC50 values of cisplatin in parental NCI-H460 cells and resistant NCI-H460/MX20 cells. *p < 0.05, compared
with control group.

FIGURE 5 | Midostaurin did not alter the protein expression and subcellular localization of ABCB1 transporter. (A) Detection and relative intensity of ABCB1
expression in KB-C2 cells incubated with 500 nM of midostaurin for 0, 24, 48, and 72 h. (B) Sub-cellular localization of ABCB1 expression in SW620/Ad300 cells
incubated with 500 nM of midostaurin for 72 h. Scale bar, 100µm. *p < 0.05, compared with control group.

cells overexpressing ABCB1 transporter in the presence or
absence of midostaurin. As shown in Figure 6B, midostaurin
significantly increased the intracellular levels of [3H]-paclitaxel
in ABCB1-overexpressing KB-C2 cells in a dose-dependent
manner. However, in parental KB-3-1 cells, no significant change
in [3H]-paclitaxel was found. In this study, verapamil was used as
a positive control reversal reagent.

Midostaurin Significantly Inhibited the
Efflux Function of ABCB1 Transporter in
ABCB1-Overexpressing Cancer Cells
The efflux of antineoplastic drugs through ABCB1 transporter
is involved in ABCB1-mediated MDR. We conducted an efflux
assay at different time points (0, 30, 60, and 120min) to
determine whether midostaurin could inhibit the efflux function
of ABCB1 transporter. As shown in Figures 6C,D, midostaurin

significantly decreased the efflux level of [3H]-paclitaxel in
ABCB1-overexpressing KB-C2 cells in a dose-dependentmanner,
but this change was not shown in parental KB-3-1 cells. These
results suggested that midostaurin could significantly increase
the accumulation of anticancer drugs by inhibiting the efflux
function mediated by ABCB1.

Midostaurin Significantly Inhibited the
ATPase Activity of ABCB1 Transporter
The hydrolysis of ATP is the energy source of substrate-efflux
mediated by ABCB1. Hence, we conducted the ABCB1-mediated
ATP hydrolysis in the presence or absence of midostaurin
at 0–40µM serial concentrations. As shown in Figure 7A,
midostaurin significantly inhibited the ATPase activity of ABCB1
transporters in a dose-dependent manner. The concentration
of midostaurin required to obtain 50% of maximal inhibition
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FIGURE 6 | The effect of midostaurin on accumulation and efflux activity in cancer cells overexpression ABCB1 transporter. Scale bar, 50µm. (A) The effect of
midostaurin on accumulation of doxorubicin. (B) The effect of midostaurin on accumulation of [3H]-paclitaxel in KB-3-1 and KB-C2 cells. (C,D) The effects of
midostaurin on efflux of [3H]-paclitaxel in KB-3-1 and KB-C2 cells. *p < 0.05, compared with control group.

(IC50) was 3.1µM with the maximum of inhibition being 0.4-
fold. These results suggested that midostaurin could inhibit the
ATPase activity in ABCB1 transporters by interacting with the
drug-binding pocket of these transporters. Therefore, one of
the reversal mechanisms of midostraurin includes a reduced
energy source for ABCB1 efflux function through inhibition of
ATPase activity.

Docking Analysis of the Binding of
Midostaurin With ABCB1 Homology Model
The best-scored docked positions of midostaurin with ABCB1
transporter are shown in Figure 7. The phenol ring of the
methylbenzamide moiety in midostaurin has π-π interactions
with the residues Phe336 and Phe983 of human ABCB1
(Figure 7C). In addition, midostaurin has hydrophobic
interactions with residues of ABCB1 including Met69, Leu339,
Ile340, Phe343, Phe728, Met986, and Ala987 (Figure 7D), which
stabilize midostaurin in the substrate-binding pocket of ABCB1.

DISCUSSION

Growing evidence has shown that the failure of clinical treatment
resulting from drug resistance to chemotherapeutic drugs in

a series of cancer cell lines is tightly correlated with the
overexpression of ABC transporters. It has been widely reported
that cancer cells overexpressing ABCB1 transporter is a key factor
that could imply poor prognosis as well as low survival rate in
cancer patients (26–30). Moreover, genetic polymorphisms in
ABC transporters, especially in ABCB1 and ABCG2 transporters,
could significantly increase the high risk of death in patients
who suffer from colorectal malignancy or non-small cell lung
cancer (NSCLC) (31, 32). In recent decades, many small-
molecule target drugs have been reported to have the capacity
to reverse ABC transporter-mediated MDR, via inhibiting the
function, downregulating the protein expressing level, and/or
changing the subcellular localization of ABC transporters.
Previously, we have reported that selonsertib, ulixertinib, and
VS-4718 can significantly antagonize ABC transporter-mediated
MDR (21, 23, 33). Unfortunately, there was no successful
clinical case study on the therapeutic strategies to develop
ABC transporters inhibitors as reversal reagents to reverse
drug resistance. Nonetheless, growing evidence has shown that
the overexpression of ABC transporters is mainly involved
in MDR in cancer, and it is also critical in regulating oral
bioavailability of anticancer drugs and reagents. A series of first-
line chemotherapeutic drugs, including doxorubicin, paclitaxel
and mitoxantrone are substrates of ABC transporters, meaning
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FIGURE 7 | The effects of midostaurin on the ATPase activity of ABCB1 and the molecular modeling study of midostaurin with human homology ABCB1. (A) Effect of
midostaurin on the ATPase activity of ABCB1. The inset graphs illustrate the effect of 0–10µM midostaurin on the ATPase activity of ABCB1. Data are mean,
representative of three independent experiments. (B) Overall view of midostainrin-ABCB1 complex. (C) Docked position of midostaurin within the drug-binding site of
human ABCB1 homology model by Glide docking. Midostaurin is shown as ball and stick mode with the atoms colored: carbon-cyan, hydrogen-white, nitrogen-blue,
oxygen-red. Important residues are shown as sticks with gray color. π-π stacking interactions are indicated with blue dotted short line. (D) The two-dimensional
ligand-receptor interaction diagram of midostaurin and human ABCB1. The amino acids within 3 Å are shown as colored bubbles, cyan indicates polar residues, and
green indicates hydrophobic residues. The green short line shows π-π stacking interaction.

that these anti-cancer drugs will be pumped out from the
cancer cells and finally lead to the failure of clinical carcinoma
treatment (1–4, 34). Therefore, we confirm that screening small
molecules to obtain the inhibitors of ABC transporters is still
a potential and effective treatment strategy to circumvent MDR
in cancer.

In this in vitro study, we evaluated the effect of midostaurin
on ABCB1-mediated MDR. We mainly found that midostaurin,
at non-toxic concentrations (200 and 500 nM), can significantly
overcome ABCB1-mediated MDR in a series of cancer cell
lines in a concentration-dependent manner. Firstly, to avoid
potential reversal effects caused by the cytostatic effect of
midostaurin, we performed our MTT assays to evaluate the
anti-proliferative effect of midostaurin in the cells we would
use in this study. Based on the results, we conducted further
reversal studies using 200 and 500 nM of midostaurin. Our
reversal study indicated that midostaurin could significantly
reverse ABCB1-mediated MDR in KB-C2 and SW620/Ad300
cells, which were selected by treatment with colchicine or
doxorubicin, respectively. Moreover, midostaurin could not
alter the efficacy of certain chemotherapy substrate-drugs
in their corresponding parental KB-3-1 or SW620 cells. In
addition, midostaurin could not antagonize ABCG2-mediated
MDR in ABCG2-overexpressing cancer cells NCI-H460/MX20.
Based on these results, we hypothesized that the reversal

effect of midostaurin was specific to interactions with the
ABCB1 transporter. It is notable that we then verified this
hypothesis by a reversal study in gene-transfected cells. We
found that midostaurin could also lower the IC50 values
of doxorubicin, paclitaxel, and colchicine in HEK293/ABCB1
cells compared with parental cells in a dose-dependent
manner, but not those in parental HEK293/pcDNA3.1 cell
line. Furthermore, midostaurin did not sensitize either parental
HEK293/pcDNA3.1 cell line or HEK293/ABCB1 cells to
cisplatin, a drug that does not use ABCB1 as a substrate. These
results suggest that midostaurin exclusively reversed ABCB1-
mediated MDR.

The reversal of MDR mediated by ABC transporters
may be involved in the down-regulating and/or change of
subcellular localization of certain ABC transporters. However,
as shown in our Western blotting and immunofluorescence
assays, no significant down-regulation of ABCB1 protein
was found, and all ABCB1 protein was located on the
membrane of KB-C2 cells after incubating with midostaurin
for up to 72 h. In other words, these results signified that
the mechanisms of midostaurin on the reversal of ABCB1
mediated-MDR were not due to the down-regulating of
the protein level or change of subcellular localization of
ABCB1 transporters. Nevertheless, as midostaurin is a multi-
kinase inhibitor, we could not fully eliminate the possibility

Frontiers in Oncology | www.frontiersin.org 8 June 2019 | Volume 9 | Article 514533

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ji et al. Midostaurin Reverses MDR

that part of the reversal effect of midostaurin could be
associated with its effect to other proteins and/or potential
cross-talk with other signals, which may impact the efflux
function of ABCB1 transporter, and this needs to be studied
further in the future. Further study should also evaluate
the potential effect of midostaurin on the protein expression
level of ABCB1 with increased concentration or prolonged
incubation time. Moreover, a process named post-translational
modifications (PTM) plays an important role in proteins,
especially transporters’ function (35). It has been reported that
ABCB1 could be phosphorylated at S661, S667, S671, and S683
to modulate its cell surface trafficking (36), and Pim-1 kinase
could prevent ABCB1 from degradation, enabling glycosylation
and cell surface expression (36). These clues indicate that it
is necessary to further determine the effects of midostaurin
on PTM of ABCB1 using higher concentration and/or longer
incubation time.

Subsequently, drug accumulation and efflux assays
were conducted, so that we could deeply understand
the mechanisms of midostaurin on ABC transporter-
mediated MDR attenuation. Our results indicated that
midostaurin could significantly increase the intracellular
concentration of ABCB1 substrate-drugs (doxorubicin
and [3H]-paclitaxel) in ABCB1-overexpression KB-C2
cells. Midostaurin could also significantly prevent [3H]-
paclitaxel from being pumped out of KB-C2 cells in a
concentration-dependent manner. However, there is no
significant change in doxorubicin or [3H]-paclitaxel in
accumulation or efflux in parental KB-3-1 cells. These
novel findings were congruent with our observed reversal
effects of midostaurin. Our mechanism study also indicated
that midostaurin could increase the accumulation of certain
substrate-drugs (doxorubicin and [3H]-paclitaxel) in ABCB1-
overexpression cancer cells by targeting the function of
ABCB1 transporter.

ABC transporters, including ABCB1, obtain energy via
ATP hydrolysis, and this can be modulated by the presence
of certain substrates or inhibitors (37, 38). In our ATPase
assay, we found that midostaurin could significantly inhibit the
ATPase activity of ABCB1 in a dose-dependent manner, and
the maximal inhibition level was 0.4-fold. Nevertheless,
the accurate binding site of midostaurin with ABCB1
transporter remained unclear. In the in silico modeling
study, we predicted that midostaurin could interact with the
drug-binding pocket in the transmembrane domain (TMD) of
ABCB1 transporter.

Midostaurin is an anticancer drug approved by FDA for
treatment of AML with FLT3-mutant subtype (11). Over the
years, the effect of midostaurin on multidrug resistance mediated
by ABCB1 has been investigated independently in great detail.
At the very beginning, midostaurin, also known as PKC412
and CGP41215, was developed as a PKC inhibitor, and prior
work has documented the effectiveness of midostaurin in
reversing MDR. Utz et al. (39) and Fabbro et al. (40) have
reported that midostaurin could sensitize CCRF-VCR1000 cells
and KB-8551 cells to adriamycin and vinblastine, without
altering the ABCB1 mRNA expressing level. As a derivative

of staurosporine, midostaurin was also identified to have the
capacity to increase doxorubicin accumulation in doxorubicin-
resistant cell line A2780/Adr. Meanwhile, midostaurin also acted
as a reversal reagent in P-gp mediated leukemia resistance (41,
42). Budworth et al. (43) have explored the reversal effects
of midostaurin on P-gp mediated breast cancer MCF7/Adr
cell line resistance and Beltran et al. (44) have confirmed
that such an effect of midostaurin was related to alterions
in the phosphorylation of P-gp. In the study conducted by
Courage et al. (45), midostaurin-resistant A549/CGP human
lung cancer cell line was identified that overexpressed P-gp,
indicated that P-gp may play a key role in midostaurin-mediated
MDR. Another research showed that midostaurin could not
affect the development of RD cells resistance (RD is a cell
line that is resistant to vincristine, and has a mutant P53 but
does not have detectable P-gp). This finding, combined with
the above evidence, suggests that midostaurin may influence
P-gp-mediated MDR (46). Moreover, midostaurin was also
documented to alter P-gp efflux function and induce cell death
in FLT3 ITD/P-g-positive samples (47). Ganeshaguru et al. (48)
studied the effect of midostaurin on malignant cells from B-
CLL (B-cell chronic lymphocytic leukemia) patients, and the
results showed that nearly 1/3 of B-CLL cells that were originally
resistant to chlorambucil and fludarabine were sensitive to
midostaurin. P-gp-mediated efflux activity of nearly half of B-
CCL cells were observed to be modulated by midostaurin.
This novel finding further supported the conclusion that
midostaurin could reverse ABCB1-mediated MDR. However,
due to technical restrictions in protein structure identification
and the incomplete functional research on ABC transporters,
few studies systematically explained the exact mechanisms of
midostaurin on ABCB1-mediated MDR. In this study, we
conducted a series of experiments to verify the reversal effects
of midostaurin on ABCB1-mediated MDR in cell lines which
were not involved in other studies. Furthermore, we used human
ABCB1 homology model to conduct our in silico docking
study, through which we determined the specific residues that
midostaurin would bind to, indicated the potential combining
mode of midostaurin with ABCB1 transporter. On the other
hand, with the development of pharmacological and molecular
biology, various resistant cell lines with definitemechanisms were
established and identified. It is necessary to verify the reversal
effect and to determine the mechanisms of midostaurin on MDR
by utilizing different resistant cell lines. More recently, the results
from Hsiao et al. (49) showed that midostaurin could sensitize
ABCB1-overexpression KB-V-1, NCI-ADR-RES, and NIH3T3-
G185 cells to paclitaxel, colchicine, and vincristine. They
also found that midostaurin could enhance colchicine-induced
apoptosis effect in KB-V-1 cells, without altering the expression
level of ABCB1 transporter. This finding coincides with the
results we found when we co-administrated midostaurin with
ABCB1-substrate chemotherapeutic drugs. In conclusion, our
study demonstrates that midostaurin could overcome ABCB1-
mediated MDR by directly inhibiting the efflux function of
ABCB1 transporter; as a result, midostaurin can increase the
accumulation of antineoplastic drugs. This novel study also
suggests that co-administration of midostaurin with certain
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substrate-chemotherapeutic drugs of ABCB1 may benefit cancer
clinical treatment by circumventing MDR. However, we should
not overstate the function of midostautin onMDR before further
in vivo study and even clinical evaluation is completed as three
generations of ABCB1 inhibitors have all failed to be applicable
in clinic (50). Admittedly, it remains to be determined whether
midostaurin could contribute to improving chemotherapeutic
outcome in clinic. More recently, a global study of the efficacy
and safety of midostaurin plus chemotherapy in newly diagnosed
patients with FLT3 mutation negative (FLT3-MN) acute myeloid
leukemia (AML) is recruiting (NCT03512197), and a phase II
clinical evaluation is recruiting for midostaurin associated with
standard chemotherapy in patients with core-binding factor
leukemia (AML FLT3) (NCT03686345). These clinical trials
may provide more potent evidence on combined utilization
of midostaurin with conventional chemotherapeutic drugs,
which would make midostaurin a sensitizing drug, not just a
“reversal reagent.”
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Over the past several decades, natural products with poly-pharmacological profiles 
have demonstrated promise as novel therapeutics for various complex diseases, 
including cancer. Berberine (PubChem CID: 2353), a soliloquies quaternary alkaloid, 
has been validated to exert powerful effects in many cancers. However, the underlying 
molecular mechanism is not yet fully elucidated. In this study, we summarized the 
molecular effects of berberine against multiple cancers based on current available 
literatures. Furthermore, a systems pharmacology infrastructure was developed to 
discover new cancer indications of berberine and explore their molecular mechanisms. 
Specifically, we incorporated 289 high-quality protein targets of berberine by 
integrating experimental drug–target interactions (DTIs) extracted from literatures 
and computationally predicted DTIs inferred by network-based inference approach. 
Statistical network models were developed for identification of new cancer indications 
of berberine through integration of DTIs and curated cancer significantly mutated 
genes (SMGs). High accuracy was yielded for our statistical models. We further 
discussed three typical cancer indications (hepatocarcinoma, lung adenocarcinoma, 
and bladder carcinoma) of berberine with new mechanisms of actions (MOAs) based 
on our systems pharmacology framework. In summary, this study systematically 
provides a powerful strategy to identify potential anti-cancer effects of berberine with 
novel mechanisms from a systems pharmacology perspective.

Keywords: berberine, cancer, systems pharmacology, drug–target interactions, significantly mutated genes

INTRODUCTION

Natural products with diverse chemical scaffolds have been recognized as an invaluable source of 
candidates in drug discovery and development for multiple complex diseases, including cancer. 
Berberine, a plant-derived compound isolated from medicinal plants such as Coptis chinensis and 
Hydrastis canadensis, had a long history of medicinal application in traditional Chinese medicine 

537

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00857
https://www.frontiersin.org/journals/pharmacology#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00857&domain=pdf&date_stamp=2019-08-06
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology/
https://creativecommons.org/licenses/by/4.0/
mailto:fangjs@gzucm.edu.cn
mailto:fangj3@ccf.org 
mailto:zyb-73@163.com
https://doi.org/10.3389/fphar.2019.00857
https://www.frontiersin.org/article/10.3389/fphar.2019.00857/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00857/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00857/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00857/full
https://loop.frontiersin.org/people/674658
https://loop.frontiersin.org/people/725881
https://loop.frontiersin.org/people/726332
https://loop.frontiersin.org/people/551142
https://loop.frontiersin.org/people/616567
https://loop.frontiersin.org/people/391355
https://loop.frontiersin.org/people/470260


Exploring the Molecular Mechanisms of BerberineGuo et al.

2 August 2019 | Volume 10 | Article 857Frontiers in Pharmacology | www.frontiersin.org

(Ayati et al., 2017). As one of the main alkaloids, berberine has 
been reported to exert potentially beneficial effects on many 
cancer types, including breast cancer (Kim et al., 2008), bladder 
cancer (Yan et al., 2011), and hepatocarcinoma (Liu et al., 2011; 
Zhu et al., 2016). For example, berberine had shown significant 
inhibitory effect on hepatocellular carcinoma cells and could 
reduce the volume and weight of tumors in an H22 transplanted 
tumor model in mice (Li et al., 2015).

Based on collection of hundreds of berberine-related 
pharmacological literatures, we systematically summarized eight 
key mechanisms of anti-cancer effects of berberine, including cell 
death, cell invasion and metastasis, cell cycle arrest, cell growth, 
transcription factors, inflammatory factors, angiogenic, chemo-
sensitivity, and radio-sensitivity (Figure 1 and Supplementary 
Table S1). Specifically, apoptosis (programmed cell death) 
plays a vital role in tumor cell development, differentiation, 
and proliferation (Ola et al., 2011). Recent study has revealed 
that berberine could induce apoptosis of human osteosarcoma 
U2OS cells through inhibiting the PI3K/Akt signaling pathway 
activation (Chen, 2016). In addition, anti-angiogenesis is a 
promising strategy for prevention and treatment of multicancer 
in preclinical or clinical studies in terms of many natural products 
(Khalid et al., 2016; Kotoku et al., 2016). Previous in vitro and 
in vivo experiments have validated that berberine exerted anti-
angiogenic effect through inhibiting various proinflammatory 
and pro-angiogenic factors, including vascular endothelial 
growth factor (VEGF), interleukin-6 (IL-6), interleukin-2 
(IL-2), and metalloproteinase inhibitor (TIMP) (Hamsa and 
Kuttan, 2012).

Collectively, berberine with polypharmacology has 
demonstrated its broad anti-cancer properties through targeting 
various oncogenic pathways and targets. Therefore, systematic 
exploration of the drug targets of berberine is of great significance 
for understanding its anti-cancer mechanisms of action (MOAs) 
and for further excavating its novel cancer indications.

Systems pharmacology-based approaches, as an emerging 
interdiscipline that combines experimental assays and 
computational tools, have provided an alternative to understand 
the therapeutic mechanisms of complex diseases (Fang et al., 
2018). Recent studies have demonstrated advanced discovery 
of new indications for natural products based on systems 
pharmacology approaches (Fang et al., 2017b; Fang et al., 2019). 
For example, novel molecular mechanisms of several effective 
natural products (e.g., resveratrol, quercetin, caffeic acid, and 
wogonoside) for multiple complex diseases including multi-
cancer types and age-related disorders have been identified 
and validated by various literatures and in vitro and in vivo 
experiments (Fang et al., 2017a; Huang et al., 2019). Collectively, 
systems pharmacology-based approaches have been proved as an 
effective tool for exploring the poly-pharmacological actions of 
natural products towards various complex diseases.

In this study, we proposed a systems pharmacology 
infrastructure to identify new cancer indications of berberine 
and explore their molecular mechanisms (Figure 2). Specifically, 
we constructed a global DTI network of berberine by integrating 
both experimentally reported DTIs obtained from literatures 
and DTIs computationally predicted by our previous predictive 
network models (Fang et al., 2017c). Besides, a high-quality 

FIGURE 1 | Diagram illustrating the eight potential anti-cancer effects of berberine. Berberine exerts anti-cancer activities via targeting various cancer key protein 
targets, related to cell death, cell invasion and metastasis, cell cycle arrest, cell growth, transcription factors, inflammatory factors, angiogenic, chemo-sensitivity, 
and radio-sensitivity.
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collection of significantly mutated genes (SMGs) for multiple 
cancer types was manually collected. On the basis of curated 
cancer SMGs and DTIs, we built statistical network models with 
high accuracy to prioritize new cancer indications of berberine 
and showcased its potential mechanisms. Overall, this study 
provides a useful systems pharmacology framework to interpret 
the multi-scale MOAs of berberine in multiple cancer type 
management, which may give some enlightenment for further 
treatment of cancer-associated diseases.

MATERIALS AND METHODS

Collection of Known Targets for Berberine
Known targets of berberine were collected by extracting 
data from four data sources, including HIT (Ye et al., 2011), 
STITCH (Kuhn et al., 2014), BindingDB (accessed June 2016) 

(Gilson  et  al., 2016), and ChEMBL (Bento et al., 2014). For 
STITCH, we only kept the targets with experimental evidence 
score higher than 0.7. We totally obtained 66 known targets 
via integrating the four available databases. Besides, we further 
gathered 238 extra targets of berberine by manually retrieving 
large-scale pharmacological literatures from PubMed (https://
www.ncbi.nlm.nih.gov) with “berberine [title] and cancer” 
as search terms (Supplementary Table S2). After duplicated 
targets and DTIs were eliminated from non-Homo sapiens, 
275 high-quality known DTIs were selected for further study 
(Supplementary Table S3).

Network-Based Target Prediction 
for Berberine
In a previous study, we have developed statistical network 
models to predict targets of natural products through a balanced 

FIGURE 2 | Workflow of a systems pharmacology infrastructure for the identification of cancer indications and exploration of molecular mechanisms of berberine. 
(A) Construction of drug–target network for berberine, (B) manual curation of cancer significantly mutated genes (SMGs) for multiple cancer types, (C) performing 
network analyses to explore the anti-cancer mechanism of berberine, and (D) statistical network models for prioritizing novel anti-cancer indication of berberine 
through integrating computationally predicted and known drug targets into the curated cancer SMGs.
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substructure–drug–target network-based inference (bSDTNBI) 
approach (Fang et al., 2018). The bSDTNBI method utilizes 
resource-diffusion processes to prioritize potential targets for 
natural products through integrating known DTI network, 
drug–substructure linkages, and new input drug–substructure 
linkages (Wu et al., 2017). For a new input chemical, each of its 
substructures equally spreads resources to its neighbor nodes 
layer by layer, and targets obtaining final resources could be 
regarded as the potential targets of the new chemical. Four 
parameters (α = β = 0.1, γ = −0.5, and k = 2) of bSDTNBI were 
adopted based on a previous study (Wu et al., 2016). Among 
them, parameter α was introduced to balance the initial resource 
allocation of different node types, while β was used to adjust 
weighted values of different edge types. The third parameter γ 
was imported to balance the influence of hub nodes in resource-
diffusion processes, and the fourth parameter κ denotes the 
number of resource-diffusion processes. We calculated four 
substructure items for each compound based on four types of 
molecular fingerprints from PaDEL-Descriptor (version 2.18) 
(Yap, 2011), including Substructure (FP4), Klekota-Roth (KR), 
MACCS, and PubChem. Among the four network models 
generated with different types of fingerprints, bSDTNBI_KR 
performed best with the highest values of precision (P = 0.049), 
recall (R = 0.752), precision enhancement (Ep = 27.02), recall 
enhancement (eR = 27.24), and the area under the receiver 
operating characteristic curve (AUC = 0.959). Finally, the best 
model built based on KR molecular fingerprint was selected 
to predict the new targets of berberine. The top 20 predicted 
candidates were used for further study (Supplementary 
Table S3).

Significantly Mutated Genes (SMG) for 
Multiple Cancer Types
We collected 804 SMGs for 28 cancer types/subtypes from a 
previous study (Cheng et al., 2016), including glioblastoma 
multiforme (GBM), serous ovarian adenocarcinoma (SOC), 
stomach adenocarcinoma (STAD), colorectal adenocarcinoma 
(CRAC), breast carcinoma (BRCA), uterine corpus 
endometrioid (UCEC), medulloblastoma (MBL), acute myeloid 
leukemia (AML), cutaneous melanoma (CM), lung squamous 
cell (SQCC), thyroid carcinoma (THCA), lung adenocarcinoma 
(LUAD), kidney clear cell (CCSK), head and neck squamous 
(HNSCC), small cell lung (SCLC), lower grade glioma 
(LGG), bladder carcinoma (BLCA), esophageal carcinoma 
(EC), prostate adenocarcinoma (PRAD), hepatocarcinoma 
(HCC), neuroblastoma (NBL), chronic lymphocytic leukemia 
(CLL), pancreas adenocarcinoma (PAC), multiple myeloma 
(MM), acute lymphocytic leukemia (ALL), non-small cell 
lung (NSCLC), diffuse large B-cell lymphoma (DLBCL), and 
pilocytic astrocytoma (PA). Considering a lack of statistical 
power if the number of SMG for specific cancer types is lower 
than 20, we further excluded ALL, NSCLC, DLBCL, and PA. 
All SMGs are annotated using gene Entrez ID, chromosome 
location, and the official gene symbols from the National 
Center for Biotechnology Information (NCBI) database (Zhe 
and Huang, 2002). Finally, 24 cancer types/subtypes covering 

804 SMGs were selected for further study (Supplementary 
Table S4).

Prioritizing Cancer Indications of 
Berberine
In this study, an integrated statistical network model was 
generated to prioritize cancer indication of berberine based 
on drug–target network and cancer SMGs (Cheng et al., 2016; 
Jiang et al., 2018). We assumed that berberine would exert 
high potential for the treatment of a specific cancer type if its 
targets tend to be SMGs of this cancer. For each cancer type/
subtype, Fisher’s exact test was utilized to calculate the statistical 
significance of the enrichment of SMGs for each cancer type 
in target profiles of berberine. The P-values were corrected by 
Benjamini–Hochberg method (Benjamini and Yekutieli, 2001). 
We set a cutoff adjusted P-value threshold (q) < 0.05 to define 
significantly predicted drug–cancer pairs.

Network Construction
To further explore the multi-scale MOAs of berberine in treating 
multiple cancer types, three types of networks were constructed 
by Cytoscape 3.2.1 software (Shannon et al., 2003): 1) drug–
target (D-T) network, which presents the relationship between 
berberine and its targets; 2) target–function (T-F) network, 
which illustrates the relationship between cancer-related 
biological processes and SMGs; and 3) drug–target–disease 
(D-T-D) network, which reflects a global view of the molecular 
mechanism of berberine against multiple cancer types. After 
network analysis, the SMGs were further mapped to DAVID 
database (https://david.ncifcrf.gov/summary.jsp) for extracting 
the canonical pathways that were highly associated with these 
targets (Dennis et al., 2003). Finally, circos plot was used to 
visualize the predicted cancer indications.

RESULTS AND DISCUSSION

Construction of the Drug–Target (D-T) 
Network for Berberine
The constructed drug–target interaction network (Figure 3) 
of berberine contains 289 interactions, including 275 known 
targets and 20 predicted targets (Supplementary Table S3). In 
vitro and in vivo assays in previous studies have validated that five 
out of the 20 predicted targets could be mediated by berberine, 
indicating high accuracy of our target prediction approach. These 
five predicted targets are caspase-3 (CASP3) (Okubo et al., 2017), 
cellular tumor antigen p53 (TP53) (Qing et al., 2014), caspase-9 
(CASP9) (Zhao et al., 2017), nuclear factor NF-kappa-B p105 
subunit (NFKB1) (Yu et al., 2014), and mitogen-activated protein 
kinase 1 (MAPK1) (Song et al., 2015).

We further mapped the 289 protein targets of berberine into 
the curated cancer SMGs, resulting in 51 cancer-related targets 
encoded by SMGs (Supplementary Table S3). Accumulating 
evidences indicate that berberine may exert anti-cancer effects 
through regulating these targets. For instance, signal transducer 
and activator of transcription 3 (STAT3) are important in 
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various phases of the tumor development, including tumor 
cell proliferation, survival, invasion, immunosuppression, and 
inducing and maintaining a pro-carcinogenic inflammatory 
microenvironment (Fan et al., 2013). A previous study has 
showed that berberine suppressed tumorigenicity and growth 
of nasopharyngeal carcinoma (NPC) cells by inhibiting STAT3 
activation (Tsang et al., 2013). Recently, a strategy targeting tumor 
suppressors and apoptosis-related genes provides a rationale 
for developing more effective approaches and agents for cancer 
prevention (Sun et al., 2017; López-Cortés et al., 2018; Yamaguchi 
et al., 2019). Berberine has been observed to activate expression 
of many tumor apoptosis-related proteins, including caspase-8 
(CASP8), tumor necrosis factor-a (TNF-a), and p38 MAPK, and 
thus induced apoptosis of HeLa cells (Lu et al., 2010). Besides, 
it has been reported that berberine can decrease expression of 
mitochondrial-dependent anti-apoptotic factors such as B-cell 
lymphoma-2 (Bcl-2) and Bcl-2-like protein 1 (BCL2L1) in KB 
human oral cancer cells (Kim et al., 2015).

Taken together, the observed polypharmacological profiles of 
berberine motivated us to elucidate its anti-cancer mechanism 
through systems pharmacology analysis on the interaction 
between berberine and 51 SMGs.

Elucidating Molecular Mechanisms of 
Berberine in Cancer Prevention and 
Treatment
Target–Function Network
As depicted in Figure 4, the target–function (T-F) network is 
composed of 230 T-F pairs connecting 51 SMG targets and 8 
cancer-related functional modules based on the DAVID analysis 
(Supplementary Table S5). The eight functional modules include 
anti-cancer action associated with sustaining proliferative 
signaling (Huang et al., 2015), resisting cell death (Chidambara 
Murthy et al., 2012), deregulating cellular energetics (Tan et al., 
2015), enabling replicative immortality (Xiong et al., 2015), 
avoiding immune destruction (Jiang et al., 2017), genome 
instability and mutation (Li et al., 2014), angiogenesis (Jie et al., 
2011), and activating invasion and metastasis (Tang et al., 2009). 
On average, each SMG target is involved in six cancer-related 
functional modules. We found that 25 out of 51 SMG targets are 
associated with more than five functional modules, indicating 
the higher potential role of these SMG targets related to cancers. 
Previous studies of berberine in cancer validated the functional 
analysis of our T-F network. For instance, berberine could induce 
cell cycle arrest involved in sustaining proliferative signaling in 

FIGURE 3 | Drug–target (D-T) network of berberine composed of known and predicted targets. The predicted targets were obtained by a balanced substructure–
drug–target network-based inference (bSDTNBI) approach. This network includes 289 drug–target interactions connecting berberine and 51 protein targets 
encoded by significantly mutated genes (SMGs).
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cholangiocarcinoma KKU-213 and KKU-214 cell lines (Puthdee 
et al., 2017). Berberine was reported to inhibit metastasis and 
tumor-induced angiogenesis in human cervical cancer cells as 
well (Chu et al., 2014).

KEGG Enrichment Analysis
In order to further elucidate molecular mechanisms of 
berberine in cancer prevention and treatment, we performed 
KEGG pathway enrichment analysis based on the 51 SMGs. 
After pathways with adjusted P (q) value higher than 0.05 were 
excluded, 56 enriched pathways related to cancer pathogenesis 
were obtained (Supplementary Table S6).

Among 56 pathways, PI3K-Akt (hsa04151; q = 2.0 × 10−12), 
p53 (hsa04115; q = 2.7 × 10−9), HIF-1 (hsa04066; q = 3.9 × 10−9), 
FoxO (hsa04068; q = 4.9 × 10−9), VEGF (hsa04370; q = 5.7 × 
10−7), MAPK (hsa04010; q = 2.5 × 10−6), Ras (hsa04014; q = 6.4 × 
10−6), Jak-STAT (hsa04630; q = 9.9 × 10−4), mTOR (hsa04150; 
q= 1.5 × 10−2), AMPK (hsa04152; q = 1.9 × 10−2), and NF-kappa 
B (hsa04064; q = 4.0 × 10−2) signaling pathways have been 
confirmed to be associated with berberine in previous literatures 
(Table 1). For example, berberine was reported to inhibit cellular 

growth and promotes apoptosis by down-regulating PI3K/Akt 
signaling pathway in breast cancer SKBR-3 cells and hepatoma 
HepG2 cells (Liu et al., 2011; Kuo et al., 2011). In vitro and in vivo 
assays revealed that berberine sensitized drug-resistant breast 
cancer to doxorubicin (DOX) chemotherapy and directly induced 
apoptosis through the dose-orchestrated AMPK signaling 
pathway (Pan et al., 2017). Berberine also induces autophagic 
cell death through inhibition of mTOR-signaling pathway by 
suppressing Akt activity and up-regulating P38 MAPK signaling 
in HepG2 and MHCC97-L cells (Wang et al., 2010). The rest of 
the 45 enriched pathways prompt the potential anti-cancer acting 
mechanisms that may be mediated by berberine, which deserve 
to be validated by experimental assays in the future.

Drug–Target–Diseases Network
We further built a drug–target–diseases (D-T-D) network via 
mapping 51 SMGs targeted by berberine into multiple cancers. As 
shown in Figure 5, the 51 SMGs are related to 24 types of cancer. 
On average, each cancer links to nine SMGs, while each SMG is 
connected to 4.6 cancer types. Network analysis showed that the 
top 6 SMGs connected to the largest number of cancer types are 

FIGURE 4 | Target–function (T-F) network demonstrating the relationship between cancer-related biological processes and SMGs. A functional module is linked to a 
target if the target is involved in mechanism of anti-cancer action.
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cellular tumor antigen p53 (TP53), gTPase KRas (KRAS), epidermal 
growth factor receptor (EGFR), retinoblastoma-associated protein 
(RB1), serine-protein kinase ATM (ATM), and cadherin-1 (CDH1). 

Among them, EGFR, a key significantly mutated gene of cancer, is 
involved in the pathological mechanism of 13 cancer types, including 
LUAD, HNSCC, SQCC, EC, UCEC, PRAD, BRCA, CCSK, CLL, 

TABLE 1 | Summary of the 11 enriched pathways validated to be mediated by berberine in previous literatures.

Pathway ID Pathway name Genes P-value PMID

hsa04151 PI3K-Akt signaling pathway EGFR, HRAS, PIK3CB, MET, TP53, RAF1, BCL2L1, CDK4, KDR, AKT1, 
CDKN1A, CCND1, KRAS, CDKN1B, CCND3, BCL2, RAC1, MTOR, MYC, 
FN1

2.03E−12 27081456|25212656

hsa04115 p53 signaling pathway CDKN1A, CCND1, CCND3, CASP8, SERPINE1, TP53, APAF1, FAS, 
CDK4, ATM

2.66E−09 20455200

hsa04066 HIF-1 signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, RB1, 
CDK4

3.89E−09 28775788

hsa04068 FoxO signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, 
MLH1, CDH1, MYC

4.88E−09 24766860|29360760

hsa04370 VEGF signaling pathway TNF, MAPK14, BCL2, RAC1, TP53, APAF1, BCL2L1, CASP1 5.72E−07 23869238
hsa04010 MAPK signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, 

MLH1, CDH1, MYC
2.45E−06 19492307|25212656

hsa04014 Ras signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, RB1, 
CDK4

6.42E−06 25212656|23159854

hsa04630 Jak-STAT signaling pathway AKT1, HRAS, KRAS, PIK3CB, JUN, RAC1, RAF1 9.90E−04 26463023
hsa04150 mTOR signaling pathway TNF, CASP8, APAF1, CASP1 1.50E−02 23159854|20830746
hsa04152 AMPK signaling pathway EGFR, MAPK14, JUN, RAC1, MET 1.88E−02 28775788
hsa04064 NF-kappa B signaling pathway TNF, CASP8, APAF1, CASP1 3.97E−02 19107816

FIGURE 5 | Drug–target–disease (D-T-D) network of berberine. This network shows 51 proteins of berberine encoded by SMGs of 24 types of cancer.
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STAD, LGG, CRAC, and GBM. Previous studies confirmed that 
berberine can inhibit EGFR signal pathway in several cancer types, 
including STAD (Wang et al., 2016), PRAD (Huang et al., 2015), and 
CRAC (Wang et al., 2013). Besides, berberine acts in specific tumor 
by regulating multiple SMGs. For instance, cellular tumor antigen 
p53 (TP53) (Wilson et al., 2010), RAC-alpha serine/threonine-
protein kinase (AKT1) (López-Cortés et al., 2018), and cyclin-
dependent kinase inhibitor 1B (CDKN1B) (Cusan et al., 2018) 
are highly correlated with breast cancer. Accumulating evidences 
demonstrated that berberine can inhibit breast cancer by acting on 
SMGs such as TP53 (Kim et al., 2012; Tan et al., 2015), AKT1 (Kuo 
et al., 2011), and CDKN1B (Patil et al., 2010).

Briefly, the D-T-D network demonstrated that SMGs targeted 
by berberine were closely related to multi-cancer types. In the 
following part, statistical systems pharmacology approach was 
employed to identify novel cancer indications of berberine and 
explore the molecular mechanisms.

Systems Pharmacology-Based Prediction of Cancer 
Indications for Berberine
As shown in Figure 6, a statistical systems pharmacology 
framework is proposed to prioritize novel cancer indications 

of berberine based on Fisher’s exact test analysis. We calculated 
the therapeutic potential of berberine in 24 cancer indications 
and obtained 18 cancer indications of which adjusted P (q) 
values are lower than 0.05 (q < 0.05), including HCC (q < 1.0 × 
10−5; −Log10 (q) = 19.25), LUAD (q < 1.0 × 10−5; −Log10 (q) = 
9.35), BLCA (q < 1.0 × 10−5; −Log10 (q) = 9.31), CM (q < 1.0 × 
10−5; −Log10 (q) = 9.29), HNSCC (q < 1.0 × 10−5; −Log10 (q) = 
8.52), SQCC (q < 1.0 × 10−5; −Log10 (q) = 6.74), EC (q < 1.0 × 
10−5; −Log10 (q) = 6.66), UCEC (q < 1.0 × 10−5; −Log10 (q) = 
6.52), PRAD (q = 1.15 × 10−5; −Log10 (q) = 6.32), BRCA (q = 
1.33 × 10−5; −Log10 (q) = 6.26), CCSK (q = 2.30 × 10−5; −Log10 
(q) = 6.02), CLL (q = 0.55 × 10−3; −Log10 (q) = 4.64), STAD 
(q = 1.76 × 10−3; −Log10 (q) = 4.14), SCLC (q = 5.33 × 10−3; 
−Log10 (q) = 3.65), NBL (q = 1.29 × 10−2; −Log10 (q) = 3.27), 
LGG (q = 1.67 × 10−2; −Log10 (q) = 3.16), CRAC (q = 3.21 × 
10−2; −Log10 (q) = 2.87), and SOC (q = 3.36 × 10−2; −Log10 
(q) = 2.85) (Supplementary Table S7). As listed in Table 2, 10 
out of the 18 predicted cancer indications of berberine were 
validated by reported experimental evidences, including HCC, 
LUAD, BLCA, EC, PRAD, BRCA, STAD, CRAC, and SOC, 
indicating the high accuracy of our systems pharmacology-
based predictive method (success rate = 55.6%).

FIGURE 6 | Circos plot visualizes the predicted cancer indications of berberine. The red connected lines represent the calculated −Log10 (q) value of each berberine-
cancer type pair based on Fisher’s exact test, while the blue ones represent the corresponding number of overlapped targets. The predicted cancer indications 
with literature validation were highlighted in bold font. We classified the 18 predicted cancer indications into four neoplasm categories according to Medical Subject 
Headings (MeSH) system (https://www.ncbi.nlm.nih.gov/mesh/68009371).
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Among the 18 cancer indications, CM, HNSCC, SQCC, 
UCEC, CCSK, CLL, SCLC, NBL, and LGG are the unreported 
cancer indications of berberine, which deserve further 
preclinical validation. For example, cutaneous melanoma 
(CM), one of the most aggressive types of cancer, represents 
a major problem worldwide due to its high incidence and 
elevated degree of heterogeneity (Jemal et al., 2010; Coricovac 
et al., 2018). Based on our predictive model, berberine exerted 
a high potential for anti-CM, with a significant q value  
[q < 1.23 × 10−8; −Log10 (q) = 9.29]. Therefore, the potential of 
berberine in the prevention and treatment of CM deserves to 
be further validated.

Case Study: Exploring the MOAs of Berberine on 
Hepatocarcinoma (HCC), Lung Adenocarcinoma 
(LUAD), and Bladder Carcinoma (BLCA)
To further validate the accuracy of statistical network models 
and predicted anti-cancer targets of berberine, we selected three 
typical cancer types [HCC (q = 5.63 × 10−20), LUAD (q = 4.52 × 
10−10), and BLCA (q = 4.92 × 10−10)] as case studies to illustrate 
their anti-cancer MOAs (Figure 7).

Hepatocellular Carcinoma
HCC, the third leading cause of cancer death worldwide, 
has become one of the most common and prevalent human 
malignancies in the world (Okubo et al., 2017). In vitro assays 
revealed that berberine can inhibit autophagy in hepatoma cell 
lines (e.g., HepG2 cells and MHCC97-L cells) by regulating 
multiple proteins [e.g., mitogen-activated protein kinase 14 
(MAPK14), TP53, and phosphatidylinositol 4,5-bisphosphate 
3-kinase catalytic subunit beta isoform (PIK3CB)] and pathways 
(e.g., P38 MAPK signaling), stimulating further development 
of derivatives for drug-base cancer prevention and treatment 
(Wang et al., 2010; Liu et al., 2011; Wang et al., 2014). In this 
study, Fisher’s test showed that berberine played a significant 
role in treatment of liver cancer (q = 5.63 × 10−20). In addition, 

network analysis revealed that berberine bound with 27 HCC-
related SMG targets, suggesting its underlying anti-cancer 
mechanisms of berberine (Figure 7). In vivo or in vitro data 
have demonstrated that these SMGs are closely relevant to the 
treatment of cancer by berberine. For example, berberine can 
inhibit cell proliferation of HepG2, Hep3B, and SNU-182 through 
up-regulating protein expression of tumor suppressor genes, such 
as activating transcription factor 3 (ATF3) (Chuang et al., 2017). 
Furthermore, study revealed that berberine inhibited expression 
of BCL2, thus reducing autophagic cell death and mitochondrial 
apoptosis in liver cancer cells, such as HepG2 and MHCC97-L 
cells (Hur et al., 2010).

Lung Adenocarcinoma
LUAD is one of the leading causes of cancer-related death both 
men and women in the United States. Approximately two million 
people are diagnosed with lung cancer each year (Torre et al., 
2016). Berberine was predicted to have anti-LUAD potential 
(q = 4.52 × 10−10). Some previous in vivo and in vitro studies 
confirmed our prediction (Mitani et al., 2001; Zheng et al., 
2014). Furthermore, berberine is currently being assessed as an 
anti-LUAD drug in clinical trials (NCT03486496). As shown in 
Figure 7, berberine interacts with 13 LUAD-related SMGs (e.g., 
matrix metalloproteinase-2), indicating the underlying MOAs of 
anti-LUAD of berberine. Matrix metalloproteinases (MMPs), one 
target displayed in our network, is the major protease of LUAD 
and is associated with tumor invasion and metastasis (Herbst 
et al., 2000). Study on human lung cancer cell line A549 confirmed 
that berberine inhibited invasion and growth of tumor cells 
through  decreasing productions of matrix metalloproteinase-2 
(MMP2) (Peng et al., 2006).

Bladder Carcinoma
BLCA is the most common cancer of the urinary system in the 
United States (Kaufman et al., 2009). In our network model, 
berberine is predicted to have a significant relationship with 

TABLE 2 | Relevant literature evidences of the 18 predicted cancer indications of berberine.

Cancer type P-value (Fisher test) Adj-P Negative logarithmic PMID

HCC 5.63E−20 1.35E−18 17.87 26081696|25496992|24942805
LUAD 4.52E−10 1.08E−08 7.96 24766860|26672764|26503561
BLCA 4.92E−10 1.18E−08 7.93 21545798|23065570|10418949
CM 5.12E−10 1.23E−08 7.91 N/A
HNSCC 3.03E−09 7.27E−08 7.14 26503508
SQCC 1.82E−07 4.37E−06 5.36 N/A
EC 2.18E−07 5.23E−06 5.28 28465635|26667771|21858113
UCEC 3.03E−07 7.27E−06 5.14 N/A
PRAD 4.77E−07 1.15E−05 4.94 16505103|26698234|25572870
BRCA 5.53E−07 1.33E−05 4.88 29143794|29414799|28926092
CCSK 9.58E−07 2.30E−05 4.64 N/A
CLL 2.28E−05 5.47E−04 3.26 N/A
STAD 7.32E−05 1.76E−03 2.76 27142767|25837881|18468407
SCLC 2.22E−04 5.33E−03 2.27 N/A
NBL 5.36E−04 1.29E−02 1.89 27235712|19189664|19096576
LGG 6.95E−04 1.67E−02 1.78 N/A
CRAC 1.34E−03 3.21E−02 1.49 23604974|26463023|25954974
SOV 1.40E−03 3.36E−02 1.47 N/A
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BLCA (q = 4.92 × 10−10). Meanwhile, our network indicated that 
berberine interacts with 17 BLCA-related SMGs (e.g., HRAS). 
According to previous study, the oncogenic ras genes GTPase 
HRas (HRAS) mutations, endogenously expressed in T24 
bladder cancer cell line, were associated with grades and stages of 
BLCA detected in more than 35% of patients (Buyru et al., 2003). 
Berberine inhibited cell proliferation and induced cell cycle arrest 
and apoptosis in BLCA by inhibiting oncogenic H-Ras pathway 
in BIU-87 and T24 cell lines (Yan et al., 2011).

Taken together, these three case studies against different 
cancer types (HCC, LUAD, and BLCA) indicate that systems 
pharmacology approach applied in this study is an effective 
method for exploring molecular mechanisms of anti-cancer 
effect of berberine. Meanwhile, the newly predicted tumor types 
might be promising to further investigate MOAs of berberine.

CONCLUSION

Berberine had been observed to exert multiple biological and 
pharmacological activities with potential benefits to a variety of 
complex diseases, including cancer. In this study, we proposed 

an integrated systems pharmacology infrastructure to identify 
cancer indications of berberine and explore the underlying 
molecular mechanisms. This work explores the following new 
anti-cancer characteristics of berberine: i) Through literature 
mining, we summarize eight mechanisms of anti-cancer effect 
of berberine; ii) global drug–target network of berberine is 
constructed by integrating large-scale experimentally reported 
targets and computationally predicted targets. Mechanisms of 
action (MOAs) of various anti-cancer effects of berberine are 
discussed through current drug–target network; iii) a statistical 
model is developed to prioritize novel cancer indications of 
berberine through integrating target profiles of berberine and 
significantly mutated genes in cancer.

Yet several limitations of our approach should be acknowledged. 
First, although we have integrated a wide range of DTIs from 
published literatures and publicly available databases, the 
incompleteness of current drug–target networks may still exist. 
Recent studies proved that integration of large-scale gene expression 
profiles of natural products may help to improve the performance 
of drug–target network model (Yamanishi et al., 2010; Cheng et al., 
2012). Second, as it is extremely difficult to obtain information on 
the active sites of berberine and mutated domain of proteins from 

FIGURE 7 | Drug–target–disease (D-T-D) network of berberine on hepatocarcinoma (HCC), lung adenocarcinoma (LUAD), and bladder carcinoma (BLCA). The 
thickness of the red dotted line represents the predicted association between berberine and three types of tumors.
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public sources, the current study could not explain the MOAs from 
a microcosmic point of view. Third, experimental assays should be 
performed to further validate the predicted targets and MOAs of 
anti-cancer effects of berberine in the future.

In summary, the systems pharmacology framework in 
this study has provided potential strategies to discover the 
polypharmacology effects of berberine for the prevention and 
treatment towards multiple cancers.
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Head and neck squamous cell carcinoma (HNSCC) is among the most common

cancer types. Metastasis, the main cause of death by cancer, can be promoted by

an inflammatory microenvironment, which induces epithelial-mesenchymal transition

(EMT) through a NF-κB-mediated stabilization of Snail. Here, we aimed to explore how

microRNAs (miRs) can affect cell survival and EMT in HNSCC cells under an inflammatory

microenvironment. By using a high-content screening (HCS) approach, we evaluated

alterations in morphometric parameters, as well as expression/localization of Snail/Slug,

in HNSCC cells primed with TNF-α. Based on those quantitation, we established the

optimal experimental conditions of EMT induction driven by TNF-α. Those conditions

were applied to cells transfected with distinct miRs (N = 31), followed by clusterization

of miRs based on alterations related to cell survival and EMT. The signaling pathways

enriched with molecular targets from each group of miRs were identified by in silico

analyses. Finally, cells were transfected with siRNAs against signaling pathways targeted

by miRs with anti-survival/EMT effect and evaluated for alterations in cell survival and

EMT. Overall, we observed that TNF-α, at 20 ng/ml, induced EMT-related changes in cell

morphology, Snail/Slug expression, and cell migration. Predicted targets of miRs with

anti-survival/EMT effect were enriched with targets of NF-κB, PI3K/ATK, and Wnt/beta

catenin pathways. Strikingly, individual gene silencing of elements from those pathways,

namely RELA (NF-kB), AKT1 (PI3K/AKT), and CTNNB1 (Wnt/beta catenin) reduced cell

survival and/or expression of Snail/Slug in cells stimulated with TNF-α. As a whole, our

HCS approach allowed for the identification of miRs capable of inhibiting cell survival
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and EMT considering the presence of an inflammatory microenvironment, also indicating

the common signaling pathways and molecular targets most likely to underlie those

alterations. These findings may contribute to the development of targeted therapies

against HNSCC.

Keywords: head and neck squamous cell carcinoma, high-content screening, microRNAs, epithelial-

mesenchymal-transition, inflammation, NF-κB

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) comprises a
group of upper aerodigestive tract neoplasia and is among the
ten types of cancer with the highest incidence and mortality
in the world (1). Over the past decades, despite advances in
treatment strategies of HNSCC, it was observed a growth in
mortality associated with distant metastases (2). Studies to date
demonstrated that metastasis initiation is promoted by tumor
cells that undergoes epithelial-mesenchymal transition (EMT), a
transformation process which cells acquire a mesenchymal-like
phenotype and dislodges from the tumor bulk, invading adjacent
vessels and entering in the circulation (3).

EMT events are coordinated by transcription factors known
as “EMT master regulators,” including members of the Snail
family: SNAI1 (Snail) and SNAI2 (Slug), which are capable of

both silencing and promoting the expression of genes related
to epithelial and mesenchymal phenotypes, respectively (4). As

a consequence of the “EMT master regulators” activity, cancer

cells undergo drastic phenotypic changes in cell morphology:
from polygonal to elongated, expression of cell adhesion proteins:

downregulation of E-Cadherin and upregulation of N-Cadherin
and integrins, expression of structural proteins: upregulation
of Vimentin, among others that lead to the formation of
mesenchymal cancer cells with migratory/invasive capacities (5).

Increasing literature data have established that, for several
types of cancer including HNSCC, the presence of an inflamed
tumor microenvironment is associated with tumor progression,
the acquisition of EMT-like features by cancer cells and the
formation of metastasis (6). In different types of cancer, multiple
lines of evidence have supported that inflammatory cytokines
secreted by tumor-associated macrophages (which can represent
half of the tumor mass), including tumor necrosis factor alpha
(TNF-α), are capable of inducing EMT events in cancer cells (7).
TNF-α activates the nuclear factor kappa b (NF-κB) signaling
pathway, which the main effector p50/p65 (RelA) promotes
the nuclear translocation of Snail, thereby inducing EMT (8).
Additionally, NF-κB crosstalk with other oncogenic signaling
pathways in HNSCC including Ras/MAPK, PI3K/AKT, and
Wnt/beta catenin, that collectively promotes cancer cell survival,
evasion from apoptosis and therapy resistance (9, 10). Due to
the complexity of intracellular signaling pathways and tumor
microenvironment in cancer, including HNSCC, a multi-target
therapy (targeting multiple signaling pathways) may be an
interesting therapeutic approach (11).

MicroRNAs (miRs) are a class of small non-coding RNAs that
act predominantly through the destabilization and degradation

of multiple targeted messenger RNAs (mRNAs) thereby affecting
several biological processes independently (12, 13). In HNSCC,
as in other types of cancer, there is mounting evidence that
miRs are capable of interfering in multiple cellular processes,
such as cancer cell proliferation, invasion, and apoptosis,
thereby promoting (oncomiRs) or inhibiting (tumor suppressor
miRs) the progression from normal tissue to carcinoma and
subsequently metastasis (14, 15). Importantly, the HNSCC
oncomiR: miR-21 and tumor suppressor miR: miR-29, are both
involved in transcriptional networks that regulates the activity
of the NF-κB signaling pathway (14, 16), highlighting the
importance of NF-κB as a regulator of both inflammation and
tumor progression in HNSCC.

Since its discovery, miRs have been drawing attention due to
their capacity to be used either as prognostic biomarkers or in
miR-based targeted therapies against cancer (17, 18). Currently,
miR-based targeted therapeutic strategies comprehends the
delivery of either mimetics of miRs with tumor suppressor
activity (microRNA replacement or restoration therapy) or
molecules capable of inactivating oncomiRs (microRNA
reduction or inhibition therapy) (19). Importantly, a functional
study conducted by Lindenbergh-van der Plas and coworkers
provided a proof-of-concept that miRs can be used to selectively
kill HNSCC cancer cells (20). However, despite the potential
use of miRs in drug discovery and therapeutic applications, it
is a current challenge to identify, among the several signaling
pathways regulated by a given miR, those that has an effective
therapeutic value (21).

In the last decade, advances in the High-Content Screening
(HCS) approach (cell-based functional screens based on
automated microscopy and image analysis) allowed for the
quantitative measurement of a broad spectrum of phenotypic
alterations at a cellular level (22). Noteworthy, the advantage
of the HCS approach to measure the phenotype in a
multiparametric fashion makes it especially suited to investigate
the pleiotropic effects exerted by miRs (23). In addition, target-
prediction tools can also be utilized for the identification of
the molecular targets shared by groups of miRs and thereby
indicating the ones that are most likely responsible for the
observed effects (24). In the present work, through an HCS
approach and in-silico analysis, we investigated the capacity
of miRs to alter the phenotypic features related to tumor
progression (e.g., cell survival) and metastasis (e.g., EMT) in
HNSCC cells considering the presence of an inflammatory
microenvironment. Overall, we have identified miRs capable of
inhibiting cell survival and EMT as well as potential targets and
signaling pathways involved in the observed effects.
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FIGURE 1 | Study design. Reverse transfection, TNF-α stimulation and Immunostaining: Cells from the FADU cell line were transfected (day 0) with microRNAs (N =

31), followed by stimulation with TNF-α (20 ng/mL, Day 01) and immunostaining with primary rabbit antibodies against Snail/Slug, secondary anti-rabbit antibodies

conjugated with Dy488, nuclear (Hoechst) and cytoplasmic (CellMask) fluorescent dyes (Day 04). Image acquisition: Images (9 fields per well) were acquired using a

10X objective and excitation/emission filters DAPI (Hoechst), FITC (Snail/Slug), and Cy5 (CellMask), using an ImageXpress Micro XLS HCS system (Molecular Devices).

Image analysis: Nuclei and corresponding cytoplasm objects were identified and segmented based on images from DAPI (Hoechst) and Cy5 (CellMask) channels,

respectively. FITC (Snail/Slug) intensity on nuclei and cytoplasm, as well as morphometric parameters were then quantified. Median values per field were exported into

a spreadsheet. Clusterization and Identification of targeted pathways: Based on alterations in median values per well relative to the PMC, microRNAs were subjected

to an unsupervised hierarchical clustering. After the exclusion of genes commonly targeted by miRs from G1a (pro-survival/EMT) and G2 (anti-survival/EMT), genes

from signaling pathways targeted by G2 miRs were used to generate a microRNA regulatory network.

MATERIALS AND METHODS

Study Design
The design of this study is illustrated in Figure 1. Cells from the

FADU cell line were transfected (reverse transfection) into 96 well

plates with miR mimetics (N = 31 plus a miR negative control)

in experimental triplicates, followed by stimulation with TNF-
α (20 ng/mL) for 72 h and immunostaining with primary rabbit
antibodies against Snail/Slug, secondary anti-rabbit antibodies
conjugated with Dy488, nuclear (Hoechst) and cytoplasmic
(CellMask) fluorescent dyes. Images (nine fields per well) were
acquired using a 10X objective and excitation/emission filters
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DAPI (Hoechst), FITC (Snail/Slug), and Cy5 (CellMask), using
an ImageXpress Micro XLS HCS system (Molecular Devices).
With aid of CellProfiler, images from filters DAPI (Hoechst)
and Cy5 (CellMask) were used to identify nuclear, cell and
cytoplasm objects, followed by quantification of nuclear and
cytoplasmic median FITC (Snail/Slug) intensity, as well as
morphometric parameters.Median values per field were exported
into spreadsheets and with help of KNIME software, we obtained
the percentage change of the median values per well relative to
the miR negative control (PMC). By using Cluster3 and Java
TreeView software, we performed a unsupervised hierarchical
clustering of miRs by which the four groups of miRs (G1a,
G1b, G2, and G4) were identified. With help of KNIME and
Targetscan software, we identified the genes targeted by most (N-
2, minimum of 4) of the microRNAs in each group. With help of
Venny online tool, genes targeted by groups that led to opposite
phenotypic effects were identified and excluded from further
analyses. With aid of Database for Annotation, Visualization
and Integrated Discovery (DAVID, version 6.7) online tool, we
identified signaling pathways enriched with filtered targets. With
help of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database, the filtered targets from G2 miRs were assigned to the
NF-kB, PI3K/AKT, and Wnt/beta-catenin signaling pathways,
which were used to generate a microRNA regulatory network
with help of Cytoscape software. Based on information from
those analyses, secondary functional assays using siRNAs were
designed to evaluate the effect, in cell survival and EMT,
of interferences in NF-kB, PI3K/AKT, and Wnt/beta-catenin
signaling pathways.

Cell Lines
Cells derived from the HNSCC cell lines FADU (oropharynx),
HN30 (pharynx), and UMSCC1 (floor of mouth) were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS), 50 U/mL penicillin and
50µg/mL streptomycin. Cells were passaged by using a 10%
trypsin solution.

Reagents
Throughout this work, cells were treated with TNF-α (300-
01A, PrepoTech, USA) or mitomycin C (MMC, M4287, sigma-
aldrich, USA). For immunostaining, we used the nuclear dye
Hoechst 33342 (10µg/mL; H1399, Thermo Scientific, USA) and
cytoplasmic dye HCS CellMask Deep Red (5µg/mL, H10294,
Thermo Scientific, USA), primary antibodies: Anti-N-Cadherin
mouse IgG2ab mAb (SC-271386, Santa Cruz Biotechnology,
USA), Rabbit anti-Snail/Slug (ab180714, abcam, USA), Goat anti-
Vimentin (sc-7558, Santa Cruz Biotechnology) and Mouse-anti-
Caspase-7 (cleaved caspase-7 p10, clone h207, sc-22179, Santa
Cruz Biotechnology, USA), as well as secondary antibodies: Goat
anti-Rabbit DyLight 488 (dy488, 35553, Thermo Scientific, USA),
Goat anti-Rabbit DyLight 594 (35561, Thermo Scientific, USA)
DyLight 488mouse (35503, Thermo Scientific, USA) andDonkey
anti-Goat DyLight 594 (SA5-1088, Thermo Scientific, USA). For
western blot, we used the antibodies rabbit anti-snail (#3879, Cell
Signaling, USA), rabbit anti-slug (#9585, Cell Signaling, USA),
rabbit anti-vimentin (#5741, Cell Signaling, USA), rabbit anti

N-cadherin (#13116, Cell Signaling, USA), rabbit anti-β-catenin
(#8480, Cell Signaling, USA) and mouse anti-β-actin (sc-81178,
Santa Cruz, CA).

Western Blot
For protein extraction and quantification, cells were washed
with PBS and disrupted in lyses buffer (20mM Tris-HCl,
150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton X-
100, 2.5mM sodium pyrophosphate, 1mM β-glycerophosphate,
1mM Na3VO4 and 1µg/ml leupeptin). After three sonication
cycles at 45W for 5min each in a sonicator bath, the samples
were centrifuged at 20,000 × g for 30min at 4◦C. The protein
concentration was determined by the Bradfordmethod (Bio-Rad,
Hercules, CA).

Proteins were submitted to SDS–PAGE and electrotransferred
to PVDF membranes (GE Lifesciences, Pittsburgh, PA, USA).
Membranes were blocked with 5% non-fat dry milk in 0.1%
Tween-TBS and incubated with the primary antibody. After
1 h of incubation with horseradish peroxidase-conjugated goat
anti-rabbit IgG (#7074, Cell Signaling) or horse anti-mouse
IgG (#7076, Cell Signaling) secondary antibodies The antibody-
protein complex was detected using ECL Western Blotting
Detection Reagents (GE Lifesciences) using a CCD-Camera
(Image QuantLAS 4000 mini, Uppsala, Sweden). Densitometric
analysis was performed using the ImageJ software, and bands
were normalized to the constitutive protein β-actin.

MicroRNA Mimics and siRNAs
Transfection assays were carried out with human microRNA
mimetic molecules (50 nM, Thermo Scientific) or synthetic
siRNA molecules (10 nM; Supplementary File 1).

Reverse Transfection
Reverse transfection assays were performed using lipofectamine
LTX transfection reagent (15338100, Thermo Scientific) and
synthetic miRs/siRNAs according to manufacturer’s instructions.
Transfection efficiency was calculated by evaluating the
percentage reduction in cell numbers following transfection with
a cytotoxic siRNA against Ubiquitin (siUBC) as compared to
cells transfected with a control miR (PMC) or siRNA (siCTR).

Immunostaining
Cells were fixed and permeabilized with a 2% formaldehyde
solution in methanol for 20min at −20◦C. Quenching of
formaldehyde was achieved by incubation for 15min with a
0.1M glycine solution and blocking with a 1% FBS solution
for 30min. Afterwards, cells were incubated for 1 h at room
temperature with primary antibodies, followed by incubation
for 45min with a solution containing secondary antibodies and
nuclear/cytoplasmic dyes.

Image Analysis
Image analyses were performed with aid of MetaXpress software
(Molecular Devices, USA) or CellProfiler (version 2.2.0, Broad
Institute, USA). Briefly, images from functional assays that
aimed to evaluate only the presence/absence of fluorescent dyes
or markers were analyzed using MetaXpress software, whereas
CellProfiler was used to analyze images from functional assays
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aiming both the evaluation of morphometric parameters and
the presence and subcellular localization of fluorescent markers.
Data from image analyses were processed with the aid of KNIME
software (version 3.2.0).

HCS-Based Functional Assays
Alterations in cell morphology and expression/localization of
proteins were assessed through HCS-based functional assays,
which comprises of:

i) MiR/siRNA reverse transfection of FADU cells into 96-well
culture plates (CLS3603, Corning, USA);

ii) Stimulation or not with TNF-α, 24 h after reverse transfection;
iii) Immunostaining using antibodies, nuclear and

cytoplasmic dyes;
iv) Image acquisition (9 fields per well) with aid of an

ImageXpress R© Micro XLS High-Content Screening (HCS)
system (Molecular Devices, USA), using a 10X magnification
objective and excitation/emission filters DAPI, FITC, Cy3,
Texas Red, and Cy5;

v) Image analysis with aid of MetaXpress (Molecular Devices,
USA) or CellProfiler (version 2.2.0, Broad Institute,
USA) software.

Migration Assay
Cells were seeded on culture plates specific for migration assays
Oris Pro Cell Migration Assay, 96 wells (PROCMA5, Platypus
Technologies, USA). After 24 h, cells were treated with 0.2µg/mL
of mitomycin C for 2 h (to suppress proliferation), followed
or not by incubation with TNF-a at 20 or 50 ng/mL for 72 h
(experimental triplicates). Images were acquired using a 4X
phase-contrast objective after cell seeding and at the endpoint
using the ImageXpress HCS system. The area occupied by cells
was quantified after cell seeding and at the endpoint, which were
used to measure cell migration using M = (Ae/As ∗ 100)-100,
in which M = migration, Ae = Area occupied by cells at the
endpoint, As= Area occupied by cells 24 h after seeding.

Clusterization of miRs
A unsupervised hierarchical clustering of miRs was performed
with aid of Cluster 3 software (25) and visualized with help of
Java TreeView software (26). Groups of miRs were classified as
of pro/anti survival/EMT properties based on alterations in the
following phenotypic parameters: “count nuclei (cell survival),”
“cells eccentricity (EMT),” “Nuclei Median Intensity Snail/Slug
(EMT),” and “Cytoplasm Median Intensity Snail/Slug (EMT).”

Identification of Genes and Signaling
Pathways Targeted by Groups of miRs
Using the KNIME software (version 3.7) and TargetScan database
of predicted miR targets (version 7.1) (27), we created a
pipeline to identify the transcripts commonly targeted by most
of the miRs contained in each of the identified groups (N-2,
minimum of 4). Venn diagrams were generated using Venny 2.1
online tool (bioinfogp.cnb.csic.es/tools/venny) by comparing the
identified targets from groups of miRs with opposite phenotypic
effects, followed by the exclusion (filtering) of the shared
targets. Afterwards, with help of the Database for Annotation,

Visualization and Integrated Discovery (DAVID, version 6.7)
(28), we identified signaling pathways that were enriched with the
filtered targets from each group of miRs.

The filtered targets were assigned to their given signaling
pathways according to information available on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database about
the following signaling pathways: NF-κB (hsa04064), PI3K/AKT
(hsa04151), and Wnt (hsa04310) (29). The miRs and targets
from the selected pathways were used to generate a microRNA
regulatory network with aid of Cytoscape software (30).

Quantitative PCR (qPCR)
RNA extraction was performed using TRIZOL reagent
(Invitrogen Life Technologies, Grand Island, NY, USA) and
total RNA was reverse transcribed using the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA), according to the manufacturer’s instructions.
Gene expression qPCR reactions were carried in duplicates
with Power SYBR Green Master Mix (Applied Biosystems) and
primers for AKT2 (Forward: AAGGATGAAGTCGCTCACAC;
Reverse: ACTCCATCACAAAGCACAGG), CCND1
(Forward: CCCGCACGATTTCATTGAAC;
Reverse: GGCGGATTGGAAATGAACTTC),
GAPDH (Forward: GAAGGTGAAGGTCGGAGTC;
Reverse: GAAGATGGTGATGGGATTTC); IL6
(Forward: ATGCAATAACCACCCCTGAC;
Reverse: GAGGTGCCCATGCTACATTT); MYC
(Forward: CAGATCAGCAACAACCGAAA; Reverse:
GGCCTTTTCATTGTTTTCCA) and RELA
(Forward: TGACAAGGTGCAGAAAGAGG; Reverse:
CACATCAGCTTGCGAAAAGG) using a CFX96 Real-Time
PCR system (Bio-Rad). Relative gene expression levels were
assessed using the 2−11Ct strategy (31).

Statistics
All statistical analyses were performed with aid of GraphPad
Prism software version 5.0. Comparisons between multiple
experimental conditions were performed using either unpaired t-
test or univariate “ONE-WAYAnova” test. Statistical significance
was considered at p < 0.05.

RESULTS

Stimulation With Tumor Necrosis Factor
Alpha Leads to EMT-Related Morphometric
Alterations
We performed an HCS-based functional assay in cells primed
with TNF-α at different concentrations and time points followed
by quantification of morphometric features. Stimulation for
48 h with TNF-α, at all concentrations used (5–50 ng/mL),
reduced the percentage of intercellular contact by around 15%
while not changing cell eccentricity (elongation). On this same
endpoint, we found a trend for increase and decrease in
cell area and number of neighboring cells, respectively, in a
concentration-dependent manner, attaining significance at 20
and 50 ng/mL. On the other hand, stimulation for 72 h with all
TNF-α concentrations used, led to a significant increase in cell
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FIGURE 2 | Effects of TNF-α in EMT-related morphometric parameters. The FADU cell line was stimulated or not (Control) with TNF-α (5 to 50 ng/mL), for 48 or 72 h

(squares). At the endpoint, the cells were stained with nuclear (Hoechst) and cytoplasmic (CellMask) fluorescent dyes. Images (nine fields per well) were acquired using

a 10X objective and excitation/emission filters DAPI (Hoechst) and Cy5 (CellMask), using an ImageXpress Micro XLS HCS system (Molecular Devices). Images were

analyzed using CellProfiler, in order to quantify the following parameters: cell area, cell eccentricity, number of neighboring cells and percentage of intercellular contact.

(A) Quantitative changes (Mean +-SD) in morphometric parameters due to TNF-α stimulation for 48 and 72 h. (B) Representative images of cells stimulated with TNF-α

for 48 and 72 h. Statistically significant differences (ONE-WAY Anova with Tukey post-test), in comparison to the control condition: *p < 0.05; **p < 0.01; ***p < 0.001.

area (around 1,000 µm2) and cell eccentricity. These changes
were accompanied by significant reductions in both the number
of neighboring cells (by around 1.5) and the percentage of
intercellular contact (by around 30%; Figure 2).

Stimulation With Tumor Necrosis Factor
Alpha Leads to the Expression of
EMT-Related Proteins
An HCS-based functional assay was done in cells primed with
TNF-α for 72 h and at different concentrations, with further
quantification of changes in the percentage of cells positive
for markers of EMT. Generally, we observed that stimulation
with TNF-α led to a concentration-dependent increase in the
percentage of cells positive for all markers evaluated. More
specifically, the higher concentration of 50 ng/mL led to a

significant increase in the percentage of cells expressing N-
Cadherin in the cytoplasm (from 30 to 50%, approximately).
Moreover, the percentage of cells expressing cytoplasmic
Vimentin significantly increased by 25% after treatment with
TNF-α at 20 and 50 ng/mL. Finally, the percentage of cells
expressing Snail/Slug in the nucleus significantly increased
at all concentrations of TNF-α, ranging from below 20%
(in untreated cells) up to above 60% ate the highest TNF-
α concentration.

By western blot, we observed that after 72 h of treatment
with TNF-α at 20 ng/mL, the protein levels of Snail and N-
Cadherin increased by 2.2- and 5.4- fold in comparison to
the untreated control group, respectively. Moreover, the levels
of Slug and Vimentin were increased by around 1.1-fold,
whereas the protein level of beta-catenin was increased by 1.2-
fold (Figure 3).
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FIGURE 3 | Effects of TNF-α in the expression of EMT-related proteins. The FADU cell line was stimulated or not (Control) with TNF-α (5 to 50 ng/mL), for 72 h,

followed by analyses of EMT-related protein levels by immunostaining or western blot. After immunostaining using antibodies against N-cadherin (N-cad), Vimentin

(Vim) and Snail/Slug (SN/SL), cells were co-stained with nuclear (Hoechst) and cytoplasmic (CellMask) fluorescent dyes. Images (nine fields per well) were acquired

using a 10X objective and excitation/emission filters DAPI (Hoechst), FITC (N-Cadherin and SN/SL), and Texas Red (T.Red; Vimentin), using an ImageXpress Micro

XLS HCS system (Molecular Devices). Images were analyzed using MetaXpress, in order to evaluate the percentage of cells positive for each protein in the nucleus or

cytoplasm. For western blot, protein detection was achieved using antibodies against Snail, Slug, Vimentin, beta-catenin and N-Cadherin. (A) Nuclear or cytoplasmic

quantitative changes (Mean +-SD) in protein levels of N-Cadherin, Vimentin and Snail/Slug, as evaluated by immunofluorescence. (B) Representative images of

stained cells stimulated with TNF-α at 20 and 50 ng/mL. (C) Alterations (fold change) in the protein levels of Snail, Slug, Vimentin, beta-catenin and N-Cadherin, as

evaluated by western blot after 72 h of TNF-α stimulation (20 ng/mL). Statistically significant differences (ONE-WAY Anova with Tukey post-test), in comparison to the

control condition: *p < 0.05; **p < 0.01; ***p < 0.001.

Tumor Necrosis Factor Alpha Stimulation
Induces Cell Migration
Amigration assay was performed in cells treated with mitomycin
C and primed with TNF-α at different concentrations, for
72 h. Stimulation with TNF-α at 20 and 50 ng/mL increased
the migratory capacity of FADU cells by around 30 and 20%,
respectively (Figure 4).

HCS-Based miR Screening Identifies miRs
With Distinct Effects on Cell Survival and
EMT
An HCS-based functional assay was performed in cells
transfected with our library of miRs (N = 31), followed
by priming with TNF-α (20 ng/mL) for 72 h, in order to
evaluate changes on morphometric parameters and Snail/Slug
levels/localization. We identified miRs that altered cell survival
(nuclei count) and EMT-related features including nuclear
Snail/Slug levels and morphometric parameters such as
cellular/nuclear area, eccentricity and cell distancing relative
to the miR negative control. After unsupervised hierarchical
clustering, miRs were distributed into three main groups (G1,
G2, and G3). Based on distinct alterations in cell survival (nuclei
count), G1 was further subdivided into the subgroups G1a
and G1b.

MiRs from G3 led to a pro-survival and anti-EMT
effect, as seemed by increase in cell survival and epithelial

phenotype: tightly packed juxtaposed (higher number of
neighboring cells and percentage of touching) round cells
(lower eccentricity and higher solidity) with low nuclear
Snail/Slug levels. In contrast, the subgroup G1b had the
exact opposite phenotypic features (anti-survival and pro-
EMT), with low cell counts, high Snail/Slug intensity and
interspersed cells with mesenchymal phenotype (high
eccentricity and low solidity). Since a higher cell density
by itself excerpts a strong inhibitory effect on EMT, while
a lower cell density is able to promote it (32), G1b and G3
are hereafter referred as anti-survival and pro-survival miR
groups, respectively.

The subgroup G1a promoted cell survival while increasing
nuclear Snail/Slug levels and morphological EMT-related
features comparable to that of G1b; thus, clearly displaying a
pro-survival/EMT effect. Otherwise, miRs from G2 had the
strongest negative impact on survival while some of its members
were still capable of reducing or preventing the increase of cell
eccentricity or nuclear Snail/Slug levels, thereby displaying a
anti-survival/EMT effect (Figure 5).

Anti-survival/EMT miRs Target
Inflammatory-Associated Pathways
After identifying the genes collectively targeted by the miRs
from G1a, G1b, G2, and G3, we eliminated targets shared
by groups that led to opposite phenotypic effects. Thereby,
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FIGURE 4 | Cell migration of FADU cells following stimulation with TNF-α. The FADU cell line was cultured for 24 h in cell culture plates designed for migration assays,

treated with mitomycin for 2 h (to inhibit cell proliferation) and stimulated or not (Control) with TNF-α at 20 or 50 ng/mL for 72 h. Phase-contrast transmitted light

images were acquired, with an ImageXpress Micro XLS HCS system (Molecular Devices), using a 4X objective. With aid of CellProfiler, cell migration was quantified

based on the percentage of increase in the area occupied by cells. (A) Percentage of cell migration after 72 h (Mean +-SD). (B) Representative images of different

experimental conditions at initial time (T0) and after 72 h (T72). Statistically significant differences (ONE-WAY Anova with Tukey post-test), in comparison to the control

condition: *p < 0.05.

targets shared between G1a (pro-survival/EMT) and G2 (anti-
survival/EMT), as well as G1b (anti-survival) and G3 (pro-
survival) were eliminated from further analyses as they were
considered not relevant for the phenotypic effects driven by
the groups of miRs (Supplementary File 2). Then, the filtered
targets were used for enrichment analysis on signaling pathways
and biological processes (Supplementary File 3). Strikingly, we
found that miRs from both G1b (anti-survival) and G2 (anti-
survival/EMT) targeted inflammatory pathways including “TNF
signaling pathway (G1b)” and “Toll-like receptor signaling
pathway (G2)” and shared targets from the following pathways:
NF-κB (IKBKG); PI3K/AKT (AKT2), and MAPK (MAPK9).
Moreover, we found that miRs from G2 also targeted additional
genes (not found in G1b) from the NF-κB and PI3K/AKT
pathways including RELA and PIK3R3, respectively. Finally,
the Wnt/beta catenin signaling pathway was also found to
be enriched with targets from G2. The miRs from G2 (anti-
survival/EMT) and its targets from the NF-κB, PI3K/AKT, and
Wnt/beta-catenin signaling pathways were used to generate a
microRNA regulatory network (Figure 6).

Anti-survival/EMT miRs Reduce the
Transcript Levels of Their Direct and
Indirect Targets
We evaluated the capacity of three miRs with anti-survival/EMT
effects (miR-29b-3p, miR-302a-3p, and miR-372-3p) to reduce
the transcript levels of direct predicted targets, as well as indirect
downstream transcriptional targets. Overall, with the exception
of CCND1 (an indirect target of the miRs), the targets were
downregulated bymost of themiRs among the cell lines, however

a stronger effect and less variability were observed on the FADU
cell line. More specifically, we observed a reduction on the
expression levels of the direct target AKT2, with the exception
of miR-372 (on FADU) and miR-302a (on HN30 and UMSCC1).
The same was observed for the direct target RELA, with the
exception of miR-29b (on HN30 and UMSCC1) and miR-372
(on HN30 and UMSCC1). As for the indirect targets, MYC
was downregulated with the exception of miR-372 (on FADU)
and miR-29b (on HN30 and UMSCC1). Finally, IL6 was also
downregulated by the miRs, with the exception of miR-29b (on
FADU), and miR-372 (on HN30 and UMSCC1) (Figure 7).

Interferences in Signaling Pathways
Targeted by Anti-survival/EMT miRs
Partially Recapitulate Their Effects
HCS-based functional assays were done in cells transfected with
siRNAs against elements of signaling pathways regulated by
the anti-survival/EMT miRs: RELA (siRELA, NF-κB pathway),
AKT1 (siAKT1, PI3K/AKT pathway), and CTNNB1 (siCTNNB1,
Wnt/beta-catenin signaling pathway), besides a non-targeting
control siRNA (siCTR) and cytotoxic siRNA (siUBC), followed
or not by stimulation with TNF-α.

After 72 h of TNF-α stimulation, siRNA-mediated knockdown
of RELA transcripts led to an expressive reduction in cell number
(count nuclei) and number of neighboring cells, while increased
cell eccentricity. Silencing the expression of AKT1 (of high
homology with AKT2, target of G2) led to a discrete reduction in
cell number, while increased cell area and significantly reduced
nuclear and cytoplasmic levels of Snail/Slug. Finally, knockdown
of CTNNB1 significantly reduced cell number, cytoplasmic levels
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FIGURE 5 | Hierarchical clustering of miRs based on their effects on multiparametric phenotypic alterations. The FADU cell line was transfected with human miRs

mimics, for 24 h, followed by stimulation with TNF-α (20 ng/mL) for 72 h. After immunostaining with antibodies against Snail/Slug (SN/SL) and co-staining with nuclear

(Hoechst) and cytoplasmic (CellMask) dyes, images were acquired with an ImageXpress Micro XLS HCS system (Molecular Devices), using a 10X objective and

excitation/emission filters DAPI (Hoechst), FITC (SN/SL), and Cy5 (CellMask Deep Red). With aid of CellProfiler, we evaluated several morphometric parameters,

besides cell quantity (count nuclei) and the presence/location of Snail/Slug. Multiparametric phenotypic profiles, describing the effects of each miR, were obtained and

subjected to an unsupervised hierarchical cluster analysis. Heatmap showing the multiparametric phenotypic profiles induced by each miR, and the four groups of

miRs identified (G1a, G1b, G2, and G3. Red rectangles). Increase and decrease relative to PMC are depicted in yellow and blue, respectively.

of Snail/Slug and number of neighboring cells, while increased
cell area and eccentricity.

Without TNF-α stimulation, the knockdown of the selected
targets led to a reduction in cell counts as early as 24 h
post-transfection, especially on cells transfected with siRELA,
in which the impact was comparable to siUBC (a cytotoxic
siRNA). At the same time point, the percentage of apoptotic
cells (positive for cleaved caspase-7) transfected with siRELA
and siAKT1 was around 25% higher than the control group
(10%) but was unaltered on cells transfected with siCTNNB1,

which also reduced the cell number. After 48 h of siRNA
transfection, in comparison to 24 h after transfection, the
number of cells in the control condition had almost doubled
(indicating cell proliferation), while only slightly increasing
in cells transfected with siAKT1 and siCTNNB1 and further
decreasing in cells transfected with siRELA and siUBC. The
percentage of apoptotic cells slightly decreased in cells transfected
with siAKT1, while increased in cells transfected with siCTNNB1
(although not attaining significance), siRELA and siUBC
(Figure 8).
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FIGURE 6 | MicroRNA Regulatory network with miRs from the anti-survival/EMT group. A microRNA regulatory network was composed of miRs from the

anti-survival/EMT group, along with their targets from the PI3K/AKT (Green circle), NF-κB (Red circle), and Wnt (Yellow circle) signaling pathways. For each pathway,

targets from the outer portion of the circle are the ones targeted by no more than 5 miRs, whereas the ones from the inside portion of the circle are the ones targeted

by more than 5 miRs (maximum of 7). The following genes are shared between the signaling pathways NF-κB and PI3K/AKT: IKBKG, RELA, SYK, and TLR4; NF-κB

and WNT: PRKCB.

DISCUSSION

Many of the functional studies conducted so far about the
impact of small molecules in cancer cell survival disregards the
presence of an inflammatory microenvironment, which is known
to promote apoptosis resistance, epithelial to mesenchymal
transition, among other phenotypic changes that promotes
therapy resistance and disease recurrence (7).With that in mind,

our study aimed to identify, through functional assays using an
HCS approach, miRs and signaling pathways with the potential

to suppress both cell survival and EMT features in HNSCC cells
considering the presence of an inflammatory microenvironment.

This approach should provide evidence if the effect of previously

studied miRs translates or not to cancer cells under inflammatory
stimuli, as well as to describe the effect of miRs with no known
effect in HNSCC cells so far.

Initially, we demonstrated the capacity of TNF-α to promote
a broad spectrum of phenotypic changes characterizing EMT,
including an increase in nuclear expression of Snail/Slug,
mesenchymal markers N-Cadherin and Vimentin, as well

as cell eccentricity, inter-cell distancing and cell migration.
Interestingly, our results of the western blot assay indicate that
Snail, rather than Slug, might be involved in the induction
of EMT driven by stimulation with TNF-α. Moreover, the
increased levels of beta-catenin after stimulation with TNF-α
also indicates a possible role, in our model, for the Wnt/beta-
catenin pathway for the induction of EMT. Based on our
observations, we concluded that the treatment of cells with TNF-
α at 20 ng/mL is the best option to induce FADU cells to EMT,
as it promoted strong changes in all parameters evaluated, as
well as a superior induction to cell migration in comparison to
a higher concentration.

Next, by performing an HCS-based miR screening, we
investigated the capacity of 31 human miR mimics to alter
phenotypic features related to cell survival and EMT in FADU
cells induced to EMT by TNF-α stimulation. Overall, the
results from this screening led us to identify four groups of
miRs, namely G1a, G1b, G2, and G3, with distinct activity in
promoting/inhibiting cell survival and EMT. Among them, two
groups had characteristics of oncomiRs: G1a (pro-survival/EMT)
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FIGURE 7 | Changes in the transcript levels of direct and indirect targets of anti-survival/EMT miR group following miR transfection. The cell lines FADU, HN30, and

UMSCC1 were transfected with PMC (control) or miR mimics from G2 (miR-29b-3p, miR-302a-3p, and miR-372), followed by TNF-α stimulation (20 ng/mL) for 48 h

and qPCR with primers for AKT2, CCND1 (cyclin D1), IL6, MYC, and RELA. Alterations in relative gene expression levels, relative to cells transfected with miR-CTR

(PMC). Statistically significant differences (t-test), in comparison to the reference control group (PMC): *p < 0.05; **p < 0.01; ***p < 0.001.

and G3 (pro-survival) whereas the two remaining groups had
characteristics of tumor suppressor miRs: G1b (anti-survival)
and G2 (anti-survival/EMT). Noteworthy, G1b (anti-survival)
also excerpted an pro-EMT effect, while G3 (pro-survival)
excerpted a anti-EMT effect, however, as the effects of G1b and
G3 in EMT could be a byproduct (i.e., secondary effect) of
their alterations in cell survival, those groups were not classified
regarding their alterations in EMT (32).

Among the miRs from G1b (anti-survival), it was previously
found that miR-101 is downregulated in HNSCC tissues from
different anatomical sites, besides having an anti-survival effect
on HNSCC cell lines, including FADU (33–35). Additionally,
studies conducted with esophageal squamous cell carcinoma
(ESCC)-derived cell lines subjected to the ectopic expression of
miR-22 (also from G1b) observed a reduction in cell survival and
migratory/invasive potential (36, 37). On the other hand, the pro-
survival group G3 was mainly composed by miRs frommiR-302-
367 cluster, which are traditionally associated with pluripotency
and malignancy of germ cells tumors (38, 39). In the context

of head and neck cancer, overexpression of miR-302a and miR-
302b was found in cells derived fromHNSCCwith characteristics
of cancer stem cells including self-renewal and the ability to
generate heterogeneous cell populations (40).

The pro-survival/EMT G1a was composed of miRs that
are traditionally involved in regulatory mechanisms linking
inflammation and tumor progression, including elements of
the miR-17-92 cluster, miR-21 (a HNSCC oncomiR) and miR-
23a/24/27a cluster (41). Interestingly, Chang and coworkers
also observed a pro-survival activity of miR-21, as well as
increased expression of miR-21 in primary HNSCC compared
to mucosal controls (42). Moreover, in the recent meta-analysis
study performed by Lubov et al., it was observed that an increased
expression of miR-21 is associated with poor outcome in
HNSCC (14). Differently from G1a, G2 (anti-survival/EMT) was
composed of miRs from miR-29 family, which displays tumor
suppressor activity in several types of cancer, including HNSCC
(14, 43). In line with our results, Kinoshita and coworkers
observed that the ectopic expression of elements from the mir-29
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FIGURE 8 | Changes in cell survival and EMT upon interferences in signaling pathways targeted by the anti-survival/EMT group. The FADU cell line was transfected

with siRNAs specific for RELA, AKT1, CTNNB1, cytotoxic siUBC, and unspecific siRNA control (siCTR), followed or not by TNF-α stimulation. At the endpoint, images

were acquired with an ImageXpress Micro XLS HCS system (Molecular Devices), using a 10X objective and excitation/emission filters DAPI (Hoechst), FITC (SN/SL)

and Cy5 (CellMask Deep Red). (A) Cells were stimulated for 72 h with TNF-α (20 ng/mL), starting 24 h post-transfection, followed by immunostaining with antibodies

against Snail/Slug (SN/SL) and co-staining with nuclear (Hoechst) and cytoplasmic (CellMask) dyes. Alterations in morphometric parameters, cell counts and

nuclear/cytoplasmic Snail/Slug due to siRNA transfection as observed after image analysis. (B) 24 and 48 h after transfection, cells without TNF-α stimulation were

immunostained with antibodies against cleaved Caspase-7 and co-stained with nuclear (Hoechst) and cytoplasmic (CellMask) dyes. Cell counts and percentage of

apoptotic cells positive for active caspase-7 as observed after image analysis. Statistically significant differences (ONE-WAY Anova with Tukey post-test), in

comparison to the control condition: *p < 0.05; **p < 0.01; ***p < 0.001.

family in the FADU cell line resulted in a significant reduction in
cell number, as well as in cell migration and invasion (44).

In an effort to identify, among the several targets and signaling
pathways regulated by miRs, those that effectively contributed
to the observed phenotypic effect, we excluded from further
analyses genes that were commonly targeted by groups of miRs
that led to opposite phenotypes. Those filtered targets were used
in in silico enrichment analysis, leading to the identification of
specific targets and targeted signaling pathways. Noteworthy, this

strategy provided cues on the genes and signaling pathways to be
explored to suppress HNSCC tumor growth and metastasis.

By following this strategy, we observed that miRs from
G1b (anti-survival) and G2 (anti-survival/EMT) targeted
signaling pathways that are associated with the interface between
inflammation and tumor initiation/progression, including
MAPK, PI3K/AKT and NF-κB pathways (45). However, in
comparison to predicted targets from G1b, it was found that
miRs from G2 interfered in the PI3K/AKT and NF-κB pathways
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in a more extensive manner, also targeting a regulatory subunit
of PI3K (PIK3R3), a oncogene that regulates AKT activity,
as well as RELA, which codes for the canonical subunit (p65)
of the NF-κB transcription factor (46, 47). Moreover, miRs
from G2 also targeted several elements of the Wnt/beta-catenin
signaling pathway. Altogether, our results from in silico analyses
provided evidence that the anti-survival/EMT effects elicited by
miRs from G2 likely derives from an extensive perturbation in
PI3K/AKT and NF-κB pathways, besidesWnt signaling pathway.
Additionally, by evaluating alterations in gene expression levels
of cells transfected with miRs from G2 (anti-survival/EMT)
group, we confirmed that elements from the following targeted
signaling pathways: NF-κB (RELA and IL6), PI3K/AKT (AKT2),
as well as Wnt/beta-catenin (MYC) were downregulated after the
transfection in most cases.

Additional functional assays were performed with siRNAs
against genes from the following signaling pathways regulated
by anti-survival/EMT group (G2): AKT1 (PI3K/AKT pathway);
RELA (NF-κB pathway); and CTNNB1 (Wnt pathway) followed
or not by stimulation with TNF-α. Noteworthy, though AKT1
and CTNNB1 are not directly targeted by the miRs fromG2, their
use is justified by the central role of those genes in regulating the
PI3K/AKT and Wnt/beta-catenin pathways, respectively, which
were extensively targeted by those miRs. Therefore, results from
our functional assays using siRNAs should not be interpreted as
direct link between anti-survival/EMTmiRs and a specific target,
but rather between miRs and targeted signaling pathways. An
exception are observations from siRELA transfections, as RELA
is not only a central gene in the NF-κB pathway but also a direct
target of G2.

By stimulating cells with TNF-α after siRNA transfection,
we sought to investigate the individual role of NF-κB,
PI3K/AKT, and Wnt/beta-catenin signaling pathways on either
cell survival or EMT considering the presence of an inflammatory
microenvironment. Interestingly, we found that although gene
silencing of RELA and CTNNB1 led to an anti-survival effect
whereas silencing AKT1 led to an anti-EMT effect, none of
the siRNAs alone impaired both cell survival and EMT, which
indicates that the effects of anti-survival/EMT miRs are most
likely due to their potential to interfere in multiple signaling
pathways simultaneously. This possibility points out to the
potential benefits of a multi-target approach to treat HNSCC,
especially considering that so far, clinical trials evaluating
the capacity of PI3K inhibitors to treat HNSCC have shown
disappointing results (48). In line, a recent study by Li et al.
demonstrated that co-targeting EGFR (upstream of PI3K/AKT)
and NF-κB pathways led to a superior inhibition of cell survival
and xenograph tumor growth, when compared to targeting either
pathway alone (49).

By not stimulating cells with TNF-α after siRNA transfection,
we aimed to evaluate if the effects coming from the interferences
in NF-κB, PI3K/AKT, and Wnt/beta-catenin signaling
pathways are influenced by the presence of an inflammatory
microenvironment. Additionally, we investigated if effects on
cell survival are due to alterations in apoptosis by evaluating
the percentage of cells positive for cleaved caspase-7. Strikingly,
we found that transfection with siRELA not only dramatically

reduced the number of cells but also strongly induced cell-death
by apoptosis after 24 h and 48 h. This indicates that interferences
in the NF-κB pathway is deleterious to HNSCC cells regardless of
stimulation with inflammatory factors. Interestingly, transfection
with siAKT1 also followed a similar pattern (although not further
increasing apoptosis at 48 h) revealing that an inflammatory
stimulation exerts a protective effect on HNSCC cells against
the deleterious effect of interferences in the PI3K/AKT pathway.
Moreover, although transfection with siCTNNB1 reduced cell
count, it did not enhance the number of apoptotic cells 24 h post-
transfection, indicating a more prominent role of Wnt signaling
toward cell proliferation regardless of TNF-α stimulation.

As a whole, our study identified several molecules that may
have the potential to be used for prognosis or miR-based
targeted therapies against HNSCC considering the presence of
an inflammatory microenvironment. By further investigating the
miRs with anti-survival/EMT effects, we found that interferences
in the signaling pathways: NF-κB and Wnt/beta-catenin were
the ones that most likely contributed for the anti-survival effect,
whereas interferences in PI3K/AKT signaling pathway was most
likely associated with anti-EMT effect. Future studies using in
vivo models should shed light into the anti-tumor and anti-
metastatic activity of the miRs and targets herein identified.

CONCLUSION

The present work characterized the functional role of a
set of human miRs in modulating a broad spectrum of
phenotypic alterations related to HNSCC cell survival and
EMT in cells under an inflammatory stimulation, as well as
the potentially involved signaling pathways. More specifically,
the following miR mimetics: miR-24-3p, miR-29a-3p, miR-
29b-3p, miR-302a-3p, miR-302a-5p, miR-372-3p, and miR-373-
3p were identified as the ones with greatest potential use in
microRNA replacement therapies, as they displayed an anti-
survival/EMT effect. On the other hand, endogenous miRs
herein identified as with pro-survival/EMT effects: miR-18a-
5p, miR-18b-5p, miR-19a-3p, miR-19b-3p, miR-21-5p, miR-
27a-3p, miR-30a-5p, were identified as the ones with greatest
potential use in microRNA inhibition therapies. Additionally,
we found that together, interferences on NF-κB, PI3K/AKT, and
Wnt/beta-catenin signaling pathways are the ones that most
likely driven the anti-survival/EMT effects displayed by miRs.
Individual gene silencing of components of those pathways,
namely RELA (NF-κB), AKT1 (PI3K/AKT), and CTNNB1
(Wnt/beta-catenin), partially recapitulated the effects displayed
by miRs with anti-survival/EMT effects. Our findings revealed
miRs and signaling pathways that might be explored to fight
HNSCC tumor growth and metastasis considering the presence
an inflammatory microenvironment.
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Multidrug resistance (MDR) of hepatocellular carcinoma is a serious problem. Although
CD13 is a biomarker in human liver cancer stem cells, the relationship between CD13
and MDR remains uncertain. This study uses liver cancer cell model to understand
the role of CD13 in enhancing the cytotoxic effect of chemotherapy agents. Cytotoxic
agents can induce CD13 expression. CD13 inhibitor, bestatin, enhances the antitumor
effect of cytotoxic agents. Meanwhile, CD13-targeting siRNA and neutralizing antibody
can enhance the cytotoxic effect of 5-fluorouracil (5FU). CD13 overexpression increases
cell survival upon cytotoxic agents treatment, while the knockdown of CD13 causes
hypersensitivity of cells to cytotoxic agents treatment. Mechanistically, the inhibition
of CD13 leads to the increase of cellular reactive oxygen species (ROS). BC-02 is a
novel mutual prodrug (hybrid drug) of bestatin and 5FU. Notably, BC-02 can inhibit
cellular activity in both parental and drug-resistant cells, accompanied with significantly
increased ROS level. Moreover, the survival time of Kunming mice bearing H22 cells
under BC-02 treatment is comparable to the capecitabine treatment at maximum
dosage. These data implicate a therapeutic method to reverse MDR by targeting CD13,
and indicate that BC-02 is a potent antitumor compound.

Keywords: CD13, MDR, bestatin, BC-02, 5FU

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common cancer type and the third leading
cause of cancer-related deaths worldwide (Mlynarsky et al., 2015). Prognosis remains poor due
to the low percentage of patients with HCC eligible for surgery (9–29%) (Tsurusaki and Murakami,
2015), high tumor recurrence rates after resection (60%) (Cheng et al., 2005), and limited
benefit of conventional chemotherapy (Cao et al., 2012; Deng et al., 2015). The resistance of
cancer cells to structurally and mechanistically unrelated classes of anticancer drugs is known
as multidrug resistance (MDR) (Gottesman et al., 2002). And MDR is one of the major causes
of chemotherapeutic failure in HCC therapy. Therefore, exploring more effective therapeutic
strategies for patients with HCC is urgently needed. Increasing clinical trials have proposed that
combination therapy may provide new strategy for chemo-resistance in patients with advanced
HCC (Alves et al., 2011; Cervello et al., 2012; Shin and Chung, 2013).
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Aminopeptidase N (APN, EC 3.4.11.2), which is also
known as CD13, is a type 2 transmembrane Zn-dependent
metallopeptidase of the gluzincin superfamily. APN forms a
non-covalent bond homodimer on the cellular membrane.
It hydrolyzes oligopeptides and releases neutral amino acids
from the N-terminal end of small peptides. In human non-
small cell lung cancer, pancreatic carcinoma, and prostate
cancer, CD13 expression is associated with poor prognosis, and
CD13 expression is involved in cancer invasion and metastasis
(Tokuhara et al., 2006; Su et al., 2012). CD13 is also a marker for
semi-quiescent cancer stem cells (CSCs) in human liver cancer
cell lines and clinical liver cancer samples (Haraguchi et al.,
2010). CSCs or tumor-initiating cells are responsible for drug
resistance and tumor recurrence. CSCs express high level of ATP-
binding cassette (ABC) transporters. Suppression of Pim-3 kinase
expression by targeting CD13 can reverse MDR in HCC cells.
Therefore, ABC transporters and Pim-3 may contribute to CD13
mediated HCC MDR (Guo et al., 2017).

Bestatin, which is a [(2S,3R)-3-amino-2-hydroxy-4-
phenylbutanoyl] leucine obtained from the culture filtrates
of Streptomyces olivoreticuli, is a dipeptide with low molecular
mass. It is also a potent competitive inhibitor of CD13 with
antitumor activity. Bestatin synergistically enhances the
antitumor effects of anticancer drugs in HCC cell lines, and
the effects of bestatin are due to the increased intracellular
reactive oxygen species (ROS) levels (Yamashita et al., 2016).
Our previous data indicated that CD13 inhibitor 4cc synergizes
the antitumor effects of 5-fluorouracil (5FU) on human liver
cancer cells in a ROS-dependent manner. CD13-neutralizing
antibody (clone WM15, CD13 Ab) can also significantly induce
ROS production compared with control (Sun et al., 2015).

In the current study, we aim to understand the role of
CD13 in MDR and evaluate the antitumor effect of BC-02,
a novel mutual prodrug (hybrid drug) of bestatin and 5FU,
which can be degraded into bestatin and 5FU (Dou et al.,
2017), on drug-resistant tumor cells. CD13 inhibitor bestatin
and neutralizing antibody can enhance the sensitivity of tumor
cells to cytotoxic agents. CD13 overexpression or knockdown
affects the sensitivity of cells to cytotoxic agents. Compound
BC-02 can inhibit both parental and drug-resistance tumor cell
proliferation more markedly than single treatment of bestatin,
5FU, or a combination of 5FU and bestatin. All together, this
study may bring new strategy to reverse MDR in HCC cancer.

MATERIALS AND METHODS

Cell Culture and Reagents
Human hepatocarcinoma cell line PLC/PRF/5, Huh7, H7402,
HepG2, and human colon cancer cell HCT116 were maintained
in RPMI-1640 supplemented with 10% fetal calf serum (FCS).
Human alveolar epithelial cell line A549 was grown in Dulbecco
modified Eagle medium supplemented with 10% FCS. The cells
were incubated at 37◦C in a humidified atmosphere containing
5% CO2. Lipofection 2000 was purchased from Invitrogen (Cat.
11668-019). siRNA was synthesized by Shanghai GenePharma.
Bestatin (Cat. B8385), 5FU (Cat. F6627), and cisplatin (cis-DDP,

Cat. P4394) were purchased from Sigma. Gemcitabine (GEM,
Cat. G8970), Paclitaxel (PTX, Cat. SP8020), and doxorubicin
(DOX, Cat. D8740) were purchased from Solarbio. BC-02 (12a)
was synthesized by conjugating bestatin and 5FU as previously
described (Jiang et al., 2018).

PLC/PRF/5-5FU Cell Culture
Low dose of 5FU was added into the medium of PLC/PRF/5.
When cells need digest and passage, 5FU was also added after cell
attachment. For a long time of incubation, higher concentration
of 5FU was added. Then cells could survive at 40 µM 5FU.

Flow Cytometry
Determination of CD13 expression by FACS was described
previously (Wang et al., 2011). 1 × 105 cells were washed
with cold PBS and incubated with PE-conjugated monoclonal
antibody targeting CD13 (BD Pharmingen, CD13mAb clone:
WM15) for 60 min on ice. Then, the cells were analyzed on
FACScan (FACSAria II; Becton-Dickinson). For ROS assay, cells
were seeded and exposed to different drug samples. After 5 h
incubation, cells were isolated and incubated at 37◦C for 30 min
with 10 µM 2,7-dichlorofluorescein diacetate (DCFH-DA) in the
dark. Then the samples were washed and analyzed on a FACSCan.

Cell Viability Assays
2 × 103 cells/well were seeded in 96-well plate and allowed
to grow for 4 h and the drugs were added to the wells at
various concentrations. After 48 h, cells were incubated with
1% of 0.5 mg/ml MTT reagent for an additional 4 h. After
that, the culture was removed, and the cells were lysed with
100 µl dimethyl sulfoxide (DMSO). The optical density of
570/630 nm was read on a plate reader (M5, MD) to calculate the
inhibition rate. The inhibition rate of compounds was calculated
by (ODcontrol-ODtested)/ODcontrol × 100%, where OD is
the mean value of three replicate wells. The IC50 values were
determined using ORIGIN 8 software (OriginLab Corporation,
Northampton, MA, United States).

Transfection Assay
Cells were seeded on a 96-well plate and transfected with siRNA
targeting the sequence of CCGAAATGCCACACTGGTCAA of
the human ANPEP (CD13) sequence (NM_001150) (Lai et al.,
2012). Non-specific scrambled siRNA duplex was also purchased
from GenePharma (Shanghai, China). The transfection protocol
was according to the lipofection 2000 instruction.

Lentivirus Infection
Lentivirus particles was supplied by GeneChem. The target of
shRNA lentivirus was CCGAAATGCCACACTGGTCAA of the
human ANPEP (CD13) sequence (NM_001150). The human
ANPEP (CD13) sequence (NM_001150) was inserted into the
vector of overexpression lentivirus. CD13 overexpression and
knockdown lentivirus all overexpress green fluorescent protein.
The procedure was according to the instruction. In brief,
lentivirus particles was added into the medium of cells. Twelve
hours later, the medium was replaced with completed culture
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medium. Then puromycin treatment help to get the stably
overexpression or knockdown cells.

Clone Formation Assay
Cells were plated in 6 or 48-well plates for overnight. Then cells
were treated with different compounds for about 7–10 days.
When the cells grew to visible colonies (>50 cells) the medium
was discarded, and the cells were fiand with paraformaldehyde
and stained with 0.1% crystal violet. Then clones were counted
under an optical microscope.

Western Blot
Either 20 or 30 µg of total protein of each lysate were
subjected to 10 or 12% SDS–PAGE and electrotransferred onto
PVDF membranes (Cat. IPVH00010, Millipore). Membrane
was blocked with BSA and then incubated with primary
antibodies. After washing, HRP-conjugated secondary antibodies
were incubated. Washed with TBST, the bound antibodies
were visualized by enhanced chemiluminescence (ECL, Cat.
WBKLS0050, Millipore).

In vivo Anti-tumor Assay
3 × 106 H22 cells were injected to enterocoelia of Kunming
mice. And mice were divided into different groups randomly
and treated with agents. The survival period was recorded.
For drug-resistant cell assay, H22-bearing KM mice were given

86 mg/kg/day capecitabine. After 2 weeks, tumor tissues were
dissected from mice and triturated into single cell suspension.
Then cells were implanted subcutaneously in KM mouse.
Then mice randomized into vehicle and treatment groups,
and mice were treated with BC-02 (130 mg/kg/day, ig) and
capecitabine (370 mg/kg/day, ig). The mice body weight was
monitored. After 2 weeks, all mice were sacrificed and dissected
to weigh the tumor tissues. Animal experiment was approved
by the Guidelines of the Animal Care and Use Committee
of Weifang Medical University. The protocol was approved
by the Animal Care and Use Committee of Weifang Medical
University.

Statistical Analysis
Data was presented as the mean ± SD, and analyzed by Student’s
two-tailed t-test. The limit of statistical significance was P < 0.05.
Statistical analysis was done with SPSS/Win11.0 software (SPSS
Inc., Chicago, IL, United States).

RESULTS

Cytotoxic Agent Results in Upregulation
of CD13 Expression
As shown in Figure 1A, after the 5FU treatment, CD13
expression was upregulated in hepatoma tumor cells, such as

FIGURE 1 | Cytotoxic agents increase CD13 expression, and CD13 inhibitor bestatin enhances the antitumor effect of cytotoxic agents. Different tumor cells were
incubated with low cytotoxic agent dosage for 3 days, and CD13 expression was detected (A). Geometric mean fluorescence intensity was shown (B). MTT assay
was employed to detect the viability inhibition after cytotoxic agent treatments combined with different bestatin concentrations (C). Data represent mean ± SD
(n = 3). ∗P < 0.05 and ∗∗P < 0.01 vs. Ctrl.
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FIGURE 2 | CD13 inhibition enhances the cytotoxic effect of 5FU. PLC/PRF/5 cells were transfected with CD13-targeting siRNA. FCS was used to detect CD13
expression (A). (B) The average intensity of fluorescence of one experiment. The results were from a representative of at least three repeated experiments.
PLC/PRF/5 and Huh7 cells were treated with CD13-neutralizing antibody, CD13-targeting siRNA, 5FU, a combination of neutralizing antibody and 5FU, and a
combination of siRNA and 5FU. Then, ROS level (C) and cell viability (D) were detected. Data represent mean ± SD (n = 3). ∗P < 0.05 vs. 5FU, ∗∗P < 0.01 vs. 5FU.
The transfection protocol was performed according to the instructions of lipofection 2000.
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PLC/PRF/5, Huh7, H7402, and HepG2. 5FU could also increase
CD13 expression in human alveolar epithelial cell line A549
and human colon cancer cell HCT116. Other cytotoxic agents,
such as DOX and GEM, could also increase CD13 expression in
PLC/PRF/5 and Huh7 cells. Meanwhile, cis-DDP could decrease
CD13 expression of in PLC/PRF/5 cells.

CD13 upregulation induced by cytotoxic agent treatments
demonstrated that CD13 may contribute to cell resistance to
anticancer drugs. We supposed that CD13 inhibitor should
enhance the cytotoxic effect of these agents. Our data indicated
that CD13 inhibitor bestatin could enhance the cytotoxic effect
of DOX, GEM, cis-DDP, and PTX (Figure 1B). Combination
of bestatin and cytotoxic agents remarkably inhibited the cell
viability of PLC/PRF/5 cells, compared with single treatment
of cytotoxic agents (Figure 1C). Thus, the increased CD13
expression may protect cells from cytotoxic agents, and CD13
inhibitor bestatin enhances the cytotoxic effect of anticancer
drugs.

CD13-Targeting siRNA and Neutralizing
Antibody Increase the ROS Level and
Inhibit Cell Viability
Although bestatin could enhance the cytotoxic effect of
anticancer drugs, off-target effect for small molecular compound
was observed. To certify the role of CD13 in protecting
cells resistant to cytotoxic agent, CD13-targeting siRNA and
neutralizing antibody were employed to suppress CD13. CD13-
targeting siRNA could remarkably decrease CD13 expression
(Figures 2A,B). siRNA and neutralizing antibody could also
increase the ROS level in PLC/PRF/5 and Huh7 cells (Figure 2C).
Compared with single 5FU, a combination of siRNA and
neutralizing antibody with 5FU could remarkably increase the
ROS level (Figure 2C). We also obtained similar result in
MTT assay. Compared with single 5FU, siRNA and neutralizing
antibody could remarkably enhance the inhibitory effect of 5FU
on proliferation (Figure 2D). These data prove the importance of

FIGURE 3 | Effect of CD13 expression on drug resistance. PLC/PRF/5 cells were infected with lentivirus. After puromycin screening, PLC/PRF/5 cells with stable
CD13 overexpression or knockdown were obtained (A). A representative immunoblot from three independent experiments giving similar results is shown for each
western blot experiment. Densitometry for western blot was performed using AlphaEaseFC-v4.0.0 program. 1 × 103 PLC/PRF/5 cells, vector control, stable CD13
overexpression or knockdown PLC/PRF/5 cells were seeded in 6-well plates. Approximately 1 week later, cells were dyed with 0.1% crystal violet, and then
photographs were taken (B). The inhibition rate of different cytotoxic agents on overexpressed or knocked down cells were determined (C). Data represent
mean ± SD (n = 3). ∗P < 0.05.
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CD13 in tumor cell proliferation through the modulation of ROS
generation.

CD13 Overexpression Induces Cell
Resistant to Cytotoxic Agent and CD13
Knockdown Leads to Sensitivity to
Cytotoxic Agent
To further verify the relationship between CD13 expression and
drug resistance, we used a lentiviral vector to overexpress or
knockdown CD13 expression. PLC/PRF/5 cells with stable CD13
overexpression or knockdown were obtained (Figure 3A). CD13
overexpression or knockdown could promote or inhibit cell
colony formation (Figure 3B). Then, we detected the sensitivity
of cells to cytotoxic agents. Compared with parental cells, CD13
overexpression induced cell resistance to 5FU, GEM, cis-DDP,

and PTX (Figure 3C). In addition, CD13 knockdown sensitized
cells to cytotoxic agents (Figure 3C).

BC-02 Induces Higher ROS Generation
Than 5FU and Inhibits Cell Viability
Compound BC-02 can be degraded into bestatin and 5FU
(Dou et al., 2017). And BC-02 could inhibit the viability
of PLC/PRF/5 and Huh7 cells more effectively, compared
with single treatment of bestatin, 5FU, or a combination
of 5FU and bestatin (Figures 4A,B). Clone formation assay
also indicated that BC-02 could potently inhibit the clone
formation of PLC/PRF/5 and Huh7 cells compared with 5FU
and 1:1 combination group (Figure 4C). To verify specificity,
we used CD13-neutralizing antibody, which could inhibit clone
formation. Meanwhile, a combination of neutralizing antibody
and 5FU could markedly inhibit clone formation compared

FIGURE 4 | BC-02 increases ROS level and inhibits cell viability. (A) The chemical structure of compounds. PLC/PRF/5 and Huh7 cells were treated with bestatin,
5FU, equal bestatin and 5FU molars (1:1), and BC-02 for 48 h. Inhibition rate was determined using MTT assay, and IC50 value was calculated (B). (C) 250
PLC/PRF/5 or Huh7 cells were seeded in 48-well plates. After 8 h, 2 µM drugs or 1 µg/ml neutralizing antibody were added. Approximately 1 week later, cells were
dyed with 0.1% crystal violet, and then photographs were taken. (D) PLC/PRF/5 and Huh7 cells were treated with different drugs for 5 h, and ROS level was
detected. (E) MTT assay was used to detect the inhibition rate of 5FU, 5FU+500 µM NAC, BC-02, and BC-02+500 µM NAC by using PLC/PRF/5 cells. Data
represent mean ± SD (n = 3). ∗P < 0.05, ∗∗P < 0.01.
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FIGURE 5 | BC-02 inhibits the viability of 5FU-resistant cells. After long period of 5FU incubation, 5FU-resistance PLC/PRF/5 cells (PLC/PRF/5-5FU) can survive at
40 µM 5FU. CD13 expression was detected by FCS (A). The inhibition rate of different drugs at a concentration 100 µM on PLC/PRF/5-5FU cells were determined
(B). After MTT was added for 2 h, photographs of cells were taken (C). The IC50 values of different cytotoxic agents on PLC/PRF/5 and PLC/PRF/5-5FU cells were
determined using MTT assay. In addition, drug resistance index was calculated using the IC50 value of PLC/PRF/5-5FU cells versus the IC50 value of PLC/PRF/5
cells (D). Data represent mean ± SD (n = 3). ∗P < 0.05, ∗∗P < 0.01 vs. 5FU.
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with neutralizing antibody or 5FU alone (Figure 4C). Moreover,
cellular ROS was detected by FCS. These data indicated that
BC-02 could induce significantly higher level of ROS in
PLC/PRF/5 and Huh7 cells more effectively, compared with
single treatment of bestatin, 5FU, or a combination of 5FU
and bestatin (Figure 4D). Moreover, ROS scavenger N-acetyl-L-
cysteine (NAC) could protect cells from the cytotoxic effects of
5FU and BC-02 (Figure 4E). All these data together indicated
that cell growth was inhibited through CD13 inhibition due to
ROS generation.

5FU-Resistant Cancer Cells With
Upregulated CD13 Expression Are More
Sensitive to BC-02 Than 5FU
It is common to meet chemo-resistance for patients with
HCC. Whether the chemo-resistant cells overexpress CD13
and remain sensitive to BC-02? To uncover this problem, we
established 5FU-resistant PLC/PRF/5 cells (PLC/PRF/5-5FU)
through low dose of 5FU incubation. After a long duration
time of incubation with 5FU, PLC/PRF/5-5FU cells could survive
at a concentration of 40 µM 5FU. FCS data confirmed that
CD13 expression was upregulated in PLC/PRF/5-5FU chemo-
resistant cells (Figure 5A). Moreover, PLC/PRF/5-5FU cells were
resistant to 5FU but sensitive to BC-02 after being treated with
100 µM of either 5FU, bestatin, 5FU+bestatin (1:1), or BC-02

(Figure 5B). Photographs were also taken after MTT was added
(Figure 5C). Almost no cells were observed in the BC-02 group.
MTT assay further confirmed that almost no 5FU resistant cancer
cells could survive after BC-02 treatment. The IC50 values of
different cytotoxic agents to PLC/PRF/5 and PLC/PRF/5-5FU
cells were determined, and drug resistance index was calculated
using the IC50 value of PLC/PRF/5-5FU cells versus the IC50
value of PLC/PRF/5 cells. PLC/PRF/5-5FU cells were resistant to
5FU, PTX, and GEM, which were sensitive to BC-02, DOX, and
cis-DDP, respectively (Figure 5D). All these data indicated that
both parental and 5FU resistant cancer cells remain sensitive to
BC-02.

BC-02 Inhibits H22 Tumor Growth in vivo
Capecitabine, a prodrug of 5FU, is used as a first- and
second-line drugs for HCC treatment by several clinical trials
(Murer et al., 2016; Casadei Gardini et al., 2017). The in vivo
antitumor activity of capecitabine was stronger than that of
5FU in H22 cell-bearing Kunming (KM) mice transplant model
(data not shown). Therefore, capecitabine was chosen as the
positive control for our study in antitumor activity evaluation
in vivo. In lifespan extension assay, H22 cell-bearing KM
mice were treated with capecitabine (1 mmol/kg/day, iv), BC-
02(À) (0.15 mmol/kg/day, iv), BC-02(Á) (0.075 mmol/kg, bid,
iv), or BC-02(Â) (0.1125 mmol/kg, bid, iv). Both BC-02 and

FIGURE 6 | Antitumor activities of BC-02 in vivo. 3 × 106 H22 cells were injected to the enterocoelia of Kunming mice. Then, mice were divided into different groups
and treated with BC-02 and capecitabine, and survival period was recorded (A). Capecitabine-resistant H22 cells was inoculated subcutaneously in KM mice, and
they were treated with BC-02 and capecitabine. Then, mice body weight was monitored (D). After 2 weeks, all mice were sacrificed and dissected to weigh tumor
tissues (B,C). “#” means no tumor was found.
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capecitabine could extend the lifespan of mice, while BC-02(Â)
(0.1125 mmol/kg, bid, iv) was more potent than capecitabine
(Figure 6A).

We also detected whether BC-02 inhibit the growth of
capecitabine-resistant H22 cell. As described in the method
section, capecitabine-resistant H22 cells were implanted
subcutaneously in KM mice, and they were treated with BC-
02 (130 mg/kg/day, ig) or capecitabine (370 mg/kg/day, ig).
Both BC-02 and capecitabine could inhibit tumor growth
(Figures 6B,C). No decrease in body weight was observed
indicating the safety of BC-02 (Figure 6D). All together, BC-02
showed potent anti-tumor activity comparable to capecitabine
in vivo.

DISCUSSION

HCC accounts for 85–90% of all liver cancer (El-Serag,
2011; Chacko and Samanta, 2016). Only a small portion
of patients with HCC are available for surgery due to
delayed diagnosis (Diaz-Gonzalez et al., 2016; Grandhi et al.,
2016; Llovet et al., 2016; Mazzanti et al., 2016; Mazzoccoli
et al., 2016). Because of low response rate and high toxicity,
many chemotherapy agents have limited usage and can only
provide minimal benefit to the survival time of patients
with HCC (Simonetti et al., 1997; Connell et al., 2016).
In this study, we found that CD13 was a therapeutic
target which can reverse tumor cell MDR. Through the
inhibition of CD13 activity, bestatin could enhance the
cytotoxic effects of 5FU and other chemotherapy agents.
Therefore, bestatin can be used as a good strategy for tumor
therapy.

CD13 is a biomarker in human liver CSCs (Haraguchi
et al., 2010), which are related to cancer MDR, recurrence, and
metastasis. Therefore, we detected the relationship between
CD13 and MDR. The results showed that CD13 inhibitor
bestatin, CD13-neutralizing antibody, and CD13-targeting
siRNA all could enhance the cytotoxic effect of 5FU and other
chemotherapy agents. CD13 overexpression in PLC/PRF/5
cells could cause resistance to chemotherapy agents, while
knocking down of CD13 could make PLC/PRF/5 cells to became
sensitive to chemotherapy agents. All of these data together
indicated that CD13 is a good therapeutic target to reverse
MDR.

CD13-neutralizing antibody and bestatin can increase the
ROS level in CD13+CD90− PLC/PRF/5 and CD13+CD133+
Huh7 CSCs (Haraguchi et al., 2010). Excess of ROS induces
cytotoxicity and apoptosis of cancer cells. Our previous work
also indicated that BC-02 impaires the properties of liver CSCs
by targeting CD13 and upregulating the intracellular ROS and
ROS-induced DNA damage (Dou et al., 2017). APN inhibitor
4cc also synergizes the antitumor effects of 5FU in human liver
cancer cells via ROS-mediated drug resistance inhibition and
concurrent activation of the mitochondrial pathways of apoptosis
(Sun et al., 2015). Therefore, we detected the relationship
between CD13 inhibition and ROS. FCS data indicated that
CD13 inhibitor bestatin, CD13-neutralizing antibody, and CD13

targeting-siRNA all could enhance the ROS upregulation effect of
5FU in tumor cells. Therefore, through CD13 inhibition, tumor
cells cannot resist the ROS upregulation effect of 5FU, thereby
leading to proliferation inhibition. Gclm participates in ROS
scavenger pathway and encodes the glutamate-cysteine ligase
which catalyzes the rate-limiting synthesis step of glutathione
(GSH). GSH works as a critical cellular anti-oxidant and reducing
agent. Gclm is overexpressed in the CD13+CD90− fraction
in PLC/PRF/5 cells (Haraguchi et al., 2010). Therefore, CD13
may protect cells from excessive ROS through up-regulation of
Gclm.

Capecitabine has been tested as first- and second-line
treatments for HCC by some studies (Murer et al., 2016;
Casadei Gardini et al., 2017), and its antitumor activity was
higher than that of 5FU in the mice transplant model. In
the present assay, the capecitabine dosage was the maximum
endurable dosage, while BC-02 was used at a much lower
dosage. When treated with equal dosage, BC-02 performed
better than capecitabine (data not shown). Moreover, BC-02
(0.1125 mmol/kg, bid, iv) was also more potent than the
maximum endurable capecitabine dosage in lifespan assay.
Furthermore, BC-02 was also sensitive in capecitabine-resistant
H22 model. BC-02 achieved its antitumor activity through ROS
upregulation. Silver nanoparticles also increased ROS level and
lead to cell apoptosis (Wei et al., 2015). If BC-02 can be
made into silver nanoparticles, its antitumor activity will be
strengthened.

Li et al. (2015) reports that combining 5FU and bestatin
could enhance the anticancer activity of 5FU in human tumor-
derived cell lines and an H22 tumor-bearing mouse model. The
authors mainly focused on normal tumor cells. In this study, we
further indicated that the inhibition of CD13 could reverse the
resistance of HCC cells to 5FU. ROS up-regulation is involved
in the CD13 suppression induced cell death. However, we didn’t
detect the ROS generation and elimination molecular. Therefore,
the underlying molecular mechanism is still unclear and needs
further research.

CONCLUSION

Our study revealed CD13 as a promising target to reverse MDR.
Through CD13 inhibition, the cytotoxic effect of chemo-agents
will be enhanced via ROS upregulation. By the release of bestatin
and 5FU, BC-02 remained sensitive to resistant cells. Taken
together, BC-02 can be developed as a potent chemotherapeutic
agent for human liver cancer.
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A constitutive activation of the Wnt/β-catenin pathway is an initiating event in colon
carcinogenesis. We developed colon cancer cells models that highlight the non-
selectivity of previously described inhibitors of the Wnt pathway and we propose our
model as a suitable screening system for inhibitors of the pathway.

Keywords: cell models, Wnt/β-catenin pathway, inhibitors, high-throughput screening, colorectal cancer

RESULTS

A constitutive activation of the Wnt/β-catenin signaling pathway is admitted as an initiating
event of carcinogenesis in at least 90% of colorectal cancers (Giles et al., 2003). This constitutive
activity is mostly due to mutations of the APC tumor suppressor that result in the accumulation of
β-catenin in the nucleus where β-catenin interacts with TCFs transcription factors to activate the
transcription of target genes like c-myc (Sansom et al., 2007). To date, very few molecules targeting
the Wnt pathway have been discovered and none has been yet approved for clinical practice (Kahn,
2014). Therefore, there is a great interest in identifying new inhibitors of Wnt signaling for clinical
use.

Luciferase-based reporter assays are widely used for studying gene expression at the
transcriptional level. Here, we use such a system to set up a high-throughput screening assay for
inhibitors of the Wnt/β-catenin signaling pathway by using DLD-1 cells stably transfected with a
luciferase TCF reporter plasmid (Veeman et al., 2003). The choice of a good control was critical
given that a previous work dedicated to screen new Wnt inhibitors had recently been retracted
due to a non-selective inhibition of the firefly luciferase activity (Li et al., 2017). Besides, a reporter
system based on mutated TCF binding sites is available, but has a very low basal luciferase activity
and is rather a control for a non-specific activation of the Wnt pathway. Here, we developed a
genetically modified DLD-1 cell line model expressing the firefly luciferase under the control of the
E2F1 promoter, an independent promoter of the WNT pathway.

Frontiers in Pharmacology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 1160575

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2018.01160
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphar.2018.01160
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2018.01160&domain=pdf&date_stamp=2018-10-11
https://www.frontiersin.org/articles/10.3389/fphar.2018.01160/full
http://loop.frontiersin.org/people/230973/overview
http://loop.frontiersin.org/people/611671/overview
http://loop.frontiersin.org/people/194198/overview
http://loop.frontiersin.org/people/172258/overview
http://loop.frontiersin.org/people/600802/overview
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01160 October 9, 2018 Time: 19:55 # 2

Grimaldi et al. Method for Finding Wnt Inhibitors

FIGURE 1 | Effects of XAV939 (A), IWR-1 (B), WIKI4 (C), ICRT14 (D), and PNU-74654 (E) on luciferase activity of DLD1-Wnt-luc cells (black squares) and of
DLD1-luc control cells (white squares). (F) MTT assay was performed in presence of ICRT14 on DLD1-Wnt-luc cells (black circles) and on DLD1-luc control cells
(white circles). In parallel, luciferase activity of DLD1-Wnt-luc cells (black squares) and of DLD1-luc control cells (white squares) was measured. The Student’s t-test
was performed for doses of 0.5 µM and the probability of error (p-value) is indicated by arrows.

Two types of available Wnt inhibitors were used in order to
validate the model: the tankyrase (TNKS) inhibitors XAV939
(Huang et al., 2009), IWR-1 (Chen et al., 2009) and WIKI4 (James
et al., 2012), and the destabilizers of the TCF/β-catenin complex
ICRT14 (Gonsalves et al., 2011) and PNU-74654 (Trosset et al.,
2006). TNKS acts as an activator of the Wnt/β-catenin signaling
by mediating poly-adenosine diphosphate (ADP) ribosylation of
AXIN-1 and -2, two key components of the β-catenin destruction
complex whose inhibition enhances β-catenin degradation and
consequently inhibits the Wnt/β-catenin signaling (Yamada and
Masuda, 2017).

XAV939 (Figure 1A), IWR-1 (Figure 1B), and WIKI4
(Figure 1C) specifically inhibited the activity of the
Wnt/β-catenin signaling, with and IC50 of 0.13, 0.21 and
0.28 µM, respectively. However, a side activating effect was
observed at doses higher than 1 µM as evidenced by the increase
of the luciferase activity observed in the control conditions.
Besides, both ICRT14 (Figure 1D) and PNU-74654 (Figure 1E)
behaved as non-selective inhibitors as evidenced by the inhibition
of both Wnt dependent and independent luciferase activities. In

addition, PNU-74654 was poorly efficient. To further determine
whether the apparent inhibitory effect of ICRT14 on the Wnt
independent luciferase activity was due to a toxicity, or not,
we evaluated the impact of ICRT14 on cells viability by using
the MTT system in parallel with measurement of the luciferase
activity. As shown in Figure 1F, ICRT14 again decreased both
Wnt dependent and independent luciferase activities in a dose
dependent manner but had no significant effect on cells viability.

MATERIALS AND METHODS

Luciferase and MTT assays were done as we previously described
(Molina-Molina et al., 2008). More details about the methods are
available in the Supplementary Material.

DISCUSSION

With respects to the use of inhibitors previously reported as
specific, studies have concluded that biological activities were
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regulated by the Wnt/β-catenin pathway. In the present study,
we demonstrate that the destabilizers of the TCF/β-catenin
complex ICRT14 and PNU-74654 are unspecific inhibitors of the
Wnt/β-catenin pathway. Therefore, to test the implication of the
Wnt pathway in a biological mechanism, it seems more rationable
to use at least one of the specific inhibitors confirmed here.
Compared with the original reference system dedicated to test
the impact of compounds on the activity of the Wnt/β-catenin
signaling pathway, our method was set-up with an adequate
control that lowers the number of false positives resulting from
a non-specific inhibition of the luciferase enzymatic activity.
For example, using our method points out ICRT14 as a
non-specific inhibitor of the Wnt/β-catenin signaling pathway.
Besides, true positives will have to be dose-dependent tested,
and their ability to decrease the proliferation of colon cancer
cells will have to be evaluated for further potential therapeutic
purposes.
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Ferroptosis is a type of programmed cell death characterized by the accumulation of

lipid reactive oxygen species (L-ROS) driven by the oxidative degeneration of lipids

in an iron-dependent manner. The mechanism by which lipid oxidative degradation

drives ROS-ferroptosis involvesmetabolic dysfunctions that result in impaired intracellular

metabolic processes and ROS production. Recent studies have found that p53 acts

as a positive regulator of ferroptosis by promoting ROS production. p53 directly

regulates the metabolic versatility of cells by favoring mitochondrial respiration, leading

to ROS-mediated ferroptosis. In mild stress, p53 protects cell survival via eliminating

ROS; additionally, in human colorectal cancer, p53 antagonizes ferroptosis by formation

of the DPP4–p53 complex. In short, the mechanisms of p53-mediated ROS production

underlying cellular response are poorly understood. In the context of recent research

results, the indistinct roles of p53 on ROS-mediated ferroptosis are scrutinized to

understand the mechanism underlying p53-mediated tumor suppression.

Keywords: p53, ferroptosis, reactive oxygen species, tumor suppression, metabolic gene

INTRODUCTION

Ferroptosis, a new form of cell death, was first described in a high-throughput screening
of molecules for selectively inducing cell death in RAS mutant isoform cancer cells (1).
As a novel subtype of programmed cell death, ferroptosis is primarily characterized by
increased mitochondrial membrane density and volume shrinkage with distinct morphological,
biochemical, and genetic differences from other types of cell death, including apoptosis, necrosis,
necroptosis, and autophagy; for instance, the typical characteristics of apoptosis, including activated
caspases, chromatin condensation, and DNA fragmentation, are absent in ferroptosis (1, 2),
the distinctive morphological feature of erastin-treated cells involved smaller mitochondria with
increased membrane density (3). In addition, loss of the plasma membrane integrity of necrotic
morphological features and formation of double membrane-layered autophagic vacuoles during
autophagy are not observed in ferroptosis.
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Small molecules belonging to class I and class II ferroptosis-
inducing agents trigger ferroptosis via inhibiting cystine-
glutamate exchange transporter (system X−

c ) and glutathione
peroxidase 4 (GPX4), respectively (4). Class I ferroptosis
inducers, such as erastin, sorafenib, sulfasalazine and the
neurotransmitter glutamate, system X−

c , class II ferroptosis
inducers, such as RSL3, FIN56 (5), or altretamine (6) are shown
to induce ferroptosis via inhibition of GPX4.

Recent studies have reported that p53 activation is essential
for ferroptosis in certain cancers. Since the discovery of p53,
its role on tumor suppression in tumorigenesis and cancer
therapy has attracted considerable attention. Loss of p53 is a
vital event in the tumorigenesis of many human cancers (7, 8).
In general, the tumor suppression activity of p53 in response
to cellular stress relies on its capability to elicit cell-cycle arrest,
apoptosis, and senescence. Nevertheless, recent efforts indicate
that other unconventional activities of p53 are also crucial for
tumor suppression (9, 10).

Novel roles of p53 on tumor suppression have come to light
when a synthetic mutant of p53, incapable of transactivating
the majority of known p53 target genes, displays antitumor
activities in unstressed organisms and some cancer-prone
mouse models (10, 11). A mutant p53 that loses acetylation
at some definite residues of the DNA binding domain is
disabled to evoke growth arrest, senescence, and apoptosis,
thereby inhibiting spontaneous tumor development through
sensitizing cells to ferroptosis (12, 13). Given that p53 is a
main regulatory factor of critically important cellular biological
processes, elucidating the mechanism by which p53 responds to
stress may clarify the upstream signaling of ferroptosis. In the
context of recent insights, the indistinct roles of p53 signaling
in reactive oxygen species (ROS)-mediated ferroptosis via the
transcriptional and non-transcriptional regulation of metabolic
targets are scrutinized (Table 1).

ACTIVATION OF P53 SENSITIZES CELLS
TO ROS AND TRIGGERS FERROPTOSIS

Increased accumulation of lipid reactive oxygen species (L-ROS)
in an iron-dependent manner is a fundamental characteristic
of ferroptosis (14, 27). Metabolic dysfunctions contribute to
ferroptosis by elevating the production of ROS independent of
mitochondria (5). Thus, several investigations have been devoted
to elucidate the regulatory roles of p53 on metabolic targets in
ROS production for regulating ferroptosis.

p53 participates in various cellular processes by acting as
a DNA binding transcription factor that selectively modulates
the expression of target genes. For example, wild-type p53
regulates the transactivation of cytochrome c oxidase 2 (SCO2),
favoring mitochondrial respiration over glycolysis (28). In
addition, p53 plays a negative regulatory role on glycolysis
via transcriptionally modulating glucose transporter (GLUT)1,
GLUT4 (24), TP53-induced glycolysis and apoptosis regulator
(TIGAR), and glutaminase 2 (GLS2) (15, 29) (Figure 1). p53
could also suppress glucose metabolism directly by binding
and inhibiting glucose-6-phosphate dehydrogenase (30). Clearly,

p53 directly adjusts the metabolic polyfunctionality of cells by
supporting mitochodial respiration, leading to ROS-mediated
ferroptosis.

MODULATION OF P53 ON THE
EXPRESSION OF SLC7A11 TO MEDIATE
FERROPTOSIS

p53 Represses SLC7A11 Expression
SLC7A11 (xCT) is a light-chain subunit of the membrane Na+-
dependent system X−

c , which is a disulfide-linked heterodimer
composed of SLC7A11 and a heavy-chain subunit (SLC3A2)
(31). Previous experiments showed the inconformity in the p53
activation and expression of SLC7A11, which could directly
affect ferroptosis in mouse embryonic fibroblast (MEF) cells (32).
System X−

c transfers intracellular glutamate to the extracellular
space and extracellular cystine into cells (33). Cystine is
then converted into cysteine for synthesizing glutathione
(GSH), which protects cells from oxidative stress. Inhibition
of system X−

c reduces intracellular GSH, resulting in an iron-
dependent ferroptosis mediated by the accumulation of L-ROS
(23).

Activation of p53 by nutlin-3 markedly decreases SLC7A11
expression in HT-1080 cells with basal system X−

c activity
(34). Knockdown of p53 completely abrogates the inhibition
of SLC7A11 (35), and system X−

c function and SLC7A11
expression in p53KO cells are insensitive to nutlin-3 (36).
Furthermore, microarray analysis confirmed that SLC7A11
is a novel target gene of p53 in a tetracycline-controlled
p53-inducible cell line (13). A previous study identified

a p53-binding sequence at the 5
′

flanking region of the
SLC7A11 gene and subsequently confirmed the formation
of a p53–DNA complex at the promoter region (13). The
transcriptional repression of p53 on SLC7A11 leads to
the destruction of cystine import, resulting in declined
glutathione production and enhanced ROS-mediated ferroptosis
(Figure 2).

p53-Dependent Repression of SLC7A11 Is
Independent of p53 Mutation
The molecular cascade whereby p53 restrains cystine transfer
by suppressing SLC7A11 expression to induce ferroptosis
may be conducive to the oncosuppressive roles of p53
(13). Although an acetylation-absent p533KR (K117/161/162R)
variant at certain lysine residues cannot transcriptionally
activate gene expression involved in pro-apoptotic and cell
cycle arrest, knock-in mice expressing p533KR are not tumor
prone and exhibit similar overall survival with the wild-type
mice (12). Similarly, studies on p5325,26, a transactivation-
compromised mutant variant of p53, displayed intact tumor
suppression of p533KR in the absence of the most downstream
genes of p53 (10). Reduced levels of SLC7A11 expression
caused by the p533KR variant in xenograft tumor models
lead to an apparent depression of tumor growth (13).
This finding indicates that the intact p53-SLC7A11 axis,
reserved in the p533KR variant, promotes the inhibition
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TABLE 1 | The mechanisms of transcriptional and post-translational regulation on metabolic genes involving in ferroptosis.

Active style Targets Function References

Transcriptional

regulation

GLUT1,

GLUT4

Negatively regulates glycolysis by transcriptional repression (14)

TIGAR Negatively regulates glycolysis by transactivation (15–17)

GLS2 Favoring aerobic glycolysis over oxidative phosphorylation and contributing to Warburg

metabolism

(11, 18–20)

SCO2 Coupling p53 to mitochondrial respiration provides a possible interpretation for the

Warburg phenomenon

(13, 21)

SLC7A11 Repression of SLC7A11 leads to destruction of cystine import, resulting in declined

glutathione production and enhanced ROS-mediated ferroptosis

(9, 15)

RRAD Negatively regulates glycolysis (17)

SAT1 lipid peroxidation and ROS-induced ferroptosis (22)

p21 Slower depletion of intracellular glutathione and a reduced accumulation of toxic L-ROS (23)

Post-translational

regulation

G6PDH Suppress glucose metabolism directly via binding and inhibiting with G6PDH (24)

DPP4 Dismantling of DPP4-p53 complex (25)

SOSC1 The regulation of SAT1 by p53 was SOCS1-dependent, stabilizating p53 (26)

of tumorigenesis independent of the conventional tumor
suppression mechanisms of p53. Thus, ferroptosis can ensue
from the transcriptional repression of SLC7A11 in a p53-
dependent mechanism in response to stress, irrespective of p53
mutational status (37).

However, whether cell ferroptosis upon ROS-induced by
p533KR in human cancer cells is similar to that of wild-type
p53 remains unclear. In addition, whether cyclophilin D could
be a downstream responder of p53 activation has yet to be
clarified (38).

Acetylation Is Crucial for p53-Mediated
Ferroptosis
p53 activity is controlled by a complex fine-tuning network
that includes protein stability, recruitment of co-inhibitor or
activator, and various post-translational modifications, such as
acetylation, ubiquitination, phosphorylation, and methylation
(25, 39). In particular, acetylation of p53 serves a vital
role in regulating downstream targets in a promoter-specific
activation during stress responses. Acetylation of p53 at
K120 by Tip60/MOF is crucial for p53-induced apoptosis
(40). Nevertheless, p53-mediated cell cycle arrest is involved
in the combinative acetylation of K120 by Tip60/MOF and
K164 by CBP/p300 (41). The p533KR mouse expressing
acetylation-deficient p53, similar to the K120/164R mutations
in human, displays intact p53-dependent metabolic regulation
but lacks p53 functions in pro-apoptosis activity and growth
arrest (12).

A recent study has found that p53 is acetylated at lysine
residue K98 by acetyltransferase CBP. Acetylation of p53
at K98 lysine residue in mouse does not interfere with the
steady-state, DNA-binding abilities and transcriptional activity
of p53. However, combinatorial absence of K117/161/162
acetylation and K98 acetylation abrogates p53-mediated
transcriptional regulation on SLC7A11, TIGAR, and
GLS2 (32).

Binding of p53 With DPP4 Limits
Ferroptosis by Regulating SLC7A11
Although p53 induces ferroptosis in a transcription-dependent

manner in various cancers, in human colorectal cancer (CRC),
it unusually functions in the regulation of erastin-mediated

ferroptosis. p53-deficiency contributes to the increased lipid
oxidation and GSH downregulation in CRC cells treated with

erastin (42). Interestingly, the aforementioned alterations in

malondialdehyde and GSH were recovered after transfecting p53
cDNA into p53−/− CRC cells (42).

Depletion of p53 contributing to ferroptosis is involved
with interdicting dipeptidyl-peptidase-4 (DPP4) activity in a

transcription-independent mechanism. DPP4, a membrane-

bound dimeric peptidase, is widely expressed in different cell
types and can cleave and degrade various bioactive peptides

biologically (43, 44). The function of DPP4 in tumorigenicity

has been studied in many tumors (45). Deviant expression of

DPP4 is associated with tumor aggressiveness in different cancers
(18, 46). Paradoxically, some advanced malignancies, including

lung squamous cell carcinoma and endometrial carcinoma, show
the absence of DPP4 (22). Thus, DPP4 may play different roles in

different backgrounds or cancers, and further studies are needed
to elucidate the exact mechanism of DPP4 in cancer.

DPP4 has been related to increased proportion of cancer stem

cells and worse prognosis of CRC patients (16). Loss of p53
restrains the nuclear localization of DPP4 and boosts plasma-

membrane-associated DPP4-dependent lipid peroxidation

in CRC cells; then, the DPP4–NOX complex is formed
and facilitates lipid peroxidation-induced ferroptosis. p53

antagonizes ferroptosis in CRC cells by facilitating DPP4 into
nuclear to form the DPP4–p53 complex; dismantling of the

DPP4–p53 complex can recover the ferroptosis sensitivity of

CRC cells to erastin (Figure 3). This mechanism differs from

the previously recognized role of p53 as a positive regulator
of ferroptosis in non-CRC cells (13, 32, 47, 48). Thus, the
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FIGURE 1 | p53 binding sites within the upstream regulatory region of the target gene promoters. Schematic diagram indicates the p53 binding sites within the

upstream regulatory region of the SLC7A11, SAT1, SCO2, TIGAR, and GSL2 promoters.

bidirectional regulation of ferroptosis by p53 in a transcription-
dependent and transcription-independent manner is dependent
on tumor types and background.

However, many vital questions need to be elucidated. First,
only two types of CRC cell lines are used in Xie’s experiment
(42), which is insufficient to prove the role of p53 and DPP4 on
ferroptosis in CRC. Second, DPP4 is ubiquitously expressed in
various cell types, including different tumors, whereas mutations
and deletions of p53 are also common in malignant tumors.
Further studies are needed to reveal the mechanism underlying
the different roles of the DPP4–p53 complex on the regulation
of SLC7A11 in CRC and other types of malignant tumors.
Third, whether that p53 favors the localization of DPP4 into
nuclear to form the DPP4–p53 complex could be affected
by the mutation of p53 or modification of p53, such as
acetylation, should be illuminated, and this may provide an

answer to the opposite effects of p53 in different cellular
context.

P53 REPRESSES THE TIGAR, GLS2, SCO2,
AND SAT1 GENES TO MEDIATE
FERROPTOSIS

TIGAR Plays an Antioxidant Functions in a
p53-Dependent Manner
As a target of p53, TIGAR is prefigured to participate in tumor
suppression and plays a role in antioxidant functions, which is in
line with its functions in preventing cells from the acquirement
of injury (49) (Figure 2). Nevertheless, in mouse models, the
absence of TIGAR reduces capabilities to regenerate injured
intestinal epithelium and represses tumor development with
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FIGURE 2 | Schematic diagram of transcriptional regulation of p53 on targets. (a) p53 transcriptionally represses the expression TIGAR, GLS2, and SCO2 to mediate

ferroptosis. (b) SOCS1 is required for p53 modulating some target genes and SOCS1–p53 complex preserves a pool of preactive p53 via preventing p53

degradation. (c) Modulation of p53 on the expression of SLC7A11 system X−c activity to mediate ferroptosis.

FIGURE 3 | Schematic diagram of post-translational regulation of p53 on targets. (a) p53 antagonizes ferroptosis by favoring DPP4 into a nuclear to form of the

DPP4–p53 complex and impeding formation of the DPP4–NOX complex, which is required for lipid peroxidation in ferroptosis. (b) p53 suppresses glucose

metabolism and production of NADPH via inhibiting glucose-6-phosphate dehydrogenase directly.
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ROS restriction (50). TIGAR is upregulated in some cancer
models and tumor types via a pattern that may be independent
on the maintenance of p53 (51, 52). Furthermore, TIGAR
expression negatively correlates with p53 expression in human
breast cancer (53). p53-independent expression of TIGAR is
poorly understood, although some transcription factors, such as
SP1, CREB, and other members of the p53 family (p63 and p73),
have been implicated in the regulation of p53 (17, 19, 54). In
brief, these results highlight that TIGAR functions as a tumor
suppressor in response to p53 but might also participate in
cancer development when TIGAR expression is deregulated and
uncoupled from p53 (20).

GLS2 Plays an Antioxidant Functions in a
p53-Dependent Manner
Glutaminolysis plays crucial roles in ferroptosis (27).
Glutaminolysis refers to the switch of glutamine into glutamate
under the catalysis of GLS1 and GLS2. Although both enzymes
are similar in structure and enzyme catalysis, GLS2 is required for
ferroptosis (27). Human GLS2 gene is located on chromosome
12q13 and contains two potential p53 binding sites (BS).
Adenovirus-mediated expression of p53 binds to both BS1
and BS2, but only BS2 is associated with endogenous p53.
These data show that p53, once activated, can directly combine
with BS2 in the GLS2 promoter and augment the mRNA
expression of GLS2 (21). Upregulation of GLS2 contributes to
p53-dependent ferroptosis by favoring aerobic glycolysis over
oxidative phosphorylation and contributing to Warburg effect
(27, 47, 55, 56) (Figure 2).

p53-Mediate Metabolisms via Repressing
the SCO2
Synthesis of SCO2 is essential for regulating the cytochrome c
oxidase complex, which is the main site of oxygen utilization
in eukaryotic cells. The balance between the utilization of
respiratory and glycolytic pathways is modulated by SCO2,
which is a downstream target of p53 (57) (Figure 2). The
source of energy from cellular respiration to glycolysis caused
by the loss of p53 function resembles metabolic switch toward
glycolysis in cancer cells with wild-type p53 when the SCO2
gene is depleted. SCO2 coupling p53 tomitochondrial respiration
provides a possible interpretation for the Warburg phenomenon
and supplies new ideas as to how p53 influences metabolism and
ferroptosis (28).

P53-MEDIATED ACTIVATION OF SAT1
ENGAGES IN FERROPTOSIS

The polyamines, amino acid-derived polycationic alkylamines,
are basic for the growth and survival of eukaryotic cells (58).
Polyamine metabolism is frequently dysregulated in cancers
(59). Spermidine/spermine N1-acetyltransferase 1 (SAT1), a rate-
limiting enzyme, catalyzes the acetylation of spermidine and
spermine into N1-acetylspermidine and N1-acetylspermine (60).

SAT1 could be highly induced by p53 (48). It is a p53-regulated
target in wild-type p53 melanoma cells treated with Nutlin using

RNA sequencing and two p53-binding sites have been found on
the promoter region of SAT1. SAT1 transcriptionally activated
in a p53-dependented manner is critical for lipid peroxidation
and ROS-induced ferroptosis, and decreased expression of SAT1
significantly abrogates p53-induced ferroptosis. Elevation of
prostaglandin-endoperoxide synthase 2 (PTGS2), a ferroptosis
inducer, was identified in high-SAT1-expression xenograft
tumors. Ferroptosis induced by SAT1 is arachidonate 15-
lipoxygenase (ALOX15) dependent (Figure 2). ALOX15 is a
lipoxygenase that catalyzes the peroxidation of arachidonic acid,
and inhibition of ALOX15 can entirely rescue SAT1-induced
ferroptosis. These results are consistent with the previous
finding that ALOX15 is a main adjuster with which oxidative
stress is transformed into lipid peroxidation and cell death
(61). Nevertheless, whether that SAT1 plays a role in tumor
suppression remains largely unknown.

SOCS1 REGULATES FERROPTOSIS BY
ACTIVATING P53 VIA PHOSPHORYLATION
AND STABILIZATION

Suppressor of cytokine signaling (SOCS) family proteins have
been implicated as negative feedback regulators of cytokine
signaling pathways mediated by JAK-STAT (62). SOCS is
involved in tumor development by regulating STATs in the
background of aberrant activation of the JAK/STAT5 pathway.
In particular, SOCS1 is thought to act as a pivotal tumor
suppressor through negative regulation of JAKs and plays vital
roles in tumor progression. Downregulated SOCS1 expression in
various human cancers has been associated with dysregulation of
cytokine receptor signaling pathways (63), whereas upregulated
SOCS1 expression is associated with earlier tumor stages and
better clinical outcomes in breast cancer (64).

A significant correlation exists between the expression of
SOCS1 and the SOCS1-dependent p53 target genes in human
fibroblasts, and SOCS1 is required for p53 activation (26, 65).
SOCS1-regulated genes overlap with a set of genes induced
by oxidized phospholipids, which has been recently linked to
ferroptosis (66). The regulation of SAT1 by p53 is SOCS1-
dependent, suggesting a role for SOCS1 in ferroptosis. Aside
from influencing p53 target gene expression, SOCS1 also plays a
general role in senescence by stabilizing the interactions of p53
with protein complexes at DNA damage foci (Figure 2). This
function of SOCS1 allows the maintenance of a pool of preactive
p53 that could be slowly released and contribute to generate a
lasting chronic p53 response (67). SOCS1 activates the functions
of p53 via facilitating the serine 15 phosphorylation of p53 and
stabilizing p53 by interfering with KAP1 (67).

DELAYED FERROPTOSIS ONSET
REQUIRES P21

CDKN1A (encoding p21) is a well-characterized target of p53
and key mediator of p53-dependent cell-cycle progression. p21
upregulation could cause a coordinated p53-mediated response
that normally decreases cystine import to match the lower
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metabolic demands of growth-arrested cells. The impact of
p21 on GSH metabolism renders it a reasonable target for
inducing ferroptosis in the context of p53 (68). Stabilization
of p53 and activation of the p53–p21 axis make many cancer
cells insensitive to ferroptosis induced by system X−

c inhibition
or direct cystine deprivation. p21-dependent suppression of
CDKs may be required to preserve GSH by regulating CDK-
regulated metabolic enzymes and inhibit ferroptosis by inducing
a complete cell-cycle arrest (69). However, the mechanism
through which the p53–p21 axis reduces cellular reliance on
system X−

c -mediated cystine import and ongoing de novo GSH
synthesis is unclear (36). Thus, the p53–p21 axis may help cancer
cell survive metabolic stress, such as cystine deprivation, by
suppressing the onset of ferroptosis, indicating that the p53–
p21 transcriptional axis negatively regulates ferroptosis in cancer
cells.

S47 POLYMORPHISM OF P53 DECREASES
FERROPTOSIS

Aside from mutations that impair p53 activity, single-nucleotide
polymorphisms of p53 also alter cancer risk and clinical outcome
significantly by impairing p53 signaling. About 20 years earlier,
a naturally occurring polymorphism in p53 was discovered in
Africans and African Americans; this polymorphism transforms
the proline residue adjacent to Ser46 to a serine in human p53
(70). In particular, the Pro47Ser polymorphism (S47) impairs
p53 apoptotic and transcriptional functions through reducing
phosphorylation on serine 46 (47, 55). The defect in p53 function
is traced to a restriction in downstream gene regulation that
reduces cell ferroptosis in response to stress (70).

Profound cell death is induced in wild-type MEFs cells treated
with erastin. However, cell viability assays certified that S47

MEFs and heterozygote S47/wild-type MEFs are resistant to
erastin, especially S47 MEFs (47). Interestingly, treatment with

erastin remarkably upregulates GLS2 expression in wild-type
cells but not S47 cells, and depletion of GLS2 in wild-type
MEFs recapitulates the cell death defect that is exhibited in S47
cells treated with erastin (47). The defective capacity of S47 to
transactivate GLS2 might annotate the ferroptosis defect and
tumor-prone characteristics of S47 mice (55).

In brief, elucidating the relevancy between p53 and ferroptosis
has shown the other features of p53 biology and provided insights
into the tumor suppression roles of p53. Clarification of the
mechanism provides further insights into exploiting feasible
therapeutic means through inducing ferroptosis defined by the
occurrence of ROS in p53-retaining tumors. Nevertheless, the

roles of p53 in ferroptosis remain formally demonstrated in
different contexts due to the appearance of opposite effects in

various cancer cells. Moreover, p53 could protect cells from
slight stress damage via eliminating ROS, but p53-mediated
ferroptosis owing to serious stress in cancer cells relies on the
accumulation of ROS. Nevertheless, the mechanism of p53-
mediated ROS production underlying cellular response is poorly
understood.
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Ruthenium complexes are a new generation of metal antitumor drugs that are
currently of great interest in multidisciplinary research. In this review article, we
introduce the applications of ruthenium complexes in the diagnosis and therapy of
tumors. We focus on the actions of ruthenium complexes on DNA, mitochondria, and
endoplasmic reticulum of cells, as well as signaling pathways that induce tumor cell
apoptosis, autophagy, and inhibition of angiogenesis. Furthermore, we highlight the
use of ruthenium complexes as specific tumor cell probes to dynamically monitor the
active biological component of the microenvironment and as excellent photosensitizer,
catalyst, and bioimaging agents for phototherapies that significantly enhance the
diagnosis and therapeutic effect on tumors. Finally, the combinational use of ruthenium
complexes with existing clinical antitumor drugs to synergistically treat tumors is
discussed.

Keywords: ruthenium complexes, antitumor, diagnosis and therapy, drug combinations, synergistic effect

INTRODUCTION

Chemotherapy is an important modality for cancer treatment. Since the introduction of metal
chemotherapeutics represented by cisplatinum (Figure 1A), numerous metal agents have been
developed as antitumor drugs, and platinum-based drugs have become the focus of metal-based
antitumor drug research (Harper et al., 2010; Burger et al., 2011; Wang X. et al., 2015). In
recent years, the platinum-based drugs have become the first line of anti-cancer drugs because
of their significant antitumor efficacy (Jakupec et al., 2008; Gasser et al., 2011; Wang and Guo,
2013). However, there are increasing reports that platinum-based anticancer drugs have severe
side effects including myelotoxicity, peripheral neuropathy et al. (Galanski, 2006; Samimi et al.,
2007). Therefore, researchers have turned their attention to other potential metal antitumor drugs.
Ruthenium complexes have shown remarkable antitumor activity among the numerous metal
compounds studied; they possess various advantages over platinum drugs, such as potent efficacy,
low toxicity, less drug resistance, and are expected to become a new generation of clinical metal
antitumor drugs (Abid et al., 2016; Thota, 2016; Southam et al., 2017).

There are three main oxidation states of ruthenium compounds. The high oxidation state
of Ru(IV) compound is unstable, which limited its further development (Duan et al., 2009).
Ru(III) complexes have good stability of thermodynamics and kinetics, and can be used as
prodrugs under biological circumstances of hypoxia, acidic pH and high level glutathione, showing
antitumor effect by reducing to corresponding Ru(II) counterparts in vivo (Minchinton and
Tannock, 2006; Antonarakis and Emadi, 2010). Ru(II) can directly kill tumor cells via multiple
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mechanisms (Zeng et al., 2015). Ru(II) complexes have great
photophysical and chemical properties as well as multiple
exchanging ligands. Combining with their applicability as
nanomaterials and they have demonstrated significant antitumor
efficacy (Poynton et al., 2017). Generally, the thermodynamic and
kinetic stability of Ru(II) compounds are higher than Ru(III) due
to their lower oxidation states (Duan et al., 2009). In addition,
the nature and net charge of the ligands play important roles in
the kinetics of Ru(II) compounds hydration (Abid et al., 2016).
Many Ru(II) compounds showed better antitumor activities than
their corresponding Ru(III) counterpart in vivo (Minchinton and
Tannock, 2006; Hartinger et al., 2013). Generally speaking, the
following options are viable in improving the water solubility
of ruthenium compounds. (i) modifying the ligand structures;
(ii) constructing the supramolecular ruthenium compounds; (iii)
encapsulating ruthenium compounds into nanomaterial systems.
(Suss-Fink, 2010; Jiang et al., 2012; Schmitt et al., 2012).

All the following ruthenium complexes that have progressed
to clinical studies, NAMI-A {ImH[trans-RuCl4(dmso)
(imidazole)]} (Figure 1B), KP1019 {indazolium trans-
[tetrachlorobis(1H-indazole)ruthenate(III)]} (Figure 1C),
and KP1339, are Ru(III) complexes (Webb et al., 2013). NAMI-A
showed potent inhibitory efficacy on tumor metastasis. However,
the phase II clinical studies revealed that it caused severe side
effects in patients and, therefore, further investigations were
not undertaken (Bergamo et al., 2003; Alessio et al., 2004).
KP1019 had also failed to be investigated because of its poor
water solubility, severe side effects and unsatisfactory efficacy
for clinical study, (Hartinger et al., 2006, 2008). To improve the
low water solubility of KP1019, researchers designed a more
soluble sodium salt complex, KP1339 [Na(trans-RuCl4 (Ind)2)]
(Figure 1D), which is currently used in clinical studies (Heffeter
et al., 2010). Using the potent photophysical and chemical
properties of Ru(II) complex, researchers have synthesized a
photosensitizer TLD1443 (Figure 1E), which has immensely
enhanced photodynamic therapy (Zeng et al., 2017a). It has a
significant therapeutic efficacy on bladder cancer and is currently
in phase II clinical trials (Smithen et al., 2017).

Based on the characteristics of ruthenium compound,
optimizing its structure with relevant modification is a good
strategy to improve its targeting capability and antitumor
activity (Blanck et al., 2012). Researchers designed a series
of lipophilic ruthenium complexes that effectively increase the
uptake efficiency of tumor cells (Svensson et al., 2010; Matson
et al., 2011). They found that the difference in the length of
alkyl ether chains contributed to the different organelle-targeting
properties of ruthenium complexes. Coupling of targeted
polypeptides with ruthenium complexes is another effective
way to enhance their targeting capability (Chakrabortty et al.,
2017). In addition, encapsulating ruthenium complexes into
nanomaterials can improve their targeting capability through
the enhanced permeation and retention (EPR) effect (Frasconi
et al., 2013; Wei et al., 2015). Capitalizing the properties of Ru(II)
complexes, researchers have designed a series of nanoruthenium
complexes including, Ru(II)-selenium nanoparticles (Sun et al.,
2013), Ru(II)-gold nanocomplexes (Rogers et al., 2014), Ru(II)-
silicon nanocomplexes (Frasconi et al., 2013), Ru(II)-carbon

nanotubes (Wang N. et al., 2015), and some organic and
biometallic nanoruthenium complexes (Chakrabortty et al.,
2017) with direct antitumor effects. These nanoruthenium
complexes can also be used as a good catalyst, photosensitizer
and tracer to enhance the therapeutic effect (Chakrabortty et al.,
2017).

ANTITUMOR TARGETS AND
MECHANISMS OF RUTHENIUM
COMPLEXES

Ruthenium complexes show multiple targets and diverse
mechanisms for its antitumor properties (Figure 2). Some
ruthenium complexes act on telomere DNA, some interfere
with replication and transcription of DNA, and others inhibit
related enzymes (Kurzwernhart et al., 2012; Jain et al., 2018).
Furthermore, ruthenium complexes can block the cell cycle
(Kou et al., 2012; Wang et al., 2016; De Carvalho et al., 2018)
and induce the formation of DNA photocrosslinking products
to prevent RNA polymerization enzymes or exonucleases from
binding to DNA, thereby causing tumor cell apoptosis (Le Gac
et al., 2009; Rickling et al., 2010). Studies have found that some
dinuclear and polynuclear Ru(II) polypyridyl complexes bind
stably to the G-quadruplex (G4-DNA) structure of telomere
DNA (Hiyama et al., 1995; Ambrus et al., 2006), inhibiting
telomerase activity and blocking the function of DNA replication,
thus, preventing normal cells from developing into immortalized
tumor cells (Rajput et al., 2006; Shi et al., 2008). Ruthenium
complexes have good topoisomerase (Topo) inhibitory activity
(Kurzwernhart et al., 2012); however, some studies have found
that inhibition of one type of Topo increases the activity of others
(Crump et al., 1999; Vey et al., 1999). To solve this problem,
studies have been conducted to synthesize a ruthenium complex
with dual inhibitory property on Topo I and Topo II, which
significantly inhibits tumor cell proliferation (Du et al., 2011;
Zhang et al., 2013). Researchers have also designed a ruthenium
complex with dual inhibitory effects on G4-DNA and Topo (Liao
et al., 2015), achieving multitarget synergy with strong apoptosis
promoting effects on tumor cells. In addition, Hurley and co-
workers reported a ruthenium complex with dual stabilizing
effects on Topo and G4-DNA, which also inhibited some drug
resistant tumor cells (Kim et al., 2003).

In addition, it was found that ruthenium complexes
accumulate more in organelles, such as mitochondria,
endoplasmic reticulum, and lysosome, than in nucleus (Puckett
and Barton, 2007; Groessl et al., 2011). A number of studies
have revealed that mitochondria is a key target of ruthenium
complexes (Wang et al., 2014; Liu et al., 2015; Wan et al.,
2017), because ruthenium complexes can quickly decrease the
membrane potential of mitochondria, leading to mitochondrial
dysfunction or activating mitochondrial apoptosis pathways.
Furthermore, this effect promoted the expression of pro-
apoptotic members of the B-cell lymphoma-2 (Bcl-2) family,
releasing cytochrome c (Cyto C), and activating cascade reactions
of the caspase family members to induce tumor cell apoptosis.
The endoplasmic reticulum is a key participant in tumor cell
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FIGURE 1 | Structure of five clinical complexes; (A) Cisplatinum, (B) NAMI-A, (C) KP1019, (D) KP1339, and (E) TLD1443.

apoptosis, autophagy, and drug resistance and, thus, is a target
in antitumor research (Sano et al., 2012; Fernandez et al., 2015).
Ruthenium complexes can target the endoplasmic reticulum,
cause oxidative stress or endoplasmic reticulum stress (ERS),
and induce tumor cell apoptosis by activating caspase family
members (Gill et al., 2013; Sano and Reed, 2013). In addition,
ruthenium complexes can target another significant participant
in autophagy, the lysosomes, inducing autolysosome production
and hydrolase release (Tan et al., 2010; Castonguay et al., 2012;
Chen et al., 2016). Thereby, they increase apoptosis of tumor
cells (Yuan et al., 2015).

A very important feature of ruthenium complexes is
that it is effective against many platinum resistant tumors.
Gasser et al. found that [Ru(dppz)2(CppH)]2+ (CppH = 2-
(20-pyridyl)-pyrimidine-4-carboxylic acid)] accumulated in the
mitochondria. Moreover, this Ru(II) complex showed more
cytotoxic effect in cisplatin-resistant A2780/CP70 cells than
cisplatin and less cytotoxic than cisplatin in normal MRC-5
cells (Pierroz et al., 2012). Dyson and co-workers also designed
some ruthenium complexes which contained ethacrynic acid
(EA) ligands that inhibited cisplatin resistant A2780cisR cells

(Ang et al., 2007). Moreover, Chao’s and Chen’s group designed
a series of mitochondria-targeted Ru(II) complexes, based
on a 2-phenylimidazo[4,5-f] [1,10]phenanthroline (PIP) Ru(II)
polypyridyl complexes. These complexes induced apoptosis via
a mitochondrial pathway and were effective against cisplatin
resistant tumor cells (Li et al., 2012c; Wang et al., 2014; Yu et al.,
2014).

The membrane structure as a “protective barrier” not only
regulates the entry of drug molecules into cells, but also acts as
a direct target of drug molecules, effectively killing tumor cells.
A number of studies have confirmed that ruthenium complexes
directly act on cell membrane, changing its permeability to allow
cellular content to flow out of cells and induce cell apoptosis
(Deng et al., 2017). Using the photophysical properties of Ru(II)
complexes, researchers designed a Ru(II) polypyridine complex
that accumulates on mitochondrial membrane and tumor surface
membrane. These complexes emit red phosphorescence and
produce a large amount of 1O2, thereby causing cytotoxicity
and inducing cell apoptosis (Hess et al., 2017; Pal et al., 2018).
Chao and colleagues synthesized Ru(II) pyridine complexes with
two-photon performance and 1O2 yield, which could serve as a
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FIGURE 2 | General targets and mechanisms of anticancer action of ruthenium complexes.

photosensitizer to simultaneously target surface membrane and
mitochondrial membrane of human cervical carcinoma (HeLa)
cells, achieving a dual killing effect (Qiu et al., 2017).

THE USE OF RUTHENIUM COMPLEXES
IN DIAGNOSIS AND TREATMENT OF
TUMORS

The effective diagnosis and treatment of tumors is a major
clinical challenge. Ruthenium complexes have shown promising
application prospects to this difficulty. The combination of
development and applications of subcellular targeting probes
and bio-imaging technologies with the understanding of the
occurrence and physiological development of tumors, is expected
to facilitate the achievement of tumor-specific diagnosis and
therapy. Ru(II) complexes have the advantages of considerable
photothermal stability, large stokes shift, long luminescence
lifetime, and low toxicity (Gill et al., 2009). They are ideal
photosensitizers, catalysts, and imaging agents in phototherapy,
and could serve as excellent probes and tracers for subcellular
structure localization. Thomas and colleagues reported a
lipophilic Ru(II) complex that can be used as a fluorescent
probe, targeting the mitochondria and endoplasmic reticulum of
human breast cancer cell (MCF-7), and it showed comparable
cytotoxicity to that of cisplatin (Gill et al., 2013). In addition to
targeting and imaging tumor subcellular structures, ruthenium
complexes can also detect and specifically recognize biological

components of the microenvironment. As a significant active
ingredient in organisms, the level of thiol in tumor tissues can
change rapidly. Specific recognition of the thiol level is important
for tumor diagnosis and therapy (Dirican et al., 2016; Inal et al.,
2017). The Ru(II)-gold nanocomplex synthesized by Chao and
co-workers could be used as a specific two-photon probe for
thiol level, as it detected biothiol levels in living HeLa cells
and mouse hippocampus using two-photon microscopy, which
provides a potent tool for molecular biology research in tumors
(Zhang et al., 2014). The oxygen allotrope O2 is an indispensable
source of metabolic energy and could be specifically identified
and used to monitor the local metabolites of tumor cells,
which would facilitate tumor diagnosis and therapy. Keyes and
colleagues found that a peptide-bridged dinuclear Ru(II) complex
as the mitochondrial fluorescent probe can monitor the dynamic
changes of O2 concentration in mitochondria of HeLa cell, which
could be used to monitor the malignant proliferation of tumor
cells (Martin et al., 2014). The non-oxygen-dependent Ru(II)
complex has been used as a photosensitizer in treating hypoxic
tumors. This complex overcomes the limitations of low-depth-
effect and low cell killing efficiency of phototherapy, significantly
increasing 1O2 production and fluorescence efficiency, thus,
enhancing cytotoxicity of ruthenium complex and showing
potent therapeutic effects (Volker et al., 2014; Sadhu et al., 2015;
Cuello-Garibo et al., 2017).

The development of DNA structure recognition and imaging
probes enables us to understand the pathogenesis of cancer at
the genetic level, which has enhanced the study of antitumor
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drugs. Using the optical switch effect of Ru(II) complex to DNA
(Augustyn et al., 2007), a Ru(II) polypyridine complex as a
DNA secondary structure recognition probe was designed. The
Barton research team reported a selective Ru(II) complex for
DNA mismatch detection and fluorescence localization, which
effectively reduces the risk of carcinogenesis caused by base
mismatches (McConnell et al., 2012). DNA bulge structures are
caused by the DNA recombination process, which is likely to
cause a frameshift mutation in DNA replication. This structure
binds more tightly to DNA repair proteins than it does to normal
double-stranded DNA, making the bulge structures a potential
binding site for therapeutic drugs (Pieniazek et al., 2011). Keene
and colleagues synthesized a series of binuclear Ru(II) complexes
that selectively recognize and bind to DNA bulge structures
via electrostatic interaction and zonal action, and have DNA-
targeted repair function (Mulyana et al., 2011; Li et al., 2012a).
Z-DNA induces gene deletion, translocation, and other instability
(Dumat et al., 2016). Tridentate complexes, [Ru(tpy)(ptn)]2+

and [Ru(dmtpy)(ptn)]2+, were designed to induce Z-DNA
transforms into a stable B-DNA dominant conformation, which
effectively decreased the risk of mutations (Li et al., 2012b).

In addition to DNA imaging, some complexes were
synthesized by coupling fluorescent Ru(II) complexes with
histone deacetylase inhibitors (HDACIs). These complexes
specifically recognize and image proteins (Kurzwernhart
et al., 2012). Further investigation has found that it not only
images and inhibits HDACs, but also produces a large amount
of reactive oxygen species (ROS) under light irradiation,
showing comparable cytotoxicity to that of cisplatin. Thus, it
induces apoptosis of some tumor cells. Photoacoustic imaging
(PA) is a novel imaging technique for tissue imaging based
on optical absorption coefficients under the action of an
imaging agent (Levi et al., 2014). Liu and co-workers used
poly(nisopropylacrylamide) as a thermal response switch and
[Ru(bpy)2(tip)]2+ as a photosensitizer in combination with
gold nanomaterials to synthesize the Ru(II) complex pRu-
pNIPAM@RBT (Chen et al., 2017). Under optical stimulation,
this complex produces high heat and large amounts of ROS in
tumor tissues, and it showed synergistic action in photothermal
therapy (PTT) and photodynamic therapy (PDT) against
tumors. Ruthenium complexes are good imaging agents for PA.
Combination of infrared thermal imaging quantitative analysis
and PA data, can be effectively used to distinguish healthy and
tumor tissues, which has significantly improved the accuracy and
efficiency of tumor therapy (Su et al., 2010).

At the organizational level, tumor cell proliferation and
metastasis depend on adequate nutrient supply and angiogenesis.
Therefore, blocking tumor angiogenesis is also a key strategy
to inhibit tumor growth and migration (Gau et al., 2017).
Studies have found that some ruthenium complexes have good
antiangiogenic effects and effectively inhibit tumor growth (Silva
Sousa et al., 2016). Liu and colleagues designed a fluorescent
Ru(II)-selenium nanoparticles (Ru-SeNPs) that significantly
inhibited the proliferation of liver carcinoma HepG2 cells.
In vivo experiments in tumor bearing mice revealed that
NAMI-A potently inhibited tumor angiogenesis and migration
(Vacca et al., 2002). In another study, the nitric oxide synthase

(NOS) pathway was found to play an important role in tumor
angiogenesis (Chakraborty and Ain, 2017). Increasing NO levels
is positively correlated with tumor growth and migration.
Drugs that interfere with the NOS pathway can inhibit tumor
angiogenesis. It has been observed that NAMI-A inhibits vascular
endothelial growth factor (VEGF)-mediated angiogenesis in
tumor tissues by scavenging NO (Morbidelli et al., 2003).

SYNERGISTIC EFFECT OF RUTHENIUM
COMPLEXES

Drug combinations are common therapeutic strategies in
clinical practices. Combinational drug molecules act on multiple
targets and pathways simultaneously, which could enhance their
synergistic effects, reduce dosage and side effects, and reduce
the risk of drug resistance (Lehar et al., 2009). A ruthenium
complex was combined with a second-line antitumor agent
ketoconazole (KTZ) in hormone-refractory cancer therapy to
form a RuCl2(KTZ)2 complex, which showed a favorable
synergistic effect (Bozic et al., 2013). The combination of
these two agents in a C8161 melanoma cell line significantly
enhanced the expression of caspase-3 and promoted tumor cell
apoptosis. Mechanistic studies have shown that RuCl2(KTZ)2
has mitochondrial targeting effects, releasing mitochondrial
cytochrome c and activating superoxide dismutase (Mn-SOD),
thereby facilitating apoptosis. In the melanoma (WM164) cell
line, RuCl2(KTZ)2 displayed a stronger inhibitory effect on tumor
cell growth than cisplatin, and induced apoptosis by activating
poly-ADP ribose polymerase (PARP) fragmentation and the
proapoptotic factor Bcl-2-associated X protein (Bax) expression.
RuCl2(KTZ)2 acts on the P53 signaling pathway to effectively
inhibit the proliferation of a variety of adherent tumor cells,
and synergizes the anti-epidermal growth factor receptor (EGFR)
inhibitor C225MAb to kill resistant spheroids (Gelfo et al., 2016).

Berger and colleagues studied the combinations of ruthenium
complexes and first-line anticancer drugs. They found that
the clinical drug, ruthenium complex KP1339 combined with
multi-kinase inhibitor sorafenib was more effective in the
therapy of hepatoma (Hep3B) than KP1339 or sorafenib
alone (Heffeter et al., 2013). Specifically, the mean survival
of patients was extended by 3.9-fold by the combination,
whereas KP1339 and sorafenib alone extended it by 2.4-and 1.9-
fold, respectively. The combination of both agents effectively
inhibited sorafenib-resistant tumor cells. In-depth investigations
have found that the combination substantially increased their
intracellular accumulation and, thereby, interfered with the DNA
synthesis process, rendering the cells unable to perform effective
mitosis, and enhancing apoptosis induction.

In clinical studies, NAMI-A combined with gemcitabine,
better inhibited the activity of non-small cell lung cancer cells
and reduced tolerance compared with the use of gemcitabine
alone, but the combination of both had significant side effects
such as neutropenia, anemia, and renal impairment (Leijen
et al., 2015). Sava and co-workers identified promising drug
combinations with synergistic potential using high-throughput
screening (Bergamo et al., 2015). NAMI-A and doxorubicin
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were shown to have a potent synergistic antitumor efficacy.
NAMI-A effectively increased the accumulation of doxorubicin
in breast carcinoma. In in vivo studies of mouse MCa mammary
carcinoma, this combination increased inhibition of tumor
metastasis by 70%, compared to the use of doxorubicin alone. In
a lung metastasis preclinical tumor model in mice, both agents
demonstrated promising synergistic effects (Marien et al., 2017).
However, there were noticeable side effects when the maximum
doses were used.

The tumor vasculature is poorly organized, resulting in
extravascular permeation of drug molecules (Pries et al., 2010). In
addition, the decreased blood flow and oxygen supply affects drug
uptake, which is also a major obstacle to effective tumor therapy
(Siemann and Horsman, 2015). Studies on the combination
of ovarian carcinoma chemotherapeutic doxorubicin and a
ruthenium complex RAPTA-C have demonstrated that this
combination significantly promoted the apoptosis of A2780
ovarian carcinoma cells compared with either single drug alone
(Weiss et al., 2015). Normalization of tumor vasculature induced
by apoptosis reduces vascular extravasation, and provides
adequate oxygen for oxygen-dependent phototherapy, achieving
synergism (Goel et al., 2011). These studies provide valid evidence
for the interaction between anti-angiogenesis and antitumor
effects.

CONCLUSION AND PERSPECTIVES

Investigation of the antitumor activity of ruthenium complexes
has led to gratifying achievements and the identification of
some promising antitumor compounds (Chen et al., 2016;
Alves de Souza et al., 2017; Zeng et al., 2017b; Zhao et al.,
2018). The ruthenium complex showed more potent activities
than platinum drugs, and has a significant inhibitory effect on
platinum-resistant tumor (Zeng et al., 2016). The peculiarity
of ruthenium compounds suggests that the research methods
used for investigating platinum-based drugs may not fully be
applied in these agents, because the cytotoxic mechanisms of
cisplatin and ruthenium are different. The primary target of
cisplatin is DNA, but the target of some ruthenium complexes
is mitochondria or endoplasmic reticulum. Although they can
both regulate cell apoptosis and cell cycle, cisplatin induces a large
number of genes related to DNA damage, P53 and apoptosis,
while some ruthenium complexes facilitate the expression of
oxidative stress and ER stress (Licona et al., 2017).

The existing research achievements should be combined with
molecular biology and nanomaterials, applying the advantage
of existing tools and methods to develop antitumor drugs
with better therapeutic effects, based on these complexes. This
prospect is extremely enlightening, and antitumor drugs with
better efficacy than that of existing chemotherapeutic drugs,
which are ineffective in treating certain tumors, could be
developed. Furthermore, the prospective agents could be effective
against tumors that have developed drug resistance for their
potent efficacy (Wang N. et al., 2015; Purushothaman et al.,
2018). The results of clinical studies should be reflectively
considered in determining the reasons for the failure of the

clinical investigations of NAMI-A and KP1019, which could
lead to design drugs with less side effects, greater selectivity,
and higher bioavailability. For example, KP1339, the sodium
salt of KP1019, which is currently in clinical studies, has better
water solubility and transmembrane absorption efficiency than
KP1019 (Bytzek et al., 2016). The Ru(II) complex TLD1443, as
a promising photosensitizer, significantly enhanced the efficacy
of phototherapy and produced less toxicity in vitro and in vivo
(Smithen et al., 2017).

Numerous breakthroughs have been made in the diagnosis
and therapy of tumors using ruthenium complexes (Thota
et al., 2018). As a probe, the ruthenium complex could
be used for target localization and imaging of DNA, the
mitochondria, endoplasmic reticulum, and lysosomes, achieving
specific identification and dynamic monitoring of thiol and
O2 in tumors (Martin et al., 2014; Zhang et al., 2014). As
a tracer, it enhances the understanding of the physiological
development of tumors at the genetic level (Wilson et al.,
2016; Xu et al., 2016). As photosensitizers and catalysts, these
complexes have significant synergistic effects with phototherapies
such as PDT, PTT, and photoactivated chemotherapy (PACT)
(Chen et al., 2017). The combination of ruthenium complexes
and PA imaging technology has significantly improved the
accuracy and effectiveness of tumor diagnosis and therapy
(Chen et al., 2014). In the therapy of tumors using drug
combinations, ruthenium complexes have shown favorable
efficacy. The Ru(II) complex combined with KTZ significantly
inhibited the proliferation of C8161 melanoma cells and directly
killed cisplatin-resistant spheroids (Bozic et al., 2013). KP1339
combined with the first-line anticancer drug sorafenib for
hepatic carcinoma, demonstrated a remarkable therapeutic effect
(Heffeter et al., 2013). Furthermore, NAMI-A combined with
gemcitabine enhanced the inhibitory effect on non-small cell
lung cancer while NAMI-A combined with doxorubicin showed
potent inhibitory effects on lung metastasis in vivo (Bergamo
et al., 2015). RAPTA-C and doxorubicin showed synergistically
enhanced therapeutic effects on ovarian cancer and some solid
tumors (Weiss et al., 2015). However, studies on the synergistic
effect of ruthenium complexes are rare, because there are some
uncertain factors such as the mechanism of drug synergy and how
to choose drugs that cooperate with ruthenium complexes (Zhao
et al., 2013; Madani Tonekaboni et al., 2018).

In conclusion, the results of the investigations on drugs
combinations with ruthenium complexes are currently
unsatisfactory. Perhaps the development and use of high-
throughput screening technology and algorithm analysis tools
are a viable strategy to promote the study of drug synergistic
effects (Aviolat et al., 2018).

Presently, the mechanism of action of ruthenium complexes is
unclear, and further research is still needed. Before the ruthenium
complex can be used clinically, numerous problems need to
be addressed, including strategies to improve the hydrolysis of
ruthenium complexes to achieve effective absorption and better
metabolism, as well as enhance their cellular penetration to
achieve targeted tumor cell death. Furthermore, methods to avoid
and alleviate the side effects of ruthenium complexes, enhance
their efficacy via synergism, and overcome drug resistance are
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imperative. The solution to these problems would provide a
promising direction for the design and screening of ruthenium
complexes, which are of great significance for their use in clinical
diagnosis and therapy of tumors.
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Background and Purpose: Although trastuzumab has shown considerable activity in
the treatment of HER2-positive breast and gastric cancers, a significant proportion of
patients do not respond to trastuzumab. Recent studies revealed that osthole, an active
coumarin isolated from Cnidium monnieri (L.) Cusson possesses potent anti-tumor
activity. Here, we for the first time investigated the anti-tumor activity of trastuzumab
in combination with osthole in HER2-overexpressing cancers.

Materials and Methods: N87 and SK-BR-3 cell lines, which were HER2-
overexpressing cancer cells were used in our study. Cell Counting Kit-8 (CCK-8) assay
was utilized to test the inhibitory effects of trastuzumab plus osthole. Combination index
(CI) values were calculated using the Chou-Talalay method. Fluorescence-Activated Cell
Sorter (FACS) assay was used to examine the cell cycle change and apoptosis upon
combinatorial treatment. N87 tumor xenografts were established to evaluate in vivo
effects of trastuzumab plus osthole. In addition, molecular mechanisms were analyzed
by Western blot in vitro and in vivo.

Results: As shown in our study, osthole alone exhibited effective anti-tumor activity
against HER2-overexpressed N87 gastric cancer cells and SK-BR-3 breast cancer
cells, which may be attributed to cell cycle arrest on G2/M phase and apoptosis. More
importantly, our data demonstrated that trastuzumab plus osthole was much more
potent than either agent alone in inhibiting the growth of N87 cancer cells in vitro
and in vivo, which may be partly explained by the enhanced apoptosis upon the
combinatorial treatment. Besides these, we also observed a significant decrease on
the phosphorylation of AKT and MAPK in N87 cells when treated with trastuzumab
plus osthole compared to either agent alone. Further data from N87 tumor xenografts
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revealed that trastuzumab plus osthole exerted their synergistic effects mainly on AKT
signaling pathway.

Conclusion: Collectively, these results support the clinical development of combination
osthole with trastuzumab for the treatment of HER2-overexpressed gastric cancer.

Keywords: trastuzumab, osthole, gastric cancer, apoptosis, AKT

INTRODUCTION

Amplification of human epidermal growth factor receptor-2
(HER2), an important member of the ErbB family, is found in
many solid tumors such as breast cancer and gastric cancer (Han
et al., 2014; Yang et al., 2017). HER2 activation is dependent
on HER2 homodimers or heterodimers with other ErbB family
members, which could stimulate constitutive phosphorylation of
HER2 and initiate the key downstream PI3K/AKT pathway or
MAPK pathway that results in tumor growth and progression
(Agus et al., 2002; Baselga and Swain, 2009; Wang et al.,
2017). Trastuzumab is a well-known HER2-targeted humanized
antibody that binds to the extracellular domain IV of HER2
and then causes inhibition of activation of downstream pathway
(Wang et al., 2012; Li et al., 2013). It was approved by the US
Food and Drug Administration (FDA) for clinical use for patients
with HER2-overexpressing metastatic breast cancer in 1998, and
for HER2-positive metastatic gastric cancer in 2010 (Baselga and
Swain, 2009; Zheng et al., 2014). Despite the effectiveness, the
majority of trastuzumab-responsive patients developed resistance
within 1 year of treatment (Han et al., 2014; Zheng et al., 2014;
Yang et al., 2017). Increased levels of membrane-bound EGFR
and HER3 or sustained PI3K-AKT pathway activation has been
implicated in the resistance to trastuzumab (Baselga and Swain,
2009). Collectively, there is an urgent need to enhance the efficacy
of trastuzumab therapy.

Osthole is a natural coumarin, which was first derived
from Cnidium monnieri (L.) Cusson (Zhang et al., 2015).
As we know, osthole has been used in Traditional Chinese
Medicine (TCM) for the treatment of cutaneous pruritus,
eczema, trichomonas vaginalis infection, and sexual dysfunction
for a long time (You et al., 2009; Zhang et al., 2012). Studies
also revealed that osthole exhibited many pharmacological and
biological activities, including anti-oxidation, anti-osteoporosis,
and anti-inflammation (Liao et al., 2010; Chen et al., 2011).
Recently, osthole was found to potently inhibit the growth
of several types of cancer (Yang et al., 2003; Ye et al., 2013;
Wang et al., 2015). However, its molecular mechanism has
not been comprehensively elucidated although osthole has
shown potent anti-tumor effects. Xu et al. (2011) revealed
that osthole treatment caused G2/M arrest and apoptosis
via modulating PI3K/Akt signaling pathway in lung cancer
A549 cells. Besides, osthole was found to inhibit invasion and
metastasis through down-regulation of MMP-5 and MMP-9
level in human lung adenocarcinoma cells (Kao et al., 2012).
Moreover, studies revealed that osthole exerted anti-tumor effects
on HER2-overexpressed breast cancer through inhibiting the
c-Met/Akt/mTOR pathway (Lin et al., 2010; Hung et al., 2011).

However, the anti-tumor activity of trastuzumab plus osthole in
HER2-overexpressed cancers has not yet been reported.

Herein, we first investigated the anti-tumor effects of osthole
alone in HER2-overexpressed N87 gastric cancer cells and SK-
BR-3 breast cancer cells. Results revealed that osthole caused
G2/M arrest and apoptosis in the two types of cancer cells,
especially in SK-BR-3 cells. As we know, trastuzumab was an
established anti-tumor therapeutic in treating HER2-positive
breast cancer and gastric cancer (Baselga and Swain, 2009; Zheng
et al., 2014). Next, we examined the anti-tumor activity of
trastuzumab in combination with osthole against N87 and SK-
BR-3 cells. Surprisingly, our results for the first time showed
that osthole synergistically enhanced the growth-inhibitory effect
of trastuzumab against N87 cancer cells in vitro and in vivo.
Moreover, we found that the combination was more potent in
inducing apoptosis and reducing the phosphorylation of AKT
and MAPK than either agent alone in N87 cells, which may
explain the synergistic effect. To conclude, these results shown
in our study suggested that the effective regimen by combing
trastuzumab with osthole has a great potential to treat HER2-
overexpressed gastric cancer in clinics.

MATERIALS AND METHODS

Cell Lines
The human breast cancer cell line SK-BR-3 and gastric cancer
cell line N87 were purchased from the American Type Culture
Collection (ATCC).

Agents
Osthole was purchased from Shanghai Macklin Biochemical Co.,
Ltd. (Shanghai, China). It is over 99% pure determined by
HPLC. The stock solution of osthole was prepared by dissolving
in DMEM with 0.25% ethanol and 0.25% dimethyl sulfoxide
(DMSO).

Animals
All experimental protocols were approved by the Animal
Experimentation Ethics Committee of Xinxiang Medical
University and all efforts were made to minimize animal suffering
and reduce the number of animals used. All experiments were
performed in accordance with the guideline of the Animal Care
and Use Committee of Xinxiang Medical University. Five-week-
old female BALB/c nude mice were obtained from the Beijing
Vital River Laboratory Animal Technology Co., Ltd. (Beijing,
China).
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In vitro Cytotoxicity Assays
Cells were plated at a density of 5 × 103 per well and
incubated with increasing concentrations of osthole, trastuzumab
or the combination. Two days later, cell proliferation was
determined using CCK-8 kit (Dojindo, Japan). The percentage
of surviving cells was calculated using the following formula:
[(A450 of experiment – A450 of background)/(A450 of untreated
control – A450 of background)] × 100. Combination index
(CI) values were calculated using the Chou-Talalay method by
Compusyn software (Han et al., 2014). Drug synergy, addition,
and antagonism are defined by C.I. values less than 1.0, equal to
1.0, or greater than 1.0, respectively.

In vivo Therapy Study
N87 cells (1 × 107 per mouse) were inoculated subcutaneously
into the right flank of female BALB/c nude mice. When tumor
volumes reached an average of about 150 mm3 on day 8 after
inoculation, the mice were randomly divided into four groups of
six mice each. Mice were intraperitoneally injected with control
IgG (15 mg/kg for two times every week), trastuzumab (15 mg/kg
for two times every week), osthole (100 mg/kg once daily) or
the combination of trastuzumab (15 mg/kg for two times every
week), and osthole (100 mg/kg once daily) for 2 weeks. Tumors
were measured with digital calipers, and tumor volumes were
calculated by the formula: Volume = Length× (Width)2/2.

FIGURE 1 | Osthole inhibited the growth of N87 and SK-BR-3 cells and induced cell cycle arrest and apoptosis. (A) CCK-8 assay evaluating cell growth of N87 and
SK-BR-3 cells upon treatment with increasing concentration of osthole for 48 h. (B) Cell cycle analysis of N87 cells following 40 µM osthole treatment for 0, 6, and
12 h by flow cytometry. (C) Effects of osthole on cell cycle of SK-BR-3 cells. (D) N87 and SK-BR-3 cells were treated with 40 µM osthole for 30 h and cleaved
Caspase-3 and Bcl-2 were examined by Western blot.
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Immunoblotting
Western blot was performed using established procedures.(Yang
et al., 2017) Cells were lysed in lysis buffer (Beijing Dingguo
Biotechnology Co., Ltd.), incubated on ice for 30 min and
centrifuged for 20 min to remove cell debris. Total cell lysates
were subjected to SDS–polyacrylamide and immunoblotted with
primary antibodies and HRP-conjugated secondary antibody.
After another wash of the membrane, the bands were
detected using a super-sensitive ECL solution (Boster Biological
Technology Co., Ltd., China), and visualized using an Amersham
imager 600 (GE Healthcare Life Sciences, Fairfield, CT,
United States).

Cell Cycle Analysis
This assay was performed according to previous report.(Kovtun
et al., 2010) Cells (1 × 105/mL) were incubated with osthole for
0, 6, or 12 h at 37◦ C. Cells were then fixed with 1 mL of 70%
ethanol, and DNA content was determined after staining with
propidium iodide by flow cytometry. Flow cytometric data were
analyzed using FlowJo 7.6 software.

Apoptosis Analysis
Apoptosis analysis was performed by flow cytometry using
established procedures (Zhang et al., 2012). For flow cytometry
analysis, N87 cells (5 × 106/well ) were plated in 6-
well plate and treated with osthole (40 µM), trastuzumab
(10 µg/mL), or osthole (40 µM) in combination with
trastuzumab (10 µg/mL) for 30 h at 37◦C. The cells were
then labeled with Annexin V and Propidium Iodide (PI;
Beijing Dingguo Biotechnology Co., Ltd, Beijing). Apoptotic
rates were determined by FACSCalibur flow cytometer (BD
Biosciences, Franklin Lakes, NJ, United States) and analyzed
by Flowjo software. The percentage of the early apoptosis was
calculated by Annexin V (+) and PI (−), while the percentage
of the late apoptosis was calculated by Annexin V (+) and
PI (+).

Statistical Analysis
Statistical analysis was performed by Student’s unpaired t test
to identify significant differences unless otherwise indicated.
Differences were considered significant at p < 0.05.

FIGURE 2 | Osthole and trastuzumab synergistically inhibited the in vitro growth of N87 cells. (A) The inhibitory effects of osthole and trastuzumab combinatorial
treatment against N87 cells for 48 h. (B) The inhibitory effects of osthole and trastuzumab combinatorial treatment against SK-BR-3 cells for 48 h. (C) The
synergistic effect of trastuzumab in combination with osthole on the growth of N87 cell line. Combination index (CI) values were calculated at the drug concentration
of trastuzumab (3.125 µg/mL) plus osthole (6.25 µM), trastuzumab (12.5 µg/mL) plus osthole (25 µM), trastuzumab (50 µg/mL) plus osthole (100 µM) using the
Chou-Talalay method. Drug synergy, addition, and antagonism are defined by C.I. values less than 1.0, equal to 1.0, or greater than 1.0, respectively. Data show the
mean ± SD (three independent experiments); ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. ns, no significant difference.
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RESULTS

Osthole Exhibits Growth-Inhibitory
Activity Against HER2-Overexpressed
N87 and SK-BR-3 Cancer Cells Through
Cell Cycle Arrest and Apoptosis
We first examined the inhibitory effects of osthole alone on N87
and SK-BR-3 cell lines. As shown in Figure 1A, osthole inhibited
the growth of N87 and SK-BR-3 cancer cells in a dose-dependent
manner. Additionally, we found that SK-BR-3 cell line responded
more sensitively to osthole compared with N87 cell line.

Furthermore, we investigated the effect of osthole on cell
cycle arrest and apoptosis in N87 and SK-BR-3 cells. FACS
assay showing that osthole significantly elevated the percentage

of G2/M phase in both N87 and SK-BR-3 cells when treated
for 6 and 12 h compared to control (Figures 1B,C). More
importantly, elevated sub-G1 population in SK-BR-3 cells was
observed after treatment for 12 h. As we know, Bcl-2 was an
important anti-apoptotic protein that regulates a late step in the
apoptosis pathway (Srinivas et al., 2000; Willis et al., 2007). And
Caspase-3 is an important member in Caspase family, which
is critical for cytochrome c-dependent apoptosis (Zou et al.,
1997). In our study, we found that Bcl-2 was down-regulated and
cleaved Caspase-3 was up-regulated after treatment with osthole
for 30 h, suggesting apoptosis may be induced following cell
cycle arrest in response to osthole treatment in SK-BR-3 and N87
cells (Figure 1D and Supplementary Figure S1). Taken together,
osthole may exert its anti-tumor effects in SK-BR-3 and N87 cells
through inducing cell cycle arrest and apoptosis.

FIGURE 3 | Trastuzumab enhanced osthole-induced apoptosis, which may partly explained the synergistic anti-tumor effect of trastuzumab in combination with
osthole. (A) Induction of apoptosis of N87 cells after control IgG (10 µg/mL), osthole (40 µM), trastuzumab (10 µg/mL) or the combinatorial treatment for 30 h.
Apoptosis was measured by flow cytometry. (B) Statistical analysis of the percentages of the apoptotic cells. Data was shown with mean ± SD. (C) Cell cycle and
apoptosis related protein (CyclinB1, cleaved Caspase-3, Bax or Bcl-2) was examined in N87 cells when treated with control IgG (10 µg/mL), osthole (40 µM),
trastuzumab (10 µg/mL), or the combination for 30 h. (D) Quantification of Western blot signal intensity analysis is expressed relative to the β-actin loading control by
using Image J software. Data show the mean ± SD (three independent experiments); ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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Trastuzumab and Osthole Act
Synergistically on N87 Gastric Cancer
Cells in vitro
Next, we examined the inhibitory effects of trastuzumab in
combination with osthole on N87 and SK-BR-3 cell lines. As
shown in Figures 2A,B, trastuzumab plus osthole exhibited a
significantly greater inhibitory activity than either agent alone
in N87 cells, while no marked synergistic effect was found in
SK-BR-3 cells.

To further examine whether the combination of trastuzumab
with osthole is synergistic, we treated N87 cells with combination
of trastuzumab and osthole at various concentrations. Data were
analyzed using the method of Chou and Talalay to establish drug
C.I. values (Han et al., 2014). Synergy is defined as C.I. values of
<1.0, antagonism as C.I. values >1.0, and additivity as CI values
equal to 1.0. Our results showed that trastuzumab and osthole
synergistically inhibited the growth of N87 cells (Figure 2C).

Trastuzumab in Combination With
Osthole Synergistically Induced
Apoptosis
Furthermore, we investigated whether the co-treatment
of trastuzumab with osthole may synergistically induce
apoptosis in N87 cells. First, the apoptotic cell percentage
was analyzed by flow cytometry following Annexin V and PI
staining. Results showed that the percentage of apoptotic cells
was significantly increased in the trastuzumab plus osthole
treated cells compared to either agent mono-treated cells
(Figures 3A,B).

And we further assessed the cell extracts for expression
of apoptotic markers including cleaved Caspase-3, Bcl-2,
and Bax. Compared to treatment with either agent alone,
combinatorial treatment significantly up-regulated the
level of cleaved Caspase-3 (Figures 3C,D). In addition,
Bcl-2 was markedly down-regulated, while Bax that was a

protein favoring induction of apoptosis was up-regulated
in trastuzumab plus osthole treated cells. Besides these,
the expression of cell cycle-related molecule, CyclinB1 was
significantly decreased in N87 cells upon combinatorial
treatment. Taken together, these results suggested the addition
of trastuzumab markedly enhanced osthole-induced apoptosis,
which may partly explain the superiority of combinatorial
treatment.

Effect of Trastuzumab Plus Osthole on
AKT and MAPK Signaling Pathway
To further investigate the mechanism that may explain the
synergistic effect, we examined the level of AKT, phosphorylated
AKT, MAPK, and phosphorylated MAPK in N87 cells treated
with trastuzumab in combination with osthole. Compared
to trastuzumab or osthole treatment alone, trastuzumab plus
osthole more significantly inhibited the phosphorylation of
both AKT and MAPK in N87 cell lines (Figures 4A,B).
Notably, combinatorial treatment resulted in a more effective
inhibition on phospho-AKT level than on phospho-MAPK
level, whereas there was no substantially decrease in total AKT
and MAPK protein levels. Therefore, our results suggested
that trastuzumab in combination with osthole may exert their
synergistic effect on inhibiting AKT and MAPK pathway,
mainly inhibiting the phosphorylation of AKT, which also
further explained the superior effects of trastuzumab plus
osthole.

Trastuzumab in Combination With
Osthole Potently Suppresses the in vivo
Growth of N87 Cancer Xenografts
To assess the synergistic effect in vivo, we examined the
therapeutic efficacy of trastuzumab plus osthole for nude
mice bearing established N87 tumor xenografts. As shown
in Figures 5A,B and Supplementary Figure S2, our in vivo

FIGURE 4 | Trastuzumab in combination with osthole blocked AKT pathway in a synergistic manner. (A) Immunoblots assessing AKT and MAPK signaling in the
N87 cell lines upon treatment with control IgG (10 µg/mL), trastuzumab (10 µg/mL), osthole (40 µM), or trastuzumab (10 µg/mL) plus osthole (40 µM) for 30 h. Data
are representative of three independent experiments. (B) Quantification of Western blot signal intensity analysis is expressed relative to the β-actin loading control by
using Image J software. Data show the mean ± SD (three independent experiments); ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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FIGURE 5 | Trastuzumab plus osthole combinatorial treatment inhibits the growth of N87 cancer cells in vivo. (A) Tumor volume of N87 xenografts after injection with
control IgG (15 mg/kg), Trastuzumab (15 mg/kg), Osthole (100 mg/kg), or Trastuzumab (15 mg/kg) plus Osthole (100 mg/kg). (B) On day 16 post first injection,
xenograft tumors from each group were removed and photographed. Representative tumors in each group were shown. (C) After xenograft tumors were removed,
these tumors were weighted. (D) Effects of agents on tumor-bearing mice body weight were determined using N87 tumor-bearing nude mice. Mice were weighed at
regular intervals during the whole period to monitor unspecific toxicity. Data are shown as mean ± SD. (n = 6 mice, each group); ∗∗p < 0.01; ∗∗∗p < 0.001.

experiments showed that the combinatorial therapy of
trastuzumab with osthole significantly reduced tumor growth
compared to either agent treatment alone. Compared to the
control IgG, the treatment with trastuzumab and osthole
combination resulted in a 50 % reduction in tumor weight
(Figure 5C). Consistent with the observations in vitro,
combinatorial treatment of trastuzumab with osthole resulted
in a significant benefit over either agent alone in the N87
xenograft model. Moreover, we also preliminarily evaluated the
unspecific-toxicity in these xenografts. As shown in Figure 5D,
No marked weight loss was observed in trastuzumab plus osthole
treated mice compared with that of in the control IgG treated
group (p = 0.1934). Thus, our results showed that trastuzumab in
combination with osthole exhibited potent inhibitory effects and
good tolerance on N87 tumor xenografts.

Trastuzumab in Combination With
Osthole Inhibited AKT Signaling Pathway
in vivo
To further determine if combinatorial treatment caused
inhibition of intracellular signaling cascade in vivo, we examined

tumor samples from treated animals using western blot assay
to evaluate the degree to which MAPK or AKT signaling
was inhibited. As expected, the level of pAKT in tumors
of combinatorial treatment group was more effectively
regressed compared to that of in trastuzumab or osthole
treatment group while the level of pMAPK was not substantially
reduced in tumors from trastuzumab plus osthole treated mice
(Figures 6A,B). Collectively, these results above may also suggest
that trastuzumab plus osthole exerted their synergistic effects
mainly on AKT signaling pathway in N87 tumor xenografts.

DISCUSSION

In our study, we for the first time reported the anti-tumor effects
of trastuzumab in combination with osthole, a natural coumarin
derivative extracted from Traditional Chinese Medicine on N87
gastric cancer cells and investigated the underlying mechanism
involved. We first examined the inhibitory effects of osthole
on HER2-amplified N87 and SK-BR-3 cells. Results revealed
that osthole exhibited potent anti-tumor activity on the two cell
lines, especially on SK-BR-3 cells. Previous studies suggested
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FIGURE 6 | Trastuzumab in combination with osthole inhibited AKT signaling pathway in vivo. (A) Tumor tissues isolated from N87 xenografts upon treatment with
control IgG (15 mg/kg), Trastuzumab (15 mg/kg), Osthole (100 mg/kg), Sor Trastuzumab (15 mg/kg) plus Osthole (100 mg/kg) were then subjected to Western blot
to detect the expression of AKT, p-AKT, MAPK and p-AMPK. Data are representative of three independent experiments. (B) Quantification of Western blot signal
intensity analysis is expressed relative to the -actin loading control by using Image J software. Data show the mean ± SD (three independent experiments);
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

that osthole could induce G2/M arrest and apoptosis in lung
cancer A549 cells and hepatocellular carcinoma HepG2 cells
(Xu et al., 2011; Chao et al., 2014). In consistent with these
studies, we also found that osthole induced G2/M arrest and
apoptosis in HER2-amplified N87 and SK-BR-3 cells. As we
know, trastuzumab is a FDA-approved antibody therapeutic
that has shown clinical efficacy in treating breast and gastric
cancers (Hudis, 2007; Rose and Bekaii-Saab, 2011). Despite
the effectiveness, numbers of patients with HER2-positive
cancer treated with trastuzumab monotherapy exhibited de
novo resistance unfortunately (Zhang et al., 2011). Thus, novel
therapeutic regimens are urgently needed to enhance the efficacy
of trastuzumab-therapy. Surprisingly, we found that osthole
could synergistically enhance the inhibitory effect of trastuzumab
against HER2-overexpressed N87 cells both in vitro and in vivo.
However, the synergistic effect were not been observed in SK-
BR-3 cells, which was the other trastuzumab-sensitive breast
cancer cell line. The underlying mechanism explaining the
different responses to trastuzumab plus osthole in the two HER2-
overexpressed cancer cell lines will be further explored in our
following research.

As previously reported, trastuzumab may exert its anti-
tumor activity on HER2-overexpressed cancers through inducing
apoptosis (Cuello et al., 2001; Milella et al., 2004). And osthole
also caused cell cycle arrest and apoptosis in several types of
cancer (Xu et al., 2011; Chao et al., 2014; Wang et al., 2016). In our
present study, the hypothesis was investigated that if trastuzumab
plus osthole may synergistically enhance the effect of apoptosis in
N87 cells. As expectedly, our data revealed that trastuzumab in
combination with osthole more effectively promoted apoptosis
compared to either agent treatment alone.

As we know, studies have demonstrated that PI3K-AKT
pathway activity is directly linked to the proliferation
and growth of HER2-overexpressing cancer cells and
trastuzumab mainly exerted its anti-tumor in inhibiting
the HER2-PI3K-AKT pathway (Pal and Mandal, 2012; Li
et al., 2013; Han et al., 2014). Recently, Lin et al. (2014)
indicated that osthole inhibited IGF-1-induced EMT by
blocking PI3K-Akt pathway in brain cancer cells. In our
study, we also observed AKT and MAPK phosphorylation
were regressed in N87 cells when treated with trastuzumab
plus osthole. Especially, AKT phosphorylation was more
markedly inhibited in the combinatorial treatment compared
to either agent treatment alone, which was also verified
in tumor samples from N87 tumor xenografts. Generally
speaking, our study partly explained the molecular
mechanism involved in the synergistic effects of trastuzumab
in combination with osthole on HER2-overexpressed
gastric cancer, which may provide a reference for other
researchers. In our following study, we will explore if other
AKT involved signaling pathway like c-Met/Akt/mTOR
pathway may be related to the synergistic anti-tumor
effects.

Taken together, our results suggested that osthole, a promising
lead compound from traditional Chinese medicine could
effectively inhibit N87 and SK-BR-3 cells with HER2-
overexpression by causing cell cycle arrest and inducing
apoptosis. More importantly, we found that combination of
trastuzumab with osthole showed synergistic inhibitory effects
on the growth of N87 cells, which may be partly attributed to the
enhanced apoptosis. Phosphorylation of AKT were effectively
inhibited in vitro and in vivo when treated with trastuzumab plus
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osthole may also contribute to the synergistic effect. Therefore,
combination of trastuzumab with osthole provides a new strategy
for targeting HER2-overexpressed gastric cancer, which will
contribute to enhancing the therapeutic effect of trastuzumab.
Based on these results, our study also suggested that osthole can
be developed into an adjuvant drug for HER2-targeted therapy in
treating HER2-overexpressed gastric cancer. In addition, a novel
antibody-drug conjugate may also be designed by conjugating
osthole to trastuzumab, which may represent a new therapeutic
approach.

CONCLUSION

Our results indicated that osthole alone exhibited effective
anti-tumor activity against HER2-overexpressed N87 gastric
cancer cells and SK-BR-3 breast cancer cells. Furthermore,
osthole could synergistically enhance the inhibitory effect
of trastuzumab against HER2-overexpressed N87 cells both
in vitro and in vivo. Moreover, we explored the molecular
mechanism involved in the synergistic effects, which may
be attributed to the enhanced apoptosis effects and AKT-
MAPK signaling pathway blockade. Collectively, these
results support the clinical development of osthole plus
trastuzumab for the treatment of HER2-overexpressed gastric
cancer. Besides, our study may also provide a strategy
for testing combinations of HER2-targeting agents with
other bioactive constituents isolated from food in clinical
studies.
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Head and neck cancer is the 6th most common malignancy worldwide and urgently

requires novel therapy methods to change the situation of low 5-years survival rate and

poor prognosis. Targeted therapy provides more precision, higher efficiency while lower

adverse effects than traditional treatments like surgery, radiotherapy, and chemotherapy.

Blockade of PD-1 pathway with antibodies against PD-1 or PD-L1 is such a typical

targeted therapy which reconstitutes anti-tumor activity of T cell in treatments of cancers,

especially those highly expressing PD-L1, including head and neck cancers. There

are many clinical trials all over the world and FDA has approved anti-PD-1/PD-L1

drugs for head and neck cancers. However, with the time going, the dark side of

this therapy has emerged, including some serious side effects and drug resistance.

Novel materials like nanoparticles and combination therapy have been developed to

improve the efficacy. At the same time, standards for evaluation of activity and safety

are to be established for this new therapy. Here we provide a systematic review with

comprehensive depth on the application of anti-PD1/PD-L1 antibodies in head and neck

cancer treatment: mechanism, drugs, clinical studies, influencing factors, adverse effects

and managements, and the potential future developments.

Keywords: PD-1, PD-L1, immune checkpoint inhibitor, head and neck cancer, immunotherapy, adverse effects

INTRODUCTION OF HEAD AND NECK CANCERS

Head and neck cancers are composed of various kinds of epithelial malignant tumors, including
oral cancers, maxillofacial cancers, larynx cancers, and many others, almost all of which are head
and neck squamous cell carcinoma (HNSCC). Although, there are other pathological types such as
verrucous carcinoma, basaloid squamous cell carcinoma, papillary squamous cell carcinoma, they
only make up a small percentage (1). HNSCC is the 6th most commonmalignancy worldwide, with
number of 650,000 new cases a year and 350,000 deaths (2). Around 2/3 of patients present with
advanced disease, often with regional lymph node involvement, while 10% present with distant
metastases (3). According to epidemiological survey, the 5-years survival rate of HNSCC in all
stages was about 60%, and the survival rate was even worse for specific primary sites such as
hypopharynx. The main causes of head and neck cancers are tobacco and alcohol consumption
(1, 4–8). Chewing betel quid is also well-recognized as a risk factor for the cancer of oral cavity
(9). And human papillomavirus (HPV) and p53 mutation are related to certain subsets of head
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and neck cancers (10–12). About 25% of HNSCC contain HPV
genomic DNA (13). However, HPV positivity is a favorable
prognostic factor in HNSCC (14). Patients with HPV+ HNSCC
show better responsiveness to radiation, chemotherapy, or both,
and might be more susceptive to immunosurveillance of tumor-
specific antigens (14).

COMMON TREATMENT STRATEGIES FOR
HEAD AND NECK CANCERS

The location of the cancers makes it necessary to take the spiritual
and plastic factors into consideration. Primary tumor site, stage,
and resectability are also treatment concerns as well as the
patient factors such as swallowing, airway, organ preservation,
and comorbid illnesses. For plan making, doctors are needed and
organized from different departments which include head and
neck surgeons, plastic surgeons, medical oncologists, radiation
oncologists, radiologists, and dentists (2).

Common treatment strategies for head and neck cancers
include surgery, radiotherapy, and chemotherapy. At present,
surgery is still the standard therapy for HNSCC. However,
surgical operations are limited, owing to the complexity of
structures and the need for organ preservation. Most surgeons
agree that the carotid artery, the base of the skull, and the
invasion of the pre-vertebral muscle tissue are unresectable
(2). Moreover, when the tumor is too extensive or there are
multiple distant metastases, patients are generally not suitable
for surgical treatment. Radiotherapy alone can improve the cure
rate of early glottis, tongue, and tonsil cancers (15). However,
prolonged interruption of radiotherapy or delayed post-operative
radiotherapy may impair the patient’s prognosis, which may
be due to the proliferation of cancer cells (16). Delivery of
radiation remains to be improved with continuous technological
progress, and customization of radiation dose and volume
(17). Chemotherapy is the core component of local advanced
HNSCC treatment (18). Platinum compounds Cisplatin is a
standard reagent for combination with radiotherapy or other
drugs. Huperzine compounds are active and have been tested in
locally advanced HNSCC chemotherapy (19, 20). Concurrent
chemotherapy with normo-fractionated radiotherapy (2
Gy/day, 5 days/week, for 5–7 weeks) is used most in current
practice (21).

Traditional therapy can result in serious complications, from
pain to malnutrition, risk of infection, and psychological distress
(21). In order to ameliorate these drawbacks, comprehensive
treatments are currently preferred for the advanced tumors.

Abbreviations: APC, antigen presenting cell; ATF, activating transcription

factor; CRC, colorectal cancer; GEM, chemotherapy drug gemcitabine; GOx,

glucose oxidase; HNSCC, head and neck squamous cell carcinoma; IGF, insulin-

like growth factor; NFAT, nuclear factor of activated T cells; NSCLC, non-

small cell lung cancer; ORR, objective response rate; OS, overall survival; PIP,

phosphatidylinositol; PLGF, placental growth factor; RCC, renal cell carcinoma;

ROS, reactive oxygen species; RTK, receptor tyrosine kinases; SAEs, severe adverse

events; sPD-1/sPD-L1, soluble PD-1/ soluble PD-L1; TCR, T cell receptors; TGF,

transforming growth factor; TILs, tumor-infiltrating lymphocytes; TKIs, tyrosine

kinase inhibitors; TNF, tumor necrosis factor; T-NHL, T-cell non-Hodgkin’s

lymphoma; trAEs, treatment-related adverse events.

Comprehensive treatments must be well-designed and planned
according to the patient’s general condition and the stage of
tumor development. At present, the treatment of oral and
maxillofacial malignant tumors emphasizes the comprehensive
treatment based on surgery, especially the triple therapy, which
combines surgery with radiotherapy and chemotherapy.

Modern research has been keen on identifying specific
molecular targets involved in the occurrence and progression
of head and neck cancers. EGFR and VEGF are two main
targets which are overexpressed in majority of both precancerous
oral lesions and HNSCC (22–24). EGFR can bind to and
be activated by different ligands, including the epidermal
growth factor (EGF) and transforming growth factor-α (TGF-α)
(25). EGFR activation initiates subsequent signaling pathways,
eventually resulting in tumor cell resistance to apoptosis and
promoting angiogenesis, tumor cell migration, and tumor
cell proliferation (Figure 1) (25, 26). Current EGFR-targeted
therapies include monoclonal antibodies (mAbs) and tyrosine
kinase inhibitors (TKIs). Antibodies target the extracellular
domain of EGFR while TKIs hinder downstream signaling
pathways by binding to the cytoplasmic region of EGFR (27). To
date, Cetuximab remains the only FDA-approved EGFR-targeted
mAb for the treatment of recurrent/metastatic (R/M) HNSCC.
Cetuximab in combination with radiotherapy is a standard
treatment option for locally or regionally advanced HNSCC (28).
VEGF, is a key regulator of physiological angiogenesis during
embryogenesis, skeletal growth, and reproductive functions (29).
The biological effects of VEGF, mediated by two receptor tyrosine
kinases (RTKs), VEGFR-1 and VEGFR-2, cause receptor TK
activation and downstream signaling to stimulate endothelial
cell proliferation, vessel permeability, and migration (27).
Bevacizumab, a humanized monoclonal antibody targeting
VEGF-A, was approved by the FDA for treatment of advanced
cancer types. Bevacizumab could increase the sensitivity of
HNSCC to radiotherapy in preclinical trials. Bevacizumab was
evaluated in phase I and II clinical trials in combination with
Erlotinib, an EGFR inhibitor, in patients with R/M HNSCC
(30, 31) and the combined treatments increased the complete
response rate by ∼15% and median survival by 7.1 months (30).
The phase II trial on the combination of Bevacizumab with
chemotherapy, radiotherapy or EGFR inhibitors are ongoing.

IMMUNOLOGICAL TARGETED THERAPY

Immunotherapies stimulate host antitumor immune system and
can elicit endurable responses in subsets of patients across
different types of tumors (Figure 1) (32). Immune checkpoints,
like cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and
programmed cell death-1 (PD-1), work as inhibitory pathways,
playing an important role in self-tolerance under healthy
conditions. Checkpoint inhibitors are part of immunotherapies
that enhance antitumor T cell activity by hindering initiation
of suppressive signaling pathways of activated T cells. The 2018
Nobel Prize in Physiology or Medicine was recently given to
James P. Allison and Tasuku Honjo for their discovery and
contribution in cancer immunotherapy correlated with CTLA-4
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FIGURE 1 | Main targets and related signaling pathways involved in the targeted therapy for R/M HNSCC. Activation of EGFR by extracellular ligands initiates

activation of Src, STAT3, and PI3K. Activated Src promotes cell proliferation mainly via RAS/RAF/MAPK pathway. In the PI3K/Akt pathway, phosphorylation of PIP2 is

mediated by PI3K while dephosphorylation of PIP3 is controlled by PTEN. Akt could be activated independently by mTORC2 activation. Activation of Akt and

mTORC1 inhibit TSC1/2/Rheb and 4E-BP1/eIF-4E downstream signaling, respectively while IKK/NF-kB and S6/S6k pathways are initiated, promoting tumor cell

survival. Once activated, other targets, including VEGFR and c-MET, expressed on tumor cells share similar downstream signaling with EGFR. CD137L and OX40L

activate CD137 and OX40, respectively. And proliferation of activated T cells is achieved via TRAF/IKK/NF-κB downstream signaling. CTLA-4 and its ligands are also

demonstrated. Some pathways were simplified for clearer demonstration.

and PD-1. Other targets such as CD137 and OX40, unlike CTLA-
4 and PD-1, work as immune activators and are as well under
active investigation for cancer therapy (Table 1) (37, 38).

CTLA-4
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; also
known as CD152) is the first clinically targeted immune
checkpoint receptor. CTLA-4, expressed on activated CD8+

effector T cells, mainly regulates the early stage of T cell
activation, enhances the activity of effector CD4+ T cell, and
inhibits Treg cell-dependent immunosuppression (39, 40). CD28
and CTLA-4 have the same ligands B7-1 (also known as CD80)

and B7-2 (also known as CD86); and CTLA-4, compared to
CD28, has a much higher affinity for B7-1 (41). CTLA-4 has
been proved to be a negative regulator of T cell activation in
an effort to prevent autoimmunity, antagonizing the CD28-
B7 co-stimulatory signals. Research showed that the blockade
of CTLA-4 results in enhanced antitumor immunity (42).
Clinical studies using anti-CTLA-4 antibodies demonstrated
activity in melanoma. Ipilimumab, an anti-CTLA-4 antibody,
was the first targeted immunotherapy to prove a survival
advantage for patients with metastatic melanoma. Hence, it was
approved by FDA for the treatment of advanced melanoma
in 2010 (43). In HNSCC, Yu et al. showed that CTLA4
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TABLE 1 | Immunological targeted therapies approved or under investigation for the treatment of head and neck cancers.

