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Editorial on the Research Topic

Contact Interactions in Quantum Mechanics: Theory, Mathematical Aspects and Applications

Contact interactions refer to a broad range of interactions usually described by potentials with
support on a set of dimension lower than the dimension of the ambient space. Typical examples are
point potentials given by Dirac deltas, finite or infinite combinations of Dirac deltas or its derivatives,
and other types of interactions supported on curves, surfaces, and manifolds. In the last thirty years
contact interactions in quantum mechanics have attracted a growing interest, since they provide
solvable or quasi solvable models which are very useful for the study of a variety of properties of
physical systems in a wide range of applications. For instance, they have been used to approximate
results for very short-range potentials, to model several kinds of extra thin structures, to mimic point
defects in materials, to study heterostructures, to model impurities in quantum field theory models
and, more recently, such potentials played an important role in a reinterpretation of the Casimir
effect. Contact interactions may also have unexpected relations with other fields, like group theory.

Mathematically, contact interactions are singular, since they are supported on sets of zero Lebesgue
measure. Therefore, to unambiguously define a contact interaction it is necessary to establish the
mathematical framework used to address the singularities. One method, inherited from quantum field
theory, that is commonly used in the physics literature to deal with the singularities, is to define singular
potentials by means of a regularization procedure (often followed by renormalization), that is, as the
limit of a sequence of regular functions converging in some sense to the singular potential. The
regularizationmethod has been particularly useful in investigating the limit of square potentials and the
corresponding point interactions, both in non-relativistic and relativistic quantummechanics. Another
method to properly define a singular interaction uses the theory of self-adjoint extensions (SAE) of
symmetric operators. In this case, the wave functions in the domain of the self-adjoint Hamiltonian are
completely defined by specifying the boundary conditions they must satisfy at the borders of the
singularity. The SAE method provides all the possible self-adjoint extensions allowed for a given
symmetric operator and it has been used in a wide variety of models and applications. Yet another
approach to define singular interactions is by considering the singular potential (and also the wave
function, in some approaches) as a distribution and, by using the apparatus of distribution theory, to
define consistently the otherwise ill-defined product of the potential and the wave function in the
Schrödinger (or Dirac) wave equation.
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The contributed papers to this Research Topic are original works
that use the methods mentioned above (and more) to address not
only the theoretical andmathematical aspects of contact interactions,
but also their applications to a broad range of fields. Below we
present a brief description of these contributions.

Glasser considers a quantum system with known green function
and obtains the exact green function for the situation in which two
δ-impurities are added to the system. After analyzing various
particular cases of the parameters, the author generalizes the result
for N such impurities. Kulinskii and Panchenko use the conservation
of the current density to obtain the boundary conditions defining a
self-adjoint Hamiltonian for the one dimensional Schrödinger
operator with spin. These self-adjoint extensions produce point
potentials such that the spin is not a constant of motion. The
authors also add a physical interpretation to this effect.
Dell’Antonio defines contact interactions by boundary conditions
at the contact manifold and, by using tools of functional analysis
and the gamma convergence, obtains self-adjoint extensions of the free
Hamiltonian that correspond to weak and strong contact interactions.
The author also illustrates these results in some applications in one,
two and three spatial dimensions, which include low and high
densities Bose-Einstein condensates and the unitary gas.

Bordag et al. consider a one-dimensional scalar field in the
background of a Kronig-Penney potential with a δ-δ′ interaction.
They obtain the band structure of the model and compute the non-
perturbative vacuum energy, using the spectral Zeta-function
method. Rabinovich et al. study band spectra of one dimensional
systems containing infinite point singularities, each one consisting of
a comb of the Dirac delta and its derivative. The self-adjointness of
the Hamiltonians is guaranteed by matching the boundary
conditions at each singular point. The authors also provide
several numerical examples to illustrate the approach. Erman and
Turgut consider Hamiltonians perturbed by singular potentials, with
support on points and curves, and address the splitting of the bound
state energy levels due to quantum tunneling. They show, using
Krein’s resolvent approach, that the splitting can be obtained
perturbatively under certain conditions.