Drug Target Modality Status References

MEDI0562 OX40 Antibody Phase I

Phase Ib

Phase

IPhase I

NCT03336606

NCT02315066

Urelumab CD137 Antibody Phase

IPhase I

NCT02110082

PF-05082566 CD137 Antibody Phase

IPhase I

NCT02315066

Ipilimumab CTLA-4 Antibody Phase II

Phase

IPhase I

Phase

IPhase I

NCT03620123

NCT03098160

NCT02812524

Tremelimumab CTLA-4 Antibody Phase III

Phase III

Phase II

Phase II

Phase

IPhase I-2

NCT02369874

NCT02551159

NCT03624231

NCT03292250

NCT03019003

Pembrolizumab PD-1 Antibody Approved (33, 34)

Nivolumab PD-1 Antibody Approved (35, 36)

Darvalumab PD-L1 Antibody Phase III

Phase II

Phase

IPhase I

NCT02551159

NCT02207530

NCT02997332

Avelumab PD-L1 Antibody Phase III

Phase

IPhase I

NCT02952586

NCT02938273

INCB024360 PD-L1 Antibody Phase

IPhase I/2

NCT02318277

PD-1, programmed cell death protein 1; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4.

was upregulated in the tumor-infiltrating lymphocyte (TIL)
of HNSCC and the high CD8+/CTLA4 ratio was associated
with improved prognosis (44). Further, Jie et al. found that
intratumoral Tregs, compared to circulating Tregs, induced
higher expression of CTLA-4 in HNSCC (45). Currently, clinical
trials of Ipilimumab (NCT02551159, NCT03212469), alone or
in combination with other treatments, for HNSCC are in
progress (40).

CD137
CD137, a member of TNF receptor superfamily, is widely
induced on activated CD4+ T cells, CD8+ T cells, B cells,
NK cells, monocytes, and DC. The engagement of CD137
could promote the proliferation of T cells. The introduction of
Urelumab, the fully human CD137-agonist mAb, has enabled
modulation of CD137 function in immune-oncology, including
application in combination with tumor targeting mAb (46).
Srivastava et al. (38) confirmed that Cetuximab combined with
CD137 agonist was effective in the treatment of HNC. CD137 has
provided a new mechanism for the enhancement of Cetuximab
(38).

OX40
OX40 is a member of the TNF receptor family and mediates
an effective co-stimulation pathway which can enhance T cell

memory, proliferation, and antitumor activity in patients with
metastatic cancers (47, 48). Overexpression of OX40 in the TIL
of patients with HNSCC has been identified (49). Furthermore,
Montler et al. have noted co-expression of OX40 with PD-
1 and CTLA-4 in a majority of tumor specimens, especially
within the Treg population (49). The preclinical model showed
the synergistic effects of anti-OX40 and anti-PD1, anti-OX40
and anti-CTLA-4, as well as anti-OX40 and anti-PDL1 (49).
Anti-OX40 is currently being tested in early clinical trials of
HNSCC, both as monotherapy and in combination with other
immunotherapies (37).

ANTI-PD-1/PD-L1 THERAPY

T cells express the inhibitory receptor known as PD-1 on
their surfaces to guard our body (50). When bound by its
ligands PD-L1 or PD-L2, PD-1 transduces a signal into T
cells to attenuate downstream signaling through the PI3K and
PKCθ pathways (50, 51), which results in inhibition of T
cell activation and proliferation. This protective mechanism
is also utilized by tumor cells to escape immune attack
through expressing high abundance of PD-L1 ligands on their
surfaces.

Anti-PD-1/PD-L1 therapy has been a routine treatment to
patients with PD-L1 highly expressing tumor (52). This kind of
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immunotherapy could target tumors more precisely. Meanwhile,
as anti-PD-1/PD-L1 therapy has been applied to more and
more patients, the side effects and the factors hindering the
therapeutic effects have been noticed. Thus, combined treatments
and better administrating methods have been raised to improve
the treatment.

Mechanism of PD-1/PD-L1 Inhibitors
Tumor infiltrating lymphocytes, especially CD8+ T cells, exhibit
high levels of PD-1 in HPV+ HNSCC (12). When PD-1 binds
to PD-L1 on tumor cells, T cell proliferation is suppressed
and tumor cells are able to evade immune attack more
effectively in the tumor microenvironment (12). Since tumors
expressing PD-L1, compared to PD-L1–negative tumors, showed
improved response to Nivolumab (a PD-1 inhibitor) (53), it is
important to investigate the level of PD-L1 expression in tumor
microenvironment. One study suggested that patients with
HPV− HNSCC expressed high levels of PD-1 in T cells and PD-
L1 in a majority of tumor cells (54). Despite primary tumor sites,
PD-L1 has been spotted on metastatic lesions (55). In summary,
more than 29% of HPV− and around 70% of HPV+ HNSCC
express PD-L1, suggesting that the majority of these cancers have
potential for responding to PD-1 inhibitors (56). PD-L1 and
PD-1 interaction is among the signals beneficial for tumor cells,
which also include EGFR signaling, CD 28 stimulation and many
others. And there are plenty of downstream pathways as well,
which are composed of SHP2, RAS, ZAP70, P13K, and so on
(Figure 2).

When bond by PD-1 ligands, PD-1 is able to recruit
phosphatases including SHP2 toinhibit T cell functions by
countering the positive signaling events mediated by the T cell
receptors (TCR) and CD28 (50). For instance, they restrain
ZAP70 and PI3K–AKT and RAS signaling pathways (50). In
conclusion, this lowers down the activation of transcription
factors such as AP-1, NFAT, and NF-κB, which are important
for T cell activation, proliferation, growth, and survival. Besides,
PD-1 is able to inhibit T cell functions by improving the
expression of BATF transcription factor to inhibit the effector
transcriptional programs. EGFR is an important target for
mediating tumor metastasis and adhesion. After combining
with epidermal growth factor (EGF), EGFR can deliver positive
signaling events downstream. For example, it activates PI3K–
AKT and RAS signaling pathways to promote tumor cells
proliferation and migration (50). Successful anti-PD-1/PD-L1
therapy requires adequate amount of specific T cells in tumor
microenvironment and competent ability of T cells to get
enough nutrients (57). Studies have shown aerobic glycolysis
is essential for T cells to secrete IFN-γand attack tumor cells.
PD-1/PD-L1 inhibitors may help T cells compete for glucose in
tumor microenvironment, promoting T cell glycolysis and IFN-γ
secretion (57, 58).

Daste et al. reported a case that a 64-years-old patient with
HNSCC developed local tumor flare-up under immunotherapy,
and a dramatic response was achieved in the following
chemotherapy (59). Owing to the “loco-regional phenomena”
described in their case study, they suggested that although clinical
efficacy was not achieved in this case, immunotherapy might

enhance response sensitivity to chemotherapy in patients with
HNSCC (59).

Overview of FDA-Approved PD-1 Inhibitors
for Head and Neck Cancers
Pembrolizumab
Pembrolizumab was the first anti-PD-1 antibody approved by
FDA to treat patients with unresectable or metastatic melanoma
who progress after Ipilimumab treatment. It is also approved
for the treatment for melanoma patients harboring a BRAF
V600E mutation, following treatment with a BRAF inhibitor.
Pembrolizumab has also been legal for the treatment of non-
small-cell lung cancer (NSCLC) without EGFR mutation and
ALK rearrangement but with disease progression or following
platinum-based chemotherapy (60). In August 2016, FDA
approved the use of Pembrolizumab in R/M HNSCC that has
progressed on or after platinum-containing chemotherapy (33,
34).

Nivolumab
Nivolumab, a PD-1 inhibitor, has been approved by FDA to
treat Hodgkin lymphoma, renal cell carcinoma, NSCLC, and
melanoma. Recent breakthrough in the application of Nivolumab
in patients with processed HNSCC during chemotherapy or
R/MHNSCC after chemotherapy with platinum-based drugs has
made Nivolumab second to the Pembrolizumab approved by
FDA in HNSCC treatment (35, 36).

CLINICAL STUDIES OF PD-1/PD- L1
INHIBITORS

Inhibiting either PD-1 or PD-L1 function can block the PD-
1 pathway. A number of PD-1/PD-L1 inhibitors are being
investigated clinically and described in more details below
(Table 2).

PD-1
Pembrolizumab (MK-3475, Previously Known as

Lambrolizumab)
Preclinical anti-tumor effects were demonstrated in animals
bearing multiple tumors. The first phase I clinical trial was
carried out in patients with advanced solid tumors (61). Results
suggested that Pembrolizumab was well-tolerated and associated
with durable antitumor activity in multiple solid tumors (61).
Two mg/kg per 3 weeks is considered a safe and effective
minimum dose of antitumor activity (61). KEYNOTE-012 trial
was amulticenter, open-label, phase Ib trial that included patients
with R/M HNSCC in one of the cohorts. The objective response
rate (ORR) was ∼20% and overall survival (OS) was better in
HPV+ patients (33). Then a larger HNSCC expansion cohort of
KEYNOTE-012 reported an ORR of 18.2%, and response rates
were similar inHPV+ andHPV− patients (62). In a recent single-
arm, phase II KEYNOTE-055 study conducted in patients with
R/M HNSCC, ORR was 16% and response rates were similar
in HPV+ and HPV− patients, providing rationale for treatment
with Pembrolizumab (NCT02255097) (63).

Monotherapy with Pembrolizumab is being carried out in
patients with NSCLC (NCT01840579), advanced solid tumors
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FIGURE 2 | PD-L1/PD-1 signaling pathway and the correlated network. Interaction between PD-L1 and PD-1 on T cells results in inhibition of Zap70 phosphorylation

and PI3K activation, and finally attenuates TCR signaling, CD28 mediated co-stimulation, NF-κB, and AP-1 activation, and IL2 production. Through inhibition of T cell

via overexpression of PD-L1, cancer cells evade the host immune system.

(NCT01295827) and hematologic malignancies (NCT01953692).
Clinical trials of Pembrolizumab focusing on HNSCC are
ongoing in comparison to chemotherapy (NCT02358031),
in combination with radiotherapy (NCT02707588), and in
combination with cisplatin and radiation (NCT02586207).

Nivolumab (MDX-1106, BMS-936558, ONO-4538)
The first phase I clinical trial was conducted in patients with
treatment-refractory solid tumors such as advanced metastatic
melanoma, colorectal cancer, castrate-resistant prostate cancer,
NSCLC, and renal cell carcinoma (64). The study exhibited good
tolerance and meaningful antitumor activity of PD-1 inhibitors,
and the early results from a follow-up trial (NCT00730639)
further confirmed this. It appeared that the PD-1 antibody
was well-tolerated and demonstrated anti-tumor activity in
many patients whose previous treatment failed (65). In a recent
randomized, open-label, phase III clinical trial conducted in
patients with R/M HNSCC, the ORR was 26.1% for Nivolumab,
demonstrating a survival advantage compared with conventional
treatments with ORR of 0% for investigators’ choices of therapy
(NCT02105636) (66). Ongoing clinical trials focusing onHNSCC
include comparison to Cetuximab, Methotrexate or Docetaxel
(NCT02105636), combination with Cisplatin, Cetuximab, or
IMRT (NCT02764593), and monotherapy (NCT03132038,
NCT03012581).

PD-L1
Durvalumab (MEDI4736)
In a phase I/II clinical trial that included a group of HNSCC
patients, ORR was 17%, especially higher (25%) in PD-L1high

patients. The disease control rate in PD-L1 high subgroup was

44.9%,much greater than that in PD-L1 low or negative subgroup
(21.5%) (67). These data support continued clinical development
of Durvalumab in HNSCC. Durvalumab is being tested as
monotherapy (NCT02207530), in combination with Docetaxel
plus Displatin and 5-FU (NCT02997332), and in comparison to
Durvalumab plus Tremelimumab (NCT02551159).

Avelumab
Avelumab is an anti-PD-L1 antibody. Studies of Avelumab
targeting HNSCC has been scarce. It’s currently assessed in
combination with Cetuximab and radiotherapy in a phase I trial
(NCT02938273), and in combination with standard care in a
phase III trial (NCT02952586).

FACTORS INFLUENCING
ANTI-PD-1/PD-L1 THERAPY

Gut Microbiota
It has been lately reported that gut microbiome plays important
roles in many diseases, including influenza (68), multiple
sclerosis (69, 70), diabetes (71), colorectal cancer (68, 72), and
many others in various preclinical models, among which gut
microbiome may modulate PD-1/PD-L1-based immunotherapy
(73–76). Many kinds of bacteria have been proved to facilitate
PD-1/PD-L1 blockades, meanwhile, there are bacteria that
hamper the treatment (Table 3). It is reported that oral gavage
of Bifidobacterium could achieve the same effects as anti-PD-
L1 treatment, and combinational therapy almost eliminated
tumor outgrowth, in which enhanced dendritic cell function
led to more priming and accumulation of CD8+ T cells in
the tumor microenvironment (76). On one hand, Akkermansia
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TABLE 2 | Clinical Trials on anti-PD-1/PD-L1 in head and neck cancers.

Immune

checkpoint

Inhibitor Other names NCT-

nummer

Phase Arms N of

pts

Primary

endpoint

Recruitment

status

PD-1 pembrolizumab Lambrolizumab/MK-

3475

/Keytruda

NCT02586207 Phase I Pembrolizumab + Cisplatin +

Radiation

58 AE recruiting

NCT02358031 Phase III Pembrolizumab vs.

Pembrolizumab+Platinum+5-FU

vs. Cetuximab+Platinum+5-FU

825 PFS, OS Active, not

recruiting

NCT02707588 Phase II Pembrolizumab+radiotherapy

vs. Cetuximab+radiotherapy

133 LRC Active, not

recruiting

nivolumab Opdivo/BMS-

936558/MDX-

1106/NIVO/ONO-

4538

NCT02764593 Phase I Nivolumab+Cisplatin vs.

Nivolumab+High-dose Cisplatin

vs. Nivolumab+Cetuximab vs.

Nivolumab+ IMRT

40 DLT Active, not

recruiting

NCT03132038 Phase II Nivolumab 92 non-

progression

rate

recruiting

NCT03012581 Phase II Nivolumab 300 ORR recruiting

NCT02105636 Phase III Nivolumab vs.

Cetuximab/Methotrexate/

Docetaxel

506 OS Active, not

recruiting

PD-L1 Durvalumab Imfinzi/MEDI4736 NCT02207530 Phase II Durvalumab 112 ORR Active, not

recruiting

NCT02997332 Phase I Durvalumab+Docetaxel+

Cisplatin+5-FU

36 RP2D,

DLT

recruiting

NCT02551159 Phase III Durvalumab vs.

Durvalumab+Tremelimumab vs.

SOC

823 OS Active, not

recruiting

Avelumab Bavencio NCT02952586 Phase III Avelumab+SOC CRT vs.

Placebo+SOC CRT

640 PFS recruiting

NCT02938273 Phase I Avelumab+cetuximab+

Radiation therapy

10 toxicity recruiting

INCB024360 NCT02318277 Phase I/

II

MEDI4736 + INCB024360 42 DLT, AE,

ORR

Active, not

recruiting

PD-L1, programmed death-1 ligand; FU, fluorouracil; HNSCC, head and neck squamous cell carcinoma; AE, adverse event; LRC, locoregional control; DLT, dose limiting toxicity; ORR,

overall response rate; OS, overall survival; PFS, progression-free survival; SOC, standard of care; CRT, chemoradiation therapy; IMRT, intensity-modulated radiation therapy; RP2D,

recommended phase II dose.

muciniphila was screened out to affect the anti-PD-1-based
therapy in epithelial tumors in an IL-12 dependent fashion by
enhancing the recruitment of CCR9+CXCR3+CD4+ T cells (75).
Further study in patients also revealed that responding patients
had more diverse and abundant bacteria of the Ruminococcaceae
family, enhanced systemic and antitumor immunity, functioning
better in anabolic pathways as well (74). On the other hand, the
recent study by Matson V reported Blautia obeum and Roseburia
intestinalis with compromised efficacy of PD-1 blockade (77).
These results provide important information for cancer therapy
with immune checkpoint inhibitors.

Molecules Regulating PD-1/PD- L1
Some tumors respond more sensitively to anti-PD-1/PD-L1
therapy, while others do not. The mechanisms regulating anti-
PD-1/PD-L1 therapy sensitivity have arisen wide attention.
Recently, two molecules, CMTM6 and CMTM4, have been
reported as PD-L1 protein regulators. CMTM6 could prevent
the degradation of PD-L1, maintaining the stability of PD-L1
and facilitating the immune escape of tumors. Interfering either

CMTM6 or CMTM4 would hamper the expression of PD-L1.
They function through reducing the ubiquitination of PD-L1,
prolonging its half-life period. This provides a new target for
immunotherapy to enhance the anti-PD-1/PD-L1 treatment (78,
79).

ADVERSE EVENTS OF FDA-APPROVED
PD-1 INHIBITORS AND THE RELEVANT
MANAGEMENTS FOR HEAD AND NECK
CANCERS

The fact that PD-1/PD-L1 axis contributes to the maintenance
of self-tolerance implies that immune checkpoint blockade
might disturb the balance of immune systems, resulting in
treatment-related adverse events (trAEs) (80) (Table 4). TrAEs
are frequent and occur in up to 80% of patients treated
with an PD-1/PD-L1 antibody (81, 82). In the KEYNOTE-012
trial and the KEYNOTE-055 trial, trAEs occured in 63%-65%
HNSCC patients treated with Pembrolizumab (33, 63). The most
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TABLE 3 | Gut microbiome affecting efficacy of PD-1/PD-L1 treatment.

Effects Bacteria Models Other effects on immune

systems

Author/year References

Enhanced efficacy Akkermansiacea muciniphila Human/mouse Upregulating TCM,

CD4/Foxp3 ratio in tumor

sites and IL-12 production;

Increasing IFN- γ production

Bertrand Routy 2018 (75)

Alistipes indistinctus Human/mouse / Bertrand Routy 2018 (75)

Bifidobacterium adolescentis Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Bifidobacterium breve Mouse Stimulating DCs directly,

inducing DCs maturation

and cytokine secretion

Ayelet Sivan 2015 (76)

Bifidobacterium longum Mouse Promoting DCs maturation

and inducing cytokine

production

Ayelet Sivan 2015 (76)

Bifidobacterium longum Human / Matson V 2018 (77)

Collinsella aerofaciens Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Enterococcus faecium Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Enterococcus hirae Human/mouse Upregulating TCM,

CD4/Foxp3 ratio in tumor

sites and IL-12 production;

Increasing IFN- γ production

Bertrand Routy 2018 (75)

Klebsiella pneumonia Human / Matson V 2018 (77)

Parabacteroides merdae Human Decreasing peripherally

derived Tregs

Matson V 2018 (77)

Ruminococcaceae Human/mouse Increasing effector T cells in

peripheral blood and tumors

Gopalakrishnan V 2018 (74)

Veillonella parvula Human / Matson V 2018 (77)

Compromised efficacy Blautia obeum Human / Matson V 2018 (77)

Roseburia intestinalis Human / Matson V 2018 (77)

TCM central memory T cell; Treg regulatory T cell; DC dendritic cell.

commonly observed trAEs were fatigue, decreased appetite, rash,
hypothyroidism, nausea and diarrhea (63). Grade 3–4 trAEs
occurred in around 9–14% of patients who had PD-1 inhibitors
treatment. Three deaths were reported due to pulmonary toxicity
(53, 82).

By comparing the various organs involved, grade 1–2
trAEs mainly influence the skin and the gut, while grade 3–
4 events mainly affect the digestive tract. Data suggest that
trAEs usually occur within 3–6 months after the PD-1/PD-
L1 blockade treatment (83). Accumulative toxic effects with
prolonged treatment of anti-PD-1 were not observed (65).

For T cell tumors, like T-cell non-Hodgkin’s lymphoma (T-
NHL), anti-PD-1/PD-L1 therapy could render the tumors better
proliferative. The reason is in this kind of tumors, T cells don’t
play the role to attack the tumors, instead, they are the major part
of the tumor. It highlights a dangerous possible adverse event of
anti-PD-1 treatment (84).

Nivolumab
A randomized, open-label, phase III study was designed to
investigate efficacy and safety of Nivolumab for patients with
recurrent HNSCC that progressed within 6 months post
platinum-based chemotherapy (36). In this trial, the primary end

point was OS. Although rates of trAEs of any grade were similar
between two groups, fewer events of grade 3 or 4 were observed
in the Nivolumab treatment group when treated with Nivolumab
than the standard therapy group. Fatigue, nausea, rash, decreased
appetite, and pruritus were the most commonly reported trAEs
of any grade in patients receiving Nivolumab. Two treatment-
related deaths owing to pneumonitis and hypercalcemia were
reported in the Nivolumab treatment group (36). Daste et al.
(59) reported a case of a patient with HNSCC developed tumor
flare-up after therapy with Nivolumab (59).

Pembrolizumab
TrAEs of any grade occurred within an average of 9 weeks after
the initiation of Pembrolizumab (85, 86). In the KEYNOTE-012
trial, trAEs of any grade were observed in 63% of patients. The
most frequently observed trAEs were fatigue, pruritus, nausea,
decreased appetite and rash. Grade 3–4 trAEs were reported
in 10 of 60 patients (17%), including increased ALT and AST,
hyponatremia, atrial fibrillation and congestive heart failure (33).
In the expansion cohort, 62% of patients had trAEs of any grade.
The most common trAEs were fatigue, hypothyroidism and
decreased appetite. Grade 3–4 trAEs were observed in around
9% of patients, including lowered appetite, facial swelling and
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TABLE 4 | Incidents of treatment-related adverse events occurring in patients with head and neck cancers.

Pembrolizumab

10 mg/kg

every 2 weeks

Ib/n 60 (33)

Pembrolizumab

200mg

every 2 weeks

Ib/n 132 (62)

Pembrolizumab

200mg

every 2 weeks

II/n 171 (63)

Nivolumab

3 mg/kg

every 2 weeks

III/n 236(GLOBAL)

(36)

Nivolumab

3 mg/kg

every 2 weeks

III/n 23(ASIAN)

(66)

Adverse Events Grade 1–2 Grade 3–4 Grade 1–2 Grade 3–4 Any Grade Grade 3–5 Any Grade Grade 3–4 Any Grade Grade 3–4

Fatigue 20.00% 2.00% 21.00% 0 18.00% 1.00% 14.00% 2.10% 17.40% 0

Decreased appetite 0 0 7.00% 2.00% 5.00% 0 7.20% 0 21.70% 0

Rash 5.00% 2.00% 0 0 2.00% 1.00% 7.60% 0 17.40% 0

Nausea 0 0 5.00% 1.00% 6.00% 0 8.50% 0 8.70% 0

Hypothyroidism 0 0 11.00% 0 9.00% 0 0 0 0 0

Pruritus 12.00% 0 0 0 0 0 7.20% 0 17.40% 0

Diarrhea 2.00% 2.00% 0 0 6.00% 1.00% 6.80% 0 4.30% 0

Abdominal pain 0 0 1.00% 1.00% 0 0 0 0 0 0

Stomatitis 0 0 1.00% 1.00% 0 0 2.10% 0.40% 0 0

Colitis 0 0 0 1.00% 0 0 0 0 0 0

Lymphopenia 0 2.00% 0 0 0 0 0 0 0 0

Atrial fibrillation 0 2.00% 0 0 0 0 0 0 0 0

Congestive cardiac failure 0 2.00% 0 0 0 0 0 0 0 0

Neck abscess 0 2.00% 0 0 0 0 0 0 0 0

Alanine aminotransferase increase 0 3.00% 0 0 4.00% 0 0 0 0 0

Hyponatremia 0 3.00% 0 0 2.00% 1%% 0 0 0 0

Anemia 0 0 0 0 4.00% 2.00% 5.10% 1.30% 0 0

Musculoskeletal pain 2.00% 2.00% 0 0 0 0 1.30% 0 0 0

Immune thrombocytopenic purpura 0 0 0 1.00% 0 0 0 0 0 0

Dysphagia 0 0 1.00% 1.00% 0 0 0 0 0 0

Dehydration 0 0 1.00% 0 0 0 0 0 0

Facial swelling 0 0 2.00% 3.00% 0 0 0 0 0 0

Pneumonitis 0 0 2.00% 2.00% 4.00% 1.00% 0 0 0 0

Hyperglycemia 0 0 1.00% 1.00% 0 0 0 0 0 0

Asthenia 0 0 0 0 0 0 4.20% 0.40% 0 0

pneumonitis (62). In the KEYNOTE-055 trial, around 64% of
patients exhibited trAEs. Grade 3–5 trAEs were reported in 15%
of patients. One death owing to treatment-related pneumonitis
was reported (63).

Severe Immune-Related Adverse Events in
Crucial Organs
Myocarditis
Accounting for <0.3% of patients, myocarditis is a rare but
severe immune-related adverse event that frequently results in
rapid dyspnea and acute heart failure (87). More and more
cases of patients with anti-PD-1/PD-L1 treatment-related heart
diseases have been reported in recent 3 years (88). Semper et al.
(89) reported a case of a patient, diagnosed with squamous
cell carcinoma of the lung, developing Nivolumab-induced
myocarditis. Three days post the 9th cycle of Nivolumab
therapy, the patient with tumor remission developed acute chest
pain and severe dyspnea, which was later confirmed to be
immunotherapy-related (89). Johnson et al. (87) reported two
more cases of patients, diagnosed with metastatic melanoma,
developing lethal myocarditis induced by Nivolumab and
Ipilimumab combined (87). Läubli et al. (90) reported a
case of Pembrolizumab-induced myocarditis. A 73-years-old

female patient with metastatic uveal melanoma developed
severe Pembrolizumab-induced myocarditis which resulted in
potentially life-threatening acute heart failure (90). In 2018,
Frigeri et al. (91) reported the patients achieved complete
remission of recurrent metastatic pulmonary adenocarcinoma
after 7 cycles of Nivolumab administration. Unfortunately, she
experienced rapid cardiogenic shock afterwards (91). A fatal
case was reported by Matson et al. (92). One patient with
NSCLC receiving Nivolumab developed acute heart failure (92).
Moslehi et al. (88) have identified altogether 101 cases of
severe immune checkpoint inhibitors-induced (ICIs-induced)
myocarditis, 46% of which resulted in patients’ deaths (88). A
more conclusive mechanism of anti-PD-1-induced myocarditis
is under investigation (87). Studies revealed that PD-L1 could be
found on endothelium. Interaction between PD-1 and its ligands
on endothelium is important in limiting T cell responses in
the heart and thus controlling immune-mediated cardiac injury
(93, 94). One suspected mechanism is that PD-L1 is expressed on
the surface of various types of cells and tissues, including tumor
cells and cardiac muscle cells. When patients receive anti-PD-
1/PD-L1 treatment, owing to the distribution of drugs, T cell
responses in cardiac muscles might be disturbed and enhanced,
leading to the occurrence of lethal immune-related myocarditis
(87, 95).
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Pneumonitis
Incidence of pneumonitis of all grades during anti-PD-1 therapy
was 2.7% and the incidence of pneumonitis for grade 3 or
higher was around 0.8% (96). Patients diagnosed with lung
cancers, compared to patients with other types of cancers
had higher incidence of treatment-related pneumonitis, with
incidence of grade 3 or higher being 1.8% and incidence
of deaths being 0.4% (96, 97). In a randomized, open-label,
phase II/III study on efficacy and safety of Pembrolizumab for
patients with advanced NSCLC, three cases of deaths resulting
from treatment-related pneumonitis were reported (85). As in
clinical trial of PD-1 blockade treating HNSCC, two treatment-
related deaths owing to pneumonitis and hypercalcemia were
reported in the Nivolumab group of a randomized, open-label,
phase III trial (NCT02105636) (36). In a phase II study, Bauml
et al. evaluated efficacy of Pembrolizumab in patients with
previously treated refractory head and neck cancers (KEYNOTE-
055) and one death owing to immune-related pneumonitis was
observed (63).

One patient with NSCLC, after receiving 2 cycles of anti–
PD-1 therapy, developed symptoms of pneumonitis and received
proper treatment. However, symptoms relapsed; treatments
with corticosteroids displayed less efficacy and the patient
died. Another case of a female patient with small-cell lung
cancer (SCLC), treated with an anti-CTLA-4/PD-1 combination
therapy, was reported. The patient showed responsiveness
to corticosteroid treatment; with discontinuation of current
immunotherapy, the patient recovered from pneumonitis and
started next line of anti-tumor therapy (98).

Hepatitis
The incidence of immune-related hepatitis of all grades was
around 3.1% and the incidence of grade 3 or higher was 0.5–
0.6% (99). For a clinical trial with Pembrolizumab in patients
with previously treated NSCLC (KEYNOTE-010), three cases of
immune-related hepatitis were reported (97).

Management of Adverse Events
Before confirming the occurrence of immune-related adverse
events, specialist should rule out all other possible diagnoses,
including but not limited to infection and tumor progression
(83). Figure 3 gives a glimpse of main adverse events in patients
receiving anti-PD-1/PD-L1 therapy. The general principle for
managing trAEs are suggested as followed: patients with grade
1 adverse events are provided with supportive care; patients with
grade 2 events are advised on treatment with topical or systemic
steroids (0.5–1 mg/kg/day); patients with grade 3 or 4 events
require hospitalization, treatment of steroids, 1–2 mg/kg/day, or
discontinuation of the current immunotherapy, depending on
specialists’ assessments (97, 100). Table 5 shows the management
of some commonly observed trAEs. Most trAEs are manageable
with steroids, which should be provided at a sufficient dose and
gradually withdrawn. But there are some cases where trAEs may
be permanent, and in those scenarios, adverse events can be
treated with hormone instead (83, 100).

THE PERSPECTIVES OF ANTI-PD-1/PD-L1
THERAPY IN HEAD AND NECK CANCERS

Figure 4 shows the perspectives of anti-PD-1/PD-L1 therapy.

Criteria to Monitor the
Immune-Checkpoint Blockade
Scientists brought up the importance of monitoring immune-
checkpoint blockade. As it is a novel therapy for cancers,
the response evaluation and biomarkers should be different.
Immune-related response criteria is an important concept
to evaluate the immunotherapy and is the first step of
precision immunotherapy (101). There are many biomarkers
of immunotherapy response including PD-L1, other immune-
checkpoint molecules, tumor-infiltrating lymphocytes (TILs),
IFN-γ (102–104), mutational burden, neoantigens, microsatellite
instability, serum markers, radiographic markers, and the
“immunoscore” (105) which evaluates the distribution of TILs
in the core and in the invasive margin of tumors. A recent
study showed that the frequency of CD14+CD16−HLA−DRhi

monocytes had strong correlation with progression-free and
OS in response to therapy with anti-PD-1. The researchers
used single-cell mass cytometry to analyze the immune cell
subpopulations in the peripheral blood of patients with stage IV
melanoma before and after anti-PD-1 therapy. It is an effective
predictive biomarkers of a clinical response (106). Similarly,
more predictive biomarkers are expected to be found and used
in the near future.

Novel Materials Advancing the Effect
Nanoscale materials have potential as drug delivery systems
that assist or advance the treatment in cancers. Some could
even respond intelligently to molecular triggers (107, 108). A
recent research reported that an autonomous DNA robot was
programmed to transport blood coagulation protease thrombin
within tubular nanorobot while DNA outside of the nanorobot
as both a targeting domain and a molecular trigger. It could
target the nucleolin specifically expressed in tumor blood vessels
and caused tumor necrosis. Animal experiments with this DNA
robot showed promising results (109). As it could carry the blood
coagulation protease thrombin that is a type of protein, it would
also be able to transport the anti-PD-1/PD-L1 antibody to specific
areas with certain DNA targeting domains.

A microneedle, made by hyaluronic acid and pH-sensitive
dextran nanoparticles, is developed to encapsulate anti-PD-1
antibody and glucose oxidase. Glucose oxidase can turn blood
glucose into gluconic acid and generate an acidic environment
in tumors to drive the self-dissociation of nanoparticles and
finally substantially release anti-PD-1 antibodies. This newly
developed tool with immunotherapy induced more robust
immune response in melanoma. And the microneedle could
carry more than one antitumor therapeutics like combination of
anti-PD-1 and anti-CTLA-4 antibodies to enhance the treatment
effect (110).

Years ago, Sun et al. utilized bacterial magnetosomes as
drug carriers transporting doxorubicin to treat hepatocellular
carcinoma and got a better result compared with the sole
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FIGURE 3 | Main adverse events and treatments.

doxorubicin group (111). Immobilization of anti-PD-1/PD-L1
antibodies on magnetic nanoparticles may also provide an
efficient local delivery strategy of the drugs for malignant
solid tumors. Local magnetic delivery of these immobilized
antibodies would increase local concentration while reduce the

administration times, total usage and peripheral distribution of
the antibodies, reducing the adverse effects. It would be very easy
to immobilize antibodies on either biosynthesized or chemical
synthesizedmagnetic nanoparticles since there are a lot of linking
methods available (112).
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TABLE 5 | Management of treatment-related rash, pneumonitis, thyroid dysfunction and diarrhea (100).

Adverse events Grade 1–2 Grade 3–4

Rash ≤30% BSA: anti-histamines for pruritus and topical

steroid cream for rash.

>30% BSA:skin biopsy is needed and steroids with 1 mg/kg of

prednisolone until BSA≤30%.If life-threatening, permanently

discontinue drug administration.

Pneumonitis Clinical or diagnostic observations; delay drug

administration; daily monitoring.

Oxygen is needed; stop drug administration; hospitalization; high

dose steroids with methylprednisolone; intensive care support.

Thyroid dysfunction Clinical or diagnostic observations; daily monitoring; for

hypothyroidism, levothyroxine indicated; for

hyperthyroidism, propranolol is needed.

Hospitalization; specialist consult; clinical observation

Diarrhea ≤6 bowel actions/day: supportive measures; anti-motility

agents when needed.

>7 bowel actions/day: hospitalization; specialist consult; clinical

observation; steroids with 1–2mg/kg prednisolone.

FIGURE 4 | Perspectives of anti-PD-1/PD-L1 therapy.

Novel Agents Providing Similar Blockade
Effects of Anti-PD-1/PD-L1 Antibodies
Despite the anti-PD-1/PD-L1 antibodies, soluble PD-1 (sPD-1)
peptides may provide similar inhibition effect of PD-1 pathway
by competitively binding to PD-L1 expressed on tumor cells. The
plasmids expressing sPD-1 peptides could also be developed as
gene therapy drugs which turn tumor cells as producers of sPD-1.

Soluble Immune Checkpoint Molecules
In addition to membrane bound form, there are sPD-1 and
soluble PD-L1 (sPD-L1). Currently, sPD-1 is thought to be the
translational product of the PD-11ex3 mRNA transcript, and
sPD-L1 may be derived from the cleavage of membrane bound
PD-L1 by matrix metalloproteinases.

sPD-1 and sPD-L1 can also bind to ligands, thus blocking the
PD-1/PD-L1 signaling pathway, resulting in potent peripheral T-
cell anti-tumor responses. It’s reported that the PD-1 extracellular

domain was transfected into tumors by adenoviral vectors and
could antagonize the negative regulation of T cells by PD-1/PD-
L1 pathway, thus inhibiting tumor growth and prolong survival
of mice (113).

Compared with membranous molecules, soluble molecules
can not only affect neighboring cells in the tumor
microenvironment, but also affect the body farther through
the blood circulation, having a wider range of biological effects.

The production and function of the sPD-1 and sPD-
L1 require further investigation. sPD-1 and sPD-L1 can
be used in immunomodulatory therapy in combination
with other antitumor therapy, such as HSP70 vaccine, to
enhance the anti-tumor efficacy of tumor vaccine (114). In
addition, the soluble forms may be used as an additional
biomarker to the membrane bound forms, helping more
accurately determine the patient’s immune status and predict
efficacy (115).

Frontiers in Oncology | www.frontiersin.org 12 November 2018 | Volume 8 | Article 563618

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Anti-PD-1/PD-L1 Therapy in HNC

Cancer Vaccines
Up to now, preclinical and recent clinical studies have indicated
that combining PD-1 or PD-L1 checkpoint inhibitors with
cancer vaccines improves antitumor activity compared with anti-
PD-1 or PD-L1 antibody monotherapy alone (116). However,
satisfactory results about vaccines targeting PD-1 or PD-L1
checkpoint molecular are few. The DNA vaccines under active
study work well but safety is hard to guarantee. In contrast,
protein vaccines are low in cost and high in safety. It provides
a promising research direction for the future development of
cancer treatment. A study using genetic engineering to prepare
a Cholera Toxin B based vaccine that targets both mouse MUC1
and mouse PD-1 showed that this fused protein vaccine can
produce a stronger immune response (117).

Combination Therapy
Luo et al. (118) developed a nano-vaccine by simply mixing
an antigen with a synthesized polymeric nanoparticle, PC7A
NP. It delivered tumor antigens to APCs in draining lymph
nodes, increasing surface presentation and simultaneously
activating type I interferon-triggered genes through STING
pathway. Combination of PC7A nano-vaccine with anti-PD-
1 antibodies demonstrated increased survival rate in animal
tumor models. Tumor growth was completely inhibited when
these vaccinated animals were rechallenged with tumor cells,
suggesting generation of antitumor memory (118). Researchers
found that exploiting the individual tumor mutations as neo-
epitopes and utilizing them as vaccines could enhance the
immune response to tumors. Some patients even completely
responsed to vaccination during combinational therapy with
anti-PD-1 (119, 120).

Oncolytic virotherapy has demonstrated promise, however,
it only had efficacy in a small fraction of tumor patients. As
the virus could upregulate PD-L1 expression on tumor cells,
combination of oncolytic virus, and anti-PD-1/PD-L1 therapy
could synergistically promote the treatment of cancers. This was
tested in colon and ovarian cancer models, but was believed to
own wider indications (121).

Recent study revealed that TNF-α blockade prevents death
of tumor infiltrating T lymphocyte induced by anti-PD-1 as

well as PD-L1 and TIM-3 expression. It is strongly rationalized
to develop a combinational therapy with anti-PD-1/PD-L1 and
anti-TNF-α in cancer patients (122).

Chemotherapy drug gemcitabine (GEM) and anti-PD-L1
antibodies could be released locally when an engineered reactive
oxygen species (ROS)-degradable hydrogel was injected and
formed in tumor microenvironment, which contained abundant
ROS. Anti-PD-L1-GEM scaffold promoted an tumor regression

in the tumor-bearing mice and prevention of tumor recurrence
after primary resection (123). In this research, a novel material

together with the combination therapy reinforced the effect and

reduced side effects of the treatment.
The trends of anti-PD-1/PD-L1 therapy are to enhance the

therapy effects while reduce the side effects. It would benefit
from the combination of anti-PD-1/PD-L1 antibodies with

other checkpoint inhibitors, other suppressor inhibitors, cytokine

inhibitors or chemotherapy drugs. Emerging novel materials
and delivery strategies like nanorobots, microneedle patches,

and magnetic immobilization could help the therapeutics work

better in the way of localizing them in the cancer sites or

carrying other biomarkers like DNAs or proteins to target
better.
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Objective: Non-Small Cell Lung Cancer (NSCLC) is extremely lethal upon metastasis

and requires safe and effective systemic therapies to improve a patient’s prognosis.

Prodigiosin (PG) appears to selectively and effectively target cancer but not healthy cells.

However, PG’s cancer-specific activity has remained elusive until recently.

Methods: PG’s cancer-specific performance was compared to Docetaxel (DTX),

Paclitaxel (PTX), and Doxorubicin (DOX) against human lung adenocarcinoma (A549)

and human small airway epithelial cells (HSAEC). Combination of PG with DTX, PTX,

or DOX in a 1:1 ED50 ratio was also evaluated. MTT assay was used to determine the

post-treatment cell viability. RNA-sequencing was used for comparative transcriptomics

analysis between A549 and HSAEC treated with 1.0µM PG for 24 h.

Results: PG reduced A549 cell viability by four-folds greater than HSAEC. In comparison

to DTX, PTX and DOX, PG was ∼1.7 times more toxic toward A549, and 2.5 times more

protective toward HSAEC. Combination of PG in a 1:1 ED50 ratio with DTX, PTX, or

DOX failed to exhibit synergistic toxicity toward A549 or protection toward HSAEC. In

A549, genes associated in DNA replication were downregulated, while genes directly

or indirectly associated in lipid and cholesterol biogenesis were upregulated. In HSAEC,

co-upregulation of oncogenic and tumor-suppressive genes was observed.

Conclusion: An overactive lipid and cholesterol biogenesis could have caused A549’s

autophagy, while a balancing-act between genes of oncogenic and tumor-suppressive

nature could have conferred HSAEC heightened survival. Overall, PG appears to be a

smart chemotherapeutic agent that may be both safe and effective for NSCLC patients.

Keywords: prodigiosin, small molecule, chemotherapy, lung cancer, selective, RNA-sequencing

INTRODUCTION

Cancer represents a major disease burden to mankind (1–4), and it accounts for almost one out of
six deaths worldwide (5). Out of the 8.8 million cancer deaths in 2015, 1.69 million was due to lung
cancer (5). The high mortality in patients with lung cancer is often associated with an advanced
metastatic disease state (6, 7). In such cases, effective systemic therapies are vital to improve a
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patient’s prognosis. Targeted therapy, immunotherapy and
chemotherapy are all systemic therapies, each with their own
strengths and weaknesses.

Targeted therapies can mitigate most side-effects commonly
seen in chemotherapy by working on specific mutations unique
to cancer cells (8), but their highly specific nature excludes
patients whom do not harbor these mutations (9). Almost 80%
of all lung cancers are Non-Small Cell Lung Cancer (NSCLC).
The most studied target for NSCLC is the Epidermal Growth
Factor Receptor (EGFR). There exist three classes of activating
EGFR mutations that sensitizes NSCLCs to EGFR Tyrosine
Kinase Inhibitors (TKIs). These activating EGFR mutations have
been well summarized in the literature (10). Gefitinib, Erlotinib,
Afatinib, Osimertinib, and Dacomitinib are a few prominent and
promising EGFRTKIs used inNSCLC patients harboring specific
activating EGFRmutations. Gefitinib and Erlotinib are inhibitors
of a few specific EGFR mutations found in some NSCLC patients
and have demonstrated enduring progression free survival for
responders (11–13). Although effective, Gefitinib, Erlotinib, and
the other EGFR TKIs are beneficial to only a small population of
patients as only about 15% of Caucasian and 50% of Asian lung
adenocarcinoma patients harbor EGFR mutations (14, 15).

Immunotherapy exploits the patient’s own immune system
against cancers (16), but its success depends on the cancer’s ability
to display its unique neoantigens on its outer cell membrane (17–
19) to be identified and destroyed by immune cells (20). Cancers
can evade immune destruction by expressing ProgrammedDeath
(PD) Ligand 1 (PD-L1), which binds to PD-1 receptors on CD8+
T-cells, inhibiting cytotoxic elimination (21). Nivolumab and
Pembrolizumab are antibodies against PD-1. Their prevention of
interaction with PD-1 allows CD8+ T-cells to eliminate cancer
cells such as NSCLCs (22, 23). Anti-PD-1 effectiveness against
NSCLC has been reported to positively correlate with the cancer
cell’s mutation burden, as a high mutation load generates unique
neoantigens for T-cell recognition (24). However, response rates
of anti-PD-1 in NSCLC patients appears to be low at ∼19%
(22, 23, 25).

In contrast to targeted and immunotherapy, chemotherapy
offers broader patient coverage and is still the mainstream
cancer therapy available for the majority of cancer patients (26).
Platinum-based doublet chemotherapies have been indicated as
the first-line against NSCLC with response rates ranging from
25 to 35% (27, 28). However, despite better response rates, their
inability to distinguish rapidly diving cancer cells from healthy
cells could lead to debilitating side-effects such as anemia, nausea,
and neurotoxicity (29).

NSCLC urgently require therapies that are effective, have wide
coverage, and harbor fewer side effects. Many studies are ongoing
to improve systemic therapies for metastatic NSCLC. In terms of
chemotherapies, the search for newer and safer treatments, alone
or in combination, persists (30–33).

Nature provides a rich source of anti-cancer agents suitable
for chemotherapy. Docetaxel (DTX), Paclitaxel (PTX), and
Doxorubicin (DOX) are natural compounds that have been used
against NSCLC (34, 35). Recently, Prodigiosin (PG), a secondary
metabolite from Serratia marcescens, was observed to inhibit
NSCLC proliferation (36). Interestingly, PG has been reported

to exhibit high cancer-specificity (37–39). This means that PG
could potentially mitigate common side-effects associated with
chemotherapies, making it a smart chemotherapy candidate.

The current understanding of PG’s anti-cancer mechanisms
of action encompasses cytoplasmic acidification through
modulation of H+/Cl− symporters, DNA damage
through copper-mediated oxidative cleavage, inhibition
of topoisomerases, and ATP synthesis reduction through
disruption of the mitochondrial proton gradient (40). At the
molecular level, PG has been described to initiate autophagy
through mTOR deactivation (39) and apoptosis through the
disruption of BCL-2 family pro-survival members (39, 41) or
downregulation of pro-survival Survivin (40, 42), a member of
the inhibitor of apoptosis. In addition, common to many cancers
is the dysregulation of p53, a protein that dictates cell survival or
cell death upon cell stress. In most cancers, p53 activity is lost
and cells attain a permanent survival status. In some reports, PG
was able to induce cancer cell apoptosis in a p53-independent
manner (43, 44). This reveals that PG could trigger alternative
apoptosis pathways.

Altogether, PG appears to be a promising chemotherapeutic
agent which warrants further research into its mechanisms of
action. At present, there exists limited data on PG’s mechanisms
of action to draw meaningful links between studies. Here, we
add value to the current knowledge by unveiling PG’s potential
cancer-specific activity through comparative transcriptomics
analysis between Human Lung Adenocarcinoma (A549) and
Human Small Airway Epithelial Cells (HSAEC), with Human
Colorectal Carcinoma Cells (HCT116) as a cancer control. In
addition, we also report on PG’s in vitro effectiveness and
safety, based on the degree of cancer cytotoxicity and selectivity,
respectively, in comparison to DTX, PTX and DOX.

MATERIALS AND METHODS

Materials
Docetaxel purum (DTX), doxorubicin hydrochloride
(DOX), paclitaxel from Taxus brevifolia (PTX), prodigiosin
hydrochloride from Serratia marcescens (PG), and dimethyl
sulfoxide (DMSO) were purchased from Sigma (St. Louis, MO,
USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was purchased from Bio Basic (Amherst, NY,
USA). Proteinase K, RNase-Free DNase I and the RNAprotect
Cell Reagent were purchased from Qiagen (Hilden, Germany).
TURBOTM DNase, QubitTM dsDNA HS, and RNA HS Assay
Kits were purchased from Invitrogen (Waltham, MA, USA).
Angencourt RNAClean XP Kit was purchased from Beckman
Coulter (Bera, CA, USA). RNA ScreenTape was purchased from
Agilent (Santa Clara, CA, USA).

Cell Culture
Primary Small Airway Epithelial Cells; Normal, Human
(HSAEC) (ATCC R© PCS301-010TM), A549 (ATCC R© CCL-
185TM), HCT116 (ATCC R© CCL-247TM), and the Airway
Epithelial Cell Basal Medium (AECBM) with associated growth
factors were purchased from the American Type Culture
Collection (ATCC) (Manassas, VA, USA). Phosphate Buffered
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Saline (PBS) without calcium and magnesium, high glucose
Dulbecco’s Modified Eagles Media (DMEM) with added L-
glutamine, sodium pyruvate, and phenol red, were purchased
from GE Healthcare Life Sciences (Logan, UT, USA). Heat-
inactivated Fetal Bovine Serum (FBS) of South American origin
and Trypsin-EDTA (0.25%) with phenol red were purchased
from Gibco (Waltham, MA, USA). HSAEC cells were cultured
with 8mL AECBM while both A549 and HCT116 cells were
cultured with 8mL DMEM supplemented with 10% FBS, which
henceforth will be referred to as complete media, in a 75 cm2

culture flask. All culture flasks were incubated in a humidified
atmosphere at 37◦C with 5% CO2. All incubations mentioned
henceforth will be referring to these conditions. NoMycoplasma
testing was performed.

Cell Viability Assay
DTX, PTX, DOX, and PG were reconstituted with DMSO to
a stock concentration of 50, 50, 80, and 2mM, respectively.
Drugs were diluted in pre-warmed AECBM or complete
media of 37◦C. For each drug concentration tested, an
equivalent DMSO concentration was created as control
(Supplementary Figure S1).

At ∼90% cell confluency, cells were split into 96-well flat-
bottomed plates at a seed density and final volume of 7,000
cells and 100 µL per well. Cultures were incubated overnight
for 24 h. At ∼80% confluency, the spent media was replaced
with either the treatment or control media to a final volume of
100 µL per well. The culture plates were incubated for another
48 h.

The MTT shipped in the powdered state was reconstituted
with PBS to a final concentration of 5 mg/mL and sterile
filtered with a 0.2µm Acrodisk Syringe Filter (PALL, Port
Washington, NY, USA). This was mixed at a 1:1 ratio with
serum-free DMEM or AECBM to create the MTT mix. After
the 48 h of treatment, the spent drug media was replaced with
100 µL of the MTT mix. The cultures were incubated for
an additional 3 h before being homogenized with 150 µL of
DMSO. Cell viability was measured with the Infinite R© M200 Pro
(Tecan, Männedorf, Zürich, Switzerland) microplate reader at
590 nm.

Drug Cytotoxicity Screening
HSAEC and A549 cells, both at passage P6, were split into three
25 cm2 culture flasks. These cultures were propagated further
for two more passages, and at P8, each cell line was considered
to have three biological replicates of n = 3 (45). The cells were
thereafter cultured in 96-well plates as technical duplicates per
biological replicate.

DTX, PTX, DOX, and PG’s ED50 were pre-determined with
A549 cells (Supplementary Figure S2). The ED50 for DTX, PTX,
DOX, and PG were 0.1, 0.1, 1, and 0.3µM, respectively. For
the combination therapies with PG, drugs were mixed in a 1:1
ED50 ratio. All treatments were first created as eight-fold stock
concentrations and were serially diluted by two-folds (i.e., 8:8 to
4:4 till 0.25:0.25). All other steps conducted have been described
under the “Cell Viability Assay” section.

RNA Extraction and Quality Controls
HSAEC, A549, and HCT116 at passage number P8 were cultured
as technical triplicates in 25 cm2 culture flasks, and after two
more passages, each cell line was considered to have biological
triplicates of n = 3 (45). At 90% confluency, HSAEC and A549
cells were split at a seed density of 3.0 × 104 cells/cm2

, while
HCT116 cells were split at 6.0 × 104 cells/cm2 into 6-well plates.
After 24 h of incubation in 3mL of AECBM or complete media,
the spent media was replaced with 3mL of either 1.0µM PG
(treatment) or 0.05% DMSO (control). Cells were incubated for
another 24 h and thereafter, the media was replaced with 1mL of
RNAprotect Cell Reagent.

Cells were gently agitated on an orbital shaker at 80
revolutions per minute for 10min. A lysis cocktail comprised
of 10 µL 1% β-mercaptoethanol, 20 µL proteinase K, and 800
µL RLT buffer, which was a component from the RNeasy Mini
Kit (Qiagen), was homogenized with cells in each well. The RNA
extraction was conducted according to instructions found in the
RNeasy Mini Kit.

A 30min on-column DNase I treatment was performed.
DNA contamination was further minimized with TURBOTM

DNase treatment. Once RNA was purified with the Angencourt
RNAClean XP Kit, RNA integrity was verified using the RNA
ScreenTape with analysis on the Agilent 2200 TapeStation
(Agilent). Using the QubitTM dsDNA HS and RNA HS Assay
Kits, total RNA was quantified fluorometrically via the QubitTM

Fluorometer 2.0 (Invitrogen).

RNA Sequencing and Data Processing
RNA library preparation and sequencing were conducted by
an in-house facility at Singapore Centre for Environmental
Life Science Engineering (SCELSE). Briefly, library preparation
was executed with the Illumina R© TruSeq R© Stranded messenger
RNA Sample Prep Kit (Illumina, San Diego, CA, USA). The
output which was cDNA fragments were paired-end sequenced
at read lengths of 100 nucleotides via the Illumina R© HiSeq 2500
(Illumina) platform.

All samples had a sequencing depth of more than 24 million
reads. These reads were processed using the CLC Genomics
Workbench Version 11.0.1 (CLC Bio, Aarhus, Denmark). The
default settings were used unless otherwise stated. All reads
were trimmed with a quality score of 0.05. Using the “RNA-
Seq Analysis” function, the trimmed reads were mapped onto
the human genome GRCh38 downloaded from the Ensemble
database. The maximum number of hits for a read was set to
1. Gene hits were annotated with GRCh38.92 acquired from
the Ensemble database. Gene expression was measured as total
counts, where each paired-read was considered as 1. A negative
binomial test was performed using the workbench’s “Differential
Expression for RNA-Seq” tool to establish the differentially
expressed genes (DEGs). All raw and processed sequence files
may be acquired from Gene Expression Omnibus (Accession
number: GSE118448).

Functional Analysis
DEG datasets were exported from CLC into the Ingenuity R©

Pathway Analysis (IPA; Qiagen) Version 44691306 software. A
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Log2 Fold-change (Log2FC) of ±1 with a false discovery rate
(FDR) adjusted p-value of < 0.05 was applied to the datasets.
With these cut-off values, HSAEC had 2,222, A549 had 2,004, and
HCT116 had 2,199 DEGs out of 37,258 successfully annotated
gene identifiers.

Statistical Analysis
The Welch two-tailed t-test available in GraphPad Prism 8
was applied onto the drug cytotoxicity screening assay datasets.
This statistical test considers the data to have been sampled
from a Gaussian population but does not presume that the two
populations under scrutiny have the same standard deviation.
The null hypothesis is defined as the two populations tested
having equal means. When p > 0.05, the null hypothesis is
not rejected, and the interpretation would be that the evidence
is not convincing enough to claim that the means of the two
populations tested are different.

RESULTS

PG Demonstrated Selective Toxicity
Toward A549 but not HSAEC
PG has been known to induce cancer cell death while preserving
healthy cell’s viability (37–39). Here, we evaluated PG’s cancer-
specific toxicity with cancer cell line A549 and immortalized
human lung small airway epithelial cells (HSAEC; Figure 1). At
PG’s ED50 of 0.3µM, cell viability of A549 was reduced by 67.7
± 5.3%, while HSAEC was reduced by 15.6 ± 2.8%. As A549 is
a cancer cell line while HSAEC is an immortalized healthy cell
line, with both dividing rapidly, the greater reduction in A549 cell
viability demonstrates PG’s selective toxicity. PG concentrations
>0.3µM exhibited neither enhanced cancer toxicity nor healthy
cell protection.

PG Outperformed DTX, PTX, and DOX in
Terms of Cancer-Specificity
Here, we define performance as the agent’s ability to protect
normal cells while being toxic to cancer cells. In other words, the
degree of cancer-specificity. Evaluation of DTX, PTX, DOX, and
PG’s ED50 of 0.1, 0.1, 1.0, and 0.3µM, respectively, against A549
and HSAEC, revealed PG’s superior performance as a cancer-
specific agent. At these concentrations, PG preserved HSAEC
viability by 2.8, 2.4, and 2.5 times more than DTX, PTX, and
DOX, respectively (Figure 1). Moreover, PG reduced A549 cell
viability at an average of 1.7 times greater than the other agents.

PG Exhibited Poor Performance in
Combination With DTX, PTX, or DOX
DTX, PTX, or DOX in a 1:1 ED50 ratio with PG failed to
exhibit anti-cancer synergism and were almost equally toxic, if
not worst, toward HSAEC as compared to A549. 0.3µM PG
with 0.1µM DTX reduced HSAEC viability by 63.0 ± 2.6% and
A549 by 67.2 ± 3.7% (Figure 1A). 0.3µM PG with 0.1µM PTX
reduced HSAEC viability by 66.4 ± 7.5% and A549 by 63.9 ±

4.3% (Figure 1B). 0.3µMPGwith 1.0µMDOX reduced HSAEC
viability by 71.4 ± 2.7% and A549 by 40.4 ± 10.4% (Figure 1C).
PG in combination with DTX, PTX, or DOX, at 4:4, 2:2, 1:1,
0.5:0.5 or 0.25:0.25 ED50 ratio, failed to exhibit improved toxicity

toward A549 with enhanced protection to HSAEC in comparison
to 0.3µM PG alone.

PG Altered Both A549 and HCT116 Cancer
Cells’ Morphology
To determine if PG’s anti-cancer activity can be observed
beyond lung adenocarcinoma cells, in addition to A549 cells,
we treated HCT116 cells, another cancer type which could
serve as a cancer control, with 1.0µM PG for 24 h prior
microscopic visualization. A549 cells were found in low numbers,
elongated, shriveled, with a deformed nucleus and non-
homogenous cytoplasm (Figure 1Da). HCT116 cells appeared
rounded-up, detached from culture surfaces, but still adhered
to neighboring cells (Figure 1Db). Overall, PG demonstrated
substantial morphological alterations in both A549 and HCT116
cancer cell lines.

PG’s Toxicity Possibly Mitigated Through a
“Balancing Act” in HSAEC
To understand how PG protects healthy cells yet kills cancer cells,
we conducted an RNA-sequencing experiment with HSAEC,
A549 and HCT116 cells treated with 1.0µM PG for 24 h. Using
the top 50 up- and down-regulated genes per cell line, we
were able to identify 84 DEGs specifically perturbed in HSAEC.
These DEGs had an FDR p-value < 4.0 × 10−15 (Figure 2). For
comparison validity, these 84HSAEC-specific DEGs were filtered
under two conditions. Firstly, the corresponding DEGs in A549
and HCT116 were required to have an FDR p-value < 0.05, and
secondly, the difference in expression in terms of Log2FC with
HSAEC had to be > ± 1.5. Under these conditions, 21 DEGs
were identified as fit for comparison (Table 1).

The 21 DEGs revealed a “balancing act” in HSAEC between
genes of oncogenic and tumor-suppressive nature. Oncogenic
genes such as PDK4, RRAGD, HEY1, TSPAN15, and SERPINB9
were found overexpressed. At the same time, tumor-suppressive
genes such as MT1G, MT1M, CDKN1C, and DCN were
overexpressed. On the other hand, genes of oncogenic nature
such as SHCBP1, CPA4, KRT19, KRT15, and DSG3 were found
downregulated. DEGs such as BMP6, GULP1, AC106865.1,
CNTN3, GDAP1, C1orf116, and SDSL were uncategorizable due
to their lack of information.

PG Possibly Induced DNA Replication
Inhibition and Metabolic Rewiring in A549
and HCT116
To identify other possible anti-cancer mechanisms associated
with PG, we performed a comparative transcriptomics analysis
betweenA549, HCT116 andHSAEC cells treated with 1.0µMPG
for 24 h. A total of 18 DEGs were considered fit for comparison
(Table 2) based on two conditions. Firstly, the DEGs commonly
perturbed betweenA549 andHCT116 had to be upregulated by at
least>2 Log2FC and downregulated by<-1.5 Log2FC. Secondly,
the difference between A549 and HSAEC gene expression had to
be > ± 1.5 (Figure 2).

All commonly downregulated genes between A549 and
HCT116 were found associated with DNA replication. These
were MCM10, H2AFX, DSCC1, MCM4, and RFC5 (Table 2).
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FIGURE 1 | Cell viability of HSAEC and A549 cell measured by the MTT assay after 48-h of PG treatment (A–C). Effects of 1.0µM PG on A549 and HCT116 cell

morphology after 24 h treatment (Da–Dd). (A) PG, DTX, and PG+DTX. (B) PG, PTX, and PG+PTX. (C) PG, DOX, and PG+DOX. Bar graphs represent mean cell

viability from biological triplicates (n = 3) while the black vertical lines on the bar tops represent standard deviation (SD). A Welch t-test was applied to the datasets;

black horizontal lines compare drug effects between HSAEC and A549, blue lines compare within HSAEC, and red lines compare within A549 (*p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, and “ns” is not significant). (Da) A549 and (Db) HCT116 were treated with 1.0µM PG. (Dc) A549 and (Dd) HCT116 were treated with

0.05% DMSO as a negative control. Phase-contrast images were acquired at 20X magnification with the EVOS FL Auto 2 microscope. Images have not been

enhanced. Scale bars represent 125µm.
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FIGURE 2 | Differentially expressed genes from CLC Workbench for HSAEC, A549 and HCT116 after 24 h treatment with 1.0µM PG. Blue circles represents HSAEC,

purple as A549 and yellow as HCT116. Twenty one genes for Table 1 were derived from filtering 84 HSAEC-specific genes on the condition that corresponding genes

in A549 and HCT116 had an FDR p-value < 0.05, and secondly, the difference of A549 and HCT116 gene expression in terms of Log2FC with HSAEC had to be > ±

1.5. Eighteen genes for Table 2 were derived from filtering 80 genes common to A549 and HCT116 on the condition that corresponding genes in A549 with HSAEC

had an FDR p-value < 0.05, and secondly, the difference of A549 and HSAEC gene expression in terms of Log2FC with HSAEC had to be > ± 1.5.

Surprisingly, MCM10 and DSCC1 expression were severely
repressed in HSAEC than in A549 and HCT116. On the
other hand, multiple genes associated with lipid and cholesterol
metabolism, either directly or indirectly, were found commonly
overexpressed between A549 and HCT116. These were ALDOC,
NDRG1, WIPI1, PCSK9, LIPG, MSMO1, MVD, IDI1, and
ANGPTL4 (Table 2). The other genes that were overexpressed
yet did not closely associate with the two main categories
described here were MIR210HG, CCNG2, P4HA1, and PPM1K
(Table 2). Confirmatory repeat experimental data for RNA
sequencing result of A549 and HCT116 can be found in
Tables S1,S2. Further pathway analysis also revealed different
upstream regulator activities in PG-treated HSAEC, A549, and
HCT116 cells (Tables S3–S5).

Based on pathway analysis, and in relation toDNA replication,
the “Role of BRCA1 in DNADamage Response” and the “Mitotic
Roles of Polo-Like Kinase” pathways were seen perturbed in all
three cell lines but were predicted to be inactivated (Table 3).
In terms of DNA damage, the “Cell Cycle: G2/M DNA Damage
Checkpoint Regulation” pathway was predicted to be activated
(Table 3). In relation to metabolic rewiring, the “Superpathway
of Cholesterol Biosynthesis,” the “Cholesterol Biosynthesis

III (via Desmosterol),” the “Cholesterol Biosynthesis II (via
24,25-dihydrolanosterol),” and the “Cholesterol Biosynthesis I”
pathways were significantly perturbed and predicted to be highly
activated (Table 3). Furthermore, these cholesterol pathways
were not perturbed in HSAEC following PG treatment.

With experimental data, the IPA’sMolecule Activity Prediction
(MAP) algorithm managed to predict PG-induced mechanistic
differences between HSAEC and A549 cells in terms of “Cell
Cycle Progression,” “Apoptosis,” “Cell Survival,” “Mitochondrial
Respiration,” “Glycolysis,” “Autophagy,” and “Senescence”
(Figure 3). The overall prediction landscape seems to suggest
PG-induced pro-survival in HSAEC but pro-death in A549.
Interestingly, “DNA Repair” mechanism was predicted to be
inhibited in both cell lines (Figure 3).

DISCUSSION

Metastatic lung cancers are extremely lethal and requires effective
systemic therapies to improve clinical outcomes for patients
(46). PG has demonstrated immense potential as a smart
chemotherapeutic candidate. Its most promising feature is its
ability to selectively eliminate cancer cells yet protect healthy
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TABLE 1 | HSAEC-specific DEGs in comparison with A549 and HCT116 cells after 24 h treatment with 1.0µM PG.

Log2FC

Gene name Gene symbol ENSEMBL ID HSAEC A549 HCT116

ONCOGENIC NATURED GENES

Pyruvate Dehydrogenase Kinase 4 PDK4 ENSG00000004799 6.87 1.25 1.62

Ras Related GTP Binding D RRAGD ENSG00000025039 4.92 2.03 0.68

Hes Related Family BHLH Transcription Factor with YRPW Motif 1 HEY1 ENSG00000164683 4.54 0.93 1.41

Tetraspanin 15 TSPAN15 ENSG00000099282 4.19 -0.61 1.28

Serpin Family B Member 9 SERPINB9 ENSG00000170542 3.69 -0.78 0.72

SHC Binding and Spindle Associated 1 SHCBP1 ENSG00000171241 -3.73 -2.18 -1.14

Carboxypeptidase A4 CPA4 ENSG00000128510 -3.68 0.49 0.67

Keratin 19 KRT19 ENSG00000171345 -3.48 1.97 0.76

Keratin 15 KRT15 ENSG00000171346 -3.28 1.13 2.00

Desmoglein 3 DSG3 ENSG00000134757 -2.86 – –

TUMOR-SUPPRESSIVE NATURED GENES

Metallothionein 1G MT1G ENSG00000125144 5.80 – –

Metallothionein 1M MT1M ENSG00000205364 5.64 – –

Cyclin Dependent Kinase Inhibitor 1C CDKN1C ENSG00000129757 4.74 2.84 2.43

Decorin DCN ENSG00000011465 3.81 – –

UNCATEGORIZABLE GENES

Bone Morphogenetic Protein 6 BMP6 ENSG00000153162 5.49 2.18 -1.41

GULP, Engulfment Adaptor PTB Domain Containing 1 GULP1 ENSG00000144366 4.11 0.78 1.41

– AC106865.1 ENSG00000250771 4.88 – –

Contactin 3 CNTN3 ENSG00000113805 4.51 – –

Ganglioside Induced Differentiation Associated Protein 1 GDAP1 ENSG00000104381 -3.93 -1.12 -0.63

Chromosome 1 Open Reading Frame 116 C1orf116 ENSG00000182795 -3.57 -1.47 1.23

Serine Dehydratase Like SDSL ENSG00000139410 -2.88 -0.68 -0.72

Upregulated genes are represented in red, downregulated in blue, and those with no detectable changes with the symbol “-”. All genes curated had an FDR p-value < 4.0 × 10−15

except the following; A549’s CDKN1C (0.01) and HEY1 (0.04), HCT116’s BMP6 (0.05). Experiments were conducted in biological triplicates of n = 3. Confirmatory repeat experimental

data can be found in Supplementary Table S1.

cells (37–39). Here, we were able to demonstrate PG’s selective
elimination of NSCLC by four-folds (Figures 1A–C). Beyond
lung adenocarcinoma cells, we also showed that PG could cause
substantial morphological alterations to colorectal carcinoma
cells (Figure 1D). When compared to other naturally derived
anti-cancer agents such as DTX, PTX, or DOX, PG exhibited
heightened protection toward HSAEC while being more toxic to
A549. Indeed, PG established itself as a promising cancer-specific
agent. However, the random combination with other anti-cancer
agents could ameliorate PG’s cancer-specific activity and yield an
undesirable outcome to healthy cells (Figures 1A–C). A rational
drug combination approach could increase synergism, hence,
greater success in combinatorial chemotherapies. To permit
a rational combination of PG with other anti-cancer agents,
we require a deeper understanding of the agent’s molecular
functions.

Previously, a microarray analysis for 1,176 genes was
performed on human breast cancer cells treated with PG (44).
Out of the 37 significantly perturbed genes (44), there were
no similarities found with our study (Table 2). The lack of
similarities was not unexpected as this could be due to the
inherent limitation of the microarray technology (47), or simply

because a different cell line was used. Nevertheless, using
RNA-sequencing, a genome-wide transcriptomics approach, we
were able to identify at least 2,000 significantly perturbed
genes per cell line. With broader coverage, we were confident
that employing such a technology would permit a more
comprehensive analysis.

The comparative transcriptomics analysis between A549 and
HCT116 revealed 18 genes that were significantly perturbed
by PG (Table 2). These genes revealed the possibility of DNA
replication inhibition and metabolic rewiring toward enhanced
lipid and cholesterol biogenesis. In the study with breast
cancer cells, PG was reported to perturb genes related to
transcriptional regulation, cell adhesion, cell cycle, and apoptosis
(44). Although we have not found perturbations in genes
associated with transcriptional regulation or cell adhesion, based
on experimental data, we have predicted cell cycle inhibition
(Table 3 and Figure 3) and reduced survival fitness in line with
apoptosis (Figure 3) in A549 cells.

The gene products of MCM10, MCM4, H2AFX, DSCC1,
and RFC5 are necessary for DNA replication. However, they
were found downregulated in both A549 and HCT116 after PG
treatment (Table 2). MCM10 plays a crucial role in allowing
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TABLE 2 | Common DEGs in both A549 and HCT116 cells after 24 h treatment with 1.0µM PG.

Log2FC

Gene name Gene symbol ENSEMBL ID HSAEC A549 HCT116

DNA-REPLICATION ASSOCIATED GENES

Minichromosome Maintenance 10 Replication Initiation Factor MCM10 ENSG00000065328 -4.67 -3.09 -1.87

H2A Histone Family Member X H2AFX ENSG00000188486 -0.96 -2.70 -1.57

DNA Replication and Sister Chromatid Cohesion 1 DSCC1 ENSG00000136982 -3.93 -2.35 -1.55

Minichromosome Maintenance Complex Component 4 MCM4 ENSG00000104738 -0.33 -2.22 -1.87

Replication Factor C Subunit 5 RFC5 ENSG00000111445 -0.51 -2.11 -1.62

LIPID AND CHOLESTEROL METABOLISM ASSOCIATED GENES

Aldolase, Fructose-Bisphosphate C ALDOC ENSG00000109107 1.74 5.36 4.71

N-Myc Downstream Regulated 1 NDRG1 ENSG00000104419 1.08 3.80 2.81

WD Repeat Domain, Phosphoinositide Interacting 1 WIPI1 ENSG00000070540 1.53 3.39 2.50

Proprotein Convertase Subtilisin/Kexin Type 9 PCSK9 ENSG00000169174 1.65 3.27 2.85

Lipase G, Endothelial Type LIPG ENSG00000101670 -0.27 2.82 3.35

Methylsterol Monooxygenase 1 MSMO1 ENSG00000052802 0.51 2.76 3.32

Mevalonate Diphosphate Decarboxylase MVD ENSG00000167508 0.52 2.48 2.76

Isopentenyl-Diphosphate Delta Isomerase 1 IDI1 ENSG00000067064 0.59 2.34 2.98

Angiopoietin Like 4 ANGPTL4 ENSG00000167772 -1.34 2.19 3.66

OTHER PATHWAYS ASSOCIATED GENES

MIR210 (MicroRNA 210) Host Gene MIR210HG ENSG00000247095 1.00 4.57 3.60

Cyclin G2 CCNG2 ENSG00000138764 0.78 3.15 3.74

Prolyl 4-Hydroxylase Subunit Alpha 1 P4HA1 ENSG00000122884 0.30 2.40 2.68

Protein Phosphatase, Mg2+/Mn2+ Dependent 1K PPM1K ENSG00000163644 0.57 2.32 2.15

Upregulated genes are represented in red and downregulated in blue. All genes curated had an FDR p-value < 4.0 × 10−15 except the following; HSAEC’s MIR210HG (4.09 × 10−15),

LIPG (7.17 × 10−3), MSMO1 (2.15 × 10−12), MVD (5.92 × 10−10), P4HA1 (4.41 × 10−4), IDI1 (3.13 × 10−10), PPM1K (8.86 × 10−3), MCM10 (3.26 × 10−7), H2AFX (4.09 × 10−15),

DSCC1 (8.96 × 10−4), MCM4 (2.54 × 10−3), and RCF5 (0.02). Experiments were conducted as biological triplicates of n = 3. Confirmatory repeat experimental data can be found in

Supplementary Table S2.

CDC45:MCM2-7:GINS helicase to unwind DNA double-strand
for replication initiation (48). After DNA has been unwounded,
DNA replication requires DSCC1 and RFC5 complexed with
other proteins to load Proliferating Cell Nuclear Antigen (PCNA)
onto the DNA (49). PCNA is required to clamp DNA polymerase
epsilon onto the DNA for replication (50). After DNA synthesis,
to maintain genomic integrity, H2AFX serves as a sensor for
DNA damage and recruits DNA repair complexes to the area
of lesion (51). PG has been reported to cause genotoxicity
directly through copper-mediated oxidative cleavage (52), or
indirectly through inhibition of topoisomerases (53). One
potential mechanism stemming from the downregulation of
H2AFX is the loss of genomic integrity, induction of cell
cycle arrest [CCNG2 overexpression (Table 2) and predicted
G2/M DNA damage checkpoint arrest activation (Table 3)] and
therefore, DNA replication stand-still (54, 55). By throwing the
DNA repair mechanisms off-balance [predicted BRCA pathway
shutdown (Table 3)], genotoxic agents such as PGmight increase
sensitivity and effectiveness against cancer cells (56, 57).

Metabolic rewiring has been described as an emerging
hallmark of cancer (58, 59), and there have been reports of
lipid and cholesterol metabolism being drivers of tumorigenesis
and progression (60–62). In fact, it has been mentioned that
“highly proliferative cancer cells show a strong lipid and
cholesterol avidity, which they satisfy by either increasing the
uptake of exogenous (or dietary) lipids and lipoproteins or

overactivating their endogenous synthesis (that is, lipogenesis
and cholesterol synthesis, respectively)” (60). Interestingly, these
overactivations were observed only after PG treatment (Table 2).
ALDOC, MVD, and IDI1 are metabolic enzymes that support
lipid and cholesterol biosynthesis. Their gene overexpression
could potentially hint at an overactive endogenous lipid and
cholesterol biogenesis. ANGPTL4, a lipoprotein lipase inhibitor,
had a Log2FC difference of 3.53 between healthy HSAEC and
cancerous A549 cells. ANGPTL4 upregulation in A549 cells
may have been in response to the overexpression of other
lipogenic genes (63). On the flip side, upregulation of PCKS9
hints at a potential supply cut-off of low-density lipoproteins
(LDL) from exogenous sources by reducing LDL receptors (64,
65). As a compensatory mechanism to reduced LDL uptake,
NDRG1 and LIPG may have been upregulated to acquire
LDL and fatty acids, respectively, from the cell’s surroundings
(66, 67). CXCL8, otherwise known as interleukin-8, has been
implicated as a cancer growth factor (68, 69), as well as a
molecule that promotes cholesterol accumulation (70). MSMO1
is also believed to be involved in cholesterol metabolism and
cancer (71, 72). Altogether, there may be a possibility that
the blockade of exogenous LDL import, compounded with
the rampant endogenous demand for lipid and cholesterol
biogenesis to support rapidly dividing cancer cells, induced a
suicidal metabolic rewiring that eventually led to autophagy
(73).
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TABLE 3 | Top 10 canonical pathways in A549 and HCT116 cells after 24 h of 1.0µM PG treatment.

Top 10 Canonical pathways -log(p-value) Activation z-score

HSAEC A549 HCT116 HSAEC A549 HCT116

Superpathway of Cholesterol Biosynthesis

Cell Cycle Control of Chromosomal Replication Not predictable

Cholesterol Biosynthesis III (via Desmosterol)

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol)

Cholesterol Biosynthesis I

Role of BRCA1 in DNA Damage Response

Mitotic Roles of Polo-Like Kinase

Hereditary Breast Cancer Signaling Not predictable

Mismatch Repair in Eukaryotes Not predictable

Cell Cycle: G2/M DNA Damage Checkpoint Regulation

Pathways were ranked in descending order of decreasing -log(p-value) of the Fisher’s exact test. Dark purple heat-map blocks represent high -log(p-value). Activation z-scores were

calculated based on the IPA’s pathway activity prediction algorithm. Dark orange heat-map blocks represent the possibility of a highly active pathway, whereas dark blue blocks represent

inhibition.

Autophagy is a form of cellular self-cannibalization of
cytoplasmic content via lysosomal compartments to recycle cell
materials and provide substrates for cellular homeostasis under
metabolic stress (74). However, autophagy can be a double-
edged sword when it comes to cancers. It could either be pro-
tumorigenic or anti-tumorigenic (75, 76). PG is known to bind
and inhibit mTORC1 and mTORC2, initiating autophagy in
cancer cells (39, 77, 78). We found WIPI1, a marker and an
important player in autophagy (79, 80), markedly upregulated

(Table 2). It is unclear if the lipid and cholesterol biosynthesis
genes were upregulated to support the de novo biogenesis of
autophagosomes.

How PG protects healthy cells yet eliminates cancer cells
has been a mystery thus far. For the first time, we attempted
to unravel PG’s cancer-specific mechanisms of action through
comparative transcriptomics analysis. Firstly, unlike in A549
and HCT116, there were little to no upregulation in lipid
and cholesterol biosynthetic genes and pathways in HSAEC
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FIGURE 3 | MAP of “p53 Signaling” pathway in (A) HSAEC and (B) A549 cells treated with 1µM PG over 24 h. Predictions were calculated based upon DEGs from

the experimental dataset overlaid onto the Ingenuity Knowledge Base in IPA. Orange, blue, yellow, and gray lines corresponds to predicted activation, inhibition,

contradiction, and the inability to predict an outcome, respectively. Red or green color intensities within shapes reflect the level of upregulation or downregulation,

respectively, based upon the experimental Log2FC values. Orange or blue color intensities within shapes reflect the level of predicted activation or inhibition,

respectively, based on upon IPA’s predictions.
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(Tables 2, 3). In fact, the downregulation of ANGPTL4 suggests
an active catabolism of lipoproteins. Secondly, although WIPI1
was upregulated, it wasmuch lesser than A549, possibly reflecting
a weaker autophagic status in HSAEC. Thirdly, the near-normal
expression of H2AFX suggests that HSAEC may be able to
overcome PG’s genotoxic stress. However, how this could be
possible despite BRCA1 downregulation (Figure 3) and potential
BRCA1 pathway inactivation (Table 3) is unclear. Fourth, a deep
analysis of HSAEC-specific genes perturbed by PG revealed a
“balancing act” expression of pro-cancer and anti-cancer genes
(Table 1). This could potentially assist in HSAEC’s viability under
PG treatment. Lastly, and surprisingly,MCM10 andDSCC1 were
found severely downregulated in HSAEC. As PG could inhibit
topoisomerases (53), another potential means of PG genotoxicity
could be mitigated here as the loss of MCM10 does not permit
DNA to unwind for replication (48). Altogether, we suspect that
HSAEC may have been conferred protection to PG through
DNA replication inhibition, BRCA1-independent DNA repair
availability and autophagic resistance.

PG’s upregulation of cholesterol pathways in cancer cells and
its ability to potentially inhibit DNA replication brings about two
immediate concerns that should be addressed in future studies.
Firstly, the degree of which PG could inhibit DNA replication
in HSAEC should be monitored with cell growth rate compared
to A549 and other rapidly dividing cells. This would elucidate
the potential clinical benefits PG has over other conventional
chemotherapeutics that falls short in protecting rapidly dividing
healthy cells. Secondly, the impact of PG treatment with regards
to hypercholesterolemia should be assessed in vivo. On the
other hand, further studies on MIR210HG, the second most
differentially expressed gene in both A549 and HCT116 (Table 2)
could potentially highlight novel insights with regards to PG’s
cancer-specific mechanisms of action. To further improve PG’s
cancer specificity, chemical modifications may be explored to
acquire novel PG analogs or develop targeted drug delivery
strategies which studies have already begun (81, 82).

CONCLUSION

Numerous decades of cancer research, drug discovery, and
development have led to major improvements in patients’
quality of life. Research into systemic therapies for metastatic
cancers continues at two major fronts, namely, safety and

efficacy. PG appears to be a promising smart chemotherapeutic
agent against NSCLC. PG not only demonstrated heightened
anti-cancer activity against A549, but this activity was also
cancer-specific. Understanding how such an agent differentiates
cancerous from healthy cells has been unclear until recently.With
RNA-sequencing, a next-generation tool for transcriptomics, we
managed to unravel PG’s potential cancer-specific mechanisms
of action. Through an exogenous cholesterol supply cut-
off and an internal overactivation of cholesterol synthesis,
PG might have induced cancer cell autophagy to a point
whereby self-cannibalization led to cell death. At the same
time, through balancing the overexpression of oncogenic
and tumor-suppressive genes, healthy cells might have been
conferred a heightened survival status by PG. By exposing A549
transcriptome landscape perturbed by PG, we can now conduct
further experiments with single or multiplexed knock-outs and
knock-downs using CRISPR to yield definitive targets which
could aid the development of precision medicine against NSCLC.
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Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, China, 5 Shaanxi Key Laboratory of Brain
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Chemotherapy with or without radiation remains the first choice for most cancers.

However, intolerant side effects and conventional drug resistance restrict actual

clinical efficacy. Curaxin CBL0137 is designed to regulate p53 and nuclear factor-κB

simultaneously and to prevent the resistance caused by a single target. Functionally,

CBL0137 exhibits an antitumor activity in multiple cancers, including glioblastoma,

renal cell carcinoma, melanoma, neuroblastoma, and small cell lung cancer (SCLC).

Mechanistically, CBL0137 is originally identified to act by facilitates chromatin

transcription (FACT) complex. Further investigations reveal that several pathways,

such as NOTCH1 and heat shock factor 1 (HSF1), are involved in the process.

CBL0137 has been reported to target cancer stem cells (CSCs) and enhance

chemotherapy/monotherapy efficacy. The translational advance of CBL0137 into clinical

practice is expected to provide a promising future for cancer treatment.

Keywords: cancer stem cells, CBL0137, chemotherapy, facilitates chromatin transcription, p53

INTRODUCTION

Cancer harbors several characteristics, including high heterogeneity, diverse gene mutation, or
rapid progression; consequently, treating cancer is difficult, and it easily relapses. Remarkable
achievements have been observed in treatment approaches, including surgery, radiotherapy,
chemotherapy, immunotherapy, and targeted therapy. In particular, targeted therapies, such as
HER2 inhibitor lapatinib, EGFR inhibitor erlotinib, BRAF inhibitor dabrafenib, promote treatment
(1). However, we have failed to treat cancer. Malignancies, such as glioblastoma, are quite invasive
and cannot be entirely removed by surgery. Chemotherapy is hindered by innate and acquired
chemoresistance.

Originally, antimalarial agents, including quinacrine, can activate p53 and inhibit nuclear
factor-κB (NF-κB) simultaneously (2, 3). These drugs have been used as a reference of curaxins,
undergoing some structural changes but maintaining similar functions (2, 4). As a second-
generation curaxin, CBL0137 satisfies the requirements for a drug design, that is, full efficacy while
inducing the least adverse effects. Further research suggested that CBL0137 exerts an antitumor
activity through multiple targets, including facilitates chromatin transcription (FACT), NOTCH1,
and heat shock factor 1 (HSF1), in various cancers (Table 1). At present, CBL0137 in patients
with hematological malignancies (ClinicalTrials.gov Identifier: NCT02931110) and solid tumors
are under phase I clinical trials (ClinicalTrials.gov Identifier: NCT01905228). In this review, we
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summarized the design of CBL0137, highlighted its antitumor
mechanisms through multiple targets, and proposed its potential
for clinical applications, especially as a combination drug.

CBL0137: A SECOND-GENERATION
CURAXIN

Small molecular inhibitor CBL0137 [1,1′-(9-(2-
(isopropylamino)ethyl)-9H-carbazole-3,6-diyl)bis(ethan-1-one)
(IUPAC/chemical name)] is a second-generation curaxin.
Dermawan et al. (12) found that quinacrine (CBLC-102), a
first-generation curaxin, can overcome erlotinib resistance
through preconceived mechanisms in non-small cell lung cancer
(12). Similar results are also observed in ovarian (13) and breast
(14) cancers. Second-generation curaxins, such as CBLC-000,
CBLC-100, and CBLC-137 (CBL0137), have more exact targets
than first-generation curaxins, such as quinacrine (CBLC-102).
In particular, CBL0137 is water soluble because of its chemical
structure and better tolerated in mice than other members of
curaxins, showing great potential for cancer treatment (2). In
addition to the two targets, namely, p53 and NF-κB, CBL0137
can intercalate DNA through FACT without causing any DNA
damage or genotoxicity (2, 7, 15), and more targets are under
investigation.

FACT: A CORE TARGET FOR CBL0137

FACT, a histone chaperone, contains two subunits of the
suppressor of Ty 16 (SPT16) and structure-specific recognition
protein 1 (SSRP1), which participates in DNA replication,
transcription, repair, mitosis, and cell fate reprogramming (16–
18). SPT16 remodels the histone structure after transcription,
and SSRP1 recognizes nucleosomes with its high-mobility group
(HMG)-1 domain (19, 20). SSRP1 is considered more like
a target since it’s more amplified in cancers at mRNA and
protein levels. FACT is involved in the poor prognosis, malignant
transformation, tumorigenesis, and aggressiveness of cancers (9,
16, 21–23). It can recognize the formation of alternative DNA
structures and promote the activation of p53 to prevent DNA
damage (24); thus FACT is regarded as a sensor for genome
instability and mutation, which is one of the ten hallmarks of
cancer treatment (24, 25) (Figure 1). It is highly expressed in
cancer including glioblastoma (GBM) (6), breast cancer (16), and
hepatocellular carcinoma (21), but is poor expressed in normal
tissues or well-differentiated cells (26).

CBL0137, chemotherapeutic agents, UV radiation, oxygen-
free radicals, and hypoxia stress can affect p53 activation (7,
27, 28). With Western Blot analysis, Gasparian et al. (7) have
revealed that CBL0137 activates p53 through posttranslational
modifications at serine 392 (Ser392) rather than serine 15 (Ser15),
which involves casein kinase 2 (CK2) inhibition (7). Previous
studies showed that CK2-induced p53 phosphorylation involves
FACT. FACT, SPT16, and SSRP1 subunits, can bind to CK2 after
CBL0137 is administered, and the SPT16-SSRP1-CK2 complex
phosphorylates p53 at Ser392 and promotes p53 activation (2,
27) (Figure 1). Activated p53 induces apoptosis, promotes DNA

repair, and inhibits tumor growth. Extensive evidence has also
demonstrated that FACT can promote tumor growth, inhibit
apoptosis or cell differentiation and induce cell proliferations
through the regulation of multiple genes including TP53, MYC,
NF-κB, OCT1, and HSF1 (23) (Figure 1).

FACT has recently been reported to correlate with the
expression of cancer stem cell (CSC) markers, such as SOX2,
OCT4, OLIG2, and NANOG in an adult GBM model. The
transcriptional knockdown of FACT or its inhibition with a small
molecule (CBL0137) reduces the expression of these genes (5).

CBL0137 EXERTS ANTITUMOR ACTIVITY
BY INCREASING P53 AND DECREASING
NF-κB SIMULTANEOUSLY

p53 is a classic tumor suppressor protein responsible for the
prevention of oncogenic mutation accumulation, tumorigenesis
and tumor progression (29). p53 mutation or inactivation is
quite common in many cancers (30). p53 activities are regulated
by diverse post-translational modifications such as Ser15 and
Ser392 phosphorylation or lysine 382 acetylation and methylation
(7, 31). NF-κB is a critical transcription factor in antiapoptosis
and cell proliferation, which is activated in inflammation and
cancers (32). CBL0137 is originally designed to activate p53 and
inhibit NF-κB simultaneously to achieve an enhanced efficacy
with modest toxicity (7).

The in vitro and in vivo experiments of CBL0137 have
confirmed the issue. For example, a research on renal cell
carcinoma has suggested that CBL0137 intercalates DNA and
traps FACT, thereby leading to NF-κB inhibition. FACT binds
to CK2 to form a complex, which further induces Ser392

phosphorylation of p53; otherwise, p53 is degraded by MDM2
(2, 7, 33) (Figure 1). Meanwhile, NF-κB is inhibited by the
complex (6). Similar results have been shown in GBM research,
temozolomide (TMZ)-resistant A1207, TMZ-responsive U87MG
cell lines, and orthotopic model. CBL0137 prolongs the survival
of orthotopic A1207 and U87MG models, though it is less
effective than TMZ in the latter. Furthermore, 0.6 and 2.0µM
CBL0137 can increase p53 significantly in cell lines. These studies
have exhibited the antitumor activity of CBL0137 by targeting
p53 and NF-κB, which are the two most common transcription
factors in oncogenic and tumor suppressor pathways.

CBL0137 INHIBITS THE SELF-RENEWAL
OF CANCER STEM
CELLS/TUMOR-INITIATING CELLS
THROUGH NOTCH1 ACTIVATION

Therapeutic resistance is a complex phenomenon in cancer
treatment, though many mechanisms have been proposed. “The
bad seed” CSCs can explain the consequence to some degree (34).
Conventional therapies that do not target CSCs may encounter
cancer recurrence because CSCs can undergo self-renewal and
differentiation (35). Dermawan et al. investigated CBL0137 in
GBM and focused on cancer stem-like cells by using CD133 as
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TABLE 1 | Targets and induced effects of CBL0137 reported in cancer research.

Indications Targets Effects Experiment models References

Glioblastoma SSRP1↓

SOX2↓

OCT4↓

NANOG↓

OLIG2↓

CD133↓

Inhibited proliferation of patient-derived tumor cells Cell lines

Orthotopic mouse models

(5)

Glioblastoma (2) FACT↓

p53↑

NF-κB↓

Induced Apoptosis and inhibited proliferation

Increased survival of TMZ-responsive and -resistant

GBM

Cell lines

Orthotopic mouse models

(6)

Renal cell carcinoma p53↑

NF-κB↓

Induced death of tumor cells through FACT with no DNA

damage

Cell lines

PDX mouse models

(7)

Melanoma p53↑

NF-κB↓

HSF1↓

Enhanced anti-tumor activity by inhibiting heat shock

responses of tumor cells

Cell lines

Orthotopic mouse models

(8)

Neuroblastoma MYCN↓ Reduced tumor initiation and progression Cell lines

TH-MYCN

transgenic mouse models

(9)

Neuroblastoma (2) SSRP1↓

SPT16↓

MYCN↓

Inhibited neuroblastoma cell growth MYCN transgenic zebrafish (10)

Small cell lung cancer NOTCH1↑ Reduced the tumor cell growth

Preferentially kills tumor-initiating cells

Cell lines

PDX mouse models

(11)

PDX, patient-derived xenograft.

FIGURE 1 | CBL0137 exhibits its antitumor activity via multiple pathways. (1) CBL0137 can target SPT16 and SSRP1, the two subunits of FACT; (2) CBL0137 can

induce p53 activation by phosphorylation and NF-κB inhibition, depending on the formation of SPT16-SSRP1-CK2 complex; (3) CBL0137 can reduce the self-renewal

of CSCs through NOTCH1 signaling pathway activation; (4) CBL0137 can decrease HSF1 transcription level; (5) CBL0137 can downregulate MYCN expression.

a marker (5). CBL0137 accumulates in brain tissues in orthotopic
mouse models, suggesting that it can penetrate the blood brain
barrier; oral intake ad libitum can also achieve its efficacy.
CBL0137 prefers to inhibit CD133+ tumor cell growth with the
help of FACT, which is higher in CSCs than non-stem tumor cells.
CBL0137 treatment decreases the expression of CD133 and the
self-renewal of CSCs, increases asymmetric cell division, prevents

tumor initiation and prolongs the survival of tumor-bearing
animals (5). A similar consequence has been demonstrated in
small cell lung cancer (SCLC) and pancreatic cancer (11, 36).
Tumor-initiating cells (TICs) represent those with stemness.
CBL0137 preferentially reduces CD133high and CD44high cells
(TICs) over CD133low and CD44low (non-TICs) and attenuate
the self-renewal of TICs (11).
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The stemness of CSCs is well-modulated by stem-cell factors
including p53, NF-κB, Sox2, Bmi1, c-Myc, and NOTCH1 (35,
37). Therefore, drugs should target CSCs and CSC-related
factors. NOTCH signaling pathway plays a role in oncogenesis,
angiogenesis and CSC maintenance (38). It exhibits oncogenic
and suppressive roles in different cancers (11). NOTCH1, as a
member of the NOTCH family, increases apoptosis and inhibits
cell proliferation in SCLC (11). CBL0137 treatment in SCLC
prevents SP3 binding to the NOTCH1 promoter, decreases
achaete-scute homolog-1 (ASCL1) expression, increases the
mRNA expression of NOTCH1, and inhibits CSC renewal. The
expression levels of ASCL1 and SP3 are higher in TICs than non-
TICs, negatively modulating NOTCH1. Therefore, the tendency
of CBL0137 killing TICs may be a result of FACT and NOTCH1,
thoughwhether CBL0137 targetingNOTCH1 acts through FACT
is unclear in this research (11). CBL0137 can activate NOTCH1
and inhibit the self-renewal of CSCs/TICs (5, 11, 36), thereby
facilitating the enhanced prevention of therapeutic resistance and
tumor progression.

HSF1 IS INVOLVED IN THE
ANTIMELANOMA EFFECT OF CBL0137

Regional chemotherapy via isolated limb perfusion (ILP) is
recommended for patients with in-transit extremity melanoma
in which mild hyperthermia (42◦C compared with 37◦C) is
adopted, thereby improving drug uptake by tumor cells (8).
CBL0137 was then tested for potential use as a regional
chemotherapeutic agent on B16 melanoma cell line and tumor-
bearing mice. CBL0137 treatment by ILP reduces SSRP1
expression, suppresses HSF1/hsp70 transcription, and causes
tumor cell death, and its efficacy can be improved by
hyperthermia. Conversely, CBL0137 can downregulate HSF1
to inhibit heat shock responses brought by hyperthermia,
thereby increasing tumor cell apoptosis. However, treatment of
traditional melphalan had no statistically significant differences
between 42 and 37◦C. Moreover, the linkage of the ILP drug
melphalan can be highly toxic and cause death. By contrast,
even 0.1mg of CBL0137 establishes a strong antitumor activity,
suggesting its leakage causes minimal side effects (8). These
results explain the antitumor mechanism of CBL0137 from the
perspective of hyperthermia and HSF1, suggesting that CBL0137
can be considered as a promising candidate for ILP drug to treat
melanoma.

MYCN IN NEUROBLASTOMA: A
POTENTIAL INDICATOR OF CBL0137
SENSITIVITY

Approximately 20% of patients with neuroblastoma encounter
MYCN amplification, which is a predictor of poor prognosis
(9, 39). Considering that the expression of FACT and MYCN
is closely related and high in precancerous TH-MYCN+/+

neuroblasts, Carter et al. (9) treated TH-MYCN+/+ and TH-
MYCN+/− mice with CBL0137, which is regarded as the
inhibitor of FACT. CBL0137 can downregulate FACT andMYCN

expression and inhibit MYCN-driven tumor initiation and
progression in MYCN mice and xenografts. In tumor-bearing
zebrafish, CBL0137 elicits an inhibitory effect on neuroblastoma
(10). Moreover, high-MYCN-expressing cell lines, such as SH-
SY5Y and BE(2)C, require a lower IC50 of CBL0137 than
those expressing normal or relatively low MYCN, suggesting
that MYCN expression may be applied to evaluate CBL0137
sensitivity, though further investigation is needed (9).

COMBINATION APPROACH OF CBL0137:
THE WAY TO GO

The initial goal of scientists from Clevel and BioLabs Inc. in
designing curaxins is to regulate p53 and NF-κB (2). After the
“target multiplier” FACT is introduced, the understanding of
curaxins has improved. CBL0137 can reduce CSC populations
and their stemness (5, 11, 36), which show its promising clinical
prospect combined with standard treatment strategies.

The cisplatin resistance of SCLC is likely caused by CSCs.
In this research, the combination of CBL0137 and cisplatin at
a 1:1 molar ratio remarkably inhibits SCLC tumor growth in
H82 xenograft (11). Drug combination delays tumor growth for
30 days and prolongs tumor-bearing mice survival for more
than 10 days (11). FACT plays an important role in DNA
repair; thus, researchers believed that these results may be due
to FACT and its ability to inhibit DNA repair, though this
hypothesis has yet to be further investigated (11). However, this
hypothesis is partially confirmed in neuroblastoma. Combined
with cisplatin, cyclophosphamide, etoposide, or vincristine,
CBL0137 can inhibit DNA repair after a double-strand break
occurs without genotoxicity. DNA damage markers remarkably
increase after etoposide and CBL0137 are administered. The
results showed that the effects of CBL0137 are observed in
DNA synthesis inhibitors, such as hydroxyurea, rather than
microtubule poisons, such as hydroxyurea (9). Another research
has shown that the combination of CBL0137 and TMZ does
not significantly affect GBM. Combination therapy surpasses
CBL0137 monotherapy but not that of TMZ (6). These results
are not satisfactory for GBM, but they provide insights into
CBL0137 combined with chemotherapy. Further research should
be conducted on this area.

Early studies revealed the crosstalk between NF-κB and
epidermal growth factor receptor (EGFR), describing them as
“partners in cancer” (31, 40–44). In a GBM research, EGFR
inhibitor lapatinib and CBL0137 are combined at a 10:1 molar
ratio. Lapatinib seldom inhibits CSC growth, which partially
explains why it fails to achieve a satisfactory clinical efficacy in
GBM treatment (5). The combination of lapatinib and CBL0137
confirms Shostak and Chariot’s outlook and presents possibilities
for CBL0137 to be applied with targeted therapy.

CONCLUSIONS AND FURTHER
DIRECTIONS

Various small molecules, including PRIMA-1, COTI-2,
ReACp53, ZMC1, PK7088 (45–51), and CBL0137, target
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p53 and have been at preclinical and clinical stages. CBL0137 has
a broad antitumor activity in a wide range of cancers, other than
targeting p53 (7). CBL0137 can be considered as a candidate
for monotherapy and applied to enhance the effectiveness of
chemotherapy and targeted therapy, giving it more potential and
clinical significance.

However, some concerns still exist. Tumor suppressor
protein p53 is important in the oncogenic pathway, and
almost 50% of cancers possess mutated or depleted p53; thus,
resistance likely exists when one path is blocked. In vitro
data have also shown that p53-wild type cells are slightly
more susceptible to curaxins, including CBL0137-induced cell
death, than p53-null cells (7). Discovering how CBL0137
works on those cancers is quite important; in addition, the
effect of CBL0137 on the immune system is unknown, and
further data support should be obtained to determine whether
CBL0137 can synergize with immunotherapy to provide an
enhanced efficacy. Further studies on these areas may lead to

an in-depth understanding of the mechanism and application of
CBL0137.
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Cyclin-dependent kinases (CDK) 4/6 inhibitors, namely abemaciclib, palbociclib, and

ribociclib, interfere with cell cycle progression, induce cell senescence andmight promote

cancer cell disruption by a cytotoxic T cells-mediated effect. Phase III randomized clinical

trials have proven that CDK4/6 inhibitors (CDK4/6i) in combination with several endocrine

agents improve treatment efficacy over endocrine agents alone for hormone receptor

positive (HR+) HER2 negative (HER2–) metastatic breast cancer (MBC). Based on such

results, these combinations have been approved for clinical use. Preclinical studies in cell

cultures and mouse models proved that CDK4/6i are active against a broad spectrum

of solid tumors other than breast cancer, including liposarcoma, rhabdomyosarcoma,

non-small cell lung cancer, glioblastoma multiforme, esophageal cancer, and melanoma.

The role of CDK4/6i in monotherapy in several solid tumors is currently under evaluation

in phase I, II, and III trials. Nowadays, abemaciclib is the only of the three inhibitors that

has received approval as single agent therapy for pretreated HR+ HER2– MBC. Here we

review biological, preclinical and clinical data on the role of CDK4/6 inhibitors as single

agents in advanced solid tumors.

Keywords: solid tumors, cyclin-dependent kinases, palbociclib, ribociclib, abemaciclib, cell cycle

INTRODUCTION

The key role of cyclin-dependent kinases (CDK) and D-type Cyclins (CCND) in cell cycle
progression from G1 to S phase was discovered more than 20 years ago (1). Since then, it has
been demonstrated that several solid tumors present direct modifications of genes codifying for
several proteins involved in CCND-CDK activity and regulation (2). As a result, in recent years,
small molecule inhibitors which target this mitogenic pathway have been developed. Three of them
are currently available for the treatment of metastatic breast cancer (MBC) in combination with
aromatase inhibitors or fulvestrant. This review focuses on the role of CCND-CDK in normal cells,
on how this pathway is altered in solid tumors and on the activity of CDK4/6 inhibitors (CDK4/6i),
as single agents in the treatment of advanced solid tumors in adult patients.
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THE ROLE OF CDK IN CELL CYCLE AND
SOLID TUMORS

CCND interact with several CDK, including CDK 4/6, forming
functional complexes that phosphorylate and inactivate
retinoblastoma protein (pRb) (1). This protein operates a
negative control on E2F transcription factors, resulting in an
inhibition of cell cycle progression. Indeed, E2F modulates
the expression of a broad variety of genes implied in cell
cycle S1 phase and mitosis. On the opposite, functional
CCND-CDK4/6 complexes allow E2F to be released from
pRb control and promote the transition from the G1 to the
S phase of the cell cycle (Figure 1) (1). Cyclin D is important
in growth factor signaling and, more in general, is a common
downstream pathway for several mitogenic signaling, including
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR), mitogen-activated protein kinase
(MAPK), wnt/beta-catenin, janus kinase (JAK)-signal transducer
and activator of transcription (STAT), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB), and steroid
hormone signaling pathways (e.g., estrogen, progesterone, and
androgen) (Figure 1) (2). CDK 4/6 activity is regulated by the
INK4 family of proteins. Among them, p16INK4A appears to be
the most relevant, in terms of tumor suppression activity. Several
other factors, including p21CIP1 and p27KIP1 modulate CCND-
CDK4/6 complexes’ activity in a context-dependent manner
(2). Finally, the SMARCB1/INI1/SNF5 tumor suppressor gene
directly represses the transcription of the Cyclin-D coding
gene CCND1 and increases the expression of CCND-CDK4/6
negative regulators p16INK4A and p21CIP1 (2).

In solid tumors, an hyperactivation of the CCND-CDK4/6
activity can occur through: (1) increased activity of upstream
mitogenic signaling pathways; (2) aberrant activity of the
components of the pathway or their regulators. This latter may
depend on various molecular mechanisms, i.e., point mutations,
translocations or amplification of CDK4/6, amplification of
D-type cyclins, deletions that cause the loss of p16INK4A or
pRb expression, epigenetic modifications and downregulation of
microRNAs (miRNAs) that target CDK4/6. Alterations of the
expression of CCND-CDK4/6-INK4-Rb pathway components or
of their direct regulators result in cell cycle progression and cell

Abbreviations: CDK4/6, cyclin-dependent kynases 4 and 6; CDK4/6i, CDK4/6

inhibitors; CCND, cyclin D; PI3K, phosphatidylinositol 3-kinase; mTOR,

mammalian target of rapamycin; MAPK, mitogen-activated protein kinase;

JAK, janus kinase; STAT, signal transducer and activator of transcription;

NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells;

miRNAs, microRNAs; pRb, retinoblastoma protein; ET, endocrine therapy;

ER+, estrogen receptor positive; HR+, hormone receptor positive; HER2–,

human epidermal growth factor receptor 2 negative; MBC, metastatic breast

cancer; BC, breast cancer; GBM, glioblastoma multiforme; WD/DDLS, well-

differentiated/dedifferentiated liposarcoma; NSCLC, non-small cell lung cancer;

SCLC, small cell lung cancer; GIST, gastrointestinal stromal tumors; PDA,

pancreatic ductal adenocarcinoma; EAC, esophageal adenocarcinoma; BBB,

blood-brain barrier; ORR, overall response rate; PFS, progression-free survival;

mPFS, median progression-free survival; TTP, time to progression; DCR, disease

control rate; CBR, clinical benefit rate; DLT, dose-limiting toxicity; MTD,

maximum tolerated dose; RP2D, recommended phase II dose; ADRs, adverse

reactions; SD, stable disease; PR, partial response; CR, complete response; CI,

confidence interval; HR, hazard ratio.

proliferation and represent a key mechanism of tumorigenesis
(2). The solid tumors for which the CCND-CDK4/6-INK4-
Rb pathway is more frequently deregulated through direct
genetic, epigenetic or transcriptional modifications are breast,
head and neck, lung, pancreatic, ovarian and bladder cancer,
melanoma, endometrial carcinoma, liposarcoma, neuroblastoma,
and malignant rabdoid tumors (3–25). Because of their central
role in tumorigenesis and progression, CDK4 and 6 might
represent a valid therapeutic target for cancer treatment in a
broad spectrum of solid tumors.

CDK 4/6 INHIBITORS: AN OVERVIEW

Mechanism of Action and Toxicities
After the discovery of CDK 4/6 role in tumorigenesis, several
CDK inhibitors have been developed for clinical use. The most
recent are selective for CDK4 and CDK6, preventing inhibition
of other CDKs activity (1). Three CDK4/6i are currently
approved in clinical practice, namely: palbociclib, ribociclib, and
abemaciclib. Their mechanism of action is based on the binding
to CDK 4 and 6 ATP pocket, which leads to a substantial
inactivation of CCND-CDK4/6 complexes, with a subsequent
increase in the activity of pRb. The logic consequence is a
G1 phase arrest (Figure 2). The interference with cell cycle
progression results in an increased apoptosis phenomena in
tumor cells (1, 2).

Palbociclib and ribociclib are similar in chemical structure,
while abemaciclib differs and has a higher CDK4/6 binding power
than the other two CDK4/6i. More specifically, abemaciclib
shows higher selectivity for the complex CDK4/cyclin D1
compared to the other two compounds, and is 14 times
more potent against CDK4 than CDK6 (2, 26). Cell cycle
arrest and subsequent apoptosis are sought to be the most
relevant mechanism of action of CDK4/6i. However, a very
recent study based on mouse models of breast cancer and
other solid tumors and on a confirmatory trascriptomic
analysis of serial biopsies from a clinical trial involving
CDK4/6i in breast cancer, showed that CDK4/6 inhibition
might also induce a broad spectrum of immunologic events.
More precisely, they seem to increase the antigen presenting
capability of tumor cells, while concurrently reducing the
immunosuppressive population of T regulator lymphocytes.
This could in turn enhance the activation of cytotoxic T
cells, which ultimately kill tumor cells (27). However,
immunologic effects of CDK4/6i are still object of debate
and need further validation/confirmation. Despite a very
similar mechanism of action, dose limiting toxicities (DLTs)
observed in phase I trials differed, with neutropenia being
the DLT for palbociclib, diarrhea and fatigue for abemaciclib,
and neutropenia, mucositis, asymptomatic thrombocytopenia,
pulmonary embolism, increased creatinine, hyponatriemia,
and QTcF prolongation for ribociclib (2, 28). Some of the
latter toxicities (such as creatinine increase or thromboembolic
events) were also reported for abemaciclib however they
did not represent formal DLTs in phase I trials. The most
common CDK4/6i toxicities of any grade observed in pivotal
phase III trials were neutropenia, leukopenia, fatigue and
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FIGURE 1 | Mitogenic signaling and cell cycle progression. GFs, growth factors; TKR, tyrosine kinase receptor; SFs, survival factors; HR, hormone receptor; SHs,

steroidal hormones (i.e., estrogens, androgens); TFs, transcriptional factors.

FIGURE 2 | CDK4/6 inhibitors’ main effect on cell cycle progression.

nausea for palbociclib (29, 30), neutropenia, nausea, infections,
fatigue and diarrhea for ribociclib (31, 32), creatinine increase,
diarrhea, fatigue, and neutropenia for abemaciclib (33, 34).
The pathophysiology of such toxicities has mostly to be
linked to CDK4/6i mechanism of action. Additionally,
abemaciclib-induced creatinine increase, might be due to
its competitive inhibition of efflux transporters of creatinine
(26). A comparison between main pharmacokinetic and
pharmacodynamic properties among the three molecules
is reported in Table 1. All of the three molecules are orally
administered and are metabolized by the liver. Palbociclib
and ribociclib, due to longer half-life than abemaciclib, can be

administered once daily, while abemaciclib needs twice daily
administration.

Current Indications
The three inhibitors are currently available for the treatment of
hormone receptor positive (HR+) Human Epidermal Growth
Factor Receptor 2 negative (HER2–) MBC in combination with
an aromatase inhibitor (AI) as first-line endocrine therapy or in
combination with fulvestrant in pretreated patients. All of these
combinations substantially doubled the comparator in terms
of median progression-free survival (PFS) (29–34). Moreover,
ribociclib was also studied in combination with tamoxifen or AIs
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TABLE 1 | CDK 4/6 inhibitors’ pharmacological characteristics.

Drug

properties

CDK 4/6 inhibitors

Palbociclib Ribociclib Abemaciclib

Bioavailability (35) 46% Unknown 45%

Protein binding

(35)

85% ∼70% 96.3%

Metabolism (35) Liver Liver Liver

Elimination half-life

(35)

29 (±5) h 32.0 (29.7–54.7) h 18.3 h

Excretion (35) 74% feces, 18%

urine

69% feces, 23%

urine

81% feces,

3% urine

IC50 (nM) (2)

â CDK4-cyclin D1 11 10 2

â CDK6-cyclin

D1-2-3

15 39 10

â CDK1-cyclin B >10,000 113,000 1,627

â CDK2-cyclin

A-E

>10,000 76,000 504

â CDK9-cyclin T NR NR 57

MTDs (2) 125mg 900mg 200mg every

12 h

DLTs (2) Neutropenia Neutropenia,

Mucositis,

Asymptomatic

thrombocytopenia,

Pulmonary

embolism,

Increased

creatinine,

Hyponatriemia,

QTcF prolongation

(>500ms)

Fatigue

Recommended

dose (35)

125 mg/die on a

21-on-28-days

schedule

600 mg/die on a

21-on-28-days

schedule

200mg twice

daily

Administration (35) Oral Oral Oral

and a GnRH analog (GnRHa) in pre-/perimenopausal setting in
the context of the MONALEESA 7 phase III trial (36), which
enrolled HR+ HER2– MBC in first line setting and results were
in line with those published in the other CDK4/6i pivotal trials.
Results and characteristics of the pivotal trials, namely PALOMA
2 and 3, MONALEESA 2, 3, and 7, and MONARCH 2 and 3 are
reported in Table 2.

SINGLE AGENTS CDK4/6I: CURRENT
EVIDENCE

As previously reported, the CCND-CDK4/6-INK4-Rb pathway
is frequently deregulated through direct genetic, epigenetic or
transcriptional modifications in a broad variety of neoplasms (3–
25). Indeed, apart from their use in combination with ET for the
treatment of HR+ HER2– MBC, CDK4/6i are also under study
as single agent in breast cancer (BC) and other solid tumors.
The following paragraphs will resume the current preclinical and
clinical evidence supporting this experimental treatment strategy.

Preclinical Evidence
Single agent CDK4/6i have shown consistent activity in
preclinical models (38–56). In brief, the most relevant results
were observed in in vivo and/or in vitro models of colon
cancer (palbociclib, abemaciclib), glioblastoma (palbociclib,
abemaciclib), breast cancer (palbociclib, ribociclib, abemaciclib),
prostate carcinoma (palbociclib), sarcomas (palbociclib and
ribociclib), pancreatic ductal adenocarcinoma (palbociclib),
melanoma (palbociclib, ribociclib, abemaciclib), non-small
cell lung cancer (palbociclib, abemaciclib), and esophageal
adenocarcinoma (abemaciclib).

Palbociclib
A study demonstrated a potent antitumor activity in different
mice models, bearing colon cancer, glioblastoma, breast, and
prostate carcinoma xenografts. Palbociclib, given as continuous
treatment, was able to arrest growth and induce regression
of tumor xenografts. A modest activity was also observed in
non-small cell lung cancer (NSCLC) models (38). Palbociclib
was also able to arrest the growth of estrogen receptor-positive
(ER+) BC cell lines (39). A potent antitumor activity was also
demonstrated in an ex vivo model of human breast tumors
(40). Palbociclib activity was demonstrated on cell lines and
intracranial xenografts of glioblastoma multiforme (GBM) (41).
In the latter case, the proneural subtype appeared to be the
most sensitive to palbociclib activity (42). In ovarian cancer cell
lines, Palbociclib induces G0/G1 cell cycle arrest by reducing
pRb phosphorylation (43). Palbociclib is also effective in arresting
cell cycle progression and blocking proliferation in synovial
sarcomas cell lines (44). Another study demonstrated that
palbociclib may inhibit cellular growth and induce senescence in
liposarcoma cell lines and mice xenografts (45) and in sarcoma
cell lines (46). An antiproliferative effect was observed also in
rhabdomyosarcoma-derived cell cultures (47). Palbociclib was
also studied in immunocompromised mice with subcutaneous
and intrasplenic injections of pancreatic ductal adenocarcinoma
(PDA) cell lines derived from patients’ specimens. The CDK
4/6i significantly disrupted extracellular matrix organization
and increased quiescence and apoptosis, decreased invasion,
metastatic spread and tumor progression (48).

Ribociclib
Ribociclib as single agent is effective in inhibiting cell growth
in liposarcoma cell lines. Moreover, the administration to mice
bearing human liposarcoma xenografts resulted in tumor growth
inhibition and/or tumor regression. A similar effect was noted
in preclinical models of breast cancers with intact estrogen
receptor and/or activating aberrations of PIK3CA/HER2 (49).
In preclinical models, ribociclib also showed some activity in
melanomas with activating mutations of BRAF or NRAS (50).

Abemaciclib
Abemaciclib is effective in inducing cell cycle arrest and tumor
growth inhibition in colon cancer and breast cancer cell lines
and in mice bearing human melanoma and colon cancer
xenografts (51, 52). Abemaciclib, similarly to temozolamide,
increased survival in a rat xenograft model of glioblastoma
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TABLE 2 | Characteristics of pivotal trials concerning CDK4/6 inhibitors approved for clinical practice.

Characteristics Pivotal trials

Paloma 2 (29) Paloma 3 (30) Monaleesa 2 (31) Monaleesa 7 (36) Monaleesa 3 (32) Monarch-3 (33) Monarch-2 (34)

Combination Palbociclib +

letrozole vs.

letrozole

Palbociclib +

fulvestrant vs.

fulvestrant

Ribociclib +

letrozole vs.

letrozole

Ribociclib +

tamoxifen or AI +

GnRHa vs.

tamoxifen or AI +

GnRHa

Ribociclib +

fulvestrant vs.

fulvestrant

Abemaciclib +

NSAI vs. NSAI

Abemaciclib +

fulvestrant vs.

fulvestrant

Menopausal

status

Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal Pre- and

perimenopausal

Post-menopausal Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal

(iatrogenic or

physiologic)

Setting 1st line HR+

HER2– MBC

≥1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

≥1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

Median PFS

(months)

24.8 vs. 14.5 9.5 vs. 4.6 NR vs. 14.7 23.8 vs. 13.0 20.5 vs. 12.8 NR vs. 14.7 16.4 vs. 9.3

PFS HR (95%

Cis); p-value*

0.58 (0.46–0.72);

p < 0.001

0.46 (0.36–0.59);

p < 0.0001

0.56 (0.43–0.72);

p = 3.29 × 10−6
0.553

(0.441–0.694);

p < 0.0001

0.59 (0.48–0.73);

p = 4.10 × 10−7
0.543

(0.409–0.723);

p = 0.000021

0.553

(0.449–0.681);

p = 0.000021

ORR 42.1 vs. 34.7% 25 vs. 11% 40.7 vs. 27.5% 51 vs. 36% 41 vs. 9% 59.2 vs. 43.8% 48.1 vs. 21.3%

Trial phase III III III III III III III

FDA/EMA

status

A/A A/A A/A A/NA A/NA A/A A/A

*OS data not mature, yet, except for palbociclib + fulvestrant vs. fulvestrant [HR 0.81 (0.64–1.03); p = 0.043] (37).

NSAI, non-steroidal aromatase inhibitor; AI, aromatase inhibitor; GnRHa, gonadotropin releasing hormone analog; HR+, ER and/or PgR positive; HER2–, human epidermal growth

factor receptor 2 negative; A, approved; NA, not yet approved.

(53), thus suggesting a significant capability to cross the
blood-brain barrier (BBB). It was also effective on NSCLC
tumor xenografts (54). Abemaciclib was also able to inhibit
growth of melanoma tumor xenografts and delay tumor
recurrence in combination with vemurafenib. Furthermore,
abemaciclib yielded tumor growth regression in a vemurafenib-
resistant model, and induced apoptotic cell death in a
concentration-dependent manner, suggesting that this drug
might be a viable therapeutic option to overcome MAPK-
mediated resistance to B-RAF inhibitors in B-RAF V600E
melanoma (55). Abemaciclib was also evaluated in preclinical
models of esophageal adenocarcinoma (EAC): in tumor cell lines
it appeared to increased apoptosis and decrease proliferation
while in mice models, it was able to decrease of more than 20%
tumor volume (56).

Clinical Evidence
The preclinical data reviewed above offered a solid rationale to
test single agent CDK4/6i in clinical trials.

Palbociclib: Completed Trials
Palbociclib was tested in a cohort of 41 patients affected by several
solid tumors in the context of a phase I dose escalating study.
Tumors had been screened for the presence of pRb. In this trial
the maximum tolerated dose (MTD) and recommended phase
II dose (RP2D) of single-agent palbociclib was 125 mg/day on a
21-of-28 days schedule. The most frequent G3/4 toxicities were
neutropenia, leucopenia and anemia with the first present in 20%
of cases, the second in 10% and the latter in 7% of cases. Albeit
being a phase I trial, clinical activity was also reported. Among 37

evaluable patients, 27% achieved stable disease (SD) for at least 4
cycles and 16% for at least 10 cycles (57).

Several phase II studies tested palbociclib monotherapy in
a broad variety of solid tumors, namely well-differentiated or
dedifferentiated liposarcoma (WD/DDLS) (58, 59), NSCLC (60),
gastric and esophageal cancer (61), urothelial carcinoma (62),
epithelial ovarian cancer (63), HR+ and triple negative (TN) BC
(64, 65). The best results were observed in WD/DDLS, ovarian
and BC, counterbalanced by overall disappointing results in
the other neoplasms. The most frequent grade (G)3/4 adverse
reactions (ADRs) were hematologic.

More in details, a phase II study explored the activity and
safety of palbociclib on a 200mg/day on a 14-of-21-days schedule
in patients with advanced CDK4-amplified WD/DDLS. The
trial enrolled 30 patients. The estimated 12-weeks PFS rate
was 66%, far exceeding the expected rate of 40% for an active
agent. There was only one partial response (PR) and 19 SD
at 12 weeks. Median PFS (mPFS) was 17.9 weeks. The most
frequent G3/4 ADRs were neutropenia (50%), leukopenia (47%),
thrombocytopenia (30%), lymphopenia (27%), and anemia
(17%) (58). In a subsequent study, patients affected by advanced
WD/DDLS were treated with standard palbociclib 125mg for 21
days in 28 days-schedule. The trial results showed a successful
PFS at 12 weeks of 57.2% [95% Confidence Interval (CI): 42.4–
68.8%]. The median PFS was 17.9 weeks (95% CI: 11.9–24.0
weeks). One complete response (CR) was observed. G3/4 ADRs
were primarily hematologic and included neutropenia (33%),
without neutropenic fever (59). A clinical trial in previously-
treated patients with recurrent or metastatic NSCLC was
prematurely halted due to lack of objective tumor responses. Half
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of evaluable patients achieved SD. The mPFS was 12.5 weeks.
One patient experienced G3 transaminitis and unexpected G4
rhabdomyolysis, supposedly due to concomitant use of high-
dose simvastatin. Some patients developed G3 or 4 neutropenia,
and G3 thrombocytopenia (60). Single agent palbociclib was also
not effective in advanced gastric and esophageal tumors, even
if the patients had been selected for Rb expression and despite
19/38 tumors showed amplification of CCND1. The median
duration of treatment was of 1.7 months, with a maximum of
5.5months. No objective responses were observed (61). Similarly,
palbociclib was not effective in a phase II trial conducted in
patients affected by metastatic urothelial carcinoma with both
p16 loss and pRb expression (62). A single arm phase II trial in
patients with heavily pretreated epithelial ovarian cancer showed
a discreet activity and efficacy for palbociclib as single agent.
Thirty percent of patients were progression-free at 6 months,
with a median PFS of 3.7 months (95% CI: 1.2–6.2). A 4% of
PR and a 65% of SD were observed. The toxicity was minimal.
Predictive biomarker analyses are ongoing (63). A phase II study
of palbociclib as single agent was conducted in patients with
metastatic pRb positive BC. The clinical benefit rate (CBR) at 6
months, composed of all complete responses (CR), PR and SD
observed as best responses, was 21%, the median PFS were of
4.1 months (95% CI 2.3–7.7) for patients with ER+ HER2– BC,
18.8 months (95%CI: 5.1—NE) for ER+HER2+ patients and 1.8
months (95% CI: 0.9—NE) for patients with triple negative (TN)
tumors, respectively. Neutropenia (50%) and thrombocytopenia
(21%) were the most frequent G3/4 toxicities (64). The TREND
study, an Italian multicentre open-label phase II trial, compared
single agent palbociclib with palbociclib combined with the same
ET received prior to disease progression in post-menopausal
women with HR+ HER2– MBC. The trial enrolled 115 patients,
the primary endpoint was CBR. In both arms, 67% of pts had the
study treatment as second line, 33% as third line, and about 1/3
of pts also had received 1 prior chemotherapy for MBC. The CBR
was similar in both arms, 54% (95% CI: 42–67%) observed in the
combination one, and 60% (95% CI: 48–73%) with palbociclib
alone. The Overall Response Rates (ORR), composed of all CR
and PR observed as best responses, were 11% (95% CI: 3–
19%) and 7% (95% CI: 0.4–13%) with the combination therapy
and palbociclib alone, respectively. The trial was not powered
to estimate survival endpoints, however exploratory analyses
were performed, with no significant differences observed in PFS
(p = 0.13) and a longer median duration of clinical benefit for
the combination than for the single agent [11.5 months, 95% CI:
8.6–17.8 vs. 6 months, 95% CI: 3.9–9.9; Hazard Ratio (HR): 0.31,
95% CI: 0.1–0.7, p-value 0.001]. Overall, however, the primary
endpoint did not differ significantly between the 2 study arms,
thereby lending support to the potential use of palbociclib as
single agent in pretreated patients with HR+HER2– MBC (65).

Palbociclib: Ongoing Trials
A number of trials are currently ongoing with single agent
palbociclib in several advanced solid tumors.

Results are awaited from the NCT03219554 single arm
phase II trial that is evaluating the efficacy of single agent
palbociclib in patients with recurrent or metastatic advanced

thymic epithelial tumors pretreated with one or more cytotoxic
chemotherapy. The primary endpoint is PFS (66). The activity
and efficacy of single agent palbociclib will be also evaluated
in the Lung-MAP trial, a phase II/III biomarker-driven study
for second line therapy of squamous cell lung cancer (SCLC).
More specifically, single agent palbociclib will be studied in the
context of a sub-study that includes all patients that harbored
genetic alterations involving cell-cycle genes. The accrual has
been completed and results are awaited (67). A phase II study, the
NCT01907607—CYCLIGIST, has also already completed accrual
and will evaluate the efficacy of single agent palbociclib in
patients with gastrointestinal stromal tumors (GIST) refractory
to imatinib and sunitinib. The primary endpoint is the non-
progression rate at 4 months (68). Results are also awaited for
the NCT01356628. This multicenter single arm phase II trial
is exploring the efficacy of single agent palbociclib in advanced
hepatocellular carcinoma pretreated with standard therapies.
The primary endpoint is the time to disease progression (TTP)
(69). Another phase II trial, the NCT02806648—PALBONET, is
ongoing to demonstrate the safety and activity of palbociclib in
subject affected by pNET with overexpression of CDK4, RB1, and
CCND1. Results are awaited (70).

Several trials are currently recruiting participants. The
NCT02530320 phase II study is ongoing in patients with
oligodendroglioma or recurrent anaplastic oligoastrocytoma
with preserved pRb activity. The primary end point is the
PFS rate at 6 months (71). Another ongoing single arm phase
II study (NCT03242382) will evaluate the efficacy of second-
line palbociclib in patients with advanced soft tissue sarcomas
with CDK4 overexpression. The primary endpoint is the PFS
at 6 months (72). The NCT01037790 phase II clinical trial is
studying activity, safety and tolerability of single agent palbociclib
in preatreated refractory solid tumors, including metastatic
colorectal cancer that harbors the Kras or BRAF mutation,
metastatic breast cancer, advanced or metastatic esophageal
and/or gastric cancer, cisplatin-refractory, unresectable germ cell
tumors and any tumor type if tissue tests positive for CCND1
amplification, CDK4/6 mutation, CCND2 amplification or any
other functional alteration at the G1/S checkpoint. Co-primary
endpoints are the response rates and the safety and tolerability
profile. The trial is currently recruiting participants (73).

Finally, a single arm phase II trial (NCT03454919) in acral
melanoma bearing alterations in cell cycle pathways, including
CDK4 amplification and/or CCND1 amplification and/or P16
(CDKN2A) loss, is going to start but not yet recruiting patients.
The primary end point is PFS (74).

Ribociclib: Completed and Ongoing Trials
The initial phase I dose escalation study of single-agent ribociclib
enrolled 128 patients with pRb positive advanced solid tumors
and lymphomas. The MTD and RP2D were established as 900
and 600 mg/day, respectively, on a 21-of-28-days schedule. The
most relevant G3/4 ADRs were neutropenia (27%), leukopenia
(17%), fatigue (2%), and nausea (2%). An asymptomatic QTcF
prolongationwas observable, butmostly with doses≥600mg/day
(9% of patients at 600 mg/day; 33% at doses >600 mg/day).
Response rates were evaluable for 110 patients, though this was
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a phase I trial. There were 3 PR and 43 SD as best response;
eight patients were progression-free for more than 6months (75).
Results are awaited for an ongoing phase I study (NCT02345824)
that will assess tumor pharmacokinetics and efficacy of ribociclib
in patients with recurrent glioblastoma or anaplastic glioma (76).

Several phase II trials of single agent ribociclib are
currently ongoing. More specifically, the NCT02571829 trial is
assessing the efficacy and safety of ribociclib in patients with
advanced WD/DDLS. Patients’ recruitment has been completed
(77). Another trial is ongoing in patients with advanced
neuroendocrine tumors of foregut origin progressed after prior
systemic therapy. The primary endpoint is the objective response
rate (78). The NCT02300987 randomized study is ongoing
in patients with relapsed, refractory, incurable teratoma with
recent progression from at least 1 prior line of chemotherapy
and for which no additional standard surgical or medical
therapy exists. This trial will compare ribociclib to placebo.
The primary endpoint is PFS. Recruitment has been completed
and results are awaited (79). Another phase II single arm
study (NCT03096912) assessing efficacy and safety of ribociclib
in patients with advanced WD/DDLS is currently recruiting
patients. The primary endpoint is the response to therapy after
36 months, as evaluated by RECIST and Choi criteria (80).

Abemaciclib: Completed Trials
Abemaciclib as single agent was investigated in a multicentre
phase I study conducted by Patnaik and colleagues. In this
study, the 225 enrolled patients were affected by NSCLC, BC,
melanoma, colorectal cancer and GBM. The MTD was 200mg
twice daily and the DLT was G3 fatigue. The most relevant G3
ADRs were diarrhea (5%), nausea (4%), fatigue (7%), vomiting
(2%), and neutropenia (7%). Activity data were also reported.
Fifteen patients experienced SD for at least 4 cycles, with 3
patients achieving SD for 8, 16, and 26 cycles, respectively. One
patient with ovarian cancer had a durable and relevant CA125
response. One patient with KRAS mutant NSCLC had a PR. One
patient with NRAS mutant melanoma had a confirmed PR. The
ORR was 31% for HR+ BC. Moreover, when also considering
patients who achieved SD as a best response, 61% of the overall
subjects obtained a clinical response lasting at least 6 months
(81, 82). A focus on 49 NSCLC patients was also published.
The most relevant G3 ADRs were diarrhea (2%), nausea (4%),
fatigue (2%), vomiting (2%), and anemia (2%); there were no
G4 events. Activity results were also shown. The disease control
rate (DCR = CR + PR + SD) was 51% with 1 confirmed PR.
The median duration of SD was 5.6 months and the median
PFS was 2.1 months. Twenty patients reached at least 4 cycles
and 13 reached at least 6 cycles. Among those 49 patients, 19
were affected by KRAS wildtype tumors, 26 by KRAS mutant
tumors and 4 with unknown KRAS status. The DCR was 37% for
KRAS wildtype and 54% for KRAS mutant NSCLC, consistently
with what observed in xenograft studies. The MTD was 200mg
twice daily (83). A randomized phase III study JUNIPER, has
compared abemaciclib plus best supportive care to erlotinib plus
best supportive care in patients with metastatic NSCLC with a
detectable KRAS mutation who have progressed after platinum-
based chemotherapy. The primary endpoint was OS and the

study failed to show a significant benefit. Moreover, researchers
reported a higher-than-expected OS rate in the control group
based on historical data (84, 85).

At present, the most relevant trial involving abemaciclib in
monotherapy is the MONARCH-1. Such study was a single
arm phase II trial in which the efficacy and safety profile of
abemaciclib as a single agent were investigated in HR+ HER2–
MBC. The 132 enrolled patients had to be progressed on
or after prior ET and must have received at least two prior
chemotherapy regimens, at least one but no more than two in the
metastatic setting. Abemaciclib was administrated at the dose of
200mg every 12 h on a continuous schedule. The ORR (primary
endpoint) was 19.7% (95% CI, 13.3–27.5), the CBR was 42.4%,
mPFSwas 6months (95%CI 4.2–7.5) andmedian overall survival
(OS) was 17.7 months (95% CI, 16 to not reached). In this
study the most common ADRs were diarrhea, fatigue, nausea,
neutropenia, leukopenia, anemia and increased serum creatinine
(86). This trial led to the FDA approval of abemaciclib as single
therapy in pretreated patients with HR+ HER2– MBC.

Finally, preliminary results from a Simon 2-stage single
arm phase II trial in patients affected by HR+ HER2– MBC,
NSCLC or melanoma with brain metastases showed a number
of brain partial responses that met the predefined threshold for
expanding the trial to stage 2. For each patient cerebrospinal
fluid concentration of unbound abemaciclib were comparable
and consistent with those in the plasma and tumor tissue (87).
This trial provided evidence that abemaciclib is able to cross
the BBB in human, coherently with preclinical evidence on mice
xenografts (53). The second stage is ongoing.

Abemaciclib: Ongoing Trials
Several ongoing trials with single agent abemaciclib have
completed patients’ recruitment. An asian phase I study
(NCT02014129) is evaluating the safety and toxicities of
abemaciclib in advanced solid tumors and lymphomas in
Japanese participants (88). Abemaciclib is also currently
investigated in GBM at first relapse in the NCT02981940 phase
II trial. Tumors must be pRb wild type and carry inactivation
of CDKN2A/B or C in the tumor by homozygous deletion.
The coprimary endpoint are the intratumoral abemaciclib
concentration and the 6-months PFS (89). Another phase II
trial (active but no more recruiting), the NCT02450539, is
evaluating the efficacy of abemaciclib compared to docetaxel in
patients with metastatic squamous NSCLC previously treated
with platinum-based chemotherapy. The primary endpoint is
PFS (90). A phase II ongoing study (NCT02308020), currently
recruiting participants, is evaluating the activity and efficacy of
abemaciclib in patients with brain metastases secondary to HR+
breast cancer, NSCLC or melanoma. The primary endpoint is the
objective intracranial response rate. Preliminary results have been
reported in a previous section of this review (87). Other ongoing
trials are currently enrolling participants. More specifically, the
NCT02919696 phase I trial is studying abemaciclib in native
chinese patients with advanced and/or metastatic cancers (91).
A phase II trial (NCT03130439) is also investigating the efficacy
and activity of abemaciclib in metastatic triple negative breast
cancer expressing pRb. The primary endpoint is the ORR
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TABLE 3 | Currently ongoing trials on CDK 4/6 inhibitors as single agent in solid tumors.

CDK4/6 inhibitor N Phase and setting Primary endpoint(s)

NCT03123744 Palbociclib 200 Non-randomized Phase II study of palbociclib in adult subjects with

recurrent or refractory advanced cancers with aberration(s) in cyclin

(CCN/CDK) signaling.

Response rates in subjects with

advanced cancer and aberrations of

cyclin pathway gene(s) who are

treated with palbociclib

NCT02530320 Palbociclib 40 Phase II pilot, prospective, open label, multicenter clinical trial, to evaluate

the safety and efficacy of palbociclib, in patients with oligodendroglioma or

recurrent oligoastrocytoma anaplastic with the activity of the protein rb

preserved

PFS, PFS6m

NCT03454919 Palbociclib 60 Phase II clinical study on efficacy of palbociclib in advanced acral melanoma

with cell cycle gene aberrations

ORR, Complete response and partial

response

NCT 03242382 Palbociclib 38 Phase II multicenter trial of palbociclib in second line of advanced sarcomas

with CDK4 overexpression.

PFS rate

NCT03219554 Palbociclib 33 Phase II single center, open-label, single arm study of palbociclib treatment

in patients with recurrent or metastatic advanced thymic epithelial tumor

(TET) after failure of one or more cytotoxic chemotherapy regimens

PFS

NCT01907607 Palbociclib 63 Multicentre single-arm phase II study evaluating the efficacy and safety of

orally Palbociclib, 125 mg/day, 21 days on/7 days off, in patients with

documented disease progression while on therapy with second line sunitinib

for unresectable and/or metastatic GIST.

Efficacy, assessed based on

4-months non-progression

NCT01356628 Palbociclib 23 Phase II study of Palbociclib in the treatment of patients with advanced

hepatocellular carcinoma (HCC), a type of adenocarcinoma and the most

common type of liver tumor.

Time to disease progression

NCT02806648 Palbociclib 21 Phase II trial to assess the activity and safety of Palbociclib in patients with

well and moderately differentiated metastatic pancreatic neuroendocrine

tumors (pNET)

Response rates

NCT01037790 Palbociclib 205 Phase II trial is studying the side effects and how well PD 0332991 works in

treating patients with refractory solid tumors.

Response rates

NCT02345824 Ribociclib 3 Early-phase study to assess tumor pharmacokinetics and efficacy of the

cdk4/6 inhibitor Ribociclib in patients with recurrent glioblastoma or

anaplastic glioma

Inhibition of CDK4/CDK6 signaling

pathway in cell proliferation

NCT03096912 Ribociclib 30 Phase II single arm study assessing efficacy and safety of Ribociclib in

patients with advanced well-differentiated or dedifferentiated liposarcoma

Response to therapy as evaluated by

RECIST 1.1

Response to therapy as evaluated by

Choi [Time Frame: 36 months]

NCT02571829 Ribociclib 30 Phase II single arm study assessing efficacy and safety of Ribociclib in

patients with advanced well-differentiated or dedifferentiated liposarcoma

Response to therapy as evaluated by

RECIST 1.1 and Choi [Time Frame:

36 months (24 months accrual period

and 12 months follow up period)]

NCT02300987 Ribociclib 10 Randomized, blinded, placebo-controlled, phase II trial of LEE011 in

patients with relapsed, refractory, incurable teratoma with recent

progression.

Progression free survival (PFS) [Time

Frame: at 4 months]

NCT02919696 Abemaciclib 20 Phase I study of Abemaciclib in native Chinese patients with advanced

and/or metastatic cancers.

Number of Participants with One or

More Drug Related Adverse Events

Number of participants with one or

more drug related adverse events

NCT02014129 Abemaciclib 12 Phase I study of Abemaciclib in Japanese patients with advanced cancer Number of Participants with

LY2835219 Dose-Limiting Toxicities

(DLT)

NCT02981940 Abemaciclib 36 Phase II study of Abemaciclib in recurrent glioblastoma Intratumoral abemaciclib

concentration [Time Frame: 2 years]

PFS6m

NCT03130439 Abemaciclib 37 Phase II study of Abemaciclib for patients with retinoblastoma-positive,

triple negative metastatic breast cancer.

Objective Response Rate [Time

Frame: 2 years]

ORR as confirmed Complete

Response (CR) or Partial Response

(PR) per Response Evaluation Criteria

in Solid Tumors (RECIST)

NCT02846987 Abemaciclib 30 Phase II study of Abemaciclib in dedifferentiated liposarcoma PFS [Time Frame: 12 weeks]

NCT03356587 Abemaciclib 32 Biomarker-driven, open label, single arm, multicentre phase II study of

Abemaciclib in patients with recurrent or metastatic head and neck

squamous cell carcinoma who failed to platinum-based therapy

Response rate [Time Frame: 24

months]

(Continued)
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TABLE 3 | Continued

CDK4/6 inhibitor N Phase and setting Primary endpoint(s)

NCT03356223 Abemaciclib 25 Phase II trial aiming to evaluate the clinical interest of Abemaciclib

monotherapy in patients with locally advanced/metastatic head and neck

cancer after failure of platinum and Cetuximab or anti-EGFR-based therapy

and harboring an homozygous deletion of cdkn2a, and/or an amplification

of CCND1 and/or of CDK6

The 8-weeks non-progression rate

defined as the rate of patients with

complete response (CR), partial

response (PR) or stable disease (SD)

lasting at least 8 weeks, according to

RECIST v1.1 [Time Frame: 8 weeks

after start of treatment]

NCT02450539 Abemaciclib 150 Randomized phase II study of Abemaciclib vs. docetaxel in patients with

stage iv squamous non-small cell lung cancer previously treated with

platinum-based chemotherapy.

PFS

NCT02308020 Abemaciclib 247 Phase 2 study of Abemaciclib in patients with brain metastases secondary

to hormone receptor positive breast cancer, non-small cell lung cancer, or

melanoma.

Percentage of Participants Achieving

Complete Response (CR) or Partial

Response (PR): Objective Intracranial

Response Rate (OIRR)

NCT03310879 Abemaciclib 38 Phase II study of the cdk4/6 inhibitor Abemaciclib in patients with solid

tumors harboring genetic alterations in genes encoding D-type cyclins or

amplification of CDK4 or 6.

Progression-free rate

(92). The NCT02846987 phase II trial is currently recruiting
patients affected by not surgically resectable locally advanced or
recurrent dedifferentiated liposarcoma with any number of prior
therapies (including none). The primary endpoint is PFS (93). A
biomarker-driven phase II study (NCT03356587) of abemaciclib
in patients with recurrent or metastatic head and neck squamous
cell carcinoma who failed to platinum-based therapy is also
currently recruiting participants. Primary endpoint is response
rate (94). Another phase II trial in (NCT03356223) patients
with locally advanced/metastatic head and neck cancer is
currently evaluating abemaciclib monotherapy after failure
of platinum and cetuximab or anti-EGFR-based therapy, but
only in tumors harboring a homozygous deletion of CDKN2A,
and/or amplification of CCND1 and/or of CDK6. The primary
endpoint is the 8-weeks non-progression rate (95). Finally,
the NCT03310879 phase II study is testing abemaciclib in
patients with solid tumors of non-breast origin harboring genetic
alterations in genes encoding D-type Cyclins or amplification of
CDK4/6 without therapeutic alternative. The progression-free
rate at 4 months is the primary endpoint (96).

Ongoing trials for palbociclib, ribociclib, and abemaciclib are
resumed in Table 3.

CONCLUSIONS

Albeit it is unquestionable, at present, that CDK 4/6i treatment
proved to be more efficacious in combination strategies (e.g., in
HR+ HER2– MBC is in combination with endocrine agents),
the MONARCH 1 trial results (86) led to the FDA approval
of abemaciclib as monotherapy for the treatment of adult
patients with HR+ HER2– MBC with disease progression
after prior ET and CT received in metastatic setting. This
study opened up a new scenario for CDK4/6i, making them
suitable as single agent treatment in heavily pretreated MBC.

In this perspective, the TREND trial provided some evidence
for some activity of palbociclib as single agent in pretreated
patients with HR+HER2–MBC (65). A cross-trial comparison of
response rate from the MONARCH-1 and TREND trial suggests
that abemaciclib might be more effective than palbociclib
in the same disease setting. However, this hint should be
taken as hypothesis only, given the lack of direct comparisons
between the two CDK4/6i. Additionally, there is a strong
need for biomarkers predictive of response and resistance to
better define which patients could benefit most from these
drugs. In fact, mechanisms of resistance to CDK4/6i therapy
have yet to be clearly identified. Laboratory evidences suggest
that markers of intrinsic resistance might be the pRb loss
and subsequent increase in p16INK4A, deregulation of cyclin
E expression, E2F family members amplification and TP53
mutations (97). Interestingly, a study recently published from
Condorelli et al. showed for the first time in human patients
that acquired mutations leading to functional loss of pRb
encoding gene (RB1) might emerge under treatment with
palbociclib and ribociclib, maybe due to selective pressure from
the CDK4/6i and might potentially confer therapeutic resistance
(98). Results from ongoing trials in solid tumors will surely
shed a light on CDK4/6i future development as single agents.
It is likely that eventual new treatment indications might be
acquired by the three inhibitors in the next future, especially
in tumors where few therapeutic options are available, such as
sarcomas.
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Epithelial to mesenchymal transition (EMT) is believed to be crucial for primary tumors

to escape their original residence and invade and metastasize. To properly define EMT,

there is a need for ligands that can identify this phenomenon in tumor tissue and invivo. A

phage-display selection screening was performed to select novel binding phage peptides

for identification of EMT in breast cancer. Epithelial breast cancer cell line, MCF-7 was

transformed to mesenchymal phenotype by TGF-β treatment and was used for selection.

Breast fibroblasts were used for subtractive depletion and breast cancer metastatic cell

lines MDA-MB-231, T47D-shNMI were used for specificity assay. The binding peptides

were identified, and their binding capacities were confirmed by phage capture assay,

phage-based ELISA, immunofluorescence microscopy. The phage peptide bearing the

7-amino acid sequence, LGLRGSL, demonstrated selective binding to EMT phenotypic

cells (MCF-7/TGF-β andMDA-MB-231) as compared to epithelial subtype, MCF-7, T47D

and breast fibroblasts (Hs578T). The selected phage was also able to identify metastatic

breast cancer tumor in breast cancer tissue microarray (TMA). These studies suggest

that the selected phage peptide LGLRGSL identified by phage-display library, showed

significant ability to bind to mesenchymal-like breast cancer cells/ tissues and can serve

as a novel probe/ligand for metastatic breast cancer diagnostic and imaging.

Keywords: Phage display, breast cancer, fibroblasts, EMT, cancer-associated fibroblasts

INTRODUCTION

Breast cancer is the most common cancer in women and the second leading causes of death due to
cancer (1). The cause of death in breast cancer is often due metastasis to distant sites, resulting in
organ failure accounting for a 5-year survival rate of 23%. Evidences support the observation that
metastasis is an early event in breast cancer progression (2), with possibly up to 90% of patients
already having metastasis at the time of diagnosis. Studies have shown that dissemination of cancer
cells andmetastasis into distant organs is often preceded by an epithelial to mesenchymal transition
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(EMT) of cancer cells (3), which allows cancer cells to
dedifferentiate, acquire mesenchymal including fibroblast-like
morphology, enhanced migratory and invasive properties,
enabling them to invade through the stroma and migrate and
seed to distant organs (4, 5). The concept of EMT in breast
cancer has been well demonstrated in numerous invitro studies
in different normal, malignant mammary epithelial cells and in
mouse models of mammary cancers (6, 7). It has been suggested
that tumor microenvironment (8) and growth factors such as
transforming growth factor-β (TGFβ), epidermal growth factor
(EGF), platelet-derived growth factor (PDGF) has a dramatic
effect on epithelial phenotype and in promoting motility and
invasiveness via the induction of EMT (9, 10). TGFβ treatment
changes epithelial cells from cubodial shape to more elongated
ones with concomitant loss of epithelial markers and increased
expression of mesenchymal markers vimentin, fibronectin and
α-smooth muscle actin (11). These EMT markers are also
present in activated cancer-associated fibroblasts (CAF’s), which
contributes to the pathogenesis of tumor progression and
invasiveness (12). Several studies support a physiologic role of
EMT during tumor progression (13–15) by monitoring EMT
progression by the cadherin switch, E-cadherin to N-cadherin,
which is normally also present in mesenchymal cells, fibroblasts,
neural tissue (16). Similarly, vimentin is also often used to
define cancer cells undergoing EMT, is also present in fibroblasts,
endothelial cells, cells of the hematopoietic lineages, and glial cells
(17, 18). There is a lack of specific ligands that can recognize
mesenchymal-like cancer cells and define EMT in tumor and in
cancer-associated fibroblasts.

Phage display offers great advantage as a high throughput
profiling technology based on peptide libraries present on the
surface of bacteriophage. Selective binding of phages from a
library with billions of diversified peptides can make a clear
distinction between two morphological same but functionally
different targets and thus offers a complementary approach
for comparative screening. Usually peptides can be displayed
on the N-terminus of pIII protein coat protein (pIII phage
display), which is displayed at one end of the filamentous phage
in 3–5 copies (19) or can be displayed on the N-terminus
of all copies of pVIII major coat protein (20). Diversity of
pIII or pVIII combinatorial phage library has been exploited
extensively to explore the cell surface repertoire of various
cancer cells such as colon (21), prostate (22, 23), pancreatic
(24), breast (25, 26) and to select many cell surface or cell
internalizing peptides. Some of these highly specific and high
affinity ligands have been used as diagnostic (24), molecular
and targeting agents (27–30). Additionally, lamba (T7) phage
display has been used to identify vascular zip codes (31) and
markers for angiogenesis (32). These studies and more define
the power of using combinatorial phage display to identify
molecular differences and interactive regions of the proteins
without knowing the nature of interaction.

In this study, we propose a novel and innovative study to
use phage display libraries for identification of phages that can
specifically and selectively bind to themesenchymal breast cancer
cells invitro. Since TGFβ is a known inducer of EMT, we have
used a model of TGFβ induced EMT in MCF-7 breast cancer

cells, (MCF-7/TGFβ) for selection of EMT-specific phages. CX7C
PhD phage library was used for selection of phages binding
to MCF-7/TGFβ cells after subtractive depletion from breast
fibroblasts. These selected phages were then tested on breast
cancer cells that exhibited EMT phenotype (MDA-MB-231 and
T47D-shNMI) and breast cancer TMA of primary and metastatic
site. The phage peptide LGLRGSL displayed specific binding to
the EMT breast cancer cells as well recognized tumor in TMA’s at
primary as well as metastatic site.

MATERIALS AND METHODS

Materials
PhD CX7C phage library was purchased from New England
Biolabs (NEB). Fetal calf serum (FCS) and cell culture media
(Dulbecco’s modified Eagle’s medium, DMEM) was purchased
from Sigma (USA). The phage display library contains random
peptides constructed at the N terminus of the minor coat
protein (cpIII) of M13 phage. The library contains a mixture of
3.1 × 109 individual clones, representing repertoire of phages
with 7-mer peptide sequences, which expresses random 7-
amino-acid sequences. The Escherichia coli host strain ER2738
(F+ strain, New England Biolabs) was used for M13 phage
propagation. The human breast cancer cell lines MDA-MB-
231, MCF-7 and breast fibroblasts (Hs 578T) were purchased
from the American Type Culture Collection. MCF-7 cells
were treated 1ng/mL of TGFβ for 16 days. MCF-7, MDA-
MB-231, MCF-7/TGFβ, breast cancer cells, and SW620, colon
cancer cells, were maintained in DMEM supplemented with
10% fetal bovine serum (Sigma) at 37◦C. PC3, prostate cancer
cells, were cultured in RPMI1640 media supplemented with
10% FBS at 37◦C.Breast fibroblasts (Hs578T) were maintained
in special hybricare medium supplemented with 15% FBS
(ATCC).

Validation of EMT Marker in MCF7/TGFβ

Cells by Western Blot
MCF-7 and MCF-7/TGFβ cells were grown in 25 cm2 flask
to 75–80% confluency. Confluent cells were lysed in ice-cold
complete 1x RIPA buffer (PMSF solution, sodium orthovanadate
solution, protease inhibitor cocktail solution, and 1x lysis buffer)
(Santa Cruz Biotechnology, Santa Cruz, CA, United States). The
protein concentration in the samples was quantified using the
BCA Protein Assay Kit (Pierce Biotechnology, Rockford, IL,
United States). Thirty microgram of protein from each sample
was separated by a 4–12% SDS-PAGE gel and then transferred
to a 0.2µm polyvinylidene difluoride (PVDF) membrane.
Membranes were blocked with 5% nonfat dry milk in PBS-T
for 45min and then incubated with the E-cad herin (Abcam,
UK) or N-cadherin (Abcam, UK) primary antibody (1:1,000)
overnight at 4◦C. After washing, membranes were incubated with
horseradish peroxidase (HRP)-conjugated secondary antibody
(1:2,000). Subsequently, membranes were washed and blots were
visualized using enhanced chemiluminescence. The membrane
was stripped withmild stripping buffer and reprobed with β-actin
(Cell Signaling, Danvers, MA, United States) to verify that equal
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amount of protein was loaded. The relative quantification was
normalized against β-actin using image J image analysis software.

In vitro Phage Selection
Biased protocol for selection of phages was employed as
described (26) with some modifications. The PhD phage library
(Cx7C) was depleted against a cell culture flask and breast
fibroblasts (Hs578T). Unbound phages recovered from the
depletion were incubated with confluent MCF-7/TGFβ cells
at room temperature for 1 h. Unbound phages were washed
away and cell-associated phages were eluted with elution buffer
(200mM glycine-HCl, 1 mg/ml BSA, 0.1 mg/ml phenol red,
pH 2.2) for 10min on ice. The eluate was neutralized with 376
µl of 1M Tris (pH 9.1). Internalized phages were recovered
with lysis buffer [2% CHAPS, 10mM Tris, 2mM EDTA (pH
8.0)] after further washing and propagated in bacteria to
determine their titer as described previously (29). The results
were expressed as a percentage of a ratio of output to input
phage. The eluted phage and cell-internalized phage were
amplified separately in bacteria and used in the second and
third round of selection using the same protocol of depletion
of the amplified phages (lysate and eluate) against breast
fibroblasts and incubating MCF-7/TGFβ cells with unbound
phages recovered from depletion. Sixty phages from the third
round of selection were randomly picked and were propagated
in the ER2738 bacteria. DNA was isolated form these 60
propagated clones using DNA isolation kit (QIAGEN GmbH,
Hilden, Germany) and individual phage DNA sequences were

identified. A sequencing primer used was 5
′

-CCC TCA TAG

TTA GCG TAA CG-3
′

(−96 gIII sequencing primer, provided
in the Ph.D.-CX7C Phage display peptide library kit (NEB,
MA).

Cell-Based ELISA and Phage Capture
Assay
Selected phage clones were characterized for their selectivity
toward EMT cells, MCF-7/TGFβ and MDA-MB-231 breast
cancer cells in comparison with epithelial breast cancer cells,
MCF-7, T47D, and breast fibroblasts using phage capture assay
(29) and cell-based ELISA.

Briefly, in phage capture assay, target cells MCF-7/TGFβ,
MDA-MB-231, MCF-7, T47D, T47D-shNMI, breast fibroblasts
(Hs578T), PC3 (metastatic prostate cancer cells) and SW620
(metastatic colon cancer cells) were cultured in triplicate to
confluence in separate wells of 12-well cell culture plates. Cells
were incubated with phage (1 × 1010 pfu) at RT for 1.5 h. Cells
were washed with 100 µl washing buffer for 5min eight times to
remove non-specifically interacting unbound phages. Cells were
lysed with 50µl lysis buffer (2.5% CHAPS) for 10min on a rocker
and the lysate containing phages was titered in E. coli ER2738
bacterial cells. Phage titer was calculated as a ratio of output to
input phage.

ELISA:

Confluent monolayers of MCF-7/TGFβ, MDA-MB-231, MCF-7,
T47D, T47D-shNMI and breast fibroblasts (Hs578T) cells were
incubated at room temperature with individual phage clones

(1010 PFU), for 1.5 h at RT. Subsequently, cells were washed
with PBS containing 0.1% Tween-20, incubated with primary
anti-M13-biotin antibody (1:1,000), for 1 h, at RT. Cells were
washed again with PBS containing 0.1% Tween-20, incubated
with secondary antibody streptavidin-HRP (1:2,000, 45min, RT),
developed with tetra methyl benzidine and read at absorbance
650 with microplate reader (BioTek).

Phage Capture Assay of Phage Binding to
Cancer-Conditioned Media Activated
Fibroblasts
Breast fibroblasts (Hs578T) were plated in a 12.5 cm2 flask
cultured until approximately 70% confluent. Once properly
confluent, fibroblasts were then cultured in MDA-MB-231
conditioned media or normal fibroblasts media for 72 h.
Thereafter, they were exposed to E11 phage (108 pfu) for 2 h and
analyzed for binding in phage capture assay as described above.

Immunofluorescence Study of Selected
Phages
MCF-7, MCF-7/TGFβ, MDA-MB-231 and Hs578T (breast
fibroblasts) cells were seeded in 4-well chamber overnight. On
next day, cells were fed with fresh medium. Phage LGLRGSL
(E11) (108 pfu) was added in fresh medium and incubated at RT
for 1 h. After removing the unbound phages, cells were washed
with wash buffer (0.1% tween-20 in PBS) three times and fixed
with 4% formaldehyde for 15min at 37◦C. Thereafter, cells were
permeabilized with 0.2% Triton X-100 at RT for 10min. Then,
cells were washed with TBS 3 times. Before incubation with anti-
phage antibody, cells were treated with blocking buffer for 30min
at RT. Cells were incubated with M13-pIII monoclonal antibody
for 1 h at RT, washed and incubated with the secondary goat anti-
mouse IgG antibody labeled with Alexa Flour R© 488 (Molecular
Probes) (1:500 in PBS containing 1% BSA) for 45min at RT.
Subsequently, cells were washed three times and stained with
TOTO-3 for nucleus staining. Prolong Gold Anti-fade Reagents
was used on the cells which were then covered with cover slides.
Pictures were taken by using the NIKON eclipse TE 2000-E
confocal microscope. The fluorescence intensity of the images
was quantified using image J software.

Phage Binding to Breast Cancer Tissue
Microarrays
The breast tissue microarrays were purchased from Novus
Biological (Littleton, CO). TMA included 40 breast cancer
infiltrating ductal carcinoma, 10 metastatic lymph node and
9 adjacent normal breast tissues. Clinico-histopathologic
characteristics of the subjects in the tissue microarray study
included grade, age, hormone status and clinical stage, according
to information provided by the suppliers. Tissues were de-
paraffinized in xylene, rehydrated in graded alcohols and
endogenous peroxidase activity was quenched with 3% hydrogen
peroxide for 5min. Slides were treated with LGLRGSL phage
(1010 pfu) overnight. Slides were subsequently washed and
blocked by 3% goat serum at RT for 1 h in humidity chambers.
Slides were then treated with M13-pIII phage monoclonal
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antibody (NEB, MA) or Vimentin antibody (Cell Siganling,
Danvers, MA, United States) (1:100) and then subsequently
with HRP conjugated goat anti-mouse secondary antibody
(Jackson Immunoresearch Laboratories Inc., West Grove, PA,
United States) for 40min. The antigen-antibody reaction was
visualized after applying diaminobenzidine (Sigma-Aldrich,
MO, United States) for 7min. The slides were counterstained
with hematoxylin (Sigma-Aldrich, MO, United States) for 1min.
Slides were dehydrated in alcohols and cleared in xylene baths
before being mounted with Permount media.

Statistics
The significance of difference between two variables was assessed
by the Student’s t-test. The difference was considered significant

if the p-value was<0.05. Data from all experiments are expressed
as mean ± standard error (SD). All statistical calculations were
performed using GraphPad Prism and Microsoft Excel.

RESULTS

Selection of Phages Binding to Breast
Cancer Cells That Have Undergone EMT
MCF-7 (epithelial-luminal subtype) breast cancer cells were
transformed into mesenchymal phenotype by long-term
treatment with TGFβ (1 ng/mL for 16 days). Figure 1A shows the
change of MCF-7 breast cancer cells change in morphology upon
TGFβ treatment. Since reduction in E-cadherin and upregulation
of mesenchyme markers, is a hallmark of metasatatic carcinoma’s

FIGURE 1 | (A) Morphological change in MCF-7 cells during TGFβ –induced EMT. Images of cells treated long term (16 days) with TGFβ showing spindle-shaped

morphology as compared with control. Images were acquired by phase contrast microscopy using a 20 × objective. (B) (left) Immunoblot analysis of expression of

EMT-related proteins. Protein expression levels of E-cadherin in TGFβ-treated MCF-7 cells were markedly decreased, whereas expression levels of N-cadherin and

vimentin (mesenchymal markers) were dramatically increased. Numbers below each panel indicate the relative integrated density of the protein band in that lane.

(right) Quantification analysis of the Western blot data showing the change in EMT markers (E-cadherin and N- cadherin) in MCF-7/TGFβ cells vs. MCF-7 breast

cancer cells. The relative quantification was normalized against β-actin using image J image analysis software. All data represent the mean± S.D of three different

experiments. *p <0.05, student-t-test.
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and indication of EMT (33, 34), following treatment MCF-
7/TGFβ cells were validated for EMT transition by looking
at the protein expression of E-cadherin and N-cadherin
(mesenchymal marker) (35). Consistent with literature that (33)
demonstrated that TGFβ treatment downregulates E-cadherin
expression in MCF-7 cells, our Western blot data confirmed
these observations. Figure 1B showed downregulation of E-
cadherin and upregulation of N-cadherin protein expression in
MCF-7/TGFβ cells as compared to MCF-7 cells.

CX7C PhD phage library (NEB) was used to find phage clones
that bind with high specificity and selectivity to MCF-7/TGFβ
cells. Extensive depletion of the phage library against plastic,
breast fibroblasts before enrichment of phage that interact with
MCF-7-TGFβ breast cancer cells was employed for a robust
selection of phage clones specific for cancer cells. This negative
selection step was also performed after each round of panning on
the MCF-7-TGFβ cells. Three such rounds of biopanning were
performed on and in every round, phage library and sub-library
was depleted against breast fibroblasts to preferentially select for
phages that did not bind to normal fibroblasts. Phages associated
with cells were eluted sequentially with acid and detergents. Titer
of the phage increased from one round to another indicating
successful enrichment for phage clones that bind to the target
MCF-7-TGFβ cells (Figure 2). After the third round of selection,
100 phage clones were randomly picked after titering of the eluate
and lysate fractions. Their DNA was isolated, sequenced and
translated to reveal the sequence of the pIII fusion peptides. In
total, 21 phage clones were isolated and classified based on their
consensus foreign peptide motifs (Table 1).

Selectivity of Phages Toward
Mesenchymal-Like Breast Cancer Cells
Phage clones obtained by screening of the CX7C phage library
against MCF-7/TGFβ cancer cells were tested for their selective
binding toward the target MCF-7/TGFβ, MDA-MB-231, T47D-
shNMI cells and not to breast fibroblasts or epithelial subtype

FIGURE 2 | Specific enrichment of eluate and lysate MCF-7/TGFβ cell-binding

phage isolated from PhD CX7C library during three rounds of selection. The

titer of recovered phages from each round was evaluated by blue

plaque-forming assay on agar plates. The phage enrichment rate was

calculated as yield (%), which is as output number/input number x100.

breast cancer cells MCF-7 and T47D in phage capture assay
(Figures 3A,B) and phage based ELISA (Figure 3C).

These cells lines MCF-7/TGFβ, MDA-MB-231, T47D-NMI
exhibit mesenchymal phenotype or markers of EMT and are
aggressive, are structurally similar to fibroblasts and expresses
markers of EMT and thus are representation of EMT in
breast cancer cells. MDA-MB-231 breast cancer cell line exhibit
mesenchymal phenotype and are detonated EMT phenotype
(36). T47D is an epithelial breast cancer cell line and was
transitioned to EMT by silencing a gene, N-myc and STAT
interactor (37).

In these assays, some phages demonstrated high selectivity
toward EMT cells, while other phage showed selectivity for
epithelial breast cancer cells as well as breast fibroblasts. Phages
were considered selective if their relative binding to EMT
phenotypic cells (MCF-7/TGFβ, MDA-MB-231, and T47D-
shNMI) and were at least five times higher than those of epithelial
breast cancer cells (MCF-7 and T47D) and breast fibroblasts.
KGDYKLF (L42), phage selected from lysate fraction, showed
high specificity toward MDA-MB-231 cells but not so selective
toward MCF-7/TGFβ, MCF-7 and breast fibroblasts. Phages
selected from eluate fraction, LGLRGSL (E11), GTFLFS (E32),
and PNLPWVP (E45) were very selective for EMT phenotypic
cells (MCF-7/TGFβ, MDA-MB-231, and T47D-shNMI) and

TABLE 1 | Displayed phage peptide sequences from isolated eluate and lysate

phages from third round of selection against MCF/TGFβ breast cancer cells.

ELUATE PHAGE PEPTIDE SEQUENCES

E9 I L N C M R N

E11 L G L R G S L

E12 A R K T N P L

E16 F N G P H T R

E20 T K F H F S G

E25 D F L T A R L

E29 N T F S W H T

E32 G T F L F S

E42 N T L R T P Y

E43 H H D N V A M

E45 P N L P W V P

E46 Y E H H P R I

E48 H M R Q G M A

LYSATE PHAGE PEPTIDE SEQUENCES

L5 T H S S W G M

L9 N M W E S V P

L10 R E G H M G V

L24 K D S H E P W

L27 T L A T G G M

L30 P Y E P R A T

L42 K G D Y K L F

L45 S I L S K N H

L46 E R S G M H S

L47 H W P A K H I

L49 P V L L G E S
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showed more than 10 times binding as compared to its binding
to breast fibroblasts (Hs578T) and epithelial breast cancer cells
(MCF-7 and T47D) in phage capture assay (Figure 3A). Phage
E11 was confirmatory toward EMT cells in phage-based ELISA
(Figure 3B) and thus was chosen for further characterization.

To determine if E11 could recognize EMT phenotype in
other cell types of tumor microenvironment, E11 was screened
against activated fibroblasts (fibroblasts converted to CAF’s by
treatment with cancer-conditioned media). E11 demonstrated
higher binding (twice as much) to activated-fibroblasts than
normal fibroblasts (Figure 3C). To see if E11 can recognize EMT
on cancer other than breast, E11 was screened against other
metastatic cancer cells, PC3 (prostate cancer) and SW620 (colon
cancer) in phage capture assay. PC3 is a highlymetastatic prostate
cancer cell line and exhibits EMT phenotype (38, 39). SW620
are highly tumourigenic, metastatic and exhibit fibroblasts like
morphology (40). E11 showed comparable binding to PC3 and
SW620 likeMDA-MB-231 (Figure 3D), which demonstrates that
it is binding to a receptor common to metastatic phenotype.

Affirmation of Phages Binding to Target
Cells in vitro Using Immunofluoresence
Analysis
To further affirm the specificity of LGLRGSL (E11) toward

breast cancer cells with an EMT phenotype, immunofluorescence

microscopy of intact target mesenchymal phenotypic cells (MCF-

7/TGF β and MDA-MB-231), control MCF-7 breast cancer cells
and breast fibroblasts (Hs578T) was employed. All cells were

treated with the phage (108 pfu) at RT for 1 h, and subsequently

incubated with primary anti-pIII antibody and then stained

with secondary anti-mouse Alexa fluor 488 secondary antibody.

LGLRGSL (E11) showed almost no binding to breast fibroblasts
(Figure 4A), some staining to MCF-7 cells (Figure 4B), while
abundant binding to EMT cells, MCF-7/TGFβ (Figure 4C) and
MDA-MB-231 (Figure 4D) as shown by green fluorescent phage
staining and analysis (Figure 4E). We did not observe any
background antibody as shown in the respective controls of cells
treated with just primary and secondary antibodies.

FIGURE 3 | continued
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FIGURE 3 | Affinity selected eluate and lysate phage showed higher binding to MCF-7-TGFβ, MDA-MB-231, T47D-shNMI cells as compared to breast fibroblasts,

T47D and MCF-7 cells in (A) phage capture assay; (B) in phage based-ELISA; (C) LGLRGSL (E11) was also highly reactive to activated fibroblasts. FBD denotes

fibroblasts in normal fibroblast media and FBC denotes fibroblasts in MDA-MB-231 breast cancer cell conditioned media and (D) LGLRGSL showed comparable

binding to PC3 and SW620 cancer cells as compared to MDA-MB-231 cancer cells. All data represent the mean± S.D. *p <0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p

≤ 0.0001.
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FIGURE 4 | A. Phage peptide LGLRGSL (E11) stained selective to EMT phenotypic cells in immunofluorescence microscopy analysis upper, (A) Breast Fibroblast, (B)

MCF-7, (C) MCF-7/TGFβ, and (D) MDA-MB-231 cells without phage exposure; stained with DAPI and Alexa 488 secondary antibody, lower, (A) Breast Fibroblasts,

(B)MCF-7, (C) MCF-7/TGF β, and (D). MDA-MB-231 exposed to phage; stained with M13 primary antibody, DAPI and Alexa 488 secondary antibody. Scale bar is

20µm. (E) Quantification data of the fluorescence intensity of the Breast fibroblasts, MCF-7, MCF-7/TGFβ, and MDA-MB-231 breast cancer cells. The fluorescence

intensity of the images was quantified using Image J software. All data represent the mean± S.D of three different experiments. *p <0.05, student-t-test.

Validation of Phage Peptide Binding to
Human Breast Cancer Exvivo
Next, we investigated the clinical relevance of these findings

by assessing if LGLRGSL (E11) could be used to prospectively

identify human invasive ductal carcinoma (IDC) breast tumors

with a propensity to metastasize as metastatic cells undergo EMT

before metastasizing (41). Immunostaining for phage in human

breast cancer tissue indicated phage has substantial staining for

invasive ductal breast cancer carcinoma (Figures 5A–C, left) and
its staining intensity increased in tumors invading into adjacent
lymph nodes (Figure 5D). Furthermore, we did not observe any
binding in normal breast tissues (Figure 5E). Interestingly we
observed that vimentin, a mesenchymal marker, within the same

TMA (Figures 5A–C, right) demonstrated a different staining
pattern than the LGLRGSL (E11) phage. While vimentin showed
stromal staining, phage was immunoreactive to the tumor cells
with robust staining around the invasive or leading edge of the
tumor-stromal interaction.

DISCUSSION

There is accumulating evidence to show that epithelial cells
can undergo transformation into migratory fibroblast-like
mesenchymal cells in a process called EMT (Epithelial-to-
Mesenchymal Transition). Normally, an embryo and organ
development related phenomenon, EMT is believed to be crucial
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FIGURE 5 | Ex vivo phage binding to human breast cancer tissue microarray. Tissue microarray of invasive ductal carcinoma and adjacent normal tissues were

incubated with 1010 pfu of LGLRGSL phage or Vimentin antibody and then subsequently with M13-pIII antibody for phage and secondary peroxidase antibody for

phage and Vimentin, imaged with a digital light microscope. Strong brown staining of the phage and Vimentin was observed in invasive ductal carcinoma sections

(A–C) and metastasis in lymph nodes, (D) while no staining was observed in normal breast tissue, (E) Scale Bar is 40 and 10µm for the inserts.

for primary tumors to escape their original residence and invade
and metastasize to other organs such as liver, lungs, bone and
brain (42). Moreover, EMT is also a critical determinant of
stemness and drug-related relapse (6, 41, 43). EMT of breast
cancer cells is, in large part, dependent oncontingent on the
tumor microenvironment (44). Because of the close cross-talk
between the cancer cells and CAFs, it is evident that the
development of cancer cannot be dissociated from its local
microenvironment (45). Tumor cells signals stromal fibroblast
cells and activate them into cancer-associated fibroblasts (CAFs)
to undergo EMT through the stimulation of paracrine growth
factors (46, 47) promotes EMT, cell survival (48) and progression
(49) of cancer cells. To better understand the events involved
from acquiring motility for invasion to seeding in distant organs,
there is a need to develop probes that can selectively bind to
invasive, metastatic and tumor-progressing CAF’s (46). Such
ligands can further ascertain the role of EMT in cancer metastasis
and could enable the development of new approaches in the
management of this disease.

In this study, we have successfully isolated phage ligands
using CX7C phage library for EMT transformed breast cancer

cells, MCF7/TGFβ and MDA-MB-231 by employing subtractive
depletion of phages binding to breast fibroblasts. The optimizing
procedures (several rounds of subtractive screening) were
performed to improve the probability of successful selection,
which is highly dependent on obtaining specific phages with
high selectivity. The isolated clones were used in cell-ELISA
and invitro phage capture assay to confirm their specificity to
EMT phenotype cells, MCF-7/TGFβ, MDA-MB-231 and T47D-
shNMI cells in vitro as compared to epithelial subtype cells, MCF-
7, T47D and mesenchymal breast fibroblasts (Hs578T). Phage
capture assay and ELISA demonstrated the selective affinity of
various phages to EMT phenotype.

The best candidate, LGLRGSL (E11), was then selected
for immunocytochemical assays. Immunofluorescence studies
confirmed the selectivity of LGLRGSL (E11) to the target
mesenchymal-like cells as there was minimal binding to the
non-target epithelial breast cancer cells and mesenchymal breast
fibroblasts. E11 also bound with great affinity to PC3, prostate
cancer cells and SW620, colon cancer cells. It’s binding to these
other cancer cell type was as comparable as to MDA-MB-231
breast cancer cells. These findings suggest that LGLRGSL (E11) is
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recognizing a receptor/antigen on mesenchymal-like cancer cells
that are highly invasive and metastatic in nature and would be a
useful probe to identify invasive front and metastatic tumor cells.
Phage probing to the breast cancer tissue microarray identified
tumor representing high grade and lymph node metastasis.
When compared to Vimentin, a marker of mesenchymal-like
cells metastasis, phage had more positive staining to the invasive
front and lymph node metastasis.

More work is needed to characterize LGLRGSL (E11) as ligand
binding to EMT marker of cancer origin. One such direction is
the identification of the receptors responsible for LGLRGSL (E11)
phage binding to the mesenchymal-like cells, that may allow for
the discovery of novel cell surface molecules, which may yield
future targets for drug design.

In conclusion, the 7-amino acid phage peptide, LGLRGSL,
obtained by phage-display technology showed significant ability
to bind to EMT breast cancer cells in vitro and tissues array
exvivo. The phage peptide can be used for preparation of

targeted devices for drug and gene delivery to metastatic cells;
development of probes for molecular imaging of metastasis;
and identification and isolation of cancer-specific receptors as
potential components for development of therapeutic antibodies,
anticancer vaccines and diagnostics.
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As medicine advances, cancer is still among one of the major health problems, posing
significant threats to human health. New anticancer agents features with novel scaffolds
and/or unique mechanisms of action are highly desirable for the treatment of cancers,
especially those highly aggressive and drug-resistant ones. Nitrogen mustard has been
widely used as an anticancer drug since the discovery of its antitumor effect in the
1942. However, the lack of selectivity to cancer cells restricts the wide usage of a
mass of nitrogen mustard agents to achieve further clinical significance. Discovery
of antitumor hybrids using nitrogen mustards as key functional groups has exhibited
enormous potential in the drug development. Introduction of nitrogen mustards resulted
in improvement in the activity, selectivity, targetability, safety, pharmacokinetics and
pharmacodynamics properties of corresponding lead compounds or agents. Herein,
the recently developed nitrogen mustard based hybrids have been introduced in the
cancer therapy.

Keywords: antitumor, nitrogen mustard, hybrids, side effects, drug discovery

INTRODUCTION

In recent years, malignant tumors have become a serious threat to human health due to their
worldwide rising incidence and mortality. Second to cardiovascular diseases, cancer contributed
the second most mortalities among all diseases (Torre et al., 2015; Ryerson et al., 2016; Lallukka
et al., 2017). In recent decades, development of antitumor drugs has achieved significant progress
in the treatment of cancer. Since nitrogen mustard, known as an alkylating agent, was proven
effective in the treatment of malignant lymphoma in the 1940s, the usage of nitrogen mustard
drugs in cancer chemotherapy has a history of over 70 years. At present, nitrogen mustard agents
are still used clinically, and targeted modification of nitrogen mustards is an important strategy
for the discovery of anticancer drugs. The development of nitrogen mustard derivatives originated
from bis(2-chloroethyl) sulfide, which was used as a poison gas during World War II (Gilman,
1963; DeVita and Chu, 2008). After a terrible accident, it was found that bis(2-chloroethyl) sulfide
exhibited therapeutic potential on leukemia. Because of its severe toxicity, bis(2-chloroethyl) sulfide
was not applied as a antitumor drug for clinical use. However, nitrogen mustard antitumor drugs
were developed based on the leukocyte killing effect of bis(2-chloroethyl) sulfide (Figure 1).

Nitrogen mustard is a kind of bio-alkylating agent, which can form active electron-deficient
intermediates or other compounds with active electrophilic groups in vivo. The active intermediates
can react electrophilically with some electron-rich groups in bio-macromolecules by forming
covalent bonds, and results in activity inhibition of corresponding bio-macromolecules. The
mechanism of nitrogen mustards includes DNA binding and cross-linking, thus preventing DNA
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FIGURE 1 | Origin of nitrogen mustards.

replication and cell proliferation. Since its binding to the N7
nitrogen-atoms on DNA guanines with poor selectivity, nitrogen
mustard agents are revealed to be toxic to normal cells (Kohn
et al., 1987; Bank et al., 1989; Povirk and Shuker, 1994; Di Antonio
et al., 2014).

Clinical application of nitrogen mustard compounds has a
long history, but the present and future application of nitrogen
mustards is limited by disadvantages including poor selectivity
and severe adverse reactions (Frei et al., 1988; Sanderson
and Shield, 1996; Schobert et al., 2009; Chen et al., 2014).
Therefore, enormous effort has been made in the development
of nitrogen mustard derivatives, aiming to obtain antitumor
nitrogen mustard drugs with high activity and low toxicity
(Zarytova et al., 1990). In recent years, the discovery of nitrogen
mustard drugs and derivatives has become attractive field
in the anticancer therapy. Development of nitrogen mustard
based hybrid molecules by introducing druggable fragment, has
been considered to be effective strategy in the antitumor drug
discovery. Herein, recently development of nitrogen mustard
based hybrids was reviewed and provided suggestions for the
future study of bifunctional and multitargeted antitumor drugs.

NITROGEN MUSTARD DRUGS

According to different carriers, nitrogen mustard drugs can be
classified into several classes, including fatty nitrogen mustard,
aromatic nitrogen mustard, amide nitrogen mustard, amino acid
and polypeptide nitrogen mustard, and heterocyclic nitrogen
mustard.

Chlormethine 1 (Figure 2), a fatty nitrogen mustard,
is now rarely used for clinic due to its poor selectivity
and severe toxicity. The introduction of aromatic rings into
nitrogen mustard causes the decrease of electrophilicity of the
nitrogen atom. Consequently, aromatic nitrogen mustards are
characterized with reduced reactivity and toxicity compared
with fatty nitrogen mustard (Goodman and Wintrobe, 1946).
Chlorambucil 2 (Figure 2) is used clinically for the treatment
of ovarian cancer, Hodgkin’s disease, chronic lymphocytic
leukemia and lymphosarcoma (Galton et al., 1961). Clinical
application of chlorambucil is also limited by adverse effects
including nausea, vomiting, anemia, bone marrow suppression
and neurotoxicity (Springer et al., 1990; Nicolle et al., 2004).
Melphalan 3 (Figure 2), which takes phenylalanine as the carrier,
has exhibited clinical effects on ovarian cancer, breast cancer,
lymphoid sarcoma and multiple myeloma (Sarosy et al., 1988).
Cyclophosphamide 4 (Figure 2), a heterocyclic amide nitrogen
mustard, features a board spectrum of anti-malignancy activity,
and is commonly utilized in the management of malignant
lymphoma, acute lymphoblastic leukemia, multiple myeloma,

lung cancer, neuroblastoma, breast cancer, ovarian cancer
and nasopharyngeal cancer (Hughes et al., 2018). Moreover,
cyclophosphamide has been discovered to be less toxicity than
other types of nitrogen mustard drugs, due to the specific
metabolic pathway.

NITROGEN MUSTARD BASED HYBRIDS

In recent years, it has been revealed that the conjugation of
targeted antitumor drugs or natural molecules with nitrogen
mustard drugs provides novel strategies for the discovery of
antitumor molecules with improved antitumor effect, selectivity,
and reduced toxicity.

Brefeldin A (BFA) 5 (Figure 3) is a 16-member macrolide
antibiotic with a broad range of pharmacological activities,
including antitumor, antiviral and antifungal effects
(Rajamahanty et al., 2010; Moon et al., 2012; South et al.,
2013; Toda et al., 2015; Grose and Klionsky, 2016; Huang
et al., 2017). In the antiproliferative activity assay, BFA
exhibited GI50 (half maximal growth inhibitory concentration)
value of 40 nM against the national cancer institute NCI-60
cancer cell line (Anadu et al., 2006). Although BFA has great
potentials to serve as a cancer chemotherapeutic drug, its
development is still restricted by major limitations including
severe undesirable effects and relatively low selectivity on
tumor cells over normal ones (Kikuchi et al., 2003; Seehafer
et al., 2013). Several novel BFA-nitrogen mustard conjugates
were derived by introducing nitrogen mustards at 4-OH
and/or 7-OH of BFA (Han et al., 2018). All the synthesized
BFA-nitrogen mustard compounds 5a-i (Figure 3) were assessed
for their effectiveness against different tumor cell lines. Several
hybrid molecules exhibited potent cytostatic activities and
improved selectivity on malignant cells over normal ones. It
is revealed that almost all the new BFA-nitrogen mustards
showed stronger cytotoxic activities against one or more cell
lines than nitrogen mustards and even 5-FU. Among all the
tested compounds, molecule 5a exhibited the most potent
antiproliferative effects against various tumor cell lines (with
IC50 (half maximal inhibitory concentration) values of 4.48,
9.37, 0.2, and 0.84 µM against human leukemia HL-60, human
prostate PC-3, human hepatocellular carcinoma Bel-7402 and
drug-resistant Bel-7402/5-FU cell lines), respectively. Molecule
5a also displayed much lower cytotoxicity (IC50 < 0.001 µM)
than BFA (IC50 = 9.74 µM) against normal human hepatic
L-O2 cells. Therefore, introduction of nitrogen mustard to toxic
natural products could be significant in the improvement the
potency and safety of lead compounds.

Evodiamine 6 (Figure 4) is a natural quinolone alkaloid
widely studied for the treatment of diverse human disorders
including Alzheimer’s disease, inflammation and especially
cancer (Ogasawara et al., 2002; Yu et al., 2013; Lv et al., 2015;
Shi L. et al., 2016; Wang et al., 2016; Wu et al., 2016; Fan
et al., 2017; Shi et al., 2017). By targeting topoisomerase I and
II, evodiamine has induced apoptosis and cell cycle arrest of a
broad spectrum of tumor cell lines (Shyu et al., 2006). However,
it is revealed that evodiamine is cytotoxic to human normal

Frontiers in Pharmacology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 1453666

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01453 December 13, 2018 Time: 15:23 # 3

Chen et al. Nitrogen Mustard Based Hybrids

FIGURE 2 | Representative nitrogen mustard agents.

FIGURE 3 | Structures of Brefeldin A-nitrogen mustard hybrids.

cells, such as peripheral blood mononuclear cells (PBMC).
In discovery of antitumor agent with improved potency and
reduced adverse side effects, conjunct of evodiamine to nitrogen
mustards was carried out by Li and coworkers (Hu et al.,
2017). The synthesized nitrogen mustard-evodiamine hybrids
were evaluated in the antitumor activity assay. Compared with
evodiamine (IC50 values of 22.87 µM against PBMC cells), all the
tested mustard-evodiamine hybrids 7a-d, 8a-d, 9a-d (Figure 4)
showed improved safety properties with IC50 values of more
than 200 µM in inhibition the proliferation of PBMC cells.
Remarkably, molecule 9c revealed potent antiproliferative effects
against human liver cancer HepG2, human leukemic THP-1
and HL-60 cell lines with IC50 value of 17.04 µM, 4.05 µM
and 0.50 µM, respectively. The involved investigations indicated
that further drug discovery based on 9c is promising in the
treatment of tumor, such as leukemia. Collectively, introduction
of nitrogen mustard moiety has shown significance in the
improvement of potency and safety, and the nitrogen mustard

hybridation strategy could be productive for the optimization of
lead compounds.

Oridonin 10 (Figure 5) is a kind of natural diterpenoids,
which has a unique, safe, broad antitumor activity (Sun et al.,
2006; Cui et al., 2007; Zhou et al., 2007; Bao et al., 2014; Li Y.
et al., 2015; Ding et al., 2016; Dong et al., 2016; Shi M. et al.,
2016; Liu et al., 2017). However, the utilization of oridonin in
cancer chemotherapy was limited by its relatively low potency
(Wang et al., 2012; Xu S.T. et al., 2014). Development of oridonin-
nitrogen mustard conjugates used for antitumor application
has been demonstrated to be promising in the drug discovery
(Ding et al., 2013a,b). Several synthetic oridonin-nitrogen
mustard conjugates 10a∼f (Figure 5), and their anticancer
activities evaluated in four human malignant cell lines (human
leukemia K562 cells, human breast cancer MCF-7 cells, human
hepatocellular carcinoma Bel-7402 cells, and human gastric
cancer MCG-803 cells) were reported by Xu and coworkers
(Xu S. et al., 2014). All the tested compounds exhibited better
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FIGURE 4 | Structures of evodiamine-nitrogen mustard hybrids.

FIGURE 5 | Structures of oridonin-nitrogen mustard hybrids.

antiproliferative effects comparing to the positive control drugs,
melphalan, chlorambucil and benzoic acid mustard. Among
the synthetic oridonin mustards, compound 10b was the most
potent hybrid against MCF-7 and Bel-7402 cells with IC50
values of 0.68 µM and 0.50 µM, respectively. It is also revealed
that 10b and 10c could inhibit the growth of drug-resistant
cancer cells. Notably, molecule 10b exhibits approximately
eight-fold higher selectivity for cancer cells over normal cells,
which is significantly higher than its parent oridonin compound
and clinically available nitrogen mustard drugs. Collectively,

the derived oridonin-nitrogen mustard conjugates exhibited
improved activity and safety than the parent fragments, and
introduction of nitrogen mustard make contributions to the
potency and selectivity of oridonin based hybrids.

In addition to evodiamine, another alkaloid, sophoridine 11
(Figure 6) evaluated in detailed for its antitumor potency, was
approved by the CFDA in 2005 for treatment several types
of cancer, including liver, gastric and lung cancer (Sun et al.,
2012; Liu and Liu, 2013; Wang et al., 2014). The sophoridine
which could cause apoptotic cell death by inhibiting DNA
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FIGURE 6 | Structures of sophoridine-nitrogen mustard hybrids.

FIGURE 7 | Structures of etoposide-nitrogen mustard hybrids.

topoisomerase I activity and initiate cell cycle arrest at the
G0/G1 phase, has high solubility and good safety profiles (Quo
et al., 2013). However, the moderate anticancer activity of
sophoridine limit its clinical application. Therefore, development
of sophoridine derivatives was performed in discovery of more

effective drug candidates. The D-ring of sophridine has been
opened to generate sophoridinic acid 12 (Figure 6) for further
structural modification. A series of sophoridinic acid-nitrogen
mustard deivatives 12a-h (Figure 6) were derived by modifying
12 nitrogen atom and carboxyl groups of 12 (Li D.D. et al., 2015).
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FIGURE 8 | Structures of steroid-nitrogen mustard hybrids.

FIGURE 9 | Structures of Tyrosine-nitrogen mustard hybrids.

Compared with sophoridine (IC50 > 80 µM against human
liver cancer HepG2 cells), several new synthesized hybrids
showed improved antitumor activity. Especially compound 12f
showed IC50 value of 0.47 µM compared with melphalan (IC50
value of 0.41 µM) in the inhibition of HepG2 cells. SAR
analysis indicated two promising substituents on the 12-nitrogen
atom and carboxyl region, which were helpful for maintaining
potent antitumor activity. Moreover, various decorating various
substituents may be introduced to these two moieties, regulating
the pharmacological effects of the compounds. Introduction of
the cyclophosphamide metabolite (phosphamide mustard A)

analogs also resulted in hybrids with significantly improved
activities compared with sophoridine (Li D. et al., 2018). It
is demonstrated that the introduction of nitrogen mustard on
sophoridine could significantly improve interactions between
sophoridine and DNA-Topo I, and subsequently increase the
antitumor activity. Therefore, the study of nitrogen mustard as
the parent drug is of great significance in the design and synthesis
of antitumor drugs.

Etoposide 13 (Figure 7) is a topoisomerase II inhibitor
effective in the treatments of various types of cancer
including testicular cancer, lung cancer, lymphoma, leukemia,
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FIGURE 10 | Structure of Platinum-nitrogen mustard hybrid.

neuroblastoma, and ovarian cancer (Nitiss, 2009; Pommier and
Marchand, 2011; Pommier, 2013). In discovery of etoposide
analogs, glycoside moiety of etoposide was replaced by nitrogen
mustard moiety designed to alkylate either protein residues on
topoisomerase II, or the DNA bases on the DNA-topoisomeraseII
complex (Deweese and Osheroff, 2009; Pommier et al., 2010;
Wu et al., 2011). Seven N-mustard–epipodophyllotoxin
hybrid compounds 13a-g (Figure 7) were synthesized, and
demonstrated to target topoisomerase II by kDNA decatenation
assay, DNA cleavage assay, cellular ICE assay and the cell
cycle analyses (Yadav et al., 2014). The derived molecules also
exhibited nitrogen mustard-alike activity as it crosslinked
DNA. In the in vitro antiproliferative assay, molecule 13e
exhibited the best antiproliferative activity with IC50 values of
0.27 µM and 0.85 µM against human leukemia K562 cells and
etoposide-resistant K/VP.5 cells, and GI50 of 0.71 µM against
NCI-60 cells in contrast to the control melphalan (IC50 values
of 12 µM and 5.3 µM against K562 cells and K/VP.5 cells, and
GI50 of 29 µM against NCI-60 cells) and etoposide (IC50 values
of 0.29 µM and 4.9 µM against K562 cells and K/VP.5 cells, and
GI50 of 12 µM against NCI-60 cells). The results suggested that
hybridization of etoposide and nitrogen mustards is promising
in the development of highly potent antitumor molecules both
by topoisomerase II inhibition as well as DNA alkylation.

In order to decrease toxicity of nitrogen mustards, steroids
have been tested as a vehicle to deliver the mustard drugs
to a specific target tissue via interaction with steroid
receptors (Wall et al., 1969; Catane, 1978). Such conjugates
improved the lipophilicity and solubility of the resulting
drugs. Development of steroidal alkylating agents has been
reviewed by Bérubé and coworkers (Trafalis et al., 2016).
Herein, the recently derived novel steroidal lactam derivatives
and 3-(4-(bis(2-chloroethyl)amino)phenoxy)propanoic acid
(POPAM) (Figure 8) conjunctions were described (Trafalis
et al., 2016). Four new ester conjugates 14a-d (Figure 8) of
steroidal lactams with POPAM were synthesized and tested
against human leukemia cell lines in vitro. Molecule 14c was
discovered to be the most potent hybrid with IC50 values of

90 µM, 65 µM, 80 µM, and 85 µM against human leukemia
MOLT-4, CCRF-CEM, JURKAT and SUP-B15 cells compared
with melphalan (IC50 > 100 µM against all the test cell lines)
and POPAM (IC50 > 100 µM against all the test cell lines),
respectively. In the in vivo antiproliferative assay, 14c also
exhibited improved antileukemic activity compared with their
alkylating component alone (POPAM). Moreover, in the in vivo
acute toxicity test, all the derived hybrids had significantly lower
acute toxicity (LD10 (10% lethal dose) > 80 mg/kg), in contrast
to the non-steroidal alkylators POPAM (LD10 = 14 mg/kg) and
melphalan (LD10 = 15 mg/kg). Further investigation revealed
that the chemical linkage between the nitrogen mustard and
the lactam-steroids seems to both decreased the toxicities of the
nitrogen mustards and improved the bioactivity and antitumor
effects.

Tyrosine 15 (Figure 9), a natural amino acid, has been
reported to share some structural similarities to that of the
phenol group of estradiol (Anstead et al., 1997). Molecular
modeling study indicated that the phenol group of tyrosine
also interact with the estrogen receptor binding site in the
same manner as the A-ring phenol of estradiol. Therefore,
the tyrosine was modified to mimic the structure of estradiol
(Muthyala et al., 2003; Descoteaux et al., 2012b). Tyrosinamide,
combined tyrosine with hydroxyaniline, was proved to be
structurally similar to estradiol. A series of tyrosinamide-nitrogen
mustard derivatives were synthesized and tested by Bérubé and
coworkers (Descoteaux et al., 2012a). It is revealed that all
new compounds showed potent antitumor activities. Among
the derived tyrosinamide-chlorambucil hybrids, compound m-
16 (Figure 9), showed IC50 values of 48.61 and 31.25 µM
against human breast cancer MDA-MB-231 cells and MCF-7
cells compared with the parent compounds chloramucil (IC50
values of 136.85 and 130.36 µM against MDA-MB-231 cell and
MCF-7 cells), respectively. Compared with chloramucil (IC50
values of 63.17, 66.11, 100.48 and 131.83 µM against human
ovarian carcinoma A2780 cells, OVCAR-3 cells, human breast
cancer ZR-75-1 cells and MDA-MB-468 cells, respectively), the
m-17 (Figure 9) showed potent antitumor activity with IC50
values of 31.79, 35.42, and 52.10 µM against OVCAR-3 cells,
MDA-MB-468 cells and ZR-75-1 cells, respectively. It is found
that all the synthesized tyrosinamide-chlrambucil molecules
exhibited improved inhibitory activity in the inhibition of breast,
ovarian and uterine cancer cells than the parental chlorambucil.
Introduction of tyrosine entity to nitrogen mustards was
considered to make contributes to the increased antitumor
activity of the derived hybrid molecules.

Platinum-based antineoplastic drugs are usually considered as
another class of alkylating agents with high antitumor potency
(Jamieson and Lippard, 1999; Wang and Lippard, 2005). Notably,
cisplatin is one of the most potent platinum(II) complexes used
in cancer chemotherapy by binding to DNA and subsequently
interfere with replication and transcription, eventually leading to
cellular apoptosis (Abu-Surrah and Kettunen, 2006; Wheate et al.,
2010). However, clinical application of cisplatin is limited by its
severe adverse effects, including nephrotoxicity, hepatotoxicity,
ototoxicity and neurotoxicity, etc. Acquired resistance is also
a concern (Brabec et al., 2017). In discovery of more potent
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and safe antitumor compounds, conjunction of two different
types of DNA-damaging drugs by combining chlorambucil with
platinum(IV) complexes was performed by Gou and coworkers
(Qin et al., 2017). In the in vitro activity assay, molecule 18
(Figure 10), a hybrid of cisplatin and chlorambucil, displayed
potent antiproliferative activities with IC50 values of 3.99 µM,
4.37 µM, 4.97 µM, 2.97 µM, and 4.23 µM against human
breast cancer MCF-7, human colon cancer HCT-116, human
liver cancer HepG-2, human gastric cancer SGC7901, and
cisplatin-resistant SGC7901/CDDP cells, respectively. Compared
with chlorambucil, cisplatin, and oxaliplatin, molecule 18
exhibited improved activity in the inhibition of cisplatin resistant
SGC7901/CDDP cells. Further studies revealed that molecule 18
induced cell cycle arrest at S/G2 phases (distinct from those of
cisplatin and chlorambucil), and revealed ability of overcome
drug resistance. Collectively, hybridization of nitrogen mustards
and platinum(IV) complexes resulted in conjunctions with
improved antitumor potency, and with advantage of overcoming
drug resistance of tumor cells.

Several highly potent 1,3,5-triazine scaffold-carrying
cytostatic agents have been previously reported as inhibitors
of cell proliferation-involved enzymes (Maeda et al., 2000;

Riou et al., 2002; Gomez et al., 2003; Kaminski et al., 2004;
Mandal et al., 2007; Paquin et al., 2008). Among them, ZSTK474
(Figure 11) was discovered to inhibit the growth of tumor cells
in human cancer xenografts without toxic effects on critical
organs by targeting PI3K (Di Francesco et al., 2000; Vedejs
et al., 2003). In the structural modification of current melamine
derivatives, a series of melamine-nitrogen mustard derivatives
19a-f (Figure 11) were synthesized by introducing one or
more 2-chloroethylamine groups (Kolesinska et al., 2012). It is
revealed that all synthesized molecules showed potent antitumor
activities. Compared with the positive control chlorambucil (IC50
value of 29.14 µM against human breast cancer MCF-7 cells),
the obtained molecule 19f showed potent antitumor activity
with IC50 value of 18.70 µM against MCF-7 cells. Compound
19a also exhibited potent antitumor activities with IC50 value
of 0.62 µM, 0.99 µM, 1.40 µM, 2.06 µM and 3.45 µM against
human leukemia Jurkat, human prostate adenocarcinoma
LNCaP, human breast adenocarcinoma T47D, human lung
adenocarcinoma A549 and human colorectal carcinoma SW707
cells, respectively. Further biological studies suggested that
introducing nitrogen mustard into triazine is promising in
the increase of antitumor activity by promoting alkylation.

FIGURE 11 | Structures of melamine-nitrogen mustard hybrids.

FIGURE 12 | Structures of IDO1-nitrogen mustard hybrids.
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FIGURE 13 | Summary of the nitrogen mustard based hybridization strategy involved in the current article.

Accordingly, introduction of nitrogen mustard is regarded
to make contribution to improve the selectivity, activity and
lipophilicity of current drug-like cytotoxic derivatives.

IDO1, a heme-containing enzyme, plays an important role
in carcinogenesis and its progression by converting Trp to Kyn
(Jiang et al., 2015). Both Trp degradation and Kyn accumulation
are associated with immune tolerance by affecting T cell activity
and altering the tumor microenvironment (Moon et al., 2015).
A number of studies showed that the combination of IDO1
inhibitors along with cytotoxic chemotherapeutic agents is an
effective strategy in cancer treatment (Muller et al., 2005).
However, such a simple combination will inevitably be limited
by the severe adverse effects induced by the highly toxic
cytotoxic agents and possible drug-drug interactions. Therefore,
in discovery of potent antitumor molecules with reduced toxicity,
a series of hybrid molecules 20a-g (Figure 12) were synthesized
by including the pharmacophores of both IDO1 inhibitors and
nitrogen mustards (Fang et al., 2018). All the compounds showed
potent antitumor activities compared with the positive drug
chlorambucil in the inhibition of murine colorectal carcinoma
CT-26, human lung adenocarcinoma A549, human colon cancer
HCT116 and human colorectal adenocarcinoma HT-29 cells.
Obviously, compound 20a significantly inhibited IDO1 activity
in tumor tissues and reduced Kyn level in plasma with IDO1
inhibitory IC50 value of 0.13 µM and antiproliferative EC50

(half maximal effect concentration) value of 0.27 µM aganist
HeLa cells. Moreover, molecule 20a exhibited high potent in vivo
antitumor efficacy (tumor growth inhibition (TGI) = 58.2%)
compared with clinical candidate IDO1 inhibitor epacadostat
(TGI = 47.5%) in the allograft animal model with CT-26
without remarkable body weight loss or adverse effects. In
conclusion, it is revealed that introduction of nitrogen mustard
into pharmacophores of IDO1 inhibitors could significantly
improve the antitumor activity and reduce toxicity of parent
compound in the antitumor evaluation.

CONCLUSION AND PERSPECTIVE

Nitrogen mustards represent the earliest studied DNA
cross-linking agents, and application of DNA alkylating
agents has been widely utilized for the treatment of cancer for
more than 70 years. In spite of their long history, several nitrogen
mustard drugs, including cyclophosphamide, chlorambucil,
and melphalan, still remained as first line antitumor agents
in the management of various types of tumors. However, the
clinical application of nitrogen mustards was restricted by
their undesired adverse effects, relatively low efficacy compared
with targeted antitumor drugs, and drug resistance caused
by enhanced drug inactivation, decreased cellular uptake,
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enhanced DNA repair and/or DNA damage tolerance. It is
generally accepted that cancer has its pathological root in
genetical mutations, affecting cell replication. Thus, targeting
different proliferative mechanisms by the construction of
hybrid anticancer drugs seem to be a promising strategy.
Development of nitrogen mustard based hybrids has been
revealed to be effective strategy in discovery of antitumor
drugs with increased activity, reduced toxicity, and improved
physicochemical properties such as the lipophilicity and the
solubility.

With N,N-bis(2-chloroethyl)amine as functional group,
nitrogen mustards has been hybridized with various drug-like
fragments (Figure 13). Novel hybrids have been derived
with improved potency, selectivity, safety, pharmacokinetics,
pharmacodynamics properties and/or broader range of
therapeutic activities. Current achievements make development
of nitrogen mustard based conjunctions to be attractive area
in the cancer treatment. Despite the reported advantages,
unexpected side effects caused by introduction of nitrogen

mustards also require careful attention in the drug design and
biological evaluation. As questioned on the efficacy of twin drugs
and prodrugs, it is also necessary to demonstrate advantages of
the conjugates linked by ester bond or more stable bonds in
comparison with the combined therapy with parental drugs.
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Oxymatrine (OMT) has shown broad antitumor activities for the treatment of several types

of cancers. However, little is known about its effect on anti-tumor immunity. Combination

therapy is a potentially promising strategy of cancer to enhance anticancer activity,

overcome drug resistance, and lower treatment failure rate. In the present study, we

demonstrated that the combination of OMT with cisplatin (DDP) synergistically inhibited

non-small cell lung cancer (NSCLC) cells growth when co-cultured with peripheral blood

mononuclear cells in vitro. Furthermore, the combination of OMT with DDP significantly

inhibited the growth of Lewis lung cancer (LLC) mouse xenograft tumors. Flow cytometry

analysis revealed that OMT and DDP synergistically increase the CD8+/ regulatory T cells

ratio and enhanced more CD8+ T cells secreted cytokines of IFN-γ , TNF-α, and IL-2

in vivo. Mechanistically, upregulation of miR-155 and downregulation of suppressor of

cytokine signaling-1 (SOCS1) were confirmed as a target signaling pathway to positively

regulate the anti-tumor response of CD8+ T cells. Overall, OMT in combination with

DDP showed outstanding synergistic anti-tumor immunity, suggesting that this beneficial

combination may offer a potential immunotherapy for NSCLC patients.

Keywords: oxymatrine, cisplatin, CD8+ T cells, anti-tumor immunity, NSCLC

INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide (1), and non-small cell lung
cancer (NSCLC) accounts for approximately 85% of the whole lung cancer cases (2). Despite years
of researches for early diagnosis and standard treatment, the prognosis for patients with lung
cancer remains dismal, and 5-year survival rate remains <15% (3–6). T cell–mediated anti-tumor
immunotherapy emerges as a promising treatment for humanmalignancies, in which CD8+ T cells
[cytotoxic T lymphocytes (CTLs)] represent a major of the cell-mediated anti-tumor response via
providing host immune protection against intracellular pathogens and cancers (7, 8). However,
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progressive tumors can escape immune recognition and
attack by smartly establishing an immune tolerance involving
immunosuppressive T lymphocytes (9, 10). In particular,
regulatory T cells (Treg) are proposed as key components of
the immune suppressive tumor microenvironment with strong
suppressive capacities toward CD4+ and CD8+ T lymphocytes,
B cells, and dendritic cells etc. (11). Further, Baras et al.
demonstrated that the CD8+/Treg ratio in tumor infiltrating
lymphocytes (TIL) densities rather than the two independent
parameters was significantly associated with cisplatin-based
neoadjuvant chemotherapy (12). MicroRNAs (miRNAs) have
been confirmed as global regulators of gene expression programs
that regulate specific target genes at the post-transcriptional
level (13). Some of them have been identified as targets for
anti-cancer therapeutics (14), and effects on tumor-infiltrating
immune cells has become a hot spot besides their functions in
cancer cells recent years (15). miR-155 is an ancient regulator
of the immune system (16). Elegant et al. demonstrated that
miR-155 was required for CD8+ T cell responses in defending
against infection and cancer by silencing suppressor of cytokine
signaling-1 (SOCS1) (17, 18). Initial evidence has also unraveled
the crucial role ofmiR-155 in dendritic cells functions in multiple
types of cancers (19, 20). Altogether, these studies suggested the
pivotal functions of miR-155 in various T cell subsets as they
respond to solid tumors.

Cisplatin (DDP)-based doublet remains the foundation of
treatment for the patients with NSCLC in the modern era (21).
The resistance of NSCLC cells to DDP is also an emergent
problem, therefore developing more effective strategies for
the treatment of NSCLC is urgently required. Combination
chemotherapy is identified as a potentially promising approach
to enhance anticancer activity, overcome drug resistance, and
lower treatment failure rate (22, 23). Oxymatrine (OMT) is
a main alkaloid extracted from roots of Sophora species with
a broad range of bioactivities. Especially, extensive researches
have reported that OMT have anticancer effects by inducing
cell cycle arrest, apoptosis and inhibition of angiogenesis in
various cancer cells in vitro and in vivo (24). In the previous
studies, immunoregulatory effects of OMT on hepatitis B of
mice, rheumatoid arthritis in rats and mastitis in mice have been
confirmed (25–27). Considering the extensive effects of OMT,
we investigate the effect of OMT in combination with DDP
on anti-tumor immunity in NSCLC and elucidate the potential
mechanism.

MATERIALS AND METHODS

Cell Culture and Reagents
Human A549 NSCLC cell line and mouse Lewis lung cancer
(LLC) cell line were cultured in Dulbecco’ s modified Eagle’s
medium (DMEM) with 10% fetal bovine serum (FBS), penicillin
(100 U/ml), and streptomycin (100 ng/ml) at 37◦C with 5%
CO2 in a humidified incubator. OMT and DDP were ordered
from Dalian Meilun Biotechnology and Qilu Pharmaceutical,
respectively. OMT and DDP were dissolved in phosphate-
buffered saline (PBS) on stock concentration (1M and 10mM,
respectively) and stored at −20◦C. Other reagents were

purchased from Shanghai Sangon Biotech unless otherwise
noted.

Cell Viability Assay
Freshly-isolated peripheral blood mononuclear cells (PBMCs)
were suspended in DMED culture medium and seeded into
a 96-well plate at a density of 1 × 104 cells/well and treated
with various concentrations of drugs in three parallel wells
for 72 h. CCK-8 (Dojindo Molecular Technologies, Shanghai,
China) was then added to each well according to the protocol of
the manufacture. The absorbance was measured at wavelengths
of 450 nm after incubation with CCK-8 solution at 37◦C for
4 h. Cells viability assay of A549 and LLC cells were measured
using methylthiazolyldiphenyl-tetrazolium bromide (MTT) (28).
Briefly, tumor cells were distributed (5,000 cells/well) into 96-well
plates containing agents at different concentrations. After 3 days,
MTTwas added to eachwell at a final concentration of 0.5mg/ml.
After incubation for 4 h, the medium and MTT solution were
removed from each well, and formazan crystals were dissolved
in 100 µl of DMSO. Absorbance was measured at wavelengths
of 570 nm. All absorbance was detected by Multiscan Spectrum
(Thermo Fisher). The concentrations required to inhibit growth
by 50% (IC50) were calculated from survival curves using the
Bliss method (29). Studies relative to human in this article
were approved by the ethics committee of the Third Affiliated
Hospital, Sun Yat-sen University (Approval No: [2014]2-17).

Tumor Cells/PBMCs Co-culture
After adherence of tumor cells into 6-well plates (target cells,
4 × 105 cells/well), a certain amount of PBMCs (effector cells)
suspended in the appropriate DMEM pulsed with 10% FBS
were added. Four ratios of effector cells to target cells, 0:1, 2:1,
4:1, and 6:1 were designed. After treated with OMT and DDP
alone or combination, target cells (tumor cells) and effector cells
(PBMCs) were co-cultured for 24 h at 37◦C in 5% CO2. The
cellular remaining viable tumor cells were photographed under
microscope (OLYMPUS IX71) and quantified, respectively.

Mice Xenograft Tumor Assay
Age-suitable C57BL/6 female mice were obtained from Vital
River Laboratory Animal Technology (Beijing), and all mice
have been maintained with sterilized food and water. All animal
experimental procedures were approved by the Institutional
Animal Care and Use Committee of Sun Yat-sen University
(Approval No: IACUC-DB-17-0502). Briefly, female C57BL/6
mice within 6 weeks old and 20 g weight were used for each
group. Each mouse was injected subcutaneously with LLC cells
(2 × 106 in 100 µl of PBS) in right scapular region. When the
subcutaneous tumors were approximately 0.3 × 0.3 cm2 (two
perpendicular diameters) in size, mice were randomized into four
groups. Mice were injected intraperitoneally with vehicle alone
(0.9% saline), OMT alone (100 mg/kg body weight per day),
DDP alone (2 mg/kg body weight every 2 day), or a combination
of OMT and DDP (administration method is as same as the
relevant single drug group). The body weights of mice and the
two perpendicular diameters (A and B) of tumors were recorded
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TABLE 1 | The primer sequences for real time PCR (mouse).

miR-155 (RT) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCCCT-3′

miR-155 (F) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCCCT-3′

miR-155 (R) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA-3′

U6 (RT) 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAATA-3

U6 (F) 5′-GCGCGTCGTGAAGCGTTC-3

U6 (R) 5′-GTGCAGGGTCCGAGGT-3

SOCS1 (F) 5′-CTGCGGCTTCTATTGGGGAC-3

SOCS1 (R) 5′-AAAAGGCAGTCGAAGGTCTCG-3

β-actin (F) 5′-CCTTCTTGGGTATGGAATCCTG-3

β-actin (R) 5′-CAATGCCTGGGTACATGGTG-3

every day. The tumor volumes (V) were calculated according to
the formula:

V = π/6(1/2(A+ B))3

The mice were anesthetized after the experiment, and
tumors were excised from the mice and weighted. Heparin
anticoagulated peripheral blood, spleens and tumors were
collected for further use. The rate of inhibition (IR) was
calculated according to the formula below:

IR = 1-Mean tumor weight of experimental group/Mean
tumor weight of control group× 100%.

Flow Cytometric Analysis
PBMCs and spleen lymphocytes were collected with Ficoll-
diatrizoate (LTS1077, tbdscience, Tianjin) according to the
protocol of the manufacture. For the separation of tumor
infiltrating lymphocytes from LLC-bearing mice, xenograft
tumors were mechanically disrupted into 1 mm3 pieces and
digested chemically in 7ml of dissociation medium (DMEM
medium plus with 10% FBS, collagenase type IV (5 mg/ml),
DNase I (1 mg/ml), and hyaluronidase (1 mg/ml) for 30min at
37◦C followed by filtration through a 70µm cell strainer (NEST
Biotechnology, Wuxi). Dissociated tumor cells were washed
twice by PBS. Erythrocytes were lysed by red blood cell lysing
buffer (BD Pharmigen) if necessary. The following antibodies
were used for staining: Fc block (anti-CD16/32, Cat: 553142),
CD3APC-A750 (Cat: 557596), CD8a BV510 (Cat: 563068), CD4a
FITC (Cat: 553046), Foxp3 PE (Cat: 563101), CD45 Percp-
cy5.5 (Cat: 550994), IFN-γ FITC (Cat: 554411), TNF-α (Cat:
554420), anti-IL-2 (eBioscience, Cat: 12-7021-81), PE Rat IgG2a,
κ Isotype Control (Cat: 553930), FITC Rat IgG1, κ Isotype
Control (Cat: 554684), APC Rat IgG1, κ Isotype Control (Cat:
554686), and Rat IgG2b kappa Isotype Control (eBioscience,
Cat: 12-4031-82). As regards the concentrations of antibodies, 2
µl/test was used in PBMCs and spleen lymphocytes samples and
3 µl/test in TIL flow cytometry. All antibodies were purchased
from BD Pharmigen unless otherwise noted. Briefly, all samples
were block with anti-CD16/32 for 20min on room temperature
and then stained with appropriate antibodies for 30min on
ice. Anti-mouse FoxP3 staining (eBioscience, Cat: 00-5523) was
used for intracellular staining according to the manufacturer’s
instructions. For intracellular staining of IFN-γ , TNF-α, and

IL-2, single-cell suspensions were incubated at 37◦C for 5 h in
the presence of Cell Stimulation Cocktail (eBioscience, Cat: 85-
00-4975-93) according to the manufacturer’s protocol. Zombie
VioletTM Fixable Viability Kit (Biolegend, Cat: 423113) was
required to distinguish live/dead cells in tumor flow cytometry.
Appropriate isotype control antibodies were used to determine
the gating strategies.

CD8+ T Cell Isolation
Freshly-separated single-cells of splenocytes were obtained
according to the procedure above. For splenocytes CD8+ T
cells isolation, CD8+ T cells were sorted by MACS (Miltenyi,
Bergisch Gladbach, Germany) as described in the manufacturer’s
protocols. The purity of CD8+ T cells was >95%, confirmed by
flow cytometry.

Reverse Transcription Quantitative PCR
Total RNAs were extracted using RNeasy Mini Kit (Qiagen,
Duesseldorf, Germany) in accordance with the manufacturer’s
instructions. We used 0.1 µg total RNAs as the template to
synthesize cDNA via reverse transcription reaction through
GoScriptTM Reverse Transcription System kit (Promega)
according to the manufacturer’s instructions. For miRNA
detection, equal RNA from each sample was reverse-transcribed
to cDNA by means of specific miRNA stem-loop primers.
Subsequently, quantitative real-time polymerase chain reactions
were ran on Roche-LightCycler-480 by LightCycler 480
SYBR Green I Master. β-actin and U6 were used as internal
normalization controls. All assays were performed following the
manufacturer’s instructions. All sequences of primers listed in
Table 1 were synthesized by Sangon Biotech (Shanghai, China).
The thermal cycling conditions include 5min at 95◦C, and 40
cycles of 10 s at 95◦C and 20 s at 55◦C. Samples were run in
triplicate and differences in gene expression were calculated
using the 2−cycle threshold method (30, 31).

Statistical Analysis
All results were presented as mean ± standard deviation (SD).
Comparisons between the treated and untreated groups were
performed with Student’s t-test. All data were analyzed using
GraphPad Prism 5 and a values of P < 0.05 was set statistically
significant.
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RESULTS

OMT and DDP Synergistically Inhibit the
Growth of NSCLC Cells Co-cultured With
PBMCs in vitro
In the present study, we firstly investigate the effects of OMT and
DDP on NSCLC cells and PBMCs. Cell survival was assessed by
MTT assay. As shown in Figures 1A,B, the survival of all used
cells was decreased in a dose-dependent manner in vitro after
OMT or DDP treatment. OMT and DDP exhibited significant
cytotoxicity against A549 and LLC cells, but weaker cytotoxicity
against human and mice PBMCs. To assess the anti-tumor
effects of OMT and DDP on growth of NSCLC cells in the
presence of PBMCs, co-cultured NSCLC cells (target cells) with
PBMCs (effect cells) at ratios of 1:0, 1:2, 1:4, and 1:6 were
treated with OMT and DDP alone or combination. As showed in
Figure 1C, after co-treatment with OMT and DDP, the survival
of cancer cells were significantly reduced in comparison with
OMT or DDP alone without PBMCs. Strikingly, the growth of
tumor cells were more potently inhibited by OMT or (and)
DDP administration when co-cultivated in combination with
PBMCs at all target/effector cells ratio, and especially the ratio
of target/effect cells at 1:6 exhibited most effective inhibition.
These results suggest that OMT and DDP synergistically inhibit
the growth of lung cancer cells when co-cultured with PBMCs in
vitro.

OMT and DDP Synergistically Inhibit the
NSCLC Xenografts Growth in vivo
To examine the synergistic anti-tumor effects of OMT and
DDP in vivo, we generated the xenograft tumor models by
transplanting LLC cells into C57BL/6 mice. As shown in
Figures 2A–C, compared with OMT or DDP alone treatment,
co-treatment OMT with DDP significantly inhibited the growth
of subcutaneous tumors by diminishing the volume andweight of
tumors. The inhibition rate of tumor growth in the co-treatment
group reached 94.19%, which was obviously higher than that in
either single treatment group (Figure 2E). In addition, mice body
weights in DDP alone or co-treatment groups were lower than
those of control group (Figure 2D). These data suggest that OMT
and DDP can synergistically inhibit the NSCLC xenograft growth
in vivo.

OMT and DDP Synergistically Increase the
CD8+/Treg Ratio in vivo
The interaction of immune system in malignant diseases is
heralded as one of the most important advances in oncology.
We speculated that heightened tumor regression after OMT and
DDP treatments may be caused by strong anti-tumor immunity.
The cytotoxic T lymphocytes (CTLs, also CD8+ T cells, marked
as CD3+CD8+ T cells) are pivotal immune cells directed against
tumor cells susceptible to cell lysis, but CD4+Foxp3+ regulatory
T cells (Treg) disturb antitumor immunity by suppressing the
activities of effector T cells. Our flow cytometry data revealed
that compared with OMT or DDP alone treatment, co-treatment
OMT with DDP significantly increased CD8+ T cells percentage

in PBMCs and spleen lymphocytes, and decreased Tregs cells
percentage in PBMCs and tumor infiltrating lymphocytes
(Figures 3A–C). Furthermore, compared with OMT or DDP
alone treatment, co-treatment OMT with DDP significantly
increased the CD8+/Treg ratio in PBMCs, spleen lymphocytes
and tumor infiltrating lymphocytes (Figure 3D). These results
indicate that OMT and DDP can synergistically increase the
CD8+/Treg ratio in vivo.

OMT and DDP Synergistically Enhance
CD8+ T Cells Anti-tumor Immune
Response
We further evaluated the immune status of CD8+ T cells in
mice bearing LLC, since CD8+ T cells play a pivotal role in
anti-tumor immunity. As shown in Figures 4A,B, compared
with OMT or DDP alone treatment, co-treatment OMT with
DDP significantly induced the increased intracellular IFN-γ
and TNF-α and the decreased intracellular IL-2 in spleen
lymphocytes, and the increased intracellular IFN-γ , TNF-α, and
IL-2 in tumor infiltrating lymphocytes, suggesting that OMT and
DDP synergistically enhance CD8+ T cells anti-tumor immune
response.

OMT and DDP Synergistically Upregulate
miR-155 and Downregulate SOCS1

Expressions in Splenic CD8+ T Cells
MiR-155 plays a key role in tumor immune response by targeting
SOCS1 (16). We detected miR-155 and SOCS1 expressions in
splenic CD8+ T cells. As shown in Figure 5, compared with
OMT or DDP alone treatment, co-treatment with OMT and
DDP significantly upregulatedmiR-155 and downregulate SOCS1
expressions in splenic CD8+ T cells.

DISCUSSION

Natural products play an important role in the prevention and
treatment of cancer and other disease in the world (32, 33).
Our study clearly indicates that the combination of OMT and
DDP synergistically enhanced NSCLC cells growth inhibition,
CD8+/Treg ratio and CD8+ T cells anti-tumor immune response
with the upregulation of miR-155 and the silence of SOCS1.
It has been reported that cancer immunotherapy has been
a hot spot in the treatment of NSCLC (34). Treg cells are
highly immune suppressive cells and play central roles in the
maintenance of self-tolerance and immune homeostasis (35).
It can inhibit anti-tumor immunity in NSCLC by suppressing
effector T cells directly by cell interaction or indirectly via
the secretion of soluble factor-mediated suppression (36). We
previously have reported that higher Treg/CD8

+ ratio in tumor
was an independent factor for poor response to platinum-
based chemotherapy, but CD8+ and Treg tumor infiltrating
lymphocytes was not correlated with any clinicopathological
features in advanced NSCLC patients (37). Current findings on
the model of mice bearing LLC have suggested that co-treatment
OMT with DDP significantly enhanced the CD8+/Treg ratio in
comparison with single agent groups, which is also in agreement
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FIGURE 1 | OMT and DDP synergistically inhibit the growth of NSCLC cells co-cultured with PBMCs in vitro. Cells were treated with the indicated concentrations of

OMT or DDP for 72 h, and cell survival was determined by MTT or CCK-8 assay and summary survival curves (A) and IC50 values in the indicated cells (B) were

shown. Co-cultured NSCLC cells (target cells) with PBMCs (effect cells) at ratios of 1:0, 1:2, 1:4, and 1:6 were treated with OMT (3mM) and DDP (2µM) alone or

combination for 24 h. Quantified results were shown in (C). The values presented are the means ± SD for each group. *P < 0.05 and **P < 0.01 vs. corresponding

control.

with other clinical evidence that decreased CD8+/Treg ratio
among tumor infiltrating lymphocytes are correlated with poor
prognosis in various types of human cancers (38–40). However,

there are differences between the results of the present study and
a report by Zhang et al. which demonstrated that higher ratio
of CD8+/ Treg was significantly associated with poor overall
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FIGURE 2 | OMT and DDP synergistically inhibit NSCLC xenografts growth in vivo. Each mouse was injected subcutaneously with LLC cells (2 × 106 in 100 µl of

PBS) in right scapular region. When the subcutaneous tumors were approximately 0.3 × 0.3 cm2 (two perpendicular diameters) in size, mice were randomized into

four groups, and were injected intraperitoneally with vehicle alone (0.9% saline), OMT alone (100 mg/kg body weight per day), DDP alone (2 mg/kg body weight every

2 day), or a combination of OMT and DDP (administration method is as same as the relevant single drug group). The body weights and tumor volumes of mice were

recorded. The mice were anesthetized after experiment, and tumors were excised from the mice and weighted. The original tumors (A), tumor volumes (B), tumor

weights (C), body weights (D), and summary data (E) were shown. The values presented are the means ± SD for each group. *P < 0.05 and **P < 0.01 vs.

corresponding control.

survival and progression-free survival in early nasopharyngeal
carcinoma stage patients (41). Different chemotherapeutic
regimens and tumor context may contribute to these
differences.

It is well-known that CD8+ effector T cells have a critical
role in elimination of tumors. Previous studies showed that IFN-
γ , TNF-α, and IL-2-expressing CD8+ T cells are instrumental
in anti-tumor immune response (42). IFN-γ -expressing T cells
are essential in repressing tumor growth which promotes host

responses to tumors. Moreover, IFN-γ can execute direct anti-
proliferative, pro-apoptotic and anti-angiogenesis actions on
various tumor cells (43). TNF-α is another multifunctional
cytokine, which mediates anticancer adaptive immune response.
In the report of Ando et al. TNF-α might be an effective therapy
in some cases of NSCLC that have acquired resistance to gefitinib
(44). IL-2 acts crossroads functions in activation and cell growth
of T and NK cells and it can promote CD8+ T cells and natural
killer cells cytolytic activities in response to antigen (45). In lung
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FIGURE 3 | OMT and DDP synergistically increase the CD8+/Treg ratio in vivo. Isolated PBMCs, spleen lymphocytes and tumor infiltrating lymphocytes were stained

with indicated antibodies and analyzed by flow cytometry. Representative flow plots and quantified results of CD8+ T cells and Treg cells in PBMCs (A), spleen

lymphocytes (B), and tumor infiltrating lymphocytes (C) were shown. The CD8+/Treg ratios were quantified (D). *P <0.05 and **P < 0.01 vs. corresponding control.
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FIGURE 4 | OMT and DDP synergistically enhance CD8+ T cells anti-tumor immune response. Spleen lymphocytes and tumor infiltrating lymphocytes were isolated,

and intracellular IFN-γ , TNF-α, and IL-2 were determined by flow cytometry. Representative flow plots and quantified results of intracellular IFN-γ , TNF-α, and IL-2

expression in CD8+ T cells of spleen lymphocytes (A) and tumor infiltrating lymphocytes (B) were shown. *P <0.05 and **P < 0.01 vs. corresponding control.
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FIGURE 5 | OMT and DDP synergistically upregulate miR-155 and downregulate SOCS1 expressions in splenic CD8+ T cells. Splenocytes CD8+ T cells were

separated by magnetic bead from MACS and the total RNAs were extracted immediately. Expression of miR-155 and SOCS1 in splenic CD8+ T cells were

determined by RT-qPCR. U6 and β-actin were used as the normal controls. Data shown are representative of three independent experiments. *P <0.05 and **P <

0.01 vs. corresponding control.

cancer patients, IL-2 treatment reverses CD8+ T cells exhaustion
and markedly increases Granzyme B and IFN-γ in malignant
pleural effusion. Our study indicated that OMT in combination
with DDP significantly upregulated the production of IFN-γ and
TNF-α in CD8+ T cells compared with the single agent both in
the splenocytes and tumor infiltrating lymphocytes. Nevertheless,
expression of IL-2 is declined in splenocytes and increased
in tumor infiltrating lymphocytes, inversely. These differences
indicated the complexities of the effects of chemotherapeutic
drugs in different immune organs. Since IL-2 is essential for
the development and maintenance of Treg (45), declined IL-2
secretion may be able to decrease the immune suppressive Treg.
Thismay be anothermanner to enhance CD8+ T cells anti-tumor
response to a certain extent.

One particular miRNA, miR-155, has emerged as a central

regulator in immune homeostasis and antitumor immunity
recent years (16, 46). MiR-155 silencing promotes solid tumor
growth through increasing the recruitment and functions of

myeloid-derived suppressor cells in tumor microenvironment
(47). Strikingly, miR-155 can augments effector CD8+ T-cell
anti-tumor immunity against viruses and cancer (17, 18, 48,
49). In detail, miR-155 overexpression and silence of its target
SOCS1 in CD8+ T cells enhanced the antitumor response and
augmented tumor destruction (17). According to Ji et al.’s
report, miR-155 restrained the expression of SOCS1, one of
the negative regulators of signal transducer and activator of
transcription 5 (STAT5a), and constitutively active STAT5a
recapitulated the survival advantages conferred by miR-155 (18).
In addition, it is reported thatmiR-155 shapes cytokine signaling
via downregulation of SOCS1 in Treg subsets. Consistently,
these findings consider miRNA-155 and its target SOCS1 as
key regulators of effector CD8+ T cells that can be modulated
to potentiate immunotherapies for cancers. In our study,
increased miR-155 and decreased SOCS1 expressions in splenic
CD8+ T cells are much agreement with the aforementioned
investigations, which demonstrated that co-treatment OMT
with DDP can enhanced antitumor immunity via miR-155-
SOCS1 signaling pathway in mice bearing LLC tumor. Further

researches need to elucidate the effects of “loss or gain”
functions of miR-155 gene in our mice NSCLC model when
OMT co-treatment with DDP. Moreover, antitumor immunity
is most complicated involved in effector and immunosuppressive
networks in the tumor microenvironment. In addition to CD8+

T cells and Tregs, dendritic cells, natural killer cells, suppressive
dysfunctional dendritic cells and macrophagocytes, these are
essential immunogenic elements to skew the balance of pro- and
anti-tumor forces toward tumor-specific immunity (50). Their
immunomodulated functions in our present study need to be
further investigated.

Collectively, the present study offers the first evidence that
OMT and DDP synergistically inhibit the growth of NSCLC cells
when co-culture with PBMCs in vitro. Further in vivo studies
provide strong evidence that combinational treatment OMT
with DDP shows outstanding synergistic anticancer effect by
tipping a favor anti-tumor immunity, suggesting this beneficial
combination may offer a promising treatment option for NSCLC
patients.
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Salt-inducible kinase (SIK), which belongs to the sucrose non-fermenting

1/AMP-activated protein kinase family, was first discovered in the adrenal cortex

of a rat on a high-salt diet. As an isoform of the SIK family, SIK2 modulates various

biological functions and acts as a signal transmitter in various pathways. Compared with

that in adjacent normal tissues, the expression of SIK2 is significantly higher in multiple

types of tumors, which indicates its pivotal effect in oncogenesis. Studies on SIK2 have

recently underlined its role in several signaling pathways, including the PI3K-Akt-mTOR

pathway, the Hippo-YAP pathway, the LKB1-HDAC axis, and the cAMP-PKA axis.

Moreover, a few small-molecule SIK2 inhibitors have been found to be able to rescue

the oncogenicity of SIK2 during tumor development and reverse its abnormal activation

of downstream pathways. In this mini-review, we discuss the results of in vivo and in

vitro studies regarding the SIK2 mechanism in different signaling pathways, particularly

their regulation of cancer cells. This work may provide new ideas for targeting SIK2 as a

novel therapeutic strategy in tumor therapy.

Keywords: salt-inducible kinase, SIK2, cancer, signaling pathway, target therapy

INTRODUCTION

Plasma ion balances regulate a wide range of cellular processes from cell proliferation to
mitochondrial functions. The plasma concentrations of Na+ and K+ have been proven to play a
vital role in the biosynthesis of aldosterone in the adrenal cortex. Studies have shown that changes
in plasma ion concentration can target biomembrane ion channels, such as Na+-K+-ATPase to
regulate extra- and intracellular ion balances (1, 2). As a major part of this ion modulation network,
salt-inducible kinase (SIK) was first discovered in 1999 by Okamoto et al. in the adrenal cortex
of a rat on a high-salt diet. SIK is a serine/threonine protein kinase that belongs to the sucrose
non-fermenting 1/AMP-activated protein kinase (SNF1/AMPK) family. The SIK family comprises
three isoforms, namely, SIK1, SIK2, and SIK3, all of which may act as metabolic transmitters.
The SIK2 gene is located on chromosome 11 and encodes for the SIK2 protein, which has 926
amino acids and three domains (3, 4). The C-terminal domain of the SIK protein contains
numerous unique sites that can be phosphorylated by different protein kinases and transmit various
stimulation signals involved in different biological processes, including cell growth and apoptosis
(4–8). In many malignant tumors, such as breast cancer, lung cancer, melanoma, primary liver
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cancer, and ovarian cancer, SIK expression is significantly
different from that in adjacent tissues (9–14).

Growing evidence has proven that the expression and
action of SIK2 are tissue-specific. The cellular and subcellular
distributions of SIK should be considered to determine
its mechanism. Earlier investigations demonstrate that SIK2
maintains cell homeostasis via modulation of cAMP response
element binding protein (CREB)-mediated gene transcription
during starvation, whichmay be a possible mechanism for cancer
cell survival under stress, such as chemoradiotherapy (15). SIK2
reduces glucose uptake in muscle cells and white adipocytes and
downregulates lipogenesis and ketogenesis by phosphorylating
the glucose-activated histone acetyltransferase coactivator p300
(16). SIK2 modulates several subtle cellular signaling pathways,
and its abundant expression in melanoma and ovarian tumors
is suggestive of its pivotal function in tumor development (13,
17). Thus, in this mini-review, we discuss the specific role and
related signaling pathways of SIK2 in tumorigenesis. Our findings
indicate the potential application of SIK2 as a therapeutic target
for cancers.

SIK FAMILY AND THEIR FUNCTIONS

The structures of the SIK isoforms are shown in Figure 1. The
three isoforms are similar to one another, particularly in three
domains: a kinase domain near the N-terminal, a central SNF1
protein kinase homology (SNH) domain, and a phosphorylation
domain near the C-terminal (3). SIK1 is a 776-amino acid
protein with a kinase domain in the region of residues 27–
278, an SNH domain in the region of residues 301–354, and a
domain enriched with PKA-dependent phosphorylation sites in
the region of residues 567–613. Similarly, SIK2 is a 931-amino
acid protein with a kinase domain in the region of residues
20–271, an SNH domain in the region of residues 293–346,
and a phosphorylation domain in the region of residues 577–
623. Finally, SIK3 is a 1,263-amino acid protein with a kinase
domain in the region of residues 8–259, an SNH domain in the
region of residues 283–336, and a phosphorylation domain in
the region of residues 486–518. Initial studies have found that
SIK1 is most abundant in the adrenal cortex and an important
regulator in the early phase of hormonal stimulation of the
adrenal cortex (4, 18), adipose tissue (6), and neural tissue (19).
It may overexpress in several non-adipose tissues, such as in the
ovaries and lungs, and act as an oncogenic signal transmitter
during the occurrence and progression of tumors in the
aforementioned organs (18–20). Unlike SIK1, SIK2 modulates
several subtle cellular signaling pathways, and the increased
expression of SIK2 in adipose and neuronal tissues indicates its
pivotal role in lipid metabolism and neural physiology. SIK2
promotes insulin resistance and diabetes by reducing glucose
uptake in muscles and white adipose tissues and inhibiting
gluconeogenesis (7). SIK2 is overexpressed in several cancer cell
lines and boosts cancer cell tolerance to different stresses, such as
deprivation of nutrients and taxol chemotherapy (21). It plays a
proinflammatory role by repressing IL-10 secretion of regulatory
macrophages (22). However, little is known about why the
structural similarity of the SIK family leads to different biological
functions.

SIK2 AND THE PI3K-Akt-mTOR PATHWAY

The expression level of SIK2 in cancers is significantly higher
than that in adjacent and surrounding normal tissues, which
suggests that SIK2 is critical in tumorigenesis and tumor
development. Miranda et al. found that the loss of SIK2 reduces
G1/S transition, delays mitotic progression, and decreases Akt
phosphorylation levels (17). They also confirmed that SIK2 is
overexpressed in adipocyte-rich metastatic deposits compared
with ovarian primary lesions and that adipocytes activate
SIK2 in ovarian cancer cells in a calcium-dependent manner.
Following adipocyte-induced stimulation, the activated SIK2
alters metabolic effects in ovarian cancer cells by inhibiting
acetyl-CoA carboxylase and promoting fatty acid oxidation.
p85α, the regulatory subunit of the PI3K complex, was
previously identified as a putative SIK2 substrate during
chemical genetic screening. The identified p85α phosphorylation
site (S154) resides in the known SIK2 phosphorylation
consensus sequence L-x-[HKR]-[ST]-x-S-X(3)-L at L149–L158
(LYRTQSSSNL). Incubation of recombinant full-length SIK2
or its kinase domain with a peptide corresponding to L149–
L158 of p85α confirmed that SIK2 catalyzes the phosphorylation
of this sequence. More importantly, full-length SIK2, but not
the kinase-inactive mutant, phosphorylated p85α was confirmed
in isotopic labeling assay. Phosphopeptide mapping of p85α
following incubation with SIK2 (kinase domain or full-length)
revealed that the former was phosphorylated at S154 in the
BH domain. The BH domain is thought to bind to proteins
that modulate PI3K activity. Downstream S154 phosphorylation
also appears to increase in an SIK2-dose-dependent manner.
siRNA-mediated depletion or chemical inhibition confirms that
SIK2 is required for p85α S154 phosphorylation. Moreover,
p85α phosphorylation and concomitant Akt phosphorylation can
be triggered by calcium-mediated SIK2 activation. Consistent
with these observations, incubation of the PI3K complex with
recombinant SIK2 leads to a profound increase in PI3K activity in
vitro (up to 13.8-fold), while chemical inhibition of SIK2 induces
a dose-dependent reduction in PI3K activity to its basal level.
These data confirm that p85α is a direct catalytic substrate of
SIK2 and that SIK2 S154 phosphorylation significantly increases
the activity of the PI3K-Akt pathway in ovarian cancer cells.

While most reports suggest that SIK2 is an oncogenic marker,
one study in Turkey claimed that SIK2 is a potential tumor
suppressor in breast cancer (23); SIK2 expression was reportedly
reduced in tumor tissues and breast cancer cell lines compared
with that in normal counterparts. The researchers also found
SIK2-mediated attenuation of proliferation and survival of breast
cancer cells with parallel inhibition of the Ras-Erk and PI3K-Akt
pathways. However, the mechanisms underlying the reduction of
SIK2 levels in cancer tissues were not discussed. Thus, research
into the mechanism of SIK2 loss will help future scholars better
understand tumor transformation in breast tissue and design new
treatment strategies.

SIK2 AND THE HIPPO-YAP PATHWAY

The Hippo pathway is a highly conserved growth regulatory
signaling pathway that was first discovered in Drosophila. It can
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FIGURE 1 | Structures of isoforms in SIK family.

block the downstream pro-growth transcriptional co-activator
Yorkie (Yki), which is homologous tomammalian Yes-associated
protein (YAP), and exert its regulatory effects on organ size, cell
proliferation, and apoptosis during organ development (24, 25).
YAP has been shown to be highly expressed in various human
tumors, such as endometrial carcinoma, primary liver cancer, and
oral squamous cell carcinoma. Activation of YAP can remove
tumor cell contact inhibition, leading to tumor metastasis (25–
27). Tsujiura et al. immunohistochemically analyzed YAP in
endometrial carcinoma tissue samples and found that the high
expression of YAP in the nucleus is closely associated with higher
tumor grading and staging, lymphatic/blood vessel invasion,
increased recurrence, and metastasis. They then confirmed these
results at the cellular level in knockdown and overexpression
assays. Recent studies have demonstrated that YAP restricts
the activity of the cell cycle checkpoints ATM and ChK2 to
enable cancer cells to enter the cell cycle and mitosis after
chemoradiotherapy despite unrepaired DNA damage, resulting
in tumor growth, chemoradiotherapy resistance, and ongoing
proliferation (28).

Wehr et al. characterized Drosophila salt-inducible kinase
(sik2) as an upstream inhibitor of the Hippo pathway (29). sik2
has been identified as the ortholog of human SIK2. Activated sik2
phosphorylates Ser413 of the scaffold protein Salvador (Sav), a
major part of the core kinase complex of the Hippo pathway,
and subsequently abolishes the inhibition of the proto-oncogene
Yki. In addition, sik2 directly induces the expression of Yki and
facilitates Yki-dependent tissue overgrowth. Coincidentally, both
SIK2 and YAP have been proven to be oncogenes in ovarian
cancer. Research has confirmed a close interaction between the
PI3K-Akt-mTOR and Hippo-YAP pathways via SIK2 (Figure 2).
On the one hand, YAP directly activates PI3K-Akt-mTOR and
alters cellular biological functions (30, 31). YAP also increases
pAkt-S473 levels and suppresses apoptosis by induction of
insulin-like growth factor 2 expression (28). On the other hand,
mTOR complex 2 enhances the oncogenicity of YAP through
phosphorylation of the Hippo pathway component AMOTL2
(32). These observations reveal that mutual activation between
the PI3K-Akt-mTOR and Hippo-YAP pathways caused by SIK2
may be crucial in tumorigenesis. However, the precise role of

FIGURE 2 | Crosstalk between the PI3K-Akt-mTOR pathway and the

Hippo-Yap pathway via SIK2.

SIK2 in these intersecting pathways is not well-understood, and
future studies are still desperately needed to elucidate the related
detailed mechanisms.

SIK2 AND THE LKB1-HDAC SIGNALING
AXIS

Epigenetic studies have confirmed that DNA acetylation
modification is closely related to tumorigenesis, tumor invasion,
and chemoradiotherapy resistance (33–35). The abnormal
activation and overexpression of histone deacetylase (HDAC)
down-regulates tumor suppressor genes and exhibits tumor-
promoting effects. Using kinase domain-focused CRISPR
techniques, researchers screened all dependent kinase in acute
myeloid leukemia (AML), focusing subsequent experiments on
SIK3, which scored strongly in MOLM-13 and MV4-11 AML
cells and in a more intermediate fashion in other AML cell lines
(36). Liver kinase B1 (LKB1) was also identified to show an AML-
biased pattern of dependence. Since SIK3 is homologous to SIK1

Frontiers in Oncology | www.frontiersin.org 3 January 2019 | Volume 9 | Article 18690

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. SIK2: Potential Cancer Therapeutic Target

and SIK2, further studies were conducted to determine whether
a broader requirement exists for SIKs in cancer. By performing
dual targeting of each SIK gene combination in 17 AML cell lines,
researchers observed a broad AML-specific requirement for SIK2
+ SIK3 resembling the pattern of LKB1 dependence with a
bias for lines with mixed lineage leukemia fusions. In cDNA
rescue assays, LKB1 was found to phosphorylate and activate
SIK3 in AML. The SIK3 mutant was unable to maintain the
proliferation of MOLM-13 cells, while a phosphomimetic allele
of SIK3 rescued the proliferation arrest caused by inactivating
LKB1. The reverse of SIK3 dependence for AML proliferation
was observed during dual CRISPR targeting of HDAC4. Western
blotting revealed reductions in HDAC4 phosphorylation upon
genetic targeting of SIK3 or chemical inhibition of SIK. Taken
together, these results indicate that the function of SIK3 is critical
in AML and that inhibition of HDAC4 is one of the key functions
of SIK3 in supporting AML proliferation.

Histone H3 lysine 27 acetylation (H3K27ac) is linked to the
relevant downstream activity in the LKB1-SIK pathway, and
ChIP-seq has confirmed that LKB1/SIK3-dependent H3K27ac
coincides with sites of transcription factor MEF2C occupancy.
While LKB1/SIK3 knockout or following SIK inhibitor HG-
9-91-01 treatment did not change MEF2C protein expression,
HG-9-91-01 exposure led to increased HDAC4 binding to
MEF2C-bound sites. Epigenomic analysis suggests that LKB1-
SIK signaling is critical in AML to prevent HDAC4 from
inactivating the function of MEF2C on chromatin. These genetic
experiments suggest that co-inhibition of SIK2 + SIK3 could be
the ideal strategy to achieve potent MEF2C inhibition in AML.
Since MEF2C is maladjusted in lymphoid malignancies, LKB1-
SIK signaling is likely to be important in other hematopoietic
cancers (37).

SIK2 AND THE cAMP-PKA SIGNALING
AXIS

The G protein αs (GNAS) gene encodes the Gαs stimulatory
subunit of G proteins, whichmediate G-protein-coupled receptor
signaling, a major mechanism that links multiple environmental
stimuli with intracellular responses (38). The primary target is
adenylyl cyclase, which generates the second messenger cAMP,
which, in turn, activates downstream protein kinase A (PKA).
In many tissues, GNAS–cAMP-PKA signaling is required during
cell dormancy and cell growth (39–43). However, multiple
types of human cancers show gain-of-function variations in this
pathway (38). For example, loss of p53 promotes the advent of
GNAS R201C mutations and induces malignant transformation
in pancreatic benign tumors in the KGC mice model, which
can rapidly develop cystic pancreatic tumors (44–47). Mutated
GNAS R201C supports pancreatic tumor growth via cAMP-PKA
signaling, which subsequently phosphorylates SIKs (SIK1, SIK2,
and SIK3) and prevents them from phosphorylating downstream
targets (48). Also, small molecule pan-SIK inhibitors (HG-9-
91-01 and KIN-112) prevent the growth of KGC organoids
after silencing GNAS, and their effects are directly proportional
to the degree of SIK inhibition. Compared with wild-type

SIK2, the SIK2-S4A mutant, which is resistant to cAMP-PKA
activation, strongly inhibits the proliferation of KGC-like organs.
In particular, SIKKO rescues both organoid growth in vitro and
subcutaneous tumor growth following GNAS R201C silencing,
and these findings have been confirmed in human pancreatic
ductal adenocarcinomas (PDA). Thus, the cAMP-PKA-SIK2
signaling pathway is a conserved tumorigenic mechanism in
pancreatic tumor cells. The mutant GNAS drives downstream
PKA-SIK2 axis and promotes lipid hydrolysis in addition to lipid
synthesis and remodeling. While SIK2 is known to maintain cell
homeostasis and energetic metabolism, particularly glucose and
fatty acid oxidation (15), the suppression of SIK2 mediated by
GNAS-PKA will inhibit the phosphorylation of its downstream
CREB-regulated transcription co-activator (CRTC) and others
(Figure 3). Then it will promote lipids absorption and synthesis,
and the abundant lipids in tumor cells provide substrates for
structural, signaling, andmetabolic purposes, which explains why
SIK2 act as a tumor suppressor in PDA.

While SIK2 is deemed to be a tumor promoter in most cases,
in the context of GNAS mutated PDA, it is supposed to be a
tumor suppressor, mainly because SIK2 plays different roles in
different tissue and cells, similar to cAMP/PKA signaling. Given
the context-dependent tumor-promoting and -suppressing roles
of SIK2, administration of SIK2 inhibitors in GPCR-mutated or
other overactive cAMP-PKA cancer types should be attempted
with extremely caution to avoid potential pro-tumor effects.
More investigations are necessary to clarify these issues and
promote the use of SIK2 inhibitors in tumor therapy.

SIK2 IN CANCER THERAPY

Previous studies on SIK2 have reported its regulation of energetic
metabolism, mostly based on its signaling pathways and the
downstream role of LKB1 in adipocytes. Studies on SIK2 have
recently underlined its role in several signaling pathways related
to tumorigenesis. Clinical and pathological data indicate that

FIGURE 3 | The dichotomous oncogenic roles of SIK2 in the LKB1-HDAC

axis and the cAMP-PKA axis.
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SIK2 is a potential oncogenic marker in ovarian (17, 49),
prostate (50), osteosarcoma (51), and colorectal (52) cancers
by controlling different cellular mechanisms. Intriguingly, two
studies report that SIK2 may act as a tumor suppressor in breast
cancer and PDA. Since SIK2 plays a distinct role in different
tissues and divergent pathways, its dysregulation may lead to
conflicting phenotypes. Initial studies on SIK2 maily focused
on its role in energetic metabolism, particularly in glucose, and
lipids oxidation during starvation. The functions of SIK2 may be
unique in cells that are involved in glycolipid metabolism, such
as hepatocyte and pancreatic cells. As a consequence, SIK2 may
act as both tumor promoter and suppressor due to the diversity
of cancer cell types or different genetic background. The SIK2
inhibitors HG-9-91-01, ARN-3236, and KIN-112 have succeeded
in cancer therapy approaches, validated in cultured cells and in
vivo animal models (17, 36, 48), although additional optimization
of these small molecules is required for therapeutic investigation.
Further evaluation of these small molecules is necessary to
achieve potent SIK2 inhibition in the uncontrolled signaling
pathways of tumor cells while preserving the homeostatic and
tumor-protective functions of SIK2 in other cell types.

CONCLUSION

In this mini-review, we discussed the role of the newly identified
protein kinase, SIK2, in tumorigenesis, specifically focusing
on different signaling pathways involving SIK2. SIKs present
significant physiological functions, including novel roles in

tumorigenesis and tumor progression. While most studies reveal
SIK2 to be a tumor promoter, some claims indicate that
SIK2 provides protection from cancer. Thus, the dichotomous
function and mechanism between SIK2 and cancer must be
further elucidated. As described earlier, SIK2 targeting may
be applied as a novel strategy for treating multiple cancer
types. Future studies to investigate the molecular mechanisms
underlying the precise role of SIK2 in intersecting signaling
pathways, as well as the therapeutic effects of SIK2 in preclinical
and clinical trials, are recommended.
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Liver-Targeted Combination Therapy
Basing on Glycyrrhizic Acid-Modified
DSPE-PEG-PEI Nanoparticles for
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Combination therapy based on nano-sized drug delivery system has been developed
as a promising strategy by combining two or more anti-tumor mechanisms. Here,
we prepared liver-targeted nanoparticles (GH-DPP) composed of 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-polyethylene glycol-polyetherimide (DSPE-PEG-PEI)
with Glycyrrhetinic acid-modified hyaluronic acid (GA-HA) for co-delivery of doxorubicin
(DOX) and Bcl-2 siRNA. Particles size, zeta potential and morphology were determined
for the drug-loaded GH-DPP nanoparticles (siRNA/DOX/GH-DPP). Cellular uptake and
in vitro cytotoxicity were analyzed against HepG2 cells. In vivo bio-distribution and anti-
tumor therapeutic effects of siRNA/DOX/GH-DPP were evaluated in H22-bearing mice.
The results showed that siRNA/DOX/GH-DPP nanoparticles were nearly spherical and
showed dose-dependent cytotoxicity against HepG2 cells. Compared to Glycyrrhetinic
acid-free co-delivery system (siRNA/DOX/DPP) and GH-DPP nanoparticles for delivery
of DOX or Bcl-2 siRNA alone, siRNA/DOX/GH-DPP nanoparticles could induce more
cellular apoptosis, and showed higher anti-tumor effect. Herein GH-DPP nanoparticles
could simultaneously deliver both chemotherapy drugs and siRNA into the tumor region,
exhibiting great potential in anti-tumor therapy.

Keywords: combination therapy, nanoparticles, delivery, liver cancer, glycyrrhizic acid

INTRODUCTION

Liver cancer is one of prevalent cancers with high mortality rate around the world, and traditional
chemotherapy is one effective approach used in anti-cancer therapy (Gravitz, 2014; Sia et al.,
2017). However, many chemotherapeutic agents, such as DOX and paclitaxel, have many clinical
limitations owing to severe system toxicity, non-specific targeting, and the development of
multidrug resistance (MDR) (Zahreddine and Borden, 2013).

To improve selectivity toward liver cancer cells, an effective strategy is to design nano-sized
carrier to realize liver-targeted delivery (Shamay et al., 2018). Recently, nanoparticles have been
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proved to have the advantages in drug delivery with low
system toxicity (Wei et al., 2015; Zeng et al., 2017; Arms
et al., 2018). Many nano-sized drug delivery systems, such as
natural and synthetic polymer nanoparticles, metal nanoparticles,
and polymer-drug conjugates, have been investigated for
delivery of anti-tumor drugs (Ekladious et al., 2018; Liu
et al., 2018; Maeki et al., 2018). The nano-vehicles basing on
phosphoethanolamine-polyethylene glycol polymers (PEG-PE)
represent a promising nanoparticles delivery system owing to
biocompatibility, prolonged circulation, and accumulation in
tumors by the enhanced permeability and retention (EPR) effect
(Perche et al., 2012; Kohay et al., 2017). In the past decade, many
efforts have been made to prepare liver-targeting nano-carriers,
which were modified by sugars, antibodies, and other ligands
(Singh et al., 2016; Zhu et al., 2016; Yan et al., 2017; Wu J. et al.,
2018). Glycyrrhetinic acid (GA), a metabolite of glycyrrhizin, has
attracted growing interest in anti-hepatoma therapy (Wu J. et al.,
2018). It has been reported that GA-modified nano-carriers could
significantly improve liver-targeting efficiency and inhibit liver
cancer development.

Moreover, development of MDR in cancer cells was a
major cause of the failure in clinical chemotherapy. Bcl-2,
an anti-apoptosis protein, is distributed on the endoplasmic
reticulum, the outer membrane of nuclear and mitochondrion.
Up-regulation of Bcl-2 expression was one of the mechanisms
responsible for MDR, leading to the activation of anti-apoptotic
pathways (Yin et al., 2014). The Bcl-2 siRNA, an antisense
oligonucleotide sequence of Bcl-2, could silence the expression
of Bcl-2 gene, resulting in cell apoptosis of liver cancer (Sun et al.,
2018).

To overcome the limitations of traditional chemotherapy in
clinical antitumor therapy, combination drug strategy has been
applied as a novel anti-tumor therapy. It is based on co-delivery
nanoparticles system for combination of chemotherapeutics with
other treatment approaches like RNAi (Zuckerman and Davis,
2015). The nanoparticles can simultaneously co-deliver two or
more drugs to tumor region and thus improve the cancer
therapeutic effect by synergistic/combined therapy effect, and
reverse the multi-drug resistance (MDR) (Zhang et al., 2016; Sun
et al., 2018).

In previous study, we have prepared GA-modified hyaluronic
acid micelles for DOX delivery (Wu et al., 2016). Hyaluronic
acid (HA), a negatively charged polysaccharide, is present in the
extracellular matrix and synovial fluids (Knopf-Marques et al.,
2016). It can cover on the shell of positive nano-carriers, such
as PEI-PE, chitosan, dendrimer, to decrease the uptake rate by
reticuloendothelial systems (Nguyen and Alsberg, 2014; Zhao
et al., 2016; Wickens et al., 2017; Parmar et al., 2018).

In this study, DSPE-PEG-PEI and GA-HA conjugates
were synthesized, and GH-DPP nanoparticles were prepared
for co-delivery of DOX and Bcl-2 siRNA (Figure 1). The
characteristics of the drug-loaded nanoparticles were investigated
using dynamic light scattering, transmission electron microscopy
(TEM) and UV-Vis spectrophotometer. The in vitro cytotoxicity
and cellular uptake of siRNA/DOX/GH-DPP were investigated
against HepG2 cells. And the in vivo bio-distribution and anti-
tumor effect were explored.

MATERIALS AND METHODS

Materials and Cell Lines
Branched poly(ethyleneimine) (PEI, Mw 1.8 kDa) was purchased
from Sigma Aldrich (United States). DOX was purchased from
Dalian Meilun Biology Technology Co., Ltd., (Dalian, China).
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium ch
loride (DMT–MM) were purchased from Shanghai Medpep
Co., Ltd., (Shanghai, China) 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[succinimidyl (polyethylene glycol)
-2000] (DSPE-PEG-NHS) was purchased from Xi’an Rixi
Technology Co., Ltd., (Xi’an, China). Bcl-2 siRNA and FITC-
labeled siRNA were purchased from Guangzhou RiboBio Co.,
Ltd., (Guangzhou, China). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) was purchased from Sigma
Aldrich (United States). Fetal bovine serum and RPMI-1640
medium (RPMI) were purchased from Beijing Solarbio Co., Ltd.,
(Beijing, China). All other reagents were of commercial special
grade and used without further purification.

Human hepatic cell line (HepG2), human lung
adenocarcinoma cell line (A549) and murine HCC cells
(H22) were obtained from the China Center for Type Culture
Collection (Wuhan, China). Female BALB/c mice (weight:
18 ± 2 g) were supplied by the Experimental Animal Center of
Weifang Medical University (Weifang, China), and approved by
the WFMU Animal Research Ethics Committee.

Synthesis of HA-GA and DSPE-PEG-PEI
Conjugates
GA-HA conjugate (GH) was synthesized using HA as a
hydrophilic segment and GA as a hydrophobic segment (Wu
et al., 2016). In brief, GA–NH2 was obtained by adding ethylene
diamine to the GA solution in the presence of DMT-MM. And the
GA–HA conjugate was synthesized by the chemical modification
of GA–NH2 to HA chain.

Syntheses of DSPE-PEG-PEI (DPP) were conducted in one
steps as shown in Figure 2. Briefly, PEI was dissolved in DMSO
(10 mL) in a 25 mL glass flask, and then functional DSPE-PEG-
NHS was added into the reaction solution under stirring. The
reaction solution was stirred for 24 h at room temperature. The
product was purified by dialysis against distilled water (MWCO
8000-14000 Da), lyophilized, and the chemical structure was
confirmed by 1H NMR (in D2O, 300 MHz).

Preparation and Characteristics of
Drug-Loaded GH-DPP Nanoparticles
siRNA/DOX/GH-DPP nanoparticles were prepared by three
steps. Firstly, DOX was loaded into the core of DPP nanoparticles
via a dialysis method. In brief, DOX • HCl was stirred with
triethylamine (1.3-fold molar quantity of DOX) in DMF,
and the DPP conjugates were dispersed in formamide. Then
the DOX solution was added slowly to the DPP solution,
followed by stirring overnight. The mixed system was dialyzed
against deionized water. The solution in the dialysis bag
was freeze-dried to obtain DOX-loaded DPP nanoparticles
(DOX/DPP). Secondly, the DPP nanoparticles for co-delivery
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FIGURE 1 | Schematic illustration of Àpreparation of siRNA/DOX/GH-DPP nanoparticles, Áliver-targeted drug delivery via blood cycle, Âcellular uptake, and
ÃpH-triggered release of Bcl-2 siRNA and DOX.

of DNA and siRNA were prepared by electrovalent interaction.
The sequences of Bcl-2 siRNA were as follows: (sense) 5′ –
GUACAUCCAUUAUAAGCUGUCdTdT-3′, (anti-sense)
5′ – GACAGCUUAUAAUGGAUGUACdTdT-3′. DOX/DPP
nanoparticles were incubated with Bcl-2 siRNA in deionized
water. In order to obtain the proper mass ratio of DPP to
siRNA, the same amount of siRNA was incubated with different
concentrations of DOX/DPP nanopaticles solutions for 1 h.
The mass ratios of DOX/DPP to siRNA was set as 100:512,
100:256, 100:128, 100:64, 100:32, 100:16, and 100:8, respectively.
The binding ability of DOX/DPP and siRNA was investigated
by agarose gel retardation assay, followed by electrophoretic
mobility shift assay via a UV gel imaging system. The proper
mass ratio of DOX/DPP to siRNA was selected for preparation
of siRNA/DOX/DPP nanoparticles. Thirdly, GA-HA conjugate
was mixed with siRNA/DOX/DPP nanoparticles to prepare
siRNA/DOX/GH-DPP by stirring slowly for 1 h. Then drug-
loaded nanoparticles were freeze-dried, and the lyophilized
power was stored at 4◦C. The GH-DPP nanoparticles for delivery
of DOX or siRNA alone were prepared as control.

The particle size and ζ potential of siRNA/DOX/GH-DPP
nanoparticles were measured using a dynamic laser scattering
method with a wavelength of 633 nm at 25◦C. The detection
angle was set to 90◦. The polydispersingindex (PdI) was
used to evaluate the size distribution. The concentration of
siRNA/DOX/GH-DPP nanoparticles was kept 1 mg/mL, and all
measurements were performed in triplicate. The morphology of

siRNA/DOX/GH-DPP nanoparticles was observed by electron
microscopy. One drop of drug-loaded nanoparticles solution
were placed on a copper grid, and dried at room temperature.
The sample was examined using a transmission electron
microscope.

To evaluate the loading efficiency (LE) and encapsulation
efficiency (EE) of GH/DPP nanoparticles, siRNA/DOX/GH-DPP
nanoparticles were dissolved in formamide by gently heating,
and measured using UV–Vis spectrophotometer at 480 nm. The
concentration of DOX in the GH/DPP micelles was obtained
using the standard curve. Then LE and EE were calculated using
the following equation (1) and (2):

LE(%) = Ws/Wt × 100% (1)

EE(%) = Ws/Wa × 100% (2)

Ws = the amount of DOX measured in the GH/DPP
nanoparticles; Wt = the total weight of siRNA/DOX/GH-DPP
nanoparticles; and Wa = the initial amount of the DOX•HCl
added.

In vitro Drug Release From GH-DPP
Nanoparticles
The release of DOX and siRNA from GH-DPP nanoparticles was
investigated in PBS buffer (pH 7.4 and 5.0) (Wang et al., 2016).
1 mg/mL siRNA/DOX/GH-DPP nanoparticles was dispersed in
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FIGURE 2 | Synthesis of DSPE-PEG-PEI conjugate. (A) Synthetic route of DSPE-PEG-PEI conjugate. (B) 1H-NMR spectra of PEI, DSPE-PEG-NHS and
DSPE-PEG-PEI (a: peaks of PEI; b and c: peaks of DSPE-PEG-NHS).

5 mL PBS, and the solution was placed in a dialysis bag (MWCO
of 1000 and 20000 for DOX and siRNA, respectively). Then, the
dialysis bag was placed in 20 mL of PBS buffer at 37◦C under
a shaking speed of 100 rpm. At predetermined time intervals,
1 mL of release media was taken out and 1 mL of fresh PBS
buffer was added. The DOX and siRNA content was tested by
UV-Vis spectroscopyat 480 and 260 nm, respectively. The release
of DOX and siRNA was calculated by standard curve. The test
was performed in triplicate.

Cytotoxicity Assay of
siRNA/DOX/GH-DPP Nanoparticles
The cytotoxicity of blank DPP and GH-DPP nanoparticles
against HepG2 and A549 cells was evaluated by MTT
assay. Briefly, the tumor cells were seeded in 96-well plates
(1× 104 cells/well) and incubated for 48 h. Then, the cells were
co-cultured with different concentrations (1, 10, 20, 50, and
100 µg/ml) of DPP or GH-DPP nanoparticles, respectively. After
48 h, 20 µL of MTT reagents (5 mg/mL) was added for another
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4 h incubation at 37◦C. The media were replaced with 200 µL of
DMSO. The absorbance at 490 nm was measured using a Bio-Rad
Microplate Reader (Model 680, Richmond, VA, United States).

The cytotoxicity of siRNA/DOX/GH-DPP nanoparticles was
evaluated by MTT assay against HepG2 and A549 cells.
The cells were incubated with the culture media containing
free DOX, DOX/GH-DPP, siRNA/GH-DPP, siRNA/DOX/DPP
and siRNA/DOX/GH-DPP nanoparticles at different DOX
concentrations (0.01, 0.1, 0.5, 1, 2, and 5 µg/mL), respectively.
The cytotoxicity of drug formulations was shown as a cell viability
percentage with respect to the untreated tumor cells. All the
experiments were repeated thrice.

Cellular Uptake Analysis
Cellular uptake of DOX and FITC-labeled siRNA was monitored
by fluorescent microscopy (BX40, Olympus, Japan). HepG2
cells were seeded in a 12-well plate at a density of 1 × 105

cells/well at 37◦C. After the cells reached 75% confluence, the
media were replaced with fresh media containing free DOX and
siRNA, siRNA/DOX/DPP, siRNA/DOX/GH-DPP nanoparticles,
respectively. After 4 h, the cells were washed three times by
cold PBS, and fixed with 4% paraformaldehyde solution. The
intracellular localization of DOX was visualized by fluorescence
microscope.

Western Blotting Analysis
Suppression of the BCL-2 protein was determined by Western
blot using bicin-choninic acid protein assay kit (BCA, Invitrogen,
United States). Sample proteins (30 µg) was subjected to
electrophoresis in 10% sodium dodecyl sulfate polacrylamine
gel. And the protein was transferred to polyvinylidene difluoride
membranes, followed by incubation with non-fat milk for 1 h,
and with antibody against BCL-2 and β-action (1:1000 dilution)
for 12 h at 4◦C. The membranes were washed thrice in TBST,
and incubated with HRP conjugated goat anti-rabbit IgG (1:5000,
Santa Cruz Biotech., United States) for 1 h. the complexes were
visualized using chemiluminescence kit (KeyGEN, China).

In vivo Near-Infrared Fluorescence
Imaging (NIFI)
In vivo biodistribution of the drug-loaded GH-DPP nanoparticles
was monitored via near-infrared fluorescence imaging system.
Preparation of DiR loaded GH-DPP nanoparticles was as
followed: GH-DPP and DiR were dis-solved in methanol, and the
solution was dripped to deionized water by a micro-syringe pump
under magnetic stirring. The mixture system was dialyzed against
deionized water for 48 h. The final concentration of DiR for tail
vein injection was 40 µg/mL. The tumor-bearing mice model was
established by subcutaneous inoculation of H22 cells in the flank
of BALB/c female mice. When the volume of the tumor grew to
approximately 100 mm3, the mice were randomly divided into
three groups. DiR was used as a fluorescence agent. DiR-loaded
DPP and DiR-loaded GH-DPP nanoparticles were prepared,
respectively. Free DiR, DiR-loaded DPP and DiR-loaded GH-
DPP nanoparticles were administrated by intravenous injection.
The in vivo near-infrared fluorescence imaging was performed at

pre-determined times (2, 6, 12, and 24 h), using the Xenogen IVIS
Spectrum from Caliper Life Sciences (Ex was 745 nm, Em was
835 nm).

Anti-tumor Effect Analysis
The therapeutic effects of drug-loaded GH-DPP nanoparticles
were investigated through evaluation of their anti-tumor effects
using H22 tumor-bearing mice as model. When the tumor
size reached about 100 mm3, H22-bearing mice was randomly
divided into sever groups (five mice per group). The mice were
administrated by physiological saline (control), blank GH-DPP
nanoparticles, free DOX•HCl, siRNA/GH-DPP, DOX/GH-DPP,
siRNA/DOX/DPP, and siRNA/DOX/GH-DPP nanoparticles,
respectively. Drug treatment was set at a dose of 5 mg DOX/kg
body weight every other day. The body weight and tumor volume
was measured every day. Finally, all of the mice were sacrificed,
and the tumors were harvested. The tumor volume was calculated
by follow equation:

Vt = d2
× L/2

L is the longest diameter of tumor; d is the shortest diameter of
tumor; and Vt is the tumor volume.

Statistical Analysis
All results are presented as mean ± S.D., n = 3 parallel samples.
The data were analyzed by Student’s t-test for comparison of two
groups. A p-value less than 0.05 was considered to be significant.

Synthesis of DSPE-PEG-PEI Conjugates
Bi-functional DSPE-PEG-NHS was used to conjugate with PEI
via the primary amine reactive NHS ester moiety at weakly
basic pH, thus avoiding the conjugation and crosslinking of
the maleimide groups to the amine functions of PEI, which
occurs at higher pH (pH > 8). The structure of DSPE-PEG-
NHS, PEI and resulting DSPE-PEG-PEI copolymer were verified
by 1H NMR. The peaks of PEG (3.6 ppm, -CH2O-), DSPE (1.0–
1.5 ppm, -CH2-) and PEI (2.5–3.0 ppm, CH2-N) were confirmed.
The1H-NMR spectrum of DSPE-PEG-PEI in D2O exhibited
characteristic peaks at 2.5–3.0 ppm (peaks of PEI), 3.6 ppm (peaks
of PEG) and 1.0–1.5 ppm (peaks of DSPE), indicating that PEI
was successfully introduced to the DSPE-PEG-NHS molecular.

Preparation and Physicochemical
Characteristics of Drug-Loaded
Nanoparticles
Doxorubicin and Bcl-2 siRNA were loaded in DPP or GH/DPP
copolymers, named as siRNA/DOX/DPP and siRNA/DOX/GH-
DPP, respectively. The characterization of DOX-loaded
nanoparticles was shown in Table 1. The average particles size of
siRNA/DOX/GH-DPP was bigger than that of siRNA/DOX/DPP,
while the ζ potential was lower in siRNA/DOX/GH-DPP. The
result was due to the coverage of GA-HA conjugate, resulting
in bigger particles size and less ζ potential. LE and EE of DOX
in siRNA/DOX/GH-DPP nanoparticles were measured by UV
spectrophotometer. When the feed ratio of DOX to DPP was
10%, the EE and LE of DOX was 86.1 and 8.02%, respectively.
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TABLE 1 | The particle size, polydispersity index (PDI) and zeta potential of
siRNA/DOX/DPP and siRNA/DOX/GH-DPP (n = 3).

Size (nm) PDI Zeta (mV) EEb(%) DLb(%)

siRNA/
DOX/DPP

157.2 ± 5.7 0.272 ± 0.05 12.75 ± 2.19 87.4 ± 2.7 8.32 ± 1.4

siRNA/
DOX/
GH-DPP

185.4 ± 6.4a 0.294 ± 0.04 −2.64 ± 1.73a 86.1 ± 3.1 8.02 ± 1.6

aP < 0.05 siRNA/DOX/DPP vs siRNA/DOX/GH-DPP. bDOX loadeding.

To obtain the co-delivery system of DOX and siRNA, DOX/DPP
and siRNA with different mass ratio were mixed and tested by
gel retardation assay. Figure 3A showed that the fraction of
free DNA disappeared at 100:16, suggesting that DOX/DPP
could condense DNA efficaciously when the mass ratio of
DPP to siRNA was over 100:16. The siRNA/DOX/DPP and
siRNA/DOX/GH-DPP nanoparticles were well-separated with
a rather narrow size distribution (Figures 3B,C). As shown in
Figures 3D,E, the co-delivery system exhibited sphere in shape.
Stability studies showed that drug-loaded GH-DPP nanoparticles
were more stable than drug-loaded DPP nanoparticles under
physiological conditions (Supplementary Figure S1).

DOX and siRNA Release From
siRNA/DOX/GH-DPP Nanoparticles
The release of DOX and siRNA from siRNA/DOX/GH-DPP
or siRNA/DOX/DPP nanoparticles was conducted in pH 7.4
and pH 5.0. The siRNA and DOX released from GA-DPP or
DPP were time-dependent (Figure 4). Both GH-DPP and DPP
nanoparticles showed a rapid release at pH 5.0. By contrast, the
drug release was slower at pH 7.4. The possible explanation is that
the electrostatic interaction between positive segments (PEI) and
negative segments (siRNA, GA-HA) is weak at lower pH value,
leading to rapid release of the drug from the nano-carriers (Sun
et al., 2018). Compared to siRNA/DOX/GH-DPP nanoparticles,
the siRNA/DOX/DPP released more drugs at the same time. This
may due to the fact the coverage layer (GA-HA) could delay the
release of DOX from GH-DPP nanoparticles (Manna et al., 2010).

In vitro Cytotoxicity of
siRNA/DOX/GH-DPP Nanoparticls
The cytotoxicity of blank nano-carriers was determined using
the MTT assay. The cytotoxicity of two blank nano-carriers was
below 15% at the concentration of 10 to 100 µg/mL (Figure 5A).
The results suggested that DPP and GH-DPP nanoparticles could
be used in drug delivery materials due to their negligible toxicity.

The viability of A549 and HepG2 cells was evaluated after
incubations with free DOX, DOX/GH-DPP, siRNA/GH-DPP,
siRNA/DOX/DPP, and siRNA/DOX/GH-DPP nanoparticles
for 48 h. Figure 5B showed that all of five drug formulations
exhibited similar dose-dependent cytotoxic effects, and that
the co-delivery nanoparticles groups (siRNA/DOX/DPP
and siRNA/DOX/GH-DPP) showed higher cytotoxicity
compared to free drug treatment groups. The half maximal
inhibitory concentration (IC50 value) of siRNA/DOX/DPP and

siRNA/DOX/GH-DPP nanoparticles against HepG2 cells was
measured to be 1.02 and 0.76 DOX µg/mL, respectively, which
were lower than that of free DOX (1.86 DOX µg/mL). The
results suggested that co-delivery nanoparticles for DOX and
Bcl-2 siRNA could enhanced inhibitory effect of DOX. This
was due to the fact that sensitivity of HepG2 cells to DOX
was enhanced owing to down-regulation of BCL-2 by RNA
interference (Cao et al., 2011). As shown in Figures 5C,D,
siRNA/DOX/GH-DPP nanoparticles exhibited higher toxicity
against HepG2 cells than other DOX formulations, while, it
was different at same treatment with A549 cells. The possible
explanation was that GA-receptors were over-expressed on
HepG2 cells, which enhanced cellular uptake of DOX and
siRNA via GA receptor-mediated endocytosis. Whereas, the
siRNA/DOX/GH-DPP nanoparticles against A549 cells showed
lower cytotoxicity than siRNA/DOX/ DPP nanoparticles. The
different cytotoxicity against HepG2 cells and A549 cells might
due to different expressed level of GA-receptor on two tumor
cells (Tian et al., 2010).

Cellular Uptake of siRNA/DOX/GH-DPP
Nanoparticles and Suppression of BCL-2
Expression
The cellular uptake of siRNA/DOX/GH-DPP nanoparticles was
investigated through fluorescence microscope. Green and red
fluorescence signals indicate the uptake of siRNA and DOX,
respectively, while blue fluorescence signals show the nuclei
stained with DAPI. Overlays of three fluorescence picture
revealed the distribution of DOX and siRNA in the cytoplasm.
As shown in Figure 6A, there were obvious red fluorescence
signals in cytoplasm of HepG2 cells incubating with three drug
formulations, indicating that DOX was taken up by tumor
cells. There was little green fluorescence signals in the group
treated by mixture of free DOX and siRNA, indicating that
little siRNA were taken up by tumor cells. Compared to drug-
loaded DPP nanoparticles, stronger green fluorescence signals
were found in HepG2 cells incubating with DOX/GH-DPP
nanoparticles. This result was due to the coverage of GA-
HA conjugate, which increase the amounts of drugs via GA-
receptor-mediated endocytosis. The down-regulation of BCL-
2 gene in HepG2 cells was assessed by western blot assays.
After treated with siRNA/DOX/DPP and siRNA/DOX/GH-DPP
nanoparticles, the expression of BCL-2 protein was inhibited
obviously in comparison with the control group (Figures 6B,C),
suggesting that the up-regulation of BCL-2 in HepG2 cells
could be reversed by RNA interference basing on GH-DPP
nanoparticles.

In vivo Biodistribution of GH-DPP
Nanoparticles
DiR-loaded nanoparticles were prepared to investigate the
biodistribution of GH-DPP in vivo (Frangioni, 2003). After
injection of DiR formulations, fluorescence signals could be
monitored in liver and tumor. As shown in Figure 7, there
were strong fluorescence signals in the tumor for DiR-loaded
nanoparticles compared to free DiR, indicating the nano-carrier
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FIGURE 3 | Characteristics of siRNA/DOX-loaded GH-DPP nanoparticles. (A) The siRNA retardation assay of GH-DPP at the mass ratio of DPP to siRNA from
100:256 to 100:4 (1, 100:128; 2, 100:64; 3, 100:32; 4, 100:16; 5, 100:8; 6, 100:4). (B–C) Particle size distribution of siRNA/DOX/ DPP and siRNA/DOX/GH-DPP
nanoparticles. (D–E) TEM image of siRNA/DOX/ DPP and siRNA/DOX/GH-DPP nanoparticles.

FIGURE 4 | Release profile of siRNA and DOX-loaded nanoparticles. (A) siRNA release from GH-DPP or DPP nanoparticles in pH 7.4 or 5.0, respectively. (B) DOX
release from GH-DPP or DPP nanoparticles in pH 7.4 or 5.0, respectively.

could enhance drug accumulation in tumor region (Nichols and
Bae, 2014). Moreover, the fluorescence intensity of DiR-loaded
GH-DPP nanoparticles in the tumor was greater than that of
DiR-loaded DPP nanoparticles. This may be due to the fact
that GH-DPP nanoparticles increased accumulation in the liver
cancer cells via liver-targeting delivery, and decreased the uptake
by normal cells. After injection for 24 h, major organs and tumors
were extracted for fluorescent intensity evaluation. Similar to
DiR biodistribution in Figure 7A, the DiR-loaded GH-DPP

treatment group show strongest fluorescent signals in tumor
region (Figure 7B).

In vivo Anti-tumor Effect of
siRNA/DOX/GH-DPP Nanoparticles
The combination of DOX and Bcl-2-siRNA was used
in anti-hepatoma therapy. The anti-tumor effect of
siRNA/DOX/GH-DPP nanoparticles was evaluated in the H22
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FIGURE 5 | The cell viability of blank nanoparticles against (A) A549 cells and (B) HepG2 cells for 48 h. The cell viability of drug formulations against (C) A549 cells
and (D) HepG2 cells for 48 h.

tumor-bearing mice. As shown in Figure 8, the groups treated
with saline and blank GH-DPP nanoparticles showed a rapid
growth in tumor size, and no significant difference was observed
between the blank GH-DPP group and the control group,
indicating that the GH-DPP nanoparticles was biocompatible.
In contrast, the groups treated with drug formulations showed
obvious growth inhibition. In vivo tumor inhibition ratio
(IR) of co-delivery nanoparticles for DOX and Bcl-2 siRNA
was higher than GH-PDD nanoparticles for delivery of DOX
or siRNA alone, indicating that combined therapy of DOX
and Bcl-2 siRNA improved antitumor efficacy. Interestingly,
siRNA/DOX/GH-DPP nanoparticles showed stronger anti-
tumor effect than siRNA/DOX/DPP nanoparticles. This may
be due to GA-HA conjugate promoting the accumulation
of drug-loaded nanoparticles in tumor region, resulting
in higher anti-hepatoma efficacy than siRNA/DOX/DPP
nanoparticles.

Figure 8B showed that the body weight of mice treated
with free DOX was lower than those treated with drug-loaded
nanoparticles, indicating that GH-DPP nanoparticles decreased
the systemic toxicity of DOX. As shown in Figure 8E, obvious
intercellular vacuolation and dissolution of myocardial fibers
were observed in the group of free DOX, indicating that the
injection of free DOX induced significant cardiotoxicity. By
contrast, there was no obvious degeneration of myocardial
fibers in the groups which were injected by drug-loaded
nanoparticles. These results showed that combined therapy

basing on nano-carriers improved the anti-tumor effect and
alleviated the systemic toxicity of DOX.

The tumors were extracted for H and E staining to evaluate the
antitumor effect. As shown in Figure 8F, tumor cells treated with
co-delivery system exhibited obvious karyolysis and pyknosis
with more cytoplasmic vacuolation in comparison to single
drug formulation, indicating that combination therapy exhibited
higher antitumor effect. In comparison with siRNA/DOX/DPP
nanoparticles, the siRNA/DOX/GH-DPP nanoparticles induced
more shrunk nuclei and lower cellular density, suggesting
that introduction of GA-HA promote the liver-targeting
delivery of drugs, resulting in more effective treatment. The
expression of BCL-2 protein was evaluated in the tumor by
immunohistochemical assay. The high expression of BCL-2
protein was observed in the groups of free DOX and DOX/GH-
DPP nanoparticles. By comparison, the group treated with
co-delivery systems showed obvious suppression of BCL-2
expression (Cao et al., 2011).

DISCUSSION

Liver cancer has become one of the highest incidences of
malignant tumor in the world. Conventional chemotherapy has
severe system toxicity, and always fails in MDR (Perez-Herrero
and Fernandez-Medarde, 2015). Some efforts have been focused
on the combination of two or more therapeutic approaches
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FIGURE 6 | Cellular uptake and western blot analyses. (A) The images of HepG2 cells treated with mixture of free DOX and FITC-labeled siRNA, siRNA/DOX/DPP or
siRNA/DOX/GH-DPP nanoparticles for 4 h, respectively. FITC channel (green) for FITC-labeled siRNA, TRITC channel (red) for DOX, and DAPI channel (blue) for
nucleus were presented simultaneously. (B,C) Protein expression of BCL-2 evaluated by western blot analysis with different treatments. ∗∗P < 0.01 vs. control.

with different mechanisms. The combination of chemotherapy
drugs and RNA interference has attracted more attention for
the enhanced sensitivity of drugs against tumor cells due to the
silence of oncogene (Li et al., 2018). Moreover, nanoparticles
for drug delivery have been proven as the useful vehicles
of anti-tumor drugs or gene for liver-targeting delivery. The
nano-carriers could accumulate in tumor region via active-
targeted manner when they are modified by liver-targeting
moiety, resulting in loss of side effect from drugs (Chen et al.,
2014).

In this study, we prepared the GH-DPP nanoparticles
for co-delivery of DOX and Bcl-2 siRNA for liver cancer
therapy. The siRNA/DOX/GH-DPP nanoparticles were spherical
in shape, negative in zeta potential with an average particle
size of 185.4 nm. There was an obvious difference in
zeta potential between siRNA/DOX/GH-DPP (negative) and
siRNA/DOX/DPP nanoparticles (positive). This was due to
the introduction of the negatively charged GA-HA conjugate
which induced the shift of surface charge of nano-carriers.

The co-delivery system of DOX and Bcl-2 siRNA showed
time-dependent sustained release in vitro. Compared to DPP
nanoparticles, GH-DPP nanoparticles showed slower DOX
release. This might due to the fact the coverage layer (GA-HA)
delay the release of DOX from GH-DPP.

In vitro cytotoxicity test showed that siRNA/DOX/GH-
DPP nanoparticles exhibited a better therapeutic effect than
delivering DOX or Bcl-2 siRNA alone. This is due to that
fact that co-delivery of DOX and Bcl-2 siRNA produce a
synergistic anti-tumor effect in which sensitivity of HepG2
cells to DOX was enhanced owing to down-regulation of
BCL-2 by RNA interference. Moreover, siRNA/DOX/GH-
DPP nanoparticles exhibited higher cytotoxicity than
siRNA/DOX/DPP nanoparticles against HepG2 cells (GA-
receptor over-expressed). Interestingly, the cytotoxicity of
siRNA/DOX/GH-DPP against A549 cells (no GA-receptor) was
lower than that of siRNA/DOX/DPP. The possible explanation
was that the introduction of GA-HA conjugate promotes the
cellular uptake of drug-loaded GH-DPP nanoparticles by HepG2
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FIGURE 7 | (A) Real-time NIRF images of H22 tumors-bearing mice after tail vein injection of free DiR, DiR/DPP and DiR/GH-DPP nanoparticles for 24 h. The tumors
are circled in red. (B) Ex vivo NIRF images of organs and tumors excised at 24 h.

cells via GA-receptor-mediated endocytosis, leading to higher
cytotoxicity (Wu J. et al., 2018). However, there was no GA
receptor on A549 cells, and drug-loaded DPP nanoparticles

(positive charged) were easily taken up by tumor cells, resulting
in higher cytotoxicity than drug-loaded GH-DPP nanoparticles
(negative charged).
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FIGURE 8 | Inhibition of tumor growth by injection of physiological saline (control), blank GH-DPP nanoparticles, free DOX, siRNA/DPP, DOX/DPP, siRNA/DOX/DPP
or siRNA/DOX/GH-DPP nanoparticles, respectively. (A) Tumor growth curves; (B) Body weight changes; (C) The tumor growth inhibition rate; (D) excised tumors of
each group; (E) Histological observation of heart for H22 tumor-bearing mice treated with different drug formulations; (F) The histological features of H22
subcutaneous tumor sections are characterized by H and E and BCL-2 immunohistochemical analysis. The data represent the mean of the tumor volume or body
weight from five mice ± SD; ∗P < 0.05 and ∗∗P < 0.01.

Figure 6A showed that DOX or siRNA can be effectively
taken up by HepG2 cells compared with mixture of free DOX
and siRNA. There were stronger fluorescence signals in HepG2

cells incubated with drug-loaded GH-DPP than drug-loaded
DPP nanoparticles. This result may be due to the coverage of
GA-HA conjugate, which increase the amounts of cellular uptake
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via GA-receptor-mediated endocytosis (Yan et al., 2018). In vivo
near-infrared fluorescence imaging shows that the fluorescence
intensity of DiR-loaded GH-DPP nanoparticles in the tumor was
greater than that of DiR-loaded DPP nanoparticles. This may be
due to the fact that DiR-loaded GH-DPP nanoparticles could
be accumulated in the tumor tissue by liver-targeting delivery
manner (Fan et al., 2015).

As shown in Figure 8, there was no significant difference
in body weight and cardiotoxicity between the blank GH-DPP
group and the control group. By contrast, the treatment of free
DOX induced obvious intercellular vacuolation and dissolution
of myocardial fibers, showing significant cardiotoxicity.
This result suggested that the GH-DPP nanoparticles were
biocompatible and useful for the delivery of chemotherapy
drugs (Sun et al., 2018). Compared with nano-formulations
for delivery DOX or siRNA alone, siRNA/DOX/GH-DPP
nanoparticles showed stronger anti-tumor effect, indicating
combination therapy could improve the anti-tumor efficiency
by enhancing the sensitivity of cancer cells for chemotherapy
drugs through inhibiting the expression of Bcl-2 protein (Chen
et al., 2014). Compared to siRNA/DOX/DPP nanoparticles,
siRNA/DOX/GH-DPP nanoparticles exhibit stronger antitumor
effect. These results showed that the introduction of GA-
HA conjugate was helpful to promote the accumulation of
drug-loaded nanoparticles in tumor region, resulting in higher
anti-hepatoma efficacy (Cai et al., 2016).

CONCLUSION

Doxorubicin-loaded DPP nanoparticles were self-assembled
and then complexed successively with Bcl-2 siRNA and GA-
HA conjugate to prepare a co-delivery system. The GH-DPP
nanoparticles could simultaneously deliver siRNA and DOX
into HepG2 cells, and GA-receptor-mediated internalization
significantly increased the cellular uptake efficiency. In vitro
and in vivo anti-tumor effects revealed that siRNA/DOX/GH-
DPP nanoparticles could suppress the expression of Bcl-2 gene,
enhanced cell apoptosis, and exhibited higher anti-tumor effect.

The results showed that GH-DPP nanoparticles are efficient
nano-carrier for co-delivery of siRNA and hydrophobic drug in
combined therapy.
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Despite the significant achievements in chemotherapy, cancer remains one of the

leading causes of death. Target therapy revolutionized this field, but efficiencies of

target drugs show dramatic variation among individual patients. Personalization of target

therapies remains, therefore, a challenge in oncology. Here, we proposed molecular

pathway-based algorithm for scoring of target drugs using high throughput mutation

data to personalize their clinical efficacies. This algorithm was validated on 3,800 exome

mutation profiles from The Cancer Genome Atlas (TCGA) project for 128 target drugs.

The output values termedMutational Drug Scores (MDS) showed positive correlation with

the published drug efficiencies in clinical trials. We also used MDS approach to simulate

all known protein coding genes as the putative drug targets. The model used was built on

the basis of 18,273 mutation profiles from COSMIC database for eight cancer types. We

found that the MDS algorithm-predicted hits frequently coincide with those already used

as targets of the existing cancer drugs, but several novel candidates can be considered

promising for further developments. Our results evidence that the MDS is applicable to

ranking of anticancer drugs and can be applied for the identification of novel molecular

targets.

Keywords: cancer, DNA mutation, molecular pathways, biomarker, target drugs, tyrosine kinase inhibitors, nibs,

mabs

INTRODUCTION

Globally, cancer is one of the major causes of death (Centers for Disease Control and Prevention,
2017). For several decades, chemotherapy remains a key treatment for many cancers, often with
impressive success rates. For example, its use in testicular cancer turned near complete mortality to
>90% disease-specific survival (Hanna and Einhorn, 2014; Oldenburg et al., 2015). However, most
of the advanced cancers remain incurable and/or unresponsive using standard chemotherapy
approaches, frequently develop resistance to treatments and relapse (Vasey, 2003; Housman et al.,
2014). More recently, a new generation of drugs has been developed that specifically target
functional tumor marker molecules. These medicines termed Target drugs have one or a few
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specific molecular targets in a cell (Druker et al., 2001a,b;
Sawyers, 2004; Spirin et al., 2017). They have greater selectivity
and generally lower toxicity than the conventional chemotherapy
(Joo et al., 2013). Structurally, they can be either low molecular
mass inhibitor molecules or monoclonal antibodies (Padma,
2015). The repertoire of their molecular targets is permanently
growing and now includes receptor and intracellular tyrosine
kinases (Baselga, 2006), vascular endothelial growth factor
(Rini, 2009), immune checkpoint molecules such as PD1,
PDL1, and CTLA4 (Azoury et al., 2015), poly(ADP-ribose)
polymerase (Anders et al., 2010), mTOR inhibitors (Xie et al.,
2016), hormone receptors (Ko and Balk, 2004), proteasomal
components (Kisselev et al., 2012), ganglioside GD2 (Suzuki
and Cheung, 2015), and cancer-specific fusion proteins (Giles
et al., 2005). For many cancers, the emergence of target drugs
was highly beneficial. For example, trastuzumab (anti-HER2
monoclonal antibody) and other related medications at least
doubled median survival time in patients with metastatic HER2-
positive breast cancer (Hudis, 2007; Nahta and Esteva, 2007). In
melanoma, immune checkpoint inhibitors, and anti-BRAF target
drugs like Vemurafenib and Dabrafenib dramatically increased
the patient’s chances to respond to treatment and to increase
survival (Chapman et al., 2011; Prieto et al., 2012). Target drugs
were also of a great advantage for inoperable kidney cancer,
before almost uncurable (Ghidini et al., 2017).

The efficiencies of target drugs vary from patient to patient
(Ma and Lu, 2011) and the results of clinical trials clearly evidence
that the drugs considered inefficient for an overall cohort of
a given cancer type, may be beneficial for a small fraction of
the patients (Zappa and Mousa, 2016). For example, the anti-
EGFR drugs gefitinib and erlotinib showed little advantage in the
randomized trials on patients with non-small cell lung cancer.
However, ∼10-15% of the patients responded to the treatment
and had longer survival characteristics. It was further understood
that these patients had activating mutations of EGFR gene and
that these mutations, therefore, can predict response to the
EGFR-targeting therapies (Gridelli et al., 2011). Interestingly, the
same approach was ineffective in colorectal cancer, where EGFR-
mutated status had no predictive power for the anti-EGFR drugs
cetuximab and panitumumab. In the latter case, it is the wild-type
status of KRAS gene (∼60% of all the cases) that is indicative of
tumor response to these drugs (Grothey and Lenz, 2012).

The price for inefficient treatment is high as it is converted
from decreased patient’s survival characteristics and overall
clinical expenses. There are currently more than 200 different
anticancer target drugs approved in different countries, and
this number grows every year (Law et al., 2014). However, the
predictive molecular diagnostic tests are available for only a
minor fraction of drugs, in a minor fraction of cancer types
(Hornberger et al., 2005; Le Tourneau et al., 2014; Buzdin

Abbreviations: CDS length, Coding DNA Sequence Length; COSMIC, Catalog

Of Somatic Mutations In Cancer; FDA, Food and Drug Administration; ICGC,

International Cancer Genome Consortium; MDS, Mutational Drug Scores; MR,

Mutation rate; nMR, Normalized mutation rate; NIH, The National Institutes of

Health; PAS, Pathway Activation Strength; PI, Pathway instability; TCGA, The

Cancer Genome Atlas; TC, Target Conversion.

et al., 2018). This makes the clinician’s decision on drug
prescription a difficult task somewhat similar to finding needle
in a haystack. The problem of choosing the right medication
for the right patient is currently well understood, so US
FDA(Food and Drug Administration) strongly recommends
any new target drug emerging on the market to be supplied
with the companion diagnostics test1. It is, therefore, of a
great importance to identify robust predictive biomarkers of
target drug efficacy, for as many cancer-drug combinations as
possible. Recently, a new generation of molecular markers has
been proposed involving gene combinations and even entire
molecular pathways (Gu et al., 2011; Li et al., 2014; Toren
and Zoubeidi, 2014). Here, the biomarkers used are not just
a single gene or single locus-based mutation, expression or
epigenetic features, but rather the aggregated combinations of
those, crosslinking the physiologically relevant gene products
(Diamandis, 2014; Sanchez-Vega et al., 2018; Zaim et al., 2018).
The pathway-based approach has been better developed for
the high throughput gene expression data (Khatri et al., 2012;
Buzdin A. A. et al., 2017; Buzdin et al., 2018) where the
Pathway Activation Strength (PAS) may be used as an aggregated
biomarker (Buzdin et al., 2014). The formulas for PAS calculation
may be different; they normally consider relative concentrations
of gene products, internal molecular architecture of pathways
and gene coexpression patterns (Ozerov et al., 2016; Aliper et al.,
2017; Buzdin et al., 2018). PAS was shown to be more efficient
as a biomarker than the individual gene expression data (Borisov
et al., 2014, 2017), and PAS biomarkers were further generated
for a plethora of normal and pathological conditions, including
cancer response to treatments (Kurz et al., 2017; Petrov et al.,
2017; Spirin et al., 2017; Wirsching et al., 2017; Sorokin et al.,
2018).

Furthermore, a method for ranking of more than a 100 of
target anticancer drugs has been recently published based on
the PAS scoring and the pathway enrichments by the molecular
targets of drugs (Artemov et al., 2015). This approach termed
Drug Scoring was experimentally shown promising for drugs
prescription to advanced solid tumor patients (Buzdin A. et al.,
2017; Buzdin et al., 2018; Poddubskaya et al., 2018). However,
good quality expression profiles required for PAS-based Drug
Scoring frequently cannot be obtained due to apparent lack of
biopsy biomaterials and RNA degradation. To our knowledge, so
far there were no published reports on the application of gene
mutation data for Drug Scoring.

In this study, for the first time we proposed and tested
10 alternative pathway-based Drug Scoring algorithms utilizing
mutations data. These algorithms were used for the data from
3,800 published cancer mutation profiles representing eight
tumor localizations and validated using the published clinical
trials data. We showed that several mutation-based Drug Scoring
methods can be used efficiently for predicting the effectiveness of
target drugs. This has been evidenced by statistically significant
positive correlations between Drug Score ratings of individual

1For Consumers - Personalized Medicine and Companion Diagnostics Go

Hand-in-Hand Available at: https://www.fda.gov/ForConsumers/ucm407328.htm

[Accessed October 15, 2018].
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drugs and their therapeutic success reflected by the completed
phases of clinical trials for the respective cancer types. We also
used the best Drug Scoring algorithm to simulate all known
protein coding genes as the potential drug targets. We found
that the algorithm-predicted most efficient targets are highly
congruent with the molecular targets already used by the real
anticancer drugs.

MATERIALS AND METHODS

Mutation Data
The human mutation dataset was obtained from the Catalog Of
Somatic Mutations In Cancer (COSMIC) (Forbes et al., 2017).
COSMIC aggregates and annotates mutation data from various
sources by providing lists of verified somatic mutations. We
downloaded the data from COSMIC website, version 76. The
complete dataset includes 6,651,236 somaticmutation records for
20,528 genes in 19,434 tumor samples of 37 primary localizations.

The Algorithm Validation Dataset
For the validation of drug scoring algorithms, we extracted
mutation data only for the primary localizations containing at
least 100 samples indexed in COSMIC and originally taken from
The Cancer Genome Atlas (TCGA) project (Tomczak et al.,
2015; Forbes et al., 2017) because of the uniform sequencing and
data processing pipeline used there. For the algorithm validation
dataset, we totally took 3,800 tumor mutation profiles from
eight primary localizations: central nervous system, kidney, large
intestine (including cecum, colon, and rectum), liver, lung, ovary,
stomach, thyroid gland (Table 1).

The COSMIC data were processed with script written in R
(version 3.4.3) to obtain mutation profile for each tumor1. The
processed data is available as Supplementary Data Sheet 1.

The Dataset for Prediction of Potential
Molecular Targets
We used the full COSMIC dataset to increase the statistical
significance and to investigate the effectiveness of potential
target drugs for a maximum range of cancer localizations.
However, we excluded the samples related to cell cultures or
tumor xenograft to standardize the analysis.We excluded records
having the followingmarks in the “Sample source” field: organoid

TABLE 1 | The structure of algorithm validation dataset.

Localization (COSMIC

nomenclature)

Number of

samples

Disease, its

abbreviation

Central nervous system 657 Gliomas, GL

Kidney 601 Kidney cancer, KC

Large intestine 620 Colorectal cancer, CRC

Liver 188 Hepatic cancer, HC

Lung 569 Non-small cell lung cancer, NSCLC

Ovary 474 Ovarian cancer, OVC

Stomach 288 Stomach cancer, STC

Thyroid 403 Thyroid cancer, THC

culture, short-term culture, cell-line, xenograft. Thus, the final
dataset included 6,027,881 mutations records in 18,273 in tumor
samples of 35 primary localizations. The COSMIC data were
processed with script written in R (version 3.4.3) to return
mutation rates for all genes2. The processed data is available as
Supplementary Data Sheet 2.

Clinical Trials Data
We extracted clinical trials data from the web sites of NIH
(the National Institutes of Health)3 and US FDA4. They were
processed by manually curation of web data as of July 2017. The
processed clinical trials data used for the correlation studies are
shown on Supplementary Table 1.

Molecular Pathways Data
The gene contents data about 3,125 human molecular pathways
used to calculate mutation drug scores were extracted from
Reactome (Croft et al., 2014), NCI Pathway Interaction Database
(Schaefer et al., 2009), Kyoto Encyclopedia of Genes and
Genomes (Kanehisa and Goto, 2000), HumanCyc (Romero et al.,
2004), Biocarta (Nishimura, 2001), Qiagen5. For drug scores
calculation, we used only the 1,752 pathways including at least
10 gene products because of previously reported poor theoretical
data aggregation effect for smaller pathways (Borisov et al., 2017).
The information about molecular specificities of 128 anticancer
target drugs were obtained from databases DrugBank (Law et al.,
2014) and ConnectivityMap (Lamb et al., 2006).

Data Presentation
The results were visualized using package ggplot2 (Wickham,
2009).

RESULTS

In this study, we developed a molecular pathway-based method
of target drug scoring using high throughput mutation data.

Algorithms of Mutation Drug Scoring
The principle of Mutation Drug Scoring (MDS) methods
proposed here deals with quantization of mutation enrichment
for the molecular pathways having molecular targets of a drug
under investigation. Overall, they are based on the rationale
that the greater is the mutation level of the respective pathways,
the higher will be the expected drug efficiency. The mutation
enrichment of a molecular pathway called pathway instability
(PI) is calculated based on the relative mutation rates (MR) of
its member genes. Under mutations, we meant here the changes
in protein coding sequence understood as such in the Catalog of
Somatic Mutations in Cancer (COSMIC) v.76 database (Forbes
et al., 2016). COSMIC is the world’s largest database of somatic

2Cosmic v76 processing Available at: https://gitlab.com/White_Knight/

cosmic76_processing/tree/master [Accessed October 22, 2018].
3ClinicalTrials.gov Available at: https://clinicaltrials.gov/ [Accessed July 25, 2017]
4US Food andDrugAdministrationHome Page Available at: https://www.fda.gov/

[Accessed July 25, 2017].
5QIAGEN - Sample to Insight Available at: https://www.qiagen.com/us/shop/

genes-and-pathways/pathway-central/ [Accessed September 19, 2018].
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mutations relating to human cancers. We used only Genome-
wide Screen Data to estimateMR correctly. This part of COSMIC
consists of peer reviewed large-scale genome screening data and
data from the validated sources such as The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC).

Mutation rate (MR) is calculated according to the formula:

MRn,g =
N mut( n,g)

N samples (g)
,

where MRn,g is MR of a gene n in a group of samples g; N
mut(n,g) is the total number of mutations for gene n in a group
of samples g; N samples (g) is the number of samples in a group
g. The MR values strongly positively correlated with the lengths
of gene coding DNA sequence (CDS; data not shown). In order
to remove bias linked with the CDS length, we took for further
consideration a normalized value termed Normalized Mutation
Rate (nMR) expressed by the formula:

nMRn=
1000 ∗MRn

Length CDS (n)
,

where nMRn is the nMR of a gene n; MRn is the MR of a gene
n; Length CDS(n) is the length of CDS of gene n in nucleotides.
Indeed, normalization of this metric enabled to terminate any
CDS-linked bias (data not shown).

To determine if gene n is included in pathway p, we introduced
a Boolean flag pathway-gene indicator PGn ,p expressed by the
formula:

PGn,p =

{

1, pathway p includes gene n,
0, pathway p doesn′t include gene n;

The Pathway Instability (PI) score is then calculated as follows:

PIp=
∑

n
nMRnPGn,p ,

where PIp is pathway instability score for a pathway p; nMRn
is the normalized mutation rate of a gene n, PGn ,p is pathway-
gene indicator for gene n and pathway p. Pathway instability score
characterizes the mutation enrichment of a pathway (Pathway
instability is an effective new mutation-based type of cancer
biomarkers, 2018, in preparation). To formalize if gene n is
molecular target of drug d, we introduced another Boolean flag
drug target index, DTId,n:

DTId,n =

{

1, drug d has target gene n,

0, drug d doesn
′

t have target gene n

To complete DTI database for this study, we used the data about
molecular specificities of 128 target drugs extracted from the
databases DrugBank (Law et al., 2014) and Connectivity Map
(Lamb et al., 2006).

To link PI scores and estimated drug efficiencies, the following
basic formula was proposed for the calculation ofMutation Drug
Score (MDS):

MDSd =

∑

n
DTId,n

∑

p
PGn,p PIp , (1)

where d is drug name; n is gene name; p is pathway name;MDSd
isMDS for drug d;DTId,n is drug target index for drug d and gene
n; PIp is Pathway Instability of pathway p; PGn ,p is pathway-gene
indicator for gene n and pathway p.

The above basic formula (1) was modified to generate several
alternative methods of drug scoring.

- Pathway size-normalized. Since molecular pathways include
considerably different number of genes varying from dozens
to hundreds, we proposed a modification of the calculation
method (1) where normalization is performed forMDS on the
respective number of genes for each PI member:

MDS_Nd =

∑

n
DTId,n

∑

p
PGn,p PIp/kp , (2)

where kp is number of genes in pathway p.
- Single count-normalized. Impact of each gene participating in
pathways targeted by drug d is counted only once:

MDS_gened =

∑

n
nMRn GIId,n , (3)

where GIId,n – Boolean flag gene involvement index,

GIId,n =
{

1, gene n participates in at least one pathway targeted by drug d

0, gene n doesn′t participate in pathways targeted by drug d

- Number of pathways-normalized. MDS for drug d is
normalized on the number of its targeted molecular pathways.

MDS_md = MDSd/md, (4)

wheremd – number of pathways targeted by drug d.
- Number of pathways-normalized. MDS_N is additionally
normalized on the number of pathways targeted by drug d
(md).

MDS_N_md = MDS_N/md (5)

- Number of target genes-normalized. MDS_bd is additionally
normalized on the number of target genes for drug d, (bd).

MDS_bd = MDSd/bd (6)

- Number of target genes-normalized MDS_N. MDS_N,
normalized on the number of target genes for drug d, (bd).

MDS_N_bd = MDS_N/bd (7)

- Number of target genes-normalized MDS_gene. MDS_gene,
normalized on the number of target genes for drug d, (bd).

MDS_gene_bd = MDS_gene/bd (8)

- Target genes dependent only. MDS2 is calculated considering
only mutation frequencies of target genes.

MDS2d =

∑

p
PGn,p

∑

n
DTId,nnMRn (9)

Frontiers in Pharmacology | www.frontiersin.org 4 January 2019 | Volume 10 | Article 1710

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Zolotovskaia et al. Mutational Scoring of Target Drugs

- Single count-normalized, target genes dependent only.
MDS2_gene is calculated, considering each target gene for
drug d only one time.

MDS2_gened =

∑

n
DTId,n NMRn GIId,n (10)

For these algorithms of mutation-based drug scoring, we next
compared their congruences with the published clinical trials
data.

Validation of Mutation Drug Scoring (MDS)
Algorithms on Clinical Trials Data
We calculated different versions of MDS according to formulae
(1–10) for 128 anticancer target drugs, for eight cancer types
(Supplementary Data Sheet 3). We examined somatic mutation
profiles for 3,800 samples of the following primary tumor
localizations: large intestine (including cecum, colon and
rectum), lung, kidney, stomach, ovarian, central nervous system,
liver, thyroid (Table 1).

Mutation profiles were extracted from COSMIC v76 database
(Forbes et al., 2016). To validate theMDS algorithms, we selected
only tumor samples related to TCGA project because it was
the largest source of biosamples profiled using a single deep
sequencing and bionformatic pipeline (Tomczak et al., 2015).
Molecular specificities of drugs were obtained from DrugBank
(Law et al., 2014) and Connectivity Map (Lamb et al., 2006)
databases. The information about clinical approval and the
completion of phases of clinical trials for 128 target drugs for
the above eight tumor localizations was taken from the web
sites of NIH and US FDA. To measure completion of clinical
investigations for a drug, we introduced the metric termed
Clinical Status. These values are congruent with the apparent
efficiencies of drugs for the given cancer types. The same drugs
most frequently had different clinical statuses for the different
cancer types.

The Clinical Status varied in a range from 0 to 1 proportional
to the top phase of clinical trials passed by a drug for a given
cancer type. The Clinical Status grows incrementally depending
on the completion of the clinical trials phases 1–4, while
the later phases have a greater specific weight, because they
allow to more accurately determine clinical efficacy of a drug
(Table 2).

TABLE 2 | Clinical Status of drug, according of the top passed phases of clinical

trials.

Phase of clinical trials Clinical status

Phase I ongoing 0.1

Phase I/II ongoing (Phase I completed) 0.2

Phase II ongoing 0.3

Phase II completed 0.4

Phase III ongoing 0.7

Phase III completed 0.85

Phase IV (drug approved and marketed) 1

The complete Clinical Status information for 128 drugs under
investigation is shown on Supplementary Table 1. The major
limitation of this approach is that only the drugs that had been
already clinically investigated for the respective tumor type can
be ranked in such a way.

To investigate the capacities of different versions of Mutation
Drug Scores to successfully predicts clinical efficiencies of
drugs, we analyzed how ranks of MDS values correlated
with Clinical Status of drugs. We calculated correlations
and compared distributions of the Spearman correlation
coefficients. To calculate correlations, we took all cancer
mutation profiles together without separation on cancer types
(Figure 1).

Overall, the markedly better correlations were seen for the
MDS and MDS_N types of drug scoring (Figure 1). We next
analyzed the cancer type-specific distributions (Figure 2). It was
seen that both MDS and MDS_N scores positively correlated
with the drugs clinical efficiencies in all the localizations
investigated, thus confirming their top status among the drug
scoring algorithms. Among those, MDS showed best overall

FIGURE 1 | Correlation between Clinical Status and MDS rank for 10 types of

drug scoring in eight cancer types at once. (A) Distributions of Spearman

correlation coefficients between Clinical Status and MDS rank for 128 target

drugs in 3,800 tumor samples. MDS rank of a drug was calculated as the

individual drug’s position in the rating (from top to low) of all drugs under

investigation. Ten violin plots distributed along X-axis, each represent a

particular type of drug scoring. The Y-axis reflects density distributions of

correlations between Clinical Status and MDS ranks. Boxes indicate the

second and third quartiles of distribution, black dots indicate outliers. (B) The

plot demonstrates the distributions of p-value for the correlation coefficients

between Clinical Status and MDS rank for 128 target drugs in the same tumor

samples. The horizontal green line corresponds to p = 0.05.
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FIGURE 2 | Correlation between Clinical Status and MDS rank for two best

types of drug scoring in eight cancer types separately. (A) Distributions of

Spearman correlation coefficients between Clinical Status and MDS rank for

128 target drugs in eight tumor types. MDS rank of a drug was calculated as

the drug’s position in the rating (from top to low) of all drugs under study. The

drug scoring methods are shown in horizontal lines, and the cancer types are

placed vertically. The violin plots distributed along X-axis, each represent a

particular cancer type. The Y-axis reflects density distributions of correlations

between Clinical Status and MDS ranks. Boxes indicate the second and third

quartiles of distribution, black dots indicate outliers. (B) The plot shows the

distributions of p-value for the correlation coefficients between Clinical Status

and MDS rank for 128 target drugs in the same tumor types. The horizontal

green line corresponds to p = 0.05.

functional characteristics and was, therefore, used in further
analyses.

Application of MDS for Identification of
Possible Target Genes
We next tested the MDS algorithm for its capacity to identify
potentially valuable drug targets. To this end, we modeled a
situation when each gene specifically corresponds to one target
drug. Those simulated, or virtual drugs, also were specific each
to only one gene product. Using the database of 1,752 molecular
pathways, we were able to calculate MDS for 8,736 virtual
drugs specific to the same number of genes included in these
pathways. For this analysis, we used 18,273 full-exome tumor
mutation profiles from the COSMIC v76 database. Top 30
molecular targets with highestMDS values and already clinically
approved cancer drugs specific for these molecular targets are
listed on Table 3. The complete MDS calculation data are given
in Supplementary Table 2.

We next ranked all the virtual drugs according to their
MDS values and compared if the same molecular targets are

TABLE 3 | Top 30 molecular targets sorted by MDS and clinically approved drugs

using these molecular targets.

Potential molecular

targets

MDS Existing relevant drugs

PIK3CA 387.11 Idelalisib

PIK3R1 371.31

MAPK1 354.75

MAPK3 343.81

HRAS 343.66

PIK3CB 313.02 Idelalisib

AKT1 305.54 Perifosine

PIK3R2 302.74

PIK3CD 293.15 Idelalisib

KRAS 291.42

PIK3R3 290.07

MAP2K1 288.80 Binimetinib, cobimetinib, selumetinib,

trametinib

NRAS 287.90

PIK3R5 279.34

RAF1 271.72 Dabrafenib, regorafenib, sorafenib

MAPK8 267.73

MAP2K2 257.33 Binimetinib, cobimetinib, selumetinib,

trametinib

TP53 255.89

GRB2 254.36

SOS1 243.39

RAC1 239.32

MAPK9 233.01

EGFR 232.80 Afatinib, brigatinib, cetuximab, erlotinib,

flavopiridol, foretinib, gefitinib, lapatinib,

masitinib, nimotuzumab, osimertinib,

panitumumab, vandetanib, necitumumab

MAPK14 224.08

MAPK10 222.51

EGF 214.20

RELA 212.43

PRKCA 211.99

NFKB1 211.63 Thalidomide

AKT2 205.38 Perifosine

already exploited by the existing 128 target cancer drugs
(Figure 3).

To do this, we introduced an auxiliary value termed Target
Conversion (TC). It reflects the percentage share of known
molecular targets among predictedmolecular targets.

TC=
number of knownmolecular targets

number of predictedmolecular targets
∗100%

For the overall (complete) list of potential molecular targets,
TC was 2.17%. However, there was an clear-cut incremental TC
growth trend when the potential molecular targets were sorted in
the ascending order ofMDS value (Figure 3A, shown for deciles
of the potential targets). The greater TC value exceeding 10% was
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FIGURE 3 | Dependence of MDS and occurrence of molecular targets in approved cancer drugs. (A) Deciles of potential molecular targets sorted in ascending order

according to MDS value. TC was calculated for each decile, shown on vertical axes. (B) Distribution of MDS values among the potential molecular drug targets. The

color scale on the graph indicates densities of clinically approved cancer drugs exploiting the respective molecular targets.

observed for the decile of molecular targets having the highest
MDS values.

Molecular targets with the highestMDS are clearly enriched by
the existing clinically approved drugs compared to those with low
MDS scores (Figure 3A). On the other hand, target genes with
higher MDS are covered by a bigger number of approved drugs
per target, as many drugs have common molecular specificities
(Figure 3B).

The present algorithm for scoring potential drug targets
considers a cumulative mutation enrichment of molecular
pathways. For the example shown on Figure 4 (Nectin adhesion
pathway), most genes involved in a pathway are mutated
in cancers, see the color scale. The mutation enrichment
of a pathway may characterize its overall involvement in
malignization. According to the present conception of drug
scoring, the maximum efficiency of drug can be obtained by
acting on the most strongly affected molecular pathways.

DISCUSSION

In this study, we report a new bioinformatic instrument of
ranking target anticancer drugs using high throughput gene
mutation data. We proposed here 10 different versions of

molecular pathway-based mutation drug scoring. At least two
types of this scoring could provide output data positively
correlated with the clinical trials data for 128 drugs in all
eight tumor localizations tested. We hope that the pathway-
based mutation drug scoring approach has a potential of helping
clinical oncologists to implement personalized selection of target
drugs based on the individual, the patient’s tumor-specific high
throughput mutation profile.

We showed that the same approach can be applied to identify
potentially efficient molecular targets in experimental oncology.
The educated choice of new drug targets is one of the main tasks
in pharmacology (Schenone et al., 2013). Experimental search
for new efficient drug targets is still time consuming, laborious,
and expensive (Haggarty et al., 2003), so since recently a
credit is frequently given to computational predictive algorithms
(Rifaioglu et al., 2018).

The history of computational prediction of drug targets began
with prediction of druggability based on the structure of targets
and biomedical text mining (Cheng et al., 2007; Zhu et al., 2007).
Several methods have been also proposed based on known links
between drugs and genes (Luo et al., 2017). Further development
of bioinformatic methods allowed to apply for this task a set of
systems approaches based on networks of molecular interactions
(Mani et al., 2008).
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FIGURE 4 | Mutation enrichment of Nectin adhesion pathway. The pathway is targeted by Idelalisib. The pathway structure is taken from the NCI database (Schaefer

et al., 2009). The mutation burden was visualized using Oncobox pathway plot tool. The color scale reflects mutation levels of the corresponding nodes on the

pathway graph. The green arrows indicate activation, red arrow—inhibition, bold black arrow indicates molecular target of Idelalisib.

Our results provide principal evidence that the mutation drug
scoring is applicable to ranking of anticancer drugs. On the other
hand, our data suggest that these drug scoring algorithms can
be applied for the identification of novel molecular targets for
the prospective anticancer drugs. Although many genes with
high MDS already serve as molecular targets of the approved
cancer drugs, there is a number of top MDS genes that are
not yet covered by the existing medications. This latter fraction
of genes, therefore, can be considered a source of potential
targets for new drug developments. For example, the following
top 100 MDS genes can be mentioned that are not yet covered
by approved or experimental cancer or antineoplastic drugs
[according to DrugBank (Law et al., 2014), DGIdb (Cotto
et al., 2018), FDA6, HMDB (Wishart et al., 2018), Tocris7,
GeneCards (Safran et al., 2010) databases]: GRB2, SOS1,SOS2,

6US Food andDrugAdministrationHome Page Available at: https://www.fda.gov/

[Accessed July 25, 2017].
7Tocris Bioscience Available at: https://www.tocris.com/ [Accessed December 21,

2018].

SHC1, GNB1, CREB1, GNG2, GNAQ, GNB5, GNAI2. Three of
them (GRB2, GNG2, CREB1) are the targets of approved non-
oncological drugs (Pegademase bovine, Naloxone, Adenosine
monophosphate, Citalopram, Halothane), thus illustrating MDS
method potential in drug repurposing.

This study can be regarded as proof-of concept trial of MDS
approach exemplified by bigger proportion of real cancer targets
among the genes with higherMDS values. In this application, we
assessed integral MDS for all cancer types. However, in further
applications the same approach can be used for any specific
tumor type or subtype to identify targets that may seem most
promising for this particular disease. This could be valuable, for
example, for drugs repurposing among the different tumor types
and for more effectively identifying the patient cohorts in clinical
trials

The present mutation drug scoring approach scores the
molecular pathway instability caused by accumulation of
mutations and ranks drugs according to a simple rationale—the
higher is mutation burden of a pathway, the greater may
be the efficiency of a drug targeting this pathway. We hope
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these findings will be interesting to those working in the
fields of oncology, drug discovery, systems biomedicine, high
throughput mutation data analysis, personalized medicine and
molecular diagnostics.
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The citrullination modification (Cit) of proteins has received increasing attention in recent

years. This kind of protein modification was first discovered in autoimmune diseases such

as rheumatoid arthritis. The citrullination modification process is catalyzed by the peptidyl

arginine deiminases (PADIs) family. A well-known citrullination of histone involves the

key mechanism of neutrophil extracellular traps (NETs) of inflammation in the peripheral

blood. Further studies revealed that citrullination modification of proteins also involves in

carcinogenesis in human being. Citrullinated proteins disturbed the stability of proteins

and caused DNA damages. There is increasing evidence that citrullinated proteins can

be used as potential targets for cancer diagnosis or treatment. This review introduces the

concept of citrullination modification of proteins, substrate proteins, examining methods

and biological significances.

Keywords: citrullination, proteins, histone, PADIs, molecular targets

INTRODUCTION

Proteins are the main executor of life activities. The epigenetics and post-translational modification
of proteins, such as phosphorylation, acetylation, glycosylation, methylation, ubiquitination and
citrullination have been found to play important roles on pathogenesis and carcinogenesis (1–3).
Citrullination of proteins is a new kind of post-translational modification, which has been reported
to be involved in large numbers of autoimmune diseases and cancers. This review focuses on
the mechanisms, regulation, and the clinical significance of citrullinated proteins in the field of
gastrointestinal diseases.

DEFINITION OF CITRULLINATED PROTEINS

Citrullination of protein refers to the process by which the peptidyl arginine residue is converted
to citrulline by a catalytic enzyme (Figure 1). Since this process is accompanied by the removal of
an amino group, it is also called a peptidyl arginine deamination reaction. This chemical reaction
is accompanied by a change in electrostatic charge, which may affect the folding state and function
of protein, especially on histones. To date, it has been confirmed that arginine residues of dozens
of proteins can undergo citrullination modifications. The substrates could be enolase, vimentin,
keratin, filaggrin, serine protease inhibitors, proteases and metabolic enzymes (4). Moreover,
arginine residues of histones such as H3R2/R8/R17/R26, H4R3, H2A, and H1 could be citrullinated
by peptidyl arginine deiminases (PADIs) (5–8).
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FIGURE 1 | The chemical conversion process of protein citrullination. In the

presence of calcium ions, PADIs could catalyze the formation of peptidyl

citrulline from peptidyl arginine, which removes an amino group, accompanied

by the positive charge becoming electrically neutral.

Citrullination of proteins is catalyzed by PADIs, which include
five isoenzymes (PADI1-4 and PADI6) in humans. The genes
of these five isozymes are located on chromosome 1p36.13. The
coding regions of PADIs are about 2k in size, and consist of
three parts: the nitrogen end, middle part and catalytic groups
of carbon end. Regarding the subcellular localization, the PADI4
is located in the nucleus with a nuclear localization signal,
while others are mainly localized in the cytosol (9) (Figure 2).
PADI2 had been shown to be undergoing nuclear translocation
in some cells for modifying histones (10). Therefore, citrullinated
modification of histones may catalyzed by PADI4 and PADI2.
The citrullination of proteins occurs in various life processes,
including regulation of gene expression, immune response and
protein degradation (10, 11). The citrullination of proteins is also
associated with carcinogenesis in the stomach (12, 13), the large
intestine (13–15), the pancreas (16), the liver (13), and so on.

CITRULLINATION OF NON-HISTONE
PROTEINS

Citrullination of proteins could be induced by chemical
compounds. Qu et al. reported that the antiparasitic drug
nitazoxanide could induce citrullination of protein β-catenin
in colorectal cancer cells via up-regulation of PADI2 enzyme.
Citrullination of β-catenin resulted in the instability of the
protein, and then inhibited the Wnt signaling pathway. ING4, a
tumor suppressor protein, was identified as a substrate of PADI4
enzyme. Citrullination of ING4 interfered with its interaction
with p53, and then decreased the tumor suppressor function
in colon cancer cells (17). On the other hand, some research
indicated that DNA damage induced PADI4, and then increased
the citrullination of NPM1 and lamine C, which inhibited cell
growth through the p53 pathway in colon cancer cells (18).
Cantarino and colleagues found that down-regulation of PADI2
is an early event in the pathogenesis of colorectal cancer and is
associated with poor prognosis (14). Overexpression of PADI2
inhibited cell growth and was accompanied with an increase

in citrullinated protein in colon cancer cells. Overexpression of
PADI2 did not increase cell apoptosis, but arrested the cell cycle
in G1 phase (15). The exact effect of citrullination of proteins on
cancer should be studied further.

Citrullination of proteins is not only detected in in vitro
experiments, but also in human blood. Ordóñez et al. (19)
reported that up-regulation of citrullinated antithrombin in
peripheral blood of patients with rheumatoid arthritis and
colorectal cancer predicted higher risk of thrombosis. Yuzhalin
et al. (20) found that PADI4 could be secreted into the
extracellular matrix by colorectal cancer cells, catalyzing the
citrullination of proteins, thereby promoting distant metastasis
of cancer cells to liver. Increased PADI4 could be found in the
peripheral blood of patients with various malignancies such as
gastric cancer, lung cancer, hepatocellular carcinoma, esophageal
squamous cell carcinoma and breast cancer (13, 21). Until now,
multiple proteins have been found as substrates of citrullination,
includingNF-κB p65 (22), CXCL8 (23), CXCL12 (24), E2F-1 (25),
GSK3β (26), MEK1 (27), VEGFR2 (28), and so on. Obviously,
citrullination of proteins involve double-sided roles in promoting
both inflammation and anti-inflammation, as well as cancer
promotion and inhibition.

CITRULLINATION OF HISTONE PROTEINS

Citrullinated modification of histones is an epigenetic event.
As introduced above, both PADI2 and PADI4 involve the
citrullination process of histones in the nucleus. Recently,
increased citrullinated histone H3 (H3Cit) has been considered a
novel prognostic blood marker in patients with advanced cancer,
due to its higher levels compared to healthy controls (29). PADI2
has been found playing an important role in mediating histone
H3Cit modification, and promoting disease progression in some
non-digestive cancers (30, 31). McNee et al. (32) found that
PADI2 could up-regulate IL-6 expression by catalyzingH3R26Cit
of bone marrow mesenchymal stem cells of multiple myeloma,
which ultimately lead to chemo-resistance to bortezomib. PADI4
is another important enzyme in catalyzing the citrullination of
histones. DNA damage could activate the PADI4-p53 network
and catalyze histone chaperone protein, nucleophosmin (NPM1)
(18). In addition, DNA damage could catalyze citrullination of
the arginine 3 residue of histone H4 (H4R3cit) through the
p53-PADI4 pathway in non-small cell lung cancer (33).

CITRULLINATION OF PROTEINS AND
IMMUNE RESPONSE

The immune system is a major weapon against cancer.
Citrullination of proteins exist widely in immune-related diseases
and cancers. Makrygiannakis and colleagues examined biopsy
tissues from rheumatoid arthritis, myositis, tonsillitis and
inflammatory bowel disease via immunohistochemistry. They
found that there is a significant increase in citrullinated proteins
in inflammatory tissues, compared to corresponding normal
controls (34). The immune system is composed of innate
immunity and acquired immunity. Neutrophils are a member of
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FIGURE 2 | The chromosome location and structural characteristics of PADIs family. Five PADIs genes (PADI 1, 2, 3, 4, and 6) are located in the p36.13 of

chromosome 1 across a region of approximately 500 k bases. PADIs members have similar structural regions, which can be divided into three sections: nitrogen zone,

middle zone, and carbon end catalytic zone. Only PADI4 contains a nuclear localization signal at the nitrogen end of sequence, implying that PADI4 may play a role in

the cell nucleus.

the cells of innate immunity. In process of clearing bacteria, the
neutrophils secrete cell DNA, histones, and intracellular proteins
to the extracellular space or circulatory system, forming so-
called neutrophil extracellular traps (NETs). The citrullination
of histones is involved in the process of NETs. In this process,
PADI4 mediates the citrullination of histones, and results
in the unwinding of DNA and subsequently excreting into
the extracellular space (35–37). NETs are a self-protective
mechanism against harmful bacteria. Recently, Thalin et al. found
that H3Cit was significantly increased in the peripheral blood
of advanced cancer patients (29). The proportion of H3Cit-
positive neutrophils was increased in more serious patients. The
expression level of H3Cit of serum was strongly correlated with
the neutrophil activation markers, such as neutrophil elastase,
myeloperoxidase and NETs-induced factors IL-6, as well as IL-
8. Therefore, H3Cit is considered a useful blood biomarker for
evaluating inflammatory response and prognosis in advanced
cancers. Up-regulation of NETs was also identified in pancreatic
ductal adenocarcinoma. The histone modification of H3Cit was

proposed as a marker of NETs (16). In the pancreas, stimulating
factors such as pancreatic juice could induce NETs in pancreatic

ducts. Excess in NETs blocks the pancreatic duct and eventually
causes pancreatitis (38).

In the cancer immunity area, the new epitopes caused by post-

translational modification of proteins may provide a novel target

for cancer-specific immune therapy. The condition of the cancer

microenvironment including nutrient deficiency, hypoxia, redox

stress and DNA damage could irritate active expression of PADIs,

and catalyze production of citrullinated peptides. Increased
content of citrullinated peptides may be a good target for the
immune system. The cancer-specific microenvironment could
induce the immune response by citrullinated peptides, and this
is non-toxic and safe to the host. Carbohydrate metabolizing
enzyme α-enolase is a substrate of citrullinated modification.
Cook et al. (39) found that citrullination significantly induced
elevation of α-enolase in Th1 immune cells, while unmodified
wild-type peptides of α-enolase did not show this efficacy.
Citrullinated peptides of α-enolase also induced CD4+ T
activation (40, 41). The results suggested that developing tumor
vaccines against citrullinated peptides of α-enolase may be a
useful strategy (39). The function of citrullinated protein epitope
has revealed promising utility in anti-cancer immunity.

DETECTION AND BIOLOGICAL
SIGNIFICANCE OF CITRULLINATION
MODIFICATION

Citrullination modification of proteins has been reported in
several fields of cancer research. Along with the progression
of biomedical techniques, detection and identification of
citrullinated proteins in complex biological systems becomes
more feasible. Clinically, the detection of anti-cyclic citrulline
antibody has been used as an assistive method for diagnosis
and monitoring clinical rheumatoid arthritis (42, 43). Since the
citrullination modification itself leads to 1Da mass change only,
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detection of the change of low abundance is still a challenging
work. Phenylglyoxal (PG) could be covalently bonded with
citrullinated residues specifically, and used for specific probes
of labeling citrullinated proteins. The reaction could be colored
by coupling dyes such as rhodamine (Rh) or biotin, and then
identified by ELISA or mass spectrometry (13, 21, 29, 42, 43).
By means of this technology, more and more antigens with
citrullinatedmodification could be found, which will provide new
targets for diagnosis and treatment of cancers.

In an animal experiment, Mohamed and colleagues found
that nanomaterials could induce production of citrullinated
protein and auto-antibodies in mice. In their study, after
injection of nickel nanowires into mice, the levels of citrullinated
protein and PADIs enzymes were elevated in the spleen,
kidney and lymph nodes of mice, implying a systemic response
to environmental materials (44). Their results suggested that
safety of the nanoparticles needs to be evaluated further.
Citrullination modification of proteins may be an important
event for the host to recognize foreign antigens. Citrullinated
proteins may be recognized as new antigens, and are promising
for targeted therapy or CAR-T/NK cell-specific recognition
targets.

Inhibitors of PADIs demonstrated strong potential of anti-
autoimmune and anti-cancer functions in vitro and in vivo.
PADI4 is the only member of the PADI family containing a
nuclear localization signal, and can citrullinate many substrates
including histones. PADI4 functions as a corepressor of p53
and cooperates with a histone deacetylase HDAC2 to repress
the expression of tumor suppressor genes. Chlor-amidine

(Cl-amidine) is a pan-PADI inhibitor that shows inhibitory
effects on several members of PADIs family. However, its
higher IC50 (150–200 µM) limit its preclinical exploration
in cancer study and treatment (44–47). Recently, Wang and
colleagues found a lead compound, YW3-56, which could
activate a cohort of p53 target genes, and realize inhibitory
efficacy on the mTORC1 signaling pathway, thereby disturbing
autophagy and inhibiting cancerous cell growth (45). However,
since the feature of a pan-PADIs inhibitor, Cl-amidine, is
still be used in experimental study (48), and many new
small molecule inhibitors of PADI4 are being developed by
pharmacologists (49).

In summary, compared to other modification of proteins,
citrullination modification is relatively novel. The exact
regulatory mechanisms and biological significance in
carcinogenesis are largely unclear. As shown in Figure 3, many
substrates of citrullination modification are very important
in life processes and development of cancers. The accurate
identification of citrullination sites may help researchers to
elucidate the underlying molecular mechanisms of citrullination
and designing drugs for related human diseases. Several groups
made efforts to predict citrullination sites by bioinformatics.
Ju and Wang (50) provided a user-friendly web-server for
CKSAAP_CitrSite. Zhang et al. (51) published their pioneering
work of maximum-relevance-minimum-redundancy to analyze
citrullination sites, and constructed classifier by random
forest algorithm. We believe that in citrullination research
area, bioinformatics will provide some useful insights and
assistance.

FIGURE 3 | The schematic presentation of citrullinated modification of proteins and its biological significance. PADIs enzymes are activated through receptors of

ER/EGFR/HER2, oxidative stress, hypoxia, and other microenvironment factors, which initiate autophagy and DNA damage. Increased PADIs catalyze citrullination

modification of histones and non-histone proteins, and result in cell proliferation, epithelial-mesenchymal transition, migration, and inflammation. Citrullinated proteins

as a new antigen may activate immune response of T cells or induce specific antibodies.
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Micelles are highly attractive nano-drug delivery systems for targeted cancer therapy.
While they have been demonstrated to significantly alleviate the side-effects of their
cargo drugs, the therapy outcomes are usually suboptimal partially due to ineffective
drug release and endosome entrapment. Stimulus-responsive nanoparticles have
allowed controlled drug release in a smart fashion, and we want to use this concept
to design novel micelles. Herein, we reported pH-sensitive paclitaxel (PTX)-loaded poly
(ethylene glycol)-phenylhydrazone-dilaurate (PEG-BHyd-dC12) micelles (PEG-BHyd-
dC12/PTX). The micelles were spherical, with an average particle size of ∼135 nm
and a uniform size distribution. The pH-responsive properties of the micelles were
certified by both colloidal stability and drug release profile, where the particle size was
strikingly increased accompanied by faster drug release as pH decreased from 7.4 to
5.5. As a result, the micelles exhibited much stronger cytotoxicity than the pH-insensitive
counterpart micelles against various types of cancer cells due to the hydrolysis of
the building block polymers and subsequent rapid PTX release. Overall, these results
demonstrate that the PEG-BHyd-dC12 micelle is a promising drug delivery system for
cancer therapy.

Keywords: pH-sensitive, micelles, cancer, paclitaxel, endosomal escape

INTRODUCTION

With the development of nanotechnology, various materials such as polymers, lipid, and metals
(oxides), have been widely applied to design drug delivery system, especially for cancer therapy
(Farokhzad and Langer, 2009). Nanoparticles based on the above materials have been demonstrated
to realize controlled drug release and effectively targeting drug delivery (Wilczewska et al., 2012).
To this end, micelles composed of amphipathic copolymers have received wide attention owing
to their attractive features, such as small and uniform size, tumor targeting ability via the
enhanced permeability and retention (EPR) effect, high stability in aqueous solution and excellent
biocompatibility (Felber et al., 2012; Liu J. et al., 2014; Wang et al., 2018).

However, albeit with the extensive research efforts, the clinical translations of micelles from
bench to bedsides are rather limited, partially due to their suboptimal therapy outcomes caused by
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the inefficient drug release at the tumor site and the endosomal
entrapment of micelles (Kanamala et al., 2016). Plain micelles
exhibit relatively slow drug release rate, which may result in
ineffective drug concentration inside targeted cells (Wu et al.,
2013). To mitigate these issues, smarter micelles are desired to be
equipped with endosomal escape and rapid drug release abilities,
which could be able to provide sufficient drug concentration for
effective killing of the tumor cells.

To achieve such goals, environmentally sensitive polymers
that can respond to different stimuli to trigger drug release have
been extensively investigated, such as light (Liu et al., 2012; Cao
et al., 2013), temperature (Kim et al., 2010; Wang et al., 2014),
ultrasound (Yin et al., 2013; Ahmed et al., 2015), magnetic field
(Ao et al., 2014; Deng et al., 2015), pH (Liu Y. et al., 2014; Yuba
et al., 2017), redox properties (Yin et al., 2015; Zhang et al., 2016),
and enzyme activity (Rao and Khan, 2013; Harnoy et al., 2014).
Among of them, the pH-sensitive polymeric micelle appears to
be a highly appealing candidate due to the intrinsic differences
between solid tumors and the surrounding normal tissues in
terms of their relative acidity. The pH-sensitive polymer micelles
were devised based on copolymers composed of hydrophobic
and hydrophilic polymers linked via acid-liable bonds, including
hydrazone (Mo et al., 2012), benzoic imine (Yuan et al., 2012),
oxime (Liu B. et al., 2014), acetal (Li et al., 2016), ester (Gao
et al., 2018) and orthoester (Tang et al., 2011). Hydrolysis of the
acid-labile bonds leads to rapid drug release at an acidic pH.

Herein, we synthesized the amphiphilic polymer PEG-BHyd-
dC12 via an acid-labile hydrazone bond and constructed pH-
responsive micelles. The hydrophilic PEG segment on micelles
surface affords high colloidal stability in vitro and long circulation
time in vivo, while it is readily departed from micelles at the
tumor site under acid conditions, which is beneficial for cellular
uptake (Du et al., 2011). Paclitaxel (PTX), one of the most
effective antitumor drugs, was encapsulated into micelles due to
its hydrophobic nature, and released in a pH-responsive manner.
For comparison, the pH-insensitive counterpart polymer of PEG-
BAmi-dC12 was also synthesized for micelles preparation. The
physicochemical characterization, colloidal stability, drug release,
cellular uptake, and in vitro cytotoxicity of the micelles were
evaluated.

MATERIALS AND METHODS

Chemicals and Reagents
Paclitaxel (PTX), 1-ethyl-3-[3-dimethylaminopropyl]
carbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide
(NHS), 4-dimethylaminopyridine (DMAP), lauroyl chloride,
α-methoxy-x-amino-poly(ethylene glycol) (Mn = 2000) (MeO-
PEG2000-NH2) were purchased from Shanghai Aladdin Reagent
Co. Ltd. (Shanghai, China). mPEG-hydrazide (Mn = 2000)
was from Seebio Biotech, Inc. (Shanghai, China), and 3,5-
dihydroxybenzaldehyde was from Bide Pharmatech Ltd.
(Shanghai, China). 3,5-Dihydroxybenzoic acid was obtained
from Saen Chemical Technology Co. Ltd. (Shanghai, China).
Potassium hydroxide (KOH), tetrahydrofuran (THF), dimethyl
sulfoxide (DMSO), petroleum ether, ethyl acetate were purchased

from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT), coumarine (Cou-6) and 4′,6-diamidino-2-phenylindole
(DAPI) were obtained from Sigma-Aldrich Co. (St. Louis, MO,
United States). Lysotracker red was supplied from Beyotime
Institute of Biotechnology (Jiangsu, China). Dulbecco’s modified
Eagle’s medium (DMEM), RPMI 1640, penicillin, streptomycin,
phosphate buffered saline (PBS), fetal bovine serum (FBS)
were purchased from Gibco Life Technologies, Inc. (Carlsbad,
CA, United States). Human lung cancer cells (A549), human
breast cancer cells (MDA-MB-231), human ovarian cancer cells
(A2780) were obtained from Xiangya cell center (Changsha,
China). PTX-resistant human lung cancer cells (A549/T) was
bought from Gefan Biotechnology Co., Ltd. (Shanghai, China).

Synthesis of the pH-Sensitive Copolymer
PEG-BHyd-dC12
3,5-Dihydroxybenzaldehyde was dissolved in THF, followed by
the addition of KOH. Lauroyl chloride was added dropwise into
the above mixture and vigorously stirred for 6 h to yield 3,5-
dilaurate benzaldehyde. The purified 3,5-dilaurate benzaldehyde
and mPEG-hydrazide were dissolved in ethyl alcohol and stirred
for 24 h. After purification, the final amphiphilic polymer PEG-
BHyd-dC12 was obtained.

Synthesis of the pH-Insensitive
Copolymer PEG-BAmi-dC12
First, lauroyl chloride was added dropwise to a mixture of 3,5-
dihydroxybenzoic acid with KOH in anhydrous acetone at 0◦C
under stirring to obtain 3,5-dilaurate benzoic acid. Then, 3,5-
dilaurate benzoic acid, EDC, DMAP and NHS were dissolved
into DMSO and stirred at room temperature for 2 h, followed
by the addition of MeO-PEG2000-NH2. The resulting solution
was dialyzed and subsequently lyophilized to obtain PEG-BAmi-
dC12.

Characterization of Copolymers
The 1H-NMR spectra of PEG-BHyd-dC12 and PEG-BAmi-
dC12 were recorded using a Bruker Avance 400 MHz NMR
spectrometer (Varian, United States) with deuterated chloroform
(CDCl3) as the solvent. The self-assembly behavior of polymers
was investigated by the fluorescence probe technique (Xiong
et al., 2017). First, 100 µL of pyrene in acetone (2.9× 10−2 mM)
was evaporated to form a thin film on the flask bottom. Then,
various concentrations of polymer solutions (from 0.1 µg/mL to
200 µg/mL) were added to the pyrene-coated vials and stored in
the dark overnight. The fluorescence intensity ratio of I337/I334 in
the emission spectra of pyrene was calculated and plotted against
the logarithm of the polymer concentrations. The CMC value
was obtained based on the fluorescence excitation spectra of the
mixed solution.

Preparation of Micelles
PTX-loaded micelles were prepared by a thin-film hydration
method. In brief, PEG-BHyd-dC12 or PEG-BAmi-dC12 (20.0 mg)
and PTX (1 mg) were dissolved in dichloromethane (4 mL).
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The solution was evaporated under reduced pressure to form
a uniform film. Deionized water (10 mL) was added and
rotated for another 1 h. The obtained colloidal solution
was then centrifuged at 3,000 rpm for 10 min and filtered
through 0.45 µm pore size filter, followed by lyophilization.
Blank micelles were prepared in a similar way in the absence
of PTX.

Characterization of Micelles
The particle size, PDI, and zeta potential measurement were
determined by dynamic light scattering (DLS) method using a
Malvern Zeta Sizer Nano series (Nano ZS, Malvern Instruments,
United Kingdom) at 25◦C. The morphologies of the micelles were
observed using transmission electron microscopy (TEM) (Titan
G2-F20, FEI, United States).

The determination of PTX was carried out using a high-
performance liquid chromatography (HPLC) system (LC-2010,
Shimadzu, Tokyo, Japan). The chromatographic column was an
ODS C18 (250 × 4.6 mm, 5 µm, Diamonsil, Beijing, China).
The mobile phase consisted of mixtures of acetonitrile and
water (55:45, v/v). The flow rate was 1 mL·min−1, and the
detection wavelength was 227 nm. Micelles were centrifuged in
an ultrafiltration tube (MWCO 10 kDa) at 5,000 rpm for 10 min
and filtered through 0.22 µm filter to remove the unloaded
PTX. PTX-loaded micelles were disrupted by methanol. The
PTX loading content (LC) and encapsulated efficiency (EE) were
calculated using the following formulae:

EE (%) = Amount of PTX in micelles/

Amount of PTX fed initially × 100%

LC (%) = Amount of PTX in micelles/

Amount of PTX-loaded micelles × 100%

Colloidal Stability
Micelles were incubated with 10% FBS or 10 mM phosphate
buffer solutions (pH 7.4, 6.5, and 5.5) at 37◦C for 72 h, and the
size was measured by DLS at different intervals.

In vitro Drug Release
The release study was assessed by the dialysis method. The
release media was PBS solutions containing 0.5% Tween-80 with
different pH values (5.5, 6.5, and 7.4). Typically, 2 mL of PTX-
loaded micelles was placed in a dialysis bag (MWCO 3500) and
dialyzed against 25 mL of buffer medium under mechanical
shaking (100 rpm) at 37◦C. At predetermined time intervals,
2 mL of release medium was withdrawn and replenished with an
equal volume of fresh medium. The released PTX was detected by
HPLC.

Cell Culture
A549 and A549/T cells were maintained in RPMI 1640
medium supplemented with 10% FBS, penicillin (50 U/mL)
and streptomycin (50 U/mL) in a 5% CO2 atmosphere at

37◦C. MDA-MB-231 and A2780 were maintained in DMEM
medium supplemented with 10% FBS, penicillin (50 U/mL) and
streptomycin (50 U/mL) in a 5% CO2 atmosphere at 37◦C.

Intracellular Distribution
Cou-6 loaded micelles were constructed according to the above
method, except the drug was replaced with Cou-6. A549 cells
were seeded on glass coverslips in the 24-well plates at a density
of 4 × 104 per well. After culturing for 24 h, Cou-6 loaded
micelles ([Cou-6] = 200 ng/mL) were added and incubated for
1 h. Alternatively, the cells were incubated with Cou-6 loaded
micelles for 1 h, then washed and cultured in fresh media
for another 3 h. Then, the medium was replaced with 70 nM
lysotracker red and incubated for another 1 h. Afterward, the
cells were fixed with 4% formaldehyde for 20 min at room
temperature and visualized using a CLSM (LSM 780, Carl Zeiss,
Jena, German).

Cellular Uptake
A549 cells were seeded in 6-well plates with a density of 3 × 105

cells per well and incubated overnight, and then, the medium was
replaced with Cou-6 loaded micelles at final Cou-6 concentration
of 200 ng/mL. After 1 h or 4 h of incubation, the cells were
harvested and quantified by flow cytometry (FACSVerse, BD,
United States).

Cytotoxicity Assay
The cytotoxicity of micelles with or without an anticancer
drug was determined by MTT assay. The cells were seeded
in a 96-well plate at a density of 6,000 cells per well and
maintained for 24 h. The medium was then replaced with
the micelles and further incubated for 72 h. Then, 20 µL
of MTT solution (5 mg/mL) was added to each well of the
plate for another 4 h. Subsequently, 100 µL of DMSO was
added to dissolve the formazan crystals, and the absorbance
was measured at 570 nm by a microplate reader (ELX800,
Bio-Tek, United States). The untreated cells were used as
controls.

Hemolysis Tests
The hemocompatibility of micelles was evaluated by hemolysis
assay (Yang et al., 2016). First, fresh rabbit blood was extracted
from the heart of a rabbit. Subsequently, erythrocytes were
obtained by centrifugation at 3,000 rpm for 15 min and washed
with normal saline (NS). Serial dilutions of micelles were then
added to the 2% erythrocytes (v/v) and incubated for 2 h at
37◦C in a thermostatic water bath. Finally, the mixtures were
centrifuged at 3,500 rpm for 15 min, and the supernatant of
all samples was measured for UV absorbance (A) at 540 nm.
NS and 0.5% Triton X-100 were regarded as the negative and
positive controls, respectively. The hemolysis ratio was calculated
as follows:

Hemolysis (%) = (Asample − Acontrol(−))/

(Acontrol(+) − Acontrol(−))
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Statistical Analysis
The data were expressed as the mean ± standard deviation (SD).
Statistical analysis was performed using a two-tailed Student’s
t-test and analysis of variance (ANOVA) with the aid of SPSS
23.0 software. Differences were considered statistically significant
when p-values were less than 0.05.

RESULTS AND DISCUSSION

Synthesis and Characterizations of
Copolymers
The synthesis schemes of PEG-BHyd-dC12 and PEG-BAmi-
dC12 were illustrated in Figures 1A,B. To synthesize the PEG-
BHyd-dC12 di-block amphiphilic polymer, the hydrophobic
fragment of 3,5-dilaurate benzaldehyde was conjugated with the
hydrophilic fragment of PEG through the linkage of hydrazone.
The 3,5-dihydroxybenzaldehyde was first reacted with lauroyl
chloride to form a 3,5-dilaurate benzaldehyde intermediate
with a yield of 90%, and then the aldehyde group on 3,5-
dilaurate benzaldehyde reacted with the hydrazine groups on
mPEG-hydrazide to give PEG-BHyd-dC12 with a final yield
was 69%. All of the synthetic compounds were characterized
by 1H-NMR spectra (Figures 1C,D), which were in good
agreement with their depicted structures as described in the
following:

1H NMR of intermediate compound 3,5-dilaurate
benzaldehyde: 1H NMR (400 MHz, CDCl3) δ (ppm) 0.91
(6H, t, -CH3), 1.21–1.45 (32H, m, -(CH2)n), 1.75 (4H, m,
CO-βH), 2,59 (4H, t, CO-αH), 7.20 (1H, t, 4-ArH), 7.52 (2H, d,
2,6-ArH), 9.98 (1H, s, -CHO).

1H NMR of PEG-BHyd-dC12: 1H NMR (400 MHz, CDCl3) δ

(ppm) 0.89 (6H, t, -CH3), 1.22–1.45 (32H, m, -(CH2)n), 1.74 (4H,
m, CO-βH), 2,54 (4H, t, CO-αH), 3.39 (3H, s, -OCH3 from PEG),
3.50–3.84 ((-OCH2CH2-)n), 4.19 (2H, s, CO-αH, from PEG), 6.94
(1H, t, 4-ArH), 7.41 (2H, d, 2,6-ArH), 8.24 (1H, s, -NH), 10.5 (1H,
s, -CH = N).

As for PEG-BHyd-dC12, the characteristic peaks at 3.5–
3.84 ppm were from PEG, and the proton peak at 10.5 ppm
indicated the formation of the hydrazone bond. In addition,
the absence of proton peak of aldehyde (9.98 ppm) suggested
that free 3,5-dilaurate benzaldehyde was removed in the purified
PEG-BHyd-dC12.

1H NMR of intermediate compound 3,5-dilaurate benzoic
acid: 1H NMR (400 MHz, CDCl3) δ (ppm) 0.90 (6H, t, -CH3),
1.21–1.44 (32H, m, -(CH2)n), 1.71 (4H, m, CO-βH), 2,61 (4H, t,
CO-αH), 7.20 (1H, t, 4-ArH), 7.72 (2H, d, 2,6-ArH).

1H NMR of PEG-BAmi-dC12: 1H NMR (400 MHz, CDCl3)
δ (ppm) 0.90 (6H, t, -CH3), 1.22–1.45 (32H, m, -(CH2)n), 1.75
(4H, m, CO-βH), 2,58 (4H, t, CO-αH), 3.40 (3H, s, -OCH3 from
PEG), 3.50–3.84 ((-OCH2CH2-)n), 7.06 (1H, t, 4-ArH), 7.45 (2H,
d, 2, 6-ArH), 7.79 (1H, d, -CONH).

The characteristic peaks of PEG (3.50–3.84 ppm) were
obvious, and the peak of new amide bond can be seen at 7.79 ppm
for PEG-BAmi-dC12.

CMC Measurement
As amphiphilic materials, a key parameter for their applications
as a nanocarrier is their CMC. Micelles can be formed at
concentrations above the CMC. The CMC values of PEG-BHyd-
dC12 and PEG-BAmi-dC12 were determined by a well-established
method using pyrene as a fluorescence probe, resulting in

FIGURE 1 | Synthesis and characterization of PEG-BHyd-dC12 (A,C) and PEG-BAmi-dC12 (B,D). The synthesis of PEG-BHyd-dC12 (A) and PEG-BAmi-dC12

(B), H1-NMR spectrum of PEG-BHyd-dC12 (C), and PEG-BAmi-dC12 (D).
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7.5 µg/mL for PEG-BHyd-dC12 and 5.6 µg/mL for PEG-BAmi-
dC12 (Figure 2). These CMC values were within the typical
concentration range for most polymeric micelle CMCs, which
can be directly applied in vivo (Maysinger et al., 2007; Diezi
et al., 2010; Owen et al., 2012). It is reasonable that these two
polymers have comparable CMC values, as their structures are
nearly identical; they only differed at the junction between the
hydrophobic and hydrophilic blocks (one with a hydrazone bond

FIGURE 2 | The CMC curve of PEG-BHyd-dC12 and PEG-BAmi-dC12.

and the other with an amide bond). Therefore, PEG-BAmi-dC12
is an excellent control to study the pH-responsive property of
PEG-BHyd-dC12 for drug delivery.

Preparation and Characterization of
Micelles
From the above experiments, we have demonstrated that
both PEG-BHyd-dC12 and PEG-BAmi-dC12 were able to self-
assemble into micelles at very low concentrations, implying
their applicability for the development of a nano-drug delivery
system. We next used these polymers to prepare micelles, and
the hydrophobic PTX was used a model to encapsulate into
the hydrophobic core of the micelles (Figure 3A). The pH-
sensitive micelles (PEG-BHyd-dC12/PTX) were prepared using a
standard thin-film hydration method. After removing the organic
solvents, the solution appeared to be semi-transparent with
light-blue opalescence (Inset in Figure 3B, left), suggesting the
successful preparation of nano-sized micelles. The particle size
was approximately 135 nm as determined by DLS (Figure 3B,
left); this size is suitable for passive accumulation in the tumor
tissue through the EPR effect (Danhier et al., 2010). From TEM,
the micelles were well dispersed with spherical morphology (Inset
in Figure 3B, left). The LC efficiency of PEG-BHyd-dC12/PTX
was 3% (Figure 3C), which was comparable to many other
PTX-loading micelles reported previously, and was sufficient for
subsequent in vitro/in vivo therapeutic applications (Lee et al.,
2003; Zhu et al., 2010; Mei et al., 2015).

FIGURE 3 | Preparation and characterization of micelles. Schematic preparation (A), appearance, size distribution, and TEM images (B, left presents
PEG-BHyd-dC12/PTX, right presents PEG-BAmi-dC12/PTX), characterization (C). Data were presented as mean ± standard deviation (SD; n = 3).
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By using the same method, the pH-insensitive PEG-BAmi-
dC12/PTX micelles were also prepared and characterized
(Figure 3B, right; Figure 3C). Interestingly, these two types
of micelles displayed quite similar properties in terms of
appearance, particle size, morphology and drug loading
efficiency. Therefore, a parallel comparison between these
micelles can be made for their in vitro/in vivo biological
performance, which can be rationalized by the pH-responsive
bond linkage.

Colloidal Stability
The colloidal stability of the micelles was first studied under
different buffer solutions. Interestingly, with pH decrease from
7.4 to 6.5 and 5.5, the particle size of PEG-BHyd-dC12/PTX
markedly increased, while it remained unchanged for PEG-
BAmi-dC12/PTX (Figure 4A). This can be rationalized by the
pH-responsive property of the PEG-BHyd-dC12/PTX, which
could swell and then collapse at lower pH (Li et al., 2016; Qiu
et al., 2017). We also challenged the micelles with 10% FBS, and
both types of micelles were quite stable even after 72 h incubation
(Figure 4B). Therefore, the pH-sensitive micelles were stable in
blood circulation and can rapidly collapse to release the payload
under acidic conditions.

In vitro Drug Release
The release behavior of PTX from polymeric micelles was
evaluated under various conditions at 37◦C. Different buffer
solutions were employed to simulate the micro-environment
of the blood circulation (pH 7.4), tumor tissue (pH 6.5),
and endosome (pH 5.5). We first studied the performance
of pH-sensitive PEG-BHyd-dC12/PTX micelles. At pH 7.4,
almost no PTX was released in the initial 4 h, which was
followed by a sustained release phase with only 38% PTX
release after 48 h (Figure 5A, black trace). Therefore, the
micelles can stably encapsulate PTX for a long time, which
is important for decreasing the side effects and increasing
the drug accumulation in tumor sites. By lowering the pH
to 6.5, a notable increase in drug release was observed
at each time point (Figure 5A, blue trace). With further
decrease of the pH to 5.5, the micelles showed an even
higher rate of drug release (Figure 5A, red trace). After 48 h,
the cumulative drug release was 50% and 65%, respectively,
significantly higher than that at pH 7.4 (∼40%), indicating
a good pH-responsive capability. This pH-responsive drug
release profile can be ascribed to the hydrazone bond between
the hydrophilic and hydrophobic chains of the polymer. As
the pH decreases, the hydrazone bond tends to hydrolyse

FIGURE 4 | Colloidal stability of micelles. Size change of PEG-BHyd-dC12/PTX micelles and PEG-BAmi-dC12/PTX micelles in phosphate buffers with different pH
values (A) and 10% FBS (B) at 37◦C for 72 h. The pHs were buffered by disodium hydrogen phosphate and sodium dihydrogen phosphate with total phosphate
concentration of 10 mM. Data were shown as mean ± SD (n = 3). ∗p < 0.05.

FIGURE 5 | Release profiles of PEG-BHyd-dC12/PTX micelles (A) and PEG-BAmi-dC12/PTX micelles (B) at different pHs at 37◦C. The pHs were buffered by
disodium hydrogen phosphate and sodium dihydrogen phosphate with total phosphate concentration of 10 mM. Data were shown as mean ± SD (n = 3).
∗p < 0.05, ∗∗p < 0.01.
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and thus the micelles collapse, resulting in burst drug
release.

As a control, we also performed the drug release experiment
with pH-insensitive PEG-BAmi-dC12/PTX micelles. In this case,

slow and sustained drug release was seen under different
conditions, and pH had little effect on the rate of drug
release, giving a cumulative drug release of less than 40%
after 48 h (Figure 5B). Considering the structural difference

FIGURE 6 | Cellular uptake studies of PEG-BHyd-dC12/Cou-6 and PEG-BAmi-dC12/Cou-6 in A549 cells by using CLSM (A), flow cytometry (B), fluorescence
intensities quantified from B (C). The (a) indicated PEG-BAmi-dC12/Cou-6 while the (b) represented PEG-BHyd-dC12/Cou-6. The scale bar is 25 µm.

FIGURE 7 | Cell viability of blank micelles after incubating with A549 (A), A549/T (B), MDA-MB-231 (C), and A2780 (D) cells for 72 h. Data were shown as
mean ± SD (n = 4).
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FIGURE 8 | Cell viability of PTX-loaded micelles and free PTX after incubating with A549 (A), A549/T (B), MDA-MB-231 (C), and A2780 (D) cells for 72 h. Data were
shown as mean ± SD (n = 4).

FIGURE 9 | Compatibility studies of micelles (pH 7.4). PEG-BHyd-dC12 (A) and PEG-BAmi-dC12 (B). “+” represents positive control by using 0.5% Triton X-100,
and “–” represents negative control of non-treatment.

TABLE 1 | IC50 value of the micelles and free PTX to A549, A549/T,
MDA-MB-231, and A2780 cells for 72 h incubation (mean ± SD, n = 4).

IC50 (µg/mL)

A549 A549/T MDB-MA-231 A2780

PTX 1.87 ± 0.08 11.17 ± 1.15 2.99 ± 0.37 2.01 ± 0.04

PEG-BHyd-
dC12/PTX

0.57 ± 0.16∗N 3.04 ± 1.13∗N 1.16 ± 0.06∗N 0.75 ± 0.08∗∗N

PEG-BAmi-
dC12/PTX

1.10 ± 0.06# 6.77 ± 0.30# 1.64 ± 0.13# 1.33 ± 0.13#

PTX vs. PEG-BHyd-dC12/PTX, ∗p < 0.05, ∗∗p < 0.01; PTX vs. PEG-BAmi-
dC12/PTX, #p < 0.05; PEG-BHyd-dC12/PTX vs. PEG-BAmi-dC12/PTX, Np < 0.05.

between PEG-BHyd-dC12/PTX and PEG-BAmi-dC12/PTX, these
results further demonstrated critical role of the hydrazone

bond for the pH-sensitive property of the PEG-BHyd-dC12/PTX
micelles.

Intracellular Uptake Study
Having demonstrated the pH-responsive property of the PEG-
BAmi-dC12/PTX micelles, we next studied the performance of
the micelles inside cells. To conveniently track the micelles inside
cells, Cou-6 (a hydrophobic green fluorophore) instead of PTX
was encapsulated into micelles, and the acidic organelles (i.e.,
lysosomes and endosomes) were stained by Lysotracker red.
A549 cancer cell line was used as a model since PTX has been
widely used in clinic for lung cancer therapy (Singla et al., 2002).
From confocal laser scanning microscopy (CLSM), substantial
green fluorescence was observed for both types of micelles after
1 h incubation (Figure 6A), indicating a high level of cellular
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internalization. To visualize the co-localization of micelles and
endo/lysosomes, we merged the green and red channels, and
the emergence of orange spots indicated the localization of
micelles in the endo/lysosomes. Both PEG-BHyd-dC12/Cou-6
and PEG-BAmi-dC12/Cou-6 micelles showed obvious spots after
1 h of incubation, consistent with the endocytosis pathway of the
micelles (Zhang et al., 2017).

We next studied the intracellular performance of the micelles.
To do this, the cells were washed and cultured in fresh
media so that further internalization of micelles was avoided.
After 4 h incubation, the pH-insensitive micelles were still
largely entrapped into the endo/lysosomes. In contrast, the
orange spots of pH-sensitive micelles were weakened, and green
color was evenly distributed throughout the cytoplasm, which
showed minimal co-localization with the red fluorescence of the
endo/lysosomes. The micelles detached from endosome due to
hydrolysis of copolymer under acidic organelles, which facilitated
efficient release of drug. Therefore, successful endo/lysosomal
escape of pH-sensitive micelles was indicated. It is known
that the successful escape of a nano-delivery system from
the intracellular endosome/lysosome for drug release is a key
issue in determining their therapeutic efficiency (Qiu et al.,
2017). After cellular uptake, micelles were first entrapped into
endosome/lysosome (Chou et al., 2011; Varkouhi et al., 2011).
Once entering the endo/lysosomes, the pH-sensitive micelles
were disassembled because of pH-triggered hydrolysis of the
acid-labile chemical linkage, and the drug rapidly escaped from
the endosome/lysosome, resulting in pH-triggered intracellular
burst release (Fang et al., 2016).

To have a quantitative understanding, we next performed flow
cytometry experiments to study the uptake of micelles by A549
cells (Figures 6B,C). After 1 h incubation, there was no difference
in intensity between pH-sensitive and pH-insensitive micelles.
Interestingly, after 4 h, the fluorescence from pH-responsive
micelles was considerably higher than that of pH-insensitive
micelles (Figure 6C), in agreement with a previous report (Qiu
et al., 2017). While the pH-responsiveness of micelles has little
effect on cell uptake process, the relative lower fluorescence
for PEG-BAmi-dC12/PTX was likely due to the efflux of the
micelles from cells to medium. As has been demonstrated, the
endo/lysosome entrapped micelles can be pumped out by ATP-
binding cassette protein B1 (ABCB1) transporter (Sakai-Kato
et al., 2012). Since the pH-responsive micelles collapse faster in
endo/lysosome, relatively less micelles were cleared from cells by
this pump-out process, resulting in stronger fluorescence inside
cells.

Cytotoxicity Assay
Cytotoxicity studies were performed by incubating micelles with
different types of cells for 72 h, and cell viability was measured
by MTT assay. The cytotoxicity of the polymers was tested by
incubating the cells with blank micelles (without PTX loading),
and all types of cells remained >90% viability with concentration
up to 800 µg/mL, indicating high biocompatibility (Figure 7).
As for A549, at the highest PTX concentration (16 µg/mL), the
viabilities of cells incubated with PEG-BHyd-dC12/PTX, PEG-
BAmi-dC12/PTX and free PTX dropped to 11%, 22%, and 28%,

respectively, showing high toxicity to cancer cells (Figure 8A).
The anti-cancer capability was quantified by measuring the
half-maximal inhibitory concentration (IC50), which was in
order of PEG-BHyd-dC12/PTX (0.57 µg/mL) < PEG-BAmi-
dC12/PTX (1.1 µg/mL) < free PTX (1.87 µg/mL) (Table 1).
Therefore, PEG-BHyd-dC12/PTX exhibited the highest activity,
which was attributable to the pH-responsive property for
rapid endo/lysosome drug escape to enhance the antitumor
effect.

To test the generality, we further performed the anti-
tumor assay by using MDA-MB-231 and A2780 cells, and
analogous results were observed (Figures 8C,D). The PEG-
BHyd-dC12/PTX displayed the best anti-cancer activity, followed
by PEG-BAmi-dC12/PTX and then free PTX. Therefore, such
micelles can be implemented for different types of cancer therapy.
As one limitation of PTX for long-term cancer treatment is the
acquired drug resistance by cancer cells (Yusuf et al., 2003),
we also tested whether the nano-systems could reverse drug
resistance by using PTX-resistant A549/T cells as a proof-
of-concept. The cytotoxicity of PTX and micelles was also
dose dependent (Figure 8B), while the overall IC50 value was
much higher due to the drug resistance (Table 1). Notably,
cytotoxicity of PEG-BHyd-dC12/PTX was 3.7-fold higher than
that of free PTX, which may be useful to reverse drug
resistance.

Hemolysis Assay
The biocompatibility of polymeric micelles is the prerequisite
for biomedical application. We studied this property by using
hemolysis assay. Typically, the micelles were incubated with
erythrocytes, and the release of hemoglobin was measured to
quantify the erythrocyte-damaging properties (Nogueira et al.,
2013). The positive control of 0.5% Triton X-100 showed obvious
hemolysis, as high as 100%, while the micelles produced less than
2% at different concentration (Figure 9). Therefore, the micelles
were highly biocompatible and can be directly administrated by
intravenous injection.

CONCLUSION

In this work, pH-sensitive PTX-loaded PEG-BHyd-dC12 micelles
were constructed and characterized. These nanoparticles
exhibited pH-dependent drug release profile and endosomal
escape ability after intracellular delivery, and displayed
enhanced anti-tumor activity compared with the pH-insensitive
counterpart micelles and the free PTX. All of these results
suggested that the PEG-BHyd-dC12 micelles-based drug
delivery system is a promising drug carrier for targeted cancer
treatment.
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Microtubules are important drug targets in tumor cells, owing to their role in
supporting and determining the cell shape, organelle movement and cell division.
The complementarity-determining regions (CDRs) of immunoglobulins have been
reported to be a source of anti-tumor peptide sequences, independently of the
original antibody specificity for a given antigen. We found that, the anti-Lewis B
mAb light-chain CDR1 synthetic peptide Rb44, interacted with microtubules and
induced depolymerization, with subsequent degradation of actin filaments, leading to
depolarization of mitochondrial membrane-potential, increase of ROS, cell cycle arrest
at G2/M, cleavage of caspase-9, caspase-3 and PARP, upregulation of Bax and
downregulation of Bcl-2, altogether resulting in intrinsic apoptosis of melanoma cells.
The in vitro inhibition of angiogenesis was also an Rb44 effect. Peritumoral injection
of Rb44L1 delayed growth of subcutaneously grafted melanoma cells in a syngeneic
mouse model. L1-CDRs from immunoglobulins and their interactions with tubulin-dimers
were explored to interpret effects on microtubule stability. The opening motion of tubulin
monomers allowed for efficient L1-CDR docking, impairment of dimer formation and
microtubule dissociation. We conclude that Rb44 VL-CDR1 is a novel peptide that acts
on melanoma microtubule network causing cell apoptosis in vitro and melanoma growth
inhibition in vivo.

Keywords: metastatic melanoma, microtubule, tubulin, peptide, complementarity-determining region, apoptosis

INTRODUCTION

The polymerization dynamics of cytoskeleton molecules is crucial to the survival and to the
energetic and mechanistic properties of cells and organisms. As important polymers in the mitotic
process, microtubules are targets of anticancer drugs, with several compounds already being
studied (1, 2).
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Microtubule targeting agents (MTAs) exert inhibitory effects
on cell proliferation, with cell cycle arrest at G2-M and induction
of apoptosis (3). They may act as vascular-targeting drugs,
disrupting microtubules in endothelial cells, which affects the
blood supply in the tumor tissue (4). Microtubules also induce
maturation and migration of dendritic cells, which are essential
to the immune response (5).

MTAs can be divided into mechanistic acting categories as
they either stabilize or destabilize microtubules (6). Microtubule-
stabilizing agents such as paclitaxel and docetaxel bind to
the taxane-binding site on β-tubulin, inhibiting microtubule
depolymerization and intensifying its polymerization. Recently,
Taxol/Paclitaxel has been described as first billion-dollar
anticancer drug (7). Microtubule-destabilizing agents including
colchicine and vinca alkaloid, typically bind to sites located at the
intra-dimer interface and near the GTP binding site on β-tubulin,
respectively. Such interactions induce inhibition of microtubule
polymerization and promote depolymerization (8, 9). Although
these agents are widely used in medicine, particularly paclitaxel
and vinca alkaloids, drug resistance and side effects such as
neurotoxicity, are significant limitations to MTAs clinical success
(10, 11).

In the last decade, peptides displaying anticancer properties
have been studied as promising alternative agents for cancer
therapy (12, 13). Peptides are mostly non-genotoxic, have
high affinity and selectivity for molecular targets on cancer
cells, low cost production with feasible synthesis of derivatives,
exhibiting low antigenicity and good tissue penetration (14,
15). Peptides can also be conjugated to large molecules to
improve pharmacokinetics (16). Peptides can be displayed on
the phage surface giving rise to specific sequences targeting
different tissues or be developed from internal regions of
transcription factors (17). Peptides and derivatives from natural
sources such as marine animals and insects have been described
with preferential antitumor activity without affecting normal
cells (18, 19). Complementarity-determining regions (CDRs) of
immunoglobulins (Igs) have been found to exhibit with high
frequency, antiinfective, immunomodulatory, and antitumor
activities (20–22).

Synthetic peptides corresponding to the Ig hypervariable
CDRs, may display antitumor activities in vivo, as well as
cytotoxic effects in vitro including cell cycle arrest, inhibition
of tumor cell migration and invasion, induction of apoptosis,
disruption of cytoskeleton dynamics (22–28), and many others.

We have previously described a novel bioactive mAb VL

CDR 1 peptide (C36L1), displaying in vitro and in vivo anti-
tumor activities. Depolymerization of microtubules, leading to
cytotoxic and cytostatic effects mediated by Rho-GTPase, PTEN,
and PI3K/Akt signaling, have been characterized (26).

Presently, we investigated a VL CDR1-derived synthetic
peptide, Rb44, expressed in a anti-Lewis B monoclonal antibody,
focusing on structural, biological and molecular docking
properties, in comparison with two other VL CDR1 peptides
(Rb29L1 and C36L1), to understand the mechanism of action
of Ig-CDR derived, apoptotic peptides targeting microtubules.
Rb44L1 exerted both in vitro and in vivo anti-melanoma activities
and inhibited endothelial cell sprouting in vitro.

MATERIALS AND METHODS

Peptides
The L1 CDR amino acid sequences were obtained
from the anti-Lewis B mAb antibody, VL Rb44L1
(RSSQTITHGNGNTYLY-NH2), and from the anti-A34 mAb, VL

Rb29L1 (RSSTSLLHGNGNTYLT-NH2) according to Kabat et al.
(29) CDR definition. The peptide sequences were purchased from
Peptide 2.0 (Chantilly, VA) at 95–98% purity. All peptides were
amidated at the C-terminus. Peptides were diluted in 1% DMSO-
RPMI medium. In some experiments a scrambled Rb44L1
(Scr44) peptide was used (SIGTYSTRNYQHNLTG-NH2). The
previously described C36L1 (KSSQSVFYSSNNKNYLA-NH2)
was comparatively studied for molecular modeling.

Tumor Cell Lines and Cell Culture
B16F10-Nex2 subline of murine melanoma cells was isolated
at the Experimental Oncology Unit (UNONEX) of Federal
University of São Paulo (UNIFESP) and registered in the Banco
de Células do Rio de Janeiro (BCRJ), no. 0342. The original
B16F10 cell line was obtained from the Ludwig Institute for
Cancer Research (LICR), São Paulo Branch. Human melanoma
cell line A2058; human carcinoma cell lines of colon, HCT-
8; uterine cervix, SiHa; and breast, MCF-7; murine fibroblasts,
3T3-NIH; and human fibroblasts, GM637, were provided by the
Ludwig Institute for Cancer Research and were a gift from Dr.
Luiz F. Lima Reis (Hospital Sírio-Libanez, São Paulo). Human
umbilical vein endothelial cells (HUVEC) were kindly provided
by the Department of Immunology, Institute of Biomedical
Sciences (University of São Paulo). Both cell lines were cultured
at 37◦C, under humid atmosphere and 5% CO2, in RPMI-
1640 medium for tumorigenic cell lines and DMEM for non-
tumorigenic ones, in both cases supplemented with 10mM
N-2-hydroxyethylpiperazine-N2 ethane sulfonic acid (HEPES),
24mM sodium bicarbonate, 40 mg/L gentamicin, pH 7.2 and
10% fetal bovine serum (FBS).

Cell Viability Assay
For IC50 determination, 1 ×104 tumorigenic and non-
tumorigenic cell lines were seeded in 96-well plates and treated
at different concentrations ranging from 0 to 1mM of Rb44L1
and Rb29L1 peptides for 24 h. Viable cells were quantified using
the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide) (Sigma-Aldrich, St. Louis, MO) assay. After incubation,
5 µL of MTT solution (5 mg/ml) was added to the cells,
followed by incubation for 3 h at 37◦C. Absorbance wasmeasured
in a microplate reader at 570 nm (SpectraMax-M2, Molecular
Devices Software Pro 5.4, Sunnyvale, CA). IC50 was calculated
using GraFit 5 data analysis software (Version 5.0.13).

Chromatin Condensation and DNA
Fragmentation Assays
Apoptotic melanoma cells treated with Rb44L1 peptide were
examined by TUNEL staining, using the in situ Cell Death
Detection Kit according with the manufacture’s instruction
(Roche Applied Science, Madison, WI). B16F10-Nex2 melanoma
cells (1 ×104) were seeded on 96-well clear-bottom black
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polystyrene microplate and incubated with 0, 130 and 260µM
of Rb44L1 peptide for 18 h. After incubation, cells were fixed
in formaldehyde 2% for 20min at room temperature, washed
in PBS, and incubated with Hoechst 33342 (Invitrogen, Eugene,
OR), at 10µg/mL final concentration in the reaction buffer and
TUNEL enzymatic substrate. Cells were washed and images were
acquired and analyzed in a Cytell Cell image cytometer (GE
Healthcare, Little Chalfont, UK).

Annexin V and Propidium Iodide Labeling
B16F10-Nex2 cells (5 ×105) were cultured in 6-well plates
and further incubated with Rb44L1 at 0, 80 and 100µM for
18 h at 37◦C. After incubation, the Annexin V-FITC Apoptosis
Detection Kit (Sigma-Aldrich, St. Louis, MO) was used and cells
labeled with propidium iodide (PI) and FITC annexin V (AV)
were analyzed by flow cytometry (BD Bioscience FACSCanto II
equipment, Franklin Lakes, NJ), using FlowJo software (TreeStar
Inc., Ashland, OR).

Cell Cycle Analysis
B16F10-Nex2 (5×105) cells were seeded in conical centrifugation
tubes and incubated with 65µM Rb44L1 peptide for 16 h in
suspension. After incubation, the cells were washed with PBS
and fixed in ethanol 70% for 1 h at 4◦C. Cells were then
washed again with PBS and stained with propidium iodide
(PI) solution (50µg/ml PI, 0.1 mg/ml RNAse A) for 20min
at 4◦C in the dark. DNA fluorescence staining was acquired
by FACSCalibur flow cytometer (Becton Dickinson, San Jose,
CA). FlowJo software (Tree Star Inc., Ashland, OR) was used
for post-acquisition analysis (20.000 events per sample). The
microtubule depolymerizing CA4 (combretastatin A4, Sigma-
Adrich, St. Louis, MO) was used at 75µM as positive control of
G2/M cell cycle arrest.

Transmission Electron Microscopy
B16F10-Nex2 cells (1 ×106) were seeded in 6-well plates. Cells
were then incubated with peptide Rb44L1 at 260µM for 18 h
at 37◦C. Fixation, dehydration and staining of the samples were
performed as previously described (23). Jeol 1200 EXII electron
microscope (Tokyo, Japan) was used for image acquisition.

Mitochondrial Membrane Potential (1ψm)
B16F10-Nex2 cells (1×104) were pre-incubated with the cationic
lipophilic dye tetramethylrhodamine ethyl ester (TMRE) at
20 nM for 30min, and then with peptide Rb44L1 at 0, 130, and
260µM for 6 h. After the incubation period, images of living cells
were acquired and analyzed by Cytell Cell Imaging System (GE
Healthcare, Little Chalfont, UK).

Superoxide Anion Measurement
Superoxide anion production was measured by dihydroethidium
(DHE) assay. Briefly, 1 ×104 cells cultivated on 96-well clear-
bottom black plate were pre-incubated with DHE for 30min
at 37◦C. Rb44L1 was added at 130 and 260µM concentrations
and fluorescence units were quantified after 16 h in a microplate
reader (Molecular Devices M2, Sunnyvale, CA) adjusted for
excitation at 370 nm and emission at 420 nm. As positive control,

cells were treated with 5mM of H2O2 at 37
◦C for 20min, and the

negative control run with no peptide.

Cell Lysate Extracts and Western Blotting
B16F10-Nex2 cells (106) were incubated with 0 and 130µM of
Rb44L1 peptide for different times (1, 3, 6, 8, and 24 h). After
incubation, cells were washed in PBS and lysed with 300 µL
of SDS sample buffer (62.5mM Tris-HCl, pH 6.8 at 25◦C, 2%
w/v SDS, 10% glycerol, 50mM DTT, 0.01% w/v bromophenol
blue). Proteins from whole cell extracts were analyzed by
Western blotting as previously described (20). The following
primary, highly specific monoclonal antibodies, were used: rabbit
anti-Bcl-2, -Bcl-xl, -Bax, -caspase-9 and cleaved caspase-9, -
caspase-3 and cleaved caspase-3, -Parp and cleaved Parp, and
-GAPDH (for total protein loading control), with secondary
anti-rabbit IgG conjugated with horseradish peroxidase (HRP).
All antibodies were purchased from Cell Signaling Technology
(Beverly, MA) except for anti-GAPDH, acquired from Sigma-
Aldrich (St. Louis, MO). Immunoreaction was revealed using the
LuminataTM Forte solution (Millipore, Billerica, MA) and images
were acquired using Uvitec Cambridge (Cambridge, UK). The
molecular mass of each protein was estimated based on a pre-
stained protein standard (Spectra Multicolor, ThermoScientific,
Waltham, MA). Full-length Western blotting membranes are
displayed in Figure S1.

In vitro Angiogenesis Assay
The basement matrix GeltrexTM (Invitrogen, Eugene, OR) was
added (30 µl/well) to coat a 96-well plate and allowed to
polymerize for 40min at 37◦C. HUVEC cells (5×103) suspended
in RPMI medium supplemented with 0.2% of fetal calf serum
were plated alone (control) or mixed with 5µM of Rb44L1
peptide. The cells were incubated at 37◦C for 6 h and images were
captured with a microscope digital camera (Olympus, Tokyo,
Japan). The numbers of pro-angiogenic structures (typically
closed compartments or rings formed after endothelial cell
sprouting) were counted from 3 different wells.

Ethics Statement
The present study is part of Project 2010/51423-0 granted by the
São Paulo State Research Support Foundation (FAPESP), Brazil.
The protocols used for animal experiments were carried out in
accordance with the Ethics Committee of Federal University of
São Paulo, Brazil and have been approved via document CEP
1234/2011.

Mice and Subcutaneous Melanoma Model
Eight-week-old male C57Bl/6 mice were acquired from the
Center for Development of Experimental Models (CEDEME) at
Federal University of São Paulo (UNIFESP), Brazil. The Ethics
Committee for Animal Experimentation (UNIFESP) approved
protocols of animal experiments. In the subcutaneous (s.c.)
melanoma model, male C57Bl/6 mice (five per group) were
subcutaneously grafted in the right flank with 1 ×105 syngeneic
B16F10-Nex2 melanoma cells. Animals were subjected to 5
peritumoral daily doses of 300 µg (total 10 mg/kg) of Rb44L1.
DMSO (1%) in PBS, was the vehicle control. Treatment started
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after the tumor size reached 80 mm3 as measured with a caliper.
The tumor volume (V) was calculated by the formula V= 0.52×
d2 ×D, where d and D are short and long diameters of the tumor,
respectively, measured every other day. Mice were euthanized
at the end of experiments or when the tumor size reached the
maximum allowed volume of 3,000 mm3.

Live-Cell Imaging of Microtubule Dynamics
Real-time fluorescence microscopy of living B16F10-Nex2
melanoma cells previously modified by viral transduction for
the expression of green fluorescent tubulin (CellLight R© Reagents
−2.0 BacMam, Life Technologies), was used to investigate the
peptide interaction with microtubules. Viable green fluorescence
protein (GFP) tubulin-expressing cells (1 ×104) were incubated
with Rb44L1 and Rb29L1 at 260µM and fluorescent images
were taken at 10-min intervals during 2 h using the time-lapse
BioStation fluorescence microscope (Nikon Instruments, Inc,
Melville, NY). For instance, humidity, temperature (37◦C) and
CO2 (5%) were carefully controlled. Fluorescence analysis and
quantification were performed with the ImageJ software and the
video was processed with the NIS-Elements analysis software
(Nikon, Tokyo) and Adobe After Effects software.

Fluorescence Staining of F-Actin
B16F10-Nex2 cells (5 ×104) were seeded in 24-well microplates
and incubated with different concentrations of Rb44L1 (0, 130
and 260µM) for 30min and 3 h. After incubation, cells were fixed
in 3.7% of formaldehyde for 20min at 4◦C, blocked (1% BSA,
5% SFB, 0.1% Triton in 1X PBS) for 30min at room temperature
and stained with Hoechst 33342 (Invitrogen, Eugene, OR) and
anti-phalloidin conjugated with FITC for 1 h at 37◦C. Images
were acquired and analyzed by Cytell Cell Imaging System (GE
healthcare, Little Chalfont, UK).

System Preparation and Molecular
Dynamics
De novo peptide structure prediction was made by Pep-Fold3
webserver (30). We obtained the tubulin structure from PDB
4TV9 (31) (chains A and B). Protonation analysis was made
by PROPKA3 (32). Energy minimization was carried out on
GROMACS 5.1 (33) using CHARMM36 force field (34). Systems
were built by CHARMM-GUI webserver (35, 36) with TIP3P
water molecules (37) and counter ions, when charge balancing
was required. Simulations consisted of 5,000 steps of steepest
descent energy minimization, followed by 25 ps of NVT
equilibration dynamics for L1-CDR peptides and 10 ns for
tubulin. A NPT production molecular dynamics of 100 ns was
carried out on GROMACS 5.1 using CHARMM36 force field
for each system. Secondary structure assignment and hydrogen
bonds (H-bonds) were analyzed by using VMD (38) plugins. H-
bonds distance cut-off was set up at 3.0 Å with angle cut-off of
20◦. All further MD analyses were made by GROMACS 5.1.

Normal Mode Calculations and Generation
of Low-Energy Conformations
Normal mode analysis (NMA) was performed using CHARMM
c41b1 (39) and CHARMM36 force filed using DIMB (40) module

and excluding CMAP (41). A distance dependent dielectric
constant was employed to treat the electrostatic shielding by the
solvent as described by Philot et al. (42). We used the mode
08 (open/close of tubulin monomers) as directional constraint
to generate low-energy conformers along the mode trajectory
using the VMOD algorithm in CHARMM as depicted by Louet
et al. (43). The restraints were applied only on Cα atoms and the
energy was computed for all atoms. The structures were displaced
from 0.0 Å to +6.0 Å (open direction) using steps of 1.0 Å,
resulting in 7 intermediate low-energy structures along themode.

Molecular Docking
In order to obtain different structures to perform molecular
docking, we clustered the MD trajectory of each peptide. All MD
frames were fitted to the reference structure and clustered with
GROMOS method by using GROMACS 5.1, with a backbone
RMSD cutoff of 2.0 Å for Rb29 and Rb44 and 5.0 Å for C36 (since
the last is very flexible) resulting in 3, 11, and 8 different clusters,
respectively. The center structure of each peptide cluster was then
used in docking simulations, performed with Hex 8.0 (44). Hex
depicts proteins as rigid bodies and makes a blind search through
protein surface while it evaluates the interaction correlation by
using the fast Fourier transformation algorithm. As described
in Meissner et al. (45), solvation and desolvation effects were
treated as surface phenomena, since the Hex algorithm models
the interaction, excluding volume and complementarity of form.
Approximately 350 solutions were found for each combination.
We used BINANA 1.2 (46) as a rescore method to investigate the
specific molecular basis guiding the interaction between tubulin
and peptides.

Chemiluminescent Dot-Blotting
Peptide Rb44L1 binding to microtubule structures was
determined by chemiluminescent (CL) dot-blotting as described
elsewhere (26) with some modifications. Peptides C36L1
(positive control), Rb44L1, scrambled-Rb44L1 (Scr44) at 10
µg/10 µL each, or vehicle (1% DMSO in milli-Q water), were
applied on nitrocellulose membranes. They were blocked with
5% BSA in 0.05% PBS-Tween 20. B16F10-Nex2 cell protein
lysate (50µg/ml), prepared with non-denaturing protein
extraction buffer according to the manufacturer’s instructions
(Cell Signaling, Beverly, MA), was applied onto the nitrocellulose
membranes and incubated overnight at 4◦C. After washing,
membranes were incubated with anti-alpha tubulin antibody
(Sigma-Aldrich, St. Louis, MO) for 1 h at 37◦C followed by
anti-rabbit IgG-HRP antibody for 1 h at 37◦C. Immunoreactivity
was determined using the LuminataTM Forte solution (Millipore,
Billerica, MA). Images were acquired by Uvitec Cambridge
(Cambridge, UK) with 1-min membrane exposure time. No
reactivity with the control peptide was observed. To investigate
the influence of GTP and Mn2+ on the peptide binding with α-
tubulin, the membranes coated with 10 µg Rb44L1 or scrambled
(Scr44) peptide were blotted with or without 1mM GTP
(Cytoskeleton, Denver, CO) and/or 1mM Mn2SO

.
4H2O (Sigma-

Aldrich, St. Louis, MO) added to the cell lysate (50µg/ml), for
2 h at 37◦C. Chemiluminescence was detected as described above
but with short membrane exposure time (20 s).
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Tubulin Polymerization Assay
Microtubule polymerization was evaluated using the Tubulin
Polymerization Assay kit (Cytoskeleton, Inc., Denver, CO).
Rb44L1 (130µM) or Scr44 (130µM); colchicine (50µM);
Rb44L1 (130µM)+ colchicine (50µM), diluted with 1% DMSO
in distilled water were added to 50 µl of the tubulin reaction
mix with optimized volumes for inhibitor detection containing
2 mg/ml or 1 mg/ml of tubulin in 80mM PIPES (piperazine-
N-N’-bis [2- ethane sulfonic acid] sodium salt), pH 6.9, 2mM
MgCl2, 0.5mM EGTA (ethylene glycol-bis N,N,N’,N’- tetra acetic
acid), 60% v/v glycerol, 1mM GTP, and 10µM of the fluorescent
reporter. The black, flat bottom, half area 96-well plate, with
the samples, was examined in a fluorescence microplate reader
(SpectraMax-M2e, Molecular Devices, Sunnyvale, CA) every
1min at 340 nm of excitation and 410 nm of emission for
40 or 180min. To monitor the tubulin polymerization in the
same condition as of the dot blotting assay, the reaction was
prepared as described above with 2 mg/ml of purified tubulin
in 0.1% of BSA in PBS and 3.4% of cell lysis buffer, without cell
lysate.

Statistical Analysis
The software GraphPad Prism 5.0 (San Diego, CA) was utilized
for all tests. Statistical differences between groups were compared
by Student’s t-test. Differences in survival time and rate were
evaluated by the Kaplan-Meier survival curves. P-values are
indicated as ∗p < 0.05, ∗∗p < 0.01 and, ∗∗∗p < 0.001.

RESULTS

L1-CDR Peptides Differ in Dynamic
Features
Peptides Rb44L1 and Rb29L1 were studied in comparison with
peptide (C36L1), which exerts cytotoxicity by depolymerization
of microtubules and displays antitumor activities, as previously
investigated (26).

In spite of the sequence similarity, the dynamics of L1-
CDRs were very different from each other. Rb29L1 assumed
a stable β-hairpin conformation, with residues 5SLL and
13TYL forming the β-sheet (Figures 1A,B). In turn, Rb44L1
showed only an intermittent β-bridge between residues 5TI
and 14YL (Figures 1C,D). C36L1, however, did not assume
any ordered structure (Figures 1E,F). Root-mean-squared
deviation (RMSD) of backbone heavy atoms and Cα root-
mean-squared fluctuation (RMSF) calculations were performed
to evaluate structure stability along the molecular dynamics
(MD). Results confirmed the stability of Rb29L1, while
C36L1 showed several conformational shifts (Figure 1G).
Flexibility analysis confirmed this profile (Figure 1H). H-bonds
formation during the dynamics could address these structural
differences among the peptides. Rb29L1 showed more internal
H-bonds than the other peptides, therefore it is more rigid.
Table 1 summarizes these interactions. The trajectories of
each peptide MD were clustered, according to RMSD, onto
representative conformations to perform docking simulations
(Figure S2).

In vitro Cytotoxicity of CDR Peptides
We investigated the anti-tumor potential of two L1-CDR-derived
peptides: Rb44L1 from anti-Lewis B mAb and Rb29L1 from anti-
A34 mAb. The IC50 values were determined for the Rb44L1
and Rb29L1 against different tumorigenic and non-tumorigenic
cell lines (Table 2). Peptide Rb44L1 showed the lowest IC50

values as compared to Rb29L1. The concentrations of 130µM
(IC50) and 260µM (IC100), respectively, were therefore used in
the subsequent experiments with B16F10-Nex2 melanoma cells.
Rb44L1, was less active against non-tumorigenic cells, including
murine and human fibroblasts, 3T3-NIH and GM637 cell lines.
In the concentration range of 0 to 0.140mM, no cytotoxicity was
observed in these cells. Rb29L1 IC50 values were 3- to 10-fold
higher than those of Rb44L1 in tumorigenic cell lines.

Rb44L1 Induces Apoptosis
Changes in the dynamics of the cytoskeleton have been
implicated in the induction of apoptosis. Here, we show that
Rb44L1 induced morphological alterations typical of apoptotic
cell death such as cellular shrinkage, membrane blebs and
cell rounding-up with pseudopodia retraction in B16F10-
Nex2 melanoma cells when incubated with peptide at IC50

(130µM) and IC100 (260µM) for 18 h (Figure 2A). Chromatin
condensation was observed in 95% and 98% of tumor cells
treated with Rb44L1 at 130 and 260µM, respectively, for
18 h. DNA fragmentation was determined by green positive
TUNEL staining in B16F10-Nex2 cells treated with 130 and
260µM of Rb44L1 (Figures 2B,C). Both DNA condensation
and fragmentation were significantly higher in Rb44L1-treated
cells as compared with the negative control (for chromatin
condensation, ∗∗p< 0.01 at 130µM, ∗∗∗p< 0.001 at 260µM; and
for DNA fragmentation, ∗∗∗p < 0.001 at both concentrations).
Additionally, we observed that Rb44L1 could significantly
enhance the translocation of phosphatidylserine (PS) to the outer
leaflet of the plasma membrane, indicating early apoptosis. We
observed a significant increase in the number of early apoptotic
events in cells treated with Rb44L1 at 80 and 100µM, in
comparison with untreated control cells (Figure 2D). Finally,
Rb44L1 inhibited cell proliferation with cell cycle arrest, at 65µM
(Figure 2E). The S-phase area decreased from 22.3 to 13.4%, with
increase of the G2/M phase (from 21.8 to 33.5%). Microtubule
depolymerizing combretastatin-A4 was used as positive control.

Morphological and Functional Alterations
in Mitochondria and ROS Production
Transmission electron microscopy (TEM) of Rb44L1-treated
B16F10-Nex2 cells, at 260µM for 18 h, showed condensed
chromatin, nuclear membrane detachment, enlarged, and
vacuolated mitochondria with damaged cristae surrounded
by heavily injured cytoplasmic organelles compared to
untreated cells (Figure 3A). The collapse of the mitochondria
transmembrane potential (1ψm) was observed on early
incubation with Rb44L1 (0, 130, and 260µM). After 6 h,
reduction of TMRE fluorescence (53 and 94% reduction in
cells treated with 130 and 260µM, respectively; ∗∗p < 0.01
and ∗∗∗p < 0.001 in relation to untreated cells) was observed
indicating mitochondrial damage in these cells (Figure 3B).
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FIGURE 1 | Secondary structure assignment during molecular dynamics and structural analysis of L1-CDRs. (A,B) Rb29L1 assumes a stable β-hairpin conformation
during MD, showing a well established β-sheet between residues 5SLL and 13TYL; (C,D) Rb44L1 shows a recurrent β-bridge between residues 5TI and 14YL; (E,F)
C36L1 presents the most flexible conformation, in its majority composed by turn and coil. Secondary structure color code: turn, in green; extended conformation
(β-sheet), in yellow; isolated bridge, in gold; 3-10 helix, in blue; coil, in white; (G) root-mean-squared deviation of backbone atoms of Rb29L1, Rb44L1, and C36L1.
Rb29L1 remains nearly at the same conformation during all MD, an effect also seen for Rb44L1, although with less intensity. C36L1, nonetheless, presented a great
conformational variation; (H) root-mean-squared fluctuations of Cα atoms of Rb29L1, Rb44L1 and C36L1. Cα fluctuation, or flexibility, follows RMSD pattern. Rb29L1
presents a rigid structure while Rb44L1 and C36L1 are more flexible, the latter more pronounced.

Tumor cells were incubated with Rb44L1 at 130 and 260µM
for 16 h and ROS levels were detected using DHE dye measured
by fluorimetry. Hydrogen peroxide (H2O2) was used as positive
control (Control +) at 5mM. Accumulation of ROS (59% in
relation to untreated cells; ∗∗∗p < 0.001) was observed in cells
treated with Rb44L1 at both concentrations (Figure 3C).

Rb44L1 Elicited Caspase Activation
Different pro- and anti-apoptotic proteins in total cell lysates
were evaluated by Western blotting in Rb44L1-treated B16F10-
Nex2 cells at 130µM and different incubation periods. We
observed that Rb44L1 induced early increase of pro-apoptotic
Bax protein, followed by the cleavage of caspase-9, caspase-3 and
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TABLE 1 | Hydrogen bonds formation during molecular dynamics of L1-CDR
peptides*.

Hydrogen bonds Occupancy (%)

Rb29L1

ARG1-Side-NH1 – TYR16-Side-OT1 34.94

ARG1-Side-NH1 – TYR16-Side-OT2 17.56

ARG1-Side-NH2 – TYR16-Side-OT1 17.78

ARG1-Side-NH2 – TYR16-Side-OT2 37.64

SER3-Side-OG – TYR16-Side-OT1 27.63

SER3-Side-OG – TYR16-Side-OT2 18.97

THR4-Main-N – TYR16-Side-OT1 11.7

THR4-Main-N – TYR16-Side-OT2 27.13

LEU6-Main-N – TYR14-Main-O 42.05

HIS8-Main-N – ASN12-Main-O 43.21

TYR14-Main-N – LEU6-Main-O 36.03

TYR16-Main-N – THR4-Main-O 43.64

TYR16-Side-OH – HIS8-Side-NE2 17.83

Rb44L1

THR7-Main-N – THR13-Main-O 36.35

LEU15-Main-N – THR5-Main-O 54.47

C36L1

ALA17-Main-N – GLN4-Main-O 11.51

*Only interactions with ≥ 10% occupancy are shown.

TABLE 2 | IC50 values of the bioactive peptide Rb44L1 and control Rb29L1
against tumorigenic and non-tumorigenic lineages after 16 h of incubation.

Cell lineages IC50 (µM) ± SD

Rb44L1 Rb29L1

B16F10-Nex2 130 ± 5.8 465 ± 67

A2058 66 ± 2.0 265 ± 16

MCF-7 134 ± 2.4 858 ± 53

SIHA 51 ± 6.6 773 ± 61

HCT-8 81 ± 1.5 821 ± 57

3T3-NIH* >140 >140

GM637* >140 >140

*Non-tumorigenic cell lines.

PARP, together with downregulation of anti-apoptotic protein
Bcl-2 (Figure 3D). GAPDH was used as loading control.

Rb44L1 Inhibited Angiogenesis in vitro
The cytotoxicity of Rb44L1 at different concentrations was
assayed in the HUVEC lineage (Figure 4A). A non-cytotoxic
concentration was used for the inhibition of endothelial cell
(HUVEC) sprouting in GeltrexTM Matrix. Rb44L1 at 5µM for
6 h, significantly inhibited 90% of endothelial cell sprouting, with
the number of compartments built by intercellular connections
being compared to that of the control (∗∗p< 0.01; Figures 4B,C).

Antitumor Activity in vivo Against
Subcutaneous Melanoma
The in vivo antitumor activity was also investigated in a
subcutaneously grafted, syngeneic murine melanoma model.

Peritumoral injections of Rb44L1 at 15 mg/Kg significantly
delayed tumor volume progression (∗∗p < 0.01), and also
prolonged mice survival (∗∗p < 0.01) (Figures 4D,E). Mice were
euthanized at the scheduled end of experiments, or before, should
the tumors ulcerate or reach the maximum allowed volume of
3,000 mm3.

Rb44L1 Interacts With Microtubules and
Induces Cytoskeleton Disruption in
Melanoma Cells
Disruption of the microtubule integrity in B16F10-Nex2
cells was monitored during the incubation with Rb44L1 and
Rb29L1. Microtubules were assessed by live-cell imaging
using B16F10-Nex2 cells previously transduced with a genetic
modified insect virus (baculovirus) containing a tubulin-
green fluorescent fusion-protein construct (CellLight R©, Life
Technologies). The fluorescence of live murine melanoma
cells was monitored and quantified for 2 h during incubation
with 260µM of Rb44L1 and Rb29L1. The Rb44L1 peptide
drastically reduced microtubule fluorescence compared to the
negative control (Figures 5A,B), indicating that the microtubule
network was depolymerized during the incubation with
Rb44L1, whereas no depolymerization was seen in Rb29L1
treated cells. A representative video showing the kinetics of
microtubule depolymerization in B16F10-Nex2 cells during
the incubation with Rb44L1 and Rb29L1 is available in
Video S1.

In addition to investigating whether Rb44L1 would also affect
the integrity of F-actin, the reaction was assessed simultaneously
using a phalloidin-FITC probe, as described in methods. We
observed that F-actin integrity was completely lost after 3 h of
incubation with Rb44L1 at 260 and 130µM (Figure 5C). Actin
degradation occurred after the microtubule disruption process,
as evidenced in the cytoskeleton integrity quantification analysis
(Figure 5D), suggesting that actin filaments were disrupted as
a consequence of microtubule depolymerization (∗p < 0.05
comparing microtubule and actin disruption). Less than 55 or
65% of cytotoxicity was seen when testing both concentrations
of Rb44L1 at 260 and 130µM, respectively, in the first hours of
incubation (Figure S3).

Normal Modes Expose Nonexchangeable
Nucleotide and Colchicine Binding Sites
Normal mode analysis (NMA) was employed to investigate
the opening motion of tubulin monomers. We hypothesized
that this opening motion would be required to expose the
nucleotide binding site located at α-tubulin (N-site) and dimer
interface. Such exposition could favor the efficient docking of
L1-CDR peptides and impair the tubulin dimer assembly, finally
leading to microtubule dissociation. This motion was verified as
the normal mode 8 (Figures 6A,B). Using the VMOD routine
implemented on CHARMM, we performed a mass-weighted
displacement of tubulin structure along mode 8, to produce
energy-relaxed structures with gradually exposed nucleotide site.
Tubulin residues originally in contact with GTP (contacts within
4.5 Å) showed a solvent-accessible surface area (SASA) of 511
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FIGURE 2 | Rb44L1 induces apoptosis in melanoma cells. (A) morphological changes were analyzed by light microscopy. Representative images of cells treated with
different doses of Rb44L1 or untreated cells (control). Arrows indicate inserts (x200, magnification); (B) representative images of chromatin condensation (Hoescht
33342, blue) and DNA fragmentation (TUNEL, green) of tumor cells treated with different concentrations of Rb44L1 for 18 h. Scale bar represents 50µm; (C)
percentage of TUNEL positive cells and condensed nuclei. **p < 0.01 and ***p < 0.001 in comparison to untreated cells; (D) percentage of apoptotic cells
determined by the externalization of phosphatidylserine; (E) cell cycle of B16F10-Nex2 cells after incubation with Rb44L1 at 65µM for 16 h. Percent tumor cells at
Sub-G1, G1, S, and G2/M phases are indicated. CA4 was used as positive control.

Å² at the crystallographic structure (PDB 4TV9), while the
same residues were more exposed after a displacement of 6 Å,
presenting a SASA of 588 Å² (Figures 6C,D). The same occurred

for the colchicine site, which presented a SASA of 225 Å² before
the displacement and 236 Å² after mass-weighted displacement
of 6 Å.
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FIGURE 3 | Rb44L1 induces morphological alterations in mitochondria. (A) B16F10-Nex2 cells were treated with 260µM of Rb44L1 for 18 h and examined by
transmission electron microscopy. Representative micrographs of untreated cells (control) and Rb44L1 treated cells. Arrows indicate mitochondrial ultrastructure in the
inserts; scale bar represents 2µm; (B) loss of mitochondrial transmembrane potential in B16F10-Nex2 cells treated with 130 and 260µM of Rb44L1 for 6 h, probed
with red TMRE. **p < 0.01 and ***p < 0.001 in comparison to the control; (C) enhanced superoxide anion production observed by DHE staining in B16F10-Nex2 cells
treated with different concentrations of Rb44L1 for 16 h, vehicle control (Control −) and 5mM H2O2 as positive control (Control +). The conversion of DHE to ethidium
by oxidation was acquired at 370 nm (excitation) and 420 nm (emission). ***p < 0.001 in relation to control (−); (D) levels of apoptosis related proteins in
Rb44L1-treated melanoma cells. Time-dependent effect on cell signaling of B16F10-Nex2 incubated with Rb44L1 at 130µM. Levels of total and cleaved
caspase-3,−9, cleaved PARP, Bax, Bcl-2, and Bcl-xl during Rb44-induced apoptosis are shown by Western blotting. GAPDH was used as loading control. A single
cell-lysate sample was used in the same experiment and the Western blotting membranes were processed in parallel for antibody reactivity. Uncropped, full-length
blottings are shown in Figure S1.

Docking Studies Reveal the Importance of
Electrostatic Interactions
Docking calculations were performed using 7 tubulin structures
generated from NMA displacement against the central structure
of each L1-CDR peptide cluster (3 for Rb29L1, 11 for Rb44L1,
and 8 for C36L1). In every docking round, an average of 350
different solutions was calculated. We then evaluated the best
solution from Hex with BINANA to better understand the key
binding characteristics governing the interaction.

Results indicated less favorable interactions for Rb29L1 than
C36L1 and Rb44L1 in almost all displacements (as summarized
in Table 3, detailed in Table S1, respectively), according to
experimental results. At the best pose for Rb44L1 (docked with
tubulin displaced by 2 Å) the 1R side-chain is buried in the
cavity formed between tubulin monomers, participating in 3
of 6 H-bonds and 2 salt-bridges (Figures 7A,C,E,G). In fact,

interactions involving 1R were observed in all displacements
except at 3 Å and 4 Å. This indicates the putative importance

of this residue to maintain the interaction with tubulin. When

the 1R is replaced by alanine, the results showed a systematic
worsening of energy values (as summarized in Table 3, detailed

in Table S1). Biological assays confirmed this prediction since

the R1A substitution in Rb44L1 was not cytotoxic to B16F10-
Nex2 cells, in the 0 to 500µM range (data not shown). C36L1
pose analysis also indicated the involvement of a basic residue
governing the interaction with tubulin. The 13K was present
participating of H-bond, salt-bridge or cation-pi interactions in
all tubulin displacements but at 5 Å. At the best pose–docked with
tubulin displaced by 4 Å, 13K appeared in two H-bonds and in a
salt-bridge (Figures 7B,D,F,H). Moreover, its side-chain was also
buried in a cavity between tubulinmonomers. On the other hand,
although Rb29L1 had a greater number of H-bonds, the lack of
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FIGURE 4 | Rb44L1 inhibits HUVEC sprouting on GeltrexTM Matrix. (A) dose-response curve of Rb44L1 on HUVEC cells; (B,C) Inhibition by Rb44L1 (5µM) on
HUVEC sprouting on GeltrexTM Matrix to form closed proangiogenic structures; **p < 0.01 compared to untreated control. Rb44L1 prevents tumor progression. (D)
1 ×105 syngeneic B16F10-Nex2 cells were subcutaneously injected in C57Bl/6 mice. Peritumoral daily doses of 300 µg of Rb44L1 peptide were administered during
five consecutive days. Tumor volume was measured and documented during the treatment period. **p < 0.01 in comparison with control group treated with PBS; (E)
survival of C57Bl/6 challenged mice after treatment with Rb44L1 or PBS (control). **p < 0.01 in relation to control group.

charged residues would contribute to predicted energies higher
than the other peptides.

Docking Studies Showed the L1-CDR
Interactions Preferentially at the
Nonexchangeable Nucleotide-Binding Site
We evaluated the best docking pose for both Rb44L1 and C36L1
in relation to the exposed nucleotide and colchicine binding sites.
Rb44L1 interacted with three residues of the N-site (11Q, 69D, and
71E) and with one residue of the colchicine site (252K). The 1R
participated in all interactions. C36L1, however, interacted with
different residues of the N- site (71E, 11Q, 224Y, 206N, 177V) and
one residue of colchicine site (179T). These interactions depended
on 13K and 11N residues of the C36L1 peptide (Figures 8A,B).
Rb29L1 showed interactions with tubulin similarly with those
of C36L1 (177V, 179T, 206N, and 224Y). In contrast, there were

interactions shared with Rb44L1 and C36L1 (11Q and 71E), which
were absent in Rb29L1 (Figure 8C). Taken together, these results
showed that tubulin-opening motion corresponded to a decrease
of summed electrostatic energy values of the displaced structures
(Figure 8D).

Both Rb44L1 and C36L1 interacted with the region of helices
α2, α3 and α8 of α-tubulin subunit, and showed differences in
relation to β-tubulin monomer. While Rb44L1 interacts with
loops α1β1 and α7α8, C36L1 interacts with loop β9α11 and
helix α11. The overlapping of C36L1 and Rb44L1 best poses
showed residues 13K and 1R occupying the same region at the
tubulin dimer interface, that is blocked by residues 70LEPT of
α-tubulin and 243PGQL of β-tubulin in a minimized structure
(Figure 8E). Rb44L1 interaction with α-tubulin subunit was
further confirmed using a chemiluminescence dot-blotting assay.
We observed that Rb44L1 significantly bound to α-tubulin
present in B16F10-Nex2 cell extract, as compared to the negative
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FIGURE 5 | Rb44L1 targets microtubules and disrupts tubulin assembly. (A) B16F10-Nex2 cells expressing baculovirus-transduced fluorescent tubulin were
incubated with Rb44L1 at 260µM; representative image of microtubule integrity is shown. Scale bar represents 50µm; (B) microtubule dissociation was quantified in
Rb44L1 and Rb29L1 treated cells and expressed as fluorescence decreased intensity and complete dispersion. ***p < 0.001 in comparison to untreated cells; (C)
representative images of B16F10-Nex2 cells treated for different times with 130 and 260µM of Rb44L1. Merged images of phalloidin-FITC and Hoescht 33342
staining are shown; (D) loss of actin and tubulin assembly integrity in Rb44L1 treated cells was quantified and compared. Results are expressed by fluorescence
intensity. *p < 0.05 comparing microtubules and actin disruption.

control and the scrambled peptide (Scr44), which was inactive.
The C36L1 peptide was used as a positive control (Figure 8F).
Different concentrations of the coated peptide Rb44L1 were
tested and we found 10 µg/10 µl to give the best resolution
in the dot-blotting (Figure S4). Interaction with β-actin was
also evaluated and no reaction was seen (data not shown).
As the docking studies revealed that the Rb44L1 interacted
preferentially close to the N-site, we investigated the influence of
additional GTP and Mn2+ on the peptide binding to α-tubulin
in a dot-blotting assay with fixed peptide and melanoma cell
lysate as a source of α-tubulin (monomeric, modified, dimeric).
The peptide binding was enhanced in the presence of both
GTP and Mn2+, but not with these agents added separately
(Figure S5). Since the GTP N-site is nonexchangeable and non-
catalytic, most likely the addition of GTP and Mn2+ triggered

tubulin assembly by interacting on the E-site. Oligomeric
tubulin bound to the peptide explains the increased reactivity
with anti-α-tubulin antibody used to reveal the dot-blotting
assay.

Rb44L1 Inhibits Purified Tubulin Assembly
The microtubule destabilization effect of Rb44L1 was
also evaluated using a fluorescence recombinant tubulin
polymerization assay kit (Cystoskeleton, Inc., Denver, CO). In
this setting and starting with 2 mg/ml tubulin, 0.2 mg/ml of
Rb44L1 delayed tubulin assembly and reduced approximately
1/4 of the total assembly capacity compared to the control
(∗∗∗p < 0.001) and the scrambled peptide, Scr44 (Figures 9A,B).
This effect was significantly more evident at half the tubulin
concentration (1 mg/ml) and 0.2 mg/ml of Rb44L1 (∗∗∗p < 0.001
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FIGURE 6 | Motion representation of normal mode 8 and nucleotide/colchicine site exposition as a result of α/β-tubulin displacement. (A) cartoon representation of
α/β-tubulin normal mode 8. The circular motion in opposite directions of each tubulin monomer promotes the exposition of a nucleotide and colchicine binding sites;
(B) highlight of vector directions. Vectors are placed into Cα atoms of each residue. Secondary structure color code: turn in green; β-sheet in yellow; β-bridge in gold;
α-helix in purple; G, 3-10 helix in blue; and C, Coil in white. (C,D) α/β-tubulin crystallographic structure (PDB 4TV9) where atoms are represented as spheres.
(C) comparison of GTP N-site (cyan), colchicine (yellow), and GTP E-site (green) site exposition between (C) α/β-tubulin crystallographic structure (PDB 4TV9); and (D)

α/β-tubulin displaced by 6 Å along normal mode 8. Atoms are represented as spheres and residues present in both colchicine, and GTP N-site are colored in purple.
α-Tubulin is represented in light-pink and β-tubulin in light-blue.

compared to the control). Polymerization was inhibited in 3/4
followed by depolymerization, after approximately 150min
incubation (Figures 9C,D). Since colchicine is a well-known
microtubule inhibitor and has a binding-site mostly on β-tubulin,
we assayed the effect of simultaneous addition of colchicine and
Rb44L1. Increased inhibition of tubulin assembly was observed
with this combination, suggesting independent interaction
sites of Rb44L1 and colchicine, ∗∗∗p < 0.001 compared to the
colchicine alone (Figure 9E). It should be pointed out that
single drugs such as the MT- depolymerizing colchicine and
the MT-polymerizing paclitaxel when used in combination, the
depolymerization effect has predominated (47).

DISCUSSION

The microtubules together with various stabilizing and
destabilizing molecules display many important physiological
functions. Due to their indispensability in the mitotic cell
division, microtubules have been selected as preferred anticancer
targets. Indeed, microtubule directed drugs are among the
most commonly prescribed agents in cancer chemotherapy (2).
Recently, anti-tumor peptides targeting microtubules (26) have
been studied as tubulin interacting ligands that may evolve to be
used in cancer therapy.

Novel anti-tumor peptides may have advantages over mAbs
and tyrosine-kinase inhibitors, such as low cost, high specificity

and potency due to their compatibility with targeted proteins,
ability to penetrate the cell membrane, reduced immunogenicity,
and improved safety (48). For example, the ADH-1 (Exherin),
is an anticancer peptide distributed by Adhex Technologies R©,
which targets N-cadherin and induced partial and complete
protective responses in patients with metastatic melanoma (49).

The microtubule destabilizing Ig VL CDR1 peptide (C36L1)
triggered cytotoxic and cytostatic effects on melanoma cells
in vitro (23). Besides C36L1, we found that another CDR-
L1 derived peptide, from anti-Lewis B mAb, exhibited similar
cytotoxic mechanisms, targeting microtubules (MT). In the
present work, we studied the molecular structure and biological
effects of different L1-CDR-derived peptides: C36L1, Rb44L1 and
Rb29L1 on microtubules. We analyzed the structure of L1-CDR-
destabilizing MT peptides C36L1 and Rb44L1, as compared to
the inactive one, Rb29L1. The latter demonstrated themost stable
and rigid structure, assuming a β-hairpin conformation with
several high occupancy H-bonds. Rb44L1 showed less rigidity as
compared to Rb29L1, with a stable β-bridge conformation, while
C36L1 was the most flexible peptide among them.

The biological effects of the peptides were examined and
Rb44L1 showed the highest cytotoxic activity, selectively in
different cancer cell lines with no significant effects on non-
tumorigenic cell lines (Table 2).

Morphological and biochemical changes during tumor cells
incubation with cytotoxic concentrations of Rb44L1 were
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TABLE 3 | Key binding characteristics governing tubulin and L1-CDR interaction.

Displacement (Å)

0 1 2 3 4 5 6

Rb29L1

Energy* 434.76 751.84 383.90 −60.19 800.12 −101.62 −37.13

H-bonds 2 3 5 4 8 1 8

Salt-bridges – 1 – – – – –

Cation-pi – – 1 – – – –

T-stacking – – – – – – 1

Hydrophobic
contacts

27 69 33 45 57 60 58

C36L1

Energy* −41.64 −186.92 15.15 −59.66 −287.46 195.54 −271.06

H-bonds 7 2 2 2 6 – 4

Salt-bridges 1 1 1 1 1 – –

Cation-pi – – 1 – – – 1

T-stacking – – – – – – –

Hydrophobic
contacts

60 67 56 45 42 59 87

Rb44L1

Energy* 216.31 −169.17 −300.48 45.49 −70.64 −30.10 −165.28

H-bonds 4 2 6 3 1 3 3

Salt-bridges 1 – 2 – – – –

Cation-pi – – – – – – –

T-stacking – – – – – – –

Hydrophobic
contacts

51 57 61 47 47 56 64

Rb44L1-R1A

Energy* 253.99 45.25 −52.26 35.38 −37.68 −78.29 −125.58

H-bonds 2 3 3 – 2 3 4

Salt-bridges – – – – – – –

Cation-pi – – – – – – –

T-stacking – – – – – – –

Hydrophobic
contacts

41 53 51 46 47 56 64

Best poses are highlighted in bold (energy values in kJ/mol).*Predicted summed

electrostatic energy by atom-type pair according to Gasteiger partial charges.

observed. Apoptosis was recognized by the remarkable shrinkage
of the cytoplasm, roundup cells with pseudopodia retraction and
shriveling without cell lysis, genomic DNA condensation and
fragmentation, and exposure of phosphatidylserine at the surface
of peptide-treated cells (50). The intrinsic pathway involves the
functional deregulation of mitochondria, which may culminate
in activation of caspases and the cascade of events that drives to
cell death (51, 52). Early disruption of mitochondrial membrane
potential, as evidenced by time-lapse fluorescence microscopy
and TEM, together with later production of ROS, cleavage
of caspase-9, caspase-3, the PARP, upregulation of Bax and
downregulation of Bcl-2 were effects induced by Rb44L1, and
they are all consistent with the intrinsic pathway of apoptosis
(53, 54), strongly suggesting that this is themain in vitro cytotoxic
mechanism of the peptide in melanoma cells.

P53 is activated in response to different stresses leading
tumor cells to apoptosis and growth arrest (55). In this

regard, accumulation of active p53 may also be attributed to
disintegration of the cytoskeleton. Microtubule targeted-drugs
are one of the main stimuli able to increase levels and activate
p53 (56).

Themainmechanism that seems to be involved in the intrinsic
apoptosis by Rb44L1 peptide is the early disruption of the
microtubules in melanoma cells. Rb44L1 destabilized labeled
microtubules during early stages of incubation, as observed by
fluorescence microscopy. In contrast, Rb29L1 did not affect the
microtubule dynamics, under the same conditions.

The actin cytoskeleton integrity was also evaluated, as
observed by fluorescence microscopy. Rb44L1 induced the
degradation of actin filaments in melanoma cells to a maximum
effect after 3 h of tumor cell treatment with this peptide.
Alterations of actin dynamics are sufficient to induce apoptosis.
They involve changes in F-actin levels, in the flux of actin
through the filament pool, or both (57). In addition, F-actin
depolymerization has been implicated in reduced MMP and
elevated ROS production, together with shortening of cell
lifespan (58), as observed in melanoma cells treated with Rb44L1.
The peptide, however, did not directly interact with F-actin
to induce depolymerization as suggested by a late kinetics,
which follows microtubule depolymerization. In fact, the actin
cytoskeleton integrity has been shown to be highly dependent
on the microtubule dynamics (59, 60), which is crucial in tumor
cells constantly entering the mitotic program as compared to
non-tumorigenic cells (2). Cellular functions depend on the
crosstalk between microtubules and actin filaments, in which
specific proteins bind to microtubules and actin filaments
simultaneously, promoting co-organization and coupled growth
of both networks (61). Both cytoskeleton constituents are
intrinsically related and rearranged during the progress of
apoptosis. Important events are regulated by ROCK kinases
that actively regulate the actomyosin contractile ring, a process
facilitated by the early disruption of microtubules. Protrusions
of the plasma membrane also called apoptotic bodies or
blebs, are formed, with subsequent depolymerization of actin
filaments (62).

Rb44L1 interaction with microtubules and induction of
their depolymerization with subsequent degradation of actin
filaments increased the number of tumor cells in the G2/M
phase leading to a mitotic catastrophe. Such effects, coupled to
inhibited angiogenesis as observed in vitro, are consistent with
the described effects of other microtubule targeting drugs (2, 63).
A schematic illustration of the effects induced by Rb44L1 on
melanoma cells is detailed in the Figure 10.

Most importantly, this peptide showed a promising antitumor
protective effect against subcutaneously grafted melanoma, with
no systemic toxicity being observed.

Once proteins exist in equilibrium of multiple conformations
in solution, we used a theoretical approach that mixed analyses
of molecular dynamics and normal modes, to sample distinct
structural states of α/β-tubulin dimer. This hybrid methodology
allowed for the assignment of both local and collective
motions of the system, that are essential dynamic features
related to conformational selection and induced fit, respectively
(64–66).
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FIGURE 7 | Rb44L1 and C36L1 interactions with α/β-tubulin displaced by 2 Å and 4 Å, respectively. (A,B) surface complementarity; (C,D) hydrogen bonds formed;
(E,F) salt bridges form a tiny pocket demonstrated in navy blue surface; (G,H) hydrophobic contacts form pockets represented by orange surface. α-Tubulin is
represented in light-pink and β-tubulin in light-blue.

Microtubules are dynamic cellular structures that switch
between growing and pruning cycles both in vivo and
in vitro. Stabilization or destabilization of microtubule dynamics
is promoted by a number of endogenous and exogenous
compounds that regulate the process in different ways, either
by competition with GTP (67), structural modification of the
protein-protein interface between α and β monomers (8, 31, 68)
or by allosteric mechanisms (69). One of the most frequently
described mechanisms is the ligand binding at the colchicine site
on β-tubulin, which is spatially next to an α-tubulin nucleotide
binding site, with nonexchangeable, noncatalytic characteristics,
known as N-site. Therefore, we explored the exposition of both
binding sites as a molecular docking strategy, since their coupling

might trigger the structural destabilization of tubulin dimer
exerted by some L1-CDR peptides.

The tubulin heterodimer has two guanine binding sites:
at the exchangeable, catalytic site (E-site) on the β chain,
GTP is hydrolyzed to GDP during microtubule assembly; the
nonexchangeable, noncatalytic site (N-site), on the α chain,
is always occupied by GTP, suggesting that it may function
as a structural cofactor of tubulin (70). Divalent cations have
high affinity for both sites and their binding is associated to
the structural stability of tubulin dimer (71). Mg2+ is a well-
established ion required for microtubule assembly and stability,
and contributes to strong GTP binding to the E-site (72). Q-band
EPR and electron spin echo envelope modulation spectroscopy
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FIGURE 8 | CDR-L1 docking poses in relation to α/β-tubulin N-site and colchicine binding sites and energy re-score of docked complexes. (A) Rb44L1; (B) C36L1;
(C) Rb29L1 best docking pose highlighting their position in relation to residues at N-site and colchicine binding sites. α-Tubulin is represented in light-pink and
β-tubulin in light-blue. N-site and colchicine binding site residues are represented as purple and pale green, respectively, whereas those that interact with the CDRs
are hot pink and lime green for nucleotide and colchicine binding site, respectively. The camera was inverted 170◦ on the y-axis and 80◦ on the x-axis for better
visualization of the C36L1 and Rb29L1 interactions; (D) summed electrostatic energy of Rb29L1, Rb44L1, C36L1 and Rb44L1-R1A complexed with α/β-tubulin at
different displacements; (E) overlapping of Rb44L1 and C36L1 docked complexes. Residues 1R and 13K of Rb44L1 (blue) and C36L1 (red), respectively, occupy the
same region at the tubulin dimer interface, that is blocked by residues 70LEPT of α-tubulin and 243PGQL of β-tubulin at minimized structure (green surface); (F)
Rb44L1 binds to tubulin present in the lysate of B16F10-Nex2 cells. Dot-blottings were performed by coating the nitrocellulose membranes with 10 µg of C36L1,
Rb44L1, scrambled-Rb44L1 (Scr44), and vehicle (1% DMSO in milli-Q water). Experimental and control dot-blottings were performed as described in methods.
Quantitation of dots was performed using ImageJ, and are represented as arbitrary units.

showed that Mn2+ at both N and E-sites directly coordinated to
the triphosphate of GTP, proving that the divalent cation at both
sites directly interacts with GTP (73). Mn2+ slowly exchanged
for Mg2+ at the N-site and other divalent and trivalent cations
may also exchange at this site and play a role in the assembly of
microtubules (74, 75). Chelation of divalent cations in general,
inhibits the assembly of tubulin dimers.

L1-CDR peptides bound at the nucleotide/colchicine binding
site at the dimer interface, but most of the interactions were
made at the N-site. The best solution of Rb44L1 peptide was in
an α/β-tubulin semi-open state. We observed that the 1R is a

key residue for interaction with tubulin dimer. The mutation of
this residue for alanine, weakened the interaction, increasing the
free energy. This result was further corroborated by experimental
assays. Interestingly, the 13K of C36L1 used the same tubulin
cavity as that of 1R of Rb44L1, although C36L1 best docking pose
was observed in an open conformation. This polar pocket may
play an important role in tubulin depolymerization induced by
L1-CDR peptides since the inactive Rb29L1 did not present a
favorable interaction on this region.

The inactivity of Rb29L1 peptide is noteworthy, since its
sequence is quite similar to Rb44L1 except between residues 4
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FIGURE 9 | Effects of Rb44L1 on microtubule assembly. (A) Polymerization kinetics in presence of Rb44L1 and Scr44 (130µM) with purified fluorescent tubulin at 2
mg/ml. Inhibition by colchicine (50µM) was assayed alone or in combination with Rb44L1. (B) bar graph represents the percentage of tubulin assembly measured at
30min from kinetic curve demonstrated in (A). (C) Rb44L1, Rb29L1, and Rb44R1A were incubated with tubulin at 1 mg/ml and polymerization/destabilization was
measured. (D) bar graph represents the percentage of tubulin assembly measured at 140min from kinetic curve demonstrated in (C). *p < 0.05, **p < 0.01, and
***p < 0.001 in comparison to the control (E) structural alignment between the best pose from molecular docking and PDB 4O2B (chains A and B) illustrating the
possibility of Rb44L1 (green) and colchicine (red) interact concomitantly with α/β-tubulin at its interface. PDB4O2B was firstly aligned with PDB4TV9, and then the
comparison was made. α-Tubulin is represented in light-pink and β-tubulin in light-blue.

and 7, which is TSLL in the former peptide and QTIT in the
latter. Interestingly, the most favorable docking poses showed a
different interaction pattern with tubulin, since Rb44L1 QTIT
residues were less solvent exposed than Rb29L1 TSLL residues,
which are 70 Å2 more exposed to solvent. This is a direct
consequence of the observed R interaction pattern with buried
tubulin residues (69D and 11Q) in the N-site, and could be related
to the observed activity differences.

A dot-blotting assay showed that in the presence of both
GTP and Mn2+, but not with these agents added separately,
the Rb44L1 peptide bound with increased affinity to the tubulin
α-chains of monomeric, modified or dimeric substrates from a

tumor cell lysate. This may have occurred by the GTP-E site
induced oligomerization of tubulin dimers present in the cell
lysate during incubation, indicating that under the conditions
used, the dot-blotting assay with fixed peptide did not impair
tubulin assembly on the latter (Figure S6).

In contrast, what is the possible mechanism triggering
Rb44L1 depolymerization of tubulin? We found that
the surface overlapping of the docked conformation of
the peptide and the closed α/β-tubulin revealed that the
peptide represents a steric constraint to the protein in
this conformation. The effect noticed in the overlapping
regions of 1R, 3S, and 12N residues, and the peptide size
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FIGURE 10 | Schematic illustration of proposed Rb44L1 effects on melanoma cells. Rb44L1 peptide interacts at the tubulin monomers’ interface in microtubules
promoting depolymerization. Alteration of microtubule dynamics led to actin filaments degradation, disrupting the cytoskeleton integrity. In response to changes in the
environment, mitochondria produce high amounts of ROS and release co-factors that trigger intrinsic apoptosis. Upon activation by binding to and neutralization of
Bcl-2, insertion of Bax into mitochondrial outer membrane form pores to allow the passage of proteins from the intermembrane space to the cytosol. It involves the
disruption of mitochondrial membrane potential (1ψm) followed by release of cytochrome c in the cytosol that binds to Apaf-1, ATP, and pro-caspase 9 to form an
oligomeric apoptosome, which results in the caspase cascade initiation. Activation of caspase 3 by caspase 9 is responsible for the proteolytic cleavage of the nuclear
enzyme Parp-1, which abolishes its DNA repair ability and induces DNA fragmentation in cells undergoing apoptosis. In addition, Rb44L1 inhibited pro-angiogenic
structure formation in vitro and induced cell cycle arrest at G2/M. Abbreviations: Apaf-1, Apoptotic protease activating factor 1; Cyt-c, Cytochrome-c; ROS, Reactive
oxygen species; 1ψm, Mitochondrial membrane potential; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2 associated X protein; Parp-1, Poly [ADP-ribose] polymerase 1. The
illustration was designed by Carolina de Amat.

of 1675.0 Å3, which preclude the α/β-tubulin return to a
closed conformation, is a source of structure destabilization
(Video S2).

Taken together, we propose that Rb44L1 peptide is a novel
candidate to be developed as a drug, acting on the microtubule
network of tumor cells. Molecular docking on tubulin monomers
in opening motion, and the possible mechanisms of action
leading to microtubule depolymerization were explored in
comparison with other Ig CDR-L1 derived peptides, all tested
against in vitromodels of melanoma cells.
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Celastrol is a natural triterpene isolated from the Chinese plant Thunder God Vine with

potent antitumor activity. However, the effect of celastrol on the growth of ovarian

cancer cells in vitro and in vivo is still unclear. In this study, we found that celastrol

induced cell growth inhibition, cell cycle arrest in G2/M phase and apoptosis with the

increased intracellular reactive oxygen species (ROS) accumulation in ovarian cancer

cells. Pretreatment with ROS scavenger N-acetyl-cysteine totally blocked the apoptosis

induced by celastrol. Additionally, celastrol inhibited the growth of ovarian cancer

xenografts in nude mice. Altogether, these findings suggest celastrol is a potential

therapeutic agent for treating ovarian cancer.

Keywords: celastrol, reactive oxygen species, N-acetyl-cysteine, apoptosis, ovarian cancer

INTRODUCTION

Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of female
cancer-related deaths in the United States in 2018 (1). Because of the late stage diagnoses, the
prognosis of ovarian cancer remains poor, despite advances in aggressive surgery and combination
chemotherapy (2–4). Current treatments for ovarian cancer are far from satisfactory, therefore it
is of considerable interest to develop novel therapeutic agents to improve the outcomes of ovarian
cancer.

Celastrol is a natural triterpene isolated from the Chinese plant Thunder God Vine
(Tripterygium wilfordii),which has been reported with a wide range of bioactivities, such as
antitumor (5), anti-inflammatory (6), antidiabetic activities (7) and antihypertensive (8). Celastrol
has shown the potent antitumor activity in various cancers including prostate, breast, liver, colon,
and lung (9–13). Although celastrol is able to induce apoptosis and inhibit proliferation, migration
and invasion in ovarian cancer cells in vitro (14–16), the effect of celastrol on the growth of ovarian
cancer cells in vivo is still unknown. Here, we have comprehensively investigated the antitumor
activity of celastrol in ovarian cancer cells in vitro and in vivo.

MATERIALS AND METHODS

Cells Lines and Reagents
The human ovarian cancer lines A2780 and SKOV3 were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/ml) and
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streptomycin (100 ng/ml) at 37◦C with 5% CO2 in a
humidified incubator. Celastrol was purchased from
Shanghai Tauto Biotechnology. N-acetyl-L-cysteine (NAC)
and dihydroethidium (DHE) were purchased from Sigma-
Aldrich. Methythiazolyldiphenyl-tetrazolium bromide (MTT),
propidium iodide (PI) and other chemicals were purchased
from Shanghai Sangon Biotech. Anti-p27 (610241), Anti-
Cyclin B1 (554177), and Anti-Cyclin E (51-1459GR) antibodies
were from BD Biosciences. Anti-RAF1 (SC-133) antibodies
were from Santa Cruz Biotechnology. Anti-PARP (9542),
Anti-AKT (4691), Anti-pAKT S473 (4060), Anti-ERK (4695),
Anti-pERK T202/T204 (4370), Anti-JNK (9252), Anti-pJNK
T183/Y185 (4668), Anti-p38 (9212), Anti-pp38 T180/Y182
(4511) antibodies were from Cell Signaling Technologies.
Anti-GAPDH (LK9002T) antibodies were from Tianjin Sungene
Biotech.

MTT Assay
Cells were seeded into a 96-well plate at a density of 0.5 ×104

cells/well. Then, different concentrations of celastrol (10µL/well)
were added to designated wells. After 72 h, 10 µL of MTT was
added to each well at a final concentration of 0.5 mg/ml, and the
plate was further incubated for 4 h, allowing viable cells to change
the yellow MTT into dark-blue formazan crystals. Subsequently,
the medium was discarded and 50 µL of dimethylsulfoxide

FIGURE 1 | Celastrol inhibited the growth of ovarian cancer cells in vitro. (A) The growth curves, IC50 values and (B) phase-contrast images of A2780 and SKOV3

cells treated with the indicated concentrations of celastrol (0, 0.1, 0.3, 1, 3, and 10µM) for 72 h. Cell survival was measured by MTT assay, and the IC50 values of

celastrol in each cell lines were calculated.

(DMSO) was added to each well to dissolve the formazan crystals.
The absorbance in individual well was determined at 570 nm by
multidetection microplate reader 680 (BioRad, PA, USA).
The concentrations required to inhibit growth by 50%
(IC50) were calculated from survival curves using the Bliss
method (17).

Cell Cycle Analysis
Cells were harvested and washed twice with cold PBS and

then fixed with 70% ice-cold ethanol at 4◦C for 30min.
After centrifugation at 200 × g for 10min, cells were washed

twice with PBS, resuspended with 0.5mL PBS containing PI

(50µg/mL), Triton X-100(0.1%, v/v), 0.1% sodium citrate,
and DNase-free RNase (100µg/mL), and detected by flow

cytometry (FCM) after 15min incubation in the dark at
room temperature. Fluorescence was measured at an excitation
wave length of 480 nm through a FL-2 filter. Data were
analyzed using ModFit LT 3.0 software (Becton Dickinson)
(18, 19).

Apoptosis Analysis
Cell apoptosis was evaluated with FCM assay. Briefly, cells were
harvested and washed twice with cold PBS, then stained with
Annexin V-FITC and PI in the binding buffer, and detected by
FACSCalibur FCM (BD, CA, USA) after 15min incubation in
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the dark at room temperature. Fluorescence was measured at an
excitation wave length of 480 nm through FL-1 (530 nm) and FL-
2 (585 nm) filters. The early apoptotic cells (Annexin V positive
only) and late apoptotic cells (Annexin V and PI positive) were
quantified (20).

Western Blot Analysis
Cells were harvested and washed twice with cold PBS and
then resuspended and lysed in RIPA buffer (1% NP-40,
0.5% sodium deoxycholate, 0.1% SDS, 10 ng/mL PMSF, 0.03%
aprotinin, and 1µM sodium orthovanadate) at 4◦C for 30min.

FIGURE 2 | Celastrol induced cell cycle arrest in ovarian cancer cells. A2780 and SKOV3 cells were treated with celastrol with the indicated concentrations for 48 h,

then cell cycle was detected by FCM. The representative charts (A,C), quantified data (B,D), and Western blot results (E,F) of three independent experiments are

shown. *P < 0.05 and **P < 0.01 vs. corresponding control.
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FIGURE 3 | Celastrol induced apoptosis in ovarian cancer cells. A2780 and SKOV3 cells were treated with celastrol with the indicated concentrations for 48 h, then

cell apoptosis was detected by FCM. The representative charts (A,C), quantified data (B,D), and Western blot results (E,F) of three independent experiments are

shown. The same GAPDH image of Figure 2 has been used as loading control. **P < 0.01 vs. corresponding control.
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Lysates were centrifuged at 14,000 × g for 10min and
supernatants were collected. Proteins were separated on 12%
SDS-PAGE gels and transferred to polyvinylidene difluoride
membranes. Membranes were blocked with 5% BSA and
incubated with the indicated primary antibodies. Corresponding
horseradish peroxidase-conjugated secondary antibodies were
used against each primary antibody. Proteins were detected
using the chemiluminescent detection reagents and films (21,
22).

Reactive Oxygen Species Assay
Cells were incubated with 10µM of DHE at 37◦C for
30min, washed twice with PBS, and microphotographed
under a conventional fluorescent microscope (Olympus, Japan)
immediately. For each well, 5 fields were taken randomly. Then,
cells were rapidly digested, harvested and washed twice with cold
PBS, and detected by FCM. The DHE Fluorescence intensity was
measured and quantified at an excitation wave length of 518 nm
through PE filters (23, 24).

Nude Mice Xenograft Assay
Balb/c nude mice were obtained from the Guangdong Medical
Laboratory Animal Center and maintained with sterilized food
and water. This study was carried out in accordance with
the recommendations of the Guidelines for the Care and Use
of Laboratory Animals, and the protocol were approved by
the Institutional Animal Care and Use Committee of Jinan
University. Four female nude mice with 4–5 weeks old and
20–22 g weight were used for each group. Each mouse was
injected subcutaneously with A2780 cells (4 × 106 in 100 µl
of medium) under the left and right shoulders. Mice were
randomized into two groups, when the subcutaneous tumors
were approximately 0.3× 0.3 cm2 (two perpendicular diameters)
in size, and were injected intraperitoneally with vehicle alone
(0.5% methylcellulose) and celastrol (2 mg/kg) every day. The
body weights of mice and the two perpendicular diameters (A
and B) of tumors were recorded every day. The tumor volume
(V) was calculated as:

V = π/6 (1/2(A+ B))3

The mice were anaesthetized after experiment, and tumor tissue
was excised from the mice and weighted. The rate of inhibition
(IR) was calculated according to the formula:

IR=1-Mean tumor weight of experimental group/Mean
tumor weight of control group× 100% (25)

Statistical Analysis
A student’s t-test was used to compare individual data points
between two groups. A P-value of < 0.05 was set as the criterion
for statistical significance.

RESULTS

Celastrol Inhibited the Growth of Ovarian
Cancer Cells in vitro
To access the effect of celastrol on ovarian cancer cells,
we treated two ovarian cancer cell lines A2780 and SKOV3

with the increasing concentrations of celastrol range from
0.1 to 10µM for 72 h. As shown in Figures 1A,B, the
results of MTT assay revealed that the growth of two
ovarian cancer cell lines was similarly inhibited by celastrol
in a dose-dependent manner with the IC50 values were 2.11
and 2.29µM in A2780 and SKOV3 respectively. These data
suggested that celastrol inhibits the growth of ovarian cancer
cells.

Celastrol Induced Cell Cycle Arrest in
Ovarian Cancer Cells
To determine whether celastrol is able to induce cell cycle arrest,
cell cycle distribution was examined after celastrol treatment.
A2780 and SKOV3 cells were treated with 0.3, 1 and 3µM of
celastrol for 48 h, then stained with PI and examined by FCM.
As shown in Figures 2A–D, celastrol induced the accumulation
in Sub G1 and G2/M phase and reduction in G0/G1 and S
phase in two ovarian cancer cell lines. Next, the cell cycle
related proteins were detected by Western Blot. As shown in
Figures 2E,F, increased p27 and Cyclin B1 and decreased Cyclin
E proteins were detected in celastrol-treated A2780 and SKOV3
cells. Together, these results indicated that celastrol induces cell
cycle arrest in ovarian cancer cells.

Celastrol Induced Apoptosis in Ovarian
Cancer Cells
To determine whether celastrol could induce cell apoptosis,
A2780 and SKOV3 cells were treated with indicated
concentrations of celastrol for 48 h, apoptosis was assessed by
FCM with Annexin V/PI staining. As shown in Figures 3A–D,
celastrol dose-dependently induced early stage of apoptosis
(Annexin V+/PI–) and late stage of apoptosis (Annexin
V+/PI+) in both cells. Treatment of celastrol upregulated the
protein expressions of cleaved-PARP, pp38 T180/Y182 and
pJNK T183/Y185 but downregulated the protein expressions
of pERK T202/Y204, pAKT S473 and RAF1 (Figures 3E,F).
Consequently, these results suggest that celastrol induces cell
apoptosis in ovarian cancer cells.

ROS Generation Was Critical for
Celastrol-Induced Apoptosis in Ovarian
Cancer Cells
Numerous antitumor agents demonstrate antitumor activity via
ROS-dependent activation of apoptotic cell death (26, 27). It
has previously been reported that the elevated intracellular
ROS mediated celastrol-induced apoptosis in several human
cancer cells (28). Thus, we surmised that celastrol caused
apoptosis in ovarian cancer cells was due to excessive ROS
generation. Firstly, the cellular ROS was tagged by DHE
fluorescence staining in celastrol-treated cells. As shown in
Figure 4, celastrol enhanced the detectable red fluorescent signals
of DHE in both A2780 and SKOV3 cells, suggesting the
intracellular ROS levels were increased after celastrol treatment.
Then we pre-treated A2780 and SKOV3 cells with NAC
(a specific ROS scavenger), Celastrol-induced cell apoptosis
were totally attenuated by NAC in both ovarian cancer cells
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FIGURE 4 | Celastrol enhanced the intracellular ROS levels in ovarian cancer cells. A2780 and SKOV3 cells were treated with celastrol with indicated times

and concentrations, stained with DHE, photographed and quantified respectively under fluorescent microscope and FCM. The representative micrographs (A,C) and

quantified results (B,D) were shown. **P < 0.01 vs. corresponding control.

(Figure 5). Collectively, these results suggest that ROS generation
was critical for celastrol-induced apoptosis in ovarian cancer
cells.

Celastrol Inhibited the Tumor Growth of
Ovarian Cancer in Nude Mice
To confirm the antitumor effects of celastrol in vivo, A2780
subcutaneous xenograft tumors were generated in the nude
mice. As shown in Figures 6A–E, treatment of celastrol did
inhibit the growth of A2780 xenograft tumors with the
inhibition ratio of 28.60% by diminishing the tumor volumes
and weights. Furthermore, mice body weight in celastrol
group was close to that of control group, suggesting that
celastrol at the indicated dose did not cause toxicity in mice
(Figure 6C).

DISCUSSION

Natural products attract more and more attention in the
prevention and treatment of cancer in recent years. Products
from the plant Tripterygium wilfordii, including celastrol and
triptolide, are of special attention because of its superior anti-
tumor activities against a variety of cancer types, and therefore
are the traditional herb medicines considered to have the most
potential in modern cancer therapy. For the treatment of ovarian
cancer, triptolide has been shown to inhibit the proliferation,
migration and invasion of ovarian cancer in multiple pathways
(29–31) and demonstrated to exert efficacy in preclinical models
(32). Celastrol has also been reported to induce apoptosis and
inhibit proliferation, migration and invasion in ovarian cancer
cells in vitro (14, 16), but the mechanism for its anti-tumor
effect and the effect of celastrol on the growth of ovarian cancer
cells in vivo are not fully understood. In our present study,
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FIGURE 5 | NAC impeded celastrol-induced cell apoptosis. A2780 and SKOV3 cells were treated with 3µM celastrol for 48 h in the presence or absence of 5mM

NAC pretreated for 1 h. The apoptosis was detected by FCM. The apoptosis charts and quantified data (A,B) were shown. *P < 0.05 and **P < 0.01 vs.

corresponding control.

we have demonstrated that celastrol mediated dose-dependent
anti-growth effects on human ovarian cancer cell lines SKOV3
and A2780. The IC50 value after 72 h treatment with celastrol
ranged from 2 to 3µM in these two human ovarian cancer cell
lines, similarly to the IC50 value of celastrol of ovarian cancer
in other articles (15, 16). We have also shown that celastrol
induced both the early and late stage of apoptosis and cell cycle

arrest in G2/M phase with obvious up-regulation of cleaved-
PARP, pp38 T180/Y182, pJNKT183/Y185, p27 and Cyclin B1 and
down-regulation of pERK T202/Y204, pAKT S473, RAF1 and
Cyclin E in a dose-dependent manner. Similar with our results,
celastrol can induce the activation of JNK and inactivation of
AKT in multiple myeloma cells RPMI-8226 (33), activation of
p38 in ovarian cancer cells OVCAR-8 and colorectal cancer
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FIGURE 6 | Celastrol inhibited the tumor growth of ovarian cancer in nude mice. Each mouse was injected subcutaneously with A2780 cells (4 × 106 in 100 µl of

medium) under the left and right shoulders. When the subcutaneous tumors were approximately 0.3 × 0.3 cm in size, mice were randomized into two groups, and

received intraperitoneal injection of vehicle alone (0.5% methylcellulose) or celastrol (2 mg/kg) every day. The body weight and tumor volume were recorded every day.

After experiment, the mice were anesthetized, and tumor tissue was excised from the mice and weighted. The tumor volume (A), original tumors (B), body weight (C),

tumor weight (D), and summary data (E) were shown. *P < 0.05 vs. corresponding control.

cells SW620 cells (34) and inactivation of ERK in hepatoma
cells Hep3B (35). Furthermore, celastrol inhibited the growth of
A2780 ovarian cancer subcutaneous xenograft tumors in nude
mice by diminishing the tumor volumes and weights, and mice
body weight in celastrol group was close to that of control
group. These in vitro and in vivo data strongly indicate that
celastrol may be a appropriate candidate for treating ovarian
cancer.

Biological roles of ROS were intricate and important in
cancer cells (36). The intracellular ROS plays a significant role
in regulating multifarious cell physiological process such as
growth, differentiation, death and so on (37). ROS changes the
cellular redox condition, induces DNA damage and influences
the activities of tumor suppressor or oncogene, thereby involving
in the initiation and progression of cancer (38, 39). Lots
of studies have shown that cancer cells normally produce

more ROS than normal cells (40). Interestingly, accumulating
evidence suggests that cancer cells are more vulnerable to ROS-
induced death because they are under the increased oxidative
stress (41). A variety of agents like YM155, dinaciclib and
triptolide may be selectively toxic to tumor cells because they
enhanced intracellular oxidant stress and push these already
stressed cells beyond their limitation (24, 38, 42, 43). In
addition, previous studies have demonstrated that ROS plays a
pivotal role in celastrol-induced apoptosis in multiple cancers,
such as colon cancer, liver cancer, osteosarcoma, etc. (9,
28, 44). In this study, we have found that the intracellular
ROS levels were increased after celastrol treatment, and pre-
treated with ROS scavenger NAC totally attenuated celastrol-
induced cell apoptosis in ovarian cancer cells. It has been
reported that celastrol enhanced the intracellular ROS to
induce apoptosis by inhibiting mitochondrial respiratory chain
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complex I activity in lung cancer H1299 cells (45). Whether
celastrol induces ROS accumulation to trigger apoptosis in
the same way in ovarian cancer cells need to be further
investigated.