One dimensional Hamiltonians, with electro-magnetic field
potentials localized around a point and depending on coupling
constants, are studied by Golovaty. By using a limiting
procedure that shrinks the supports of these potentials to a
single point, the author obtains a potential of the Dirac delta
type plus its derivative, if zero energy resonances for one
component of the potential exist. The author also shows
that such zero energy resonances are solutions of the
Schrödinger equation with non-trivial bounded solutions on
the whole real line. By using a similar approach, Zolotaryuk
et al. start with multilayer regular potentials in one dimension
and, after squeezing them by using suitable limiting
procedures, obtain point interactions. The authors use a
“point” transistor to illustrate the interpretation of the
squeezing process as being due to the application of a
controllable bias potential. Calçada et al. revisit the one-
dimensional Hydrogen atom, which is described by a
Coulomb-type long-range potential having a singularity at
the origin. The authors use an approach based on the
Schwartz theory of distributions and present a systematic

study regarding the multiplicity and parity of the bound
states and the boundedness of the ground state energy for
all the possibilities of self-adjoint parity invariant interactions.

Albeverio et al. consider a two-dimensional system, where
the free particle Hamiltonian is perturbed with a harmonic
oscillator potential in the x direction, plus a Gaussian potential
isotropic in the two dimensions. The resulting Hamiltonian is
self-adjoint and bounded from below. By replacing the Gaussian
potential in the x direction by a Dirac delta potential the authors
obtain a new Hamiltonian, with similar properties to the original
one, and also estimate a lower bound for the spectrum. The
authors also show that this new Hamiltonian is a limit, in the
strong resolvent sense, of a sequence of Hamiltonians of the type
studied in the first place. Guilarte et al. present an in-depth
investigation of the spectral problem for the Dirac Hamiltonian of
one-dimensional electrons and positrons with either electrostatic
or position-dependent mass impurities given by a δ-function
potential, a necessary analysis for their goal of building a
fermionic quantum field theory and computing the Casimir
effect for this system. In the framework of a point particle
effective field theory, Hayman and Burgess describe a process
of particle-conversion mediated by flavor-changing interactions,
in which two light scalar particles interact by contact with a heavy
point particle. The singularities of the interactions at the
worldline of the heavy particle are handled by using
regularization and renormalization techniques. The authors
also discuss the connection of their model to a model of a
single particle dynamics described by a non self-adjoint
Hamiltonian.

Salem et al. review two methods based on the theory of self-
adjoint extensions and apply them to approach Hamiltonians
with a point singularity in (2 + 1) dimensions. They address the
problem of a spin-1/2 charged particle with an anomalous
magnetic moment in an Aharonov-Bohm potential in a conic
space and apply both the methods to obtain a relationship
between the parameter of the self-adjoint extension and the
physical parameters of the problem. Erman et al. consider
one-dimensional systems decorated with either a Dirac delta
or its derivative, in both cases multiplied by a time dependent
coefficient, and show that this problem may be solved by using
the Laplace transform as an intermediate tool so as to obtain the
Green function in either case. Some particular cases are analyzed.
Finally, Suchanecki investigates the extensions of time operators
acting on spaces of generalized functions associated with
K-systems as well as the problem of the decomposability of
cylindrical elements.

This Research Topic is an up-to-date sample of the main
ideas, concepts and methods of the research on contact
interactions in quantum mechanics, and received works of
some of the most active researchers presently working in this
subject. We thank all of them for their valuable contributions.
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The exact Green function is constructed for a quantum system, with known Green

function, which is decorated by two delta function impurities. It is shown that when

two such impurities coincide they behave as a single singular potential with combined

amplitude. The results are extended to N impurities and higher dimensions.