In summary, our data have shown that celastrol induced cell
growth inhibition, cell cycle arrest in G2/M phase and apoptosis
with the increased intracellular ROS accumulation in ovarian
cancer cells in vitro and in vivo. Pretreatment with NAC totally
blocked the apoptosis induced by celastrol. Altogether, these
findings suggest celastrol is a potential therapeutic agent for
treating ovarian cancer.
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Focal adhesion kinase (FAK) is a non-receptor kinase that facilitates tumor

aggressiveness. The effects of FAK inhibition include arresting proliferation, limiting

metastasis, and inhibiting angiogenesis. PF-573228 is an ATP-competitive inhibitor of

FAK. Treating lung cancer cells with PF-573228 resulted in FAK inactivation and changes

in the expressions of lamin A/C and nuclear deformity. Since lamin A/C downregulation

or deficiency was associated with cellular senescence, the senescence-associated

β-galactosidase (SA-β-gal) assay was used to investigate whether PF-573228 treatment

drove cellular senescence, which showed more SA-β-gal-positive cells in culture. p53

is known to play a pivotal role in mediating the progression of cellular senescence,

and the PF-573228-treated lung cancer cells resulted in a higher p53 expression

level. Subsequently, the FAK depletion in lung cancer cells was employed to confirm

the role of FAK inhibition on cellular senescence. FAK depletion and pharmacological

inhibition of lung cancer cells elicited similar patterns of cellular senescence, lamin

A/C downregulation, and p53 upregulation, implying that FAK signaling is associated

with the expression of p53 and the maintenance of lamin A/C levels to shape regular

nuclear morphology and manage anti-senescence. Conversely, FAK inactivation led

to p53 upregulation, disorganization of the nuclear matrix, and consequently cellular

senescence. Our data suggest a new FAK signaling pathway, in that abolishing FAK

signaling can activate the senescence program in cells. Triggering cellular senescence

could be a new therapeutic approach to limit tumor growth.

Keywords: non-small cell lung cancer, senescence, focal adhesion kinase, nuclear deformity, lamin A/C

INTRODUCTION

Focal adhesion kinase (FAK) is a multifunctional non-receptor tyrosine kinase that participates in
a variety of signaling axes (1–5). In response to extracellular stimuli, FAK translocates to the focal
adhesion complex, and mediates molecular signaling for cellular events (6–9). In focal adhesion,
FAK cascades signal the focal adhesion complex to promote cell proliferation and migration
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(4, 9, 10). In addition to the focal adhesion complex and
cytoplasm, FAK is also present in the cell nucleus (3, 11). Nuclear
FAK acts as a cotranscriptional factor in gene transcription and is
involved in p53 degradation, in contrast to its enzymatic function
in protein phosphorylation (3, 11, 12). Whereas, FAK in the focal
adhesion complex affects the expressions of cyclin B1 and cyclin
D1 to program tumor cell proliferation (6, 13, 14), nuclear FAK
elicits p53 degradation to drive cell cycle progression (11, 12).

The biological roles of FAK in cell migration and proliferation
have also been implicated in pathological progression and in
the development of cancer. There are several lines of evidence
suggesting that FAK activity can manipulate tumor phenotypes,
leading to uncontrolled proliferation, neovascularization, and
metastasis (5, 15, 16), and the FAK signaling to tumor cell
propagation represents tumorigenic capacity (5, 11). Given the
crucial roles of FAK in these malignant processes, FAK is
regarded to be a potential target for anti-cancer therapy (17, 18).
Experiments have shown that FAK depletion results in silencing
of cancer-promoting gene expressions in human hepatocellular
carcinoma (HCC) xenotransplants in nude and severe combined
immunodeficiency (SCID) mice (19). Moreover, the enzymatic
function of FAK involves in proliferation and metastasis (9, 15,
20). Suppressing the catalytic activity of FAK or sequestering FAK
in the cytoplasm has been reported to potentially perturb FAK
signaling, which implies that chemical inhibitors of the enzymatic
activity of FAKmay be a pharmacological strategy to limit cancer
growth and metastasis (6, 7, 21, 22).

Triggering cell apoptosis and arresting cell cycle progression
with pharmacological regimens are common strategies to limit
tumor cell growth. FAK inhibition represents an anti-cancer
therapeutic strategy, as FAK inhibitors have effects on anti-
angiogenesis, anti-proliferation, and anti-invasion effects (5, 15,
23). Besides, inducing cellular senescence in tumor cells could
be a new therapeutic approach to limit tumor cell growth (24).
Although therapy-induced senescence (TIS) in cancer cells may
result from deficient apoptosis (25), driving cancer cells to
cellular senescence could be a way to limit tumor propagation
(26). In general, chemotherapy-induced DNA damage, telomere
shortening, and oncogenic stress are the three main pathological
causes of senescence (24, 27–32), and the induction of cellular
senescence with these drug regimens is a side effect. Cases of β-
gal-positive lung cancer biopsies in response to chemotherapy
have been reported (24, 29, 33). Inducing cellular senescence
could be a new approach to limit cancer growth based on
phenotypic aging without DNA damage or genomic instability
(31, 34). Chromatin or nuclear skeleton disorganization could
be a cause of cellular senescence instead of oncogenic stress and
replicative failure (8, 26).

Recent pharmacological advances in cancer therapy have led
to an increased focus on developing chemical compounds that
are able to target specific molecules in tumor cells to both
improve efficacy and lower toxicity (4, 35). PF-573228, which
competes with ATP binding to abolish the catalytic function of
FAK, can inhibit the phosphorylation of FAK at tyrosine 576/577
and FAK kinase function (36, 37). Consequently, PF-573228
efficiently suppresses both the growth and metastasis of epithelial
carcinoma (4, 36). The pharmacological effects of PF-573228

have been characterized based on the inhibition of FAK catalytic
activity (36). In this study, we hypothesized that inhibiting
the enzymatic function of FAK would stop lung cancer cell
growth and invasion. Interestingly, the enzymatic inactivation
of FAK resulted in nuclear deformity. When we investigated
the cause and effect of nuclear deformity by PF-573228, we
observed that p53 upregulation, lamin A/C downregulation, and
cellular senescence in the lung cancer cells exposed to PF-573228.
Strikingly, perturbation of FAK signaling led to downregulation
of lamin A/C and cellular senescence rather than proliferative
arrest, and halted migration of the lung cancer cells. These
results showed that treatment with a FAK inhibitor could be
a therapeutic approach to abrogate tumor growth. In addition,
these findings revealed the crucial role of FAK signaling in anti-
senescence, and that inhibition of FAK resulted in the progression
of senescence.

MATERIALS AND METHODS

Materials
Detailed information on the materials is listed in
Supplementary Table S1.

Cell Culture and Drug Treatment
A549 cells, H1299 cells, and H460 cells were purchased
from ATCC. The cells were cultured in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS) at 37◦C in a
humidified atmosphere at 5% CO2, and treated with PF-573228
(TOCRIS, Bristol, UK) at concentrations of 0, 0.1, 1, or 10µM.

Western Blot Analysis
The cells were harvested and lysed in 1x RIPA buffer (Merck,
Darmstadt, Germany) containing protease and phosphatase
inhibitors. The protein concentration was determined using
a Bio-Rad DC protein assay kit (Bio-Rad, California, USA).
For Western blot analysis, 30 µg of total protein was applied
to SDS-PAGE and transferred to a PVDF membrane. The
membranes were blocked in 5% skim milk for 2 h in TBST
buffer (20mM Tris-Cl, 150mM NaCl, 0.1% Tween 20, pH
7.4). After blocking, the membranes were probed with the
primary antibody overnight. Antibodies against FAK, p-FAK,
cyclin B1, p53, and lamin A/C were used in immunoblotting.
The given protein bands were identified by horseradish
peroxidase-conjugated secondary antibodies and developed with
an enhanced chemiluminescence solution.

Flow Cytometry Cell Cycle Analysis
The cells were harvested and washed with PBS buffer, and then
fixed in 70% (v/v) ethanol. The fixed cells were stained with
propidium iodide solution and injected into an Attune NxT Flow
Cytometer (Life Tech, California, USA) to analyze the cell cycle
profile.

Immunofluorescent Staining and
Immunofluorescent Microscopic Imaging
A Leica DMi8S epifluorescence microscope (Wetzlars, Germany)
equipped with an X-Cite XCT10A (Lumen Dynamics,
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Wiesbaden, Germany) light source, filters and objectives
(10x, 20x, 40x, and 63x) was used to observe fluorescent signals
in the cells. In addition to epifluorescence, confocal images
were captured using an OLYMPUS FV1000 confocal laser
scanning microscope equipped with a light source, filters and
objectives (10x, 20x, 40x, 63x, and 100x). Cells were seeded
on 12-mm coverslips in a 24-well culture plate. The cells were
harvested and fixed in 4% paraformaldehyde in PBS for 10min,
and permeabilized in 0.5% Triton in PBS for 5min. After
fixation, the cells were subjected to immunofluorescent staining
with antibodies recognizing FAK and emerin. Phalloidin-
TRITC was used as an additional reagent. Cell nuclei were
stained with 0.2µg/mL 4′, 6-diamidino-2-phenylindole
(DAPI).

Senescence-Associated β-Galactosidase
Staining
The cells were fixed with 4% paraformaldehyde for 15min.
After fixation, acidic β-galactosidase (SA-β-gal) was
assayed in senescence assay buffer (1 mg/mL 5-bromo-
4-chloro-3-indolyl β D-galactopyranoside (X-gal), 5mM
K3Fe(CN)6, 5mM K4Fe(CN)6, 2mM MgCl2, 150mM NaCl,
40mM citric acid, and 40mM Na2HPO4 at pH 6.0) in
the dark at 37◦C for 16 h. SA-β-gal activity was detected
based on SA-β-gal-hydrolyzed X-gal, which produces a
blue color. All chemical reagents were purchased from
Sigma-Aldrich.

Cell Growth Assay
The cells were trypsinized, resuspended in 1xPBS, and stained
with trypan blue (Sigma-Aldrich). The number of cells was
counted with a hemocytometer.

Lentiviral Production and Infection
Lentivirus-associated plasmids encoding luciferase, and FAK
short hairpin RNA (shRNA) were obtained from the National
RNAi Core Facility of Academia Sinica, Taiwan. The production
and infection of lentiviruses were performed according to the
guidelines of the National RNAi Core Facility.

Statistical Analysis
The experimental data were digitized and analyzed. Data
are presented as the mean ± the standard error of the
mean (SEM). One-way ANOVA was used to compare
digitized data and measurements from independent
experiments in two or more groups, and the Student’s
T-test was used to compare two independent samples. A
p < 0.05 was considered to indicate a statistically significant
difference.

RESULTS

PF-573228 Causes Cessation of the
Propagation of Lung Cancer Cells
Focal adhesion signaling is involved in cell proliferation, and
FAK plays a key role in the focal adhesion complex that
relays focal adhesion signals to the cell proliferation program

(9, 15). Given the role of FAK signaling in tumor growth
and metastasis, we hypothesized that inhibiting the catalytic
activity of FAK may disrupt FAK signaling and blunt tumor
cell proliferation. Therefore, we treated three distinct non-
small cell lung cancer cell lines (A549 lung adenocarcinoma
cells and H460 and H1299 large cell carcinoma cells) with
PF-573228, an enzymatic inhibitor of FAK. PF-573228 was
administered to the lung cancer cells for 4 days at three
doses: 0.1, 1, or 10µM. The growth curves showed that
10µM PF-573228 effectively induced cessation of cell growth
(Figures 1A–C).

We then examined the expression level of the cell cycle
regulator cyclin B1, which has been reported to be a downstream
effector of FAK signaling. Western blot analysis showed
that cyclin B1 expression levels were much lower after the
cells were exposed to 10µM PF-573228 (Figures 1D–F). To
further characterize the effect of PF-573228 treatment on
cell cycle progression, we analyzed the cell cycle distribution
using flow cytometry analysis. The results showed that a
low PF-573228 concentration had little influence on cell
cycle progression (Figures 1G–I), whereas a high PF-573228
concentration (10µM) halted cell cycle progression at the G2/M
transition (Figures 1J,K). This showed that PF-573228 treatment
effectively suppressed multiplication of lung cancer cells.

PF-573228 Administration Inactivates FAK
Since phosphorylation of FAK at Tyr-576 and Tyr-577 (p-FAK)
represents enzymatic activation of FAK (37), an antibody against
p-FAK was used to confirm the kinase activity of FAK and
verify the effect of PF-573228 on FAK inactivation. FAK activity
was practically blocked by 10µM PF-573228 in A549 cells
(Figures 2A,C). To further confirm the inactivation of FAK by
PF-573228 treatment, we also examined the phosphorylation of
tyrosine 397 in FAK (pTyr-397). The results showed that the
intensity of pTyr-397 was decreased after PF-573228 treatment
(Figure S1). FAK is a key regulator of integrin signaling for focal
adhesion assembly (38, 39). In addition to FAK inhibition, PF-
573228 has been shown to perturb integrin-based signaling for
focal adhesion maturation (36).

Treatment of the lung cancer cells with PF-573228 resulted
in failure of FAK activation, and translocation to focal adhesion
was observed in immunofluorescent imaging (Figure 2B). When
the cells were cultured in PF-573228-free medium, more FAK
translocated to focal adhesions, which appeared as plaque-like
patterns in the cell periphery that formed at the tips of stress
fibers, as visualized in cells stained with phalloidin-labeled F-
actin and an antibody against FAK (Figure 2B). By contrast,
in the A549 cells treated with PF-573228, only a few FAK
molecules translocated to focal adhesions, and tiny FAK-based
focal adhesions formed at the tips of F-actin bundles, indicating
failure of focal adhesion maturation (Figure 2B). The sizes of
focal adhesions were measured and the areas of FAK at the tips
of the actin stress fibers were digitized using Image Pro software.
The sizes of focal adhesions ranged from 12 to 28µm2 in the cells
without PF-573228 treatment, whereas the extent of FAK-based
focal adhesion was approximately 3–12 µm2 after PF-573228
treatment (Figure 2D).
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FIGURE 1 | PF-573228 inhibited lung cancer cell growth. Three different types of lung cancer cells, (A) A549 lung adenocarcinoma and (B) H460, and (C) H1299

large cell carcinoma, were selected for the PF-573228 administration regimen. Cell growth curves of the three lung cancer cell lines treated with various doses of

PF-573228 for 4 days were established. The administration of PF-573228 at 10µM to the lung cancer cells effectively suppressed cell growth in vitro, as proliferative

activity totally ceased in the cells exposed to 10µM PF-573228. (D) On the third day, PF-573228-treated cells were harvested and subjected to Western blot analysis

for cyclin B1. Cyclin B1 levels were much higher in A549 cells with 1µM PF-573228 or without PF-573228 treatment than in the cells treated with higher

concentrations of PF-573228. (E) After 10µM PF-573228 treatment, cyclin B1 levels declined markedly in H460 cells. (F) PF-573228 administration slightly reduced

cyclin B1 levels in H1299 cells. A549 cells were harvested and subjected to flow cytometry analysis for cell cycle profiling after PF-573228 treatment for 3 days. The

concentrations of PF-573228 were 0µM (G), 0.1µM (H), 1µM (I) and 10µM (J), respectively, (K) After 10µM PF-573228 treatment, the G2/M ratio was significantly

extended. The apoptotic ratio was also increased in A549 cells with 10µM PF-573228 treatment.
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FIGURE 2 | PF-573228 as a catalytic inhibitor inactivated the kinase function of FAK. (A) FAK expression levels and FAK activity, as measured by the phosphorylation

of FAK at tyrosine 576 and 577, were quantified by Western blot analysis after treatment of lung cancer cells with PF-573228 for 3 days. (B) The cells were stained

with phalloidin to visualize F-actin (red) and a FAK antibody to visualize the FAK distribution (green). In cells without PF-573228 administration, FAK translocated to

focal adhesions at the tips of actin stress fibers, and the focal adhesions were relatively large. When cells were exposed to 10µM PF-573228, FAK translocation to

focal adhesions was reduced, and the sizes of the focal adhesions were smaller. Nuclei in cells treated with PF-573228 were deformed, as visualized with DAPI

staining, whereas most nuclei in cells without PF-573228 treatment were oval shaped. (C) The p-FAK/FAK ratios in the cells with exposure to 1µM and 10µM

PF-573228 were reduced to less than half and one tenth compared with the cells without PF-573228 treatment, respectively. (D) The sizes of FAK-based focal

adhesions were 19 µm2 on average in the cells without PF-573228 treatment and 6.4 µm2 on average in the cells without PF-573228 treatment.

Aberrant Nuclear Appearance and Lamin
A/C Downregulation Occur Concurrently in
the Lung Cancer Cells Exposed to
PF-573228
In the absence of PF-573228, most cells contained oval or round
nuclei, as visualized by DAPI staining (Figure 2B). Interestingly,

a distorted nuclear morphology was observed in the A549 cells
treated with PF-573228 (Figure 2B). As DAPI staining was

insufficient to clearly visualize the nuclear appearance in detail,
an antibody against emerin (40), a nuclear inner membrane
protein, was used to visualize the nuclear shape in the PF-573228-
treated A549 cells. Emerin staining revealed that the cells without
PF-573228 treatment harbored oval-like nuclei. By contrast, most

nuclei were larger and had irregular shapes with invagination in

the cells upon exposure to 10µM PF-573228 (Figure 3A).

Lamin A/C is the nuclear skeleton responsible for maintaining
and stabilizing the nuclear architecture (41–44). Because
interrupting FAK signaling resulted in nuclear deformity

(Figure 2B), changes in lamin A/C expression levels were
assessed. The effects of FAK signaling on the expressions of lamin
A/C and other nuclear skeletal proteins inferred that the nuclear
deformity caused by PF-573228 was attributable to changes in
lamin A/C expression.

To investigate changes in lamin A/C expressions in cells
exposed to PF-573228, PF-573228-treated cells were harvested
and subjected toWestern blot analysis. Inhibition of FAK activity
led to lower p-FAK levels (Figures 3B,C) and deformed nuclei
in the lung cancer cells (Figure 3A). To quantify the expressions
of lamin A and C, the intensities of their protein bands were
normalized to β-actin (Figure 3B). The expressions of lamin A
and C were much lower in the A549, H460, and H1299 cells
treated with PF-573228 compared to those without PF-573228
treatment (Figure 3B and Figures S2A,B). The lamin A and
C band intensities were quantified and plotted in bar charts.
The ratios of lamin A/β-actin and lamin C/β-actin in A549
cells exposed to PF-573228 were reduced by one third and one
half, respectively, compared to A549 cells without PF-573228
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FIGURE 3 | Downregulation of lamin A and lamin C and nuclear deformity in A549 cells exposed to PF-573228. (A) After PF-573228 treatment of A549 cells, the cells

were fixed and stained with phalloidin to label F-actin (red) and an antibody against emerin (green) to outline the nuclear shape. Cells treated with PF-573228 were

extremely large and had deformed nuclei, whereas mostly oval-like nuclei were present in the cells without PF-573228 treatment. (B) The cells treated with 10µM

PF-573228 exhibited a decrease in p-FAK levels. Lamin A and lamin C expression levels were much lower in A549 cells exposed to 10µM PF-573228. (C) The

p-FAK/FAK ratios in A549 cells exposed to 1µM and 10µM PF-573228 were less than half and one tenth of those in A549 cells without PF-573228 treatment,

respectively. (D,E) Decreased lamin A and lamin C levels appeared in A549 cells treated with PF-573228.

treatment (Figures 3D,E). Similar trends of downregulation of
lamin A and lamin C by PF-573228 treatment were also detected
in the two other lung cancer cell lines (Figures S2A,B).

Lung Cancer Cells Are Destined to
Senescence After Inhibition of FAK
Enzymatic Function
Mutant LMNA, mutations that affect lamin A/C expression,
and lamin A/C depletion in cells have been associated with
premature aging and cellular senescence (8, 30, 32, 42, 45).
Based on the concurrent lamin A/C downregulation and
nuclear deformity observed in lung cancer cells exposed to

PF-573228 (Figures 3A,B), we examined the development of
cellular senescence in lung cancer cells treated with PF-573228.
The SA-β-gal activity in cells was assayed by in situ staining
using the chromogenic substrate X-gal, which colored SA-β-gal-
positive cells blue. As noted in Figure 4A, blue cells were clearly
visible in the cells treated with PF-573228 (Figure 4A), whereas
a sporadic distribution of blue-colored cells was observed
in the cells without PF-573228 treatment (Figure 4A). The
bar chart in Figure 4B shows that nearly 90% of the cells
exposed to a higher dose of PF-573228 were positive for SA-
β-gal, compared to ∼20% of the cells exposed to a lower
dose of PF-573228, and ∼1% of the cells without PF-573228
treatment.
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FIGURE 4 | Cellular senescence occurred in lung cancer cells after FAK inhibition. (A) A549 cells were exposed to 0, 1µM, or 10µM PF-573228 for 7 days.

SA-β-gal-positive cells appeared sporadically in cells without PF-573228 treatment. The cells treated with 1µM PF-573228 were slightly enlarged, with few

β-gal-positive cells. The cells treated with 10µM PF-573228 were quite large, and most were β-gal positive. (B) The ratio of SA-β-gal-positive cells to the total

population was calculated and plotted in a bar chart. SA-β-gal-positive cells represented <1% of the total A549 cell population without PF-573228 treatment, ∼21%

in the 1µM PF-573228-treated A549 cell population, and more than 80% in the 10µM PF-573228-treated A549 cell population. (C) A549 cells were treated with 0, 1,

or 10µM PF-573228 for 4 days. p53 was not obviously increased in 1µM PF-573228 treated-A549 cells and was significantly elevated in 10µM PF-573228-treated

A549 cells. (D) p53 levels approximately tripled in A549 cells exposed to 10µM PF-573228 compared to cells with or without 1µM PF-573228 treatment.

Upregulation of p53 in Cells Exposed to
PF-573228
Disruption of FAK signaling by PF-573228 caused cellular
senescence. However, the mechanisms by which inhibition of
FAK signaling affects senescence programming remain unclear.
Cellular senescence in chemotherapy-affected cancer cells has
been observed in several studies (24, 29, 46). In addition, clinical
studies have reported that p53 plays a role in the development
of cellular senescence in chemotherapy-affected cancer cells (46,
47). p53 is known to be a transcription factor in programed
senescence and cell cycle arrest (48), and it may play a similar role
in the cellular senescence program in lung cancer cells exposed to
PF-573228 as in cells in which FAK signaling is interrupted.

To investigate whether or not p53 plays a role in PF-573228-
induced cellular senescence, p53 expression levels were examined
in PF-573228-treated cells. Western blot analysis showed that
p53 expression levels increased significantly by more than 3-
fold compared to cells without PF-573228 treatment and cells
treated with a low concentration of PF-573228 (Figures 4C,D,
and Figure S3).

Engagement of FAK Signaling With Nuclear
Integrity and p53 Expression
FAK is not the only molecule targeted by PF-573228 (36).
Although FAK enzymatic activity was blocked by PF-573228

administration, off-target effects could also have turned off
other kinases, for example, cyclin-dependent kinases. Therefore,
signaling perturbations of other kinases may have caused the
pathogenic senescence in the lung cancer cells.

If FAK has an anti-senescence effect, FAK depletion would
cause anti-senescence to fail and escalate senescence programing.

To clarify the role of loss of FAK signaling in the development
of cellular senescence and nuclear deformity with changes in
lamin A and lamin C expressions, we used an shRNA targeting
FAK to deplete the expression of FAK in lung cancer cells.
After introducing shFAK into lung cancer cells, cells harboring
shFAK were selected. To assess FAK knockdown, two shFAK
clones were selected for Western blot analysis and senescence
assays, which showed that shFAK successfully caused FAK
depletion in A549, H460, and H1299 cells (Figure 5A and
Figure S4A). In addition, the impact of FAK depletion on the
downregulation of lamin C and cyclin B1 and upregulation of
p53 was validated (Figure 5A and Figure S4A). We also assessed
nuclear appearance using emerin staining, which revealed that
A549 cells without FAK depletion harbored oval-like nuclei. By
contrast, the ratio of nuclei harboring slightly larger and irregular
shapes was increased in the cells with FAK depletion (Figure 5B).

Similar results were obtained in the H460 and H1299 cells

(Figures S4B,C). In addition, lung cancer cells harboring shLuc

or shFAK were subjected to senescence assays, which revealed
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FIGURE 5 | FAK depletion resulted in nuclear deformity and cellular senescence. (A) A549 cells with FAK depletion by shRNA were seeded and incubated for 7 days.

Western blot analysis revealed low FAK levels in the cells with shFAK and higher levels in the cells with shLuc. Upon FAK depletion, lamin C and cyclin B1 levels

decreased, and p53 expression levels increased. (B) The cells were fixed and stained with an antibody against emerin (green) to outline the nuclear shape. Cells with

FAK depletion were slightly larger, with a higher proportion of deformed nuclei (arrowhead), whereas mostly oval-like nuclei were present in cells without FAK depletion.

(Scale bar, 50µm) (C) SA-β-gal-positive cells were sporadically visible in A549 cells with shLuc. By contrast, more SA-β-gal-positive cells were observed among cells

with shFAK. (Scale bar, 100µm) (D) The bar chart shows that <1% of the cells in the shLuc population were SA-β-gal-positive, whereas more than 10% of the shFAK

cell population was SA-β-gal positive.

more SA-β-gal-positive A549 cells harboring shFAK (Figure 5C).

By contrast, few SA-β-gal-positive cells were visible in those
harboring shLuc. The SA-β-gal-positive cells represented ∼0.7%
of the shLuc A549 population. In the two shFAK cell clones,
SA-β-gal-positive cells represented ∼11 and 15%, respectively
(Figure 5D). Similar results were observed in H460 and H1299
cells (Figures S4D–F). However, H460 cells grew in single and
multiple layers (Figure S4D), and it was difficult to measure the
ratio of SA-β-gal-positive cells.

Senescent Cells Reactivate Their
Proliferative Activity After PF-573228
Withdrawal From Cell Culture
Aging and cellular senescence are often present in replicative
failure, oncogenic induction, and telomere shortening (8, 34, 49).
In clinical cases, chemotherapy or radiation has been shown
to induce cellular senescence, and DNA damage or genomic
instability is thought to be the pathological cause. Therapy-
induced senescence can be classified as replicative senescence

(24, 27, 33, 48), and replicative senescence is able to cease tumor
growth (47, 50). However, this cellular senescence is reversible
(31, 51, 52). Senescent cells expressing low levels of p16 have been
shown to reversibly exit senescence when p53 expression levels
fall (52).

In this study, FAK signaling downregulated the expression of
p53, and inhibition of FAK signaling upregulated the expression
of p53 in A549 cells (Figures 4C,D, 5A). The A549 cells that
entered senescence due to PF-573228 administration exhibited
regrowth and return to a non-senescent state after withdrawal
of PF-573228 from the culture (Figures 6A–C). The proliferative
activity of A549 cells was based on cyclin B1 expression after the
cells were incubated in PF-573228-free medium (Figure 6D).

Restoration of Lamin a and Lamin C
Expressions in Senescent Lung Cancer
Cells After PF-573228 Withdrawal
We then tested whether senescence in lung cancer cells with
FAK inhibition was reversible or irreversible. The three lung
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FIGURE 6 | Recovery of the proliferative activity of lung cancer cells after PF-573228 withdrawal. (A) The population of SA-β-gal-positive A549 cells declined after the

cells were released from PF-573228 inhibition. (B) The proportion of SA-β-gal-positive A549 cells was ∼80% when cells were exposed to PF-573228, and only 25%

after PF-573228 withdrawal. (C) Initially, the cells were senescent, and proliferation ceased in the three lung cancer cell lines with PF-573228 treatment. After

PF-573228 withdrawal, the A549 cells grew exponentially, H1299 cells grew linearly, and H460 cells continued to exhibit cessation of division. (D) When cells were

exposed to PF-573228, cyclin B1 expression level was extremely low. After the cells were released from PF-573228 inhibition, cyclin B1 levels gradually increased in

A549 cells and H1299 cells. However, cyclin B1 remained at low levels in H460 cells after PF-573228 withdrawal. *P < 0.05.

cancer cells lines were cultured in medium containing 10µMPF-
573228 to induce cell senescence in a 5-day induction course,
after which the expressions of lamin A and lamin C decreased
(Figure 7A). After the induction of senescence, PF-573228
withdrawal was scheduled over 6 days. Lamin A and lamin C
expressions in A549 cells and H1299 cells gradually recovered
after PF-573228 withdrawal (Figures 7A,B). By contrast, lamin
A and lamin C levels in H460 cells remained lower when
senescent H460 cells were incubated in PF-573228-free medium
(Figures 7A,B). After PF-573228 withdrawal, senescent A549
cells escaped from senescence, as the SA-β-gal-positive A549 cell
population declined to nearly half by the fifth day of PF-73228
withdrawal (Figure 8A).

DISCUSSION

FAK is a signaling mediator of integrin-based signaling and
is associated with epidermal growth factor receptor (EGFR)

signaling (23, 53). FAK-associated cross-talk between EGFR and
integrin pathways have been shown to lead to tumor growth
and metastasis in lung cancer (39, 53–55). Phosphorylation at
tyrosine 576/577 (p-FAK) has been reported to result in catalytic
activity and to be involved in tumor cell proliferation and
metastasis (2, 12, 15, 16). Therefore, inhibition of the enzymatic
function of FAK has been proposed to be a therapeutic strategy
to limit tumor growth, angiogenesis, and metastasis (5, 7, 16, 23).
In the present study, we tested the pharmacological effect of PF-
573228 on inhibiting FAK activity and limiting lung cancer cell
growth. When lung cancer cells were treated with PF-573228,
an abnormal nuclear shape was observed. A similar cytological
phenomenon has been reported in previous studies (56), however
the molecular mechanism has not been clearly elucidated. In
addition, nuclear lobulation and distorted nuclear morphology
have been reported in cells with the LNMA mutation or lamin
A/C downregulation (41–43). The LNMAmutation or lamin A/C
downregulation has been shown to result in nuclear distortion
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FIGURE 7 | Restoration of lamin A and lamin C expressions in lung cancer cells after PF-573228 withdrawal (WD). (A) The senescent cells were released from

PF-573228 inhibition for the indicated period. Western blot analysis revealed that the expression levels of lamin A and lamin C were gradually restored in A549 cells

and H1299 cells. However, the lamin A and lamin C levels remained lower in H460 cells when senescent H460 cells were incubated in PF-573228-free medium. (B)

The expression levels of lamin A and lamin C in A549 cells increased after the cells were released from PF-573228 inhibition. However, H460 cells expressed lower

levels of lamin A and lamin C when exposed to PF-573228, and lamin A and lamin C expression in H460 cells remained lower when PF-573228-treated cells were

cultured in PF-573228-free medium. Lamin A and lamin C levels in H1299 cells decreased when cells were exposed to PF-573228. After PF-573228 withdrawal, the

expression levels of lamin A and lamin C gradually increased in H1299 cells previously treated with PF-573228.

with a pathogenic tendency to develop aging and senescence
(8, 30, 42, 57). The nuclear deformity in PF-573228-treated lung
cancer cells (Figures 2B, 3A–C) supports a pathophysiological
impact from the inactivation of FAK signaling to downregulate
lamin A/C.

In this study, we examined the expressions of lamin
A/C and assayed SA-β-gal activity in lung cancer cells
exposed to PF-573228. Our experimental results demonstrated
that FAK inhibition and FAK depletion elicited similar
downregulation of lamin A/C, upregulation of p53, and cellular
senescence (Figures 4A,C,D, 5A,C). These results imply that
FAK signaling regulates the expression of lamin A/C to maintain
a regular nuclear shape and activate anti-senescence programs
(Figure 8B). The finding that FAK signaling affects lamin
A/C expressions and influences the cellular context in which
lamin A/C organizes the nuclear architecture is an important
biological theme. The degradation of lamin A/C has recently
been reported to be regulated by Akt1 or cdk5 signaling (30, 58).
Akt signaling was shown to slightly alter the amount of lamin
A/C in cells, but this small change in lamin A/C expressions
did not seem to have a notable effect on nuclear shape. On
the other hand, nuclear FAK has also been shown to act as
a transactivator to regulate gene expressions and stem cell

differentiation rather than stem cell renewal (59). In addition,
nuclear FAK and Oct-4 have been shown to coordinate gene
expression programming with the expression of Oct-4 in stem
cell renewal. However, the role of nuclear FAK in gene expression
programming does not seem to be associated with changes in
lamin A/C expressions. Furthermore, we found that PF-573228
treatment does not dramatically affect nuclear translocation
of FAK in A549 cells (Figure S5). This implied that FAK-
mediated signaling to maintain lamin A/C expression may not
be through transcriptional regulation. By contrast, inactivation
of FAK signaling or nestin silencing (30) has been shown to
significantly downregulate lamin A/C and cause round or oval
nuclei to become lobulated or irregular in shape. Our results
indicated that FAK-mediated signaling is crucial to maintain
nuclear shape and, potentially, for chromatin reorganization.

In addition to the downregulation of lamin A/C, this study
showed that FAK inhibition-mediated p53 upregulation also
played a crucial role in cellular senescence, and that p53 was
increased during FAK inhibition either by a small compound or
shRNA-mediated downregulation. Lim et al. demonstrated that
nuclear FAK could promote p53 downregulation via enhanced
Mdm2-dependent p53 ubiquitination in a kinase-independent
manner (11). However, in our study, both the amount of
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FIGURE 8 | Disruption of FAK signaling with cellular senescence. Reactivation of FAK signaling was observed in A549 cells in which senescence was induced by 5

days of PF-573228 treatment after PF-573228 withdrawal. (A) The proportion of SA-β-gal-positive A549 cells declined to half when the senescent cells were cultured

in PF-573228-free medium. In addition, A549 cells grew exponentially after A549 cells were released from inhibition by 10µM PF-573228. *P < 0.05. (B) The

proposed scheme shows that integrin-based signaling activates FAK to trigger cell proliferation, to manage lamin A/C expression to maintain nuclear shape and

program anti-senescence. Blockade of FAK signaling by PF-573228 induced cell cycle arrest and senescence.

FAK protein and its enzymatic function affected the expression
level of p53. PF-573228 treatment suppressed the enzymatic
activity of FAK but did not significantly affect its abundance.
However, an obvious effect on cell senescence was observed in
the inhibitor treatment group. This result implies an important
role of FAK enzymatic function in suppressing senescence.
Downstream signaling such as the PI3K/Akt axis may play a
critical role in modulating Mdm2 function and p53 regulation,
and p53 activation may suppress cell proliferation and further
trigger senescence. However, FAK inhibition also repressed
the proliferation of p53 null cancer cells such as H1299 cells
and induced senescence. FAK inhibition also reduced lamin
A/C expressions in H1299 cells, with changes in chromatin
integrity followed by the induction of senescence. These
observations indicate that the induction of cellular senescence
by perturbations in lamin A/C-mediated chromatin alterations
is independent of p53 (30, 34, 60).

Downregulation or degradation of lamin A/C and
upregulation of p53 by PF-573228 treatment or FAK depletion
are the main causes of cellular senescence. Baell et al. reported
that inhibition of histone acetyltransferase could induce cellular
senescence (26), and that the pharmacological effects of VM-
8014 and VM-1119 on chromatin remodeling caused cellular
senescence (26). The induction of senescence by PF-573228,
VM-8014, and VM-1119 may also be due to defective chromatin
remolding. Because FAK and lamin A/C are also involved in
chromatin remodeling (43, 55, 61), this cellular senescence is
likely to be reversible (Figures 6A–C, 8A). Therefore, when the
enzymatic activity of FAK is restored, lamin A/C and cyclin B1
expression levels recover (Figures 7A,B, 6D).

Inhibition of FAK signaling may have a therapeutic role
in limiting cancer cell growth. In the present study, we
demonstrated that disruption of the FAK signaling pathway

led to cellular senescence in lung cancer cells. We also
tested the sensitivity of human normal lung epithelial cells,
BEAS-2B, to PF-573228 treatment. It appeared that a high
concentration of PF-573228 could attenuate the propagation of
BEAS-2B cells. However, the BEAS-2B cells cultured in medium
containing serum still underwent cell cycle progression with a
low proliferative rate (Figure S6A). This implies that oncogene
addiction occurs in lung cancer cells for FAK signaling (54). We
also evaluated whether FAK inhibition causes cellular senescence
in BEAS-2B cells. The results showed that a high dose of PF-
573228 treatment promoted cellular senescence in BEAS-2B cells
(Figures S6B,C). However, the ratio of SA-β-gal positive cells
was <3% (Figure S6C). This implies that normal cells are more
insensitive to high concentrations of PF-573228 than lung cancer
cells and FAK inhibitors have a therapeutic potential for cancer
treatment. However, there was no evidence showing that FAK
signaling can result in anti-senescence and convert senescent
cells to non-senescent cells upon FAK inhibitor withdrawal in
A549 cells (Figures 8A,B). We calculated the ratios of SA-β-
gal-positive and SA-β-gal-negative A549 cells after PF-573228
withdrawal and plotted curves with the timing of PF-573228
withdrawal. The slope of the curve for SA-β-gal-negative cells
over 5 days indicated a reduction of 5,402 cells per day in the
linear variation of SA-β-gal-negative cell numbers (Figure 8A).
SA-β-gal-negative cells increased exponentially after PF-573228
withdrawal in A549 cells, and the curves of the SA-β-gal-negative
cell growth were convergent with the growth curve of total A549
cells (Figure 8A). These results may be due to reversion of some
of the senescent cells to non-senescent cells, as described in the
schematic representation of FAK signaling in anti-senescence and
PF-573228 treatment signaling cellular senescence (Figure 8B).

Previously, therapeutic outcomes were measured in terms
of anti-angiogenesis, anti-proliferation, and anti-invasion
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(16, 39, 62). In this study, FAK inhibition limited lung
cancer cell propagation by inducing cellular senescence
(Figure 8B). Driving cell senescence programing is a new trend
for the treatment of tumor diseases (26), as this therapeutic
approach does not chemically elicit genomic evolution in
cancer cells and does not severely damage non-cancer cells
(63). Although cellular senescence does not kill tumor cells,
limiting cancer growth could eliminate cancer cell malignancy.
However, cellular senescence is an inducer of autophagy
(64) and increases susceptibility to cell-mediated cytotoxicity
by activated killer cells (65). Furthermore, FAK inhibition
also increases immune surveillance (66). Consequently,
FAK appears to be an attractive target for pharmacological
strategies for cancer therapy. Our data reveal a signaling
pathway for senescence and support a therapeutic strategy
for cancer.
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Objectives: Chordoma is a rare bone malignancy that affects the spine and skull base.
Treatment dilemma leads to a high rate of local relapse and distant metastases. Molecular
targeted therapy (MTT) is an option for advanced chordoma, but its therapeutic efficacy
and safety have not been investigated systematically. Therefore, a systematic review was
conducted on studies reporting MTT regimens for chordoma.

Methods: Clinical trials, case series and case reports on chordoma MTT were identified
using MEDLINE, Cochrane library and EMBASE, and systematically reviewed. Data on
clinical outcomes, such as median overall survival, progression-free survival, response
rate and adverse events (AEs) were extracted and analyzed.

Results: Thirty-three eligible studies were selected for the systematic review, which
indicated that imatinib and erlotinib were the most frequently used molecular targeted
inhibitors (MTIs) for chordoma. For PDGFR-positive and/or EGFR-positive chordoma,
clinical benefits were achieved with acceptable AEs. Monotherapy is preferred as the
first-line of treatment, and combined drug therapy as the second-line treatment. In
addition, the brachyury vaccine has shown promising results.

Conclusions: The selection of MTIs for patients with advanced or relapsed chordoma
should be based on gene mutation screening and immunohistochemistry (IHC).
Monotherapy of TKIs is recommended as the first-line management, and combination
therapy (two TKIs or TKI plus mTOR inhibitor) may be the choice for drug-resistant
chordoma. Brachyury vaccine is a promising therapeutic strategy and requires more
clinical trials to evaluate its safety and efficacy.

Keywords: molecular targeted therapy, bone tumor, chordoma, systematic review, imatinib, erlotinib
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INTRODUCTION

Chordoma is a relatively rare malignant bone tumor with an
incidence of 0.08 per 100,000 (1). It accounts for 1–4% of
all bone malignancies, and ∼20% of primary spine tumors
(2). Although it can occur at any segment of the spine, the
predominant site of chordoma are fused segments like clivus
and sacrococcyx (3). It is an indolent malignancy that progresses
slowly, but exhibits strong local aggressiveness and often grows
into huge masses that compress vital nerves and blood vessels
(4). In addition, since chordoma is usually unresponsive to the
conventional radiotherapy and cytotoxic chemotherapy, surgery
is the primary therapeutic option (1, 5). Large case series
including our previous one have shown that a total resection
of the tumor, with the goal of negative microscopic margins,
is crucial for long-term positive outcomes (6). However, the
complex anatomy of the spine and the relatively large tumor
volume make a clean resection technically challenging, leading to
a high rate of local relapse and distant metastases (7). Regarding
to this advanced setting, conventional therapeutic methods were
shown to be not highly effective (1). Therefore, novel therapeutic
strategies are needed to prolong patients’ survival and improve
the quality of life.

Pathologically, chordoma arises from residual notochord
cells within the vertebral body (8), as verified on the basis of
genetic and immuno-phenotypic biomarkers (9). New insights
into the molecular mechanism underlying chordoma have also
identified novel therapeutic targets (5). Molecular targeted
therapy (MTT) in chordoma includes (1) imatinib and dasatinib
against platelet-derived growth factor receptors (PDGFR) and
stem cell factor receptor (KIT) (10, 11); (2) erlotinib, lapatinib,
gefitinib, and cetuximab against epidermal growth factor
receptor (EGFR) and erbB-2/human epidermal growth factor
receptor 2 (HER2/neu) (12, 13); (3) sorafenib, pazopanib,
and sunitinib that target angiogenic factors like vascular
endothelial growth factor receptor (VEGFR) (14–16); and (4)
temsirolimus and sirolimus that target the phosphoinositide 3-
kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)
pathway (17).

The indications for MTTs in chordoma patients are largely
based on a few prospective clinical trials, small retrospective
studies, and even case reports (10–17). However, the efficacy and
safety of MTT regimens in chordoma patients, as well as the
underlying molecular mechanisms, lack systematic investigation.
Therefore, we conducted a systematic review on MTT regimens
in chordoma patients to determine the clinical outcomes and
underlying molecular mechanisms.

MATERIALS AND METHODS

Search Strategy
For this systematic review, we used standard procedures from
PRISMA guidelines (18). A comprehensive, systematic search
was performed using MEDLINE (via PubMed), Cochrane
Library and EMBASE. To find appropriate studies in MEDLINE,
we used a combination of terms related to the MeSH
terms “Chordoma/drug therapy” OR the free-text searching

“Chordoma” AND (“targeted therapy OR inhibitor OR inhibit
OR inhibition”). This search was further modified as appropriate
for Cochrane Library and EMBASE. Initial search was performed
on January 17, 2018 and repeated on July 1, 2018.

Eligibility Criteria
Studies were deemed eligible for the assessment of MTTs in
patients with chordoma, irrespective of previous and subsequent
other treatment. Only English language publications were
included. For clinical trials, case series and case reports published
exclusively in abstract or news form, only those containing
new data were analyzed. For literature reviews, new personal
unpublished data is also included. Reference lists of selected
studies and previous reviews associated with similar topics were
screened manually. New clinical trials for chordoma were found
from Chordoma Foundation, ClinicalTrials.gov, EU Clinical
Trials Register and WHO International Clinical Trials Registry
Platform. Although gray literature (such as unpublished reports,
conference abstracts and dissertations) might provide some
negative results and decrease the publication bias, we did not
access them, because they were usually not peer reviewed and
might be later published in peer-reviewed journals.

Data Extraction and Synthesis
After removal of duplicates, titles and abstracts of all identified
publications were systematically screened by two independent
reviewers (MT and YHB). Discrepancies between reviewers
were resolved by discussion. When eligibility criteria seemed
to be met, the two reviewers (MT and YHB) independently
assessed retrieved full texts and extracted information. If
disagreements were still remained, the third reviewer (SDW)
helped to reach an agreement. We contacted with the Chordoma
Foundation in order to get helpful information. Additionally,
we corresponded with researchers clarify study eligibility if the
published study was unclear, although responses were poor.
Extracted data were study characteristics (study design, first
author, year of publication), patient characteristics (total number,
history of treatment) and tumor characteristics (gene mutation
and immunohistochemistry), MTT information (type of agents,
dosage, course of treatment and adverse events), evaluation
criteria (Choi’s criteria, the response evaluation criteria in
solid tumor (RECIST), clinical and radiological or metabolic
response), and survival (duration of follow-up, progression-free
survival and overall survival).

RESULTS

Search Results
The flow-chart for the selection and exclusion of relevant
publications is shown in Figure 1. We identified 293 studies in
the initial screening, and after removing duplicates and papers
based on their titles and abstracts, selected 64 publications for
full-text assessment. Twenty-seven studies met our inclusion
criteria, and six more were included—three from manually
searching the reference list of the selected articles, two from
repeated search and one with the help of the Chordoma
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FIGURE 1 | PRISMA flow diagram of the study selection process.

Foundation. Finally, 33 studies were included in this systematic
review.

Study Characteristics
Among 33 studies, nine studies were clinical trials (10–
12, 14, 15, 19–22), with eight retrospective case series
(16, 17, 23–28), and 16 case reports (13, 29–43). Imatinib
was assessed in 18 studies with a total of 221 patients
(10, 16, 17, 19, 23–28, 32, 34–36, 38, 39, 41, 42), erlotinib
in 10 studies with 16 patients (13, 17, 22, 33, 35, 38, 40–42),
cetuximab in five studies (seven patients) (13, 30, 31, 33, 41),
sorafenib in four studies (65 patients) (15, 17, 21, 37), pazopanib
in four studies with seven patients (16, 28, 41, 43) and sunitinib
in three studies with 11 patients (14, 17, 28). Sirolimus,
thalidomide, bevacizumab, gefitinib, linsitinib, and everolimus
were accessed in two studies each (13, 22, 25, 28–31, 33, 34, 40–
42), whereas dasatinib (32 patients) (11), lapatinib (18 patients)
(12), rapamycin (one patients) (34), temosirolimus (one
patients) (17) and yeast-brachyury (GI-6301) vaccine (11
patients) (20) were only analyzed in one study each (Figures 2
and 3). Monotherapy of MTTs was reported in 24 studies

(10–12, 14–17, 20, 21, 23, 24, 26–28, 32, 34–39, 41, 43, 44) with
combination therapy in 13 studies (13, 19, 22, 25, 28–31, 33, 39–
42).

RECIST evaluation criteria was used in 19 studies (10–15, 17,
19, 20, 22, 25–28, 32, 40, 42, 43, 45) and Choi’s criteria is applied
in three studies (11, 12, 25). Twenty-one studies were evaluated
by clinical/radiological or metabolic responses (16, 23–27, 29–
43). Adverse events (AEs) were reported in 25 studies, including
hematological anomalies like anemia, thrombocytopenia, as well
as non-hematological AEs like fatigue, fever, anorexia, QTc
prolongation, abnormal liver function, nausea, and vomiting
(10–15, 19, 22, 23, 26–38, 40, 43, 45).

Efficacy and Safety of MTT Regimens in
Chordoma Patients
PDGFR Inhibitors (Table 1)
Imatinib mesylate (IM), a specific tyrosine kinase inhibitor (TKI)
targeting PDGFR and KIT (10, 46), was the most frequently-
used MTT in chordoma patients. Eighteen studies investigated
the therapeutic efficacy of IM on 221 patients (10, 16, 17, 19, 23–
28, 32, 34–36, 38, 39, 41, 42), including three clinical trials (10, 19,
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FIGURE 2 | Of the included studies, the proportion of studies reporting each
molecular targeted inhibitor.

FIGURE 3 | Of the included chordoma patients, the proportion of patients
received each molecular targeted inhibitor.

28), seven retrospective case series (16, 17, 23–27), and eight case
reports (32, 34–36, 38, 39, 41, 42). Fourteen studies (204 patients)
analyzed the efficacy of imatinib as monotherapy (10, 16, 17, 23,
24, 26–28, 32, 34–36, 39, 41), of which four studies (181 patients)
used RECIST and 3 were focused on PDGFRβ-expressing
chordoma. In these four studies, four patients achieved partial
response (PR) (2.2%), 133 cases sustained stable disease (SD)
(73.5%) and 44 cases experienced progressive disease (PD)
(24.3%) (10, 17, 26, 27, 32). Clinical/radiological or metabolic
responses were evaluated in 13 studies (85 patients), with 33
patients achieving PR (38.8%), 23 patients sustaining SD (27.1%)
and 29 patients experiencing PD (34.1%) (16, 23, 24, 26–28, 32,
34–36, 38, 39, 41). Five of the above studies (73 patients) focused
on PDGFRβ-expressing chordoma, with 45.2% PR, 31.5% SD,
and 23.3% PD cases (23, 24, 26, 27, 36), and eight studies included
12 patients that experienced PD within a short period of time.

Progression-free survival (PFS) and overall survival (OS) are
important indices of clinical outcome, and they were reported in

two large case-studies (10, 27). Stacchiotti et al. conducted a phase
II trial in 56 patients with chordoma, and the median PFS and OS
were 9 and 35 months, respectively (10). A retrospective study on
46 chordoma patients reported a median PFS of 9.9 months (27).

AEs were reported in eight studies (10, 23, 27, 32, 34, 36),
with skin rash being the most common, followed by oedema,
chronic anemia, fatigue and fluid retention (10, 26). Subacute
intraventricular hemorrhage was seen in one case of clivus
chordoma treated with imatinib (36).

Dasatinib, an inhibitor of PDGFR and Src, was evaluated
in a phase II study (NCT00464620) (11) on 32 patients. The
median PFS and 6 months PFS rate were 6.3 months and
54%, respectively. The 2- and 5-years OS rate were 43 and
18%, respectively. Six patients had an objective response (OR)
according to Choi criteria and one for RECIST. Fatigue, fever,
anorexia, nausea, and vomiting occurred in more than 5% of the
patients.

EGFR Inhibitors (Table 2)
Erlotinib was the most commonly used anti-EGFR agent and
was analyzed in 10 studies (16 patients) for the treatment of
chordoma (13, 17, 22, 32, 33, 35, 38, 40–42), including one clinical
trials (22), one retrospective case study (17) and eight case reports
(13, 17, 22, 32, 33, 35, 38, 40–42). Monotherapy with erlotinib
was used in five studies (nine patients) (17, 32, 35, 38, 42), three
(seven patients) of which were evaluated by RECIST (17, 32, 42),
reporting PR in two patients and SD in five patients. Three
case reports were evaluated by clinical/radiological or metabolic
responses (32, 35, 38). All achieved PR and significant tumor bulk
reduction was seen in two patients (70 and 46%, respectively).
Skin rashes were commonly seen in the erlotinib-treated patients.

Lapatinib monotherapy was evaluated in a phase II clinical
trial on 18 patients with EGFR-positive chordoma (12). Six
patients achieved PR and seven sustained SD, with the median
PFS of 6 months according to the Choi criteria. In contrast, all
patients had SD by RECIST criteria with the median PFS of 8
months. Most patients experienced G ≥ 2 AEs.

Combined therapy with EGFR inhibitors was used in seven
studies (eight patients) (13, 22, 30, 31, 33, 40, 41). Erlotinib
was also the most common agents used in the combined MTT
regimens (five studies, seven patients) (13, 22, 33, 40, 41).

Linsitinib, an inhibitor of IGF-1R/insulin receptor (INSR),
was evaluated in a phase I study in combination with erlotinib
(NCT00739453) (22). One patient with chordoma achieved
PR for 18 months according to RECIST, with a PFS of 5
years. AEs included QTc prolongation, abnormal liver function,
hyperglycemia and anorexia (22, 40).

The anti-EGFR monoclonal antibody (mAb) cetuximab was
applied in combination with erlotinib in one patient with EGFR-
positive chordoma, and he had a SD for 6 months (41). However,
four patients with EGFR-negative chordoma experienced PD
after receiving the same regimen. The treatment failure prompted
a switch to bevacizumab, an anti-VEGF mAb (13, 33). Following
this change, two patients achieved PR and another two presented
SD. Treatment-related fatigue was observed in one patient (13,
33). Combined regimen of cetuximab and gefitinib was also
effective in two cases of EGFR-positive chordoma (30, 31), where
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one achieved a PR for 9 months and the other had a 44%
reduction in tumor bulk. Pronounced AEs, such as rash, acne,
diarrhea, and skin defects, were reported in both cases (30, 31).

VEGFR Inhibitors (Table 3)
Sorafenib, a TKI against VEGFR and PDGFR, was assessed in
four studies (15, 17, 21, 37). A phase II trial was conducted on
27 patients with chordomas (NCT00874874) (15), and OR was
observed in one patient as per RECIST. The 12 months PFS and
OS rates were 73.0 and 86.5%, respectively. In a study on 11
patients treated with sorafenib, PR was obtained in one patient,
with SD in nine patients and PD in one patient according to
RECIST (17). Another study assessing sorafenib reported a PFS
of 12 months (37). However, sorafenib was limited by severe AEs
like thrombocytopenia and diarrhea, and the rates of grade 3 and
4 toxicity were 77.8 and 14.8%, respectively.

Sunitinib, a multi-targeting TKI against VEGFR and PDGFR,
was assessed in three studies (14, 17, 28). A phase II trial on
sunitinib was conducted on nine patients (14), four of which
achieved SD according to RECIST, concurrent to a qualitative
decrease in tumor density, along with a median PFS of 12
months (14). Two patients treated with sunitinib had at least SD
according to RECIST (17, 28), and one achieved a PR after a 27
months SD (28). The major toxicities were of grade 1 or 2 (14).

Pazopanib, another VEGFR inhibitor, was analyzed in seven
patients (16, 28, 41, 43), of which four sustained SD with the
median PFS of 15 months and the remaining three experienced
PD. Thalidomide, an inhibitor of VEGF, was used as a second-line
treatment for chordoma after failure of imatinib, rapamycin and
other chemotherapy (29, 34). While one patient achieved a 50%
tumor reduction, another experienced a PD (29, 34). In addition,
severe toxicities of grade 3 and 4 were reported in both cases.

Other Molecular Targeted Inhibitors (MTIs) (Table 4)
Monotherapy with the mTOR inhibitors rapamycin and
everolimus were ineffective in chordoma patients (34, 41). The
combined MTT regimen of everolimus and imatinib resulted in
sustained SD in one patient, with a PFS of 16 months (42). In
addition, IM plus sirolimus was used in 10 patients with IM-
refractory chordoma and activated mTOR (25). Nine patients
were assessed, of which one achieved PR, seven sustained SD
and one experienced PD according to RECIST. According to
Choi criteria, seven patients achieved PR, and one sustained
SD and one experienced PD. The same MTT regimen was also
used against IM- and sunitinib-refractory chordoma but was not
effective due to short of the mTOR expression (28). A phase I trial
evaluated the effect of IM plus metronomic cyclophosphamide
(MC)-based chemotherapy on 7 IM- and sunitinib-refractory
chordoma patients (19). The median PFS was 10.2 months,
and the 12 months PFS and OS rates were 42.9 and 85.7%,
respectively according to RECIST. No dose-limiting toxicity and
drug pharmacokinetic interactions were observed.

Brachyury Vaccine (Table 4)
A phase I dose-escalation trial using a recombinant
Saccharomyces cerevisiae (yeast) vaccine encoding brachyury
(GI-6301) was conducted on 11 patients (20), and 10 evaluable
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patients showed a median PFS of 8.3 months. One patient
achieved PR, with eight sustaining SD and one experiencing
PD at 3 months according to RECIST. Seven patients had no
evidence of PD, giving a clinical benefit rate of 70% at 5 months.
The most common AEs were injection site reactions.

Ongoing and planned clinical trials on chordoma MTT are
listed in Table 5.

DISCUSSION

Novel therapeutic strategies against chordoma are urgently
needed to prolong the overall survival and relieve symptoms.
Elucidation of the underlying molecular mechanisms of
chordoma have helped identify numerous potential therapeutic
targets (47, 48), and several anti-chordoma agents are currently
being tested in animal models and clinical trials. This systematic
review is focused on the pharmacological management of
chordoma patients and the clinical outcomes. Furthermore, the
molecular mechanisms of MTT action have also been assessed.

Molecular Targets
Chordoma is a genetically heterogeneous tumor with frequent
imbalances of large chromosomal regions. Somatic duplications
of the notochordal transcription factor brachyury (47, 48),
chromosomal copy loss of phosphatase and tensin homolog
(PTEN) (49), tuberous sclerosis complex (TSC) (50), cyclin-
dependent kinase inhibitor 2A and 2B (CDKN2A and CDKN2B)
(51), SMARCB1 (49), and PIK3CA (9) mutations are key aspects
of chordoma pathogenesis, and therefore potential targets.

RTKs are the key players in the development and progression
of chordoma, and their mutated forms can activate signaling
cascades resulting in dysregulation of many essential proteins.
Therefore, mutational analyses and IHC can greatly assist
oncologists to determine the optimal inhibitors (52–56). It needs
to be emphasized that mutations in the molecular targets are
clinically more relevant than their immunoreactivity, since target
overexpression is not always driven by the activation of the
corresponding signaling pathway. For example, high levels of
EGFR in the chordoma cell line JHC7 was not accompanied by
activated EGFR signaling (57).

Indications and Evaluation Criteria for
MTTs
MTTs are not the first treatment options for chordoma, and
only recommended for advanced or recurrent chordoma that are
unresponsive to either surgical resection or radiotherapy.

The outcomes of MTTs is often difficult to evaluate in
chordoma. Choi’s criteria is based on changes in tumor size
and density following contrast administration in CT or MRI
(58). A radiological PR is defined as ≥10% decrease in tumor
size or ≥15% decrease in tumor density/contrast enhancement
in CT/MRI. RECIST defines PR as ≥20% decrease in tumor
growth, which occurs later than that required for Choi criteria.
Therefore, RECIST is not fully adequate to evaluate the clinical
response in chordoma (59). Clinical/radiological and metabolic
responses include symptom relief, anti-tumor effects (such as
liquefaction) and changes in tumor density in the CT scan,
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reduction in contrast enhancement in MR, and maximum
standardized uptake (SUVmax) in PET (23). However, typical
tumor tissue characteristics like component and scirrhosity may
also affect tumor-related symptoms, even in the absence of any
changes in tumor size, resulting in incorrect readings.

MTTs for Chordoma
Imatinib was the first effective agent tested against chordoma, and
is currently the most commonly used MTIs (23). Most patients
with PDGFRβ-positive chordoma benefited from imatinib
treatment and avoided rapid PD, likely due to tumor necrosis
and intra-tumoral subacute bleeding that manifest as liquefaction
(36). A dosage of 800 mg/day is recommended, except in
cases of high toxicity. The major AEs associated with imatinib
include oedema, chronic anemia, fatigue and even subacute
intraventricular hemorrhage (36).

Several trials have also reported the ineffectiveness of imatinib
in chordoma (19, 28, 32, 35, 38, 42). In such cases, EGFR inhibitor
is the second line of treatment, since PDGFRβ activation can also
stimulate EGFR, given an EGFR gene copy number gain (CNG)
or strong intra-tumoral EGFR staining is detected. Around 40%
of chordoma patients show CNG of the chromosome band 7p12,
where EGFR is located. Erlotinib has shown a good clinical effect
EGFR-positive chordoma, and could serve as the second choice
for imatinib-refractory chordoma (32, 35). The combination of
gefitinib and cetuximab, two other inhibitors of EGFR, showed
improved clinical benefits and decreased AEs (30, 31).

HER2/neu is involved in EGFR dimer formation, and the
possibility of heterodimerization increases the sensitivity of
EGFR-positive chordoma to 54% (60). Lapatinib, a bi-specific
inhibitor blocking both EGFR and HER2/neu, achieved 33.3%
PR and 38.9% SD as per Choi criteria and 100% SD according
to RECIST in EGFR-positive chordoma (12). Afatinib, another
bi-specific inhibitor of EGFR and HER2/neu, was the only agent
which showed cytotoxic effects across multiple chordoma cell
lines in a drug sensitivity assessment (57). On this basis, a
new clinical trial on the effects of afatinib is currently enrolling
patients (NCT03083678).

IGF signaling is also important in chordoma tumorigenesis,
since IGF-1 and IGF-1R have been detected in 92 and 76% of
chordoma tissues (61), and are absent in benign notochordal cell
tumor and fetal notochord (52). Linsitinib, an IGF-1R inhibitor,
was assessed in two studies (22, 40), and effectively controlled
chordoma progression in combination with erlotinib (22, 40).

VEGF levels are significantly higher in chordoma tissues
and associated with angiogenesis (62). Five VEGFR or VEGF
inhibitors (sorafenib, sunitinib, pazopanib, thalidomide,
bevacizumab) were evaluated in this systematic review. Although
occasional severe AEs were observed occasionally, sorafenib,
sunitinib, and pazopanib monotherapy resulted in substantial
clinical effects. Although thalidomide was effective against
drug-resistant chordomas, severe toxicities limit its clinical
application. Bevacizumab can be used as a supplement for
erlotinib in drug-resistant chordomas, and their combination
showed good clinical effect and high tolerance. A new phase
II trial evaluating the efficacy and safety of regorafenib, a
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multi-kinase inhibitor of VEGFR, is ongoing in France for
metastatic bone sarcoma (NCT02389244).

Chordomas with indication of anti-RTK agents may also
relapse or progress early. In TKI-resistant chordomas, p-AKT is a
relative reliable indicator and its persistent expression following
tyrphostin treatment resulted in relapse and progression (54).
AKT is activated by mTOR, its downstream molecules (RPS6
and eIF4E), and Stat3. The combination of the antagonists
of upstream RTKs and downstream mTOR/PI3K/MAPK/Stat
not only synergistically reduced chordoma growth by avoiding
the negative feedback loop (63) and PI3K-dependent feedback
loop (64), but also significantly decreased the cytotoxicity of
either agent (65). For example, monotherapy of rapamycin or
everolimus was ineffective against tumor progression (34, 41),
while combining imatinib with everolimus or sirolimus induced
good clinical effects in 3 studies (12 patients) (25, 28, 42).
Therefore, the combined therapy can be considered for drug-
resistant chordoma.

Mutations in the downstream effectors of RTKs, like PTEN
and PIK3CA, also impair TKI response (66, 67). PTEN deficient
chordoma cell lines exhibit increased proliferation, reduced
apoptosis and enhanced migration in chordoma cell lines
(68). Reintroduction of PTEN in tumor cells increased their
therapeutic sensitivity to PDGFR inhibitors, and the combination
of histone deacetylase (HDAC) and PDGFR inhibitors effectively
reduced the growth and invasion of chordoma cells, irrespective
of PTEN status (69). On this basis, a new phase I trial of Imatinib
and LBH589 (a HDAC inhibitor) is ongoing in chordoma
patients (NCT01175109).

Chordomas frequently show deletions in the SMARCB1
locus (49). SMARCB1 directly antagonizes the histone
methyltransferase EZH2 and regulates the cell-cycle by
activating CDKN2A (45). A phase I trial on the EZH2 inhibitor
tazemetostat, confirmed complete or partial responses were
observed in two children with chordoma according to RECIST
(NCT02601937) (45). Therefore, another phase II clinical trial on
tazemetostat is ongoing in patients with SMARCB1/INI1 deleted
chordoma (NCT02601950).

The loss of chromosome 9 or 9p region, which contains
CDKN2A, has been reported in some chordoma patients (51).
The inactivation of CDKN2A universally activates the CDK4/6
and Rb pathways (70), which are highly expressed in the
chordoma tissues (71). The CDK4/6 inhibitors palbociclib and
LY2835219 inhibited chordoma cell growth and proliferation in
vitro efficiently (72, 73). A phase II clinical trial on palbociclib
is currently enrolling patients with chordoma (NCT031
10744).

Somatic duplications of the notochordal transcription factor
brachyury was demonstrated in chordoma, and enhanced tumor
growth by activating YAP (9, 47, 48). Preclinical studies have
shown that a recombinant Saccharomyces cerevisiae (yeast)
vaccine encoding brachyury (GI-6301) activates human T cells
in vitro. A phase II GI-6301 dose-escalation trial showed
a 70% clinical benefit rate in chordoma patients (20). A
phase II clinical trial on the combination of GI-6301 and
radiotherapy is currently enrolling chordoma patients in the

United States (NCT02383498). Additionally, a phase I trial of
a Modified Vaccinia Ankara (MVA)-brachyury and a fowlpox
(FPV)-brachyury vaccines is currently ongoing in patients with
solid tumors, including chordoma (NCT03349983).

Limitations
In order to decrease the selection bias, this systematic review
screened all published studies enrolling chordoma patients
treated with MTT, including clinical trials, case series and
even case reports, and provides the most detailed information.
However, there were some limitations that need to be addressed.
We included case reports on account of the rarity of chordoma
and the paucity of available studies. However, a case report might
overemphasize the final results due to lack of strong results.
In addition, we only included English language publications
which can also increase the selection bias. Furthermore, the
baseline conditions of the patients and the evaluation criteria
were not consistent across studies which is another factor
contributing to selection bias. Therefore, large prospective
randomized clinical trials are warranted to help clinicians
determine the optimum treatment modality for chordoma
patients.

CONCLUSIONS

The selection of MTIs for patients with advanced or relapsed
chordoma should be based on gene mutation screening
and immunohistochemistry (IHC). Monotherapy of TKIs is
recommended as the first-line treatment. Combined therapy (two
TKIs or TKI plus mTOR inhibitor) may be the choice for drug-
resistant chordoma. Brachyury vaccine is a promising therapeutic
strategy and requires more clinical trials to evaluate its safety and
efficacy.
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Cervical cancer is one of the most common gynecological tumors, and the majority
of early-stage cervical cancer patients achieve good recovery through surgical
treatment and concurrent chemoradiotherapy (CCRT). However, for patients with
recurrent, persistent, metastatic cervical cancer, effective treatment is rare, except for
bevacizumab combined with chemotherapy. Programmed cell death-1/programmed
cell death-ligand 1 (PD-1/PD-L1) inhibitors might be a novel choice to improve the
clinical outcomes of these patients. Thus far, some pivotal trials, including Keynote
028, Keynote 158 and Checkmate 358, have indicated established clinical benefit of
PD-1/PD-L1 inhibitors in cervical cancer. In light of these data, the FDA has approved
pembrolizumab for patients with recurrent or metastatic cervical cancer with disease
progression during or after chemotherapy. There are also some ongoing studies that
may provide more evidence for the PD-1/PD-L1 pathway as a therapeutic target in
cervical cancer. In this review, we have summarized the status and application of PD-
1/PD-L1 inhibitors in clinical trials for the treatment of cervical cancer and suggested
some future directions in this field.

Keywords: cervical cancer, programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1), immune
checkpoint inhibitors, immunotherapy, human papillomavirus (HPV)

INTRODUCTION

Cervical cancer is one of the most common gynecological tumors. More than 569,847 women are
diagnosed with cervical cancer annually worldwide, resulting in over 311,365 deaths (Bray et al.,
2018). Although the incidence of cervical cancer has been greatly reduced by the use of HPV
vaccines and cervical cancer screening (Goodman, 2015), cervical cancer is second in terms of
morbidity among gynecological tumors in developing countries (Sahasrabuddhe et al., 2012). Over
70% of cervical cancer cases diagnosed in developing countries are locally invasive or metastatic,
contributing to the high mortality rate of cervical cancer. The 5-year OS rate of local cervical
cancer can achieve approximately 75–85% through effective treatments such as surgery CCRT,
etc. (Chen et al., 2015). Nevertheless, the 5-year OS of recurrent, persistent, metastatic cervical
cancer is only approximately 15%. The poor prognosis is mainly due to limited therapeutic
options (Guitarte et al., 2014). The majority of these patients can only be treated with palliative

Abbreviations: AE, adverse event; APCs, antigen-presenting cells; CCRT, concurrent chemoradiotherapy; CRs,
complete responses; CRT, chemoradiotherapy; CTLA-4, cytotoxic T-lymphocyte-associated protein-4; hfRT, hyperfraction
radiotherapy; HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; mAb, monoclonal antibody;
NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival rate; PD-1/PD-L1, programmed cell
death-1/programmed cell death-ligand 1; PFS, progression-free survival; PRs, partial responses; SCCs, squamous cell cancers;
TILs, tumor infiltrating lymphocytes; uPRs, unconfirmed partial responses.
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chemotherapy (Boussios et al., 2016), in which platinum-based
chemotherapies were the prior choice (Monk et al., 2009). In
2014, the GOG 240 trial indicated that when bevacizumab was
added to the chemotherapy, the ORR was improved from 36
to 48% (Tewari et al., 2014), and the OS could be prolonged
from 13 to 17 months for recurrent, persistent, metastatic
cervical cancer, thus laying the foundation for the first-line
choice of combining bevacizumab with chemotherapy for this
population (Tewari et al., 2017). However, for those who progress
during the first-line treatment, the lack of effective second-line
treatment remains to be the main reason for the high mortality
rate (Minion and Tewari, 2018). Currently, immune checkpoint
inhibitors (Schumacher and Schreiber, 2015), especially PD-
1/PD-L1 inhibitors (Constantinidou et al., 2018), have achieved
favorable efficacy in treating multiple solid tumors (Gettinger
et al., 2018), including cervical cancer (Borcoman and Le
Tourneau, 2017). Accumulating evidence has demonstrated that
PD-1/PD-L1 inhibitors may be a promising approach for cervical
cancer treatment.

IMMUNE CHECKPOINT INHIBITORS

Numerous immunomodulatory therapies are being investigated
in clinical trials with diverse potential targets, including PD-
1/PD-L1, CTLA-4, Tim-3, ICOS, 4-1BB, and OX-40. Among
these novel targets, ICOS (Amatore et al., 2018), 4-1BB (Compte
et al., 2018), and OX-40 (Polesso et al., 2018) are costimulatory
receptors, while PD-1/PD-L1 (Raedler, 2015), CTLA-4 (Lheureux
et al., 2018), and Tim-3 (Gorris et al., 2018) are negative
immune regulators of T cells. Currently, only CTLA-4 inhibitors
(Hodi et al., 2010) and PD-1/PD-L1 inhibitors (Bagcchi, 2014)
have been approved by the FDA. CTLA-4 integrates with the
costimulatory molecules CD80 (B7-1) and CD86 (B7-2) that
express on the surfaces of APCs (Fife and Bluestone, 2008), while
PD-L1 is expressed on a wide variety of cell types, including
tumor-associated fibroblasts, tumor cells, APCs, etc. (Boussiotis,
2016). As a result, CTLA-4 inhibits T cell activation within
secondary lymphoid organs (Kurup et al., 2017), but PD-1/PD-L1
chiefly regulates T cell function within peripheral tissues and the
tumor microenvironment (Pardoll, 2012). Therefore, PD-1/PD-
L1 signaling is more specific to tumor than CTLA-4 signaling,
and inhibitors of PD-1/PD-L1 may cause less damage to healthy
tissue (Boussiotis, 2016; Minion and Tewari, 2018) (Figure 1).

Based on the above mechanism, ipilimumab (monoclonal
anti-CTLA-4), the first immune checkpoint inhibitor, approved
for melanoma, had little clinical benefit until the emergence of
pembrolizumab, and the combination of the two drugs further
improved treatment efficacy in malignant melanoma (Wang
et al., 2017). To date, another mAb for CTLA-4, tremelimumab,
has not been approved for the treatment in any type of cancer.
However, mAbs targeting PD-1 [pembrolizumab (Paz-Ares et al.,
2018), nivolumab (Long et al., 2018), and cemiplimab (Sidaway,
2018)] and PD-L1 [atezolizumab (Hsu et al., 2018), durvalumab
(Siu et al., 2018), and avelumab (Le Tourneau et al., 2018)] have
presented clinical advantages in malignant melanoma, advanced
NSCLC, urothelial cancer (Zhang and Li, 2018) and other tumors

(Lim et al., 2018) (Table 1). In addition, extensive research has
been carried out on gynecological tumors, such as ovarian cancer
(Liu and Zamarin, 2018) and breast cancer (Julia et al., 2018),
and clinical researches on cervical cancer are ongoing. At present,
some initial results have been achieved.

THEORETICAL BASIS FOR PD-1/PD-L1
INHIBITORS IN CERVICAL CANCER

The PD-1/PD-L1 axis is one of the most well-known immune-
checkpoint pathways with a mechanism of immune evasion for
cancer cells and thus inhibiting the immune response in various
kinds of solid tumors, including cervical cancer Cancer Genome
Atlas Research Network et al. (2017). In brief, PD-L1 expresses on
the surface of cervical tumor cells, APCs and TILs, while the PD-
1-positive cells were mostly identified as T cells in the stroma of
cervical tumors. For the expression of PD-1 in the tumor stroma
of cervical cancer, Meng et al. (2018) reported that 60.82% (59/97)
of the patients exhibited PD-1 expression, while another study
showed PD-1 expression in 46.97% (31/66) of the patients (Feng
et al., 2018).

To date, numerous studies have investigated the expression
of PD-L1 in cervical cancer (Yang et al., 2013; Chen et al.,
2016). The expression of PD-L1 has been reported in 34.4–
96% of cervical carcinoma tissues, while expression of PD-L1 in
histologically normal cervical tissues was rarely found (Enwere
et al., 2017). Opal Reddy et al. (2017) showed that PD-L1
expression was positive in 32 of 93 (34.4%) cervical carcinoma
samples, subcategorically in 28 of 74 (37.8%) SCCs, 2 of 7 (28.6%)
adenosquamous carcinomas, and 2 of 12 (16.7%) endocervical
adenocarcinomas. In another study, PD-L1 expression was found
in 96% of the samples (Enwere et al., 2017). Specifically, for
cervical SCC, PD-L1 expression was found in 80% (56/70) cases
(Mezache et al., 2015). In the TCGA database for cervical SCCs,
the amplification or gain of PD-L1 was found in 28 of 129
(22%) cases (Dijkstra et al., 2016). In addition, PD-L1 can also
be expressed on TILs, which plays a role in antitumor response
inhibition. A study found that for cervical SCCs samples, the
expression rates of PD-L1 on cancer cells and TILs were 59.1
and 47.0%, respectively (Feng et al., 2018). Collectively, these
data suggest that both PD-L1 and PD-1 are widely expressed
in cervical cancer tumor cells and stroma, providing potential
therapeutic targets for PD-1/PD-L1 inhibitors.

Notoriously, persistent HPV infection is involved in the
pathogenesis of cervical cancer and is related to its prognosis.
Several teams have interrogated whether HPV infection could
affect PD-L1 expression in cervical cancer and found that
HPV positivity was positively correlated with increased PD-L1
expression (Mezache et al., 2015; Liu et al., 2017).

Considerable effort has been made to dissect the underlying
mechanism of the association between HPV status and PD-L1
expression in HPV-related solid tumors, mainly HNSCC and
cervical cancer. In HPV-HNSCCs, membranous expression of
PD-L1 and significant increased levels of mRNA of IFN-γ were
found in the tonsillar crypts, As tonsillar crypts witnesses the
initial HPV infection, and IFN-γ induces PD-L1 expression, this
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FIGURE 1 | The CTLA-4 and PD-1/PD-L1 pathways in cervical cancer.

evidence might support the role of the PD-1/PD-L1 interaction in
creating an “immune-privileged” site for initial viral infection and
subsequent adaptive immune resistance (Franzen et al., 2018).
In another study, DNA methylation of PD-L1 was inversely
correlated with PD-L1 mRNA expression (p ≤ 0.002) and was
further significantly associated with HPV infection in the TCGA
cohort, indicating that DNA methylation of PD-L1 is associated
with transcriptional silencing and HPV infection in HNSCCs

(Balermpas et al., 2017). In cervical cancer, Qin et al. (2017)
indicated that HPV-induced somatic mutations and a multitude
of neoantigens, which played a crucial role in the inhibitory
tumor microenvironment and could lead to notable alterations
among checkpoint-related genes such as CTLA-4, PD-1, and
PD-L1. Specifically, PD-L1 showed a positive correlation with
ENO1, PRDM1, OVOL1, and MNT, all of which are related
master regulators of HPV16 E6 and E7 (Qin et al., 2017). Of

TABLE 1 | The characteristics of the clinical application of monoclonal antibodies (mAbs) of immune checkpoint inhibitors in cervical cancer.

Target Drug (trade
name)

Antibody type Formerly name Manufacturer Time to market
(FDA)

Indications

CTLA-4 Ipilumumab
(Yervoy)

IgG1 – BMS March, 2011 Melanoma, colorectal cancer, renal cell
carcinoma

Tremelimumab IgG2 Ticilimumb,
CP-675,206

Pfizer – Undergoing human trials has not attained
approval for any

PD-1 Pembrolizumab
(Keytruda)

IgG4 MK-3475
Lambrolizumab

MSD September, 2014 Advanced melanoma, non-small cell lung
cancer, Hodgkin’s lymphoma, and head
and neck SCC1

Nivolumab
(Opdivo)

IgG4 BMS-9365580
NO-4538

BMS December, 2014 Metastatic melanoma, squamous non-small
cell lung cancer, renal cell carcinoma

Cemiplimab
(REGN2810)

IgG4 – Sanofi September, 2018
(EMA2)

squamous cell skin cancer
(EMPOWER-CSCC 1)

PD-L1 Durvalumab
(Imfiniz)

IgGlK – AstraZeneca May, 2017 Bladder cancer, NSCLC3

Atezolizumab
(Tecentriq)

IgGl – Roche April, 2016 Lung cancer, bladder cancer, advanced
triple negative breast cancer

1SCC, squamous cell cancers; 2EMA, European Medicines Agency; 3NSCLC, non-small cell lung cancer.
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TABLE 2 | Clinical research outcomes on PD-1/PD-L1 inhibitors in cervical cancer.

Study Author Study
population (n)

Phase Treatment arm(s) Principal results Toxicity Significance

REGN2810 Papadopoulos
et al., 2016

Advanced solid
tumors

I Cemiplimab 62.8% patients had
disease control

No dose-limiting
toxicities

Higher response rate
when combined with
radiation suggesting
abscopal responses

Keynote
028

Frenel et al.,
2017

Recurrent cervical
cancer with PD-L1
positive tumors (24)

Ib Pembrolizumab
10 mg/kg q2w

ORR1 17% (95%
CI: 5–37%)

Grade=3 AE2

including rash and
proteinuria

Well-tolerated and
active in cervical cancer

Keynote
158

Schellens et al.,
2017

Recurrent cervical
cancer with
progression or
intolerance to
standard therapy
(82)

II Pembrolizumab
200 mg/kg q2w

Preliminary results:
ORR1 17% (95%
CI: 8–31%);
patients with
>27 weeks of
follow up, ORR
27% (95% CI:
8–55%)

Grades 3–4 AE2

included AST/ALT3

elevation and
pyrexia

Demonstrates activity in
cervical cancer and
increasing response
with a longer duration
of follow-up

Checkmate
358

Hollebecque
et al., 2017

Recurrent or
metastatic
HPV4-related
cancers (19)

I–II Nivolumab 240 mg
q2w

Preliminary results:
ORR1 26% (95%
CI: 9.1–51.2%) in
cervical cancer
patients

Grade 3–4 AE2

included
hyponatremia,
syncope, diarrhea
and hepatocellular
injury

Durable responses
demonstrated in
cervical cancer
patients, with at least
6 months duration

1ORR, objective response rate; 2AE, adverse event; 3AST/ALT, aspartate transaminase/alanine transaminase; 4HPV, human papillomavirus.

note, a single-arm, phase II study investigated durvalumab in
patients with recurrent/metastatic HNSCCs (n = 112) and found
that HPV-positive patients had a higher response rate and better
survival than that of the HPV-negative patients (Zandberg et al.,
2018). Nevertheless, for cervical cancer, the association of HPV
status and the efficacy of PD-1/PD-L1 inhibitors is not yet certain
due to the paucity of available data.

Several studies have probed the role of PD-L1 expression
in the prognosis and therapeutic efficacy of cervical cancer.
These results separately proved that an increase in PD-L1
expression was positively associated with tumor metastasis
(Yang et al., 2017), tumor progression (Hsu et al., 2018) and
poor prognosis in cervical cancer (Heeren et al., 2016). In
this regard, the negative relationship between HPV infection
and the clinical outcomes of cervical cancer may be partially
attributed to the PD-L1 expression induced by HPV infection
(Yang et al., 2017). For patients with locally advanced cervical
adenocarcinoma and adenosquamous carcinoma treated with
CRT, the underexpression of PD-L1 was a prognostic factor for
tumor relapse (p = 0.041), indicating that PD-L1 expression
might be a novel biomarker for CRT outcome (Lai et al., 2017).

CLINICAL RESEARCH OUTCOMES OF
PD-1/PD-L1 INHIBITORS IN CERVICAL
CANCER

Since 2015, multiple clinical trials have been conducted to explore
the application of PD-1/PD-L1 antibodies in cervical cancer.
To date, four studies have yielded preliminary results (Table 2).
Keynote 028 (a phase Ib study) and Keynote 158 (a phase II study)
evaluated pembrolizumab at the dose of 10 mg/kg and 200 mg/kg,
respectively, in recurrent, metastatic cervical cancer. In Keynote

028 (Frenel et al., 2017), 24 patients were enrolled, and the overall
response rate (RECIST v1.1) was 17% (95% CI: 5 to 37%). In
terms of toxicity, 5 patients experienced grade 3 AEs (NCI-
CTCAE 3.0), while no grade 4 AEs was observed. In Keynote 158
(Schellens et al., 2017), 98 patients with recurrent or metastatic
cervical cancer were enrolled. With a median follow-up time of
11.7 months, the ORR in 77 patients was 14.3% (95% CI: 7.4 to
24.1%), including 2.6% of the patients with CRs and 11.7% of
patients with PRs, whereas no response was observed in patients
without PD-L1 expression in tumor cells. The most frequent
serious adverse reactions included anemia (7%), fistula (4.1%),
hemorrhage (4.1%), and infection (4.1%). Based on Keynote
158, the FDA approved pembrolizumab on June 12, 2018, for
advanced cervical cancer with disease progression during or
after chemotherapy1. Checkmate 358 (Hollebecque et al., 2017)
(phases I–II studies) adopted nivolumab (200 mg/kg q2w) for the
treatment of recurrent, metastatic cervical cancer and resulted
in an ORR of 26.3%. The disease control rate was 70.8%. The
related grades 3–4 toxic effects included hyponatremia, syncope,
diarrhea, and hepatocellular injury. From these three studies,
pembrolizumab and nivolumab showed promising antitumor
effects and were well-tolerated in patients with recurrent or
metastatic cervical cancer. However, due to a limited follow-up
time, PFS and OS were not reported. Additionally, the REGN2810
study (Papadopoulos et al., 2016), a phase I multicenter study,
assessed REGN2810 (a PD-1 mAb) as a monotherapy and in
combination with hfRT, in combination with cyclophosphamide
(CTX) or with CTX + hfRT in patients with advanced solid
tumors, including cervical cancer. This study adopted a dose
escalation design, and as of February 2016, no dose-limiting

1https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm610572.
htm
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TABLE 3 | Ongoing clinical research on PD-1/PD-L1 in cervical cancer.

Clinical trial
code

Study Study population
(n)

Phase Treatment arm(s) Primary outcome
measures

Secondary
outcome
measures

NCT02257528 Nivolumab in Treating Patients with Persistent,
Recurrent, or Metastatic Cervical Cancer
(NRG-GYO-02)

Recurrent or
metastatic cervical
cancer (25)

II Nivolumab ORR1 [5 y]; AE2

[100 d]
PFS3 [5 y], OS4 [5
y]

NCT03298893 Nivolumab in Association with Radiotherapy
and Cisplatin in Locally Advanced Cervical
Cancers Followed by Adjuvant Nivolumab for
up to 6 Months (NiCOL)

Locally advanced
cervical cancer (21)

III Nivolumab DLT5 [11 w] ORR1 [2 m], PFS3

[2 y], DFS6 [2 y],
SAE7 [100 d], AE2

[100 d], etc.

NCT03257267 Study of REGN2810 in Adults with Cervical
Cancer (GOG 3016/ENGOT-cx9)
(EMPOWER-Cervical)

Recurrent or
metastatic
platinum-refractory
cervical cancer
(436)

III Cemiplimab
(REGN2810)

OS4 [32 m] PFS3 [32 m], ORR1

[32 m], DOR8 [32
m], Quality of life
(QOL) [100 w]

NCT03104699 Phase 1/2 Study of AGEN2034 in Advanced
Tumors and Cervical Cancer

Advanced cervical
cancer (75)

I–II AGEN2034 DLTs5 [3 w], MTD9

[1 y], BOR10 [1 y]
Cmax11 [1 y],
AUC12 [1 y], PFS3

[1 y], DOR8 [1 y],
OS4 [1 y]

NCT03518606 Metronomic Oral Vinorelbine Plus
Anti-PD-L1/Anti-CTLA4 ImmunothErapy in
Patients with Advanced Solid Tumors (MOVIE)

Advanced solid
tumors (150)
including cervical
cancer

I–II Durvalumab
+Tremelimumab
+metronomic
Vinorelbine

Phase I: MTD9 and
RP2D13 [9 m]
Phase II: CBR14 [24
m]

None

NCT03556839 Platinum Chemotherapy Plus Paclitaxel with
Bevacizumab and Atezolizumab in Metastatic
Carcinoma of the Cervix

Carcinoma of the
cervix, stage IVB
(404)

III Atezolizumab OS4 [48 m] PFS3 [48 m], ORR1

[48 m], DOR8 [48
m], AE2 [48 m], etc.

NCT01975831 A Phase 1 Study to Evaluate MEDI4736 in
Combination with Tremelimumab

Solid tumors (106)
including cervical
cancer

I MEDI4736
(Durvalumab)+Trem
elimumab

AE2 [1 y] AUC12, Cmax11 [15
m], PFS3 [15 m],
OS4 [15 m], etc.

NCT02914470 Pilot Study of Durvalumab and Vigil in
Advanced Women’s Cancers (PROLOG)

Solid tumors (12)
including cervical
cancer

I Durvalumab and
Vigil

Toxicity [30 d] ORR1 [120 m]

NCT02725489 Pilot Study of Durvalumab and Vigil in
Advanced Women’s Cancers

Solid tumors (15)
including cervical
cancer

II Vigil+durvalumab AEs2 [90 d] ORR1 [12 m],
Disease status [12
m], IFNγ-ELISPOT
conversion rate [12
w]

NCT02921269 Atezolizumab and Bevacizumab in Treating
Patients with Recurrent, Persistent, or
Metastatic Cervical Cancer

Recurrent,
persistent, or
metastatic cervical
cancer (22)

II Atezolizumab
+Bevac izumab

ORR1 [2 y] PFS3 [2 y], OS4 [2
y] AE2 [30 d],
PD-L1, etc.

NCT03635567 Efficacy and Safety Study of First-line Treatment
with Pembrolizumab (MK-3475) Plus
Chemotherapy Versus Placebo Plus
Chemotherapy in Women with Persistent,
Recurrent, or Metastati Cervical Cancer
(MK-3475-826/KEYNOTE-826)

Cervical cancer
(600) c

I–II Pembrolizumab PFS3 [2y] OS4 [2 y] ORR1 [2 y], DOR8

[2 y], etc.

NCT03144466 A Study of Pembrolizumab And Platinum with
Radiotherapy in Cervix Cancer (PAPAYA)

Cervical cancer (26) I Pembrolizum MTD9 [2 y] ab
Efficacy [2 y]

OS4 [2 y], PFS3 [2
y], etc.

NCT03255252 Assessment Study to Evaluate Specific Immune
Response in Locally Advanced Cervix Cancer
After Radio-chemotherapy (IMMUVIX)

Cervical cancer
(100)

II Cisplatin Expression of
CD8+CD39+PD1+

Effect on 1-year
DFS6 of other
putative biomarkers
(CD73, CD39, PD1
and Tim3)

NCT03559803 A Prospective Study of Monitoring Immune
Response in Locally Advanced Cervix
Cancer(GHR002)

Cervical cancer(50) Not
appli
cable

Cisplatin PD-L1 [3w, 2 m] PD1+CD4+T [3w, 2
m], PD1+CD8+T
[3w, 2 m], TCR[3w,
2 m]

1ORR, objective response rate; 2AE, adverse event; 3PFS, progression-free survival; 4OS, overall survival rate; 5DLT, dose limiting toxicity; 6DFS, disease-free survival;
7SAE, serious adverse event; 8DOR, duration of response; 9MTD, maximum tolerated dose; 10BOR, best overall response; 11Cmax, maximum plasma concentration;
12AUC, area under curve; 13RP2D, phase II recommended dose; 14CBR, clinical benefit response.
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toxicity (DLT) was observed. The most common treatment-
related AEs were fatigue (n = 14, 24.1%), arthralgia (n = 7,
12.1%), and nausea (n = 6, 10.3%). Additionally, 4 patients
experienced grade ≥ 3 AEs. For 9/22 (40.9%) patients who
received REGN2810 + hfRT and 2/21 (9.5%) patients who
received REGN2810 monotherapy, they were determined to
have partial/uPRs, suggesting that the treatment response was
augmented by the addition of hfRT.

ONGOING CLINICAL RESEARCH ON
PD-1/PD-L1 IN CERVICAL CANCER

As of September 2018, 11 clinical trials have been conducted,
mainly in patients with persistent, recurrent, or metastatic
cervical cancer, with only three studies on patients with locally
advanced cervical cancer. Twenty to thirty cases were intended
to be included in the majority of these studies, while there were
only three studies (Keynote 826, GOG 3016/ENGOT-cx9, and
NCT03556839) in which more than 200 cases were intended to
be included. Except for the two studies (IMMUVIX, GHR002)
aimed at exploring the immune status of PD-1/PD-L1 in patients
with locally advanced cervical cancer, the remaining 12 studies all
looked into the applicability of PD-1/PD-L1 inhibitors in cervical
cancer. Of these 12 studies, there are 2 studies on nivolumab,
2 on pembrolizumab, 4 on durvalumab, 2 on atezolizumab, 1
on cemiplimab (REGN2810) and 1 on AGEN2034. For PD-1
inhibitors, the difference between the 2 studies on nivolumab is
the study population. NRG-GYO-02 was conducted in patients
with persistent, recurrent, or metastatic cervical cancer, while
the NiCOL study enrolled more patients with locally advanced
cervical cancer. The main difference between the two studies on
pembrolizumab is that KEYNOTE-826 adopted pembrolizumab
in combination with chemotherapy versus placebo, while
PAPAYA mainly adopted pembrolizumab in combination
with platinum and radiotherapy. The GOG 3016/ENGOT-
cx9 (EMPOWER-Cervical) study is an important phase III
clinical study to advance the clinical application of cemiplimab
(REGN2810) in advanced cervical cancer. NCT03104699 is a
phase I/II clinical study on AGEN2034, another PD-1 inhibitor,
in advanced solid tumors that includes 75 cases of cervical cancer.
In terms of treatment combinations, tremelimumab (a fully
human mAb against CTLA-4), Vigil vaccine for cervical cancer,
bevacizumab, and chemotherapy were paired with PD-1/PD-L1
inhibitors throughout these studies (Table 3).

CONCLUSION

Although there are a few studies suggesting the potential
feasibility of PD-1/PD-L1 inhibitors for the treatment of

cervical cancer, a consideration should be made for the clinical
application of PD-1/PD-L1 inhibitors. The inadequate number
of cases included and the insufficient follow-up time are the
main defects of all the studies, leading to the unavailability of
data regarding OS, PFS, AEs, drug resistance and the treatment
mechanism as well. These data are very pivotal not only
for obtaining a more convincing result, but also for guiding
physicians to select the appropriate patients for PD-1/PD-L1
inhibitors.

Currently, most of these studies, including ongoing studies,
are mostly limited to recurrent, persistent, metastatic cervical
cancer, which accounts for only a minor portion of patients with
cervical cancer. There are several future directions that can be
given more attention. First, the latest evidence suggests a clinical
benefit of PD-1/PD-L1 inhibitors as neoadjuvant therapy in lung
cancer (Lommatzsch et al., 2018). For patients with early-stage
cervical cancer, studies in a small sample size can be conducted
to investigate PD-1/PD-L1 inhibitors with attempted surgical
treatment or to prevent post-operative recurrence. Second, for
patients with locally advanced cervical cancer who are not
sensitive to CCRT or who relapse in the short term after initial
treatment, PD-1/PD-L1 inhibitors may be a useful treatment, and
we are looking forward to the research targeting this population.
Third, for locally advanced cervical cancer patients, whether
PD-1/PD-L1 inhibitors can achieve better therapeutic efficacy in
tumors with higher PD-L1 expression before CCRT begins will
provide a better understanding of the effects of these inhibitors.
Finally, since PD-L1 expression is correlated with HPV status,
more studies are warranted to provide further insights into
the association of HPV status and the efficacy of PD-1/PD-L1
inhibitors in patients with cervical cancer. Combining the level of
HPV DNA with the expression of PD-L1 may also provide a novel
predictive biomarker of the efficacy of PD-1/PD-L1 inhibitors
and the prognosis of patients with cervical cancer.
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Cancer stem-like cells (CSC) have been targeted by different strategies over the last
decade. This mini review focuses on preclinical and clinical results obtained by interfering
with chemokine receptors CXCR1 and CXCR2 in breast cancer. This strategy is currently
being tested in a randomized, double blind phase 2 clinical trial.

Keywords: CXCR1, CXCL8, cancer stem-like cells, reparixin, breast cancer

Cancer stem-like cells (CSC) have been the focus of several clinical investigations testing different
strategies for amore effective anticancer treatment through inhibition of this unique cell population
(1). Targeting the CXCL8-CXCR1/2 axis is one such strategy that has moved from preclinical
models to an ongoing randomized phase 2 clinical trial in breast cancer.

CXCL8 (formerly IL-8) is a chemokine whose biological effects are mediated by two
G-protein-coupled receptors: CXCR1 and CXCR2 (2). CXCL8 has been reported to play multiple
roles in cancer, such as increasing proliferation, angiogenesis, invasion, and metastases (3). In
breast cancer, recent evidence points to this chemokine as a key regulator of CSC activity (4).

PRECLINICAL EVIDENCE IN BREAST CANCER

In breast cancer, tumor cells capable of forming tumors in immunocompromised mice (i.e.,
CSC by a functional definition) are identified by the expression of either the enzyme aldehyde
dehydrogenase (ALDH) (5) and/or the CD24−/CD44+ phenotype (6), representing two largely
non-overlapping cell populations. CXCR1 was identified as a druggable target on breast cancer
CSC identified by the expression of ALDH, while its expression was almost undetectable on bulk
(i.e., non-CSC) tumor cells (7). In keeping, breast cancer CSC were shown to proliferate in vitro
in response to the addition of exogenous CXCL8 while a small molecular weight antagonist of
CXCR1/2 (reparixin) (8) or a blocking anti-CXCR1 (but not anti-CXCR2) monoclonal antibody
were both able to deplete CSC in vitro (9). A FAS-FASL mediated bystander effect killed the
vast majority of bulk tumor cells in vitro, suggesting the possibility of synergistic effects with
chemotherapy (9). In human breast cancer cell lines or breast cancer patient-derived xenografts
orthotopically implanted in mice, the combination of weekly docetaxel and reparixin for 4 weeks
was more effective than either treatment alone in reducing tumor size (9). However, in tumors
recovered from mice that had been treated with reparixin, either alone or in combination with
chemotherapy, CSC proportion was far lower than in tumors recovered from mice receiving
chemotherapy alone (9). These results were framed in a model where, following administration
of chemotherapy, CXCL8 and FASL are released by dying bulk tumor cells. Engagement of
CXCR1 on the surface of CSC by CXCL8 shelters CSC from apoptotic signals delivered by FASL.
To the contrary, when CXCR1 signaling on CSC is blocked by reparixin these cells undergo
FASL-mediated apoptosis. Evidence provided later by independent laboratories supports this
model. First, as originally reported by Ginestier and coworkers, tumor cells exposed to taxane
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in vitro release CXCL8 (10). Also, Triple-Negative Breast Cancer
(TNBC) tumor cells recovered from immunocompromised mice
following two doses of paclitaxel displayed a marked and dose-
dependent increase in mammosphere forming efficiency as
compared with untreated mice (10). Furthermore, and again
in line with the original report by Ginestier, administration
of a CXCR1 inhibitor reduced CSC percentage in vitro.
Consistent findings were later reported by an independent group
(11). Second, in breast cancer patients with pleural effusions
and/or ascites CXCL8 levels were measured and tumor cells
recovered and cultured in vitro (4). A direct correlation was
observed between CXCL8 levels and CSC activity by means of
mammosphere formation (4). Surface CXCR1 was detected on
the majority of mammosphere cells, and the effects of exogenous
CXCL8 onmammosphere formation were blocked by a CXCR1/2
inhibitor, SCH563705 (4).

The relative contribution of CXCR1 inhibition and paclitaxel
in this model were further investigated in CSC-enriched
mammospheres from the human TNBC cell line MDA-MB231.
The combination treatment displayed a synergistic effect on
mammosphere number and an additive effect on mammosphere
volume as compared with either treatment alone (12). Different
than paclitaxel, which increased the number of dead cells,
reparixin increased the number of non-proliferating cells, and the
combination treatment exerted both effects (12). In keeping with
previous reports (9), also in MDA-MB231-derived tumorspheres
reparixin activity was mediated by inhibition of the FAK/AKT
pathway which is unaffected by paclitaxel. When the effects
on cell cycle were investigated, a shift of tumor cells in S
phase or a block in G2 phase were observed upon paclitaxel
and combination treatment, respectively. In keeping, cyclin B1,
which is responsible for the cell cycle progression from G2
to S phase, was also inhibited by the combination treatment
(12). Furthermore, paclitaxel + reparixin treatment induced
“cell senescence by decreasing PI3K-Akt activation paralleled
by a decrease of the cytosolic p-FOXO3A (inactive) and by
an increase of p27” (12). The effects on cell cycle, cyclin B1
and p-FAK levels recorded upon exposure to reparixin were
reproduced using neutralizing anti-CXCR1 and anti-CXCL8
monoclonal antibodies, thus providing indirect evidence of the
ability of reparixin to downregulate CXCL8-CXCR1signaling
pathway (12).

Another set of experiments aimed at testing the hypothesis
that inhibition of CSC would reduce metastatic spread. First,
it was shown that reparixin administration reduced metastasis
formation in mice following injection of luciferase-transfected
human breast cancer cells into the bloodstream (9). Second,
the suppressive activity of CXCR1 inhibition on the metastatic
process was tested in a mouse model of brain metastases by the
TNBC cell line MDA-MB231. In the absence of brain metastases,
reparixin does not cross the blood brain barrier (BBB). However,
in the presence of brain metastases and an allegedly damaged
BBB, reparixin can be found in the central nervous system (12).
When treatment was started on the same day when tumor cells
were injected, a significant decrease of both the number and
the volume of brain metastases was observed following single
agent (i.e., reparixin or paclitaxel) as well as the combination

treatment. When treatment was started at day 7 following tumor
cell injection and continued until day 21, a significant reduction
of the number of brain metastases was observed only following
combination treatment, which also showed a trend toward an
inhibitory effect on metastases volume (12).

PRECLINICAL EVIDENCE IN TUMORS
OTHER THAN BREAST CANCER

Anti-tumor and anti CSC activity of reparixin has been
demonstrated in human epithelial thyroid cancer in vitro and
in vivo (13). Reparixin ability to inhibit stemness (evaluated by
stemness marker expression and tumorsphere formation) and
epithelial-mesenchymal transition (EMT) (evaluated at both the
biochemical and functional level) of thyroid cancer was shown to
be dependent, different than in breast cancer (9), on its activity
on both CXCR1 and CXCR2 (13).

In malignant melanoma, CXCR1/2 inhibition reduced the
percentage of ALDH+ cells in human tumors growing in nude
athymic mice (14).

In pancreatic cancer (15) a positive correlation was found
between CXCR1 and both CD44 and CD133 stemness marker
expression. Exogenous CXCL8 added to pancreatic cancer cells in
vitro increased their invasion ability, tumorsphere formation, and
CSC population and addition of a CXCR1-blocking monoclonal
antibody was able to revert all these effects (15).

CLINICAL TRIALS IN BREAST CANCER

In a phase Ib study (NCT02001974) (16), patients with HER-
2 negative metastatic breast cancer not known to be refractory
to paclitaxel who had received no more than three lines of
cytotoxic chemotherapy in the metastatic setting were enrolled in
cohorts of 3–6 patients to receive escalating doses of the CXCR1/2
inhibitor reparixin oral tablets three times per day (t.i.d.) from
day 1 to 21 in combination with a fixed dose of weekly paclitaxel
(80 mg/m2) on days 1, 8, and 15 of a 28-days cycle, for
as long as clinical benefit was observed. Primary objectives
were the assessment of the safety of the combination and the
pharmacokinetic (PK) profile of oral reparixin. Expansion of the
highest dose cohort was foreseen to gain additional PK and safety
data. Cohorts 1–3 received reparixin 400, 800, and 1,200mg t.i.d.
respectively. In cycle 1 only, patients received a 3 days course
of reparixin alone (day −3 to −1) at the assigned dose for the
cohort, for purpose of obtaining single agent PK data.

Thirty-three patients were enrolled in the study. Eighty-three
percent of patients had visceral disease, and the majority had
two or more sites of metastasis. 20/33 patients had received
prior (neo)adjuvant chemotherapy, and 16 of these patients had
received a taxane in the (neo)adjuvant setting. 19/33 had received
chemotherapy in the metastatic setting, with 11 having one prior
metastatic regimen and eight having two or more chemotherapy
regimens. Thirty patients were evaluated for safety. There were
no dose limiting toxicities in any cohort. Most adverse reactions
(ADR) were of grade 1 (79.8%), with only 2.7% grade 3 ADR.
There was no apparent dose effect of increasing reparixin dose
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on the incidence, severity or profile of treatment emergent
adverse events (TEAE) experienced by the treatment groups,
and there were no clinically significant differences between the
treatment groups with regards to laboratory measurements, vital
signs, ECG, and physical examination assessments. Twenty-
seven patients were evaluated for antitumor activity. In total,
8/27 patients had a confirmed RECIST response. Of responding
patients, all but one were from cohort 3. Median time to
progression (TTP) (95% C.I.) for the 3 cohorts were 58
days (44-infinity) for cohort 1, 67 days (58–82) for cohort 2
and 162 days (60–229) for cohort 3. Remarkably, there were
long term remissions among patients treated (16). In this
trial, it was not possible to obtain optional serial biopsies of
tumor tissue at study entry and during treatment from any
patient. However, blood-based biomarkers of CSCwere explored.
The circulating biomarkers included Circulating Tumor Cell
(CTC) enumeration, evaluation of ALDEFLUOR, and EMT
transcription factors in peripheral blood, and serum cytokine
measurements. Unfortunately, no clear pattern of change in any
of these markers was observed. This is likely related to multiple
issues, including but not limited to small sample size, low CTC
number in the enrolled patient population leading to limited
tumor material for testing, and high baseline heterogeneity in the
measurements.

Operable breast cancer is a more suitable clinical setting to
evaluate the ability of a novel agent to reduce the number of CSC
following treatment, as they can be measured on readily available
tumor tissue. Thus, after reviewing safety data from the second
cohort of the above trial, a window-of-opportunity, pilot trial
(NCT01861054) of single agent reparixin was started (17).

Patients with previously untreated HER-2 negative operable
breast cancer not eligible for neo(adjuvant) treatment were
divided into two cohorts, i.e., group A: histologically proven ER+

and/or PgR+ and group B: ER−/PgR− breast cancer (i.e., TNBC).
This design allowed potential to identify the cohort of patients
who might benefit the most from this treatment in later stage
clinical trials. Oral reparixin was administered at 1,000mg t.i.d.
for 21 consecutive days before curative surgery. Core biopsies
were taken at baseline (day −14 to 0) and at the completion
of therapy (day 21). The primary objectives of this study were
to evaluate the effects of orally administered reparixin on CSC
in the primary tumor and the tumor microenvironment and to
evaluate the safety of oral reparixin. Signal of activity was defined
as a ≥20% reduction of CSC (defined by either the ALDH+ or
CD24−/CD44+ phenotype) in tumor tissue from baseline values
as measured by flow cytometry accompanied by a consistent
reduction of the same cell population by immunohistochemistry
(IHC).

A total of 20 patients were enrolled, 18 of whom in group
A. Signal of activity was detected by flow cytometry in the
majority of patients (18), but the very low numbers of CSC
hindered the possibility to confirm flow cytometry results by
IHC. However, the later published evidence that the two breast
cancer CSC populations (i.e., ALDH+ and CD24−/CD44+)
investigated reside in different areas of primary breast tumors
and can transition from one phenotype to the other (19) might
affect the reliability of CSC counts in this patient population.

More in general, the clinical relevance of a ≥20% reduction
of CSC following a single 21-day course of reparixin in this
patient population is unknown and was beyond the scope of this
trial.

From a safety standpoint, also in this trial reparixin appeared
to be well-tolerated with 10/20 patients experiencing one or
more ADR, all of which of grade ≤2. Neither TEAE leading to
treatment discontinuation nor delays in surgery due to TEAE
were recorded.

CONCLUSIONS

Evidence for a CXCL8-CXCR1/2 axis in CSC has been
reported by independent laboratories and offers a potential
therapeutic target. Clinical trials aimed at testing the effective
targeting of CSC through this axis have been conducted
in breast cancer, where the most information is available
from preclinical research. Reparixin appeared to be well-
tolerated, however, such trials were faced with several issues
for efficacy evaluation, e.g., the very low numbers of CSC in
primary operable breast cancer. To circumvent this limitation,
circulating markers for monitoring the effect of anti-CSC
agents were explored but these assays turned out to be
inadequate.

Future prospects for CSC targeting agents include the
development of reliable assays to measure stem cell number
and/or activity (20) in serial biopsies from accessible
tumors (e.g., window-of-opportunity trials), and alternative
endpoints in clinical trials in the metastatic setting. One
possible endpoint is the development of metastases at
new sites (21), which can have also clinical significance
(22). In keeping with preclinical findings (9, 12), it is
hypothesized that an effective anti-CSC treatment will impact
on development of new metastases while progression of
pre-existing metastases is more consistent with proliferation
of non-CSC, bulk tumor cells that should be addressed by
chemotherapy.

As concerns CXCR1/2 inhibition, a randomized, placebo-
controlled clinical trial (NCT02370238) of weekly paclitaxel with
and without reparixin in front line treatment of metastatic
TNBC has completed enrolment. Identification of clinical (e.g.,
disease sensitivity to chemotherapy) and/or cellular/molecular
biomarkers of patients most likely to benefit from treatment
represents a future direction of research, while analysis of time
to new metastasis may fuel development of this strategy in the
(neo)adjuvant setting, also leveraging on safety data generated in
metastatic patients.
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Combination therapy which enhances efficacy and reduces toxicity, has been
increasingly applied as a promising strategy for cancer therapy. Here, a reactive
oxygen species (ROS) that enhanced combination chemotherapy nanodevices was
fabricated based on the Fe-chelated polydopamine (PDA) nanoparticles (NPs). The
structure was characterized by dynamic light scattering-autosizer, transmission electron
microscopy, energy dispersive spectroscopy, and Fourier-transform infrared (FT-IR)
spectrophotometer. The in vitro drug release profile triggered by low intracellular
pH indicated that the system demonstrated controlled therapeutic activity. In vitro
cell uptake studies showed that doxorubicin (DOX)-loaded Fe-PDA/ folic acid (FA)-
polyethylene glycol (DOX@Fe-PDA/FA-PEG) had a strong uptake capacity and can
be rapidly internalized by MCF-7 cells. The in vitro experiments demonstrated
that DOX@Fe-PDA/FA-PEG triggered the intracellular ROS overproduction, thereby
enhancing its therapeutic effect on breast cancer. In summary, this experiment
demonstrated the novel DOX-loaded composite NPs used as a potential targeted
nanocarrier for breast cancer treatment, which could be a promising therapeutic strategy
against breast cancer.

Keywords: polydopamine, combination therapy, reactive oxygen species, doxorubicin, breast cancer

INTRODUCTION

As one of the most common malignant tumors among women, breast cancer is the second
and common cause of cancer-related death in women (Wood et al., 2017; Bray et al., 2018).
Chemotherapy has become one of the most mature and common treatment option for breast
cancer (Fisher et al., 1998; Miller et al., 2016; Spiegel and Koontz, 2018). Doxorubicin (DOX)
is an anthracycline non-specific broad-spectrum anticancer drug that is widely used to treat
breast cancer. Doxorubicin can exert its effects by elevating reactive oxygen species (ROS) thereby
activating of caspase and ultimately leading to apoptosis (Russell and Cotter, 2015; Chakravarti
et al., 2016). However, serious side effects, such as myelosuppression, cardiotoxicity, and drug
resistance, are the major clinical chemotherapeutic drawbacks of DOX.
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It has been proposed that combination therapeutics plays
a synergistic effect and can enhance efficacy and reduce the
toxicity of chemotherapy (Xu et al., 2015; Camacho et al.,
2016; Kemp et al., 2016; Seo et al., 2017). Dayton et al. (2011)
reported that the use of HO-3867, which is a synthetic curcumin
analog, combined with DOX, in low doses to achieve enhanced
cell death and reduced myocardial toxicity. And the increased
generation of ROS, thereby resulting in oxidative damage to the
cellular constituents, is widely exploited for therapeutic benefits
on cancer (Matés and Sánchez-Jiménez, 2000; Schumacker Paul,
2015; Zhou et al., 2016). Fe, which plays a role in several types
of cell death, has long been associated with toxicity because
it induces hydroxyl radical (OH·), which is a ROS formed via
Fenton reaction (Dixon and Stockwell, 2013; Shen et al., 2018;
Zhang et al., 2018). Using ROS-producing agents could enhance
the anticancer activity of DOX in cancer therapy through ROS-
mediated apoptosis (Xia et al., 2017; Wu et al., 2017), autophagy
(Fong et al., 2012), and ferroptosis (Zheng et al., 2017). Fan
et al. (2014) identified the synergistic effect of DOX/ selenocystine
sensitized to DOX by through ROS overproduction. Dai et al.
(2018) fabricated assembled metal-phenolic network Nps as a
novel ROS promoted synergistic nanomedicine platform for
cancer therapy. This observation inspires us to import an iron-
supply system in combination with DOX to elicit a synergistic
effect on the cancer therapy.

Recently, researchers attempted to build some drug carrier
systems to load and transport DOX overcoming the low
bioavailability, poor absorption, and high toxicity of DOX
(Xu et al., 2015; Kemp et al., 2016; Indermun et al., 2018).
Particularly, polydopamine (PDA), which is a natural-inspired
polymer, is an appealing material as drug carrier due to its good
biocompatibility (Lynge et al., 2015; Indermun et al., 2018; Ryu
et al., 2018). Considering its abundant aromatic rings, PDA NPs
could be an efficient platform for loading DOX through π–
π stacking and hydrogen-bonding interactiron. Meanwhile, the
existence of phenolic hydroxyl groups on the surface makes it
suitable for further modification with PEG, which could endow
nanoparticles excellent physiological stability of NPs (Liu et al.,
2014). More attractively, the phenolic surface have excellent
chelating ability with metal ions such as Mn (Miao et al., 2015;
Xi et al., 2017), Cu (Ge et al., 2017), and Fe (Li et al., 2016).

Keep all the issues in mind, we hypothesized that the Fe-
chelated PDA nanoparticles with DOX loading could act as
an Fe-supply system used for Fe and DOX combined cancer
theranostics, as shown in Figure 1. The designed DOX@Fe-
PDA/folic acid (FA)-PEG could be provided with several
advantages, as follows: (Wood et al., 2017) Combination therapy.
The chemotherapy drug DOX undergoes redox cycles to generate
and increase H2O2 in living cells. The released Fe from PDA
further reacts with H2O2 to generate hydroxyl radical via Fenton
reaction and induces cell death. In combination with Fe, DOX
was prone to kill cancer cells efficiently (Bray et al., 2018).
Biocompatibility and safety. PDA, which is a natural biopolymer,
possesses biocompatibility. The coated PEG and chelated Fe
of PDA Nps were metabolic. Meanwhile, the pH-triggered
release performance of PDA in tumor microenvironment, avoids
damage to surrounding tissues. The PEG-coating can help

Nps to ameliorate long-term circulation (Fisher et al., 1998).
Tumor targeted. Considering folate receptor overexpression
on the surface of breast cancer cells, the FA conjugated NPs
may improve cell uptake via receptor mediated endocytosis.
In summary, the DOX@Fe-PDA/FA-PEG system could be used
as potential combination chemotherapy nanodevice for breast
cancer treatment.

MATERIALS AND METHODS

NPs Synthesis
The synthesis of NPs was modified based on the previously
introduced procedure (Li et al., 2016). In brief, 4.08 mg FeCl3
and 15 mg dopamine plus 10 mL of water were mixed and stirred
at room temperature for 1 h. Then 500 mg Tris was added,
and the mixture was stirred at room temperature for 1.5 h. The
mixture was centrifuged at 12000 rpm for 15 min to obtain Fe-
PDA NPs. A total of 3.85 mL Fe-PDA NPs (5.2 mg/mL) were
mixed with 20 mg FA-PEG-SH, 4.7 mg Tris, and 100 µL tris(2-
carboxyethyl)phosphine (8 mg/mL). The mixture was vigorously
stirred for 1 h at room temperature. Then, the FA-PEG modified
NPs (Fe-PDA/PEG-FA) were purified via centrifugation and
washed with deionized water.

Drug Loading
A total of 2 mg adriamycin hydrochloride were added into
300 µL of dimethyl sulfoxide and 8.2 µL of triethylamine was
added. The mixture was stirred in dark at room temperature
for 12 h to desalinate hydrochloride. Then, the neutral DOX
(2 mg) above-mentioned was added dropwise to 1 mL of Fe-
PDA/FA-PEG NPs (10 mg/mL). Afterward, Tris (2.42 mg) was
added and volume of 3 mL was obtained by adding distilled
water. After vigorous stirring for 24 h in the dark, free DOX
was removed via centrifugation at 12000 rpm for 10 min, then
washed with phosphate buffer solution (PBS) and stored at 4◦C
in the dark. The DOX loading capacity of NPs was determined
by UV-Vis spectrophotometer at the wavelength of 480 nm.
The encapsulation efficiency (EE) of DOX was calculated by the
following equation: EE = (initial amount of feeding drugs – free
drugs)/initial amount of feeding drugs.

NPs Characterization
The size and Zeta potential of the prepared NPs were measured
by dynamic light scattering-autosizer (DLS) on Zetasizer Nano
ZS90 (Malvern Instruments, Malvern, United Kingdom).
The liquid sample was sonicated before measurement.
Three independent test results were recorded. The shape
and surface morphology of the NPs were imaged by a
transmission electron microscope (TEM, JEM-1230; JEOL,
Tokyo, Japan). TEM, energy dispersive X-ray spectroscopy
(EDS) and corresponding EDS-mapping were adopted for
morphology and elemental distribution analyses on the
JEM-1230 electron microscope operated at 200 kV. The
chemical composition and structural changes of NPs were
analyzed by Fourier transform infrared (FT-IR) spectroscopy
(VERTEX 70; Bruker, Bremen, Germany). The IR spectra
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FIGURE 1 | Schematic representation of DOX@Fe-PDA/PEG-FA synthesis, targeted cell uptake and intracellular drug release and combination therapy.

of the samples were obtained in the range of 4000 and
500 cm−1.

In vitro Drug Release Profiles
The in vitro DOX release behavior of DOX@Fe-PDA/FA-PEG
was tested as reported previously (Liu et al., 2014). Briefly,
DOX@Fe-PDA/FA-PEG was dispersed in 2 mL PBS with the pH
of either 7.2 or 5.5. The tube was shaken at 37◦C with 100 rpm
in dark. At appropriate time points, the full release buffer was
collected via centrifugation at 12000 rpm for 10 min, and replaced
with 2 mL of fresh PBS. The amount of released drug DOX
was quantified by a UV spectrophotometer at the wavelength of
480 nm. The correlation between the accumulative DOX released
from NPs and time was plotted.

Cell Culture
The in vitro cell cytotoxicity cellular uptake and ROS
measurement were assessed on human breast cancer cell
line MCF-7, which was purchased from American Type Culture
Collection. Cells were incubated at 37◦C with modified Eagle’s
medium (MEM) containing 10% fetal bovine serum (FBS),
100 U/mL penicillin, and 100 mg/mL streptomycin in a 5% CO2
atmosphere.

Cellular Uptake Study
A total of 2 × 105 cells/well MCF-7 cells were seeded in 6-well
plates for 24 h. Then, the samples (free DOX, DOX@Fe-PDA/FA-
PEG) were added to each well (equivalent DOX concentration
of 10 µg/mL) and the cells were incubated at 37◦C for an
appropriate time at an additional of 24 h. Afterward, the cells
were washed with PBS and stained by Hoechst 33342 (Sangon
Biotech, Shanghai, China). Confocal laser scanning microscopy
(CLSM) imaging was performed on LSM 410 fluorescence
microscope (Zeiss, Jena, Germany). The fluorescence signal of

DOX was excited at 488 nm and measured at 610 nm. The
fluorescence signal stained by Hoechst 33342 was excited at
405 nm and detected at 490 nm.

In vitro Cytotoxicity by Using MTT Assay
MCF-7 cells were seeded in 96-well plates at a density of
5000 cells per well and incubated in 100 mL of medium for
24 h to allow attachment. Then, the cells were incubated with
free DOX and DOX@Fe-PDA/FA-PEG (DOX concentration of
0.1093, 0.2187, 04375, 0.875, 1.75, and 3.5 µg/mL) for 24 and
48 h, respectively. A total of 20 µL MTT solution (5 mg/mL)
were added to each well and incubated for 4 h. The crystals were
dissolved by adding DMSO. The optical density value of each
well was measured at 490 nm by an iMark plate reader (Bio-
Rad, Berkeley, CA, United States). All data were obtained in
quadruplicate.

Intracellular ROS Content Measurement
MCF-7 cells were seeded on 6-well plates at a density of
2 × 105 cells per well. Then the cells were incubated
with free DOX and DOX@Fe-PDA/FA-PEG (equivalent DOX
concentration of 10 µg/mL) for 8 h at 37◦C. Afterward,
diluted 2′,7′-dichlorofluorescein diacetate (DCFH-DA; Solarbio,
Beijing, China), which is a cell-permeable fluorescent probe,
were added. Then, the cells were placed in a 6-well plate
at 37◦C and incubated for another 30 min. The cells were
washed for three times with serum-free medium to remove
DCFH-DA completely and finally observed using fluorescence
microscope.

Data Analysis Methodology
All experiments were performed at least three times unless
otherwise stated. All experimental data were expressed as

Frontiers in Pharmacology | www.frontiersin.org 3 February 2019 | Volume 10 | Article 75808

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00075 February 4, 2019 Time: 16:1 # 4

Li et al. Iron-Chelated Polydopamine for Combination Therapy

mean± SD and both were treated with SPSS 18.0 (SPSS, Chicago,
IL, United States).

RESULTS AND DISCUSSION

DOX@ Fe-PDA/FA-PEG Synthesis and
Characterization
The design and synthetic strategy of DOX@Fe-PDA/FA-PEG is
shown in Figure 1. First, the Fe-PDA was synthesized using
an oxidative self-polymerization method according to previously
literature (Li et al., 2016). In addition, folic acid conjugated
PEG was introduced to modify the PDA in enhancing the
targeting effect and improving the stability of the NPs. Finally,
DOX was loaded via diffusion in an aqueous media. The mean
hydrodynamic sizes of DOX@PDA/FA-PEG, DOX@Fe-PDA/FA-
PEG and the unloaded Fe-PDA/FA-PEG were 239.5 ± 28.82,
267.7 ± 34.16, and 283.22 ± 21.6 nm, respectively, with a
narrow size distribution as demonstrated in Figure 2A. This
particle size is theoretically suitable for cellular uptake and
tumor cell permeation duo to EPR effect (Maeda, 2015). Zeta
potential plays a key role in the stability and penetration through
cell membranes for Nps (Bhattacharjee, 2016). Considering the
presence of the carboxyl group of FA, the zeta potentials of all
NPs are negative (Supplementary Figure 1), thereby indicating
that these Nps were stable in vivo by electrostatic repulsion,
which is the basis of drug delivery (Wu et al., 2011). The
zeta potential of Fe-PDA/FA-PEG (−30 mV) is slightly lower
than that of Fe-PDA/FA-PEG loaded with DOX (−27.2 mV)
(Supplementary Figure 1), thereby suggesting that the positively

charged amino groups on DOX partially neutralized the negative
charge.

The morphologies of Fe-PDA/FA-PEG (wihout DOX loaded),
DOX@PDA/FA-PEG (without Fe chelated), DOX@Fe-PDA/FA-
PEG were observed by TEM. The results revealed that the
DOX-loaded PDA/FA-PEG exhibited a spherical and uniform
morphology (Figure 2B). The particle size observed by TEM
was substantially the same as the particle size measured by
DLS. Scanning electron microscopy used to perform accurate
elemental analysis of Nps. Using dark field image (DFI)
characterization, electron energy loss spectroscopy (EELS),
energy dispersive spectroscopy (EDS), and corresponding
element mapping (EDS mapping) (Figure 3) clearly show the
morphological structure of the nanoparticles and distribution
of four elements (C, N, O, Fe). The results showed that the
coexistence of C, N, O, and Fe signals coexisted in the EDS spectra
of Fe-PDA and Fe-PDA/FA-PEG. The uniform distribution of
C, N, O, and Fe was confirmed by EDS element mapping. This
result indicated the success and dispersion loads of Fe, PDA,
and PEG in the DOX-loaded Fe-PDA/FA-PEG and unloaded Fe-
PDA/FA-PEG. However, in the EDS element mapping of PDA,
only C, N, and O signals coexisted and were distributed, thereby
indicating the success and dispersion load of PDA and PEG in the
DOX-loaded PDA/FA-PEG. Further, the FR-IR was performed to
evaluat the surface characterization. As shown in Supplementary
Figure 2, the, the characteristic peaks of N-H bending vibration
appearing at 1512, 1589, and 3250 cm−1. The peaks at 1493 and
1445 cm−1 can be ascribed to the existence of FA. Compared with
PDA, the peaks of PEG at 1128 cm−1 (C-O-C stretching) were
observed.

FIGURE 2 | The characterization of different nanoparticl nanoparticles. (A) Size distributions of Fe-PDA/FA-PEG, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG.
(B) TEM image of PDA/FA-PEG, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG. Scale bar: 100 nm.
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FIGURE 3 | Dark-field image, and corresponding area-elemental mappings of PDA/FA-PEG, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG. Scale bar: 50 nm.

In vitro pH-Stimuli Release Study
At a drug to Fe-PDA/FA-PEG feeding ratio of 1:5 in weight,
the encapsulation efficiency of DOX in the Fe-PDA/FA-
PEG was 76.6 ± 5.2% determined by UV-Vis absorption
spectrophotometer. As PDA NPs exist abundant aromatic rings
and phenolic hydroxyl groups, the DOX was loaded through
π–π stacking and hydrogen-bonding interaction. Subsequently,
the pH dependent release capability of DOX@Fe-PDA/FA-PEG
was investigated at 37◦C under the pH levels of 7.2 and 5.5.
The accumulative drug release kinetics curves are shown in
Figure 4. The drug release of both the DOX-loaded Fe-PDA/FA-
PEG was significantly pH-dependent. As shown in Figure 4,
the release of the drug was as low as 25.5% at the of pH 7.2
within 36 h, and even 30.1% within 48 h. However, under acidic
conditions, the release amount reached 34.6% within 8 h at
the pH of 5.5, and the release rate at 48 h was 47.2%. This
indicated that the drug-loaded Nps can cause the drug release
under acidic condition, mainly due to the extremely high pH
responsiveness of the PDA-modified NPs. This phenomenon
allowed the rapid drug release at low pH. Considering the
acidic microenvironment of the tumor and intracellular acidic
endosomes and lysosomes, drugs are released only after being
phagocytized by lysosomes in tumor cells, thereby effectively
reducing drug waste and enhancing the antitumor effects by
rapidly increasing the lysosome concentration (Duo et al., 2017).

Cellular Uptake
To study the cellular uptake and the intracellular distribution,
we investigated the intracellular delivery of free DOX by using a
confocal microscopy. Figure 5A shows the fluorescence of DOX
distrubuted in the cytoplasm and cell nuclei after incubation

FIGURE 4 | In vitro drug release profile of DOX@Fe-PDA/FA-PEG in media
with different pH value (pH 7.2 and 5.5).

with free DOX for 1 h. However the red flourescence with NPS
observed in nucleus was not obvious. Based on the different
intracellular fates of DOX, it was indicated that the NPs
were internalized into cell mainly via endocytic pathway. And
then we continued to incubate for another 9 h and observed
under a fluorescence microscope as shown in Figure 5B.
Apparently, the uptake intensities of DOX-loaded NPs was
higher than that of free DOX, and it was contributed by the
targeting effect of folate receptor. Moreover, the cell uptake
intensities of DOX-loaded NPs were positive correlation with
incubation time. While the fluorescence intensity of free DOX
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FIGURE 5 | Confocal laser scanning microscopy (CLSM) images of MCF-7 cells after incubation with free DOX, DOX-@ Fe-PDA/FA-PEG for 1 h (A), and 9 h (B). The
cells were stained by Hoechst (blue) and drug DOX was red.

FIGURE 6 | Relative viabilities of MCF-7 cells after incubated with PDA/FA-PEG for 48 h (A) and free DOX and DOX@Fe-PDA/FA-PEG at different concentrations
24 h (B) and 48 h (C).

in the cells is weaker than that of the doxorubicin-loaded
NPs, indicating that the intracellular free DOX decays with
time. According to the in vitro drug release profiles, this
phenomenon proves that the DOX-loaded Nps have a sustained
release effect, which may help to enhance the cytotoxicity
of DOX.

Cytotoxicity of DOX-Loaded NPs
To assess the cytotoxicity of DOX@Fe-PDA/FA-PEG, we
performed the MTT assays. In order to confirm the high

biocompatibility and safety of the NPs, we incubated the Fe-
PDA/FA-PEG NPs with MCF-7 cells. As shown in Figure 6A,
the Fe-PDA/FA-PEG NPs without drug-loading exhibited
a negligible cytotoxicity the concentration ranging from 0
to 250 µg/mL for 48 h. This result suggested that the
prepared material possessed high biocompatibility and low cell
cytotoxicity. Then, we compared the results of cytotoxicity of free
DOX and DOX-loaded Nps at 24 and 48 h. Figures 6B,C shows
the cytotoxicity of DOX on MCF-7 was time and dose-dependent.
As the DOX concentration and incubation time prolonged, the

Frontiers in Pharmacology | www.frontiersin.org 6 February 2019 | Volume 10 | Article 75811

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00075 February 4, 2019 Time: 16:1 # 7

Li et al. Iron-Chelated Polydopamine for Combination Therapy

greater the toxicity of the drug to MCF-7 cell. Apparently, the
cytotoxicity of DOX-loaded Fe-PDA/FA-PEG NPs was greater
than that free DOX, thereby demonstrating that Fe enhanced
the killing effect of DOX on the MCF-7 cells. And it was found
that the 48 h of incubation exhibited a considerable killing effect
on MCF-7 cells than 24 h. This result further confirmed the
sustained release of NPs.

ROS Detection
Reactive oxygen species -induced cell death has been a widely
uesed strategy for tumor therapy (Matés and Sánchez-Jiménez,
2000; Dixon and Stockwell, 2013; Schumacker Paul, 2015; Zhou
et al., 2016). As we know, DOX could activate nicotinamide
adenine dinucleotide phosphate oxidases, and further produce
ROS, which contribute to anticancer drug-induced toxicity
(Chakravarti et al., 2016; Seo et al., 2017). Recently, synergistic
approaches by using ROS-producing agents with DOX have
attracted considerable attention (Xia et al., 2017). Intriguingly,
the presence of Fe (II and III) contributes to the enhanced
chemotherapy efficacy by converting the accumulated H2O2
to the hydroxyl radical via Fenton reactions (Dixon and
Stockwell, 2013). To explore the underlying mechanism of
enhanced antiproliferating effects of DOX@Fe-PDA/FA-PEG
further, we quantified the intracellular ROS by using 2′-7′-
dichlorofuorescin diacetate. Compared with the control group,
green fluorescence was observed after incubation with DOX
and DOX@Fe-PDA/FA-PEG (Figure 7). In addition, cells treated
with DOX-loaded Fe-PDA/FA-PEG had the highest fluorescence
intensity, thereby indicating the highest ROS production. The
results showed that the cells treated with DOX loaded Fe-
PDA/FA-PEG can synergistically produce ROS to kill tumor
cells. DOX used to undergo redox cycles to generate high
H2O2 levels inside the cancer cells. After endocytosis by
tumor cells, the DOX@Fe-PDA/FA-PEG was decomposed by
the acidic microenvironment. The elevated H2O2 of DOX
can be further catalyzed by Fe ions via Fenton reaction to
generate abundant highly toxic resulting in enhancing anticancer
effects of DOX through oxidative damage to DNA, protein,

and lipid (Matés and Sánchez-Jiménez, 2000; Schumacker Paul,
2015; Zhou et al., 2016). Previous investigations have developed
iron-based nanomaterials, including iron nanometallic glasses
and iron oxide, have been employed to upregulation of
ROS by using the situ Fenton reaction (Zhang et al., 2016;
Liu et al., 2018; Tang et al., 2018). However, current iron-
based nanomaterials is far from satisfactory. Some of the
nanomaterials such as Fe0 nanoparticles (Zhang et al., 2016)
and iron oxide nanoplatform (Liu et al., 2018), are difficult to
fabricate and the synthetic conditions generally are harsh and
complicated. In this work, we synthesized the iron-chelated PDA
NPs via a one-pot reaction and the FA-PEG as the surface
ligand for tumor homing with a low cost and biocompable
biocompatibility. And the pH-stimuli release profiles included
being highly selective and logical, and amenable to activation
by endogenous stimuli. This strategy present an approach for
synergistic combination of ROS and chemotherapy to enhance
the anticancer efficacy.

CONCLUSION

In this study, we successfully fabricated a novel nanocarrier
on the basis of Fe-chelated PDA nanoparticles used for Fe
and DOX combined cancer theranostics through ROS over-
generation. The obtained DOX@Fe-PDA/FA-PEG Nps had
a hydrodynamic size of about 250 nm, and the structure
was characterized by DLS, TEM, EDS, and FT-IR. The
in vitro drug release profile triggered by low intracellular
pH indicated that the system demonstrated controlled
therapeutic activity. Further, in vitro cell uptake studies
indicate that DOX-loaded Fe-PDA /FA-PEG can be internalized
by MCF-7 cells and exhibited high targeting efficiency due to
specific recognition. The in vitro experiments demonstrated
that DOX@Fe-PDA/FA-PEG trigged the intracellular ROS
overproduction, thereby enhancing the therapeutic effect on
breast cancer. Taken together, this study provides a strategy to
harness Fe-PAD nanocarrier for Fe and DOX combined cancer
theranostics.

FIGURE 7 | The intracellular ROS stained with DCFH-DA in MCF-7 cells after incubation with free DOX, DOX@Fe-PDA/FA-PEG, DOX@PDA/FA-PEG for 8 h were
measured by fluorescence microscopic.
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Yun Bao 1, Zhiqiang Wang 1, Bo Zhang 4, Dewei Zhao 1, Fei Wu 1* and Yan Ding 1,5*
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Primary appendiceal adenocarcinoma with peritoneal pseudomyxoma (PPM) has a high

recurrence rate and refractory to medical interventions such as repetitive debulking

surgery and systemic chemotherapy. Genome-based targeted therapy for such cases

has not been well-documented. Here we present a 63-years-old women, who was

diagnosed with recurrent mucinous adenocarcinoma of the appendix with local invasions

and peritoneal carcinomatosis, was refractory to systemic chemotherapy after surgery.

We used a regime developed using whole exome sequencing. Somatic mutations in

the genes encoding VEGFR2, FGFR1, FGFR2, FGFR3, and KRAS were identified in the

patient’s tumor tissue. The patient was then treated with bevacizumab plus oxaliplatin.

After 4 months of treatment, pelvic CT showed dramatic reduction of pseudomyoma

and a decline of CA199 level from 5436.7 to 1121.4 U/ml. Continual treatment with

bevacizumab-capecitabine remained effective and the patient’s CA199 level further

decreased to 401.26 U/ml according to the follow-up examination on Aug 15th, 2018.

Results from this study show the evidence of gene mutations involving VEGF signal

activation in the recurrence of appendiceal adenocarcinoma. Our results also suggest

the association of these mutations with the effectiveness of anti-VEGF treatment using

bevacizumab. Therefore, the screening of gene mutations involved in VEGF signaling

and targeted therapy with anti-VEGF drugs may provide a new option to manage

refractory/recurrent advanced-stage appendiceal adenocarcinoma.

Keywords: appendiceal adenocarcinoma, peritoneal carcinomatosis, next generation sequencing, bevacizumab,

targeted therapy

BACKGROUND

Primary adenocarcinoma of the appendix is a rare malignancy and accounts for 0.4% of
gastrointestinal tumors, according to a report of national cancer institute (NCI) (1). Mucinous
adenocarcinoma is themost common histological subtype (37%), followed by colonic and carcinoid
subtypes (2). The clinical presentations of appendiceal cancer are vague until advanced stage. As a
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result, early diagnosis of appendiceal cancer is often difficult.
Common complications of late stage disease include rupture and
acute appendicitis (accounting for ∼1% appendectomy cases)
(3), local invasion and peritoneal carcinomatosis (PC)/peritoneal
pseudomyxoma (PPM) (4, 5). The advanced stage has a poor
overall survival rate with median survival time of 5.2–12.6
months (5). Currently there is no standard medical care for
the disseminated late-stage appendiceal cancer with PC/PPM.
It has been generally recommended to perform cytoreductive
surgery (CRS) combined with perioperative hyperthermic
intraperitoneal chemotherapy (HIPEC) or postoperative
intraperitoneal chemotherapy (EPIC) with mitomycin C,
cisplatin, 5-FU, or a combination (5, 6). Unfortunately, most
appendiceal cancer patients with PC/PPM experience recurrent
and refractory to treatment, and fail to repetitive surgery and
systemic chemotherapy (6).

Targeted therapy has been successfully used to treat many
types of cancers including colorectal cancer. However, to the
best of our knowledge, genome-based targeted therapy for the
appendiceal cancer has never been reported. In the present
case, a patient was diagnosed with mucinous adenocarcinoma
of the appendix with peritoneal carcinomatosis and multiple
local invasions. The patient received routine treatments by
CRS-HEPIC-EPIC but relapsed after 1 year. Then the patient’s
condition deteriorated continuously and experienced recurrent
and refractory to the treatment. Using whole exome sequencing
and targeted medicine, optimal therapeutical efficacy was
achieved with a gradual remission and remains progression-free
until now.

CASE PRESENTATION

A 63-years-old Chinese female presented with asymptomatic
palpable abdominal mass, increased carbohydrate antigen
19-9 (CA-199) level and pelvic mass on CT scan. An opening
surgery observed an appendiceal mass involving the entire
layer of the appendix, rupture, invasion of bilateral ovaries,
wide-spreading nodular implantations with pseudomyxoma in
peritoneal cavity, greater omentum, small intestine mesentery
and hepatic and splenic regions. Debulking surgery with
peritoneal nodule ablation and mucus reduction was performed
in Beijing 301 Hospital. Postoperative pathology confirmed
mucinous adenocarcinoma of the appendix T4NxM1, stage IV
with peritoneal carcinomatosis (Figure 1). After surgery, the
patient received one time standard perioperative hyperthermic
intraperitoneal chemotherapy (HIPEC) with mitomycin
C. Because of the excessive peritoneal carcinomatosis, the
patient was given three cycles of postoperative intraperitoneal
chemotherapy (EPIC) with 5-FU plus mitomycin C. The
patient remained symptom free for 1 year until she developed
progressive abdominal distension, loss of appetite and worsening

Abbreviations: CT, computed tomography; PC, peritoneal carcinomatosis; PPM,

peritoneal pseudomyxoma; CRS, cytoreductive surgery; HIPEC, hyperthermic

intraperitoneal chemotherapy; EPIC, intraperitoneal chemotherapy; VEGFR,

Vascular endothelial growth factor receptor; FGFR, Fibroblast growth factor

receptor.

TABLE 1 | Mutated genes identified in the present case of mucinous

adenocarcinoma.

AKT1 ATM CSFIR ERBB2 FGFR1 FGFR2 FGFR3 FLT3

GNA11 JAK3 KDR KIT KRAS NOTCH1 PIK3CA PET

SMARCB1 SMO STK11 TP53

nourishment. The patient failed to response to further systemic
chemotherapy, and a large number of PPM (Figures 2A,B).
Then a second surgery was performed, intestinal obstruction
by mucous cavities was observed, and a colostomy was given.
Shortly after operation, cetuximab, a monoclonal antibody
binding to and inhibiting EGFR, was given to the patient for 20
days (yet without gene testing) at a local hospital, but failed to
show any improvement. By then the patient had tried all available
approved options and became refractory to the treatments.

At the time when the patient visited us, she was severely
wasted, with progressive abdominal distension and elevated
CA-199 level at 5436.7 U/ml. Considering her weak constitution
and failure of previous interventions, alternative treatment
strategies, especially a rationally designed targeted therapy,
emerged to be the last-ditch option to the patient. Targeted
therapy is usually based on a patient’s genomic profile by
genetic testing. In order to find the accurate target, we decided
to use the paraffin-embedded surgical tumor tissue from
the patient, and detect gene mutations using the TruSeq
Rapid Capture Exome Kit for whole exome sequencing
(WES) on the Illumina NextSeq500 sequencing platform.
The WES data was then analyzed using OncoDecoderTM

(Genomic Future, Inc. USA). Several key gene mutations were
identified including a missense mutation p.Gln472His (exon
11) in KDR/VEGFR-2, a missense mutation p.Arg281Gln
(exon 8) in FGFR1, a missense mutation p.Lys296Arg
(exon 7) in FGFR2, a missense mutation p.Thr654Ser
(exon 14) in FGFR3 and a missense mutation p.Gly12Asp
(exon 2) in KRAS. Additional 38 gene mutations including
TP53, ERBB2, KIT, GNA11, and JAK3 were also detected
(Table 1).

Although no NCCN-guided targeted therapy regime for
appendiceal mucinous adenocarcinoma is documented as of
to-date, there are two approved drugs for colorectal cancer
may be considered as potential candidates: bevacizumab and
cetuximab. Bevacizumab is a monoclonal antibody blocking the
VEGF ligand, and bevacizumab in combination with standard
chemotherapy has been approved by FDA as first line treatment
for metastatic colorectal cancer (7, 8). We predicted that
bevacizumab may be a suitable targeted drug candidate for our
case based on the following three reasons: Firstly, the gene
testing results showed several mutations involving KDR/VEGFR-
2, FGFR1, FGFR2, and FGFR3. Although these mutations
are currently classified as variation of uncertain significance
(VUS), hyperactive VEGF pathway is a common event in
colorectal cancer and contributes to tumor metastatic activity
(9). A recent study from the MD Anderson cancer center
showed improved average overall survival and progression-free
survival by providing anti-VEGF treatment to patients diagnosed
with unresectable appendiceal epithelial neoplasm (yet no gene
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FIGURE 1 | Low (A, 40X) and high (B, 100X) magnification pictures of appendiceal mucinous adenocarcinoma. H&E stained.

testing was performed) (10). This finding suggests that VEGF
hyperactivity could be a common event in appendiceal cancer,
and bevacizumab could be a promising targeted drug. Next, it
has been known that the efficacy of certain EGFR monoclonal
antibody drugs, including cetuximab and panitumumab, could
be affected by KRAS mutation (6). Indeed, in the present
case, we identified KRAS p.Gly12Asp missense mutation, which
could cause inefficient response to cetuximab (11). However,
the efficacy of bevacizumab for colorectal cancer treatment has
been testified to be independent from KRAS mutation (8).
Thirdly, there was no contraindication of bevacizumab usage
to the patient. The common risk factors include low WBC
count, high blood pressure, impaired heart function and poor
renal function.

Under our advice, the patient received treatment of
bevacizumab (7.5 mg/Kg, in total 450mg, IV-GTT) plus
oxaliplatin (130 mg/m2, in total 200mg IV-GTT) on day 1 every
3 weeks for 6 cycles since August, 2016. Follow-up examination
after treatment showed significant improvement of the patient’s
condition, and CT scan imaging results showed dramatic
reduction of her peritoneal mucus (as shown in Figures 2C,D).
In addition, the patient’s CA-199 level decreased from 5,436.7
U/ml (before treatment) to 1121.4 U/ml (after treatment).
Afterwards, the patient received continuous maintenance
treatment using bevacizumab (7.5 mg/Kg, in total 450mg,
IV-GTT on day 1 each 3 weeks) plus capecitabine (1,500mg,
oral, twice a day) for days 1 to 14 until now. The patient has
been followed up routinely to evaluate the treatment efficacy and
to monitor the adverse effects. The main adverse effects were
numbness in the hands and feet, dry nose and epistaxis, dry
throat, fatigue, loss of appetite. The patient has been progression-
free as of recent follow-up on September 26th, 2018 with the
most recent CA-199 being 401.26 U/ml on August 15th, 2018.

DISCUSSION

Primary adenocarcinoma of the appendix is a rare neoplasm
with an incidence of 1.2 cases per 100,000 people each year
(12). The prognosis of appendiceal adenocarcinoma varies

depending on the histology types, including colonic-type
adenocarcinoma, typical carcinoid, mucinous adenocarcinoma,
and singlet ring cell adenocarcinoma (3). The mucinous
adenocarcinoma is similar to the ovarian adenocarcinoma, and
peritoneal dissemination is a frequent metastatic route (12).
Like most colorectal cancers, the appendiceal adenocarcinoma
presents with non-specific symptoms and is difficult to be
diagnosed preoperatively (4, 5). As a result, it is often found
at an advanced stage in which the disease has already spread
within abdomen (5). Appendiceal adenocarcinoma-derived
peritoneal carcinomatosis (PC) or peritoneal pseudomyxoma
(PPM) is a very poor prognostic factor with average life
expectancy between half and 1 year (5). In the present case,
the patient presented with asymptomatic abdominal mass, local
invasions to greater omentum and fallopian tubes and peritoneal
carcinomatosis with multiple pseudomyxoma cavities at the
initial visit.

The management of mucinous appendiceal adenocarcinoma
varies depending on the stages and does not have standard
guideline. Right hemicolectomy remains the treatment of
choice for the early stage local or regional appendiceal
adenocarcinoma (5, 6). CRS-HIPEC or EPIC is usually
recommended for the appendiceal or colonic-type carcinoma
with confined peritoneal metastasis (5). However, there is
no standardized protocol for HIPEC or EPIC (5), and it
only achieved complete response in some patients (5, 6).
In our case, the patient received CRS-HIPEC-EPIC regime
but relapse of peritoneal carcinomatosis occurred 1 year
later. Systemic 5-fluorouracil-based chemotherapy was
barely beneficial.

Recently, genome-based precision medicine has made great
progress to treat a variety of cancers, including colorectal
cancer (13). Targeted drugs feature high efficiency and low
toxicity. To the best of our knowledge, genome-based targeted
therapy for metastatic appendiceal adenocarcinoma has not
yet been reported. In order to seek for appropriate targeted
therapy for the patient with recurrent and refractory appendiceal
cancer, we performed whole exome sequencing with the patient
surgical pathology tissue at our genetic testing lab. Several
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FIGURE 2 | Pelvic CT images before (A,B) vs. after (C,D) targeted therapy. (A,B) Prior to targeted therapy, images showed intraperitoneal multiple nodules, and a

large number of peritoneal cavities filled up with mucus. (C,D) After targeted therapy using bevacizumab and oxaliplatin, image on the same sections showed

significantly reduced peritoneal nodules and mucous cavities, suggesting stabilization of disease progression and partial response.

candidate target gene mutations involved in the angiogenesis
pathway including KDR/VEGFR-2 and FGFR1, FGFR2, FGFR3
were identified. Both VEGF and FGF pathways function
as angiogenetic mediators to promote metastasis of many
neoplasms (9). Based on the gene mutation profile, the patient
received the bevacizumab-oxaliplatin regime and then the
bevacizumab-capecitabine as maintenance treatment. The results
showed great effectiveness of the treatment and the patient
remains progression-free and continuous decrease of CA-199
level as of to-date. The use of bevacizumab for metastatic
appendiceal cancer treatment has been reported in a recent study
(10). However, the treatment achieved therapeutical benefits in
some patients but not the others, owing to the fact that no
gene testing was performed before treatment (10). Therefore,

our case report is the first study demonstrating evidence-based
therapy for metastatic mucinous appendiceal adenocarcinoma.
Indeed, we argue that certain level of cost-effective gene testing
may be necessary prior to administration of targeted drugs
in order to avoid the abuse of targeted medicines. A good
example could be found in our case that the blind usage of
anti-EGFR drug cetuximab without prior detection of KRAS
mutation from the patient pathology tissue failed to achieve any
treatment benefit.

In conclusion, accurate detection of gene mutation can
help clinicians to make the optimal choice of individualized
targeted drugs, and improve the prognosis and life quality
of patients. The present report is one case and limited and
waits for more cases to be filled in to expand our knowledge
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about the genome mutations and personalized medicine of
appendiceal cancer.
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Coptis, a traditional medicinal plant, has been used widely in the field of traditional
Chinese medicine for many years. More recently, the chemical composition and
bioactivity of Coptis have been studied worldwide. Berberine is a main component of
Rhizoma Coptidis. Modern medicine has confirmed that berberine has pharmacological
activities, such as anti-inflammatory, analgesic, antimicrobial, hypolipidemic, and blood
pressure-lowering effects. Importantly, the active ingredient of berberine has clear
inhibitory effects on various cancers, including colorectal cancer, lung cancer, ovarian
cancer, prostate cancer, liver cancer, and cervical cancer. Cancer, ranked as one of
the world’s five major incurable diseases by WHO, is a serious threat to the quality
of human life. Here, we try to outline how berberine exerts antitumor effects through
the regulation of different molecular pathways. In addition, the berberine-mediated
regulation of epigenetic mechanisms that may be associated with the prevention of
malignant tumors is described. Thus, this review provides a theoretical basis for the
biological functions of berberine and its further use in the clinical treatment of cancer.

Keywords: berberine, biological activities, antitumor, autophagy, epigenetic effects

INTRODUCTION

Natural medicine plays a very important role in novel drug discovery (Zhang et al., 2013; Zhang L.
et al., 2017). In recent years, many natural products have been confirmed to play an important
role in cancer prevention and therapy (Tao et al., 2015; Zhang et al., 2015, 2016; Meng et al.,
2018). Coptis chinensis is a valuable Chinese medicine used commonly in China. The medicinal
parts are the dried rhizome of Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng, and P.K.Hsiao,
or Coptis teeta Wall (Wang et al., 2015b). It has been reported that Coptis exerts antibacterial,
immune-enhancing, anti-ulcer, hypoglycemic, detoxifying, antitumor, and other pharmacological

Abbreviations: AP-1, activating protein 1; AMPK, AMP-activated protein kinase; BTG2, B-cell translocation gene 2;
Bax, BCL2 associated X; BBC3, BCL2-binding component 3; CCNB, cyclin B; CCND, cyclin D; CCNE, cyclin E;
CDK, cyclin-dependent kinases; CDKN1A/p21, cyclin-dependent kinase inhibitor; COX2, cyclooxygenase-2; DNMT, DNA
methyltransferase; EGFR, epidermal growth factor receptor; GMCSF, granulocyte-macrophage colony-stimulating factor;
GADD45, growth arrest and DNA damage-inducible 45; HCC, hepatocellular carcinoma cells; HAT, histone acetyltransferase;
HDAC, histone deacetylase; HIF1α, hypoxia-induced factor α; INOS, inducible NO synthase; IL-8, interleukin-8; MMPs,
matrix metalloproteinases; NSCLC, non-small cell lung cancer cells; NF-κB, nuclear factor kappa B; PARP, poly-ADP ribose
polymerase; PGE2, prostaglandin E2; STAT3, signal transducer and activator of transcription 3; SIRT, sirtuins; Bcl-2, the
B cell lymphoma-2; TNF, tumor necrosis factor; uPA, urokinase-type plasminogen activator; VEGF, vascular endothelial
growth factor.
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effects (Imenshahidi and Hosseinzadeh, 2016). Coptis is mainly
used for the adjuvant treatment of depression, coronary heart
disease, diabetes, liver cancer, and other malignant tumors.
There are several active ingredients of Coptis chinensis,
such as berberine (BBR), palmatine, coptisine, jatrorrhizine,
worenine, columbamine, cedarone, obakunone, obakulactone,
magnoflorine, and ferulic acid; berberine is the main bioactive
component of Coptis chinensis and is present at a content of
5.20–7.69%. Consequently, it has become one of the natural
small-molecule drugs used commonly in the clinical setting
treatment for chronic disease such like diabetes (Cicero and
Baggioni, 2016; Tabeshpour et al., 2017).

Berberine hydrochloride, the more commonly available salt
form of berberine, is a quaternary ammonium isoquinoline
alkaloid with the chemical formula C20H18ClNO4 (Figure 1) that
forms yellow needle-like crystals (Neag et al., 2018). Berberine
was originally used as a broad-spectrum antibacterial drug.
Extensive research revealed a wide range of pharmacological
activities, including antibacterial, anti-inflammatory,
antihypertensive, hypolipidemic, and antidiarrheal effects.
In addition, berberine exhibits inhibitory effects on a variety of
tumors (Xu et al., 2017), such as esophageal cancer. Many studies
(Kumar et al., 2015; Foroutan F. et al., 2018; Foroutan T. et al.,
2018; Mirhadi et al., 2018) have confirmed that berberine affects
the development of tumor cells through the inhibition of tumor
cell growth and the induction of apoptosis and cell cycle arrest
(Iizuka et al., 2000; Kong et al., 2004; Tang and Feng, 2009; Xue
et al., 2013; Signorelli et al., 2017).

It is reported that 8.2 million people die of cancer every year
globally and that this number is continuously rising; according
to the American Cancer Society, cancer is the cause of more
than 600,000 deaths every year in the United States, a mortality
rate second only to heart disease (Khalil et al., 2016; Walker
et al., 2017). Owing to the seriousness of this situation, scientific
approaches to the prevention and control of cancer have become
a major public health issue (Gu et al., 2015; Viegas et al., 2017).

It has long been believed that the occurrence and development
of tumors are attributable to only genetic abnormalities, which
include gene mutations, translocations, and chromatin insertions
(Dupont et al., 2009; Li et al., 2018). However, in recent years, the
emergence and progress of genome sequencing technology have
led to the rapid development of epigenetics and many researchers
have determined that epigenetics plays an important role in

FIGURE 1 | Coptis chinensis Franch. and chemical structure of berberine.

the regulation of tumors. Epigenetic changes are reversible,
heritable changes in gene expression and protein function in
which the genomic DNA sequence remains unchanged (Biswas
and Rao, 2018). Epigenetic changes can regulate gene expression
at multiple levels, for example, at the DNA level through
DNA methylation, at the RNA level through non-coding RNA
regulation, at the protein level through histone modification,
and at the chromatin level through chromatin remodeling.
The continuous presence of these mechanisms in cell division
allows cells to retain their respective characteristics, respond to
intrinsic cellular signals, and participate in cell evolution and
adaptation to environmental changes. Many research studies
have confirmed that epigenetic mechanisms are implicated in
tumorigenesis through the regulation of oncogene activation
and tumor suppressor gene inactivation. For example, DNA
methylation can inactivate tumor suppressor genes, abnormal
histone acetylation can change tumor-associated gene expression,
and non-coding microRNAs can result in dysregulation of tumor
suppressor genes (Blandino et al., 2014; Wong and Chim, 2015).
It is of note that different epigenetic modifications in cells often
interact with each other in a synergistic manner to maintain
body’s homeostasis through the regulation of the expression of
key genes, and that when abnormal changes occur, they may
cause a variety of diseases, including tumors (Vijayaraghavalu
et al., 2013). Recent evidence has suggested that epigenetic
modifications may be involved in the processes tumor cells use to
shape a microenvironment suitable for their own growth (Honda
et al., 2006). There are a large number of active substances,
such as growth factors, inflammatory factors, and proteases,
in the tumor microenvironment and these participate in the
various processes of tumorigenesis through their own functional
properties or mediated signaling pathways (Booth and Gutierrez-
Hartmann, 2015). Epigenetic modifications are involved in the
regulation of the secretory processes of these biomolecules or
their mediated signaling pathways (Li et al., 2018). From the
perspective of the tumor development process, the regulation of
epigenetic modification in the tumor microenvironment occurs
at various stages of tumorigenesis, progression, and metastasis,
and is one of the important tools for diversifying between
tumor cells and the tumor microenvironment. That is to say,
tumors may have specific epigenetic modification characteristics
that may lead to changes in cell biological characteristics
and malignant transformation. Therefore, an exploration the
mechanism of tumor biology from the perspective of epigenetics
is of great significance.

THE BIOLOGICAL EFFICACY OF
BERBERINE

Berberine Inhibits the Migration and
Invasion of Tumor Cells
Migration and invasion are the basic characteristics of tumor
cells. Therefore, it is valuable to study whether berberine can
affect the migration and invasion ability of tumor cells. It is
well known that E-cadherin and N-Cadherin proteins are closely
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related to cell migration and invasion. Moreover, E-cadherin is
not only an important mediator that regulates cell-cell adhesion,
but also an important molecule in the maintenance of the
morphology and structural integrity of epithelial cells (Qi et al.,
2014; Shi et al., 2017). There is a large amount of experimental
evidence suggesting that berberine can inhibit the migration
and invasion of tumor cells. In human lung cancer A549 cells,
berberine increased the expression of E-cadherin protein in a
concentration- and time-dependent manner (Li et al., 2018), and
significantly downregulated the expression of N-cadherin; these
changes inhibited invasion and metastasis. MMPs are a class
of important proteins that are involved in that the degradation
of the extracellular matrix barrier, which is the first step in
tumor cell metastasis (Hao et al., 2017). Studies have shown
that berberine inhibits the expression of MMP2 and MMP9 in
a time- and concentration-dependent manner. Simultaneously,
berberine also regulates the expression of MMPs through the
inhibition of the transfer of p-STAT3 to the nucleus, which affects
its activity. Wang X et al. found that berberine was an effective
inhibitor of the invasion and migration of HCC cells. Berberine
treatment of HCC cells downregulated the expression of cox-2,
NF-κB, uPA, and MMP9 in a dose-dependent manner (Sengupta
et al., 2017). In summary, the data strongly suggest that berberine
has an important role in the regulation of cadherin- and
MMP-mediated pathways, which leads to inhibitory effects on
cancer migration and invasion (Table 1).

Furthermore, Jin Y. et al. (2017) showed that the effect of
berberine on the metastatic potential of cancer cells may be
mediated by the activation of the AMPK signaling pathway,
which reduces the activity of ERK and the expression of COX-2,
thereby inhibiting the adhesion, migration, and invasion of
tumor cells. Moreover, berberine inhibited tumor cells through
signaling pathways, including the NF-κB and AMPK pathways.
Studies have demonstrated that berberine prevents tumor cells
from producing IL-8 and blocks NF-κb signaling pathway,
ultimately inhibiting endometrial cancer metastasis, and that
colon cancer cell migration was inhibited by targeting AMPK
signaling (Li et al., 2014).

Vascular endothelial growth factor, the most important
angiogenic factor secreted from tumor cells, stimulates tumor
neovascularization through an increase in the mitogenic and
survival properties of vascular endothelial cells. Berberine not
only reduces the expression of SC-M1 cells with normal oxygen
content and low oxygen content. VEGF also directly inhibits
the proliferation and migration of umbilical vein epithelial
cells. Berberine treatment in B16F-10 melanoma cells reduced
the expression of VEGF mRNA and inhibited angiogenesis.
Inflammation plays an important role in tumor angiogenesis,
which is mainly manifested through the activation of NF-κB
to regulate VEGF, and results have shown that berberine
treatment of tumor cells significantly inhibited NF-κB and
ultimately decreased the expression of VEGF and IL-8 in tumor
cells (Hamsa and Kuttan, 2011; Siveen and Kuttan, 2011). In
addition, berberine significantly inhibited the VEGF-induced
migration and invasion of human umbilical vein endothelial
cells HUVEC in a dose-dependent manner, and significantly
reduced the expression of COX-2, Inos, and VEGF mRNA and

downregulated pro-angiogenic factors to inhibit angiogenesis
(Naveen et al., 2016; Wang et al., 2018). These results indicated
the critical effects of berberine on the HIF1α/VEGF pathway.

Angiogenesis plays an important role in tumor growth, as
progression and metastasis are prerequisites for solid tumor
growth. The angiogenic process is therefore a target for the
inhibition of tumor growth and metastasis (Ma et al., 2008)
Studies have shown that berberine can reduce the levels of IL-1β,
IL-6, TNF, and GMCSF in the serum of tumor-inoculated animals
and inhibit the elevation of NO and TNF-α, inflammatory
mediators involved in angiogenesis. Wang Y et al. inferred that
berberine suppressed the growth and metastasis of endometrial
cancer cells via miR-101/COX2, and berberine is also known
to inhibit tumors via the COX-2/PGE2 signaling pathway. The
transcription of miR-101 is up-regulated by berberine through
AP-1 to regulate the transcription of COX-2 in EC cells (Wu
et al., 2012). The high expression of p-STAT3 in malignant tumor
cells and the expression level of p-STAT3 in tumor tissues, the
more obvious the proliferation and metastasis of tumor cells
(Munir et al., 2000).

Berberine Inhibits Tumor Cell
Proliferation (Autophagy, Apoptosis)
Apoptosis is an ideal form of cell death in cancer therapy because
it generally does not cause an inflammatory response. Thus,
the induction of apoptosis is one of the various mechanisms
that inhibit the growth of tumor cells (Yakata et al., 2007).
It has also been reported that berberine significantly inhibited
the proliferation of human prostate cancer PC3 cells (Huang
et al., 2015). In recent years, studies have shown that the
proliferation of renal cell cancer cells can be effectively inhibited
by berberine; when a certain concentration of berberine is treated
to renal cell cancer cells, the effects continue for some time.
The inhibitory effect of berberine on the tumor cells gradually
increased, and it was found that the effect of inhibitory effect
was greatest for treatment times of up to 48 h. In addition,
the total apoptotic rate of renal tumor cells detected by a
double staining method showed that after treatment of renal cell
cancer cell lines A498 and 786-0 with different concentrations of
berberine, the rate of total apoptosis in cells gradually increased
as the concentration of the drug increased (Wang et al., 2015a;
Liu et al., 2017a,b, 2018).

Berberine induces apoptosis in tumor cells, mainly through
upregulation of pro-apoptotic genes and downregulation
of apoptosis-inhibiting genes. For example, berberine can
upregulate the expression of the pro-apoptotic protein BAD in
HL-60 cells and downregulate the expression of anti-apoptotic
protein Bcl-2 to achieve regulation of tumor cell apoptosis. In
addition, apoptosis can be induced by the mitochondrial/caspase
pathway, DNA cleavage induces tumor cell apoptosis, tumor cell
apoptosis is induced by inflammatory factors, and tumor cell
apoptosis is induced by cyclooxygenase. For example, berberine
treatment of liver cancer cells revealed that DNA fragments,
caspase-3, and caspase-8 were activated, which was followed by
the activation of PARP, and the release of cytochrome c to inhibit
tumor metastasis (Mistry et al., 2017).
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Studies have showed that berberine can regulate apoptosis-
associated proteins. Caspase cleavage is a typical phenomenon
in apoptosis cells. Thus, numerous reports have used the
detection of this cleavage to clarify the role of berberine in
the induction of apoptosis. For example, berberine decreased
the expression of Bcl-2 and survivin and, conversely, increased
the expression of the pro-apoptotic genes Bax and cleaved
caspase-3 in a dose-dependent manner in human ovarian cancer
SKOV3 cells (Su et al., 2015). Moreover, the treatment of
berberine to treat human colorectal adenocarcinoma (HCT-15)
cells significantly increased the expression of spliced caspase-3
and the mitochondrial apoptosis-related protein Bax, and
significantly decreased the expression of Bcl-2 and survivin,
finally inducing apoptosis (Agnarelli et al., 2018). Berberine
inhibited the proliferation of human cervical cancer Ca Ski
cells through alteration of the ratio of p53 and Bax/Bcl-2
proteins, upregulation of ROS, and enhancement of caspase-3
activity to induce apoptosis (Kalaiarasi et al., 2016). In addition,
berberine induced the proliferation of BIU-87 and T24 cells
through the inhibition of protein expression, the induction of
G1 cell cycle arrest, and the induction of apoptosis via the
caspase-3 and caspase-9 pathways (Lu et al., 2015). Agnarelli
A et al. treated U343 cells and MIA PaCa-2 cells with
50 µM berberine for 48 h, and found that the activity
of caspase-3 was decreased in U343 cells and increased in
MIA PaCa-2 cells. Therefore, they concluded that berberine
promoted the apoptosis of tumor cells (Katona et al., 2014).
It has been reported that berberine induces Bax activation
in human lung cancer A549 cells, enables p53 pathway-
mediated cytochrome c release, and leads to the activation
of caspase signaling ultimately causing apoptosis (Shi et al.,
2013). The reported data also showed that berberine induced
cancer cell apoptosis mainly through the regulation of the
expression of caspases and Bcl-2; this results in the release
of cytochrome c and the activation of the mitochondria-
dependent apoptotic pathway to promote apoptosis in PC3 cells
(Wang et al., 2017).

Autophagy is one type of cellular self-protection mechanism,
consisting mainly of the degradation of macromolecular material
and damaged organelles in cytoplasm after autophagosome
formation with lysosomes. The products of degradation are
used to restore cell homeostasis. There are three forms of cell
autophagy: macro-autophagy, micro-autophagy, and autophagy,
which are mediated by different molecular chaperones.
Autophagy is involved in many of the physiological and
pathological processes of cells, and there is a close relationship
between autophagy and tumorigenesis. The effects of autophagy
vary in different cell lines and maybe inhibitory or stimulatory.
In addition, the occurrence of autophagy is regulated by
various signal pathways. Recent experimental studies have
shown that berberine inhibits the proliferation of colon cancer
cells through the downregulation of the expression of EGFR
and that it activates autophagy and apoptosis through the
p38 signaling pathway to inhibit the proliferation of HCT-
15 cells. Similarly, in berberine-treated HCT-15 cells, the
autophagy marker proteins ATG5 and LC3 were upregulated
in a time-dependent manner (Zhang L. et al., 2017), indicating

that berberine induced autophagy in HCT-15 cells. These
data demostrate a role of Berberin in regulating cancer cell
proliferation (Tables 1, 2).

Berberine Arrests Tumor Cell Cycle
Many studies have shown that low concentrations of berberine
arrest human osteosarcoma U20S cells in the G1 phase through
the induction of DNA double-strand breaks that activate the
p53-p21 pathway. In contrast to low concentrations of berberine,
high concentrations induce arrest in the G2/M phase, but do
not depend on the p53-p21 pathway (Yang et al., 2015; Li et al.,
2017). Other studies demonstrated that berberine significantly
inhibited human ovarian cancer cells (HEY and SKOV3 cells)
in a time- and dose-dependent manner. It is demonstrated that
that berberine exerts a significant inhibitory effect on human
gastric cancer MGC 80 3 cells in a dose-dependent manner. Using
laser confocal microscopy, the nucleus condenses, and apoptotic
bodies are seen, which indicate that berberine can inhibit the
proliferation of MGC 80 3 cells and arrest cells in the G0/G1
phase to inhibit the proliferation of tumor cells in vitro.

B-cell translocation gene 2 is a transient early-response gene
induced by p53. It is a member of the gene family that regulates
cell proliferation and is an important bridge molecule that links

TABLE 1 | Inhibitory effects of berberine on tumor migration and invasion.

Cell lines Mechanism Reference

Human non-small cell lung
cancer (A549)

N-Cadherin↓

E-cadherin↑

Li et al., 2018

Hepatocellular carcinoma
(HCC) cells

COX-2↓,NF-κB↓

UPA,MMP-9↓

Sengupta et al.,
2017

Endothelial canjcer colon cells IL-8↓, NF-κB↓

AMPK↑

Li et al., 2014

Mouse melanoma cell
(B16F-10)

VEGF mRNA↓ Siveen and Kuttan,
2011; Hamsa and
Kuttan, 2011

Human umbilical vein
endothelial cells (HUVEC)

COX-2↓, iNOS↓,
VEGF mRNA↓

Ma et al., 2008

Human endometrial cancer cell
lines(AN3 CA and HEC-1-A)

COX-2↓ PEG-2↓ Wu et al., 2012

TABLE 2 | Inhibitory effects of berberine on tumor cell proliferation.

Cell Lines Mechanism Reference

Liver cancer cells Caspase-3↑,
Caspase-8↑,PARP↑

Mistry et al., 2017

Human ovarian cancer cell
(SKOV3)

Bcl-2↓ Bax↑,
Cleaved-Caspase-3↑,

Su et al., 2015

Colorectal adenocarcinoma
cell line (HCT-15)

EGFR↓, Bcl-2↓,
Survivin↓ ATG5↑,
Bax↑, LC3↑

Agnarelli et al.,
2018

Human cervical cancer cell
(CaSki)

p53↑, Bax/Bcl-2↑

ROS↑, Caspase-3↑

Kalaiarasi et al.,
2016

Human bladder cancer cell
(BIU-87, T24)

Caspase-3↑,
Caspase-9↑

Lu et al., 2015

Human pancreatic
carcinoma cell (MIA
PaCa-2)

Caspase-3↑ P53↓ Katona et al., 2014
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p53, pRB, the cell cycle, cell proliferation, and differentiation.
The current body of evidence indicates that berberine can
promote the cell cycle arrest of human hepatoma HEPG2
cells in the G1 phase through the upregulation of BTG2 and
the downregulation of cyclin D1, consequently inhibiting the
proliferation of hepatoma cells and inducing apoptosis.

Cyclin is one of the target proteins that regulate the G1 phase.
As a proto-oncogene, it is involved in the regulation of the cell
cycle, and its overexpression is closely related to the occurrence
and development of tumors. Berberine has a variety of effects
on the cell cycle; for example, it can arrest the G2/M phase in
the cell growth cycle through a reduction in the expression of
cyclin B1 and increase in the expression of Wee1, which stops the
tumor cells in the early stage of DNA synthesis (G1) and late DNA
synthesis (G2). The induction of tumor cell apoptosis through
the downregulation of cyclin E expression and upregulation of
p21 expression, which causes G1 arrest in HEY and SKOV3
cells and downregulates Bcl-2 protein expression and upregulates
Bax protein expression. Berberine treatment of MDA-MB-231
and MCF-7 human breast cancer cells dose-dependently caused
G0/G1 arrest, which was possibly associated with a decrease in the
cell cycle regulation protein cyclin B1. Furthermore, it increased
the expression of CDC4 and cyclin B1 through an increase in the
expression of CDC2 and caspase-3 in human hepatoma HepG2
cells, causing arrest in the S and G2/M phases, and activating
the AMPK signaling pathway to induce the apoptosis of HepG2
cells (Chidambaram et al., 2012; Murthy et al., 2012; Balestrieri
et al., 2018). Li et al. demonstrated that berberine regulates the
PI3K-AKT and MAPK signaling pathways in PTC (the most
common subtype) and ATC (the most malignant and aggressive
subtype), leading to mitochondrial apoptosis, G0/G1 cell cycle
arrest, increased Bax/Bcl-2, cleaved caspase-3, p21, and decreased
cyclin E1, CDK2, and vimentin were verified by western blotting
(Waterbeemd et al., 2013). The combination of drugs upregulated
the expression of the cell cycle-dependent kinase inhibitory
proteins p27 and p21, and downregulated the expression of cyclin
D1, CDK2, and CDK4-cyclin.

In addition, studies have reported that berberine can bind to
topoisomerase (TOP1), which hinders the synthesis of S phase
cells and prevents cell proliferation.

Effects of Berberine in Compatibility
With the identification of numerous anti-tumor drugs, research
of cancer therapy has gradually shifted from a focus on
monotherapy to combined therapy. More and more reports
have demonstrated that berberine combined with radio-therapy
or chemotherapy drugs can achieve better anti-tumor effect.
For instance, berberine combined with gamma-radiation
enhance the anti-cancer effects, including inducing apoptosis
and ROS generation (Jung-Mu et al., 2009). Also, berberine
sensitizes lung cancer cells to radiation via autophagy both
in vitro and in vivo (Peng et al., 2008). Indicated an adjuvant
role in radio-therapy of cancer. Another major anti-cancer
therapy is chemotherapy, several novel chemotherapy drugs
such like doxorubicin, rapamycin were texted combined
with berberine, and showed a more effective result. It is
reported that berberine sensitizes mutliple human cancer cells

to the anticancer effects of doxorubicin (Tong et al., 2012).
More details and drugs were summarized in Table 3, which
clarified that berberine synergistic work with chemotherapy
drugs in anti-tumor proliferation through inducing cell
cycle arrest, apoptosis, as well as autophagy. These data
have laid theoretical foundation for the combined therapy
in clinic trial.

EPIGENETIC EFFECTS OF BERBERINE
ON TUMORS

For many years, researchers have been studying and developing
drugs for cancer prevention and treatment. Chinese medicines,
such as berberine, are commonly used as drugs. As an active
ingredient of Coptis, berberine is inevitably closely related to
the occurrence and development of tumors (Wang-Johanning
et al., 2008; Coward et al., 2014; Delga-docruzata et al., 2015;
Dkhil et al., 2015). Extensive research has led scholars to
conclude that, ultimately, the antitumor effect of berberine
may be related to epigenetic effects. The following is a brief
description of the methods through which berberine regulates
tumor cells, including migration, proliferation, and apoptosis,
through epigenetic mechanisms.

DNA Methylation
DNA methylation refers to the covalent attachment of the
fifth carbon atom of cytosine on the CpG dinucleotide to
the methyl group through the action of DNMT, which is
modified to 5-methylcytosine. DNA methylation is a potential
epigenetic mechanism involving a variety of biological processes.
The DNMT family consists of three main members: DNMT1,
DNMT3A, and DNMT3B. DNMT1 mainly maintains DNA
methylation status and DNMT3A and DNMT3B catalyze new
DNA methylations (Kalinkova et al., 2018; Li et al., 2018; Puneet
et al., 2018). Human CpG exists mainly in two forms: one is
dispersed in genomic DNA; the other is highly aggregated to
form CpG islands, which are present in the promoter region or
the first exon region of various genes. In the human genome,
the CpG site is usually in an unmethylated state in the CpG
islands, but in a methylated outside the CpG islands. When
tumors occur, the degree of unmethylation of CpG sites outside
CpG islands increases, whereas the CpG sites in CpG islands are
highly methylated, causing a decrease in the overall methylation
level of the genome, as well as certain gene CpG islands. Local
methylation levels are abnormally elevated, leading to genomic
instabilities, such as chromosomal instability, the activation of
proto-oncogenes, and the silencing of tumor suppressor genes
(Qing et al., 2014; Crawford et al., 2018; Lee and Gang, 2018;
Sanna et al., 2018). DNA methylation abnormalities are mainly
divided into the hypomethylation state of proto-oncogenes
and the hypermethylation state of tumor suppressor genes.
The most studied of these is the hypermethylation of tumor
suppressor genes. It is of interest that berberine has been found
to inhibit the expression of human DNA methyltransferases
DNMT1 and DNMT3B in multiple myeloma U266 cells. For
example, berberine can alter the CpG methylation of p53
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TABLE 3 | Berberine combined with chemotherapy drugs.

Combined With Cells Mechnisms/Effect Reference

2-deoxy-D-glucose Human lymphoblastoid
TK6 cells

BBR combined with the glucose analog 2-deoxy-D-glucose
(2-dG) synergistic inducing the apoptosis of human
lymphoblastoid TK6 cells

Halicka et al., 2017

5-Fluorouracil Gastric cancer cells
AGS

BBR sensitized gastric cancer cells to 5-FU, the
combination shows a synergistic inhibition of surviving and
STAT3 level

Pandey et al., 2015

Cinnamaldehyde Lung carcinogenesis
A549 cell

BBR combined with cinnamaldehyde prevented A549 cell
substance permeability via AMPK-reduced AQP-1
expression

Meng et al., 2017

Cisplatin Breast cancer MCF-7 BBR sensitized MCF-7 cells to cisplatin through inducing
DNA breaks and caspase-3-dependent apoptosis

Zhao et al., 2016

D-limonene Human gastric
carcinoma cell line
MGC803

BBR in combination with d-limonene showed synergistic
anticancer effects on MGC803 cells through inducing
cell-cycle arrest, ROS production, and apoptosis via the
mitochondria-mediated intrinsic pathway

Zhang et al., 2014

Doxorubicin Murine melanoma
B16F10 cells

BBR combined with Doxorubicin inhibit melanoma tumor
growth through casepase-3 depentdent apoptosis

Mittal et al., 2014

Lung cancer cell lines BBR sensitizes lung cancer cells to Doxorubicin by
promoting STAT3 degradation, inhibiting doxorubicin
mediated STAT3 activation.

Zhu et al., 2015

Evodiamine Breast cancer MCF-7 BBR in combination with evodiamine inducing cell cycle
arrest and apoptosis, further inhibit MCF-7 prolieration

Du et al., 2017

Hsp90 inhibitor NVP-AUY922 Colorectal cancer BBR combined with NVP-AUY922 inhibit proliferation of
colorectal cancer via mutiple pathways

Su et al., 2015

Metformin NSCLC BBR combined with metformin synergistic induced cell
cycle arrest, as well as reduced migration and invasion of
NSCLC cells

Zheng et al., 2018

Rapamycin Human hepatoma cell
SMMC7721 cells

BBR combined with rapamycin can improve HCC therapy
through inhibiting the mTOR signaling pathway

Guo et al., 2014

S-allyl-cysteine (SAC) Human liver cancer
HepG2 cells

BBR combined with SAC effectively reduced
Rb-phosphorylation resulting insignificant nuclear E2F
presence, further inhibiting cancer cell proliferation

Sengupta et al., 2017

DEN+CCl4 induced
hepatocarcinoma

BBR in combination with SAC inhibited Akt mediated cell
proliferation, and inducing PP2A/JNK mediated apoptosis.

Sengupta et al., 2014

Sorafenib Human liver cancer
SMMC-7721 and
HepG2 cells

berberine combined with sorafenib inhibited the proliferation
of liver cancer cells by inducing cancer cell apoptosis.

Huang Y. et al., 2018

Tamoxifen Breast cancer MCF-7 BBR sensitized MCF-7 cells to tamoxifen via inducing the
G1 phase arrest and activating apoptosis.

Wen et al., 2016

Tetrahydropalmatine MDA-MB-231 breast
cancer cells

BBR combined with tetrahydropalmatine synergistic
inhibited the proliferation of MDA-MB-231

Zhao et al., 2014

TPD7 T-cell acute
lymphoblastic leukemia
cell

BBR combined with TPD7 induced G1 -phase cell-cycle
arrest of T-cell acute lymphoblastic leukemia cell.

Ma et al., 2017

DNA, affect the mRNA expression of key apoptosis-related
proteins, and increases apoptosis in U266 cells, and thereby
leads to cell cycle arrest. Although the hypomethylation of
the p53 promoter can regulate apoptosis-related genes, such as
GADD45, Bax, PMAIP1, BBC3, CCNB1, CCND3, and CCNE1.
Specifically, in the p53 pathway, CDKN1A, GADD45B, Bax,
PMAIP1, and BBC3 were upregulated, and CCNB1, CCND3,
and CCNE1 were downregulated, which suggested that berberine
activated the p53 signaling pathway through the impairment
of U266 cells. In addition, results have shown that treatment
of colorectal cancer cells with berberine results in a significant
increase in the expression of DNMT1 and DNMT3A in the
presence of TGF-β1; this hypermethylation in the promoter

CpG island leads to further silencing of TSG, which results in
tumor cell proliferation (Riaz et al., 2015; Asadi et al., 2018;
Nardi et al., 2018).

Histone Modification
Histones play an important role in gene expression and
tumorigenesis and development. The nucleosome is the basic
constituent unit of chromatin. A nucleosome is an octamer
composed of histones H2A, H2B, H3, and H4 and DNA
entangled on the outside of the 147 base pairs. Histones not
only protect the DNA structure and genetic information, but also
participate in the regulation of gene expression. The extracellular
amino terminus of histones can be modified by a variety of
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TABLE 4 | Epigenetic regulation of berberine on tumor.

Type of Regulation Cell Lines Mechanism Reference

DNA methylation Multiple myeloma DNMT1↓, DNMT3B↓ Asadi et al., 2018;
Riaz et al., 2015;
Nardi et al., 2018

CDKN1A↑, GADD45B↑

Bax↑, PMAIP1↑

U266 cells CCNB1↓, CCND3↓, CCNE1↓

Histone Modification Human non small cell
lung cancer A549

HDAC↓MMP2↓ MMP9↓ Huang et al., 2017

U266 cells CBP/P300↑ SIRT3↑ Sun et al., 2017

MicroRNA Human U266 multiple
myeloma cells

miRNA21, Bcl-2↓ Hashiguchi et al.,
2017

Colon cancer miR-152↓; Hu et al., 2013

miR-429↓

miR-29a↓

enzymes to form specific “histone codes” that alter the “open”
or “closed” state of the local chromatin structure, or determine
which proteins bind to specific DNA regions. Consequently, they
regulate the various functions of DNA, including transcription
and damage repair. Histone acetylation is highly dynamic
and is coordinated by HATs and HDACs, and occurs at the
amino-specific lysine residues of histones (Stevens et al., 1984;
Yan et al., 2001; Bhat et al., 2018; Georgoff et al., 2018; Liu
et al., 2018; Rahnamoun et al., 2018). Histone modification is
a major determinant of the epigenetic silencing of genes and
the regulation of cellular processes. Histone modifications often
occur at the amino terminus of histones, and modifications
of various chemical groups are acceptable due to exposure to
chromatin (Oliver et al., 2013; Bennetzen and Wang, 2014; Hoen
and Bureau, 2015; Yamada et al., 2015; Zhang et al., 2015; Li
and Zhao, 2016; Rayan et al., 2016; Jiang et al., 2018; Salimian
et al., 2018; Shang et al., 2018; Yan et al., 2018; Sahebi et al., 2018;
Zhang L. et al., 2018; Zhang S. et al., 2018). The most widely
studied are the acetylation and methylation of lysine K on histone
H3 and H4. Histone acetylation plays an important role in the
epigenetic theory proposed in recent years. Histone acetylation
can affect the chromatin structure in cells, and thus participate in
the transcriptional regulation of genes at specific sites, playing an
important role in cell growth and differentiation. With a deeper
understanding of the mechanism of histone acetylation in gene
transcriptional regulation, the role of HDAC inhibitors in tumor
therapy has received increasing attention (Sun et al., 2017).

CBP and p300 proteins with acetylase activity are
transcriptional coactivators and hematopoietic tumor
suppressors. Studies have shown that berberine can upregulate
the expression of CBP/P300 and SIRT3 in U266 cells, and
downregulate the expression of HDAC8; however, in HL-60/ADR
and KG1-α cells, CBP/P300 and SIRT3 were also upregulated,
but HDAC8 did not change significantly. Histone acetylation
maintains its balance through HAT and HDAC. Berberine
downregulated HDAC in human lung cancer A549 cells, which
resulted in decreased expression of the metalloproteinases
MMP-2 and MMP-9 mRNA and protein, inhibiting cell
migration and invasion (Huang et al., 2017). Simultaneously,
another study has shown that berberine treatment of A549 cells

significantly reduced the expression of class I, II-a, II-b, and IV
mRNA, histone H3, and H4 hyperacetylation.

MicroRNA
MicroRNAs (miRNAs) are short-chain non-coding RNAs of
19–22 nucleotides in length that bind to the 3′UTR in target
mRNAs, thereby degrading or blocking the translation of target
mRNAs. It plays an important role in the growth, differentiation,
apoptosis, and tumor cell development. miRNAs can regulate
the expression of multiple tumor-associated genes. In accordance
with the function of miRNAs, they can be divided into two types:
oncogenes or tumor suppressor genes (Hu et al., 2013). Not only
can it act directly as a proto-oncogene or a tumor suppressor
gene, but also regulate the expression of other proto-oncogenes
or tumor suppressor genes. miRNAs play a central role in many
cellular biology processes, and their dysregulation is a ubiquitous
feature in tumors. Epigenetic effects have been shown to be
a major cause of miRNA dysregulation in tumors (Hashiguchi
et al., 2017). In the TGF-β1-induced colorectal cancer model,
berberine significantly decreased the expression of miR-152

FIGURE 2 | Signaling pathways regulated by berberine.
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(targeting DNMT1), miR-429 (targeting DNMT3A), and
miR-29a (targeting DNMT3A/3B), which suggested that
berberine inactivates some tumor suppressor factors, including
DNMT1 and DNMT3A/3B, through the regulation of the
expression of the above miRNAs during colon cancer
development. Furthermore, other evidence has suggested
that berberine treatment of human U266 multiple myeloma
cells led to the inhibition of NF-κB nuclear translocation
via Set9-mediated lysine methylation, which resulted in
decreased miRNA21 and Bcl-2 expression, inducing the cells
to produce ROS and promoting cell apoptosis. Berberine
treatment of colorectal cancer cells increased the expression
of miR-200a-5p and decreased the expression of miR-429.
These epigenetic regulation affected by Berberine was briefly
summarized in Table 4.

SUMMARY AND FUTURE
PERSPECTIVES

The importance of epigenetic regulation in the occurrence
and development of tumors is now an established fact. An
increasing body of research has been devoted to the exploration of
epigenetic molecular markers for the early diagnosis, treatment,
and prognosis of tumors. Simultaneously, epigenetic drugs
provide a new direction for the treatment of tumors owing
to the reversibility and ease of regulation of epigenetics. At
present, the anticancer drugs that inhibit the proliferation
of malignant tumor cells via induction of apoptosis or that
regulate signal transduction are mostly multi-targeted (He
et al., 2010). Berberine is a natural isoquinoline alkaloid that
significantly contributed to the development of anticancer
drugs (Figure 2). Given the continuous development in
the field of medicine and the extension of research and
development in the field of medicine, berberine has gained
attention of researchers owing to the combination of multiple

effects. Berberine is not irreplaceable with respect to its
traditional pharmacological activities, such as antibacterial,
anti-inflammatory, and antiviral effects (Huang S.X. et al.,
2018). Moreover, the efficacy of the antihypertensive, antitumor,
and hypolipidemic effects has also become a “hot topic”
in contemporary research. Berberine regulates the molecular
mechanisms that cause tumor cells through a variety of signaling
pathways, confirming the potential therapeutic effects in a
variety of tumor cells. However, there are few reports on the
effects of berberine on the epigenetic functions of tumors.
Epigenetics is also the main controlling factor of oncogenes
in the development of cancer. Therefore, the application of
epigenetic properties of berberine in the treatment of malignant
tumors offers broad prospects for drug development. At the
same time, extended research into epigenetics has provided
a new strategy to understand the various characteristics
of tumors, optimize the early diagnosis of tumors, and
improve the prognosis of patients. In future, basic research
and clinical transformations in the epigenetics of cancer
will provide new strategies for the precise diagnosis and
treatment of cancer.
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Dietary lectins are carbohydrate-binding proteins found in food sources. We used a

panel of seven dietary lectins to analyze cytotoxicity against hematological cancers.

Wheat germ agglutinin (WGA), even at low doses, demonstrated maximum toxicity

toward acute myeloid leukemia (AML) cells. Using AML cell lines, we show time- and

dose-dependent killing by WGA. We also show that low doses of WGA kills primary

patient AML cells, irrespective of subtype, with no significant toxicity to normal cells.

WGA caused AML cell agglutination, but failed to agglutinate RBC’s at this dose. WGA,

primarily, binds to N-acetyl-D-glucosamine (GlcNAc) and is also reported to interact

with sialic-acid-containing glycoconjugates and oligosaccharides. After neuraminidase

pre-treatment, which catalyzes the hydrolysis of terminal sialic acid residues, AML cells

were less sensitive to WGA-induced cell death. AML cells were also not sensitive to

succinyl-WGA, which does not react with sialic acid. Incubation with LEL lectin, which

recognizes GlcNAc or SNA, which binds preferentially to sialic acid attached to terminal

galactose in α-2,6 and to a lesser degree α-2,3 linkage, did not alter AML cell viability.

These data indicate that WGA-induced AML cell death is dependent on both GlcNAc

binding and interaction with sialic acids. We did not observe any in vitro or in vivo

toxicity of WGA toward normal cells at the concentrations tested. Finally, low doses of

WGA injection demonstrated significant in vivo toxicity toward AML cells, using xenograft

mouse model. Thus, WGA is a potential candidate for leukemia therapy.

Keywords: WGA, leukemia, therapy, lectin, GlcNAc

INTRODUCTION

Lectins, carbohydrate-binding proteins, have been well characterized for more than 40 years (1).
Because they are present in many of our major staple foods, such as wheat, potato, soy, and tomato,
they play an important role for humans (2). Their true biological function is as a pesticide and
anti-fungal, preventing disease from spreading and killing the plant or organism (3). Lectins, also
present in animals and fungi, are classified by evolutionary origin, three-dimensional structure, and
binding specificity (4, 5). In the last 10 years, with technological improvements in protein structural
analysis, lectins have been organized into seven families. Most lectins are within the legume, chitin-
binding (hevein domain), type 2 ribosome-inactivating, and monocot mannose-binding lectin
families; but there are also jacalin-related, amaranthin, and Cucurbitacea phloem families (6).
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Lectins have wide-ranging biological activity at cellular, tissue,
and organism levels. In vitro, it has been demonstrated that
incubation with lectin from red kidney bean lead to T cell
proliferation and increased cytokine production (7). Haas et al.
demonstrated that certain dietary lectins can cause IL-4 and IL-
13 release from basophils (8), while Gong et al. demonstrated that
plant lectins can activate NLRP3 inflammasome in macrophages,
although at concentrations outside of normal physiological
conditions (9). Recently it has been shown that certain lectins can
activate toll-like receptors (TLRs) in a distinct, yet comparable,
fashion to activation by pathogens. Specifically, the lectin ArtinM
leads to TLR activation, resulting in increased pro-inflammatory
cytokine release (10). Since their first isolations, lectins have
been known to agglutinate cells, including red blood cells (11).
When lectins are ingested, they have effects on tissues and organs,
partially because they are not digested by gut enzymes (12) but
pass through the gut wall and enter the circulation (13, 14).
Lectins have also been shown to cause gut inflammation and
have been potentially linked to autoimmune disease, such as
rheumatoid arthritis (15). Besides this biological activity toward
normal tissues, lectins have been shown to exhibit specific effects
on cancer cells.

Many lectins have demonstrated cytotoxic and anti-
proliferative effect on cancer cells. In the early 1980s, it was
shown that lectin from Griffonia simplicifolia administered
to mice in vivo was cytotoxic toward ascites tumor cells (16).
Miyoshi et al. showed that rice bran agglutinin (RBA) caused
apoptosis and cell cycle disruption on human U937 monoblastic
leukemia cells (17). Lectins like Concanavalin A, Griffonia
simplicifolia (GSA-1A4), and Phaseolus vulgaris were shown to
be toxic toward melanoma cell lines (18). Finally, Wang et al.
looked at various lectins and their effects on cancers of the
liver, chorion, skin, and bone. They determined that lectins
from mushroom, soybean, and potato had varying impacts on
these cell lines (19). Of the lectins tested, wheat germ agglutinin
(WGA) had the most profound cytotoxic effects against these
cell lines.

WGA, the lectin derived from wheat germ, binds specifically
to N-Acetyl-D-glucosamine (GlcNAc). It has been reported that
WGA also binds N-acetyl-neuraminic (sialic) acid; however
more recently it has been characterized as interacting with sialic
acid residues on glyconjugates and oligosaccharides (20).WGA is
one of the most characterized and studied lectins. While studying
the effect of WGA on normal gut epithelium, it was determined
that WGA can bind the apical side of gut-like cells and alter the
cell membrane permeability (21). Pellegrina et al. also quantified
whether the amount of wheat consumed in the normal diet is
toxic. They concluded that in order to reach toxic levels more
than 1 kilogram of uncooked pasta would need to be consumed
in one meal (21). Despite the limited toxicity to normal tissues,
it has been shown that WGA is toxic to pancreatic, liver, bone
(osteosarcoma), and skin (melanoma) cancer in low doses (18,

Abbreviations: WGA, Wheat germ agglutinin; AML, acute myeloid leukemia,

ALL, acute lymphoid leukemia; NHL, non-Hodgkin Lymphoma; sWGA, Succinyl-

WGA; LEL, L. esculentum lectin; SNA, S. nigra; N-acetyl-D-neuraminic (sialic)

acid; GlcNAc, N-acetyl-D-glucosamine.

19, 22). WGA causes killing via apoptosis and cell cycle arrest
in melanoma and human monoblastic leukemia (14, 17). It may
also work in a novel apoptotic fashion that is Fas-, caspase-3,
Bax, and Bak independent (23). Recently, there is evidence that
WGA can kill via a completely different pathway. It has been
demonstrated that WGA induces paraptosis-like cell death in
cervical carcinoma cells (24). These different modes of killing,
dependent on target cells, makes WGA an intriguing protein
to study.

Because lectins, specifically wheat germ agglutinin, have
been shown to be cytotoxic toward pancreatic cancer,
osteosarcoma, hepatoma, etc. (19, 22), we screened three
hematological malignancies [acute myeloid leukemia (AML),
acute lymphoblastic leukemia (ALL), and non-Hodgkin
lymphoma (NHL)] against a panel of lectins. AML is a common
childhood leukemia. In patients who acquire the malignancy
in adulthood it has a low survival rate (25). ALL is the most
common pediatric cancer. If relapse occurs, patients have an
even lower survival rate (26). NHL is an umbrella term for many
different malignancies that originate in the lymphoid system
(27). Because of this broad category, NHL is one of the most
common cancers in the United States and the American Cancer
Society estimates that more than 70,000 cases will be diagnosed
in 2018 (28). Because these three cancer types are very common
impacting large numbers of people, we looked at the cytotoxic
effects of various lectins on these cancer cells.

METHODS

Cell Culture
Human acute myeloid leukemia cell lines, OCI-AML3 and
HL-60, obtained from DMSZ and American Type Culture
collection, respectively, were cultured in sterile RPMI-1640
medium (R8758) with 10% Serum Plus II and 5% penicillin
streptomycin. Human acute lymphoblastic leukemia cell lines,
ALL-1 and ALL-2, were cultured in MEMmedium (M4526) with
20% FBS. ALL-1 NSG cell line had been passaged through mice
before freezing and usage. Human non-Hodgkin lymphoma cell
lines, JVM2 and OCI-Ly10, were cultured in RPMI complete
medium and in Iscove’s DMEM (10-016CV) (20% SPII and 1%
Glutamax), respectively. Non-cancerous control cells, HEK293
and OP9, were cultured in DMEM (sc-224478) and MEM,
respectively. All cell lines were cultured at 37◦C and 5% carbon
dioxide. When cells reached confluency, they were passaged.

Patient Samples
Primary patient AML cells were ordered from the Hematopoietic
Stem Cell Core Facility at Case Western Reserve University
and cultured in RPMI-1640 complete medium (10% FBS).
Peripheral blood mononuclear cells (PBMCs), isolated from
blood, were obtained from the Hematopoietic Stem Cell Core
Facility at Case Western and cultured in RPMI-1640 complete
medium (10% Serum Plus II). Human blood was also obtained
from Hematopoietic Stem Cell Core Facility at Case Western
Reserve University.

Frontiers in Oncology | www.frontiersin.org 2 February 2019 | Volume 9 | Article 100833

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ryva et al. WGA Kills AML Cells

Lectins
Lectins from: Pisum sativum (L5380), Arachis hypogaea (L0881),
Triticum vulgaris (L9640), Glycine max (L1395), Phaseolus
vulgaris (61764), Agaricus bisprous (L5640), Lycopersicon
esculentum (L2886) were purchased from Sigma-Aldrich,
dissolved in sterile phosphate-buffered saline (PBS), and stored at
4◦C in a concentration of 1 mg/mL. Succinyl-WGA (W0110) and
wheat germ agglutinin FITC-conjugate (L4895), were purchased
at Vector Laboratories and Sigma-Aldrich, respectively. These
variants were also dissolved in sterile phosphate-buffered saline
(PBS) and stored at 4◦C in a concentration of 1 mg/mL. Lectin
from Sambucus nigra (ZB0106) was purchased from Vector
Laboratories. Detailed information on each lectin is included in
Table 1 and obtained from Sigma-Aldrich product sheets.

Reagents
Neuraminidase (N7885) was purchased from Sigma-Aldrich and
stored at 4◦C. Propidium Iodide/RNAase staining kit (P40875)
was obtained from Cell Signaling Technology. Annexin V
Apoptosis Detection Kit with PI (640914) was purchased from
BioLegend. Trypan blue (T8154) was purchase from Sigma-
Aldrich. Alsever’s Solution was prepared using Sally E. Grimes’s
protocol (29). Citric acid (1940) and Sodium chloride (BP-
358-10) was purchased from Sigma-Aldrich, while Sodium
citrate (S-4641) and D-glucose (G-5767) were purchased from
Fisher Scientific.

Cell Death Assay
HL60 and OCI cells were seeded in 12-well plates at a
concentration of 250,000 cells/mL (1mL per well). Cells were
treated with WGA at various concentrations on day 0, then
again at 24 h intervals up until the final day of measurement.
Two microliter PBS were added as a negative control. Cell count
and cell viability were assessed using 1:1 trypan blue staining
(Sigma-Aldrich) and an automated cell counter (Bio-Rad TC-20).
Measurements were conducted in triplicate. Data was graphed
and analyzed using GraphPad Prism 7.

Apoptosis Assay
Cells were treated with 2µg/mL WGA for 24 h. Cells were
centrifuged at 300 × g for 5min and the supernatant was
removed. The pellet was washed with PBS and resuspended in
100 µL Annexin V/ Propidium iodide (AV/PI) buffer. Samples
and positive controls were incubated with 3 µL of Annexin V
antibody and 10 µL of Propidium Iodide for 15min at room
temperature. The samples were run using fluorescence-activated
cell sorting (FACS BD AccuriTMC6). 20,000 events were recorded
per sample. AV/PI kit from Biolegend, USA was used to perform
apoptosis assay.

Cell Cycle Analysis
Cells were seeded at 250,000 cells permL in 4mL and treated with
WGA. Cells were spun at 600 rpm for 5min and washed with
PBS twice. Pellet was resuspended in PBS and vortexed to make
single cell suspension. While vortexing the sample, 1mL of ice-
cold 70% ethanol was added. Samples were incubated overnight
in −20◦C. Then, samples were pelleted, washed, resuspended

in PBS, and incubated with 100 µL of Propidium Iodide at
room temperature for 15min. Samples were analyzed with FACS,
counting 10,000 events. Events collected were gated on live cell
populations, avoiding debris and aggregate populations.

For cell aggregation/agglutination assay, HL-60, OCI, and
healthy human white blood cells (WBCs) were seeded in 12-well
plates at a concentration of 250,000 cells/mL (1mL per well).
Cells were treated with either 2µg/mLWGA or with 2µL PBS as
a negative control. After 20 h treatment, cells were assessed at 10x
magnification using bright field microscopy (Leica DM IL LED)
and captured using Leica LAS X imaging software.

WGA Binding
WGA-FITC working stock was made by diluting the 1µg/mL
stock solution. HL-60 AML cells were seeded at 250,000 cells per
mL and treated with 0.5µg/mLWGA-FITC at 37◦C. At each time
point, samples were washed with PBS and analyzed using FACS.

Sialic Acid-Based Treatments
Cells were treated with succinylated-WGA (sWGA) at 2µg/mL
at 37◦C for 24 h. Samples were counted using trypan blue. For
neuraminidase pre-treatment, the protocol described in Schwarz
et al. where 4 million cells in 2mL serum free media are
incubated with 50 mU/mL neuraminidase for 1 h at 37◦C was
used (22). Samples were washed twice in complete media and
seeded in wells at 250,000 cells/mL. Samples were treated with
WGA in the same manner as described above. Cells were stained
with Propidium iodide and cell viability was determined using
flow cytometry.

E-670 Cell Proliferation Assays
OCI AML-3 and HL-60 cell lines were labeled with 1mM cell
proliferation Dye eFluor 670TM (Thermo Fisher Scientific) as per
manufacturer’s instructions. After staining cells were washed two
times and cultured at 37

◦

C in media alone or in the presence of
2.5µg/mLWGA for the indicated times. Proliferation of live cells
was assessed via flow cytometry (Accuri 6C).

In vitro Toxicity
Two AML patient samples were treated in the absence or
presence of with 2µg/mL WGA for 24 h at 37◦C. The
samples were analyzed for viability by flow cytometry. OP9 and
HEK293 cells were plated and incubated for 24 h with doses of
WGA. Confocal images were acquired using EVOS R© XL Core
Imaging System.

Hemagglutination (HA) Assay
The protocol designed by Virapur R©was modified as follows (30).
Acquired mouse blood was stored in prepared Alsever’s solution.
After three washes in PBS, 10% blood stock solution was made
in PBS. A working stock (5%) solution was made using the 10%
stock and PBS. A serial dilution of WGA (50 µg to 0.09µg/mL)
was prepared using a round-bottomed 96-well plate. 0.0µg/mL
WGA was used as a negative control. The plate was incubated
for 30–60min at room temperature and images were taken. The
plates were analyzed by looking for “buttons” in each well. Diffuse
blood in the well is analyzed as hemagglutination. Experiments
were performed on human blood, as well, but the blood was

Frontiers in Oncology | www.frontiersin.org 3 February 2019 | Volume 9 | Article 100834

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ryva et al. WGA Kills AML Cells

TABLE 1 | All lectins used and their name, source, molecular weight, and sugar specificities.

Lectin Sourcea Molecular weightb (kDa) Sugar specificityc

Wheat germ agglutinin (WGA) T. vulgaris (wheat) 36 (GlcNAc)2 & NeuNAc

Succinyl-Wheat germ agglutinin (sWGA) T. vulgaris (wheat) 36 (GlcNAc)2

Pisum sativum agglutinin (PSA) P. sativum(pea) 49 α-man

Peanut agglutinin (PNA) A. hypogaea (peanut) 120 Gal-β(1→ 3)-GalNAc

Soybean agglutinin (SBA) Glycine max (soy) 110 GalNAc

Phytohemagglutinin (PHA) P. vulgaris (red kidney bean) 126/128 Oligosaccharide

Agaricus bisporus lectin (ABL) A. bisporus (mushroom) 58.5 β-gal(1→ 3)GalNAc

Lycopersicon esculentum lectin (LEL) L. esculentum (tomato) 71 (GlcNAc)3

Sambucus nigra lectin (SNA) S. nigra (elderberry) 140 αNeuNAc(2→ 6)gal & GalNAc

Information obtained from Sigma-Aldrich data sheets.
a,b,cAll values and specificities from Sigma Aldrich product information sheet.

not stored in Alsever’s solution because it already contains the
anti-coagulant heparin.

In vivo Toxicity
Twelve-week-old C57BL mice were given WGA (2 mg/kg) by
intraperitoneal injection on days 1, 4, and 8. Mouse weights were
also taken throughout the time of administration. After WGA
administration was completed, the mice were sacrificed and
spleen, kidney, and liver were harvested and fixed in formalin.
H&E staining was completed at the Immunohistochemistry Core
Facility at CWRU. Blood was collected in EDTA-coated tubes and
analyzed using HemaVet.

Xenograft in vivo Model
NSGmice were subcutaneously injected with 5× 106 HL-60 cells
to generate solid AML xenograft mice model, followed by three
intra-tumor injection of WGA or PBS.

Statistical Analysis
Data were analyzed using unpaired Student’s t-test. All
experiments were done in triplicate (n = 3). P-values in figures
correspond to: ns = non-significant (>0.05), ∗P < 0.05, ∗∗P <

0.01, ∗∗∗P < 0.001. All graphs were made and statistical analyses
were performed using GraphPad Prism program.

RESULTS

Lectins Demonstrate Variable Cytotoxic
Activity Toward Different Cancers
In order to determine how WGA killing compares to other
lectin treatment, we looked at a panel of varied lectins. Cytotoxic
effects of seven different dietary lectins at 2.0µg/mL were tested
toward AML, ALL, and NHL. Two cell lines from each disease
type were used. Wheat germ agglutinin (WGA) consistently
showed significant cytotoxicity toward all five cancer cell lines,
except OCI-Ly10. As shown in Figure 1, WGA-mediated cell
killing of OCI-AML3 (p = 0.0028), HL60 (p = 0.0005), ALL-
1 (p = 0.0058), ALL-2 (p = 0.03), and JVM2 (p = 0.009)
were statistically significant (Figures 1A–C). All other lectins
tested did not show significant cytotoxic activity toward these
cancer cells. Binding specificities of all these lectins are detailed
in Table 1.

WGA Binds and Kills Cancer Cells in a
Dose- and Time-Dependent Manner
We were interested at which dose and time WGA would be most
effective, so we looked at binding and killing at different doses
and time points. We utilized a FITC-labeled WGA at 0.5µg/mL,
in order to analyze cellular binding using flow cytometry at a sub-
lethal WGA dose. From the flow cytometry data, it is evident that
within 45min of incubation withWGA, the lectin is bound to the
surface of the OCI-AML3 cells. This binding is present up to 24-
h after incubation (Figure 2A). We also wanted to elucidate the
relationship between binding and killing, so we looked at binding
of WGA to OCI-Ly10 compared to HL-60 AML. We show
that there is a significant reduction in WGA-binding to OCI-
Ly10 (Figure 2B). This reduction in binding coincides with the
absence of WGA-induced cell killing of OCI-Ly10 (Figure 1C).

Sensitivity of AML cells to WGA up to 4 days was calculated
using OCI-AML3 andHL-60 cell lines, using four different doses.
Significant killing for HL-60, occurred at 1.0, 2.0, and 4.0µg/mL,
starting from day 1 of WGA treatment (Figure 2C). We analyzed
cell killing at day 1, 2, 3, and 4. At day 4, almost all cells were
killed except for 0.5µg/mL WGA treated wells. Viable cell count
data shows that most of the cells were killed at day 1 itself.
Dose kinetics of OCI-AML3 cells show significant killing at 2.0
and 4.0µg/ml WGA (Figure 2D). HL-60 was more sensitive to
WGA induced cell death, even at 1.0µg/ml, while OCI-AML3
was sensitive to 2.0µg/ml WGA.

WGA Kills Different Subtypes of Primary
Patient AML Cells
In order to further evaluate our findings using AML cell lines,
we tested if WGA has same effect on primary cells derived from
AML patients. AML can be divided into eight different subclasses
(M0-M7) based on the differentiation status, according to the
French-American-British (FAB) classification (31). AML also
can be divided into subtypes based on WHO classification of
genetic abnormalities (32). Primary acute myeloid leukemia
blood samples from two AML patients (subtype M1 and M5)
were treated with 2µg/mL WGA for 24 h and analyzed by
flow cytometry. The flow cytometry count of viable cells (as
determined by analyzing forward and side scatter) demonstrates
very significant cell killing at this dose of WGA for both
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FIGURE 1 | Lectins demonstrate variable toxicities to cancer types. (A) Viable cell count of AML (OCI-AML3 and HL-60) cells treated with different dietary lectins as

indicated. (B) Viable cell count of ALL (ALL-1 and ALL-2) cells treated with different dietary lectins as indicated. (C) Viable cell count of NHL (JVM2 and OCI-Ly10) cells

treated with different dietary lectins as indicated. All seven lectins administered at 2µg/mL for 24 h for all cell types. Un-labeled bars were non-significant compared to

control. *p < 0.05, **p < 0.01, ***p < 0.001, and ns > 0.05.

patient samples (p = 0.0001) (Figure 3A). Further, we analyzed
sensitivity of seven more different AML subtypes to WGA
induced killing and found that all six subtypes except M2 subtype
showed significant cell killing after exposure to 1.0 and 2.0µg/ml
WGA (Figure 3B). M2 subtype with MDS related changes
showed maximum killing, even after exposure to 1.0µg/ml
WGA (Figure 3B).

After confirming WGA induced cell death in different AML
cell lines and patient cells, we wanted to elucidate the specific
method of cell killing that WGA utilizes toward AML cells by
focusing on cell death and cell cycle. Annexin V (AV)/Propidium
Iodide (PI) stain can be used to distinguish between necrotic

and apoptotic cell death. AV staining works by binding to
phosphatidylserine, which normally resides on the inner cell
membrane. However, in early apoptosis, the cellular membrane
undergoes changes where phosphatidylserine is present on the
outer membrane. PI staining works due to cell membrane
rupture, which allows the stain to enter the cell which are
in late apoptotic phase or undergoing necrotic death. Flow
cytometry scatter demonstrates that at 2µg/mL there are AV+
and PI+ cells. There is a significant difference between AV–/PI–,
AV+, and AV+/PI+ of control and treated HL-60 AML cells
(p = 0.0002, p = 0.0068, p = 0.0006). However, there was no
statistical difference between PI+ (alone) of control and treated
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FIGURE 2 | WGA binds and kills in a dose- and time-dependent manner. (A) OCI-AML3 cells treated with WGA-FITC (500 ng/mL) and analyzed for binding using flow

cytometry. Binding to cells at 45min (blue peak) and 24 h (red peak) compared to control (black peak). (B) OCI-Ly10 and HL-60 cells treated with WGA-FITC

(500 ng/mL) for 30min and analyzed for binding using flow cytometry. (C,D) Viable cell count and percent viability of HL-60 (C) and (D) OCI-AML3 with WGA

treatment (0.5, 1.0, 2.0, and 4.0µg/mL) for 1–4 days, counted using trypan blue. ***p < 0.001.

(Figure 3C). There is also a significant difference between control
and treated cells if all positively staining populations (AV+,
AV+/PI+, PI+) are grouped together (p = 0.0002). Because
it has been shown in the literature that WGA can disrupt cell
cycle (14, 17), we tested AML cell cycle changes after being
incubated with WGA. Fixing cells and staining with PI allows
for the different phases of the cell cycle to be distinguished.
Flow cytometry analysis shows that OCI-AML3 cells incubated
with 2µg/mL WGA for 24 h have non-significant changes to
G0/G1, S, and G2/M phases compared to untreated control cells
(Figure 3D). In order to analyze the effect of WGA on cell
proliferation, we performed E-670 cell proliferation analysis of
OCI-AML3 and HL-60 cells before and after 16 and 24 h ofWGA

treatment (Figure 3E). We did not see any significant changes
in staining of these cells. Since WGA induced AML cell killing
is a rapid process happening within 24 h, we could not analyze
further time points.

WGA Induced AML Cell Death Depends on
Both Interaction With Sialic Acid and
GlcNAc Binding
WGA binds primarily to GlcNAc and also interacts with sialic-
acid containing glyconjugates and oligosaccharides. We tested
which binding activity of WGA contributes to its cancer killing
activity. Neuraminidase, also called sialidase, is an enzyme that
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FIGURE 3 | WGA is toxic to primary patient cells and kills AML cells without altering cell cycle. (A,B) Percent viability calculated using FSC/SSC live gating of primary

AML patient cells belonging to different subtypes (A) M1&M5 (B) M4Eo; inv16 (1), AML with MDS related changes (2), M2 with MDS-related changes (3), M2(4),

CEBPA;c-Kit;TET2(5), NPM1;IDH1(6), IDH1;DNMT3a;FLT3-TKD;trisomy8(7) all treated with or without 2µg/mL WGA for 24 h. Control was standardized to one

hundred percent. (C) Annexin V/Propidium Iodide staining of HL-60 cells treated with WGA (2.0µg/mL) for 24 h. (D) Cell cycle analysis of gated live OCI-AML3 cells

treated with WGA (2µg/mL) for 24 h. (E) E-670 cell proliferation assays using OCI-AML-3 and HL-60 cell lines in media alone or in the presence of 2.5 µg/mL WGA

for the indicated times. Proliferation of live cells was assessed via flow cytometry (Accuri 6C). **p < 0.01, ***p < 0.001, and ns > 0.05.

can catalyze the hydrolysis of sialic acid glycosidic linkages.
After neuraminidase pre-treatment, the sialic acid should be
cleaved off the cell membrane. Hence, to determine the role
of sialic acid interaction with WGA in WGA-mediated cancer
cytotoxicity, we pre-treated HL-60 cells with neuraminidase (50
mU/mL) for 2 h and then incubated with 4µg/mL WGA for
4 h. After treatment, we stained the cells with Propidium iodide
and analyzed using flow cytometry. There was a significant

increase in PI staining in the WGA-treated groups with and
without neuraminidase (p = 0.0001, p = 0.0002, respectively)
(Figure 4B). However, when the cells were pre-treated with
neuraminidase followed by WGA treatment, the amount of
PI staining is significantly reduced compared to cells treated
with WGA alone (p = 0.0033) (Figure 4B). We used FITC-
labeled WGA at sub-toxic levels (500 ng/mL) analyzed with flow
cytometry to confirm that neuraminidase reducedWGA binding.
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FIGURE 4 | WGA effect on AML is sialic acid dependent. (A) HL-60 cells treated with WGA-FITC (500 ng/mL) to analyze WGA binding using flow cytometry. Cells

untreated with neuraminidase (red peak) were overlaid with cells treated with neuraminidase (50 mU/mL) for 6 h. (B) Percentage Propidium iodide positive HL-60 cells

treated with WGA (4µg/mL) for 4 h were analyzed with flow cytometry. HL-60 cells were either untreated or pre-treated with neuraminidase (50 mU/mL) for 2 h. (C)

Viable cell count of OCI-AML3 cells treated with 2µg/mL WGA, sWGA, LEL, and SNA for 24 h counted using trypan blue. (D) HL-60, OCI, and healthy human white

blood cells (WBCs) treated with either 2µg/mL WGA or with 2 µL PBS as a negative control and after 20 h treatment, cells were assessed at 10× magnification using

bright field microscopy. Scale bar 100µm shown. *p < 0.05, **p < 0.01, ***p < 0.001, and ns > 0.05.

At 6 h, there was a noticeable reduction in binding to HL-60
cells (Figure 4A).

We also wanted to look at other lectins, specific for the
carbohydrate moieties WGA interacts with. Succinyl-WGA is
a modified form of WGA that only binds GlcNAc. We used
succinyl-WGA to determine the role of GlcNAc binding inWGA
cytotoxicity. We found a significant difference between OCI-
AML3 cells treated with succinylated-WGA and unmodified
WGA (p = 0.0237) (Figure 4C), showing that the sialic
acid interaction is important for WGA-induced killing. Cells
treated with 2µg/mL SNA lectin, which are specific for sialic
acid attached to terminal galactose in α-2,6 and to a lesser
degree α-2,3 linkage, are not affected compared to control
(Figure 4C). OCI-AML3 cells treated with 2µg/mL LEL, which
binds GlcNAc, are also not affected compared to control
(Figure 4C); however, HL-60 cells treated with LEL showed a
significant decrease (p = 0.0302) (Figure 1A). We also observed

cell aggregation/agglutination in HL-60 and OCI-AML3 cells
preceding cell death (Figure 4D). WGA did not agglutinate
normal white blood cells (WBC’s) at this concentration and time
point (Figure 4D).

WGA Exhibits Limited Toxicity to Normal
Cells in vitro and in vivo
At this point, we had demonstrated WGA kills leukemia cells
at 1.0–2.0µg/mL, but we could not discount indiscriminate
killing. Because of this concern, we tested various non-
cancerous cells with WGA. Propidium iodide staining and
flow cytometry analysis shows no significant changes between
peripheral blood mononuclear cells treated without WGA and
with 0.5, 1.0, and 2.0µg/mL WGA (Figure 5A). OP9, a stromal
cell line, was treated with 2.0µg/mL WGA and no significant
morphological changes were apparent microscopically. The cells
were not detached from the plates and maintained normal shape
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FIGURE 5 | WGA treatment exhibits little or no toxicity toward normal cells in vitro. (A) Viable peripheral blood mononuclear cells (PBMCs) treated with 0.5, 1.0, and

2.0µg/mL WGA for 24 h were calculated by PI uptake using flow cytometry. (B) Light microscopy of OP9 stromal cells showing phenotype. Cells were treated with

2.0µg/mL WGA for 24 h and imaged. Scale bar 400mm shown. (C) Light microscopy of HEK293 cells showing phenotype. Cells were treated with 2.0µg/mL WGA

for 24 h and imaged. Scale bar 400mm shown. (D) Hemagglutination assay on 96-well micro-plate of mouse and human blood using serial dilution of WGA (25 to 1.6

µg and 12.5 to 0.8 µg, respectively). Absence of lectin control (0.0 µg) for mouse and human blood are included. ns > 0.05.

(Figure 5B). HEK293 cells were also treated with 2.0µg/mL
WGA and imaged. There were no morphological changes after
incubation (Figure 5C). All these data points to the different
toxicity of WGA toward cancer cells and normal cells. Because
WGA is known to cause red blood cell (RBC) agglutination
(20), we wanted to test whether the WGA dose we are using for
the cytotoxic assay causes agglutination in mouse and human
RBCs. Hemagglutination assays of human and murine blood
after exposure to WGA demonstrated lack of hemagglutination
at the indicated doses used. This is evident by the button of blood
settled to the bottom of the well. A positive hemagglutination
result is diffuse blood in the well as shown in the higher doses
imaged (Figure 5D).

Finally, because we had determined effect of WGA on normal
cells in vitro, we tested whether WGA is toxic in vivo. We
conducted a study to obtain information of WGA dose toxicity
where WGA was injected (2 mg/kg) by IP to 2 C57BL/6 mice on
days 1, 4, and 8. Mice were sacrificed on day 9 for further analysis
(Figure 6A). Age and sex-matched, non-treated mice served as
controls. The mortality and changes to body weight, clinical
signs, gross observation, organ weight, and histopathology of
principal organs (spleen, liver and kidney) were monitored.
We found no mortalities, WGA treatment-related clinical signs,
changes to the body and organ weights, or gross and histo-
pathological findings (Figures 6B,C). Since some reports say
WGA can cross blood brain barrier (BBB) (33), we analyzed
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FIGURE 6 | WGA treatment demonstrated little toxicity to normal cells in vivo. (A) Treatment scheme where 2 mg/kg WGA was IP administered to two mice on days

1, 4, and 8. Mice were sacrificed on day 9. (B) Weights of mice treated with WGA during duration of treatment. (C) Histological analysis of WGA-treated tissues.

Spleen, liver, and kidney stained with H&E and imaged by light microscopy at 10X magnification. Scale bar 400µm shown (D) Histological analysis of

Hematoxylin&Eosin stained brain tissues from PBS and WGA (5 mg/kg) injected mice. Scale bar 100µm shown (E) HEMAVET blood toxicity analysis of treated mice

after sacrifice compared to control mice and normal values. Normal values were given with HemaVet instructions. ns > 0.05.

brain tissue from WGA (5 mg/kg) and PBS injected C57BL/6
mice. Histochemical stainings of brain sections showed normal
structures comparable to PBS injected mice, with no signs of
toxicity (Figure 6D).

We also analyzed different blood cells using HEMAVET.
WGA-treated mice displayed cell counts within normal ranges
as shown in Figure 6E, except for slightly reduced red blood cell
count values, such as RBC, hemoglobin, and hematocrit levels
(Figure 6E). These suggest that WGA at this dose is safe to
use in vivo.

WGA Induced AML Cell Killing in Xenograft
Mouse Model
We further evaluated WGA killing of AML cells in vivo using
a xenograft mouse model. Severely immunodeficient NSG mice
were used for this study. HL-60 AML cells were injected
subcutaneously (s.c.) into NSG mice and injected WGA intra-
tumorally at days 6, 8, and 10 (Figure 7A). Mice tumor volume
was measured every alternate day and WGA injected mice
showed a very significant inhibition in tumor progression,
compared to PBS injected mice (Figures 7B,C). We sacrificed
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FIGURE 7 | WGA induced AML cell killing in xenograft mouse model.

(A) Treatment scheme- HL-60 cells injected at day 1 and at day 6, 8 and 10

WGA 5mg/kg injected intratumorally and mice were sacrificed at day 24.

(B) Pictures of mice treated with PBS or WGA (C) Graph showing tumor

volume (mm3) of PBS and WGA injected mice. ***p < 0.001.

these mice at day 24. Tumors in PBS injected mice reached
volume upto 1,000 mm3, while there were no measurable tumors
in WGA injected mice. NSG mice lack mature lymphocytes
including B cells, T cells and NK cells, so it is highly likely that
AML cell killing by WGA lectin seen in this model is a direct
anti-leukemic effect by WGA. Mice injected with WGA did not
show any obvious signs of toxicity suggesting that this therapeutic
strategy may be safe, and it is worthy of further development for
AML, provided route of administration is optimized.

DISCUSSION

Dietary lectins, particularly wheat germ agglutinin, have been
shown to have important anti-cancer properties (18, 19,
22). However, knowledge of lectins’ impact on hematological
malignancies, such as AML, ALL, and NHL, is lacking. Because
these malignancies are in need of potential new treatments,
exploring dietary lectins can be a valuable starting point.
The panel of lectins chosen encompasses various carbohydrate
binding specifities and sizes, as well as sources of origin. We
demonstrated that lectins’ effects on cancer is variable, with the
vast majority of dietary lectins having no impact at all on cancer
cell viability. WGA showed significant cell killing against five
cell lines tested (out of six). WGA was ineffective against OCI-
Ly10. Normal cells were also insensitive to doses of WGA, where

it showed significant killing activity against cancer cells. High
concentrations of WGA will kill normal cells as well, so choosing
the right dose of WGA is key to the success of treatment. We
demonstrate the dose specificity ofWGAwith AML cells showing
a significant cytotoxic effect on AML cells but not with the
normal cells. WGA killed all AML subtypes tested except M2,
this has to be tested further using many M2 patient samples and
if WGA fails to kill this particular subtype, it has to be studied
further. The exact reasons for this specificity is not known. WGA
binds to GlcNAc and it also interacts with sialic-acid containing
glyconjugates and oligosaccharides. Since most of the cancer
cells are hyper O-GlcNAcylated and hyper silalylated (34–39),
we could speculate that it might be the differences in levels of
GlcNAc expression and presence of sialylation on cell membrane
in different cells which accounts for WGA’s cell binding and
toxicity specificity. At higher doses, the mechanism of cell killing
may be agglutination of cell membrane.

Our data and the literature show the importance of both
sialic acid and GlcNAc in the cytotoxicity of WGA. However,
the role of each carbohydrate moiety in the lectin-induced death
of cells might vary from cell to cell. Sialic acid-specific lectins
and GlcNAc-specific lectins were not able to kill AML cells
on their own, signifying both properties are necessary for cell
killing. If sialic acid is removed using neuraminidase, there
is a reduction in binding and killing. The dual interaction to
both carbohydrate moieties might be required because of the
different locations of the carbohydrates within the cells. The
sialic acid interaction may occur outside the cell on the cell
membrane, while the GlcNAc binding may occur within the cell
after internalization as proposed by Schwarz et al. (22). However,
this mechanism of action may be specific to the pancreatic
cancer cells used in the study. Further studies are required to
understand any AML cell specific mechanism. Sialic acid and
GlcNAc interaction within the cell upon internalization may also
be key to the cell killing effects. These cell specific differences
could also be why the method of killing varies by cancer
type. Mechanisms of cytotoxicity by WGA includes apoptosis,
necrosis, paraptosis, and cell cycle arrest. Our data demonstrates
WGA induces apoptosis and necrosis, but cell cycle analysis
revealed no significant differences.

WGA injected into the tumor arrested tumor growth in an
NSG xenograft AML model. PBS injected mice had large tumors
as expected, which excludes the possibility that intratumoral
injection procedure has any effect on tumor growth. Since we
used severely immune-compromised mice which lacks a proper
innate immune response, the AML killing effect observed might
be solely from WGA’s direct effect on AML. Studies in the
past suggested the possibility that WGA has harmful effects,
however, several recent studies have re-evaluated many of those
assumptions and suggested that WGA dangers are either non-
existent or have limited effects (40, 41). Importantly, the in vitro
and in vivo concentrations of WGA used in this study is very
low and no toxicity is reported using this low concentration.
Interestingly, more recently dietary lectins including WGA have
been associated with the beneficial effect on health, including
reduced risks of type 2 diabetes, cardiovascular disease, some
types of cancer and weight management (41). Chronic exposure
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of high doses of WGA can lead to toxic effects like development
of anti WGA antibodies, platelet aggregation or red blood cell
(RBC) agglutination. We used low doses of WGA and short
exposure timings, where these kind of toxicity is not a concern.
WGA has been shown to elicit pro-inflammatory conditions,
and its toxic effects could only be seen at a very high dose (of
7 g/kg body weight over a period of 10 days) in the normal
gastrointestinal tract of rats, suggesting that WGA being non-
toxic in a huge range (21, 40). A final word on toxicity or atoxicity
of WGA is pending due to lack of in vivo studies, whereas
microgram range of WGA used for targeting or carrier system
is unlikely to provoke toxic effects (40).

The current therapies for treatment of AML include
chemotherapy, radiation therapy, and stem cell transplant. These
therapies rely on cell killing and differentiation which lead to cell
death. AML treatment regimen can also change depending on
the age and health of the patient. In a young patient, induction
therapy of high doses of cytarabine and daunorubicin will be
used to clear as much of the tumor burden as possible. Once
the tumor is cleared, lower doses of these drugs will be used for
maintenance. In older and unhealthy patients, these high doses
are contraindicated because of their toxicity and potential life-
threatening effects. In the AML M3 subtype acute promyelocytic
leukemia (APL), ATRA and arsenic trioxide can be used (42).
Common side effects of cytarabine include headache, nausea,
vomiting, and low blood counts, while less common side effects
include flu-like symptoms, loss of appetite, and pain in the hands,
feet, and eyes (43). The side effects of daunorubicin’s include
nausea, vomiting, diarrhea, and hair loss (44). Because of the
complexity of AML and its multiple subtypes, the treatment of
AML has changed very little over the last few decades. Because
of these factors, exploring WGA as a potential therapeutic is
worthwhile. The side effects of WGA, such as adverse toxicity
and hemagglutination, could be curtailed if administered at
low doses.

We show that dietary lectins may be a unique therapeutic tool
against hematological malignancies because of their cytotoxic
potential and limited toxicity to normal cells and tissues.
We characterized the effects on one subtype, OCI-AML3,
leaving open the exploration of many other cancer types and
conditions, such as drug-resistance and relapse. Characterization
of WGA-killing may also lead to more information on novel
cell killing pathways. Insights into WGA as a drug-delivery

system (45, 46), might also be utilized in combination with
our findings to develop potential targeted treatments for

hematological malignancies.
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Objective: Metastasis and therapeutic resistance are the major determinants of
lung cancer progression and high mortality. Epithelial–mesenchymal transition (EMT)
plays a key role in the metastasis and therapeutic resistance. Highly expressed
glucose-regulated protein 78 (GRP78) is a poor prognostic factor in lung cancer and
possibly correlated with EMT. This study aims to examine whether the up-regulation
of GRP78 is involved in EMT in lung adenocarcinoma and explore the underlying
downstream molecular pathways.

Study Design: EMT was assessed by analysis of cell morphology and expression
of EMT protein markers in A549 cells under normoxia, hypoxia and silencing GRP78
conditions. The expression levels of Smad2/3, Src, and MAPK (p38, ERK, and JNK)
proteins were examined by Western blot analysis under hypoxia and treatments with
phosphorylation inhibitors.

Results: Under hypoxic conditions, the EMT morphology significantly changed and the
GRP78 expression was significantly up-regulated in A549 cells compared with those
in normoxia control. The expression and phosphorylation levels of smad2/3, Src, p38,
ERK, and JNK were also upregulated. When GRP78 was silenced, EMT was inhibited,
and the levels of phospho-smad2/3, phospho-Src, phospho-p38, phospho-ERK, and
phospho-JNK were suppressed. When the activation of Smad2/3, Src, p38, ERK, and
JNK was inhibited, EMT was also inhibited. The inhibition effect on EMT by these
phosphorylation inhibitors was found to be weaker than that of GRP78 knockdown.

Conclusions: Hypoxia-induced EMT in A549 cells is regulated by GRP78 signaling
pathways. GRP78 promotes EMT by activating Smad2/3 and Src/MAPK pathways.
Hence, GRP78 might be a potential target for treatment of lung adenocarcinoma.

Keywords: lung cancer, lung adenocarcinoma, epithelial mesenchymal transition, hypoxia, glucose-regulated

protein 78, GRP78

INTRODUCTION

Lung cancer is the leading cause of cancer death worldwide; according to the estimated data from
GLOBOCAN in 2012, one of five cancer deaths is due to lung cancer (1.59 million deaths, 19.4%
of the total cancer deaths) (1). Despite significant progress in the development of new therapies for
lung cancer, metastasis and therapeutic resistance remain the major determinants of lung cancer
progression and high mortality (2).
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Mounting evidence demonstrated that epithelial–
mesenchymal transition (EMT) is involved in the metastasis
and therapeutic resistance of lung cancer. EMT refers to the
biological process by which epithelial cells are transformed
into mesenchymal phenotypes through specific procedures.
EMT inhibits the expression of E-cadherin and cytokeratin in
epithelial cells, upregulates the expression of N-cadherin and
vimentin in mesenchymal cells and promotes the ability of cells
to secrete matrix metalloproteinase and fibronectin. EMT can be
induced by various factors, such as TGF-beta, which increases
the expression of key nuclear transcription factors including
Twist, Snail and ZEB (3) and causes phenotypic changes by
activating intrinsic cellular signal molecules including Src,
MAPK, Smad2/3, and other signals (4–6).

Hypoxia is a common hallmark of several human
malignancies and an independent and unfavorable prognostic
factor associated with the occurrence of EMT (7–9). Previous
studies found that cAMP-dependent protein kinase, hypoxia
factor Hif-1alpha(HIF1a) and unfolded protein response can
potentiate EMT; moreover, treatment with insulin-like growth
factor 1 receptor inhibitor reverses hypoxia-induced EMT
(8–11), However, the mechanisms of hypoxia-induced EMT
remain unknown. Understanding the biology of hypoxia-
induced EMT and their implications in therapeutic relapse may
provide new crucial approaches for development of improved
therapeutic strategies.

The 78-kDa glucose-regulated protein (GRP78), also known
as BiP and HSPA5, is highly expressed in many types of cancers,
including lung, hepatocellular cancer, and breast cancer (12–
15). It could inhibit apoptosis of cancer cells, and induce
chemoresistance of cancer (16–18). What’s more, it is closely
related to EMT. Zhang et al. (19) reported that high expressed
GRP78 induced EMT in hepatocellular carcinoma cell lines.
Lizardo et al. (20) that up-regulation of GRP78 in metastatic
cancer cells is necessary for lung metastasis in some highly
metastatic cell line models, such as osteosarcomas and murine
mammary adenocarcinoma. Zhang et al. (21) demonstrated that
overexpressing GRP78 facilitated the expression and secretion of
TGF-beta1, which further activated EMT. However, Chang et al.
(22) stated that overexpressing GRP78 inhibited the metastasis of
colon cancer through EMT biomarkers. Thus far, the relationship
between GRP78 expression and EMT remains controversial.
Whether GRP78 expression has causality link with EMT in
lung cancer also remains unknown. Hence, the present study
aims to examine the role of up-regulation of GRP78 in EMT
in lung adenocarcinoma and explore the downstream molecular
pathways involved.

METHODS

Cell Culture and Conditioning
Human lung adenocarcinoma A549 cells were purchased
from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China) and cultured in RPMI-1640 medium (Gibco,
USA) supplied with 10% FBS (Gibco, USA) and 100 U/ml
penicillin/streptomycin in 5% CO2 incubator at 37◦C. The

medium was changed every 3 days. The cells were treated with
normal O2 as control.

A549 cells were cultured with 2% O2 for hypoxia condition.
The concentration of protein inhibitors for treatment of
A549 cells were as follows: 550 nM SB505124 (phospho-
Smad2/3 inhibitor), 25 nM KX2-391 (phospho-Src inhibitor),
100 nM JNK-IN-8 (phospho-JNK inhibitor), 2.5µM SB203580
(phospho-p38 inhibitor), and 1.5µM FR180204 (phospho-
ERK). All of the inhibitors were purchased from Celleck
Chemicals (USA).

Assessment of Cell Morphology
Morphological changes were examined using phase-contrast
microscopy (Olympus, Japan).

Real-Time Quantitative Fluorescent PCR
Experiments were performed following the methods in our
previous study. The cells were collected to extract total RNA
using Trizol method. The cDNA was synthesized with Prime
Script TMRT Master Mix (RR036A; Takara, Japan) through
reverse transcription and used as template to amplify target
genes with real-time quantitative fluorescent PCR with SYBR R©

Premix Ex TaqII (RR820A; Takara, Japan). The specific primers
(Invitrogen, USA) of each transcription factor (Snail1, Snail2,
Twist, ZEB1 and ZEB2) were also based on such study (23).
The reaction condition was 95◦C for 30 s, followed by 95◦C for
5 s and 60◦C for 30 s with 40 cycles. The amplified productions
were quantitatively analyzed with 2-11Ctmethod. All tests were
repeated three times.

Western Blot Analysis
Experiments were performed following the methods in our
previous study. The specific program and concentration of each
antibody were also based on such study (23). Briefly, the protein
was extracted with PIRA buffer and centrifuged at 12,000 g for
15min at 4◦C. Fiftymicrogram total proteins were separated with
10%SDS-PAGE. After electrophoresis, proteins were blotted to
polyvinylidene fluoride (PVDF) membranes and then blocked
with 5% skim milk powder with 0.1% Tween-20. The blots
were then probed at 4◦C overnight with the relevant primary
antibodies respectively, and incubated in 4◦C for overnight. The
membranes were rinsed with TBST for 3 times, 10min each
time. Then secondary goat anti-rabbit or anti-mouse IgG-HRP
antibodies were added for incubation in room temperature for
2 h. The membranes were rinsed with TBST for 3 times, and
10min per time. Then the membranes were developed with ECL
(Beijing Kangwei Biotech, China) and taken photos to analyze the
relative expression of proteins with GAPDH as internal referral.
All tests were repeated three times.

Immunofluorescence Staining
Cells were cultured on six-well chamber slides for
immunofluorescent staining. The cells were fixed in 4%
paraformaldehyde for 30min at room temperature. After
washing with PBS three times for 10min each time, the cells
were permeabilised with 0.1% Triton X-100 in PBS for 15min.
After three washes with PBS, the cells were blocked with 5%
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BSA for 30min at room temperature. The cells were incubated
with the indicated GRP78 antibody (1:250) overnight at 4◦C,
washed three times with PBS and incubated with fluorescent
secondary antibodies. Nuclear staining was performed in the
dark with DAPI at room temperature. Phase contrast and
fluorescent microscopy was performed using an NikonTi-U
Inverted Fluorescence Microscope (Nikon, Japan).

Plasmid Transfection and Identification
GRP78 short hairpin RNA(GRP78shRNA) eukaryotic expression
plasmid was designed and synthesized by Invitrogen, USA.
Transfection and identification were conducted according to
the protocol of Lipofectamine 3000. using previously published
methods (24). Briefly, 7.5 µl Lipofectamine 3000 Reagent was
diluted with 125 µl Opti-MEM media, then blended with a
diluted plasmid DNA which diluted by 10 µl P3000 Reagent and
125 µl Opti-MEM media. After incubating for 5min, the overall
mixture was added into the culture cells and cultured for 72 h.
The cells carrying green fluorescence are plasmids transfected
successfully in inverted microscope. 20µg/ml blasticidin was
used to screen the cells and the maintenance concentration of
blasticidin is 10µg/ml. Blank shRNA was used as a control. The
mRNA and protein expression levels of GRP78 decreased by 70
and 85.33%, respectively, suggesting successful transfection.

Statistical Analysis
Data were expressed as mean ± SD. Comparison between two
groups was performed with t-test for independent samples.
Comparison among multiple groups was performed with one-
way ANOVA following LSD (equal variances) or Dunnett’s t-test
(unequal variances). P<0.05 was set as the significance level. All
analyses were performed using SPSS 22.0 software.

RESULTS

Activation of EMT by Hypoxia in A549 Cells
A549 cells cultured under hypoxia condition for 72 h showed
morphological changes, from oblate fusiform-shaped epithelial
cells to elongated spindle-shapedmesenchymal cells (Figure 1A).
The expression levels of EMT-related genes including Snail1,
Snail2, Twist, ZEB1, and ZEB2 were increased by approximately
three times under hypoxic condition compared with that in the
control group. TheWestern blot analysis showed that the protein
expression of E-cadherin (biomarker of epithelial phenotype)
under hypoxia found to be approximately three times less than
that in the control group. The expression levels of vimentin
and fibronectin (biomarker of mesenchymal phenotype) were
increased by 1.48 and 1.22 times, respectively, under hypoxia
condition compared with that in the control group (P < 0.05
compared with Normoxia, Figures 1B,C).

Expression of GRP78 Under Normoxia and
Hypoxia Conditions
The expression and location of the GRP78 protein in A549
cells under hypoxia and normoxia conditions were determined
by immunofluorescence staining. Under normoxia condition,
GRP78 (green fluorescence) showed weak staining intensity and

wasmainly distributed in the cytoplasm (Figure 1A). By contrast,
under hypoxia, A549 cells showed an elongated spindle-shaped
mesenchymal phenotype, and GRP78 showed strong staining
intensity and was mainly distributed in the cytoplasm and cell
membrane (Figure 1A). The Western blot analysis showed that
the expression of GRP78 in A549 cells under hypoxia was found
to be 1.36 times more than that under normoxia (Figure 1B).

Effect of GRP78 Knockdown on the
Expression of EMT Markers
The expression of GRP78 in GRP78 knockdown A549 cells under
hypoxia was reduced by 70% compared with that under hypoxia.
In A549 cells transfected with GRP78 shRNA under hypoxia,
the expression levels of vimentin and fibronectin significantly
decreased by 52 and 60%, respectively. Meanwhile, the mRNA
expression levels of transcription factors (Snail1, Snail2, Twist,
ZEB1, and ZEB2) were significantly inhibited under hypoxia
condition and decreased by approximately 70% compared with
that in the normoxia group (Figures 1B,C). The significant
change in the expression of EMT biomarkers and its transcription
factor mRNAs after GRP78 knockdown indicated that GRP78
might play an important role in hypoxia-induced EMT.

Expression of Smad2/3, Src, p38, ERK and
JNK in A549 Cells Under Hypoxia Condition
The expression levels of phosphorylated Smad2/3, p38, and
JNK in A549 cells significantly increased by approximately 2.4
times under hypoxia condition compared with those under
normoxia condition, whereas the levels of the phosphorylated
Src and ERK increased by approximately 1.8 times (all p <

0.05, Figure 2A). Hence, these signaling pathways were activated
under hypoxia condition.

The inhibitors of Smad2/3, Src, p38, ERK, and JNK were used
to treat A549 cells under hypoxia condition to further verify
the relationship between these signaling molecules with hypoxia-
induced EMT. The expression levels of EMT proteinmarkers and
transcription factor mRNAs were also examined. The changes in
EMT protein markers and transcription factor mRNAs in A549
cells were approximately similar to that in the group treated with
Smad2/3 and Src inhibitors. The levels of vimentin, fibronectin
and mRNAs decreased by approximately 50%, whereas that of
E-cadherin increased by 2-fold compared with those in the cells
under hypoxia. The change in the three other groups was found
to be smaller than that in the group treated with Smad2/3 and
Src inhibitors. The levels of vimentin, fibronectin and mRNAs
were reduced by approximately 30%. Hence, EMT is inhibited
in A549 cells when the activation of Smad2/3, Src, p38, ERK, and
JNK proteins is inhibited under hypoxia (Figure 2B).

The changes in the expression of EMT protein markers were
compared in A549 cells transfected by GRP78shRNA or treated
by different protein inhibitors under hypoxia condition. The
changes in the mRNA expression of EMT markers and signaling
molecules were the most evident in GRP78 knockdown cells (P
< 0.05 compared with the other groups, Figures 3A,B). Similar
results were obtained on the protein expression of signaling
molecules (Smad2/3, Src, p38, ERK, and JNK). After GRP78
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FIGURE 1 | Up-regulation of GRP78 plays an important role in hypoxia-induced EMT in A549 cells. (A) A549 cells acquire spindle-shaped mesenchymal morphology
after 72 h of 2% O2 hypoxia (left, 100×). GRP78 (green fluorescence) is highly expressed in A549 cells with spindle-shaped mesenchymal morphology (right, 100×).
(B) EMT-related markers (E-cadherin, Vimentin and Fibronectin) and GRP78 were examined by Western blot analysis (left). GAPDH was used as internal control. The
protein relative value (GAPDH) is plotted in the right panel (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells under the condition of
normal oxygen, the expression of E-cadherin decreases, while those of Vimentin and Fibronectin increase in A549 cells under hypoxia (2% O2 72 h). The expression of
GRP78 also increases in A549 cells under hypoxia. #P < 0.05, compared with the A549 cells under the condition of hypoxia; the expression of E-cadherin increases,
and those of Vimentin and Fibronectin decrease in GRP78 knockdown A549 cells under hypoxia. (C) EMT-related genes including Snail1, Snail2, Twist, ZEB1, and
ZEB2 were examined by real-time quantitative PCR; mRNA expression relative value (control group) is plotted (mean ± SD in three separate experiments). *P < 0.05,
compared with A549 cells in the control group, the mRNA expression levels of EMT-related genes including Snail1, Snail2, Twist, ZEB1, and ZEB2 increase under
hypoxic condition (2% O2 72 h); #P < 0.05, compared with A549 cells under the condition of hypoxia, the mRNA expression levels of EMT-related genes decrease in
GRP78 knockdown A549 cells under hypoxia.
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FIGURE 2 | Activation of Smad2/3, Src, p38, ERK, and JNK is important in hypoxia-induced EMT in A549 cells. (A) Smad2/3, Src, p38, ERK, JNK, and their
phosphorylated forms were examined by Western blot analysis (left). GAPDH was used as internal control. The protein relative value (GAPDH) is plotted in the right
panel (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells in the normal oxygen environments, the Smad2/3, Src, and MAPK proteins of
A549 cells are highly regulated and activated in hypoxia environments. (B) EMT markers were examined by Western blot analysis (left). GAPDH was used as internal
control. The protein relative value (GAPDH) is plotted in the right panel (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells in the normal
oxygen environments, the EMT process of A549 cells under hypoxia is activated; #P < 0.05, compared with A549 cells in the hypoxia environments, the EMT process
of A549 cells under hypoxia is inhibited separately by Smad2/3, Src, p38, ERK, and JNK inhibitors. The expression levels of Fibronectin and Vimentin decrease, and
that of E-cadherin increases.

silencing, the expression of Smad2/3, Src, p38, ERK, and JNK and
their phosphorylated proteins in hypoxia cells was significantly
inhibited compared with that in the vehicle control under
hypoxia (P < 0.05, Figures 3C, 4A).

Different effects were observed on the expression of the
signaling molecules after inhibition of a particular pathway. After
Smad2/3 inhibition, the expression of the four other signaling
molecules did not significantly change (P > 0.05, Figures 4A,B).
After inhibition of Src, JNK, ERK, and p38 pathways, the
expression of Smad2/3 was not significantly changed (P>0.05,
Figures 4A,C). After inhibiting Src, the activation of p38, ERK,
and JNK (MAPK pathway) was also inhibited (P < 0.05,
Figures 4A,D).

DISCUSSION

This study shows that GRP78 highly expressed under hypoxia
condition is likely to play an essential role in hypoxia-
induced EMT in A549 cells. This main finding is supported

by the following observations: (1) the expression of GRP78
was significantly elevated under hypoxia condition and closely
associated with the changes in the EMT markers; (2) GRP78
silencing significantly inhibited hypoxia-induced EMT markers;
and (3) GRP78 silencing inhibited the expression of several
signaling molecules, especially Smad2/3. This work is the first
to demonstrate that GRP78 has a causal relationship with
hypoxia-induced EMT in lung adenocarcinoma. Hence, targeted
inhibition on GRP78 might could hamper EMT, which could
further inhibit metastasis and overcome therapeutic resistance.

GRP78 was highly expressed in lung cancer cells under
hypoxia condition; this finding is consistent with those reported
by Song and Pi (25, 26). Chronic hypoxia induced GRP78
in human cancer cells possibly through the protein kinase C-
epsilon/ERK/AP-1 signaling cascade (25).

A causal relationship between high GRP78 expression and
EMT was confirmed by the GRP78 knock-down experiment.
A very strong correlation was found between changes in the
expression of GRP78 and EMT markers. Previous studies
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FIGURE 3 | GRP78 is the upper reaches of the Smad2/3, Src and MAPK pathways in hypoxia-induced EMT in A549 cells. (A) The mRNA relative value (control
group) of EMT transcription factors is plotted (mean ± SD in three separate experiments). *P < 0.05, compared with EMT transcription factors in A549 cells under
hypoxia condition separately inhibited by Smad2/3, Src, p38, ERK, and JNK inhibitors, the expression is higher than that in GRP78 knockdown A549 cells under
hypoxia. (B) The protein relative value (GAPDH) of EMT markers was examined by Western blot analysis and plotted (mean ± SD in three separate experiments). *P <

0.05, compared with EMT markers of A549 cells under hypoxia condition separately inhibited by Smad2/3, Src, p38, ERK, and JNK inhibitors, the expression is
higher than that in GRP78 knockdown A549 cells in the hypoxia. (A,B) indicate that the inhibition effect of GRP78 silencing is more powerful than those of the five
other inhibitors. (C) The protein relative values (GAPDH) of Smad2/3, Src, p38, ERK, JNK, and their phosphorylated forms were examined by Western blot analysis
and plotted (mean ± SD in three separate experiments). *P < 0.05, compared with A549 cells under hypoxia, the expression levels of Smad2/3, Src, p38, ERK, JNK,
and their activation forms decrease compared with those in GRP78 knockdown A549 cells under hypoxia. After GRP78 silencing, the expression and activation of
these proteins are inhibited significantly.
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FIGURE 4 | Smad2/3 and Src/MAPK are two dependent signaling pathways in hypoxia-induced EMT in A549 cells. (A) Smad2/3, Src, p38, ERK, JNK, and their
phosphorylated forms were examined by Western blot analysis. (B) Compared with the expression levels of Src, JNK, p38, ERK, and their activation forms in A549
cells under hypoxia, their expression levels do not change after inhibiting the activation of Smad2/3. (C) Compared with the expression levels of Smad2/3 and
p-Smad2/3 in A549 cells under hypoxia, their expression does not change after inhibiting the activation of Src, JNK, ERK and p38. (D) *P < 0.05, compared with the
expression levels of p38, ERK, JNK (three forms of MAPK) and their activated forms in A549 cells under hypoxia, their expression levels decrease after inhibiting the
activation of Src. MAPK is the downstream pathway of Src.

suggested that other methods for silencing GRP78 could inhibit
EMT. For example, neutralization of endogenous GRP78 on
the cell surface with the anti-GRP78 antibody inhibited the
ability of adhesion and invasion of hepatocellular carcinoma
cell lines Mahlavu and SMMC7721 (19). The mitigation of
GRP78 up-regulation by using short hairpin RNA or treatment
with the small molecule IT-139 inhibited metastatic growth in
the lung microenvironment in four highly metastatic cell line
models (three human osteosarcomas and one murine mammary
adenocarcinoma) (20). However, no rational interpretation is
available regarding the inconsistency on the relationship between
GRP78 expression and EMT in colorectal cancer.

The mechanism of GRP78 downstream signaling for EMT
promotion has been demonstrated. Cell surface GRP78 can
accelerate breast cancer cell proliferation and migration by
activating STAT3 (27). We found two key molecular pathways

(Smad2/3 and Src/MAPK) of GRP78 that may play an important
role in hypoxia-induced EMT by using multiple protein
inhibitors. These findings were consistent with those of previous
works. Li et al. reported that overexpressing or knocking down
GRP78 induced the corresponding activation or inhibition of the
Smad2/3 pathway in colon cancer cells (28). Zhao et al. reported
that GRP78 interacted directly with Src, thereby promoting
the phosphorylation of Src in hepatocellular cancer cells (29).
Tanjore et al. also suggested that the combination of the Smad2/3
inhibitor (SB431542) and the Src kinase inhibitor (PP2) blocked
the EMT of alveolar epithelial cells induced by ER stress inducer
tunicamycin, which also induced high GRP78 expression (30). In
the present study, the activation of the Smad2/3 and Src/MAPK
pathways follows the same trend with the up-regulation of
GRP78; moreover, knockdown of GRP78 inhibited the activation
of Smad2/3 and Src, suggesting a causal link between GRP78
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FIGURE 5 | GRP78 mediates hypoxia-induced EMT through smad2/3 and SRC/MAPK signaling. Hypoxia induced the high expression of GRP78. High expressed
GRP78 activated the smad2/3 and Src/MAPK pathway. The pathway activated the expression of EMT transcription factor (snail, Twist and ZEB) and collaborated with
them to induce the expression of Fibronectin, Vimentin and inhibit the expression of E-cadherin.

and activation of the two pathways in lung cancer. Smad2/3
inhibition did not interact with the inhibition of Src, p38,
ERK, and JNK. By contrast, inhibiting the activation of Src was
accompanied by the inhibition of p38, ERK, and JNK. Hence,
the Smad2/3 and Src/MAPK pathways are two independent
downstream signaling pathways of GRP78 during hypoxia-
induced EMT in A549 cells. However, we did not perform
the knockdown experiment of Smad2/3 and Src, and the co-
immunoprecipitation experiment; as such, we cannot provide
additional evidence for such link. And the control shRNA
was not applied in the present study, which might limiting
its evidence.

Other pitfall of the present study is that we have not explored
the relationship between GRP78 and HIF1a, which is a key
regulator on hypoxia induced EMT. But there are some evidences
in other cell lines, that the expression of GRP78 is regulated by
HIF1a (31). What’s more, all the results in the study are limited
to one cell line, limiting its evidence.

In summary, this study demonstrated the possible
causal link between GRP78 and hypoxia-induced EMT
in A549 cells (Figure 5). Together with its roles in
anti-apoptosis and chemoresistance, it indicates that
GRP78 might be a potential target for treatment of
lung adenocarcinoma. Further, studies are needed
to elucidate the exact mechanisms involved in the
GRP78-EMT pathway in hypoxia and their relevant
clinical significance.
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Urokinase plasminogen activator receptor (uPAR), a member of the lymphocyte antigen 6

protein superfamily, is overexpressed in different types of cancers and plays an important

role in tumorigenesis and development. In this study, we successfully targeted uPAR

by CRISPR/Cas9 system in two human cancer cell lines with two individual sgRNAs.

Knockout of uPAR inhibited cell proliferation, migration and invasion. Furthermore,

knockout of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and doxorubicin

in these cells. Although there are several limitations in the application of CRISPR/Cas9

system for cancer patients, our study offers valuable evidences for the role of uPAR in

cancer malignancy and drug resistance.

Keywords: cancer, uPAR, CRISPR/Cas9, malignancy, drug resistance

INTRODUCTION

Urokinase plasminogen activator (uPA) receptor (uPAR), also known as CD87 and encoded
by PLAUR gene, is a member of the lymphocyte antigen 6 protein superfamily (1). uPAR
is a glycoprotein consisting of 313 amino acid residues with only the extracellular domain,
no transmembrane and intracellular structures, and is attached to the cell membrane via
glycosylphosphatidylinositol anchors (1). uPAR binds to and activates uPA to cleaving plasminogen
to plasmin, thus triggering the remodeling of extracellular matrix and playing a key role in cell
adhesion, migration, proliferation, and survival (2). Besides uPA, uPAR can interact with other
proteins, including vitronectin, integrins, and EGFR, etc to regulate multiple signal pathways (2).
Compared to normal tissues, uPAR is highly expressed in many human cancers including lung,
breast, gastric, colorectal, pancreatic, bladder, and prostate cancers, etc (3). The expression of uPAR
in these cancers promotes the proliferation, metastasis, and invasion of cancer cells (3). Therefore,
uPARmay be an important biomarker and target for cancers. Indeed, many inhibitors of uPAR have
been developed. The inhibitors blocks the interaction of uPARwith uPA, including: small molecules
UK1 (4), WX-UK1 (5), WX-671 (6), etc; peptides Mupain-1 (7), AE105 (8), ATF (9), etc; and
monoclonal antibody ATN-291 (10). In addition, there are inhibitors that inhibit the interaction
of uPAR with integrins, including: peptides P25 (11), a325 (12), H245A (13), etc; and monoclonal
antibody ATN-658 (14). However, the poor affinity and bioavailability limit the application of these
inhibitors in clinic. Consequently, it is necessary to develop new approaches to target uPAR for
treatment cancer and other diseases.
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The RNA-guided clustered regularly interspaced short
palindromic (CRISPR) in combination with a CRISPR-
associated nuclease 9 (Cas9) nuclease system is a novel gene
editing technology by delivering the Cas9 complexed with a
synthetic guide RNA (gRNA) into a cell to cut the desired
genome location, allowing existing genes to be removed and/or
new ones added (15). Due to the advantages of faster, cheaper,
more accurate, and efficient, CRISPR/Cas9 system has been
widely used as a basic biology research tool, development of
biotechnology products and potentially to treat diseases (16).
In this study, we used CRISPR/Cas9 system targeting uPAR to
verify the role of uPAR in cancers.

MATERIALS AND METHODS

Cells and Reagents
The two multidrug resistant cancer cell lines HCT8/T and
KBV200 were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% FBS, penicillin (100 U/ml) and streptomycin
(100 ng/ml) at 37◦C in a humidified atmosphere of 5%
CO2. Restriction endonuclease BsmBI was from New England
Biolabs. Polyetherimide (PEI) was from Ploysciences. Cisplatin
was from Shandong Qilu Pharmaceutical. 5-FU, docetaxel,
and doxorubicin were from LC Laboratories. Puromycin was
from Selleck Chemicals. Methylthiazolyldiphenyl-tetrazolium
bromide (MTT) was from ApexBio Technology. Anti-uPAR
(D121140) antibody was from Shanghai sangon biotech. Anti-
Vinculin antibody (BM1611) was fromWuhan Boster Biotech.

Vector Generation, Lentivirus Production,
and Transduction
LentiCRISPRv2 vector (fromAddgene #52961) was digested with
BsmBI and ligated with annealed oligonucleotides (uPAR-sg1-
F: 5′-CACCGGACCAACGGGGATTGCCGTG-3′, uPAR-sg1-
R: 5′-AA-ACCACGGCAATCCCCGTTGGTCC-3′; uPAR-sg2-F:
5′-CACCGGGACCACGATCGTGCGCTTG-3′, uPAR-sg2-R: 5′-
AAACCAAGCGCACGATCGTGGTCCC-3′). HEK293T were
transfected using PEI at 70% confluency with recombinant
vectors and packaging vectors pMD2G and psPAX2. Viral
supernatant was harvested 96 h after transfection and stored at
−80◦C. HCT-8/T and KBV200 cells were transducted with viral
supernatant containing 10µg/ml polybrene, and were selected
with 100 and 10µg/ml puromycin respectively to establish the
stable cell lines.

Genomic PCR and Sequencing Analysis
The genomic DNA of cells was extracted with the QuickExtract
DNA extraction kit following the manufacturer’s protocol
and amplified with a pair of primers (Detection 1-F:
5′-GACAACGGACAGACTGGAA-3′, Detection 1-R: 5′-
CCGAATCGCTCTAAGTGG-3′) designed for the target region
of interest using a Pfu DNA polymerase. Followed by agarose gel
electrophoresis and ethidium bromide staining, the purified PCR
products were sequencing with an ABI 3131xl Genetic analyzer.

Western Blot Analysis
Cells were harvested and lysed in RIPA buffer (1% NP-
40, 0.5% sodium deoxycholate, 0.1%SDS, 10 ng/ml PMSF,
0.03% aprotinin, 1µM sodium orthovanadate) at 4◦C for
30min. Lysates were centrifuged for 10min at 14,000×g and
supernants were stored at −80◦C as whole cell extracts. Protein
concentration was quantified using with Bradford assay. Proteins
were separated on 10% SDS-PAGE gels and transferred to
polyvinylidene difluoride membranes. Membranes were blocked
with 5% BSA and incubated with the indicated primary
antibodies. Corresponding horseradish peroxidase-conjugated
secondary antibodies were used against each primary antibody.
Proteins were detected using the chemiluminescent detection
reagents and films.

Cell Morphology Assay
Cells were seeded on glass cover slips for 24 h and then fixed in
4% paraformaldehyde for 20min and permeabilized with 0.1%
Triton X-100 for 15min at room temperature. The coverslips
were incubated in the dark with 100 nM rhodamine-phalloidin at
room temperature for 30min. Nuclei were counterstained with
100 nM DAPI. The coverslips were rinsed in PBS and inverted
on a drop of anti-fade mounting media on a glass slide. Then,
these slides were sealed with neutral balsam and viewed under
the confocal microscope.

Cell Viability Assay
Cells were seeded into a 96-well plate at a density of 5,000
cells/well and treated with various concentrations of agents
for 72 h. Then 10 µl MTT was added to each well at a final
concentration of 0.5 mg/ml. After incubation for 4 h, formazan
crystals were dissolved in 50 µl of DMSO, and absorbance
at 570 nm was measured by plate reader. The concentrations
required to inhibit growth by 50% (IC50) were calculated from
survival curves as previously described (17).

Sphere Formation Assay
Cells were trypsinized, suspended in medium containing 0.3%
agar and 10% FBS and seeded at a density of 5× 102 cells/well in
a 12-well plate. The agar–cell mixture was plated onto a bottom
layer with 0.5% agar. Then treated cells were incubated in a
humidified incubator and fresh medium was added every 3 days.
Two weeks later, colonies were analyzed microscopically.

Cell Migration Assay
Cells were seeded into a 6-well plate, and reached 80–90%
confluence, the cell monolayer was wounded using a sterilized
10 µl pipette tip and washed with PBS two times. Cells were
allowed to migrate for 12, 24, and 36 h in serum-free medium,
and the wounds were observed and captured. The gap lengths
were measured from the photomicrographs.

Cell Invasion Assay
Cell invasion assays were performed with a modified Boyden
chamber (Corning) containing matrigel-coated polycarbonate
membrane filter (6.5mm diameter, 8µm pore size). Cells
were plated in the upper chamber and the lower chamber
contained medium with 10% FBS, and incubated for 24 h
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at 37◦C in 5% CO2. Non-migrated cells were scraped
from the upper surface of the membrane, and migrated
cells remaining on the bottom surface were photographed
and counted.

Statistical Analysis
The experimental data of this paper are the results of three
independent repetitions. The data obtained is presented in the
form of an average and a standard deviation. Statistical analysis

FIGURE 1 | Knockout of uPAR by CRISPR/Cas9 system. (A) The map of lentiCRISPRv2 vector. (B) The locations and sequences of two sgRNAs of uPAR. (C) The

protein expression levels of uPAR were examined by Western blot, and vinculin was used as loading control. The genomic DNA of cells was amplified and sequenced

by the designed primers. The sequencing comparison and original data of HCT8/T (D) and KBV200 (E) cells are shown.
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of data differences using t-test method. A P-value of <0.05 was
set as the criterion for statistical significance.

RESULTS

Knockout of uPAR by CRISPR/Cas9
System
To target uPAR with CRISPR/Cas9 system, we firstly used
lentiCRISPRv2 vector which expresses both hSpCas9 and the
chimeric guide RNA (Figure 1A) linked respectively, with
two targeting sequences from exon 2 of human uPAR gene
(PLAUR) end with a 5′NGG3′ PAM (protospacer adjacent motif)
sequence (Figure 1B). Then, the two successfully generated
vectors expressed sgRNA1 (sg1) or sgRNA2 (sg2) to target
uPAR were identified by sequencing. To establish cell lines
stably expressed sgRNA to target uPAR, HCT8/T, and KBV200

cells were selected with puromycin after transduction with
LentiCRISPRv2 viral supernatant. As shown in Figure 1C, the
protein levels of uPAR were undetectable by western blot in
both HCT8/T and KBV200 cells stably expressed either sg1
or sg2. To further identify the genomic change of targeting
uPAR by CRISPR/Cas9 system, the genomic DNA of cells was
extracted and amplified using the designed primers by PCR
reaction. The sequencing results of PCR productions showed
that 1 base was inserted into the target position of HCT8/T
uPAR-sg1 cells and 3 base mismatches and a large deletion
in the target position of HCT8/T uPAR-sg2 cells (Figure 1D).
There were 16 base deletions and 12 base mismatches in
the target position of KBV200 uPAR-sg1 cells and 51 base
deletions and 3 base mismatches in the target position of
KBV200 uPAR-sg2 cells (Figure 1E). These data suggest that cells
with stable knockout of uPAR by CRISPR/Cas9 system were
successfully established.

FIGURE 2 | Knockout of uPAR alters cell morphology. The morphology of HCT8/T (A) and KBV200 (B) cells was obtained with confocal microscope.
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Knockout of uPAR Alters Cell Morphology
To explore the effect of knockout of uPAR on cell morphology,
we stained cells with Rhodamine-labeled phalloidin and DAPI.
The results showed that HCT8/T and KBV200 cells with uPAR
knockout underwent morphologic changes from spindle-shaped
phenotype to round phenotype (Figures 2A,B), indicating that
knockout of uPAR alters cell morphology.

Knockout of uPAR Attenuates Cell
Proliferation
To investigate the effect of knockout of uPAR on cell
proliferation, we detected cell proliferation by MTT and sphere
formation assays. As shown in Figure 3A, knockout of uPAR

inhibited the growth of HCT8/T and KBV200 cells. Further
sphere formation assay showed that knockout of uPAR reduced
the sphere number and size of HCT8/T and KBV200 cells
(Figures 3B–E). These results suggest that knockout of uPAR
attenuates cell proliferation.

Knockout of uPAR Inhibits Cell Migration
To examine the effect of knockout of uPAR by CRISPR/Cas9
on cell migration, wound healing assay was used to detect
cell migration. The results showed that cell migration was
reduced in HCT8/T and KBV200 cells with uPAR knockout
(Figure 4), indicating that knockout of uPAR inhibits
cell migration.

FIGURE 3 | Knockout of uPAR attenuates cell proliferation. (A) Cell proliferation was evaluated by MTT assay. Representative spheres images and quantification of

HCT8/T (B,C) and KBV200 (D,E) cells were determined by sphere formation assay. **P < 0.01 vs. corresponding control.
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FIGURE 4 | Knockout of uPAR inhibits cell migration. Cell migration was determined with wound healing assay. Representative migration images and quantification of

HCT8/T (A,B) and KBV200 (C,D) cells were shown. *P < 0.05 and **P < 0.01 vs. corresponding control.

Knockout of uPAR Inhibits Cell Invasion
To further evaluate the effect of knockout of uPAR by
CRISPR/Cas9 on cell invasion, transwell assay was used to
detect cell invasion. As shown in Figure 5, cell invasion
was reduced in HCT8/T and KBV200 cells with uPAR
knockout, suggesting that knockout of uPAR inhibits
cell invasion.

Knockout of uPAR Decreases Multidrug
Resistance
To study the effect of knockout of uPAR by CRISPR/Cas9
on multidrug resistance, four chemotherapeutical drugs
5-FU, cisplatin, docetaxel, and doxorubicin were used to
treat cells, and cell survival was detected by MTT assays.
As shown in Figure 6, the cell survival curves shifted
to downward, and IC50 values of these four drugs were
reduced in HCT8/T and KBV200 cells with uPAR knockout.
These data indicate that knockout of uPAR suppresses
multidrug resistance.

DISCUSSION

Recently, it has been demonstrated that knockout of uPAR
using CRISPR/Cas9 system in mouse neuroblastoma Neuro
2A cells inhibit cell proliferation, reduce the number of Ki-67
positive cells, and down-regulate the mRNA expression level
of TrkC receptor (18). In the current study, we successfully
targeted uPAR in two cancer cell lines by CRISPR/Cas9 system
with two individual sgRNAs. Knockout of uPAR suppresses
cell proliferation, migration and invasion. Moreover, knockout
of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and
doxorubicin in these cells. Previous studies have shown that high
expression of uPAR leads to small cell lung cancer, head and neck
squamous cell carcinoma, and malignant pleural mesothelioma
resistant to chemotherapy (19–21). uPAR promotes the resistance
to tamoxifen in breast cancer by activated ERK1/2 activity (22),
and confers the resistance to gefitinib in non-small-cell lung
cancer through activated EGFR/pAKT/survivin signal pathway
(23). Therefore, uPAR plays important roles not only in cancer
malignancy but also in drug resistance.
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FIGURE 5 | Knockout of uPAR inhibits cell invasion. Cell invasion was determined with transwell assay. Representative invasion images and quantification of HCT8/T

(A,B) and KBV200 (C,D) cells were shown. **P < 0.01 vs. corresponding control.

FIGURE 6 | Knockout of uPAR decreases multidrug resistance. Cells survival was measured by MTT assay. The representative growth curve of HCT8/T (A) and

KBV200 (B) cells treated with the indicated concentrations of 5-FU, cisplatin, docetaxel, and doxorubicin for 72 h were shown.
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CRISPR/Cas9 system has been widely applied in exploring
the molecular mechanism of tumorigenesis, generating the
models for cancer research and identifying the targets for cancer
treatment, etc. A genome-wide CRISPR screen shows that loss-
of-function mutations of some genes including NF2, PTEN,
CDKN2A, TRIM72, FGA, miR-152, miR-345, and so on are able
to drive tumor growth and metastasis in a mouse model (24).
Using CRISPR/Cas9 technology to target MAN2A1-FER fusion
gene inhibits tumor proliferation and metastasis in the mouse
models of prostate and liver cancer (25). Colorectal cancer from
normal human intestinal epithelium organoids are generated
by introducing mutations in the tumor suppressor genes APC,
SMAD4 and TP53, and oncogenes KRAS and/or PIK3CA with
CRISPR/Cas9 system (26, 27). Liver tumors in mice are occurred
by using hydrodynamic injection of CRISPR/Cas9 plasmids and
sgRNAs that directly target the tumor suppressor genes PTEN
and p53 (28). Mouse pancreatic ductal adenocarcinoma models
are established by introducing 13 sgRNAs of different tumor
suppressor genes into expression vectors and then transferred
them to mouse pancreatic tissue (29). CDC25A is identifies as
a determinant of sensitivity to ATR inhibitors by a genome-
wide CRISPR screen (30). Deletion of genes such as NF1 and
MED12 with CRISPR/Cas9 system is associated with resistance
to vemurafenib (31).Moreover, the combination of CRISPR/Cas9
gene editing technology and immunotherapy, especially with
CAR-T cell therapy, will have enormous therapeutic potential
in leukemia, lymphoma, and some solid tumors (32, 33). Using
CRISPR/Cas9 system can produce universal CAR-T cells by
simultaneously targeting TCR and HLA-I (34) and enhanced
CAR-T cells by deleting T cell inhibitory receptor or signaling
molecule genes such as PD1 and CTLA4 (33, 35). We previously
have demonstrated that targeting ABCB1 by CRISPR/Cas9-based

genome editing reverses ABCB1-mediated multidrug resistance
in cancer cells, resulting in the increase of the sensitivity
and intracellular accumulation of the anti-cancer drugs (36).
Although there are several limitations such as off-targets and
delivery in the clinical application of CRISPR/Cas9 technology, it
is believed that CRISPR/Cas9 system will benefit cancer patients
in the near future.

In summary, our results have demonstrated that targeting
uPAR by CRISPR/Cas9-based genome editing causes knockout
of uPAR in human cancer cell lines, resulting in attenuation of
cell proliferation, migration, invasion and multidrug resistance.
Our study offers valuable evidences for the role of uPAR in cancer
malignancy and drug resistance.

AUTHOR CONTRIBUTIONS

KW, Z-HX, and ZS designed the experiments, performed the
experiments, analyzed the data, and wrote the paper. Q-WJ,
YY, J-RH, M-LY, M-NW, YL, S-TW, and KL performed the
experiments. All authors read and approved the final manuscript.

FUNDING

This work was supported by funds from the National
Key Research and Development Program of China No.
2017YFA0505104 ZS, the National Natural Science Foundation
of China No. 81772540 ZS, the Guangdong Natural Science
Funds for Distinguished Young Scholar No. 2014A030306001
ZS, the Guangdong Special Support Program for Young Talent
No. 2015TQ01R350 ZS, the Science and Technology Program
of Guangdong No. 2016A050502027 ZS, the Science and
Technology Program of Guangzhou No. 201704030058 ZS.

REFERENCES

1. Mahmood N, Mihalcioiu C, Rabbani SA. Multifaceted role of the

urokinase-type plasminogen activator (uPA) and its receptor (uPAR):

diagnostic, prognostic, and therapeutic applications. Front Oncol. (2018) 8:24.

doi: 10.3389/fonc.2018.00024

2. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol

Cell Biol. (2010) 11:23–36. doi: 10.1038/nrm2821

3. Noh H, Hong S, Huang S. Role of urokinase receptor in tumor progression

and development. Theranostics. (2013) 3:487–95. doi: 10.7150/thno.4218

4. Setyono-Han B, Sturzebecher J, Schmalix WA, Muehlenweg B, Sieuwerts

AM, Timmermans M, et al. Suppression of rat breast cancer metastasis

and reduction of primary tumour growth by the small synthetic

urokinase inhibitor WX-UK1. Thromb Haemost. (2005) 93:779–86.

doi: 10.1160/TH04-11-0712

5. Zhu M, Gokhale VM, Szabo L, Munoz RM, Baek H, Bashyam S, et al.

Identification of a novel inhibitor of urokinase-type plasminogen activator.

Mol Cancer Ther. (2007) 6:1348–56. doi: 10.1158/1535-7163.MCT-06-0520

6. Heinemann V, Ebert MP, Pinter T, Bevan P, Neville NG, Mala C. Randomized

phase II trial with an uPA inhibitor (WX-671) in patients with locally

advanced nonmetastatic pancreatic cancer. J Clin Oncol. (2010) 28:4060.

doi: 10.1200/jco.2010.28.15_suppl.4060

7. Andersen LM, Wind T, Hansen HD, Andreasen PA. A cyclic peptidylic

inhibitor of murine urokinase-type plasminogen activator: changing species

specificity by substitution of a single residue. Biochem J. (2008) 412:447–57.

doi: 10.1042/BJ20071646

8. Ploug M, Ostergaard S, Gardsvoll H, Kovalski K, Holst-Hansen C, Holm

A, et al. Peptide-derived antagonists of the urokinase receptor. Affinity

maturation by combinatorial chemistry, identification of functional epitopes,

and inhibitory effect on cancer cell intravasation. Biochemistry. (2001)

40:12157–68. doi: 10.1021/bi010662g

9. Luparello C, Del Rosso M. In vitro anti-proliferative and anti-invasive role

of aminoterminal fragment of urokinase-type plasminogen activator

on 8701-BC breast cancer cells. Eur J Cancer. (1996) 32A:702–7.

doi: 10.1016/0959-8049(95)00657-5

10. Mazar AP, Ahn RW, O’Halloran TV. Development of novel therapeutics

targeting the urokinase plasminogen activator receptor (uPAR) and

their translation toward the clinic. Curr Pharm Des. (2011) 17:1970–8.

doi: 10.2174/138161211796718152

11. Ahmed N, Oliva K, Wang Y, Quinn M, Rice G. Downregulation of

urokinase plasminogen activator receptor expression inhibits Erk signalling

with concomitant suppression of invasiveness due to loss of uPAR-beta 1

integrin complex in colon cancer cells. Brit J Cancer. (2003) 89:374–84.

doi: 10.1038/sj.bjc.6601098

12. Zhang F, Tom CC, Kugler MC, Ching TT, Kreidberg JA, Wei Y, et al. Distinct

ligand binding sites in integrin alpha 3 beta 1 regulate matrix adhesion

and cell-cell contact. J Cell Biol. (2003) 163:177–88. doi: 10.1083/jcb.200

304065

13. Ghosh S, Johnson JJ, Sen R, Mukhopadhyay S, Liu Y, Zhang F, et al.

Functional relevance of urinary-type plasminogen activator receptor-

alpha3beta1 integrin association in proteinase regulatory pathways. J Biol

Chem. (2006) 281:13021–9. doi: 10.1074/jbc.M508526200

Frontiers in Oncology | www.frontiersin.org 8 February 2019 | Volume 9 | Article 80861

https://doi.org/10.3389/fonc.2018.00024
https://doi.org/10.1038/nrm2821
https://doi.org/10.7150/thno.4218
https://doi.org/10.1160/TH04-11-0712
https://doi.org/10.1158/1535-7163.MCT-06-0520
https://doi.org/10.1200/jco.2010.28.15_suppl.4060
https://doi.org/10.1042/BJ20071646
https://doi.org/10.1021/bi010662g
https://doi.org/10.1016/0959-8049(95)00657-5
https://doi.org/10.2174/138161211796718152
https://doi.org/10.1038/sj.bjc.6601098
https://doi.org/10.1083/jcb.200304065
https://doi.org/10.1074/jbc.M508526200
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Targeting uPAR by CRISPR/Cas9

14. Kenny HA, Leonhardt P, Ladanyi A, Yamada SD, Montag A, Im

HK, et al. Targeting the urokinase plasminogen activator receptor

inhibits ovarian cancer metastasis. Clin Cancer Res. (2011) 17:459–71.

doi: 10.1158/1078-0432.CCR-10-2258

15. Barrangou R, Doudna JA. Applications of CRISPR technologies in research

and beyond. Nat Biotechnol. (2016) 34:933–41. doi: 10.1038/nbt.3659

16. Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of

CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov. (2017)

16:89–100. doi: 10.1038/nrd.2016.238

17. Yuan ML, Li P, Xing ZH, Di JM, Liu H, Yang AK, et al. Inhibition of WEE1

suppresses the tumor growth in laryngeal squamous cell carcinoma. Front

Pharmacol. (2018) 9:1041. doi: 10.3389/fphar.2018.01041

18. Rysenkova KD, Semina EV, Karagyaur MN, Shmakova AA, Dyikanov DT,

Vasiluev PA, et al. CRISPR/Cas9 nickase mediated targeting of urokinase

receptor gene inhibits neuroblastoma cell proliferation. Oncotarget. (2018)

9:29414–30. doi: 10.18632/oncotarget.25647

19. Gutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, Shih CC, et al.

Identification of uPAR-positive chemoresistant cells in small cell lung cancer.

PLoS ONE. (2007) 2:e243. doi: 10.1371/journal.pone.0000243

20. Cortes-Dericks L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem

cells in malignant pleural mesothelioma show resistance to cisplatin and

pemetrexed. Int J Oncol. (2010) 37:437–44. doi: 10.3892/ijo-0000692

21. Huang Z, Wang L, Wang Y, Zhuo Y, Li H, Chen J, et al. Overexpression of

CD147 contributes to the chemoresistance of head and neck squamous cell

carcinoma cells. J Oral Pathol Med. (2013) 42:541–6. doi: 10.1111/jop.12046

22. Eastman BM, Jo M, Webb DL, Takimoto S, Gonias SL. A transformation

in the mechanism by which the urokinase receptor signals provides a

selection advantage for estrogen receptor-expressing breast cancer cells in the

absence of estrogen. Cell Signal. (2012) 24:1847–55. doi: 10.1016/j.cellsig.201

2.05.011

23. Zhou J, Kwak KJ,WuZ, YangD, Li J, ChangM, et al. PLAUR confers resistance

to gefitinib through EGFR/P-AKT/Survivin signaling pathway. Cell Physiol

Biochem. (2018) 47:1909–24. doi: 10.1159/000491071

24. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide

CRISPR screen in amousemodel of tumor growth andmetastasis.Cell. (2015)

160:1246–60. doi: 10.1016/j.cell.2015.02.038

25. Chen ZH, Yu YP, Zuo ZH, Nelson JB, Michalopoulos GK, Monga S,

et al. Targeting genomic rearrangements in tumor cells through Cas9-

mediated insertion of a suicide gene. Nat Biotechnol. (2017) 35:543–50.

doi: 10.1038/nbt.3843

26. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling

colorectal cancer using CRISPR-Cas9-mediated engineering of human

intestinal organoids. Nat Med. (2015) 21:256–62. doi: 10.1038/nm.3802

27. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al.

Sequential cancer mutations in cultured human intestinal stem cells. Nature.

(2015) 521:43–7. doi: 10.1038/nature14415

28. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al.

CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature.

(2014) 514:380–4. doi: 10.1038/nature13589

29. Maresch R, Mueller S, Veltkamp C, Oellinger R, Friedrich M, Heid I,

et al. Multiplexed pancreatic genome engineering and cancer induction

by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun. (2016)

7:10770. doi: 10.1038/ncomms10770

30. Ruiz S, Mayor-Ruiz C, Lafarga V, Murga M, Vega-Sendino M, Ortega

S, et al. A genome-wide CRISPR screen identifies CDC25A as a

determinant of sensitivity to ATR inhibitors. Mol Cell. (2016) 62:307–13.

doi: 10.1016/j.molcel.2016.03.006

31. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al.

Genome-Scale CRISPR-Cas9 knockout screening in human cells. Science.

(2014) 343:84–7. doi: 10.1126/science.1247005

32. Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs

take the front seat for hematologic malignancies. Blood. (2014) 123:2625–35.

doi: 10.1182/blood-2013-11-492231

33. Ren JT, Zhao YB. Advancing chimeric antigen receptor T cell therapy with

CRISPR/Cas9. Protein Cell. (2017) 8:634–43. doi: 10.1007/s13238-017-0410-x

34. Ren JT, Liu XJ, Fang CY, Jiang SG, June CH, Zhao YB. Multiplex genome

editing to generate universal CAR T cells resistant to PD1 inhibition. Clin

Cancer Res. (2017) 23:2255–66. doi: 10.1158/1078-0432.CCR-16-1300

35. Hoos A. Development of immuno-oncology drugs - from CTLA4 to

PD1 to the next generations. Nat Rev Drug Discov. (2016) 15:235–47.

doi: 10.1038/nrd.2015.35

36. Yang Y, Qiu JG, Li Y, Di JM, Zhang WJ, Jiang QW, et al. Targeting ABCB1-

mediated tumormultidrug resistance by CRISPR/Cas9-based genome editing.

Am J Transl Res. (2016) 8:3986–94.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Wang, Xing, Jiang, Yang, Huang, Yuan, Wei, Li, Wang, Liu

and Shi. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 9 February 2019 | Volume 9 | Article 80862

https://doi.org/10.1158/1078-0432.CCR-10-2258
https://doi.org/10.1038/nbt.3659
https://doi.org/10.1038/nrd.2016.238
https://doi.org/10.3389/fphar.2018.01041
https://doi.org/10.18632/oncotarget.25647
https://doi.org/10.1371/journal.pone.0000243
https://doi.org/10.3892/ijo-0000692
https://doi.org/10.1111/jop.12046
https://doi.org/10.1016/j.cellsig.2012.05.011
https://doi.org/10.1159/000491071
https://doi.org/10.1016/j.cell.2015.02.038
https://doi.org/10.1038/nbt.3843
https://doi.org/10.1038/nm.3802
https://doi.org/10.1038/nature14415
https://doi.org/10.1038/nature13589
https://doi.org/10.1038/ncomms10770
https://doi.org/10.1016/j.molcel.2016.03.006
https://doi.org/10.1126/science.1247005
https://doi.org/10.1182/blood-2013-11-492231
https://doi.org/10.1007/s13238-017-0410-x
https://doi.org/10.1158/1078-0432.CCR-16-1300
https://doi.org/10.1038/nrd.2015.35
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


fphar-10-00140 February 28, 2019 Time: 17:44 # 1

ORIGINAL RESEARCH
published: 01 March 2019

doi: 10.3389/fphar.2019.00140

Edited by:
Jian-ye Zhang,

Guangzhou Medical University, China

Reviewed by:
Zhi Shi,

Jinan University, China
Changliang Shan,

Nankai University, China

*Correspondence:
Ke Wang

wk125@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Molecular Targets
and Therapeutics,

a section of the journal
Frontiers in Pharmacology

Received: 12 November 2018
Accepted: 06 February 2019

Published: 01 March 2019

Citation:
Wang K, Li L, Fu L, Yuan Y, Dai H,
Zhu T, Zhou Y and Yuan F (2019)

Integrated Bioinformatics Analysis
the Function of RNA Binding Proteins

(RBPs) and Their Prognostic Value
in Breast Cancer.

Front. Pharmacol. 10:140.
doi: 10.3389/fphar.2019.00140

Integrated Bioinformatics Analysis
the Function of RNA Binding Proteins
(RBPs) and Their Prognostic Value in
Breast Cancer
Ke Wang1*†, Ling Li2†, Liang Fu2, Yongqiang Yuan2, Hongying Dai2, Tianjin Zhu2,
Yuxi Zhou3 and Fang Yuan3

1 Clinical Laboratory, Yongchuan People’s Hospital of Chongqing, Chongqing, China, 2 Clinical Laboratory, Yongchuan
Hospital of Chongqing Medical University, Chongqing, China, 3 Yidu Cloud (Beijing) Technology Co., Ltd., Beijing, China

Background and Purpose: Breast cancer is one of the leading causes of death
among women. RNA binding proteins (RBPs) play a vital role in the progression of many
cancers. Functional investigation of RBPs may contribute to elucidating the mechanisms
underlying tumor initiation, progression, and invasion, therefore providing novel insights
into future diagnosis, treatment, and prognosis.

Methods: We downloaded RNA sequencing data from the cancer genome atlas (TCGA)
by UCSC Xena and identified relevant RBPs through an integrated bioinformatics
analysis. We then analyzed biological processes of differentially expressed genes (DEGs)
by DAVID, and established their interaction networks and performed pathway analysis
through the STRING database to uncover potential biological effects of these RBPs.
We also explored the relationship between these RBPs and the prognosis of breast
cancer patients.

Results: In the present study, we obtained 1092 breast tumor samples and 113 normal
controls. After data analysis, we identified 90 upregulated and 115 downregulated RBPs
in breast cancer. GO and KEGG pathway analysis indicated that these significantly
changed genes were mainly involved in RNA processing, splicing, localization and
RNA silencing, DNA transposition regulation and methylation, alkylation, mitochondrial
gene expression, and transcription regulation. In addition, some RBPs were related to
histone H3K27 methylation, estrogen response, inflammatory mediators, and translation
regulation. Our study also identified five RBPs associated with breast cancer prognosis.
Survival analysis found that overexpression of DCAF13, EZR, and MRPL13 showed
worse survival, but overexpression of APOBEC3C and EIF4E3 showed better survival.

Conclusion: In conclusion, we identified key RBPs of breast cancer through
comprehensive bioinformatics analysis. These RBPs were involved in a variety of
biological and molecular pathways in breast cancer. Furthermore, we identified five
RBPs as a potential prognostic biomarker of breast cancer. Our study provided novel
insights to understand breast cancer at a molecular level.
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and a
main cause of cancer death among women. In 2018, there was
an estimated 2.1 million newly diagnosed female breast cancer
cases worldwide, accounting for about 25% of cancer cases among
women (Bray et al., 2018). In recent years, with great progress
in medical technology, the diagnosis incidence of breast cancer
has increased year by year, and the age of onset or diagnosis
has consequently become younger. Breast cancer is aggressive
and has a high recurrence rate. Currently, the diagnosis of
breast cancer mainly relies on pathological assessments, imaging
tests, and tumor markers (McDonald et al., 2016), which creates
difficulty for meeting clinical requirements. In order to reduce
the recurrence rate and mortality of breast cancer patients, and
to improve their quality of life, it is vital to increase ability in
surveillance, early detection and diagnosis. Over the years there
has been an increase of molecular research on early diagnosis,
drug resistance and prognosis, and it is therefore valuable to
find new molecular markers on the occurrence, progression, and
prognosis, to further expand this research.

RNA-binding proteins (RBPs) are abundant and ubiquitously
expressed in cells. They play a central and conserved role in
gene regulation (Gerstberger et al., 2014b), and act as important
participants and coordinators to maintain genome integrity
(Nishida et al., 2017). RBPs have extensive capabilities including
regulating stability, maturation, posttranscriptional regulation
of mRNA stability, splicing, editing and translation, mRNA
localization and polyadenylation, which ultimately impacts the
expression of every gene in the cell (Campos-Melo et al., 2014;
Gerstberger et al., 2014a). Although it is known that post-
transcription contributes to tumor initiation and progression,
the role of RBPs in cancer remain relatively unexplored
(Wurth and Gebauer, 2015).

There is a large number of Human RBPs, but very few have
been studied in depth, such as AGO2, Nova, PTB, HuR, AUF1,
TTP, CUGBP2 which are known for their role in many regulation
processes, including interacting with non-coding RNAs (Iadevaia
and Gerber, 2015), controlling intracellular localization of non-
coding RNAs (Glisovic et al., 2008), methylation (Harvey
et al., 2017), forming the RNA induce silencing complex
(Connerty et al., 2015), and alternative splicing (Paronetto
et al., 2010). RBPs participate in comprehensive biological
processes, such as reproductive development, tumorigenesis and
apoptosis, and is therefore closely related to many human
diseases. A systematic functional study of RBPs will be
helpful to understand the function and mechanism of non-
coding RNA, but will also have a significant applied value in
studying the pathogenesis of diseases and in the screening of
innovative drug targets.

Currently, genes and signaling pathways that participate
in breast cancer tumorigenesis and progression remain to
be further investigated. Exploring new genes and pathways
associated with breast cancer may help to identify potential
molecular mechanisms, diagnostic markers and therapeutic
targets (Wang et al., 2018). High-throughput genomic analysis
techniques can be applied to screening for differentially

expressed genes (DEGs) and to understand the relevant
pathways and protein interaction networks (Vogelstein et al.,
2013). In this study, we downloaded breast cancer data from
the cancer genome atlas (TCGA), and selected differential
expressed RBPs to perform gene ontology (GO), KEGG
pathways and an interaction network and survival analysis.
The study identified a number of RBPs involved in breast
cancer. Some of which might be used as potential prognostic
biomarkers in the future.

RESULTS

Identification of Differently Expressed
RBPs (DEGs)
The database analysis contained 1092 breast tumor samples and
113 no-tumor control samples. We conducted a deep analysis of
1912 RBPs and a total of 205 RBPs were identified, including
90 upregulated and 115 downregulated RBPs (Supplementary
Table S1). We also constructed an expression heat map for all
DEGs (Figure 1).

Functional and Pathway Enrichment
Analysis of DEGs
To determine the function and mechanisms of these RBPs, all
DEGs were divided into two groups (upregulated group and
down-regulated group), and submitted to the David database for

FIGURE 1 | Differentially expressed RBPs in BRCA cancer. Unsupervised
clustering analysis was performed using the pheatmap function, using
complete and Euclidean as metrics in R, based on log2-transformed FPKM
values. The columns are samples and the rows are RBPs. The blue represents
down-regulation, while red represents up-regulation.
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GO analysis. We then conducted a KEGG pathway analysis for
all DEGs. We found that upregulated DEGs were significantly
enriched in RNA processing, RNA binding, mRNA binding, and
located in the non-membrane-bounded organelle, intracellular
non-membrane-bounded organelle, ribonucleoprotein complex,
intracellular organelle lumen, organelle lumen, membrane-
enclosed lumen, nuclear lumen, and the nucleolus (Table 1).
The GO result of down-regulated DEGs were significantly
enriched in the RNA processing, posttranscriptional regulation
of gene expression, mRNA metabolic process, mRNA processing,
regulation of translation and the RNA binding, and these
genes mainly consisted of the chromatoid body, P granule,
germ plasm, pole plasm, intracellular non-membrane-bounded
organelle and the non-membrane-bounded organelle (Table 1).

TABLE 1 | GO enrichment analysis results of differentially up-regulated genes and
down-regulated genes (DEGs).

Term P value FDR

Up-regulated
genes (DEGs)

RNA processing 3.23E-06 0.00478286

Non-membrane-bounded
organelle

4.53E-13 5.56E-10

Intracellular
non-membrane-bounded
organelle

4.53E-13 5.56E-10

Ribonucleoprotein complex 5.00E-11 6.15E-08

Intracellular organelle lumen 1.81E-09 2.22E-06

Organelle lumen 3.09E-09 3.80E-06

Membrane-enclosed lumen 4.90E-09 6.02E-06

Nuclear lumen 1.32E-06 0.00162684

Nucleolus 1.59E-06 0.00194848

RNA binding 5.78E-16 6.77E-13

mRNA binding 2.37E-05 0.02904478

Down-
regulated
genes (DEGs)

RNA processing 1.41E-10 2.21E-07

Posttranscriptional regulation of
gene expression

2.29E-09 3.58E-06

mRNA metabolic process 1.81E-08 2.82E-05

mRNA processing 2.40E-07 3.74E-04

Regulation of translation 1.05E-06 0.00164623

Chromatoid body 2.05E-06 0.00250038

P granule 3.57E-06 0.00436073

Germ plasm 3.57E-06 0.00436073

Pole plasm 3.57E-06 0.00436073

Intracellular
non-membrane-bounded
organelle

1.94E-05 0.02370618

Non-membrane-bounded
organelle

1.94E-05 0.02370618

RNA binding 1.46E-23 1.83E-20

TABLE 2 | The KEGG pathway analysis of all DEGs.

Term P value

Dorso-ventral axis formation 4.18E-03

Fatty acid elongation in mitochondria 3.11E-02

Pathogenic Escherichia coli infection 2.06E-02

According to the KEGG pathway enrichment analysis, all DEGs
mainly participated in Dorso-ventral axis formation, fatty acid
elongation in mitochondria and pathogenic Escherichia coli
infection (Table 2).

Protein-Protein Interaction Network
Building and Interrelation Analysis
Between Pathways
To better understand the role of these differentially expressed
RBPS in breast cancer development, we constructed co-
expression networks. All DEGs were submitted to STRING
10.5, we obtained 294 PPI nodes, 174 edges, and a p-value
of PPI concentration <1.00–16, while also including the result
of the GO and KEGG pathway. In the biological process,
there was mainly enrichment in the regulation of transcription,
translation level and epigenetics, and it also played an important
role in histone modification, mitochondrial gene expression,
cell metabolism, production of inflammatory mediators and
estrogen response. The cellular components are significantly
located in the ribosome, mitochondria, chromosomes, and
the telomeres, etc. Molecular functions showed that they
can bind to a variety of RNA and specific regions, and
were closely related to regulated enzymes activity, including
various metabolic and gene expressions, modification and
regulation of enzymes, and also bound to steroid hormones and
estrogen receptors. For KEGG pathway analysis, it was mainly
enriched in Glycolysis/Gluconeogenesis, mRNA surveillance
pathway, RNA degradation and pathogenic E. coli infection.
Then, we constructed the PPI network of these DEGs using
Cytoscape (Figure 2A). Two topological features, degree and
betweenness, were calculated to identify candidate hub nodes.
The higher the two quantitative values of a gene, the greater
the importance within the network (Liu et al., 2018b). The
co-expression network revealed that ELAVL2, VIM, MRPS12,
HSPE1, EZH2, HIST1H4B, and MRPL13 played a vital role in the
progression of breast cancer, and we further selected important
modules of target genes through MCODE (Figures 2B,C).
Finally, we used the ClueGO to externalize all biological
processes (Figures 3A,B) and the interaction modes of molecular
functions (Figures 4A,B).

Survival Analysis
The correlation between RBP expression and overall survival was
assessed using both the Cox regression analysis and the Kaplan-
Meier estimation method. Then, survival correlation P < 0.05
and key RBPs were selected to analyze their correlation with
survival prognosis. After that we used both the Kaplan-Meier
estimates and the log-rank test to assess the significant differences
of the two-group survival curves. As shown in the Figure 5, the
expression of selected target genes in tumor and normal tissues
was significantly different. In addition, patients with highly
expressed RBPs of EZR, DCAF13, and MRPL13 showed lower
survival, but patients with highly expressed RBPs of APOBEC3C,
EIF4E3 showed better survival (Figure 5). Therefore these genes
could be potential biomarkers for breast cancer prognosis.
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FIGURE 2 | Construction of protein-protein interaction (PPI) network. (A) Modules inferred from protein-protein interaction network. Elected important modules of
target gene (B,C) MCODE score >4, nodes >4.

MATERIALS AND METHODS

Data Sources Analysis
The corresponding clinical data was downloaded from the
following website http://gdac.broadinstitute.org/. Combined
with the RNA-seq expression data set, 1075 patients had
clinical information available including age, gender and
disease stage. The details have been listed in Supplementary
Table S1. We downloaded the RBPs expression data (TOIL
RSEM expected count and FPKM) processed by the Toil
pipeline (Vivian et al., 2017) based on RNA sequencing
(RNA-Seq) for TCGA Pan-Cancer cohort from the website
https://xena.ucsc.edu/. The data included the 60498 genes
annotated by GENCODE version 23. We then used
custom Perl script to extract the data from BRCA cancer,
for subsequent analysis. We applied the Voom function

(Law et al., 2014) in the Limma package, to estimate DEGs
between tumor and normal tissues for BRCA cancer. Those
with a fold change ≥ 1 and FDR < 0.05 were considered
to have statistical significance. We further identified
significantly dysregulated RBPs based on our RBP catalog.
Unsupervised clustering of differentially expressed RBPs was
performed based on log2-transformed FPKM values using the
“pheatmap” package in R.

GO Functional and Pathway Enrichment
Analysis
In order to comprehensively analyze the biological functions
of these RBPS, we used the GO and kyoto encyclopedia
of genes and genomes (KEGG) analysis by The database
for annotation, visualization and integrated discovery
(DAVID) version 6.7. The GO Term analysis included the
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FIGURE 3 | Interrelation analysis between pathways (biological process). (A) Interrelation between biological process pathways. (B) The proportion of each pathway.

biological process, cellular component and the molecular
function. Both P < 0.05 and FDR < 0.05 were considered
statistically significant.

Protein Interaction Network (PPI) and
Pathways Interaction Analysis Building
SRTING version 10.5 was used to evaluate the protein
interaction information of all DEGs, and their biological
functions were also obtained. Then, the interaction
network of these proteins was visualized by Cytoscape3.6.0,

and important modules both MCODE score and node
number > 4 were selected by the MCODE plug in
to Cytoscape version 3.6.0. Furthermore, the pathway
enrichment of P < 0.05 was analyzed by the ClueGO plug
to Cytoscape version 3.6.0.

Statistical Analysis
The correlation of RBP expression and overall survival was
assessed using both the Cox regression analysis and the
Kaplan-Meier estimation method, based on the “survival”
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FIGURE 4 | Interrelation analysis between pathways molecular functions. (A) Interrelation between molecular functions pathways. (B) The proportion of each
pathway.

package in R. For the Cox regression analysis, the RBP was
evaluated as a continuous variable with age and gender as
additional covariables. For the Kaplan-Meier estimates, we
defined the high-expression group and low-expression group

using the median RBP expression value as a cut-off point.
A significant difference of two-group survival curves was
assessed by a log-rank test. P < 0.05 was considered as
statistically significant.
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FIGURE 5 | Survival Kaplan-Meier Estimate (EZR p = 0.035, DCAF13 p = 0.026, MRPL13 p = 0.014, APOBEC3C p = 0.013, and EIF4E3 p = 0.026). Expression of
selected target genes in tumor and normal tissues was significantly different.

DISCUSSION

Currently, cancer causes more death than coronary heart
diseases or stroke does (Lin et al., 2017a). In recent
years, although molecular targeted therapy has improved
treatment effect, breast cancer is still the primary cause of

death among women. During clinical practice, biomarkers
that indicate the grade malignancy, metastasis and the
prognosis of breast cancer are needed. Microarray and
high-throughput sequencing technologies provide effective
tools for deciphering key genetic or epigenetic changes in
the occurrence of cancer, as well as promising biomarkers
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for cancer diagnosis, treatment, and prognosis (Kulasingam
and Diamandis, 2008; Cancer Genome Atlas Research
and Network, 2014). Our study integrated TCGA RNA
sequencing data, and identified DEGs between tumor and
normal tissue. We analyzed relevant biological pathways,
constructed protein interaction networks and performed
survival analyses to explore biological functions and clinical
application of these RBPs.

The biological functions of these DEGs were obtained
using the GO and KEGG pathway analysis. Firstly, the
enrichment of cell components is mainly located in the ribosome,
exonuclease, endonuclease, spliceosome and the ribonuclease,
which are important sites protecting the transmission of
biological information. The ribosome is a key organelle that
performs protein synthesis. The mutation of the ribosomal
protein regulates the translation and activity of p53, finally
resulting in diseases, and cancers (Goudarzi and Lindstrom,
2016). A number of RBPs exist in exonuclease, endonuclease
and sites with DNA damage, which may participate in DNA
damage repair (Goudarzi and Lindstrom, 2016). In addition,
RBPs are widely present in spliceosome. Expression of eukaryotic
genes is often accompanied by the RNA splicing process,
especially in the alternative splicing of RNA, which could
produce tissue and development specific mRNA. For example,
Sam68 can result in drug resistance and poor prognosis by
regulating the expression ratio of cyclinD1, an alternative
splicing in breast cancer (Paronetto et al., 2010). Some RBPs
also expressed in the telomere and telomerase and regulate
their activity. Telomere play an important role in regulating
cell growth and division. Some studies have found that
telomerase activity was suppressed in normal tissues but was
reactivated in tumors. Telomerase is overexpressed in 80–95%
of cancers and is likely to participate in cell malignant
transformation (Ruden and Puri, 2013). During the analysis
of cellular components, we also found the occurrence of
RBPs in the exosome, which could cause tumor invasion
and metastasis, immune escape and therapeutic resistance.
For example, SYNCRIP, as a component of the miRNA
sorting mechanism, in hepatocyte exosomes, can directly bind
to specific miRNA rich in exosomes, and regulates miRNA
localization (Santangelo et al., 2016).

Secondly, in terms of molecular function, RPBs can bind to
various RNAs such as pre-mRNA, Sn RNA, tRNA, mRNA
and regulates the activity of various enzymes, such as
hydrolytic enzyme, purine metabolic enzyme, and enzymes
involved in DNA synthesis, repair, and RNA metabolism.
Furthermore, some RBPs also bind to estrogen and steroid
hormone receptors. For example, MSI2 is highly expressed
in ER(+) breast cancer, and its expression is significantly
correlated with ESR1 expression, which affects the growth
of breast cancer cells, by changing the function of ESR1
(Kang et al., 2017).

Next, for the biological process, the function enrichment
of differential RBPs mainly occurred in RNA processing,
splicing, localization, transport, hydrolysis, and RNA silencing.
It participates in transposition regulation, methylation, and
alkylation of DNA. Some RBPs were also related to histone

H3K27 methylation, inflammatory mediators, and translation
regulation. Our findings are consistent with the consensus
that multiple genes, multiple molecules, and multiple pathways
are involved in breast cancer. Although the relationship with
breast cancer remains unclear, some RBPs have been reported
in other cancers. HuR can promote the growth of colorectal
cancer cell by regulating mRNA expression (Lopez de Silanes
et al., 2003). CRD-BP can regulate many mRNAs with coding
for cancer-related genes, including Gli1, PTEN, PTEN, ptlcp1,
MAPK4, MDR1, IGF2, H19, c-myc, etc. (Fakhraldeen et al.,
2015). HNRNPA2B1 controls the replacement splicing for the
pre-mRNA of cancer-related genes, and which is up-regulated
in diverse cancers (Stockley et al., 2014). HuR can bind with
DNMT3b and maintain its stability, thus affecting abnormal
DNA methylation (Lopez de Silanes et al., 2009). Numerous
studies reported that a change of mitochondrial function plays
a key role in all kinds of cancers (Tao et al., 2015; Lin et al.,
2017b; Zhang J.Y. et al., 2017; Zhang J. et al., 2017), and
RBPs involved in the expression and transcription regulation
of mitochondrial genes, such as LRPPRC, GRSF1, SLIRP, and
other RBPs can interact with mt-RNA to affect the expression
and metabolism of mitochondrial transcripts (Dong et al., 2017).
The incidence of breast cancer and female estrogen levels
are closely related. Some RBPs can respond with estrogen,
for example, through Nova1, 17-b estradiol can regulate the
replacement splicing of estrogen receptor b in the brain of
aging female mice (Shults et al., 2018). Then, the results
of the KEGG pathway analysis indicated that these RBPs
may affect the occurrence and development of breast cancer
through glycolysis, glycosylation, mRNA monitoring pathways,
and RNA degradation regulation. RPBs have various basic
biological functions, especially the function of RNA which has
been studied widely. Other RBPs functions should therefore be
studies further.

By constructing a protein network for DEGs, we found that
breast cancer is associated with immune response, splicing,
transcript regulation, and intercellular signaling transduction.
HSPE1 is a member of the heat shock protein family (Hsp10)
E, which usually acts as a chaperone to assist protein folding
in the mitochondria, which is highly expressed in various
cancers, such as lung cancer, pancreatic cancer and bladder
cancer. Some studies reported that it may protect cancer
cells from apoptosis, and facilitate the immune escape of
cancer, by down-regulating the immune response (Rappa
et al., 2016; Liu et al., 2018a). ELAVL2 is a neurospecific
RNA binding protein, which is involved in splicing and
transcript trafficking to regulate protein localization (Berto
et al., 2016). Elevated methylation of ELAVL2 was shown
in high Gleason scores of prostate tumors (Wu et al.,
2016). VIM is expressed in a variety of cell types and is
responsible for maintaining cell shape, cytoplasmic integrity,
and stabilizing cytoskeletal. It is also involved in immune
responses, attachment, migration, and cell signaling in tissues.
Previous studies have shown that vimentin regulated Ras,
Slug and TGF glows in cancer cells, which is necessary for
EMT induction. It is also highly expressed in various tumors
such as lung cancer, breast cancer and gastric cancer, and is
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closely related to invasion, metastasis and the poor prognosis
of tumors (Satelli and Li, 2011; Virtakoivu et al., 2015). High
expressions of EZH2 is associated with malignancy and hyper-
invasiveness in a variety of cancers. EZH2 can activate NF-
κB targets and NOTCH1 in breast cancer cells, which has
also been implicated in the transcriptional activation of gene
expression in breast cancer. Research has shown that it induces
the expression of genes that are regulated by the estrogen
receptor (ER) and Wnt signaling transcription factors, by
physically bridging between the ER and components of Wnt
signaling (Kim and Roberts, 2016).

These RBPS may lead to breast cancer by regulating
mitochondrial translation, splicing of pre-mRNA, activation
of RNase L, and histone modifications through two modules
selected from the PPI network. It has been reported that
the upregulation of mitochondrial translation may meet the
energy needs of cancer cells in human tumors, but the
mechanism of its tumorigenesis remains unclear. There are many
studies targeting the inhibition of mitochondrial translation in
various cell types, to obliterate cancer stem cells. Currently,
suppressing mitochondrial translation is considered a valuable
therapeutic target (Kim et al., 2017). RNase L was activated
through the synthesis of 2′, 5′ -oligoadenylic acid by OAS
(OAS1, OAS2, and OAS3). It was found that the activated
OAS-RNase L system can degrade virus and cell RNA,
promote cell apoptosis, and inhibit protein synthesis (Bhosle
et al., 2016). In addition, single nucleotide polymorphisms
of OAS are associated with cancer, such as OAS1 SNP
rs2660 AA (Mandal et al., 2011). However, no studies
reported the exact role of OAS in breast cancer. As we
know, epigenetic change is involved in the initiation and
progression of cancer, which includes histone modifications
and DNA methylation. Studies have shown that the regulation
of histone is gene specific, but their function is diversified.
Histone cluster 1 can interact with some regulatory factors,
such as inhibiting p53-dependent chromatin transcription, and
maintaining or establishing specific DNA methylation patterns
(Perez-Magan et al., 2010). It has been demonstrated that
the function of protecting DNA with histone may be an
independent prognostic factor for better survival of cervical
cancer patients (Li et al., 2017). Furthermore, splicing affects
the expression of most genes, and eventually influences the
levels of proteins. In the module, SNRPE, SNRPB, and ALYREF
participate in the splicing of pre-mRNA. Knockdown SNRPE
significantly reduces the expressed level of mTOR mRNA
and protein, and is accompanied by the imbalance of the
mTOR pathway, which activates abnormal mTOR signaling
and which can result in the growth and metastasis of tumor
cells (Quidville et al., 2013).

Finally, we performed a survival analysis and found five
genes that are associated with survival in breast cancer patients.
The overexpression of DCAF13, EZR, and MRPL13 in patients
were associated with lower survival, which reveals that these
genes might be associated with tumor invasion, progression
and poor prognosis. Whereas, overexpression of APOBEC3C
and EIF4E3 in patients were associated with better survival,
suggesting their potential role as tumor suppressor genes.

DCAF13 is amplified in all kinds of cancers. Studies have shown
that overexpression of DCAF13 in hepatocellular carcinoma
is significantly correlated with low survival and it may be
involved in the regulation of cell cycle (Cao et al., 2017). It
also reported that the E3 ligase formed by DCAF13, CUL4B
and DDB1, could induce ubiquitination of tumor suppressor
PTEN in vivo and in vitro (Chen et al., 2018). Mutated or
inactivated PTEN was helpful to infiltrate and spread cancer
cells. As a member of the ERM protein family, Ezrin has
been linked to molecules that control the phosphatidylinositol-
3-kinase, AKT, Erk1/2 MAPK and Rho pathways, which are
functionally involved in regulating cell survival, proliferation
and migration, and it is an indicator of poor prognosis of
multiple cancers (Hunter, 2004). It has been shown that
overexpressed EZR in a nude mice phantom of pancreatic
cancer, can increase the number of metastasis and is closely
related to the progression of malignant cancer (Meng et al.,
2010). MRPL13 is a mitochondrial ribosomal protein. Loss
of MRPL13 can lead to the loss of mitochondrial DNA, and
eventually lead to the loss of the ability of mitochondrial
coding proteins (Gruschke et al., 2010). In a study, reduced
MRPL13 expression in hepatocellular carcinoma was a key factor
in the regulation of mitochondrial ribosome and subsequent
OXPHOS deficiency, which regulates the aggressive activity
of liver cancer cells (Lee et al., 2017). APOBEC can mediate
c-to-t mutagenesis in various cancers, while the APOBEC3
gene family is overexpressed in breast cancer and other cancer
cells and tissues. Some studies suggest that it is regulated by
estrogen in breast cancer (Long et al., 2013). At present, there
are few studies about APOBEC3C in breast cancer, and some
studies have found that it should play a positive role in the
invasiveness and prognosis of hepatocellular carcinoma (Zhang
et al., 2015). EIF4E3 belongs to the EIF4E family of translational
initiation factors that interact with the 5-prime cap structure
of mRNA. A study demonstrated that EIF4E3 relies on cap-
binding activity to act as a tumor suppressor and compete
with the growth-promoting functions of EIF4E. In fact, reduced
EIF4E3 levels in high-expressed EIF4E cancers suggests that
EIF4E3 underlies a clinically relevant inhibitory mechanism
that is lost in some malignancies (Osborne et al., 2013).
Other studies also found that EIF4E3 can impede oncogenic
transformation (Volpon et al., 2013).

Over all, we identified key genes and related pathways
through bioinformatics analysis of differential expressions
of RBPs in breast cancer. These RBPs may be involved
in the occurrence, development, invasion and metastasis
of breast cancer. The survival analysis suggested that
DCAF13, EZR, MRPL13, APOBEC3C, and EIF4E3
might have a prognostic value for breast cancer. Future
in vitro and in vivo studies are needed to verify the
functions of these genes.
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Lung adenocarcinoma (LUAD) is one of the most lethal malignancies, posing a threat

to human health. However, the molecular mechanisms underlying LUAD development

remain largely unknown. In this study, we found that miR-1-3p was significantly

downregulated in human LUAD tissues and cell lines and played an inhibitory role in

LUAD cell tumorigenesis, as evidenced by the significantly reduced viability, migration,

and invasion of LUAD cells in response to miR-1-3p overexpression. Mechanistically,

microRNA (miR)-1-3p physically interacted with the 3
′

-untranslated region (UTR)

of protein regulator of cytokinesis 1 (PRC1) mRNA, leading to downregulation of

PRC1. Overexpression of PRC1 reversed the inhibitory effects of miR-1-3p on LUAD

cell tumorigenesis, suggesting that the miR-1-3p/PRC1 axis is majorly involved in

suppressing LUAD development and progression. Consistently, PRC1 was dramatically

induced in LUAD tissues and cell lines as well as associated with a poor prognosis

in LUAD patients. Taken together, our study identified the miR-1-3p/PRC1 axis as an

important regulatory mechanism contributing to LUAD inhibition and provided valuable

clues for the future development of therapeutic strategies against LUAD.

Keywords: lung adenocarcinoma, miR-1-3p, protein regulator of cytokinesis 1, malignant behavior, mechanism

INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer
(NSCLC), accounting for 80–85% of all lung cancers; worldwide, approximately 40% of all lung
cancer patients are diagnosed with LUAD (1). Compared to other subtypes of NSCLC, LUAD has
a higher incidence and a shorter survival time among patients, with a 5-year survival rate as low
as 10–15% (2, 3); thus, LUAD poses a serious threat to human health. Currently, chemotherapy is
a relatively effective therapeutic option for NSCLC (4). However, the existence and development
of intrinsic or acquired chemoresistance greatly limit the application of chemotherapy in cancer
treatment. Therefore, there is still an urgent need to develop novel therapeutic strategies against
LUAD that are based on the mechanisms underlying the development and progression of LUAD.

MicroRNAs (miRNAs) are a class of small endogenous non-coding RNA molecules (∼22
nucleotides) found in animals and plants that are responsible for the degradation or translation
repression of mRNAs by binding to the 3′-untranslated region (UTR) of target mRNAs (5). A
variety of miRNAs have been identified as novel biomarkers or promising therapeutic targets of
human malignant tumors. Among them, miR-1-3p plays an antitumor role in multiple cancer
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types, including rhabdomyosarcoma as well as lung, thyroid,
prostatic, bladder, colorectal, and hepatocellular carcinomas (6–
11). However, the role of miR-1-3p in LUAD has not yet
been investigated. In addition, the association between miR-1-
3p and its target genes may deepen our understanding of the
molecular mechanisms contributing to LUAD development, thus
facilitating the discovery of improved therapies for LUAD.

The microtubule-associated protein regulator of cytokinesis 1
(PRC1) has been found to bemajorly involved in the organization
of antiparallel microtubules in the central spindle during
cytokinesis. The human PRC1 gene, located on chromosome
15q26.1, encodes a 620-amino-acid protein with a molecular
weight of 71 kDa (3). An abnormally high expression of PRC1
has been observed in breast cancer (12), bladder cancer (13),
hepatocellular carcinoma (14), and pancreatic cancer (15), which
suggests a promotive role of PRC1 in tumorigenesis. However,
it remains largely unknown whether there is a functional
association between miR-1-3p and the regulation of PRC1 in
LUAD. In this study, we examined the role of miR-1-3p in LUAD
growth and metastasis as well as the underlying mechanism.

MATERIALS AND METHODS

Tissue Samples From LUAD Patients
Human LUAD tissues were collected from LUAD patients
undergoing pulmonary resection or bronchoscopy biopsy, and
normal tissues adjacent to cancer were collected from LUAD
patients undergoing pulmonary resection at Qilu Hospital
between May and September 2018. None of the patients had
received chemotherapy or radiotherapy prior to surgery. All the
fresh samples were stored in RNAlater Stabilization Solution
(Ambion) at −80◦C until use. This study was approved by the
Ethics Committee of Shandong University, and written informed
consent was obtained from all patients prior to enrollment in
the present study. The clinicopathological characteristics of the
patients are shown in Supplementary Table 1.

Cell Culture
Three LUAD cell lines (A549, H1299, and H1975 cells) and a
human alveolar epithelial cell line (HPAEpiC) were purchased
from the Cell Bank of the Type Culture Collection of the
Chinese Academy of Sciences (Shanghai, China). The cells were
maintained in RPMI 1640 medium (Gibco, USA) containing
10% fetal bovine serum (Gibco, USA), 100 U/mL penicillin, and
100µg/mL streptomycin in a humidified atmosphere of 5% CO2

at 37◦C. Cells in the exponential phase of growth were used for
the following experiments.

Construction of the miR-1-3p
Overexpression Cell Lines
The pre-miR-1-3p sequences were synthesized by Biosune
Biotechnology Company (Shanghai, China) and cloned into the
lentiviral vector pGIPZ. Lentivirus was produced in HEK293T
cells using the packaging vectors psPAX2 and pMD2.G. The cells
were infected with lentivirus for 24 h and then cultured for 1 week
in medium containing 2µg/mL puromycin (Merck Millipore,

USA) for screening to acquire cells with stable expression
of miR-1-3p.

Transient Transfection
The miR-1-3p mimic and its negative control (NC) were
chemically synthesized by GenePharma Co., Ltd. (Shanghai,
China). The cells were transiently transfected with 50 nM
miR-1-3p mimic or 50 nM NC (Boshang, Inc., China) using
Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific,
Inc.), according to the manufacturer’s protocol. The cells
were harvested at 24 or 48 h after the transfection. The NC
was a scrambled oligonucleotide that does not encode any
known miRNA. The transfection efficiency was confirmed by
detecting the miR-1-3p expression level using the SYBR green
(Takara)-based real-time quantitative polymerase chain reaction
(qPCR) system.

RNA Isolation and qPCR
Total RNA was extracted from the cells using Trizol reagents
(Invitrogen; Thermo Fisher Scientific, Inc.), according to
the manufacturer’s instructions. The cDNA of miRNA was
synthesized with the One Step PrimeScript miRNA cDNA
Synthesis Kit (Takara Biotechnology, Co., Ltd., Dalian, China).
qPCR was performed using the SYBR green Premix Ex
Taq II (Takara Biotechnology, Co., Ltd.) with the Step One
Plus Real-Time PCR System (Applied Biosystems; Thermo
Fisher Scientific, Inc.). The expression of U6 was used as an
internal control. The primers for miR-1-3p are indicated in
Supplementary Table 2.

Western Blot Analysis
The cells were lysed in ice-cold RIPA lysis buffer, and
the cell lysates were obtained by centrifugation at 12,000
rpm and 4◦C for 10min. The protein concentration was
determined using the bicinchoninic acid method. The protein
samples (5–10 µg) were separated by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis, followed by transfer to
polyvinylidene difluoride membranes, and then immunoblotted
with the indicated antibodies. After blocking with 5% nonfat
milk, the membranes were incubated with the respective
primary antibody overnight at 4◦C, followed by incubation
with the horseradish peroxidase-coupled secondary antibody for
1 h at room temperature. The protein bands were visualized
using enhanced chemiluminescence reagents (PerkinElmer)
with an ImageQuant LAS 4000 system (GE Healthcare Life
Sciences). The following antibodies were used: anti-PRC1, anti-
fibronectin, anti-N-cadherin, anti-vimentin, and anti-β-actin
(Cell Signaling Technology).

3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide
(MTT) Assay
The cells were seeded into 96-well plates at a density of 2,000
cells/well and grown for 5 days. After the addition of 100 µL
of 5 mg/mL MTT solution, the cells were incubated for an
additional 4 h at 37◦C, and then the supernatant was removed
and dissolved in 100 µL of dimethyl sulfoxide (Sigma-Aldrich).

Frontiers in Oncology | www.frontiersin.org 2 March 2019 | Volume 9 | Article 120875

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. miR-1-3p in LUAD

Cell viability was assessed on the 1st, 2nd, 3rd, 4th, and 5th day.
The absorbance of each well was measured in triplicate using an
iMark Microplate Absorbance Reader (Bio-Rad).

Luciferase Reporter Assay
Luciferase reporter constructs containing wild-type (WT) or
mutant PRC1 3′-UTR (pmirGLO-PRC1-WT or pmirGLO-
PRC1-mut, respectively) were generated by GenePharma Inc.
(Shanghai, China). The cells were cotransfected with 25 ng of
PRC1 3′-UTR reporter constructs and 20 nM miR-1-3p mimic
using Lipofectamine 2,000 (Invitrogen) in 24-well plates. At
24 h after transfection, luciferase assays were performed using

the Dual-Luciferase reporter assay system (Promega). Renilla
luciferase activity was used to normalize the luciferase activity of
the PRC1 3′-UTR reporter constructs.

In vivo Tumorigenicity Assays
Four-week-old male BALB/c nude mice were purchased from the
Shanghai Laboratory Animal Center of the Chinese Academy of
Sciences (Shanghai, China). The mice were randomly divided
into two groups and injected subcutaneously with A549 cells (2×
106 cells/mouse, n= 5 mice/group) that were infected with either
control lentivirus or miR-1-3p-overexpressing lentivirus. Tumor
growth was monitored by measuring the tumor diameter. Tumor

FIGURE 1 | Expression pattern of miR-1-3p in human LUAD tissues and cell lines. qPCR was performed to determine the expression levels of miR-1-3p in human

LUAD tissues (A) and cell lines (B), as indicated. *P < 0.05 in (A) (n = 30); *P < 0.05 vs. HPAEpiCs in (B) (n = 3).

FIGURE 2 | The effect of miR-1-3p overexpression on LUAD cell viability. (A) qPCR was performed to validate the overexpression efficiency of miR-1-3p in A549,

H1299, and H1975 cells. (B–D) The MTT assay was performed to measure the viability of miR-1-3p-overexpressing A549, H1299, and H1975 cells. *P < 0.05 vs. the

corresponding negative control (NC) groups (n = 3).
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volume was calculated according to the formula TV (cm3)= a×
b2 × π/6, where a is the longest diameter and b is the shortest
diameter. The mice were sacrificed after 3 weeks, and then
the tumors were excised and weighed. All animal experiments
were approved by the Shandong University Animal Care and
Use Committee.

Bioinformatics Analyses
PRC1 genetic alterations and copy number variation in LUAD
were retrieved from the cBioPortal for Cancer Genomics (http://
www.cbioportal.org/) (16, 17). The Cancer Genome Atlas RNA
expression data of LUAD tissues were processed and analyzed by
the Cancer Genomics Browser (https://xena.ucsc.edu/welcome-
to-ucsc-xena/) (18). The PRC1 expression levels and copy
number variation were analyzed by Proteinatlas (https://
www.proteinatlas.org/), Oncomine (www.oncomine.org) (19),
and Gene Expression Profiling Interactive Analysis (http://
gepia.cancer-pku.cn/) in LUAD and normal lung tissues
via immunohistochemistry. Kaplan–Meier plots (http://kmplot.
com/analysis/) (20) were used to analyze the overall survival of
the LUAD patients.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 6.0
(GraphPad Software, La Jolla, CA, USA). Data are expressed

as the mean ± standard deviation. Comparison between two
groups was performed using the Student’s t-test or the Mann-
Whitney U-test. The correlation between the expression levels
of miR-1 and PRC1 was analyzed using Pearson’s correlation
analysis. LUAD tissues with lower miR-1 and PRC1 expression
than the median expression were assigned to the low-expression
group, whereas those with higher miR-1 and PRC1 expression
than the median expression were assigned to the high-expression
group. Associations between the clinicopathological features and
the expression levels of miR-1 and PRC1 were analyzed using
the χ2 test. Overall survival curves were determined according
to the Kaplan–Meier method. A p < 0.05 was considered
statistically significant.

RESULTS

MiR-1-3p Is Downregulated in Human
LUAD Tissues and Cell Lines
To investigate the possible role of miR-1-3p in LUAD
development, we first examined the expression levels of miR-
1-3p in human LUAD tissues and cell lines. As shown in
Figure 1A, miR-1-3p expression was significantly decreased in
LUAD tissues, compared with the matched adjacent normal lung
tissues. Similarly, marked downregulation of miR-1-3p was also
observed in the human LUAD cell lines A549, H1299, andH1975,

FIGURE 3 | The effect of miR-1-3p overexpression on LUAD cell migration and invasion as well as epithelial-mesenchymal transition. Transwell assays for migration

(A) and invasion (B) of miR-1-3p-overexpressing LUAD cells. (C) Western blot assay for the expression of the indicated mesenchymal markers. β-Actin was used as

an internal control. (D) Quantification of the western blot assay results shown in (C). *P < 0.05 vs. miR-1-3p groups in (C) (n = 3).
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FIGURE 4 | The effect of miR-1-3p overexpression on tumorigenesis in vivo. (A) Overexpression of miR-1-3p reduced LUAD cell-derived tumor growth in a xenograft

model. (B) Summary of the tumor growth data; the error bars indicate the standard deviation. (C) miR-1-3p overexpression results in a decline of tumor weight.

*P < 0.05.

FIGURE 5 | PRC1 is a direct target of miR-1-3p in LUAD cells. (A) The putative miR-1-3p-binding sites in PRC1 3′-UTR and the mutated binding sites are shown.

(B,D) Western blot analysis of PRC1 expression in the nontransfected negative control (NC)- or miR-1-3p-transfected LUAD cells. β-Actin was used as an internal

control. (C) Quantification of the western blot assay results shown in (B). *P < 0.05 vs. HPAEpiCs (n = 3). (E) Quantification of the western blot assay results shown in

(D). *P < 0.05 vs. the miR-1-3p groups (n = 3). (F) Luciferase reporter assay for LUAD cells transfected with wild-type (WT) or mutated (MT) pGL3-3′-UTR. The

luciferase activity was normalized to Renilla luciferase activity. *P < 0.05 (n = 3).
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compared with the normal HPAEpiCs (Figure 1B). These in vivo
and in vitro results suggest that miR-1-3p may play an inhibitory
role in LUAD development.

Overexpression of miR-1-3p Suppresses
LUAD Cell Viability in vitro
Next, we sought to investigate whether miR-1-3p indeed plays a
role in suppressing LUAD development using a gain-of-function
assay. As shown in Figure 2A, transfection of the miR-1-3p
mimic led to a dramatic increase in miR-1-3p expression in
the LUAD cell lines A549, H1299, and H1975. Importantly,
overexpression of miR-1-3p significantly inhibited the viability
of these three cell lines in a time-dependent manner, compared
with the NC groups (Figures 2B–D). These results demonstrate
that miR-1-3p is sufficient to suppress LUAD cell growth in vitro.

Overexpression of miR-1-3p Inhibits LUAD
Cell Migration and Invasion in vitro
To further investigate whether miR-1-3p inhibits LUAD
progression, Transwell assays were performed to examine the
effects of miR-1-3p overexpression on LUAD cell migration and
invasion. As shown in Figures 3A,B, overexpression of miR-1-3p
resulted in a significant decrease in LUAD cell migration and
invasion abilities, compared with the NC groups. Consistently,
overexpression of miR-1-3p markedly suppressed epithelial-
mesenchymal transition (EMT), a process contributing to tumor
metastasis, as evidenced by downregulation of the mesenchymal
markers fibronectin, N-cadherin, and vimentin (Figures 3C,D).
These data suggest that miR-1-3p overexpression may
suppress LUAD progression through reducing LUAD
cell migration and invasion as well as inhibiting EMT in
these cells.

FIGURE 6 | Expression pattern of PRC1 in LUAD tissues and cell lines. (A) The data of copy number variation in LUAD from The Cancer Genome Atlas cohort.

(B) The mRNA expression of PRC1 in different TNM staging groups in Oncomine. (C) qPCR analysis of PRC1 expression in LUAD tissues (n = 30). (D) qPCR analysis

of PRC1 expression in LUAD cells and HPAEpiCs. (E) Representative images of the immunohistochemical staining of PRC1 from The Human Protein Atlas in LUAD

and normal lung tissues. *P < 0.05 in (C) (n = 30); *P < 0.05 vs. HPAEpiCs in (D) (n = 3).
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FIGURE 7 | Association between the miR-1-3p and PRC-1 levels in LUAD

patients. The PRC1 and miR-1 levels were determined by qPCR in LUAD

tissues and matched adjacent normal tissues (n = 30).

miR-1-3p Inhibits Xenograft Tumor Growth
of LUAD Cells
To further explore whether miR-1-3p overexpression could
suppress LUAD growth in vivo, human LUAD A549 cells
with and without miR-1-3p overexpression were subcutaneously
inoculated into nude mice. At 1 week after inoculation, all
mice had developed detectable tumors. However, at 3 weeks
after inoculation, the mice bearing tumors with miR-1-3p
overexpression demonstrated a dramatic decrease in the tumor
size and weight (Figures 4A–C), compared to the control groups.
These results show that overexpression of miR-1-3p inhibits
tumorigenesis in vivo.

PRC1 Is a Direct Target Gene of miR-1-3p
To further examine the mechanism underlying miR-1-3p-
mediated suppression of LUAD development and progression,
we employed the TargetScan computational algorithm to predict
the target genes of miR-1-3p (21). The results indicated

complementary base-pairing between miR-1-3p and the 3
′

-
UTR of PRC1 (Figure 5A), suggesting that PRC1 may be a
target gene of miR-1-3p. To verify this finding, we detected the
expression of PRC1 in LUAD cells. As shown in Figures 5B,C,
the protein expression of PRC1 was markedly induced in LUAD
cells, compared with normal HPAEpiCs, consistent with the
expression pattern of miR-1-3p in LUAD tissues and cells.
Importantly, miR-1-3p overexpression led to downregulation of
PRC1 in LUAD cells (Figures 5D,E), confirming that PRC1 is a
downstream target of miR-1-3. To determine whether PRC1 is
directly targeted by miR-1-3p, we performed a mutation assay
through introducing a PRC1 3′-UTR mutation in the pmirGLO
vector. The results demonstrated that the PRC1 3′-UTRmutation
had no significant effect on the luciferase activity in miR-1-
3p-transfected LUAD cells, compared with that in the NC-
transfected cells (Figure 5F), suggesting that WT PRC1 3′-UTR
is essential for the function of miR-1-3p. Taken together, our data
show that PRC1 is a direct downstream target gene of miR-1-3p.

PRC1 Is Induced in LUAD Tissues and Cell
Lines
To determine whether PRC1 contributes to LUAD development
and progression, we examined the expression profile of PRC1 in
LUAD tissues using the publicly accessible database Oncomine.
As shown in Figure 6A, the mRNA expression levels of PRC1
were significantly enhanced in the LUAD tissues, compared with
the normal lung tissues. In addition, we also analyzed the mRNA
expression of PRC1 in LUAD tissues using two microarray
datasets from the Hou and Selamat lung cancer groups, which
were downloaded from Oncomine. The results demonstrated
that the mRNA expression of PRC1 was significantly induced
in the LUAD tissues of these groups and positively correlated
with the tumor, lymph node, metastasis (TNM) staging of LUAD
(Figure 6B). These findings were further confirmed by our
mRNA expression data of PRC1 and the immunohistochemical
staining of PRC1 in human LUAD tissues and matched adjacent
normal lung tissues (Figures 6C,E). For the in vitro study, the
mRNA levels of PRC1 were dramatically increased in the LUAD
cell lines A549, H1299, and H1975, compared to those in normal
HPAEpiCs (Figure 6D). Collectively, these results suggest that
PRC1 may be involved in LUAD development and progression.

Correlation of miR-1-3p/PRC1 and
Clinicopathological Characteristics of
LUAD Patients
To investigate whether the miR-1-3p/PRC1 axis plays a role in
LUADdevelopment, we first analyzed the association between the
miR-1-3p and PRC1 levels in LUAD tissues. The results revealed
that themiR-1-3p levels were negatively correlated with the PRC1
mRNA expression (r=−0.5858; P< 0.01; Figure 7) in the LUAD
tissues. Importantly, low levels of miR-1-3p and high levels of
PRC1 were strongly associated with the TNM stage, lymph node
metastasis, and distant metastasis (Table 1). These data suggest
that LUAD development may be at least partially attributable to
the miR-1-3p/PRC1 axis.

miR-1-3p Inhibits LUAD Cell Metastasis via
PRC1
To determine whether miR-1-3p-mediated suppression of PRC1
expression is a major mechanism inhibiting LUAD development
and progression, we cotransfected LUAD cells with miR-1-
3p and a PRC1-overexpression plasmid for Transwell assays.
The plasmid transfection efficacy of miR-1-3p and PRC1 was
validated in Figures 8A,B. We found that miR-1-3p significantly
inhibited the migration and invasion of three LUAD cell lines and
that the inhibitory effects of miR-1-3p were markedly reversed
by PRC1 overexpression (Figures 8C–E), suggesting that miR-1-
3p inhibits LUAD cell metastasis in a PRC1-depedent manner
and the miR-1-3p/PRC1 axis is majorly involved in LUAD
development and progression.

Overexpression of PRC1 Is Associated
With a Poor Prognosis in LUAD Patients
MiR-1-3p functions through suppressing PRC1 expression,
suggesting a promotive role of PRC1 in LUAD development. To
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TABLE 1 | The clinicopathological characteristics of 30 lung adenocarcinoma patients.

Clinicopathological features n Percent (%) PRC1 expression p miR-1-3p expression p

Low (n = 9) High (n = 21) Low (n = 18) High (n = 12)

GENDER

Male 19 63.33 7 12 0.419 11 9 0.694

Female 11 36.67 2 9 – 7 3 –

AGE (YEARS)

≤60 13 43.33 6 7 0.123 8 5 1.000

>60 17 56.67 3 14 – 10 7 –

TUMOR SIZE

T1 and T2 6 20.00 1 5 0.637 4 2 1.000

T3 and T4 24 80.00 8 16 – 14 10 –

TNM STAGE

I and II 7 23.33 5 2 0.014 1 6 0.009

III and IV 23 76.67 4 19 – 17 6 –

LYMPHATIC METASTASIS

Negative 12 40.00 8 4 0.001 2 10 0.000

Positive 18 60.00 1 17 – 16 2 –

DISTANT METASTASIS

M0 12 40.00 7 5 0.013 3 9 0.002

M1 18 60.00 2 16 – 15 3 –

TNM, tumor, lymph node, metastasis stage.

FIGURE 8 | miR-1-3p inhibits LUAD cell migration and invasion via PRC1. (A,B) qPCR analysis of the transfection efficiency of the miR-1-3p mimic and the

PRC1-overexpression plasmid in LUAD cells. (C–E) Transwell assays for migration and invasion of LUAD cells transfected with the miR-1-3p mimic and/or the

PRC1-overexpression plasmid.
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FIGURE 9 | Overexpression of PRC1 is associated with a poor prognosis in LUAD patients. (A) The prognostic effect of PRC1 in LUAD patients was evaluated using

Kaplan–Meier plots. (B) The overall and disease-free survival rates in LUAD patients with different PRC1 expression patterns were evaluated for The Cancer Genome

Atlas (TCGA) cohort.

confirm this, we examined the prognostic effect of PRC1 in LUAD
patients from a public database by performing Kaplan–Meier
analysis (http://www.kmplot.com). The results showed that the
LUAD patients with a higher mRNA expression of PRC1 had
shorter overall and disease-free survival times than those with
a lower mRNA expression of PRC1 (Figures 9A,B). These data
suggest that PRC1 overexpression may serve as a biomarker
of a poor prognosis for LUAD patients, further supporting our
findings that miR-1-3p plays a key role in inhibiting LUAD
development through targeting PRC1.

DISCUSSION

Carcinogenesis of LUAD is a complex and multistage process
involving the regulation of a wide range of genes bymiRNAs (22–
24). Among them, miR-1-3p, a muscle-specific miRNA, has been
shown to play a key role in skeletal muscle differentiation and
have inhibitory effects on the growth, migration, and invasion
of LUAD (25). The present study revealed that miR-1-3p was
significantly downregulated in LUAD tissues and cells. Lower

levels of miR-1-3p were strongly associated with a higher TNM
stage, earlier lymph nodemetastasis, andmore distant metastasis.
Therefore, miR-1-3p is suggested as a tumor suppressor in LUAD.
The detection of miR-1-3p expression may be a valuable tool to
evaluate the invasion and metastasis of LUAD.

There are hundreds of possible target genes of miR-1-3p,
among which PRC1 is a critical protein in cytokinesis and
characterized as a mitotic spindle-associated cyclin-dependent
kinase substrate (26). Previous studies have provided evidence
that PRC1 is involved in different types of cancer (27, 28).
Loss of PRC1 leads to the accumulation of bi- and multi-
nucleated cells in lung cancer, which further supports its role
as the major central spindle organizer in cytokinesis (29). In
view of our findings that miR-1-3p overexpression inhibits LUAD
cell viability, there is a possibility that the function of PRC1
in apoptosis and senescence is due to induction of miR-1-3p.
In this study, we demonstrated that the function of miR-1-
3p could be suppressed by dysregulated expression of PRC1.
In accordance with the above-mentioned studies, we confirmed
that the overexpression of PRC1 significantly promoted the
viability, invasion, and migration of LUAD cells. A higher PRC1
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expression was also related to a worse outcome in patients
with LUAD. Because Wnt/β-catenin signaling is dysregulated in
lung cancer (30) and the overexpression of Wnt proteins (Wnt1
and Wnt5a) is significantly associated with adverse outcomes
in lung cancer patients (31), we speculate that the miR-1-
3p/PRC1 axis participates in dysregulation of Wnt/β-catenin
signaling in LUAD development (32); however, this hypothesis
requires further investigation. Although our study demonstrated
that the miR-1-3p/PRC1 axis is a major mechanism underlying
LUAD development, we do not exclude the possibility that
other miRNAs or protein regulators besides miR-1-3p/PRC1 are
also involved in LUAD pathogenesis. Therefore, more research
is needed.

In summary, we identified miR-1-3p as a novel regulator of
PRC1 in LUAD. A high PRC1 expression correlates with a poor
prognosis in LUAD patients. Thus, targeting miR-1-3p/PRC1
may be a potential therapeutic intervention for the treatment
of LUAD.
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The ATP-binding cassette transporter G2 (ABCG2; also known as breast cancer
resistance protein, BCRP) has been suggested to be involved in clinical multidrug
resistance (MDR) in cancer like other ABC transporters such as ABCB1 (P-glycoprotein).
As an efflux pump exhibiting a broad substrate specificity localized on cellular
plasma membrane, ABCG2 excretes a variety of endogenous and exogenous
substrates including chemotherapeutic agents, such as mitoxantrone and several
tyrosine kinase inhibitors. Moreover, in the normal tissues, ABCG2 is expressed on
the apical membranes and plays a pivotal role in tissue protection against various
xenobiotics. For this reason, ABCG2 is recognized to be an important determinant
of the pharmacokinetic characteristics of its substrate drugs. Although the clinical
relevance of reversing the ABCG2-mediated MDR has been inconclusive, an appropriate
modulation of ABCG2 function during chemotherapy should logically enhance the
efficacy of anti-cancer agents by overcoming the MDR phenotype and/or improving their
pharmacokinetics. To confirm this possibility, considerable efforts have been devoted
to developing ABCG2 inhibitors, although there is no clinically available substance for
this purpose. As a clue for addressing this issue, this mini-review provides integrated
information covering the technical backgrounds necessary to evaluate the ABCG2
inhibitory effects on the target compounds and a current update on the ABCG2
inhibitors. This essentially includes our recent findings, as we serendipitously identified
febuxostat, a well-used agent for hyperuricemia as a strong ABCG2 inhibitor, that
possesses some promising potentials. We hope that an overview described here will
add value to further studies involving in the multidrug transporters.

Keywords: BCRP, cancer chemotherapy, drug repurposing, febuxostat, Ko143, multidrug resistance, tumor lysis
syndrome, vesicle transport

INTRODUCTION

Two decades ago, the ABC transporter G2 (ABCG2) was discovered in drug-resistant cancer cells
and human placenta (Allikmets et al., 1998; Doyle et al., 1998; Miyake et al., 1999). Thereafter,
many studies were conducted to determine the role of ABCG2 in developing MDR in cancer.
Moreover, in the first decade, in vivo studies using Abcg2 knockout mice (Jonker et al., 2002)

Abbreviations: ABC, ATP-binding cassette; BBB, blood–brain barrier; CML, chronic myeloid leukemia; EC50, half-maximal
effective concentration; FTC, fumitremorgin C; IC50, half-maximal inhibitory concentration; MDR, multidrug resistance;
TKI, tyrosine kinase inhibitor, TLS, tumor lysis syndrome.
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coupled with biochemical characterizations revealed the
importance of ABCG2 in the biological defense mechanisms
against xenobiotics (Vlaming et al., 2009). Indeed, ABCG2—a
655-amino acid protein working as a homodimer on cellular
plasma membranes (Robey et al., 2009)—is expressed not
only in cancer cells but also in several normal tissues, such as
brush border membranes of epithelium in the intestine and
of proximal tubules in the kidney, bile canalicular membranes
of the hepatocytes in the liver, luminal membranes of the
mammary gland epithelium, and blood-facing membranes
of the endothelial cells forming the BBB. In these tissues
ABCG2 plays a pivotal role in the extrusion of various
endogenous and exogenous substrates including drugs
(Mizuno et al., 2004, 2007; Adachi et al., 2005; Hirano
et al., 2005; Jonker et al., 2005; Ando et al., 2007). Hence,
this transporter is recognized as an important determinant of
the pharmacokinetic characteristics profiles of various drugs
(Giacomini et al., 2010).

In the next decade, after identifying ABCG2 as a
physiologically important urate transporter, a positive
relationship between ABCG2 dysfunction and increased
risk of human diseases, such as gout and hyperuricemia
was revealed (Matsuo et al., 2009; Woodward et al., 2009;
Ichida et al., 2012; Higashino et al., 2017). In addition to
the sulfate conjugates of endogenous steroids (Suzuki et al.,
2003) and porphyrins (Zhou et al., 2005; Robey et al., 2009),
phytoestrogen sulfate conjugates (van de Wetering and
Sapthu, 2012) and a uremic toxin indoxyl sulfate (Takada
et al., 2018) were added in the growing list of ABCG2
substrates. Contrary to these advances in understanding the
pathophysiological importance of ABCG2, the clinical relevance
of reversing ABCG2-mediated MDR has been inconclusive
(Robey et al., 2018).

ABCG2 overexpression can render the cancer cells
resistant to the ABCG2 substrate chemotherapy agents,
such as mitoxantrone, doxorubicin, SN-38, and several
TKIs. To the best of our knowledge, no published clinical
trial has ever succeeded in reversing the ABCG2-mediated
MDR. This is because, despite a lot of efforts in ABCG2
inhibitor development, chemical knock-out/down of
ABCG2 in clinical situations has not been achieved yet
due to the lack of an appropriate candidate molecule. We
herein describe some well-used experimental systems to
evaluate the ABCG2 inhibitory activity, followed by a recent
update on the ABCG2 inhibitors that includes a potent
substance, febuxostat.

TECHNICAL BACKGROUND FOR
FUNCTIONAL VALIDATION

Various experimental models are available to examine the
functions of the ABC transporters. Mainly focusing on ABCG2,
with a current update this section introduces some in vitro and
in vivo models that have been used in ABC transporter field.
Broadly, the in vitro models are classified into two types, namely
membrane-based systems and cell-based systems (Figure 1).

Plasma Membrane Vesicle-Based
Methods
Preparation of Plasma Membrane Vesicles
In mammals, most of the ABC transporters are membrane
proteins and work as an efflux pump involved in the transport
of its substrates from the cytosol, either to the extracellular space
or into organelles by an ATP-dependent manner. Therefore,
isolation of the target ABC protein-enriched cell membrane
is the first step for biochemical analyses. For ABCG2, sucrose
density gradient ultracentrifugation for the isolation of plasma
membrane fraction is generally employed to prepare plasma
membrane vesicles from ABCG2-expressing cells (related notes
are inscribed in the legend of Figure 1). For this purpose, not
only mammalian cells but also insect cells [e.g., baculovirus-
infected Sf9 cells (Saito et al., 2006)] could be used as
host cells. Nonetheless, for easy and convenient preparation
of ABCG2-expressing cells, we here recommend plasmid-
based overexpression in non-polarized cells exhibiting high
transfection efficiency, such as HEK293 cells (Miyata et al., 2016).

Vesicle Transport Assay
Vesicle transport assay is a well-established in vitro method
employed to quantitatively evaluate ABC transporter function.
The presence of ATP-dependent active transport across the cell
membrane was directly proved using this method (Ishikawa,
1989). In this assay, ATP-regeneration components—enough
amount of creatine phosphate and creatine kinase—are
employed to maintain ATP levels in the reaction mixtures during
prolonged incubation, and AMP is used as an alternative of
ATP for the ATP-deficient controls. After incubation for the
transport reaction, the plasma membrane vesicles are washed by
filtration and then the intravesicularly accumulated substances
are detected. To make this process more convenient and
sensitive, radiolabeled or fluorescent substrates are usually used;
alternatively, mass spectrometry is used (Toyoda et al., 2016;
Takada et al., 2018). With ABCG2, [14C]-urate (Miyata et al.,
2016; Stiburkova et al., 2016; Higashino et al., 2017) and [3H]-
estrone sulfate (Suzuki et al., 2003) are well-used radiolabeled
substrates that exhibit comparatively lower background signal
for the quantitative detection due to their relatively hydrophilic
properties. Additionally, non-radiolabeled experiments are
conducted by the combined use of hematoporphyrin (a
fluorescent ABCG2 substrate) and gel filtration techniques
(Tamura et al., 2006).

ATPase Assay
Since ABC protein is driven by the free energy of ATP
hydrolysis, ATPase activity is recognized as an indicator of
the substrate transport. In this assay, the release of inorganic
phosphate from ATP coupled with the transport of substrates
is estimated using a colorimetric method, such as malachite
green procedure (Baykov et al., 1988). This catalytic assay
is relatively convenient for estimating the activity of some
ABC proteins that prefer lipophilic compounds as their
substrates because the non-specifically adsorbed substrates
on the vesicles interfere with the measurement of direct
transport. Considering that ABCB1 activity has been well
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FIGURE 1 | Schematic illustrations of each in vitro assay. Generally used in vitro models which are classified into membrane-based systems and cell-based systems
(Hegedus et al., 2009) are shown. In the former systems, investigators can use culture cell-derived plasma membrane vesicles or reconstituted proteoliposomes as
described in the main text. In the latter systems, aside from a couple of exceptions using Xenopus laevis oocytes (Nakanishi et al., 2003; Woodward et al., 2009),
mammalian cells expressing target ABC protein are generally used. (A,B) Plasma membrane vesicle- or proteoliposome-based methods: vesicle transport assay (A)
and ATPase assay (B). Both plasma membrane vesicles and reconstituted proteoliposomes are applicable to the vesicle transport assay and the ATPase assay. Of
note, the final step of the vesicle preparation—gentle homogenization of isolated membrane fraction—is empirically important for the formation of inside-out plasma
membrane vesicles, whose outer faces are the cytoplasmic aspects of the parent membranes. Although the resulting plasma membrane vesicles are the mixture of
inside-out and right-side-out components, without any separation of the right-side-out vesicles they are generally stored at –80◦C and subjected to further assays.
This is because that in these in vitro assays, only ABC proteins embedded in the inside-out vesicles have their ABCs outside of the vesicles and can use ATP in the
reaction mixture for their transport function. In other words, the ABC proteins in the right-side-out vesicles cannot work due to an inaccessibility of the ABCs with
ATP. Additionally, ABCG2-enriched plasma membrane vesicles are used for a biochemical analysis to study interactions of candidate chemicals with ABCG2 at the
substrate-binding sites, known as the photoaffinity labeling of ABCG2 with [125 I]-iodoarylazido-prazosin (Shukla et al., 2006). (C,D) Cell-based methods: drug
resistance/accumulation test (C) and transcellular system (D). MDR, multidrug resistance.

studied based on the ATPase assay, this method will be
appropriate when investigators would need to compare the
inhibitory effects of target compounds on ABCB1 and ABCG2
(Zhang et al., 2016; Guo et al., 2018). Nonetheless, since the
ATPase assay does not evaluate the direct transport, regarding
ABCG2, we recommend the vesicle transport assay for more
precise evaluation.

Proteoliposome-Based Methods
An artificial lipid membrane system characterized by the
reconstitution of purified ABC protein into proteoliposomes
(Ambudkar et al., 1998; Jackson et al., 2018) is also a powerful
technique. The ABC protein-contained proteoliposomes
can be used as an alternative to the plasma membrane
vesicles, and their detailed preparation methods are described
previously (Geertsma et al., 2008). Additionally, this approach
serves as the first choice in the functional studies involving
the ABC proteins localized on the organelle membrane
(Okamoto et al., 2018).

Cell-Based Methods
Drug Resistance/Accumulation Test
The cells overexpressing MDR machinery show lower sensitivity
against its substrate drugs exhibiting cytotoxic or anti-
proliferative effects compared to their parent cells, indicating
that the ABC protein-expressing cells have higher half maximal
effective concentration (EC50) values for cytotoxic transporter
substrates. In such situations, co-treatment of the transporter
inhibitors with the substrate decreases the EC50 values, which is
depicted as a left-side shift of cell viability curve in the cytotoxic
assay. Additionally, if fluorescence transporter substrates are
available, flow cytometry analyses addressing their intracellular
accumulation will be useful for inhibitor screening (Murakami
et al., 2017; Wu et al., 2017).

Transcellular System
To investigate the transcellular transport of substances, mono-
layer culture of polarized cells expressing target transporter(s)
in Transwell R© inserts system has been used (Hegedus et al.,
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2009). For instance, using double-transfected Madin-Darby
canine kidney II cells overexpressing both organic anion-
transporting polypeptide 1B1 (OATP1B1, a basal uptake
transporter) and ABCG2 (an apical efflux transporter), an
earlier study has observed an enhanced vectorial transport of
[3H]estrone sulfate—an ABCG2 substrate that cannot passively
penetrate the plasma membrane—from the basal to the apical
side (Matsushima et al., 2005). A similar strategy employing
ABCG2-expressing polarized cells was used for in vitro studies
investigating the active secretion of drugs and toxins into milk
via ABCG2 (Wassermann et al., 2013; Ito et al., 2015). Of note, in
this transcellular system, endogenous transporters and metabolic
reactions in the cells may affect apparent transport activities of
target transporters.

In vivo Evaluation Methods
Xenograft Models
Athymic nude mice models with MDR-xenografts have been used
to test whether co-administration of a potential MDR inhibitor
with an anti-cancer agent can reverse the MDR phenotype
(Tiwari et al., 2013; Zhang et al., 2017, 2018). In such models, the
obtained results could be affected by the difference in the origin
of the transplanted cancer cells. This concern might be important
while xenograft models are studied.

Focusing on Pharmacokinetic Characteristics
To examine the in vivo effects of different chemicals on the
target ABC transporter, its pharmacokinetic role has been
focused (Robey et al., 2018). With ABCG2, the pharmacokinetic
parameters related to the intestinal absorption or the brain
distribution of ABCG2 substrate drugs will be good indicators
for ABCG2 activity in vivo. For example, pre-dosing of enough
quantity of ABCG2 inhibitors increased the bioavailability
of sulphasalazine—an ABCG2 substrate—in wild-type mice.
This was, however, not observed in Abcg2-knockout mice,
suggesting the in vivo inhibition of Abcg2 (Kusuhara et al.,
2012; Miyata et al., 2016). Interestingly, the utility of a
combination of brain-specific firefly luciferase transgenic
mice and D-luciferin, a chemiluminescent luciferase substrate
transported by ABCG2 (Zhang et al., 2007) to investigate the
in vivo inhibitory effects of test compounds on ABCG2 in
the BBB was reported (Bakhsheshian et al., 2016). Further
methodological progress will aid evaluation of in vivo
ABCG2 function.

Structure-Based in silico Approaches
A main approach to abolish MDR is to discover specific
inhibitors of the drug-efflux pump. For this purpose, quantitative
structure-activity relationship (QSAR) analysis among the series
of compounds can serve for the design of lead inhibitors (Nicolle
et al., 2009; Ishikawa et al., 2012; Marighetti et al., 2013; Shukla
et al., 2014). With ABCG2, since three-dimensional structures of
this protein determined by cryo-electron microscopy (EM) were
very recently presented (Taylor et al., 2017; Jackson et al., 2018), a
deeper understanding of the chemicals–ABCG2 interactions will
be achieved as described below.

HISTORY AND RECENT UPDATE OF THE
ABCG2 INHIBITORS

As a MDR machinery in cancer cells and an important drug
gatekeeper in tissues like the intestine and the brain, ABCG2
is involved in the efficacy of cancer chemotherapy in patients
treated with ABCG2 substrate anti-cancer drugs. To achieve
appropriate modulation of ABCG2 by small molecules, the
inhibitory potency of various compounds against ABCG2 activity
has been extensively evaluated. In this section, we highlight the
history and recent update of ABCG2 inhibitors.

Overview of the History of ABCG2
Inhibitors
The first ABCG2 inhibitor reported was FTC, a mycotoxin
produced by Aspergillus fumigatus (Rabindran et al., 1998, 2000).
The in vivo use of FTC was unfortunately precluded due to its
neurotoxicity. Among the FTC derivatives, Ko143 was identified
as a highly potent ABCG2 inhibitor in vivo as it was less
neurotoxic than the native FTC and was not overtly toxic to
mice (Allen et al., 2002). Cell-based assays showed that the
EC90 concentrations of Ko143 were 23 nM (Abcg2-mediated
mitoxantrone resistance), 5.5 µM (ABCB1-mediated paclitaxel
resistance) and >8 µM (ABCC1-mediated etoposide resistance),
respectively; these results indicated that Ko143 inhibits ABCG2
stronger than ABCB1 and ABCC1, but is not selective to ABCG2
(Allen et al., 2002). Furthermore, from a series of ABCB1
inhibitors, some ABCG2 inhibitors, such as elacridar (GF120918)
(Allen et al., 1999; Kruijtzer et al., 2002) and tariquidar (XR9576)
(Robey et al., 2004) are frequently used in basic research
as well as Ko143.

To date, the molecular bases relating to the chemical
inhibition of ABCG2 are not fully understood. The cryo-EM
structures of ABCG2 (Taylor et al., 2017) and ABCG2 bound
to Ko143 derivatives or tariquidar (Jackson et al., 2018) will be
an important to address this issue. Besides, another group of
researchers has revealed the structural characteristics of ABCG2
protein critical for its function based on a molecular modeling
approach combined with biochemical characterizations of
ABCG2 mutants (Khunweeraphong et al., 2017). Previous studies
employing the QSAR approaches predicted some structural
requirements of compounds for interacting with ABCG2 as an
inhibitor (Ishikawa et al., 2012; Mao and Unadkat, 2015); not
being true for all ABCG2 inhibitors, the representative features
are lipophilicity, planner structure, and amine bonded to one
carbon of a heterocyclic ring. Furthermore, a virtual screening
strategy employing a ligand-based in silico classification model
to predict the inhibitory potential of drugs toward ABCG2
presented some favorable outcomes (Montanari et al., 2017).
Integration of these findings will contribute to providing a basis
for the design of new ABCG2 inhibitors.

Hitherto, many studies focusing on the chemicals–ABCG2
interactions identified a large number of ABCG2 inhibitors with
diverse chemical structures (Mao and Unadkat, 2015; Wiese,
2015; Pena-Solorzano et al., 2017; Silbermann et al., 2019). An
expanding list of the ABCG2 inhibitors, which include ABCG2
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FIGURE 2 | Inhibitory effect of febuxostat against ABCG2 is stronger than that of Ko143 and elacridar, two well-used ABCG2 inhibitors. Febuxostat is known as an
oral hypouricemic agent inhibiting xanthine oxidoreductase, a key enzyme for uric acid production. (Left) Effect of each compound on the transport activity of
ABCG2 are shown. Data from our previous study under CC BY license (Miyata et al., 2016) are shown graphically, in which in the absence (vehicle control) or
presence of 100 nM of each compound, the ATP-dependent urate transport activities of ABCG2 were measured using the vesicle transport assay. Data are
expressed as the mean ± SD, n = 3. Of note, the half-maximal inhibitory concentration (IC50) of febuxostat against the urate transport activity of ABCG2 was 27 nM
in the previous study. (Right) Chemical structures of each compound are depicted.

substrates (competitive inhibitors), contains such drugs on the
market as TKIs and anti-HIV drugs [some of them are often
ABCG2 substrates (Polgar et al., 2008; Mao and Unadkat, 2015)]
and such dietary phytochemicals as flavonoids and rotenoids.
Nevertheless, to the best of our knowledge, the clinical use of
such chemicals for ABCG2 inhibition has not yet been achieved
probably due to concerns on safety and/or in vivo efficacy of
them, which may have been common reasons responsible for
the failure of the clinical development of ABCG2 inhibitors.
Recent studies importantly showed that two potential anti-cancer
compounds under clinical development could competitively
inhibit both ABCG2 and ABCB1 (Ji et al., 2018a,b).

Febuxostat, a Highly Potent ABCG2
Inhibitor Applicable in Clinical Situations
Regarding the difficulty in the clinical applications of
existing ABCG2 inhibitors, our recent study may open up
further avenues, in which febuxostat—an approved agent
for hyperuricemia globally used in clinical situations—was
serendipitously identified as a strong ABCG2 inhibitor both
in vitro and in vivo (Miyata et al., 2016). Using the vesicle
transport assay, we revealed that febuxostat inhibits ABCG2
more strongly than Ko143 and elacridar (Figure 2). This
indicates that febuxostat has a superior safety profile and
better inhibitory ability against ABCG2 compared to these two
compounds. Moreover, the study demonstrated that the IC50 of
febuxostat against urate transport activity of ABCG2 (0.027 µM)

was lower than its maximum plasma unbound concentrations
reported in humans (0.09 µM), suggesting that febuxostat
might inhibit human ABCG2 at a clinically used dose. Thus,
febuxostat can be a promising candidate as a potential ABCG2
inhibitor in humans. The structural characteristics and molecular
mechanisms of febuxostat as an ABCG2 inhibitor remain to be
elucidated, as well as the effects of febuxostat on the function of
other ABC transporters, including ABCB1.

Febuxostat will be used in cancer chemotherapy more
frequently because recently this drug has been approved in
Europe and Japan for the prophylaxis of TLS. TLS is a
potentially life-threatening condition caused by an abrupt
release of intracellular metabolites after tumor cell lysis in
cancer patients on chemotherapy (Alakel et al., 2017). It is
the most common treatment-related emergency in patients
with hematologic malignancies and characterized by metabolic
abnormalities including hyperuricemia that triggers several
mechanisms resulting in acute kidney injury. Appropriate control
of serum uric acid is therefore important in the prevention
of TLS. Recent studies demonstrated that febuxostat—an oral
hypouricemic agent—can successfully prevent TLS in cancer
patients (Spina et al., 2015; Tamura et al., 2016). In such
situations, since the patients will be treated with febuxostat before
and during chemotherapy, there would be drug-drug interactions
between febuxostat and ABCG2 substrate anti-cancer agents.

Importantly, ABCG2 is reportedly expressed on the malignant
hematopoietic and the lymphoid cells frequently; its expression
in several types of human leukemia has been investigated
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(Jordanides et al., 2006; Eechoute et al., 2011; Stacy et al., 2013).
Considering that initiating cells in CML arises from a multipotent
hematopoietic stem cell (HSC), together with high expression
of ABCG2 in human HSCs (Zhou et al., 2001; Scharenberg
et al., 2002), overexpression of ABCG2 has been considered to
confer drug resistance ability to the CML stem cell population
(Brendel et al., 2007). However, the clinical relevance of ABCG2
inhibition in CML patients from the view point of reversing MDR
remains to be clarified. Since several TKIs used for CML are
ABCG2 substrates (Hira and Terada, 2018), the combination use
of febuxostat may be a future research topic.

Additionally, ABCG2 expressed in tumor cells is reportedly
involved in the efflux of photosensitizers in 5-aminolevulinic
acid-based photodynamic therapy (Ishikawa et al., 2015).
Hence, febuxostat might enhance the efficacy of this minimally
invasive modality for treating solid cancers by accumulating
photosensitizers in the target cells. The details are discussed in
our previous report (Miyata et al., 2016).

CONCLUSION AND PERSPECTIVE

Here, we summarized some key experimental systems that
will continuously contribute to generating novel ABCG2
inhibitors and described an overview of the current update of
ABCG2 inhibitors. Among them, febuxostat will be one of the
most promising candidates for clinical use. Considering that
dysfunctional ABCG2 genotypes, which are summarized in a
recent review (Heyes et al., 2018), alter the pharmacokinetic
characteristics of ABCG2 substrate drugs such as several TKIs
(Hira and Terada, 2018) and rosuvastatin (Keskitalo et al., 2009),
ABCG2 inhibitors will also exert similar effects in humans.
As a beneficial application of this clinical possibility, we have
proposed a novel concept named febuxostat-boosted therapy
(Miyata et al., 2016), in which febuxostat is expected to enhance
the bioavailability of ABCG2 substrate drugs. For a similar
purpose, ritonavir and cobicistat are used as pharmacokinetic
boosters inhibiting cytochrome P450 3A4, a major pathway
of drug metabolism, to increase the plasma concentrations of
certain drugs (Shah et al., 2013). No pharmacokinetic enhancer
targeting transporter proteins has been, however, successfully

evaluated in clinical trials. In this context, the potential
benefits of the febuxostat-boosted therapy should be validated
in the near future. Furthermore, this concept could also be
applied to enhance the BBB penetration of ABCG2 substrate
drugs for brain cancer chemotherapy. Despite the potential
risks of adverse events in the combination therapy, further
clinical studies to elucidate whether febuxostat is beneficial
in enhancing the efficacy of pharmacotherapy via ABCG2
inhibition are warranted.

AUTHOR CONTRIBUTIONS

YT researched the data for the manuscript, provided substantial
contributions to discussion of its content, and wrote the
manuscript. TT contributed to the discussion and the writing
of the manuscript. HS critiqued the manuscript and provided
intellectual inputs. All the authors reviewed and edited the
manuscript before submission and have made final approval
of the manuscript.

FUNDING

This work and relating our findings were supported by the
JSPS KAKENHI Grant Numbers 15H05610 to YT, 16H1808
and 18KK0247 to TT, 22136015 to HS; TT has received
research grants from Gout Research Foundation, The Uehara
Memorial Foundation, Mochida Memorial Foundation for
Medical and Pharmaceutical Research, The Takeda Medical
Foundation, and MSD Life Science Foundation, Public Interest
Incorporated Foundation.

ACKNOWLEDGMENTS

The authors would like to acknowledge Drs. Hiroshi Miyata,
Hirotaka Matsuo, and Kimiyoshi Ichida for their contribution
to our studies highlighted in this mini-review article as well as
Drs. Toshihisa Ishikawa and Yuichi Sugiyama for their previous
mentorships and encouragements.

REFERENCES
Adachi, Y., Suzuki, H., Schinkel, A. H., and Sugiyama, Y. (2005). Role of breast

cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and
sulfate conjugates from enterocytes to intestinal lumen. Mol. Pharmacol. 67,
923–928. doi: 10.1124/mol.104.007393

Alakel, N., Middeke, J. M., Schetelig, J., and Bornhauser, M. (2017). Prevention
and treatment of tumor lysis syndrome, and the efficacy and role of rasburicase.
Onco Targets Ther. 10, 597–605. doi: 10.2147/OTT.S103864

Allen, J. D., Brinkhuis, R. F., Wijnholds, J., and Schinkel, A. H. (1999). The mouse
Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected
for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res. 59,
4237–4241.

Allen, J. D., Van Loevezijn, A., Lakhai, J. M., Van Der Valk, M., Van Tellingen, O.,
Reid, G., et al. (2002). Potent and specific inhibition of the breast cancer
resistance protein multidrug transporter in vitro and in mouse intestine by a
novel analogue of fumitremorgin C. Mol. Cancer Ther. 1, 417–425.

Allikmets, R., Schriml, L. M., Hutchinson, A., Romano-Spica, V., and Dean, M.
(1998). A human placenta-specific ATP-binding cassette gene (ABCP) on
chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58,
5337–5339.

Ambudkar, S. V., Lelong, I. H., Zhang, J., and Cardarelli, C. (1998). Purification
and reconstitution of human P-glycoprotein. Methods Enzymol. 292, 492–504.
doi: 10.1016/S0076-6879(98)92038-9

Ando, T., Kusuhara, H., Merino, G., Alvarez, A. I., Schinkel, A. H., and
Sugiyama, Y. (2007). Involvement of breast cancer resistance protein (ABCG2)
in the biliary excretion mechanism of fluoroquinolones. Drug Metab. Dispos.
35, 1873–1879. doi: 10.1124/dmd.107.014969

Bakhsheshian, J., Wei, B. R., Hall, M. D., Simpson, R. M., and Gottesman, M. M.
(2016). In vivo bioluminescent imaging of ATP-binding cassette transporter-
mediated efflux at the blood-brain barrier. Methods Mol. Biol. 1461, 227–239.
doi: 10.1007/978-1-4939-3813-1_19

Baykov, A. A., Evtushenko, O. A., and Avaeva, S. M. (1988). A malachite
green procedure for orthophosphate determination and its use in alkaline

Frontiers in Pharmacology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 208890

https://doi.org/10.1124/mol.104.007393
https://doi.org/10.2147/OTT.S103864
https://doi.org/10.1016/S0076-6879(98)92038-9
https://doi.org/10.1124/dmd.107.014969
https://doi.org/10.1007/978-1-4939-3813-1_19
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 7

Toyoda et al. Current Update on ABCG2 Inhibitors

phosphatase-based enzyme immunoassay. Anal. Biochem. 171, 266–270. doi:
10.1016/0003-2697(88)90484-8

Brendel, C., Scharenberg, C., Dohse, M., Robey, R. W., Bates, S. E., Shukla, S.,
et al. (2007). Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity
interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 21,
1267–1275. doi: 10.1038/sj.leu.2404638

Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., et al.
(1998). A multidrug resistance transporter from human MCF-7 breast cancer
cells. Proc. Natl. Acad. Sci. U.S.A. 95, 15665–15670. doi: 10.1073/pnas.95.26.
15665

Eechoute, K., Sparreboom, A., Burger, H., Franke, R. M., Schiavon, G., Verweij, J.,
et al. (2011). Drug transporters and imatinib treatment: implications for clinical
practice. Clin. Cancer Res. 17, 406–415. doi: 10.1158/1078-0432.CCR-10-2250

Geertsma, E. R., Nik Mahmood, N. A., Schuurman-Wolters, G. K., and
Poolman, B. (2008). Membrane reconstitution of ABC transporters and assays
of translocator function. Nat. Protoc. 3, 256–266. doi: 10.1038/nprot.2007.519

Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X.,
et al. (2010). Membrane transporters in drug development. Nat. Rev. Drug
Discov. 9, 215–236. doi: 10.1038/nrd3028

Guo, C., Liu, F., Qi, J., Ma, J., Lin, S., Zhang, C., et al. (2018). A novel
synthetic dihydroindeno[1,2-b] indole derivative (LS-2-3j) reverses ABCB1-
and ABCG2-mediated multidrug resistance in cancer cells. Molecules 23:E3264.
doi: 10.3390/molecules23123264

Hegedus, C., Szakacs, G., Homolya, L., Orban, T. I., Telbisz, A., Jani, M.,
et al. (2009). Ins and outs of the ABCG2 multidrug transporter: an
update on in vitro functional assays. Adv. Drug Deliv. Rev. 61, 47–56.
doi: 10.1016/j.addr.2008.09.007

Heyes, N., Kapoor, P., and Kerr, I. D. (2018). Polymorphisms of the multidrug
Pump ABCG2: a systematic review of their effect on protein expression,
function, and drug pharmacokinetics. Drug Metab. Dispos. 46, 1886–1899.
doi: 10.1124/dmd.118.083030

Higashino, T., Takada, T., Nakaoka, H., Toyoda, Y., Stiburkova, B., Miyata, H., et al.
(2017). Multiple common and rare variants of ABCG2 cause gout. RMD Open
3:e000464. doi: 10.1136/rmdopen-2017-000464

Hira, D., and Terada, T. (2018). BCRP/ABCG2 and high-alert medications:
biochemical, pharmacokinetic, pharmacogenetic, and clinical implications.
Biochem. Pharmacol. 147, 201–210. doi: 10.1016/j.bcp.2017.10.004

Hirano, M., Maeda, K., Matsushima, S., Nozaki, Y., Kusuhara, H., and Sugiyama, Y.
(2005). Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin.
Mol. Pharmacol. 68, 800–807. doi: 10.1124/mol.105.014019

Ichida, K., Matsuo, H., Takada, T., Nakayama, A., Murakami, K., Shimizu, T.,
et al. (2012). Decreased extra-renal urate excretion is a common cause of
hyperuricemia. Nat. Commun. 3:764. doi: 10.1038/ncomms1756

Ishikawa, T. (1989). ATP/Mg2+-dependent cardiac transport system for
glutathione S-conjugates. A study using rat heart sarcolemma vesicles. J. Biol.
Chem. 264, 17343–17348.

Ishikawa, T., Kajimoto, Y., Inoue, Y., Ikegami, Y., and Kuroiwa, T. (2015). Critical
role of ABCG2 in ALA-photodynamic diagnosis and therapy of human brain
tumor. Adv. Cancer Res. 125, 197–216. doi: 10.1016/bs.acr.2014.11.008

Ishikawa, T., Saito, H., Hirano, H., Inoue, Y., and Ikegami, Y. (2012). Human
ABC transporter ABCG2 in cancer chemotherapy: drug molecular design to
circumvent multidrug resistance. Methods Mol. Biol. 910, 267–278. doi: 10.
1007/978-1-61779-965-5_11

Ito, N., Ito, K., Ikebuchi, Y., Toyoda, Y., Takada, T., Hisaka, A., et al. (2015).
Prediction of drug transfer into milk considering breast cancer resistance
protein (BCRP)-mediated transport. Pharm. Res. 32, 2527–2537. doi: 10.1007/
s11095-015-1641-2

Jackson, S. M., Manolaridis, I., Kowal, J., Zechner, M., Taylor, N. M. I., Bause, M.,
et al. (2018). Structural basis of small-molecule inhibition of human multidrug
transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340. doi: 10.1038/s41594-
018-0049-1

Ji, N., Yang, Y., Cai, C. Y., Lei, Z. N., Wang, J. Q., Gupta, P., et al. (2018a). VS-
4718 antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing
cancer cells by inhibiting the efflux function of ABC transporters. Front.
Pharmacol. 9:1236. doi: 10.3389/fphar.2018.01236

Ji, N., Yang, Y., Lei, Z. N., Cai, C. Y., Wang, J. Q., Gupta, P., et al.
(2018b). Ulixertinib (BVD-523) antagonizes ABCB1- and ABCG2-mediated

chemotherapeutic drug resistance. Biochem. Pharmacol. 158, 274–285. doi: 10.
1016/j.bcp.2018.10.028

Jonker, J. W., Buitelaar, M., Wagenaar, E., Van Der Valk, M. A., Scheffer, G. L.,
Scheper, R. J., et al. (2002). The breast cancer resistance protein protects against
a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl.
Acad. Sci. U.S.A. 99, 15649–15654. doi: 10.1073/pnas.202607599

Jonker, J. W., Merino, G., Musters, S., Van Herwaarden, A. E., Bolscher, E.,
Wagenaar, E., et al. (2005). The breast cancer resistance protein BCRP (ABCG2)
concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med. 11,
127–129. doi: 10.1038/nm1186

Jordanides, N. E., Jorgensen, H. G., Holyoake, T. L., and Mountford, J. C. (2006).
Functional ABCG2 is overexpressed on primary CML CD34+ cells and is
inhibited by imatinib mesylate. Blood 108, 1370–1373. doi: 10.1182/blood-
2006-02-003145

Keskitalo, J. E., Zolk, O., Fromm, M. F., Kurkinen, K. J., Neuvonen,
P. J., and Niemi, M. (2009). ABCG2 polymorphism markedly affects the
pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86,
197–203. doi: 10.1038/clpt.2009.79

Khunweeraphong, N., Stockner, T., and Kuchler, K. (2017). The structure of the
human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.
Sci. Rep. 7:13767. doi: 10.1038/s41598-017-11794-w

Kruijtzer, C. M., Beijnen, J. H., Rosing, H., ten Bokkel Huinink, W. W.,
Schot, M., Jewell, R. C., et al. (2002). Increased oral bioavailability
of topotecan in combination with the breast cancer resistance protein
and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20, 2943–2950.
doi: 10.1200/JCO.2002.12.116

Kusuhara, H., Furuie, H., Inano, A., Sunagawa, A., Yamada, S., Wu, C., et al. (2012).
Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the
impact of curcumin as an in vivo inhibitor of BCRP. Br. J. Pharmacol. 166,
1793–1803. doi: 10.1111/j.1476-5381.2012.01887.x

Mao, Q., and Unadkat, J. D. (2015). Role of the breast cancer resistance protein
(BCRP/ABCG2) in drug transport–an update. AAPS J. 17, 65–82. doi: 10.1208/
s12248-014-9668-6

Marighetti, F., Steggemann, K., Hanl, M., and Wiese, M. (2013). Synthesis
and quantitative structure-activity relationships of selective BCRP inhibitors.
ChemMedChem 8, 125–135. doi: 10.1002/cmdc.201200377

Matsuo, H., Takada, T., Ichida, K., Nakamura, T., Nakayama, A., Ikebuchi, Y.,
et al. (2009). Common defects of ABCG2, a high-capacity urate
exporter, cause gout: a function-based genetic analysis in a Japanese
population. Sci. Transl. Med. 1:5ra11. doi: 10.1126/scitranslmed.300
0237

Matsushima, S., Maeda, K., Kondo, C., Hirano, M., Sasaki, M., Suzuki, H., et al.
(2005). Identification of the hepatic efflux transporters of organic anions using
double-transfected Madin-Darby canine kidney II cells expressing human
organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-
associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast
cancer resistance protein. J. Pharmacol. Exp. Ther. 314, 1059–1067. doi: 10.
1124/jpet.105.085589

Miyake, K., Mickley, L., Litman, T., Zhan, Z., Robey, R., Cristensen, B., et al. (1999).
Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-
resistant cells: demonstration of homology to ABC transport genes. Cancer Res.
59, 8–13.

Miyata, H., Takada, T., Toyoda, Y., Matsuo, H., Ichida, K., and Suzuki, H.
(2016). Identification of febuxostat as a new strong ABCG2 inhibitor: potential
applications and risks in clinical situations. Front. Pharmacol. 7:518. doi: 10.
3389/fphar.2016.00518

Mizuno, N., Suzuki, M., Kusuhara, H., Suzuki, H., Takeuchi, K., Niwa, T., et al.
(2004). Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-
4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance
protein (BCRP1/ABCG2) knockout mice. Drug Metab. Dispos. 32, 898–901.

Mizuno, N., Takahashi, T., Kusuhara, H., Schuetz, J. D., Niwa, T., and
Sugiyama, Y. (2007). Evaluation of the role of breast cancer resistance
protein (BCRP/ABCG2) and multidrug resistance-associated protein
4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide
metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-
5-one). Drug Metab. Dispos. 35, 2045–2052. doi: 10.1124/dmd.107.
016352

Frontiers in Pharmacology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 208891

https://doi.org/10.1016/0003-2697(88)90484-8
https://doi.org/10.1016/0003-2697(88)90484-8
https://doi.org/10.1038/sj.leu.2404638
https://doi.org/10.1073/pnas.95.26.15665
https://doi.org/10.1073/pnas.95.26.15665
https://doi.org/10.1158/1078-0432.CCR-10-2250
https://doi.org/10.1038/nprot.2007.519
https://doi.org/10.1038/nrd3028
https://doi.org/10.3390/molecules23123264
https://doi.org/10.1016/j.addr.2008.09.007
https://doi.org/10.1124/dmd.118.083030
https://doi.org/10.1136/rmdopen-2017-000464
https://doi.org/10.1016/j.bcp.2017.10.004
https://doi.org/10.1124/mol.105.014019
https://doi.org/10.1038/ncomms1756
https://doi.org/10.1016/bs.acr.2014.11.008
https://doi.org/10.1007/978-1-61779-965-5_11
https://doi.org/10.1007/978-1-61779-965-5_11
https://doi.org/10.1007/s11095-015-1641-2
https://doi.org/10.1007/s11095-015-1641-2
https://doi.org/10.1038/s41594-018-0049-1
https://doi.org/10.1038/s41594-018-0049-1
https://doi.org/10.3389/fphar.2018.01236
https://doi.org/10.1016/j.bcp.2018.10.028
https://doi.org/10.1016/j.bcp.2018.10.028
https://doi.org/10.1073/pnas.202607599
https://doi.org/10.1038/nm1186
https://doi.org/10.1182/blood-2006-02-003145
https://doi.org/10.1182/blood-2006-02-003145
https://doi.org/10.1038/clpt.2009.79
https://doi.org/10.1038/s41598-017-11794-w
https://doi.org/10.1200/JCO.2002.12.116
https://doi.org/10.1111/j.1476-5381.2012.01887.x
https://doi.org/10.1208/s12248-014-9668-6
https://doi.org/10.1208/s12248-014-9668-6
https://doi.org/10.1002/cmdc.201200377
https://doi.org/10.1126/scitranslmed.3000237
https://doi.org/10.1126/scitranslmed.3000237
https://doi.org/10.1124/jpet.105.085589
https://doi.org/10.1124/jpet.105.085589
https://doi.org/10.3389/fphar.2016.00518
https://doi.org/10.3389/fphar.2016.00518
https://doi.org/10.1124/dmd.107.016352
https://doi.org/10.1124/dmd.107.016352
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 8

Toyoda et al. Current Update on ABCG2 Inhibitors

Montanari, F., Cseke, A., Wlcek, K., and Ecker, G. F. (2017). Virtual screening of
DrugBank reveals two drugs as new BCRP inhibitors. SLAS Discov. 22, 86–93.
doi: 10.1177/1087057116657513

Murakami, M., Ohnuma, S., Fukuda, M., Chufan, E. E., Kudoh, K., Kanehara, K.,
et al. (2017). Synthetic analogs of curcumin modulate the function of multidrug
resistance-linked ATP-binding cassette transporter ABCG2. Drug Metab.
Dispos. 45, 1166–1177. doi: 10.1124/dmd.117.076000

Nakanishi, T., Doyle, L. A., Hassel, B., Wei, Y., Bauer, K. S., Wu, S., et al. (2003).
Functional characterization of human breast cancer resistance protein (BCRP,
ABCG2) expressed in the oocytes of Xenopus laevis. Mol. Pharmacol. 64,
1452–1462. doi: 10.1124/mol.64.6.1452

Nicolle, E., Boumendjel, A., Macalou, S., Genoux, E., Ahmed-Belkacem, A.,
Carrupt, P. A., et al. (2009). QSAR analysis and molecular modeling
of ABCG2-specific inhibitors. Adv. Drug Deliv. Rev. 61, 34–46.
doi: 10.1016/j.addr.2008.10.004

Okamoto, T., Kawaguchi, K., Watanabe, S., Agustina, R., Ikejima, T., Ikeda, K., et al.
(2018). Characterization of human ATP-binding cassette protein subfamily
D reconstituted into proteoliposomes. Biochem. Biophys. Res. Commun. 496,
1122–1127. doi: 10.1016/j.bbrc.2018.01.153

Pena-Solorzano, D., Stark, S. A., Konig, B., Sierra, C. A., and Ochoa-Puentes, C.
(2017). ABCG2/BCRP: specific and nonspecific modulators. Med. Res. Rev. 37,
987–1050. doi: 10.1002/med.21428

Polgar, O., Robey, R. W., and Bates, S. E. (2008). ABCG2: structure, function
and role in drug response. Expert Opin. Drug Metab. Toxicol. 4, 1–15.
doi: 10.1517/17425255.4.1.1

Rabindran, S. K., He, H., Singh, M., Brown, E., Collins, K. I., Annable, T., et al.
(1998). Reversal of a novel multidrug resistance mechanism in human colon
carcinoma cells by fumitremorgin C. Cancer Res. 58, 5850–5858.

Rabindran, S. K., Ross, D. D., Doyle, L. A., Yang, W., and Greenberger, L. M. (2000).
Fumitremorgin C reverses multidrug resistance in cells transfected with the
breast cancer resistance protein. Cancer Res. 60, 47–50.

Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., and Gottesman,
M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant
cancer. Nat. Rev. Cancer 18, 452–464. doi: 10.1038/s41568-018-0005-8

Robey, R. W., Steadman, K., Polgar, O., Morisaki, K., Blayney, M., Mistry, P., et al.
(2004). Pheophorbide a is a specific probe for ABCG2 function and inhibition.
Cancer Res. 64, 1242–1246. doi: 10.1158/0008-5472.CAN-03-3298

Robey, R. W., To, K. K., Polgar, O., Dohse, M., Fetsch, P., Dean, M., et al. (2009).
ABCG2: a perspective. Adv. Drug Deliv. Rev. 61, 3–13. doi: 10.1016/j.addr.2008.
11.003

Saito, H., Hirano, H., Nakagawa, H., Fukami, T., Oosumi, K., Murakami, K.,
et al. (2006). A new strategy of high-speed screening and quantitative
structure-activity relationship analysis to evaluate human ATP-binding cassette
transporter ABCG2-drug interactions. J. Pharmacol. Exp. Ther. 317, 1114–1124.
doi: 10.1124/jpet.105.099036

Scharenberg, C. W., Harkey, M. A., and Torok-Storb, B. (2002). The ABCG2
transporter is an efficient Hoechst 33342 efflux pump and is preferentially
expressed by immature human hematopoietic progenitors. Blood 99, 507–512.
doi: 10.1182/blood.V99.2.507

Shah, B. M., Schafer, J. J., Priano, J., and Squires, K. E. (2013). Cobicistat: a
new boost for the treatment of human immunodeficiency virus infection.
Pharmacotherapy 33, 1107–1116. doi: 10.1002/phar.1237

Shukla, S., Kouanda, A., Silverton, L., Talele, T. T., and Ambudkar, S. V. (2014).
Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette
drug transporters and BCR-ABL kinase using a three-dimensional quantitative
structure-activity relationship approach. Mol. Pharm. 11, 2313–2322. doi: 10.
1021/mp400762h

Shukla, S., Robey, R. W., Bates, S. E., and Ambudkar, S. V. (2006). The
calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug
resistance-linked ABC drug transporter, ABCG2. Biochemistry 45, 8940–8951.
doi: 10.1021/bi060552f

Silbermann, K., Shah, C. P., Sahu, N. U., Juvale, K., Stefan, S. M., Kharkar, P. S., et al.
(2019). Novel chalcone and flavone derivatives as selective and dual inhibitors
of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem. 164, 193–213.
doi: 10.1016/j.ejmech.2018.12.019

Spina, M., Nagy, Z., Ribera, J. M., Federico, M., Aurer, I., Jordan, K., et al. (2015).
FLORENCE: a randomized, double-blind, phase III pivotal study of febuxostat
versus allopurinol for the prevention of tumor lysis syndrome (TLS) in patients

with hematologic malignancies at intermediate to high TLS risk. Ann. Oncol.
26, 2155–2161. doi: 10.1093/annonc/mdv317

Stacy, A. E., Jansson, P. J., and Richardson, D. R. (2013). Molecular pharmacology
of ABCG2 and its role in chemoresistance. Mol. Pharmacol. 84, 655–669.
doi: 10.1124/mol.113.088609

Stiburkova, B., Miyata, H., Zavada, J., Tomcik, M., Pavelka, K., Storkanova, G., et al.
(2016). Novel dysfunctional variant in ABCG2 as a cause of severe tophaceous
gout: biochemical, molecular genetics and functional analysis. Rheumatology
55, 191–194. doi: 10.1093/rheumatology/kev350

Suzuki, M., Suzuki, H., Sugimoto, Y., and Sugiyama, Y. (2003). ABCG2 transports
sulfated conjugates of steroids and xenobiotics. J. Biol. Chem. 278, 22644–22649.
doi: 10.1074/jbc.M212399200

Takada, T., Yamamoto, T., Matsuo, H., Tan, J. K., Ooyama, K., Sakiyama, M., et al.
(2018). Identification of ABCG2 as an exporter of uremic toxin indoxyl sulfate
in mice and as a crucial factor influencing CKD progression. Sci. Rep. 8:11147.
doi: 10.1038/s41598-018-29208-w

Tamura, A., Watanabe, M., Saito, H., Nakagawa, H., Kamachi, T., Okura, I., et al.
(2006). Functional validation of the genetic polymorphisms of human ATP-
binding cassette (ABC) transporter ABCG2: identification of alleles that are
defective in porphyrin transport. Mol. Pharmacol. 70, 287–296.

Tamura, K., Kawai, Y., Kiguchi, T., Okamoto, M., Kaneko, M., Maemondo, M.,
et al. (2016). Efficacy and safety of febuxostat for prevention of tumor lysis
syndrome in patients with malignant tumors receiving chemotherapy: a phase
III, randomized, multi-center trial comparing febuxostat and allopurinol. Int. J.
Clin. Oncol. 21, 996–1003. doi: 10.1007/s10147-016-0971-3

Taylor, N. M. I., Manolaridis, I., Jackson, S. M., Kowal, J., Stahlberg, H., and Locher,
K. P. (2017). Structure of the human multidrug transporter ABCG2.Nature 546,
504–509. doi: 10.1038/nature22345

Tiwari, A. K., Sodani, K., Dai, C. L., Abuznait, A. H., Singh, S., Xiao, Z. J., et al.
(2013). Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-,
ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett.
328, 307–317. doi: 10.1016/j.canlet.2012.10.001

Toyoda, Y., Takada, T., and Suzuki, H. (2016). Halogenated hydrocarbon solvent-
related cholangiocarcinoma risk: biliary excretion of glutathione conjugates of
1,2-dichloropropane evidenced by untargeted metabolomics analysis. Sci. Rep.
6:24586. doi: 10.1038/srep24586

van de Wetering, K., and Sapthu, S. (2012). ABCG2 functions as a general
phytoestrogen sulfate transporter in vivo. FASEB J. 26, 4014–4024. doi: 10.1096/
fj.12-210039

Vlaming, M. L., Lagas, J. S., and Schinkel, A. H. (2009). Physiological and
pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout
mice. Adv. Drug Deliv. Rev. 61, 14–25. doi: 10.1016/j.addr.2008.08.007

Wassermann, L., Halwachs, S., Baumann, D., Schaefer, I., Seibel, P., and
Honscha, W. (2013). Assessment of ABCG2-mediated transport of xenobiotics
across the blood-milk barrier of dairy animals using a new MDCKII
in vitro model. Arch. Toxicol. 87, 1671–1682. doi: 10.1007/s00204-013-
1066-9

Wiese, M. (2015). BCRP/ABCG2 inhibitors: a patent review (2009-present). Expert
Opin. Ther. Pat. 25, 1229–1237. doi: 10.1517/13543776.2015.1076796

Woodward, O. M., Kottgen, A., Coresh, J., Boerwinkle, E., Guggino, W. B.,
and Kottgen, M. (2009). Identification of a urate transporter, ABCG2, with a
common functional polymorphism causing gout. Proc. Natl. Acad. Sci. U.S.A.
106, 10338–10342. doi: 10.1073/pnas.0901249106

Wu, C. P., Hsiao, S. H., Murakami, M., Lu, Y. J., Li, Y. Q., Huang, Y. H.,
et al. (2017). Alpha-mangostin reverses multidrug resistance by attenuating the
function of the multidrug resistance-linked ABCG2 transporter. Mol. Pharm.
14, 2805–2814. doi: 10.1021/acs.molpharmaceut.7b00334

Zhang, G. N., Zhang, Y. K., Wang, Y. J., Gupta, P., Ashby, C. R. Jr., Alqahtani, S.,
et al. (2018). Epidermal growth factor receptor (EGFR) inhibitor PD153035
reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer:
in vitro and in vivo. Cancer Lett. 424, 19–29. doi: 10.1016/j.canlet.2018.02.040

Zhang, W., Chen, Z., Chen, L., Wang, F., Li, F., Wang, X., et al. (2017). ABCG2-
overexpressing H460/MX20 cell xenografts in athymic nude mice maintained
original biochemical and cytological characteristics. Sci. Rep. 7:40064. doi: 10.
1038/srep40064

Zhang, Y., Bressler, J. P., Neal, J., Lal, B., Bhang, H. E., Laterra, J., et al. (2007).
ABCG2/BCRP expression modulates D-Luciferin based bioluminescence
imaging. Cancer Res. 67, 9389–9397. doi: 10.1158/0008-5472.CAN-07-0944

Frontiers in Pharmacology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 208892

https://doi.org/10.1177/1087057116657513
https://doi.org/10.1124/dmd.117.076000
https://doi.org/10.1124/mol.64.6.1452
https://doi.org/10.1016/j.addr.2008.10.004
https://doi.org/10.1016/j.bbrc.2018.01.153
https://doi.org/10.1002/med.21428
https://doi.org/10.1517/17425255.4.1.1
https://doi.org/10.1038/s41568-018-0005-8
https://doi.org/10.1158/0008-5472.CAN-03-3298
https://doi.org/10.1016/j.addr.2008.11.003
https://doi.org/10.1016/j.addr.2008.11.003
https://doi.org/10.1124/jpet.105.099036
https://doi.org/10.1182/blood.V99.2.507
https://doi.org/10.1002/phar.1237
https://doi.org/10.1021/mp400762h
https://doi.org/10.1021/mp400762h
https://doi.org/10.1021/bi060552f
https://doi.org/10.1016/j.ejmech.2018.12.019
https://doi.org/10.1093/annonc/mdv317
https://doi.org/10.1124/mol.113.088609
https://doi.org/10.1093/rheumatology/kev350
https://doi.org/10.1074/jbc.M212399200
https://doi.org/10.1038/s41598-018-29208-w
https://doi.org/10.1007/s10147-016-0971-3
https://doi.org/10.1038/nature22345
https://doi.org/10.1016/j.canlet.2012.10.001
https://doi.org/10.1038/srep24586
https://doi.org/10.1096/fj.12-210039
https://doi.org/10.1096/fj.12-210039
https://doi.org/10.1016/j.addr.2008.08.007
https://doi.org/10.1007/s00204-013-1066-9
https://doi.org/10.1007/s00204-013-1066-9
https://doi.org/10.1517/13543776.2015.1076796
https://doi.org/10.1073/pnas.0901249106
https://doi.org/10.1021/acs.molpharmaceut.7b00334
https://doi.org/10.1016/j.canlet.2018.02.040
https://doi.org/10.1038/srep40064
https://doi.org/10.1038/srep40064
https://doi.org/10.1158/0008-5472.CAN-07-0944
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00208 March 1, 2019 Time: 18:29 # 9

Toyoda et al. Current Update on ABCG2 Inhibitors

Zhang, Y. K., Zhang, G. N., Wang, Y. J., Patel, B. A., Talele, T. T., Yang, D. H.,
et al. (2016). Bafetinib (INNO-406) reverses multidrug resistance by inhibiting
the efflux function of ABCB1 and ABCG2 transporters. Sci. Rep. 6:25694.
doi: 10.1038/srep25694

Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J.,
et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety
of stem cells and is a molecular determinant of the side-population phenotype.
Nat. Med. 7, 1028–1034. doi: 10.1038/nm0901-1028

Zhou, S., Zong, Y., Ney, P. A., Nair, G., Stewart, C. F., and Sorrentino, B. P. (2005).
Increased expression of the Abcg2 transporter during erythroid maturation
plays a role in decreasing cellular protoporphyrin IX levels. Blood 105, 2571–
2576. doi: 10.1182/blood-2004-04-1566

Conflict of Interest Statement: TT and HS have a patent pending.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Toyoda, Takada and Suzuki. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 208893

https://doi.org/10.1038/srep25694
https://doi.org/10.1038/nm0901-1028
https://doi.org/10.1182/blood-2004-04-1566
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00137 February 19, 2019 Time: 17:27 # 1

ORIGINAL RESEARCH
published: 21 February 2019

doi: 10.3389/fphar.2019.00137

Edited by:
Jian-ye Zhang,

Guangzhou Medical University, China

Reviewed by:
Jianmeng Wang,

First Affiliated Hospital of Jilin
University, China

Jixue Wang,
Jilin University, China

*Correspondence:
Jun Xu

Aline_Adam@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Molecular Targets
and Therapeutics,

a section of the journal
Frontiers in Pharmacology

Received: 22 October 2018
Accepted: 06 February 2019
Published: 21 February 2019

Citation:
Wu L, Zhang Y, Huang Z, Gu H,

Zhou K, Yin X and Xu J (2019)
MiR-409-3p Inhibits Cell Proliferation

and Invasion of Osteosarcoma by
Targeting Zinc-Finger E-Box-Binding

Homeobox-1.
Front. Pharmacol. 10:137.

doi: 10.3389/fphar.2019.00137
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Osteosarcoma (OS) is the most common bone cancer worldwide. There is evidence
that microRNA-409 (miR-409-3p) is involved in tumorigenesis and cancer progression,
however, its possible role in OS requires clarification. In the present study, we evaluated
the expression level, clinical significance, and mode of action of miR-409-3p in
OS. The miR-409-3p levels were diminished in the OS cells and tissues compared
with associated adjacent non-tumor tissues and a non-cancer osteoplastic cell line.
Low miR-409-3p expression levels were associated with clinical stage and distant
metastasis in patients with OS. Resumption of miR-409-3p expression attenuated OS
cell proliferation and invasion. Additionally, based on informatics analyses, we predicted
that zinc-finger E-box-binding homeobox-1 (ZEB1) is a possible target of miR-409-3p.
This hypothesis was confirmed using luciferase reporter assays, reverse transcription-
quantitative real-time polymerase chain reaction, and Western blot analyses. The
findings of the current study indicated that ZEB1 was up-regulated in the OS tissues
and cell lines, and that this up-regulation was inversely proportional to miR-409-3p
expression levels. Furthermore, down-regulation of ZEB1 decreased OS cell invasion
and proliferation, illustrating that the tumor suppressive role of miR-409-3p in OS cells
may be exerted via negative regulation of ZEB1. Taken together, our observations
highlight the potential role of miR-409-3p as a tumor suppressor in OS partially through
down-regulation of ZEB1 and suggest that miR-409-3p has potential applications in
OS treatment.

Keywords: osteosarcoma, microRNA-409, molecular mechanism, zinc-finger E-box-binding homeobox-1,
invasion

INTRODUCTION

Osteogenic sarcoma (osteosarcoma; OS) is among the most common forms of bone cancer globally.
The incidence ranges from 4 to 5 cases per million among children and teenagers (Gill et al.,
2013; Tang et al., 2014). The OS tumors are always located in the distal femur or proximal tibia,
and tumors in these regions present a high tendency to destroy adjacent normal tissues (Cates,
2016; Righi et al., 2016). Despite considerable advances in treatment strategies such as surgery,
radiotherapy, chemotherapy and new antineoplastic agent (Li et al., 2015), cases with metastatic
or recurrent OS have an inferior prognosis, and the likelihood of long-term survival for patients
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with advanced OS remains very low (Anderson, 2015; Isakoff
et al., 2015). Genetic and epigenetic variations and potential
environmental factors that block mesenchymal stem cell
differentiation into osteoblasts contribute to OS tumorigenesis
and tumor development (Sun et al., 2015; Li et al., 2018; Zhang
et al., 2018), however, the detailed and complex molecular
mechanisms underlying OS development remain largely
unknown. Therefore, the molecular mechanisms underlying OS
formation and progression require investigation to facilitate the
development of novel therapeutic approaches for application in
patients with OS.

MicroRNAs (miRNAs) are a subtype of endogenous, non-
coding, single-stranded, short RNAs, with an approximate range
in length of 19–25 nucleotides (Esteller, 2011). miRNAs can
regulate the expression of protein-coding genes by binding
to complementary sequences in the 3′-untranslated regions
(3′ UTRs) of target genes, causing translational repression
or mRNA cleavage (Bartel, 2004). miRNAs play key roles in
various cellular processes, including apoptosis, cell proliferation,
differentiation, angiogenesis, invasion, and metastasis (Gambari
et al., 2016). Recently, the abnormal expression of miRNAs has
been implicated in the etiology and development of various
human cancers (Chen et al., 2016; Li and Wang, 2016; Wang
et al., 2016). The potential biological roles of several miRNAs
abnormally expressed in OS during its tumorigenesis have also
been highlighted. For example, miR-422a expression is down-
regulated in OS cell lines and tissues. Conversely, high levels
of miR-422a expression can suppress OS cell invasion and
proliferation, and improve paclitaxel and cisplatin-mediated
apoptosis (Liu et al., 2016). Therefore, there is a need to explore
the potential role of miRNA expression in OS and to unravel the
underlying primary molecular mechanisms, which may provide
information useful for designing new and efficient therapeutic
strategies aimed at curing OS.

The effect of miR-409-3p has been investigated in various
human malignancies, including breast (Ma et al., 2016), gastric
(Zheng et al., 2012), colon (Tan et al., 2016), and prostate (Josson
et al., 2015) cancers, however, its role of miR-409-3p in OS
remains unclear. Latest study confirmed the interaction of miR-
409-3p and ZEB1 played a role in the progression process of non-
small cell lung cancer, indicating ZEB1 acted as a direct target of
miR409-3p and could be modulated by miR-409-3p (Qu et al.,
2018). Herein, we hypothesis there exists the miR-409-3p/ZEB1
axis in OS and report the first investigation of the expression
levels, clinical significance, and biological functions of miR-409-
3p in OS, as well as its underlying molecular mechanism.

MATERIALS AND METHODS

Ethics Statement
All study participants voluntarily provided written consent before
entering the study. We obtained the approval of The Ethics
Committee of the Minhang Hospital, Zhongshan Hospital, Fudan
University for Disease Control and Prevention. The methodology
used in this study completely conformed to the recommendations
of CONSORT 2010.

Tissue Specimens
Forty-nine pairs of osteosarcoma tumor and adjacent non-
tumor tissues were collected from patients with osteosarcoma
at Minhang Hospital, Zhongshan Hospital, Fudan University.
No participants underwent chemotherapy or radiotherapy before
surgery. All tissues samples were directly transferred into liquid
nitrogen and were stored at−80◦C until RNA extraction.

Cell Lines
OS cell lines, including HOS (GDC76) and MG63 (GDC074)
were obtained directly from the Chinese Academy of Medical
Sciences (Beijing, China) Cell Resource Center. A non-cancer
osteoblastic cell line (hFOB 1.19 CRL-11372) was obtained from
the American Type Culture Collection (ATCC; Manassas, VA,
United States). All cells were incubated in Dulbecco’s modified
Eagle medium (DMEM; Gibco, Invitrogen Life Technologies,
Carlsbad, CA, United States) supplemented with 10% fetal bovine
serum (FBS; Gibco, Invitrogen Life Technologies, Carlsbad, CA,
United States). All experimental cells were maintained at 37◦C in
5% (V/V) carbon dioxide (CO2) and passaged every 2–3 days.

Cells were then seeded in 6-well plates at a density
of 50–60% confluence for transfection. After overnight
incubation, cells were transfected with miR-409-3p mimics,
negative control miRNA mimics (miR-NC), ZEB1 siRNA,
or scrambled siRNA (GenePharma, Shanghai, China), using
Lipofectamine 2000 transfection reagent (Invitrogen, Carlsbad,
CA, United States), according to the manufacturer’s guidelines.
Post-transfection (6 h), the culture medium was changed to
DMEM containing 10% FBS.

Reverse Transcription-Quantitative
Real-Time Polymerase Chain Reaction
(RT–qPCR)
RNA was extracted using Trizol reagent (Invitrogen, Carlsbad,
CA, United States), following the manufacturer’s directions.
A TaqMan Micro-RNA Reverse Transcription Kit (Applied
Biosystems, Foster City, CA, United States) was used to reverse-
transcribe miRNA, and qPCR performed using a TaqMan
Micro-RNA PCR Kit (Applied Biosystems, Foster City, CA,
United States). Reverse transcription of mRNA was performed
using the M-MLV Reverse Transcription system (Promega
Corporation, Madison, WI, United States). To determine
ZEB1 mRNA expression levels we used the primers: forward
5′-AGGCAATAGGTTTTGAGGGCCAT-3′ and reverse 5′-
TGCACCTTCTGTCTCGGTTTCTT-3′ and SYBR Premix Ex
Taq (TaKaRa, Dalian, China). Endogenous U6 small nuclear
RNA (primers: forward, 5′-CTCGCTTCGGCAGCACA-3′;
reverse, 5′-AACGCTTCACGAATTTGCGT-3′) was amplified
as an internal control for miR-409-3p, and β-actin (primers:
forward, 5′-AGCGAGCATCCCCCAAAGTT-3′; reverse,
5′-GGGCACGAAGGCTCATCATT-3′) was amplified as an
internal control for ZEB1 mRNA. All RT-qPCR experiments
were conducted using an ABI7500 Real-time PCR system
(Applied Biosystems, Carlsbad, CA, United States). Relative
mRNA or miRNA expression levels were quantified using the
2−11Ct method (Livak and Schmittgen, 2001).
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3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide (MTT)
Assay
Post-transfection (24 h), cells were re-seeded into 96-well plates
at 3,000 per well. Cells were maintained at 37◦C in 5% (V/V)
CO2 for 4 days. Then, cell proliferation was tested at the indicated
times using the MTT assay (Sigma, St. Louis, MO, United States).
In brief, 0.5 mg/mL MTT solution was added to cells, which were
then incubated at 37◦C for a further 4 h. Subsequently, we added
150.0 µL DMSO (Sigma, St. Louis, MO, United States) into each
to dissolve the formazan crystals. Spectrometric absorbance was
determined using a microplate reader (Bio-Rad Laboratories Inc.,
Hercules, CA, United States) at a wavelength of 490 nm.

Cell Invasion Assay
After 48 h transfection, cells were collected and suspended
in FBS-free culture medium. Then, 5 × 104 cells were added
into upper chambers of a 24-well Transwell Permeable Support
device (8-µm pores, Costar; Corning Incorporated, Corning, NY,
United States) coated with Matrigel (BD Biosciences, San Jose,
CA, United States), while 500.0 µL culture medium containing
20% FBS was added to the lower chambers and cells incubated
at 37◦C in 5% CO2 for 48 h. We removed cells in the upper
chambers using cotton swabs, then invaded cells were fixed with
methanol, stained with 0.5% crystal violet, washed, and dried
in air. An inverted microscope (Olympus Corporation, Tokyo,
Japan) (200 × magnification) was used to calculate the number
of invading cells in five randomly selected fields.

Prediction of miR-409-3p Targets and
Luciferase Reporter Assays
Two miRNA targeted-gene databases, TargetScan1 and
miRanda2, were used to predict target genes of miR-409-
3p. HEK293T cells (ATCC) were seeded into 24-well plates at
40–50% confluence. After 24 h, cells were transfected with miR-
409-3p mimics or miR-NC and pmirGLO-ZEB1-3′UTR-mutant
(Mut) (GenePharma) or pmirGLO-ZEB1-3′UTR-wild-type (Wt)
using Lipofectamine 2000. Cells were maintained at 37◦C in 5%
(V/V) CO2 for 48 h and luciferase reporter assays conducted
using the Dual-Luciferase Reporter Assay System (Promega
Corporation, Madison, WI, United States). Renilla luciferase was
used as an internal control.

Western Blot Analyses
Cells were harvested after transfection for 72 h and lysed
with RIPA Lysis Buffer (Beyotime Institute of Biotechnology,
Haimen, China). Protein concentrations were determined using
a BCA assay kit (PierceTM; Thermo Fisher Scientific, Inc.).
Equal amounts of protein were separated by SDS-PAGE,
transferred to polyvinylidene difluoride membranes (Millipore,
MA, United States), blocked with 5% skimmed milk for 2 h
at room temperature, then incubated overnight at 4◦C with
mouse anti-human GAPDH monoclonal antibody (sc-137179;

1http://www.targetscan.org/index.html
2http://www.microrna.org

1:1000 dilution; Santa Cruz Biotechnology) or mouse anti-human
ZEB1 monoclonal antibody (sc-81428; 1:1000 dilution; Santa
Cruz Biotechnology, CA, United States). Membranes were then
washed three times using Tris-buffered saline containing 0.1%
Tween-20 and probed with horseradish peroxidase-conjugated
secondary immunoglobulin G goat anti-mouse (catalog no, sc-
2005; 1:10,000) for 2 h at room temperature. Protein bands were
visualized using enhanced chemiluminescence reagents (Bio-
Rad Laboratories Inc., Hercules, CA, United States) and band
densities analyzed using AlphaEase FC software (version 4.0.1;
ProteinSimple, San Jose, CA, United States).

Statistical Analyses
Data were presented as means ± S.D. or box plots. We used
SPSS 17.0 software (SPSS Inc., Chicago, IL, United States)
for data analyses. Differences among groups were evaluated
using one-way ANOVA corrected for multiple comparisons or
Student’s t-tests. The χ2-test was used to evaluate associations
between miR-409-3p expression levels and clinicopathological
factors. Spearman’s correlation analysis was used to determine
the correlation between miR-409-3p and ZEB1 mRNA expression
levels. All statistical tests were two-sided; P < 0.05 were
considered statistically significant.

RESULTS

MiR-409-3p Was Downregulated in OS
Tissues and Cell Lines
RT-qPCR was used to evaluate miR-409-3p expression levels in
OS tumor and adjacent non-tumor tissues. Expression of miR-
409-3p was lower in OS tissues than that in adjacent non-tumor
and normal tissue controls (Figure 1A, P < 0.05). Moreover,
remarkable low levels of MiR-409-3p expression were detected in
two OS cell lines relative to those in a non-cancer osteoblastic cell
line (hFOB 1.19) (Figure 1B, P < 0.05).

Relationship Between miR-409-3p
Expression and OS Clinicopathological
Factors
We also determined the relationship between miR-409-3p
expression levels and OS clinicopathological factors. Our data
showed that low miR-409-3p expression levels were significantly
associated with advanced clinical stage (P = 0.035) and distant
metastasis (P = 0.030), however, there were no significance
associations with other clinicopathological factors, including sex
(P = 0.961), age (P = 0.804), and tumor size (P = 0.851) (Table 1).

MiR-409-3p Reduces OS Cell
Proliferation and Invasion
To investigate the role of miR-409-3p in OS, we transfected
MG63 and HOS cells with miR-409-3p mimics, and used RT-
qPCR to determine miR-409-3p expression levels (Figure 2A,
P < 0.05). We investigated the role of miR-409-3p in OS cell
proliferation using MTT assays conducted in MG63 and HOS
cells transfected with miR-409-3p mimics or miR-NC. Expression
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FIGURE 1 | Expression of miR-409-3p in OS tissues and cell lines. (A) Relative expression levels of miR-409-3p in 49 paired OS tumor and adjacent non-tumor
tissues were evaluated by RT-qPCR. (B) Expression of miR-409-3p in OS cell lines compared with that in a non-cancer osteoblastic cell line (hFOB1.19).
miR-409-3p, microRNA-409. OS, osteosarcoma. ∗P < 0.05, ∗∗P < 0.01 compared with the control group.

TABLE 1 | Correlation of microRNA-409 expression with clinicopathological
feature of osteosarcoma.

Variables Case number microRNA-409 expression P

Low High

Sex 0.961

Male 31 17 14

Female 18 10 8

Age (years) 0.804

< 20∗ 21 12 9

≥ 20 28 15 13

Tumor size (cm) 0.851

< 8 26 14 12

≥ 8 23 13 10

Clinical stage 0.035∗

I-II 23 9 14

III-IV 26 18 8

Distant metastasis 0.030∗

Present 24 17 7

Absent 25 10 15

∗These participants were above 16 years age. ∗P < 0.05.

of miR-409-3p led to a significant decline in MG63 and HOS
cell proliferation (Figure 2B, P < 0.05). Similarly, the invasion
capacity of HOS and MG63 cells transfected with miR-NC or
miR-409-3p mimics was estimated using a cell invasion assay. As
illustrated in Figure 2C, the introduction of miR-409-3p mimics
into HOS and MG63 cells resulted in a considerable decline of
invasion ability relative to the miR-NC group (P < 0.05). These
observations suggested that miR-409-3p has a crucial role in the
suppression of OS growth and metastasis.

A Potential miR-409-3p Target in OS
We then investigated the molecular mechanisms underlying the
tumor suppression caused by miR-409-3p in OS by predicting

its potential targets using bioinformatics analysis. The 3′ UTR
of ZEB1 was predicted to contain an miR-409-3p seed match
at position 1280-1286 and has previously been reported as
extensively upregulated in OS and participates in the regulation
of OS tumorigenesis and progression (Shen et al., 2012; Li et al.,
2016; Liu and Lin, 2016); therefore, we primarily focused on
ZEB1 (Figure 3A) in this study. To validate the prediction,
we performed luciferase reporter assays in HEK293T cells
transfected with plasmids containing Mut and Wt ZEB 3′ UTR,
along with miR-409-3p mimics or miR-NC. Luciferase activity
was markedly downregulated in cells transfected with Wt ZEB1-
3′ UTR and miR-409-3p mimics (Figure 3B, P < 0.01), however,
no significant difference was observed in cells transfected with
mutated ZEB1-3′ UTR and miR-409-3p mimics, suggesting
that miR-409-3p could directly target the 3′ UTR of ZEB1.
Additionally, RT-qPCR data showed that restoration of miR-409-
3p expression led to down-regulation of ZEB1 mRNA expression
in MG63 and HOS cells (Figure 3C, P < 0.01). Moreover,
Western blot analysis demonstrated that miR-409-3p reduced
ZEB1 protein expression in MG63 and HOS cells (Figure 3D,
P < 0.05). In vivo assay showed the protein levels in tumor tissues
were significantly lower than those in adjacent normal tissues
(Figure 3E, P< 0.01). To summarize, Our data demonstratedthat
ZEB1 is potentially a direct target gene of miR-409-3p in OS.

Upregulation of ZEB1 in OS Tissues and
Negative Correlation of Its Expression
With That of miR-409-3p
ZEB1 is recognized as a direct target gene of miR-409-3p
in OS; therefore, we next investigated whether miR-409-3p
expression levels were negatively correlated with those of ZEB1
in OS. Therefore, we performed RT-qPCR to evaluate ZEB1
mRNA expression levels and found that they were higher in
OS specimens than adjacent non-tumor tissues (Figure 4A,
P < 0.05). Moreover, Spearman’s correlation analysis indicated
an inverse relationship between miR-409-3p and ZEB1 mRNA
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FIGURE 2 | The effects of miR-409-3p overexpression on cell proliferation and invasion in OS. (A) Relative expression of miR-409-3p in MG63 and HOS cells
following transfection with miR-409-3p mimics or miR-NC. (B) MTT assays were performed to assess the effect of miR-409-3p overexpression on MG63 and HOS
cells proliferation. (C) Cell invasion assays were conducted in MG63 and HOS cells following transfection with miR-409-3p mimics or miR-NC. miR-409,
microRNA-409-3p (magnification, ×200). OS, osteosarcoma. miR-NC, negative control microRNA mimics. ∗P < 0.05, ∗∗P < 0.01 compared with the control group.

FIGURE 3 | ZEB1 is a direct target of miR-409-3p in OS. (A) ZEB1 3′ UTR sequences containing wild type and mutant miR-409-3p binding sites. (B) Luciferase
reporter assays performed in HEK293T cells co-transfected with miR-409-3p mimics or miR-NC, and pmirGLO-ZEB1-3′UTR Wt or pmirGLO-ZEB1-3′UTR Mut.
After transfection (48 h), cells were collected and luciferase activities measured. ZEB1 mRNA (C) and protein (D) were detected in MG63 and HOS cells transfected
with miR-409-3p mimics or miR-NC. miR-409, microRNA-409-3p. (E) Protein levels of ZEB1 in tumor tissues and adjacent normal tissues. OS, osteosarcoma.
miR-NC, negative control microRNA mimics. Wt, wild type. Mut, mutant. ZEB1, Zinc-finger E-box-binding Homeobox-1. ∗P < 0.05, ∗∗P < 0.01 compared with the
control group.
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FIGURE 4 | Inverse correlation between miR-409-3p and ZEB1 mRNA expression levels in OS tissues. (A) RT-qPCR analysis showing that ZEB1 mRNA levels were
increased in OS tissues. (B) Spearman’s correlation analysis of the association between miR-409-3p and ZEB1 mRNA in OS tissues. (C) Expressions of miR-409-3p
and ZEB1 mRNA in cell lines. miR-409, microRNA-409-3p. OS, osteosarcoma. ZEB1, Zinc-finger E-box-binding Homeobox-1. mRNA, message RNA. ∗P < 0.05,
∗∗P < 0.01 compared with the control group.

expression (Figure 4B, r = -0.4725, P = 0.0006) in OS tissue
samples. As shown in Figure 4C, we observed higher expression
of ZEB1 mRNA and lower expression of miR-409-3p in tumor
cell lines, when compared to normal cell line. Our results further
confirm ZEB1 as a potential target of miR-409-3p in OS.

Inhibition of ZEB1 Has Similar Effects to
Those of miR-409-3p Overexpression in
OS Cells
To explore the biological roles of ZEB1 in response to miR-409-
3p inhibition in OS, we investigated whether ZEB1 knockdown
mimicked the effects of miR-409-3p overexpression in OS cells.
ZEB1-targeting siRNA was used to knockdown ZEB1 expression
in HOS and MG63 cells. As shown in Figure 5A, ZEB1
protein was successfully knocked down in HOS and MG63 cells
transfected with ZEB1 siRNA (P < 0.01). MTT and cell invasion
assays showed that knockdown of ZEB1 by the introduction
of ZEB1 siRNA suppressed MG63 and HOS cell proliferation

(Figure 5B, P < 0.05) and invasion (Figure 5C, P < 0.05),
suggesting that negative regulation of ZEB1 may mediate the
tumor suppressive effects of miR-409-3p in OS cells.

DISCUSSION

Dysregulation of miRNAs is a frequent event in various types
of human cancer and has a pivotal role in the instigation
of tumorigenesis and tumor progression where miRNAs can
function as oncogenes or tumor suppressor genes (Fenger et al.,
2014; Vanas et al., 2016). Furthermore, targeting miRNA with
various types of chemically modified oligonucleotides has the
potential to alter miRNA functions, providing a theoretical
foundation for miRNA-based targeted therapy for specific human
cancers (Trang et al., 2010; Imani et al., 2017; Tsai et al.,
2017). Thus, research into the expression levels, biological roles,
and fundamental molecular mechanisms of miRNAs has the
potential to stimulate the development of novel approaches to
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FIGURE 5 | ZEB1 under-expression has similar effects to miR-409-3p over-expression on OS cell proliferation and invasion. (A) ZEB1 protein expression was
detected in MG63 and HOS cells transfected with ZEB1 siRNA or NC siRNA. MTT (B) and cell invasion (C) assays were conducted in MG63 and HOS cells
transfected with ZEB1 siRNA or NC siRNA. miR-409, microRNA-409-3p (magnification, × 200). OS, osteosarcoma. ZEB1, Zinc-finger E-box-binding Homeobox-1.
mRNA, message RNA. siRNA, small interfering RNA. NC, negative control. ∗P < 0.05, ∗∗P < 0.01 compared with the control group.

the treatment of different types of cancer. Our data demonstrated
that miR-409-3p expression levels were significantly down-
regulated in OS tissues and cells relative to adjacent non-tumor
tissues and a non-cancer osteoblastic cell line, respectively.
Our observations are consistent with the findings of Ma
et al. in breast cancer tissues and cell lines (Zheng et al.,
2012). Additionally, reduced miR-409-3p expression levels were
associated with clinical stage and distant metastasis in patients
with OS, and our results also demonstrate that expression of
miR-409-3p suppressed proliferation and invasion of OS cells.
Furthermore, our data suggest that ZEB1 is a functional target
of miR-409-3p in OS.

Recently, several studies have reported roles for abnormal
miR-409-3p expression in the initiation and progression of
various human cancers. For example, Josson et al. found that
miR-409-3p expression was elevated in prostate cancer and
that its re-expression in normal prostate fibroblasts resulted
in a cancer-associated stroma-like phenotype, and miR-409-3p
was released in extracellular vesicles to induce cancer initiation
and epithelial-to-mesenchymal transition both in vitro and
in vivo (Josson et al., 2015). Zheng et al. (2012) showed that
miR-409-3p expression levels were decreased in gastric cancer
and that they were negatively associated with tumor-node-
metastasis stage and lymph node metastasis in patients with
gastric cancer. Upregulation of miR-409-3p attenuated gastric
cancer cell motility in vitro and decreased their ability to induce
distal pulmonary metastases and peritoneal diffusion in vivo
(Zheng et al., 2012). Tan et al. (2016) found that miR-409-3p was
expressed at low levels in colon tumors and that its expression
was negatively correlated with resistance to oxaliplatin. Ectopic
expression of miR-409-3p improved the chemosensitivity of
oxaliplatin-sensitive and oxaliplatin-resistant colon cancer cells

(Tan et al., 2016). Therefore, miR-409-3p is a strong candidate for
a new therapeutic target for the treatment of cancer because of its
essential roles in cancer initiation and progression.

MiR-409-3p target identification is essential for understanding
its potential functions in OS and developing novel targeted
therapies for improving OS treatment. Potential miR-409-3p
target genes have been previously reported; for example, Beclin-
1 in colon cancer (Tan et al., 2016), radixin in gastric cancer
(Zheng et al., 2012), and Ras suppressor 1 and stromal antigen
2 in prostate cancer (Josson et al., 2015). In the current study,
we identified ZEB1 as a novel direct target of miR-409-3p in
OS. Based on bioinformatics analysis, we predicted that ZEB1
contains a miR-409-3p seed match at position 1280–1286 of
the ZEB1 3′ UTR. Luciferase reporter assays demonstrated that
miR-409-3p directly targeted the 3′ UTR of ZEB1. Furthermore,
Western blot and RT-qPCR analysis indicated that endogenous
miR-409-3p has a negative regulatory effect on ZEB1 mRNA
and protein expression in OS cells. Moreover, ZEB1 expression
was high in OS tissues and inversely associated with that
of miR-409-3p expression and knockdown of ZEB1 led to
decreased OS cell proliferation and invasion, similar to miR-409-
3p overexpression.

ZEB1, a member of the deltaEF1 family of two-handed
zinc-finger transcription factors, maps to the short arm of
human chromosome 10 (Zhang et al., 2019). ZEB1 expression
is abnormally upregulated in various types of human cancer,
including thyroid (Zhang et al., 2016), cervical (Ma et al., 2015),
gastric (Jia et al., 2012), endometrial (Feng et al., 2014), and
prostate (Drake et al., 2009) cancers. Accumulating evidence
shows that ZEB1 has crucial roles during cancer initiation
and progression (Kenney et al., 2011; Jia et al., 2012; Liu
et al., 2012). In OS, Shen et al. reported that ZEB1 is highly
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expressed in tumor tissues and that its levels are significantly
associated with lung metastasis. The signal network of ZEB1
involved in malignant transformation in various types of tumor
is complicated. All of the upstream and downstream molecules
participate in activating the signaling pathways in cell survival,
senescence, chemosensitivity and immune escape, which may
trigger the regulation of miR-409-3p. These findings suggest that
inhibition of OS has the potential to be a novel and effective
therapeutic target with the aim of curing this type of cancer.
The limitations of this study include that we did not investigate
the effects of ectopic ZEB1 over-expression on cell proliferation
and invasion activity of miR-409-3p-expressing osteosarcoma
cells and that the number of samples in this study is small thus
multi-center trial is still needed.

CONCLUSION

In conclusion, here we establish for the first time that miR-409-
3p expression is down-regulated in OS tissues and cell lines.
Decreased miR-409-3p expression levels were associated with
clinical stage and distant metastasis. MiR-409-3p targets ZEB1,
which may be associated with OS carcinogenesis and progression,
leading to inhibition of OS cell proliferation and invasion. Thus,

the miR-409-3p/ZEB1 axis can be considered a novel therapeutic
target for OS treatment. Further research is needed to explore
whether the potential of miR-409-3p/ZEB1 can be realized to
treat OS.
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Tissue factor (TF) is a transmembrane glycoprotein to initiate blood coagulation and

frequently overexpressed in a variety of tumors. Our previous study has showed that

the expression of TF is upregulated and correlated with prognosis in hepatocellular

carcinoma (HCC). However, the role and molecular mechanism of TF in the growth

of HCC are still unclear. In vitro and in vivo functional experiments were performed to

determine the effect of TF on the growth of HCC cells. A panel of biochemical assays

was used to elucidate the underlying mechanisms. TF could promote the growth of HCC

in vitro and in vivo by activating both ERK and AKT signaling pathways. TF induced EGFR

upregualtion, and inhibition of EGFR suppressed TF-mediated HCC growth. In addition,

TF protein expression was correlated with EGFR in HCC tissues. TF promotes HCC

growth by upregulation of EGFR, and TF as well as EGFR may be potential therapeutic

targets of HCC.

Keywords: hepatocellular carcinoma, tissue factor, epidermal growth factor receptor, AKT/ERK, tumor growth

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most lethal cancers worldwide, while China accounted
for more than half of all cases and deaths in 2012 (1). More than 400,000 people die from liver
cancer and over 450,000 new cases are diagnosed in China each year (2). Though the treatments
for HCC have been greatly advanced in recent years, the outcome of HCC is still unoptimistic.
Postoperative recurrence, the main reason for poor survival of HCC patients, mainly owes to
the tendency of the invasion and metastasis of HCC cells (3, 4). Therefore, understanding the
mechanism of HCC tumorigenesis and progression is critical to improve the clinical outcome of
HCC patients.

Tissue factor (TF, also known as platelet tissue factor, factor III, thromboplastin, or CD142,
encoded by the F3 gene) is a 47 kD transmembrane glycoprotein that contains 263 amino acid
residues totally including a 219 amino acid extracellular region, a 23 amino acid hydrophobic
transmembrane region, and a 21 amino acids C-terminal intracellular tail (5). Originally, TF is
found on the surface of intravascular cells, such as platelets, leukocytes, and endothelial cells and
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functions as the principal initiator of the extrinsic coagulation
cascade by binding with circulating factor VII or VIIα
(FVII/VIIα) (6). Recently, TF is frequently overexpressed in a
variety of tumors, including breast cancer, colorectal carcinoma,
gastric cancer, non-small cell lung, and pancreatic ductal
carcinoma, etc. (7). We and other groups have reported that the
expression of TF is upregulated and correlated with prognosis in
HCC (8–10). In the current study, we investigate the role and
molecular mechanism of TF in the growth of HCC cells.

MATERIALS AND METHODS

Patients and Tissue Specimens
A total 144 HCC tissues were obtained from patients who
underwent curative resection between Jan 2008 and Dec 2010
at the First Affiliated Hospital, Sun Yat-sen University. None of
the patients received neoadjuvant radiotherapy or chemotherapy

FIGURE 1 | Knockdown of TF inhibits the growth of HCC. (A,B) Western blot analysis of the protein expressions in the indicated cells. (C) Cell growth of the indicated

cells as determined with MTT assay. (D) Representative images and (E) quantification of the indicated cells sphere as determined with sphere formation assay. (F) The

indicated subcutaneous tumors and (G) tumor weight of nude mice were shown. (H) Representative images of H&E and Ki-67 staining in the indicated tumor sections

as determined with IHC assay. Error bars, mean ± SD. *p < 0.05 and **p < 0.01 [two-tailed Student’s t-test (C,E,G)].

before surgery. Signed informed consents were obtained from all
patients. The study was approved by the ethics committee of the
First Affiliated Hospital, Sun Yat-sen University.

Cell Culture and Reagents
The human HCC cell lines HepG2, BEL-7402, SK-HEP1,
SMMC-7721, and normal hepatic cell line LO2 were from
China Center for Type Culture Collection and cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS), penicillin (100 U/ml) and
streptomycin (100 ng/ml) in a humidified incubator at 37◦C
with 5% CO2 atmosphere. U0126, LY294002, and Gefitinib were
from ApexBio. Anti-TF (ab17375) and Anti-Ki-67 (2724-1) were
from Abcam. Anti-pAKT (4060), Anti-AKT (4691), Anti-pERK
(4370), and Anti-ERK (4695) antibodies were fromCell Signaling
Technologies. Anti-EGFR (SC-03) and Anti-c-Myc (SC-40)
antibodies were from Santa Cruz Biotechnology. Anti-β-actin
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(LK9001T) and Anti-GAPDH (LK9002T) antibodies were from
Tianjin Sungene Biotech.

Plasmid Construction and Lentivirus
Production
The human TF cDNA was cloned into pLVX-AcGFP1-N1
lentiviral vector, and shRNA targeting human TF mRNA
(5′-GCGCUUCAGGCACUACAAA-3′) was cloned into pLKO.1
lentiviral vector. Lentivirus was packaged in HEK293T cells
and collected from the medium supernatant. Stable cell lines
were established by infecting lentivirus into cells, followed by
puromycin selection (11, 12).

siRNA Transfection
The EGFR siRNA (sense sequences:
5′- CUGACUCCGUCCAGUAUUGAU−3′) and negative
control siRNA were synthesized by Guangzhou Ribobio. Each
siRNA solution was mixed gently with the respective volume

of the X-tremeGENE siRNA Transfection Reagent and allowed
to form transfection mixture for 20min. Cells were cultured
in 6-well plate with DMEM until 50% of confluence and
added with the transfection mixture for 24 h before the next
experiment (13, 14).

Western Blot
Cells were harvested and washed twice with cold PBS, then
resuspended and lysed in RIPA buffer (1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS, 10 ng/ml PMSF, 0.03% aprotinin,
1µM sodium orthovanadate) at 4◦C for 30min. Lysates were
centrifuged for 10min at 14,000 × g and supernatants were
stored at−80◦C as whole cell extracts. Proteins were separated on
12% SDS-PAGE gels and transferred to polyvinylidene difluoride
membranes. Membranes were blocked with 5% BSA and
incubated with the indicated primary antibodies. Corresponding
horseradish peroxidase-conjugated secondary antibodies were
used against each primary antibody. Signals were detected using

FIGURE 2 | Overexpression of TF promotes the growth of HCC. (A,E) Western blot analysis of the protein expressions in the indicated cells. (B,F) Cell growth of the

indicated cells as determined with MTT assay. (C) Representative images and (D) quantification of the indicated cells sphere as determined with sphere formation

assay. Error bars, mean ± SD. *p < 0.05 and **p < 0.01 [two-tailed Student’s t-test (B,D,F)].
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the ChemiDoc XRS chemiluminescent gel imaging system (Bio-
RAD) (15, 16).

MTT Assay
Cells were seeded into a 96-well plate at a density of
0.5–1× 104 cells/well and treated with various concentrations
of agents. After 3 days, 3-(4, 5-dimethylthiazolyl-2)-2, 5-
diphenyltetrazolium bromide (MTT) was added to each well
at a final concentration of 0.5 mg/ml. After incubation for
4 h, the medium and MTT solution were removed from each
well, and formazan crystals were dissolved in 100 µl of DMSO.
Absorbance was measured at 570 nm by Multiscan Spectrum
(Thermofisher) (17, 18).

Sphere Formation Assay
Cells were trypsinized, suspended in medium containing 0.3%
agar and 10% FBS and seeded at a density of 5 × 102

cells/well in a 12-well plate. The agar–cell mixture was plated
onto a bottom layer with 0.5% agar. Then treated cells were
incubated in a humidified incubator and fresh medium was
added every 3 days. Two weeks later, colonies were analyzed
microscopically (19, 20).

Nude Mice Xenograft Tumor Assay
The female Balb/c nudemice with 5 weeks old and 16–18 g weight
were obtained from the Shanghai SLAC Laboratory Animal Co

and maintained with sterilized food and water. For xenograft
tumor assay, 4 × 106 cells in 100 µl of DMEM were injected
subcutaneously under the shoulder of six mice per group.
The mice were anesthetized after experiment, and tumors or
lungs were removed, weighed, and sectioned. All experimental
procedures were approved by the Institutional Animal Care and
Use Committee of Jinan University (21, 22).

Immunohistochemistry Assay
Immunohistochemistry (IHC) assay was performed with a
microwave-enhanced avidin-biotin staining method. Formalin-
fixed, paraffin embedded human HCC tissue array and
subcutaneous tumors in mice were stained with antibodies,
respectively, using a microwave-enhanced avidin-biotin staining
method. To quantify the protein expression, the following
formula was used: IHC score = percentage of positive cells ×
intensity score. The intensity was scored as follows: 0, negative
(no staining); 1, weak (light yellow); 2, moderate (yellow brown);
and 3, intense (brown) (23, 24).

Statistical Analysis
Statistical analyses were performed using SPSS 19.0 for Windows
(SPSS) and Graph-Pad Prism 6. Data were expressed as
the mean ± standard deviation (SD) from at least three
independent experiments. Quantitative data between two groups
were compared using the Student’s t-test. Categorical data

FIGURE 3 | TF promotes the growth of HCC by activating both ERK and AKT signaling pathways. (A) Western blot analysis of the protein expressions in the indicated

cells. SK-HEP1 shTF-Vector and SK-HEP1 shTF-TF cells were treated with/without U0126 and LY294002 at the concentration of 10µM for 24 h. (B–D) Western blot

and (E) MTT assay analysis of the protein expressions and cell growth. Error bars, mean ± SD. *p < 0.05 (two-tailed Student’s t-test E).
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were analyzed by the χ2 test or Fisher exact test. Correlations
between different protein expressions level were determined
using Spearman’s rank analysis. The p < 0.05 was considered
as statistical significance. ∗p < 0.05; ∗∗p < 0.01; NS: no
statistical significance.

RESULTS

Knockdown of TF Inhibits the Growth
of HCC
To explore the potential biological function of TF in HCC,
we first examined the protein expression of TF in human
HCC cell lines including HepG2, BEL-7402, SK-HEP1, SMMC-
7721, and normal hepatic cell line LO2. Notably, all HCC
cell lines displayed higher protein levels of TF than normal
hepatic cell line, and SK-HEP1 and SMMC-7721 cells showed
the highest protein levels of TF in all cells (Figure 1A). To
further investigate the role of TF in HCC malignancy, we
generated the cells with shRNA-mediated stable knockdown
of endogenous TF in both SK-HEP1 and SMMC-7721 cells
(Figure 1B). Knockdown of TF decreased the cell amounts,
sphere numbers and sizes in both SK-HEP1 and SMMC-
7721 cells as detected by MTT and sphere formation assays
(Figures 1C–E). Additionally, the data of subcutaneous tumor
models in nude mice showed that TF knockdown inhibited the
growth of SMMC-7721 xenografts by decreasing the volumes and
weights of tumors as well as the numbers of Ki67+ proliferating
cells (Figures 1F–H).

Overexpression of TF Promotes the
Growth of HCC
To confirm the effect of TF on HCC growth, we performed
rescue experiments by ectopic expression of TF in both
TF-silenced SMMC-7721 and SK-HEP1 cells (Figure 2A).
Ectopic expression of TF increased the cell amounts,
sphere numbers, and sizes in both TF-silenced SMMC-
7721 and SK-HEP1 cells (Figures 2B–D). Furthermore,
overexpression of TF increased the cell amounts in

LO2, HepG2, and BEL-7402 cells (Figures 2E, F). Taken
together, these results suggest that TF can promote the
growth of HCC.

TF Promotes the Growth of HCC by
Activating Both ERK and AKT Signaling
Pathways
To further explore the molecular mechanism of TF-promoted
HCC growth, we detected the downstream signaling pathway
of TF. As shown in Figure 3A, knockdown of TF decreased the
protein levels of phosphorylated ERK (pERK), phosphorylated
AKT (pAKT), and their downstream transcriptional factor c-
Myc in both SMMC-7721 and SK-HEP1 cells. While ectopic
expression of TF increased the protein levels of pERK, pAKT
and c-Myc in both TF-silenced SMMC-7721 and SK-HEP1 cells.
Interesting, the protein level of EGFR was downregulated in
TF-silenced HCC cells and upregulated in TF-overexpressed
HCC cells (Figure 3A). To define the roles of ERK and AKT
in TF-mediated HCC growth, we examined the effects of
MEK inhibitor U0126 and PI3K inhibitor LY294002 on the
growth of both SK-HEP1 shTF-Vector and -TF cells. Treatment
with U0126 or/and LY294002 decreased the protein levels of
EGFR, c-Myc, pERK or/and pAKT in both SK-HEP1 shTF-
Vector and -TF cells (Figures 3B–D). However, with U0126 or
LY294002 alone inhibited the growth only in SK-HEP1 shTF-
TF cells but not in SK-HEP1 shTF-Vector cells. After treating
with the combination of U0126 and LY294002 significantly

TABLE 1 | The correlation between TF and EGFR protein expressions in HCC

tissues.

TF expression P

High Low Total r

EGFR High 82 9 91 < 0.001

expression Low 23 30 53 0.668

105 39 144

FIGURE 4 | Inhibition of EGFR suppresses TF-mediated HCC growth. SK-HEP1 shTF-Vector and SK-HEP1 shTF-TF cells were transfected with siControl or siEGFR

or treated with/without gefinib at the concentration of 10µM for 24 h. (A) Western blot and (B) MTT assay analysis of the protein expressions and cell growth. Error

bars, mean ± SD. *p < 0.05 and **p < 0.01 (two-tailed Student’s t-test B).
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FIGURE 5 | TF protein expression is correlated with EGFR and poor HCC patient prognosis. TF and EGFR protein expressions in 144 HCC tissues were examined

with IHC assay. (A) Representative images of positive and negative expression of both TF and EGFR were shown at 4 X and 20 X magnification. (B) Representative

images of western blot analysis of TF and EGFR protein expression in the paired HCC tissues and adjacent normal tissues. (C) Spearman’s rank correlation test

showed the correlation between TF and EGFR protein expressions by Western blot.

inhibited the growth in both SK-HEP1 shTF-Vector and -
TF cells (Figure 3E). In short, these data suggest that TF
promotes the growth of HCC by activating both ERK and AKT
signaling pathways.

Inhibition of EGFR Suppresses
TF-Mediated HCC Growth
EGFR has been identified as a key player in the development
of HCC (25). To verify the role of EGFR in TF-mediated HCC
growth, we examined the effects of EGFR siRNA and EGFR
inhibitor gefitinib on the growth of both SK-HEP1 shTF-Vector
and -TF cells. EGFR siRNA or gefitinib decreased the protein
levels of EGFR in both SK-HEP1 shTF-Vector and -TF cells
(Figure 4A). Furthermore, EGFR siRNA or gefitinib inhibited
the growth more significantly in SK-HEP1 shTF-TF cells than in
SK-HEP1 shTF-Vector cells, indicating that inhibition of EGFR
suppresses TF-mediated HCC growth (Figure 4B).

TF Protein Expression Is Correlated With
EGFR in HCC Tissues
Our results clearly demonstrate that EGFR is regulated by TF in
cell culture. To determine whether this is also the case in tumor
tissues, we compared the protein levels of TF and EGFR in human
144 HCC tissues by IHC assay. High TF and EGFR staining were
present in 105 (72.9%) and 91 (63.2%) out of 144 HCC tissues,
respectively. Results of representative tissues with co-low or co-
high staining of TF and EGFR were shown in Figure 5A. The

expression of TF was highly correlated with the expression of
EGFR in HCC tissues (Table 1 and Figures 5B, C).

DISCUSSION

It has been demonstrated that TF-induced tumor progression
need the activation of intracellular signaling pathways, where
TF cytoplasmic domain couples to proteolytic activation of the
protease activated receptor (PAR) 2 and subsequently activates
ERK, AKT and other signaling pathways (26). For example, TF
was involved in retinoblastoma cell proliferation via activating
both ERK and AKT signaling pathways (27). Knockdown of TF
suppressed human lung adenocarcinoma growth in vitro and in
vivo through inhibiting both ERK and AKT signaling pathways
(28). Similarly, our results showed that TF promoted the growth
of HCC in vitro and in vivo by activating both ERK and AKT
signaling pathways. Inhibition of ERK and AKT blocked TF-
mediated growth of HCC. Therefore, activation of both ERK and
AKT signaling pathways is indispensable for TF-promoted the
growth of HCC.

EGFR is a member of ErbB/HER family of transmebrane
receptor tyrosine kinases. It is activated by specific ligands
resulting in the activation of multiple intracellular signaling
pathways including ERK, AKT. Those signaling pathways is
related to cell proliferation, migration and invasion (29–31).
The gene expression of EGFR is regulated by the transcription
factor c-Myc (32). In this study, we found that TF could enhance
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the expression of c-Myc and EGFR, and inhibition of ERK and
AKT could block TF-induced c-Myc and EGFR upregulation.
Phosphorylation of serine 62 amino acid residues by ERK
prevents c-Myc protein from degradation (33). AKT stabilizes
c-Myc protein by phosphorylation and inactivation of GSK-3β
which phosphorylated threonine 58 amino acid residues of c-Myc
to promote c-Myc degradation (33).

Inhibition of EGFR with either small molecule inhibitors
or specific antibodies has achieved promising results in the
preclinical HCCmodels. In human HCC cells, gefitinib, erlotinib
or cetuximab could induce growth inhibition, cell cycle arrest
and apoptosis (34–36). In the orthotopic HCC models, gefitinib
significantly inhibited the growth andmetastasis of HCC tumors,
and enhanced by the combination with cisplatin (37, 38).
However, the outcome of targeting EGFR in HCC was modest in
the clinical trials. When used as a single agent in HCC patients,
erlotinib only acquired moderate effects (39, 40), and cetuximab
showed no antitumor activity (41). Treatment failure with EGFR
inhibitors in HCC patients may cause by many reasons, such
as the levels and mutations of EGFR, EMT status of tumor
cells, etc. (42–44). In the current study, we found that treatment
with EGFR siRNA or gefitinib suppressed the growth more
significantly in the TF highly expressed HCC cells, suggesting
that the levels of TF in tumor cells may influence the effects of
EGFR inhibitors. Furthermore, our IHC data showed that both
positive ratios of TF and EGFR protein in the HCC tissue were
72.9% (105/144) and 63.2% (91/144), respectively. The expression
of TF was highly correlated with the expression of EGFR in
HCC tissues. Therefore, it may be valuable to investigate the
relation of TF expressions and EGFR inhibitors effects in the
future studies.

CONCLUSIONS

Our results provide proof-of-principle insights into a novel
mechanism driven by TF on HCC growth and suggest that TF
and EGFR may be potential therapeutic targets of HCC.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

S-ZH, M-NW, J-RH, Z-JZ, W-JZ, Q-WJ, and YY performed
experiments. H-YW, H-LJ, KW, Z-HX, M-LY, and YL collected
and analyzed data. X-SH, ZS, and QZ prepared the manuscript.

FUNDING

This work was supported by funds from the National Natural
Science Foundation of China Nos. 81661148049 and 81772540
(ZS), the Guangdong Natural Science Funds for Distinguished
Young Scholar No. 2014A030306001 (ZS), the Guangdong
Special Support Program for Young Talent No. 2015TQ01R350
(ZS), the Science and Technology Program of Guangdong Nos.
201300000187 (QZ) and 2016A050502027 (ZS), the Science
and Technology Program of Guangzhou No. 201704030058
(ZS), the Science and Technology Program of Huizhou
(170520181743174/2017Y229 and 180529101741637/2018Y305),
and the Program Sci-tech Research Development of Guangdong
Province 2014A020212717 (QZ).

REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer

statistics, 2012. CA Cancer J Clin. (2015) 65:87–108. doi: 10.3322/caac.21262

2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics

in China, 2015. CA Cancer J Clin. (2016) 66:115–32. doi: 10.3322/caac.21338

3. Sun T, Liu H, Ming L. Multiple roles of autophagy in the sorafenib resistance

of hepatocellular carcinoma. Cell Physiol Biochem. (2017) 44:716–27.

doi: 10.1159/000485285

4. Li C, Chen J, Zhang K, Feng B, Wang R, Chen L. Progress and

prospects of long noncoding RNAs (lncRNAs) in hepatocellular

carcinoma. Cell Physiol Biochem. (2015) 36:423–34. doi: 10.1159/0004

30109

5. Versteeg HH, Spek CA, Peppelenbosch MP, Richel DJ. Tissue factor

and cancer metastasis: the role of intracellular and extracellular signaling

pathways.Mol Med. (2004) 10:6–11. doi: 10.2119/2003-00047.Versteeg

6. Mackman N. Role of tissue factor in hemostasis, thrombosis, and

vascular development. Arterioscler Thromb Vasc Biol. (2004) 24:1015–22.

doi: 10.1161/01.ATV.0000130465.23430.74

7. Ruf W. Tissue factor and cancer. Thromb Res. (2012) 130(Suppl. 1):S84–87.

doi: 10.1016/j.thromres.2012.08.285

8. Zhou Q, Huang T,Wang YF, Zhou XB, Liang LJ, Peng BG. Role of tissue factor

in hepatocellular carcinoma genesis, invasion and metastasis. Chin Med J.

(2011) 124:3746–51.