Keywords: quantum green function, delta function potential, contact interaction, Schroedinger equation, quantum

graph
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1. INTRODUCTION

The one dimensional harmonic oscillator or square well, for example, for which the energy
-dependent Green function G0(x, x

′;E) is known, have been taken for many years as solvable
models for semi-conductor quantum wells [1]. Frequently delta function potentials are placed
at various points to simulate defects or impurities. In the case of a single impurity potential,
V(x) = λδ(x− a), the Green function for the composite system is known to be [2]

G(x, x′;E) = G0(x, x
′)+ λ

G0(x, a;E)G0(a, x
′)

1− λG0(a, a;E)
(1)

In this note a corresponding formula is derived for the case V(x) = λδ(x − a) + µδ(x − b) On
the basis of the analogy of the algebraic structure the result is extended to N-impurities and for a
standard interpretation of the Dirac delta function, to higher dimension.

2. CALCULATION

We first note that the same argument can be used for the time dependent-, as well as the
energy-dependent Green functions, so we shall omit the third argument and write simply G(x, x′).

Beginning with the Dyson equation, noting that G0(x, y) = G0(y, x)

G(x, x′) = G0(x, x
′)+

∫

G0(x, y)V(y)G(y, x
′)dy, (2)

where the integration extends over the system domain, one has the set of equations

G(x, x′) = G0(x, x
′)+ λG0(x, a)G(a, x

′)+ µG0(x, b)G(b, x
′) (3)

G(a, x′) = G0(a, x
′)+ λG0(a, a)G(a, x

′)+ µG0(a, b)G(b, x
′), (4)

G(b, x′) = G0(b, x
′)+ λG0(a, b)G(a, x

′)+ µG0(b, b)G(b, x
′). (5)
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Glasser Green Function for Two Impurities

The linear Equations (4) and (5) are easily solved for G(a, x′) and
G(b, x′) :

G(a, x′) =
G0(a, x

′)+ µ[G0(b, x
′)G0(a, b)− G0(a, x

′)G0(b, b)]

D
(6)

G(b, x′) =
G0(b, x

′)+ λ[G0(a, x
′)G0(a, b)− G0(b, x

′)G0(a, a)]

D
(7)

with

D = [1− λG0(a, a)][1− µG0(b, b)]− λµ[G0(a, b)]
2. (8)

By inserting (6) and (7) into (3) we obtain the desired expression

G(x, x′) = G0(x, x
′)

+
1

D
{λG0(x, a)G0(a, x

′)+ µG0(x, b)G0(b, x
′)

+λµ[G0(x, a)
(

G0(a, b)G0(a, x
′)− G0(b, b)G0(b, x

′)
)

+G0(x, b)
(

G0(a, b)G0(a, x
′)− G0(a, a)G0(a, x

′)
)

]}. (9)

3. DISCUSSION

By setting µ to 0 (9) reduces to (1), proving this expression
as well. The most salient feature of (9) is the denominator D
whose zeros form the exact spectrum of the composite system.
For example, when a and b coincide, D reduces to 1 − (λ +
µ)G(a, a) and (9) reduces to (1) with λ replaced by the amplitude
λ + µ. I.e., the two impurities combine to form one with
combined amplitude. This generalizes the result of Fasssari and
Rinaldi [3], for two identical defects symmetrically placed with
respect to the center of a harmonic oscillator. An expression
similar to (9) has been derived recently by Horing (private
communication) for the case of a quantum dot in a magnetic
field.

Two further points can be made. Nothing in the derivation
of (9) restricts it to the line. If we accept the standard definition
δ(Ex) = 5d

j=1δ(xj), then (9), and its consequences, are valid for

d-dimensional quantum systems. This has been proven function-
theoretically for the three dimensional quantum dot with two
symmetrically placed identical impurities by Albeverio et al.
[4].

A second observation is that D is simply the Cramer
determinant for the pair of simultaneous linear Equations (4) and
(5). In the case of impurity potential

V(x) =

N
∑

j=1

λjδ(x− aj) (10)

there will be N such equations and the determinant is easily
evaluated. The general result is

If a quantum system having Green function G0(x, y) is
decorated with N delta function impurities λjδ(x − aj),
j = 1, 2, · · ·N, then the new energy levels are the
roots of

DN =

N
∏

j=1

Ajj −

N
∑

j=2

(−1)j
∑

1≤k1<···kj≤N

Ak1k2Ak2k3 · · ·Akjk1 = 0

(11)
where Alm = δlm − λlG0(al, am).