9. Kaido T, Oe H, Yoshikawa A, Mori A, Arii S, Imamura M. Tissue factor is a

useful prognostic factor of recurrence in hepatocellular carcinoma in 5-year

survivors. Hepatogastroenterology. (2005) 52:1383–7.

10. Poon RT, Lau CP, Ho JW, Yu WC, Fan ST, Wong J. Tissue factor expression

correlates with tumor angiogenesis and invasiveness in human hepatocellular

carcinoma. Clin Cancer Res. (2003) 9:5339–45.

11. Yang Y, Qiu JG, Li Y, Di JM, Zhang WJ, Jiang QW, et al. Targeting ABCB1-

mediated tumormultidrug resistance by CRISPR/Cas9-based genome editing.

Am J Transl Res. (2016) 8:3986–94.

12. Shi Z, Li Z, Li ZJ, Cheng K, Du Y, Fu H, et al. Cables1 controls p21/Cip1

protein stability by antagonizing proteasome subunit alpha type 3. Oncogene.

(2015) 34:2538–45. doi: 10.1038/onc.2014.171

13. Luo Y, Jiang QW, Wu JY, Qiu JG, Zhang WJ, Mei XL, et al. Regulation of

migration and invasion by toll-like receptor-9 signaling network in prostate

cancer. Oncotarget. (2015) 6:22564–74. doi: 10.18632/oncotarget.4197

14. Zhang WJ, Li Y, Wei MN, Chen Y, Qiu JG, Jiang QW, et al.

Synergistic antitumor activity of regorafenib and lapatinib in preclinical

models of human colorectal cancer. Cancer Lett. (2017) 386:100–9.

doi: 10.1016/j.canlet.2016.11.011

15. Lv M, Qiu JG, Zhang WJ, Jiang QW, Qin WM, Yang Y, et al. Wallichinine

reverses ABCB1-mediated cancer multidrug resistance. Am J Transl Res.

(2016) 8:2969–80.

16. Chen X, Gong L, Ou R, Zheng Z, Chen J, Xie F, et al. Sequential combination

therapy of ovarian cancer with cisplatin and gamma-secretase inhibitor MK-

0752. Gynecol Oncol. (2016) 140:537–44. doi: 10.1016/j.ygyno.2015.12.011

17. Lin M, Bi H, Yan Y, HuangW, Zhang G, Tang S, et al. Parthenolide suppresses

non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk

pathway. Oncotarget. (2017) 8:23436–47. doi: 10.18632/oncotarget.15584

18. Gong LH, Chen XX, Wang H, Jiang QW, Pan SS, Qiu JG, et al.

Piperlongumine induces apoptosis and synergizes with cisplatin or paclitaxel

Frontiers in Oncology | www.frontiersin.org 7 March 2019 | Volume 9 | Article 150909

https://doi.org/10.3322/caac.21262
https://doi.org/10.3322/caac.21338
https://doi.org/10.1159/000485285
https://doi.org/10.1159/000430109
https://doi.org/10.2119/2003-00047.Versteeg
https://doi.org/10.1161/01.ATV.0000130465.23430.74
https://doi.org/10.1016/j.thromres.2012.08.285
https://doi.org/10.1038/onc.2014.171
https://doi.org/10.18632/oncotarget.4197
https://doi.org/10.1016/j.canlet.2016.11.011
https://doi.org/10.1016/j.ygyno.2015.12.011
https://doi.org/10.18632/oncotarget.15584
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Huang et al. TF-AKT/ERK-EGFR Pathway Suppresses HCC

in human ovarian cancer cells. Oxid Med Cell Longev. (2014) 2014:906804.

doi: 10.1155/2014/906804

19. Li P, Yang Y, Liu H, Yang AK, Di JM, Tan GM, et al. MiR-194 functions as

a tumor suppressor in laryngeal squamous cell carcinoma by targeting wee1.

J Hematol Oncol. (2017) 10:32. doi: 10.1186/s13045-017-0402-6

20. Jiang QW, Cheng KJ, Mei XL, Qiu JG, Zhang WJ, Xue YQ, et al.

Synergistic anticancer effects of triptolide and celastrol, two main

compounds from thunder god vine. Oncotarget. (2015) 6:32790–804.

doi: 10.18632/oncotarget.5411

21. Zheng DW, Xue YQ, Li Y, Di JM, Qiu JG, Zhang WJ, et al. Volasertib

suppresses the growth of human hepatocellular carcinoma in vitro and in vivo.

Am J Cancer Res. (2016) 6:2476–88.

22. Mei XL, Yang Y, Zhang YJ, Li Y, Zhao JM, Qiu JG, et al. Sildenafil inhibits

the growth of human colorectal cancer in vitro and in vivo. Am J Cancer Res.

(2015) 5:3311–24.

23. Shi Z, Park HR, Du Y, Li Z, Cheng K, Sun SY, et al. Cables1 complex couples

survival signaling to the cell death machinery. Cancer Res. (2015) 75:147–58.

doi: 10.1158/0008-5472.CAN-14-0036

24. Qiu JG, Zhang YJ, Li Y, Zhao JM, Zhang WJ, Jiang QW, et al. Trametinib

modulates cancer multidrug resistance by targeting ABCB1 transporter.

Oncotarget. (2015) 6:15494–509. doi: 10.18632/oncotarget.3820

25. Berasain C, Avila MA. The EGFR signalling system in the liver: from

hepatoprotection to hepatocarcinogenesis. J Gastroenterol. (2014) 49:9–23.

doi: 10.1007/s00535-013-0907-x

26. Han X, Guo B, Li Y, Zhu B. Tissue factor in tumor

microenvironment: a systematic review. J Hematol Oncol. (2014) 7:54.

doi: 10.1186/s13045-014-0054-8

27. Lee BJ, Kim JH, Woo SH, Kim DH, Yu YS. Tissue factor is involved

in retinoblastoma cell proliferation via both the akt and extracellular

signal-regulated kinase pathways. Oncol Rep. (2011) 26:665–70.

doi: 10.3892/or.2011.1314

28. Xu C, Gui Q, Chen W, Wu L, Sun W, Zhang N, et al. Small interference RNA

targeting tissue factor inhibits human lung adenocarcinoma growth in vitro

and in vivo. J Exp Clin Cancer Res. (2011) 30:63. doi: 10.1186/1756-9966-30-63

29. Grant S, Qiao L, Dent P. Roles of ERBB family receptor tyrosine kinases, and

downstream signaling pathways, in the control of cell growth and survival.

Front Biosci. (2002) 7:d376–89. doi: 10.2741/grant

30. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al.

Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. (2006)

366:2–16. doi: 10.1016/j.gene.2005.10.018

31. Ma P, Fu Y, Chen M, Jing Y, Wu J, Li K, et al. Adaptive and acquired resistance

to EGFR inhibitors converge on the MAPK pathway. Theranostics. (2016)

6:1232–43. doi: 10.7150/thno.14409

32. Perini G, Diolaiti D, Porro A, Della Valle G. In vivo transcriptional regulation

of n-myc target genes is controlled by E-box methylation. Proc Natl Acad Sci

USA. (2005) 102:12117–22. doi: 10.1073/pnas.0409097102

33. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR.

Multiple ras-dependent phosphorylation pathways regulate Myc

protein stability. Genes Dev. (2000) 14:2501–14. doi: 10.1101/gad.8

36800

34. Okano J, Matsumoto K, Nagahara T, Murawaki Y. Gefitinib and the

modulation of the signaling pathways downstream of epidermal growth

factor receptor in human liver cancer cells. J Gastroenterol. (2006) 41:166–76.

doi: 10.1007/s00535-005-1736-3

35. Hopfner M, Sutter AP, Huether A, Schuppan D, Zeitz M, Scherubl

H. Targeting the epidermal growth factor receptor by gefitinib for

treatment of hepatocellular carcinoma. J Hepatol. (2004) 41:1008–16.

doi: 10.1016/j.jhep.2004.08.024

36. Huether A, Hopfner M, Sutter AP, Schuppan D, Scherubl H. Erlotinib

induces cell cycle arrest and apoptosis in hepatocellular cancer cells and

enhances chemosensitivity towards cytostatics. J Hepatol. (2005) 43:661–9.

doi: 10.1016/j.jhep.2005.02.040

37. Matsuo M, Sakurai H, Saiki I. ZD1839, a selective epidermal growth factor

receptor tyrosine kinase inhibitor, shows antimetastatic activity using a

hepatocellular carcinoma model.Mol Cancer Ther. (2003) 2:557–61.

38. Zhu BD, Yuan SJ, Zhao QC, Li X, Li Y, Lu QY. Antitumor effect of gefitinib,

an epidermal growth factor receptor tyrosine kinase inhibitor, combined with

cytotoxic agent on murine hepatocellular carcinoma. World J Gastroenterol.

(2005) 11:1382–6. doi: 10.3748/wjg.v11.i9.1382

39. Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, et al. Phase II

study of erlotinib (OSI-774) in patients with advanced hepatocellular cancer.

J Clin Oncol. (2005) 23:6657–63. doi: 10.1200/JCO.2005.14.696

40. Thomas MB, Chadha R, Glover K, Wang X, Morris J, Brown T, et al. Phase

2 study of erlotinib in patients with unresectable hepatocellular carcinoma.

Cancer. (2007) 110:1059–67. doi: 10.1002/cncr.22886

41. Zhu AX, Stuart K, Blaszkowsky LS, Muzikansky A, Reitberg DP, Clark JW,

et al. Phase 2 study of cetuximab in patients with advanced hepatocellular

carcinoma. Cancer. (2007) 110:581–9. doi: 10.1002/cncr.22829

42. Lanaya H, Natarajan A, Komposch K, Li L, Amberg N, Chen L, et al. EGFR

has a tumour-promoting role in liver macrophages during hepatocellular

carcinoma formation. Nat Cell Biol. (2014) 16:972–7. doi: 10.1038/ncb3031

43. Su MC, Lien HC, Jeng YM. Absence of epidermal growth factor receptor exon

18-21 mutation in hepatocellular carcinoma. Cancer Lett. (2005) 224:117–21.

doi: 10.1016/j.canlet.2004.10.010

44. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al.

Epithelial-to-mesenchymal transition and integrin-linked kinase mediate

sensitivity to epidermal growth factor receptor inhibition in human hepatoma

cells. Cancer Res. (2008) 68:2391–9. doi: 10.1158/0008-5472.CAN-07-2460

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019Huang,Wei, Huang, Zhang, Zhang, Jiang, Yang,Wang, Jin,Wang,

Xing, Yuan, Li, He, Shi and Zhou. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 8 March 2019 | Volume 9 | Article 150910

https://doi.org/10.1155/2014/906804
https://doi.org/10.1186/s13045-017-0402-6
https://doi.org/10.18632/oncotarget.5411
https://doi.org/10.1158/0008-5472.CAN-14-0036
https://doi.org/10.18632/oncotarget.3820
https://doi.org/10.1007/s00535-013-0907-x
https://doi.org/10.1186/s13045-014-0054-8
https://doi.org/10.3892/or.2011.1314
https://doi.org/10.1186/1756-9966-30-63
https://doi.org/10.2741/grant
https://doi.org/10.1016/j.gene.2005.10.018
https://doi.org/10.7150/thno.14409
https://doi.org/10.1073/pnas.0409097102
https://doi.org/10.1101/gad.836800
https://doi.org/10.1007/s00535-005-1736-3
https://doi.org/10.1016/j.jhep.2004.08.024
https://doi.org/10.1016/j.jhep.2005.02.040
https://doi.org/10.3748/wjg.v11.i9.1382
https://doi.org/10.1200/JCO.2005.14.696
https://doi.org/10.1002/cncr.22886
https://doi.org/10.1002/cncr.22829
https://doi.org/10.1038/ncb3031
https://doi.org/10.1016/j.canlet.2004.10.010
https://doi.org/10.1158/0008-5472.CAN-07-2460
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


ORIGINAL RESEARCH
published: 22 March 2019

doi: 10.3389/fonc.2019.00175

Frontiers in Oncology | www.frontiersin.org 1 March 2019 | Volume 9 | Article 175

Edited by:

Yunkai Zhang,

Vanderbilt University Medical Center,

United States

Reviewed by:

Yang Li,

University of Arizona, United States

Hui Wang,

Vanderbilt University, United States

*Correspondence:

Weiqing Pan

wqpan0912@aliyun.com

Specialty section:

This article was submitted to

Cancer Molecular Targets and

Therapeutics,

a section of the journal

Frontiers in Oncology

Received: 24 October 2018

Accepted: 28 February 2019

Published: 22 March 2019

Citation:

Hu C, Zhu S, Wang J, Lin Y, Ma L,

Zhu L, Jiang P, Li Z and Pan W (2019)

Schistosoma japonicum MiRNA-7-5p

Inhibits the Growth and Migration of

Hepatoma Cells via Cross-Species

Regulation of S-Phase

Kinase-Associated Protein 2.

Front. Oncol. 9:175.

doi: 10.3389/fonc.2019.00175

Schistosoma japonicum MiRNA-7-5p
Inhibits the Growth and Migration of
Hepatoma Cells via Cross-Species
Regulation of S-Phase
Kinase-Associated Protein 2
Chao Hu 1, Shanli Zhu 1, Jing Wang 1, Yu Lin 1, Li Ma 1, Liufang Zhu 1, Pengyue Jiang 1,

Zhengli Li 1 and Weiqing Pan 1,2*

1 Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China,
2Department of Tropical Diseases, Second Military Medical University, Shanghai, China

MicroRNAs (miRNAs) play important roles in human diseases, such as cancer. Human

miRNA-7-5p is a tumor suppressor miRNA that inhibits tumor growth by regulating

multiple oncogenic signal pathways. Recently, studies revealed that plant miRNAs

could regulate mammalian gene expression in a cross-kingdom manner. Schistosoma

japonicum miRNA-7-5p (designated as sja-miR-7-5p) is conserved between the

parasites and mammals. Thus, we investigated whether sja-miR-7-5p has similar

antitumor activity to its mammalian counterpart. We first showed that sja-miR-7-5p was

detected in host hepatocytes during S. japonicum infection. The sja-miR-7-5p mimics

significantly inhibited the growth, migration, and colony formation of mouse and human

hepatoma cell lines in vitro, and induced G1/G0 cell cycle arrest. In a xenograft animal

model, the tumor volume and weight were significantly reduced in mice inoculated with

hepatoma cells transfected with sja-miR-7-5p mimics compared with those transfected

with NC miRNAs. Furthermore, the antitumor activity of sja-miR-7-5p was suggested

by cross-species downregulation of the S-phase kinase-associated protein 2 gene in

the host. Thus, sja-miR-7-5p is translocated into hepatocytes and exerts its anti-cancer

activities in mammals, implying that sja-miR-7-5p might strengthen host resistance to

hepatocellular carcinoma during schistosome infection.

Keywords: Schistosoma japonicum, microRNA, hepatoma cell, SKP2, cross-species regulation

INTRODUCTION

The primary pathology of schistosomiasis caused by S. japonicum is egg-induced granuloma and
fibrosis. The female adult worms living in the host mesenteric veins lay numerous eggs, and most
of them are trapped in the liver tissues via the portal venous system, causing a granulomatous
reaction and fibrosis. The parasite eggs in the granuloma are surrounded by host cells, including
immunocytes, hepatic mesenchymal cells, and hepatocytes (1). Our previous studies indicated that
S. japonicum secretes many microRNAs (miRNAs), including Schistosoma-specific and conserved
miRNAs (2), and parasite miRNA-containing exosomes (2).
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MiRNAs are a class of highly conserved, small non-coding
RNAs, with a length of about 20–24 nucleotides (nt) that
post-transcriptionally regulate gene expression through complete
or incomplete binding to their target mRNAs (3). MiRNAs
have extensive effects on not only physiological processes,
but also on the progression of many human diseases, such
as cancers (4, 5). Aberrant miRNA expression promotes the
occurrence and development of various cancers (6–8); however,
some miRNAs can exert therapeutic effects on multiple cancers
through regulation of tumor-related genes, including those that
control tumor cell growth or apoptosis (9, 10). Interestingly,
miRNAs derived from plants can regulate the expression of their
target genes in mammals in a cross-kingdom manner (11–13).
For example, miR-159 derived from plants was detectable in
human sera and inhibited breast cancer growth by targeting the
human transcription factor 7 (TCF7) gene (13). Accumulating
evidence indicates that heterogeneous miRNAs can modulate
cell functions in mammals. However, it remains unclear
how the plant miRNAs can survive the passage through the
gastrointestinal tract following ingestion.

Unlike plant miRNAs, which need to pass through the
gastrointestinal tract before release into the host serum or
entering host cells, schistosomal miRNAs from eggs trapped in
liver tissue may be directly transferred to the neighboring host
cells. Thus, we hypothesized that parasite miRNAs from the
eggs might be translocated into neighboring hepatocytes to exert
various biological effects, including some that are beneficial to
the host, for example, strengthening the resistance of the host to
diseases such as cancer, as do plant-derivedmiRNAs (13). Human
miRNA-7-5p (designated as hsa-miR-7-5p) is a tumor suppressor
miRNA that regulates multiple oncogenic signal pathways and
reverses drug resistance in certain cancers (14–17). Our previous
study identified a S. japonicum miRNA-7-5p (designated as sja-
miR-7-5p) that is conserved between the parasite and mammals,
i.e., there is an identical seed sequence (2–8 nt at the 5

′

region)
in both parasites and mammalian miRNA-7-5p, despite there
being 6 nt differences in the rest of the sequence. Thus, it
would be interesting to investigate if sja-miR-7-5 secreted by
S. japonicum has a similar antitumor activity to hsa-miR-7-
5p. In the present study, we demonstrated that sja-miR-7-5p is
present in hepatocytes during the S. japonicum infection and
the sja-miR-7-5p exerts anticancer effects on multiple hepatoma
cells (assessed using in vitro and in vivo models) by targeting
the S-phase kinase-associated protein 2(SKP2) gene, which is a
component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin-ligase
complex. Previous studies have shown that overexpression of
the SKP2 gene was observed in many cancers, such as in liver
cancer (18), prostate cancer (19), lymphoma (20), melanoma
(21), and breast cancer (22), which plays an important role in
regulating cellular proliferation and cancer progression, mainly
by targeting cell cycle regulators in an ubiquitin-dependent

Abbreviations: S. japonicum, Schistosoma japonicum; HCC, hepatocellular cancer;

SKP2, S-phase kinase associated protein 2; P27(also known as CDKN1B), cyclin

dependent kinase inhibitor 1B; MMP9, matrix metallopeptidase 9; miRNA,

microRNA; siRNA, small interfering RNA; NC, negative control; Mock, mock

control.

manner, followed by 26S proteasome degradation (23). In
addition, the SKP2 overexpression also enhanced tumor cell
invasion (24), metastasis (25), and resistance to apoptosis (26),
and was associated with tumor aggressiveness (27) and poor
prognosis (28).

MATERIALS AND METHODS

Infection of Mice With S.

japonicum Cercariae
Animal experiments were performed in accordance with the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health, and approved by the Internal
Review Board of Tongji University School of Medicine. The
animal surgeries were undertaken under sodium pentobarbital
anesthesia. Cercariae of S. japonicum were provided by National
Institute of Parasitic Disease, Chinese Center for Disease Control
and Prevention (CDC). 36 six-week-old male C57BL/6J mice
(18–20 g, 3mice per group), purchased from experimental animal
center of the Second Military Medical University and housed
under specific pathogen-free conditions, were percutaneously
infected with 50 or 100 cercariae of S. japonicum per mouse
(50 for collection of infected hepatocytes and 100 for collection
of early stage parasites). For collection of parasites, the
hepatic schistosomula were isolated from the portal system and
mesenteric veins of infected mice at 7, 14, and 42 days post-
infection (dpi). In addition, 42 days male and female adult worms
were manually separated under a light microscope. The eggs were
isolated with a traditional method, as described by Cai et al.
(29). All the freshly isolated parasites were washed three times
with PBS (pH 7.4) and were immediately used for extraction
of total RNA or frozen at −80◦C until being subjected to
further analysis.

Isolation of Primary Mouse Hepatocytes
The primary mouse hepatocytes were isolated by a two-step
collagenase perfusion procedure, as described by He et al. (30)
with minor modifications. Briefly, after infection, livers of the
infected mice collected at various time points of 7, 9, 11, 14,
28, and 42 dpi (n = 5) along with the livers of uninfected mice
were initially in situ digested with 0.03% collagenase type IV and
then further digested with 0.08% collagenase type IV at 37◦C
in a shaking bath for 30min. The single cell suspensions were
harvested by filtration through 400-mesh sieves for removal of
the remaining tissue debris and parasite eggs. Next, hepatocytes
were isolated by centrifugation of the resulting cell suspensions
at 50×g for 4min and further purified by centrifugation at 50
× g for 4min. Purified hepatocytes were resuspend in DMEM
containing 20µg/ml Ribonuclease A (Sigma-Aldrich, USA) at
37◦C for 30min to eliminate any miRNA that might be released
by schistosome eggs. After washing with PBS for three times, the
cell pellet was immediately used for extraction of total RNA or
frozen at−80◦C until used.

Cell Proliferation Assay
Cells (2 × 105) were seeded in a 6-well plate overnight,
respectively. Then cells were transfected with sja-miR-7-5p
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mimics or NC mimics, respectively, four replicates per group.
And 24 h later, cells were digested and seeded in a 96-well plate
(2 × 103) for 1, 2, 3, and 4 d. At each indicated time, 10 µL
Cell Counting Kit-8(CCK-8, Dojindo, Japan) was added to each
well and cells were incubated for 1 h at 37 ◦C, then, using the
Microplate reader (Bio-Tek, USA) to measure the abosorbance at
450 nm.

Cell Cycle Analysis
Cells (1 × 105) were seeded in a 12-well plate overnight,
respectively. Then, cells were transfected with sja-miR-7-5p
mimics or NC mimics, respectively, three replicates per group.
And 48 h later, cells were collected and fixed with ice-cold

75%(v/v) ethanol and stored at 4◦C overnight, then, cells were
washed and resuspended in 200 µL phosphate-buffered saline
(PBS) contained with 0.05 mg/mL RNase A (Beyotime, China)
and 25 mg/mL propidium iodide (PI) (Beyotime, China), cell
cycle was determined by the FACSverse flow cytometer (BD
Biosciences, USA).

Colony Formation Assay
Cells (2 × 105) were seeded in a 6-well plate overnight, then
cells were transfected with sja-miR-7-5p mimics or NC mimics,
respectively. And 24 h later, cells were digested and 200 cells in
500 µL complete medium were seeded in 24-well plate, three
replicates per group. After incubation for 8 days, then cells were

FIGURE 1 | Detection of sja-miR-7-5p in infected hepatocytes. (A) A schematic diagram represents two sets of primers of reverse transcription stem-loop primer (RT)

and forward primer (FP) for sja-miR-7-5p or mmu-miR-7a-5p, respectively. (B,C) Preparation of RNA samples: a. 200 ng Schistosoma japonicum egg RNA; b. mixture

of equal amount of Schistosoma japonicum egg RNA (100 ng) and Hepa1-6 cell RNA (100 ng); c. 200 ng Hepa1-6 cell RNA. The three RNA templates were

transcribed into cDNA using the corresponding reverse transcription stem-loop primer, respectively, which were used for qRT-PCR by the corresponding forward

primer and common reverse primer, respectively. The PCR products were separated by polyacrylamide gel electrophoresis (PAGE). As shown in B and C, the two sets

of primers can effectively distinguished the sja-miR-7-5p and mmu-miR-7a-5p, e.g., the set of sja-miR-7-5p RT and forward primer FP amplified the sja-miR-7-5p

[(B), lane a and b] but not mmu-miR-7a-5p (lane c), while the set of mmu-miR-7a-5p RT and forward primer FP generated the mmu-miR-7a-5p but not the

sja-miR-7-5p (C). (D) Analysis of the RNA samples to ensure no contamination with parasite RNA: the RNA samples used for the above analysis were detected as

described in Method by PCR for presence of the NADH gene of S. japonicum. Lane 1: marker. Lane 2: parasite positive control: RNA samples of S. japonicum eggs

as described above. Lane 3–8: six samples of infected hepatocytes with RNase pre-incubation. Lane 9: negative control without the template. (E) qRT-PCR analysis

of sja-miR-7-5p in the infected hepatocytes at various days after infection; (F) 12% PAGE analysis showing sja-miR-7-5p PCR product (68 bp) from the infected

hepatocytes: Lane 1: marker; Lane 2: sja-miR-7-5p mimics positive control; Lanes 3 and 4: two uninfected hepatocyte samples with pre-incubation with RNase;

Lanes 5 and 6: two infected hepatocyte samples at day 11 post-infection with the pre-incubation. Data are presented as the mean ± SD, n = 3.

Frontiers in Oncology | www.frontiersin.org 3 March 2019 | Volume 9 | Article 175913

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Parasite MicroRNA Inhibits Cancer Cell

fixed inmethanol for 30min, followed by staining in crystal violet
for 15min. The number of colonies containing > 50 cells was
counted under a light microscope.

Tumor Xenograft Animal Model
Male athymic nude mice were housed and manipulated
according to the protocols approved by the Shanghai Medical
Experimental Animal Care Commission. Hepa1-6 cells orHepG2
cells were transfected with sja-miR-7-5p mimics or NC mimics,
respectively. And 24 h later, for each mouse, 1 × 106 cells in 100
µL PBS after treated with sja-miR-7-5p mimics were injected
subcutaneously to the left scapula, while cells after treated with
NC mimics were injected subcutaneously to the right scapula,
respectively. Tumor volume was measured at 2, 4, 6, and 7 d after
injection, At day 7, the mice were sacrificed and tumors were
separated to measure their weight and volume. Tumor volume
was measured using the formula: 0.5×L×S2, where L is the
longest diameter of tumor and S is the shortest diameter of tumor.
The content of sja-miR-7-5p mimics transfected into the tumor
cells measured by quantitative real-time reverse transcription
PCR (qRT-PCR), the protein level of SKP2 was determined by
Western blotting. And also the expression of Ki67 in the tumor
was measured by immunohistochemistry (IHC) as described
under this section.

Immunohistochemistry
To determine Ki67 expression in xenograft tumor tissues from
the athymic nude mice, immunohistochemistry (IHC) was
performed as described previously (31), Antibody against Ki67
was used (1:50 dilution).

Statistical Analysis
All experiments were performed in triplicate and the results were
presented as mean ± standard deviation (mean ± SD). All data
were analyzed by one-way ANOVA using the software GraphPad
Prism 5.0(GraphPad Software, Inc. La Jolla, CA, USA). A value of
P < 0.05 was considered statistically significant.

RESULTS

Presence of sja-miR-7-5p in
Infected Hepatocytes
We first investigated whether sja-miR-7-5p was present in the
host liver cells during schistosome infection. For this purpose,
we designed a set of two sets primers that could distinguish the
sja-miR-7-5p from corresponding miRNA derived from mouse
(mmu-miR-7-5p) and human (hsa-miR-7-5p). The sja-miR-7-
5p has an identical seed sequence (2–8 nt at the 5’ region), but

FIGURE 2 | Sja-miR-7-5p inhibits cell proliferation and migration of Hepa1-6 and HepG2 cells in vitro. (A–F) Hepa1-6 and HepG2 cells were transfected with

sja-miR-7-5p mimics and NC (negative control) mimics, respectively, and 48 h later [except for the cell counting kit-8(CCK-8) assay, which was 24 h later], the

expression of sja-miR-7-5p was determined using qRT-PCR (A). Cell proliferation was evaluated by CCK-8 assay at 1, 2, 3, and 4 days (B), data are presented as the

mean ± SD, n = 3, *p < 0.05 or **p < 0.01 indicates the comparison between the two groups of sja-miR-7-5p and NC; #p < 0.05 or ##p < 0.01 indicates the

comparison between the groups of sja-miR-7-5p and Mock. Cell cycle was determined by flow cytometry analysis (C,D). Cell migration was evaluated using Transwell

inserts without matrigel coating (E). The ability to form cell clones was determined using a colony formation assay (F). Data are presented as the mean ± SD, n = 3,

*p < 0.05, **p < 0.01.
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there are 6 nt differences in the rest of the sequence among the
species (Figure 1A, and Figure S1), which allowed us to design
sets of specific primers for the mmu-miR-7a-5p (mmu-FP/RT)
and the sja-miR-7-5(sja- FP/RT). We first tested specificity of the
primers using the RNA samples derived from S. japonicum eggs
(a), mouse Hepa1-6 cell line (c), andmixture of equal amount of a
and c (b). As shown in Figures 1B,C, the sja-FP/RT pair primers
successfully generated the sja-miR-7a-5p from the samples of a
and b, but not c (Figure 1B), while the mmu-FP/RT pair primers
generated the mmu-miR-7a-5p from the sample b and c, but
not a (Figure 1C). These data indicated that the two sets of
primers can effectively distinguish the sja-miR-7-5p and mmu-
miR-7a-5p, and no cross reaction between the mmu-FP/RT and
sja-FP/RT primers. All the primers are listed in Table S1.

We next used the sja-FP/RT primers for detection of
presence of sja-miR-7-5p in the liver cells of infected mice with
S. japonicum. We prepared RNA samples from the infected
liver cells, and carefully analyzed the samples to ensure no
contamination with parasite RNA (Figure 1D). We showed that
sja-miR-7-5p was detected by using qRT-PCR in the hepatocytes
from infected mice at the early stage (i.e., days 9 and 11 post
infection) and the late stage of infection (day 42) (Figure 1E).
The presence of this parasite miRNA was further verified by PCR
(Figure 1F) and cloning and sequencing of the PCR product
showed identical sequence of sja-miR-7-5p (Figure S2A). In
addition, we showed that sja-miR-7-5p was expressed at all these
stages, and higher expression of sja-miR-7-5p was detected in
adult males compared with that in adult females (Figure S2B).

These findings indicated that this sja-miR-7-5p is present in the
host liver cells during schistosome infection.

Inhibition of Proliferation and Migration of
Hepatoma Cells by Sja-miR-7-5p
To investigated the effects of sja-miR-7-5p on the growth of
hepatoma cells in vitro, both mouse and human hepatoma
cells (e.g., Hepa1-6 cells and HepG2 cells) were transfected
with the sja-miR-7-5p mimics, NC (a negative control mimics
that has no target gene in mice and human) and Mock
(transfection reagents only). As shown in Figure 2A, the sja-miR-
7-5p mimics were effectively transfected into both cell lines. The
schistosomal miRNA significantly suppressed the proliferation
of both cell lines, as measured by the CCK-8 assay (Figure 2B),
and substantially arrested the cell cycle at G1/G0 phase, as
detected by flow cytometry (Figures 2C,D). We also showed that
transfection of the sja-miR-7-5p mimics significantly suppressed
cell migration, as assessed using the Transwell inserts without
matrigel coating (Figure 2E) and by the wound-healing assay
(Figures S3B,C) compared with the NC or Mock control cells.
Colony formation assays showed that sja-miR-7-5p inhibited
colony formation of hepatoma cells to a greater extent that
those in the NC group or Mock group (Figure 2F). In addition,
the Hepa1-6 cells transfected with sja-miR-7-5p mimics grew
bigger and rounder compared with those in the NC or Mock
control cells (Figure S3A). These data indicated that sja-miR-7-
5p inhibited growth, migration, and colony formation of both
mouse and human hepatoma cells and arrested their cell cycle

FIGURE 3 | Sja-miR-7-5p inhibits hepatoma cell growth in vivo. (A–F) Hepa1-6 and HepG2 cells were transfected with sja-miR-7-5p mimics or NC mimics,

respectively, and then the sja-miR-7-5p-treated cells (1 × 106) were injected subcutaneously to the left scapula of athymic nude mice, and the NC-treated cells were

injected subcutaneously into the right scapula (n = 5), respectively. Tumor volumes were measured at days 2, 4, 6, and 7 after injection. At day 7, the mice were

sacrificed and tumors were separated to measure their weight and volume, (A–C) for Hepa1-6 cells, (D–F) for HepG2 cells. Data are presented as the mean ± SD, n

= 5, *p < 0.05, **p < 0.01.

Frontiers in Oncology | www.frontiersin.org 5 March 2019 | Volume 9 | Article 175915

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Parasite MicroRNA Inhibits Cancer Cell

at G1/G0 phase in vitro, indicating that the schistosomal miRNA
is also a tumor suppressor.

Sja-miR-7-5p-Mediated Inhibition of
Hepatoma Cell Growth in vivo
To further investigate whether sja-miR-7-5p inhibits growth of
liver cancer cells in vivo, both Hepa1-6 and HepG2 cells were
transfected with sja-miR-7-5p mimics or NC mimics, and then
injected subcutaneously to the left and right scapula of athymic
nude mice to generate subcutaneous tumors. The tumor volume
was measured at days 2, 4, 6, and 7 after injection. At day 7, mice
were sacrificed and tumors were excised to measure their weight
and volume. The results showed that both the tumor volume and
weight were significantly reduced in the mice inoculated with
Hepa1-6 cells transfected with sja-miR-7-5p mimics compared
with those in mice receiving cells transfected with NC miRNAs
(Figures 3A–C). Similar results were obtained with the human
cell line of HepG2 (Figures 3D–F). These data indicated that
sja-miR-7-5p suppressed tumor growth in vivo.

SKP2 Is a Direct Target of Sja-miR-7-5p
To determine the molecular mechanisms by which sja-miR-7-5p
inhibits hepatoma cell growth, we used the online software
miRDB (32) (http://www.mirdb.org/miRDB/index.html),
MR-microT (33) (http://diana.imis.athena-innovation.gr/

DianaTools/index.php?r=mrmicrot/index) and RNAhybrid
(34) (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid?id=
rnahybrid_view_submission).

To search for potential targets of sja-miR-7-5p. We identified
the gene encoding S-phase kinase-associated protein 2(SKP2) as
a potential target for sja-miR-7-5p, because a binding site was
located at the 3’ UTR of the both murine and human SKP2 gene
that perfectly matched the seed sequence of sja-miR-7-5p. In
addition, the SKP2 gene in human has been characterized as an
oncogene during tumorigenesis (21, 35–38).

To investigate the relationship between sja-miR-7-5p and
SKP2 gene in both human and mouse, first, we constructed
two plasmids that contain the luciferase reporter gene: One was
the pmirGLO-SKP2-WT construct in which the firefly luciferase
gene is fused to the 3’ UTR of SKP2 gene; the other was
the pmirGLO-SKP2-MT in which the seven nucleotides in the
miRNA binding site were mutated (Figure 4A). The constructs
were simultaneously transfected with sja-miR-7-5p mimics or
NC mimics into both Hepa1-6 cells and HepG2 cells. As shown
in Figure 4B, the luciferase activity was significantly decreased in
the cells transfected with the pmirGLO-SKP2-WT but not with
the pmirGLO-SKP2-MT, indicating that sja-miR-7-5p mimics

could directly bind to the site in the 3
′

UTR of the SKP2
gene, while the mutations in the seed sequence abrogated the
inhibitory effect.

FIGURE 4 | SKP2 (encoding S-phase kinase-associated protein 2) is a direct target of sja-miR-7-5p. (A) A schematic diagram representing the wild-type or mutant 3’

untranslated region (UTR) sites of murine Skp2 and human SKP2 genes targeted by sja-miR-7-5p. (B) A dual-luciferase reporter assay was used to measure the

activity of the reporter gene, and the firefly luciferase activity was normalized to renilla luciferase activity. (C,D) The protein levels of murine SKP2 (C) and human SKP2

(D) were measured using western blotting after transfection with sja-miR-7-5p mimics or NC mimics, respectively. Data are presented as the mean ± SD, n = 3,

**p < 0.01.
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We then detected the level of the SKP2 protein in both Hepa1-
6 or HepG2 cells transfected with sja-miR-7-5p mimics using
Western blotting. We found that sja-miR-7-5p downregulated
the levels of SKP2 in both Hepa1-6 cells and HepG2 cells
compared with that in cells transfected with NC orMock controls
(Figures 4C,D).

Sja-miR-7-5p-Mediated Suppression of the
Hepatoma Cell Growth Through
Downregulation of SKP2 Expression
To investigate whether sja-miR-7-5p inhibits the growth of
hepatoma cells through inhibition of SKP2 expression, both
Hepa1-6 cells and HepG2 cells were transfected with the SKP2
small interfering RNAs (siRNAs). We showed that both murine
Skp2 siRNA (SKP2-786) and human SKP2 siRNA (SKP2-1291)
significantly reduced the SKP2 expression in Hepa1-6 cells
and HepG2 cells, respectively, at both transcriptional and
translational levels detected by qRT-PCR and Western blotting
(Figure 5A). Importantly, similar to the observations in the
sja-miR-7-5p mimics-treated cells, the transfected Hepa1-
6 cells and HepG2 cells with the siRNA showed cell cycle
arrest at the G0/G1 phase (Figures 5C,D), and inhibition
of cell proliferation (Figure 5B), cell migration (Figure 5E),

and colony formation (Figure 5F), whereas these inhibitory
effects were not observed in the cells treated with the NC
siRNA. The phenotypes of the cells treated with SKP2 siRNA
were similar to those of sja-miR-7-5p mimics-treated cells,
which suggested that the inhibitory effects of the schistosome

miRNA on hepatoma cells function by downregulating
SKP2 expression.

We also detected the expression of SKP2 gene in the

subcutaneous tumors generated by Hepa1-6 or HepG2 cells

transfected with sja-miR-7-5p or NC mimics, respectively.
As shown in Figures 6A,B, the transfected sja-miR-7-5p was
detectable in the tumors on day 7 after injection. We then
detected the SKP2 protein level using Western blotting,
which showed that the level of SKP2 was significantly
decreased in the tumors of both Hepa1-6 and HepG2 cells
receiving sja-miR-7-5p compared with that in tumors from cells
transfected with the NC control (Figures 6C,D). Meanwhile,
we evaluated the proliferation of the tumor cells using
immunohistochemistry (IHC) for Ki67, which showed that
the protein level of Ki67 was also significantly decreased in
tumor cells transfected with sja-miR-7-5p compared with that
in cells transfected with the NC control (Figure 6E). These
data further suggested that sja-miR-7-5p inhibited proliferation

FIGURE 5 | Knockdown of SKP2 inhibits cell proliferation and migration of Hepa1-6 and HepG2 cells in vitro. (A–F) Hepa1-6 and HepG2 cells were transfected with

SKP2 siRNA and negative control (NC) siRNA, respectively, and 48 h later (except for the cell counting kit-8(CCK-8) assay, which was 24 h later), the expression of

SKP2 was determined using qRT-PCR and western blotting (A). Cell proliferation was evaluated using the CCK-8 assay at 1, 2, 3, and 4 d (B), data are presented as

the mean ± SD, n = 3, *p < 0.05 or **p < 0.01 indicates the comparison between the two groups of sja-miR-7-5p and NC; #p < 0.05 or ##p < 0.01 indicates the

comparison between the two groups of sja-miR-7-5p and Mock. Cell cycle was determined using flow cytometry analysis (C,D). Cell migration was evaluated by

using Transwell inserts without matrigel coating (E). The ability to form cell clones was determined using a colony formation assay (F). Data are presented as the mean

± SD, n = 3, *p < 0.05, **p < 0.01.
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FIGURE 6 | Sja-miR-7-5p inhibits the expression of SKP2 and Ki67 within hepatoma cell tumors. (A,B)The content of sja-miR-7-5p mimics after transfection into

tumor cells was measured using qRT-PCR before inoculation (0 d) and after sacrifice (7 d), with U6 as the internal control, (A) for Hepa1-6 cells, (B) for HepG2 cells.

Data are presented as the mean ± SD, n = 5, **p < 0.01. (C,D) The protein level of SKP2 was determined by Western blotting, with glyceraldehyde-3-phosphate

(GAPDH) as the internal control, (C) for Hepa1-6 cells, (D) for HepG2 cells. (E) The level of Ki67 in tumors was determined using immunohistochemistry.

of both Hepa1-6 cells and HepG2 cells via downregulation of
SKP2 expression.

To further explore the molecular mechanism by which
sja-miR-7-5p exerts its antitumor activities, we detected the
expression of two downstream nodes of SKP2, e.g., P27 [also
known as cyclin dependent kinase inhibitor 1B (CDKN1B)] and
matrix metalloproteinase 9(MMP9), using Western blotting. We
found that sja-miR-7-5p downregulated the level of SKP2, which
led to significantly increased levels of P27 and reduced levels
of MMP9 in the cells receiving sja-miR-7-5p mimics compared
with those in the cells receiving the NC mimics (Figure 7A). In
addition, transfection of the hepatoma cells with the murine Skp2
siRNA generated a similar outcome to that in cells transfected
with sja-miR-7-5p mimics (Figure 7B). These data suggested
that sja-miR-7-5p exerts its antitumor activity by targeting SKP2
to elevate P27 levels, which led to suppression of tumor cell
growth, and reducing MMP9 levels, resulting in inhibition of
cell migration.

DISCUSSION

Hsa-miR-7-5p is well-characterized as a tumor suppressor
miRNA that suppresses survival, proliferation, invasion, and

migration of multiple cancer cells, as well as increasing the
sensitivity of resistant tumor cells to therapeutics. The molecular
mechanism underpinning its anticancer activities involves
regulation of multiple signaling related genes such as PI3K/Akt,
FAK, KLF4, and REGγ (10, 39–41). This miRNA has therapeutic
potential for human cancers (42). Our previous studies identified
a conserved miR-7-5p from S. japonicum, sja-miR-7-5p, that
has an identical seed sequence to those of hsa-miR-7-5p and
mouse mmu-miR-7-5p, although there are 6 nt differences in
the rest of the sequence of the miRNA among species. In this
study, we have demonstrated that the schistosome miRNA, sja-
miR-7-5p, is present in host hepatocytes during schistosome
infection, and the in vitro transfection of sja-miR-7-5p mimics
into hepatoma cells led to cell cycle arrest and inhibition of cell
proliferation, colony formation, and cell migration. Furthermore,
we showed that sja-miR-7-5p suppressed the growth of both
human and mouse hepatoma cells in a xenograft animal model.
Analysis of the molecular mechanisms revealed that sja-miR-
7-5p exerts its activities by targeting the SKP2 gene, which is
involved in regulation of cell viability and migration. Thus,
the present data indicated that the schistosome sja-miR-7-5p
is also a tumor suppressor miRNA that may have therapeutic
potential for human cancers. In addition, both the presence of
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FIGURE 7 | The molecular mechanism whereby sja-miR-7-5p exerts its antitumor activity in hepatoma cells. (A,B) In Hepa1-6 cells, the protein levels of SKP2, P27,

and MMP9 were measured by Western blotting after transfection with sja-miR-7-5p mimics (A) or Skp2 siRNA (B) and their corresponding negative controls, with

glyceraldehyde-3-phosphate (GAPDH) as the internal control. Data are presented as the mean ± SD, n = 3, **p < 0.01.

this miRNA in host hepatocytes and its antitumor effects on
human hepatoma cells suggest that schistosome non-small RNA-
mediated anticarcinogenic effects might exist in the host liver
during schistosome infection.

Infection with several parasites, such as Opisthorchis viverrini
and Clonorchis sinensis, has been reported to be associated with
cancer (43, 44). Schistosomiasis is a neglected tropical parasitic
disease, affecting approximately 210 million people worldwide.
Infection with Schistosoma haematobium is associated with
bladder cancer (43, 44). However, for infection with S. japonicum,
the association with hepatocellular carcinoma (HCC) is less
evident, although a potential association with colorectal cancer
was reported (45). The large retrospective epidemiological
surveys conducted in highly endemic areas for schistosomiasis
in China showed no correlation between HCC and S. japonicum
infection (46). Although several other epidemiological and case–
control studies proposed a potential association between HCC
and S. japonicum infection, the evidences for the association
remain a matter of debate because the schistosomiasis patients
are highly associated with HBV and HCV infections, which
are hepatic carcinogens (47). However, accumulating evidence
indicates that chronic inflammation plays an important role in
carcinogenesis (48). For S. japonicum infection, the liver-trapped
eggs induce severe hepatic chronic inflammation and fibrosis
that could be risk factors for HCC (49). These factors derived
from S. japonicum infection should contribute to HCC, but
this does not seem to happen in S. japonicum schistosomiasis.
Therefore, we speculated that the S. japonicum eggs trapped
in the liver might play a dual role in the HCC occurrence
and development, i.e., carcinogenic and anticancer activities,
similar to those reported for the protozoan Trypanosoma cruzi,

which has carcinogenic and anticancer activities during infection
(50). This study demonstrated that a non-coding small RNA
secreted by S. japonicum, sja-miR-7-5p, perhaps together with
other miRNAs derived from the parasite, could be translocated
into liver cells during parasitic infection, and exerts anticancer
activity, implying that the S. japonicum-producing non-coding
small RNAs may, in part, contribute to the anticancer activities
in the infected host.

As described above, mammalian miR-7-5p exerts its
anticancer activities through regulation of multiple target genes
such as PI3K/Akt, FAK and KLF4. To identify the target gene
of the parasite sja-miR-7-5p, we first used three online software
to search for its potential target genes. We found 5 target gene
candidates (Skp2, Psme3, Pik3cd, Klf4, and Hoxb5) that were
consistently predicted by the three software and involved in
tumor-related signaling pathway. Three of them (i.e., Pik3cd,
Klf4, Hoxb5) were excluded through analysis of their expression
in hepatoma cells transfected with the sja-miR-7-5p mimics.
Although both Skp2 and Psme3 genes were validated as target
gene by luciferase reporter assay, our experimental data with
Skp2 and Psme3 siRNA showed that only the hepatoma cell
transfected with the Skp2 siRNA produced similar phenotype to
that of sja-miR-7-5p mimics-treated cells. Thus, Skp2 gene has
been identified as the target gene of sja-miR-7-5p.

SKP2, also known as P45, FBL1, FLB1, and FBXL1, is a
component of the SCF (Skp1-Cullin 1-F-box) E3 ubiquitin-ligase
complex. Many studies have reported that SKP2 is overexpressed
in various cancers of different organs, including the liver (18),
colon (51), breast (52), prostate (53), and stomach (54). SKP2
is characterized as an oncogene, and is involved in modulation
of the cell cycle, cell growth, and survival by regulation of
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its downstream node molecules, such as P27, P16, P21, P57,
E2F-1, and c-MYC in an ubiquitin-dependent manner, followed
by 26S proteasome degradation (23). Previous studies showed
that loss of SKP2 reduced the migration and invasion abilities
of oral squamous cell carcinoma cells by downregulating the
expression of MMP2 and MMP9 (55). The best-known substrate
of SKP2 is the cyclin dependent kinase (CDK) inhibitor, P27.
Overexpression of SKP2 leads to reduction of P27, which is
strongly associated with aggressive tumor behavior and poor
clinical outcome (19, 36, 56), while knockdown of SKP2 resulted
in the accumulation of P27, causing cell cycle arrest at G1/G0
phase (57). However, the relationship between miR-7-5p and
SKP2 has not yet been reported in HCC. In the present study,
we found that in liver cancer cells, including Hepa1-6 cells and
HepG2 cells, sja-miR-7-5p inhibited the growth and migration
of both mouse and human hepatoma cells by targeting SKP2
to elevate the expression of P27 and decrease the expression
of MMP9. These data were consistent with the results of
experiments using the SKP2 siRNA, and with the outcome of
a study in which miRNA-7-5p could suppress cell proliferation
of CHO cells partly by targeting skp2 (58). Therefore, our
data demonstrated that sja-miR-7-5p suppresses hepatoma cell
growth and migration by downregulating SKP2.

The present study demonstrated that sja-miR-7-5p is present
in infected hepatocytes, selectively affects the growth and
migration of human andmouse tumor cells by targeting the SKP2
gene, implying that sja-miR-7-5p might strengthen resistance of
host to cancer during schistosome infection.
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Epigenetic modifications, such as DNA methylation and histone modification, result in

heritable changes in gene expression without changing the DNA sequence. Epigenetic

regulatory enzymes such as DNA methyltransferases, histone methyltransferases, and

histone deacetylases are involved in epigenetic modification. Studies have shown that

the dysregulation caused by changes in the amino acid sequence of these enzymes

is closely correlated with tumor onset and progression. In addition, certain amino acid

changes in the metabolic enzyme isocitrate dehydrogenase (IDH) are linked to altered

epigenetic modifications in tumors. Some small molecule inhibitors targeting these

aberrant enzymes have shown promising anti-cancer efficacy in preclinical and clinical

trials. For example, the small molecule inhibitor ivosidenib, which targets IDH1 with a

mutation at R132, has been approved by the FDA for the clinical treatment of acute

myeloid leukemia. In this review, we summarize the recurrent “hotspot” mutations in these

enzymes in various tumors and their role in tumorigenesis. We also describe candidate

inhibitors of the mutant enzymes which show potential therapeutic value. In addition, we

introduce some previously unreported mutation sites in these enzymes, which may be

related to tumor development and provide opportunities for future study.

Keywords: DNMT, mutation, small molecule inhibitors, tumor, histone modification enzyme

INTRODUCTION

The term “epigenetics” describes inheritable changes of gene expression with no alteration of the
DNA sequence (1). As the field of epigenetics has expanded, the connection between epigenetic
changes and the occurrence and development of tumors has received more attention (2). The
structure of chromatin is the basis for modulating gene expression: euchromatin has an open
structure that is typically associated with active transcription, while heterochromatin is tightly
compacted and usually associated with transcriptional repression. Epigenetic modification such
as DNA methylation and histone modification are important for regulating chromatin structure
and therefore gene expression. These modifications are catalyzed by epigenetic regulatory enzymes,
including DNA methyltransferases, histone methyltransferases and histone deacetylases.

Recent studies have shown that the dysregulation (e.g., overexpression) of these enzymes
plays a crucial role in tumorigenesis. Some small molecule inhibitors targeting these aberrantly
expressed epigenetic regulatory enzymes have been approved by the FDA for the treatment of
certain cancers. For example, the small molecule inhibitor 5-azacytidine, which targets the DNA
methyltransferase DNMT3A, has been approved for clinical treatment of patients with acute
lymphoblastic leukemia (AML) (3), and belinostat, which targets histone deacetylases (HDACs)
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in peripheral T-cell lymphoma (PTCL), was approved for use in
2014 (4). In addition, the inhibitor EPZ6438, which targets EZH2,
a histone methyltransferase, has been approved for testing in the
clinic (5).

In recent years, increasing evidence has shown that epigenetic
regulatory enzymes are mutated in various types of cancer,
and mutations of these enzymes are closely related to the
malignant phenotype (6, 7). Hence, inhibitors that target these
mutant enzymes have gradually entered preclinical and clinical
research. In this review, we first summarize the epigenetic
regulatory enzymes and their mutations in different types of
tumors, and then we explain how the mutations are correlated
with tumorigenesis. Finally, we present some small molecule
inhibitors which target epigenetic regulatory enzymes, especially
their mutated forms, and may have potential therapeutic value in
the future.

DNMTS AND THEIR MUTATIONS
IN CANCER

DNMTs in Cancer
DNA methylation, which is one of the major epigenetic
regulatory mechanisms, plays a crucial role in many life processes
(8). In eukaryotic cells, DNA methylation is a stable gene
silencing modification that is copied during DNA replication
(9). DNA methylation predominately occurs at cytosine residues
in 5′-CpG-3′ dinucleotides, with S-adenosyl methionine (SAM)
as the methyl donor (10). In mammals, DNA methylation is
catalyzed by enzymes in the DNA methyltransferase (DNMT)
family, mainly DNMT1, DNMT3A, and DNMT3B. DNMT1
maintains the methylation status of newly replicated (hemi-
methylated) DNA, whereas DNMT3A and DNMT3B are
responsible for de novo DNA methylation (11). The mechanism
by which DNA methylation regulates gene expression involves
blocking the binding of transcription factors to DNA and
the recruitment of proteins containing a methylated CpG-
binding domain to inhibit gene expression in tumor cells (12).
The methylation profiles in different cells are not the same,
and this has functional consequences. In normal cells, gene
promoters containing CpG islands are usually unmethylated,
which maintains the chromatin in an open structure, and hence
enhances the transcription of the gene. However, in tumor cells,
the CpG island-containing promoters of tumor suppressor genes
are usually methylated, and thus the euchromatin is converted
to compacted heterochromatin (13). These findings indicate that
DNA methylation regulates tumorigenesis and progression by
inhibiting the expression of tumor suppressor genes.

DNMT Mutations in Cancer
Recently, studies have shown that mutations of DNMT family,
especially DNMT3A, are prominent features of many tumors
and can lead to malignant transformation (14). DNMT3A is
one of the most frequently mutated DNA methyltransferase in
AML (6) and myelodysplastic syndromes (MDS) (15). Some
reports have shown that mutations in DNMT3A are present
in up to 20% of AML cases and are associated with poor
prognosis (8, 16). Although a large number of mutations in

the DNMT3A have been reported, ∼50% of the changes are in
the catalytic domain at position R882 (most commonly R882H)
(8, 17, 18). Table 1 shows DNMT3A mutations, including
hotspots and non-reported mutation sites, in various tumors.
In addition, mutations in DNMT1 have been described in
colorectal (29), prostate and hematological malignancies (30).
The gene encoding DNMT3B was reported to be mutated
in immunodeficiency syndrome, but mutations have rarely
been reported in tumors (31). In addition, except DNMTs’
mutations in various cancers, DNA hydroxymethylase TET2,
which catalyzes the conversion of 5-methyl-cytosine to 5-
hydroxymethyl-cytosine, has been reported in recent years for
its mutations in various diseases, especially AML and MDS (32).
The above results indicated that the mutations in DNMT and its
related enzyme are frequent, which suggesting the potential role
of them in tumorigenesis.

Function of DNMT Mutations
Mutations in DNMTs are closely correlated with the biological
characteristics of malignant tumors and they increase the ability
of cancer cells to undergo proliferation, migration, colony
formation, and self-renewal. Recently, the relationship between
the DNMT3A R882C mutation and the migration of tumor
cells has been investigated in vitro (33). The results showed that
the OCI-AML3 cell line, which carries the R882C mutation,
had a greater migration ability than cell lines carrying wild-
type (WT) DNMT3A, and infiltrated into the meninges of mice
after intravenous infusion. This indicates that the DNMT3A
R882 mutation contributes to the enhanced migration of
malignant cells. It was also shown that the DNMT3A R882H
mutation increases the proliferative capacity of hematopoietic
cells and actively promotes the growth of monocytes and
macrophages (33). Mechanistically, DNMT3A R882 mutant
proteins interact with polycomb repressive complex 1 (PRC1)
to block the differentiation of hematopoietic stem cells and
lymphocytes by down-regulating differentiation-associated genes
(34). Furthermore, cells with DNMT3A R882 mutations have a
higher colony forming capacity than WT cells (34). In addition,
it was reported that DNMT3A R882 mutations may induce
chemotherapy resistance in AML patients. Guryanova et al.
reported that the DNMT3A R882H mutation increases the
risk of AML patients being resistant to anthracycline therapy
by dysregulating nucleosome remodeling (35). Some reports
have shown that the DNMT3A R882 mutation was negatively
correlated with the prognosis of AML patients. The 5-year
overall survival of AML patients with DNMT3A mutations
was significantly shorter than AML patients without such
mutations (36, 37). Accordingly, Delhommeau et al. reported
that TET2 mutations are early events in patients with some
MDS and secondary AML and confirmed the important role
of TET2 in maintaining the balance between hematopoietic cell
survival, growth and differentiation (38). Studies have shown that
leukemia-associated missense mutations impair the enzymatic
activity of TET2 and lead to a decrease in the genomic level of 5-
hydroxymethyl-cytosine, which disrupts normal hematopoiesis
and may accelerate leukemia formation (32). All of the above
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observations show that mutations in DNMT3A and TET2, to
some extent, promote oncogenesis, and tumor progression.

HMTS AND THEIR MUTATIONS IN CANCER

HMTs in Cancer
Histone methylation is involved in the regulation of
various biological processes such as gene expression, DNA
repair, differentiation, replication and growth (39). Histone
methyltransferases catalyze the transfer of the methyl group of
SAM to histone arginine or lysine residues. A number of HMTs
have been identified, including histone lysine methyltransferases
(HKMTs) and histone arginine methyltransferases (HRMTs),
which have specific substrates and residues. EZH2 belongs
to the HKMT family and is frequently overexpressed in
various cancerous tissue types such as breast, prostate and
lung (19, 20, 40).

HMT Mutations in Cancer
EZH2 is a histone methyltransferase that catalyzes the
trimethylation of arginine 27 in histone H3 (H3K27). Reports
of EZH2 mutations in cancer have increased in recent years.
Mutations in epigenetic regulatory enzymes are either gain-
of-function or loss-of-function (3). EZH2 gain-of-function
mutations were previously reported in lymphoma, and the
probability of EZH2 mutation in melanoma was recently
reported to be about 2%. Popov et al. found that 27% of follicular
lymphoma cases had EZH2 mutations at 3 recurrent hotspots
(Y646, A682, and A692) (24). Other gain-of-function hotspot
mutations including Y641, A677, and A687 in the catalytic SET
domain of EZH2 are prevalent, accounting for ∼10–24% of
non-Hodgkin’s lymphoma (26). In addition to these hotspot
mutations, we have summarized some non-reported mutation
sites that have yet to be studied, as shown in Table 1.

Function of HMT Mutations
The dysregulation of H3K27 trimethylation (H3K27me3) is
important in human tumorigenesis (25), and some reports have
shown that mutant EZH2 increases the level of H3K27me3 in
follicular lymphoma, germinal center B-cell type diffuse large
B-cell lymphomas (21, 24, 41) and metastatic skin melanoma
(42). The level of H3K27 monomethylation and dimethylation
in cancer cells and tumor tissues with heterozygous EZH2
mutations at Y641 and A677 is decreased, while the level
of H3K27 trimethylation is increased, resulting from the
changed substrate preference of the mutant enzymes (22, 41).
Barsotti et al. revealed that cells with a gain-of-function EZH2
mutation at Y641 displayed enhanced motility compared to
control cells, forming highly dynamic collective migrating chains
under 3D culture conditions (42). The Y641 EZH2 gain-of-
function mutant cells also had a significant growth advantage in
melanoma xenografts. Others have reported that mutations in
EZH2 can promote lymphocyte proliferation and maintain the
enhanced histonemethyltransferase activity in vivo, subsequently
increasing tumorigenicity (26). Somatic mutations in EZH2 have
been shown in many reports to correlate with poor prognosis
in patients with AML and myeloproliferative neoplasms (6, 43).

Thus, mutations in EZH2 may contribute to the enhancement of
the malignant phenotype.

HMT-RELATED ENZYMES AND THEIR
MUTATIONS IN CANCER

HMT-Related Enzymes in Cancer
Isocitrate dehydrogenase (IDH) plays a key role in the Kreb’s
cycle, catalyzing the conversion of isocitrate into α-ketoglutarate
(α-KG). The two major human IDH proteins, IDH1 and IDH2,
are not HMTs, but their mutant forms indirectly contribute to
effects on histone methylation by catalyzing the conversion of α-
KG to 2-hydroxyglutarate (2-HG). Accumulation of 2-HG can
inhibit the activity of a broad range of histone demethylases,
inducing hypermethylation which is observed in certain cancers
such as gliomas (44). In addition, high levels of 2-HG can inhibit
α-KG-dependent prolyl hydroxylase, which is important for the
degradation of hypoxia-inducible factor (HIF)-1α, a regulator of
histone demethylases (7, 23, 28). Mutated forms of IDH therefore
mimic the effects of HMTs.

HMT-Related Enzyme Mutations in Cancer
As mentioned above, specific mutants of IDH can catalyze
the conversion of α-KG to 2-HG, and 2-HG inhibits not only
histone demethylases but also TET DNA demethylases. This
can cause increased methylation of both DNA and histones
(3). Therefore, mutant IDH may be an oncoprotein and 2-
HG may be an “oncometabolite” (7). In recent years, hotspot
mutations in IDH1/2 have been reported in various tumors
(Table 1). It has been reported that mutations of IDH1 and IDH2
occur in the vast majority of low-grade gliomas and secondary
high-grade gliomas, and also in some cases of AML (27). In
addition, IDH mutations have been found in solid tumors such
as cholangiocarcinoma and prostate cancer (45, 46). The hotspot
mutation of IDH1 is located at R132, while the hotspot mutation
of IDH2 is located at R172, which is homologous to R132 in
IDH1. We also found that other mutations of IDH1, including
G339(E/W), R49C, R119(Q/W), and V294L, may be hotspot
mutations in various tumors (Table 1). In addition to mutations
in the enzyme of IDH family in the Kreb’s cycle, two other
metabolic enzymes involved in epigenetic regulation, SDH and
FH, have also been reported in recent years to mutate in germline
frequently. Ciccarone et al. concluded that SDH mutations
in germline are responsible for the formation of hereditary
paragangliomas and adrenal gland pheochromocytoma, whereas
FH mutations are typical of hereditary leiomyomatosis and renal
cell cancer (HLRCC) (47).

Function of HMT-Related
Enzyme Mutations
Several groups have investigated the effect of IDH hotspot
mutations, which mimic the activity of HMTs, in cancer. Cohen
et al. elucidated that mutant IDH can trigger tumorigenesis. In
detail, they found that somatic mutations in IDH1 at R132 or
IDH2 at R172 led to increased risk of glioma, hemangiomas
and chondrosarcoma, and they demonstrated that the mutated
IDH contributed to the increased cell proliferation, colony
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formation, and inability to differentiate (7). In addition, Fu
et al. showed that the IDH2 R172 mutation accelerated the
migration and growth of C6 glioma cells by increasing the
stability of HIF-1α (48). They also reported that IDH mutations
promoted glioma cell metastasis and resistance to chemotherapy
through up-regulation of the HIF-1α signaling pathway (49).
IDH mutations also play an important role in blocking cell
differentiation. Mutant IDH blocks hepatocyte differentiation by
inhibiting the HNF-4α pathway (50). Other studies have shown
that high levels of 2-HG caused by mutations in IDH can inhibit
histone and DNA demethylases, resulting in hypermethylation of
histones and DNA which eventually blocks cell differentiation
(51, 52). Interestingly, there is no significant difference in the
median overall survival rate of intrahepatic cholangiocarcinoma
patients with mutant or WT IDH (53). In general, mutated
IDH catalyzes the production of high levels of 2-HG, which
has multiple effects including the inhibition of α-KG-dependent
prolyl hydroxylase, which leads to the accumulation of HIF-1α
in cells. This results in the induction of HIF-1α target genes that
influence growth, migration, differentiation and angiogenesis as
well as cell apoptosis (7), ultimately promoting tumor onset and
progression (see Figure 1).

HDACS, HATS, AND THEIR MUTATIONS
IN CANCER

Histone acetylation is an important epigenetic modification that
mainly occurs in the N-terminal region of the histone tail.
This modification weakens the binding between histones and
DNA, which relaxes the chromatin and enhances gene expression
(54). Histone acetyltransferases (HATs) mediate the acetylation
in histones, whereas histone deacetylases (HDACs) catalyze the
removal of acetyl groups from histones. The HATs are mainly
divided into five major families, including GCN5/PCAF, MYST,
TAFII250, CBP/p300, and SRC (55). The HDACs are divided into
four classes. Class I HDACs include HDAC1, HDAC2, HDAC3,
HDAC8; class II HDACs are further divided into two groups,
class IIa (HDAC4, HDAC5, HDAC7, HDAC9) and class IIb
(HDAC6, HDAC10); class III contains SIRT1-7; and class IV
contains one enzyme, HDAC11 (56, 57). Class I, II, and IV
HDACs are all Zn2+-dependent enzymes, while class III HDACs
do not show any sequence similarity to the other three classes
and depend on NAD+ as a co-factor (56, 57). By reversing the
histone acetylation status, HDACs mostly regulate the expression
of tumor suppressor genes (4). The dysregulation of HATs and
HDACs is correlated with the occurrence and development of
various diseases, including cancer.

Mutations in genes encoding HDACs are associated with the
progression of tumors, owing to the abnormal transcription of
key genes that regulate important cellular functions such as cell
proliferation, cell cycle regulation and apoptosis. Some studies
have shown that HDACs are mutated in certain cancers. For
example, somatic mutations of HDAC1 were detected in ∼8%
of dedifferentiated human liposarcomas, and the dysfunction
of HDAC2 expression caused by a frame-shift mutation was
investigated in human epithelial cancers and in colorectal cancer
(58). Table 1 summarizes some of the mutated sites in HDAC2,

which may correlate with the development and progression of
tumors. However, most of the mutations in HDACs have not
been studied and require further investigation. In addition to
the discovery that HDACs are mutated in a variety of cancers,
there have been many reports in recent years that the HAT
CREBBP somatic mutations are more frequent in lymphomas,
lung cancer, urothelial carcinoma, and other human tumor types.
Jiang et al. reported that somatic mutations in CREBBP occur in
6.4–22.3% of patients with DLBCL and 30.8–68% of follicular
lymphoma. Their findings suggest that CREBBP mutation can
promote lymphomagenesis in vivo (59). Similarly, the results
of Jia et al. showed that CREBBP acts as a tumor suppressor
gene, and its inactivating mutations can promote tumorigenesis
of pre-neoplastic neuroendocrine cells and accelerate small cell
lung cancer in the autochthonous mouse model (60). The above
results suggested that the mutations in HATs and HDACs,
although relative low in frequency, might also be involved into
the carcinogenesis in various tumors.

INHIBITORS TARGETING MUTATIONS OF
EPIGENETIC REGULATORY ENZYMES

Inhibitors Targeting DNMT Mutants
The DNMT inhibitors 5-azacytidine and decitabine (5-aza-2′-
deoxycytidine) have already been approved by the FDA (3). These
inhibitors are nucleoside analogs which are incorporated into
DNA and then covalently trap DNMTs. The results of research
by Xu et al. showed that 5-azacytidine might be a suitable drug
for the treatment of AML with DNMT3A mutations (8). In a
study comparing small molecule inhibitors of DNMT3A R882H,
compound 9 (dichlone) displayed superior efficacy, indicating
its potential for targeting mutant DNMT3A (61). Interestingly,
a recent study showed that targeting DOT1L, a histone lysine
methyltransferase without a SET domain, also has an obvious
antitumor effect in DNMT3A mutant leukemia. Rau et al. found
that the DOT1L inhibitors SYC-52221 and EPZ004777 decreased
tumor cell proliferation and induced cell apoptosis, cycle arrest
and terminal differentiation in DNMT3A mutant cell lines in
a dose- and time-dependent manner (62). Furthermore, they
reported that the DOT1L inhibitor EPZ5676 showed promising
efficacy in a nude mouse xenograft model of AML with mutant
DNMT3A (62). Since pharmacological inhibitors of DOT1L
have been tested in clinical trials, DOT1L may be an indirect
therapeutic target for the treatment of AML with DNMT3A
mutations. These results suggesting a novel approach for treating
patients with DNMT3A mutations.

For the TET2, although inhibitors targeting TET2 mutations
have not yet been developed, the results of Bejar et al. indicated
that cells in MDS patients with TET2-deficient are more sensitive
to azacitidine treatment, and this suggests that patients with
MDS carrying the TET2 mutation can improve their response to
hypomethylating agents (63). However, the detailed mechanisms
mediating this process need further study.

Inhibitors Targeting EZH2 Mutants
Recently, studies have shown that small molecule inhibitors
can effectively target tumors driven by EZH2 mutations.
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FIGURE 1 | The IDH1 R132 mutant is shown as an example to illustrate how a gain-of-function mutation in an epigenetic enzyme affects the growth and

differentiation of cells. Ivosidenib, a specific inhibitor of the IDH1 R132 mutant, is shown at the right.

Knutson et al. have reported that the SAM-competitive EZH2
inhibitor EPZ005687, which is highly selective for EZH2 over
other methyltransferases, significantly reduced the viability
of lymphoma cell lines carrying the EZH2 Y641 and A677
mutations (64). McCabe et al. discovered that GSK126 is a SAM-
competitive small molecule inhibitor of EZH2 methyltransferase
activity that efficiently and selectively reduced H3K27me3 levels
and reactivated the silenced target genes of polycomb repressive
complex 2 (PRC2) (41). Their results also revealed that GSK126
effectively inhibited the proliferation of EZH2-mutant diffuse
large B-cell lymphoma (DLBCL) cell lines and retarded the
growth of EZH2-mutant DLBCL xenografts in mice (41). In
addition, EPZ-6438, another selective inhibitor of EZH2, exerted
potent antitumor activity against EZH2-mutant non-Hodgkin’s
lymphoma (65). Also, CPI-1205, an orally available selective
inhibitor of EZH2, killed cells in both EZH2-WT and EZH2-
mutant B-cell non-Hodgkin’s lymphoma by altering PRC2 target
gene expression in a dose- and time-dependent manner (5).
All of the above inhibitors markedly reduced the high level of
H3K27 trimethylation caused by EZH2 mutations, indicating
that inhibition of EZH2 methyltransferase activity may be an
effective way of treating EZH2 mutant lymphomas. EPZ005687
is currently in preclinical research, whereas GSK126, EPZ-6438
and CPI-1205 are under phase I/II investigation to assess their
efficacy in patients with non-Hodgkin’s lymphoma and certain
solid tumors (5). In view of the high rate of EZH2 mutation in
certain cancers, the application of these inhibitors in the clinic is
expected to be successful in the future.

However, in addition to focusing on the effects of the
EZH2 inhibitor itself on EZH2 mutant enzymes, we also need

to consider the use of EZH2 inhibitors in synthetic lethality.
Recently, targeting chromatin deficiency in cancer based on
synthetic lethality has been used in cancer treatment. Synthetic
lethality defines a relationship between two genes, where the
loss of either gene is compatible with cell viability, but the loss
of both genes causes cell death. Morel et al. summarized that
the deficiency of SMARCB1, ARID1A, SMARCA4, and PBRM1,
which constitute the chromatin remodeling complex SWI/SNF
subunit, led to an EZH2 oncogenic dependence in tumor cells,
and pharmacological EZH2 inhibitors such as tazemetostat
induced dramatic tumor shrinkage in these subunits-deficient
tumors (66). Therefore, synthetic lethality strategy may pave the
way to potential epigenetic drugs targets.

Inhibitors Targeting IDH Mutants
Inhibitors targeting mutant IDH enzymes have also been widely
investigated. In preclinical studies, it is reported that inhibitors
targeting mutated forms of IDH1 and IDH2 can inhibit the
growth of glioma cells and induce the differentiation of primary
human IDH mutant AML cells in vitro (67). Encouragingly,
clinical studies of inhibitors targeting mutated IDH have entered
the phase I stage, and two inhibitors have been approved by the
FDA for clinical use (68). For example, enasidenib (AG-221), a
novel-specific small molecule inhibitor targeting mutant IDH2,
was approved by the FDA in August 2017 for the treatment
of relapsed AML (69). Another novel specific small molecule
inhibitor, ivosidenib (AG-120), was approved by the FDA in
July 2018 for clinical treatment of relapsed and refractory AML.
Ivosidenib targets IDH1 with a mutation at the R132 site (see
Figure 1) (70). Three other small molecule inhibitors, AGI-881,
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IDH305, and FT-2102, are currently in phase I clinical trials.
AGI-881 is a non-specific small molecule inhibitor which can
target the mutant forms of both IDH1 and IDH2, whereas IDH-
305 and FT-2102 target mutant IDH1 (68). These inhibitors
prevent the reduction of α-KG to 2-HG by binding to the
active site of the mutated IDH enzyme. High levels of 2-
HG can inhibit DNA and histone demethylation, leading to
hypermethylation. Borodovsky et al. have demonstrated that
hypomethylating agents strongly induce differentiation, reduce
colony formation ability, and suppress the growth of IDH
mutant cells in vivo (71). Therefore, inhibitors targeting DNA
and histone modifications may have potential therapeutic value.
The DNA methyltransferase inhibitors decitabine (DAC) and
5-azacytidine have been approved by the FDA for clinical
application and may have a therapeutic effect on tumors caused
by IDH mutations (72). These findings also suggest that there
is crosstalk among different epigenetic regulatory enzymes.
In contrast to IDH mutation inhibitors, studies on inhibitors
targeting SDH and FH mutations are currently lagging behind,
which may lay the foundation for the development of new anti-
tumor drugs.

CONCLUSION AND PERSPECTIVES

DNA methylation and histone modification are common
epigenetic changes in eukaryotes, and the dysregulation of
epigenetic regulatory enzymes is closely related to the onset and
progression of various types of cancer.Mutations, especially gain-
of-function mutations, may be responsible for some changes
in epigenetic enzyme activity. Mutant epigenetic regulatory
enzymes, and mutant forms of IDH that affect epigenetic
changes, can enhance the ability of cancer cells to proliferate,
migrate and form colonies. Therefore, these mutations are closely

related to tumor onset and progression. Some inhibitors that
specifically target the mutant forms of epigenetic regulatory
enzymes and IDH have now entered clinical trials. The potential
therapeutic effects of these inhibitors on tumors caused by
mutations are summarized in Figure 1.

Many of the mechanisms by which mutations cause changes
in the activity or function of epigenetic regulatory enzymes
are not fully understood. Elucidation of these mechanisms
may drive our understanding of the characteristics of different
tumors. Further research into drugs that target these mutant
enzymes will also accelerate the process of individualized
treatment of tumors.
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Resistance to platinum-based combination chemotherapy is the main cause of poor

prognosis in patients with advanced esophageal squamous cell carcinoma (ESCC).

Previously, we showed that CACNA2D3 (voltage-dependent subunit alpha 2 delta 3 of

a calcium channel complex) was significantly downregulated and functioned as a tumor

suppressor in ESCC, but its role in the chemosensitivity of ESCC to cisplatin remained

unknown. Here, we found that the expression of CACNA2D3 was significantly associated

with poor platinum response in ESCC patients from the Gene Expression Omnibus

database. Overexpression of CACNA2D3 increased sensitivity to cisplatin in ESCC in

vitro, whereas knockdown of CACNA2D3 increased cisplatin resistance. CACNA2D3

promoted cisplatin-induced apoptosis by modulating intracellular Ca2+ stores. In vivo

experiments further showed that overexpression of CACNA2D3 enhanced cisplatin

anti-tumor effects in a xenograft mouse model. CACNA2D3 overexpression also resulted

in the attenuation of PI3K and Akt phosphorylation. Treatment with the PI3K/Akt inhibitor

LY294002 restored the chemosensitivity of CACAN2D3-knockdown cells to cisplatin.

In conclusion, the results of the current study indicate that CACAN2D3 enhances

the chemosensitivity of ESCC to cisplatin via inducing Ca2+-mediated apoptosis and

suppressing PI3K/Akt pathways. Therefore, regulating the expression of CACNA2D3 is

a potential new strategy to increase the efficacy of cisplatin in ESCC patients.
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INTRODUCTION

Esophageal cancer (EC) is a fatal digestive tract malignancy
(1). EC is composed of two major histologic subtypes:
adenocarcinoma and squamous cell carcinoma. Esophageal

squamous cell carcinoma (ESCC) is more common in Southeast
and Central Asia (2, 3). China is a high incidence area for
ESCC, especially in Linzhou and Cixian of North China (4).

Esophagectomy is the usual method for the treatment of early
esophageal cancer. However, most ESCC patients are diagnosed
at an advanced stage when surgery is no longer effective.

Recently, the use of comprehensive perioperative therapies
has dramatically improved the therapeutic efficacy of ESCC,
particularly with respect to long-term survival (5–7). A cisplatin-
based regimen is widely used as the first-line treatment in
advanced ESCC (8–10). However, cisplatin chemotherapy is
often limited by natural and acquired resistance. Consequently,
it is critical to identify potential resistance mechanisms in order
to restore tumor cell sensitivity to cisplatin.

The human CACNA2D3 gene is located on the short arm
of chromosome 3 at position 3p21.1, a common region of
allelic deletion, and has been found to possess a potential
tumor suppressor function in multiple tumor types, including
gastric cancer (11–13), nasopharyngeal cancer (14), breast
cancer (15), renal cell cancer neuroblastoma (16), lung cancer
(17), and glioma (18). The promoter of CACNA2D3 was
shown to be highly methylated in gastric cancer, and this was
associated with a low survival rate (12). Similarly, suppression
of CACNA2D3 by methylation was found to promote the
metastatic phenotype of breast cancer (15). Another study
showed that CACNA2D3 could increase intracellular Ca2+

levels and promote apoptosis in nasopharyngeal cancer and
glioma, causing changes in the network of tumor-suppressive
properties and inducing upregulation of Nemo-like kinase (NLK)
through the non-canonical Wnt/Ca2+ signaling pathway (14,
18). In neuroblastomas with poor prognosis, the expression of
CACNA2D3 is often downregulated (19, 20). Our previous study
also identified CACNA2D3 as a tumor suppressor gene, and
methylation of its promoter and allele deletion could inhibit its
expression in ESCC (21). Recently, CACNA2D3 was implicated
in the development of chemoresistance. The downregulation of
CACNA2D3 was detected in five cytarabine-resistant leukemic
cell lines compared with parental cells (22). However, the
underlying mechanism by which CACNA2D3 might function in
chemosensitivity has not been identified.

In this study, we aimed to investigate the function of
CACNA2D3 in cisplatin-based chemotherapy of ESCC and
discover its underlying mechanisms. We found that the
expression of CACNA2D3 was significantly associated with
poor platinum response in ESCC patients. Overexpression
of CACNA2D3 significantly sensitized ESCC cell lines to
cisplatin, while CACNA2D3 knockdown induced cellular
resistance to cisplatin. Further research showed that CACNA2D3
overexpression enhanced cisplatin-induced apoptosis by
modulating intracellular Ca2+. Moreover, CACNA2D3
overexpression resulted in the attenuation of PI3K and Akt
phosphorylation. LY294002 is a commonly used PI3K/AKT

pathway inhibitor, and treatment with LY294002 could
restore the chemosensitivity of CACAN2D3-knockdown cells
to cisplatin.

MATERIALS AND METHODS

Cell Lines and Reagents
Six ESCC cell lines (KYSE30, KYSE140, KYSE180, KYSE410,
KYSE510, and KYSE520) were purchased from DSMZ, the
German Resource Centre for Biological Material (23). The
short tandem repeat (STR) analysis technique was used to
periodically identify all cell lines. Cell lines were cultured in
RPMI1640 medium (Hyclone, Logan, UT, USA) supplemented
with 10% fetal bovine serum and 1 × penicillin/streptomycin
(100 units/mL, 100µg/mL) (Gibco, NY, USA) at 37◦C in a
humidified incubator (5% CO2/95% air). Cisplatin was acquired
from Sigma. LY294002 was purchased from Selleck.

Plasmid Constructs and Stable
Transfection
CACNA2D3 cDNA was amplified from normal human
esophageal epithelial cells. The eukaryotic expression vector
pcDNA3.1 (+) (Invitrogen, Carlsbad, CA, USA) was used
for cloning the human CACNA2D3 gene. Then pcDNA3.1-
CACNA2D3 was transfected into the ESCC cell line KYSE30
using LipofectamineTM 3000 (Invitrogen, Carlsbad, CA, USA).
The empty vector was used as a negative control. KYSE30
cells stably expressing CACNA2D3 were screened with 500
µg/ml G418.

RNA Interference
Small interfering RNA (siRNA) (SR310953) targeting
CACNA2D3 and scrambled negative control siRNA (SR30004)
were purchased from OriGene. After transfection for 48 h, the
relative expression of CACNA2D3 was detected by quantitative
real-time PCR (qRT-PCR) and western blotting.

Cell Viability Assay
A Cell Counting Kit-8 (CCK-8) assay (Dojindo, Kumamoto,
Japan) was performed to measure cell viability. Cells were
seeded at a density of 1 × 104 cells/well in 96-well plates
and incubated with serial dilutions of cisplatin for 72 h. The
CCK-8 reagent and RPMI-1640 were diluted in a 1:9 ratio and
used to replace the original medium. After incubation at 37◦C
for 2.5 h, absorbance at a wavelength of 450 nm was measured
using a microplate reader. Three independent experiments were
conducted. Half maximal inhibitory concentration (IC50) was
calculated to evaluate cell resistance to cisplatin using GraphPad
Prism 5.0.

Colony Formation Assay
Cells were seeded at a density of 1.5 × 103 cells/well in six-well
plates and treated with respective concentrations of cisplatin.
After incubation for 10–14 days, the cell colonies were fixed
with ethanol for 30min and then stained with 0.1% crystal violet
for 15min. Colonies (≥50 cells) were counted. All assays were
independently performed in triplicate.
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Intracellular Calcium Assay
The fluorescent probe Fluo-3 AM assay (Beyotime, Haimen,
China) was used to measure intracellular Ca2+ concentrations.
Cells were washed twice with phosphate-buffered saline (PBS)
and then loaded with Fluo-3 AM (1µM) for 30min in the dark
at 37◦C. When Fluo-3 AM penetrates the cellular membrane, it
is hydrolyzed by cellular esterases to Fluo-3. Fluo-3 emits green
fluorescence when combined with Ca2+. The intracellular Ca2+

concentration was measured by flow cytometric analysis.

Apoptosis Assays
Apoptosis in ESCC cells treated with or without cisplatin were
evaluated using an Annexin V-FITC/propidium iodide (PI) kit
(Beyotime, Haimen, China). In brief, cells were digested, washed,
and centrifuged twice with cold PBS. After fixing in 75% ethanol
for 3 h, cells were stained with Annexin V-FITC and PI at
room temperature for 30min. Then, cells were measured by
flow cytometry with FL-1 (530 nm) and FL-2 (585 nm) at an
excitation wave length of 480 nm. The data were quantified using
the FlowJo software.

Mitochondrial Membrane Potential Array
The mitochondrial membrane potential (19m) was analyzed
using a JC-1 assay kit (Beyotime, Haimen, China). JC-1 is
a fluorescent probe for detecting mitochondrial membrane
potential; it accumulates in the mitochondrial matrix and forms a
red fluorescent polymer under high membrane potential. When
the mitochondrial membrane potential is low, JC-1 exists as
a monomer and produces green fluorescence. The cells were
trypsinized and stained with JC-1 (10mg/mL) at 37◦C for 20min.
After being washed twice in PBS, cells were analyzed by flow
cytometry using emission wavelengths of 590 and 525 nm.

Quantitative Real-Time PCR
Total RNA was extracted from ESCC cells using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). First-strand cDNA was
synthesized using the Reverse Transcription System (Promega,
Wisconsin, USA), and mRNA expression levels were measured
by qRT-PCR using a CFX96 TouchTM Real-Time PCR Detection
System with SYBR Green Dye mixes (Applied Biosystems,
Foster City, CA, USA). The PCR primers used for q-PCR
were as follows. CACNA2D3: forward (5′-AGGGATTCACGG
TTATGCCTT-3′), reverse (5′-GCCACACCTAAACCCTTT
GTC-3′); β-Actin, forward (5′-GCTTGTCCAAGAGTGCAT
GGT-3′), reverse (5′-CAGGGCTGGTTCTCGATGG-3′). The
amplification parameters were: 5min denaturation at 94◦C, 40
cycles of denaturation 15 s at 94◦C, 15 s annealing at 60◦C, and
15 s elongation at 72◦C, with final extension for 10min at 72◦C.
The results were normalized to an internal standard with β-actin,
and gene expression was analyzed using the 2−11CT method.

Tumor Xenograft Models
BALB/c nude mice (specific pathogen-free grade, 4–5 weeks
old, and 15–20 g in weight) were purchased from Guangdong
Medical Laboratory Animal Center (Guangzhou, China). The
animals were raised at Jinan University Experimental Animal

Management Center. KYSE30-CACNA2D3 cells and KYSE30-
vector cells (6 × 106) were subcutaneously inoculated into the
right armpit of each nude mouse. Tumor-bearing nude mice
were randomly assigned to one of two groups of five mice: the
treatment group mice received intraperitoneal injection cisplatin
(2 mg/kg, twice per week for 4 weeks), and the control group
mice were injected with PBS. Tumor volumes (mm3) were
calculated by the formula V = 0.5 × L × W2. The mice were
sacrificed and the tumors were isolated, weighed, and imaged.
This study was carried out in accordance with the principles of
the Basel Declaration and recommendations of the Guide for the
Care and Use of Laboratory Animals, US National Institutes of
Health (NIH Publication No. 85–23, revised 1996). The protocol
was approved by the Laboratory Animal Ethics Committee of
Jinan University.

Immunohistochemistry
Immunohistochemical staining was performed with primary
antibodies against CACNA2D3 (Novus Biological, Littleton, CO,
USA). Sections of xenografts from mice were deparaffinized with
xylene and rehydrated in alcohol baths, then incubated in 3%
hydrogen peroxide for 20min to block endogenous peroxidase
activity. Antigen retrieval was performed by microwave antigen
retrieval in a citric acid buffer (pH 6.0). The slides were
subsequently incubated with primary antibodies at 4◦C overnight
and then incubated with biotinylated secondary antibodies
at room temperature for 30min, followed by incubation
with horseradish peroxidase (HRP)-streptavidin for 30min.
Finally, diaminobenzidine (DAB) staining and hematoxylin
counterstaining were performed. All samples were observed
through a high-power light microscope.

TUNEL Analysis
A colorimetric TUNEL apoptosis assay kit (Beyotime, Haimen,
China) was used to identify apoptotic cells in the xenograft.
Sections of xenograft from mice were deparaffinized, rehydrated,
and incubated with proteinase K for 5min at 37◦C. Endogenous
peroxidase was inactivated by treatment with 0.3% hydrogen
peroxide for 20min at room temperature. The sections were
washed in PBS and incubated with a labeling buffer containing
TdT at 37◦C for 1 h, before being incubated with HRP-
streptavidin for 30min. Finally, the sections were incubated with
DAB solution for coloration. All samples were observed through
a high-power light microscope.

RNA Sequencing (RNA-seq) and
Sequencing Analysis
Equal amounts of RNA samples were used to construct strand-
specific RNA libraries, following the manufacturer’s standard
procedures. The libraries were sequenced on a HiSeq X Ten
(Illumina, San Diego, CA, USA) platform in PE150 mode.
The index of the reference genome was built using Bowtie
v2.2.3 (24). Differentially expressed genes (DEGs) were identified
using DESeq2 (25). The thresholds for DEGs were set as
false discovery rate (FDR) ≤0.05 and |log2 fold change| ≥1.
Gene ontology (GO; http://www.geneontology.org) classification
analysis was performed for DEGs, including molecular function,
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cellular component, and biological process information (26).
The Kyoto Encyclopedia of Genes and Genomes (KEGG; http://
www.kegg.jp) was used for systematic analysis of the signaling
pathways involving the DEGs (27), and related pathways were
evaluated by gene set enrichment analysis (GSEA; http://
software.broadinstitute.org/gsea/) (28).

Western Blot Assay
Western blot analysis was performed according to
conventional methods. Antibodies against Akt, phosphor-
Akt, PI3K, phosphor-PI3K, and GAPDH were from Cell
Signaling Technology.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 5.0 and
SPSS 19.0. Data were expressed as mean ± standard deviation
(S.D.). Significant differences between two independent groups
were identified by student’s t-test and expressed as ∗p < 0.05, ∗∗p
< 0.01, or ∗∗∗p < 0.001.

RESULTS

Downregulation of CACNA2D3 Is
Correlated With Chemoresistance in ESCC
To analyze the relationship between the expression of
CACNA2D3 and chemoresistance in ESCC, we screened
microarray data predicting the response of esophageal cancer
patients to neoadjuvant chemotherapy from the Gene Expression
Omnibus (GSE45670) (29). As shown in Figure 1A, the
expression of CACNA2D3 in the neoadjuvant chemotherapy
responder group was significantly higher than that in the
non-responder group (p < 0.05). We further investigated the
association of CACNA2D3 expression with chemotherapeutic
response in ESCC cell lines by calculating the IC50 values of
cisplatin during treatment. Six ESCC cell lines were treated
with different concentrations of cisplatin. The IC50 dose was
calculated in each cell, and qRT-PCR was used to determine
the expression level of CACNA2D3. The results showed that
the IC50 value of cisplatin was negatively correlated with
CACNA2D3 expression in ESCC cell lines (Figures 1B,C).
These observations indicated that CACNA2D3 might regulate
chemosensitivity in ESCC.

CACNA2D3 Enhances Cisplatin Sensitivity
in ESCC
To investigate the role of CACNA2D3 in regulating cisplatin
sensitivity in ESCC cells, a KYSE30 cell line stably expressing
CACNA2D3 (30-CAC) was constructed. Control cells were
transfected with empty vector (30-Vec). The expression of
CACNA2D3 was determined by western blotting and qRT-
PCR (Figure 2A). CCK8 assays showed that overexpression of
CACNA2D3 (30-CAC) could significantly increase the cells’
chemosensitivity to cisplatin compared with controls (30-Vec)
(Figure 2B). The sensitivity of 30-CAC cells to cisplatin was
more than twice that of 30-Vec control cells, based on the
IC50 value (Figure 2C). In colony formation experiments, we
also found that overexpression of CACNA2D3 combined with

cisplatin could inhibit the formation of clones more significantly
(Figure 2D). We next examined whether knocking down
CACNA2D3 would contribute to cisplatin resistance in ESCC.
The results showed that specific siRNA against CACNA2D3
could significantly suppress the expression of CACNA2D3 up
to 48 h after transfection in KYSE180 (Figure 2E). Knockdown
of CACNA2D3 (180-siCAC) significantly induced cisplatin
resistance compared with the scrambled siRNA (180-scr)
(Figure 2F). The IC50 value of 180-siCACwas higher than that of
180-scr cells (p < 0.001) (Figure 2G). CACNA2D3 knockdown
resulted in significantly higher colony formation efficiency in
180-siCAC cells than in control cells in the presence of cisplatin
(Figure 2H). Taken together, the data showed that CACNA2D3
sensitized ESCC cells to cisplatin.

CACNA2D3 Enhances Cisplatin-Induced
Apoptosis Through the
Mitochondria-Dependent Pathway
CACNA2D3, as a regulatory subunit, has been reported to elevate
the influx of extracellular Ca2+ into cells. In our study, Ca2+

levels were detected by Fluo-3 AM staining to evaluate their
relationship with CACNA2D3 expression levels. CACNA2D3-
overexpressing KYSE30 cells (30-CAC) showed significantly
increased intracellular Ca2+ compared with the control cells (30-
Vec), whereas knockdown of CACNA2D3 in KYSE180 cells (180-
siCAC) caused a decrease in intracellular Ca2+ levels compared
with control cells (180-scr) (Figure 3A). As Ca2+ can induce
mitochondrial permeability changes and regulate the initiation
phase of apoptosis, we performed an apoptosis assay to evaluate
the effect of CACNA2D3 on the apoptosis of ESCC cells.
Surprisingly, CACNA2D3 overexpression did not affect ESCC
cell apoptosis, but promoted cisplatin-induced apoptosis. The
percentage of apoptotic cells in 30-CAC cells increased by 24.8±
3.9% with cisplatin treatment, compared with 13.3± 1.7% in 30-
Vec cells. In KYSE180 cells, cisplatin increased apoptosis by 14.2
± 2.3% in 180-siCAC cells and by 32.3 ± 3.2% in 180-scr cells
(Figures 3B,C). In addition, the JC-1 probe was used to assess
changes in mitochondrial membrane potential in ESCC cells
treated with cisplatin. As shown in Figures 3D,E, with cisplatin
treatment, the membrane potential of 30-Vec cells decreased
by 14.3 ± 2.5%, while that of 30-CAC cells decreased by 25.5
± 1.6%. In KYSE180 cells, the membrane potential decreased
by 24.2 ± 1.8% in 180-scr cells and by 9.6 ± 3.4% in 180-
siCAC cells. Western blot analysis demonstrated that the ratios
of cleaved Caspase9/Caspase9 and cleaved Caspase3/Caspase3
in CACNA2D3-overexpressing KYSE30 cells were higher than
those in the control cells. Conversely, these ratios decreased
in 180-siCAC cells treated with cisplatin compared with 180-
scr cells (Figure 3F). Taken together, these results suggested
that CACNA2D3 sensitized ESCC cells to cisplatin through
enhancing mitochondria-mediated apoptosis.

CACNA2D3 Increases Cisplatin Sensitivity
in vivo
In order to better understand the role of CACNA2D3 in
cisplatin sensitivity in vivo, we established a subcutaneous

Frontiers in Oncology | www.frontiersin.org 4 April 2019 | Volume 9 | Article 185935

http://www.kegg.jp
http://www.kegg.jp
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Nie et al. CACNA2D3 Enhances Chemosensitivity of ESCC

FIGURE 1 | Downregulation of CACNA2D3 is associated with poor chemotherapy response in ESCC. (A) Box and whisker plot of CACNA2D3 mRNA levels in

neoadjuvant chemotherapy responder and non-responder groups (GSE45670). *p < 0.05. (B) IC50 values for cisplatin in six ESCC cell lines. Cells were treated with a

range of concentrations of cisplatin for 72 h, and IC50 was calculated. Data are represented as the mean ± SD of three independent experiments. (C) Correlation of

CACNA2D3 mRNA levels and IC50 values for cisplatin in six ESCC cell lines. r, Pearson correlation coefficient.

xenograft model by injecting CACNA2D3-overexpressing cells
and control cells into BALB/c-nude mice. When the tumor
volumes reached about 100 mm3, 2 mg/kg cisplatin was injected
intraperitoneally twice per week for 4 weeks, while the control
group received PBS. As shown in Figure 4A, we found that
overexpression of CACNA2D3 and cisplatin both inhibited the
growth of xenografts. However, CACNA2D3 overexpression
in combination with cisplatin could more significantly inhibit
the tumorigenic ability of ESCC cells. The mean tumor
size (Figure 4B) and weight (Figure 4C) in the CACNA2D3
overexpression group were significantly lower than those in
the vector control group after cisplatin treatment. Moreover,
immunohistochemical staining showed that the expression of
CACNA2D3 was increased in the CACNA2D3-overexpressing
tumors compared with the control tumors (Figure 4D). TUNEL
analysis also revealed that the apoptosis rate of CACNA2D3
overexpression cells was significantly higher than that of
the control cells after cisplatin treatment (Figure 4E). These
results together indicated that CACNA2D3 increased cisplatin
sensitivity in vivo.

CACANA2D3 Regulates the Sensitivity of
ESCC to Cisplatin Through Inhibiting the
PI3K/Akt Pathways
To better understand the molecular mechanism underlying
CACNA2D3-enhanced ESCC cisplatin sensitivity, we compared
the gene expression profiles of CACNA2D3 stably overexpressed
KYSE30 cells with those of control cells using RNA-seq after
cisplatin treatment, and identified 2439 DEGs (FDR < 0.05,
|log2 fold change| ≥1) between the two groups. A total of 1,137
genes were upregulated, and 1,302 genes were downregulated
(Figure 5A). We further explored the biological functions of
DEGs by GO, KEGG, and GSEA pathway enrichment analyses.
Using the DAVID online GO database for comprehensive
analysis, we found that CACNA2D3 was associated with multiple
processes, including metabolic processes, biological regulation,
regulation of biological processes, and response to stimulus

(Figure 5B). KEGG database analysis revealed that multiple
signaling pathway pathways were highly enriched, including
“PI3K-Akt signaling pathway,” “Pathways in cancer,” “MAPK
signaling pathway,” and “ABC transporters” (Figure 5C).
GSEA also showed that the CACNA2D3-regulated genes were
enriched in the cell growth pathway and PI3K-Akt-mTOR
signaling pathway (Figure 5D). Western blotting showed that
CACNA2D3 dramatically suppressed the phosphorylation
of PI3K and Akt, and the suppression persisted in the
presence of cisplatin (Figure 5E). These results indicated
that CACNA2D3 enhanced cisplatin sensitivity by inhibiting the
PI3K/Akt pathway.

LY294002 Restores the Sensitivity of ESCC
to Cisplatin in CACNA2D3-Knockdown
Cells
For the rescue experiments, we treated CACNA2D3-knockdown
cells with Akt inhibitor LY294002. Western blotting showed
that LY294002 inhibited Akt activation in 180-siCAC cells and
180-scr cells (Figure 6A). The CACNA2D3-knockdown cells
showed significantly higher sensitivity to cisplatin after treatment
with LY294002 (Figure 6B). The effect of LY294002 on the
IC50 reduction caused by cisplatin was significantly stronger in
180-siCAC cells than in 180-scr cells (Figure 6C). The colony
formation assays also demonstrated that the combination of
cisplatin and LY294002 suppressed colony formation more
significantly in 180-siCAC cells than in control cells (Figure 6D).
These results suggest that inhibition of the Akt signaling pathway
can restore the chemosensitivity of CACNA2D3-knockdown
cells to cisplatin.

DISCUSSION

ESCC is a cancer of the digestive system with high incidence in
China. Although therapeutic strategies for ESCC have advanced
considerably, its mortality rate remains high, and further efforts
are needed to improve patient prognosis. Cisplatin is widely used
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FIGURE 2 | CACNA2D3 promotes chemosensitivity to cisplatin in vitro. (A,E) Stable expression of CACNA2D3 in KYSE30 cells generated by pCDNA3.1-CACNA2D3

transfection and silencing of CACNA2D3 in KYSE180 cells by siRNA were examined by western blotting and qRT-PCR. GAPDH and β-Actin were employed as a

loading control. (B,F) CACNA2D3-overexpressing KYSE30 cells and CACNA2D3-knockdown cells were treated with cisplatin at the indicated concentrations for 72 h.

The number of viable cells was measured by CCK-8 assay. (C,G) IC50 values were calculated using linear or logarithmic regression (R2 > 0.9). Values are presented

as the mean ± SD of three wells. (D,H) Colony forming assays were used to determine colony forming ability after cisplatin treatment. Data are presented as the mean

± SD of three wells. **p < 0.01, ***p < 0.001.

in the clinical chemotherapy of various types of human tumors,
including esophageal, gastric, testicular, bladder, ovarian, and
lung cancers (30–32). However, cisplatin resistance is often the
biggest obstacle to the success of chemotherapy. Therefore, it
is extremely important to be able to predict cisplatin response
before chemotherapy, in order to select the most appropriate
treatment strategy for patients.

Calcium ions (Ca2+) are vital intracellular second messengers
involved in multiple functions of cells, including proliferation,
differentiation, fertilization, development, muscle contraction,
cell death, learning, and memory (33–35). The voltage-gated
calcium channel is a multi-subunit protein complex consisting of

a channel-forming α1 subunit and three regulatory subunits, α2δ,
β, and γ (36–38). CACNA2D3 encodes one of the α2δ subunits.
Our previous study identified CACNA2D3 as a novel tumor
suppressor gene for ESCC. Downregulation of CACNA2D3
predicted poor prognosis. Exogenous expression of CACNA2D3
can strongly inhibit cell growth, migration, and invasion, and
induce apoptosis (21). In the current study, we first found that
the expression of CACNA2D3 was higher in a platinum-based
neoadjuvant chemotherapy responder group than in the non-
responder group. Based on a serious of assays in vitro and in vivo,
we confirmed the effect of CACNA2D3 on the chemosensitivity
of cisplatin in ESCC cells.
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FIGURE 3 | CACNA2D3 enhances cisplatin-induced apoptosis through mitochondria-dependent pathway. (A) Intracellular Ca2+ levels were detected by

fluorescence-activated cell sorting (FACS) with Fluo-3 AM. (B,C) Annexin V/PI staining in CACNA2D3 overexpression and knockdown cell lines treated with cisplatin

for 48 h; apoptosis was analyzed by FACS. The percentages of apoptotic cells are presented as the mean ± SD of three independent experiments. (D,E) The

mitochondrial membrane potential was measured using fluorescent dye JC-1 after treatment with cisplatin for 48 h. Percentages of green fluorescence from JC-1 in

cells are presented as the mean ± SD of three independent experiments. (F) Levels of cleaved caspase-3, total caspase-3, cleaved caspase-9, and total caspase-9

proteins were analyzed by western blotting in CACNA2D3-overexpressing and knockdown cell lines treated with or without cisplatin. *p < 0.05; **p < 0.01; ***p <

0.001.

Cisplatin is a conventional chemotherapy drug. It is activated
upon entering the cell, when its chloride atoms are replaced by
water molecules. The resulting hydrolytic product is an effective
electrophilic reagent, which can react with any nucleophile,
including DNA, RNA, and proteins. DNA is the primary
target of cisplatin. Cisplatin tends to bind to the N7 site of
purine bases to form a DNA adduct, causing DNA damage in
cancer cells, blocking cell division, and leading to apoptosis
(39–41). Several mechanisms of cisplatin resistance have been

discovered, including reduced intracellular drug accumulation,
increased activity of efflux pumps, changed drug targets,
lost mismatch-repair ability, and escape apoptosis (42–44).
The voltage-dependent calcium channel α2δ subunits have
been found to regulate extracellular Ca2+ influx (45). Our
study consistently demonstrated that the overexpression of
CACNA2D3 increased the uptake of intracellular free Ca2+ in
ESCC. Apoptosis is closely related to increased intracellular Ca2+

concentration. Here, we found that CACNA2D3 overexpression
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FIGURE 4 | CACNA2D3 increases chemosensitivity of ESCC cells to cisplatin in vivo. (A) Representative images of xenografted tumors derived from Balb/c-nu mice

at day 33. (B) The mice in the treatment groups were intraperitoneally injected with 2 mg/kg every 3 days. Tumor volumes were measured at 4 days intervals. Data are

presented as mean ± SD. (C) Tumor weights were measured after mice were sacrificed. (D) Detection of CACNA2D3 from tumor sections by immunohistochemical

staining. Quantification was performed by calculating the percentage of the staining intensities using ImageJ. (E) TUNEL staining of tumor sections from each group;

the number of TUNEL-positive cells was quantified by counting. *p < 0.05; **p < 0.01; ***p < 0.001.

did not in itself affect the apoptosis rate of ESCC cells;
however, it significantly increased cisplatin-induced apoptosis.
Mitochondria often have a decisive role in stimulus-induced
apoptosis. Mitochondrial membrane destruction and infiltration
are common phenomena related to apoptosis. Excessive
Ca2+ accumulation inside mitochondria is thought to be a
powerful apoptosis stimulator that induces mitochondrial
membrane depolarization and activates downstream caspases
and finally induces apoptosis (46, 47). We confirmed that

ectopic expression of CACNA2D3 led to depolarization
of the mitochondrial membrane potential after cisplatin
treatment. Moreover, the immunoblotting results showed that
CACNA2D3 overexpression activated caspase-3 and caspase-
9 in ESCC cells. CACNA2D3 and cisplatin synergistically
induce apoptosis by increasing Ca2+-dependent collapse of
mitochondrial membrane potential, indicating that CACNA2D3
enhances cisplatin-induced apoptosis by activating the
mitochondrial pathway.
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FIGURE 5 | CACANA2D3 regulated the sensitivity of ESCC to cisplatin through inhibiting the PI3K/Akt pathways. (A) DEG heatmap and hierarchical clustering results

for CACNA2D3-overexpressing KYSE30 ESCC cells. Red and green indicate high and low gene expression, respectively. (B) GO enrichment analysis of the DEGs.

The genes were divided into three categories: cellular component, biological process, and molecular function genes. (C) KEGG pathway enrichment analysis

(Continued)
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FIGURE 5 | of differentially expressed pathways upon CACNA2D3 overexpression. The ordinates represent the enriched KEGG pathway. p < 0.05 was considered

statistically significant. (D) GSEA analysis of differentially expressed pathways upon CACNA2D3 overexpression. NES, normalized enrichment score. (E) Levels of

P-PI3K, PI3K, P-Akt, and Akt proteins were analyzed by western blotting in CACNA2D3-overexpressing and knockdown cell lines treated with or without cisplatin.

FIGURE 6 | LY294002 restores the sensitivity of ESCC to cisplatin in CACNA2D3-knockdown cells. (A) CACNA2D3-knockdown KYSE180 cells and control cells

were treated with cisplatin at the indicated concentrations with or without LY294002 for 72 h. Levels of P-Akt and Akt proteins were analyzed by western blotting. (B)

The number of viable cells was measured by CCK-8 assay. (C) IC50 values were calculated using linear or logarithmic regression (R2 > 0.9). Data are presented as

the mean ± SD from triplicate wells. (D) Colony forming assays were used to determine the colony forming ability after cisplatin with or without LY294002 treatment.

Data are presented as the mean ± SD from three wells. **p < 0.01.

To systematically investigate the underlying molecular
mechanism mediating CACNA2D3-induced ESCC cisplatin
sensitivity, we compared the expression profiles of KYSE30 cells
with and without CACNA2D3 overexpression after cisplatin
treatment using RNA-seq. By pathway enrichment analyses,
we found that CACNA2D3 could inhibit DNA replication
and block ESCC cells in the G2/M phase by inhibiting the
expression of p53, as shown in our previous study (21). We also
found the PI3K/Akt pathway to be inactivated in CACNA2D3-
overexpressing ESCC cells. The PI3K/Akt signaling pathway
has important roles in promoting cell growth, proliferation,
invasion, angiogenesis, and drug resistance. In-depth studies of
the relationship between the PI3K/Akt signaling pathway and
drug resistance have led to this pathway being considered as
a new target for chemotherapy drug resistance therapy (48,
49). Here, we found that the phosphorylation of PI3K and

Akt was blocked in CACNA2D3-overexpressing KYSE30 cells.
Consistently, when CACNA2D3 was knocked down in KYSE180
cells, the phosphorylation level of Akt showed a significant
increase. Interestingly, our data also showed that blockade of
the PI3K/Akt pathway by LY294002 in CACNA2D3-knockdown
cells could restore chemosensitivity to cisplatin.

In summary, in this work we first proved that the
expression of CACNA2D3 was associated with chemosensitivity
in ESCC patients treated with cisplatin-based therapy. Moreover,
CACNA2D3 increased chemosensitivity to cisplatin in cell
experiments and xenograft tumors, indicating that it could be
used as a tumormarker to predict and improve patients’ response
to cisplatin. We further found that CACNA2D3 regulated
cisplatin-induced apoptosis and decreased Akt phosphorylation.
Detection of CACNA2D3 expression might be helpful for
individualized treatment of ESCC patients.
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ROS-Mediated MAPK/ERK Signaling
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Copper chaperone for superoxide dismutase (CCS) is a critical component of oxidation–
reduction system and functions as a potential tumor promoter in several cancers. 
However, the function and clinical significance of CCS in breast cancer remain unclear. 
Here, we found CCS was highly expressed in breast cancer, where it promoted breast 
cancer cell proliferation and migration. Suppression of CCS expression was sufficient to 
attenuate the phosphorylation level of ERK1/2 and increase the accumulation of reactive 
oxygen species (ROS). Mechanistically, we found that knockdown of CCS decreases 
the activity of ERK1/2 mediated by the accumulation of ROS, which leads to the inhibition 
of cell proliferation and migration. In summary, these results indicated that CCS promotes 
the growth and migration of breast cancer cells via regulating the ERK1/2 activity 
mediated by ROS.

Keywords: breast cancer, CCS, ROS, MAPK/ERK, proliferation, migration

INTRODUCTION

Breast cancer is the leading cause of cancer-related deaths in women worldwide (Christofori, 
2006; Bray et al., 2018). Breast cancer patients with metastases have an extremely poor prognosis 
(Gupta et  al., 2005; Bacac and Stamenkovic, 2008; Thiery, 2009; Chaffer and Weinberg, 2011; 
Valastyan and Weinberg, 2011). Thus, exploring new targets for breast cancer treatment 
is important.

Copper, a redox-active transition metal essential for most living organisms, serves as a catalytic 
cofactor for enzymes that function in antioxidant defense, iron homeostasis, cellular respiration, 
and a variety of biochemical processes (Mandinov et al., 2003; Lowndes and Harris, 2005; Ashino 
et  al., 2010; Xu et  al., 2016; Sciegienka et  al., 2017). The uncontrolled accumulation of copper 
could lead to increased oxidative stress and inappropriate binding to macromolecules. Copper 
chaperone for superoxide dismutase (CCS) delivers copper to specific cellular destinations and 
to superoxide dismutase (SOD1) (Kawamata and Manfredi, 2008; Ulloa, 2009). Mounting evidences 
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suggest that CCS plays a crucial role in oxidative metabolism 
(Kawamata and Manfredi, 2008; Leitch et al., 2009; Suzuki et al., 
2013a; Wang et  al., 2015). Blockade of the copper-trafficking 
chaperone CCS contributes to the increased cellular reactive 
oxygen species (ROS) level due to the overall accumulation of 
copper inside the cells and the decreased SOD1 activity (Ulloa, 
2009). Wang et  al reported that inhibiting CCS blocks lung 
cancer and leukemia cell growth (Wang et al., 2015). In addition, 
they show that blocking copper trafficking induces cellular 
oxidative stress and reduces cellular ATP levels. The reduced 
level of ATP results in activation of the AMP-activated protein 
kinase that leads to reduced lipogenesis. However, the mechanisms 
underlying the relationship between CCS and tumorigenesis are 
still largely unknown, although the positive correlation between 
CCS and redox homeostasis has been revealed (Wang et  al., 
2015). Therefore, this study aimed to explore the critical role 
and molecular mechanism of CCS in migration and proliferation 
of breast cancer.

In aforementioned study by Wang et  al, a CCS inhibitor 
was developed and shown to have the same effect as knocking 
down CCS in cancer cells (Wang et  al., 2015). However, the 
precise role of CCS in migration and proliferation of breast 
cancer cells is unknown. In the present study, we  report that 
CCS is highly expressed in breast cancer tissues and invasive 
breast cancer cells and promotes cell proliferation and migration. 
Furthermore, we  found that inhibition of CCS by shRNA or 
an inhibitor blocks breast cancer proliferation and migration 
by triggering ROS mediated ERK activity. These results suggest 
that metastasis-prone breast cancer cells reprogram oxidative 
metabolism to promote cell proliferation and migration. Targeting 
CCS may represent a promising approach for selectively causing 
cell proliferation and migration in breast cancer cells.

MATERIALS AND METHODS

Reagents and Antibodies
DC_AC50, a CCS inhibitor, was provided by the Shanghai 
Institute of Materia Medica of the Chinese Academy of Sciences. 
U0126-EtOH (catalog number: S1102) was purchased from 
Selleck. Antibody against phospho-p44/42 MAPK (Erk1/2) 
(Thr202/Tyr204) (1:1000 times dilution) (catalog number: 4370S), 
p44/42 MAPK (Erk1/2) (1:1000 times dilution) (catalog number: 
4695S), phpspho-MEK1/2 (Ser217/221) (1:1000 times dilution) 
(catalog number: 9154S), MEK1/2 (1:1000 times dilution) 
(catalog number: 8727S), β-actin (1:1000 times dilution) (catalog 
number: 8457S), mouse IgG (1:3000 times dilution)  
(catalog number: 7076S), and rabbit IgG (1:3000 times dilution) 
(catalog number: 7074S) were from cell signaling technology. 

Anti-Superoxide Dismutase 4 (1:500 times dilution) (catalog 
number: ab167170) was from Abcam. Anti-Flag tag (1:1000 
times dilution) (catalog number: 66008) was from proteintech. 
CCS shRNA was purchased from Open Biosystems, Huntsville, 
AL. The sequence of targeted CCS shRNA was as follows: 
5′-CCGGCTGATTATTGATGAGGGAGAACTCGAGTTCTCCC 
TCATCAATA ATCAGTTTTTG-3′. Lipofectamine RNA iMAX 
was purchased from Invitrogen. The sequences of targeted CCS 
siRNA were as follows: sense: 5′-GUCUUGGUACACACCAC 
UCUA-3′; Antisense: 5′-UAGAGUGGUGUGUACCAAGAC-3′.

Cell Culture and Cell Lines
The human breast cancer cell lines MDA-MB-231, MCF-7, 
SUM159, and T47D were obtained from American Type Culture 
Collection (Manassas, USA). The human normal epithelial lung 
cell line BEAS-2B was gifted from Dr. Chenglai Xia (Guangzhou 
Medical University, Guangdong, China). MDA-MB-231, MCF-7, 
SUM159, and T47D cells were cultured in Dulbecco Modified 
Eagle Medium (DMEM) with 10% fetal bovine serum (FBS, 
ExCell Bio). BEAS-2B cells were cultured in RPMI 1640 medium 
with 10% FBS. For routine passages, cultures were split 1:3 
when they reached 80–90% confluences. All experiments were 
performed on exponentially growing cells.

Plasmid Construction and  
Lentivirus Packaging
Exogenous human CCS CDS sequence was inserted into  
pLVX-3FLAG plasmid. Primer sequences were as follows:  
pLVX-3FLAG-CCS: 5′-CGGGATCCATGGCTTCGGATTCGG-3′ 
(forward) and 5′-CCCTCGAGTCAAAGGTGGGCAGG-3′ 
(reverse). Exogenous pCDH-HA-MEK plasmid was gifted from 
Dr. ShiZhi (JinanUniversity, Guangdong, China). For transient 
transfections, cells were grown to 80% confluency and transfected 
with plasmids using PEI Transfection Reagent (Invitrogen, USA) 
according to the manufacturer’s protocol. Stable knockdown of 
endogenous CCS was achieved by using lentiviral vector  
harboring shRNA construct. 5′-CCGGCTGATTATTGATGAGG 
GAGAACTCGAGTTCTCCCTCATCAATAATCAGTTTTTG-3′. 
We  generated CCS stable knockdown cell lines by infected 
lentiviral shRNA and selected by antibiotic puromycin. The 
knockdown effective was confirmed by western blot. PLKO.1 is 
the name of the lentiviral vector as a control.

Small Interference RNA Transfection
MDA-MB-231, MCF-7, and BEAS-2B cells (2  ×  105) were 
seeded into 6-well plates and cultured in a humidified 
incubator at 37°C and 5% CO2 for 24 h. Cells were transfected 
with a negative control siRNA (NC-siRNA) and siRNA 
targeting CCS by Lipofectamine RNA iMAX (Invitrogen 
corporation). Transfected cells were cultured for 48°C before 
being used for further experiments. The sequences of targeted 
CCS siRNA were 5′-GUCUUGGUACACACCACUCUA-3′. 
The sequences of negative control siRNA were 
5′-UUCUCCGAACGUGUCACGUTT-3′(forward). All siRNA 
sequences were purchased from the Invitrogen Ribobio 
corporation of Guangzhou.

Abbreviations: AMP, Adenosine Monophosphate; ATP, Adenosine Triphosphate; 
CCS, Copper Chaperone for Superoxide Dismutase; ERK, Extracellular Regulated 
Protein Kinases; MAPK, Mitogen-Activated Protein Kinase; NAC, N-Acetyl-L-
cysteine; ROS, Reactive Oxygen Species; PCR, Polymerase Chain Reaction; PEI, 
Polymine; PVDF, Polyvinylidene Fluoride; qRT-PCR, Real-time Quantitative Reverse 
Transcription-PCR; SDS-PAGE, Sodium Dodecyl Sulfate Polyacrylamide Gel 
Electropheresis; ShRNA, Short Hairpin RNA; SiRNA, Small Interfering RNA; SOD1, 
Superoxide Dismutase; TCGA, The Cancer Genome Atlas.
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Real-Time Quantitative Reverse 
Transcription-PCR
Total cellular RNA was extracted using the Eastep & Super RNA 
Extract reagent Kit (Promega). cDNA was generated from purified 
RNA using PrimeSciptTM RT reagent Kit (Takara) according to 
the manufacturer’s instructions. Gene expression levels and PCR 
efficiency, along with its standard error, were calculated using 
the Bio-Rad CFX Manager, version 3.1 (Bio-Rad), The efficiencies 
were nearly 100%, allowing the use of the 2−△△Ct method for 
calculating the relative gene expression levels and reference gene 
normalization using β-actin. All PCR runs were performed in 
triplicate, and the data analyzed by CFX Manager software (Bio-Rad). 
Primer sequences were as following: CCS: 5′-CATCGAGG 
GAACTATTGACG-3′ (forward) and 5′-ATGCTCCATCAGGGT 
TAAAG-3′(reverse); β-actin:5′-ACGTGGACATCCGCAAAG-3′ 
(forward) and 5′-GACTCGTCATACTCCTGCTTG-3′ (reverse).

Cell Proliferation Assay
Cell proliferation assays were performed by seeding 5  ×  104 
cells in 6-well plates and culturing the cells at 37°C. Relative 
cell proliferation was determined by cell numbers recorded at 
4  days after being seeded and normalized to that of each of 
the cell lines at the starting time (t  =  0  h).

Western Blot Analysis
Cells were lysed with lysis buffer (1.5  M NaCl, 1  M HEPES 
[pH = 7.0], 1% NP40, 0.1 M Na4P2O7, 0.1 M NaF, 0.1 M Na3VO4, 
protease inhibitor) on ice 30 min and then centrifuged at 12,000 rpm 
for 15  min at 4°C. Protein samples were separated by 12%.

SDS-PAGE and transferred onto PVDF membranes 
(Millipore). The membranes were blocked with 5% non-fat 
milk for 2  h and then incubated overnight at 4°C with the 
primary antibody and 1 h at room temperature with secondary 
antibody. Signals were detected using luminol substrate solution.

Transwell Migration Assay
For the Transwell (24-well insert, 8  mm pore size with 
polycarbonate membrane; Corning Costar, Lowell, MA, USA) 
migration assays, 600-mL media supplemented with 10% FBS 
was added to the lower chamber, and the cells resuspended 
in serum-free media were added to the upper insert after 
transfection. Transwell membranes were fixed and stained using 
crystal violet after specified time. The cells adhering to the 
lower surface of the membrane were counted under a light 
microscope (Olympus, Tokyo, Japan) at a magnification of 200.

Wound Healing Assay
To determine cell motility, cells were seeded into 6-well plates 
and grown to 90% confluence. A monolayer of the cells was 
then scratched with a sterile micropipette tip, followed by 
washing with PBS to remove cellular debris. The cell migration 
was observed and counted under a light microscope (Olympus, 
Tokyo, Japan) at a magnification of 200. The cells that migrated 
across the black lines were counted in three randomly chosen 
fields from each triplicate treatment.

Intracellular Reactive Oxygen Species 
(ROS) Production
The amount of intracellular ROS was measured by detecting 
dichlorodihydrofluorescein, which is the cleavage product of 
carboxy-H2DCFDA (Invitrogen) by ROS. A total of 200,000 
cells were seeded in 6-well plate. Twenty-four hours after 
seeding, cells were washed with PBS and loaded with  
12.5  μM carboxy-H2DCFDA for 60  min. The cells were  
harvested, resuspended in PBS, and analyzed using a FACS  
(BD Biosciences; excitation and emission at 490 and  
530  nm, respectively).

Bioinformatics Analysis
The public Gene Expression Omnibus datasets (GSE9574 and 
GSE21422) and the TCGA (The Cancer Genome Atlas) dataset 
were used for bioinformatics analysis.

Statistical Analysis
The concentration of DC_AC50 required to reduce cell 
proliferation by 50% (IC50) was determined graphically using 
the Dose-response-Stimulation function in GraphPad Prism7 
(San Diego, CA, United States). Statistical analyses of the 
significance of differences between groups were performed 
using Student’s t-test with GraphPad Prism7. All data were 
obtained from three independent experiments performed in 
triplicate and were presented as the mean  ±  standard  
error. p  <  0.05 was considered to indicate a statistically 
significant difference.

RESULTS

Higher CCS Gene Expression in Breast 
Cancer Patients
Bioinformatics analysis has been used to discover previously 
unknown function of genes associated with cancer. To determine 
the role of CCS in human breast cancer, we  first examined 
the expression of CCS utilizing Gene Expression Omnibus 
(GEO) profiles; we  found that the expression of CCS was 
higher in breast cancer tissue than in noncancerous tissue 
(Figure 1A, GSE9574). We also confirmed these finding using 
The Cancer Genome Atlas (TCGA) dataset. CCS expression 
was also significantly higher in breast cancer tissue than in 
noncancerous tissue in the Cancer Genome Atlas (TCGA) 
(Figure 1B). In addition, we  also found that the expression 
of CCS was higher in invasive ductal carcinoma (IDC) than 
in ductal carcinoma (DCIS) (Figure 1A, GSE21422). To 
validate these findings, we checked CCS expression in various 
breast cancer cells lines. CCS was differentially expressed in 
several breast cancer cell lines, including MCF-7, T47D, 
MDA-MB-231, and SUM159. Of note, the expression of CCS 
was higher in T47D and MDA-MB-231 cell lines compared 
to MCF-7 and SUM159 cells (Figure 1D). All these findings 
indicate the potential role of CCS in tumor formation 
and progression.
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CCS Promotes Breast Cancer Cell 
Proliferation in vitro
We found that the expression of CCS was higher in breast 
cancer tissue than in noncancerous tissue, suggesting the 
potential role of CCS in breast cancer cell proliferation. To 
test our hypothesis, we  generated stable cell lines in which 
CCS was knocked down in MDA-MB-231 cells (Figure 2A 
lower) and exogenously expressed in MCF-7 and SUM159 
cells (Figures 2B,C lower). Cell number counting assays showed 
that knockdown of CCS reduced the proliferation of MDA- 
MB-231 cells (Figure  2A upper), while exogenous expression 
of CCS demonstrated the opposite effect (Figures 2B,C upper). 
To validate these findings, we  knocked down the expression 
of CCS in MDA-MB-231, MCF-7, and BEAS-2B cells using 
siRNA. Cell number counting assays showed that knockdown 
of CCS significantly inhibited the proliferation of metastasis-
prone breast cancer cell lines MDA-MB-231 but did not have 
any effect on the proliferation of breast cancer MCF-7 cells 
or normal BEAS-2B cells (Figures  2D–F). Real-time PCR 

was used to determine the knockdown efficiency of CCS by 
siRNA (Figure 2G). Next, we  sought to explore the role 
DC_AC50, a potent and selective CCS inhibitor, in breast 
cancer. DC_AC50 has been shown to inhibit the proliferation 
of acute leukemia cells (Wang et  al., 2015). We  treated cells 
with DC_AC50 and found that MCF-7 cells exhibited 
significantly higher resistance to DC_AC50 than MDA-MB-
231 cells (Figure 2H). Meanwhile, DC_AC50 treatment resulted 
in decreased cell proliferation of MDA-MB-231 cells in a 
time and dose-dependent manner (Figure 2I). These results 
imply that CCS plays an important role in breast cancer  
cell proliferation and suggests that CCS is a promising  
anti-cancer target.

CCS Promotes Breast Cancer  
Cells Migration
We found that the expression of CCS was higher in invasive 
ductal carcinoma than in ductal carcinoma (Figure 1C), suggesting 
the potential role of CCS in promoting breast cancer migration. 

A B

C D

FIGURE 1 | Up-regulation of CCS is associated with cell proliferation and metastasis in human breast cancer. (A) CCS expression was analyzed in normal and breast 
cancer cells using Gene Expression Omnibus (GEO) profiles (GSE9574). (B) CCS expression was determined in normal and breast cancer cells in TCGA. (C) CCS 
expression was analyzed in ductal carcinoma in situ (DCIS) and invasion ductal carcinoma (IDC) using Gene Expression Omnibus (GEO) profiles (GSE21422). (D) CCS 
protein levels were analyzed in the majority of a spectrum of diverse human breast cancer cells, including MCF-7, MDA-MB-231, SUM159, and T47D by western blotting. 
*p < 0.05; **p < 0.01.
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Next, we  explore the role of CCS in the motility of the breast 
cancer cells. We  performed a transwell migration assay that 
showed knockdown of CCS significantly inhibited breast cell 
migratory abilities in MDA-MB-231 (Figure 3A), while exogenous 
express CCS exhibited the opposite effects in MCF-7 and SUM159 

cells (Figures 3B,C). To validate these finding, we treated MDA-MB-
231 with CCS inhibitor, DC_AC50, and performed a transwell 
migration assay. We found that DC_AC50 blocked MDA-MB-231 
cell migration in a dose-dependent manner (Figure 3D). In 
addition, we also assessed migration of MDA-MB-231 in a wound 

A B C

D E F

G H I

FIGURE 2 | CCS promotes breast cancer cell proliferation. (A) Cell proliferation was determined by cell number counting assays in CCS stable knockdown MDA-MB-231 
cells, and the knockdown efficiency was determined by western blotting. (B) Cell proliferation was determined by cell number counting assays in CCS overexpressing 
SUM159 cells, and CCS expression was determined by western blotting. (C) Cell proliferation was determined by cell number counting assays in CCS overexpressing 
MCF-7 cells, and CCS expression was determined by western blotting. (D–F) Cell proliferation was determined by cell number counting assays in MDA-MB-231 cells (D), 
MCF-7 cells (E), and normal human BEAS-2B cells (F), which were transiently transfected with increasing concentrations of CCS siRNA and control siRNA. (G) The relative 
CCS mRNA level was determined by q-PCR in MDA-MB-231, MCF-7and BEAS-2B cells, which were transiently transfected with increasing concentrations of CCS siRNA 
and control siRNA. (H) The sensitivities of MDA-MB-231 and MCF-7 cells to DC_AC50 were determined by cell number counting assays when the cells were treated with 
increasing concentrations of DC_AC50 for 48 h. (I) Cell proliferation was determined by cell count assays in MDA-MB-231 cells treated with increasing concentrations of 
DC_AC50. All results performed above are presented as mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns: not significant.
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healing assay. We  found that knockdown or inhibition of CCS 
dramatically suppressed MDA-MB-231 cell migratory abilities 
(Figures 3E,F). To consolidate our findings, we  overexpressed 
FLAG tagged CCS in MCF-7 cells. As expected, overexpression 

of CCS accelerated breast cancer cell migration in a wound 
healing assay (Figure  3G). Taken together, our results suggest 
that CCS plays an important role in promoting breast cancer 
cells migration.

A B

C D

E

F

G

FIGURE 3 | CCS promotes breast cancer cell migration. (A) Cell migration in CCS knockdown and control MDA-MB-231 cells was determined by transwell 
migration assay (Boyden chamber assay). (B) Cell migration in CCS overexpressing and control SUM159 cells was determined by transwell migration assay.  
(C) Cell migration in CCS overexpressing and control MCF-7 cells was determined by transwell migration assay. (D) Cell migration in CCS overexpressing and 
control MDA-MB-231 cells with increasing concentrations of DC_AC50 was determined by transwell migration assay. (E) Cell migration in CCS knockdown and 
control MDA-MB-231 cells was also determined by wound healing assay. (F) Cell migration in MDA-MB-231 cells treated with increasing concentrations of  
DC_AC50 was determined by wound healing assay. (G) Cell migration in CCS overexpressing and control MCF-7 cells was determined by the wound healing 
assay. The modified migration assay was evaluated by calculating the ratio of the cell numbers through the chamber or wound closure after the wound healing 
assay. All results performed above are presented as mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns: not significant.
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CCS Promotes Breast Cancer  
Migration via MAPK/ERK Signaling
Activation of survival signaling has been shown to play an 
essential role in tumor development (Baud and Karin, 2001). 

Several studies have demonstrated that the MAPK/ERK signaling 
pathway is activated in cancer cells to promote cancer cell 
proliferation, migration, and invasion (Rajalingam et al., 2005; 
El Touny et  al., 2014). Therefore, we  examined whether 

A

D

E F

B C

FIGURE 4 | CCS promotes breast cancer cell migration and cell proliferation via ERK1/2 activity. (A) Phosphorylated ERK1/2 and total ERK1/2 levels were 
determined in CCS knockdown MDA-MB-231 cells by western blotting. (B) Phosphorylated ERK1/2 and total ERK1/2 levels were determined in CCS overexpressing 
MCF-7 cells by western blotting. (C) Phosphorylated ERK1/2 and total ERK1/2 levels were determined in CCS overexpressing MCF-7 cells treated with increasing 
concentrations of U0126 for 12 h by western blotting. (D) Cell migration in CCS knockdown and control MDA-MB-231 cells as determined by wound healing assay 
when overexpressing exogenous HA-tagged MEK. (E) Cell migration in CCS overexpressing and control MCF-7 cells treated with U0126 was determined by wound 
healing assay. The modified migration assay was evaluated by calculating the ratio of the cell numbers through the chamber or wound closure after the wound healing 
assay. (F) Cell proliferation was determined by cell number counting assays in CCS stable knockdown MDA-MB-231 cells with overexpression of exogenous  
HA-tagged MEK. All results performed above are presented as mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns not significant.
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MAPK/ERK signaling is involved in CCS mediated cell 
proliferation and migration. To test this hypothesis, 
we  examined the ERK1/2 and MEK1/2 activity in CCS 
knockdown MDA-MB-231 cells. Western blotting shows that 
the activity of ERK1/2 was drastically decreased in CCS 
knockdown MDA-MB-231 cells (Figure 4A). Additionally, 
overexpression of FLAG tagged CCS increased the activity 
of ERK1/2  in MCF-7 cells (Figure  4B), but the increased 
activity of ERK1/2 was blocked in MCF-7 with ERK inhibitor 
U0126 (Figure 4C). To validate the role of MAPK signaling 
in the process of CCS-induced migration and proliferation 
in breast cancer cells, we first reactivated ERK by transfecting 

exogenous HA tagged MEK into MDA-MB-CCS-KD cells. 
As expect, the replenishment of MEK in MDA-MB-231-CCS-KD 
cells could partially rescue the capability of migration in 
MDA-MB-231-CCS-KD cells due to the reactivation of ERK1/2 
(Figure 4D). Secondly, we  demonstrated that inhibition of 
MEK with U0126 treatment inhibited CCS-induced cell 
migration (Figure 4E). Thirdly, overexpression of MEK in 
MDA-MB-231-CCS-KD cells partially rescues the decreased 
cell proliferation in CCS knockdown MDA-MB-231 cells 
(Figure 4F). These results suggest that activation of the MAPK/
ERK pathway is essential for the CCS-promoted migration 
abilities and cell proliferation of breast cancer cells.

A

D

F

E

B C

FIGURE 5 | CCS promotes breast cancer cell migration and cell proliferation via ERK1/2 activity mediated by ROS. (A) Knockdown of CCS increased ROS level in 
MDA-MB-231 cells, which was rescued by treatment with 1 mM NAC. (B) Treatment with DC_AC50 (5, 10 μM) induced ROS elevation in MDA-MB-231 cells.  
(C) Western blot analysis of total and phosphorylated ERK1/2 levels. β-actin was used as a loading control. Reduced ERK1/2 activity by CCS knockdown was 
rescued by treatment with NAC (5, 10 mM) for 12 h. (D) H2O2 significantly abolished ERK1/2 activity in MDA-MB-231cells after 12 h. (E) Cell proliferation assays 
showed that NAC (1 mM) treatment partially rescued the decreased cell proliferation in CCS knockdown MDA-MB-231 cells. (F) Wound healing assays showed that 
NAC (1 mM) treatment partially rescued the decreased cell migration in CCS knockdown MDA-MB-231 cells. All results performed above are presented as 
mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, ns: not significant.
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CCS Activates MAPK/ERK  
Signaling via ROS
The inhibition of CCS leads to increased ROS levels. Thus, 
we  hypothesized that CCS regulates the activity of ERK1/2 
through ROS. To test this hypothesis, we  examined ROS levels 
in MDA-MB-231 cells treated with CCS shRNA or DC_AC50. 
Indeed, we  found that knockdown or inhibition of CCS 
significantly increases the cellular ROS levels (Figures 5A,B), 
while the increased ROS was blocked by treating cells with 
antioxidant N-Acetyl-L-cysteine (NAC; Figure 5A). In addition, 
we  also observed that NAC abrogates the decreased activity 
of ERK1/2 in CCS knockdown MDA-MB-231 cells (Figure 5C). 
Consistently, we also found that H2O2 impaired phosphorylation 
of ERK1/2  in a dose-dependent manner but did not affect 
the total expression level of ERK1/2 (Figure 5D). Finally, 
we found that NAC could rescue the decreased cell proliferation 
and migration of MDA-MB-231 CCS knockdown cells 
(Figures  5E,F). These results further support the idea that 
inhibition of CCS induces a ROS overload, which impairs 
MAPK/ERK signaling to attenuate cancer cell proliferation. 

The combined results presented here also establish CCS as a 
viable anticancer target and copper trafficking as a new pathway 
for future therapeutic development.

DISCUSSION

Rapid cellular growth and migratory abilities play a crucial 
role in tumorigenesis and metastasis, which have been recognized 
to be  associated with ROS levels (Aykin-Burns et  al., 2009; 
Doskey et  al., 2016). Those cells that survive oxidative stress 
stand a good chance to have acquired adaptive mechanisms 
to counteract the potential toxic effects of elevated ROS and 
to promote cell-survival pathways (Irmak et  al., 2003). CCS, 
a co-enzyme of SOD1, is a critical component of the oxidation–
reduction system in cancer, and its differential expression in 
different types of breast cancer suggests a relationship between 
CCS and cancer cell growth and migration (Figure 6). However, 
the link between CCS-activated ROS and the occurrence and 
development of tumors is still in its infancy.

FIGURE 6 | Proposed working model. Schematic model shows that the role and mechanism of CCS in promoting breast cancer cell proliferation and migration.
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In this study, we  utilized MDA-MB-231 cells (triple-negative 
breast cancer) and MCF-7 cells (estrogen receptor positive breast 
cancer) as human cell line models and identified a novel function 
and mechanism of CCS in facilitating breast cancer cell 
proliferation and migration. This novel mechanism provides a 
link between oxidative metabolism and survival signaling. Wang 
et  al. reported that inhibition of CCS leads to a selective 
suppression of cancer cell proliferation (Wang et  al., 2015). 
Consistent with this, we found that knockdown of CCS significantly 
reduced cell proliferation in MDA-MB-231 cells but not MCF-7. 
Interestingly, we  revealed a novel function of CCS in regulating 
migration of breast cancer cells by transwell and wound healing 
assays. In all, we  show that CCS not only plays a vital role in 
cell proliferation, but it also drives breast cancer migration.

Previous evidence has shown that CCS serves as a co-enzyme 
of SOD1 to activate its catalytic activity, which is a critical 
component of oxidation–reduction system (Suzuki et al., 2013b). 
Since ROS associated oxidative stress has been proven to play 
important roles in several cancer types and served as promising 
target for therapy (Perše, 2013; Sosa et al., 2013), we hypothesized 
that dysregulated ROS levels provide a second signal for 
CCS-induced proliferation and migration in breast cancer cells. 
In our study, we  showed that knockdown or inhibition of CCS 
led to increased total ROS levels in MDA-MB-231. ROS overload 
blocks the activation of the MAPK/ERK pathway, which plays 
a critical role in tumor formation and progression (Berger 
et  al., 2017; Mayo et  al., 2017). By mimicking oxidative stress 
with H2O2 treatment, we were able to suppress the phosphorylation 
level of ERK1/2, which could be  reversed upon treatment with 
antioxidant NAC. Furthermore, we  found that the activation 
of MAPK/ERK pathways was essential for CCS-induced cell 
proliferation and migration. Treatment of MCF-7 with U0126-
EtOH, a highly selective ERK kinase inhibitor, diminished 
CCS-induced migration. Conversely, overexpression of MEK 

enhanced the phosphorylation level of ERK1/2 and partially 
rescued migration in CCS knockdown MDA-MB-231 cells.

In summary, CCS-mediated ROS decreases the activation 
of ERK1/2, resulting in attenuation of cell proliferation and 
migration. Thus, CCS may be a therapeutic strategy to suppress 
tumor growth and metastasis.
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Matriptase is a transmembrane serine protease, synthesized as an inactive single-chain

zymogen on the endoplasmic reticulum and transported to the plasma membrane.

Matriptase is activated in different epithelial and some B-cell malignancies and changes

its conformation and activity is inhibited mainly by its endogenous inhibitor HAI-1.

Activated matriptase plays a key role in tumor initiation as well as tumor progression,

including invasiveness, and metastasis. To target the anti-mitotic toxin (monomethyl

auristatin-E) to activated matriptase, a novel antibody to activated matriptase was

conjugated with this toxin via a valine-citrulline-PABA linker. In a previous study, this

antibody-toxin conjugate was found to be effective against triple negative breast cancer

cell lines and xenografts, alone, or in combination with cisplatin (1). In this study, we

examined the anti-tumor effect of the antibody toxin conjugate (ADC) against activated

matriptase positive mantle cell lymphoma cell lines (JeKo-1, Maver, Mino, and Z138).

This ADC was cytotoxic to these cell lines with IC50s between 5 and 14µg/mL. The

ADC also showed a dose dependent anti-tumor effect on the JeKo-1 xenograft in mice

without toxicity.

Keywords: activated matriptase, antibody drug conjugate, monomethyl auristatin-E, mantle cell lymphoma,

xenograft

INTRODUCTION

Mantle Cell Lymphoma (MCL), represents 6- percent of all lymphoma cases, and currently the
survival time is 4–5 years, shorter compared to other hematologic malignancies (2–4). MCL
cells express CD20, aberrant expression of CD5, and due to a translocation t(11;14)(q13;q32),
overexpression of cyclin-D1, encoded by the CCND1 gene located on chromosome 11, which
mediates cell cycle progression through the G1 phase (5, 6). The currently used drugs to treat MCL
patients include bortezomib, ibrutinib, rituximab, bendamustine, and combinations of these drugs.

Matriptase, a glycoprotein (80–90 kDa), is a member of type II transmembrane serine proteases.
It is synthesized as a latent single-chain structure and with many regulatory mechanisms and
functions (7, 8), and is activated through an auto-activation step resulting in a disulfide-linked-two-
chain structure. Following activation, matriptase is rapidly inactivated by its endogenous inhibitor
HAI-1. This activated matriptase-HAI-1 complex remains present in most epithelial carcinomas
and some B-cell malignancies (9–11). Importantly, while matriptase is present in a latent form on
epithelial cells and B-cells, activated matriptase expression is mainly restricted to the membranes
of epithelial tumors, and some B-cell malignancies, in particular MCL (10–12).

Of importance, given the increase in reactive oxygen species (ROS) and the acidic environment
of solid tumors (ROS), these environments activate the matriptase zymogen (13–21).
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In this study we show that a novel anti-matriptase antibody
toxin (Monomethyl auristatin-E, MMAE) conjugate potently
inhibited growth of mantle cell lymphoma cell lines (JeKo-1,
Maver, Mino and Z138) and caused significant growth inhibition
of the JeKo-1 xenograft in vivo.

MATERIALS AND METHODS

Animals
NOD/SCID/IL2 receptor gamma chain null
(NOD/SCID/IL2rgnull, NSG) mice were obtained from the
Jackson Laboratory (Bar Harbor, ME).

Materials
For cell culture, RPMI 1640, and fetal bovine serum were from
Invitrogen (Fisher Scientific).

Cell Culture
The MCL cells (JeKo-1, Mino, Maver, and Z138) were cultured
in 1X RPMI Media 1,640 (Life Technologies) containing 10%
fetal bovine serum (FBS) at 37◦C and 5% carbon dioxide. All the
cell lines were obtained from American Type Culture Collection

(ATCC) and were checked for mycoplasma by MycoAlert
TM

mycoplasma detection kit (Lonza USA).

Western Blotting
The MCL cells were scraped into a micro centrifuge tube
from petri-dishes after 75% confluency. After centrifugation,
cell pellets were lysed in lysis buffer (20mM Tris, pH 7.4)
containing 1% triton-X100, a commercial protease inhibitor

cocktail (Roche) and 1mM 5,5
′

-dithio-bis(2-nitrobenzoic acid)
(DTNB). Since, DTNB interferes with the Bradford reagent (Bio-
Rad Laboratories), equal volume of protein samples was resolved
by 10% SDS-PAGE, without any boiling and under non-reducing
sample buffer conditions and transferred onto a nitrocellulose
membrane (Bio-Rad Laboratories). After blocking themembrane
with 5% non-fat dry milk prepared in Tris buffered saline
with 0.1% Tween-20 (TBST), the membrane was incubated
with the desired primary antibody M69 at 4◦C overnight. The
membrane was washed thrice in TBST and then incubated
for 2 h at room temperature with the appropriate peroxidase-
conjugated secondary antibody. Bands were visualized using an
enhanced chemiluminescence kit (Pierce). Anti-glyceraldehyde
3-phosphate dehydrogenase (GAPDH) (fromMillipore) and was
used as a control. Anti-HAI-1, anti-Vinculin and anti-mouse
secondary antibody were from Santa Cruz Biotechnologies.
Anti-mouse secondary antibody was used to probe the ADC
(mouse antibody recognizing human activated matriptase)
and also to probe GAPDH, HAI-1, and Vinculin which are
mouse generated.

Cytotoxicity Assay
Five thousand cells per well were plated in RPMI 1,640
media supplemented with 10% FBS. After overnight culture,
media was removed and fresh media containing the ADC was
added and incubated for different time periods. To assess cell
viability, the MCL cell lines with or without drug treatment

were collected and cell viability was determined using the

Vi-CELL
TM

Series Cell Viability Analyzer (Beckman Coulter,
Carlsbad, CA). The 50% inhibitory concentration (IC50; the
drug concentration required to obtain 50% cell kill compared
to control) was determined using the non-linear regression
curve fit of the graphs drawn by GraphPad Prism 4 software
(GraphPad Software Inc., CA). All experiments were performed
in triplicate, and all experiments were repeated at least
three times.

Migration Assay
MCL (suspension cells) cells were treated with ADC (IC50) for
48 h and washed twice with IX PBS. The cells were then serum
starved for 1.5 h in FBS-free RPMI at 37◦C and 5% carbon
dioxide in presence of ADC. Three hundred microliters of FBS-
free RPMI (8 × 105 cells) were added to the top chamber
of a cell culture insert (24-well format) of eight-micron pore
size (Corning). Cells were treated with ADC (IC50) throughout
the experiment (means ADC is present in FBS-free media in
inserts as well as in the lower well of that insert). Inserts
had been previously transferred to wells containing 700mL
of RPMI (containing 10% FBS) with or without ADC. After
24 h of incubation at 37◦C and 5% carbon dioxide, cells were
collected from both insert chamber and lower well (of 24-well

plate) and checked for viability using the Vi-CELL
TM

Series
Cell Viability Analyzer (Beckman Coulter, Carlsbad, CA). The
percent viable cells migrated toward FBS (in lower well) of
total viable cells added in insert, were plotted against ADC
treatment. Each experiment was done at-least three times and in
four replicates.

Animal Studies
The JeKo-1 cell line was used for anti-tumor studies. Cells (10
× 106) in 100 µL of PBS were injected subcutaneously into the
right flank of 6-week-old NSG female mice. Once tumors were
palpable, the mice were randomized to different groups. Mice
were treated i.p. with the ADC, and treatment periods were
indicated by arrows. Saline was used as a control treatment.
Tumor size and body weights were measured twice a week and
the tumor volume was calculated using the formula width2 ×

(length/2). Results are presented as mean± SEM.

Histologic Preparation and
Immunohistochemistry Staining
Samples were fixed in 4% formalin and paraffin-embedded.
Immunohistochemistry was performed on 4µm sections with
antibodies to Ki67 (Santa Cruz Biotechnologies, USA) and
Cleaved caspase-3 (Cell Signaling Technology USA #9661).
Sections were developed and stained with hematoxylin and
eosin using standard methods. All histological preparations
and immunostaining were conducted by the Rutgers
Cancer Institute of New Jersey Biospecimen Repository and
Histopathology Core.

Statistical Analysis
Statistical analysis was performed using Prism software
(GraphPad). In all cases, ANOVA followed by two-tailed,
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FIGURE 1 | (A) Western Blot analysis of activated matriptase expression in Mantle Cell Lymphoma cells (JeKo-1, MAVER, MINO, and ZI38). Equal volume of lysate

was loaded in 10% SDS-PAGE (see methods). (B) Activated matriptase to GAPDH ratio for all the four mantle cell lymphoma cell lines.

FIGURE 2 | Cytotoxicity of M69-MMAE conjugate (ADC) against different MCL cell lines. Five thousand cells/well were plated in a 96-well plate and the cells were

treated the next day with the ADC for 72 h. Cytotoxicity of the ADC was measured by trypan blue dye exclusion method using a Vi-Cell XR© cell viability analyzer

(Beckman Coulter). All the reading points were carried out in triplicates. The IC50 values (insert) are calculated using GraphPad Prism 4 software. Results are

presented as mean ± SEM.

unpaired Student t-tests was performed to analyze statistical
differences between groups. P-values of <0.05 were considered
statistically significant.

Antibody-Toxin Conjugate Preparation
and Characterization
The anti-matriptase antibody (M69) was generated against
purified activated matriptase-HAI complex from human milk
as described by Lin et al. (22). Seattle Genetics’ valine-
citrulline-PABA linker technology was used for conjugation of
a potent tubulin-inhibitor, monomethyl auristatin-E (MMAE)
to the M69 antibody. The valine-citrulline dipeptide based
linker has been shown to be stable in circulation but cleavable

by cathepsin B in the lysosome to generate free drug (23).
Copper free click chemistry is used to load the toxin in a
stoichiometrically controlled manner to M69 antibody under
very mild conditions. The technology involves conjugating
the linker-toxin with the lysine side chains on the antibody
surface. The conjugation procedure does not affect the disulfide
bridges between cysteines of the antibody, thus maintaining
the structure of the antibody without any loss of antibody
activity by misfolding or dissociation of antibody chains.
Analysis by mass spectrometry (HR-MALDI-TOF) showed
an increase of 7,000 Da average M.W. corresponding to an
average of 3.5 toxin (MMAE) molecules linked to each mAb
molecule (1).
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FIGURE 3 | Effect of ADC on migration of MCL cell lines in vitro. (A) JeKo-1 (B) Maver cells. Cells were treated with ADC for 48 h and washed twice with 1X PBS and

starved for 1.5 h in FBS-free RPMI and then added in a cell culture insert having 8-micron pore size in 300 µl of FBS-free RPMI (with and without ADC). The insert was

transferred to a well containing 700 µl of FBS-containing RPMI (with and without ADC) for 24 h at 37◦C and 5% carbon dioxide. Cells were checked for viability from

both insert and lower well using the Vi-CELLTM Series Cell Viability Analyzer (Beckman Coulter, Carlsbad, CA). The percent viable cells migrated toward the lower well

(having FBS-RPMI) of total viable cells added in insert were plotted against ADC treatment. Each experiment was done at-least three times and in four replicates.

Results are presented as mean ± SEM.

FIGURE 4 | Treatment of JeKo-1 xenografts in mice using different doses of matriptase-MMAE conjugate (ADC). (A) Xenograft studies with M69-MMAE. NOD/SCID

mice were inoculated with 10 × 106 JeKo-1 cells in PBS in the right flanks. When the tumor was palpable (100–200 mm3 ), mice (n = 19) were randomized into:

control (antibody alone), 1 and 5 mg/kg M69-MMAE treatment groups. M69-MMAE was administrated by i.p. weekly x 2. Tumor volume was measured twice a week.

Tumor volumes were calculated using the formula width2 x (length/2). Results are presented as mean ± SEM (B) Mice body weight change in the control and

treatment groups. Treatments are shown by arrows.

RESULTS

In vitro Cytotoxicity of M69-MMAE (ADC)
Against Mantle Cell Lymphoma (MCL)
Cell Lines
Activated matriptase expression was evaluated in different MCL
cell lines (JeKo-1, Mino, Maver, and Z138) by Western blotting
using the M-69 antibody that recognizes activated matriptase
alone or in complex with HAI-1. The four cell lines showed
increased levels of activated matriptase, although the level of
expression varied (Figure 1). The expression level of hepatocyte
growth factor activator inhibitor (HAI)-1 protein in mantle cells
is shown in Figure S1.

Cytotoxicity studies showed that the ADC decreased the
viability of all the cell lines (Figure 2) with IC50s at single digit

µg/ml of the conjugate. As 3.5 molecules of toxin are bound on
the average to each antibody molecule, the IC50 values for the
toxin ranged from 125 to 611 pM. Based on the IC50 values,
Mino, Maver and Z138 cells were 1.8–2.6-fold more sensitive
to ADC compared to JeKo-1. In order to check whether the
ADC is stable in media, the ADC was incubated (37◦C and
5% carbon dioxide) in complete media (RPMI with 10% FBS)
for 48 h before used for cytotoxicity test and it was found that
48 h incubated ADC and fresh ADC are equally effective against
Maver cell line as shown in Figure S2. In order to study the
role of matriptase in metastasis and invasiveness, the ADC was
found to inhibit the migration of JeKo-1 cells in vitro. Of interest,
only a small percent of cell from the Maver cell line migrated as
compared to the JeKo-1 cell line, and the ADC did not enhance
migration (Figure 3).
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FIGURE 5 | Treatment of JeKo-1 xenografts in mice using the matriptase-MMAE conjugate (ADC) and bortezomib. (A) Xenograft studies with M69-MMAE and

bortezomib. NOD/SCID mice were inoculated with 10 × 106 JeKo-1 cells in PBS in the right flank. When tumors were palpable, mice were randomized into control,

bortezomib, M69-MMAE, and bortezomib plus M69-MMAE treatment groups. M69-MMAE (5 mg/kg) was administrated by i.p. twice weekly for 3 weeks. Bortezomib

(0.75 mg/kg) was given i.p. weekly. Bortezomib and M69-MMAE were given together with the same dose schedule. Tumor volume was measured twice a week, and

the tumor volume calculated using the formula width2 x (length/2). Results are presented as mean ± SEM. (B) Mice body weight percentage during the treatment.

Treatments are shown by arrows.

FIGURE 6 | Immunohistochemistry staining of JeKo-1 tumors extracted from mice in Figures 4, 5 against various biomarkers. The tumors were harvested from

control, 1 and 5 mg/kg (i.p. weekly) M69-MMAE treatment groups from experiment four and Bortezomib and M69-MMAE combination (Bortezomib (0.75 mg/kg, i.p.

weekly and M69-MMAE, 5mg/kg i.p. twice weekly) from experiment five. Ki67 staining showing proliferation of JeKo-1; and Cleaved caspase-3 showing the apoptotic

cell death. The tonsil tissue was used as a positive control for various IHC staining.

JeKo-1 Xenograft Studies
To test the anti-tumor effects of the ADC in one of the MCL
tumors in a mouse model, we elected to test the JeKo-1 cell
line. We tested two dose schedules of the ADC: 1 vs. 5 mg/Kg
administered i.p. weekly. The 5 mg/Kg weekly dose was more
effective than the 1 mg/Kg dose. Even at the higher dose, there
were no signs of toxicity as measured by observation and weight
loss (Figure 4). Previous studies with the naked antibody showed
that it had no anti-tumor activity per se (1).

As bortezomib is used to treat MCL, alone and in
combination, we also tested the ADC in combination with
bortezomib in a JeKo-1 xenograft study. Using a similar

inoculum, this tumor grows rapidly in NOD-SCID-gammamice,
and the biweekly 5 mg/kg dose schedule, both bortezomib and
the ADC caused marked tumor growth inhibition (p = 0.006).
The combination of bortezomib and the ADC was more effective
than either drug alone (Figure 5).

We harvested the tumors at the end of the experiment
and then used immunohistochemistry to test for various
biomarkers. Figure 6 showed that there was no significant
change in Ki-67 staining; however, cleaved caspase-3
staining (apoptosis) showed a significant increase in the
combination group (ADC with bortezomib) compared to either
drug alone.
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DISCUSSION

Brentuximab vedotin (Adcetris), consisting of an antibody
that targets CD30, conjugated with MMAE is approved
for the treatment of Hodgkin disease, as well anaplastic
large cell lymphoma (ALCL) (24). CAT-3888 (BL22), another
immunotoxin, which targets the CD22 antigen on certain
lymphoma cells, attached to a bacterial Pseudomonas exotoxin,
PE38, has shown activity against hairy cell leukemia (HCL) in
early clinical trials (25). CAT-8015 (moxetumomab pasudotox),
an updated version of this drug, is now being studied for use
against lymphomas (26).

Our novel antibody against activated matriptase,
overexpressed in B-cell lymphoma and epithelial tumors
and involved in tumorogenesis, invasiveness and metastasis
(27–29), conjugated with the tubulin binding, mitotic inhibitor
toxin, monomethyl auristatin E (MMAE), demonstrates that
activated matriptase is a bonafide target for use with antibodies
that recognize activated matriptase, armed with a toxin. The
pre-incubated ADC was as potent as the non-incubated fresh
ADC, indicating that the ADC was stable in FBS and media.
The in vitro experiments also confirmed that this ADC showed
significant inhibition of migration of JeKo-1 cells. No observable
toxicity was found with this ADC, however, as this is a mouse
antibody that recognizes human, but not mouse matriptase,
other toxic effects of the ADC would not be noted. We currently
have constructed a chimeric matriptase antibody, suitable
for toxicity studies in a primate model and for Phase I trials
in humans.

Future plans are to use this ADC alone and in combination
with other chemotherapeutic drugs (bortezomib and ibrutinib)
in primary MCL xenografts with the goal of generating
additional sufficient preclinical data to allow for future
clinical development.

ETHICS STATEMENT

All the cell line studies were performed through Rutgers Cancer
Institute of New Jersey using protocols approved by the Rutgers

Environmental Health and Safety (REHS). Animal experiments
were conducted in accordance with Rutgers Cancer Institute of
New Jersey Animal Care and Use Committee guidelines using an
approved protocol number 15-040.

AUTHOR CONTRIBUTIONS

GR, S-YL, HL, ZS, and JRB conception and design, development
of methodology, analysis and interpretation of data (e.g.,
statistical analysis, biostatistics, computational analysis), writing,
review, and/or revision of the manuscript, and administrative,
technical, or material support (i.e., reporting or organizing data,
constructing databases). GR, S-YL, and HL acquisition of data
(provided animals, acquired and managed patients, provided
facilities, etc.). S-YL, ZS (for ADC conjugation study), and JRB
(overall) study supervision.

ACKNOWLEDGMENTS

This work was supported in part by a Breast Cancer Research
Foundation grant to JRB. The author acknowledges Dr. Lin CY
and Dr. Johnson M (Georgetown Medical School, USA) for
their generous M69-antibody gift. An abstract of this work was
published [The American Society of Hematology annual meeting
2017 (Blood 2017 130:5159)].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.00258/full#supplementary-material

Figure S1 | Western Blot analysis showing the hepatocyte growth factor activator
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2: MAVER). 10% SDS-PAGE was used.

Figure S2 | Cytotoxicity of M69-MMAE conjugate (ADC) after 48 h incubation in

complete media against Maver cell line. Five thousand cells/well were plated in a

96-well plate and the cells were treated the next day with the ADC (fresh and 48 h

incubated one) for 72 h. Cytotoxicity was measured using an MTS assay. All the

reading points were carried out in triplicates. Results are presented as mean ±

SEM.
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Here we report the synthesis and in vitro characterization of a redox-sensitive,

magnetically inducible nanoparticle carrier system based on the doxorubicin (DOX) drug

delivery model. Each quantal nanocarrier unit consists of a magnetite Fe3O4 nanoparticle

core that is further encapsulated in self-assembled micelles of the redox-responsive

polyethylene glycol derivative, DSPE-SS-mPEG. The nanocarrier system was prepared

using a combination of ultrasonication and dialysis to produce the microenvironment

sensitive delivery system. The final synthesized and DOX-loaded magnetic nanocarriers

had an average size of ∼150 nm when assembled with a 6.9% DOX payload. The

release rate of DOX from these redox-responsive magnetic nanocarriers was shown

to be accelerated in vitro when in the presence of glutathione (GSH). Furthermore, we

demonstrated that more redox-responsive magnetic nanocarriers could be taken up by

HeLa cells when a local magnetic field was applied. Once internalized within a cell,

the micelles of the outer nanocarrier complex were broken down in the presence of

higher concentrations of GSH, which accelerated the release of DOX. This produces a

particle with dual operating characteristics that can be controlled via a specific cellular

environment coupled with an exogenously applied signal in the form of a magnetic field

triggering release.

Keywords: redox-responsive, Fe3O4, nanocarriers, drug delivery, HeLa cells

INTRODUCTION

Chemotherapy is the most commonly used approach to treating cancer. Traditionally, the
chemotherapeutic agents (doxorubicin, paclitaxel, etc.) are systemically delivered through
intravenous injection. While this is often an effective approach and can successfully eliminate
malignant cell populations, treatment-associatedmorbidity is often significant (1). Quite frequently
this is a result of unintended action of the therapeutic agent at non-specific cellular targets causing
injury to healthy somatic cells in addition to the desired effect on malignant cells (2–6). Despite
this large unintended effect on healthy cells of the patient, chemotherapy remains a pillar of cancer
treatment due to its efficacy, particularly when used as part of a multimodal treatment plan. At the
intersection of the potency of chemotherapy as a curative agent and the extensive side effect
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profile causing wide-ranging cytotoxicity lays a rationale that
suggests transport of the chemotherapeutic agent directly to
the tumor site, which avoids systematic exposure, may alleviate
unintentional cytotoxic effects on healthy tissue. This concept
has existed in the medical literature for quite some time, but
only recently has progress in functionalization of mesoscopic
carrier particles led to significant progress in realizing this
goal. There are now several readily available preparations for
a medical oncology approach to cancer treatment that utilizes
nanotechnology, in the form of nanoparticle assemblies, to
facilitate the transport of highly potent cytotoxic compounds
more selectively into tumor sites with restricted systemic
circulating concentrations (7–9). These nanoparticles can be
constructed such that they resist degradation or internalization
except at the target tissue of interest where they are then able to
deposit and release their payload at the site of the malignancy
and not in healthy tissue (10–12). These particles can also
be used to focus energy from external radiative sources into
tumor masses acting to physically damage the cancerous cells in
addition to the chemical damage affected by the pharmacological
agent (13). This is an elegant solution to the problem of how
to transport chemotherapeutic drugs to the tumor site without
leakage and subsequently release a drug into the tumor-specific
microenvironment is an important issue that needs to be solved
in the treatment of cancer. The rise of nanotechnology has
provided a new set of tools for use in solving this problem of
targeted drug delivery (14–17).

The use of nanoparticles as a carrier vehicle for the targeted
delivery of chemotherapeutic drugs has the potential to greatly
reduce collateral damage to non-cancerous human tissues and
organs (18, 19). For example, by modifying the surface of a
nanoparticle with intelligent molecules, the nano drug carriers
can stimulate drug release in response to the particular micro-
environment of pathological tissues to reduce the incidence
of healthy cell damage and selectively kill cancer cells (20–
22). The study of nano drug carriers provides a new direction
for the delivery of care in addition to the traditional cancer
treatment approaches already in use and possesses significant
potential for future clinical applications (20, 23, 24). In this
study, we constructed spherical nanoparticle carriers containing
doxorubicin (an antineoplastic drug) with a diameter of about
150 nm.We provide functional data to demonstrate that the entry
of the drug carriers into HeLa cells can be enhanced in amagnetic
field and the release of the drug can be facilitated by elevating the
concentration of glutathione (GSH), resulting in the demise of
HeLa cells. As several cancer cells have high intracellular GSH
concentrations, using the constructed nanoparticle carriers may
achieve satisfying efficacy in killing cancer cells, while causing
only minor damage in normal tissue (25–27).

MATERIALS AND METHODS

Materials
The Fe3O4 nanoparticles were prepared using a thermal
decomposition method described previously (28). DSPE-SS-
mPEG 2000 was purchased from Xi’an Ruixi Biotechnology
Co. (Xi’an, China), Doxorubicin hydrochloride (DOX·HCl) and

GSH were purchased from Sigma-Aldrich (St. Louis, MO, USA),
dimethyl sulfoxide (DMSO) and triethylamine (TEA) were
obtained from Shanghai Chemical Co. (Shanghai, China) (29).

Human cervical adenocarcinoma (HeLa) cells were purchased
from the China Center for Type Culture Collection (Wuhan
University) and cultured in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco Life, Grand Island, NY, USA) supplemented with
10% fetal bovine serum (FBS, HyClone, Logan, UT), 2× 10−3M
L-glutamine and 1% antibiotics mixture (10,000U of penicillin
and 10mg of streptomycin) (Gibco). The cells were incubated in
a humidified atmosphere containing 5% CO2 at 37

◦C.

Preparation of Nanocarriers
DOX-loaded redox-responsive magnetic nanocarriers were
prepared using an ultrasonication-dialysis method. Briefly,
DOX·HCl (10mg) was stirred in DMSO (5mL) with twice
the number of mole of TEA for 2 h to obtain the DOX base.
80mg of DSPE-SS-mPEG was added to the solution, which
was stirred at room temperature for another 2 h. Meanwhile,
the Fe3O4 nanoparticles (20mg) were dissolved in 10mL of
(tetrahydrofuran) THF. The above two solutions were mixed
and added to ultrapure water (25mL) with ultrasonication. The
mixed solution was then transferred into a dialysis tube and
dialyzed against ultrapure water for 48 h at room temperature.
Similarly, DOX-free nanocarriers were prepared using the above
mentioned protocol without the addition of DOX.

Characterization of Nanocarriers
The size of the nanocarriers in aqueous solution was measured
using a Zetasizer analyzer (Malvern Zetasizer Nano, Zen
3690+MPT2, Malvern, UK). Ultrastructural features and surface
geometry of the synthesized nanocarriers was observed by
transmission electron microscopy (TEM) (Tecnai G2 F20 S-
TWIN electron microscope, FEI company. the USA) at an
accelerating voltage of 200 kV.

DOX-loaded nanocarriers were dissolved in DMSO to
determine the total content of loaded drug. The DOX
content in DMSO was determined by high-performance liquid
chromatography (HPLC, Agilent) using a calibration curve
obtained from DOX/DMSO solutions containing a known
concentration of DOX.

For Fe3O4 content measurement, the weighed, freeze-dried
nanocarriers were digested in a 1M HCl solution. The resulting
digestion product was then analyzed for atomic species using
inductively coupled plasma-atomic emission spectroscopy (TCP-
AES, Thermo Electron, USA).

Redox-Triggered Disassembly of
Nanocarriers
The change in the size of redox-responsivemagnetic nanocarriers
in response to 20mMGSH in PBS (0.01M, pH 7.4) wasmeasured
using dynamic light scattering (DLS). Briefly, 20mM GSH was
added to 1.5mL of PBS containing nanocarriers within a glass
cell. The solution was then placed in a shaking water bath at
37◦C, oscillating at 150 rpm. At varying intervals following
agitation, the size of nanocarrier particles contained in solution
was assessed using DLS.
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In vitro Redox-Triggered Release of DOX
From DOX-Loaded Nanocarriers
The in vitro release profile of nanocarriers was investigated
using dialysis of DOX-loaded nanocarriers in two different
media: PBS or PBS supplemented with 20mM GSH. Each
solution was diluted to 1.5 mg/mL and 5mL of the solution
was transferred into a membrane tubing. The tubing with the
solution was immersed in a tube containing 50mL of the buffer
solution in a shaking water bath at 37◦C to acquire the “sink”
condition. At predetermined intervals, 20mL of the external
buffer was withdrawn and replaced with a fresh solution of
the corresponding buffer. The amount of DOX released was
determined using HPLC.

Cell TEM Imaging
For TEM imaging, HeLa cells were incubated with DOX-loaded
nanocarriers at a final DOX concentration of 5µg/mL in DMEM
for 2 h at 37◦C in the presence or absence of an externally applied
magnetic field. The culture medium was removed and the cells
were pre-fixed with 2.5% glutaraldehyde in PBS at 4◦C for 2 h
and post-fixed with 1% osmium tetroxide in PBS at 4◦C for
2 h. The cells were then dehydrated using serially increasing
concentrations of ethanol and flat embedded in Epon 812. After
polymerization at 60◦C for 48 h, ultrathin sections (60–80 nm)
were trimmed and further stained with uranyl acetate and lead
citrate. Micrographs of the stained samples were collected with
an FEI Tecnaio G220 TWIN Transmission Electron Microscope.

Cell Viability Assay
To evaluate the anti-tumor activity of DOX-loaded nanocarriers,
the cytotoxicity of DOX-loaded nanocarriers or free DOX against
HeLa cells was evaluated in vitro using the MTT assay. HeLa cells
were seeded into a 96-well plate at a density of 4.0× 103 cells/well
in 100 µL of complete DMEM. The cells were cultured for 24 h
at 37◦C in a 5% CO2 atmosphere. Subsequently, the cells were
incubated with DOX-loaded nanocarriers or free DOX for 24 h
at 37◦C with or without the presence of an external magnetic
field. DOX-loaded nanocarriers or free DOX were diluted in
complete DMEM to a final DOX concentration ranging from 0.4
to 40µg/mL. After the incubation, 10 µL of MTT solution (5
mg/mL in PBS 7.4) was added to each well and incubated for
4 h. The media with MTT solution was removed and 200 µL of
DMSO was added to dissolve the formazan crystals and further
incubated for 15min at 37◦C. The absorbance readings were
recorded using a microplate spectrophotometer (PowerWave
XS2, BioTek Instruments, USA) at a wavelength of 540 nm.
The cell viability was normalized to that of cells cultured in
complete DMEM. The dose-effect curves were plotted and data
are presented as the average± SD (n= 4).

Confocal Laser Scanning Microscopy
(CLSM) Observation
CLSM was used to examine the intracellular distribution of
DOX. HeLa cells were seeded on coverslips in the wells of a
24-well plate at a density of 4.0 × 104 cells/well in 1mL of
complete DMEM. The cells were incubated for 24 h at 37◦C in

TABLE 1 | Properties of DOX-free and DOX-loaded nanocarriers.

DOX-free nanocarriers DOX-loaded nanocarriers

Size

(nm)

PDI Fe content

(wt%)

Size

(nm)

PDI Fe content

(wt%)

PLC

(wt%)

131 0.26 14.7 150 0.19 13.3 4.6

a 5% CO2 atmosphere. The cells were incubated with DOX-
loaded nanocarriers at a final DOX concentration of 5µg/mL
in DMEM for 2 h at 37◦C with or without an external magnetic
field. After removal of the medium, the cells were washed three
times with cold PBS, fixed with 1mL of 4% paraformaldehyde
for 30min at 4◦C, and stained with 2-(4-amidinophenyl)-6-
indolecarbamidine dihydrochloride (DAPI, Roche) for 10min.
Finally, the slides were mounted with 10% glycerol solution
and viewed using a LeicaTCS SP8 (Leica Microscopy Systems
Ltd., Germany).

RESULTS AND DISCUSSION

Characterization of Nanocarriers
The particle size and polydispersity (PDI) of DOX-free or
DOX-loaded nanocarriers were determined by DLS, as shown
in Table 1. The prepared DOX-free nanocarriers and DOX-
loaded nanocarriers (Figure 1A) were determined to be 131
or 150 nm respectively, with a narrow size distribution,
thereby making them suitable as anticancer drug carriers. The
morphology of the redox-responsive magnetic nanocarriers was
observed using TEM. Figure 1B shows the morphology of the
nanocarriers. Because DSPE-SS-mPEG does not significantly
attenuate electron scattering under TEM, nanocarriers are largely
present as isolated clusters of Fe3O4 nanoparticles with a
spherical shape. The drug loading content values of DOX-loaded
nanocarriers was 4.6% (Table 1). Whereas, the Fe content of
DOX-free or DOX-loaded nanocarriers was 14.7 and 13.3%,
respectively (Table 1).

The Redox-Responsive Stability of
Nanocarriers
Disulfide linkages are known to be readily reduced into free
thiols in the presence of reducing agents. To demonstrate the
responsiveness, the size change of redox-responsive magnetic
nanocarriers in response to 20mM GSH in PBS was measured
by DLS. Figure 2 shows that the average size of the nanocarriers
gradually increased within the first 15min after the addition
of GSH. The size increased from 131 to 340 nm in 15min,
indicating the detachment of hydrophilic PEG shells from the
nanocarriers and the enhanced hydrophobic interaction of the
inner core. After 1 h, two populations at 547 nm and 1,038 nm
were observed, however, after 3 h, the complete destruction of the
nanocarriers was observed, and no nanoparticles were detected in
the solution.

In vitro Redox-Responsive DOX Release
The drug release behavior of the DOX-loaded nanocarriers was
investigated in PBS at 37◦C in the presence or absence of
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FIGURE 1 | The size distribution by DLS (A), and TEM micrographs (B) of redox-responsive magnetic nanocarriers.

FIGURE 2 | The size change of redox-responsive magnetic nanocarriers in

response to 20mM GSH in PBS determined by DLS measurement.

GSH (20mM). Figure 3 shows the accumulative drug release
profiles as a function of time. Figure 3 demonstrates that the
release of DOX from nanocarriers was markedly correlated with
the presence or absence of GSH. The release of DOX from
nanocarriers was accelerated by the addition of GSH to the
media. In the presence of 20mM GSH, nanocarriers rapidly
released DOX, such that 93.8% of the DOX dose was released
within 24 h. However, only 28.7% of DOX was released in
the absence of GSH. This difference might be due to cleavage
of disulfide bonds, thereby causing the destruction of the
nanocarriers and the accelerated release of encapsulated DOX.

Cell TEM Imaging
The rapid accumulation of DOX-loaded nanocarriers was found
to be magnetically inducible in vitro and was characterized using
TEM. When HeLa cells were incubated for 2 h with DOX-loaded

FIGURE 3 | Redox-triggered release of DOX from redox-responsive magnetic

nanocarriers in PBS with or without 20mM GSH. The standard deviation for

each data point was averaged over three samples (n = 3).

nanocarriers in either the presence or absence of a magnetic field,
the accumulation of nanocarriers was found to be altered. TEM
images demonstrating this observation are shown in Figure 4.
The heavily electro-dense iron-containing nanoparticles are
reproduced in the TEM images as a significantly darker
region in contrast to the cellular environment, which facilitated
identification of relative particle density between groups. The
number of magnetic nanoparticles in cells significantly increased
when a magnetic field was applied (Figure 4B), suggesting that
the presence of a magnetic field enhanced the accumulation of
nanocarriers in cells.

Cell Viability Assay
The in vitro cytotoxicity of DOX-loaded nanocarriers and free
DOX was evaluated using the MTT assay. Figure 5 shows the
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FIGURE 4 | TEM images of HeLa cells incubated with DOX-loaded nanocarriers in the absence (A) or presence (B) of a magnetic field. Scale bar is 1µm.

resulting levels of observed cytotoxicity measured as a function
of DOX concentration from 0.4 to 40µg/mL. All test conditions
exhibited a dose-dependent cytotoxic effect of the treatment on
the population of viable and metabolically active HeLa cells.
DOX-loaded nanocarriers exhibited lower cytotoxicity to HeLa
cells with or without the magnetic field, as compared to free DOX
at the same DOX dose (Figure 5A). As a control experiment, we
performed a group of experiments using nanocarriers without
DOX and examined cytotoxicity under magnetic and non-
magnetic conditions, suggesting that the nanocarriers alone did
not exhibit cytotoxicity (Figure 5B). Given that DOX is a small
molecule, it can be quickly transported into cells and enter
nuclei by passive diffusion. Furthermore, we found that the
presence of a local magnetic field could significantly increase
the cytotoxicity of DOX-loaded nanocarriers. This process
may be due to the magnetic field increasing cellular uptake
of nanocarriers, and once internalized, the redox-responsive
nanocarriers are destroyed by high levels of GSH. The DOX
is then rapidly released from the destroyed redox-responsive
nanocarriers. Taken together these results indicate that the DOX-
loaded nanocarriers can achieve both magnetic targeting and
reduction-sensitive release simultaneously.

In vitro Cellular Uptake of DOX-Loaded
Nanocarriers
The cellular uptake of the nanocarriers and the intracellular
location of the encapsulated DOX was monitored by CLSM in
HeLa cells. The nuclei of HeLa cells were stained with DAPI,
which presented blue fluorescence to distinguish from the red
fluorescence of the labeled DOX. Figure 6 shows CLSM images
of HeLa cells incubated with DOX-loaded nanocarriers for 2 h
with or without magnet field treatment. As shown in Figure 6, we
found that cells incubated with DOX-loaded nanocarriers with
applied magnetic field demonstrated stronger DOX fluorescence
compared to no applied magnetic field. This phenomenon is
primarily a result of the magnetic field increase in the cellular
uptake of the DOX-loaded nanocarriers. Our results indicate that
these nanocarriers are responsive to either magnetic or redox
stimulated activation and are therefore suitable for application as
anticancer drug carriers.

FIGURE 5 | Cytotoxicity of DOX-loaded magnetic nanocarriers and free DOX

in HeLa cells with or without magnetic field after incubation for 24 h (A). (B) In

control experiments, we examined cytotoxicity using magnetic nanocarriers

alone with or without magnetic field after incubation for 24 h, and found no

cytotoxicity. The standard deviation for each data point was averaged over

four samples (n = 4) for (A,B).

CONCLUSION

In this article, we use the amphiphilic copolymer DSPE-SS-
mPEG, which is connected by disulfide bonds. Afterward, the
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FIGURE 6 | CLSM images of HeLa cells after treatment with DOX-loaded magnetic nanocarriers for 2 h in the absence (A) or presence (B) of a magnetic field. Scale

bar is 15µm.

magnetic Fe3O4 nanoparticles and the hydrophobic drug are
made by the self-assembly of the amphiphilic copolymer. DOX is
encapsulated in the amphiphilic copolymer to form a magnetic
nano drug controlled release system which is sensitive and
responds to a reducing environment. This controlled release
system can dissociate the disulfide bonds in the presence
of dithiothreitol, thereby triggering the release system to
disintegrate and expel the drug.

When the DOX-loaded nanocarrier is transported into
the cell, intracellular GSH breaks the disulfide bonds,
resulting in the disintegration of the transport system and
the release of DOX. It is a well-designed enzyme-responsive
magnetic-field controlled release system and provides a new
foundation for building an efficient and safe nanoscale drug
delivery system.
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The introduction of targeted therapy is the biggest success in the treatment of

cancer in the past few decades. However, heterogeneous cancer is characterized

by diverse molecular alterations as well as multiple clinical profiles. Specific genetic

mutations in cancer therapy targets may increase drug sensitivity, or more frequently

result in therapeutic resistance. In the past 3 years, several novel targeted therapies

have been approved for cancer treatment, including drugs with new targets (i.e.,

anti-PD1/PDL1 therapies and CDK4/6 inhibitors), mutation targeting drugs (i.e., the

EGFR T790M targeting osimertinib), drugs with multiple targets (i.e., the EGFR/HER2

dual inhibitor neratinib) and drug combinations (i.e., encorafenib/binimetinib and

dabrafenib/trametinib). In this perspective, we focus on the most up-to-date knowledge

of targeted therapy and describe how genetic mutations influence the sensitivity of

targeted therapy, highlighting the challenges faced within this era of precision medicine.

Moreover, the strategies that deal with mutation-driven resistance are further discussed.

Advances in these areas would allow for more targeted and effective therapeutic options

for cancer patients.

Keywords: targeted therapy, cyclin-dependent kinases 4/6, somatic mutation, resistance, EGFR, PD-1/PD-L1

INTRODUCTION

Targeted therapies usually present with high selectivity, target precisely to specific gene
or protein, and exert a biological function with minimal side effects (1), which has
distinguished them from most conventional non-specific chemotherapeutic drugs. Targeted
therapy has thus been regarded as the biggest success in the treatment of cancer in the
past few decades. Many novel promising agents have been experimentally designed and
developed and are increasingly entering clinical evaluation. However, the frequently observed
alterations in the drug targets have posed a big challenge to successful cancer treatment.
Genetic mutations in cancer are resulted from both inherited and environmental factors.
In a recent report, it is demonstrated that a large proportion of cancer-related mutations
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are due to randomized DNA replication errors (2). Notably,
the mutations in cancer therapy targets can greatly affect drug
sensitivity. Mutation-driven drug resistance is very common in
cancer. The efficacy of targeted therapy is thus largely dependent
on themutation profile of tumors in patients. Accurate molecular
and genetic profiling of tumor cells is becoming a routine practice
before the introduction of targeted therapy in patients.

In recent years, great progress has been made in targeted
therapy discovery. Notably, many new drugs are designed
primarily based on specific genetic background. For instance,
nearly 40–50% of metastatic cutaneous melanoma possess
v-raf murine sarcoma viral oncogene homolog B1 (BRAF)
mutations (3), and ∼90% of these BRAF mutations are caused
by substitution of glutamic acid for valine at codon 600
(V600E) (4). Two selective BRAF inhibitors vemurafenib and
dabrafenib were approved for the treatment of patients with
BRAF-V600E mutation, showing improved progression-free
survival (5). In November 2018, the U.S. Food and Drug
Administration (FDA) approved an inhibitor of tropomyosin
receptor kinases (TRKs), larotrectinib, for treatment of any type
of solid tumors with TRK gene fusion (6). This is the second
targeted therapy approved not for specific cancer types but
for any cancers with specific mutations. Targeted therapies are
becoming more precise.

In this perspective, we focus on the updated knowledge of
targeted therapy in the last 3 years and describe how genetic
mutations influence sensitivity of targeted therapy, highlighting
the challenges faced within this era of precision medicine.
Moreover, the strategies dealing with mutation-driven resistance
are further discussed.

INFLUENCE OF GENETIC MUTATION ON
SENSITIVITY OF TARGETED THERAPY

It is well-acknowledged that mutations in therapeutic targets
can increase or decrease drug sensitivity (Table 1). The main
challenge of targeted therapy today is the identification of
particular cancer mutations which affect efficacy of targeted
therapies as well as the identification of a specific group of
patients most likely or unlikely to respond to certain targeted
therapies. Despite the great challenges, in the last 3 years, we have
seen significant progress in targeted therapy (Table 2), largely
owing to the rise of large-scale sequencing technology and big
data analysis. Several novel targets, including the programmed
death-1/programmed death-ligand 1 (PD1/PDL1) and cyclin-
dependent kinases 4 and 6 (CDK4/6), have been validated,
with several new targeted drugs being approved. Some newly
approved drugs are directly designed to deal with some known
activating mutations, such as the T790M mutation in epidermal
growth factor receptor (EGFR). Moreover, many new findings
have been added to our knowledge of how mutations influence
targeted therapies [e.g., the inhibitors of human epidermal
growth factor receptor 2 (HER2) and anaplastic lymphoma
kinase (ALK)]. Here, based on the most updated research in
the last 3 years, we summarize the recent advances of several
targeted therapies.

Anti-PD1/PDL1 Therapies
So far, there are a total of 6 anti-PD1/PDL1 therapies that have
been approved by the FDA. Notably, in 2017, a PD1 antibody
pembrolizumab was approved for the treatment of any solid
tumor with a mismatch repair deficiency or a microsatellite
instability. Monotherapy of PD1/PDL1 blockade has received
great success in many types of cancers (21, 22). However, there
are certain patients that are gradually developing resistance
after an initial response (23). Mutation-driven resistance of
anti-PD1/PDL1 therapies has recently been studied in a small
number of cancer patients. Zaretsky et al. reported that
mutations of JAK1/JAK2 led to the desensitization of cancer
cells to IFN-γ and contributed to an acquired resistance of
pembrolizumab in patients with melanoma (23). Moreover, in
one resistant patient, a frame-shift deletion in exon 1 of the
β-2-microglobulin was detected, which may result in the loss
of expression of surface the MHC class I (23). More studies
are advocated to explore the acquired resistance of immune
checkpoint inhibitors.

Resistance of CDK4/6 Inhibitors
Currently, three CDK 4/6 selective targeting inhibitors,
palbociclib, ribociclib, and abemaciclib have been approved
to treat breast cancer. CDK4/6 inhibitors are increasingly
used in clinical settings, but patients eventually show disease
progression and the major reasons remain unclear (24).
Dysregulation of cyclin D1-CDK4/6-retinoblastoma (Rb)
pathway has been implicated in hormone receptor positive
(HR+) breast cancer and in chemotherapeutic drug-resistance.
Rb is usually intact in HR+ breast cancer and is important
for the efficacy of CDK4/6-inhibitors in the treatment of
breast cancer (25). It is indicated that T47D cells that become
resistant to CDK4/6 inhibitors, develop CCNE1 amplification
or Rb1 loss (26). Moreover, the acquisition of multiple de novo
somatic Rb1 mutations in metastatic breast cancer patients
may result in the emergence of a resistance to CDK 4/6
inhibitors (24). Until now, there has been no report on CDK4/6
mutations in cancer patients and their effect on efficacy of
CDK4/6 inhibitors.

EGFR and Different Generation of Tyrosine
Kinase Inhibitors (TKIs)
EGFR is a prevalent target in several human cancers, such as
lung, breast, colorectal, thyroid, and melanoma cancer. In lung
cancer, several generations of small-molecular inhibitors have
been developed to target the EGFR tyrosine kinases (27), such
as inhibitors gefitinib, erlotinib, osimertinib, and necitumumab.
The EGFR mutation in non-small cell lung cancer (NSCLC) was
first identified in 2004, and the major missense and deletion
mutation of EGFR in NSCLC occurs in the tyrosine kinase-
coding domain in exons 18–21 (28). The L858R mutation
in the exon 21 and exon-19 frame deletion are the most
commonly detected mutation types of EGFR, representing 50
and 40% of tumor patients, respectively (7). These two types of
mutations are sensitive to EGFR tyrosine kinase inhibitors (TKIs)
in NSCLC. The first-generation TKIs, gefitinib and erlotinib,
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TABLE 1 | Therapeutic response of targeted therapy in mutant cancers.

Drugs Sensitivity Target mutations Cancer types Reference

Gefitinib + EGFR-L858R Lung cancer (7)

Erlotinib + EGFR-L858R Lung cancer (7)

Gefitinib – EGFR-T789M Lung cancer (8)

Osimertinib + EGFR-T790M Lung cancer (9)

Osimertinib – EGFR-L718Q Lung cancer (10)

Trastuzumab – HER2-A859T, -G776L Lung cancer (11)

Afatinib + HER2-p.Tyr772_Ala775dup Lung cancer (12)

Neratinib – HER2-T798I, -L869R Breast cancer (13)

Lapatinib – HER2-T798M Breast cancer (14)

Trastuzumab – HER2-T798M Breast cancer (14)

Neratinib + HER2-S310, -L755, -V777, -G778_P780dup, and -Y772_A775dup Breast, cervical and biliary cancers (15)

Crizotinib – ALK-C1156Y, -L1196M Lung cancer (16, 17)

Lorlatinib – ALK-L1198F Lung cancer (18)

2,4-Pyrimidinediamine derivative – EML4-ALK-C1156Y, -L1196M Lung cancer (19)

TAE684 – EML4-ALK-L1152R Lung cancer (20)

Dabrafenib + BRAF-V600E Melanoma (5)

TABLE 2 | Cancer targeted therapy approved by FDA in 2017 and 2018.

Drugs Targets Cancer types

Pembrolizumab (2017) PD-1 Solid tumor with mismatch repair deficiency or microsatellite instability

Cemiplimab (2018) PD-1 Squamous cell carcinoma

Durvalumab (2017) PD-L1 Urothelial carcinoma

Avelumab (2017) PD-L1 Merkel cell carcinoma, urothelial carcinoma

Brigatinib (2018) ALK ALK-positive NSCLC

Lorlatinib (2018) ALK ALK-positive NSCLC

Ribociclib (2017) CDK4/6 Breast cancer

Abemaciclib (2017) CDK4/6 Breast cancer

Niraparib (2017) PARP Ovarian cancer, peritoneal cancer

Dacomitinib (2018) EGFR NSCLC with EGFR exon 19 deletion or exon 21 L858R substitution mutations

Talazoparib (2018) PARP Breast cancer with germline BRCA mutations

Duvelisib (2018) PI3Kδ, PI3Kγ Chronic lymphocytic leukemia, small lymphocytic lymphoma

Larotrectinib (2018) TRKs Solid tumor with TRK gene fusion

Neratinib (2017) EGFR/HER2 HER2-amplified breast cancer

have a high selective inhibitory activity against both wild-
types and these sensitive mutant EGFR (29). Previous studies
show that gefitinib and erlotinib are important for the first-
line treatment of NSCLC patients with the sensitive EGFR
mutations (30, 31). On the other hand, another mutation T790M,
a secondary EGFR mutation emerging in NSCLC, can lead to
the resistance of more than half of patients’ TKIs treatment (32).
Very recently, the third-generation TKI inhibitor osimertinib has
been approved to effectively target to EGFR T790M mutation
with a response rate of 61% in NSCLC, significantly extending
the overall survival in patients with the T790M mutation (9).
However, the further mutation of a residue in the P-loop
(L718Q) has been found to cause resistance to osimertinib (10).
Nevertheless, though diverse EGFR mutations are present, the
overall survival of lung cancer patients is markedly improved
with TKI therapy.

HER2 and Its Inhibitors
In breast cancer, the overall HER2 mutation rate is ∼1.6% (25
out of 1,499 patients). In a study by Bose et al., seven HER2
somatic mutations including G309A, D769H, D769Y, V777L,
P780ins, V842I, and R896C, have been identified as activating
mutations (33). Several patients with HER2 activating mutations
are resistant to the reversible HER2 inhibitor lapatinib, but
sensitive to the irreversible HER2 inhibitor neratinib. Neratinib
as a dual inhibitor of HER2 and EGFR was approved by FDA
in 2017. It has been shown that the HER2 L755S mutation
results in an acquired resistance to lapatinib in breast cancer,
which could be overcome by the neratinib (34). In another
study, the HER2-T798I gatekeeper mutation in breast cancer
patients with a AHER2-L869R mutation was identified as a
mechanism of acquired resistance to neratinib (13). The trial
of neratinib has also been conducted in colorectal cancer
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(CRC) patients. The HER2 gene amplification and mutation
in CRC can lead to the resistance of EGFR-targeted therapies
cetuximab and panitumumab (35, 36). A negative effect of
neratinib monotherapy has recently been confirmed in 12 CRC
patients with different tumors harboring HER2 mutations (15).
There were no positive therapeutic response and the median
PFS was only 1.8 months, indicating that monotherapy with
neratinib is ineffective. The underlying mechanisms still require
further investigations.

ALK and Different Generation of
ALK Inhibitors
ALK has long been identified as a therapeutic target in cancer.
The first ALK inhibitor crizotinib was approved by the FDA in
2011 (37). Although most NSCLC patients respond to this drug,
tumors become resistant after 1–2 years of treatment. Around
1/3 of crizotinib-resistant tumors harbor mutations within the
ALK kinase domain. The most commonly observed mutations of
L1196M and G1269A lead to a decreased affinity for crizotinib
(38). Other ALK point mutations, such as L1152R, C1156Y,
I1171T, F1174L, G1202R, and S1206Y, are also associated with
crizotinib resistance (39). Another oncoprotein of fusion-type
tyrosine kinase, the EML4-ALK, results from the inversion within
the short arm of the human chromosome 2 in 4–5% of cases
of NSCLC (40). Two mutations of EML4-ALK, C1156Y, and
L1196M, confer a significant resistance to ALK inhibitors, such
as crizotinib and PDD (2,4-pyrimidinediamine derivative) (19).
The EML4-ALK C1156Y mutation can contribute to a higher
resistance to PDD than those in the L1196M mutant form. It
is reported that a candidate ALK inhibitor TAE684 can bind to
these mutant kinases, which may have potency in overcoming
the mutation-driven resistance (41). The new generation ALK
inhibitors lorlatinib and brigatinib were approved in 2018
for the treatment of patients with ALK-rearranged NSCLC.
Lorlatinib has been demonstrated to inhibit resistant ALK
mutations, including ALK G1202R (16). However, Shaw et al.
showed that an ALK L1198F mutation together with the
C1156Y mutation results in the resistance of lorlatinib in a
patient with metastatic ALK-rearranged NSCLC (18). However,
the L1198F mutation re-sensitized crizotinib treatment of a
resistant tumor. It was demonstrated that both lorlatinib and
brigatinib can overcome crizotinib resistance in NSCLC patients
(42, 43). Moreover, when brigatinib was combined with anti-
EGFR antibody, it was effective against EGFR triple-mutant cells
in vitro and in vivo (44).

STRATEGIES FOR OVERCOMING
MUTATION-DRIVEN RESISTANCE

Mutations in cancer therapy targets usually result in the loss
of functions and the accumulation of dysfunctional proteins
in tumors (45). Moreover, many mutants have oncogenic
gain-of-function (GOF) activities including increased tumor
proliferation, metastasis and drug resistance (46). Notably, tumor
cells that receive targeted therapy may lead to an overactivation
of the by-pass signaling pathways to develop resistance. In most
cases, multiple alterations are observed in a resistant tumor.

Recently, many strategies dealing with mutation-driven drug
resistance have been proposed and evaluated both experimentally
and clinically. The traditional chemotherapy concept of “one
ligand to one receptor” for a biological response is inadequate.
The treatment of a particular type of cancer with the
prescriptive drugs involves many special genes, interacting with
their respective targets and triggering a series of biological
responses. The concept of using multi-drug therapy and seeking
multifunctional compounds that can efficiently interact with
various targets might be feasible (47). Currently, to overcome
mutation-driven drug resistance, the main strategies include:
(1) the design of new mutation-targeted compounds to restore
wide-type protein activities, to delete mutants or to influence
downstream targets; (2) the application of combinational therapy
or new compounds for multiple targeting. Here, we give some
examples of how to overcome mutation-driven resistance of
targeted therapy.

Dacomitinib, an Irreversible Pan-ERBB
Inhibitor, Targeting EGFR
Activating Mutants
Recently, dacomitinib was approved to use for metastatic NSCLC
with EGFR exon 19 deletion or exon 21 L858R substitution
mutations. In a randomized, multicenter, open-label, phase
III trial (ARCHER 1050), the patients with newly diagnosed
advanced NSCLC and one EGFR mutation (exon 19 deletion
or L858R) received a 45 mg/day dose of oral dacomitinib or
a 250 mg/day gefitinib for 28 days. In the dacomitinib group,
the progression-free survival (14.7 months, 95% CI 11.1–16.6)
was significantly longer than that in the gefitinib group (9.2
months, 95% CI 9.1–11.0) (48). This investigation supports
the dacomitinib as the first line therapy for EGFR-mutation
NSCLC patients.

Dacomitinib is initially designed for irreversible pan-ERBB
inhibition. As a small-molecule covalent binding inhibitor of
enzymatically active HER family tyrosine kinases EGFR and
HER2, it may act as a potent inhibitor of EGFR T790M
mutation (49). Additionally, dacomitinib significantly inhibits
both wild-type and the gefitinib-resistant ERBB2 mutation in
lung cancer. Based on an in-depth investigation, dacomitinib
is an effective drug that may treat NSCLC patients with a
T790M-related acquired resistance to gefitinib or erlotinib (8).
It has been indicated that dacomitinib significantly improves
progression-free survival in EGFR-mutationNSCLC patients and
is considered as a new treatment option for this population.

Encorafenib/Binimetinib and
Dabrafenib/Trametinib for Dual Inhibition
of BRAF and MEK
The FDA approved dabrafenib plus trametinib for the anaplastic
thyroid cancer (ATC) with BRAF-V600E mutation in May
2018, as well as for the adjuvant treatment of BRAF V600E/K-
mutated melanoma in April 2018. Previous studies revealed that
dabrafenib plus trametinib have shown substantial antitumor
activity in patients with previously treated BRAF-V600Emutated
metastatic NSCLC and untreated BRAFV-600E mutated NSCLC
(50, 51). Trametinib is an orally administered MEK1/MEK2
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inhibitor that suppresses RAF-dependent MEK phosphorylation
and persistently inhibits phosphorylated ERK (a substrate of
MEK) (52). Dabrafenib is a reversible and high-efficiency ATP-
competitive inhibitor of RAF kinases, especially the mutant
BRAF (53). Subbiah et al. reported that the overall response
rate of dabrafenib plus trametinib applied in BRAF V600E-
mutated ATC (complete reaction plus partial reaction to the best
overall response) is 69% (54). In contrast to BRAF inhibitor
monotherapy, it has longer progression-free survival and overall
survival. Overall, the most common adverse events include
fatigue, pyrexia and nausea (54), consistent with previous
reports in advanced or metastatic melanoma and NSCLC (50).
Dabrafenib plus trametinib is the first regimen approved to have
significant clinical efficacy in BRAF V600E-mutated ATC.

In June 2018, the FDA approved the combination of BRAF
inhibitor encorafenib and the MEK inhibitor binimetinib
for treatment of patients with unresectable or metastatic
melanoma with a BRAF-V600E or -V600K mutation. It is the
third BRAF/MEK inhibitor combination approved following
the dabrafenib/trametinib and vemurafenib/cobimetinib
combinations (55). The main adverse events for encorafenib plus
binimetinib when applied to BRAF-V600 mutant melanoma
are gastrointestinal reactions, including nausea, diarrhea and
vomiting. Additionally, this combination has a lower calorific
value and photosensitivity than other available BRAF-MEK
inhibitor combinations do (56). Considerable evidence supports
that the median progression-free survival was 14.9 months with
encorafenib plus binimetinib, compared with 7.3 months with
vemurafenib (57). Therefore, it is an effective therapeutic option
in patients with unresectable or metastatic melanoma, with a
BRAF V600E or V600K mutation.

CONCLUSIONS

In the new era of targeted therapy, treatment options are
increasingly based on the precise molecular and genetic profiling

of tumor cells (58). Currently, the main challenge for further
novel drug development in targeted therapy is the clarification
of specific molecular mechanisms underlying the varied forms
of tumors in clinic. It has been acknowledged that cancer is
caused by a set of driver mutations. In this regard, it is of great
significance to: (1) identify and validate key mutant genes and
proteins in cancers as new targets; (2) identify patients most
likely and unlikely to benefit from certain targeted therapies;
(3) evaluate the mechanism of mutation-driven drug resistance.
In past decades, several key mutations which influence drug
sensitivity have been identified in various cancers. In order
to deal with mutation-driven drug resistance, new methods
and drugs have been discovered and approved for clinical
use (47). Even so, detailed individualized treatment strategies
targeting specific tumorigenesis and drug resistant mechanisms
are still required. Advances in these areas would allow for
more targeted and effective therapeutic options for more
cancer patients.
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Based on the structure of sanguinarine, fourteen phenanthridine derivatives were

designed and synthesized in the current study. The cytotoxic activities of synthesized

compounds were evaluated against five human cancer cell lines (MCF-7, PC3, Hela,

A549, and HepG2 cell lines) via MTT assay. Among all the compounds tested, molecule

8a exhibited significant cytotoxic activity against MCF-7 cells with a IC50 value of

0.28µM. A following up enzymatic assay indicated that compound 8a could inhibit the

activity of DNA topoisomerase I/II. Further mechanistic studies performed in the MCF-7

cell line revealed that compound 8a could arrest cell cycle in S phase and induce cell

apoptosis via downregulation of Bcl-2 and upregulation of Bax. Collectively, a potent DNA

topoisomerase inhibitor (8a) was discovered, which exhibited potential as a candidate

chemotherapeutic agent for the management of tumors in the present study.

Keywords: phenanthridine, anticancer, topoisomerase, apoptosis, cell cycle arrest

INTRODUCTION

Sanguinarine (SA) belongs to the chrysene-skeleton-based heterocyclic benzo [c] phenanthridine
alkaloids family (Figure 1), which are widely distributed in plants, such as Sanguinaria canadensis
and Papaveraceae (1–3). Although SA was isolated in the late 1940s (4), extensive research focusing
on the molecular mechanism of its anti-tumor effects has commenced only recently (5). SA has
attracted extensive attention because of its significant biological activities, including anti-tumor
(6, 7), anti-inflammatory, anti-angiogenesis, antiplatelet, antiviral, and anti-fungal effects (8–11).
The flat polyaromatic structure of SA enabled it to directly interact with DNA (12). SA-induced
cell cycle arrest and apoptosis was found to not only be caused by DNA damage, but also to
be a combined result of targeting other cell structures, such as topoisomerases (Top) (13, 14),
antiapoptotic protein (6, 15, 16), and mitochondrial membranes (17, 18).

Previous studies reported that SA might interfere with mitochondrial membranes and induce
apoptosis in the CEM leukemia cell line HL-60 (18, 19) and KB carcinoma cell line (17). The
potential mechanism was associated with nuclear factor (NF-κB) activation (1), mitochondria
damage induced caspase activation (20), and increased expression of Bax/Bcl-2 (21, 22). The
proapoptotic effects of SA have significant potential in the development of novel antitumor
agents with SA as a lead compound. In addition, SA elicited G0/G1 cell cycle arrest (23), which
can be associated with the translocation of cyclin D1 and Top II from nucleus to cytoplasm
(24, 25). Additionally, NF-κB, AP-1, MMP-9, and STAT3 inhibition were also observed following
SA treatment (26–28) and subsequently resulted in suppressed cancer cell metastasis. Moreover,
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FIGURE 1 | The structures of SA and phenanthridine.

abolishment of VEGF-induced AKT activation was also proposed
as another potential mechanism for the antiangiogenic activity of
SA (29, 30), which was believed to contribute to its anti-tumor
effects in the animal models of melanoma (31) and colorectal
cancer (26).

SA exhibited significant potential in the development of new
antitumor drugs, as indicated from the results of a wide range
of in vitro and in vivo investigations. Due to the structure of
multiple aromatic rings, further development of SA as antitumor
agent is restricted by its low solubilities and severe side effects.
To discover SA analogs with improved solubilities and activities,
a series of phenanthridine derivatives with reduced aromaticities
were designed and synthesized using phenanthridine as a core
scaffold. All the derived compounds were identified with 13C
NMR, 1H NMR, HRMS, and biologically evaluated against
MCF-7 (human breast cancer), PC3 (human prostatic cancer),
Hela (human cervical cancer), A549 (human lung cancer), and
HepG2 (human hepatocellular carcinoma) cell lines. During
further investigation of the underlying mechanism, molecular
techniques such as flow cytometry, hoechst 33258 staining and
western blotting were utilized with the representative compounds
synthesized in the current study.

Chemistry
The synthetic pathway of phenanthridine derivatives is shown
in Scheme 1. As illustrated, amino protection of starting
material 1 was performed to afforded compound 2. The
following bromine substitution and deprotection of amino
group were carried out to generate intermediate 4. Preparation
of intermediate 5 was performed by Suzuki coupling of 2-
bromoaniline derivatives with corresponding phenylboronic
acids. Treatment of intermediate 5 under acidic condition yielded
compound 6, and subsequent dehydration of compound 6

afforded 2-isocyanobiphenyls derivatives 7a-t. In the presence of
benzoyl peroxide, phenanthridine derivatives 8a-n were derived
by reacting of 2-isocyanobiphenyls derivatives with carbon
tetrachloride (32).

Cytotoxicity Assay
The cytotoxicity of synthesized compounds was evaluated against
five tumor cell lines (A549, PC3, MCF-7, HepG2, and Hela)
via MTT assay. Initially, two doses of each compound (5 and 1
µmol/L) were evaluated. As shown inTable 1, compounds 8a, 8b,
8d, 8e, 8l, 8m, and 8n exhibited significant inhibitory activities
against MCF-7, PC3, and Hela cells at the dose of 5 µmol/L.

However, when compared with the lead compound SA, molecule
8d, 8l, and 8n exhibited lower inhibitory activity at the dose of
1 µmol/L.

Based on the data mentioned above, compounds 8a, 8b, 8e,
and 8m were selected for further test with more doses against
the tumor cell lines. The IC50 values of these compounds were
summarized in Table 2, all the four compounds exhibited potent
cytotoxicity against the five tumor cell lines tested compared
with the positive control SA and clinically used antitumor drug
Etoposide (VP 16). The results indicated that compounds 8a and
8m exhibited potent activities against all the tested cancer cell
lines. Molecule 8a (IC50 = 0.28 ± 0.08) showed potency of over
6 times higher than SA (IC50 = 1.77 ± 0.06) in the inhibition of
MCF-7 cells, and molecule 8m (IC50 = 0.39 ± 0.08) exhibited
8.9 times of potency comparing to SA (IC50 = 3.49 ± 0.41) in
the inhibition of HepG2 cells. Therefore, 8a, 8b, 8e, and 8m were
selected for further mechanistical studies.

Topoisomerase Inhibition Assay
To elucidate the target profiles of the cytotoxic compounds (8a,
8b, 8e, and 8m), the inhibitory effects of these compounds
were tested against human DNA Top I and IIα by relaxing
assay using pBR322 DNA. 10-hydroxy camptothecin (OPT)
and VP 16 were used as a positive control for Top I and IIα
inhibition, respectively. The Top I/II were able to completely
convert the supercoiled DNA to open circular form in the absence
of inhibitors (Figure 2, lane B). In contrast, positive control
(OPT/VP 16) and active compounds inhibited the activity of Top,
which affected the unwinding of the supercoiled DNA, leading
to a band pattern similar to the negative control (Figure 2). As
shown in Figure 2A, positive control OPT and SA inhibited the
activity of both Top I and Top IIα. Compound 8a exhibited weak
Top I inhibition, which was similar to OPT. In the Top IIα test, all
the tested compounds exhibited potent DNA Top IIα inhibitory
activities at the concentration of 100µM (Figure 2B). Based on
the above findings, molecule 8awithmost potent cytotoxicity and
enzymatic inhibitory activities is chosen as a potential candidate
for further investigation.

Cell Cycle Analysis
To elucidate the effects of molecule 8a on cell cycle distributions,
MCF-7 cells were treated with various doses of molecule 8a (0,
0.15, 0.3, and 0.6µM) for 24 h. As shown in Figure 3, compound
8a treatment led to significant accumulation of MCF-7 cells at S
phase (from 18.86 to 42.99%) dose-dependently. While reduced
cells at the G2/M phase was detected from 23.46 to 10.45%
(0.15µM), 8.69% (0.3µM), and 5.62% (0.6µM) following
treatment with compound 8a dose-dependently. These results
suggest that compound 8a exhibited a significant antitumor
effect and led to MCF-7 cell cycle arrest at the S phase in a
dose-dependent manner.

Cell Apoptosis Assay
To further investigate the role of apoptosis in the antitumor
effect of compound 8a, Hoechst 33258 staining was performed
to investigate the nuclear morphological changes following
molecule 8a treatment on MCF-7 cells. Hoechst 33258 is a
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SCHEME 1 | Synthesis of SA derivatives 8a-n: (i) IPA, Boc2O, ice-bath; (ii) ACN, NBS; (iii) DCM, TFA; (iv) [Pd], K2CO3, DME, 80◦C; (v) HCOOH, THF, 60◦C; (vi)

POCl3, NEt3, THF, 0
◦C; (vii) BPO, AcONa, reflux.

fluorescent stain used to label DNA; live cells nuclei will be
stained with uniformly light blue and apoptotic cells nuclei will be
stained with bright blue because of chromatin condensation. As
shown in Figure 4A, higher levers of apoptotic cells with nuclear
condensation, nuclear fragmentation and enhanced brightness
were detected in the cells following treatment with various doses
of molecule 8a (0.15, 0.3, and 0.6µM). To quantify the number of
apoptotic cells and to distinguish early apoptosis and secondary
necrosis, MCF-7 cells were stained with annexin V-FITC/PI.
As shown in Figure 4B, after treatment with difference doses
of compound 8a (0, 0.15, 0.3, and 0.6µM), the percentage of
apoptotic cells were significantly increased from 11.16% of the
control to 14.35, 22.79, and 28.98%, respectively, indicating that
induction of cell apoptosis contributes to the antitumor effect of
compound 8a.

Protein Expressions of Bcl-2 and Bax
Apoptosis is a heavily regulated cell death process influenced
by a series of regulatory molecules (33). The mitochondria-
dependent pathway has been described as an important signaling
pathway of cell apoptosis regulated by the Bcl-2 family including
the pro- and anti-apoptotic proteins such as Bax (pro-apoptotic

protein) and Bcl-2 (anti-apoptotic protein) (34–36). Moreover,
the ratio of Bax/Bcl-2 is important for apoptosis induced by
the mitochondrial pathway. Therefore, the effect of compound
8a on the levels of Bax and Bcl-2 was evaluated in MCF-7
cells. The results indicated that compound 8a could significantly
downregulate Bcl-2 levels and upregulate Bax levels in MCF-
7 cells, increasing the ratio of Bax/Bcl-2 in a dose-dependent
manner (Figure 5). Collectively, these results suggest that
compound 8a induced apoptosis by regulating the expression of
apoptosis-related proteins.

CONCLUSIONS

Based on the structure of sanguinarine, fourteen phenanthridine
derivatives 8a-m were synthesized and evaluated for their
cytotoxic activity against five different human cancer cell
lines. Among the evaluated compounds, 8a exhibited a
broad spectrum of anti-proliferative activities against all the
tested cancer cell lines. Further mechanistic assay revealed
that compound 8a could inhibit the activity of both DNA
Top I and Top II, as well as preventing cell transition
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TABLE 1 | The inhibitory activity on tumor cell of phenanthridine derivativesa.

Compoundb MCF-7 (%) PC3 (%) Hela (%)

5 µM 1 µM 5 µM 1 µM 5 µM 1 µM

8a 95.66 71.50 91.21 78.47 88.50 58.76

8b 93.66 58.29 89.77 64.16 84.90 54.01

8c 25.06 19.56 25.32 <5 19.66 16.00

8d 83.17 27.48 81.72 43.50 58.92 28.78

8e 95.36 60.07 88.65 73.04 83.80 23.52

8f 36.73 15.99 15.65 <5 16.26 <5

8g 18.23 23.76 <5 <5 <5 <5

8h 31.23 16.30 26.40 <5 15.74 8.61

8i 16.15 13.60 <5 <5 <5 <5

8j 62.18 14.00 64.62 <5 37.46 7.47

8k 19.74 32.60 12.81 <5 8.14 <5

8l 94.05 34.75 89.37 42.52 81.62 32.25

8m 97.83 89.34 95.26 88.75 87.57 80.26

8n 72.26 49.63 64.61 <5 30.69 9.72

SA 98.29 53.86 96.42 95.60 96.13 64.41

VP16 41.84 13.67 38.39 22.39 29.18 17.42

aValues are average of three determinations and deviation of data results is <20%.
bAll compounds were dissolved in DMSO for testing.

TABLE 2 | The ICa
50 of phenanthridine derivatives.

Compound IC50 (µM) a

MCF-7 PC3 Hela A549 HepG2

8a 0.28 ± 0.08 0.30 ± 0.06 0.48 ± 0.07 0.89 ± 0.07 0.70 ± 0.09

8b 0.77 ± 0.04 0.76 ± 0.01 0.66 ± 0.12 0.85 ± 0.03 1.23 ± 0.08

8e 0.61 ± 0.03 0.45 ± 0.04 1.93 ± 0.02 0.89 ± 0.09 2.21 ± 0.14

8m 0.24 ± 0.08 0.22 ± 0.04 0.49 ± 0.02 0.85 ± 0.04 0.39 ± 0.08

SA 1.77 ± 0.06 1.67 ± 0.33 1.07 ± 0.06 2.68 ± 0.18 3.49 ± 0.41

VP16 >10 >10 >10 >10 >10

a IC50 values are represented as mean ±SD (n = 3).

FIGURE 2 | Effects of phenanthridine derivatives and positive control on human Top I (A)/IIa (B). Native superhelix pBR322 was incubated at 37◦C for 30min with 2

units of human Top I/IIα in the absence (lane 2) or presence of compound at concentration 100µM. One hundred micromolar OPT, VP 16, and SA were used as

positive controls, respectively. Negatively supercoiled pBR322 (SC) and relaxed DNA (RLX) were shown. DNA samples were run on agarose gel followed by

Genecolour I TM staining.

from S to G2 phase dose-dependently. Apoptosis studies
against MCF-7 cells indicated that downregulation of Bcl-2
and upregulation of Bax expression may contribute to the

anti-proliferative activities. In summary, these findings suggest
that molecule 8a is a potent lead compound in the derived
phenanthridine derivatives. Further molecule 8a based structural
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FIGURE 3 | Cell cycle analysis using PI staining of compound 8a on MCF-7

cells. Cells were treated with compound 8a at 0.15 (B), 0.3 (C), and 0.6 (D)

µM for 24 h, compared with the control (A). Cell cycle were detected by flow

cytometry.

modification may be beneficial in the discovery of novel
anticancer agents with improved antitumor activity and reduced
side effects.

MATERIALS AND METHODS

Chemistry
All chemicals were obtained from commercial suppliers and used
without further purification. Reactions progress was detected by
thin layer chromatography (TLC) and visualized under UV light.
Two hundred to three hundred mesh silica gel was used for
column chromatography. All compounds were characterized by
13C NMR, 1H NMR, and HRMS. 1H and 13C NMR spectra were
recorded on Mercury Plus-400 with internal standard used TMS
and recorded in parts per million (ppm). Date were reported
as s (singlet), br (broad), s (singlet), d (doublet), t (triplet), q
(quartet), m (multiplet), and coupling constant (J) in hertz (Hz).
Melting point was determined by MP 100 Automatic Melting
Point Apparatus.

Representative Procedure for the Synthesis of

Compounds 7a-t
To dissolve compound 6, THF and NEt3 was added, the solution
was added to POCl3 (11 mmol) until the solution was cooled
to 0◦C. The reaction was quenched by saturated Na2CO3 until
complete consumption of starting material, monitored by TLC.
The solution of the crude product was extracted with ethyl

acetate, and organic layer was dried over Na2SO4 and evaporated
to dryness. The residue was purified by column chromatography
with silica gel (200–300 mesh).

2-isocyano-3′,4′-Methylenedioxy-4,5-methylenedioxy-1,1′-
biphenyl

(7a)
Yellowish -white solid, Yield 78%;Mp (154.4–156.1◦C); 1HNMR
(400 MHz, CDCl3) δ 6.90 (d, J = 8.9Hz, 4H), 6.78 (s, 1H), 6.05
(s, 2H), 6.01 (s, 2H).

2-isocyano-4,5-methylenedioxy-1,1′-biphenyl (7b)
Brown solid, Yield 80%; Mp (90.1–90.3◦C); 1H NMR (400 MHz,
CDCl3) δ 7.54–7.30 (m, 5H), 6.91 (s, 1H), 6.82 (s, 1H), 6.05
(s, 2H).

2-isocyano-4,5-methylenedioxy-4′-methoxy-1,1′-biphenyl
(7c)
White solid, Yield 81%; Mp (132–133.1◦C);1H NMR (400 MHz,
CDCl3) δ 7.39 (d, J = 8.7Hz, 2H), 6.98 (d, J = 8.7Hz, 2H), 6.90
(s, 1H), 6.80 (s, 1H), 6.05 (s, 2H), 3.85 (s, 3H).

2-isocyano-4,5-methylenedioxy-2′-methoxy-1,1′-biphenyl

(7d)
Yellowish-white solid, Yield 82%; Mp (139.4–140.7◦C); 1HNMR
(400 MHz, CDCl3) δ 7.43–7.34 (m, 1H), 7.20 (dd, J = 7.5, 1.8Hz,
1H), 7.07–6.96 (m, 2H), 6.90 (s, 1H), 6.79 (s, 1H), 6.05 (s, 2H),
3.83 (s, 3H).

2-isocyano-4,5-methylenedioxy-2′,4′-dimethoxy-1,1′-

biphenyl
(7e)
Brown solid, Yield 79%; Mp (161.4–161.9◦C); 1H NMR (400
MHz, CDCl3) δ 7.10 (s, 1H), 6.88 (s, 1H), 6.77 (s, 1H), 6.56 (dt, J
= 5.2, 2.5Hz, 2H), 6.04 (s, 2H), 3.85 (s, 3H), 3.81 (s, 3H).

2-isocyano-3′,4′-methylenedioxy-5-methoxy-1,1′-biphenyl

(7f)
Yellowish-white solid, Yield 81%; Mp (119.6–120.1◦C); 1HNMR
(400 MHz, CDCl3) δ 7.58 (d, J = 8.6Hz, 1H), 7.12 (d, J = 1.7Hz,
1H), 7.09–6.95 (m, 4H), 6.10 (s, 2H), 3.84 (s, 3H).

2-isocyano-5-methoxy-1,1′-biphenyl (7g)
Black oil, Yield 83%; 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J =
8.7Hz, 1H), 7.58–7.42 (m, 5H), 7.08–6.99 (m, 2H), 3.85 (s, 3H).

2’-isocyano-3,4-methylenedioxy-1,1′-biphenyl (7h)
Green solid, Yield 85%; Mp (71.6–73.9◦C); 1H NMR (400 MHz,
CDCl3) δ 6.02 (s, 2H), 7.02–6.94 (m, 2H), 6.94–6.87 (m, 1H), 7.46
(d, J = 9.3Hz, 1H), 7.43–7.30 (m, 3H).

2’-isocyano-2,4-dimethoxy-1,1′-biphenyl (7i)
Yellowish-white solid, Yield 79%; Mp (90.1–90.5◦C); 1H NMR
(400 MHz, CDCl3) δ 7.41 (ddd, J = 8.9, 7.4, 1.8Hz, 2H), 7.38–
7.29 (m, 2H), 7.18–7.10 (m, 1H), 6.58 (dd, J = 5.7, 2.2Hz, 2H),
3.86 (s, 3H), 3.81 (s, 3H).
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FIGURE 4 | Pro-apoptotic effect of compound 8a on MCF-7 cells. (A) Apoptotic assay by Hoechst 33258. MCF-7 cells were treated with compound 8a at 0.15, 0.3,

and 0.6µM for 24 h, and then cells were stained with Hoechst 33258 and visualized under a fluorescent microscope. (B) Apoptotic assay by flow cytometry. MCF-7

cells were treated with compound 8a at 0.15, 0.3, and 0.6µM for 24 h. Then cells were stained with Annexin V-FITC/PI and were detected by flow cytometry analysis.

FIGURE 5 | Effects of 8a on the expressions of Bcl-2 (A), Bax (B) and the expression ratio (C) in MCF-7 cells. The cells were treated with different concentrations

(0.15, 0.3, and 0.6µM) for 24 h; β-actin served as an internal control. All date were represented as mean ± SD (n = 3). **p < 0.01, compared with control group.

2′-isocyano-2,4,5′-trimethoxy-1,1′-biphenyl (7j)
Yellow solid, Yield 80%; Mp (104.6–104.9◦C); 1H NMR (400
MHz, CDCl3) δ 7.35 (d, J = 8.4Hz, 1H), 7.14 (d, J = 8.9Hz, 1H),
6.88–6.79 (m, 2H), 6.58 (dd, J = 5.4, 2.3Hz, 2H), 3.86 (s, 3H),
3.82 (s, 6H).

2-isocyano-3′,4′-methylenedioxy-4-methoxy-1,1′-biphenyl
(7k)
Yellowish-white solid, Yield 75%; Mp (120.6–120.9◦C); 1HNMR
(400 MHz, CDCl3) δ 7.28 (d, J = 8.4Hz, 1H), 7.02–6.86 (m, 5H),
6.02 (s, 2H), 3.85 (s, 3H).

2-isocyano-4-methoxy-1,1′-biphenyl (7l)
Yellow solid, Yield 78%; Mp (117.3–117.6◦C); 1H NMR
(400 MHz, CDCl3) δ 7.53–7.43 (m, 4H), 7.43–7.36
(m, 1H), 7.33 (d, J = 9.0Hz, 1H), 7.05–6.97 (m, 2H),
3.86 (s, 3H).

2-isocyano-4,4′-dimethoxy-1,1′-biphenyl (7m)
Yellowish brown solid, Yield 83%; Mp (102.4–102.8◦C); 1H
NMR (400 MHz, CDCl3) δ 7.44–7.37 (m, 2H), 7.30 (d,
J = 9.0Hz, 1H), 6.99 (d, J = 9.0Hz, 4H), 3.85 (d,
J = 4.0Hz, 6H).
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2-isocyano-2′,4-dimethoxy-1,1′-biphenyl (7n)
White solid, Yield 82%; Mp (125.5–126◦C); 1H NMR (400 MHz,
CDCl3) δ 7.48–7.34 (m, 1H), 7.33–7.17 (m, 2H), 7.08–6.94 (m,
4H), 3.84 (d, J = 5.4Hz, 6H).

2-isocyano-2′,4,4′-trimethoxy-1,1′-biphenyl (7o)
Yellowish-white solid, Yield 80%; Mp (105.9–107.3◦C); 1HNMR
(400 MHz, CDCl3) δ 7.26 (d, J = 1.7Hz, 1H), 7.12 (d, J = 8.9Hz,
1H), 7.01–6.93 (m, 2H), 6.61–6.53 (m, 2H), 3.90–3.79 (m, 9H).

2-isocyano-3′,4′-methylenedioxy-4,5-dimethoxy-1,1′-

biphenyl
(7p)
Brown solid, Yield 84%; Mp (171.7–172.3◦C); 1H NMR (400
MHz, CDCl3) δ 6.99–6.86 (m, 4H), 6.80 (s, 1H), 6.02 (s, 2H), 3.91
(d, J = 2.5Hz, 6H).

2-isocyano-4,5-dimethoxy-1,1′-biphenyl (7q)
Yellowish-white solid, Yield 82%; Mp (139.4–139.9◦C); 1HNMR
(400MHz, CDCl3) δ 7.27 (s, 1H), 7.01 (s, 1H), 3.85 (d, J = 3.7Hz,
5H), 7.58–7.47 (m, 3H), 7.47–7.39 (m, 1H).

2-isocyano-4,4′,5-trimethoxy-1,1′-biphenyl (7r)
Yellowish brown solid, Yield 84%;Mp (102.7–103.7◦C); 1HNMR
(400 MHz, CDCl3) δ 7.43 (d, J = 8.7Hz, 2H), 7.00 (d, J = 8.7Hz,
2H), 6.93 (s, 1H), 6.82 (s, 1H), 3.92 (d, J = 1.5Hz, 6H), 3.86
(s, 3H).

2-isocyano-2′,4,5-trimethoxy-1,1′-biphenyl (7s)
Yellow solid, Yield 83%; Mp (103–103.6◦C); 1HNMR (400 MHz,
CDCl3) δ 7.44–7.35 (m, 1H), 7.28–7.20 (m, 1H), 7.09–6.98 (m,
2H), 6.94 (s, 1H), 6.82 (s, 1H), 3.94–3.82 (m, 9H).

2-isocyano-2′,4,4′,5-tetramethoxy-1,1′-biphenyl (7t)
Yellowish-white solid, Yield 82%; Mp (123.4–123.9◦C); 1HNMR
(400 MHz, CDCl3) δ 7.15 (d, J = 8.9Hz, 1H), 6.92 (s, 1H), 6.79
(s, 1H), 6.57 (dq, J = 4.2, 2.4Hz, 2H), 3.91 (s, 3H), 3.88 (s, 3H),
3.86 (s, 3H), 3.82 (s, 3H).

Representative Procedure for the Synthesis of

Compounds 8a-8n
A mixture was produced of 2-isocyanobiphenyls derivatives (0.5
mmol), benzoyl peroxide (0.6 mmol), AcONa (1.0 mmol) in CCl4
(2mL) under an atmosphere of N2. The reaction was stirred
under reflux until complete consumption of starting material,
monitored by TLC (about 16h). The solution of the crude product
was extracted with ethyl acetate. The organic layers were washed
with a saturated solution of NaHCO3 and dried over Na2SO4

and evaporated to dryness. The residue was purified by column
chromatography with silica gel (200–300 mesh) to afford the
product 6-trichloromethylphenanthridine.

2,3-methylenedioxy-8,9-methylenedioxy-6-

(trichloromethyl)phenanthridine
(8a)
Yellow solid, Yield 40%; Mp (198.7–199.6◦C); 1H NMR (400
MHz, CDCl3): δ 8.23 (s, 1H), 7.77 (s, 1H), 7.67 (s, 1H), 7.53
(s, 1H), 6.18 (d, J = 8.5Hz, 4H); 13C NMR(101 MHz, DMSO):

δ 151.43, 150.27, 149.97, 149.09, 148.77, 147.57, 133.32, 129.68,
128.98, 115.89, 107.21, 104.01, 103.18, 102.90, 101.57, 100.33;
HRMS (ESI)m/z 383.9592 (M+H).

2,3-methylenedioxy-6-(trichloromethyl)phenanthridine (8b)
Yellowish solid, Yield 39%; Mp (175.4–176.5◦C); 1H NMR(400
MHz, CDCl3): δ 8.92 (d, J = 8.4Hz, 1H), 8.49 (d, J = 8.2Hz,
1H), 7.91–7.78 (m, 2H), 7.68 (t, J = 7.6Hz, 1H), 7.60 (s, 1H), 6.19
(s, 2H); 13C NMR(101 MHz, DMSO): δ 150.59, 150.37, 150.29,
137.46, 134.81, 131.31, 127.60, 127.04, 124.18, 121.88, 119.36,
107.77, 103.08, 100.50; HRMS (ESI)m/z 339.9696 (M+H).

2,3-methylenedioxy-8-methoxy-6-

(trichloromethyl)phenanthridine
(8c)
Brown solid, Yield 41%; Mp (93.8–95.0◦C); 1H NMR(400 MHz,
CDCl3) δ 8.12–8.05 (m, 8H), 7.80 (s, 1H), 7.67 (t, J = 7.5Hz,
4H), 6.17 (s, 2H), 4.01 (s, 3H); 13C NMR(101 MHz, DMSO)
δ 167.67, 163.08, 162.77, 135.60, 134.08, 133.34, 131.07, 130.82,
129.93, 129.87, 129.78, 129.70, 129.31, 129.01, 128.45, 124.97;
HRMS (ESI)m/z 369.9804 (M+H).

2,3-methylenedioxy-10-methoxy-6-
(trichloromethyl)phenanthridine(8d)
Yellow solid; Yield 38%; Mp (219.7–222.3◦C); 1H NMR (400
MHz, DMSO) δ 7.95 (d, J = 6.3Hz, 1H), 7.81 (t, J = 8.3Hz, 1H),
7.59 (d, J = 3.6Hz, 2H), 7.31 (t, J = 7.8Hz, 1H), 6.32 (s, 2H), 3.69
(s, 3H); HRMS (ESI)m/z 369.9804 (M+H).

2-methoxy-6-(trichloromethyl)phenanthridine (8e)
Yellowish-white solid; Yield 37%; Mp (119–120.9◦C); 1H NMR
(400 MHz, CDCl3): δ 8.96 (d, J = 8.2Hz, 1H), 8.65 (d, J =

8.4Hz, 1H), 8.19 (d, J= 9.0Hz, 1H), 7.94–7.83 (m, 2H), 7.80–7.71
(m, 1H), 7.42 (dd, J = 9.0, 2.7Hz, 1H), 4.05 (s, 3H); 13C NMR
(101 MHz, DMSO): δ 160.62, 149.93, 135.31, 134.27, 132.51,
131.38, 128.05, 127.82, 126.70, 124.59, 120.53, 120.27, 104.00,
98.71, 56.46; HRMS (ESI)m/z 325.9901 (M+H).

8,9-methylenedioxy-3-methoxy-6-

(trichloromethyl)phenanthridine
(8f)
Brown solid; Yield 32%; Mp (197.5–197.8◦C); 1H NMR (400
MHz, CDCl3) δ 8.36–8.19 (m, 2H), 7.91 (s, 1H), 7.59 (d, J
= 2.7Hz, 1H), 7.35 (dd, J = 9.1, 2.7Hz, 1H), 6.20 (s, 2H),
4.00 (s, 3H); 13C NMR (101 MHz, DMSO): δ 160.32, 151.87,
141.76, 133.80, 124.77, 120.86, 119.65, 115.39, 109.96, 108.77,
104.45, 103.88, 103.25, 101.29, 100.64, 56.08; HRMS (ESI) m/z
369.9798 (M+H).

3-methoxy-6-(trichloromethyl)phenanthridine (8g)
Yellow solid; Yield 26%; Mp (175.1–175.3◦C); 1H NMR (400
MHz, CDCl3): δ 8.93 (d, J = 8.7Hz, 1H), 8.62 (d, J = 8.4Hz, 1H),
8.48 (d, J = 9.1Hz, 1H), 7.90–7.81 (m, 1H), 7.72–7.63 (m, 2H),
7.44–7.36 (m, 1H), 4.02 (s, 3H). 13C NMR (101 MHz, DMSO):
δ 160.81, 152.92, 142.01, 135.11, 131.94, 127.91, 126.82, 124.58,
123.65, 120.95, 119.09,119.06, 110.67, 98.60, 56.13. HRMS (ESI)
m/z 325.9899 (M+H).
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3,8-dimethoxy-6-(trichloromethyl)phenanthridine (8h)
Yellow solid; Yield 40%; Mp (146.7–147.2◦C); 1H NMR (400
MHz, CDCl3): δ 8.52 (d, J = 9.2Hz, 1H), 8.39 (d, J = 9.1Hz, 1H),
8.28 (d, J = 2.6Hz, 1H), 7.63 (d, J = 2.7Hz, 1H), 7.50 (dd, J =
9.2, 2.6Hz, 1H), 7.38 (dd, J = 9.1, 2.7Hz, 1H), 4.01 (d, J = 2.4Hz,
6H); 13C NMR (101 MHz, DMSO): δ 160.06, 157.07, 151.84,
141.12, 129.60, 125.46, 124.08, 122.20, 121.18, 120.32, 119.35,
110.40, 108.81, 56.07, 55.91; HRMS (ESI)m/z 356.0009 (M+H).

3,10-dimethoxy-6-(trichloromethyl)phenanthridine (8i)
Yellow solid; Yield 37%; Mp (149.9–150.9◦C). 1H NMR (400
MHz, CDCl3): δ 9.46 (d, J = 9.5Hz, 1H), 8.60 (d, J = 8.5Hz, 1H),
7.72–7.56 (m, 2H), 7.41–7.29 (m, 2H), 4.16 (s, 3H), 4.02 (s, 3H);
13C NMR (101 MHz, DMSO) δ 159.78, 157.90, 152.59, 142.64,
129.33, 127.12, 125.28, 120.88, 120.27, 120.03, 118.54, 113.19,
110.92, 56.63, 55.97; HRMS (ESI)m/z 356.0009 (M+H).

3,8,10-trimethoxy-6-(trichloromethyl)phenanthridine (8j)
Yellow solid; Yield 35%; Mp (97–97.3◦C); 1H NMR (400 MHz,
CDCl3): δ 7.98 (d, J = 2.3Hz, 1H), 7.70–7.60 (m, 3H), 7.35 (dd, J
= 9.5, 2.9Hz, 1H), 4.12 (s, 3H), 4.01 (d, J = 2.9Hz, 6H); 13CNMR
(101 MHz, DMSO): δ 162.77, 159.25, 159.09, 157.44, 135.58,
130.82, 129.78, 129.00, 128.38, 120.61, 120.42, 110.71, 103.67,
101.47, 56.84, 55.95, 55.92; HRMS (ESI)m/z 386.0112 (M+H).

8,9-methylenedioxy-6-(trichloromethyl)phenanthridine (8k)
Yellowish solid; Yield 32%; Mp (164.4–165◦C); 1H NMR (400
MHz, CDCl3) δ 8.43–8.36 (m, 1H), 8.30 (s, 1H), 8.27–8.20
(m, 1H), 8.02 (s, 1H), 7.73 (tt, J = 7.1, 5.3Hz, 2H), 6.24 (d,
J = 16.4Hz, 2H); 13C NMR (101 MHz, DMSO) δ 151.82,
151.22, 148.15, 140.03, 133.36, 130.68, 129.57, 125.30, 123.39,
118.56, 116.49, 114.73, 104.69, 103.41, 101.84; HRMS (ESI) m/z
339.9697 (M+H).

2,3-dimethoxy-6-(trichloromethyl)phenanthridine (8l)
Yellow solid; Yield 43%; Mp (174.5–176.1◦C); 1H NMR (400
MHz, CDCl3): δ 8.95 (d, J = 8.6Hz, 1H), 8.58 (d, J = 8.4Hz,
1H), 8.16–8.08 (m, 4H), 7.86 (s, 2H), 7.74–7.58 (m, 4H), 7.49
(t, J = 7.8Hz, 4H), 4.16 (s, 3H), 4.11 (s, 3H); 13C NMR (101
MHz, DMSO): δ 167.75, 151.93, 151.86, 133.29, 131.16, 129.69,
128.99, 127.70, 126.77, 124.17, 119.98, 119.33, 110.56, 102.99,
56.68, 56.30; HRMS (ESI)m/z 356.0010 (M+H).

2,3,8-trimethoxy-6-(trichloromethyl)phenanthridine (8m)
Yellow solid; Yield 39%; Mp (125.5–126.9◦C); 1H NMR (400
MHz, CDCl3): δ 8.48 (d, J = 9.1Hz, 1H), 8.29 (d, J = 2.5Hz,
1H), 7.77 (s, 1H), 7.62 (s, 1H), 7.50 (dd, J = 9.2, 2.6Hz, 1H), 4.14
(s, 3H), 4.09 (s, 3H), 4.02 (s, 3H); 13C NMR (101 MHz, DMSO):
δ 157.06, 152.00, 151.26, 149.05, 135.36, 129.09, 128.95, 126.01,
121.63, 120.63, 120.29, 110.36, 108.35, 102.47, 56.64, 56.23, 55.89;
HRMS (ESI)m/z 386.0115 (M+H).

8,10-dimethoxy-6-(trichloromethyl) phenanthridine (8n)
Yellow solid; Yield 39%; Mp (161.3–162◦C); 1HNMR (400 MHz,
CDCl3): δ 9.45–9.38 (m, 1H), 8.28–8.21 (m, 1H), 8.01 (d, J =
2.3Hz, 1H), 7.71 (dd, J = 6.5, 3.5Hz, 2H), 7.00 (d, J = 2.4Hz,
1H), 4.13 (s, 3H), 4.02 (s, 3H); 13C NMR (101 MHz, DMSO):
δ 160.02, 158.37, 151.25, 139.93, 130.95, 130.05, 128.51, 127.15,

124.74, 122.76, 119.71, 103.62, 101.98, 99.01, 56.93, 56.04; HRMS
(ESI)m/z 356.0007 (M+H).

Pharmacology
Cell Culture
A549, PC3, MCF-7, HepG2 and Hela cell lines were obtained
from the Chinese Academy of Sciences Cell Bank. A549, Hela
and PC3 were cultured in RPMI-1640 medium supplemented
with 10% FBS, MCF-7 cells were maintained in MEM medium
supplemented with 10% FBS, HepG2 cells were cultured in
DMEM medium supplemented with 10% FBS. All the cell lines
were cultured at humidified atmosphere containing 5% CO2 at
37◦C. The stock solutions (20mM) of phenanthridine derivatives
were prepared in DMSO and added at desired concentrations to
the cell culture. DMSO concentration did not exceed 1:1,000 in
the final culture.

MTT Assay
Cytotoxic activities of the phenanthridine derivatives was
evaluated by MTT assay. The stock solutions of phenanthridine
derivatives were diluted with culture medium. The cells were
seeded in 96-well plates at a density 5 × 103 cells per well and
incubated until confluency 90–95%, then each well was treated
with 100 µL medium containing the desired concentrations
of phenanthridine derivatives and incubated for 48 h. 20 µL
MTT working solution (5 mg/mL) was then added to each
well and incubated for another 4 h. At the end of incubation,
the medium was carefully removed, and 200 µL DMSO was
added. The optical density at 490 nm and 630 nm were then
measured with a microplate reader (MODEL). The percentage
of cell growth inhibition was calculated with the following
equation: % inhibition = [1–(Sample group OD490 - Sample
group OD630)/(Control group OD490-Control group OD630)] ×
100%. The IC50 values were calculated with Origin 7.5 software,
and standard deviations of the IC50 values were obtained from at
least 3 independent experiments.

DNA Top I and IIα Relaxation Assay In vitro
The human Top I and IIα inhibitory activity was determined by
agarose gel electrophoresis. Reaction mixture was prepared with
0.5 µg pBR322 supercoiled DNA (TaKaRa) and human Top I
(TaKaRa) or IIα (TopoGEN) enzyme in the absence or presence
of compound in the Top reaction buffer (Top I: DNATop I buffer
2 µL, DNA Top I 1U, 0.1% BSA 2 µL and sterile water up to 20
µL; Top IIα: DNA Top IIα buffer A 2µL, DNATop IIα buffer B 2
µL, DNA Top IIα 1U and sterile water up to 20µL). After 30min
of incubation at 37◦C, the reaction mixture was electrophoresed
on 0.8% agarose gel at 80V for 50min with TAE running buffer.
The gel was then immersed in the Genecolour I TM staining
solution for 45min and photographed under UV light.

Cell Cycle Assay
MCF-7 cells in logarithmic growth phase were seeded in 6-well
plates (6 × 105 cells/well) and incubated with different doses of
compound 8a (0, 0.15, 0.3, and 0.6µM) for 24 h. Cells were then
washed twice with cold PBS and fixed in 70% precooled ethanol at
4◦C for 12 h. After the fixation, cells were washed again with PBS
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and stained with PI/RNase A for 30min at room temperature,
and eventually subjected to flow cytometry (CytoFLEX, Beckman
Coulter). for cell cycle distribution determination.

Hoechst 33258 Staining
MCF-7 cells in logarithmic growth phase were seeded in 6-well
plates (4 × 105 cells/well) and incubated with different doses of
compound 8a (0, 0.15, 0.3, and 0.6µM) for 24 h. Cells were then
washed twice with PBS and stained with Hoechst 33258 working
solution for 30min at 37◦C under 5% CO2. The morphological
changes of apoptotic cells were observed with a fluorescence
microscope (Leica DMI 4000B) with blue filter.

Annexin V/PI Detection
MCF-7 cells in logarithmic growth phase were seeded in 6-well
plates (4 × 105 cells/well) and incubated with different doses
of compound 8a (0, 0.15, 0.3, and 0.6µM) for 24 h. After the
incubation, cells were washed with PBS, collected, resuspended
with binding buffer from the Annexin V-FITC kit (Thermo fisher
Co., USA), and then added with 5 µl annexin V-FITC and mixed
gently. After 10min of incubation, 1 µl PI was added to each
sample and mixed gently. After incubation at room temperature
for another 20min in the dark, cells were subjected to flow
cytometer (CytoFLEX, Beckman Coulter).

Western Blotting
MCF-7 cells were incubated with different doses of compound
8a (0, 0.15, 0.3, and 0.6µM) for 24 h, and then total cell
proteins were extracted with RIPA buffer supplemented with
1:100 protease inhibitor (info) and phosphatase inhibitor (info).
Sample protein concentrations were determined with BCA assay
(ComWin Biotech Co., Beijing, China), then equal amounts of
protein (30 µg) were mixed with sampling buffer and denatured
for 5min at 100◦C. Resulting samples were then subjected to
Sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-
PAGE). After electrophoresis, proteins were transferred to
polyvinylidene difluoride (PVDF) membrane (Millipore) and

blocked with 5% fat-free dry milk in 1×Tris-buffered saline
(TBST) for 2 h at room temperature. Membranes were then
probed with Bcl-2 (rabbit, 1:1,000, Santa Cruz, CA), Bax (rabbit,
1:1,000, Santa Cruz, CA) and β-actin antibodies at 4◦C overnight.
The membranes were then washed with TBST three times and
incubated with anti-rabbit secondary antibody (Santa Cruz, CA)
and visualized with ECL-detecting reagents (ComWin Biotech
Co., Beijing, China). The images were obtained from 6000 pro
(Clinx Science Instruments Co., Ltd., Shanghai, China) and
analyzed with Image Studio Lite software.

Statistical Analysis
Results were expressed as mean ± standard deviation (SD) of
three independent experiments performed in triplicates (n =

3). SPSS 19.0 software were used for statistical analysis and
the means between two groups were compared by one way
analysis of variance (ANOVA) with Dunnett’s test, P < 0.05 was
considered significant.
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BRAF inhibitor therapy may provide profound initial tumor regression in metastatic

melanoma with BRAF V600 mutations, but treatment resistance often leads to disease

progression. A multi-center analysis of BRAF inhibitor resistant patient tissue samples

detected genomic changes after disease progression including multiple secondary

mutations in the MAPK/Erk signaling pathway, mutant BRAF copy number gains, and

BRAF alternative splicing as the predominant putative mechanisms of resistance, but

41.7% of samples had no known resistance drivers. In vitro models of BRAF inhibitor

resistance have been developed under a wide variety of experimental conditions to

investigate unknown drivers of resistance. Several in vitro models developed genetic

alterations observed in patient tissue, but others modulate the response to BRAF

inhibitors through increased expression of receptor tyrosine kinases. Both secondary

genetic alterations and expression changes in receptor tyrosine kinases may increase

activation of MAPK/Erk signaling in the presence of BRAF inhibitors as well as activate

PI3K/Akt signaling to support continued growth. Melanoma cells that develop resistance

in vitro may have increased dependence on serine or glutamine metabolism and

have increased cell motility and metastatic capacity. Future studies of BRAF inhibitor

resistance in vitro would benefit from adhering to experimental parameters that reflect

development of BRAF inhibitor resistance in patients through using multiple cell lines,

fully characterizing the dosing strategy, and reporting the fold change in drug sensitivity.

Keywords: melanoma, BRAF inhibitor, vemurafenib, dabrafenib, cell line, drug resistance, metabolism, invasion

INTRODUCTION

Melanomamakes up 6% of estimated new cancer cases inmen and 4% in women, and incidence has
been increasing since 1975 (1). BRAF mutations occur in more than 50% of cutaneous melanomas,
and BRAF V600E occurs most frequently, which confers constitutive monomeric activation of
BRAF kinase activity (2, 3). The identification of oncogenic BRAF signaling increased interest
in targeted inhibitors toward mutant BRAF variants, and the FDA has approved two targeted
BRAF inhibitors, vemurafenib in 2011 and dabrafenib in 2013, for treatment of non-resectable
BRAF V600E/K mutant melanoma. Despite the rapid response and short-term increases in patient
survival, resistance to BRAF inhibition persists. In 2017, combination therapy of dabrafenib plus
the MEK inhibitor, trametinib was FDA approved for treatment of melanoma to forestall the
development of BRAF inhibitor resistance. This review summarizes the potential events driving
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BRAF inhibitor resistance detected in patient tissue and contrasts
them with in vitro studies of BRAF inhibitor resistance through
comparison of methods and results.

BRAF Inhibitor Resistance in Patients With
Melanoma
Phase-3 clinical trials of vemurafenib treatment for BRAF
V600E/K melanoma demonstrated improvements in median
progression-free survival relative to dacarbazine (6.9 months
vs. 1.6 months) and increased median overall survival (13.6
vs. 9.7 months) (4). Phase-3 clinical trials of dabrafenib
treatment for BRAFV600E melanoma observed improvements
in median progression free survival relative to dacarbazine
(5.1 vs. 2.7 months) (5). Phase-3 clinical trials of dabrafenib
and trametinib combination therapy vs. dabrafenib alone found
increased median progression-free survival (11.1 vs. 8.8 months)
and increased median overall survival (25.1 vs. 18.7 months)
(6). Treatment with BRAF/MEK inhibitors often provides
remarkable disease regression initially, but resistance to therapy
frequently develops within 12 months as indicated by median
progression-free survival.

BRAF inhibitor resistance in melanoma is supported through
recovery of MAPK/Erk signaling or activation of PI3K/Akt
signaling. These pathways may be activated through mutations,
copy-number alterations, or changes in expression. A summary
diagram including these signaling pathways and a breakdown
of common alterations supporting BRAF inhibitor resistance are
illustrated in Figure 1. A multi-center analysis of BRAF inhibitor
resistance combining three comprehensive genome sequencing
studies of pre-treatment and post-progression cases of melanoma
identified resistance driving events in 58.3% (77/132) of samples
obtained from 100 individuals, but failed to identify any known
mechanism of resistance in the remaining 41.7% of samples
(7). Johnson et al. provide a complete breakdown of the
frequency of the resistance mechanisms within this combined
data set. Multiple resistance mechanisms were observed within
individual samples and unique resistance mechanisms were
observed between samples from the same patient. BRAF
amplification and alternative splicing were observed most
frequently followed by NRAS mutations and MEK1/2 mutations.
Mutations in the PI3K/Akt pathway are less frequently observed
in patient samples. Despite increased median progression-free
survival when treating patients with dabrafenib plus trametinib
relative to dabrafenib alone, treatment resistance still develops.
Patients treated with dabrafenib/trametinib combination therapy
developed alterations in the same genes that support single-agent
resistance including MEK1/2 mutations, BRAF amplification,
BRAF alternative splicing, and NRAS mutations between pre-
treatment and post-progression samples (8, 9). Clinical studies
of BRAF inhibitor resistance leave an incomplete picture of the
diverse set of mechanisms supporting BRAF inhibitor resistance.
This review summarizes recent studies in which BRAF inhibitor
resistance was induced stochastically in cell lines via prolonged
exposure to a BRAF inhibitor. Major mechanisms identified in
these studies are included in Figure 1 and discussed in more
detail in this review.

BRAF Inhibitor Resistance in Melanoma
Cell Lines
Receptor Tyrosine Kinase Expression
Receptor tyrosine kinases may act as upstream activators
of MAPK/Erk signaling, and increased expression in BRAF
inhibitor resistant cells has been described in multiple studies.
Shaffer et al. demonstrated that resistance to BRAF inhibitors
in WM989 and WM983B cells occurs through non-heritable,
transient expression of multiple resistance-associated genes
including receptors like AXL receptor tyrosine kinase (AXL),
epidermal growth factor receptor (EGFR), fibroblast growth
factor receptor 1 (FGFR1), and platelet-derived growth factor
receptor beta (PDGFRB) among others (10). Other studies
have detected expression changes in these genes but do not
point to a single pattern of expression change. Nazarian et al.
demonstrated that increased expression of PDGFRB conferred
resistance to M229 and M238 cells, but Jazirehi et al. found
that resistant M238 cells had increased expression of EGFR and
decreased expression of PDGFRB (11, 12). Shao et al. found
resistant WM793 and M238 cells both had increased PDGFRB
but decreased Insulin-like growth factor 1 receptor (IGF1R)
expression (13). Increased PDGFRB expression has also been
described in resistant A375 cells (14). In two other studies
using A375 cells, increased expression of fibroblast growth
factor receptor 3 (FGFR3) expression was associated with BRAF
inhibitor resistance (15, 16). Resistant A375 cells have also been
shown to increase expression of IGF1R while resistant SKMEL28
cells increased expression of PDGFRB (17). In a separate
study, resistant SKMEL28 cells had increased expression of both
EGFR and PDGFRB (18). Jazirehi et al. found that resistant
M249 cells had increased expression of EGFR, KIT proto-
oncogene receptor tyrosine kinase (KIT), MET proto-oncogene
receptor tyrosine kinase (MET), and PDGFRB with decreased
IGF1R (11). Resistance-associated gene expression may occur
through loss of SOX10 expression and gain of JUN, AP-1,
and TEAD transcription factor activity (10). EGFR expression
may be regulated through MITF expression, but both increased
and decreased MITF expression have been observed in BRAF
inhibitor resistant cell lines (19, 20). Sun et al. demonstrated
that miR-7 was significantly downregulated in resistant A375 and
MEL-CV cells, and exogenous expression could reduce resistance
with EGFR, IGF1R, CRAF, and AXL as potential targets (21).
Overall, changes in growth factor expression are inconsistent
between studies using the same cell lines. Increased expression
of any growth factor receptor that activates MAPK/Erk may
potentially drive resistance in melanoma.

Secondary MAPK/Erk Mutations
In addition to upstream activation of MAPK/Erk through
receptor tyrosine kinases, increased MAPK/Erk signaling
may be achieved through direct alteration to members of
the RAS/RAF/MEK/Erk signaling cascade. Secondary BRAF
mutations and alternative BRAF splicing have been shown to
induce vemurafenib resistance in multiple cell lines (19, 22).
In a patient derived xenograft model, increased BRAF V600E
expression sustained resistance, and cells demonstrated
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FIGURE 1 | Mechanisms supporting BRAF inhibitor resistance in melanoma. Receptor tyrosine kinases (RTK) include AXL receptor tyrosine kinase (AXL), epidermal

growth factor receptor (EGFR), fibroblast growth factor receptor 1 (FGFR1), fibroblast growth factor receptor 3 (FGFR3), platelet-derived growth factor receptor beta

(PDGFRB), MET proto-oncogene receptor tyrosine kinase (MET), and KIT proto-oncogene receptor tyrosine kinase (KIT). Growth factors (GF) correspond to the

specific receptor tyrosine kinase. The MAPK/Erk pathway includes the Ras GTPases (N/K/HRAS), Serine/threonine-protein kinase B-raf (BRAF), RAF proto-oncogene

serine/threonine-protein kinase (CRAF), mitogen-activated and extracellular signal-regulated kinase kinase 1 or 2 (MEK1/2), extracellular signal-regulated kinase 1 or 2

(ERK1/2), cancer Osaka thyroid (COT), and dual specificity protein phosphatase 4 (DUSP4). The PI3K/Akt pathway includes phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit alpha (PIK3CA), phosphatidylinositol 3-kinase regulatory subunit 1 or 2 (PIK3R1/2), phosphatidylinositol 4,5-bisphosphate (PIP2),

phosphatidylinositol 3,4,5-trisphosphate (PIP3), phosphatase and tensin homolog (PTEN), AKT serine/threonine kinase 1 or 2 (AKT1/2), mammalian target of

rapamycin complex 1 (mTORC1). Src signaling factors include SRC proto-oncogene non-receptor tyrosine kinase (SRC) and focal adhesion kinase 1 (FAK1).

Transcription factors include signal transducer and activator of transcription 3 (STAT3), TEA domain transcription factor protein family (TEAD), activator protein 1

complex (AP-1), Jun proto-oncogene AP-1 transcription factor subunit (JUN), SRY-box 10 (SOX10), melanocyte inducing transcription factor (MITF), cyclic AMP

responsive element binding protein family (CREB), FOS like 1 AP-1 transcription factor subunit (FOSL1), GLI family zinc finger 1 or 2 (GLI1/2), transforming growth

factor beta (TGFβ), SMAD family member 3 (SMAD3). Cell cycle regulators included cyclin D1 (CCND1), cyclin dependent kinase 4 or 6 (CDK4/6). Non-canonical Wnt

signaling mediators include receptor like tyrosine kinase (RYK), frizzled class receptor 7 (FZD7), and Wnt family member 5A (WNT5A).

drug-dependence for continued proliferation (23). Resistant
tumors derived from 1205LU cells in a mouse xenograft model
contained distinct alternative BRAF splicing events in two
tumors and HRAS Q61K mutation in one tumor (24). Other
alterations within RAS/RAF/MEK/Erk cascade have been
observed in SKMEL28, A375, COLO829, and M249 cells,
including COT overexpression and NRAS Q61K mutation
(12, 17). Dabrafenib resistant A375 and MEL-RMU cells were
found to have mutations in MEK1 and NRAS as previously

described in vemurafenib resistant cells (25, 26). NRAS
mutations may also make cell lines cross-resistant to MEK
inhibitors due to elevated PI3K/Akt signaling (27). Resistant
A375 cells were found to have an NRAS G13R mutation, high
expression of CRAF, and increased Akt phosphorylation (28).
Resistant A375 cells with a KRAS K117N also had elevated
expression of CRAF and activation of Akt (29). Resistant M249
cells and M376 cells with secondary NRAS mutations had
increased Akt activation (30). Resistant WM793 cells with
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secondary NRAS Q61K mutation require CRAF expression and
SHOC2 scaffold protein to re-activate MAPK/Erk (31). In vitro
models of BRAF inhibitor resistance indicate that secondary
mutations may support increased activation of MAPK/Erk in
the presence of inhibitor or support sustained growth through
activation of PI3K/Akt signaling.

Alternative Resistance Pathways
Downstream effectors of PI3K/Akt activation promote survival of
resistant cells. PI3K/Akt activation upregulates AEBP1 through
increased CREB binding, and increased AEBP1 leads to IκBα

degradation and NF-κB activation (32). A375, SKMEL28, and
WM239 cells resistant to either dabrafenib or vemurafenib
all had increased expression of Mcl-1 relative to their pre-
treatment counterparts, which promotes cell survival through
inhibition of apoptosis, and Mcl-1 expression may be regulated
by STAT, cAMP, and NF-κB binding sites (33). Growth factor
receptors may also cross activate PI3K/Akt separately or
in addition to MAPK/Erk activation. Resistance induced in
SKMEL28 cells increased expression of EGFR and activated
Akt (34). Resistant LM17 cells had increased IGF1R expression
as well as increased Akt phosphorylation (35). Increased
expression of WNT5A in A375 and MEL-264 was correlated
with increased phosphorylation of Akt and activation of RYK
and FZD7 receptors supporting non-canonical Wnt signaling
(36). PI3K/Akt activation in multiple BRAF inhibitor resistant
melanoma cell lines also up-regulates of FOSL1, which drives
secretion of multiple factors from tumor cells that support
surrounding tumor growth (37). Melanoma cells may support
the resistance of surrounding cells in addition to other stromal
cells. Hepatocyte growth factor (HGF) secretion by surrounding
stromal cells in co-culture supports tumor growth in the
presence of BRAF inhibitors through activation of the MET
receptor tyrosine kinase and downstream MAPK/Erk activation
(38). The adaptive resistance of melanoma cells may be
supported through both neighboring cancer and non-cancer
cells. MAPK/Erk signaling and/or PI3K/Akt signaling may be
activated in BRAF inhibitor resistant cells frequently through
common mechanisms.

Phenotypic Changes in BRAF Inhibitor
Resistant Cell Lines
Increased Motility and Invasion
Resistant cell lines acquire a more invasive phenotype
characterized by increased cell motility and metastatic capacity.
Multiple studies have noted increased invasive capacity of BRAF
inhibitor resistant melanoma cell lines, and recent proteomic
studies of melanoma cell lines before and after developing
BRAF inhibitor resistance have specifically characterized
differences in kinase expression and changes in phosphorylation.
Quantitative phosphoproteomics of vemurafenib resistant LM-
MEL-28 cells demonstrated increased activation of MAPK/Erk
signaling and de-phosphorylation of key cytoskeletal regulators
(39). Activity-based protein profiling of kinases in WM164,
WM793, A375, and 1205LU cells detected increased ATP
uptake by FAK1, SLK, LYN, PRKDC, and KCC2D, but overall
changes between cell lines showed differences in differential

phosphorylation (40). Phospho-array analysis and quantitative
phosphoproteomics identified increased EGFR phosphorylation
in vemurafenib resistant A375 and COLO829 cell lines leading to
Src family kinase phosphorylation and STAT3 activation, which
was associated with increased invasion and phosphorylation
of cytoskeletal proteins (41). The increase in cytoskeletal
remodeling also has downstream effects in cell signaling. For
example, actin remodeling has been shown to increase YAP/TAZ
nuclear localization in BRAF inhibitor resistant melanoma
cells, and YAP/TAZ nuclear localization increases expression of
EGFR, AKT, and MYC (42). The expression of receptor tyrosine
kinases is associated with the invasive behavior of melanoma
cell lines through increased metalloprotease expression.
EGFR signaling was found to drive resistance in SKMEL28
cells, and resistance was also associated with upregulation of
MMP2 and downregulation of the MMP regulator, TIMP2
(43). Increased expression of EGFR in SKMEL28 cells was
also correlated with increased activation of Non-canonical
Hedgehog Signaling (GLI1, GLI2, TGFβ, and SMAD3), and
inhibition of GLI1 and GLI2 increased vemurafenib sensitivity
while decreasing invasiveness (44). Dabrafenib resistant A375
cells had increased expression of epithelial to mesenchymal
transition markers including CD90 and decreased expression of
E-cadherin with increased cell motility (45). A separate study of
dabrafenib resistant A375 cells also detected increased secretion
of VEGFA and MMP9, which was associated with increased
invasiveness (46).

Metabolism
Alterations in the metabolism of BRAF inhibitor resistant cells
have also been described, including increased dependence on
serine or glutamine. Vemurafenib resistant SKMEL28 were
dependent on serine metabolism, and knockout of PHGDH or
depletion of serine in the media reduced viability of resistant cells
(47). Additionally, vemurafenib resistantM229 andM249 cells or
vemurafenib/selumetinib dual treatment resistantM249 cells had
increased glutamine uptake and were dependent on glutamine
for survival independently of the underlying mechanism of
resistance (48). More complex metabolic reprogramming may
occur during the development of BRAF inhibitor resistance.
Gene set enrichment of KEGG pathways using quantitative
phosphoproteomic analysis of vemurafenib resistant LM-MEL-
28 cells detected enrichment inDNA replication and cell cycle but
decreases in glycolysis/gluconeogenesis, fatty acid metabolism,
valine/leucine/isoleucine degradation, pyruvate metabolism, and
tryptophan metabolism (39).

Future Directions of in vitro Research
McDermott et al. have recently published a general review of
important considerations for developing in vitro resistance to
targeted inhibitors and chemotherapeutic agents in cancer cell
lines (49). Important considerations for in vitromodels of BRAF
inhibitor resistance in melanoma cell lines include choice of
cell line, dosing strategy, and resistant cell selection criteria.
Examples of current methods that have been applied to A375 cells
are summarized in Table 1. This review focuses on studies that
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develop resistant cell lines through drug treatment and excludes
studies of primary resistance or genetically induced resistance.

Selecting Cell Lines
The first major consideration in this type of model is the
degree of heterogeneity between cells. There is a great deal of
cell-to-cell heterogeneity in melanoma in vivo (51). Sub-clones
may harbor mutations conferring primary resistance to BRAF
inhibitors. Selection of single-cell derived clones may reduce the
heterogeneity observed within a single cell line. Studies show
that there are genetic differences between cell lines and tumors
in vivo, and only a few cell lines are most frequently used (52–
56). In vitro resistance studies would benefit from using multiple
cell lines to compare resistance mechanisms and potential novel
combination therapy outcomes. The use of multiple cell lines also
helps verify findings by highlightingmechanisms observed across
cells types as opposed to findings that are specific only to that
clone or test system.

Treatment Strategy
The treatment strategy employed to induce resistance in cell lines
in vitro may or may not represent how the drug is administered
clinically. Vemurafenib is administered as 960mg tablets twice
daily and reaches an average maximum plasma concentration
of 4.8 ± 3.34µg/ml after 8 h and 61.4 ± 22.76µg/ml after
168 h with a half-life of 34.1 ± 19.66 h (57). Dabrafenib is
administered as 150mg oral tablets twice daily and reaches
an average maximum plasma concentration of 986 ng/ml in
a median 2 h with a half-life of 5 h (58). Both dabrafenib
and vemurafenib quickly reach a high plasma concentration
and have long half-lives, which would be best represented by
continuously treating cells to develop resistance. Fofaria et al.
employed a pulsed treatment strategy, which includes a treatment
window followed by a recovery period, to generate vemurafenib
resistant cell lines (33). A pulsed treatment strategy does not
reflect how the drug is administered clinically. However, it
has been shown that lower vemurafenib plasma concentration
was significantly associated with higher likelihood of tumor
progression, and patients had high inter-individual variability
in vemurafenib plasma concentration (13.0–109.8µg/ml) (59).
Others have noted that the melanoma cell lines may become
dependent on the presence of the BRAF inhibitor for continued
growth and continuous treatment is often required, which may
potentially be mitigated through a pulsed treatment method (13,
28, 34, 60). Mechanisms regulating development of resistance
in each type of model may be different, and clear distinctions
should be made between which type of model was employed.
Data obtained from studies that use drug exposure methods
never observed in patients should be interpreted with caution.

Defining Resistance
There is no standard for defining when a cell line is drug resistant.
The selection criteria used to define treatment resistance critically
influences results. Ideally the fold change in drug sensitivity
should be reported along with the duration of drug exposure.
Treatment durations for studies of A375 cells range from 6
days to 1 year of treatment, and fold change in drug sensitivity
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ranges from 3x to more than 100x (Table 1). Correlation to drug
levels observed in patients should also be considered. Care must
also be taken when reporting drug sensitivity since common
colorimetric assays may not be accurate or reproducible due
to variations in growth rate; a cell counting based method
should be employed when possible (61, 62). Multiple studies
have observed changes in cell line growth rate after developing
treatment resistance, which may be dependent on the presence
of drug (13, 34, 47, 60). Growth rate changes may confound the
measurement of drug sensitivity between treatment resistant and
pre-treatment cells.

CONCLUSION

Although treatment with BRAF inhibitors provides rapid
response in most patients, treatment resistance persists. The
few clinical studies of BRAF inhibitor resistance in patients
indicate that genetic alterations that activate MAPK/Erk make
up half of resistance mechanisms. Preclinical studies of BRAF
inhibitor resistance in melanoma support the mechanisms
observed in patients and indicate that the development of
resistance is more complex than single mutations. In vitro
models may be very helpful in studying mechanisms in the
other half of patients with no known genetic driver of BRAF
inhibitor resistance. Overall, BRAF inhibitor resistance depends
on oncogenic signaling through reactivation of MAPK/Erk or

activation of PI3K/Akt, which may be acquired by directly
affecting genes in each pathway, by upregulation of receptor
tyrosine kinases, or by affecting downstream signaling. BRAF
inhibitor resistance increases invasiveness through changes in
phosphorylation actin cytoskeleton regulators and increased
extracellular matrix metalloprotease expression. Resistant cells
have also been shown to undergo metabolic reprogramming
characterized by increased glutamine or serine dependence.
A375 cells have been used to model BRAF inhibitor resistance
across multiple studies, but the methods and conclusions vary.
To improve preclinical in vitro research, future studies of
BRAF inhibitor resistance in melanoma should include multiple
cell lines, consider a continuous-dose treatment strategy, and
report drug sensitivity in order to facilitate better comparison
across studies.
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IPO-38 is a potential biomarker for early diagnosis of gastric cancer that we recently

identified. Although we characterized its chemical nature as a nucleosome histone,

we suspected the existence of histone modification for the IPO-38 antibody-labeled

protein. Here, we used a commercially available modified histone peptide array to

identify the type and site of histone modification labeled by the IPO-38 monoclonal

antibody. In protein array analysis, the citrulline modification of histone 3 on arginine 26

(H3R26Cit) yielded the strongest signal. Although peptidyl arginine deiminase-2 and -4

(PADI2 and PADI4, respectively) can catalyze the conversion of arginine to citrulline, we

observed that only PADI4 expression correlated with the citrulline histone modification of

H3R26Cit. Overexpression of PADI4, via transfection of a eukaryotic expression vector,

and knockdown of PADI4 gene expression, by a PADI4 CRISPR/Cas9 vector, confirmed

the crucial function of PADI4 on the increased level of H3R26Cit in gastric cancer cell

lines. By immunoprecipitation and immunoblotting, we found an interaction between

H3R26Cit and H3K27me3. Our study established the first link between the IPO-38

antigen and citrullinated histone 3, and clarified the upstream regulatory enzyme PADI4.

The new findings suggest an important role for the citrullination modification of histone in

gastric cancer biology, and should help us optimize the development of a sensitive and

specific diagnostic reagent.

Keywords: IPO-38, histone modification, citrullination, PADI4, biomarker

INTRODUCTION

Gastric cancer is a disease with high morbidity and mortality rates worldwide, especially in East
Asia. Data from GLOBOCAN 2018 show there are 1,033,701 new cases and 782,685 death cases of
gastric cancer all over the world (1). Currently, methods are limited for early diagnosis of gastric
cancer. Patients are often diagnosed with gastric cancer at an advanced stage with poor prognosis.
Therefore, early diagnosis is a key to improving the outcome of patients. Our group proposed
a candidate biomarker IPO-38 for diagnosis of gastric cancer (2). Assaying IPO-38 provides
significantly higher specificity and sensitivity (56.7 and 93.3%, respectively), over routinely used
biomarkers CEA, CA199, and CA72-4. IPO-38 has long been used as a cell proliferation nuclear
antigen (3, 4). Although we identified it as a member of the histone protein family based on mass
spectrometry, we considered that the histone was modified chemically (2).
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Protein function is specified by appropriately folded
secondary structure and post-translational modifications,
including acetylation, methylation, phosphorylation, and
citrullination (5). Histone modification plays an important
role in maintaining homeostasis. Disorders of histone
modification associate with cancer, neurological diseases, as
well as autoimmune diseases (6, 7). Histone modifications
potentially alter the electrical charge between histones and DNA
duplexes, impacting chromatin organization and transcription.
Histone modifications also affect gene regulation by modulating
binding with transcription factors (6–8). In addition, histone
modifications are involved in the formation of neutrophil
extracellular traps (NETs), a crucial process for microbe
clearance (9), which also plays a role on cancer metastasis
through protein citrullination in peripheral blood (10–12).

Specific antibody analysis and mass spectrometry are
commonly used for detection of histone modifications. However,
the number of histone-specific antibodies is limited, which
has restricted progress in studying histone modifications
and functions. Mass spectrometry potentially overcomes
the defect of insufficient antibodies to some extent, but
trypsin digestion in the sample pretreatment step often
destroys many modification sites, and ultimately reduces
sensitivity (13). In 2010, a new histone modified peptide
array was developed, promoting research to understand
the function, metabolism, and significance of histone
modifications (14–16).

To clarify the histone modification characteristics and
biological significance of the IPO-38 antigen, we used the
modified peptide array to identify the IPO-38 monoclonal
antibody-binding protein. We characterized the novel modified
histone H3, and identified that PADI4 is a key enzyme catalyzing
citrullination modification of histone 3.

MATERIALS AND METHODS

Modified Histone Peptide Array Analysis
MODifiedTM Histone Peptide Array from Active motif (Active
Motif, California, USA) is a histone modified polypeptide
chip of 59 single-site histone modifications and different
permutations in 384 dot matrixes. Each chip is divided
into left and right wings and repeating lattice arrangement.
The chip was first blocked with 5% BSA (Sangon Biotech,
Shanghai, China) for 1 h at room temperature, and then
incubated with IPO-38 monoclonal antibody (1:1000,
Thermo Fisher, Massachusetts, USA) overnight at 4◦C. The
next day, the chip was washed three times with 1×PBST
[1×PBS with 0.1% (v/v) Tween-20], and then incubated
with HRP-labeled goat anti-mouse IgM second antibody
for 1 h at room temperature (1:5000, Sangon Biotech,
Shanghai, China). After incubation, the chip was again
washed with 1×PBST three times and the signal was detected
using ECL luminescent reagent (Meilun, Shanghai China),
in a chemiluminometer (Tanon, Shanghai, China). The
histone modification sites and signal intensity analysis were
conducted with the special software provided by Active
Motif (https://www.activemotif.com/catalog/668).

Cell Culture
Gastric cancer cell lines, SGC7901, MKN45, HGC27, and
BGC823, were purchased from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). Gastric cancer cell
lines, Hs746T, AGS, and NCI-N87, were purchased from
the American Type Culture Collection (ATCC, Maryland,
USA), and the human gastric mucosal cells, GES1, and
293T cells were preserved in our laboratory. Cell lines were
cultured in 37◦C culture incubator with 5% carbon dioxide
using RPMI 1640 or DMEM medium (Hyclone, Utah, USA)
containing 10% FBS (Gibco, New York, USA) according to the
manufacturer’s instructions.

Construction of PADI2 and PADI4
Eukaryotic Expression Vectors and PADI4
CRISPR/Cas9 Vector
Primers were designed for the coding region sequences of
the PADI2 (NM_007365.2), PADI4 (NM_012387.2), and the
restriction sites for the eukaryotic expression vector pCDH-
CMV-MCS-EF1-Puro (SBI, California, USA). The high-fidelity
PCR enzyme KOD plus neo (Toyobo, Osaka, Japan) was used
to amplify the coding region sequences of PADI2 and PADI4
from a 293T cell cDNA library. Agarose gel (1%) electrophoresis
was used to confirm the PCR product size, and T4 ligase
(NEB, Massachusetts, USA) was used to link the target fragment
to the empty linear vector after digestion. Competent TNF5α
cells (Tiangen, Shanghai, China) were transformed with the
expression vectors, and three positive colonies were selected for
sequencing to verify the plasmid.

CRISPR/Cas9 vector targeting PADI4 (NM_012387.2) was
constructed using the lentiCRISPRv2 vector, which was a gift
from the Feng Zhang lab at MIT. The online guide RNA
design website (http://crispr.mit.edu) was used to design the
target sequence near the transcription start site of PADI4. The
top two scored sequences were selected as the gene editing
sites for primers (gRNA1: 5′-GGGACGAGCTAGCCCGACGA-
3′; gRNA2: 5′-TCACACGGATCAATGTCCCC-3′). In this study
we adopted an all-in-one method. Primers designed according to
the two gRNA sequences and the tracRNA-U6 vector sequences
were used to produce a gRNA1-tracRNA-U6-gRNA2 fragment.
Then the proper fragment was ligated into the lentiCRISPRv2
vector and verified by sequencing.

Lentiviral Packaging and Stable Cell
Line Screening
The constructed eukaryotic expression vector and gene
knockdown vector were transfected into the 293T cells with the
packaging plasmids psPAX2 and pMD2.G using Lipofectamine
2000 (Thermo Fisher, Massachusetts, USA). The lentivirus was
harvested 48 h after transfection, and the lentivirus supernatant
was filtered using a 0.45µm filter. One day prior to infection,
the three cell lines (AGS, SGC7901, and MKN45) were plated
at 2 × 105 cells per well in 6-well tissue culture plates. The
lentivirus was added into the separate cell lines, and polybrene
was added at a density of 6 ng/ul (Sigma, California, USA).
After 24 h, the infection medium was removed and replaced
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with normal culture medium. After 48 h, the cell lines were
screened using 2 ng/µl puromycin (Sangon Biotech, Shanghai,
China), and a stable cell line was formed after 1 week of
continuous selection.

Western Blot
Whole cellular protein was extracted using RIPA lysis buffer
(Beyotime, Shanghai, China) containing a protease inhibitor
cocktail (Roche, Basel, Switzerland). The cytoplasmic and
nuclear protein fractions were isolated using a Nuclear
and Cytoplasmic Protein Extraction Kit (Beyotime, Shanghai,
China) according to the manufacturer’s instructions. Protein
samples were separated by SDS-PAGE gel containing 10%
acrylamide, electrophoresis and transferred to a 0.45µm PVDF
membrane (Millipore, Massachusetts, USA). The transferred
membranes were blocked with 5% BSA for 1 h at room
temperature. Then the membranes were incubated with the
corresponding primary antibodies: mouse anti-human IPO-38
monoclonal antibody (1:1000, Thermo Fisher, Massachusetts,
USA); rabbit anti-human H3K27ac polyclonal antibody, rabbit
anti-human H3R26Cit/H3K27me3 monoclonal antibody, and
mouse anti-human PADI4monoclonal antibody (1:1000, Abcam,
Cambridge, UK); rabbit anti-human EZH2monoclonal antibody
(1:1000, CST, Boston, Massachusetts USA), rabbit anti-human
PADI2 polyclonal antibody, (1:1000, Proteintech, Chicago,
Illinois, USA), and HRP-labeled mouse anti-human GAPDH
monoclonal antibody (1:2000, Proteintech, Chicago, Illinois,
USA), and mouse anti-human histone H3 monoclonal antibody
(1:1000, Abcam, Cambridge, UK) as an internal reference
antibody overnight at 4◦C. The next day, 1×TBST buffer
[10mM Tris-HCl, pH 8.0, 150mM NaCl, 0.1% (v/v) Tween-
20] was used to wash the membranes 3 times for 10min
each time at RT. HRP-labeled goat anti-rabbit or mouse
IgG secondary antibody (1:5000, Proteintech, Chicago, Illinois,
USA) of the corresponding species was incubated for 1 h at
RT. HRP-labeled goat anti-mouse IgM secondary antibody
(Sangon Biotech, Shanghai, China) was used as the second
antibody for the IPO-38 IgM monoclonal antibody. After
the incubation of the secondary antibody, the membranes
were washed 3 times for 10min each time at RT with
1×TBST buffer, and then the signal was detected in the
chemiluminometer using ECL luminescent solution (Meilun,
Shanghai China).

Histone Immunoprecipitation
To reduce the interference of non-histone proteins and
nucleotides, we used enzymatic digestion to obtain histones for
further immunoprecipitation. After collecting the cell pellet, we
used the hypotonic buffer [0.3M sucrose, 60mM KCl, 15mM
NaCl, 5mM MgCl2, 0.1mM EGTA, 15mM Tris-HCl pH 7.5,
5mM sodium butyrate, 0.4% NP40, and CompleteTM EDTA-free
protease inhibitor mixture (Roche, Basel, Switzerland)] to
rupture the cell membrane, and then collected the nuclear
pellet. Nuclear deposition concentration was measured by
nanodrop (Thermo Fisher, Massachusetts, USA), and 200
U/5 µg of micrococcal nuclease (NEB, Massachusetts, USA)
was used to digest the nucleosome at 37◦C for 6min. EDTA

(Sigma, California, USA) was added to stop the reaction.
After centrifugation, the supernatant, which contains histone
DNA complexes, namely nucleosomes, was collected, and
concentration was measured. The appropriate amount of
lysate was taken as input, and the remainder was divided
into 3 groups, and 20 µl of protein A/G magnetic beads
(Thermo Fisher, Massachusetts, United States), and 5 µg
of anti-H3K27me3 antibody, anti-H3K27ac antibody, or
normal rabbit IgG (CST, Boston, Massachusetts, USA) was
added to each sample of lysate. After incubating overnight
at 4◦C on a shaker, the complexes were washed with RIPA
buffer three times in the magnetic frame (Invitrogen,
California, USA). Finally, the bound proteins were eluted
into 1×SDS loading buffer (Beyotime, Shanghai, China). The
subsequent steps followed the immunoblotting protocol
described above, and the rabbit anti-human H3R26Cit
polyclonal antibody was used to detect the corresponding
histone modification.

Immunofluorescence
The MKN45 and SGC7901 cancer cell lines (5 × 103 cells per
plate) were seeded on a fluorescence chamber culture plate.
After the cells fully stretched and adhered to the plate 12 h later,
they were fixed in 4% paraformaldehyde for 15min at RT, and
the cell and nuclear membranes were permeabilized in 0.5%
Triton X-100 (Sangon Biotech, Shanghai, China) for 20min at
RT. The plate was washed 3 times for 5min with 1×PBS. Goat
serum (Sangon Biotech, Shanghai, China) was used for antigen
blocking for 1 h at RT. After blocking, the samples were incubated
with mouse anti-human PADI4 monoclonal antibody (1:100)
and rabbit anti-human PADI2 polyclonal antibody (1:100) at
4◦C overnight in a wet box. The plate was then washed
with 1×PBST three times for 5min each, and incubated with
Alexa Fluor 488 goat anti-mouse red fluorescent secondary
antibody and Alexa Fluor 555 goat anti-rabbit green fluorescent
secondary antibody (1:250, Invitrogen, California, USA) at RT
in the dark for 1 h. Nuclei were stained for 5min at room
temperature in the dark with DAPI (Sigma, California, USA).
Finally, plates were washed 3 times for 5min with 1×PBST.
Fluorescence signal could be observed and the fluorescent
images were taken with a fluorescence microscope (Nikon,
Tokyo, Japan).

Real-Time PCR
Total mRNA was extracted from the cell lines using Trizol
(Invitrogen, California, USA), according to the manufacturer’s
protocol. The obtained mRNA was reverse transcribed using
the ReverTra Ace R© qPCR RT Kit (Toyobo, Osaka, Japan). The
mRNA levels of PADI2, PADI4, EZH2, KDM6A, KDM6B, and
GAPDH were detected using the following specific primers:
Primers for PADI2, forward: 5′- GCACCTACCTCTGGACC
GAT-3′, reverse: 5′-ACACGTGTTCCGAGTGCTTC-3′, product
length 81 bp; primers for PADI4, forward: 5′- GACCCCC
AAGGACTTCTTCA-3′, reverse: 5′-GCTGCACTTGG
AGGACAGTT-3′, product length 115 bp; primers for EZH2,
forward: 5′-CATACGCTTTTCTGTAGGCGA-3′, reverse:
5′-TCCGCTTATAAGTGTTGGGTG-3′, product length 82
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bp; primers for KDM6A, forward: 5′-TCTCCAAAAGTCCT
TGGAAGC-3′, reverse: 5′-AAGGCATCCTGAACTTTCCC-3′,
product length 96 bp; primers for KDM6B, forward: 5′-TACAGA
CCCTCGAAATCCCA-3′, reverse: 5′-CAGGGTCTTGGTGG
AGAAGA-3′, product length 88 bp; and primers for GAPDH,
forward: 5′-ACGGATTTGGTCGTATTGGGCG-3′, reverse:
5′-CTCCTGGAAGATGGTGATGG-3′, product length 212 bp.
The qPCR reaction was carried out in a Roche Light cycler 480
PCR machine (Roche, Basel, Switzerland) using SYBR Green
PCR master mix (Life Technologies, California, USA).

Statistical Analysis
The mRNA expression data analysis was performed by Student’s
t-test using GraphPad Prism 8.0.1 software (GraphPad Software,
San Diego, California, USA). Differences were considered
statistically significant when P < 0.05.

RESULTS

Identification of Histone Modifications
Marked by the IPO-38
Monoclonal Antibody
The IPO-38 monoclonal antibody detects proteins with a
molecular weight around 15 kDa in total cellular protein
lysates of human gastric epithelial cells (GES1) and gastric
cancer cell lines (SGC7901 and NCI-N87) (Figure 1A). After
incubating the modified histone peptide chip with the IPO-
38 monoclonal antibody, 10 high intensity signals were
obtained that corresponded to: H3R26Cit-K27me2, H3R26Cit-
K27me1, H3R26Cit-K27me3, H3R26Cit, H3K27ac, H3R26me2a-
K27ac, H3K12ac-K16ac-K20ac, H3R26me2s-K27ac, H3K16ac-
K20ac, and H3K12ac-K16ac-K20me2 (Figures 1B–D). Results
were duplicated on the left and right wings of the chip
(Figure 1B), and signal intensities aligned well and showed
good consistency (Figure 1C). Specific analysis of modified
histone peptides revealed that the highest specificity of IPO-
38 antibody-binding was for H3R26Cit, followed by the
H3K27me2 modification (Figure 1E). We noticed that the
signal intensity of H3R26Cit site was significantly enhanced
when the adjacent site H3K27 was methylated. In particular,
the presence of K27me2 modification resulted in 3-fold up-
regulation of signaling intensity than that of R26Cit alone
based on signaling intensity analysis. Immunoblotting using an
antibody specific for H3R26Cit correlated well with protein levels
detected using the IPO-38 antibody in the gastric cancer cell
lysates (Figure 1F).

Expression Levels of H3R26Cit and Related
Catalytic Enzyme PADIs
Since PADI2 or PADI4 catalyzes the conversion of arginine to
citrulline in humans, we examined the protein levels of PADI2,
PADI4, and H3R26Cit in several human gastric cancer cell lines.
We observed that the basal expression level of H3R26Cit was
higher in SGC7901 and MKN45 cells, and basal expression of
PADI4 was also higher in those cancer cell lines. No significant
difference of PADI2 was found in those cancer cell lines

(Figure 2A). The mRNA expression level of PADI2 and PADI4
was lower in cancer cell lines, compared to GES1 control cells,
by q-RT-PCR (Figure 2B), though PADI4 protein levels were
higher in SGC7901 and MKN45 cells. There was discrepancy
between the mRNA and protein levels of PADI2 and PADI4. By
immunofluorescence microscopy, PADI2 was shown to localize
in both the cytoplasm and nucleus, whereas PADI4 was found
only in the nucleus (Figure 2C).

The Impact of PADI2 and PADI4
Overexpression and Knockdown on
H3R26Cit Level
PADI2 and PADI4 eukaryotic expression vectors were packaged
with lentivirus. Although PADI4 protein level was higher in
SGC7901 andMKN45 cell lines (Figure 2A), but they took longer
exposure time with ECL luminescence reagent (2min). Then
we chose a PADI4 low expression AGS cell line and a PADI4
moderate expression SGC7901 cell line for the overexpression
study, and SGC7901 and MKN-45 cells were used for the
knockdown study. After PADI2 and PADI4 were successfully
expressed, we examined the expression level of H3R26Cit
(Figures 3A,B). Overexpression of PADI4 significantly increased
intracellular expression of H3R26Cit, compared to PADI2
overexpression, shown by both Western blot with shorter
exposure time (2 s) (Figure 3C).

The “all-in-one” single plasmid dual target PADI4 gene
knockdown system was constructed using CRISPR/Cas9
technology, which targeted a dual target near the PADI4
transcription start site (Figure 3D). The plasmid was packaged
with lentivirus and SGC7901 and MKN45 cell lines were
infected. The puromycin was used to select a stable cell line.
The significant decrease in the expression level of PADI4
in experimental cells was accompanied by a decrease in the
expression level of H3R26Cit (Figure 3E).

Analysis of Interaction Between H3R26Cit
and Other Post-translational Modification
Since H3K27ac and H3K27me3 were also highlighted in the
modified histone peptide array, we analyzed the interaction
between H3R26Cit and other histone modifications. As shown
in Figure 4A, overexpression of PADI4 resulted in a significant
decrease of H3K27me3 levels in AGS and SGC7901 cells, but
led to increased expression of H3K27ac. To clarify the potential
crosstalk between H3R26Cit and H3K27me, we extracted
nucleosomes from cell nucleus by means of the micrococcal
nuclease method, and performed immunoprecipitations using
H3K27me3 and H3K27ac antibodies. H3R26Cit was not detected
in the H3K27me3 pull-down product, but co-precipitated
with H3K27ac (Figure 4B), which supports an interaction
between H3R26Cit and H3K27ac. We further examined
expression levels of EZH2, an H3K27me3 methyltransferase,
and KDM6A/KDM6B demethylases after PADI4 overexpression.
The expression level of EZH2 was significantly decreased in
SGC7901 and AGS cells (P < 0.001), while the expression
level of KDM6A was significantly increased (P = 0.037; P =

0.0046, for SGC7901 and AGS cells, respectively). The expression
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FIGURE 1 | Analysis of histone modification peptide array using IPO-38 monoclonal antibody. (A) The protein expression of IPO-38 in gastric mucosal cell GES-1 and

gastric cancer cell lines. (B) Presentation of signal intensity on modified histone peptide array based on incubation with the IPO-38 monoclonal antibody. (C) The

consistency assay of two repeated detections on the modified histone peptide array. (D) The top 10 histone modifications with the strongest binding to the IPO-38

monoclonal antibody. (E) The top 10 histone modification sites with the best specificity for IPO-38 monoclonal antibody binding. (F) Comparison of H3R26Cit and

IPO-38 protein levels in three gastric cancer cell lines.

FIGURE 2 | Analysis of basal expression of H3R26Cit and its catalytic enzymes PADIs. (A) The protein expression of H3R26Cit, PADI2, and PADI4 in GES-1 gastric

mucosa cells and several gastric cancer cell lines. (B) The expression of PADI2 and PADI4 mRNA in GES-1 gastric mucosa cells and several gastric cancer cell lines.

(C) Subcellular localization of PADI2 and PADI4 proteins in SGC7901 and MKN45 gastric cancer cell lines.
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FIGURE 3 | The influence of PADI2 and PADI4 overexpression or knockdown on H3R26Cit. (A) Detection of protein level changes after overexpression of PADI2 and

PADI4. (B) Detection of mRNA level changes after overexpression of PADI2 and PADI4 (*** indicates P < 0.001). (C) The protein level of H3R26Cit is significantly

increased after enforcing PADI4 expression, compared to enforcing PADI2 expression. (D) Schematic diagram of the construction of CRISPR/Cas9 all-in-one plasmid

system with a double target on the PADI4 gene. (E) The protein level of H3R26Cit is significantly decreased after knockdown of PADI4 in both SGC7901 and MKN45

gastric cancer cell lines.

level of KDM6B was increased to some extent (P = 0.46; P =

0.012) (Figure 4C). A significant down-regulation of EZH2 in
the nucleus was found; as internal controls, GAPDH was only
expressed in the cytoplasm and histone 3 was only expressed
in nucleus (Figure 4D). The results suggest that PADI4 not
only catalyzes H3R26Cit modification, but also influences the
activities of EZH2, KDM6A, and KDM6B, as reflected in the
decreased level of H3K27me3 in the nucleus (Figure 4E).

DISCUSSION

IPO-38 is a diagnostic biomarker for gastric cancer identified
in our previous clinical proteome study. We proposed that
the protein labeled by IPO-38 monoclonal antibody was a
nucleosome histone and suspected it was a modified histone H2B
(2). We could not, however, clarify the exact histone modification
due to insufficient methods.

In recent years, the relationship between histone modification
and tumorigenesis has attracted greater attention. Technologies
for detecting and studying histone modifications have
been developed and greatly improved. Using the self-
developed chromatin immunoprecipitation-based microarray
method (ChIP-chip) technology, Heintzman and coworkers
demonstrated that cell-specific histone modifications bound
to cell-specific enhancers affect cell-specific gene expression
spectrum (17). Cejas et al. developed fixed-tissue chromatin
immunoprecipitation sequencing, which enables reliable

extraction of soluble chromatin from formalin-fixed paraffin-
embedded tissues for accurate detection of histone marks. By
using multiple histone marks, they generated chromatin state
maps and identified cis-regulatory elements in clinical samples
for various tumor types (18).

In the current study, a modified histone peptides array was
used. This protein array covers 59 different combinations of
post-translational modifications such as methylation, acetylation,
phosphorylation, and citrullination in up to four different
modifications per peptide (15, 16). This array is suitable for
assessing the specificity of histone-modified antibodies and for
analyzing interactions between different histone modification
sites. The processing is straightforward, similar to Western
blotting, and used in different molecular oncology laboratories
(15, 16, 19). By means of this protein array, we characterized
the antigen labeled by the IPO-38 antibody as H3R26Cit, which
could interact with H3K27me and form a H3R26Cit-H3K27me
complex. This new finding suggests that detection of H3K27me
may be helpful to recognize H3R26Cit indirectly.

Previously, most studies on histone modifications focused
on acetylation, methylation, and phosphorylation. The studies
of histone citrullination are limited, especially for gastric
cancer. Protein citrullination, also known as deamination,
refers to a post-translational modification of arginine to
citrulline (20, 21). Studies on the relationship between histone
citrullination and tumors have mainly focused on histone
H3. Thalin and coworkers reported that elevated H3Cit in
peripheral blood predicted poor prognosis for advanced cancer
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FIGURE 4 | Interaction assay of H3R26Cit and other post-translational modifications. (A) An increase in the level of H3K27ac protein and decreased H3K27me3

protein level were observed in both AGS and SGC7901 gastric cancer cell lines in which PADI4 was overexpressed. (B) Immunoprecipitation was performed by

H3K27me3 and H3K27ac antibodies. H3R26Cit was not detected in the H3K27me3 pull-down product, but was found in the H3K27ac pull-down product. (C) Effect

of PADI4 overexpression on mRNA expression of the H3K27 methyltransferase EZH2 and demethylases, KDM6A and KDM6B (*, **, and *** represent P < 0.05,

P < 0.01, and P < 0.001, respectively) (D) EZH2 expression assay revealed that the protein was located in nucleus, and its expression level was decreased after

PADI4 overexpression, with histone 3 and GAPDH serving as internal controls. (E) Schematic diagram of influences on histone modifications of H3R26Cit and

H3K27me3 after PADI4 overexpression.

patients including colorectal cancer, gastric cancer, and breast
cancer (10). Neutrophil extracellular traps (NETs) could be a
source of citrullinated histones in the blood. PADI4 mediates
histone citrullination in NETs formation (11, 22, 23). Protein
citrullination also participates in the regulation of stem cell
pluripotency, cancer-related genes, and immune responses (24–
27). Although we characterized the antigen labeled by IPO-38
antibody, the exact clinical significance of citrullinated histone 3
needs further investigation.

The protein citrullination refers to a chemical conversion
of arginine to citrulline, which is catalyzed by peptidylarginine
deiminases (PADIs) in human beings (28). Among PADIs family,
PADI4 carries a nuclear localization signal, and is mainly
located in the nucleus (29). PADI2 might also undergo nuclear
translocation in some cells to modify histones (26). Since both
PADI4 and PADI2 might be involved in the citrullination of
histones, we examined the expression levels of H3R26Cit, PADI4,
and PADI2 synchronously and confirmed that PADI4, but not
PADI2, regulates H3R26Cit formation. In addition, we found
that the expression levels of mRNA and protein of PADI2
and PADI4 was inconsistent, which might be attributed to
post-transcriptional modification of mRNA or post-translational
modification of protein (30, 31).

In addition to intracellular histone citrullination, PADI4
in neutrophils can facilitate histone citrullination of NETs.

This kind of extracellular histone modification facilitated
ovarian cancer premetastatic niche formation in the omentum.
Interfering NETs formation could inhibit cancer metastasis (32).
Yuzhalin and colleagues indicated that extracellular histone
modifications can promote liver metastasis of colorectal cancer
(12). Therefore, protein citrullination of the extracellular matrix
and microenvironment may play an important role on tumor
progression. Higher levels of PADI4 have been reported in
peripheral blood in several types of cancers (33).

Histone modification is a complex area. The precise
correlation of H3R26Cit and H3K27me3 or H3K27ac is largely
unknown. In this paper, we identified the crosstalk between
H3R26Cit and H3K27me3, which was mentioned by other
study before (34). According to our results, the binding ability
of IPO-38 antibody to antigen might be affected by their
crosstalk, but more experiments need to be done. EZH2 is an
enzyme that mediates methylation of H3K27me3 (34). EZH2
was found up-regulated in melanoma, lymphoma, breast cancer,
and prostate cancer, and related to promoting tumorigenesis,
cell proliferation, and epithelial mesenchymal transition (35).
KDM6A and KDM6B are enzymes involved in demethylation
of H3K27me3 (36). Although we found that overexpression
of PADI4 influences the expression levels of H3K27me3 and
H3R26Cit, we did not find a confirm correlation between
expression of PADI4 and methylation-related enzymes such as
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EZH2, KDM6A, and KDM6B. Our study clarified that PADI4
is a main regulatory enzyme of histone citrullination, at least
in gastric cancer. This discovery will be used to optimize the
sensitivity and specificity of IPO-38 as a diagnostic reagent for
gastric cancer.

Since the technical limitations, we did not analyze the
clinical correlations. Next, we prepare to immunize mice with
synthetic histone-modified polypeptide antigen to obtain specific
monoclonal antibody, and then perform immunohistochemistry
by new developed specific monoclonal antibody. We will
establish a sandwich ELISA reagent to examine blood samples
from patients.
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The human genetic code encrypted in thousands of genes holds the secret for synthesis
of proteins that drive all biological processes necessary for normal life and death.
Though the genetic ciphering remains unchanged through generations, some genes
get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current
treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available
for no more than 500 diseases—neither cure nor prevent genetic errors but often cause
many side effects. However, gene therapy, colloquially called “living drug,” provides a
one-time treatment option by rewriting or fixing errors in the natural genetic ciphering.
Since gene therapy is predominantly a viral vector-based medicine, it has met with
a fair bit of skepticism from both the science fraternity and patients. Now, thanks to
advancements in gene editing and recombinant viral vector development, the interest
of clinicians and pharmaceutical industries has been rekindled. With the advent of more
than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal
disorders, this emerging experimental medicine has yet again come in the limelight.
The present review article delves into the popular viral vectors used in gene therapy,
advances, challenges, and perspectives.

Keywords: gene therapy, viral vectors, modern medicines, diseases and disorders, clinical trials

INTRODUCTION

The human genome contains ∼25,000 genes that encode a wide variety of proteins colloquially
called the building blocks and workhorses of the cell to drive every biological process necessary for
life and death (1–4). Though the genetic ciphering remains largely unchanged through generations,
some genes go awry due to mutations, and disruptions or deletions (5). These underlying and
inevitable genetic changes translate into altered protein functions affecting normal cell structures,
functions, and their physiological roles manifesting into a serious disease or deficiency or disorder
(6, 7). According to the Genetic and Rare Diseases Information Center (GARD) and Global
Genes R©, the leading rare disease patient advocacy organization in the world, dysfunctional genes
account for 80% of the total 7,136 diseases reported to date. Nearly 30 million people in the
United States alone and more than 300 million people in the rest of the world are affected by
genetic diseases; unfortunately, half of them are estimated to be children. According to the National
Center for Advancing Translational Sciences (NCATS), only 500 human diseases are treatable with
an estimated 10,000 drugs available to date, underscoring the necessity to develop new drugs and
treatment options.
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Although a significant advancement has been made in
developing modern medicine, including chemotherapy,
radiation, and surgery, many drugs are synthetic chemicals
designed to alter the body’s chemistry and create dependency
overtime, and offer only temporary relief by reducing disease
symptoms and increasing lifespan. These issues are partly
addressed by developing protein therapy based on transcription
factors, signaling proteins, gene editing enzymes, growth
factors, engineered protein scaffolds, hormones, blood factors,
thrombolytes, antibodies, and antigens. Some of them, especially
the monoclonal antibody-based drugs including Humira,
Rituxan, Avastin, Herceptin, Remicade, Lucentis, Enbrel,
Synazis, and several others, are being used to treat cancer,
diabetes, autoimmune disorders, infectious diseases, and others
(8). In fact, both protein and peptide-based drugs have emerged
as a major class of therapeutics with nearly 380 marketed
pharmaceuticals available in the world (9). However, these
protein-based therapies are facing many challenges including
low solubility and bioavailability, in vivo physicochemical
instability, short circulating half-life, penetrability in vivo,
biodistribution, and causing toxicity in large amounts (10–15).
Another adverse effect of introducing therapeutic proteins
into a patient’s body is that it may result in severe immune
responses, inflammation, and fever (16). To add to the woes,
the production and manufacturing of high quality therapeutic
proteins have become highly complex activity (17). In fact,
more than 5,000 critical steps are involved in developing
a single therapeutic protein (8). Therefore, the quotient of
unpredictability is very high in developing both chemical and
protein-based therapies. Gene therapy, on the other hand, leads
to long-lasting production of the desired therapeutic protein
and can localize protein expression to an area of the body,
fixing the problem at its source (18). Also, prognosis for a
large number of incurable diseases appears grim, which is why
gene therapy presents itself as a breakthrough alternative with
immense potential to provide a one-time treatment option for
a complete cure as well as disease and disorder prevention.
Gene therapy is an emerging experimental treatment that
delivers functional genes into a patient’s body to counter or
replace malfunctioning ones, thus curing disease without
pharmacological intervention, radiotherapy, or surgery. This
modern approach has the potential to offer complete protection
against lethal nerve gases (13, 19–22) and treat monogenic and
cardiovascular diseases, immunodeficiency, cancer, and more
(23–27). Apart from genetic defects, several other diseases that
cannot be treated with drugs or antibodies can be cured with
gene therapy. In addition, every prescribed and non-prescribed
drug comes with unwanted side effects, ranging from minor
discomfort to death. According to Drugwatch R©, a non-profit
drug information network and organization, an estimated four
million patients in the USA alone visit doctors annually due
to adverse effects of prescription drugs. Hence, gene therapy
that aligns with the natural human genetic transcriptome has
the potential to become an unquestionable choice for complete
treatment of diseases, disorders, and infectious diseases.

Gene therapy appears simple in principle but involves
identification of affected gene(s), cloning and loading of a wild

type or recombinant healthy version in a suitable vector for
optimal delivery and expression in the target cells or tissue and
thus has seen its fair share of hurdles. Because it often uses
repurposed viruses to deliver therapeutic genes, gene therapy
has been caught in a vicious cycle for nearly two decades owing
to immune response, insertional mutagenesis, viral tropism, off-
target activity, unwanted clinical outcomes (ranging from illness
to death of participants in clinical trials), and patchy regulations
(23, 28–31). This led to a sharp decline in research funding
for basic, preclinical development and vector production via
individual investigators grants such as R01 and program grants.
Thus, with limited information of preclinical data and vector
production, the number of clinical trials conducted worldwide
did not rise steadily from 1999 to 2015 (32). Furthermore,
funding of the actual clinical trial was not guaranteed even
vectors have been produced and certified for human use at
significant cost. The American Society of Gene Therapy has
taken lead in fixing this fragmented funding method by making
many recommendations including the elimination of redundant
regulatory processes and establishment of the National Gene
Vector Laboratories (NGVL) to review vector production and
toxicology. Now, with new technological advances in gene
delivery and editing methods, increased enthusiasm of clinicians
and drug companies, the advent of several viral-based drugs in
the market, and the potential to provide a one-time treatment
option without corrupting the genetic code, gene therapy is
breaking free of this cycle. Undoubtedly, the resurgent interest
in offering gene therapy-based treatments is one of the most
defining developments in the pharmaceutical industry and is
expected to have far-reaching implications on curing dangerous
diseases in the future.With an estimated US $11 billion market in
the next 10 years, both clinical trials and pharmaceutical industry
are anticipated to benefit immensely from gene therapy. Here,
we describe popular viral vectors used in gene therapy and gene
therapy drugs available in the market.

GENE THERAPY AND ITS KINDS

While the idea of gene therapy has been around for the
past 80 years, Professor William Szybalski’s demonstration
in 1962 on correcting a genetic defect by delivering foreign
DNA into mammalian cells is regarded as its birth (33). The
Food and Drug Administration (FDA) defines gene therapy
as products that “mediate their effects by transcription and/or
translation of transferred genetic material and/or by integrating
into the host genome and that are administered as nucleic
acids, viruses, or genetically engineered microorganisms,” and
the European Medicines Agency (EMA) describes gene therapy
medicinal product (GTMP) as a “biological medicinal product
that contains an active substance which contains or consists of
a recombinant nucleic acid used in or administered to humans
to regulate, repair, replace, add or delete genetic sequences
and its therapeutic, prophylactic or diagnostic effect relates
directly to the recombinant nucleic acid sequence it contains,
or to the product of genetic expression of this sequence” (32,
34). Typically, DNA, mRNA, siRNA, miRNA, and anti-sense
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oligonucleotides are the genetic materials used for therapeutic
delivery into a defective target cell or tissue to restore a specific
gene function or turn off a gene responsible for disease or
disorder development (35). Other methods include swapping
the mutated gene for a functional gene using homologous
recombination, repairing the mutated gene using selective
reverse mutation, and regulating the mutated gene (36). Gene
therapy allows the delivery of therapeutic genetic material to any
specific cell or tissue and or organs of the body for treatment.

Based on the type of cells or tissues targeted for gene delivery
and treatment, gene therapy is divided into germ-line and
somatic cell gene therapies. Germ-line gene therapy involves
genetic manipulation of the reproductive cells sperm and egg
to make heritable changes. The potential of germ line therapy
was successfully demonstrated in mouse, rat, rabbit, sheep, cattle,
goat, and pig (37–40) but not in humans because of amoratorium
due to ethical reasons, lack of advanced tools, and societal
consensus (41–46). However, with recent technological advances
in genome editing and gene delivery methods, renewal of debates
on revisiting germ line therapy appears not far from reality (47–
50). Therefore, the present review is focused on somatic cell
gene therapy.

SOMATIC CELL GENE THERAPY

In somatic cell gene therapy, every cell except sperm and
egg is targeted for therapeutic treatment. It is considered safe
because genetic changes remain in the patient and are not passed
onto the offspring. However, the requirement of skill set and
sophistication in delivering a therapeutic gene into the target cells
or tissue of the patient elevates the quotient for an unpredictable
clinical outcome. Therefore, many advanced methods are being
developed to deliver therapeutic genetic materials, and they are
broadly divided into ex vivo, in situ, and in vivomethods. Ex vivo,
also called “outside the living body” method, involves isolating
the cells to be treated from the patient, modifying them with
a therapeutic gene, and re-introducing into the patient’s body.
Hepatocytes in the liver, retina photoreceptors in the eye, stem
cells in the bone marrow, and T lymphocytes have been the
focus of this method (43). Recently, the FDA has approved
KymriahTM, a groundbreaking prescription cancer treatment that
uses the patient’s own white blood cells or T cells for inserting
the CD19 gene ex vivo (51). After being re-introduced into
the patient’s blood, these genetically engineered T cells will
have greater ability to target cancer cells. Less side effects than
other methods, no risk of reaching germ-line cells, minimized
immune response, and less renal clearance are other advantages
of ex vivo method (52–54). ZalmoxisTM is another advanced
somatic cell therapy product recently approved by the EMA for
treating serious blood cancers such as certain types of leukemia
and lymphomas. ZalmoxisTM consists of donor lymphocytes
transfected with Herpes simplex virus-1 thymidine kinase (HSV-
TK) and truncated low affinity nerve growth factor receptor
(1LNGF). In situ delivery, or “in position” delivery, involves
administration of the desired genetic material directly into the
target cells or tissue. For example, Neovasculgen R©, a plasmid

vector carrying vascular endothelial growth factor (VEGF) gene,
is directly injected into the target ischemic tissue to stimulate
blood vessel growth (55–57). This method is being explored to
cure cystic fibrosis, muscular dystrophy, and cancer but still
requires more technological advancement in delivery methods
for a successful clinical outcome (58–60). Though delivering
genetic material by this method works well for localized
conditions, it cannot be used for treating systemic disorders. The
last and most important method of gene delivery is in vivo, or
“in the living body.” In this method, viral, or non-viral vectors
are used to deliver the therapeutic material to the defective
target cells or tissue in the body (Figure 1). A wide variety of
physical and chemical methods including needles, gene guns,
electroporation, sonoporation, photoporation, magnetofection,
hydroporation, mechanical massage, lipid, calcium phosphate,
silica, and gold nanoparticles are being used to deliver genetic
material to target cells. However, none of them is more efficient
than viruses in delivering therapeutic genetic materials to the
target cells due to their inherent shortcomings and operational
complexity. The present review article is focused on viral
vectors only.

VIRUSES IN DELIVERING THERAPEUTIC
GENES

There has been a quite bit of resentment in availing the benefits
of viruses due to ignorance, bad rap, and skewed view. In
fact, the human body offers shelter to viruses, fungi, protozoa,
and worms by adopting appropriate mechanisms for mutual
benefits in order to survive and thrive (61). For example, viruses
offer immunity against bacterial pathogens and tumor cells, and
modulate gut bacterial genes to improve host digestion (62).
Though the word virus implies mortality and morbidity, viruses
are considered nature’s genetic engineers because of their ability
to infect most kinds of organisms including bacteria, humans,
animals, and plants. Also, viruses help certain plants to survive
in extreme weather conditions (62). We have identified powerful
viral promoters and enhancer elements that can be used to
construct plasmid vectors for high level expression of foreign
proteins (63, 64). They have an advantage over others by carrying
several genes encoding structural and non-structural proteins to
infect and propagate in host cells. Some viruses have the ability
to transduce the cells they infect, i.e., stably express a gene along
with the host’s genome. They allowmanipulation of their genome
and removal of virulent genes without losing the ability to infect
host cells. This makes them nearly dead or not alive, and the
versatile biological entities, a pragmatic reason to accept them
as sophisticated biological tools for delivering foreign genetic
materials into eukaryotic cells. For example, we havemanipulated
and reconstituted Sendai viral envelopes containing only the
fusion glycoprotein to deliver a reporter gene to liver in vivo (65).
In fact, viral vectors were the first carriers of nucleic acids used in
gene therapy (18).

Because of their abundance on the earth and difference in
genetic makeup, many viruses are being used in preclinical
and clinical investigations but each comes with its own unique
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FIGURE 1 | Different methods to deliver therapeutic DNA and proteins to target cells. Non-viral gene delivery methods have many advantages over viral vectors in
gene therapy. They do not cause immunogenicity and carcinogenicity, and can deliver a large size of therapeutic DNA efficiently with a low price tag. As no
one-size-fits-all solution to therapeutic DNA delivery exits, development, and formulations remain the main focus of research on non-viral methods.

advantages and disadvantages. Therefore, finding a suitable
vector to deliver therapeutic genetic material has become a
challenge to make gene therapy a viable and better treatment
option than conventional methods. Part of the challenge is
therapeutic DNA’s inability to pass through the cell membrane
because of its large size and negative charge. Also, the therapeutic
DNA needs to escape the cellular endonucleases and renal
clearance. An ideal vector should have enough space to transport
large therapeutic genes, high transduction efficiency, and the
ability to provide long-term and stable expression, as well as
target specific cells, avoid random insertion of the therapeutic
gene into the host genome, and infect mitotic as well as post-
mitotic cells. It should not be immunogenic or pathogenic,
should not cause inflammation and should possess the ability
to be manufactured on a large scale. Research on developing
novel viral vectors is advancing steadily with a special focus
on substituting pathogenic genes with therapeutic DNA (66).
In fact, non-pathogenic, replication-defective, and human-
friendly viral vectors are being used in more than 70% of
the ongoing gene therapy clinical trials worldwide (67). One
particularly popular use of viral vectors, such as adenovirus,
Seneca Valley virus, poliovirus, vaccinia virus, herpes simplex
virus, reovirus, Coxsackievirus, parvovirus, Newcastle disease
virus, vesicular stomatitis virus, and measles virus, is in the
form of oncolytic viruses (OV). In 2016 alone, more than
40 clinical trials using OV were conducted (68). OV destroy
malignant cancer cells by specifically replicating in those cells
to effectively lyse them as well as induce a robust antitumor

immune response. OV selectively replicate in tumor cells through
a variety of methods such as virus-specific receptors on the cells.
They can be used to deliver anti-angiogenesis genes, suicide
genes, immunostimulatory genes, and DNA encoding small
nucleic acids. Apart from carrying immunostimulatory genes,
OV can induce an immune response by releasing cell debris
and viral antigens (68). Many other innovative approaches are
being developed to use viral vectors for treating diseases and
disorders. Since Edward Tatum’s initial proposal to repurpose
viruses for therapeutic gene delivery in 1966, gene therapy
has come a long way from the construction of many types
of viral vectors to their use in more than 3,000 clinical
trials to date (32, 69, 70). However, during this incredible
journey with obscure regulations, gene therapy has experienced
a few undesired clinical outcomes due to off-target effects,
cytotoxicity, viral transmissibility, impurity, and an immune
response to the viral vector itself (68). Nonetheless, diseases
for which a cure has been attempted include β-thalassemia, X-
linked severe combined immunodeficiency (X-SCID), adenosine
deaminase deficiency (ADA-SCID), cystic fibrosis, hemophilia,
liver enzyme ornithine transcarbamylase (OTC) deficiency, head
and neck cancer, metastatic melanoma, HIV, Leber’s congenital
amaurosis, Wiskott-Aldrich syndrome (WAS), metachromatic
leukodystrophy (MLD), and severe lipoprotein lipase deficiency
disorder (LPLD) (52, 71). In fact, the possibilities for gene
therapy-mediated treatments are endless because virtually every
cell in the human body is a potential target for genetic
manipulation. Viruses display specificity in infecting cell types;
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therefore, viral vectors can be selected based on the type of cell
that needs gene delivery. Here, we describe somewidely used viral
vectors in gene therapy.

ADENOVIRUS (AV)

AV was the first viral vector developed for gene therapy and was
approved for clinical trials in 1990. It was isolated from human
adenoid tissue-derived cell cultures for the first time in 1953,
hence the term adenovirus, and included in a diverse family
of non-enveloped double-stranded DNA (dsDNA) viruses called
Adenoviridae (72). According to the Centers for Disease Control
and Prevention (CDC), AV rarely causes serious illness and death
in healthy individuals but immuno-compromised individuals
may develop a wide range of illnesses including the common
cold, sore throat, bronchitis, pneumonia, diarrhea, conjunctivitis,
fever, and neurologic disease. As of today, there are 57 human
AV serotypes isolated and classified into seven categories based
on their properties of agglutination (73, 74). AV carries a linear
dsDNA ranging from 26 to 45 kb in a medium sized (∼100 nm)
non-enveloped icosahedral viral particle composed of penton
and hexon subunits. While the hexon subunits form a major
part of the viral capsid coat and carry antigenic motifs, the
penton subunits constitute fiber and knob domains required for
infection (75). The fiber knob domain initiates AV infection by
binding to a variety of proteins such asMHC-1 α2 subunit, CD46,
sialic acid saccharides on glycoproteins, coxsackievirus, and AV
receptor (CAR) expressed on cell surface (76). The interaction
between arginine-glycine-aspartic acid (RGD) sequence of the
fiber penton subunit and αν integrins on the cell surface drives
endocytosis of viral particle and completion of viral infection
(77–79). This creates broad tissue tropism and a nodal for AV
transduction efficiency, giving an opportunity to manipulate
binding sites for CAR and other ligands to de-target AV infection,
an essential feature of popular viral vectors used in gene therapy.
Therefore, since its discovery, AV has been repurposed through
the deletion of its pathogenic genes.

Based on the expression of AV genes during infection and
multiplication, its genome is organized into early (E1, E2a, E2b,
E3, and E4), intermediate (IVA2 and IX), and late genes (L1, L2,
L3, L4, and L5). Also, its genome carries non-coding inverted
terminal repeat (ITR) sequences, ψ packaging sequences, and
many viral RNAs (75, 80, 81). The genome of AV has been
manipulated many times to develop safe and efficient vectors
for gene therapy applications. The first-generation vectors with
a partial deletion of E1 or E3 genes do not replicate or
display oncogenicity but can deliver less than an 8 kb gene
and display leaky expression of viral proteins, strong immune
response, and contamination with replication-competent virus
(82). To circumvent this, second-generation vectors were created
by deleting E2A, E2B, and E4 from the genome of the first-
generation AV vectors. However, their production has become
complicated, and they do not prevent leaky expression of viral
proteins and rapid loss of therapeutic gene expression, and thus
have lost enthusiasm for their widespread use in gene therapy (83,
84). The third-generation vectors, otherwise known as gutless or

helper-dependent AV vectors, lack all viral genes except the ψ

and ITR sequences. They have received special attention because
of their capacity to carry larger therapeutic genes (up to 37 kb
in size), their ability to display long-term transgene expression,
and lesser contamination with replicating virus particles. They
are also less immunogenic than first- and second-generation
vectors (85). The third-generation vectors were successfully used
to express transgenes for about 2 years in animals with no adverse
effects (86, 87). Co-transduction of these vectors with Sleeping
Beauty transposon along with FLP recombinase was used to
insert a FIX gene in the chromosome of dogs suffering from
hemophilia B and expressed for up to 960 days (88, 89). Recently,
they were successfully used for the long-term expression of a
gene encoding an alanine-glyoxylate aminotransferase (AGT) in
patients with primary hyperoxaluria type 1 (PH1), a rare kidney
disorder that causes recurrent kidney stones (90).

Since AV vectors allow episomal or stable insertion of
therapeutic genes, they carry advantages over vectors that
integrate into cellular DNA. This provides clinicians an
opportunity to offer appropriate treatment for patients with
different diseases or disorders. For instance, AV is suitable for
treating cancers and offering bioscavenger-mediated short-term
protection against nerve gases and other chemical weapons. As
depicted in Figure 2, we have demonstrated an AV-mediated
episomal insertion of PON1, BChE, and PD bioscavenger genes
in the liver to express and secrete proteins to detoxify the
circulating lethal nerve gases for 10–15 days in mice (13, 20–
22, 36). Since the immune system has the natural ability to
detect and destroy abnormal cells in our body, new AV vectors
that can induce immune response and destroy target cells have
been developed. For example cancer cells can go undetected by
reducing the expression of tumor antigens on their surfaces,
inducing immune cell inactivation, and releasing substances in
the microenvironment to promote their growth and survival.
Therefore, new oncolytic adenoviruses that effectively induce
immune response, and specifically target and lyse tumor cells
are being created by replacing their native E1A promoter with
tumor-specific promoters and genetically modified CAR, a highly
expressed AV receptor in tumor cells (68, 91). For example, the
CV706 and OBP-30 AV vectors carry the viral E1A gene under
prostate cancer-specific antigen promoter and telomerase reverse
transcriptase promoter, respectively (92). Other engineered
oncolytic adenoviruses target the components of tumor cells
and their microenvironment and inhibit their proliferation by
expressing antibodies, relaxin, hyaluronidase, and inhibitors of
metalloproteinases to hinder angiogenesis and proper function
of the extracellular matrix (91, 93). Oncolytic adenoviral vectors
that induce autophagy-related immunogenic cell death were also
developed to treat cancer (94). A novel oncolytic AV vector
expressing an interfering long non-coding RNA (lncRNA) to
inhibit 12 oncogenic miRNAs has been constructed in order
to perform selective killing of tumor cells (95). AV vectors
carrying complementary sequences of liver-specific miRNA-122a
incorporated into 3’-UTR of E2A, E4, or pIX to reduce the
leaky expression of viral genes and hepatotoxicity were developed
(96). In addition, AV vectors with E1A carrying mutations
complementary to retinoblastoma (RB) or p53 gene mutations
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FIGURE 2 | Mechanism of adenovirus-mediated delivery of a therapeutic DNA. Upon infection, adenovirus delivers the encapsulated therapeutic DNA into the
cytoplasm of the target cells. Various stages of viral gene delivery, viz cell attachment, internalization, endocytosis, uncoating, transcription and translation of the
therapeutic protein, are shown.

in tumor cells that can specifically replicate and lyse tumor cells
were created (92).

Despite many technological improvements made in vector
design and production, there are still certain issues that have to
be addressed for better clinical outcome. For example, infecting
target cells with the optimal amount of highly purified AV
particles is critical for the successful insertion of a therapeutic
gene. Recently, it was shown that 1010-1012 AV particles per
patient are required for a successful Ebola vaccination (97).
Production of such high titer virus with no or minimal empty
vector contamination is still a formidable challenge. Also, high
prevalence of anti-AV vector immunity in the human population
and differential expression of CAR and other receptor proteins
on target cells have been serious issues in clinical trials (98, 99).
For example, the transduction efficiency of the widely used AV
serotype 5 in gene therapy is dampened by the prevalence of
neutralizing antibodies in the human population (100, 101).
An estimated 80% of the human population is believed to
carry antibodies against AV serotype 5, resulting in a significant
transduction deficiency and stimulation of inflammatory shock
(102). There has been a positive correlation between body fat
and the presence of circulating antibodies against AV serotype
36 in humans (103). In addition, during systemic administration,

the tendency of AV vectors to undergo sequestration in the
liver has prevented efficient transgene transduction and displayed
severe hepatotoxicity, even causing the death of a clinical trial
participant (104, 105). This was due to the binding of blood
coagulation factor FV and FX to the hyper variable region
(HPV) of AV hexon subunit (106, 107). Therefore, mutating the
HPV site in such a way that it neither activates complementary
pathway nor interacts with FX could be an ideal way to resolve the
liver sequestration issue. Attempts are being made to improve the
safety of AV vectors by treating with chemicals and developing
chimeric and hybrid vectors to minimize inflammation and
immunogenicity (108, 109). For example, the chimeric AV
serotype 5 vector carrying receptor-binding epitopes derived
from other human AV serotype 3, serotype 35, and serotype 43
displayed low seroprevalence and low affinity for CAR (110, 111).
Similarly, the chimeric human AV serotype 5/3, consisting of
receptor epitopes derived from serotype 3 and 5, showed high
binding affinity for CD46, an AV receptor commonly expressed
on many solid tumors. It was thus found to be particularly useful
in targeting solid tumors (112, 113). Another CD46-targeted
chimeric AV vector derived from human serotype 5 and 35
has been shown to be suitable for transducing vascular smooth
muscle cells, treating colorectal cancers, and ischemic wounds
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as well as manipulating T-cells (114–117). Novel chimeric AV
vectors developed from AV serotypes 5 and 11 and 3 and 11
were found very effective in exclusively targeting glioma and
colon cancer cells, respectively (118, 119). Other types of chimeric
vectors were also derived entirely from low prevalent human
and non-human AV serotypes such as human AV serotype
26, canine AV serotype 2, and chimpanzee serotype 3. For
example, the chimeric AV vector developed from human AV
serotype 26 and chimpanzee AV serotype 5 has been used
successfully for Ebola vaccination in animal models (120, 121).
A novel hybrid vector developed from AV serotype 5 and alpha
virus was found very useful for the expression of transgenes
in malignant hematopoietic cells (122). Many laboratories have
developed a library of AV vectors that carry random-peptides on
their fiber knobs in order to overcome the paucity of cancer-
specific ligands (123–125). This resulted in the generation of
many AV vectors that are specific to prostate and pancreatic
cancer as well as glioma (123, 125–128). One such vector
carrying pancreatic cancer-targeting ligand has shown strong
oncolytic effect in primary pancreatic neuroendocrine tumors
and appears promising as a next-generation therapy (129). Given
the advancements made in developing safe and efficient AV
vectors, their choice for delivering therapeutic genes has become
apparent in clinical trials.

ADENO-ASSOCIATED VIRUS (AAV)

AAV is yet another popular viral vector used in gene therapy.
This small microbe was first isolated as a contaminant in the
simian adenovirus preparation and then named adeno-associated
virus (AAV) by the Bob Atchison group at Pittsburgh University
and the Wallace Rowe group at the NIH (130, 131) and later
found in a wide range of animal samples including human, non-
human primates, avian, bovine, reptiles, pigs, sea lions, bats, and
caprine samples. The 4.7-kb-long single-stranded DNA (ssDNA)
packed inside a non-enveloped viral particle carries p5, p19,
and p40 promoters as well as rep and cap genes flanked by
two 145 nucleotide-long inverted terminal repeats (ITR) and
no polymerase gene (132, 133). While ITRs having palindromic
sequences base pair to allow synthesis of cDNA, both rep and cap
genes undergo alternate splicing to express replication proteins
(Rep78, Rep68, Rep52, and Rep40), capsid or virion proteins
(VP1, VP2, and VP3), and an assembly activating protein (AAP),
respectively (134). Being a non-structural protein, AAP assists
virion proteins in capsid formation (135). VP1, VP2, and VP3
expressed from p40 promoter at a ratio of 1:1:10 form the outer
capsid of the virion. These capsid proteins carry phospholipase
domain to protect virions from the onslaught of intracellular
protease system (136). Unlike other viruses, AAV requires a
few other helper proteins, agents or viruses such as AV, herpes
simplex virus type I/II, pseudorabies virus, cytomegalovirus,
genotoxic agents, UV radiation, or hydroxyurea to infect cells
and complete replication (137). AAV can also be generated
by providing the missing genes E1a, E1b, E2a, E4orf6, and
VA that are needed for viral infection. These genes are often
cloned in pXX6 helper plasmid and used to co-transfect HEK293

cells along with AAV expression plasmid (rep-cap plasmid) to
produce AAV (134, 138). Therapeutic genes are cloned in the
AAV expression plasmid carrying ITR sequences, and their size
can be increased by cotransfecting another plasmid carrying rep-
cap genes or by generating virus in rep-cap stable cells. Since the
formation of dsDNA from its ssDNA is the rate-limiting step of
viral infection, gene delivery, and expression in the target cells, a
self-complementary viral dsDNA (scAAV) is developed; however,
it reduces the capacity of AAV vectors to deliver a therapeutic
gene (139, 140). AAV inserts a therapeutic gene in the genome
of target cells to provide long-term transgene expression. For
instance, the gene expressing FIX blood coagulation factor in one
individual of a cohort persisted for more than 10 years during
a clinical trial (141). AAV inserts a therapeutic gene in the host
genome at a specific location on the q arm of chromosome 19
(142, 143). Despite having no large homology regions, more than
70% of the transgene integration events occur within this site;
however, the underlyingmechanism remains unknown. But AAV
lacking its rep-cap genes can deliver a therapeutic gene in the
episomal form without inserting into the genome of the target
cells. The therapeutic gene in the episomal form can develop
into a chromatin-like structure and remain quiescent in cells for
months to years without damaging the patient’s body. Recently,
we have used AAV vectors to make episomal insertion and
expression of a bioscavenger gene in the liver cells for about
6 months (unpublished results). This allows clinicians to apply
AAV-mediated gene therapy to treat a wide variety of diseases
or disorders.

AAV displays broad tropism but requires the expression
of heparin sulfate proteoglycan, αvβ5 integrin, α5β1 integrin,
fibroblast growth factor receptor 1, platelet-derived growth factor
receptor, hepatocyte growth factor receptor, epidermal growth
factor receptor, laminin receptor, and sialic acid moieties on
the surface of target cells for efficient transduction and delivery
of a therapeutic gene. Recently, AAVR has been identified as a
universal host cell receptor for AAV infections (144). Although
every serotype has the ability to infect cells, transport to nucleus,
uncoat, and insert its genome into the host’s chromosome or leave
in the episomal form, not all 13 AAV serotypes isolated to date
use the same receptor repertoire on host cell surface for infection
(145, 146). This makes AAV a very useful system for a specific
cell or tissue type transduction. For example, AAV1 displays high
transduction efficiency of muscles, neurons, heart, and retinal
pigment epithelium. AAV2 has been shown to infect many types
of cancer cells, neurons, kidney, retinal pigment epithelium, and
photoreceptor cells. AAV2 is the only serotype that can infect and
delivery a therapeutic gene to kidney. AAV4 and AAV5 serotypes
infect retina and retinal pigment epithelium, respectively. While
AAV6 displays strong tropism for heart, AAV7 has some bias for
liver (147). AAV6 is also effective in infecting airway epithelial
cells (148). AAV8 and AAV9 have displayed successful infection
of lymphoma and HPV tumors, respectively (149). AAV8 is the
only serotype that infects pancreas, and it was extensively used
to express a therapeutic FIX in the liver to treat hemophilia
in clinical trials (150). AAV tropism was further refined by
mixing the capsid proteins of one serotype with the genome
of another serotype. For example, AAV2/5 serotype, which
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transduces neurons more efficiently than the parental AAV2, was
generated by packaging AAV2 genome in AAV5 capsid proteins.
Another example, the pseudotyped AAV8 and AAV9, can cross
the endothelial barrier of blood vessels to target muscles (66).
For increasing transduction efficiency, hybrid AAV serotypes
were also generated by mixing the capsid proteins of multiple
serotypes with the genome of another serotype. For example,
AAV-DJ serotype that consists of a hybrid capsid is generated
by mixing the capsid proteins of eight different AAV serotypes.
This made AAV-DJ to display higher transduction efficiency than
any other wild type serotype in vitro and high infectivity of a
broad range of tissue in vivo. Its mutant, AAV-DJ8 serotype,
displays high infectivity of brain. AAVHSC, a new class of genetic
vector isolated from hematopoietic stem cells, has been shown
to be ideal for manipulating stem cells (151). Since more than
50% of the adult human population carries AAV neutralizing
antibodies, a wide range of mosaic or hybrid vectors were
generated by engineering and de novo shuffling of capsid proteins
(152, 153). For example, the AAV2.5 hybrid vector generated
by combining the muscle tropism determinants of AAV1 with
parental AAV2 displays immune evasion of their neutralizing
antibodies (154). The other hybrid vectors AAV6.2, AAV2i8,
AAVrh10, andAAVrh32.33 were found beneficial for intravenous
delivery, reduction of liver sequestration, and T-cell response
in the clinic, respectively (138, 155–157). Since CpG motifs are
responsible for immune response and failure of many clinical
trials, AAV vectors were further refined by deleting CpG motifs,
known ligands of Toll-like receptor 9 (TLR9), to reduce immune
response for maximal expression of a transgene in clinical trials
(158). Cre-recombination-based AAV variants are also developed
to allow efficient transgene expression in the central nervous
system,muscle, and liver (159, 160). Also, the AAV-CRISPR/Cas9
system has been developed to perform in vivo genome editing and
broaden therapeutic horizons (161).

HERPES SIMPLEX VIRUS (HSV)

Herpes simplex viruses are believed to have tremendous potential
as a preventative and therapeutic vaccine against cancer and
other diseases because of their ability to evade the immune
system and circulating anti-viral drugs, deliver multiple genes,
infect a wide variety of cells, pose low risk of adverse health
effects, and multiply specifically in tumor cells. They are large
enveloped viruses that carry a linear dsDNA of 120–240 kb and
infect reptiles, birds, fish, amphibians, and mammals. There are
eight known human herpesviruses: herpes simplex virus-1 (HSV-
1), herpes simplex virus-2 (HSV-2), human cytomegalovirus
(HCMV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV),
Kaposi’s sarcoma-associated herpesvirus (KSHV), and human
herpesviruses 6 and 7 grouped under alpha, beta, and gamma
genera. Though they share common virion structure and
replication cycle, and many other biological properties, there
is a significant difference in their tropism, infection, and
clinical manifestations. Some of their genes show homology with
regions of human chromosomes. Here, we delve into HSV that
infects ∼60% of the human population worldwide and mainly

transmits through contact, especially oral-oral contact (162).
After infecting oral or genital epithelial cells, HSV enters neurons
to establish lifelong latent infection and reactivates periodically
causing fever, blisters, cold sores, genital herpes stromal keratitis,
blindness, cancer, and encephalitis. Both HSV-1 and HSV-2 carry
envelope and sub-envelope structures called tegument and a
regular icosahedral capsid consisting of a relatively large dsDNA
of 153 kb encoding ∼200 proteins (163). Nearly half of the total
84 genes present in the HSV genome encode proteins required
for virus replication, and many were found unnecessary for
delivering therapeutic genes. Several genes involved in virulence
and immune evasion, and those considered non-essential for
viral life cycle in vivo were also identified. HSV-1 is relatively
less pathogenic than HSV-2 and is, therefore, ideal for vector
development and gene therapy (164). HSV infects cells by using
its envelope glycoprotein B, glycoprotein C, and glycoprotein
D to bind cell surface particles and transmembrane receptors
such as heparin sulfate, herpesvirus entry mediator (HVEM),
nectin-1, and 3-O sulfated heparin sulfate. While the nectin
receptors provide a strong point of viral interaction with the
host cell, the other viral envelope proteins, especially glycoprotein
B, glycoprotein D, glycoprotein H, glycoprotein L, and HVEM,
create an entry pore for the viral capsid. The viral capsid enters
through capsid pore and travels through the cytoplasm to the
nucleus in order to inject its DNA content. HSV evades the
immune system by secreting its immediate-early protein, ICP47,
and inducing a transporter associated antigen processing (TAP)
protein to block MHC class I antigen presentation on the cell
surface. HSV-1 infects many types of mitotic and post-mitotic
cells including neurons (36). After infection, HSV induces the
expression of the virion host shutoff protein (VHS or UL41)
to inhibit protein synthesis by degrading the host mRNA. This
makes way for viral replication and lysis of the host cells.

The HSV genome carries immediate-early, early, and
late genes for replication and allows creation of replication-
competent, replication-incompetent, and helper-dependent
vectors, or amplicon vectors, for preclinical and clinical studies.
The replication-competent vectors have the capacity to deliver
transgenes up to 50 kb in size or the entire locus since treatment
of certain diseases requires huge therapeutic gene cassettes
carrying complex regulatory elements. These vectors can
replicate selectively in cancer cells and have less virulence
because of deleted genes. They do not insert transgenes in the
host chromosomes and are therefore used primarily as oncolytic
viruses to treat glioma, melanoma and ovarian cancers and to
stimulate an immune response (66). They are further refined by
using tumor specific promoters to express viral genes and target
tumor-specific receptors. These vectors with robust replication
capacity are believed to enhance intramural vector distribution
and lyse tumor cells very effectively. These vectors are generally
constructed by homologous recombination in eukaryotic cells
by co-transfecting the viral genome and a plasmid carrying the
therapeutic gene flanked by the sequences homologous to the
target locus on viral genome to undergo recombination. The
replication-incompetent vectors are created by either mutating
or deleting several immediate early genes including ICP4 and
ICP27 that are essential for replication and, therefore, can grow
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only in specifically designed cell lines complemented transiently.
For example, Vero-7b cell line is capable of providing in trans
the proteins encoded by deleted viral genes (165). They are safe
and non-inflammatory advanced vector platforms known to
persist and express in the nerve cells for life and therefore used
to treat neuropathic, inflammatory, and cancer-associated pain
(166–168). The helper-dependent HSV vectors, or amplicon
vectors, carry deletions in one or more non-essential genes and
retain the ability to replicate in vitro but are compromised in
vivo in a context-dependent manner (169, 170). These viruses
are the same as wild type HSV, with plasmids containing a
packaging signal and the gene of interest. Amplicons have the
ability to accommodate a very large therapeutic sequence up
to 100 kb in size but have production and stability issues. The
replication-incompetent vectors and amplicons have been used
to express genes in the nervous system, muscle, heart, and liver.

RETROVIRUS (RV)

Retroviruses are spherical (∼100 nm in diameter) and enveloped
microbes belonging to a Retroviridae family that comprises
foamy virus, human immunodeficiency virus (HIV-1), simian
immunodeficiency virus (SIV), bovine immunodeficiency virus,
feline immunodeficiency virus, equine infectious anemia virus
(EIAV), murine leukemia virus (MLV), bovine leukemia virus,
Rous sarcoma virus (RSV), spleen necrosis virus (SNV), and
mouse mammary tumor virus. Unlike all other RNA viruses,
these viruses are capable of reverse transcribing their genetic
blueprint of positive, single-stranded RNA into dsDNA, and
inserting it into the host cell genome. RVs carry a non-covalently
linked dimers (two copies) of RNA genetic material probably as a
fail-safe mechanism for producing genomic DNA and increasing
viral RNA diversity due to interstrand recombination (171).
Thus, RNA dimerization has been viewed as a prerequisite for RV
genome encapsidation and life cycle. With restricted vertebrate
hosts, these viruses are divided into exogenous retroviruses
(XRV) and endogenous retroviruses (ERV). While the XRVs
transmit horizontally among hosts, the ERVs inherit vertically
in the genome of their hosts (172). By scattering all over
chromosomes and comprising nearly eight percent of the human
genome, the ERVs are thought to be relics of ancient retroviral
germline infections and believed to play a role of friend or
foe in human life (173–175). The two most common types
of retroviruses are gammaretrovirus and lentivirus, which are
derived from MLV and HIV-1, respectively. The genome of
gammaretrovirus has three essential genes, gag, pol and env, and
is flanked on both sides by long terminal repeats (LTRs). Gag
inserts viral genome mRNA into virions when assembling, pol is
the reverse transcriptase, integrase, and protease encoding gene,
and env encodes the surface and the transmembrane glycoprotein.
Also, RV genome carries a cis-acting ψ packaging element that
involves in regulating the essential process of packaging the
RV mRNA into viral capsid during replication. In addition,
RV genome carries RNA dimerization signal element. With U3,
R, U5 elements, the LTRs display promoter/enhancer activity
for gene transcriptional regulation. RVs use their envelope

proteins to bind a variety of receptor molecules such as murine
cationic amino acid transporter (mCAT), a sodium-dependent Pi
transporter (PiT2), xenotropic and polytropic retrovirus receptor
1 (XPR1), CD4, CD46, CD150, and the RD114-and-D-type-
retrovirus/alanine-serine-cysteine transporter 2 (RDR/ASCT2)
expressed on different cell surfaces to initiate infection, a critical
step in determining the target cell tropism of the virus. This leads
to a conformational change in the envelope proteins, leading to
the entry of virus into the cytoplasm via fusion or endocytosis.
With the help of the host cell proteins, the endosome travels
through cytoplasm to eject its RNA. After the RNA reverse
transcription takes place, viral DNA is integrated into the host
cell chromatin, transcribed into RNA with 5’ Cap and 3’ poly(A)
tail, and translated into viral proteins that assemble and bud from
the plasmamembrane to complete the life cycle with extracellular
maturation (171). The matured RVs can infect a wide variety
of somatic cells including embryonic stem cells, hematopoietic
and neural stem cells. With active nuclear elements, these vectors
can transduce therapeutic genes into proliferating cells only
and are, therefore, ideal for targeting specifically cancer cells.
A downside to gammaretrovirus is that it has broad species
specificity, leaving the possibility of transducing undesired cells,
faulty reverse transcription, intracellular restriction factors, and
risk of insertional mutagenesis. The major difference between
gammaretrovirus and lentivirus is that lentivirus can infect post-
mitotic cells. It requires four plasmids for production: the gag
and pol plasmid, the rev plasmid to transport mRNA into the
cytoplasm, VSV-G for membrane fusion and the gene of interest.
Other retroviruses require three plasmids: the gag and pol
plasmid, the VSV-G plasmid and the gene of interest. Transient
or stable co-expression of all these plasmids in HEK293T
packaging cell lines produces RV vector particles carrying no
replication-competent virions that are essential for research and
therapeutic purposes. Using these cell lines, methods to produce
clinical grade RV particles at a concentration of 106 to107/ml are
optimized (176). As gag/pol and env expression constructs carry
no ψ packaging and RNA dimerization element, viral structural
proteins only recognize the ψ-containing RV vector construct
resulting in a preferential packaging of RV vector genomes into
infectious particles. After entry of the particle into the host cell,
only the RNA of the RV vector construct is reverse transcribed
and stably integrated into the host genome. Thismethod prevents
generation of replication competent retroviral vector progeny
during therapeutic viral particles production. Lentivirus has been
used to treat X-SCID, cancers and monogenic diseases. For
example, self-inactivating lentiviral vectors can engineer T cells
with receptors to better target tumors when treating cancer.
Recently, we have successfully used lentiviral vectors to deliver
an anti-angiogenic Kininogen gene to budding blood vessels
(177, 178). There have been no reports of significant adverse
effects from the lentivirus (37).

Some advantages of using retroviruses are that they can
accommodate a 9–12-kb-large insert size for the gene of interest
and produce high titers. The most significant disadvantages
are lack of cell specificity and the possibility of insertional
mutagenesis (18). The enzyme “integrase” inserts copies of the
retroviral genome into the host cell chromosomes but there
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is a risk of inserting the genome copy into an unfavorable
location such as a tumor suppressor gene or an oncogene, which
would lead to uncontrolled cell division (36). It is critical to
evaluate the risk of insertional mutagenesis for each retroviral
vector. Gammaretroviral vectors have a tendency to integrate
near gene regulatory regions, which can pose a significant risk.
For example, patients in a cohort of 20 died due to leucosis
development in a clinical trial (179). On the other hand, lentiviral
vectors tend to integrate into the body of genes, leading to
lower risk of genotoxicity (52). A possible step to address this
issue would be to use self-inactivating retroviral vectors that
are transcriptionally inactive. Since mature T cells are relatively
resistant to oncogenic transformation by RV, developing T cell-
based therapeutic approaches to treat cancer and other diseases
would be another approach to avoid insertional mutagenesis.
Recently, a non-integrating RV-based CRISPR/Cas9 vectors have
been created for targeted gene knockout (180). Creating such
vectors to target specific genes would help developing therapeutic
approaches without insertional mutagenesis issue. Renal fibrosis
was treated by using high-fidelity RV-based CRISPR/Cas9 vectors
(181). Development of similar vectors would not only address
insertional mutagenesis issue but also radically transform basic
and applied biomedical research. Also, using AAV vector which
inserts a therapeutic gene selectively into known chromosome
19 sequences would be another possibility. Using zinc finger
nucleases or including certain sequences such as the β-globin
locus control region to direct the site of integration to specific
chromosomal sites is yet another way to minimize the risks.
However, further studies are needed to address this issue by
designing specific vectors and understanding the frequency of
insertional mutagenesis, and role of other factors involved.
Insertional mutagenesis is an issue that will likely be solved in
the coming years. Until then, the use of retroviruses remains a
concern. Nonetheless, over 500 gene therapy clinical trials have
been conducted using retrovirus to date.

GENE THERAPY DRUGS IN THE MARKET

Despite many technological challenges and barriers, more than
a dozen gene therapy-based drugs have entered the world
pharmaceutical market to date (Figure 3). The first gene
therapy drug, GendicineTM, was developed by Shenzhen SiBiono
GeneTech for the treatment of patients with tumors carrying a
mutated p53 gene, a common cause for more than 50% of all
types of human cancers. The State Food Drug Administration
of China approved GendicineTM for the treatment of head and
neck squamous cell carcinoma on October 16, 2003 (182, 183).
However, the USFDA has turned down Introgen’s Advexin,
another AV-based viral drug that uses p53 due to concerns
about the safety of the AV vectors after Jesse Gelsinger died in
1999 while participating in a clinical trial but no information is
available about the submission of GendicineTM clinical data for
approval from the USFDA to date. GendicineTM, a replication
defective AV loaded with wild-type p53 gene, is given to patients
by less invasive intramural injections and or intracavity infusions.
According to the manufacturer, a single dose of this viral drug,

costing less than US $400, is given to patients once a week
for 8 weeks as a cure. After injection, the therapeutic activity
of p53 activated by target tissue cellular stress induces cell-
cycle arrest, DNA repair, apoptosis, senescence, and autophagy
to cause tumor growth regression. GendicineTM has been given
to more than 30,000 cancer patients, and it has displayed an
exemplary safety record with no significant side effects to date
(14). According to the manufacturer, GendicineTM has shown
a higher response rate when combined with chemotherapy
and radiotherapy in comparison with standard therapies alone.
Because GendicineTM is injected directly into tumors and
becomes useless for treating tumors neither detectable nor
accessible, other advanced replication-defective AV-based drugs,
such as Advexin and SCH-58500, that carry wild type p53
gene were developed to target all tumors in the patient’s
body in an intravenous injection; however, neither Advexin
and SCH-58500 has entered the pharmaceutical market to
date. However, OncorineTM, another replication defective AV-
based drug that carries p53 gene to cure head and neck
cancer, made it to the Chinese pharmaceutical market in
2005. According to the manufacturer, Shanghai Sunway Biotech
Co., the curative effective of OncorineTM combined with
chemotherapy is superior to chemotherapy alone with a good
safety profile. Since low transduction is a major issue with these
approved replication defective AV drugs, more advanced tumor-
specific p53-expressing conditionally replicating AV vectors such
as ONYX 015, AdDelta24-p53, SG600-p53, H101, and OBP-702
have been developed but none of them is approved for cancer
treatment to date. As many clinicians prefer cancer management
rather than a cure due to the complex nature of the disease, the
future of oncolytic viral therapy demands further advancement
in vector design and discovery of appropriate therapeutic genes
for better treatment.

The next advanced gene therapy drug, Rexin-GTM, a chimeric
retrovector loaded with a cytocidal dominant negative cyclin
G1 gene to target and kill solid tumors, was approved by
the Philippines FDA in 2005. Rexin-GTM developed by Epeius
Biotechnologies Corporation was designated by the US FDA
as an orphan drug for pancreatic cancer. After intravenous
injection, this viral drug carrying a motif derived from von
Willebrand coagulation factor (vWF) on its surface selectively
binds receptors and collagenous proteins exposed heavily in
tumor microenvironment in order to fuse, enter, uncoat, and
insert its genetic material randomly in the chromosomes of the
actively dividing tumor cells only (184). Recent clinical studies
confirmed its safety, anti-tumor activity, and potential to increase
survival time and survival rate of patients. Recently, another
retrovirus-based drug, StrimvelisTM, was approved in Europe to
treat an ultra-rare immunodeficiency syndrome, ADA-SCID, or
Bubble Boy Syndrome, a fatal and life-threatening disease due
to lymphopenia, and recurrent and opportunistic infections. A
bone marrow transplant from a young child donor with matched
leukocyte antigen is the recommended treatment for ADA-SCID
patients, but the availability of a suitable donor is challenging.
Therefore, StrimvelisTM is designed and developed to offer ex
vivo gene therapy and involves use of RV to insert copies of the
ADA gene into the chromosomes of stem cells extracted from the
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FIGURE 3 | Gene therapy drugs in the pharmaceutical market and a timeline of their approval.

bone marrow of patients. The stem cells carrying the ADA gene
are then reintroduced into the patients whose bodies can express
protein to repair their immune system on their own. This drug,
with a list price of $714,000, is available for ADA-SCID patients
without a donor that has matched human leukocyte antigen
(HLA). Clinical studies revealed a 100% remission rate for
StrimvelisTM (Table 2). Nonetheless, there is now a push toward
using self-inactivating retroviral vectors that have less risk of
insertional mutagenesis, especially self-inactivating HIV-1-based
lentiviral vectors (185). A few months ago, the FDA approved
KymriahTM, a lentivirus-based chimeric antigen receptor T cell
(CAR-T) therapy for acute lymphoblastic leukemia (186). The
underlying mechanism of this cancer type disease development
still remains unknown, but patients carry abnormal lymphocytes
in many of their body parts. KymriahTM was developed by
Novartis in collaboration with the University of Pennsylvania
to treat patients with non-Hodgkin lymphoma (NHL) and B-
cell acute lymphoblastic leukemia (ALL). KymriahTM is a novel
immunocellular therapy that uses a patient’s own reprogrammed
T cells with a transgene encoding CAR to identify and eliminate
CD19-expressing malignant and non-malignant cells; overall
remission rate with the therapy is 83% (Table 2). The autologous
peripheral blood T cells are reprogrammed to carry intracellular

4-1BB and CD3-zeta costimulatory domains fused with a murine
single-chain antibody fragment in its CAR to recognize CD19
increase, cellular expansion, and persistence. YescartaTM is
another retrovirus-based CAR-T cell immunotherapy developed
by Kite, a Gilead company, and approved by the FDA in 2017.
This breakthrough hematologic cancer drug is a customized
treatment generated using an NHL patient’s own T-cells to
help fight lymphoma. The patient’s T-cells are collected and
genetically modified using a RV to generate a CAR consisting
of anti-CD19 CAR-T cells linked to CD28 and CD3-zeta co-
stimulatory domains. This drug is specifically designed to treat
diffuse large B-cell lymphoma (DLBCL), a common aggressive
NHL that accounts for three out of every five cases. According
to the manufacturer, ∼7,500 patients with refractory DLBCL are
qualified to receive Yescarta treatment in the USA alone. With
a list price of $373,000 in the USA, Yescarta is believed to get
approval for the European market in the near future. Zalmoxis
is another T-cell based medicine designated an orphan drug
and approved by the EMA for treating certain leukaemias and
lymphomas. This is used as an add-on treatment in patients
who received hematopoietic a stem cell transplant (HSCT) from
a partially matched donor to restore the immune system. This
is a somatic cell therapy product consisting of T-cells that
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are genetically modified using a RV to express 1NGFR and
HSV-TK Mut2 suicide genes. This drug sometimes attacks the
patient’s body by causing graft-vs.-host disease, but the suicide
gene makes these T cells become susceptible to ganciclovir or
valganciclovir medicine commonly given to treat and prevent
further disease development.

NeovasculgenTM, a non-viral first-in-class gene therapy drug
developed by the Russian Human Stem Cells Institute, has
been available since 2012 for the treatment of atherosclerotic
peripheral arterial disease (PAD) including critical limb ischemia.
Intramuscular injection of a single dose of this drug, costing
less than $50, delivers a plasmid DNA-carrying VEGF gene
cloned under a CMV promoter and stimulates angiogenesis
and blood supply to decrease the risk of amputation and
death in patients suffering from PAD. A recent post-marketing
surveillance study revealed a significant increase in pain-free
walking distance by PAD patients and confirmed the therapeutic
efficacy of this drug (56, 57). Recently, Spinraza R© has become
the first approved treatment for the rare and often fatal disease
spinal muscular atrophy (SMA). SMA patients suffer muscle
strength affecting their ability to sit, stand, and breathe. SMA
is caused by widespread splicing defects due to mutations in
survival motor neuron 1 (SMN1), a ubiquitously expressed
cytoplasmic and nuclear protein involved in transcriptional
regulation, biogenesis of small ribonucleoproteins, telomerase
regeneration, and intracellular trafficking. Although the SMA
patients carry its paralog SMN2, low-level expression due to
alternative pre-mRNA splicing appears responsible for this
disease development. Therefore, Spinraza carrying SMN2-
directed antisense oligonucleotides is designed and developed to
resurrect normal SMN2 protein expression in SMA patients. This
non-viral drug developed by Biogen Inc. has received orphan
drug status and was approved for treating all types of SMA
in the USA, Canada, Japan, the European Union, Switzerland,
Australia, South Korea, Chile, and Brazil. Spinraza solution upon
intravenous and or intrathecal administration enters many cells
in the body and induces SMN2 protein expression. According to
the manufacturer, this medicine, with a list price of $125,000 per
injection, costs $750,000 per year for the first year and hundreds
of thousands of dollars every year for the rest of patient’s life.
An AAV-mediated drug designed to express SMN1 protein in
patients was developed by a Novartis company, AveXis Inc.,
and may become available for the treatment of SMA in the
near future.

The first AAV1-based drug, Alipogene tiparvovec, or
GlyberaTM, was approved by the EMA to treat LPLD, a rare
monogenic genetic disorder characterized by accumulation of
triglycerides in plasma due to mutations in LPL. GlyberaTM

carrying correct copies of LPL was developed by UniQure Inc.,
and widely heralded as the “the first gene therapy” in theWestern
world (Figure 3). However, only one or two people in every
one million are estimated to carry LPLD, and despite Glybera’
s demonstrated potential in curing LPLD, it was withdrawn
from the market due to low patient demand. Recently, another
AAV-based drug has entered the pharmaceutical market to treat
Leber congenital amaurosis, an inherited visual dysfunction
characterized by pigmented retina, wandering nystagmus, and

amaurotic pupils and caused by a mutation in the RPE65 (187).
Upon completion of the late-stage clinical trials, this AAV2-
based voretigene neparvovec, LuxturnaTM, has been designated
by the FDA as a breakthrough therapy and an orphan drug
for the treatment of choroideremia. Clinical trials revealed a
remarkable improvement in the patients’ ability to see in dim
light (188). According to the manufacturer, Spark Therapeutics,
Inc., Philadelphia, USA, LuxturnaTM has successfully cured one
blind America’s Got Talent semifinalist, Christian Guardino.
Recently, LuxturnaTM has become the first viral-based drug
approved by the FDA to treat blindness. LuxturnaTM, loaded
with wildtype RPE65, will be given to patients with confirmed
biallelic RPE65 mutation-associated retinal dystrophy to restore
their vision within a few months. Since LuxturnaTM comes with
a record sticker price, the manufacturing company offers an
outcome-based rebate arrangement with a long-term durability
measure and payment option over multiple years. Another AAV-
based drug is poised to enter the pharmaceutical market in
the near future to treat choroideremia, an X-linked inherited
retinal dystrophy that causes night blindness and a constricted
visual field.

Recently, the USFDA approved an HSV-based drug called
T-VEC (ImlygicTM) Talimogene Laherparepvec, developed by
BioVex Inc., and now acquired by Amgen for melanoma
treatment. T-VEC directly kills metastatic melanoma cells and
enhances the immune response against them. According to
the manufacturer, this advanced oncolytic virus replicates in
the tumor cells and synthesizes granulocyte-macrophage colony
stimulating factor (GM-CSF), resulting in tumor-lysis and release
of tumor antigen, which can then trigger an immune response.
The target areas include cutaneous, subcutaneous and nodal
lesions. ImlygicTM also serves as an in-situ vaccine (189). The T-
VEC treatment course involves a series of HSV injections into the
melanoma lesions for 6 months for a complete cure. T-VEC was
approved also in Europe and Australia for melanoma treatment.
G471 or DS-1647 is a third generation oncolytic HSV developed
by Daiichi-Sankyo Ltd., Japan, and Professor Tomoki Todo at
the University of Tokyo for the treatment of malignant glioma.
This has shown excellent safety and efficacy in treating glioma
in preclinical and clinical studies and has been designated as
an orphan drug and “Sakigake,” or ahead of the world, by the
Ministry of Health, Labor and Welfare of Japan (190). However,
this drug is not available for the treatment of cancer patients to
date. In addition, a fewmore drugs are available in the market for
treating different diseases (Table 2).

GENE THERAPY DRUGS IN CLINICAL
TRIALS

The world’s first gene therapy clinical study was conducted
to test a viral-mediated drug at the NIH in 1989, and now
3704 gene therapy studies from 204 countries are listed in the
US Government’s clinical trials database to date (Figure 4A).
More than 50% of them are being conducted in the USA
alone. Recently, the US government has removed NIH special
oversight rules on gene therapy studies, and the USFDA has
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decided to consider gene therapy drugs like other medications
for approval in order to make gene therapy a therapeutic reality
for patients. These clinical studies are testing both viral and
non-viral gene therapy drugs to find cures for a wide variety
of human diseases, disorders, and infectious diseases. While the
majority of these clinical studies are focused on treating cancer,
and immune and digestive diseases, skin diseases are yet to
receive momentum (Figure 4B). These ongoing gene therapy
clinical studies are delivering a wide variety of therapeutic
cytotoxic/suicide, tumor suppressor, vaccine antigen, cytokine,
receptor, replication inhibitor, and anti-angiogenic genes. Some
of the therapeutic genes, vectors, targeted diseases, and their
manufacturers are mentioned in Table 1. A large number of non-
viral vectors are being used to deliver these therapeutic genes,
but viruses dominate as successful vectors in the ongoing clinical
studies. The most popular viral vectors being used in clinical
studies are AV, AAV, HSV, and RV.

AV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

Both AV and RV vectors are being used in more than 50%
of the ongoing viral-mediated clinical studies (Figure 4C).
The main focus of these are on vaccination and oncolytic
therapies. For example, an AV-mediated Theragene (Ad5-
yCD/mutTKSR39rep-ADP) delivers a double suicide gene to
target stage III pancreatic cancer. AV is being used to
deliver the p53 gene in phase II trials to treat recurrent
ovarian epithelial, fallopian tube, and primary peritoneal cancer
as well as hepatocellular carcinoma (NCT02435186). Also,
AV vectors are being used to deliver anti-angiogenic and
immunostimulatory genes to treat prostate cancer and malignant
pleural mesothelioma (NCT02555397 and NCT01119664). A
significant antitumor activity has been demonstrated in phase
I-III clinical trials when an AV-based Onyx-015 that undergoes
replication selectively in tumors was applied in combination
with chemotherapy (14, 191). Vaccination using AV, along
with other viruses such as the modified vaccinia Ankara virus
(MVA), retrovirus, Sendai virus, and vaccinia virus, is being
tested in many clinical trials. AV vectors are also being tested
in delivering therapeutic genes for treating malaria, anthrax,
HIV, influenza, hepatitis B and C, and severe hemophilia, as
well as cardiovascular and many more diseases. AV vectors
carrying site-specific endonucleases are being used to edit the
CCR5 gene in hematopoietic stem or progenitor cells in AIDS
clinical trials (192). The lack of functional dendritic cells in the
brain has been attributed to the growth of one of the most
aggressive and malignant tumors called gliomas. AV vectors
are being used to empower the immune system by expressing
the HSV-1 derived thymidine kinase (HSV-1 TK) and cytokine
fms-like tyrosine kinase 3 ligand (Flt3L) in the brain. While
HSV-1 TK converts ganciclovir into phospho-ganciclovir, a
toxic compound to dividing glioma cells, Flt3L differentiates
precursors into dendritic cells and acts as a chemokine for
dendritic cells resulting into killing of glioma cells and release
of tumor antigens in the tumor microenvironment. This follows

release of HMGB1, a TLR2 agonist that activates dendritic cells
and stimulates dendritic cells loaded with glioma antigens to
migrate to the cervical lymph nodes to prime a systemic CD8+
T cytotoxic killing of glioma cells without causing brain toxicity
and autoimmunity (193). The median survival of glioma patient
is under 2 years and the ongoing clinical trials with DNX-
2401, a replication-competent oncolytic AV capable of infecting
and killing glioma cells by stimulating an anti-tumor immune
response revealed favorable safety profile and prolonged survival
of glioma patients (194, 195). Enadenotucirev, a non-natural
chimeric oncolytic AV that can retain anti-tumor activity despite
intravenous delivery, showed a predictable andmanageable safety
profile in several advanced cancer patients in phase I clinical
studies (196). With encouraging clinical outcome being observed
in a large number of ongoing clinical trials, especially in treating
cancer, AV-mediated gene therapy is anticipated to make a
significant impact on eradicating cancer in the near future.

Although the AV-mediated gene therapy carries a unique
advantage over other systems, several concerns must be
addressed to offer treatment without side effects. For instance,
further improvement in vector development technologies
is essential to avoid activation of the endogenous signal
transduction pathways and production of cytokines due to anti-
vector immune responses that can potentially complicate the
clinical outcomes. The necessity of integrin and CAR protein
expression on the surface of target cells or tissue to allow
efficient infection of AV limits the prospects of treating many
diseases. Therefore, generation of novel AV vectors that can
infect and transduce target cell or tissue with high specificity,
express transgenes up to the therapeutic requirement, induce
low organ toxicity and inflammation, and can be detected
easily in vivo is the need of the hour. Understanding the
disease-specific biomarkers, designing and engineering novel
AV capsids carrying cell or tissue-specific receptor binding
epitopes can reduce the occurrence of unwanted clinical
outcome. Since the presence of AV-neutralizing antibodies varies
from patient to patient, designing and developing personalized
patient-specific capsids can be a promising approach to cure
diseases in the future. Development of AV particles that
resist inactivation by serum proteins is necessary to promote
intravenous administration of therapeutic particles during
treatment. Development of strategies to avoid dose-associated
toxicity is needed. In addition, contamination with replication-
competent virus still remains a serious issue in large scale
production of AV preparation for therapeutic purposes (197).
Therefore, further advancement in the production of purified AV
and AV-based gene delivery technologies is required for using
gene therapy to its full potential.

AAV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

AAV vectors are being used in more than 200 ongoing clinical
studies to treat a wide variety of diseases and disorders
worldwide. After the approval of the AAV-based drugs Gendicine
and Luxturna, another AAV-based drug is poised to enter the
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TABLE 1 | Naked DNA and viral-mediated drugs in clinical trials.

Viral Drug/ Intervention Company/Sponsor Gene/Ab/Ligand Disease/Disorder Vector Currentstatus Clinical trial number

Theragene® SNUBH CD/TKrep Cancer AV Phase I NCT02894944

Ad5-Gag BDHCMU Gag AIDS vaccine AV Phase I NCT02762045

AdMA3 BCCA MG1MA3 Solid tumor AV Phase I NCT02285816

Ad/L523S CCF L523S Lung Cancer AV Phase I NCT00062907

AdAg85A MUMC Ag85A Tuberculosis AV Phase I NCT02337270

Ad35.CS.01 SUSM CS.01 Malaria AV Phase I NCT00371189

dAd5GNE WCMC GNE Cocaine AV Phase I NCT02455479

ChAd63-METRAP CCVTM METRAP Malaria AV Phase I NCT03084289

Ad5FGF-4 Angionetics FGF Angina AV Phase III NCT02928094

AAV5-hFIX UniQure hFIX Hemophilia B AAV Phase I/II NCT02396342

AAV2-GDNF NIH GDNF Parkinson’s AAV Phase I NCT01621581

AAV OPTIRPE65 MEH OPTIRPE65 Eye Diseases AAV Phase I/II NCT02946879

AAV2hAQP1 NIH hAQP1 AADC AAV Phase I NCT02852213

rAAV1-PG9DP SCRC PG9DP HIV AAV Phase I NCT01937455

scAVV9.CB.CLN6 NCH CB.CLN6 Batten Disease AAV Phase I/II NCT02725580

SPK-8011 Spark Thera. FVII Hemophilia A AAV Phase I/II NCT03003533

scAAV9.U1ahSGSH Abeona Thera. SGSH MPS III AAV Phase I/II NCT02716246

LentiGlobin BB305 Bluebird Bio HBB β Thalassemia LV Phase III NCT03207009

Sin-γ- RV-ADA BCH ADA SCID-X1 γ-RV Phase I/II NCT01129544

Anti-MAGE-A3-DP4 NIH TCR Cancer RV Phase II NCT02111850

Anti-EGFRvIII CAR PBL NIH CAR Glioma RV Phase I/II NCT01454596

Filgrastim FHCRC Filgrastim FA RV Phase I NCT01331018

MO32(NSC 733972) UA IL-12 Gliosarcoma HSV-1 Phase I NCT02062827

OrienX010 Oriengene Bio GM-CSF Melanoma HSV-1 Phase I NCT03048253

HSV1716 NCH ICP34.5 Neuroblastoma HSV Phase I NCT00931931

NP2 Diamyd Inc. PENK Cancer Pain HSV-1 Phase I NCT00804076

G207 UA + radiation Brain tumor HSV-1 Phase I NCT02457845

SGT-94 SynerGene RB94 Solid tumors DNA Phase I NCT01517464

CYL2-02 InvivoGen SST2+DCK Cancer DNA Phase II NCT02806687

SNUBH, Seoul National University Bundang Hospital; BDHCMU, Beijing Ditan Hospital of Capital Medical University; BCCA, Vancouver Cancer Centre Vancouver, British Columbia

Canada; CCF, Cancer Center of Florida; MUMC, McMaster University Medical Center; SUSM, Stanford University School of Medicine; WCMC,Weill Medical College of Cornell University;

CCVTM, Centre for Clinical Vaccinology and Tropical Medicine; MEH, Moorfield’s Eye Hospital; AADC, Aromatic L-amino Acid Decarboxylase Deficiency; SCRC, Surrey Clinical Research

Centre; NCH, Nationwide Children’s Hospital; BCH, Boston Children’s Hospital; TCR, T cell receptor; FHCRC, Fred Hutchinson Cancer Research Center; FA, Fanconi Anemia; UA,

University of Alabama; Oriengene Bio, Oriengene Biotechnology Ltd; PENK, Preproenkephalin.

pharmaceutical market in the near future to treat Choroideremia,
an X-linked inherited retinal dystrophy that causes night
blindness and a constricted visual field. Mutations in REP1
encoding Rab escort protein 1, a protein involved in lipid
modification of Rab proteins, have been implicated in the
development of Choroideremia. Patients that received AAV-
REP1 therapy showed a significant increase in their visual acuity
(198). The product of CNGB3 provides instructions for making
the β-subunit of the cone photoreceptor cyclic nucleotide-
gated (CNG) channel, but mutations lead to a defective
photoreceptor, decreased visual acuity, and total color blindness,
or achromatopsia. In a phase I/II clinical trial sponsored by
Applied Genetic Technologies Corporation, AAV was used to
deliver CNGB3 for the successful treatment of achromatopsia
(187). AAV is being tested to cure another eye disease, Leber’s
hereditary optic neuropathy (LHON), a maternally transmitted
common mitochondrial disorder caused by point mutations in

mitochondrial DNA and impairment of ATP generation. The
LHON disease is characterized by apoplectic, bilateral, and severe
visual loss. In an ongoing phase I interventional clinical trial,
scAAV2 is being used to deliver the P1ND4 gene to rescue
visual loss in five legally blind patients (NCT02161380). P1ND4
is a synthetic nuclear encoding gene involved in mitochondrial
oxidative phosphorylation. The initial results obtained from
this study have showed an improved acuity in two of five
patients with no serious adverse events (199). Since treating
diseases of the central nervous system is challenging due to
the blood brain barrier (BBB), many AAV vectors, especially
AAV1, AAV2, AAV5, AAV8, and AAV9, are found to be very
useful in transducing neurons (200), and therefore, many AAV-
mediated treatments are being tested to cure lysosomal storage
disorders, Alzheimer’s disease, Parkinson’s disease, amyotrophic
lateral sclerosis (ALS), epilepsy, spinal muscular atrophy
type 1, metachromatic leukodystrophy, aromatic L-amino acid
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TABLE 2 | The cellular and gene therapy products available in the market.

Drug Company Therapeutic Disease/Disorder Remission

LuxturnaTM

KymriahTM

Glybera®

Gendicine®

StrimvelisTM

OncorineTM

NeovasculogenTM

SPRS-therapy®

laVivTM

ProvengeTM

ImlygicTM

CarticelTM

Rexin-GTM

Spark Therapeutics
Novartis
uniQure
Benda Pharmaceutical
GlaxoSmithKline
Shanghai Sunway Biotech
Human Stem Cell Institute
Human Stem Cell Institute
Fibrocell Science
Valeant Pharmaceuticals
Biogen

Genzyme
Epeius Biotechnologies

RPE65

CAR-T
LPL

p53

HSC
p53

VEGF

Fibroblasts
Fibroblasts
Dendritic cells
ICP34.5 &
GM-CSM
Chondrocyte
Cyclin G1

Inherited blindness
Leukemia (ALL)
LPLD
Head and neck cancer
ADA-SCID
Head and neck cancer
PAD and CLI
Skin damage
Nasolabial fold Wrinkles
Prostate cancer
Melanoma

Knee cartilage injury
Breast cancer, Sarcoma

93%
80%
NA
67%
100%
NA
90%
75%
57%
38%
50%

92%
40%

CAR-T, Chimeric antigen receptor T- cell; ALL, Acute lymphoblastic leukemia; LPL, Lipoprotein lipase; LPLD, Lipoprotein lipase deficiency; ADA, SCID—Adenosine deaminase severe

combined immunodeficiency; HSC, Hematopoietic stem cell; VEGF, Vascular endothelial growth factor; PAD, Peripheral arterial disease; CLI, Critical limb ischemia; ICP34.5, Infected

cell protein 34.5; GM, CSF-Granulocyte-macrophage colony stimulating factor.

FIGURE 4 | Recent trends in gene therapy research and clinical trials. (A) Different diseases being treated by gene therapy in clinical trials. The clinical studies
database was searched for the total number of gene therapies conducted in the world to treat different diseases to date. The main focus of the clinical trials was found
to be treating cancer, immune, digestive, and genetic diseases. (B) Clinical trials actively recruiting patients for testing gene therapy-mediated medicines in curing
diseases. This includes both viral and non-viral vector-mediated gene therapies. A relatively large number of clinical trials are recruiting cancer patients for testing
different gene therapy-based medicines. (C) Different recombinant viral vectors being tested in gene therapy-based treatments.

decarboxylase (AADC) deficiency, and Batten disease. Like AV,
AAV is yet another useful viral vector for cancer gene therapy.
Several AAV vectors are being used to test the expression of anti-
angiogenic, cytotoxic, cytokine, and tumor suppressor genes,

small RNAs, antigens, and antibodies for cancer cures. A large
number of preclinical studies revealed successful treatment with
AAV-mediated gene therapy for improved tumor regression
(201–206). AAV is considered a powerful vector in targeting
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the liver for treating hematological diseases. Complete treatment
of severe hemophilia B by delivering FIX in patients was
described as the “holy grail” of gene therapy clinical application
(207). In ongoing phase I/II clinical trials, FVIII and FIX are
being delivered to hemophilia A and B patients, respectively
(NCT03003533, NCT02484092).

Although AAV vectors are non-pathogenic and safe, and
found among the commonly used platforms for gene delivery
in preclinical and clinical studies, their potential application
in gene therapy is limited by the inability to deliver a
therapeutic gene more than 5.0 kb in size, immunogenicity
of capsid proteins, difficulty in producing a large supply,
requirement of large doses of highly purified vectors, broad
tropism, and presence of an extensive anti-AAV immunity
in human populations (208–211). Adding empty vectors of
AAV to the final vector preparations to serve as a decoy
and developing new vectors with high transduction and gene
expression potential as well as better understanding of T-
cell response to all AAV serotypes in clinical settings would
reduce inflammation, immune response, and other viral particle-
associated side effects because capsid is the primary interface with
the target cell that defines pharmacological, immunological, and
molecular properties (150, 207, 212, 213). Therefore, designing
and developing more chimeric capsid proteins are critical to
generate disease- and cell- or tissue-specific viral particles. For
example, substitution of tyrosine to phenylalanine in the AAV
capsid protein has enhanced the transduction efficiency with
reduced toxicity (214). Better understanding of the underlying
mechanisms of intracellular transportation of AAV particles
in a disease-specific setting will help developing strategies to
improve gene delivery efficacy. AAV vectors are commonly
delivered to patients by systemic, intramural, central nervous
system, cardiac, and pulmonary delivery but certain sites of
the human body elicit no immune response to injection
of antigens or viral particles because the BBB prevents the
entry of antibodies or resting lymphocytes and the absence of
traditional antigen-presenting cells. Therefore, applying AAV
particles to patients through immune-privileged sites, such as
the central nervous system, mucosal surfaces, eye, placenta,
fetus, testicles, and articular cartilage, could be a better option
to avoid T-cell response. For example, AAV vectors injected
intraparenchymally into the central nervous system to treat
Batten’s, Canavan, and Parkinson’s diseases showed little or no
adaptive immune response in many clinical trials (155, 215–
218). Monitoring T-cell response in patients by using advanced
tools especially multicolor flow cytometry, mass cytometry, and
enzyme-linked immunospot (ELISpot) assay will minimize the
risk of the unexpected clinical outcome (209). Also, for reduced
T-cell response and optimal expression of a therapeutic gene,
intramuscular instead of systematic injection of AAV particles is
recommended because healthy muscles express only low levels
of MHC class I antigens (209, 219). Use of immunosuppressive
drugs was found safe to maintain therapeutic gene expression
in many clinical trials (150, 220, 221), and their use could
be an option for better clinical outcome, but maintenance
of transgene expression remains unpredictable. Although AAV
offers the expression of a therapeutic gene for nearly 1 year

without integrating into the host’s chromosomes, applying
CRISPR/Cas9 technology would resolve long-term expression
and mutagenesis issues. Production of high titers of purified
AAV particles by employing ionic iodixanol gradients and ion
exchange chromatography instead of using the toxic CsCl is
also important for the success of gene therapy (222, 223).
Recent developments in the production of high quality AAV
particles from transfection efficient HEK293 cell suspensions
in shaker flasks and WAVE bioreactors free of all animal and
human products will certainly improve the success of gene
therapy application (224). This system was further improved by
changing the NaCl concentration in the medium and optimizing
conditions for Expi293F cell infection by helper herpes simplex
virus (HSV) (225). However, contamination of the final AAV
particle preparation with HSV cannot be ruled out. The AAV
particles generated from the baculovirus expression system carry
low levels of VP1 capsid protein, so high doses are used in
clinical trials to increase transduction efficiency at the expense of
immune response (226). No disease caused by AAV infection has
been reported to date but repression of PPP1R12C gene promoter
in host cells by the rep proteins of AAV2 is clearly a concern
(227). Therefore, more efforts are necessary to smooth out the
landscape surrounding AAV for its more pronounced clinical
benefits in gene therapy.

HSV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

More than 90 gene therapy clinical trials have been conducted
using HSV as a vector to deliver therapeutic genes for curing
various diseases to date. They have been extensively used for
tumor therapy and vaccine development. After the advent of
HSV-based T-VEC drug for melanoma treatment, many HSV
vectors are being used to deliver suicide genes to treat anaplastic
thyroid cancer (228). Since immunotherapy is currently a hot
topic in cancer research and gaining more attention; oncolytic
viruses are often combined with immune checkpoint blockades
such as T-VEC combined with anti-PD1 Pembrolizumab,
anti-CTLA-4 Ipilimumab, and neoadjuvant to increase their
therapeutic potential (68). Also, the oncolytic HSV-1 carrying
four copies of miR-145 target sites combined with radiation has
been shown to be more effective than radiation alone (122, 229).
A current phase I clinical trial uses an engineered HSV rRp450
designed to kill cancer cells in order to treat liver metastases
and primary liver tumors (NCT01071941). HSV is also used as
a transneuronal tracer defining connections among neurons by
virtue of traversing synapses (230). HSV has much potential in
treating problems of the urinary system. A recent study reports
HSV-1 as a vector for delivering poreless TRPV1 channels or
protein phosphatase 1α to reduce bladder over-activity in rats
(231). HSV-mediated treatment also alleviated bladder pain.
These have the potential to offer treatment to cases of overactive
bladder (OAB) and interstitial cystitis/bladder pain syndrome
(IC/BPS). However, infectivity of solid tumors, leakage, off target
viral replication, sequestration, and delivery methods are still
hampering the progress of HSV-mediated oncolytic viral therapy.
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Although the nervous system is the natural site for HSV latency,
the full potential of HSV-mediated gene therapy in treating nerve
diseases is yet to be discovered. Several studies treating chronic
pain were successful in animal models but very few have reached
clinical trials to date. HSV vectors have certainly promising
perspectives in clinic trials but detailed understanding of virus-
host interaction will minimize cytotoxicity and biohazards
generation. Recently, strategies to develop transduction efficient,
alternate vector entry and transcriptionally retargeted oncolytic
HSV viruses were reviewed (232–234). The therapeutic potential
of amplicons is still undermined by production and stability
issues; therefore, focus needs to be on improving vector design,
construction, and production technology. Developing new HSV
vectors carrying genes that enhance tumor cell lysis will increase
oncolytic therapeutic efficacy.While gliomas do not express miR-
124, it is highly expressed in normal brain, and designing HSV
vectors carrying the same could be a promising approach to treat
glioma. The full potential of expression libraries created by using
HSV vectors in regenerative medicine is yet to be seen in curing
human diseases (235). Since oncolytic virus therapy is considered
a major breakthrough in treating cancer after the success of
radiation and immunotherapies, development of safe and tumor-
selective new HSV vectors is necessary for its promising future.
Optimizing vector delivery methods especially to solid tumors
and in immune-compromised patients will certainly improve
oncolytic viral therapy. Exploring their roles in gene editing and
repair will expand the horizons of gene therapy.

RV-MEDIATED GENE THERAPIES IN
CLINICAL TRIALS

RV vectors can be applied to cure a wide variety of diseases
and disorders such as cancer, HIV, ADA-SCID, melanoma, WAS,
and many others. Though the majority of retinal gene therapy
trials use AAV, some use lentivirus because of its larger gene
capacity. For example, Usher syndrome causes hearing loss, less
vestibular function, and a pigmented retina (187). Currently,
a phase II trial is underway to use lentivirus to deliver a 5.0-
kb MYO7A. Additionally, a phase II trial that is projected
to deliver ABCA4 by lentivirus to treat Stargadt disease, an
inherited macular degeneration that causes cell degeneration, is
underway (187). Furthermore, lentivirus is a favorable vector
to treat sickle cell anemia because of the advantages it offers,
including a large transgene capacity, stable long-term expression,
and safer integration (236). A single base substitution in the
β-globin gene causes the erythrocyte sickling characteristic
of sickle cell anemia. Treatments for sickle cell anemia are
transitioning into self-inactivating lentivirus with a deletion in
the U3 region of the 3’ LTR, which has a safer integration
profile (236). A clinical trial sponsored by Bluebird Bio used
LentiGlobin BB305, which delivered β-globin T87Q. Clinical
results showed 24% anti-sickling (NCT03207009). For treating
immunodeficiency, there have been adverse effects reported in
the past by gammaretroviral vectors. In the treatment of X-
linked SCID, CD34+ hematopoietic stem cells were transduced
with murine gammaretroviral vector, which led to an increase

in immune function, but 5 patients developed T cell leukemia
because of insertional mutagenesis into oncogenes (185). In
the treatment of WAS, a gammaretroviral vector expressing
WAS transgene delivered to patients caused 7 out of 10 to
develop leukemia (185). Recently, self-inactivating lentivirus was
used to treat five patients with X-linked SCID. Two patients
had restoration of immune function even 2–3 years after
treatment (237). A current phase I/II clinical trial is using a self-
inactivating gammaretrovirus to treat SCID-X1 (NCT01129544).
Other current clinical trials include a phase II trial using a
retroviral vector to transfer ADA into hematopoietic stem cells
to treat ADA-SCID (NCT00598481). A replicating Toca 511
RV vector is being used in a phase I trial to treat recurrent
high-grade glioma (NCT02598011). RV is being used in a phase
I/II trial to transduce white blood cells with the CAR-T cell
receptor to target mesothelin for patients with metastatic cancer
(NCT01583686). Donor T cells are being transduced with RV to
express the caspase-9 suicide gene in a phase I trial to treat cancer
(NCT01494103). Duchenne muscular dystrophy occurs when a
lack of dystrophin expression causes muscle degeneration. In a
proof-of-concept study, the full-length sequence of dystrophin
was spread over two co-packaged RNA copies and delivered
via a lentiviral vector. The vector integrated and gave long-
term expression of dystrophin (238). Additionally, a RV vector
expressing MazF endoribonuclease is being used to transduce
CD4+ T cells to treat HIV in a phase I trial (NCT01787994).
AIDS-related non-Hodgkin lymphoma is being treated in a
phase I clinical trial that transduces stem cells with genes
for HIV RNA using lentivirus in order to evoke an immune
response (NCT01961063).

Since immunity is the primary barrier for the success of
viral gene therapy, it is critical to design viral vectors that
can subvert the complement system. The LTRs of RV serve as
promoters, enhancers, binding sites for various nuclear proteins,
chromatin modulators, and polyadenylation signals. Therefore,
applying genetic engineering and CRISPR technology will avoid
exacerbating the insertional mutagenesis issue. This issue can
also be avoided by using non-integrating RV vectors or integrase
inhibitors during treatment. The RV-mediated gene therapy
will immensely benefit from developing technologies to guide
and monitor transgene insertion in the host cell chromatin.
Although RV vectors can deliver a transgene up to 10 kb in
size, production of high titer virus, chromatin structure, and
epigenetic modification near the insertion site still remain issues
in clinical applications. Thus, better RV vectors are needed for
future gene therapy applications. Since viral infection depends on
the expression of target cell surface receptors and viral envelope
protein, designing and constructing to produce efficient and cell-,
tissue- and disease-specific recombinant RV vectors are necessary
to obtain the expected clinical outcome. New RV vectors
with optimized LTRs, created by replacing promoter/enhancer
elements with cell- and tissue-specific promoters and enhancer
sequences, will boost their use in curingmany diseases with fewer
or no side effects. Novel RV vectors are needed to transduce
heart and other body organs for their wide spread use in gene
therapy. Introduction of miRNA binding sites in the viral RNA
has been suggested to control posttranscriptional regulation of
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disease-causing genes (239). The use of advanced RV vectors
carrying the woodchuck posttranscriptional regulatory element
(wPRE) to increase transgene mRNA stability, export, and
translatability will help to accomplish better clinical outcome
(240). As delivering genetic information in the form of RNA
is an increasingly popular method, RVs carrying no RT or
integrase are poised to play a significant role in a gene editing,
vaccination, tumor therapy, gene therapy, transdifferentiation,
reprogramming, and other biotechnological applications in the
near future (241).

RISKS ASSOCIATED WITH VIRAL
VECTORS

Since an estimated 1031 virus-like particles exist on the Earth
and they are present in the blood, nose, mouth, lung, vagina,
gastrointestinal tract, conjunctiva, skin, and the mammalian
genome, viruses appear to play a major role in human life
(242, 243). The general concerns with viral vectors are the risks
of an immune response, off-target effects, inflammation, and
insertional mutagenesis. An immune response could make a viral
treatment less efficient, or the resulting creation of antibodies
could preclude a second dosage of the same virus (244–248).
Inflammation was seen as a worst-case scenario in the 1999 death
of Jesse Gelsinger caused by a very high dosage of adenovirus
(249). Tailoring the viral dose to the patient, however, can better
control this risk. Also, insertional mutagenesis is a major obstacle
that the gene therapy field must overcome. The risk of inserting
a gene into a tumor suppressor gene or activating an oncogene is
present for the vectors that integrate into the unwanted locations
of the genome, such as retrovirus. To counter this, vectors can be
used that do not integrate readily into the genome. Additionally,
self-inactivating vectors can be manufactured that do not contain
their own promoter; rather, another internal promoter in the cell
is used. This leads to less genotoxicity and is a safer alternative
to traditional integrating vectors (52). Other concerns are that
viral vectors are only relevant for monogenic disorders because
of their limited DNA-carrying capability. However, HSV-1 is
an example of a virus that has enough carrying capacity for
multiple genes. Additionally, dual vector systems, such as dual
vector adeno-associated virus, have larger transgene capacities.
Also, finding the appropriate virus to infect the desired cells is
often difficult, and there is the risk that the virus could cross
the Weismann barrier and infect germ line cells. Furthermore,
viruses are generally susceptible to genetic variations. Integration
into undesirable sites such as regulatory, oncogenes or tumor-
suppressor genes would be undesirable. Deletion of virulence
genes may affect their ability to infect or integrate with the host
chromosome, thus compromising their effectiveness as vectors.
Additionally, a social stigma is associated with viral therapy.
Most patients would be concerned about being infected by a
live virus—a concern also held about viral vaccines. Since their
ubiquitous presence is a reality, why shouldn’t humankind start
accepting them as wonderful molecular biological tools with
which to build novel and powerful medicine?

CHALLENGES AND THE WAY FORWARD

Since its birth in the 1960s, gene therapy has come quite
a long way by providing an alternate one-time treatment
option for cancer, metabolic disorders, and neuronal,
immune, and infectious diseases. Notably, it has been able
to treat beta thalassemia, Leber’s congenital amaurosis, severe
immunodeficiency diseases such as ADA-SCID, and more.
However, the full potential of gene therapy is yet to be witnessed
in regenerative medicine, a branch of translational medicine
where engineering or regenerating human cells, tissue or organs
enables restoration or establishment of normal function. With
recent impressive results observed in vaginal gene therapy in
preclinical trials, gene therapy is poised to enter the clinical phase
for treating infectious diseases in the near future (250). Both
viral and non-viral vectors can be used to deliver DNA, each of
which has its own advantages and disadvantages. Additionally,
genome-editing technology is an up-and-coming method of
delivering DNA to specific parts of the genome. With all of
these breakthroughs have come hurdles, such as the death of
Jesse Gelsinger in 1999 and the development of leukemia in
patients who have been treated for WAS and ADA-SCID. The
ethical concerns of patients must be heeded as well. However,
these challenges do not reflect a flaw in the concept. Simply,
more research is needed to avoid technical issues such as the
production of viral particles in large scale, formulations for
long-term storage stability, immune responses, and insertional
mutagenesis. Loading of viral particles with a therapeutic gene
during production is mostly done by transient transfections,
a rate-limiting step in large scale production of viral particles.
Alternate approaches such as stable cell lines expressing
capsid proteins and insect cells based baculovirus expression
systems would be useful for mass production of viral particles.
This underdeveloped modern medicine needs discovery and
engineering of better viral vectors to deliver therapeutic genes
precisely to the target diseased cells or tissue.

Gene therapy is a rapidly expanding field, and it seems
that scientists have only scratched the surface of its potential.
The more that is discovered about how to optimize gene
delivery vectors, the closer this field gets to delivering wide-
scale solutions to modern medicine. The future of gene
therapy moves toward engineering safer and more efficient
vectors, combining multiple existing strategies such as viral
vectors with genetic engineering technologies, and personalizing
all characteristics of gene therapy treatments to the patient,
as it has been shown that host genetic variants affect the
efficacy of vector-mediated gene delivery (251). This includes
understanding of the repertoire of receptors on a target cell
in diseased conditions to help in designing appropriate capsid
proteins for viral particles. Although the full panoply of gene
therapy’s might is yet be witnessed, it has enormous potential
to shed light on human afflictions, add value to patients’
lives, and contribute to future economic growth. Although
gene therapy currently shares less than one percent of the
total $1.2 trillion world annual pharmaceutical market, it is
expected to create approximately a $12 billion market in the
next 10 years. According to a market research and advisory
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company, Allied Market Research, cancer gene therapy alone
has created a $289 million market in 2016 but it is expected
to reach $2,082 million by 2023. Gaining popularity among
the global medicinal community, gene therapy has become
an attractive market for companies and investors. However,
the ethical acceptance and advancement in the technology to
avoid unwanted clinical outcomes are critical for driving its
market growth. Also, the translation of laboratory studies to
animal studies and then to clinical trials is a long, tedious,
and expensive process to ensure the safety of patients. As a
result, if the USFDA, with its patchy regulations, continues its
approval rate, providing gene therapies for all the genetic diseases
will take many years to come. Therefore, a new perspective on
creating a conducive atmosphere for improving this modern
cutting-edge gene therapy technology is necessary to transform
the lives of patients with severe genetic illnesses, infectious
diseases, and disorders. As mentioned elsewhere, knowledge has
no boundaries, and there exist unlimited methods to develop
a novel invention; every bump in the investigating path can
be considered an inspiration and source of energy to advance
research, a never-ending learning process.
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Antibody–drug conjugates (ADCs) have developed rapidly in recent decades. However,
it is complicated to map out a perfect ADC that requires optimization of multiple
parameters including antigens, antibodies, linkers, payloads, and the payload-linker
linkage. The therapeutic targets of the ADCs are expected to express only on the surface
of the corresponding target tumor cells. On the contrary, many antigens usually express
on normal tissues to some extent, which could disturb the specificity of ADCs and
limit their clinical application, not to mention the antibody is also difficult to choose.
It requires to not only target and have affinity with the corresponding antigen, but it
also needs to have a linkage site with the linker to load the payloads. In addition, the
linker and payload are indispensable in the efficacy of ADCs. The linker is required to
stabilize the ADC in the circulatory system and is brittle to release free payload while the
antibody combines with antigen. Also, it is a premise that the dose of ADCs will not kill
normal tissues and the released payloads are able to fulfill the killing potency in tumor
cells at the same time. In this review, we mainly focus on the latest development of
key factors affecting ADCs progress, including the selection of antibodies and antigens,
the optimization of payload, the modification of linker, payload-linker linkage, and some
other relevant parameters of ADCs.

Keywords: antibody–drug conjugates, precision choice antibody and antigen, elaborate modification linkers,
proper payloads, optimized linker-payload linkage

INTRODUCTION

In traditional tumor treatment, chemotherapy is one of the main treatment strategies. However,
the toxicity from non-specific accumulation in normal tissues, narrow therapeutic window and
low tolerance all limit chemotherapy drug development in the tumor treatment process (Atkins
and Gershell, 2002; Alley et al., 2010; Ashley et al., 2011). In recent decades, scientists have
gained an in-depth understanding of cancer biology, taking advantage of some unique features

Abbreviations: ADCs, antibody–drug conjugates; ALCL, anaplastic large cell lymphoma; AML, acute myeloid
leukemia; DAR, drug-to-antibody ratio; MDR, multiple drug resistance; MMAE, monomethyl auristatin E; PDBs,
pyrrolobenzodiazepine dimers; PEG, polyethylene glycol; PHF, hydroxymethyl-formal; SMCC, succinimidyl-4-(N-
maleimidomethyl)-cyclohexane-1-carboxylate; SMCC-DM1, succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-
carboxylate-maytansinoid; sulfo-SPDB-DM4, N-succinimidyl-4-(2-pyridyldithio)-2-sulfo butanoate-maytansinoid;
val-cit-PABC-MMAF, valine-citrulline-p-aminobenzyl-carbamate-monomethyl auristatin F.
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of tumor cells to transform cancer treatment from previous
chemotherapy drugs to tumor-targeted therapies. Monoclonal
antibodies and polypeptides which bind to specific markers
on the tumor cell’s surface provide targeted therapeutic
approaches and are both less toxic. However, whether they are
monoclonal antibodies or peptides, they both lack potency in
killing tumor cells.

The treatment strategy of antibodies armed with toxins to
selectively kill target cells was first proposed in 1970 (Moolten
and Cooperband, 1970). The tumor-targeting drug conjugates
integrate targeted biomolecules with therapeutic small molecule
toxins to specifically recognize the tumor tissues and kill the
tumor cells, thereby improving the therapeutic index of the
toxins and the insufficient efficacy of antibodies or peptides.
The tumor-targeting drug conjugates mainly compose of ADCs
that generally couple antibodies which specifically recognize
the surface antigens of tumor cells with chemical toxins which
effectively kill tumor tissues through linkers, and ADCs exert
killing activity by bringing the chemical toxins into the tumor
cells. In general, the antibody specifically binds to the tumor
cell surface antigen, and the antigen mediates the endocytosis
of the ADC and then releases free toxins (Figure 1), but the
downsides are that immunogenicity, poor internalization and the
instability of the linker give rise to insecurity and ineffectiveness
(Chari, 2008). More than 60 ADCs have been in the process of
clinical development until 2016 (Carter and Lazar, 2017), there
are almost 204 ADCs (Supplementary Table S1) that aim for
cancer in clinical development by 2018, including at least nine of
which have entered phases III and IV clinical trials1. It indicates
that ADCs are coming to the center-stage of research field in
recent years especially in North America (Figure 2). However,
until today, only ado-trastuzumab emtansine (T-DM1, Kadcyla@)
and brentuximab vedotin (Adcetris@) are approved by FDA and
on the market (Mullard, 2013; Thomas et al., 2016). There are
many reasons for the dilemma, including the complexity of the
composition of the ADC itself, and the fact that the tumor
microenvironment or physiological conditions in animals are
different from the human so that the evaluation of ADC efficacy
by animal models is not applicable to humans. Beck et al. (2017)
published a review paper about the strategies and challenges
for the next generation of ADCs in 2017. However, ADCs are
developing rapidly and some novel technologies may bring new
considerations. Thus, this review mainly focuses on imperative
factors that are associated with ADC efficacy (Figure 3).

THE SELECTION OF ANTIBODY AND
ANTIGEN

Normally, the antigen specific to the cancer cell should be
a priority after determining the indications for ADC. Ideally,
the antigen should express highly and homogeneously on the
surface of the cancer cells (Sievers and Senter, 2013; Damelin
et al., 2015). When the antibody combines with the antigen
specifically, the antibody-antigen complex should be internalized

1https://clinicaltrials.gov

by antigen-mediated endocytosis, and then the free payloads are
released through lysosomal trafficking. As a result, the payloads
are concentrated in cancer cells and exert the cytotoxic effect
(Erickson et al., 2006). Currently, the predominant therapeutic
limitations are the ineffectiveness and the off-target toxicities
of ADCs, which are caused by the finite internalization and
the low expression of antigens to some extent. Therefore, some
researchers came up with some approaches to counteract these
problems such as utilizing the anti-tumor angiogenesis antibody,
non-internalizing ADC, or bispecific antibody.

The Utilization of Anti-tumor
Angiogenesis Antibody
Some researchers proposed a strategy that using an anti-tumor
angiogenesis ADC to selectively kill cancer cells due to the
process without the involvement of internalization, which could
improve the deficient efficacy caused by finite internalization. For
example, Palumbo et al. (2011) reported that the ADC composes
of an anti-angiogenesis LC19 antibody to selectively target to the
tumor blood vessels, the strategy showed a long-term anti-tumor
effect. However, ADCs of the anti-tumor vessel may elicit off-
target toxicities to normal tissues due to non-specificity of antigen
expression and resistance of vessel co-option in some particular
tumor tissues (Kuczynski et al., 2016). This requires choosing
antibodies based on proper antigens. Seaman et al. (2017) applied
the anti-CD276 antibody to the ADC to improve the non-
specificity. The CD276 expresses in angiogenic tumor vessel,
existed vasculature and tumor cells. Moreover, the anti-CD276
antibody is capable of identifying the normal and pathological
angiogenesis. The anti-CD276 ADC evaded the vessel co-option
and displayed a dual-targeting ability thus displaying effective
anti-tumor activity (Seaman et al., 2017).

Preparing Non-internalizing ADCs
An approach to prepare non-internalizing ADCs to target
corresponding antigens needed to be developed. For instance, the
ADC took advantage of a diabody without an Fc region to target
the matching antigen and an additional chemical activator to cut
the linker, and then release the free payload to penetrate into
tumor cells (Rossin et al., 2018). This strategy is able to increase
the anti-tumor activity and avoid some factors can sacrifice
the efficacy of ADCs such as interstitial pressure and epithelial
barriers from the tumor cells.

The Selection of the Bispecific Antibody
On one hand, in terms of the deficiency of internalization, Li et al.
(2016) used a bispecific antibody to target two non-overlapping
epitopes of one antigen, which increased the affinity between
antibody and antigen. For example, an anti-HER2 biparatopic
antibody displayed better internalization, lysosomal trafficking,
and degradation of the antibody-antigen complex relative to the
traditional T-DM1 (Li et al., 2016). However, the superior affinity
also may trigger a controversy about whether the biparatopic
ADC would induce on-target toxicities to healthy tissues. Though
this study also further indicated that the biparatopic ADC has
an acceptable safety profile due to the threshold of antigen.
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FIGURE 1 | The process of ADCs exerting activity. (a) ADCs specifically recognize cancer-associated antigens in the blood system. (b) ADCs are internalized into
tumor cells during the formation of antibody-antigen complex. (c) ADCs are normally transported to lysosome from endosome. (d) The linker or antibody are broken
in the lysosome conditions to release free toxins. ADCs, antibody drug conjugates.

FIGURE 2 | The map and statistical graph depict regions where developed antibody–drug conjugates. The numbers in the figure indicate the amounts of ADCs in
the clinical phase of the region. The data comes from ClinicalTrials.gov.
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FIGURE 3 | The key parameters associated with efficacy and toxicities with ADCs.

It is unable to form the antibody-antigen complex if the
expression level of antigen below the threshold. However, it seems
arduous to avoid the problem due to the uncertain threshold.
Theoretically, a higher affinity antigen–antibody could make
more ADC molecules combine with tumor cells thus having more
accumulation, but a lower affinity may allow ADCs to penetrate
into tumor cells more effectively. Scientists are still looking for
antigen–antibody with proper affinity (Rudnick et al., 2011). It
needs further research (Tsumura et al., 2018).

Also, some researchers proposed to use the probody of
antibody to solve the on-target toxicities, which may also be
applied to ADCs. This strategy used masking peptide to cover
up the active sites of the antibody then hydrolysis of the shelter
to expose the antibody to target cancer tissues to exert activity
(Desnoyers et al., 2013), which allays the indistinct recognition of
ADCs in the blood circulation.

On the other hand, the bispecific antibody is able to
selectively bind two distinct antigens on a cancer cell to
avoid the off-target toxicities. For example, the bispecific
antibody simultaneously targets the HER2 and PRLR double
positive (HER2+/PRLR+) breast cancer cells to enhance the
internalization and activity of the ADC, and to decrease
the off-target toxicities to the healthy cells (Andreev et al.,
2017). Nevertheless, targeting double-antigens is ineligible
for most heterogeneous tumor cells, since it may trigger
their escape mechanism. Furthermore, the bispecific antibody
could be used to target the immunosuppressive molecule
and tumor-specific antigen on the tumor cells simultaneously
to improve the efficacy of ADC. The ADC targeting CD47
that an immunosuppressive receptor and TAA double
positive (CD47+/TAA+) tumor cells could block the
immunosuppression to augment the killing activity of the
ADC (Dheilly et al., 2017). Currently, there are more than
70 bispecific antibodies applied in clinical trials (see text
footnote 1), two of them have used on the market. These
specific antibodies seem to change some imperfect phenomena
of ADCs (Piccione et al., 2015). Moreover, the trifunctional
antibody also could be used to ADC (Krishnamurthy and
Jimeno, 2018), which possess an arm to target the tumor
cells, the second is used to target T cells, the remaining Fc

region to recruit some immune cells. Using the trifunctional
antibody to link a small molecule toxin seems to improve
the deficient specificity and the killing potency of ADCs.
Though the bispecific or trifunctional prospect is promising
to improve potency and specificity to increase market
competitiveness of ADCs, the challenge of determining the
target combination still remains.

The Bystander Effect to Heterogeneous
Tumors
Some reports also demonstrated that some ADCs may take
advantage of the physical and chemical properties of linkers and
the microenvironment of the tumor to release free payloads to
kill those adjacent negative-antigen cancer cells. The process is
the bystander effect (Kovtun et al., 2006; Okeley et al., 2010).
ADC was metabolized to release uncharged and membrane-
permeable toxic metabolites after being internalized in positive-
antigen cancer, which is able to kill adjacent antigen-negative
cancer cells by membrane-penetration (Kellogg et al., 2011).
This has a great significance for some heterogeneous tumor
cells. Admittedly this was that the bystander effect may
also cause non-specific killing of normal cells. Therefore, it
requires to have rational selection and design of payloads and
linkers based on the target to avoid the adverse effects from
bystander effect.

The Selection of Antibody Isotype
Within IgG isotypes, IgG1, IgG2, IgG4 have been used to
develop therapeutics, but IgG3 isotypes are not used as
therapeutics owing to a significantly faster clearance rate
(Jefferis, 2007). Further, most ADCs use IgG1 isotype
currently (Beck et al., 2017). IgG1 isotype may exert ADCC
(antibody-dependent cell-mediated cytotoxicity) and CDC
(complement-dependent cytotoxicity) to improve ADCs
activity further, whereas IgG2 and IgG4 are typically deficient
in their effector functions (Salfeld, 2007). However, the
PD-1 antibodies (Nivolumab and Pembrolizumab) used
IgG4 isotype, which may be due to the PD-1 antibody only
needing to block the interaction between PD-1 and PD-L1
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FIGURE 4 | The pie chart shows the antigens applied to the clinical phase
III/IV trials of ADCs. ADCs, antibody drug conjugates; MDR, multiple drug
resistance; DAR, drug-to-antibody ratio.

to increase immune system function to produce anti-tumor
activity, which is needed to avoid the toxicity to T cells from
ADCC and CDC. Therefore, the choice of isotype also needs
careful consideration.

The Consideration of Antigen
Glycosylation of antigen also could affect the design of ADCs.
On the one hand, if glycosylated antigen specifically exists on the
tumor cell surface, it will have an important implication to be a
target of an ADC. For example, a monoclonal antibody targeting
glycosylated PD-L1 (gPD-L1) to disrupt PD-L1/PD-1 interaction.
The gPD-L1 is mainly expressed on tumor tissues, which
improves non-specific expression of PD-L1 in some immune cells
to limit toxicity (Li et al., 2018). On the other hand, the steric
structure of a glycosylated antigen plays a certain protective role,
which will block the interaction between the antibody and specific
sites on the antigen surface. Therefore, we need to have a more
comprehensible understanding on designing ADCs.

Most ADCs utilize the antigens on the tumor cells surface,
which are limited in their specificity relative to intracellular
antigens. Taking advantage of the antigen presentation feature of
MHC that caused tumor-specific endogenous antigen expression
on the cell surface overcomes the inaccessibility of intracellular
antigens. Further, the MHC-I/peptide complex is recognized by
the ADCs that mimic the characterization of TCR, which will
produce superior specificity and potency (Lai et al., 2018). Table 1
and Figure 4 showed the antigens used in phase III/IV trial
currently (see text footnote 1).

THE SELECTION OF PAYLOADS

Once the target is determined, the proper choice of payload
becomes a critical part of ADC. The final potency of ADCs mainly
depends on the concentration of payloads in tumor cells; thus
some researchers are dedicated on improving the DAR of ADCs
to increase the accumulation of drugs in tumor cells. Zhang
et al. (2018b) indicated that activity of the ADC still remains
constant though augmenting the payload concentration, and this
also could magnify the toxicity to normal tissues at the same
time. This suggests that the threshold of payload concentration

also needs consideration. In summary, choosing the applicable
payloads and designing the appropriate DAR is important for the
final concentration of the payloads in tumor cells.

Improving the Efficacy of ADCs
Early ADCs used drugs that have been approved for clinical
use such as vinblastine and doxorubicin, but the low clinical
activity of these drugs resulted in suboptimal ADCs efficiency.
Some cytotoxins were too toxic to be non-target agents in
clinical application, but they seemed to be more promising as
payloads for ADCs. At present, the dose of the payloads in
tumor cells is required to be the picomolar range to kill these
cancer cells (Chari et al., 2014). Also, payloads must possess
acceptable solubility and decent sites to react with linkers.
These all limited the selection of payloads. Currently, most
payloads are derivatives of the microtubule inhibitor family, such
as the auristatin and maytansine (Beck and Reichert, 2014).
Brentuximab vedotin (Adcetris@), approved by FDA in 2011,
composes of MMAE and cAC10 mAb (chimeric IgG1 antibody)
via a protease-cleavable dipeptide linker to target tumor antigen
CD30 (also known as TNFRSF8) for the treatment of Hodgkin’s
lymphoma and ALCL (ki-1 lymphoma) (Senter and Sievers, 2012;
Younes et al., 2012). Ado-trastuzumab emtansine (Kadcyla@),
approved in 2013, consists of a stable thioether linker (SMCC)
attached to trastuzumab (anti-human epidermal growth factor
receptor-2 antibody, anti-HER2 antibody) and DM1 (maytansine
derivative) for the treatment of advanced breast cancer (Lambert
and Chari, 2014). Both adopted the microtubule inhibitor family
as payloads, yet auristatins and maytansines are only able to
exert activity in cell proliferation and they are hydrophobic,
which will disturb their activity. Thus, some novel payloads
or the original payload structural modifications such as the
improvement of hydrophilicity will become the hotspots of the
future payload research (Burke et al., 2017). At present, some
novel ADCs have better activity and have been through clinical
phase III/IV (Table 1).

The first commercially available ADC was gemtuzumab
ozogamicin (GO) that consists of calicheamicins which damage
DNA (Walker et al., 1992) for the treatment of AML. However,
GO showed no significant improvement in overall survival
(OS) compared with the calicheamicin agent alone, and had a
higher mortality rate and was recalled in 2010 (Petersdorf et al.,
2013; Kharfan-Dabaja, 2014). This is because calicheamicin is
hydrophobic in that almost only 50% could be conjugated, and
only approximately 50% of free drugs are eventually released
in the conjugated drugs (Beck et al., 2010; Senter and Sievers,
2012), resulting in a significant decrease in potency. To overcome
these limitations, some novel targeted DNA agents have been
broadly developed. Pyrrolobenzodiazepine dimers (PBDs) have
already become a new choice, it may attach to the linker that
conjugated to the antibody, and has the ability to overcome
MDR relative to the commonly used calicheamicin as a substrate
of P-glycoprotein (Kung Sutherland et al., 2013; Stein et al.,
2018). The IMGN779 (NCT02674763) utilized DGN462 that a
novel drug with DNA-alkylating activity also demonstrated better
anti-tumor activity and tolerability (Kovtun et al., 2018).
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TABLE 1 | Current clinical phase III/IV trials of ADCs.

NCT number Name Conditions Payloads Target

NCT03523585 DS-8201a Breast cancer Topoisomerase I inhibitor HER2

NCT03734029 DS-8201a Breast cancer topoisomerase I inhibitor HER2

NCT03529110 DS-8201a Breast cancer topoisomerase I inhibitor HER2

NCT03262935 SYD985 Metastatic breast cancer DUBA HER2

NCT03474107 Enfortumab vedotin Ureteral cancer| urothelial
cancer| bladder cancer

MMAE Nectin-4

NCT02631876 Mirvetuximab soravtansine
(IMGN853)

Epithelial ovarian cancer|
primary peritoneal
carcinoma| fallopian tube
cancer| ovarian cancer

DM4 FRα

NCT02785900 Vadastuximab talirine
(SGN-CD33A; 33A)

Acute myeloid leukemia PBD CD33

NCT01990534 Brentuximab Vedotin Hodgkin lymphoma MMAE CD30

NCT03677596 Inotuzumab ozogamicin Leukemia| precursor b-cell
lymphoblastic
leukemia-lymphoma| acute
lymphoblastic leukemia

Calicheamicins CD22

NCT02573324 Depatuxizumab mafodotin
(ABT-414)

Glioblastoma MMAF EGFR

NCT01100502 Brentuximab vedotin
(SGN-35)

Disease, Hodgkin MMAE CD30

NCT01777152 Brentuximab vedotin Anaplastic large-cell
lymphoma| non-Hodgkin
lymphoma| T-cell lymphoma

MMAE CD30

NCT01909934 Brentuximab vedotin Anaplastic large-cell
lymphoma

MMAE CD30

NCT03419403 Depatuxizumab mafodotin
(ABT-414)

Glioblastoma multiforme MMAF EGFR

NCT01712490 Brentuximab vedotin Hodgkin lymphoma MMAE CD30

NCT02166463 Brentuximab vedotin Hodgkin lymphoma MMAE CD30

DUBA, duocarmycin-hydroxybenzamide-azaindole; MMAE, monomethyl auristatin E; MMAF, monomethyl auristatin F; DM4, maytansine 4; PBD,
pyrrolobenzodiazepine dimers.

Avoiding MDR
The MDR has always been a barrier and one of the important
factors affecting the therapeutic effect in the cancer treatment.
The MDR is still an impeditive factor of using ADCs. This
is because the essence of ADC’s activity is that the payloads
in tumor cells exert cytotoxicity, and these payloads may be
affected by MDR. Many studies concentrate on the modification
of drug-linker that, by increasing hydrophilicity, circumvents
MDR caused by the overexpression of efflux pumps because the
substrates of MDR1 were hydrophobic in general. Moreover,
some novel payloads such as PBD, DGN462, and tubulysins
cooperate with ADCs to display better anti-tumor activity in
MDR+ tumor cells (Burke et al., 2018; Kovtun et al., 2018;
Stein et al., 2018). ADCs are susceptible to hydrophobicity to be
insensible to MDR+ cells, thereby it is essential to improve the
hydrophilicity to escape from MDR to increase the activity of
ADCs (Kovtun et al., 2010).

THE MODIFICATION OF LINKER

Although the linker may be not directly correlated with the final
potency of ADC (Lee et al., 2018b), the potency of ADC is

dictated by the concentration of payload accumulated in tumor
cells, and the payload release is determined by the stability of
the linker. Thus, the linker is crucial for a perfect ADC, and it
determines the stability, efficacy, and even the ability to overcome
MDR. The basic requirement of the linker is to make the payload
attach to the antibody, stabilize the payload in the circulation
system, and is labile to release the free payload into cancer cells
when the antigen–antibody complex is formed (Doronina et al.,
2006). Currently, linkers are mainly divided into the cleavable
linkers and the non-cleavable linkers.

The Comparison of Cleavable Linkers
With Non-cleavable Linkers
The cleavable linkers normally take advantage of the difference
of tumor microenvironment and normal physiological
environment to release the payloads that may be membrane-
permeable and can produce the bystander effect. The
non-cleavable linkers need to meet the requirement that
the antibody and linker must be disconnected after the formation
of the antigen–antibody complex enter the lysosomal trafficking.
This may cause the bystander effect that is a passive transport
process to weaken, caused by the membrane-impermeability
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of linker-payloads connected with polar amino acids. Both
types of linkers have their advantages and disadvantages, which
are applied to the clinical trials (Chari et al., 2014; Bialucha
et al., 2017). However, about 2/3 ADCs used cleavable linkers
in the current clinical trials (Lambert and Berkenblit, 2018), in
which mainly are dipeptide linkers and disulfide linkers. The
non-cleavable linkers are not only more stable to escape from
the off-target toxicities than cleavable linkers (Lu et al., 2016),
but also may overcome the barrier of multiple-drug resistance
(MDR) (Shefet-Carasso and Benhar, 2015; Beck et al., 2017;
Nasiri et al., 2018) for the reason that the payload connected
with polar amino cannot be a substrate of MDR1, which will
improve the MDR phenomenon. However, the non-cleavable
linkers need a more elaborate process to produce activity such
as the internalization and metabolism of the antibody in the
lysosome, which is a prerequisite to release active payloads to
exert killing activity (Rosenberg, 2006; Lambert and Berkenblit,
2018), and the polar amino-linker-payload also needs a distinct
transporter to carry it from the lysosome to cytoplasm to work
(Hamblett et al., 2015; Kinneer et al., 2018; Lee et al., 2018b),
which makes the design of ADC more complex to limit the
utilization of non-cleavable linkers. The cleavable linkers are
more vulnerable to lead to off-target toxicities, but the process
of exerting effects is more comprehensible thus researchers
are dedicated to modifying the cleavable linkers to overcome
their weakness and to increase their stability in the circulation
(Sanderson et al., 2005; Kellogg et al., 2011).

The Analysis of Cleavable Linkers
The cleavable linker can metabolize some cell-permeable
metabolites to exert the bystander killing effect. The cleavable
sulfo-SPDB-DM4 linker produced cell-permeable catabolites to
display a better activity than non-cleavable SMCC-DM1 linker
(Bialucha et al., 2017). Also, the application of the sulfonate group
improved hydrophilicity to increase the exposure of ADC to the
antigen to promote killing activity. The brentuximab vedotin
(SGN-35) took advantage of a cleavable dipeptide linker to release
free MMAE, and the MMAE may permeate adjacent cells to
exert killing activity which is important to some heterogeneous
tumor cells. Moreover, the dipeptide linker offers ADC better
stability in the circulation, and is more specific to tumor cells
(Katz et al., 2011). The protease cleavage pathway is not restricted
to cathepsin B, various cysteine cathepsins can cleavage the
dipeptide linker, such as cysteine cathepsins B, K, L, and S. It
seems to explain why the dipeptide linkers cannot be insensitive
to tumors, caused by the insufficient expression of protease
(Caculitan et al., 2017), which is one of the reasons why some
protease-sensitive linkers are widely used by ADCs.

In particular, the design of the valine-citrulline (val-cit) linker,
the most frequent in dipeptide linkers, needs to consider the
connection to the phenol-containing payloads; diverse electron
groups affect the degrees of immolation of the linker to influence
the different potency of an ADC (Zhang et al., 2018a). However,
the val-cit dipeptide linker is not conducive to preclinical
research to appraise the efficacy of ADCs due to instability
in mice (Dokter et al., 2014). Anami et al. (2018) reported
a glutamic acid-val-cit linker replaced val-cit dipeptide linker,

which could alleviate the flaw of instability in the mice plasma
and retain the cathepsin-mediated cleavage mechanisms, thus
boosting preclinical application of some ADCs. The acidic
tripeptide linker could increase the polarity of ADCs to improve
solubility to increase the therapeutic potency (Anami et al.,
2018). However, one of the studies suggests that activity of the
ADC with cleavable valine-citrulline-p-aminobenzyl-carbamate-
monomethyl auristatin F (val-cit-PABC-MMAF) is much less
than the ADC with non-cleavable maleimidocaproyl-MMAF
(Doronina et al., 2006), which may be due to the character
of payloads rather than the linker. The metabolites of some
payloads are more effective than the prototypes. The non-
cleavable linkers are not widely applied to ADCs since many
payload derivatives attached to an amino cannot satisfy the killing
potency of ADCs.

The disulfide linker utilized the difference of glutathione
(GSH) levels between the tumor microenvironment and the
physiological environment of normal tissues to produce activity
(Meister and Anderson, 1983; Dubikovskaya et al., 2008), which
is more labile in tumoral hypoxia conditions (de Groot et al.,
2001). At present, the main obstacle of the disulfide linker is
the instability, which is mainly improved by increasing steric
hindrance to relieve the vulnerability. ADCs using the disulfide
linkers have inferior potency in vivo due to the more rapid
clearance of payloads compared with the non-cleavable thioether
linkers that displayed more potent activity (Lewis Phillips et al.,
2008). The trastuzumab emtansine (T-DM1) consists of non-
cleavable thioether linker and a maytansine derivate, which
has better anti-breast cancer activity. The linker contained a
cyclohexane carboxylate and a maleimidomethyl group. The
ionized metabolite cannot kill surrounding normal cells due to
its impermeability after ADC metabolized, thus the ADC has a
better safety (LoRusso et al., 2011). The non-cleavable linkers
are stricter in the choice of antigens compared with cleavable
linkers, yet fewer toxicities (Polson et al., 2009). Zhang et al.
(2016) reported that using methy- and cyclobutyl-substituted
disulfide with efficient immolation demonstrated more potent
killing activity than cyclopropyl-substituted disulfide with non-
immolation. Also, this reflects that the immolation of the linker
is imperative to the potency of ADC (Zhang et al., 2016).
However, the anti-tumor activity is more determined by the
cleavage of the linkers only when payloads require complete
cleaving to exert activity (Caculitan et al., 2017). Thus, new
research could focus on developing payloads that do not require
the production of pharmacological effects with prototype drugs.
Also, future studies could focus on developing some novel
technologies of payload-linker to improve the activity of ADCs
such as SYD985 based on a cleavable linker-duocarmycin payload
(NCT03262935) (Dokter et al., 2014).

THE PAYLOAD-LINKER LINKAGE

With the development of ADCs, the drug-linker linkage that
goes hand in hand with the efficacy of ADCs is more critical
(Nasiri et al., 2018). In order to give full play to ADCs’ activity in
tumor cells, it is necessary to effectively design the payload-linker
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according to the physicochemical properties of the payloads and
the characteristics of the linkers.

The Consideration of the Sites of
Payload-Linker
The sites of the payload-linker are essential conditions to consider
due to the attaching-sites being correlated with homogeneity
that is related to the therapeutic index. In the early stages of
ADCs development, the lysine on the antibody was used as
the site to attach the linker, which caused great heterogeneity.
Later, Adcetris@ used the cysteine that only eight free cysteines
per antibody to link through disulfide bonds, which reduced
the ADCs heterogeneity. In recent years, to ensure ADC
homogeneity, researchers have developed some site-specific
methods, such as THIOMAB (Junutula et al., 2008; Chudasama
et al., 2016).

The Modification of Payload-Linker
The drug-linker linkage determines the DAR that are related to
the efficacy of ADC. Generally, the therapeutic potency of ADC
gradually increases in vitro with the increase of DAR whereas
the therapeutic index in vivo decreases (Hamblett et al., 2004),
which may due to with the enhancement of DAR accelerates the
clearance of ADC which is closely related to the hydrophobicity
of ADC (Lyon et al., 2015). The hydrophobicity is determined by
the amounts of payloads per antibody and the design of drug-
linker (Doronina et al., 2014). It is the main reason for the
failure of ADC in the clinical application that the concentration
of payload is deficient to treat tumors on account of the DAR of
ADC in clinical stage generally control to 3.5–4 (Beck et al., 2017).
Thus, augmenting the hydrophilicity of ADC with high DAR by
the design of drug-linker exquisitely will improve the efficacy
in vivo (Pabst et al., 2017). Some hydrophilic groups such as PEG
or PHF may improve this dilemma. Accurately connecting these
hydrophilic groups to a linker will effectively improve the efficacy
of the ADCs. For example, Trastuzumab–PHF–Vinca ADC with
DAR of 20 demonstrated a potent anti-tumor activity and decent
pharmacokinetic profile due to the high hydrophilicity of PHF
(Yurkovetskiy et al., 2015).

At the same time, MDR+ tumor cells are insensible to some
ADCs due to the fact that many payloads applied to ADCs are
hydrophobic, which are the substrates of the MDR1 transporter.
By improving the hydrophobicity of the drug-linker, it seems to
be able to bypass MDR (Kovtun et al., 2010; Shefet-Carasso and
Benhar, 2015).

OTHER PARAMETERS CORRELATED
WITH THE EFFICACY OF ADCs

The Relationship Between the Internal
Environment and Activity of ADCs
Normally, we consider the internalization that influences the
efficacy of ADCs to be regulated by antigen. Recently, Lee et al.
(2018a) demonstrated that the internalization may be mainly
determined by the cellular environment rather than the antigen,

which brought another hint that the development of the ADCs
has to consider a variety of parameters besides the choice of
target and the design of the linker. The characteristics of tumor
cells also affect the activity of ADCs, including the endothelium,
interstitial, and epithelial barriers which could limit ADCs uptake
in the tumor, resulting in a small fraction of the injected dose
reaching the desired tumor target (Perez et al., 2014). Intra-
tumor distribution of ADCs also affects the anti-tumor efficacy
(Tsumura et al., 2018).

Sometimes the efficacy of the ADCs does not have a positive
correlation with the dose of the injection of ADCs. In addition
to being interfered by the payload concentration threshold, the
activity of ADCs could be affected by the saturation of the
antigen–antibody combination, which causes the concentration
of the ADCs in the circulation to be higher than the concentration
of the corresponding receptors (Mager, 2006). Some antigens
may shed from the tumor cells and circulate in the blood
system to alleviate invalid combination with antibodies, which
is also able to enhance the efficacy of ADCs (Pak et al., 2012).
These internal factors seem to be imperative considerations when
designing ADCs in the future.

The External Conditions Related to
Activity of ADCs
Another point worth attention is the choice of assessment
method of safety and efficacy of ADCs. Owing to the ADC
subjects to some physical and chemical conditions such as
storage conditions, which is able to cause degradation or
aggregation of ADCs to influence the assessment of ADCs’
activity (Mohamed et al., 2018). Therefore, the assessment
method must be considered to some extent.

CONCLUSION AND PERSPECTIVE

With in-depth understandings of antibodies, linkers, and
payloads, ADCs have also achieved great development. The
linkage strategy and target diversity have already improved
the delivery of the payloads to tumor tissues and reduced
exposure to normal tissues. With the development of payloads,
some novel potent payloads are used by ADCs, which allows
researchers to exploit novel linkers to attach the antibody and
payloads without disturbing their potency (Dragovich et al.,
2018). Furthermore, some irrelevant antigen-target ADCs also
may exert toxicity to tumor cells due to the vascular gap of
tumors relative to the normal tissues, which is big enough to
make ADCs penetrate into tumor cells (Cardillo et al., 2011),
indicating the specific recognition of ADCs by tumor tissues
on another aspect.

Some prodrug strategies also are used in ADCs design, which
modified the toxic payloads to inactive prodrugs, then utilized
self-immolation groups and took advantage of the intratumoral
environment to reduce the prodrugs to prototype drugs to
exert intrinsic activity (Pei et al., 2018). Moreover, nanoparticles
combining with the strategy of ACD prodrugs could also increase
the activity and circumvent MDR (Qi et al., 2017). The key
issues of ADCs are optimization of the appropriate antibody,
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the choice of proper antigen, the selection of high-activity
cytotoxic payloads, stable linkage technology and optimization
of DAR in future development. These strategies will improve
the efficacy of ADCs that give them a larger market share
to replace chemotherapy drugs in medical therapy in the
future. At present, ADCs in clinical trials mainly focus on
hematological tumors especially Hodgkin lymphoma, because
the CD30 is an ideal target, overexpressed in Hodgin lymphoma
consistently. With the deep investigation of the target, more
ADCs to cure other types of cancer will expand to clinical
applications. However, the development of ADCs is costly to
make, marked by Adcetris@ and Kadcyla@ imposing more family
burdens on patients.

In recent years, peptide-drug conjugates (PDCs) are also
on the stage of targeted-drug conjugation therapy and are
considered as part of ADCs. PDCs replace antibodies with
peptides, which minimize the molecular weight to alleviate
the reduction of tumor cell absorption caused by the larger
molecular weight of the ADCs. Also, PDCs could possess
better homogeneity due to the few of the attached sites of
the peptides. The cost-effectiveness of PDCs is critical to
alleviate the pressure on patients during treatment. However,
PDCs also have some weaknesses that need to be improved.
The vulnerability of PDCs in the blood system is a non-
negligible obstacle, but it is difficult to improve half-life and
reduce off-target toxicity by modifying structure of PDCs
without destroying activity. Therefore, we must master more
comprehensive knowledge to improve ADCs or PDCs. Whether
used alone or in combination with other therapies, the toxicity
of ADCs and PDCs must be better understood to adjust the
therapeutic index based on the minimum effective dose of

the drug in tumor cells and the maximum tolerated dose
for normal tissues.
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Multidrug resistance (MDR) is one of the leading causes of treatment failure in cancer

chemotherapy. Onemajor mechanism of MDR is the overexpressing of ABC transporters,

whose inhibitors hold promising potential in antagonizing MDR. Glesatinib is a dual

inhibitor of c-Met and SMO that is under phase II clinical trial for non-small cell lung

cancer. In this work, we report the reversal effects of glesatinib to P-glycoprotein (P-gp)

mediated MDR. Glesatinib can sensitize paclitaxel, doxorubicin, colchicine resistance

to P-gp overexpressing KB-C2, SW620/Ad300, and P-gp transfected Hek293/ABCB1

cells, while has no effect to their corresponding parental cells and negative control

drug cisplatin. Glesatinib suppressed the efflux function of P-gp to [3H]-paclitaxel and

it didn’t impact both the expression and cellular localization of P-gp based on Western

blot and immunofluorescent analysis. Furthermore, glesatinib can stimulate ATPase

in a dose-dependent manner. The docking study indicated that glesatinib interacted

with human P-gp through several hydrogen bonds. Taken together, c-Met/SMO

inhibitor glesatinib can antagonize P-gp mediated MDR by inhibiting its cell membrane

transporting functions, suggesting new application in clinical trials.

Keywords: multidrug resistance, P-gp, glesatinib, reversal effects, mechanism

INTRODUCTION

Multidrug resistance (MDR) is the one of the major challenges in cancer treatment (1). MDR refers
to a phenomenon that cancer cell once becomes resistant to one chemotherapeutic, accompanied
by cross resistant to other chemotherapeutics that are structurally and mechanistically different
(2). MDR is one of the major causes of failure in cancer treatment. The mechanisms of MDR
involve dynamic ATP-binding cassette (ABC) transporters (3, 4), oncogenes mutations (5),
microenvironment changes (6), reprogramed cancer cell metabolism (7, 8), efficient DNA repairing
(9, 10), survived cancer stem cells (11, 12), and activated detoxifying systems (13, 14). Novel
effective remedies are urgently needed to circumvent MDR.
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ABC transporters are a group of active transporter proteins
that have diverse functions and are present in the membrane of
both prokaryotes and eukaryotes, acting as protecting enzymes
against xenobiotic, including many chemotherapeutics (15, 16).
One of the most well studied ABC transporters is P-glycoprotein
(P-gp), which is encoded by ABCB1 genes. P-gp contributes in
pumping out many different kinds of anticancer drugs, namely,
taxanes, anthracyclines, vinca alkaloids, and epipodophyllotoxins
(17–24). To counteract the negative regulation of chemotherapy
by P-gp, three generations of inhibitors (both specific and non-
specific) have been developed and some of them have been
introduced into clinical trials (25). However, due to unexpected
adverse effects or severely drug-drug interaction, none of them
have been approved by FDA (3, 26). There is an unmet need
for effective and safe reversal agents for clinical use. Recently,
certain tyrosine kinase inhibitors (TKIs) have been found to
exert MDR reversal effect via regulating P-gp at non-toxic
concentration (27–31), suggesting new regimens in the treatment
of resistant cancer. TKI glesatinib (Figure 1A), a c-MET/SMO
dual inhibitor (32, 33), is now under Phase II clinical trials
in combination with Nivolumab in treatment of the non-small
cell lung cancer (NSCLC). More importantly, we found that
glesatinib can antagonize P-gp mediated MDR. Here, we report
the reversal effects of glesatinib and the underlying mechanisms.

MATERIALS AND METHODS

Chemicals
Glesatinib (99% purity as measured by high performance
liquid chromatography) was purchased from ChemieTek
(Indianapolis, IN). Dulbecco’s modified Eagle’s Medium
(DMEM), bovine serum albumin (BSA), fetal bovine serum
(FBS), penicillin/streptomycin and trypsin 0.25% were purchased
from Hyclone (GE Healthcare Life Science, Pittsburgh, PA).
The monoclonal antibodies for ABCB1 (C219) and GAPDH
(MA5-15738), Alexa Fluor 488 conjugated goat anti-mouse
IgG secondary antibody were purchased from Thermo Fisher
Scientific Inc (Rockford, IL), dimethylsulfoxide (DMSO),
3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide
(MTT), Triton X-100, 4’,6-diamidino-2-phenylindole (DAPI),
paraformaldehyde, paclitaxel, doxorubicin, colchicine, cisplatin,
verapamil and Ko 143 were purchased from Sigma-Aldrich (St.
Louis, MO). [3H]-paclitaxel (15 Ci/mmol) was purchased from
Moravek Biochemicals, Inc (Brea, CA). All other chemicals were
purchased from Sigma Chemical Co (St. Louis, MO).

Cell Lines and Cell Culture
The human epidermoid carcinoma cell line KB-3-1 and its
colchicine-selected P-gp-overexpressing KB-C2 cells, the human
colon cancer cell line SW620 and its doxorubicin-selected P-gp-
overexpressing SW620/Ad300 cells, the NSCLC cell line NCI-
H460 and its mitoxantrone-selected ABCG2-overexpressing
NCI-H460/MX20 cells, were used for P-gp and ABCG2 reversal
study, respectively. The HEK293/pcDNA3.1, HEK293/ABCB1
cells lines were established by transfecting HEK293 cells with
either the empty pcDNA3.1 vector or the vector containing
full length ABCB1 (HEK293/ABCB1), and were cultured in a

medium containing 2 mg/mL of G418. All cell were cultured at
37◦C, using 5% CO2 with DMEM containing 10% FBS and 1%
penicillin/streptomycin. All drug resistant cell lines were grown
as adherentmonolayer in a drug-free culturemedia formore than
2 weeks prior to their use.

Cytotoxicity and Reversal Experiments
The cytotoxicity and reversal experiments of glesatinib to
KB-3-1, KB-C2, SW620, SW620/Ad300, HEK293/pcDNA3.1,
HEK293/ABCB1 cells were performed by using the MTT
colorimetric assay (34). For reversal experiments, the applied
concentrations of glesatinib were 1 and 3µM according to
the results of cytotoxicity experiments. All of the experiments
were repeated at least three times, and the mean and standard
deviation (SD) values were calculated. Verapamil (3µM) was
used as a positive control inhibitor of P-gp, Ko 143 was used
as a positive control inhibitor of ABCG2, cisplatin, a non-P-gp
substrate, was used as a negative control.

Western Blot Analysis
Dose-dependent (0, 0.3, 1, 3µM) and time-dependent (0, 24, 48,
72 h) of glesatinib on the expression of P-gp were determined.
Twenty microgram protein cell lysates were loaded in each
lane. The presence of P-gp was determined using monoclonal
antibody C219 (dilution 1:200). GAPDH was used to confirm
equal loading in each lane in the samples prepared from cell
lysates. The resulting protein bands were quantified by using
Image J software. The detailed protocol of Western blot analysis
was carried out as previously described (35).

Immunofluorescence Analysis
SW620, SW620/Ad300 cells were seeded (1× 104/well) in 24-well
plates and cultured at 37◦C for 24 h, followed by incubation with
3µM glesatinib for 0, 24, 48, and 72 h, respectively. Then cells
were fixed in 4% paraformaldehyde for 5min and permeabilized
by 0.1% Triton X-100 for 5min before blocked with 6% BSA
for 1 h at 37◦C. The presence of P-gp was determined using
monoclonal antibody F4 (dilution 1:1000) for incubation at
4◦C overnight. Alexa Fluor 488 conjugated secondary antibody
(1:1000) was used for incubation at 37◦C for 1 h. After washing
with iced PBS, DAPI (1µg/mL) was used to counterstain the
nuclei. Immunofluorescence images were collected using an
EVOS FL Auto fluorescence microscope (Life Technologies
Corporation, Gaithersburg, MD).

ATPase Assay
The vanadate-sensitive ATPase activity of ABCB1 in membrane
vesicles of High Five insect cells was measured as previously
described (36). Briefly, the membrane vesicles (10 µg of protein)
were incubated in ATPase assay buffer [composed by 50 mmol/L
MES (pH 6.8), 50 mmol/L KCl, 5 mmol/L sodium azide, 2
mmol/L EGTA, 2 mmol/L DTT, 1 mmol/L ouabain, and 10
mmol/L MgCl2] with or without 0.3 mmol/L vanadate at 37◦C
for 5min, then were incubated with different concentrations
(ranging from 0 to 40µM) of glesatinib at 37◦C for 3min.
The ATPase reaction was induced by the addition of 5mM of
Mg-ATP, and the total volume was 0.1mL. After incubation
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FIGURE 1 | The structure of glesatinib and its cytotoxic effects to three P-gp overexpressing cancer cells. (A) Chemical structure of glesatinib. (B) Concentration

-dependent viability curves for KB-3-1 and KB-C2 cell lines incubated with different concentration of glesatinib for 72 h. (C) Concentration-dependent viability curves

for SW620 and SW620/Ad300 cell lines incubated with different concentration of glesatinib for 72 h. (D) Concentration-dependent viability curves for

HEK293/pcDNA3.1 and HEK293/ABCB1 cells incubated with different concentration of glesatinib for 72 h. The cell viability was determined by MTT assay. Data are

expressed as mean ± SD, and representative of three independent experiments in triplicate are shown.

at 37◦C for 20min, the reaction was allowed to continue for
another 20min at 37◦C and then terminated by adding 100
µL of a 5% SDS solution to the reaction mix. The amount of
inorganic phosphate (IP) release was detected at 880 nm using
a spectrophotometer.

[3H]-Paclitaxel Accumulation and
Efflux Assay
Since glesatinib reversed MDR mediated by P-gp, the reversal
mechanismmay be related to change of the protein expression or
location of P-gp, we used the drug accumulation and efflux assays
to determine the reversal mechanism as previously described
(27). The accumulation and efflux of [3H]-paclitaxel in KB-3-
1 and KB-C2 cells were measured in the absence or presence
of glesatinib (1, 3µM), and verapamil (3µM) was used as
positive control.

Molecular Modeling of Human ABCB1
Homology Model
To reveal more details of the interaction between glesatinib and
P-gp, we conducted docking study. All docking experiments
were performed following the reported protocols with software
Schrodinger 2018–1 (Schrödinger, LLC, New York, NY, 2018)
on a Mac Pro 6-core Intel Xenon X5 processor with Macintosh
Operating System (OS X El Capitan) (28, 37). Ligand preparation
was essentially performed. Human P-gp homology model
(4M1M) was established by Dr. S. Aller based on improved

mouse P-gp (3G5U). Single-wavelength anomalous diffraction
(SAD) phasing was conducted to the full 3.8 Å resolution of
the dataset. Non-crystallographic symmetry (NCS) operators
were determined from the mouse P-gp structure with the
phenix.python script simple_ncs_from_pdb.py. Refinement was
conducted with phenix.refine using NCS and secondary structure
restraints, restraining NCS-related B-factors, group B-factor and
individual B-factor (38). The centroid of some important residues
including H61, G64, L65, M68, L339, A342, L975 C343, F942,
T945, Q946, Y950, L975, V982, and A985 (39–41). Glide XP
docking was performed and the receptor grid for induced-fit
docking (IFD) was generated by selecting residues. Then IFD was
conducted with the default protocol.

Statistical Analysis
All data are expressed as the mean ± SD. All experiments were
repeated at least three times and the data were analyzed using a
one-way or two-way ANOVA by GraphPad Prism 7.00 software.
Differences were considered significant when P < 0.05.

RESULTS

Glesatinib Antagonized MDR in P-gp
Overexpressing Cancer Cells
First, the cytotoxicity of glesatinib to P-gp overexpressing cancer
cells KB-C2, SW620/Ad300, HEK293/ABCB1, and their parent
cells KB-3-1, SW620, HEK293 cells were determined by MTT
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assay. As shown in Figures 1B–D, the IC50s fell between 5
and 10µM. Therefore, the non-toxic concentration (IC20) of
glesatinib applied in the reversal effects evaluation were 1 and
3 µM.

The reversal effects of glesatinib to P-gp substrates, including
doxorubicin, paclitaxel and colchicine were further tested in the
aforementioned cancer cells. The non-selective P-gp inhibitor,
verapamil was used as a positive control (42), and non-substrate
cisplatin was used as a negative control (43). Pretreatment with
or without glesatinib with these substrates to P-gp overexpressing
cancer cells and their sensitive parent cells were tested to obtain
their IC50s.

As shown in Tables 1, 2, the parent cells were sensitive to
doxorubicin, paclitaxel and colchicine, and the IC50s were as low
as nano-mole. While P-gp overexpressing cancer cell exhibited
resistant properties to these chemotherapeutics, resistance fold
ranged from 77 to 438. Pretreatment with glesatinib significantly
lowered the IC50s of all these three chemotherapeutics to resistant
cancer cells. More importantly, glesatinib exhibited similar re-
sensitizing effects to P-gp transfected HEK293/ABCB1 cells,
suggesting its mechanisms of re-sensitizing to chemotherapeutics
were directly or indirectly related to P-gp. In addition, in ABCG2
overexpressing cancer cells NCI-H460/MX20 cells, gleasatinib
failed to reverse topotecan (an ABCG substrate) resistance
(Table 2). These results indicated that glesatinib could antagonize
cancer MDR mediated by P-gp, but not MDR mediated
by ABCG2.

Glesatinib Did Not Impact the P-gp
Expression and Subcellular Localization
The down-regulation or re-localization of P-gp (from
cellular membrane to cytosol) may lead to re-sensitization

of chemotherapeutics as a result of less extent of efflux or
unable to exert its functions (17, 44). We further determined the
interaction mechanism of glesatinib with P-gp by examining the
P-gp expression and cellular location through Western blotting
and immunofluorescence assay. P-gp overexpressing KB-C2 cells
were treated with glesatinib at different concentration (0.3, 1,
3µM for 72 h) or at different time (3µM for 24, 48, 72 h) and
the P-gp expression was examined. SW620/Ad300 cells were
treated with 3µM for 0, 24, 48, 72 h to examine the localization
of P-gp. KB-3-1 and SW620 cells were used as negative control
in this experiment.

As shown in Figure 2, P-gp expression was not impacted
by glesatinib either dose- or time-dependently. The
immunofluorescence assay results of Figure 3 showed that
after treatment of glesatinib, localization of P-gp had not
changed and remained to localize on the cell membrane. These
results suggested that glesatinib could not impact the expression
and localization of P-gp. We next tested the effects of glesatinib
to the efflux functions of P-gp.

Glesatinib Increased the Intracellular
[3H]-Paclitaxel Accumulation and Inhibited
[3H]-Paclitaxel Efflux in Cancer Cell Lines
Overexpressing P-gp
As glesatinib did not alter either P-gp expression or its
localization, we set out to test the transporting function of
P-gp by examining the cellular accumulation of radioactive
[3H]-paclitaxel. As shown in Figures 4A,B, in KB-3-1
cells that barely expressed P-gp, [3H]-paclitaxel had not
been impacted, and glesatibin had no effects to either
the drug accumulation (Figure 4A) or efflux (Figure 4B).

TABLE 1 | Glesatinib sensitized paclitaxel, colchicine, and doxorubicin to P-gp-overexpressing cell lines (KB-C2 and HEK293/ABCB1 cells).

Treatment IC50± SDa (RFb)

KB-3-1 (µM) KB-C2 (µM) HEK293 (µM) HEK293/ABCB1 (µM)

Paclitaxel

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.004 ± 0.002 (1.00)

0.004 ± 0.001 (1.00)

0.003 ± 0.001 (0.75)

0.003 ± 0.001 (0.75)

1.755 ± 0.057 (438.75)

0.220 ± 0.026 (55)*

0.015 ± 0.001 (3.75)*

0.010 ± 0.002 (2.5)*

0.073 ± 0.027 (1.00)

0.122 ± 0.050 (1.67)

0.100 ± 0.020 (1.37)

0.068 ± 0.003 (0.95)

3.757 ± 0.312 (51.46)

0.255 ± 0.084 (3.49)*

0.047 ± 0.004 (0.64)*

0.094 ± 0.003 (1.9)*

Doxorubicin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.032 ± 0.013 (1.00)

0.029 ± 0.003 (0.91)

0.028 ± 0.004 (0.88)

0.024 ± 0.006 (0.75)

2.504 ± 0.487 (78.25)

0.118 ± 0.061 (3.69)*

0.023 ± 0.010 (0.72)*

0.024 ± 0.005 (0.75)*

0.061 ± 0.020 (1.00)

0.060 ± 0.029 (0.98)

0.066 ± 0.009 (1.08)

0.061 ± 0.008 (1.00)

0.631 ± 0.150 (10.34)

0.072 ± 0.006 (1.18)*

0.064 ± 0.021 (1.05)*

0.084 ± 0.009 (1.38)*

Colchicine

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.009 ± 0.002 (1.00)

0.006 ± 0.002 (0.67)

0.007 ± 0.001 (0.78)

0.009 ± 0.001 (1.00)

3.231 ± 0.260 (359.00)

0.993 ± 0.183 (110.33)*

0.088 ± 0.020 (9.78)*

0.116 ± 0.035 (12.89)*

0.066 ± 0.001 (1.00)

0.058 ± 0.007 (0.88)

0.048 ± 0.009 (0.73)

0.056 ± 0.006 (0.85)

1.538 ± 0.090 (23.30)

0.126 ± 0.106 (1.91)*

0.047 ± 0.021 (0.71)*

0.050 ± 0.008 (0.76)*

Cisplatin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

2.508 ± 0.432 (1.00)

1.990 ± 0.452 (0.79)

2.031 ± 0.364 (0.81)

2.309 ± 0.641 (0.92)

3.027 ± 0.343 (1.21)

2.676 ± 0.443 (1.07)

2.120 ± 0.152 (0.85)

2.098 ± 0.230 (0.84)

2.660 ± 0.430 (1.00)

1.982 ± 0.253 (0.75)

1.903 ± 0.361 (0.72)

2.388 ± 0.452 (0.90)

3.336 ± 0.451 (1.25)

3.272 ± 0.254 (1.23)

3.394 ± 0.353 (1.28)

3.115 ± 0.433 (1.17)

*P < 0.05 vs. no inhibitor group.
a IC50 values represented the mean ± SD of three independent experiments performed in triplicate.
bResistance fold (RF) was calculated by dividing the IC50 values of substrates in the presence or absence of an inhibitor by the IC50 values of parental cells without an inhibitor. Gle,

Glesatinib; Vera, verapamil.
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TABLE 2 | Glesatinib sensitized paclitaxel, colchicine, and doxorubicin to P-gp-overexpressing cell line (SW620/Ad300 cells), but not topotecan to

ABCG2-overexpressing cells (NCI-H460/MX20 cells).

Treatment IC50 ± SDa (RFb) Treatment IC50 ± SDa (RFb)

SW620 (µM) SW620/Ad300 (µM) NCI-H460 (µM) NCI-H460/MX20 (µM)

Paclitaxel

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.091 ± 0.015 (1.00)

0.067 ± 0.013 (0.74)

0.060 ± 0.020 (0.66)

0.097 ± 0.031 (1.07)

21.190 ± 6.25 (232.86)

1.969 ± 0.160 (21.63)*

0.257 ± 0.072 (2.82)*

0.646 ± 0.173 (7.10)*

Topotecan

+ Gle (1µM)

+ Gle (3µM)

+ Ko 143 (3µM)

0.063 ± 0.020 (1.00)

0.060 ± 0.015 (0.95)

0.040 ± 0.021 (0.63)

0.051 ± 0.013 (0.81)

6.010 ± 0.530 (95.49)

6.360 ± 0.127 (100.95)

7.160 ± 1.193 (113.65)

0.520 ± 0.130 (8.25)*

Doxorubicin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

0.031 ± 0.014 (1.00)

0.033 ± 0.007 (1.06)

0.029 ± 0.012 (0.94)

0.023 ± 0.007 (0.74)

9.950 ± 2.023 (320.97)

2.397 ± 0.041 (77.32)*

0.271 ± 0.020 (8.74)*

0.288 ± 0.155 (9.29)*

Cisplatin

+ Gle (1µM)

+ Gle (3µM)

+ Ko 143 (3µM)

1.640 ± 0.185 (1.00)

1.699 ± 0.392 (1.04)

1.513 ± 0.218 (0.92)

1.686 ± 0.152 (1.03)

2.150 ± 0.498 (1.31)

1.926 ± 0.297 (1.17)

2.049 ± 0.187 (1.25)

2.285 ± 0.138 (1.39)

Cisplatin

+ Gle (1µM)

+ Gle (3µM)

+ Vera (3µM)

1.481 ± 0.676 (1.00)

1.266 ± 0.189 (0.85)

1.166 ± 0.079 (0.79)

1.164 ± 0.107 (0.79)

1.514 ± 0.398 (1.02)

1.676 ± 0.138 (1.13)

1.587 ± 0.329 (1.07)

1.851 ± 0.364 (1.25)

*P < 0.05 vs. no inhibitor group.
a IC50 values represented the mean ± SD of three independent experiments performed in triplicate.
bResistance fold (RF) was calculated by dividing the IC50 values of substrates in the presence or absence of an inhibitor by the IC50 values of parental cells without an inhibitor. Gle,

Glesatinib; Vera, verapamil.

FIGURE 2 | Glesatinib did not affect the protein expression of P-gp transporters in ABCB1 overexpressing cell lines. Detection and relative intensity of ABCB1

expression in KB-C2 cells incubated with 0.3, 1, 3µM for 72 h and 3µM for 0, 24, 48, 72 h. Data are mean ± SD, representative of three independent experiments. *p

< 0.05, compared with control group.

While in P-gp overexpressing KB-C-2 cells, [3H]-paclitaxel
accumulation decreased significantly as shown in Figures 4A,C.
Pretreatment of glesatinib may significantly increase the
[3H]-paclitaxel accumulation and inhibited the drug efflux
of P-gp. These results indicated that glesatinib may exert
its re-sensitizing effects by thwart the transporting function
of P-gp.

Glesatinib Stimulated the ATPase Activity
of P-gp
ATP hydrolyzed by ATPase was used by P-gp to provide
the energy to transport its substrates (45, 46). To further
reveal the P-gp inhibitory mechanisms, we determined
the effect of glesatinib on the ATPase activity of P-gp

transporters by measuring P-gp-mediated ATP hydrolysis
in the presence or absence of glesatinib (0–40µM). As
shown in Figure 5, Glesatinib stimulated the ATPase activity
of P-gp transporters in a dose-dependent manner. The
concentration of 50% stimulation was 3.2µM, and the
maximum stimulation was 5.59-fold greater than that of
basal level.

Induced-Fit Docking (IFD) Simulation
Interactions Between P-gp and Glesatinib
We investigated the potential interaction of glesatinib with P-gp
by conducting docking analysis. The best docking score of the
binding of glesatinib and human P-gp was−12.639 kcal/mol. The
best-scored docked position of glesatinib with P-gp was showed
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FIGURE 3 | Glesatinib did not affect the localization of ABCB1 transporters in ABCB1 overexpressing cell lines. Sub-cellular localization of ABCB1 expression in

SW620/Ad300 cells incubated with 3µM of glesatinib for 0, 24, 48, and 72 h. ABCB1, green and DAPI (blue) counterstains the nuclei. SW620 cells represented the

control group.