Thus,

D3 =

3
∏

j=1

[1− λjG0(aj, aj)]−
∑

i<j

λiλjG0(ai, aj)G0(aj, ai)

+λ1λ2λ3G0(a1, a2)G(a2, a3)G0(a3, a1), (12) :

which reduces to the N = 1 and N = 2 cases appropriately and
shows that any two coinciding impurities coalesce as indicated
above.

Note that if all the λs and a’s coincide then

DN = (1−λG0(a, a))
N−

N
∑

j=2

(

N
j

)

λjG0(a, a)
j = (1−NλG0(a, a)).

(13)
Equation (11) might offer a new approach to Kronig-
Penney-type systems for periodic or random unit
cells.

Finally, it should be pointed out that the work in this note
is paralleled in the theory of quantum graphs introduced by
Linus Pauling about 1930 to describe electrons in molecules
which has developed into a sophisticated and important branch
of quantum physics [5]. For relations of this discipline to the
present work see the papers by Andrade et al. [6] and Andrade
and Severini [7].
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We consider singular self-adjoint extensions for the Schrödinger operator of spin-1/2

particle in one dimension. The corresponding boundary conditions at a singular point are

obtained. There are boundary conditions with the spin-flip mechanism, i.e., for these

point-like interactions the spin operator does not commute with the Hamiltonian. One of

these extensions is the analog of zero-range δ-potential. The other one is the analog of

so called δ(1)-interaction. We show that in physical terms such contact interactions can

be identified as the point-like analogs of Rashba Hamiltonian (spin-momentum coupling)

due to material heterogeneity of different types. The dependence of the transmission

coefficient of some simple devices on the strength of the Rashba coupling parameter is

discussed. Additionally, we show how these boundary conditions can be obtained from

the Dirac Hamiltonian in the non-relativistic limit.

Keywords: Schrödinger operator, self-adjoint extension, Rashba interaction, spin-flip, Pauli Hamiltonian, Dirac

Hamiltonian

1. INTRODUCTION

Point-like interactions can be described as the singular extensions of the Hamiltonian and
are very useful quantum mechanical models because of their analytical tractability [1–5]. They
are equivalent to some boundary conditions imposed on a wave function at the singular
points and represent the limiting cases of field inhomogeneities. Therefore it is important to
understand the relation between parameters of these BC and the specific physical characteristics
of inhomogeneities. In modern nanoengineering the spin control is of great interest [6]. Besides
the external magnetic field another interaction is the spin-momentum coupling which could be
used for such a control [7, 8]. Thus the inclusion of magnetic field and other interactions which
influence spin dynamics is a natural route for searching spin-dependent singular interactions. The
interactions which influence spin polarization would give new examples of contact interactions
with applications in condensed matter physics and QFT [9].

2. CONTACT INTERACTIONS FOR SPIN 1/2 CASE

In non-relativistic limit spin s = 1/2 particle is described by the Pauli Hamiltonian [10]:

Ĥ =

(

p̂−
q
c A

)2

2m
+ qϕ −

q h̄

2mc
σ̂ · EH , (1)

10
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where σ represents the vector of Pauli matrices, EH is the
external magnetic field and A,ϕ are vector and scalar potentials
correspondingly. This Hamiltonian acts in space of 2-component
wave functions:

9 =

(

ψ↑

ψ↓

)

. (2)

Here ψ↑,ψ↓ are the wave functions of corresponding spin “up-”
and “down-” states |↑〉 , |↓〉. The probability current for Eq. (1) is
as following:

Jw =
h̄

m
Im

(

9†∇9
)

−
q

mc
A9†9 +

h̄

2m
rot

(

9†
σ 9

)

, (3)

where the last term describes the magnetization current (see
e.g., [11]).