FIGURE 4 | Glesatinib increased the accumulation and inhibited the efflux of [3H]-paclitaxel in P-gp overexpressing KB-C2 cells. (A) The effect of glesatinib on the

accumulation of [3H]-paclitaxel in KB-3-1 and KB-C2 cell lines. (B) The effect of glesatinib on efflux of [3H]-paclitaxel in KB-3-1 and (C) KB-C2. Verapamil (3µM) was

used as positive controls. Data are mean ± SD, representative of three independent experiments. *p < 0.05, compared with control group. Gle, Glesatinib; Vera,

verapamil.

in Figure 6. There were two hydrogen bonds between glesatinib
and human P-gp, including the hydrogen binding between the
amide group of glesatinib and Tyr950 (C=O. . .HO-Tyr950), in
addition with the hydrogen bond between the methoxy group
and Asn721 (H3C-O. . .H2N-Asn721). The fluorophenyl group
of glesatinib has π-π interaction with both Phe336 and Phe983
of P-gp protein. The thienopyridine group has π-π interaction
with the residues Phe728 and Phe983. Interestingly, the acidic
microenvironment of tumor (47) could result in the ionization
of glesatinib, and the amine cation could form a hydrogen bond
with Tyr307 and a π-cation bond with Phe303. These formed

various bonds between glesatinib and human P-gp may finally
lead to the collapsed P-gp.

DISCUSSION

ABC transporter P-gp functions as the protective enzyme that
pumps out xenobiotics including many chemotherapeutics
that are its substrates, causing MDR in cancers (3). To
counter that, many P-gp inhibitors have been developed
and some of them have been tested in clinical trials,
while all of them have failed to get approved by US
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FIGURE 5 | Glesatinib stimulated the ATPase activity of P-gp. Effect of various concentrations of glesatinib on the ATPase activity of P-gp. The inset graphs illustrate

the effect of 0–10µM glesatinib on the ATPase activity of P-gp. Data are mean ± SD, representative of three independent experiments.

FIGURE 6 | The molecular modeling study of glesatinib with human homology ABCB1. (A) Overall view of glesatinib-P-gp complex. (B) 3D figure of Docked position

of glesatinib within the drug-binding site of human P-gp homology model. Glesatinib was showed as ball and stick mode with the atoms colored: carbon-cyan,

nitrogen-blue, oxygen-red, fluorine-green, sulfur-yellow, hydrogen-purple. Important residues were showed as sticks, with the color pattern: carbon-gray,

nitrogen-blue, oxygen-red, hydrogen-purple. π-π stacking interactions are indicated with cyan dotted line. π-cation bond is indicated with green dotted line. Hydrogen

bonds were showed by the yellow dotted line. (C) 2D figure of Docked position of glesatinib within the drug-binding site of human P-gp homology model. The cyan

bubbles indicate polar residues and the green bubbles indicate hydrophobic residues. Hydrogen bonds are shown by the purple dotted arrow. π-π stacking

interactions are shown by the green lines and π-cation bond is indicated with red line.

FDA due to severely adverse effects (48, 49). Recent
studies indicate that certain TKIs may work as regulators
of P-gp (2, 50), either inhibiting its expression (51) or

impact its functions (35). Combinations of these TKIs and
chemotherapeutics hold promising potential in the treatment of
MDR cancers.
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In this work, we found that MET/SMO dual inhibitor
glesatinib, a drug candidate that is now under clinical trials,
antagonized P-gp mediated MDR in cancer cells overexpressing
P-gp. As shown in SW620/Ad300 and KB-C2 cells, glesatinib
could antagonized P-gp mediated resistance by significantly
reducing the IC50s of doxorubicin, paclitaxel and colchicine,
while had no effects to cisplatin which was not a substrate
of P-gp. To confirm these effects were mediated by P-gp, we
further tested its reversal effects to P-gp transpected HEK293
cells. Glesatinib exhibited similar effects in HEK293/ABCB1
cells, indicating the effects were mediated by regulating P-
gp. We further confirmed that glesatinib did not affect the
expression and sub-cellular localization of P-gp, while it could
stimulate ATPase, similar as P-gp inhibitor verapamil (45).
Importantly, our results showed gleastinib significantly increased
the intracellular accumulation of [3H]-paclitaxel and suppressed
the efflux effects, which may contribute to the increased cytotoxic
effects when used by combination. Finally, the docking study
indicated that glesatinib might have strong interaction with P-
gp via hydrogen bonds and π-π interaction, leading to the
efflux inhibition. This docking result may provide valuable
information to develop glesatinib derivatives for better targeting
and/or binding.

In conclusion, MET/SMO dual inhibitor Glesatinib
antagonized P-gp mediated MDR by inhibiting its efflux
functions. This work provided important information for further
clinical trials.
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Through Activating p53 Pathway
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The protein lysine methyltransferase SMYD2 has recently emerged as a new enzyme

modulate gene transcription or signaling pathways, and involved into tumor progression.

However, the role of SMYD2 in drug resistant is still not known. Here, we found that

inhibition of SMYD2 by specific inhibitor could enhance the cell sensitivity to cisplatin

(CDDP), but not paclitaxel, NVB, and VCR in non-small cell lung cancer (NSCLC). Further

study showed that SMYD2 and its substrates were overexpressed in NSCLC resistant

cells, and the inhibition of SMYD2 or knockdown by specific siRNA could reverse the cell

resistance to cisplatin treatment in NSCLC/CDDP cells. In addition, our data indicated

that the inhibition or knockdown SMYD2 inhibit tumor sphere formation and reduce

cell migration in NSCLC/CDDP cells, but not in NSCLC parental cells. Mechanistically,

inhibition of SMYD2 could enhance p53 pathway activity and induce cell apoptosis

through regulating its target genes, including p21, GADD45, and Bax. On the contrary,

the sensitivity of cells to cisplatin was decreased after knockdown p53 or in p53 deletion

NSCLC cells. The synergistically action was further confirmed by in vivo experiments.

Taken together, our results demonstrate SMYD2 is involved into cisplatin resistance

through regulating p53 pathway, and might become a promising therapeutic target for

cisplatin resistance in NSCLC.

Keywords: SMYD2, cisplatin resistance, lung cancer, p53, apoptosis

INTRODUCTION

The incidence and mortality of lung cancer ranks at the NO.1 among all kinds of cancer (1).
Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancer (1, 2). The surgery,
radiotherapy, chemotherapy, molecular targeting therapy, and immunotherapy are possible choice
for NSCLC treatment (2). However, most of NSCLCs are found at advanced stage, so drug-based
therapy, mainly including chemotherapy, is considered as the most important approach to treat
NSCLCs (3).

The platinum-based chemotherapy, such as cisplatin plus paclitaxel, cisplatin plus NVB,
and cisplatin plus VCR, is the first-line treatment approach in NSCLCs (2, 3). However, drug
resistance will be inevitable happened after treatment for 1–2 years, which limit the application
of chemotherapeutic agents (4, 5). To solve this problem, we should first understand the resistant
mechanisms for chemotherapy in NSCLCs. In fact, many previous studies have shown that the
upregulation of efflux protein, the mutation of drug target, the activation of by-pass oncogenic
pathway, and the accumulation of phenotype change cells contributed to the resistance of
chemotherapeutic agents in NSCLCs (6, 7). However, there is still unknown for a large part of
NSCLC resistant patients.
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SMYD2 was identified as protein methyltransferase
which adds methyl-group to its histone and non-histone
substrates and epigenetically regulates their function (8, 9).
Recently, SMYD2 was observed to involve into the upset and
progression of various tumors including leukemia, breast cancer,
teratocarcinoma, gastric cancer, and head and neck cancer
(10–14). Mechanistically, SMYD2 was found to prompt cell
proliferation, block apoptosis, and enhance cell migration and
invasion through regulating its substrates methylation status,
such as p53 and histone4 (13–15). However, whether this enzyme
is involved into drug resistance is still not known.

Here, NSCLC was used to as an example to investigate the role
of SMYD2 in chemotherapeutic resistance. Our data showed that
SMYD2 was involved into cisplatin resistance, but not paclitaxel,
NVB, and VCR. Further study indicated that SMYD2 expression
and its activity were increasing in cisplatin resistant NSCLC
cells. Mechanistically, SMYD2 prompt cell migration, increase
the tumor sphere and block apoptosis, which is dependent on the
methylation of p53K370. The inhibition or knockdown of SMYD2
model would result in the increasing of sensitivity to cisplatin
in vitro and in vivo. Our results not only elucidate the role of
SMYD2 in cisplatin resistance and provide a potential method
to reverse cisplatin resistance in NSCLC.

MATERIALS AND METHODS

Cell Lines, Cell Culture, and Treatment
A549 (p53 wide type, KRAS mutation), NCI-H460 (p53
wide type, KRAS mutation), and NCI-H1299 (p53 deletion,
KRAS wide type) human lung adenocarcinoma cell lines
were purchased from the American Type Culture Collection
(ATCC; Manassas, VA, USA). These cancer cells were routinely
cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA)
supplemented with 10% fetal bovine serum (FBS; Gibco) and
were maintained at 37◦C in a humidified incubator with 5% CO2.
The cells were treated with Cisplatin (J&K Scientific Ltd, Beijing,
China) at increasing concentrations (ranging from 0.5 to 4µM)
for 3 months.

Compounds and Reagents
BAY-498(SMYD2 inhibitor), AZ505(SMYD2 inhibitor),
Cisplatin(CDDP), Vinorelbine(NVB), Paclitaxel (Taxol),
and Vincristine sulfate(VCR) was obtained from MedChem
Express (Princeton, NJ, USA). The primary antibodies against
SMYD2, p53, Cleaved-PARP, and β-actin were obtained from
Cell Signaling Technology (Danvers, MA, USA), and the primary
antibodies against p53K370Me was purchased from Immunoway
Technology (Plano, TX, USA). The pcDNA3-p53 vector was
obtained from Addgene.

Cell Viability Assay
In vitro cell viability was determined using the MTT assay.
Cells (1 × 105 cells/ml) were seeded in 96-well culture plates.
After incubating overnight, the cells were treated with various
concentrations of the appropriate agents for 48 h, after which
10 µl of MTT solution (2.5 mg/ml in PBS) was added to each
well, and the plates were incubated for an additional 4 h at 37◦C.

After the samples were centrifuged (2,500 rpm, 10min), the
medium supplemented with MTT was aspirated, and then 100
µl of DMSO was added to each well. The optical density of each
well wasmeasured at 570 nmwith a Biotek SynergyTM HTReader
(BioTek Instruments, Winooski, VT, USA).

Western Blot Analysis
Western blotting was performed as previously described (14).
Briefly, equal amounts of total protein extracts from cultured
cells or tissues were fractionated by 10–15% SDS-PAGE before
being electrically transferred onto polyvinylidene difluoride
(PVDF) membranes, which were sequentially incubated with
mouse or rabbit primary antibodies and horseradish peroxidase
(HRP)-conjugated secondary antibodies designed to detect the
proteins of interest. The indicated secondary antibodies were
subsequently reacted with ECL detection reagents (Pierce,
Thermo Fisher Scientific, Waltham, MA, USA) and then
incubated in a dark room. The relative expression levels of the
indicated proteins were normalized to those of β-actin.

Flow Cytometry Analysis
Analyses for apoptosis were conducted with an Annexin V-FITC
Apoptosis Detection Kit (BioVision, Mountain View, CA, USA).
Cells (1 × 106) were exposed to various inhibitors for 48 h.
They were collected by centrifugation and resuspended in 500
µL of 1 × binding buffer. Annexin V-fluorescein isothiocyanate
(FITC; 5 µL) and PI (5 µL) were added to the cells. After
incubation at room temperature for 5min in the dark, cells were
analyzed by FACS using a flow cytometer (BD Biosciences, San
Jose, CA, USA). Cells that stained Annexin V-FITC (apoptosis)
were analyzed.

siRNA-Mediated Gene Knockdown
SMYD2 and p53 knockdown was performed using specific
siRNAs purchased from Santa Cruz Biotechnology (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Scramble non-target
siRNAs served as negative controls. siRNA was introduced into
the indicated cell lines with Lipofectamine RNAiMAX reagent
(Thermo Fisher Scientific), according to the manufacturer’s
instructions, and knockdown efficiency was assessed by
western blotting.

Transwell Migration Assay
NCI-H460/CDDP and its parental cell lines migration capacities
were tested by Corning transwell assay, according to the
manufacturer’s instructions. Briefly, the indicated lung cancer
cells were treated DMSO, BAY-598 (200 nM), Scramble siRNA,
and SMYD2 siRNA (50 nM) for 48 h and then seeded in the upper
chamber of the system at a density of 5× 104 cells/well in serum-
free medium (100 µl). The wells in the lower chamber of the
system were filled with complete medium. After incubating for
48 h, the cells remaining in the upper chamber were carefully
removed with a cotton swab, and the cells that had migrated
through the membrane and adhered to its lower surface were
fixed with 100% methanol and stained with 0.2% crystal violet.
The membrane was then photographed under a microscope,
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FIGURE 1 | Effects of the combination of chemotherapeutic agents and SMYD2 inhibitor on cell growth in NSCLC cells. The growth of A549 and NCI-H460 cells

treated with chemotherapeutic agents, including CDDP, Taxol, NVB, and VCR at different concentrations or combination with SMYD2 inhibitor BAY-598. Cell lines

treated with DMSO were used as controls.

and the cells in five predetermined fields were counted at
200×magnification.

Tumor Sphere Formation Assay
NCI-H460/CDDP and its parental cell lines were treated
DMSO, BAY-598 (200 nM), Scramble siRNA, and SMYD2 siRNA
(50 nM) for 48 h, after which single cells prepared by mechanical
and enzymatic dissociation were seeded in 6-well ultra-low
attachment plates (Corning, NY, USA) at a density of 1,000
cells/well in serum-free DMEM/F-12 medium supplemented
with B27 (1×, Invitrogen, Thermo Fisher Scientific), 20 ng/ml
human recombinant bFGF (PeproTech, Rocky Hill, NJ, USA),
and 20 ng/ml EGF (PeproTech) for 10–14 days. The cells were
then photographed under a microscope.

Luciferase Reporter Gene Assays
NCI-H460/CDDP and its parental cells were plated in 96-well
plates. Cells in 96-well plates were transfected with 2 ng pRL-
tk (Promega) and 50 ng p53 reporter plasmid (Addgene) for
24 h with the lipofectamine 3000. Cells were treated with DMSO
or BAY-598 at indicated concentrations for 24 h. Luciferase
activities were evaluated with the Berthold LB960 system
(Berthold, DE).

Quantitative PCR Analysis
Total RNA was isolated using an RNeasy Mini Kit (Qiagen,
Hilden, Germany), as described in the product insert, and
then reverse transcribed with a RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific). PCR was performed

with iQ SYBR Green SuperMix (Bio-Red Laboratories, Hercules,
CA, USA) and a CFX96 Real-Time PCR Detection System
(Bio-Rad Laboratories). The following primers were used
for the experiment: glyceraldehyde-3-phosphate dehydrogenase
(GAPDH): reverse: 5′-CCCTCAACGACCACTTTGTCA-3′ and
forward: 5′-TTCCTCTTGTGCTCTTGCTGG-3′; p21 forward:
5′-TGTACCCTTGTGCCTCGCTC-3′ and reverse: 5′- TGGAGA
AGATCAGCCGGCGT-3′; Bax forward: 5′- TTTGCTTCAGGG
TTTCATCC-3′ and reverse: 5′- CAGTTGAAGTTGCCGTCA
GA-3′; and GADD45 forward: 5′-GGATGCCCTGGAGGAAGT
GCT-3′ and reverse: 5′- GGCAGGATCCTTCCATTGAGATGA
ATGTG-3′.

Xenografts in Mice
To assess the characteristics of chemotherapy-resistant tumors,
we subcutaneously injected viable NCI-H460/CDDP cells (5 ×

106/100µl PBS per mouse), as confirmed by trypan blue staining,
into the right flank of 7–8 weeks-old male BALB/C mice. When
the average tumor volume reached 100 mm3, the mice were
randomly divided into the following four treatment groups: a
control group (saline only, n= 6), a AZ505 group (40 mg/kg/qd,
i.p.; n = 6), an CDDP group (4.0 mg/kg/3 day, i.p.; n = 6),
and a combination treatment group (AZ505 plus CDDP). After
2 weeks, the mice were sacrificed, and the tumors were excised
and stored at −80◦C. These experiments were performed in
strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes
of Health, and the corresponding protocol was approved by the
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Animal Experimental Ethics Committee of Shenyang Medical
College (Shenyang, Liaoning Province, China).

Statistical Analysis
Differences between the indicated experimental groups were
evaluated by one-way ANOVA or Turkey’s post hoc test with
the SPSS 11.5 software package for Windows (SPSS, Chicago, IL,
USA). P< 0.05 were considered statistically significant (P < 0.05,
two-tailed test).

RESULTS

The Inhibition of SMYD2 Enhanced the
Antigrowth Action of Cisplatin in NSCLC
Cells
To explore the possible action of SMYD2 in chemotherapeutic
agents in NSCLC, A549 and NCI-H460 cells were treated with
various concentrations of the first-line chemotherapeutic
agents, including CDDP, Taxol, NVB, and VCR, and
combined treatment with SMYD2 inhibitor BAY-598 with
non-cytotoxicity concentration (2µM, cell viability>90%,
Supplementary Figure 1A). As shown in Figure 1, single
treatment with CDDP, Taxol, NVB, and VCR could inhibit cell
growth at concentration-dependent manner in both cell lines.
Addition of SMYD2 inhibitor had no effect on the cell viability
when combined with Taxol and VCR, and owned a slightly
enhanced inhibition when combined with NVB. Notably, the
combination of BAY-598 and CDDP could significantly retard
cell growth in both A549 and NCI-H460 cells (P < 0.05),
suggesting SMYD2 inhibition might be involved into the cell
sensitivity to CDDP but not Taxol, VCR, and NVB.

The Expression and Function of SMYD2 in
Cisplatin Resistant NSCLC Cells
To clarify the role and function of SMYD2 in CDDP sensitivity
of NSCLC cells, we established A549 and NCI-H460 CDDP
resistant cell lines. First, we detected the expression level of
SMYD2 in parental cell lines and resistant cell lines. Western
blot data indicated that SMYD2 was increased in both resistant
cell lines as compared to parental cell lines. In consistent with
the SMYD2 upregulation in resistant cell lines, the non-histone
substrate of SMYD2, p53K370me, was also increased in resistant
cell lines. The above data demonstrated that the expression and
activity of SMYD2 were increased in CDDP resistant cells. Next,
to further elucidate the role of SMYD2 in CDDP resistance, we
measured the cell viability of NCI-H460/CDDP cells to CDDP
after suppression of SMYD2 by specific inhibitor and siRNA.
Our data showed, whether inhibition by SMYD2 inhibitor BAY-
598 or knockdown by specific siRNA, the cell sensitivity to
CDDP would be significantly increased as compared to DMSO
or Scramble treated groups (P < 0.05). The above data was
confirmed by flow cytometry experiments. Treatment with BAY-
598 at non-cytotoxic concentration would prompt the apoptosis
induced action of CDDP in NCI-H460/CDDP cells. Similarly,
knockdown SMYD2 also resulted in the increase of cell apoptosis
in CDDP treated NCI-H460/CDDP cells when compared to

scramble treated cells. Notably, although the addition of SMYD2
inhibitor or knockdown of SMYD2 could enhance the induction
of apoptosis by CDDP in NCI-H460 cells, the level was decreased
as compared with resistant cells (Figure 2C). The above data
indicated that SMYD2 play an important role in CDDP resistance
of NSCLC cells.

Inhibition of SMYD2 Reversed Malignant
Phenotype of Cisplatin Resistant NSCLC
Cells
To further elucidate the role of SMYD2 in CDDP resistance
of NSCLC cells, we next assessed the effect of inhibition or
knockdown of SMYD2 on cell migration and tumor sphere
formation, which are considered as the crucial characteristics
of CDDP resistant NSCLC cells (16, 17). Our results showed
that cell migration number of NCI-H460/CDDP cells was
significant decreased after treated with SMYD2 inhibitor or
SMYD2 siRNA as compared to DMSO and Scramble siRNA
control, respectively. Furthermore, tumor sphere number of
NCI-H460/CDDP cells was also obviously reduced by SMYD2
inhibitor and SMYD2 siRNA. It should be noted that whether
addition of BAY-598 or specific siRNA could not significantly
affect cell migration number and tumor sphere ability in
NCI-H460 cells (Supplementary Figures 1B–D). The above
results demonstrated that SMYD2 was also involved into
the formation of malignant phenotype in CDDP resistant
NSCLC cells.

SMYD2 Mediated Cisplatin Resistance
Dependent on p53 Regulation in NSCLC
Cells
In view of the crucial role of p53 and its epigenetic regulation
by SMYD2 (18), we next explore possible role of p53 in SMYD2
mediated CDDP resistance. As shown in Figure 4A, knockdown
p53 by specific siRNA contributed to the decrease of cell
sensitivity to CDDP in NCI-H460/CDDP cells, which owned
wide type p53 expression. In addition, the restore of p53 in
NCI-H1299 cells (p53 deletion) could lead to the increase of cell
sensitivity to CDDP. The above data indicates that the status and
expression level of p53 will affect the cell sensitivity of NSCLC
cells to CDDP.

In order to explore the effect of SMYD2 on p53 activity,
we detected the transcriptional regulation activity of p53 by
luciferase assay after treated with BAY-598 in NCI-H460/CDDP
and its parental cells. The results showed that BAY-598 could
concentration-dependently enhance p53 reporter activity in
NCI-H460/CDDP cells (Figure 4B). In consistent with reporter
assay, BAY-598 treatment also significantly resulted in the
upregulation in mRNA level of p53 targeting genes, including
p21, GADD45, and Bax (Figure 4C), in NCI-H460/CDDP cells.
In consistent with resistant cell lines, BAY-598 also could increase
p53 reporter activity, p21 and GADD45 expressions in NCI-
H460 cells to some extent (Figure 4B). On the contrary, BAY-
598 treatment could not induce the BAX expression in NCI-
H460 cells, suggesting the role of SMYD2 in BAX regulation is
different in parental and resistant cells (Figure 4C). Furthermore,
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FIGURE 2 | The expression level of SMYD2-related proteins and the effects of genetic or chemical manipulation of SMYD2 on the cell growth of CDDP-resistant and

parental NSCLC cells. (A) SMYD2, p53, and p53K370me expression levels were measured in CDDP resistant and parental NSCLC cell lines. β-actin was used as a

loading control. (B) Cell viability was measured in BAY-598-treated or SMYD2-knockdown NCI-H460/CDDP cells treated with CDDP at different concentrations for

36 h. Scramble siRNA or DMSO was used as a control. The efficacy of genetic or chemical manipulation of SMYD2 was confirmed by Western blot in

NCI-H460/CDDP cells. (C) Cell apoptosis was assessed using Annexin V/PI double staining in BAY-598-treated or SMYD2-knockdown CDDP resistant and parental

NCI-H460 cells after treated with CDDP at 10µM for 48 h. *P < 0.05, compared to corresponding control cells.

we also detected the cell apoptosis status of NCI-H460/CDDP

and NCI-H460 cells after treated with BAY-598. Our results

indicated BAY-598 at 10µM could induce cell apoptosis in

NCI-H460/CDDP cells, but not in NCI-H460 cells (Figure 4D),
which confirmed the regulation action of Bax, a pro-apoptosis

gene, by SMYD2. Taken together, our data suggested that

the SMYD2 mediated CDDP resistance through epigenetic
regulation of p53.

Inhibition of SMYD2 Sensitized Cisplatin
Through Epigenetic Regulation of p53
in vivo
To clarify the therapeutic meaning of the above finding, we
assessed anti-tumor effect of the combination of SMYD inhibitor
and CDDP in NCI-H1299/CDDP xenograft mice. As shown
in Figure 5A, single treatment with CDDP has no significant
effect on tumor growth, indicating the resistant phenotype of

Frontiers in Oncology | www.frontiersin.org 5 April 2019 | Volume 9 | Article 3061052

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Shang and Wei SMYD2 in Cisplatin Resistance

FIGURE 3 | Effects of genetic or chemical manipulation of SMYD2 on the biological characteristics of CDDP-resistant NSCLC cells. (A,B) Cell migration was

measured in NCI-H460/CDDP cells treated with 2µM BAY-598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used as a control. (C,D) Tumor sphere was

counted in NCI-H460/CDDP cells treated with 2µM BAY-598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used as a control. (Scale bars, 100µm)

*P < 0.05, **P < 0.001, compared to corresponding control cells.

NCI-H1299/CDDP xenograft mice. Similar to CDDP single
treatment, single treatment with AZ505, an in vivo available
SMYD2 inhibitor, only displayed a slightly inhibition on tumor
growth. Interestingly, the combination of AZ505 and CDDP
could obviously inhibit tumor growth of NCI-H1299/CDDP
xenograft mice when compared to vehicle control and single
treatment group. In addition, we didn’t find the body weight loss
in the combination treated group (data not shown), suggesting
the combination has no effect on gross toxicity. Next, we
further explored the underlying mechanisms using tumor tissue.
Western blot data showed that AZ505 single treatment could lead
to the decrease of p53K370me, whereas CDDP single treatment
could slightly increase the level of p53K370me (Figure 5B). The
combination treatment contributed to a decrease of p53K370me. In
addition, we found the expression of the clv-PARP, an apoptosis
biomarker, was increased in the combination group (Figure 5B).
In summary, our in vivo data showed the inhibition of SMYD2
by AZ505 could sensitize cisplatin antitumor action through
epigenetic regulation of p53.

DISCUSSION

Cisplatin(CDDP) is the first line drug for NSCLC patients,
therefore, understanding and preventing CDDP resistance

are considered as the crucial issue with respect to the
treatment of NSCLC (5). Here, we found that SMYD2, a
protein methyltransferase, was involved into cisplatin resistance.
Furthermore, out data showed that SMYD2 expression and
its activity were increasing in cisplatin resistant NSCLC cells.
Mechanistically, SMYD2 prompt cell migration, increase the

tumor sphere, and block apoptosis, which is dependent on the

methylation of p53K370. The inhibition or knockdown of SMYD2
model would result in the increasing of sensitivity to cisplatin

in vitro and in vivo. Our findings provide us with a novel
perspective epigenetic regulation mechanisms underlying CDDP

resistance and define that the combination of SMYD2 inhibitor
and CDDP may have promise as treatments for patients with
CDDP-resistant NSCLC.

SMYD2 is a protein methyltransferase that catalyzes the

methylation of histone substrates, such as H3K4 and H3K36
(18), and non-histone substrates, including p53 (19), Rb (20),
HSP90 (21), STAT3, and NF-κB (22). It has been reported

that SMYD2 was involved into the upset and progression
of various tumors, including leukemia, breast cancer, gastric

cancer, and head and neck cancer. Recently, Wang et al.
reported SMYD2 inhibition also led to the suppression of
cell growth in NSCLC cells (23), suggesting SMYD2 might be
involved into lung cancer. Our results demonstrated that SMYD2
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FIGURE 4 | Epigenetic regulation of p53 and its role in CDDP resistance in NSCLC. (A) Cell viability in NCI-H460/CDDP (p53 wide type) and NCI-H1299(p53 deletion)

cells, with p53 gene manipulation, which were treated with CDDP at different concentrations for 48 h. Scramble siRNA or mock vector was used as a control. The p53

knock-down or restoration efficacy was confirmed by Western Blot. (B) The p53 reporter activity was measured in CDDP resistant and parental NCI-H460 cells after

treated with BAY-598. The relative luciferase unit was calculated by Luciferase/Renilla and DMSO was considered as 100%. (C) The mRNA expression levels of p21,

GADD45, and Bax were assessed by real-time RT-PCR in CDDP resistant and parental NCI-H460 cells treated with 10µM BAY-598. GAPDH was used as a control.

(D) Cell apoptosis was assessed using Annexin V/PI double staining in CDDP resistant and parental NCI-H460 cells which were treated with BAY-598 at 10µM

concentrations for 48 h. *P < 0.05, compared to corresponding control cells.
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FIGURE 5 | Effects of SMYD2 inhibition and/or CDDP on tumor growth in an CDDP-resistant xenograft model. (A) Tumor volume was measured in NCI-H460/CDDP

xenografts treated with AZ505, CDDP, or the combination of AZ505 and CDDP. (B) The p53 and p53K370me, and cleaved PARP(clv-PARP) expression levels were

measured in NCI-H460/CDDP xenograft tumor tissues. β-actin was used as a loading control. *P < 0.05, combined treatment group compared to single treatment

group and vehicle control.

expression and enzymatic activity levels were upregulated in
NSCLC CDDP-resistant cells as compared to parental cells.
In addition, either suppressing SMYD2 activity or knocking
down SMYD2 would contribute to the increases in sensitivity
to CDDP, and the reduction in cell migration and self-
renewal ability in CDDP-resistant NSCLC cells, indicating
that SMYD2 executes a crucial role in CDDP resistance
of NSCLC.

SMYD2 methylates H3K4 and H3K36 would contribute the
change of chromatin structure, and subsequently lead to the
alteration of its target genes (18). In fact, the important function
of SMYD2 was reported to related methylate to its non-histone
substrates (9, 24). SMYD2 monomethylates Lys-370 of p53,
leading to decreased DNA-binding activity and subsequent
transcriptional regulation activity of p53. We found that, as
long as the SMYD2 upregulation, the p53K370me level was also
increased in CDDP resistant NSCLC cells. Importantly, our data
showed that cell sensitivity to CDDP was dependent on wild
type p53 level. Inhibition of SMYD2 could induce the increasing
of p53 transcription activity and its target gene expression.
Taken together, these findings indicate that epigenetic regulation
by SMYD2 plays an important role in p53 transcriptional
activity and is involved in processes associated with
CDDP resistance.

K-RAS is one of the most frequently mutated in human
NSCLC (25). Mutation of K-RAS usually results in the
activation of oncogenic signaling molecules that regulate cell
growth, survival and differentiation by coupling receptor
activation to downstream effector pathways (25), and leads to
the resistance to tyrosine kinase inhibitors such as gefitinib
and erlotinib (26). Therefore, chemotherapy is the standard
of treatment for K-RAS mutant NSCLC tumors. Here, our
data shown that inhibition of SMYD2 by specific inhibitor
can sensitize CDDP efficacy in K-RAS mutated A549 and
NCI-H460 cell lines, suggesting epigenetic manipulation
might be a promising adjuvant approach to treat K-RAS
mutant tumors.

In conclusion, the present study elucidated that the
activity of SMYD2 in NSCLC may affect the cell sensitivity
to chemotherapeutic agents, especially to CDDP. The
elevated SMYD2 mediated CDDP resistance and malignant
phenotype in NSCLC, indicating that SMYD2 may be a useful
biomarker of CDDP resistance in NSCLC. Inhibition of
SMYD2 contributes to the methylation-related activation
of p53 and thus results in cell apoptosis. Furthermore,
combination treatment with CDDP and an SMYD2 inhibitor
had a synergistically antitumor effects in a xenograft model
in vivo. Given that SMYD2 has reversible effects and is a
targetable protein methyltransferase, treatments targeting
the protein may be useful for reversing CDDP resistance
in NSCLC.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health, and
the corresponding protocol was approved by the Animal
Experimental Ethics Committee of Shenyang Medical College
(Shenyang, Liaoning Province, China).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 81803476).

Frontiers in Oncology | www.frontiersin.org 8 April 2019 | Volume 9 | Article 3061055

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Shang and Wei SMYD2 in Cisplatin Resistance

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.00306/full#supplementary-material

Supplementary Figure 1 | The effects of genetic or chemical manipulation of

SMYD2 on the cell growth, migration, and tumor sphere ability of NCI-H460 cells.

(A) The growth of A549 and NCI-H460 cells treated with various concentrations

SMYD2 inhibitor BAY-598. Cell viability was detected by MTT assay. (B) The

efficacy of genetic or chemical manipulation of SMYD2 was confirmed by Western

blot in NCI-H460 cells. p53K370me and SMYD2 expression levels were measured

in NCI-H460 cell lines. The p53 or β-actin was used as a loading control.

(C) Cell migration was measured in NCI-H460 cells treated with 2µM BAY-

598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used as a

control. (D) Tumor sphere was counted in NCI-H460 cells treated with 2µM

BAY-598 or 50 nM SMYD2 siRNA. Scramble siRNA or DMSO was used

as a control.
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Ubiquitin specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUB) that
erases ubiquitin and protects substrate protein from degradation. Full activity of USP7
requires the C-terminal Ub-like domains fold back onto the catalytic domain, allowing
the remodeling of the active site to a catalytically competent state by the C-terminal
peptide. Until now, numerous proteins have been identified as substrates of USP7,
which play a key role in cell cycle, DNA repair, chromatin remodeling, and epigenetic
regulation. Aberrant activation or overexpression of USP7 may promote oncogenesis
and viral disease, making it a target for therapeutic intervention. Currently, several
synthetic small molecules have been identified as inhibitors of USP7, and applied in
the treatment of diverse diseases. Hence, USP7 may be a promising therapeutic target
for the treatment of cancer.

Keywords: deubiquitination, USP7, structure, immune, DNA damage

INTRODUCTION

Post-translational modification (PTM) is generally enzymatic modification of proteins following
protein biosynthesis. Examples of PTM include methylation, acetylation, phosphorylation,
glycosylation, ubiquitination, S-nitrosylation, and so on (Chatterjee and Thakur, 2018). As one
of the most studied PTMs, ubiquitination involves in the intracellular proteolytic machinery and
regulates numerous physical activities in the cell (Dybas et al., 2018). The process of the addition
of ubiquitin to a substrate protein is named ubiquitination, which may contribute to the protein
degradation. Ubiquitination of target protein can be catalyzed by a cascade reaction comprising
the ubiquitin-activating enzymes (E1), the ubiquitin conjugation enzymes (E2) and the ubiquitin
ligases (E3). First, ubiquitin is activated by E1 with the participation of ATP and transferred to
E2 through a trans-thiolation reaction, and then conjugated to a lysine or α-amino group of the
substrate protein in the presence of E3 (Cheon and Baek, 2006). Eventually, proteins labels with
more than four ubiquitin molecules can be recognized and subjected to the 26S proteasome at
which they are degraded, generating small polypeptides (Figure 1).

Deubiquitinating enzymes (DUBs) are responsible for the removal of ubiquitin and keeping
the stability of the substrate by rescuing them from degradation (Nijman et al., 2005; Clague
et al., 2013). Until now, approximately 100 DUBs have been identified and can be classified
into five subclasses based on their Ub-protease domains: ubiquitin-specific proteases (USPs),
ubiquitin C-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs), Machado-Joseph
disease proteases (MJDs) belonging to cysteine-dependent proteases, and JAB1/MPN/Mov34
(JAMMs) belonging to zinc metalloproteases (Zhou et al., 2018). With approximately 50 members,
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the USPs family is the largest one among all the DUB
subfamilies. All these members include conserved domains, i.e.,
three primary functional domains of Cys, His and Asp/Asn
boxes which are in charge of the reorganization of ubiquitin
conjugated molecules.

Among the members of USP family, ubiquitin specific
protease USP7, also known as herpes-associated ubiquitin-
specific protease (HAUSP), is a unique deubiquitinating enzyme
which was identified in 1997, and it characterized as a novel
member of the ubiquitin-specific protease family to interact with
herpes simplex virus type 1 immediate-early protein (Vmw110)
of the herpes simplex virus type 1 (HSV-1) regulatory protein
(Everett et al., 1997). Later, USP7 was found to interact with
other viral proteins such as the Epstein-Barr nuclear antigen
1 (EBNA1) of Epstein-Barr virus (EBV) and the vIRF1 (viral
interferon regulatory factor 1) protein of Kaposi’s sarcoma
associated herpesvirus (KSHV) (Holowaty et al., 2003), therefore
indicating it as a general target of herpes viruses and giving it
the name herpes-associated ubiquitin specific protease. Up to
now, USP7 is the most widely studied deubiquitinating enzymes,
and is considered as an oncogene by promoting tumor growth
and negatively affecting the patient immune response to tumors
(Everett, 2014; Lu et al., 2016).

STRUCTURE OF USP7

The full length USP7 includes 1102 amino acids. There are
four domains: an N-terminal poly-glutamine stretch (poly
Q), the tumor necrosis factor receptor- associated factors
(TRAF) domain (amino acids 62–205), the catalytic domain
(amino acids 208–560), and the C-terminal tandem ubiquitin-
like (Ubl) domain (amino acids 560–1102) (Kim and Sixma,
2017) (Figure 2A).

As reported, the amino acids 62–205 of USP7 (Figure 2B)
bind to EBNA1 (Holowaty et al., 2003), mouse double minute
2 homolog (MDM2) and p53 (Hu et al., 2006; Sheng et al.,
2006) through a PA-x-x-S motif (Saridakis et al., 2005), and the
TRAF (amino acids 62–205) domain contributes to the nuclear
localization of the USP7 (Fernandez-Montalvan et al., 2007).
Besides, the USP7 truncation (amino acids 208–1102) performed
similar activity as the full length protein (Ma et al., 2010).

Hu et al. (2002) identified a 40 kDa fragment of USP7 as
the catalytic domain (amino acids 208–560), which mediates
ubiquitin binding and deubiquitination of the substrate. The
structure of the catalytic core domain reveals novel three-domain
architecture, including Fingers, Palm, and Thumb domains
(Figure 2C). This catalytic core domain binds to ubiquitin
aldehyde, which reveals a conformational change in the active site
(Hu et al., 2002). With the aid of molecular dynamics simulations,
it is found that the transition of USP7 from the inactive to the
active can only be captured when H294 was neutralized with a
deprotonated C223 and charged H464. In the inactive apo state,
positively charged H294 stabilizes an electrostatic network with
W285, E298, and Y224. However, neutral H294 in the active state
cannot make charge interactions, so the electrostatic network is
disrupted. That would results in the C223 unfavorable backbone

angles improved by helical refolding, thus, the active site is
formed (Ozen et al., 2018).

Ubl shares the ubiquitin β-grasp fold, however, it lacks the
C-terminal Gly–Gly residues that are required for conjugation to
a target and is located outside the boundaries of the catalytic core
domain (Faesen et al., 2011). There are five Ubl domains that are
detected in the C-terminal and are organized in a 2-1-2 manner as
Ubl-12, Ubl-3, and Ubl-45 (Figure 2D) (Zhu et al., 2007). Among
them, Ubl-45 is sufficient to reconstitute the USP7 activation
in vitro and in vivo. In the C-terminal, the 19 residues of USP7
(amino acids 1084–1102) are conserved across species (Faesen
et al., 2011). Rouge et al. (2016) revealed how the C terminal 19
amino acids of the USP7 contribute to the enhancement of USP7
activity by stabilizing the ubiquitin binding conformation of the
catalytic domain. And the individual point mutations at residues
I1100 or I1098 are able to abolish the deubiquitinase activity of
USP7 (Rouge et al., 2016).

USP7: ONE PROTEIN, MULTIPLE ROLES

Many proteins have been identified as potential substrates and
binding partners of USP7, such as viral proteins, transcription
factors, and epigenetic modulators (Figure 8), and most of these
substrates play important roles in viral replication, immune
response, tumor suppression, epigenetic control, and DNA
repair. Here, functions of USP7 on these substrate are as detailed
below (Table 1).

Viral Proteins
EBNA1
EBNA1 of EBV is important for the replication, segregation, and
transcriptional activation of latent EBV genomes, it has been
implicated in host cell immortalization, and avoids proteasome
processing and cell-surface presentation. The amino acids 395–
450 of EBNA1 bind to the USP7 N-terminal domain with
a dissociation constant of 0.9–2 µM. The 4395–450 mutant
that selectively disrupted the binding to USP7 was found to
increase fourfold EBNA1 replication activity than wild-type,
but performed no impact on EBNA1 turnover and cell-surface
presentation (Holowaty et al., 2003). As p53 and EBNA1 share
similar binding sites with USP7, EBNA1 peptide efficiently
competes with p53 peptide for USP7 binding, which results the
decreasing stability of p53, and protects cells from apoptosis
(Saridakis et al., 2005).

ICP0
Infected cell protein 0 (ICP0) of HSV is a multifunctional protein
containing 775 amino acids that acts as a promiscuous trans-
activator linked to the degradation of several proteins. The
618PRKCARKT625 of ICP0 binds to a negatively charged region
on Ubl2, where the residues K620 and K624 of ICP0 form direct
contacts with residues D762 and D764 in Ubl2 of USP7 (Pfoh
et al., 2015). Overexpression of USP7 had no effect on the mRNA
level of ICP0, but could accelerate the mRNA accumulation of
thymidine kinase (TK) and gI, which are important for HSV
infection of non-replicating cells. The mutations at residues 620
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FIGURE 1 | Schematic of the ubiquitin-proteasome system. Ubiquitin is activated by E1 in the presence of ATP and transferred to E2 and then conjugated to a lysine
or α-amino group of the substrate protein with the aid of E3. Polyubiquinated targets are recognized and degraded by the 26S proteasome, while the ubiquitin on
the substrate can be erased by DUBs to protect it from degradation.

FIGURE 2 | Structure analysis of USP7. (A) USP7 primary sequence map. (B) Structure of the USP7 N-terminal domain (PDB 2F1W). (C) Structure of USP7
catalytic domain and five UBl-domains (PDB 1NB8). (D) Structure of the inactive state of USP7 catalytic domain (PDB 5FWI).

to 626 of ICP0 (named as R6702) can abolish the interaction
between USP7 and ICP0, and the replication of R6702 in cells
cannot be impaired (Kalamvoki et al., 2012). Hence, inhibition
of USP7 and/or its interaction with ICP0 using small molecule
inhibitors may decrease the virulence of HSV.

vIRFs
Among the vIRFs, vIRF1 could interact with the TRAF domain
of USP7 via EGPS motif. The vIRF1 interaction with USP7
can decrease p53 levels by blocking the deubiquitination and
stabilization of USP7 on p53. Thus the KSHV could have a
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TABLE 1 | Proteins regulated by USP7.

USP7
substrates

Processes Related cancer References

EBNA1 Viral proteins Holowaty et al., 2003

ICP0 Pfoh et al., 2015

vIRFs Chavoshi et al., 2016;
Xiang et al., 2018

LANA Jager et al., 2012

E1B-55K Ching et al., 2013

Tat Ali et al., 2017

Foxp3 Immune
response

Non-small cell lung
cancer

van Loosdregt et al., 2013;
Wang L. et al., 2016

TRIM27 Cervical carcinoma Cai et al., 2018

NLRP3 Leukemia Palazon-Riquelme et al.,
2018

C-Myc and
N-Myc

Oncoproteins Neuroblastoma Bhattacharya and Ghosh,
2015

p53 Tumor
suppressor
proteins

Ovarian cancers Oliner et al., 1992; Li et al.,
2002

DAXX Breast cancer Tang et al., 2006

PTEN Chronic lymphocytic
leukemia

Morotti et al., 2014

FOXOs family Lung carcinoma Huang et al., 2005

DNMT1 Epigenetics Colon cancer Du et al., 2010; Bronner,
2011

SUMO Lecona et al., 2016

LSD1 Medulloblastoma Yi et al., 2016

CHK1 DNA damage
and repair

Alonso-de Vega et al., 2014

UVSSA Sarasin, 2012; Zhang et al.,
2012

ANXA1 Hela Park et al., 2015

XPC He et al., 2014

HLTF, Rad18 Qing et al., 2011

Polη Qian et al., 2015

RNF168 Breast cancer Malapelle et al., 2017

PHF8 Breast cancer Wang Q. et al., 2016

MDC1 Cervical cancer Su et al., 2018

Wnt/β-catenin
signaling
pathway

Several
canonical
signaling
pathways

Colorectal cancer Novellasdemunt et al.,
2017

NF-κB signaling
pathway

Multiple myeloma Colleran et al., 2013

NOTCH
signaling
pathway

Lymphoblastic
leukemia

Shan et al., 2018

lifelong infection when p53 is destabilized by USP7 coupled
with vIRF1 (Chavoshi et al., 2016). Besides, vIRF3 is expressed
in human herpes virus 8 (HHV-8) – infected primary effusion
lymphoma (PEL) cells. The vIRF3 has two copies of EGPS, and
both support the vIRF3 – USP7 interaction. This interaction plays
important roles in PEL cell growth and viability and contributes
to the suppression of productive virus replication (Xiang et al.,
2018). For another vIRF family member, amino residues 210–216
of KSHV vIRF4 bind to the same surface groove of the USP7

TRAF domain as that can be recognized by MDM2 and p53.
Moreover, the amino residues 202–208 of vIRF4 interact with
the β-sheet in TRAF domain. The vIRF4-derived vif1 and vif2
peptides can restore p53 dependent apoptosis in wild-type p53
cancer cells by suppressing the USP7 activity. Thus the two
peptides may be considered as potential backbones for peptide
mimic small molecule inhibitors development for anti-cancer
therapies (Lee et al., 2011).

LANA
The viral latency-associated nuclear antigen 1 (LANA) is
expressed in all latency KSHV-infected cells and involves in viral
latent replication and maintenance of the viral genome. The
amino residues 971–986 of LANA interact with TRAF domain
of USP7 with similar binding sites as EBNA1, while the 4971–
986 mutant shows an enhanced ability to replicate latent viral
DNA. These results indicate that USP7 may influence accessibility
of the viral DNA for latent replication or LANA-mediated viral
persistence (Jager et al., 2012). Because of the role of USP7 in
EBNA1 – dependent latent replication of EBV, USP7 may play the
same role in the replication of latent viral DNA among gamma-1
and gamma-2 herpesviridae.

E1B-55K
Adenovirus E1B protein refers to one or two proteins transcribed
from the E1B gene of the adenovirus: a 55 kDa protein and
a 19 kDa protein. The N-terminal 79 amino acids of E1B-55K
interact with the TRAF domain of USP7. Abrogation of USP7
decreases the protein level of E1B-55K and reduces progeny viral
production. Therefore, the small inhibitors of USP7 may be used
to treat adenovirus infections (Ching et al., 2013).

Tat
Human immunodeficiency virus (HIV) Tat is synthesized
early after infection and mainly responsible for enhancing
viral production. USP7 deubiquitinates and stabilizes Tat and
enhances HIV-1 production. In turn, HIV-1 infection leads to
the overexpression of USP7. These results show that the small
inhibitors of USP7 can be used as a novel anti-HIV approach
(Ali et al., 2017).

In sum, these results show that USP7 is recruited by these
viruses to promote their survival in the host. So we speculate that
USP7 may be an attractive target for controlling infection and
other malignancies caused by these viruses.

Immune Response
Foxp3
Recent years, more and more reports have identified the
importance of USP7 on keeping T regulatory cells (Treg)
functions. As the major factor that restrains autoimmune
responses, Treg cell expresses the forkhead transcription
factor Foxp3, which is necessary for Treg cell development
(Bettelli et al., 2005; Laurence et al., 2013). According to
a report in 2016, five distinct lysine residues (K249, K251,
K263, K267, and K393) in Foxp3 were identified to be
ubiquitinated, and Foxp3 can be stabilized by USP7 mediated
deubiquitination, resulting in the maintenance of Treg cell
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number and function (Wang L. et al., 2016). In fact, a study in
2013 showed that aberrant USP7 overexpression decreases Foxp3
polyubiquitination and protects it from proteasome degradation,
resulting in Treg-cell-mediated suppression and tumor growth.
On the contrary, USP7 knockdown decreases Foxp3 level
and abrogates Treg cell-induced suppression of autoimmune
responses in vitro and in vivo (van Loosdregt et al., 2013).

Later studies gave the mechanism how the level of Foxp3 is
regulated. Foxp3 could be ubiquitinated and degraded by the
E3 ubiquitin ligase stress inducible protein 1 homology and
U-Box containing protein 1 (STUB1). In addition, Foxp3, Heat
Shock Protein 70 (Hsp70) and STUB1 associate together as a
complex, indicating that these proteins bind and promote Foxp3
ubiquitination (Figure 3) (van Loosdregt and Coffer, 2014).
Moreover, it is found that mesenchymal stem cells (MSCs) –
induced Treg cells express high level of USP7 and low level
of STUB1. Besides, Foxp3 mRNA expression was positively
associated with USP7 and negatively associated with STUB1
(Khosravi et al., 2018). So, it provides us an opportunity to find a
new way to study the unique role of USP7 in Treg cells and makes
USP7 as a target in immunology.

TRIM27
Among the binding partners of USP7, tripartite motif 27
(TRIM27) is an ubiquitin E3 ligase that negatively regulates
antiviral signaling by promoting the ubiquitination and
degradation of TRAF family member-associated NF-κ-B
activator – binding kinase 1 (TBK1). USP7 interacts with
TRIM27 and forms the USP7-TRIM27-TBK1 complex, and the
interaction between USP7 and TRIM27 can be enhanced after
Sendai virus (SeV) infection. When USP7 was overexpressed,
TRIM27 can be protected from degradation, which contributed
to the ubiquitination and degradation of TBK1, resulting in
decreased type I interferons (IFNs) signaling (Cai et al., 2018).
As IFNs are a series of signaling proteins which are produced

FIGURE 3 | Regulation of Foxp3 by USP7. Foxp3 is ubiquitinated by STUB1
and then produces a complex containing Foxp3, Hsp70 and STUB1, which
leading to proteasome degradation of Foxp3. USP7 can remove the ubiquitin
on Foxp3 and stabilize it.

and released by host cells to cope with the presence of pathogens,
USP7 can enhance the effects of TRIM27 on TBK1-induced
IFN – stimulated response element (ISRE) and IFN-β activation
(Zaman et al., 2013). Therefore, USP7 may act as a significant
host protein to bridge the viral proteins with the antiviral
immune response. Therapeutic methods against the USP7-
TRIM27 complex may overcome the immune escape mediated
by various viruses.

NLRP3
USP7 may also impact on regulating NLR family pyrin domain
containing 3 (NLRP3) inflammasome activation. NLRP3 is
expressed primarily in macrophages as a component of the
inflammasome to monitor products of damaged cells such as
extracellular ATP and crystalline uric acid. The ubiquitination
status of NLRP3 itself can be altered by USP7 and USP47.
Furthermore, researchers discovered that the activity of USP7 and
USP47 were augmented once the inflammasome was activated.
In the meantime, they discovered that abrogation of both USP7
and USP47 resulted in reduction of inflammasome activation
(Palazon-Riquelme et al., 2018).

To sum up, there is a remarkable connection between
USP7 and immune-associated proteins, and so many studies
have shown that the important roles of USP7 on regulating
these proteins. It’s worth thinking about USP7 inhibitors in
combination with immunotherapy will be applied to cancer
therapy so that the antitumor effect can be promoted. We hope
to see their potential dual antitumor activity will be applied to
clinical trials on day.

Oncoproteins
C-Myc and N-Myc
There are three members in Myc family: C-Myc, l-Myc,
and N-Myc. Myc family is the most frequent amplified
oncogene in human, which contributing to the formation of
cancer. Among them, C-Myc and N-Myc are the substrates
of USP7. USP7 overexpression can promote C-Myc stability
by deubiquitination as well as transformation/transcription
domain-associated protein (TRRAP), which is an adaptor
protein known as a regulator of C-Myc. On the other hand,
C-Myc mRNA can be accumulated by TRRAP indirectly
(Bhattacharya and Ghosh, 2015).

N-Myc is another transcription factor that can be stabilized
by USP7 via deubiquitination (Tavana et al., 2016). Hence, USP7
inhibitor p5091 was applied to decrease N-Myc expression in
a dose dependent manner in neuroblastoma (Tavana et al.,
2016). As a consequence, USP7 can be considered as a drug
target to modulate C-Myc and N-Myc amount in order to block
tumor development.

Tumor Suppressor Proteins
p53
p53 participates in cell cycle arrest, DNA repair, apoptosis,
senescence and plays a key role in maintaining normal cell growth
(Levine, 1997). USP7 plays a paradoxical role in regulating
p53 functions through a variety of mechanisms. On one hand,
p53 binds to TRAF domain and C-terminal (amino acids
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880–1050) of USP7, and then USP7 ubiquitinates p53 directly
and prevents it from degradation. On the other hand, TRAF
domain and C-terminal (amino acids 801–1050) of USP7 can
interact with MDM2 to increase its stability by erasing the
ubiquitin on MDM2, an E3 ligase of p53 (Oliner et al., 1992),
and protect it from proteasome degradation. Subsequently,
MDM2 ubiquitinates p53 and causes its proteasome degradation,
resulting in low expression of p53 in cancer cells (Figure 4)
(Li et al., 2002, 2004). In addition, MDM2 can also inhibit the
transcription of p53 (Wade et al., 2013). Therefore, inhibition
of the interaction between MDM2 and p53 can stabilize p53
(Vassilev et al., 2004). It is noteworthy that, crystal structures
analysis and binding studies suggest that the MDM2 peptide
and p53 peptide bind to the same surface groove in USP7, but
MDM2 performs more extensive interaction and stronger affinity
(Hu et al., 2006). Taken together, the activation of USP7-MDM2-
p53 interaction can promote the occurrence and development of
tumors. The design of small molecules that disrupt or prevent
the interaction may be an important target for cancer therapy by
regulating p53 pathway.

DAXX
Death-domain-associated protein (DAXX) is a highly conserved
and developmentally essential nuclear protein, which participates
in many cellular processes (Lindsay et al., 2008). The N-terminal
160 amino acids and amino acids 347–570 of DAXX associate
with USP7, which are far from the binding sites of MDM2 on
DAXX. In unstressed cells, DAXX interacts with USP7 and
MDM2, and mediates the stabilization of USP7 on MDM2,
thus blocking p53 activation. In response to DNA damage,

self-ubiquitination of MDM2 is accelerated when MDM2 is
stripped from DAXX and USP7. That is to say, DAXX directs
the ligase activity of MDM2 through regulating USP7 (Tang
et al., 2006). Recent reports also show that USP7 and DAXX
are critical in regulating the correct execution of mitosis by
forming a tertiary complex as MDM2/DAXX/USP7 (Zhang
et al., 2010). DAXX binding increases USP7 activity toward
MDM2. Disassemble the MDM2-DAXX-USP7 complex
can increase MDM2 self-ubiquitination and degradation,
which leads to the stabilization and accumulation of p53
(Kumar et al., 2018).

PTEN
Phosphatase and tensin homolog (PTEN) is a tumor suppressor
gene that displays dual specific phosphatase activity. PTEN
inhibits the proliferation and migration of tumor cells (Blanco-
Aparicio et al., 2007). It is reported that nuclear PTEN import
is promoted by its mono-ubiquitination (Trotman et al., 2007).
However, USP7 can remove the mono-ubiquitination of PTEN,
triggering its nuclear exclusion and PTEN inactivation (Morotti
et al., 2014). Likewise, USP7 inhibitor, P5091, regains PTEN
nuclear pool and restores its tumor suppressive functions in
chronic lymphocytic leukemia (CLL) (Carra et al., 2017). In
addition, PTEN deletion leads to accumulation of activated AKT,
and subsequent phosphorylation of MDM2 by AKT (Blanco-
Aparicio et al., 2007), which results in the ubiquitination and
degradation of p53 (Freeman et al., 2003). Therefore, PTEN
deficiency causes p53-dependent cancer-promoting processes.
This suggests how important it is to inhibit USP7 to ensure PTEN
protein localization and activity.

FIGURE 4 | USP7-p53-MDM2 axis interactions control the stability of p53 and MDM2. USP7 can stabilize p53 by deubiquitination, meanwhile, USP7 can also
remove the ubiquitin of MDM2, which promotes to p53 degradation.
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FOXOs Family
The Forkhead box O (FOXO) family members, including
FOXO1, FOXO3, FOXO4 and FOXO6, are transcription factors
that take part in regulating several cellular responses, including
cell cycle progression and apoptosis and so on (van der Horst
and Burgering, 2007). It is reported that USP7 can remove
ubiquitin from FOXO1, which is written by Skp2 as an E3
ligase (Huang et al., 2005). Besides, mono-ubiquitination FOXO4
localizes in the nucleus and exhibits stronger transcriptional
promotion activity (Brenkman et al., 2008). USP7 can suppress
FOXO4 activity due to its deubiquitination and re-localization
(van der Horst et al., 2006). In a word, USP7 affects tumor
progression by interacting with FOXOs and affecting their
activity and localization.

Epigenetics
DNMT1
DNMT1 (DNA methyltransferase 1) contributes to the
maintenance of DNA methylation. As reported, USP7 can
deubiquitinate and stabilize DNMT1 when its acetylation is
erased by histone deacetylase 1 (HDAC1), which protects
DNMT1 from proteasome degradation (Bronner, 2011). When
the KG linker of DNMT1 is acetylated by Tip60, USP7 breaks
away from DNMT1 and results in the degradation of DNMT1
mediated by proteasome system (Figure 5) (Du et al., 2010).
Thus, HDAC and USP7 inhibitors can be applied in combination
for cancer treatment (Cheng et al., 2015).

SUMO
Small ubiquitin related modifier (SUMO) is a ubiquitin-like
molecule, which binds to its substrate by E3 SUMO ligase in
a similar way as ubiquitination (Geoffroy and Hay, 2009). Like
ubiquitin, proteins can be SUMOylated as mono-SUMOylation
or poly-SUMOylation, but differently, poly-SUMOylation cannot
lead to target degradation directly (Smits and Freire, 2016).
Recent research shows that USP7 is associated with DNA
synthesis (Smits and Freire, 2016). USP7 associates with an active
DNA replication fork and inhibition of USP7 can reduce DNA
replication. Moreover, Lecona et al. (2016) identified SUMO2
as a new USP7 substrate and demonstrated that USP7 can
deubiquitinate SUMO2 in vitro and in vivo. However, the fate of
SUMO2 after deubiquitination and its biological function are still
unclear (Lecona et al., 2016).

LSD1
Histone lysine specific demethylase 1 (LSD1) is the first histone
demethylase identified in 2004 and can remove methyl groups of
histone H3K4, H3K9 (Shi et al., 2004). As reported, LSD1 can
be ubiquitinated by E3 ligase JADE2 (Han et al., 2014). Since
ubiquitination of LSD1 is considered as reversible process as
ubiquitination and deubiquitination always exit in pair, LSD1
was identified to be deubiquitinated by USP7 and protected it
from proteasome degradation (Yi et al., 2016). Besides, patients
with high expression of USP7, REST, and LSD1 performed poorer
outcomes in medulloblastoma (Callegari et al., 2018). And they
found that p53 was a vital downstream transcription factor in the
action of USP7 and LSD1.

DNA Damage and Repair
CHK1
USP7 can regulate CHK1 in three manners. The first one is
the indirect regulation, USP7 deubiquitinated and prolonged
the half-life of Claspin, which leaded to the sustaining
phosphorylation of checkpoint kinase 1 (Chk1) in response
to genotoxic stress (Faustrup et al., 2009). For the rest
two manners, in DNA damage, USP7 deubiquitinates and
stabilizes Chk1 via direct deubiquitination in the presence
of zinc finger E-box binding homeobox 1 (ZEB1) (Zhang
et al., 2014) or not (Alonso-de Vega et al., 2014), while
ZEB1 binds to USP7 may result in promoting homologous
recombinant-dependent DNA repair and resistant to radiation.
In addition, USP7 can also directly regulate the stability of
CDC25A, a Cdk-activating phosphatase as the substrate of
CHK1, with the aid of brain and reproductive organ expressed
protein (BRE). These results show that USP7 is an important
modulator of Chk1.

CHFR
Checkpoint with Forkhead and Ring domains (CHFR), a RING
family Ub-ligase, is a mitotic checkpoint that delays the transition
to metaphase in response to mitotic stress. USP7 binds with
CHFR in vivo and regulates its stability (Figure 6). These results
indicate that USP7 may play a role in the cell cycle progression
via the deubiquitination of CHFR (Oh et al., 2007).

UVSSA
Transcription-coupled nucleotide excision repair (TC-NER)
removes DNA damage of actively transcribed genes. Defect
in TC-NER is associated with cockayne syndrome (CS) and
ultraviolet – sensitive syndrome (UVSS). Cockayne syndrome B
(CSB/ERCC6) and UVSS protein are two important proteins in
TC-NER. UVSSA binds with USP7 to stabilize CSB and restores
the hypophosphorylated form of RNA polymerase II after UV
irradiation (Figure 6) (Zhang et al., 2012). UVSSA and USP7
play roles in controlling the fate of stalled RNA polymerase II,
the steady-state level of CSB, the efficiency of TC-NER and cell
survival following DNA damage (Sarasin, 2012).

ANXA1
ANXA1 is a 37-kDa protein identified as the first member of the
annexin superfamily. In response to DNA damage, ANXA1 is
cleaved and generates the N-terminal fragment (Ac2-26) and the
cleaved form of ANXA1. Both the full length of ANXA1 and Ac2-
26 can be translocated to the cell membrane and induce apoptotic
cell clearance through recruiting monocytes. The N-terminal of
ANXA1 shares the USP7-binding motif sequences (AMVS and
ALLS) and interacts with USP7. Hence, USP7 can deubiquitinate
and stabilize ANXA1 (Figure 6). USP7 may participate in the
DDR after UV-induced DNA damage in certain types via ANXA1
(Park et al., 2015).

XPC
Xeroderma pigmentosum complementation group C (XPC) is a
critical damage recognition factor which binds to helix-distorting
DNA lesions and initiates nucleotide excision repair (NER).
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FIGURE 5 | USP7 and HDAC1 protect DNMT1 from degradation while Tip60 acetylates DNMT1 and promotes its degradation.

FIGURE 6 | USP7 interacts with a number of substrates in DNA damage response.

During the early stage of NER of UV light-induced DNA lesions,
XPC is ubiquitinated. Ubl1 domain (amino acids 560–644) of
USP7 can bind and erase the ubiquitination on XPC and prevents

XPC from proteolysis (Figure 6). Taken together, USP7 plays
a vital role in regulating NER through deubiqitinating XPC
(He et al., 2014).
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FIGURE 7 | USP7 functions in several canonical signaling pathways. USP7 functions in Wnt/β-catenin signaling pathway (left), NF-κB signaling pathway (middle),
NOTCH signaling pathway (right).

FIGURE 8 | Overview of USP7 functions.

HLTF, Rad18, and Polη
Helicase-like transcription factor (HLTF) is a double-stranded
DNA translocase that can promote the polyubiquitination of
proliferating cell nuclear antigen (PCNA), while Rad6–Rad18
monoubiquitinates PCNA, both of which make PCNA work
as a molecular switch between various DNA damage bypass
processes. On one hand, USP7 stabilizes HLTF after genotoxic
stress, resulting in prolonging the half-life of HLTF, thus in
turn increases polyubiquitination of PCNA (Figure 6) (Qing
et al., 2011). Besides, USP7 and DNA polymerase eta (Polη),
a key player in several DNA damage-tolerance pathways,
interact with each other, and USP7 increases UV-induced PCNA
ubiquitination through stabilizing Polη and in turn facilitates
the recruitment of DNA translesion synthesis (TLS) polymerases

to bypass DNA lesions. Therefore USP7 promotes monoUb-
PCNA mediated stress-tolerance pathways via the stabilization
of Polη. These results provide new mechanistic for USP7-related
tumorigenesis and therapeutic strategy (Qian et al., 2015). On
the other hand, the amino acids 110–251 of Rad18 interact
with USP7 and contain two USP7-binding motifs. Loss of
USP7 destabilizes Rad18 and compromises UV-induced PCNA
monoubiquitylation and Polη recruitment to stalled replication
forks (Zlatanou et al., 2016).

RNF168
During DDR, histone ubiquitination by RNF168 orchestrates
the recruitment of downstream DDR factors, e.g., breast cancer
type 1 susceptibility protein (BRCA1) and p53 binding protein
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FIGURE 9 | Chemical structures of USP7 inhibitors.

1 (53BP1). The Ubl1 domain of USP7 binds to RNF168
(Figure 6). USP7 regulates H2A monoubiquitination and H2A/X
polyubiquitination via its regulation on RNF168. In summary,
USP7 plays a vital role in regulation of Ub-dependent signaling
in DDR via monitoring RNF168 (Malapelle et al., 2017).

PHF8
Plant homeodomain finger-containing protein 8 (PHF8) consists
of an N-terminal plant homeodomain and recognizes and binds
tri-methyl histone 3 lysine 4 at transcription start sites. The
C-terminal region of PHF8 binds with the TRAF domain
of USP7, and USP7 promotes the stability of PHF8 via

deubiquitinase activity and contributes to the maintenance of
genome integrity, which is implemented in DDR (Figure 6).
The USP7/PHF8 is involved in breast carcinogenesis, indicating
these molecules may be as potential targets for breast cancer
intervention (Wang Q. et al., 2016).

MDC1
DNA damage checkpoint protein 1 (MDC1) is important
for the initiation and amplification of the DDR. USP7
deubiquitinates and stabilizes of MDC1, resulting in sustaining
the DDR, while depletion of USP7 influences the engagement
of MRE11-RAD50-NBS1(MRN)-MDC1 complex and the
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FIGURE 10 | Co-crystal structures of USP7 in complex with inhibitors. The
electrostatic surface representation of the CD of USP7 is shown along with
compounds (A) USP7-GNE6640 (PDB code 5UQV). (B) USP7-GNE6776
(PDB code 5UQX). (C) USP7-FT827 (PDB code 5NGF). (D) USP7-FT671
(PDB code 5NGE). The images were generated with molecular operating
environment (MOE).

recruitment of the downstream factors 53BP1 and BRCA1
at DNA lesions. USP7 promotes cervical cancer cell survival
and confrere cellular resistance to genotoxic insults via the
stabilization of MDC1 (Su et al., 2018).

In a nutshell, USP7 plays a vital role in the DNA damage
response (Figure 6), and it can be targeted for the treatment of
malignancies with DDR defects. Besides, USP7 inhibitors can be
combined with genotoxic agents as a novel therapeutic strategy
for the treatment of cancer.

USP7 stabilizes HLTF to result in polyubiquitination of
PCNA and induces monoubiquitination of PCNA through
regulating Rad18. USP7 plays a role in DDR through regulating
MDC1, CHFR, XPC, ANXNA1, RNF168, and PHF8. USP7 and
UVSSA interact with each other to control steady state of CSB
following DNA damage. USP7 can regulate stability of CDC25A
via deubiquitination CDC25A directly and through regulating
Claspin and CHK1 expression.

Several Canonical Signaling Pathways
Wnt/β-Catenin Signaling Pathway
Wnt signaling was initially found for its function in cancer
and embryonic development and then was found responsible
for tissue regeneration in adult bone marrow, skin and
intestine. β-Catenin, a key element in Wnt signaling pathway,
is regulated by diverse PTMs, including ubiquitination (Ma
et al., 2014). According to a research in 2017, β-catenin can
be deubiquitinated and stabilized by USP7 in adenomatous
polyposis coli (APC) truncating mutated colorectal cancer
(CRC) but not APC wide type CRC, which resulting in the
activation of Wnt pathway (Novellasdemunt et al., 2017).

Mechanism study suggested that APC β-catenin inhibitory
domain (CID) protects β-catenin from USP7-mediated
deubiquitination, while APC lacking CID exposes β-catenin
to USP7 for deubiquitination. Hence, abrogation of USP7 in
APC-mutated CRC suppresses Wnt activation by regaining
β-catenin ubiquitination, which leads to the cell differentiation,
and inhibits tumor growth (Novellasdemunt et al., 2017). With
the aid of USP7 inhibitor P5091, Wnt pathway can be inactivated
by improving ubiquitination and degradation of β-catenin,
which provides evidence for the rationality for developing USP7
inhibitors as anti-CRC agent (Figure 7A) (An et al., 2017).
In a nutshell, USP7 can be considered as a Wnt activator for
tumor-specific therapeutic target for most CRCs.

NF-κB Signaling Pathway
Nuclear factor kappa B (NF-κB) signaling pathway is responsible
for the transcription of a series of genes that controlling
inflammation and immunity. As an essential regulator of Toll-
like-receptor (TLR) and tumor necrosis factor receptor (TNFR)-
inducible inflammatory gene expression, NF-κB is regulated by
USP7 in a research in 2013. Different from other USP7 partners
and substrates, NF-κB p65 and USP7 interact together after USP7
is recruited to NF-κB target promoters. Besides, the inhibition
of USP7 lead to decreased TLR and TNFR-induced expression
of Interleukin (IL-6), TNFα (NF-κB reporter) indicates that
the deubiquitination of NF-κB by USP7 may have therapeutic
potential (Figure 7B) (Colleran et al., 2013).

In 2018, some researchers found that knockout of USP7
dramatically increased the sensitivity of multiple myeloma (MM)
cells to bortezomib (BTZ) which led to myeloma cell death
and inhibited NF-κB activation by stabilizing IκBα. As expected,
usage of USP7 inhibitors also inhibited the activation of NF-
κB and the combination of USP7 inhibitor with BTZ triggered
the synergistic antitumor activity in bortezomib-resistant MM
cells. Taken together, this study provides a new application for
USP7 inhibitors alone or in combination with BTZ to overcome
BTZ resistance and improve the patient prognosis in MM
(Yao et al., 2018).

In all, several reports have illustrated the mechanism that how
USP7 and its related proteins regulate NF-κB signaling pathway.
However, more deep studies should be conducted to make the
mechanism more clearly and logically and there are still great
challenges for researchers to face.

NOTCH Signaling Pathway
Notch signaling pathway is highly conserved and presents in
most multicellular organisms. This intercellular signaling cascade
is involved in cell differentiation, proliferation, and contributes
to the fate of cells and occurs in multiple organisms and tissues,
containing early T cell development in the thymus and peripheral
T cell differentiation (Auderset et al., 2012; Bailis et al., 2013;
Amsen et al., 2015). There are four notch receptors in mammals
possessing NOTCH1-4 in which NOTCH1 can be stabilized
through USP7-mediated deubiquitination. Previous studies have
revealed that ubiquitination regulates the stability, activity, and
localization of NOTCH1. However, the specific deubiquitinase
that affects NOTCH1 protein stability was clarified recently.
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Researchers reported that USP7 can deubiquitinate and stabilize
NOTCH1 in vivo and in vitro, on the other hand, knockdown
of USP7 increased the ubiquitination of NOTCH1. Used up of
USP7 significantly restrained the proliferation of T-cell acute
lymphoblastic leukemia (T-ALL) cells in vitro and in vivo,
accompanied by downregulation of the NOTCH1 protein
level, suggesting that targeting the USP7/NOTCH1 axis is
a novel strategy to combat T-ALL and other NOTCH1-
related malignancies (Figure 7C) (Shan et al., 2018). Almost
at the same time, researchers found USP7 can bind several
oncogenes by interacting and stabilizing NOTCH1 and JmjC
Domain-Containing Protein 3 (JMJD3) in order to control
leukemia growth. What’s more, USP7 and NOTCH1 bind T-ALL
superenhancers, and inhibition of USP7 leads to a decrease of the
transcriptional levels of NOTCH1 targets and T-ALL cell growth
in vitro and in vivo. Therefore, USP7 cooperating with NOTCH1
can improve the oncogenic transcriptional program in T-ALL
(Jin et al., 2018).

The functions of USP7 on different signaling pathways
indicate the brand new role of USP7 as a great target. To be
sure, other classical signaling pathways which may be regulated
by USP7 is yet to be found. It provides us a great challenge
to find the new mechanisms between USP7 and other classical
signaling pathways.

USP7 in Cancer
USP7 is highly expressed in a wide variety of cancers and affects
the progression of cancer diseases. Moreover, USP7 assumes
different roles in different tumors. In prostate cancer, high
expression of USP7 is directly related to tumor invasion (Song
et al., 2008). USP7 plays a key role in carcinogenesis via p53-
dependent pathways in non-small cell lung carcinoma (NSCLCs)
(Masuya et al., 2006). Studies have shown that changes of USP7
regulate colon carcinoma growth and apoptotic sensitivity in vivo
(Becker et al., 2008). USP7 maintains DNA damage response
and promotes cervical cancer, and is positively correlated with
poor survival rate in patients with cervical cancer (Su et al.,
2018). USP7 regulates human terminal erythroid differentiation
by stabilizing GATA1, providing a certain treatment for leukemia
(Liang et al., 2019). In short, USP7 plays an important role
in a variety of pathologies and is a good target from a
therapeutic point of view.

USP7 INHIBITORS

USP7 is a promising target not only for its roles in cellular
pathways including regulators of viral proteins, immune
response, oncogenes, and DNA damage but also because of its
aberrant expression in various cancers. Due to lack of co-crystal

structures between USP7 and small molecule inhibitors, there is
no potent and selective USP7 inhibitor for a long time (Colland
et al., 2009; Altun et al., 2011; Chauhan et al., 2012; Reverdy
et al., 2012) (Figure 9). However, several groups reported the
structures of USP7 in complex with small molecule inhibitors last
year (Kategaya et al., 2017; Turnbull et al., 2017) (Figure 10) and
these structures gives guidance to obtain structure-based small
molecule inhibitors.

CONCLUSION AND FUTURE
PERSPECTIVES

This review illustrates our current knowledge of USP7, including
its source and characterization, structure, binding partners and
substrates in various biological processes. Besides, how USP7
regulates various aspects of a cell under both normal and
pathological states are elaborated in detail. As the processes
of ubiquitination and deubiquitination are extremely dynamic
and context-specific, a series of studies have linked USP7 to
different cancers. The biology, particularly the immune oncology
mechanisms, reveal that USP7 inhibitors would be useful drugs,
thus it is vital to develop highly selective and specific inhibitors of
USP7. The association of USP7 with several canonical signaling
pathways still needs characterized in order to search new targets
and regulatory mechanisms. Last but not least, USP7 may be
a promising target for cancer therapy and it therefore merits
further studies.
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Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that specifically causes
cancer and is widely distributed in the environment. Poly (ADP-ribosylation), as a
key post-translational modification in BaP-induced carcinogenesis, is mainly catalyzed
by poly (ADP-ribose) glycohydrolase (PARG) in eukaryotic organisms. Previously, it is
found that PARG silencing can counteract BaP-induced carcinogenesis in vitro, but the
mechanism remained unclear. In this study, we further examined this process in vivo by
using heterozygous PARG knockout mice (PARG+/−). Wild-type and PARG+/− mice
were individually treated with 0 or 10 µg/m3 BaP for 90 or 180 days by dynamic
inhalation exposure. Pathological analysis of lung tissues showed that, with extended
exposure time, carcinogenesis and injury in the lungs of WT mice was progressively
worse; however, the injury was minimal and carcinogenesis was not detected in the
lungs of PARG+/− mice. These results indicate that PARG gene silencing protects mice
against lung cancer induced by BaP inhalation exposure. Furthermore, as the exposure
time was extended, the protein phosphorylation level was down-regulated in WT mice,
but up-regulated in PARG+/− mice. The relative expression of Wnt2b and Wnt5b mRNA
in WT mice were significantly higher than those in the control group, but there was no
significant difference in PARG+/− mice. Meanwhile, the relative expression of Wnt2b
and Wnt5b proteins, as assessed by immunohistochemistry and Western blot analysis,
was significantly up-regulated by BaP in WT mice; while in PARG+/− mice it was not
statistically affected. Our work provides initial evidence that PARG silencing suppresses
BaP induced lung cancer and stabilizes the expression of Wnt ligands, PARG gene and
Wnt ligands may provide new options for the diagnosis and treatment of lung cancer.

Keywords: benzo(a)pyrene, ADP-ribosylation, poly (ADP-ribose) glycohydrolase, Wnt signaling pathway,
lung cancer
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INTRODUCTION

Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that
is known to be carcinogenic. It is mainly produced by pyrolysis
and incomplete combustion of carbonaceous materials and is
widely distributed in both the working and living environment
(Liu et al., 2008). A large number of experiments have shown
that BaP can induce cancer in various animals (IARC Working
Group on the Evaluation of Carcinogenic Risks to Humans, 2010;
Kasala et al., 2016). Furthermore, epidemiological studies suggest
that BaP is closely associated with human lung cancer (Rojas
et al., 2004; Alexandrov et al., 2010; Widziewicz et al., 2018).
On the basis of these studies, BaP was classified as a human
class I carcinogen by the International Agency for Research on
Cancer in 2006 (IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans, 2012).

Lung cancer is the most common malignant tumor in the
human respiratory system and is extremely harmful to human
health. Globally, the morbidity and mortality of lung cancer
are among the highest (Ferlay et al., 2015). According to the
American Cancer Society, lung cancer leads to the highest
number of deaths in both men and women. Recent evidence
suggests that the incidence of lung cancer in China is the
highest and the mortality is increasing at a rate of 4.5% per
year (Chen et al., 2016).

The occurrence of lung cancer is the result of a combination
of both environmental and genetic factors, including epigenetic
changes which have been proved to contribute to lung
cancer development (Hagood, 2014). ADP-ribosylation, as an
epigenetic modification, plays a critical role in cell survival and
disease development, including cancers (D’Amours et al., 1999;
Min et al., 2010; Huang et al., 2012). Poly-ADP-ribosylation
can convert nuclear chromatin to a loose state, allowing
accessibility of DNA damage repair enzymes to the injury site,
thereby promoting DNA damage repair against cytotoxicity and
genetic damage. Poly-ADP-ribose glycohydrolase (PARG) can
hydrolyze poly (ADP-ribose) on poly (ADP-ribose) polymerase-
1 (PARP-1), which promotes the degradation of intracellular
poly (ADP-ribose) (PAR) (Rouleau et al., 2004). It is the
only known enzyme that can hydrolyze poly (ADP-ribose)
in the nucleus (Meyer et al., 2007). Recent studies have
shown that PARG gene silencing can increase intracellular
poly-ADP-ribosylation to protect cells against cytotoxicity.
Li et al. (Li et al., 2016) found that BaP can induce
chromosomal aberrations, micronucleus formation, chromatin
structure changes and malignant transformation of normal
16HBE cells, but PARG gene silencing can inhibit these
abnormalities. Studies have shown that PARG also is associated
with tumorigenesis (Miwa and Masutani, 2007), but the exact
mechanism of PARG on tumor promotion has not been
fully clarified.

In our previous study, 16HBE cells and PARG-deficient cells
were treated with 40 µmol/L BaP for a period of time to
induce malignant transformation, and by using MeDIP-sequence
analysis, it is found that the methylation levels of Wnt2b
and Wnt5b genes in the two cells were significantly different.
Wnt2b and Wnt5b are key players in the Wnt/β-Catenin

signaling pathway (Klaus and Birchmeier, 2008), which has
been highly conserved in evolution and is known to control
cell growth, differentiation, apoptosis, and self-renewal. This
pathway is activated by binding of Wnt ligands to receptors,
which increases the stability of β-catenin in the cytoplasm and
promotes its translocation to the nucleus, where it modulates
the expression of target genes that lead to tumorigenesis (Klaus
and Birchmeier, 2008). Studies have shown that this pathway
is abnormally activated during the development of lung cancer
and may coordinate or antagonize other signaling pathways to
regulate proliferation, migration, and invasion in lung cancer
(Reya and Clevers, 2005; Berndt and Moon, 2013). Recently,
30–40% of cells in tumor tissues have been shown to express
Wnt ligands, which create a microenvironment that is suitable
for tumor cells. In a human lung adenocarcinoma model, 70%
of cells have abnormal activation of the Wnt pathway, and
80% of cells may be involved in the formation of the tumor
microenvironment, which is critical for the progression of lung
cancer (Tammela et al., 2017).

Given the decisive role of the Wnt signaling pathway in
the development of lung cancer, inhibition of Wnt ligands
provides a viable approach for reducing the expansion of
lung cancer cell lines. The purpose of this study was to
investigate whether PARG gene silencing can inhibit lung
cancer development induced by BaP and whether it can
regulate the Wnt ligands to inhibit the development of lung
cancer. On the basis of our findings, PARG gene and Wnt
ligands may constitute a new option for the diagnosis and
treatment of lung cancer.

MATERIALS AND METHODS

Materials
BaP (CAS50-32-8, purity ≥96%) was purchased from American
Sigma Company, and dissolved in dimethylsulfoxide (DMSO).
Other chemicals were purchased from Sigma–Aldrich (St Louis,
MO, United States) or Thermo Fisher Scientific (Shanghai,
China), unless otherwise stated.

Animals and Treatment
The PARG knockout mice [B6N (Cg)-Pargtm2b(KOMP)Mbp/J]were
purchased from the Jackson Laboratory, and WT mice
(C57BL/6J) were purchased from Guangdong Medical Lab
Animal Center. PARG knockout mice were generated by the
targeted mutation 2b of the Parg gene resulting in deletion
of the full-length isoform of PARG protein (PARG110). The
strategy of gene targeting is Cre-mediated excision of the
parental Pargtm2b(KOMP)Mbp allele resulted in the removal of the
promoter-driven neomycin selection cassette and critical exon(s)
leaving behind the inserted lacZ reporter sequence. We screened
for heterozygous PARG knockout mice (PARG+/−) in our study
since death of homozygous PARG knockout mice (PARG−/−)
occurring before the normal life span of an organism, occurring
during pregnancy, parturition or lactation. The mice were
maintained under semi-specific-pathogen-free conditions with
the temperature controlled at 23 ± 2◦C and a 12-h light/dark

Frontiers in Pharmacology | www.frontiersin.org 2 May 2019 | Volume 10 | Article 3381073

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-10-00338 May 2, 2019 Time: 14:32 # 3

Dai et al. PARG Silencing Suppresses Lung Cancer

cycle. We selected 2-month-old PARG+/− and WT mice for
this study. The mice were randomly divided into two groups
with 6 per group referring to the principles of experimental
animal selection and references. And then, they were treated
with 0 or 10 µg/m3 aerosols through respiratory tract by a
dynamic inhalation cabinet (Jiufang Company, Guangzhou)
for 90 or 180 days. The dynamic inhalation device makes
liquids into aerosols with a diameter of only a few micrometers,
which is in line with the actual human exposure to BaP in
the air. At the end of the experiment, mice were anesthetized
with ether and blood was collected by eyeball sampling. The
mice were then euthanized and the lungs were excised rapidly.
Half of each lung was stored in 4% paraformaldehyde, and
the other half was stored at −80◦C. All animal experiments
and procedures were approved by the Shenzhen Center for
Disease Control and Prevention. Efforts were made to minimize
animal suffering and reduce the number of mice used in
the experiments.

Genotyping of PARG Knockout Mice
Genomic DNA was purified from mouse tails using TianAMP
genomic DNA kits (Tiangen, Beijing, China). The concentration
and the quality of DNA were assessed by ultraviolet (UV)
absorbance using a NanoDrop ND-2000 spectrophotometer
(Thermo Fisher Scientific). The DNA was then amplified by
PCR (94◦C for 2 min; 10 cycles of 94◦C for 20 s, 65◦C for
15 s, and 68◦C for 10 s; 10 cycles of 94◦C for 15 s, 60◦C
for 15 s, and 72◦C for 10 s; 72◦C for 2 min, 10◦C hold)
using primers provided by the Jackson Laboratory (Wild-type
Forward: 5′-GAG ATA TCT AAG TCA GAG AAA GGT GGT-
3′, Wild-type Reverse: 5′-CCT CCT CTG GTG TGT CTG
AAG-3′, Mutant Forward: 5′-CGG TCG CTA CCA TTA CCA
GT-3′, Mutant Reverse: 5′-GGT ATC AGC GAT GGT TGT
TC-3′). The PCR products were 279 bp for the WT sample,
and 279 and 507 bp for the heterozygous PARG knockout
(PARG+/−) sample.

Hematoxylin and Eosin Staining
Mouse lung tissues were fixed in 4% paraformaldehyde for
48 h, dehydrated in ethanol and embedded in paraffin by
using a TissueWaveTM 2 Microwave Processor (Thermo Fisher
Scientific). Paraffin-fixed tissues were sliced into 5 µm sections,
mounted on glass slides, and dried for 1 h. After dewaxing
and rehydration, sections were stained with hematoxylin and
eosin (Sigma-Aldrich) and examined by light microscopy. The
pathology was evaluated by a blinded observer to detect the
degree of malignancy.

Real-Time Quantitative PCR
Total RNA was extracted from frozen lung samples with
miRNeasy mini kits (Qiagen, China) according to the
manufacturer’s instructions. Complementary DNA (cDNA)
was synthesized from 500 ng of total lung RNA (n = 3 per
group) using the PrimeScriptTM RT reagent kit (Takara,
China). Quantitative PCR (qPCR) was performed on
the ABI Prism 7500 system (Applied Biosystems, Foster
City, CA, United States) using SYBR select master mix.

The mRNA primers were purchased from Sangon Biotech
(Shanghai, China) and are listed in Supplementary Table S1.
Experiments were repeated at least 3 times. The relative
level of mRNA for each gene was determined using the
2−11Ct method (Schmittgen and Livak, 2008), and P-values
were calculated using the Student’s t-test on replicate 2−1Ct

values for each gene in each treatment group compared to
the control group.

Immunohistochemistry
Mouse lung tissues were fixed in 4% paraformaldehyde
for 48 h, dehydrated in ethanol and embedded in paraffin
by using a TissueWaveTM Microwave Processor (Thermo
Fisher Scientific). After dewaxing and rehydration, 5 µm-
thick coronal sections were incubated in 0.01 M citrate
buffer (pH 6.0) with 0.1% Tween-20 at 95–100◦C for
10 min for antigen retrieval. For immunochemistry of
Wnt2b and Wnt5b (n = 3 per group), the sections were
incubated at 4◦C overnight with primary antibody (Wnt2b
at 1:200 or Wnt5b at 1:50). After being washed with PBST,
the sections were stained using the mouse and rabbit-
specific HRP/DAB (ABC) detection IHC kit (Abcam,
ab64264) and analyzed using an Olympus BX60 compound
microscope (Tokyo, Japan).

Western Blot Analysis
Lung proteins (n = 3 per group) were extracted from 30 mg
lung tissue with 600 µL lysis buffer (Beyotime, China) and
6 µL protease and phosphatase inhibitor cocktail (Thermo
Fisher Scientific, United States) on ice, and then centrifuged
and collected. The protein concentration was measured with a
BCA protein assay kit (Thermo Fisher Scientific, United States).
Each protein sample was combined with loading buffer and
heated for 8 min at 100◦C. Protein samples were separated
on 10% PAGE gels with 5% stacking gels and transferred
to PVDF membranes. The membranes were incubated in
TBST buffer containing 5% milk at room temperature for
2 h. Subsequently, they were incubated with anti-PARG
(mouse monoclonal antibody, 1:100), anti-phosphotyrosine
(PY20, mouse monoclonal antibody,1:1000), anti-Wnt2b (rabbit
monoclonal antibody, 1:3000), anti-Wnt5b (mouse monoclonal
antibody,1:500), or anti-α-tubulin (mouse monoclonal antibody,
1:3000) in TBST buffer for 1.5 h at room temperature.
After washing with TBST three times, the membranes were
incubated with homologous secondary antibody (anti-rabbit
or anti-mouse IgG HRPs) in TBST buffer for 60 min. The
membranes were then repeatedly washed with TBST buffer,
developed using chemiluminescence reagents from an ECL kit
(Pierce ECL, Santa Cruz, CA, United States) and detected on a
phosphorimager. The images of the membranes were analyzed
by ImageJ software.

Statistical Analysis
The histograms and statistical analyses of the relative expression
of each group were completed using Graph-Pad prism 7.0
software (GraphPad Software, Inc.). Data are presented
as mean ± SD. Comparisons between two groups were
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conducted with the Student’s t-test. P < 0.05 was considered
statistically significant.

RESULTS

Genotyping of PARG Knockout Mice
The heterozygous PARG knockout mice were used to characterize
the role of PARG in protecting mice from BaP-induced lung
cancer. According to the law of Mendelian inheritance, the
genotype of the progeny mice may be WT (PARG+/+),
heterozygous (PARG+/−), or homozygous (PARG−/−). Based
on genomic DNA purified from mouse tails, PARG+/− mice
were screened for our study as PARG−/− mice cannot survive to
maturity. The PCR product from WT mice was 279 bp, and the
PCR products from PARG knockout heteroygotes (PARG+/−)
were 279 and 507 bp, as shown in Figure 1A. After BaP
exposure, proteins from the lung tissues were extracted and
Western blotting were performed to verify the expression of
full-length isoform (PARG110). As expected, the expression of
PARG110 was significantly greater in WT mice than in PARG+/−

mice (Figure 1B). The results confirm that heterozygous PARG
knockout mice were successfully bred in our experiments.

PARG+/− Mice Are Protected From
Pathological Changes in Lung Tissues
Induced by BaP
To establish a lung cancer model for assessing the effects of
heterozygous PARG silencing, we exposed mice to long-term
inhalation of BaP and then prepared paraffin sections of lung
tissues. Hematoxylin and eosin staining were used to analyze the
pathological changes that were observed under light microscopy.
As shown in Figure 2A, in the lungs of WT mice exposed for
90 days, alveolar diffuse interstitialization occurred, though the
alveolar structure was visible; in contrast, the degree of injury in
PARG+/− mice was mild with no obvious pathological damage.
The results were similar in both male and female mice. After 180-
day exposure to BaP, the lungs of the WT mice treated with BaP
showed severe alveolar diffuse interstitialization, and the alveolar
structure was severely damaged with obvious inflammatory
infiltration and abnormal nodules (Figure 2B). Comparison
between the 90- and 180-d pathology suggests that the degree of

lung injury in WT mice treated with BaP was positively correlated
with the time of exposure. In PARG+/− mice after 180 days,
however, some alveolar interstitial thickening appeared while the
alveolar structure was still visible. This suggests that PARG+/−

mice were protected from the effects of BaP on lung pathology.
A higher magnification was used to examine tumor formation.
In WT mice, the number of cells increased abnormally and
tumorigenesis could be observed (Figure 2C); however, no tumor
tissue was found in PARG+/− mice. These results demonstrate
that heterozygous PARG gene silencing can inhibit the induction
of lung cancer by BaP in mice.

PARG+/− Mice Express Elevated Levels
of Phosphorylated Proteins in Lung
Tissues After BaP Inhalation Exposure
To determine whether heterozygous PARG silencing affects the
overall protein phosphorylation level, we performed Western
blot assays using the universal anti-tyrosine phosphorylation
monoclonal antibody PY20 with protein extracted from
lung tissues. As shown in Figure 3A, the levels of total
phosphorylated proteins in WT and heterozygous PARG
knockout mice were not significantly different from that
of the control group after exposure to BaP for 90 days
(P > 0.05). After 180-d exposure, however, the level of
phosphorylated proteins was significantly down-regulated in
WT mice (∗P < 0.05), but was significantly up-regulated in
PARG+/− mice compared with the control group (∗P < 0.05).
These results indicate that, at an extended BaP exposure
time, PARG affects phosphorylation of proteins, which could
potentially be associated with the ability of PARG+/− mice to
resist tumorigenesis.

PARG Silencing Inhibits the Relative
Expression of Wnt2b and Wnt5b
mRNA in Lung Tissues After BaP
Inhalation Exposure
To further elucidate whether ADP-ribosylation affects the Wnt
pathway in PARG+/−mice, we first performed real-time qPCR to
detect the relative expression of the Wnt2b and Wnt5b genes. The
relative expression of Wnt2b and Wnt5b mRNA was significantly
higher in WT mice than in control mice at 90 and 180 days

FIGURE 1 | Genotyping of poly (ADP-Ribose) glycohydrolase (PARG) knockout mice. Genotyping of PARG+/− mice. (A) Genotyping by PCR. Lane M, 100 bp DNA
Marker; Lane 1, blank control; Lane 2, WT mice; and Lane 3, PARG+/− mice. (B) Genotyping by Western blotting. The expression of PARG110 protein was
assessed in lungs from WT and PARG+/− mice.
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FIGURE 2 | PARG+/− mice are protected from pathological changes in lung tissues induced by BaP inhalation exposure. Pathological changes in lung tissues of
WT and PARG+/− mice after benzo(a)pyrene inhalation exposure (A) 90-day exposure (×100). (B) 180-day exposure to BaP (×100). The red arrows show
abnormally increased numbers of cells. (C) The magnification of the place pointed by the red arrow in B, pathological signs of tumorigenesis (×200). Results are
representative of 3 mice from each group.

(∗∗∗P < 0.001), but there were no significant differences in the
PARG+/− mice (P > 0.05) (Figure 4).

PARG Silencing Inhibits the Expression
of Wnt2b and Wnt5b Protein in Lung
Tissues After BaP Inhalation Exposure
The expression of Wnt2b and Wnt5b at the level of the
protein were further confirmed by performing Western
blotting and immunohistochemistry. The expression of
Wnt2b protein was up-regulated in lungs from WT mice
that were treated with BaP for 90 and 180 days (∗P < 0.05,
compared with the control group); however, for PARG+/−

mice, no statistically significant differences were observed
(P > 0.05) (Figure 5A). In immunohistochemistry assays,
Wnt2b protein (brownish yellow staining) was localized to
the cytoplasm, and after 90 and 180 days of BaP inhalation
exposure, the expression levels in WT male and female
mice were higher for treated vs. control mice; however,
for PARG+/− mice, there were no significant differences
(Figure 5B). Similar results were observed for Wnt5b,
though the effect on Wnt5b expression was more obvious
at 180 days than at 90 days (Figures 5C,D). These findings

suggest that PARG gene silencing stabilizes the expression of
Wnt2b and Wnt5b after BaP exposure, possibly inhibiting the
progression of lung cancer.

DISCUSSION

Metabolically activated BaP is known to cause cytotoxic,
teratogenic, genotoxic, mutagenic and carcinogenic effects in
many different tissues and cell types from numerous mammalian
studies (Miller and Ramos, 2001; van Delft et al., 2010).
BaP in cigarette smoking is implicated as one of the main
factors in lung cancer (Rubin, 2001). The occurrence of cancer
includes three stages: initiation, promoting and progressing.
Epigenetic modification, as a bridge between these stages, can
involve DNA methylation, microRNA, chromatin remodeling,
and histone modification (Bird, 2007). ADP-ribosylation is
one of the most important post-translational modifications in
tumorigenesis (Klaus and Birchmeier, 2008). Studies showed
that the use of PARG inhibitor to suppress PARG activity
facilitates oxidative damage-induced PARylation as well as DNA
damage repair (Zhang et al., 2015). PARG gene silencing
increases the level of poly (ADP-ribosylation) to regulate DNA
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FIGURE 3 | PARG+/− mice express elevated levels of phosphorylated proteins in lung tissues after BaP inhalation exposure. Expression of phosphorylated proteins
in lung tissues of mice after BaP inhalation exposure. (A) The overall phosphorylation level of proteins in WT and PARG+/− mice that were untreated or were treated
with exposure to BaP for 90 days. (B) Expression of phosphorylated proteins after 180-day exposure to BaP. Female-C, control untreated female mice; Female-T,
treated female mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗P < 0.05, ∗∗∗P < 0.001, significant difference in treated compared to
untreated mice. Results represent the mean ± SD of 3 mice from each group. Quantification of the phosphorylation levels was performed using ImageJ software.

damage repair and genome stability (Koh et al., 2004). In
our previous study, it is determined that in vitro PARG
silencing inhibits tumorigenesis by dramatically reducing DNA
damage, chromosome abnormalities, micronuclei formations,
and malignant transformation. To further investigate the possible
in vivo role of PARG gene silencing, heterozygous PARG
knockout mice were utilized. We exposed WT and PARG+/−

mice to BaP by dynamic inhalation for 90 and 180 days.
Pathological analysis showed that carcinogenesis appeared in
the lungs of WT mice and the injury was progressive for
180-day vs. 90-day treatment, while PARG+/− mice showed
no carcinogenesis and minimal signs of lung injury. These
results suggest that PARG gene silencing can inhibit lung
cancer induced by BaP in mice, which is consistent with our
in vitro results.

In our previous vitro study, we identified two distinct Wnt
ligands (Wnt5b and Wnt2b) that are modulated by PARG by
using the MeDIP-sequence techniques. This raises the possibility

that ADP-ribosylation may affect the carcinogenesis of BaP
by regulating the activation of the Wnt signaling pathway
after PARG gene silencing. The Wnt pathway consists of
three components: the Wnt/β-catenin canonical pathway, the
Wnt/Ca2+ pathway and the Wnt/polarity pathway (Wodarz
and Nusse, 1998). After activation of the canonical pathway,
Wnt ligands bind to Frzzled and LRP5/6 on the cell surface
to form a trimer, which weakens the stability of a destruction
complex composed by β-catenin, Axin, GSK-3β, and APC
to prevent the phosphorylated degradation of β-catenin. The
concentration of β-catenin increases in the cytoplasm and
then is transferred into the nucleus which ultimately activate
the expression of downstream target genes (Veeman et al.,
2003). During this process, protein phosphorylation, especially
tyrosine phosphorylation (P-Tyr), as a major mode of cell
signal transduction and regulation of enzyme activity, plays
an vital role in the regulation of β-catenin (Ikeda et al.,
1998). ADP-ribosylation can promote phosphorylated proteins
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FIGURE 4 | PARG silencing inhibits the relative expression of Wnt2b and Wnt5b mRNA in lung tissues after BaP inhalation exposure. Relative expression of Wnt2b
and Wnt5b mRNA in lung tissues of WT and PARG+/− mice after BaP inhalation exposure. The mRNA expression in lungs from WT and PARG+/− mice was
measured by real-time quantitative PCR after 90 days (panels A,B) or 180 days (panels C,D) of BaP inhalation exposure. Female-C, control untreated female mice;
Female-T, treated female mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗∗∗P < 0.001, significant difference was found in treated compared
to untreated mice. Results represent the mean ± SD of 3 mice from each group.

to bind to Axin scaffolding proteins, affecting the stability
of the key protein β-catenin and regulating the activation
of the Wnt pathway (Yang et al., 2016). In the current study,
the level of total phosphorylated protein in WT mice and
PARG+/− mice was not significantly different after 90-
day exposure to BaP. However, after 180 d, phosphorylated
protein was significantly reduced in WT mice but was up-
regulated in PARG+/− mice compared with the control
group. These findings are consistent with the possibility
that, as the exposure time of BaP extended, loss of PARG
promotes phosphorylation of proteins, which possibly leads
to phosphorylated degradation of key proteins in the Wnt
pathway; supported by the following studies (Zeng et al., 2005;
Kim et al., 2013; Yang et al., 2016). We will try to explore
how does PARG regulates protein tyrosine phosphorylation to
regulate the Wnt signaling against the progression of lung cancer
in our next study.

Wnt ligands play a vital role in the development of
lung cancer, and inhibition of Wnt ligands may reduce the
expansion of lung cancer cell lines (Tammela et al., 2017).
Our results demonstrate that the relative expression of Wnt2b
and Wnt5b mRNA was up-regulated in lung tissues of WT

mice compared with the control group after 90- and 180-
day exposure to BaP. Furthermore, the expression of Wnt2b
and Wnt5b protein was up-regulated, though there were
no significant differences in Wnt2b and Wnt5b mRNA and
protein expression in PARG+/− mice. It suggested that loss
of PARG stabilized the expression of Wnt ligands, probably
suppressing the activation of the Wnt pathway against the
progression of lung cancer.

Wnt2b and Wnt5b are two ligands of the Wnt signaling
pathway. Wnt2b mainly acts through the canonical Wnt pathway
and binds to receptors on the cell membrane to increase
the stability of β-catenin in the cytoplasm and promote its
translocation to the nucleus to activate downstream target
genes that lead to tumorigenesis (Roelink et al., 1992). Studies
have shown that Wnt2b is overexpressed in various cancers
(Katoh, 2001; Huang et al., 2015). Wnt5b, on the other
hand, is a non-canonical Wnt pathway factor that activates
the Wnt/Ca2+ pathway or blocks the down-regulation of
β-catenin by GSK-3β to prevent the classical Wnt pathway
(Kohn and Moon, 2005). Studies have shown that Wnt5b
plays different roles in different types of cancers. In some
cancers, such as lung cancer, it promotes tumorigenesis, and
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FIGURE 5 | PARG silencing inhibits the expression of Wnt2b and Wnt5b protein in lung tissues after BaP inhalation exposure. Expression of Wnt2b and Wnt5b
protein in lung tissues detected by Western blotting and immunohistochemistry. (A) Western blotting of Wnt2b expression. (B) Immunohistochemical staining of
Wnt2b (×200). Protein expression levels are reflected by the area and depth of brownish yellow. (C) Western blotting of Wnt5b expression. (D) Immunohistochemical
staining of Wnt5b (×200). Red arrows indicate Wnt2b and Wnt5b localization in the cytoplasm. Female-C, control untreated female mice; Female-T, treated female
mice; Male-C, control untreated male mice; Male-T, treated male mice. ∗P < 0.05, ∗∗P < 0.01, significant up-regulation in treated vs. control mice.
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FIGURE 6 | Schematic model of the Wnt/β-catenin signaling pathway regulated by PARG gene silencing during BaP-induced lung cancer. After activation of the
canonical pathway, Wnt ligands bind to Frzzled and LRP5/6 on the cell surface to form a trimer, which weakens the stability of a destruction complex composed by
β-catenin, Axin, GSK-3β, and APC to prevent the phosphorylated degradation of β-catenin. The concentration of β-catenin increases in the cytoplasm, and then
transfers into the nucleus to ultimately activate the expression of downstream target genes. PARG gene silencing may promote binding of phosphorylated proteins to
the Axin scaffolding proteins, affecting the stability of the key protein β-catenin, and then suppressing the activation of the Wnt/β-catenin pathway to stabilize the
expression of Wnt2b against the progression of lung cancer.

in other cancers, it suppresses tumorigenesis (Kikuchi and
Yamamoto, 2008; Harada et al., 2017). On the basis of its
different roles in different cancers, Wnt5b may constitute a
specific marker for lung cancer screening. In our study, it
is found that the up-regulation of Wnt2b was similar at 90
and 180 days, while the up-regulation times of Wnt5b was
more obvious at 180 days than at 90 days. These findings
may suggest that the Wnt non-canonical pathway increased
with extended exposure times, while the classical pathway
remains activated at both 90 and 180 days. Specific mechanisms
of interaction between the two pathways remains to be
further studied.

In conclusion, in the development of lung cancer induced
by BaP, the expression of Wnt ligands are up-regulated, which
is consistent with current understanding of the role of this
pathway. Additionally, PARG gene silencing may regulate the
phosphorylation level of proteins to stabilize the expression of
Wnt2b, possibly inhibiting the ability of Wnt/β-catenin pathway
to drive lung cancer progression as shown in the schematic
model in Figure 6. The mechanism how PARG gene silencing

affects the expression of Wnt5 remains to be futher explored.
Understanding of the unresolved issue will contribute to the
development of applications of PARG for cancer therapy. Lung
cancer is one of the world’s most serious threats to human
health and has become a global public health problem (Siegel
et al., 2018). Therefore, studying the mechanisms of lung
cancer provides increased understanding that is relevant to
its diagnosis and treatment. Though epigenetic modification
is extensive, basic and reversible, its theory and results are
gradually being applied to the diagnosis and treatment of
cancer (Dawson and Kouzarides, 2012). In this study, it is
shown that PARG gene silencing can prevent the occurrence
of lung cancer induced by BaP. Our results demonstrate that
PARG may be a target for the diagnosis and treatment of
lung cancer. Furthermore, the inhibition of Wnt ligands may
inhibit lung cancer. These results provide a new potential
approach for the treatment of lung cancer. In concludsion, the
use of Wnt ligands in the diagnosis of lung cancer and the
use of PARG inhibitors as a potential therapeutic against lung
cancer is supported.
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Overexpression of ABC transporters in cancer cells is an underlying mechanism
of multidrug resistance (MDR), leading to insensitive response to chemotherapeutic
strategies. Thus, MDR is often results in treatment failure in the clinic. In this study,
we found midostaurin, a Food and Drug Administration (FDA)-approved anti-leukemia
drug, can antagonize ATP-binding cassette subfamily B member 1 (ABCB1)-mediated
MDR. Our results indicated that midostaurin has the capacity to antagonize ABCB1-
mediated MDR, while no significant reversal effect was found on ATP-binding cassette
subfamily Gmember 2 (ABCG2)-mediated MDR. Our subsequent resistance mechanism
studies showed that midostaurin directly inhibited the efflux function of the ABCB1
transporter without alteration of the expression level or the subcellular localization of
ABCB1 transporter. In addition, midostaurin inhibited the ATPase activity of ABCB1
transporter in a dose-dependent manner. Moreover, our in silico docking study predicted
that midostaurin could interact with the substrate-binding sites of ABCB1 transporter.
This novel finding could provide a promising treatment strategy that co-administrating
midostaurin with anticancer drugs in the clinic could overcome MDR and improve the
efficiency of cancer treatment.

Keywords: midostaurin, multidrug resistance, ATP-binding cassette (ABC) transporter, ABC, chemotherapy

INTRODUCTION

Multidrug resistance (MDR) in cancer, a phenomenon leading to synchronous resistance of cancer
cells to structurally unrelated antineoplastic drugs, is one of the most critical factors responsible for
the failure of chemotherapeutics and the poor survival rate of patients (1). Several mechanisms are
involved in cancer MDR, including reduced apoptosis, advanced DNA damage repair mechanisms,
or altered drug metabolism. However, the most prominent factor is ABC transporter-mediated
efflux of antineoplastic drugs (3, 51).

The transport system superfamily of ABC transporters plays critical roles in physiological
and pharmacological processes (2). The human ABC protein family has been divided into seven
subfamilies (ABCA to ABCG). The ABC transporter family has 49 ABC proteins and 48 of them
have identified functions (3, 4). As one of the main contributors, ABCB1 (P-gp/MDR1) is widely
expressed not only in the placenta, but in the blood-brain barrier (BBB), intestines, livers and
kidneys, in order to protect the body from xenobiotics (5, 6). The ABCB1 transporter also mediates
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the transport of a wide range of physiological substrates like
lipids, porphyrins, and sterols (7). Furthermore, a broad
range of chemotherapeutic drugs are substrates of the ABCB1
transporter, such as taxanes and anthracyclines. ABCB1
transporter significantly increases the efflux of such anticancer
drugs, a major reason leading to ABCB1-mediated MDR (8).
It has been documented that ABCB1 is strongly related to the
chemotherapy prognosis and the progression of malignancy
(9). Thus, it is critical to elude MDR by either decreasing the
expression level of ABCB1 proteins or inhibiting the efflux
function of ABCB1 through specific and potent inhibitors.

Midostaurin, a multi-kinase inhibitor that was originally
developed as a protein kinase C (PKC) inhibitor for treatment of
patients with solid malignancy (10), has already been approved
by the FDA for treatment of acute myelocytic leukemia (AML)
with Fms-like tyrosine kinase 3 (FLT3)-mutant subtype (11). It
has recently been reported that the combination of midostaurin
with standard chemotherapy can significantly prolong overall
and event-free survival in patients who suffer from AML with
a FLT3 mutation (12). Here, we report the reversal effects of
midostaurin on ABCB1-mediated MDR when co-administrated
with conventional antineoplastic drugs.

MATERIALS AND METHODS

Chemicals
Midostaurin was obtained from Thermo Fisher Scientific Inc.
(Rockford, IL). Bovine serum albumin (BSA), fetal bovine
serum (FBS), Dulbecco’s modified Eagle’s Medium (DMEM),
penicillin/streptomycin and 0.25% trypsin were products from
Corning Incorporated (Corning, NY). The monoclonal antibody
for GAPDH (catalog numberMA5-15738, lot number SA247966,
clone GA1R), Alexa Fluor 488 conjugated goat anti-mouse
IgG secondary antibody, were purchased from Thermo Fisher
Scientific Inc. (Rockford, IL). Paclitaxel, doxorubicin, colchicine,
cisplatin, mitoxantrone, verapamil, the monoclonal antibodies
for ABCB1 (catalog number P7965, lot number 067M4761V,
clone F4), dimethylsulfoxide (DMSO), 3-(4,5-dimethylthiazol-
yl)-2,5-diphenyltetrazolium bromide (MTT), Triton X-100, 4’,6-
diamidino-2-phenylindole (DAPI), and paraformaldehyde, were
obtained from Sigma-Aldrich (St. Louis, MO). HRP-conjugated
rabbit anti-mouse IgG secondary antibody (catalog number
7076S, Lot number 32) were obtained from Cell Signaling
Technology Inc. (Danvers, MA). Ko143 was a product from Enzo
Life Sciences (Farmingdale, NY). [3H]-paclitaxel (15 Ci/mmol)
was purchased from Moravek Biochemicals, Inc. (Brea, CA). All
other chemicals were purchased from Sigma Chemical Co (St.
Louis, MO).

Cell Lines and Cell Culture
The ABCB1-overexpressing KB-C2 cell line was created by
gradually adding colchicine to parental human epidermoid
carcinoma KB-3-1 cells, and was kindly provided by Dr.
Shin-ichi Akiyama (Kagoshima University, Kagoshima, Japan).
The KB-C2 line was cultured in medium containing 2µg/mL
colchicine (13) to maintain its drugresistant characteristics. The
SW620/Ad300 cells were cultured in medium with 300 ng/mL

doxorubicin (14). KB-3-1, KB-C2, SW620, and SW620/Ad300
cells were used for ABCB1 reversal study. The human non-
small cell lung cancer (NSCLC) NCI-H460 cell line and its
subline of ABCG2-overexpressing NCI-H460/MX20 cells were
used for ABCG2 reversal study. The NCI-H460/MX20 cells
were selected by using a high dose of mitoxantrone and
maintained in medium with 20 ng/mL mitoxantrone (15).
HEK293/pcDNA3.1 and HEK293/ABCB1 were established by
transfecting the human embryonic kidney HEK293 cells with
empty and ABCB1 expressing vector, respectively (16). SW620
and SW620/Ad300 cells, NCI-H460 and NCI-H460/MX20
cells, were kindly provided by Drs. Susan Bates and Robert
Robey (NCI, NIH, Bethesda, MD). HEK293/ABCB1 were
kindly provided by Dr. Suresh V. Ambudkar (NCI, NIH,
Bethesda, MD). All aforementioned cell lines were maintained
in DMEM medium containing 10% fetal bovine serum and
1% penicillin/streptomycin at 37◦C in a humidified atmosphere
containing 5% CO2. All cells were grown as an adherent
monolayer and drug-resistant cells were grown in drug-free
culture media for more than 20 days before assay.

MTT Cytotoxicity Assay
Cell viability was determined by MTT assay as we previously
described (17). Each type of cell was harvested and resuspended
before being seeded onto a 96-well plate at a final quantity
of 5×103 cells per well in 160 µL of medium, and was then
incubated overnight. Midostaurin and positive control drugs
were added 2 h prior to incubation with or without anticancer
drugs. After 72 h of further incubation, MTT solution (4 mg/mL)
was added to each well and the cells were incubated for
an additional 4 h at 37◦C. Subsequently, the supernatant was
discarded and 100 µL of DMSO was added to each well in
order to dissolve the formazan crystals. An accuSkanTM GO
UV/Vis Microplate Spectrophotometer from Fisher Sci. (Fair
Lawn, NJ) was used to determine the absorbance at 570 nm.
The concentration for 50% inhibition of cell viability (IC50)
of the anticancer drug was calculated as previously described
(18). For positive control drugs, verapamil (3µM) and Ko143
(3µM) were used as reference inhibitors to reverse ABCB1- and
ABCG2-mediated MDR, respectively. Cisplatin, which is not a
substrate of ABCB1 or ABCG2, was used as a negative control
chemotherapeutic drug.

Western Blotting and
Immunofluorescence Analysis
Western blotting analysis was performed as previously described
(19). Briefly, cells were lysed after incubated with or without
midostaurin (500 nM) for varying amounts of time (0, 24, 48,
and 72 h). The concentration of protein was determined by BCA
Protein Assay Kit from Pierce (Rockford, IL). Equal amounts (20
µg) of proteins were subjected to 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to PVDF membranes from Millipore (Billerica, MA). The
presence of ABCB1 was determined using monoclonal antibody
F4 (dilution 1:500). GAPDH was used as a loading control. The
resulting protein bands were analyzed using Image J software.
The immunofluorescence assay was performed as previously
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described (17). Briefly, after being cultured overnight in 24-
well plates, cells (2×104/well) were treated with midostaurin
for 72 h at 500 nM concentration. Then, cells were fixed in
4% paraformaldehyde for 10min and permeabilized by 0.1%
Triton X-100 for 10min before being blocked with 6% BSA
for 1 h at 37◦C. The presence of ABCB1 was determined
using monoclonal antibody F4 (dilution 1:100) for incubation
at 4◦C overnight. Cells were washed with iced PBS after each
incubation time. Alexa Fluor 488 (Ex = 499 nm, Em = 519 nm)
conjugated secondary antibody (1:1,000) was used after washing
with iced PBS. DAPI (Ex = 345 nm, Em = 455 nm) was used to
counterstain the nuclei. The cells were washed with ice-cold PBS
before being imaged. Immunofluorescence images were collected
using an EVOS FL Auto fluorescence microscope from Life
Technologies Corporation (Gaithersburg, MD).

Doxorubicin Accumulation and
Fluorescence Microscopic Analysis
Cells were grown in 6-well plates and washed twice with
phosphate-buffered saline (PBS) before the pre-treatment of
500 nM of midostaurin. After 1 h of midostaurin pretreatment,
10µM of doxorubicin was then added to each well for
further incubation (1 h). Immunofluorescence images were
collected using an EVOS FL Auto fluorescence microscope from
Life Technologies Corporation (Gaithersburg, MD). Excitation
and emission wavelengths of doxorubicin were 475 and
585 nm, respectively.

[3H]-Paclitaxel Accumulation and
Efflux Assay
We conducted [3H]-paclitaxel accumulation assay using KB-
3-1 and its drug-resistant subline KB-C2 cells. As previously
described (20), 5×105 cells/well were cultured in 24-well plates
overnight before the assay, and midostaurin was added 2 h
prior to the addition of [3H]-paclitaxel. After incubating with
[3H]-paclitaxel with or without midostaurin for 2 h at 37◦C,
cells were washed twice with iced PBS, and lysed with 0.25%
trypsin before being placed in 5mL scintillation fluid, and
radioactivity was measured in the Packard TRI-CARB 1900CA
liquid scintillation analyzer from Packard Instrument (Downers
Grove, IL).For the efflux assay, KB-3-1 and KB-C2 cells (20)
were incubated with midostaurin for 2 h followed by incubation
with [3H]-paclitaxel, with or without midostaurin for 2 h at
37◦C. The cells were washed with iced PBS twice and then lysed
at various time points (0, 30, 60, and 120min) with trypsin.
Subsequently, cells were placed in 5mL of scintillation fluid and
radioactivity was measured in the Packard TRI-CARB 1900CA
liquid scintillation analyzer from Packard Instrument (Downers
Grove, IL).

ATPase Assay
The ABCB1-associated ATPase activities were measured using
PREDEASY ATPase Kits from TEBU-BIO nv (Boechout,
Belgium) with modified protocols. Briefly, cell membranes
that overexpressed ABCB1 were thawed and diluted before
use. Sodium orthovanadate (Na3VO4) was used as an ATPase
inhibitor. Various concentrations of midostaurin were incubated

with membranes for 5min. The ATPase reactions were initiated
by adding 5mM Mg2+-ATP. Luminescence signals of Pi
were initiated and measured after incubation at 37◦C for
40min with brief mixing. The changes of relative light units
were determined by comparing Na3VO4-treated samples with
midostaurin-treated groups.

Molecular Modeling of Human ABCB1
Homology Model
In silico docking analysis was conducted using software Maestro

11.5 (Schŕ’odinger, LLC, New York, NY, 2018) (21). Human
ABCB1 homology model was established by Dr. Aller based on
refined mouse ABCB1 (PDB ID: 4M1M) (22). Afterwards, the
docking grid at the drug-binding pocket was generated (23). The
ligand was essentially prepared to perform glide XP docking with
the default protocols.

Statistical Analysis
All data are expressed as the mean± SD and were analyzed using
one-way ANOVA. All experiments were repeated at least three
times. Differences were considered significant when P < 0.05.

RESULTS

Midostaurin Significantly Antagonized
ABCB1-Mediated MDR in
ABCB1-Overexpressing Cancer Cells
Firstly, to avoid cytostatic-induced reversal phenomenon,
we conducted MTT assays to evaluate the cytostatic effects
of midostaurin in the ABCB1-overexpressing cells and
corresponding parental cells that we would use. Hence, we
could choose concentrations that would not significantly
influence cell viability. We conducted further experiments with
200 and 500 nM doses of midostaurin (Figure 1).

As shown in Figure 2, midostaurin significantly sensitized
ABCB1-overexpressing cancer cells KB-C2 (Figures 2A–C)
and SW620/Ad300 (Figures 2E–G) to ABCB1 substrates
(doxorubicin, paclitaxel, and colchicine), compared with their
control resistance cells, and this sensitization occurred in a
dose-dependent manner. At 200 or 500 nM, midostaurin could
not alter the IC50 values of the above chemotherapeutic
drugs to parental KB-3-1 (Figures 2A–C) and SW620
(Figures 2E–G) cells. In addition, when combined with
cisplatin, a platinum drug which is known to not be a substrate
of ABCB1, midostaurin showed no significant difference in
its cytotoxic effect in neither the resistant cell lines nor the
parental cell lines (Figures 2D,H). In this study, verapamil,
a potent ABCB1 inhibitor, was used as a positive control
drug (24).

Midostaurin Significantly Antagonized
ABCB1-Mediated MDR in
ABCB1-Gene-Transfected Cells
We next evaluated the reversal effect of midostaurin on ABCB1-
gene-transfected cells. As shown in Figure 3, midostaurin could
significantly lower the IC50 values of ABCB1 substrate-drugs
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FIGURE 1 | Dose-viability curves of cells used in this study incubated with midostaurin for 72 h. Dose-viability curves for (A) KB-3-1 and KB-C2, (B) SW620 and
SW620/Ad300, (C) HEK293/pcDNA3.1 and HEK293/ABCB1, and (D) NCI-H460 and NCI-H460/MX20.

FIGURE 2 | The reversal effect of midostaurin on ABCB1-mediated MDR in ABCB1-overexpression cancer cells. IC50 values of (A) doxorubicin, (B) paclitaxel,
(C) colchicine, and (D) cisplatin in parental KB-3-1 and drug-selected ABCB1-overexpression resistant KB-C2 cells with or without treatment of midostaurin. IC50 of
(E) doxorubicin, (F) paclitaxel, (G) colchicine, and (H) cisplatin in parental SW620 and drug-selected ABCB1-overexpression resistant SW620/Ad300 cells with or
without treatment of midostaurin. Data are expressed as mean ± SD, representative of at least three independent experiments. *p < 0.05, compared with control
group.

(doxorubicin, paclitaxel, and colchicine) to HEK293/ABCB1
cells at 200 and 500 nM in a concentration-dependent manner
(Figures 3A–C). More importantly, midostaurin did not

significantly alter the efficacy of these ABCB1-substrate
chemotherapeutic drugs in parental HEK293/pcDNA3.1
cells (Figures 3A–C). Furthermore, at 200 or 500 nM,
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FIGURE 3 | The reversal effect of midostaurin on ABCB1-mediated MDR in ABCB1-gene-transfected cells. IC50 values of (A) doxorubicin, (B) paclitaxel,
(C) colchicine, and (D) cisplatin in parental HEK293/pcDNA3.1 and transfected ABCB1-overexpression HEK293/ABCB1 cells with or without treatment of
midostaurin. Data are expressed as mean ± SD, representative of at least three independent experiments. *p < 0.05, compared with control group.

midostaurin did not significantly change the IC50 values of
cisplatin (Figure 3D).

Midostaurin Did Not Reverse
ABCG2-Mediated MDR
As shown in Figure 4, midostautrin (200 and 500 nM) could
not significantly lower the IC50 value of mitoxantrone, a known
substrate of ABCG2-mediated MDR, to drug-selected NCI-
H460/MX20 cells. In this study, we chose Ko143 as a positive
control drug because it is a potent ABCG2 inhibitor (21).
Cisplatin was used as a negative substrate drug as previously
described (25).

Midostaurin Did Not Influence the Protein
Expression Level or Subcellular
Localization of ABCB1 Transporters
The next step was to figure out the mechanism of action
of midostaurin. Theoretically, there are varied mechanisms
involved in the reversal of ABCB1-mediatedMDR. For examples,
the reversal effect could be due to down-regulation of ABCB1
protein expression level and/or the change of ABCB1 transporter
subcellular localization. To evaluate the effect of midostaurin on
the protein level of ABCB1 transporter, we conducted Western
blotting and immunofluorescence assays to detect whether
midostaurin could impact the ABCB1 protein expression

and/or subcellular localization. As shown in Figure 5A, after
incubation for 24, 48, and 72 h, respectively, midostaurin
did not significantly change the expression level of ABCB1
protein (170 kDa) in ABCB1-overexpressing KB-C2 cells.
Furthermore, midostaurin did not change the localization of
ABCB1 at the subcellular level after incubating for up to 72 h
in ABCB1-overexpressing KB-C2 cells (Figure 5B). These results
suggested that midostaurin influenced neither the expression
level nor the subcellular localization of ABCB1 protein even at
high concentrations.

Midostaurin Significantly Increased the
Intracellular Drug Accumulation in
ABCB1-Overexpressing Cancer Cells
The above results indicated that midostaurin could reverse
ABCB1-mediated MDR without altering the protein expression
level or subcellular localization in ABCB1-overexpressing cancer
cells. We then conducted our drug accumulation assay to further
understand the mechanism of the reversal effect of midostaurin.
Firstly, we conducted our doxorubicin accumulation assay with
500 nM of midostaurin. As shown in Figure 6A, midostaurin
significantly enhanced the accumulation level of doxorubicin
in ABCB1-overexpressing KB-C2 cells. We also conducted our
[3H]-paclitaxel accumulation assay to get a digitized result.
The intracellular level of [3H]-paclitaxel was measured in
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FIGURE 4 | The reversal effect of midostaurin on ABCG2-mediated MDR in ABCG2-overexpression cancer cells. (A) IC50 values of mitoxantrone in parental
NCI-H460 cells and resistant NCI-H460/MX20 cells. (B) IC50 values of cisplatin in parental NCI-H460 cells and resistant NCI-H460/MX20 cells. *p < 0.05, compared
with control group.

FIGURE 5 | Midostaurin did not alter the protein expression and subcellular localization of ABCB1 transporter. (A) Detection and relative intensity of ABCB1
expression in KB-C2 cells incubated with 500 nM of midostaurin for 0, 24, 48, and 72 h. (B) Sub-cellular localization of ABCB1 expression in SW620/Ad300 cells
incubated with 500 nM of midostaurin for 72 h. Scale bar, 100µm. *p < 0.05, compared with control group.

cells overexpressing ABCB1 transporter in the presence or
absence of midostaurin. As shown in Figure 6B, midostaurin
significantly increased the intracellular levels of [3H]-paclitaxel
in ABCB1-overexpressing KB-C2 cells in a dose-dependent
manner. However, in parental KB-3-1 cells, no significant change
in [3H]-paclitaxel was found. In this study, verapamil was used as
a positive control reversal reagent.

Midostaurin Significantly Inhibited the
Efflux Function of ABCB1 Transporter in
ABCB1-Overexpressing Cancer Cells
The efflux of antineoplastic drugs through ABCB1 transporter
is involved in ABCB1-mediated MDR. We conducted an efflux
assay at different time points (0, 30, 60, and 120min) to
determine whether midostaurin could inhibit the efflux function
of ABCB1 transporter. As shown in Figures 6C,D, midostaurin

significantly decreased the efflux level of [3H]-paclitaxel in
ABCB1-overexpressing KB-C2 cells in a dose-dependentmanner,
but this change was not shown in parental KB-3-1 cells. These
results suggested that midostaurin could significantly increase
the accumulation of anticancer drugs by inhibiting the efflux
function mediated by ABCB1.

Midostaurin Significantly Inhibited the
ATPase Activity of ABCB1 Transporter
The hydrolysis of ATP is the energy source of substrate-efflux
mediated by ABCB1. Hence, we conducted the ABCB1-mediated
ATP hydrolysis in the presence or absence of midostaurin
at 0–40µM serial concentrations. As shown in Figure 7A,
midostaurin significantly inhibited the ATPase activity of ABCB1
transporters in a dose-dependent manner. The concentration
of midostaurin required to obtain 50% of maximal inhibition
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FIGURE 6 | The effect of midostaurin on accumulation and efflux activity in cancer cells overexpression ABCB1 transporter. Scale bar, 50µm. (A) The effect of
midostaurin on accumulation of doxorubicin. (B) The effect of midostaurin on accumulation of [3H]-paclitaxel in KB-3-1 and KB-C2 cells. (C,D) The effects of
midostaurin on efflux of [3H]-paclitaxel in KB-3-1 and KB-C2 cells. *p < 0.05, compared with control group.

(IC50) was 3.1µM with the maximum of inhibition being 0.4-
fold. These results suggested that midostaurin could inhibit the
ATPase activity in ABCB1 transporters by interacting with the
drug-binding pocket of these transporters. Therefore, one of
the reversal mechanisms of midostraurin includes a reduced
energy source for ABCB1 efflux function through inhibition of
ATPase activity.

Docking Analysis of the Binding of
Midostaurin With ABCB1 Homology Model
The best-scored docked positions of midostaurin with ABCB1
transporter are shown in Figure 7. The phenol ring of the
methylbenzamide moiety in midostaurin has π-π interactions
with the residues Phe336 and Phe983 of human ABCB1
(Figure 7C). In addition, midostaurin has hydrophobic
interactions with residues of ABCB1 including Met69, Leu339,
Ile340, Phe343, Phe728, Met986, and Ala987 (Figure 7D), which
stabilize midostaurin in the substrate-binding pocket of ABCB1.

DISCUSSION

Growing evidence has shown that the failure of clinical treatment
resulting from drug resistance to chemotherapeutic drugs in

a series of cancer cell lines is tightly correlated with the
overexpression of ABC transporters. It has been widely reported
that cancer cells overexpressing ABCB1 transporter is a key factor
that could imply poor prognosis as well as low survival rate in
cancer patients (26–30). Moreover, genetic polymorphisms in
ABC transporters, especially in ABCB1 and ABCG2 transporters,
could significantly increase the high risk of death in patients
who suffer from colorectal malignancy or non-small cell lung
cancer (NSCLC) (31, 32). In recent decades, many small-
molecule target drugs have been reported to have the capacity
to reverse ABC transporter-mediated MDR, via inhibiting the
function, downregulating the protein expressing level, and/or
changing the subcellular localization of ABC transporters.
Previously, we have reported that selonsertib, ulixertinib, and
VS-4718 can significantly antagonize ABC transporter-mediated
MDR (21, 23, 33). Unfortunately, there was no successful
clinical case study on the therapeutic strategies to develop
ABC transporters inhibitors as reversal reagents to reverse
drug resistance. Nonetheless, growing evidence has shown that
the overexpression of ABC transporters is mainly involved
in MDR in cancer, and it is also critical in regulating oral
bioavailability of anticancer drugs and reagents. A series of first-
line chemotherapeutic drugs, including doxorubicin, paclitaxel
and mitoxantrone are substrates of ABC transporters, meaning
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FIGURE 7 | The effects of midostaurin on the ATPase activity of ABCB1 and the molecular modeling study of midostaurin with human homology ABCB1. (A) Effect of
midostaurin on the ATPase activity of ABCB1. The inset graphs illustrate the effect of 0–10µM midostaurin on the ATPase activity of ABCB1. Data are mean,
representative of three independent experiments. (B) Overall view of midostainrin-ABCB1 complex. (C) Docked position of midostaurin within the drug-binding site of
human ABCB1 homology model by Glide docking. Midostaurin is shown as ball and stick mode with the atoms colored: carbon-cyan, hydrogen-white, nitrogen-blue,
oxygen-red. Important residues are shown as sticks with gray color. π-π stacking interactions are indicated with blue dotted short line. (D) The two-dimensional
ligand-receptor interaction diagram of midostaurin and human ABCB1. The amino acids within 3 Å are shown as colored bubbles, cyan indicates polar residues, and
green indicates hydrophobic residues. The green short line shows π-π stacking interaction.

that these anti-cancer drugs will be pumped out from the
cancer cells and finally lead to the failure of clinical carcinoma
treatment (1–4, 34). Therefore, we confirm that screening small
molecules to obtain the inhibitors of ABC transporters is still
a potential and effective treatment strategy to circumvent MDR
in cancer.

In this in vitro study, we evaluated the effect of midostaurin
on ABCB1-mediated MDR. We mainly found that midostaurin,
at non-toxic concentrations (200 and 500 nM), can significantly
overcome ABCB1-mediated MDR in a series of cancer cell
lines in a concentration-dependent manner. Firstly, to avoid
potential reversal effects caused by the cytostatic effect of
midostaurin, we performed our MTT assays to evaluate the
anti-proliferative effect of midostaurin in the cells we would
use in this study. Based on the results, we conducted further
reversal studies using 200 and 500 nM of midostaurin. Our
reversal study indicated that midostaurin could significantly
reverse ABCB1-mediated MDR in KB-C2 and SW620/Ad300
cells, which were selected by treatment with colchicine or
doxorubicin, respectively. Moreover, midostaurin could not
alter the efficacy of certain chemotherapy substrate-drugs
in their corresponding parental KB-3-1 or SW620 cells. In
addition, midostaurin could not antagonize ABCG2-mediated
MDR in ABCG2-overexpressing cancer cells NCI-H460/MX20.
Based on these results, we hypothesized that the reversal

effect of midostaurin was specific to interactions with the
ABCB1 transporter. It is notable that we then verified this
hypothesis by a reversal study in gene-transfected cells. We
found that midostaurin could also lower the IC50 values
of doxorubicin, paclitaxel, and colchicine in HEK293/ABCB1
cells compared with parental cells in a dose-dependent
manner, but not those in parental HEK293/pcDNA3.1 cell
line. Furthermore, midostaurin did not sensitize either parental
HEK293/pcDNA3.1 cell line or HEK293/ABCB1 cells to
cisplatin, a drug that does not use ABCB1 as a substrate. These
results suggest that midostaurin exclusively reversed ABCB1-
mediated MDR.

The reversal of MDR mediated by ABC transporters
may be involved in the down-regulating and/or change of
subcellular localization of certain ABC transporters. However,
as shown in our Western blotting and immunofluorescence
assays, no significant down-regulation of ABCB1 protein
was found, and all ABCB1 protein was located on the
membrane of KB-C2 cells after incubating with midostaurin
for up to 72 h. In other words, these results signified that
the mechanisms of midostaurin on the reversal of ABCB1
mediated-MDR were not due to the down-regulating of
the protein level or change of subcellular localization of
ABCB1 transporters. Nevertheless, as midostaurin is a multi-
kinase inhibitor, we could not fully eliminate the possibility
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that part of the reversal effect of midostaurin could be
associated with its effect to other proteins and/or potential
cross-talk with other signals, which may impact the efflux
function of ABCB1 transporter, and this needs to be studied
further in the future. Further study should also evaluate
the potential effect of midostaurin on the protein expression
level of ABCB1 with increased concentration or prolonged
incubation time. Moreover, a process named post-translational
modifications (PTM) plays an important role in proteins,
especially transporters’ function (35). It has been reported that
ABCB1 could be phosphorylated at S661, S667, S671, and S683
to modulate its cell surface trafficking (36), and Pim-1 kinase
could prevent ABCB1 from degradation, enabling glycosylation
and cell surface expression (36). These clues indicate that it
is necessary to further determine the effects of midostaurin
on PTM of ABCB1 using higher concentration and/or longer
incubation time.

Subsequently, drug accumulation and efflux assays
were conducted, so that we could deeply understand
the mechanisms of midostaurin on ABC transporter-
mediated MDR attenuation. Our results indicated that
midostaurin could significantly increase the intracellular
concentration of ABCB1 substrate-drugs (doxorubicin
and [3H]-paclitaxel) in ABCB1-overexpression KB-C2
cells. Midostaurin could also significantly prevent [3H]-
paclitaxel from being pumped out of KB-C2 cells in a
concentration-dependent manner. However, there is no
significant change in doxorubicin or [3H]-paclitaxel in
accumulation or efflux in parental KB-3-1 cells. These
novel findings were congruent with our observed reversal
effects of midostaurin. Our mechanism study also indicated
that midostaurin could increase the accumulation of certain
substrate-drugs (doxorubicin and [3H]-paclitaxel) in ABCB1-
overexpression cancer cells by targeting the function of
ABCB1 transporter.

ABC transporters, including ABCB1, obtain energy via
ATP hydrolysis, and this can be modulated by the presence
of certain substrates or inhibitors (37, 38). In our ATPase
assay, we found that midostaurin could significantly inhibit the
ATPase activity of ABCB1 in a dose-dependent manner, and
the maximal inhibition level was 0.4-fold. Nevertheless,
the accurate binding site of midostaurin with ABCB1
transporter remained unclear. In the in silico modeling
study, we predicted that midostaurin could interact with the
drug-binding pocket in the transmembrane domain (TMD) of
ABCB1 transporter.

Midostaurin is an anticancer drug approved by FDA for
treatment of AML with FLT3-mutant subtype (11). Over the
years, the effect of midostaurin on multidrug resistance mediated
by ABCB1 has been investigated independently in great detail.
At the very beginning, midostaurin, also known as PKC412
and CGP41215, was developed as a PKC inhibitor, and prior
work has documented the effectiveness of midostaurin in
reversing MDR. Utz et al. (39) and Fabbro et al. (40) have
reported that midostaurin could sensitize CCRF-VCR1000 cells
and KB-8551 cells to adriamycin and vinblastine, without
altering the ABCB1 mRNA expressing level. As a derivative

of staurosporine, midostaurin was also identified to have the
capacity to increase doxorubicin accumulation in doxorubicin-
resistant cell line A2780/Adr. Meanwhile, midostaurin also acted
as a reversal reagent in P-gp mediated leukemia resistance (41,
42). Budworth et al. (43) have explored the reversal effects
of midostaurin on P-gp mediated breast cancer MCF7/Adr
cell line resistance and Beltran et al. (44) have confirmed
that such an effect of midostaurin was related to alterions
in the phosphorylation of P-gp. In the study conducted by
Courage et al. (45), midostaurin-resistant A549/CGP human
lung cancer cell line was identified that overexpressed P-gp,
indicated that P-gp may play a key role in midostaurin-mediated
MDR. Another research showed that midostaurin could not
affect the development of RD cells resistance (RD is a cell
line that is resistant to vincristine, and has a mutant P53 but
does not have detectable P-gp). This finding, combined with
the above evidence, suggests that midostaurin may influence
P-gp-mediated MDR (46). Moreover, midostaurin was also
documented to alter P-gp efflux function and induce cell death
in FLT3 ITD/P-g-positive samples (47). Ganeshaguru et al. (48)
studied the effect of midostaurin on malignant cells from B-
CLL (B-cell chronic lymphocytic leukemia) patients, and the
results showed that nearly 1/3 of B-CLL cells that were originally
resistant to chlorambucil and fludarabine were sensitive to
midostaurin. P-gp-mediated efflux activity of nearly half of B-
CCL cells were observed to be modulated by midostaurin.
This novel finding further supported the conclusion that
midostaurin could reverse ABCB1-mediated MDR. However,
due to technical restrictions in protein structure identification
and the incomplete functional research on ABC transporters,
few studies systematically explained the exact mechanisms of
midostaurin on ABCB1-mediated MDR. In this study, we
conducted a series of experiments to verify the reversal effects
of midostaurin on ABCB1-mediated MDR in cell lines which
were not involved in other studies. Furthermore, we used human
ABCB1 homology model to conduct our in silico docking
study, through which we determined the specific residues that
midostaurin would bind to, indicated the potential combining
mode of midostaurin with ABCB1 transporter. On the other
hand, with the development of pharmacological and molecular
biology, various resistant cell lines with definitemechanisms were
established and identified. It is necessary to verify the reversal
effect and to determine the mechanisms of midostaurin on MDR
by utilizing different resistant cell lines. More recently, the results
from Hsiao et al. (49) showed that midostaurin could sensitize
ABCB1-overexpression KB-V-1, NCI-ADR-RES, and NIH3T3-
G185 cells to paclitaxel, colchicine, and vincristine. They
also found that midostaurin could enhance colchicine-induced
apoptosis effect in KB-V-1 cells, without altering the expression
level of ABCB1 transporter. This finding coincides with the
results we found when we co-administrated midostaurin with
ABCB1-substrate chemotherapeutic drugs. In conclusion, our
study demonstrates that midostaurin could overcome ABCB1-
mediated MDR by directly inhibiting the efflux function of
ABCB1 transporter; as a result, midostaurin can increase the
accumulation of antineoplastic drugs. This novel study also
suggests that co-administration of midostaurin with certain
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substrate-chemotherapeutic drugs of ABCB1 may benefit cancer
clinical treatment by circumventing MDR. However, we should
not overstate the function of midostautin onMDR before further
in vivo study and even clinical evaluation is completed as three
generations of ABCB1 inhibitors have all failed to be applicable
in clinic (50). Admittedly, it remains to be determined whether
midostaurin could contribute to improving chemotherapeutic
outcome in clinic. More recently, a global study of the efficacy
and safety of midostaurin plus chemotherapy in newly diagnosed
patients with FLT3 mutation negative (FLT3-MN) acute myeloid
leukemia (AML) is recruiting (NCT03512197), and a phase II
clinical evaluation is recruiting for midostaurin associated with
standard chemotherapy in patients with core-binding factor
leukemia (AML FLT3) (NCT03686345). These clinical trials
may provide more potent evidence on combined utilization
of midostaurin with conventional chemotherapeutic drugs,
which would make midostaurin a sensitizing drug, not just a
“reversal reagent.”
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Over the past several decades, natural products with poly-pharmacological profiles 
have demonstrated promise as novel therapeutics for various complex diseases, 
including cancer. Berberine (PubChem CID: 2353), a soliloquies quaternary alkaloid, 
has been validated to exert powerful effects in many cancers. However, the underlying 
molecular mechanism is not yet fully elucidated. In this study, we summarized the 
molecular effects of berberine against multiple cancers based on current available 
literatures. Furthermore, a systems pharmacology infrastructure was developed to 
discover new cancer indications of berberine and explore their molecular mechanisms. 
Specifically, we incorporated 289 high-quality protein targets of berberine by 
integrating experimental drug–target interactions (DTIs) extracted from literatures 
and computationally predicted DTIs inferred by network-based inference approach. 
Statistical network models were developed for identification of new cancer indications 
of berberine through integration of DTIs and curated cancer significantly mutated 
genes (SMGs). High accuracy was yielded for our statistical models. We further 
discussed three typical cancer indications (hepatocarcinoma, lung adenocarcinoma, 
and bladder carcinoma) of berberine with new mechanisms of actions (MOAs) based 
on our systems pharmacology framework. In summary, this study systematically 
provides a powerful strategy to identify potential anti-cancer effects of berberine with 
novel mechanisms from a systems pharmacology perspective.

Keywords: berberine, cancer, systems pharmacology, drug–target interactions, significantly mutated genes

INTRODUCTION

Natural products with diverse chemical scaffolds have been recognized as an invaluable source of 
candidates in drug discovery and development for multiple complex diseases, including cancer. 
Berberine, a plant-derived compound isolated from medicinal plants such as Coptis chinensis and 
Hydrastis canadensis, had a long history of medicinal application in traditional Chinese medicine 
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(Ayati et al., 2017). As one of the main alkaloids, berberine has 
been reported to exert potentially beneficial effects on many 
cancer types, including breast cancer (Kim et al., 2008), bladder 
cancer (Yan et al., 2011), and hepatocarcinoma (Liu et al., 2011; 
Zhu et al., 2016). For example, berberine had shown significant 
inhibitory effect on hepatocellular carcinoma cells and could 
reduce the volume and weight of tumors in an H22 transplanted 
tumor model in mice (Li et al., 2015).

Based on collection of hundreds of berberine-related 
pharmacological literatures, we systematically summarized eight 
key mechanisms of anti-cancer effects of berberine, including cell 
death, cell invasion and metastasis, cell cycle arrest, cell growth, 
transcription factors, inflammatory factors, angiogenic, chemo-
sensitivity, and radio-sensitivity (Figure 1 and Supplementary 
Table S1). Specifically, apoptosis (programmed cell death) 
plays a vital role in tumor cell development, differentiation, 
and proliferation (Ola et al., 2011). Recent study has revealed 
that berberine could induce apoptosis of human osteosarcoma 
U2OS cells through inhibiting the PI3K/Akt signaling pathway 
activation (Chen, 2016). In addition, anti-angiogenesis is a 
promising strategy for prevention and treatment of multicancer 
in preclinical or clinical studies in terms of many natural products 
(Khalid et al., 2016; Kotoku et al., 2016). Previous in vitro and 
in vivo experiments have validated that berberine exerted anti-
angiogenic effect through inhibiting various proinflammatory 
and pro-angiogenic factors, including vascular endothelial 
growth factor (VEGF), interleukin-6 (IL-6), interleukin-2 
(IL-2), and metalloproteinase inhibitor (TIMP) (Hamsa and 
Kuttan, 2012).

Collectively, berberine with polypharmacology has 
demonstrated its broad anti-cancer properties through targeting 
various oncogenic pathways and targets. Therefore, systematic 
exploration of the drug targets of berberine is of great significance 
for understanding its anti-cancer mechanisms of action (MOAs) 
and for further excavating its novel cancer indications.

Systems pharmacology-based approaches, as an emerging 
interdiscipline that combines experimental assays and 
computational tools, have provided an alternative to understand 
the therapeutic mechanisms of complex diseases (Fang et al., 
2018). Recent studies have demonstrated advanced discovery 
of new indications for natural products based on systems 
pharmacology approaches (Fang et al., 2017b; Fang et al., 2019). 
For example, novel molecular mechanisms of several effective 
natural products (e.g., resveratrol, quercetin, caffeic acid, and 
wogonoside) for multiple complex diseases including multi-
cancer types and age-related disorders have been identified 
and validated by various literatures and in vitro and in vivo 
experiments (Fang et al., 2017a; Huang et al., 2019). Collectively, 
systems pharmacology-based approaches have been proved as an 
effective tool for exploring the poly-pharmacological actions of 
natural products towards various complex diseases.

In this study, we proposed a systems pharmacology 
infrastructure to identify new cancer indications of berberine 
and explore their molecular mechanisms (Figure 2). Specifically, 
we constructed a global DTI network of berberine by integrating 
both experimentally reported DTIs obtained from literatures 
and DTIs computationally predicted by our previous predictive 
network models (Fang et al., 2017c). Besides, a high-quality 

FIGURE 1 | Diagram illustrating the eight potential anti-cancer effects of berberine. Berberine exerts anti-cancer activities via targeting various cancer key protein 
targets, related to cell death, cell invasion and metastasis, cell cycle arrest, cell growth, transcription factors, inflammatory factors, angiogenic, chemo-sensitivity, 
and radio-sensitivity.
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collection of significantly mutated genes (SMGs) for multiple 
cancer types was manually collected. On the basis of curated 
cancer SMGs and DTIs, we built statistical network models with 
high accuracy to prioritize new cancer indications of berberine 
and showcased its potential mechanisms. Overall, this study 
provides a useful systems pharmacology framework to interpret 
the multi-scale MOAs of berberine in multiple cancer type 
management, which may give some enlightenment for further 
treatment of cancer-associated diseases.

MATERIALS AND METHODS

Collection of Known Targets for Berberine
Known targets of berberine were collected by extracting 
data from four data sources, including HIT (Ye et al., 2011), 
STITCH (Kuhn et al., 2014), BindingDB (accessed June 2016) 

(Gilson  et  al., 2016), and ChEMBL (Bento et al., 2014). For 
STITCH, we only kept the targets with experimental evidence 
score higher than 0.7. We totally obtained 66 known targets 
via integrating the four available databases. Besides, we further 
gathered 238 extra targets of berberine by manually retrieving 
large-scale pharmacological literatures from PubMed (https://
www.ncbi.nlm.nih.gov) with “berberine [title] and cancer” 
as search terms (Supplementary Table S2). After duplicated 
targets and DTIs were eliminated from non-Homo sapiens, 
275 high-quality known DTIs were selected for further study 
(Supplementary Table S3).

Network-Based Target Prediction 
for Berberine
In a previous study, we have developed statistical network 
models to predict targets of natural products through a balanced 

FIGURE 2 | Workflow of a systems pharmacology infrastructure for the identification of cancer indications and exploration of molecular mechanisms of berberine. 
(A) Construction of drug–target network for berberine, (B) manual curation of cancer significantly mutated genes (SMGs) for multiple cancer types, (C) performing 
network analyses to explore the anti-cancer mechanism of berberine, and (D) statistical network models for prioritizing novel anti-cancer indication of berberine 
through integrating computationally predicted and known drug targets into the curated cancer SMGs.
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substructure–drug–target network-based inference (bSDTNBI) 
approach (Fang et al., 2018). The bSDTNBI method utilizes 
resource-diffusion processes to prioritize potential targets for 
natural products through integrating known DTI network, 
drug–substructure linkages, and new input drug–substructure 
linkages (Wu et al., 2017). For a new input chemical, each of its 
substructures equally spreads resources to its neighbor nodes 
layer by layer, and targets obtaining final resources could be 
regarded as the potential targets of the new chemical. Four 
parameters (α = β = 0.1, γ = −0.5, and k = 2) of bSDTNBI were 
adopted based on a previous study (Wu et al., 2016). Among 
them, parameter α was introduced to balance the initial resource 
allocation of different node types, while β was used to adjust 
weighted values of different edge types. The third parameter γ 
was imported to balance the influence of hub nodes in resource-
diffusion processes, and the fourth parameter κ denotes the 
number of resource-diffusion processes. We calculated four 
substructure items for each compound based on four types of 
molecular fingerprints from PaDEL-Descriptor (version 2.18) 
(Yap, 2011), including Substructure (FP4), Klekota-Roth (KR), 
MACCS, and PubChem. Among the four network models 
generated with different types of fingerprints, bSDTNBI_KR 
performed best with the highest values of precision (P = 0.049), 
recall (R = 0.752), precision enhancement (Ep = 27.02), recall 
enhancement (eR = 27.24), and the area under the receiver 
operating characteristic curve (AUC = 0.959). Finally, the best 
model built based on KR molecular fingerprint was selected 
to predict the new targets of berberine. The top 20 predicted 
candidates were used for further study (Supplementary 
Table S3).

Significantly Mutated Genes (SMG) for 
Multiple Cancer Types
We collected 804 SMGs for 28 cancer types/subtypes from a 
previous study (Cheng et al., 2016), including glioblastoma 
multiforme (GBM), serous ovarian adenocarcinoma (SOC), 
stomach adenocarcinoma (STAD), colorectal adenocarcinoma 
(CRAC), breast carcinoma (BRCA), uterine corpus 
endometrioid (UCEC), medulloblastoma (MBL), acute myeloid 
leukemia (AML), cutaneous melanoma (CM), lung squamous 
cell (SQCC), thyroid carcinoma (THCA), lung adenocarcinoma 
(LUAD), kidney clear cell (CCSK), head and neck squamous 
(HNSCC), small cell lung (SCLC), lower grade glioma 
(LGG), bladder carcinoma (BLCA), esophageal carcinoma 
(EC), prostate adenocarcinoma (PRAD), hepatocarcinoma 
(HCC), neuroblastoma (NBL), chronic lymphocytic leukemia 
(CLL), pancreas adenocarcinoma (PAC), multiple myeloma 
(MM), acute lymphocytic leukemia (ALL), non-small cell 
lung (NSCLC), diffuse large B-cell lymphoma (DLBCL), and 
pilocytic astrocytoma (PA). Considering a lack of statistical 
power if the number of SMG for specific cancer types is lower 
than 20, we further excluded ALL, NSCLC, DLBCL, and PA. 
All SMGs are annotated using gene Entrez ID, chromosome 
location, and the official gene symbols from the National 
Center for Biotechnology Information (NCBI) database (Zhe 
and Huang, 2002). Finally, 24 cancer types/subtypes covering 

804 SMGs were selected for further study (Supplementary 
Table S4).

Prioritizing Cancer Indications of 
Berberine
In this study, an integrated statistical network model was 
generated to prioritize cancer indication of berberine based 
on drug–target network and cancer SMGs (Cheng et al., 2016; 
Jiang et al., 2018). We assumed that berberine would exert 
high potential for the treatment of a specific cancer type if its 
targets tend to be SMGs of this cancer. For each cancer type/
subtype, Fisher’s exact test was utilized to calculate the statistical 
significance of the enrichment of SMGs for each cancer type 
in target profiles of berberine. The P-values were corrected by 
Benjamini–Hochberg method (Benjamini and Yekutieli, 2001). 
We set a cutoff adjusted P-value threshold (q) < 0.05 to define 
significantly predicted drug–cancer pairs.

Network Construction
To further explore the multi-scale MOAs of berberine in treating 
multiple cancer types, three types of networks were constructed 
by Cytoscape 3.2.1 software (Shannon et al., 2003): 1) drug–
target (D-T) network, which presents the relationship between 
berberine and its targets; 2) target–function (T-F) network, 
which illustrates the relationship between cancer-related 
biological processes and SMGs; and 3) drug–target–disease 
(D-T-D) network, which reflects a global view of the molecular 
mechanism of berberine against multiple cancer types. After 
network analysis, the SMGs were further mapped to DAVID 
database (https://david.ncifcrf.gov/summary.jsp) for extracting 
the canonical pathways that were highly associated with these 
targets (Dennis et al., 2003). Finally, circos plot was used to 
visualize the predicted cancer indications.

RESULTS AND DISCUSSION

Construction of the Drug–Target (D-T) 
Network for Berberine
The constructed drug–target interaction network (Figure 3) 
of berberine contains 289 interactions, including 275 known 
targets and 20 predicted targets (Supplementary Table S3). In 
vitro and in vivo assays in previous studies have validated that five 
out of the 20 predicted targets could be mediated by berberine, 
indicating high accuracy of our target prediction approach. These 
five predicted targets are caspase-3 (CASP3) (Okubo et al., 2017), 
cellular tumor antigen p53 (TP53) (Qing et al., 2014), caspase-9 
(CASP9) (Zhao et al., 2017), nuclear factor NF-kappa-B p105 
subunit (NFKB1) (Yu et al., 2014), and mitogen-activated protein 
kinase 1 (MAPK1) (Song et al., 2015).

We further mapped the 289 protein targets of berberine into 
the curated cancer SMGs, resulting in 51 cancer-related targets 
encoded by SMGs (Supplementary Table S3). Accumulating 
evidences indicate that berberine may exert anti-cancer effects 
through regulating these targets. For instance, signal transducer 
and activator of transcription 3 (STAT3) are important in 
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various phases of the tumor development, including tumor 
cell proliferation, survival, invasion, immunosuppression, and 
inducing and maintaining a pro-carcinogenic inflammatory 
microenvironment (Fan et al., 2013). A previous study has 
showed that berberine suppressed tumorigenicity and growth 
of nasopharyngeal carcinoma (NPC) cells by inhibiting STAT3 
activation (Tsang et al., 2013). Recently, a strategy targeting tumor 
suppressors and apoptosis-related genes provides a rationale 
for developing more effective approaches and agents for cancer 
prevention (Sun et al., 2017; López-Cortés et al., 2018; Yamaguchi 
et al., 2019). Berberine has been observed to activate expression 
of many tumor apoptosis-related proteins, including caspase-8 
(CASP8), tumor necrosis factor-a (TNF-a), and p38 MAPK, and 
thus induced apoptosis of HeLa cells (Lu et al., 2010). Besides, 
it has been reported that berberine can decrease expression of 
mitochondrial-dependent anti-apoptotic factors such as B-cell 
lymphoma-2 (Bcl-2) and Bcl-2-like protein 1 (BCL2L1) in KB 
human oral cancer cells (Kim et al., 2015).

Taken together, the observed polypharmacological profiles of 
berberine motivated us to elucidate its anti-cancer mechanism 
through systems pharmacology analysis on the interaction 
between berberine and 51 SMGs.

Elucidating Molecular Mechanisms of 
Berberine in Cancer Prevention and 
Treatment
Target–Function Network
As depicted in Figure 4, the target–function (T-F) network is 
composed of 230 T-F pairs connecting 51 SMG targets and 8 
cancer-related functional modules based on the DAVID analysis 
(Supplementary Table S5). The eight functional modules include 
anti-cancer action associated with sustaining proliferative 
signaling (Huang et al., 2015), resisting cell death (Chidambara 
Murthy et al., 2012), deregulating cellular energetics (Tan et al., 
2015), enabling replicative immortality (Xiong et al., 2015), 
avoiding immune destruction (Jiang et al., 2017), genome 
instability and mutation (Li et al., 2014), angiogenesis (Jie et al., 
2011), and activating invasion and metastasis (Tang et al., 2009). 
On average, each SMG target is involved in six cancer-related 
functional modules. We found that 25 out of 51 SMG targets are 
associated with more than five functional modules, indicating 
the higher potential role of these SMG targets related to cancers. 
Previous studies of berberine in cancer validated the functional 
analysis of our T-F network. For instance, berberine could induce 
cell cycle arrest involved in sustaining proliferative signaling in 

FIGURE 3 | Drug–target (D-T) network of berberine composed of known and predicted targets. The predicted targets were obtained by a balanced substructure–
drug–target network-based inference (bSDTNBI) approach. This network includes 289 drug–target interactions connecting berberine and 51 protein targets 
encoded by significantly mutated genes (SMGs).
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cholangiocarcinoma KKU-213 and KKU-214 cell lines (Puthdee 
et al., 2017). Berberine was reported to inhibit metastasis and 
tumor-induced angiogenesis in human cervical cancer cells as 
well (Chu et al., 2014).

KEGG Enrichment Analysis
In order to further elucidate molecular mechanisms of 
berberine in cancer prevention and treatment, we performed 
KEGG pathway enrichment analysis based on the 51 SMGs. 
After pathways with adjusted P (q) value higher than 0.05 were 
excluded, 56 enriched pathways related to cancer pathogenesis 
were obtained (Supplementary Table S6).

Among 56 pathways, PI3K-Akt (hsa04151; q = 2.0 × 10−12), 
p53 (hsa04115; q = 2.7 × 10−9), HIF-1 (hsa04066; q = 3.9 × 10−9), 
FoxO (hsa04068; q = 4.9 × 10−9), VEGF (hsa04370; q = 5.7 × 
10−7), MAPK (hsa04010; q = 2.5 × 10−6), Ras (hsa04014; q = 6.4 × 
10−6), Jak-STAT (hsa04630; q = 9.9 × 10−4), mTOR (hsa04150; 
q= 1.5 × 10−2), AMPK (hsa04152; q = 1.9 × 10−2), and NF-kappa 
B (hsa04064; q = 4.0 × 10−2) signaling pathways have been 
confirmed to be associated with berberine in previous literatures 
(Table 1). For example, berberine was reported to inhibit cellular 

growth and promotes apoptosis by down-regulating PI3K/Akt 
signaling pathway in breast cancer SKBR-3 cells and hepatoma 
HepG2 cells (Liu et al., 2011; Kuo et al., 2011). In vitro and in vivo 
assays revealed that berberine sensitized drug-resistant breast 
cancer to doxorubicin (DOX) chemotherapy and directly induced 
apoptosis through the dose-orchestrated AMPK signaling 
pathway (Pan et al., 2017). Berberine also induces autophagic 
cell death through inhibition of mTOR-signaling pathway by 
suppressing Akt activity and up-regulating P38 MAPK signaling 
in HepG2 and MHCC97-L cells (Wang et al., 2010). The rest of 
the 45 enriched pathways prompt the potential anti-cancer acting 
mechanisms that may be mediated by berberine, which deserve 
to be validated by experimental assays in the future.

Drug–Target–Diseases Network
We further built a drug–target–diseases (D-T-D) network via 
mapping 51 SMGs targeted by berberine into multiple cancers. As 
shown in Figure 5, the 51 SMGs are related to 24 types of cancer. 
On average, each cancer links to nine SMGs, while each SMG is 
connected to 4.6 cancer types. Network analysis showed that the 
top 6 SMGs connected to the largest number of cancer types are 

FIGURE 4 | Target–function (T-F) network demonstrating the relationship between cancer-related biological processes and SMGs. A functional module is linked to a 
target if the target is involved in mechanism of anti-cancer action.
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cellular tumor antigen p53 (TP53), gTPase KRas (KRAS), epidermal 
growth factor receptor (EGFR), retinoblastoma-associated protein 
(RB1), serine-protein kinase ATM (ATM), and cadherin-1 (CDH1). 

Among them, EGFR, a key significantly mutated gene of cancer, is 
involved in the pathological mechanism of 13 cancer types, including 
LUAD, HNSCC, SQCC, EC, UCEC, PRAD, BRCA, CCSK, CLL, 

TABLE 1 | Summary of the 11 enriched pathways validated to be mediated by berberine in previous literatures.

Pathway ID Pathway name Genes P-value PMID

hsa04151 PI3K-Akt signaling pathway EGFR, HRAS, PIK3CB, MET, TP53, RAF1, BCL2L1, CDK4, KDR, AKT1, 
CDKN1A, CCND1, KRAS, CDKN1B, CCND3, BCL2, RAC1, MTOR, MYC, 
FN1

2.03E−12 27081456|25212656

hsa04115 p53 signaling pathway CDKN1A, CCND1, CCND3, CASP8, SERPINE1, TP53, APAF1, FAS, 
CDK4, ATM

2.66E−09 20455200

hsa04066 HIF-1 signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, RB1, 
CDK4

3.89E−09 28775788

hsa04068 FoxO signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, 
MLH1, CDH1, MYC

4.88E−09 24766860|29360760

hsa04370 VEGF signaling pathway TNF, MAPK14, BCL2, RAC1, TP53, APAF1, BCL2L1, CASP1 5.72E−07 23869238
hsa04010 MAPK signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, 

MLH1, CDH1, MYC
2.45E−06 19492307|25212656

hsa04014 Ras signaling pathway AKT1, EGFR, HRAS, CCND1, KRAS, PIK3CB, ERBB2, TP53, RAF1, RB1, 
CDK4

6.42E−06 25212656|23159854

hsa04630 Jak-STAT signaling pathway AKT1, HRAS, KRAS, PIK3CB, JUN, RAC1, RAF1 9.90E−04 26463023
hsa04150 mTOR signaling pathway TNF, CASP8, APAF1, CASP1 1.50E−02 23159854|20830746
hsa04152 AMPK signaling pathway EGFR, MAPK14, JUN, RAC1, MET 1.88E−02 28775788
hsa04064 NF-kappa B signaling pathway TNF, CASP8, APAF1, CASP1 3.97E−02 19107816

FIGURE 5 | Drug–target–disease (D-T-D) network of berberine. This network shows 51 proteins of berberine encoded by SMGs of 24 types of cancer.
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STAD, LGG, CRAC, and GBM. Previous studies confirmed that 
berberine can inhibit EGFR signal pathway in several cancer types, 
including STAD (Wang et al., 2016), PRAD (Huang et al., 2015), and 
CRAC (Wang et al., 2013). Besides, berberine acts in specific tumor 
by regulating multiple SMGs. For instance, cellular tumor antigen 
p53 (TP53) (Wilson et al., 2010), RAC-alpha serine/threonine-
protein kinase (AKT1) (López-Cortés et al., 2018), and cyclin-
dependent kinase inhibitor 1B (CDKN1B) (Cusan et al., 2018) 
are highly correlated with breast cancer. Accumulating evidences 
demonstrated that berberine can inhibit breast cancer by acting on 
SMGs such as TP53 (Kim et al., 2012; Tan et al., 2015), AKT1 (Kuo 
et al., 2011), and CDKN1B (Patil et al., 2010).

Briefly, the D-T-D network demonstrated that SMGs targeted 
by berberine were closely related to multi-cancer types. In the 
following part, statistical systems pharmacology approach was 
employed to identify novel cancer indications of berberine and 
explore the molecular mechanisms.

Systems Pharmacology-Based Prediction of Cancer 
Indications for Berberine
As shown in Figure 6, a statistical systems pharmacology 
framework is proposed to prioritize novel cancer indications 

of berberine based on Fisher’s exact test analysis. We calculated 
the therapeutic potential of berberine in 24 cancer indications 
and obtained 18 cancer indications of which adjusted P (q) 
values are lower than 0.05 (q < 0.05), including HCC (q < 1.0 × 
10−5; −Log10 (q) = 19.25), LUAD (q < 1.0 × 10−5; −Log10 (q) = 
9.35), BLCA (q < 1.0 × 10−5; −Log10 (q) = 9.31), CM (q < 1.0 × 
10−5; −Log10 (q) = 9.29), HNSCC (q < 1.0 × 10−5; −Log10 (q) = 
8.52), SQCC (q < 1.0 × 10−5; −Log10 (q) = 6.74), EC (q < 1.0 × 
10−5; −Log10 (q) = 6.66), UCEC (q < 1.0 × 10−5; −Log10 (q) = 
6.52), PRAD (q = 1.15 × 10−5; −Log10 (q) = 6.32), BRCA (q = 
1.33 × 10−5; −Log10 (q) = 6.26), CCSK (q = 2.30 × 10−5; −Log10 
(q) = 6.02), CLL (q = 0.55 × 10−3; −Log10 (q) = 4.64), STAD 
(q = 1.76 × 10−3; −Log10 (q) = 4.14), SCLC (q = 5.33 × 10−3; 
−Log10 (q) = 3.65), NBL (q = 1.29 × 10−2; −Log10 (q) = 3.27), 
LGG (q = 1.67 × 10−2; −Log10 (q) = 3.16), CRAC (q = 3.21 × 
10−2; −Log10 (q) = 2.87), and SOC (q = 3.36 × 10−2; −Log10 
(q) = 2.85) (Supplementary Table S7). As listed in Table 2, 10 
out of the 18 predicted cancer indications of berberine were 
validated by reported experimental evidences, including HCC, 
LUAD, BLCA, EC, PRAD, BRCA, STAD, CRAC, and SOC, 
indicating the high accuracy of our systems pharmacology-
based predictive method (success rate = 55.6%).

FIGURE 6 | Circos plot visualizes the predicted cancer indications of berberine. The red connected lines represent the calculated −Log10 (q) value of each berberine-
cancer type pair based on Fisher’s exact test, while the blue ones represent the corresponding number of overlapped targets. The predicted cancer indications 
with literature validation were highlighted in bold font. We classified the 18 predicted cancer indications into four neoplasm categories according to Medical Subject 
Headings (MeSH) system (https://www.ncbi.nlm.nih.gov/mesh/68009371).
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Among the 18 cancer indications, CM, HNSCC, SQCC, 
UCEC, CCSK, CLL, SCLC, NBL, and LGG are the unreported 
cancer indications of berberine, which deserve further 
preclinical validation. For example, cutaneous melanoma 
(CM), one of the most aggressive types of cancer, represents 
a major problem worldwide due to its high incidence and 
elevated degree of heterogeneity (Jemal et al., 2010; Coricovac 
et al., 2018). Based on our predictive model, berberine exerted 
a high potential for anti-CM, with a significant q value  
[q < 1.23 × 10−8; −Log10 (q) = 9.29]. Therefore, the potential of 
berberine in the prevention and treatment of CM deserves to 
be further validated.

Case Study: Exploring the MOAs of Berberine on 
Hepatocarcinoma (HCC), Lung Adenocarcinoma 
(LUAD), and Bladder Carcinoma (BLCA)
To further validate the accuracy of statistical network models 
and predicted anti-cancer targets of berberine, we selected three 
typical cancer types [HCC (q = 5.63 × 10−20), LUAD (q = 4.52 × 
10−10), and BLCA (q = 4.92 × 10−10)] as case studies to illustrate 
their anti-cancer MOAs (Figure 7).

Hepatocellular Carcinoma
HCC, the third leading cause of cancer death worldwide, 
has become one of the most common and prevalent human 
malignancies in the world (Okubo et al., 2017). In vitro assays 
revealed that berberine can inhibit autophagy in hepatoma cell 
lines (e.g., HepG2 cells and MHCC97-L cells) by regulating 
multiple proteins [e.g., mitogen-activated protein kinase 14 
(MAPK14), TP53, and phosphatidylinositol 4,5-bisphosphate 
3-kinase catalytic subunit beta isoform (PIK3CB)] and pathways 
(e.g., P38 MAPK signaling), stimulating further development 
of derivatives for drug-base cancer prevention and treatment 
(Wang et al., 2010; Liu et al., 2011; Wang et al., 2014). In this 
study, Fisher’s test showed that berberine played a significant 
role in treatment of liver cancer (q = 5.63 × 10−20). In addition, 

network analysis revealed that berberine bound with 27 HCC-
related SMG targets, suggesting its underlying anti-cancer 
mechanisms of berberine (Figure 7). In vivo or in vitro data 
have demonstrated that these SMGs are closely relevant to the 
treatment of cancer by berberine. For example, berberine can 
inhibit cell proliferation of HepG2, Hep3B, and SNU-182 through 
up-regulating protein expression of tumor suppressor genes, such 
as activating transcription factor 3 (ATF3) (Chuang et al., 2017). 
Furthermore, study revealed that berberine inhibited expression 
of BCL2, thus reducing autophagic cell death and mitochondrial 
apoptosis in liver cancer cells, such as HepG2 and MHCC97-L 
cells (Hur et al., 2010).

Lung Adenocarcinoma
LUAD is one of the leading causes of cancer-related death both 
men and women in the United States. Approximately two million 
people are diagnosed with lung cancer each year (Torre et al., 
2016). Berberine was predicted to have anti-LUAD potential 
(q = 4.52 × 10−10). Some previous in vivo and in vitro studies 
confirmed our prediction (Mitani et al., 2001; Zheng et al., 
2014). Furthermore, berberine is currently being assessed as an 
anti-LUAD drug in clinical trials (NCT03486496). As shown in 
Figure 7, berberine interacts with 13 LUAD-related SMGs (e.g., 
matrix metalloproteinase-2), indicating the underlying MOAs of 
anti-LUAD of berberine. Matrix metalloproteinases (MMPs), one 
target displayed in our network, is the major protease of LUAD 
and is associated with tumor invasion and metastasis (Herbst 
et al., 2000). Study on human lung cancer cell line A549 confirmed 
that berberine inhibited invasion and growth of tumor cells 
through  decreasing productions of matrix metalloproteinase-2 
(MMP2) (Peng et al., 2006).

Bladder Carcinoma
BLCA is the most common cancer of the urinary system in the 
United States (Kaufman et al., 2009). In our network model, 
berberine is predicted to have a significant relationship with 

TABLE 2 | Relevant literature evidences of the 18 predicted cancer indications of berberine.

Cancer type P-value (Fisher test) Adj-P Negative logarithmic PMID

HCC 5.63E−20 1.35E−18 17.87 26081696|25496992|24942805
LUAD 4.52E−10 1.08E−08 7.96 24766860|26672764|26503561
BLCA 4.92E−10 1.18E−08 7.93 21545798|23065570|10418949
CM 5.12E−10 1.23E−08 7.91 N/A
HNSCC 3.03E−09 7.27E−08 7.14 26503508
SQCC 1.82E−07 4.37E−06 5.36 N/A
EC 2.18E−07 5.23E−06 5.28 28465635|26667771|21858113
UCEC 3.03E−07 7.27E−06 5.14 N/A
PRAD 4.77E−07 1.15E−05 4.94 16505103|26698234|25572870
BRCA 5.53E−07 1.33E−05 4.88 29143794|29414799|28926092
CCSK 9.58E−07 2.30E−05 4.64 N/A
CLL 2.28E−05 5.47E−04 3.26 N/A
STAD 7.32E−05 1.76E−03 2.76 27142767|25837881|18468407
SCLC 2.22E−04 5.33E−03 2.27 N/A
NBL 5.36E−04 1.29E−02 1.89 27235712|19189664|19096576
LGG 6.95E−04 1.67E−02 1.78 N/A
CRAC 1.34E−03 3.21E−02 1.49 23604974|26463023|25954974
SOV 1.40E−03 3.36E−02 1.47 N/A
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BLCA (q = 4.92 × 10−10). Meanwhile, our network indicated that 
berberine interacts with 17 BLCA-related SMGs (e.g., HRAS). 
According to previous study, the oncogenic ras genes GTPase 
HRas (HRAS) mutations, endogenously expressed in T24 
bladder cancer cell line, were associated with grades and stages of 
BLCA detected in more than 35% of patients (Buyru et al., 2003). 
Berberine inhibited cell proliferation and induced cell cycle arrest 
and apoptosis in BLCA by inhibiting oncogenic H-Ras pathway 
in BIU-87 and T24 cell lines (Yan et al., 2011).

Taken together, these three case studies against different 
cancer types (HCC, LUAD, and BLCA) indicate that systems 
pharmacology approach applied in this study is an effective 
method for exploring molecular mechanisms of anti-cancer 
effect of berberine. Meanwhile, the newly predicted tumor types 
might be promising to further investigate MOAs of berberine.

CONCLUSION

Berberine had been observed to exert multiple biological and 
pharmacological activities with potential benefits to a variety of 
complex diseases, including cancer. In this study, we proposed 

an integrated systems pharmacology infrastructure to identify 
cancer indications of berberine and explore the underlying 
molecular mechanisms. This work explores the following new 
anti-cancer characteristics of berberine: i) Through literature 
mining, we summarize eight mechanisms of anti-cancer effect 
of berberine; ii) global drug–target network of berberine is 
constructed by integrating large-scale experimentally reported 
targets and computationally predicted targets. Mechanisms of 
action (MOAs) of various anti-cancer effects of berberine are 
discussed through current drug–target network; iii) a statistical 
model is developed to prioritize novel cancer indications of 
berberine through integrating target profiles of berberine and 
significantly mutated genes in cancer.

Yet several limitations of our approach should be acknowledged. 
First, although we have integrated a wide range of DTIs from 
published literatures and publicly available databases, the 
incompleteness of current drug–target networks may still exist. 
Recent studies proved that integration of large-scale gene expression 
profiles of natural products may help to improve the performance 
of drug–target network model (Yamanishi et al., 2010; Cheng et al., 
2012). Second, as it is extremely difficult to obtain information on 
the active sites of berberine and mutated domain of proteins from 

FIGURE 7 | Drug–target–disease (D-T-D) network of berberine on hepatocarcinoma (HCC), lung adenocarcinoma (LUAD), and bladder carcinoma (BLCA). The 
thickness of the red dotted line represents the predicted association between berberine and three types of tumors.
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public sources, the current study could not explain the MOAs from 
a microcosmic point of view. Third, experimental assays should be 
performed to further validate the predicted targets and MOAs of 
anti-cancer effects of berberine in the future.

In summary, the systems pharmacology framework in 
this study has provided potential strategies to discover the 
polypharmacology effects of berberine for the prevention and 
treatment towards multiple cancers.
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Head and neck squamous cell carcinoma (HNSCC) is among the most common

cancer types. Metastasis, the main cause of death by cancer, can be promoted by

an inflammatory microenvironment, which induces epithelial-mesenchymal transition

(EMT) through a NF-κB-mediated stabilization of Snail. Here, we aimed to explore how

microRNAs (miRs) can affect cell survival and EMT in HNSCC cells under an inflammatory

microenvironment. By using a high-content screening (HCS) approach, we evaluated

alterations in morphometric parameters, as well as expression/localization of Snail/Slug,

in HNSCC cells primed with TNF-α. Based on those quantitation, we established the

optimal experimental conditions of EMT induction driven by TNF-α. Those conditions

were applied to cells transfected with distinct miRs (N = 31), followed by clusterization

of miRs based on alterations related to cell survival and EMT. The signaling pathways

enriched with molecular targets from each group of miRs were identified by in silico

analyses. Finally, cells were transfected with siRNAs against signaling pathways targeted

by miRs with anti-survival/EMT effect and evaluated for alterations in cell survival and

EMT. Overall, we observed that TNF-α, at 20 ng/ml, induced EMT-related changes in cell

morphology, Snail/Slug expression, and cell migration. Predicted targets of miRs with

anti-survival/EMT effect were enriched with targets of NF-κB, PI3K/ATK, and Wnt/beta

catenin pathways. Strikingly, individual gene silencing of elements from those pathways,

namely RELA (NF-kB), AKT1 (PI3K/AKT), and CTNNB1 (Wnt/beta catenin) reduced cell

survival and/or expression of Snail/Slug in cells stimulated with TNF-α. As a whole, our

HCS approach allowed for the identification of miRs capable of inhibiting cell survival
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and EMT considering the presence of an inflammatory microenvironment, also indicating

the common signaling pathways and molecular targets most likely to underlie those

alterations. These findings may contribute to the development of targeted therapies

against HNSCC.

Keywords: head and neck squamous cell carcinoma, high-content screening, microRNAs, epithelial-

mesenchymal-transition, inflammation, NF-κB

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) comprises a
group of upper aerodigestive tract neoplasia and is among the
ten types of cancer with the highest incidence and mortality
in the world (1). Over the past decades, despite advances in
treatment strategies of HNSCC, it was observed a growth in
mortality associated with distant metastases (2). Studies to date
demonstrated that metastasis initiation is promoted by tumor
cells that undergoes epithelial-mesenchymal transition (EMT), a
transformation process which cells acquire a mesenchymal-like
phenotype and dislodges from the tumor bulk, invading adjacent
vessels and entering in the circulation (3).

EMT events are coordinated by transcription factors known
as “EMT master regulators,” including members of the Snail
family: SNAI1 (Snail) and SNAI2 (Slug), which are capable of

both silencing and promoting the expression of genes related
to epithelial and mesenchymal phenotypes, respectively (4). As

a consequence of the “EMT master regulators” activity, cancer

cells undergo drastic phenotypic changes in cell morphology:
from polygonal to elongated, expression of cell adhesion proteins:

downregulation of E-Cadherin and upregulation of N-Cadherin
and integrins, expression of structural proteins: upregulation
of Vimentin, among others that lead to the formation of
mesenchymal cancer cells with migratory/invasive capacities (5).

Increasing literature data have established that, for several
types of cancer including HNSCC, the presence of an inflamed
tumor microenvironment is associated with tumor progression,
the acquisition of EMT-like features by cancer cells and the
formation of metastasis (6). In different types of cancer, multiple
lines of evidence have supported that inflammatory cytokines
secreted by tumor-associated macrophages (which can represent
half of the tumor mass), including tumor necrosis factor alpha
(TNF-α), are capable of inducing EMT events in cancer cells (7).
TNF-α activates the nuclear factor kappa b (NF-κB) signaling
pathway, which the main effector p50/p65 (RelA) promotes
the nuclear translocation of Snail, thereby inducing EMT (8).
Additionally, NF-κB crosstalk with other oncogenic signaling
pathways in HNSCC including Ras/MAPK, PI3K/AKT, and
Wnt/beta catenin, that collectively promotes cancer cell survival,
evasion from apoptosis and therapy resistance (9, 10). Due to
the complexity of intracellular signaling pathways and tumor
microenvironment in cancer, including HNSCC, a multi-target
therapy (targeting multiple signaling pathways) may be an
interesting therapeutic approach (11).

MicroRNAs (miRs) are a class of small non-coding RNAs that
act predominantly through the destabilization and degradation

of multiple targeted messenger RNAs (mRNAs) thereby affecting
several biological processes independently (12, 13). In HNSCC,
as in other types of cancer, there is mounting evidence that
miRs are capable of interfering in multiple cellular processes,
such as cancer cell proliferation, invasion, and apoptosis,
thereby promoting (oncomiRs) or inhibiting (tumor suppressor
miRs) the progression from normal tissue to carcinoma and
subsequently metastasis (14, 15). Importantly, the HNSCC
oncomiR: miR-21 and tumor suppressor miR: miR-29, are both
involved in transcriptional networks that regulates the activity
of the NF-κB signaling pathway (14, 16), highlighting the
importance of NF-κB as a regulator of both inflammation and
tumor progression in HNSCC.

Since its discovery, miRs have been drawing attention due to
their capacity to be used either as prognostic biomarkers or in
miR-based targeted therapies against cancer (17, 18). Currently,
miR-based targeted therapeutic strategies comprehends the
delivery of either mimetics of miRs with tumor suppressor
activity (microRNA replacement or restoration therapy) or
molecules capable of inactivating oncomiRs (microRNA
reduction or inhibition therapy) (19). Importantly, a functional
study conducted by Lindenbergh-van der Plas and coworkers
provided a proof-of-concept that miRs can be used to selectively
kill HNSCC cancer cells (20). However, despite the potential
use of miRs in drug discovery and therapeutic applications, it
is a current challenge to identify, among the several signaling
pathways regulated by a given miR, those that has an effective
therapeutic value (21).

In the last decade, advances in the High-Content Screening
(HCS) approach (cell-based functional screens based on
automated microscopy and image analysis) allowed for the
quantitative measurement of a broad spectrum of phenotypic
alterations at a cellular level (22). Noteworthy, the advantage
of the HCS approach to measure the phenotype in a
multiparametric fashion makes it especially suited to investigate
the pleiotropic effects exerted by miRs (23). In addition, target-
prediction tools can also be utilized for the identification of
the molecular targets shared by groups of miRs and thereby
indicating the ones that are most likely responsible for the
observed effects (24). In the present work, through an HCS
approach and in-silico analysis, we investigated the capacity
of miRs to alter the phenotypic features related to tumor
progression (e.g., cell survival) and metastasis (e.g., EMT) in
HNSCC cells considering the presence of an inflammatory
microenvironment. Overall, we have identified miRs capable of
inhibiting cell survival and EMT as well as potential targets and
signaling pathways involved in the observed effects.
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FIGURE 1 | Study design. Reverse transfection, TNF-α stimulation and Immunostaining: Cells from the FADU cell line were transfected (day 0) with microRNAs (N =

31), followed by stimulation with TNF-α (20 ng/mL, Day 01) and immunostaining with primary rabbit antibodies against Snail/Slug, secondary anti-rabbit antibodies

conjugated with Dy488, nuclear (Hoechst) and cytoplasmic (CellMask) fluorescent dyes (Day 04). Image acquisition: Images (9 fields per well) were acquired using a

10X objective and excitation/emission filters DAPI (Hoechst), FITC (Snail/Slug), and Cy5 (CellMask), using an ImageXpress Micro XLS HCS system (Molecular Devices).

Image analysis: Nuclei and corresponding cytoplasm objects were identified and segmented based on images from DAPI (Hoechst) and Cy5 (CellMask) channels,

respectively. FITC (Snail/Slug) intensity on nuclei and cytoplasm, as well as morphometric parameters were then quantified. Median values per field were exported into

a spreadsheet. Clusterization and Identification of targeted pathways: Based on alterations in median values per well relative to the PMC, microRNAs were subjected

to an unsupervised hierarchical clustering. After the exclusion of genes commonly targeted by miRs from G1a (pro-survival/EMT) and G2 (anti-survival/EMT), genes

from signaling pathways targeted by G2 miRs were used to generate a microRNA regulatory network.

MATERIALS AND METHODS

Study Design
The design of this study is illustrated in Figure 1. Cells from the

FADU cell line were transfected (reverse transfection) into 96 well

plates with miR mimetics (N = 31 plus a miR negative control)

in experimental triplicates, followed by stimulation with TNF-
α (20 ng/mL) for 72 h and immunostaining with primary rabbit
antibodies against Snail/Slug, secondary anti-rabbit antibodies
conjugated with Dy488, nuclear (Hoechst) and cytoplasmic
(CellMask) fluorescent dyes. Images (nine fields per well) were
acquired using a 10X objective and excitation/emission filters

Frontiers in Oncology | www.frontiersin.org 3 November 2019 | Volume 9 | Article 11001109

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sangiorgi et al. HCS Identifies MicroRNAs Against HNSCC

DAPI (Hoechst), FITC (Snail/Slug), and Cy5 (CellMask), using
an ImageXpress Micro XLS HCS system (Molecular Devices).
With aid of CellProfiler, images from filters DAPI (Hoechst)
and Cy5 (CellMask) were used to identify nuclear, cell and
cytoplasm objects, followed by quantification of nuclear and
cytoplasmic median FITC (Snail/Slug) intensity, as well as
morphometric parameters.Median values per field were exported
into spreadsheets and with help of KNIME software, we obtained
the percentage change of the median values per well relative to
the miR negative control (PMC). By using Cluster3 and Java
TreeView software, we performed a unsupervised hierarchical
clustering of miRs by which the four groups of miRs (G1a,
G1b, G2, and G4) were identified. With help of KNIME and
Targetscan software, we identified the genes targeted by most (N-
2, minimum of 4) of the microRNAs in each group. With help of
Venny online tool, genes targeted by groups that led to opposite
phenotypic effects were identified and excluded from further
analyses. With aid of Database for Annotation, Visualization
and Integrated Discovery (DAVID, version 6.7) online tool, we
identified signaling pathways enriched with filtered targets. With
help of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database, the filtered targets from G2 miRs were assigned to the
NF-kB, PI3K/AKT, and Wnt/beta-catenin signaling pathways,
which were used to generate a microRNA regulatory network
with help of Cytoscape software. Based on information from
those analyses, secondary functional assays using siRNAs were
designed to evaluate the effect, in cell survival and EMT,
of interferences in NF-kB, PI3K/AKT, and Wnt/beta-catenin
signaling pathways.

Cell Lines
Cells derived from the HNSCC cell lines FADU (oropharynx),
HN30 (pharynx), and UMSCC1 (floor of mouth) were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS), 50 U/mL penicillin and
50µg/mL streptomycin. Cells were passaged by using a 10%
trypsin solution.

Reagents
Throughout this work, cells were treated with TNF-α (300-
01A, PrepoTech, USA) or mitomycin C (MMC, M4287, sigma-
aldrich, USA). For immunostaining, we used the nuclear dye
Hoechst 33342 (10µg/mL; H1399, Thermo Scientific, USA) and
cytoplasmic dye HCS CellMask Deep Red (5µg/mL, H10294,
Thermo Scientific, USA), primary antibodies: Anti-N-Cadherin
mouse IgG2ab mAb (SC-271386, Santa Cruz Biotechnology,
USA), Rabbit anti-Snail/Slug (ab180714, abcam, USA), Goat anti-
Vimentin (sc-7558, Santa Cruz Biotechnology) and Mouse-anti-
Caspase-7 (cleaved caspase-7 p10, clone h207, sc-22179, Santa
Cruz Biotechnology, USA), as well as secondary antibodies: Goat
anti-Rabbit DyLight 488 (dy488, 35553, Thermo Scientific, USA),
Goat anti-Rabbit DyLight 594 (35561, Thermo Scientific, USA)
DyLight 488mouse (35503, Thermo Scientific, USA) andDonkey
anti-Goat DyLight 594 (SA5-1088, Thermo Scientific, USA). For
western blot, we used the antibodies rabbit anti-snail (#3879, Cell
Signaling, USA), rabbit anti-slug (#9585, Cell Signaling, USA),
rabbit anti-vimentin (#5741, Cell Signaling, USA), rabbit anti

N-cadherin (#13116, Cell Signaling, USA), rabbit anti-β-catenin
(#8480, Cell Signaling, USA) and mouse anti-β-actin (sc-81178,
Santa Cruz, CA).

Western Blot
For protein extraction and quantification, cells were washed
with PBS and disrupted in lyses buffer (20mM Tris-HCl,
150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton X-
100, 2.5mM sodium pyrophosphate, 1mM β-glycerophosphate,
1mM Na3VO4 and 1µg/ml leupeptin). After three sonication
cycles at 45W for 5min each in a sonicator bath, the samples
were centrifuged at 20,000 × g for 30min at 4◦C. The protein
concentration was determined by the Bradfordmethod (Bio-Rad,
Hercules, CA).

Proteins were submitted to SDS–PAGE and electrotransferred
to PVDF membranes (GE Lifesciences, Pittsburgh, PA, USA).
Membranes were blocked with 5% non-fat dry milk in 0.1%
Tween-TBS and incubated with the primary antibody. After
1 h of incubation with horseradish peroxidase-conjugated goat
anti-rabbit IgG (#7074, Cell Signaling) or horse anti-mouse
IgG (#7076, Cell Signaling) secondary antibodies The antibody-
protein complex was detected using ECL Western Blotting
Detection Reagents (GE Lifesciences) using a CCD-Camera
(Image QuantLAS 4000 mini, Uppsala, Sweden). Densitometric
analysis was performed using the ImageJ software, and bands
were normalized to the constitutive protein β-actin.

MicroRNA Mimics and siRNAs
Transfection assays were carried out with human microRNA
mimetic molecules (50 nM, Thermo Scientific) or synthetic
siRNA molecules (10 nM; Supplementary File 1).

Reverse Transfection
Reverse transfection assays were performed using lipofectamine
LTX transfection reagent (15338100, Thermo Scientific) and
synthetic miRs/siRNAs according to manufacturer’s instructions.
Transfection efficiency was calculated by evaluating the
percentage reduction in cell numbers following transfection with
a cytotoxic siRNA against Ubiquitin (siUBC) as compared to
cells transfected with a control miR (PMC) or siRNA (siCTR).

Immunostaining
Cells were fixed and permeabilized with a 2% formaldehyde
solution in methanol for 20min at −20◦C. Quenching of
formaldehyde was achieved by incubation for 15min with a
0.1M glycine solution and blocking with a 1% FBS solution
for 30min. Afterwards, cells were incubated for 1 h at room
temperature with primary antibodies, followed by incubation
for 45min with a solution containing secondary antibodies and
nuclear/cytoplasmic dyes.

Image Analysis
Image analyses were performed with aid of MetaXpress software
(Molecular Devices, USA) or CellProfiler (version 2.2.0, Broad
Institute, USA). Briefly, images from functional assays that
aimed to evaluate only the presence/absence of fluorescent dyes
or markers were analyzed using MetaXpress software, whereas
CellProfiler was used to analyze images from functional assays
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aiming both the evaluation of morphometric parameters and
the presence and subcellular localization of fluorescent markers.
Data from image analyses were processed with the aid of KNIME
software (version 3.2.0).

HCS-Based Functional Assays
Alterations in cell morphology and expression/localization of
proteins were assessed through HCS-based functional assays,
which comprises of:

i) MiR/siRNA reverse transfection of FADU cells into 96-well
culture plates (CLS3603, Corning, USA);

ii) Stimulation or not with TNF-α, 24 h after reverse transfection;
iii) Immunostaining using antibodies, nuclear and

cytoplasmic dyes;
iv) Image acquisition (9 fields per well) with aid of an

ImageXpress R© Micro XLS High-Content Screening (HCS)
system (Molecular Devices, USA), using a 10X magnification
objective and excitation/emission filters DAPI, FITC, Cy3,
Texas Red, and Cy5;

v) Image analysis with aid of MetaXpress (Molecular Devices,
USA) or CellProfiler (version 2.2.0, Broad Institute,
USA) software.

Migration Assay
Cells were seeded on culture plates specific for migration assays
Oris Pro Cell Migration Assay, 96 wells (PROCMA5, Platypus
Technologies, USA). After 24 h, cells were treated with 0.2µg/mL
of mitomycin C for 2 h (to suppress proliferation), followed
or not by incubation with TNF-a at 20 or 50 ng/mL for 72 h
(experimental triplicates). Images were acquired using a 4X
phase-contrast objective after cell seeding and at the endpoint
using the ImageXpress HCS system. The area occupied by cells
was quantified after cell seeding and at the endpoint, which were
used to measure cell migration using M = (Ae/As ∗ 100)-100,
in which M = migration, Ae = Area occupied by cells at the
endpoint, As= Area occupied by cells 24 h after seeding.

Clusterization of miRs
A unsupervised hierarchical clustering of miRs was performed
with aid of Cluster 3 software (25) and visualized with help of
Java TreeView software (26). Groups of miRs were classified as
of pro/anti survival/EMT properties based on alterations in the
following phenotypic parameters: “count nuclei (cell survival),”
“cells eccentricity (EMT),” “Nuclei Median Intensity Snail/Slug
(EMT),” and “Cytoplasm Median Intensity Snail/Slug (EMT).”

Identification of Genes and Signaling
Pathways Targeted by Groups of miRs
Using the KNIME software (version 3.7) and TargetScan database
of predicted miR targets (version 7.1) (27), we created a
pipeline to identify the transcripts commonly targeted by most
of the miRs contained in each of the identified groups (N-2,
minimum of 4). Venn diagrams were generated using Venny 2.1
online tool (bioinfogp.cnb.csic.es/tools/venny) by comparing the
identified targets from groups of miRs with opposite phenotypic
effects, followed by the exclusion (filtering) of the shared
targets. Afterwards, with help of the Database for Annotation,

Visualization and Integrated Discovery (DAVID, version 6.7)
(28), we identified signaling pathways that were enriched with the
filtered targets from each group of miRs.

The filtered targets were assigned to their given signaling
pathways according to information available on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database about
the following signaling pathways: NF-κB (hsa04064), PI3K/AKT
(hsa04151), and Wnt (hsa04310) (29). The miRs and targets
from the selected pathways were used to generate a microRNA
regulatory network with aid of Cytoscape software (30).

Quantitative PCR (qPCR)
RNA extraction was performed using TRIZOL reagent
(Invitrogen Life Technologies, Grand Island, NY, USA) and
total RNA was reverse transcribed using the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA), according to the manufacturer’s instructions.
Gene expression qPCR reactions were carried in duplicates
with Power SYBR Green Master Mix (Applied Biosystems) and
primers for AKT2 (Forward: AAGGATGAAGTCGCTCACAC;
Reverse: ACTCCATCACAAAGCACAGG), CCND1
(Forward: CCCGCACGATTTCATTGAAC;
Reverse: GGCGGATTGGAAATGAACTTC),
GAPDH (Forward: GAAGGTGAAGGTCGGAGTC;
Reverse: GAAGATGGTGATGGGATTTC); IL6
(Forward: ATGCAATAACCACCCCTGAC;
Reverse: GAGGTGCCCATGCTACATTT); MYC
(Forward: CAGATCAGCAACAACCGAAA; Reverse:
GGCCTTTTCATTGTTTTCCA) and RELA
(Forward: TGACAAGGTGCAGAAAGAGG; Reverse:
CACATCAGCTTGCGAAAAGG) using a CFX96 Real-Time
PCR system (Bio-Rad). Relative gene expression levels were
assessed using the 2−11Ct strategy (31).

Statistics
All statistical analyses were performed with aid of GraphPad
Prism software version 5.0. Comparisons between multiple
experimental conditions were performed using either unpaired t-
test or univariate “ONE-WAYAnova” test. Statistical significance
was considered at p < 0.05.

RESULTS

Stimulation With Tumor Necrosis Factor
Alpha Leads to EMT-Related Morphometric
Alterations
We performed an HCS-based functional assay in cells primed
with TNF-α at different concentrations and time points followed
by quantification of morphometric features. Stimulation for
48 h with TNF-α, at all concentrations used (5–50 ng/mL),
reduced the percentage of intercellular contact by around 15%
while not changing cell eccentricity (elongation). On this same
endpoint, we found a trend for increase and decrease in
cell area and number of neighboring cells, respectively, in a
concentration-dependent manner, attaining significance at 20
and 50 ng/mL. On the other hand, stimulation for 72 h with all
TNF-α concentrations used, led to a significant increase in cell
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FIGURE 2 | Effects of TNF-α in EMT-related morphometric parameters. The FADU cell line was stimulated or not (Control) with TNF-α (5 to 50 ng/mL), for 48 or 72 h

(squares). At the endpoint, the cells were stained with nuclear (Hoechst) and cytoplasmic (CellMask) fluorescent dyes. Images (nine fields per well) were acquired using

a 10X objective and excitation/emission filters DAPI (Hoechst) and Cy5 (CellMask), using an ImageXpress Micro XLS HCS system (Molecular Devices). Images were

analyzed using CellProfiler, in order to quantify the following parameters: cell area, cell eccentricity, number of neighboring cells and percentage of intercellular contact.

(A) Quantitative changes (Mean +-SD) in morphometric parameters due to TNF-α stimulation for 48 and 72 h. (B) Representative images of cells stimulated with TNF-α

for 48 and 72 h. Statistically significant differences (ONE-WAY Anova with Tukey post-test), in comparison to the control condition: *p < 0.05; **p < 0.01; ***p < 0.001.

area (around 1,000 µm2) and cell eccentricity. These changes
were accompanied by significant reductions in both the number
of neighboring cells (by around 1.5) and the percentage of
intercellular contact (by around 30%; Figure 2).

Stimulation With Tumor Necrosis Factor
Alpha Leads to the Expression of
EMT-Related Proteins
An HCS-based functional assay was done in cells primed with
TNF-α for 72 h and at different concentrations, with further
quantification of changes in the percentage of cells positive
for markers of EMT. Generally, we observed that stimulation
with TNF-α led to a concentration-dependent increase in the
percentage of cells positive for all markers evaluated. More
specifically, the higher concentration of 50 ng/mL led to a

significant increase in the percentage of cells expressing N-
Cadherin in the cytoplasm (from 30 to 50%, approximately).
Moreover, the percentage of cells expressing cytoplasmic
Vimentin significantly increased by 25% after treatment with
TNF-α at 20 and 50 ng/mL. Finally, the percentage of cells
expressing Snail/Slug in the nucleus significantly increased
at all concentrations of TNF-α, ranging from below 20%
(in untreated cells) up to above 60% ate the highest TNF-
α concentration.

By western blot, we observed that after 72 h of treatment
with TNF-α at 20 ng/mL, the protein levels of Snail and N-
Cadherin increased by 2.2- and 5.4- fold in comparison to
the untreated control group, respectively. Moreover, the levels
of Slug and Vimentin were increased by around 1.1-fold,
whereas the protein level of beta-catenin was increased by 1.2-
fold (Figure 3).
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FIGURE 3 | Effects of TNF-α in the expression of EMT-related proteins. The FADU cell line was stimulated or not (Control) with TNF-α (5 to 50 ng/mL), for 72 h,

followed by analyses of EMT-related protein levels by immunostaining or western blot. After immunostaining using antibodies against N-cadherin (N-cad), Vimentin

(Vim) and Snail/Slug (SN/SL), cells were co-stained with nuclear (Hoechst) and cytoplasmic (CellMask) fluorescent dyes. Images (nine fields per well) were acquired

using a 10X objective and excitation/emission filters DAPI (Hoechst), FITC (N-Cadherin and SN/SL), and Texas Red (T.Red; Vimentin), using an ImageXpress Micro

XLS HCS system (Molecular Devices). Images were analyzed using MetaXpress, in order to evaluate the percentage of cells positive for each protein in the nucleus or

cytoplasm. For western blot, protein detection was achieved using antibodies against Snail, Slug, Vimentin, beta-catenin and N-Cadherin. (A) Nuclear or cytoplasmic

quantitative changes (Mean +-SD) in protein levels of N-Cadherin, Vimentin and Snail/Slug, as evaluated by immunofluorescence. (B) Representative images of

stained cells stimulated with TNF-α at 20 and 50 ng/mL. (C) Alterations (fold change) in the protein levels of Snail, Slug, Vimentin, beta-catenin and N-Cadherin, as

evaluated by western blot after 72 h of TNF-α stimulation (20 ng/mL). Statistically significant differences (ONE-WAY Anova with Tukey post-test), in comparison to the

control condition: *p < 0.05; **p < 0.01; ***p < 0.001.

Tumor Necrosis Factor Alpha Stimulation
Induces Cell Migration
Amigration assay was performed in cells treated with mitomycin
C and primed with TNF-α at different concentrations, for
72 h. Stimulation with TNF-α at 20 and 50 ng/mL increased
the migratory capacity of FADU cells by around 30 and 20%,
respectively (Figure 4).

HCS-Based miR Screening Identifies miRs
With Distinct Effects on Cell Survival and
EMT
An HCS-based functional assay was performed in cells
transfected with our library of miRs (N = 31), followed
by priming with TNF-α (20 ng/mL) for 72 h, in order to
evaluate changes on morphometric parameters and Snail/Slug
levels/localization. We identified miRs that altered cell survival
(nuclei count) and EMT-related features including nuclear
Snail/Slug levels and morphometric parameters such as
cellular/nuclear area, eccentricity and cell distancing relative
to the miR negative control. After unsupervised hierarchical
clustering, miRs were distributed into three main groups (G1,
G2, and G3). Based on distinct alterations in cell survival (nuclei
count), G1 was further subdivided into the subgroups G1a
and G1b.

MiRs from G3 led to a pro-survival and anti-EMT
effect, as seemed by increase in cell survival and epithelial

phenotype: tightly packed juxtaposed (higher number of
neighboring cells and percentage of touching) round cells
(lower eccentricity and higher solidity) with low nuclear
Snail/Slug levels. In contrast, the subgroup G1b had the
exact opposite phenotypic features (anti-survival and pro-
EMT), with low cell counts, high Snail/Slug intensity and
interspersed cells with mesenchymal phenotype (high
eccentricity and low solidity). Since a higher cell density
by itself excerpts a strong inhibitory effect on EMT, while
a lower cell density is able to promote it (32), G1b and G3
are hereafter referred as anti-survival and pro-survival miR
groups, respectively.

The subgroup G1a promoted cell survival while increasing
nuclear Snail/Slug levels and morphological EMT-related
features comparable to that of G1b; thus, clearly displaying a
pro-survival/EMT effect. Otherwise, miRs from G2 had the
strongest negative impact on survival while some of its members
were still capable of reducing or preventing the increase of cell
eccentricity or nuclear Snail/Slug levels, thereby displaying a
anti-survival/EMT effect (Figure 5).

Anti-survival/EMT miRs Target
Inflammatory-Associated Pathways
After identifying the genes collectively targeted by the miRs
from G1a, G1b, G2, and G3, we eliminated targets shared
by groups that led to opposite phenotypic effects. Thereby,
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FIGURE 4 | Cell migration of FADU cells following stimulation with TNF-α. The FADU cell line was cultured for 24 h in cell culture plates designed for migration assays,

treated with mitomycin for 2 h (to inhibit cell proliferation) and stimulated or not (Control) with TNF-α at 20 or 50 ng/mL for 72 h. Phase-contrast transmitted light

images were acquired, with an ImageXpress Micro XLS HCS system (Molecular Devices), using a 4X objective. With aid of CellProfiler, cell migration was quantified

based on the percentage of increase in the area occupied by cells. (A) Percentage of cell migration after 72 h (Mean +-SD). (B) Representative images of different

experimental conditions at initial time (T0) and after 72 h (T72). Statistically significant differences (ONE-WAY Anova with Tukey post-test), in comparison to the control

condition: *p < 0.05.

targets shared between G1a (pro-survival/EMT) and G2 (anti-
survival/EMT), as well as G1b (anti-survival) and G3 (pro-
survival) were eliminated from further analyses as they were
considered not relevant for the phenotypic effects driven by
the groups of miRs (Supplementary File 2). Then, the filtered
targets were used for enrichment analysis on signaling pathways
and biological processes (Supplementary File 3). Strikingly, we
found that miRs from both G1b (anti-survival) and G2 (anti-
survival/EMT) targeted inflammatory pathways including “TNF
signaling pathway (G1b)” and “Toll-like receptor signaling
pathway (G2)” and shared targets from the following pathways:
NF-κB (IKBKG); PI3K/AKT (AKT2), and MAPK (MAPK9).
Moreover, we found that miRs from G2 also targeted additional
genes (not found in G1b) from the NF-κB and PI3K/AKT
pathways including RELA and PIK3R3, respectively. Finally,
the Wnt/beta catenin signaling pathway was also found to
be enriched with targets from G2. The miRs from G2 (anti-
survival/EMT) and its targets from the NF-κB, PI3K/AKT, and
Wnt/beta-catenin signaling pathways were used to generate a
microRNA regulatory network (Figure 6).

Anti-survival/EMT miRs Reduce the
Transcript Levels of Their Direct and
Indirect Targets
We evaluated the capacity of three miRs with anti-survival/EMT
effects (miR-29b-3p, miR-302a-3p, and miR-372-3p) to reduce
the transcript levels of direct predicted targets, as well as indirect
downstream transcriptional targets. Overall, with the exception
of CCND1 (an indirect target of the miRs), the targets were
downregulated bymost of themiRs among the cell lines, however

a stronger effect and less variability were observed on the FADU
cell line. More specifically, we observed a reduction on the
expression levels of the direct target AKT2, with the exception
of miR-372 (on FADU) and miR-302a (on HN30 and UMSCC1).
The same was observed for the direct target RELA, with the
exception of miR-29b (on HN30 and UMSCC1) and miR-372
(on HN30 and UMSCC1). As for the indirect targets, MYC
was downregulated with the exception of miR-372 (on FADU)
and miR-29b (on HN30 and UMSCC1). Finally, IL6 was also
downregulated by the miRs, with the exception of miR-29b (on
FADU), and miR-372 (on HN30 and UMSCC1) (Figure 7).

Interferences in Signaling Pathways
Targeted by Anti-survival/EMT miRs
Partially Recapitulate Their Effects
HCS-based functional assays were done in cells transfected with
siRNAs against elements of signaling pathways regulated by
the anti-survival/EMT miRs: RELA (siRELA, NF-κB pathway),
AKT1 (siAKT1, PI3K/AKT pathway), and CTNNB1 (siCTNNB1,
Wnt/beta-catenin signaling pathway), besides a non-targeting
control siRNA (siCTR) and cytotoxic siRNA (siUBC), followed
or not by stimulation with TNF-α.

After 72 h of TNF-α stimulation, siRNA-mediated knockdown
of RELA transcripts led to an expressive reduction in cell number
(count nuclei) and number of neighboring cells, while increased
cell eccentricity. Silencing the expression of AKT1 (of high
homology with AKT2, target of G2) led to a discrete reduction in
cell number, while increased cell area and significantly reduced
nuclear and cytoplasmic levels of Snail/Slug. Finally, knockdown
of CTNNB1 significantly reduced cell number, cytoplasmic levels
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FIGURE 5 | Hierarchical clustering of miRs based on their effects on multiparametric phenotypic alterations. The FADU cell line was transfected with human miRs

mimics, for 24 h, followed by stimulation with TNF-α (20 ng/mL) for 72 h. After immunostaining with antibodies against Snail/Slug (SN/SL) and co-staining with nuclear

(Hoechst) and cytoplasmic (CellMask) dyes, images were acquired with an ImageXpress Micro XLS HCS system (Molecular Devices), using a 10X objective and

excitation/emission filters DAPI (Hoechst), FITC (SN/SL), and Cy5 (CellMask Deep Red). With aid of CellProfiler, we evaluated several morphometric parameters,

besides cell quantity (count nuclei) and the presence/location of Snail/Slug. Multiparametric phenotypic profiles, describing the effects of each miR, were obtained and

subjected to an unsupervised hierarchical cluster analysis. Heatmap showing the multiparametric phenotypic profiles induced by each miR, and the four groups of

miRs identified (G1a, G1b, G2, and G3. Red rectangles). Increase and decrease relative to PMC are depicted in yellow and blue, respectively.

of Snail/Slug and number of neighboring cells, while increased
cell area and eccentricity.

Without TNF-α stimulation, the knockdown of the selected
targets led to a reduction in cell counts as early as 24 h
post-transfection, especially on cells transfected with siRELA,
in which the impact was comparable to siUBC (a cytotoxic
siRNA). At the same time point, the percentage of apoptotic
cells (positive for cleaved caspase-7) transfected with siRELA
and siAKT1 was around 25% higher than the control group
(10%) but was unaltered on cells transfected with siCTNNB1,

which also reduced the cell number. After 48 h of siRNA
transfection, in comparison to 24 h after transfection, the
number of cells in the control condition had almost doubled
(indicating cell proliferation), while only slightly increasing
in cells transfected with siAKT1 and siCTNNB1 and further
decreasing in cells transfected with siRELA and siUBC. The
percentage of apoptotic cells slightly decreased in cells transfected
with siAKT1, while increased in cells transfected with siCTNNB1
(although not attaining significance), siRELA and siUBC
(Figure 8).
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FIGURE 6 | MicroRNA Regulatory network with miRs from the anti-survival/EMT group. A microRNA regulatory network was composed of miRs from the

anti-survival/EMT group, along with their targets from the PI3K/AKT (Green circle), NF-κB (Red circle), and Wnt (Yellow circle) signaling pathways. For each pathway,

targets from the outer portion of the circle are the ones targeted by no more than 5 miRs, whereas the ones from the inside portion of the circle are the ones targeted

by more than 5 miRs (maximum of 7). The following genes are shared between the signaling pathways NF-κB and PI3K/AKT: IKBKG, RELA, SYK, and TLR4; NF-κB

and WNT: PRKCB.

DISCUSSION

Many of the functional studies conducted so far about the
impact of small molecules in cancer cell survival disregards the
presence of an inflammatory microenvironment, which is known
to promote apoptosis resistance, epithelial to mesenchymal
transition, among other phenotypic changes that promotes
therapy resistance and disease recurrence (7).With that in mind,

our study aimed to identify, through functional assays using an
HCS approach, miRs and signaling pathways with the potential

to suppress both cell survival and EMT features in HNSCC cells
considering the presence of an inflammatory microenvironment.

This approach should provide evidence if the effect of previously

studied miRs translates or not to cancer cells under inflammatory
stimuli, as well as to describe the effect of miRs with no known
effect in HNSCC cells so far.

Initially, we demonstrated the capacity of TNF-α to promote
a broad spectrum of phenotypic changes characterizing EMT,
including an increase in nuclear expression of Snail/Slug,
mesenchymal markers N-Cadherin and Vimentin, as well

as cell eccentricity, inter-cell distancing and cell migration.
Interestingly, our results of the western blot assay indicate that
Snail, rather than Slug, might be involved in the induction
of EMT driven by stimulation with TNF-α. Moreover, the
increased levels of beta-catenin after stimulation with TNF-α
also indicates a possible role, in our model, for the Wnt/beta-
catenin pathway for the induction of EMT. Based on our
observations, we concluded that the treatment of cells with TNF-
α at 20 ng/mL is the best option to induce FADU cells to EMT,
as it promoted strong changes in all parameters evaluated, as
well as a superior induction to cell migration in comparison to
a higher concentration.

Next, by performing an HCS-based miR screening, we
investigated the capacity of 31 human miR mimics to alter
phenotypic features related to cell survival and EMT in FADU
cells induced to EMT by TNF-α stimulation. Overall, the
results from this screening led us to identify four groups of
miRs, namely G1a, G1b, G2, and G3, with distinct activity in
promoting/inhibiting cell survival and EMT. Among them, two
groups had characteristics of oncomiRs: G1a (pro-survival/EMT)
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FIGURE 7 | Changes in the transcript levels of direct and indirect targets of anti-survival/EMT miR group following miR transfection. The cell lines FADU, HN30, and

UMSCC1 were transfected with PMC (control) or miR mimics from G2 (miR-29b-3p, miR-302a-3p, and miR-372), followed by TNF-α stimulation (20 ng/mL) for 48 h

and qPCR with primers for AKT2, CCND1 (cyclin D1), IL6, MYC, and RELA. Alterations in relative gene expression levels, relative to cells transfected with miR-CTR

(PMC). Statistically significant differences (t-test), in comparison to the reference control group (PMC): *p < 0.05; **p < 0.01; ***p < 0.001.

and G3 (pro-survival) whereas the two remaining groups had
characteristics of tumor suppressor miRs: G1b (anti-survival)
and G2 (anti-survival/EMT). Noteworthy, G1b (anti-survival)
also excerpted an pro-EMT effect, while G3 (pro-survival)
excerpted a anti-EMT effect, however, as the effects of G1b and
G3 in EMT could be a byproduct (i.e., secondary effect) of
their alterations in cell survival, those groups were not classified
regarding their alterations in EMT (32).

Among the miRs from G1b (anti-survival), it was previously
found that miR-101 is downregulated in HNSCC tissues from
different anatomical sites, besides having an anti-survival effect
on HNSCC cell lines, including FADU (33–35). Additionally,
studies conducted with esophageal squamous cell carcinoma
(ESCC)-derived cell lines subjected to the ectopic expression of
miR-22 (also from G1b) observed a reduction in cell survival and
migratory/invasive potential (36, 37). On the other hand, the pro-
survival group G3 was mainly composed by miRs frommiR-302-
367 cluster, which are traditionally associated with pluripotency
and malignancy of germ cells tumors (38, 39). In the context

of head and neck cancer, overexpression of miR-302a and miR-
302b was found in cells derived fromHNSCCwith characteristics
of cancer stem cells including self-renewal and the ability to
generate heterogeneous cell populations (40).

The pro-survival/EMT G1a was composed of miRs that
are traditionally involved in regulatory mechanisms linking
inflammation and tumor progression, including elements of
the miR-17-92 cluster, miR-21 (a HNSCC oncomiR) and miR-
23a/24/27a cluster (41). Interestingly, Chang and coworkers
also observed a pro-survival activity of miR-21, as well as
increased expression of miR-21 in primary HNSCC compared
to mucosal controls (42). Moreover, in the recent meta-analysis
study performed by Lubov et al., it was observed that an increased
expression of miR-21 is associated with poor outcome in
HNSCC (14). Differently from G1a, G2 (anti-survival/EMT) was
composed of miRs from miR-29 family, which displays tumor
suppressor activity in several types of cancer, including HNSCC
(14, 43). In line with our results, Kinoshita and coworkers
observed that the ectopic expression of elements from the mir-29
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FIGURE 8 | Changes in cell survival and EMT upon interferences in signaling pathways targeted by the anti-survival/EMT group. The FADU cell line was transfected

with siRNAs specific for RELA, AKT1, CTNNB1, cytotoxic siUBC, and unspecific siRNA control (siCTR), followed or not by TNF-α stimulation. At the endpoint, images

were acquired with an ImageXpress Micro XLS HCS system (Molecular Devices), using a 10X objective and excitation/emission filters DAPI (Hoechst), FITC (SN/SL)

and Cy5 (CellMask Deep Red). (A) Cells were stimulated for 72 h with TNF-α (20 ng/mL), starting 24 h post-transfection, followed by immunostaining with antibodies

against Snail/Slug (SN/SL) and co-staining with nuclear (Hoechst) and cytoplasmic (CellMask) dyes. Alterations in morphometric parameters, cell counts and

nuclear/cytoplasmic Snail/Slug due to siRNA transfection as observed after image analysis. (B) 24 and 48 h after transfection, cells without TNF-α stimulation were

immunostained with antibodies against cleaved Caspase-7 and co-stained with nuclear (Hoechst) and cytoplasmic (CellMask) dyes. Cell counts and percentage of

apoptotic cells positive for active caspase-7 as observed after image analysis. Statistically significant differences (ONE-WAY Anova with Tukey post-test), in

comparison to the control condition: *p < 0.05; **p < 0.01; ***p < 0.001.

family in the FADU cell line resulted in a significant reduction in
cell number, as well as in cell migration and invasion (44).

In an effort to identify, among the several targets and signaling
pathways regulated by miRs, those that effectively contributed
to the observed phenotypic effect, we excluded from further
analyses genes that were commonly targeted by groups of miRs
that led to opposite phenotypes. Those filtered targets were used
in in silico enrichment analysis, leading to the identification of
specific targets and targeted signaling pathways. Noteworthy, this

strategy provided cues on the genes and signaling pathways to be
explored to suppress HNSCC tumor growth and metastasis.

By following this strategy, we observed that miRs from
G1b (anti-survival) and G2 (anti-survival/EMT) targeted
signaling pathways that are associated with the interface between
inflammation and tumor initiation/progression, including
MAPK, PI3K/AKT and NF-κB pathways (45). However, in
comparison to predicted targets from G1b, it was found that
miRs from G2 interfered in the PI3K/AKT and NF-κB pathways
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in a more extensive manner, also targeting a regulatory subunit
of PI3K (PIK3R3), a oncogene that regulates AKT activity,
as well as RELA, which codes for the canonical subunit (p65)
of the NF-κB transcription factor (46, 47). Moreover, miRs
from G2 also targeted several elements of the Wnt/beta-catenin
signaling pathway. Altogether, our results from in silico analyses
provided evidence that the anti-survival/EMT effects elicited by
miRs from G2 likely derives from an extensive perturbation in
PI3K/AKT and NF-κB pathways, besidesWnt signaling pathway.
Additionally, by evaluating alterations in gene expression levels
of cells transfected with miRs from G2 (anti-survival/EMT)
group, we confirmed that elements from the following targeted
signaling pathways: NF-κB (RELA and IL6), PI3K/AKT (AKT2),
as well as Wnt/beta-catenin (MYC) were downregulated after the
transfection in most cases.

Additional functional assays were performed with siRNAs
against genes from the following signaling pathways regulated
by anti-survival/EMT group (G2): AKT1 (PI3K/AKT pathway);
RELA (NF-κB pathway); and CTNNB1 (Wnt pathway) followed
or not by stimulation with TNF-α. Noteworthy, though AKT1
and CTNNB1 are not directly targeted by the miRs fromG2, their
use is justified by the central role of those genes in regulating the
PI3K/AKT and Wnt/beta-catenin pathways, respectively, which
were extensively targeted by those miRs. Therefore, results from
our functional assays using siRNAs should not be interpreted as
direct link between anti-survival/EMTmiRs and a specific target,
but rather between miRs and targeted signaling pathways. An
exception are observations from siRELA transfections, as RELA
is not only a central gene in the NF-κB pathway but also a direct
target of G2.

By stimulating cells with TNF-α after siRNA transfection,
we sought to investigate the individual role of NF-κB,
PI3K/AKT, and Wnt/beta-catenin signaling pathways on either
cell survival or EMT considering the presence of an inflammatory
microenvironment. Interestingly, we found that although gene
silencing of RELA and CTNNB1 led to an anti-survival effect
whereas silencing AKT1 led to an anti-EMT effect, none of
the siRNAs alone impaired both cell survival and EMT, which
indicates that the effects of anti-survival/EMT miRs are most
likely due to their potential to interfere in multiple signaling
pathways simultaneously. This possibility points out to the
potential benefits of a multi-target approach to treat HNSCC,
especially considering that so far, clinical trials evaluating
the capacity of PI3K inhibitors to treat HNSCC have shown
disappointing results (48). In line, a recent study by Li et al.
demonstrated that co-targeting EGFR (upstream of PI3K/AKT)
and NF-κB pathways led to a superior inhibition of cell survival
and xenograph tumor growth, when compared to targeting either
pathway alone (49).

By not stimulating cells with TNF-α after siRNA transfection,
we aimed to evaluate if the effects coming from the interferences
in NF-κB, PI3K/AKT, and Wnt/beta-catenin signaling
pathways are influenced by the presence of an inflammatory
microenvironment. Additionally, we investigated if effects on
cell survival are due to alterations in apoptosis by evaluating
the percentage of cells positive for cleaved caspase-7. Strikingly,
we found that transfection with siRELA not only dramatically

reduced the number of cells but also strongly induced cell-death
by apoptosis after 24 h and 48 h. This indicates that interferences
in the NF-κB pathway is deleterious to HNSCC cells regardless of
stimulation with inflammatory factors. Interestingly, transfection
with siAKT1 also followed a similar pattern (although not further
increasing apoptosis at 48 h) revealing that an inflammatory
stimulation exerts a protective effect on HNSCC cells against
the deleterious effect of interferences in the PI3K/AKT pathway.
Moreover, although transfection with siCTNNB1 reduced cell
count, it did not enhance the number of apoptotic cells 24 h post-
transfection, indicating a more prominent role of Wnt signaling
toward cell proliferation regardless of TNF-α stimulation.

As a whole, our study identified several molecules that may
have the potential to be used for prognosis or miR-based
targeted therapies against HNSCC considering the presence of
an inflammatory microenvironment. By further investigating the
miRs with anti-survival/EMT effects, we found that interferences
in the signaling pathways: NF-κB and Wnt/beta-catenin were
the ones that most likely contributed for the anti-survival effect,
whereas interferences in PI3K/AKT signaling pathway was most
likely associated with anti-EMT effect. Future studies using in
vivo models should shed light into the anti-tumor and anti-
metastatic activity of the miRs and targets herein identified.

CONCLUSION

The present work characterized the functional role of a
set of human miRs in modulating a broad spectrum of
phenotypic alterations related to HNSCC cell survival and
EMT in cells under an inflammatory stimulation, as well as
the potentially involved signaling pathways. More specifically,
the following miR mimetics: miR-24-3p, miR-29a-3p, miR-
29b-3p, miR-302a-3p, miR-302a-5p, miR-372-3p, and miR-373-
3p were identified as the ones with greatest potential use in
microRNA replacement therapies, as they displayed an anti-
survival/EMT effect. On the other hand, endogenous miRs
herein identified as with pro-survival/EMT effects: miR-18a-
5p, miR-18b-5p, miR-19a-3p, miR-19b-3p, miR-21-5p, miR-
27a-3p, miR-30a-5p, were identified as the ones with greatest
potential use in microRNA inhibition therapies. Additionally,
we found that together, interferences on NF-κB, PI3K/AKT, and
Wnt/beta-catenin signaling pathways are the ones that most
likely driven the anti-survival/EMT effects displayed by miRs.
Individual gene silencing of components of those pathways,
namely RELA (NF-κB), AKT1 (PI3K/AKT), and CTNNB1
(Wnt/beta-catenin), partially recapitulated the effects displayed
by miRs with anti-survival/EMT effects. Our findings revealed
miRs and signaling pathways that might be explored to fight
HNSCC tumor growth and metastasis considering the presence
an inflammatory microenvironment.
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