Bearing in mind the application to the 1-dimensional layered
systems with spatial heterogeneity we use the conservation of
current 3 to derive the boundary conditions (BCs) for the
Hamiltonian 1 which model point-like interactions. We use the
results of [12] where all possible self-adjoint BCs were related
with the following Hamiltonian:

LX = −D2
x ( 1+ X4 δ )+ i Dx

(

2X3 δ − i X4 δ
(1)

)

+ X1 δ

+ (X2 − i X3) δ
(1) . (4)

Here symbol Dx stands for the derivative in the sense of
distributions on the space of functions continuous except at the
point of singularity where they have bounded values along with
their first derivatives [12, 13]:

δ(ϕ) =
ϕ(+0)+ ϕ(−0)

2
, δ(1)(ϕ) = −

ϕ′(+0)+ ϕ′(−0)

2
. (5)

The parameters Xi ∈ R determine the values of the
discontinuities of the wave function and its first derivative. The
boundary conditions (b.c.) corresponding to each contribution
in Eq. (4) can be represented in matrix form:

(

ψ(0+ 0)
ψ ′(0+ 0)

)

= MXi

(

ψ(0− 0)
ψ ′(0− 0)

)

(6)

and conserve the current∗

j = 2 Im
(

ψ∗ ψ ′
)

(7)

of the Hamiltonian

Ĥ = −
d2

d x2
(8)

of a spinless particle. Physical classification of all these b.c. on the
basis of gauge symmetry breaking was proposed in Kulinskii and
Panchenko [14]. They can be divided into two subsets. The first
one is formed by the matrices:

MX1 =

(

1 0
X1 1

)

, MX4 =

(

1 −X4

0 1

)

(9)

∗here we put h̄ = 1, c = 1 andm = 1/2.

and can be associated with point-like interactions of electrostatic
nature, e.g., standard zero-range potential is nothing but the
limiting case of the potential field barrier. Another one is given
by the BC matrices:

MX2 =

(

µ 0
0 1/µ

)

, MX3 = eπ i8

(

1 0
0 1

)

(10)

and represents the point-like interactions of the “magnetic” type.
The parameters of 4 are related with the physical ones:

X2 = 2
µ− 1

µ+ 1
, eπ i8 =

2+ i X3

2− i X3
, (11)

where µ =
√
m+/m− is the mass-jump parameter and 8 is the

magnetic flux (in units of 80 = 2π h̄ c/q). The magnetic nature
of MX3 is obvious because of its interpretation as the localized
magnetic flux. The last breaks the homogeneity of the phase of
the wave functionψ . Also the scattering matrix of this b.c. has no
time reversal symmetry [14].

The natural question arises as to the consideration of a particle
with internal magnetic moment, e.g., a particle with spin s = 1/2.
The very straightforward way for derivation of corresponding b.c.
is the conservation of current Eq. (3). Therefore we introduce
4-vector (bispinor) of the boundary values at the singular point:

80±0 =









ψ↑

ψ ′
↑

ψ↓

ψ ′
↓









0±0

(12)

and boundary condition 4× 4-matrixM:

80+0 = M80−0 . (13)

Due to the structure of current Eq. (3) for the Hamiltonian 1 we
have conservation of all its components:

Jx =
1

i

(

9† ∂9

∂x
−
∂9†

∂x
9

)

,

Jy =−

(

∂9†

∂x
σz9 +9†σz

∂9

∂x

)

,

Jz =
∂9†

∂x
σy9 +9†σy

∂9

∂x
.

(14)

Note that here we use expanded form of “curl” operator in Eq. (3)
with explicit derivatives because we expect the discontinuity
in their values. In fact, this the very form follows from the
Dirac equation in non relativistic limit and the curl-operator
appears after collecting the corresponding terms (see [10]). This
point is important in view of X2-interaction which breaks the
homogeneity of dilatation symmetry [15] because of the mass
jump [14, 16]. In general Jy and Jz are different from zero
even if we consider 1-dimensional case, e.g., layered system. The
only demand consistent with the hermiticity of the Hamiltonian
Eq. (1) is the conservation of current components Eq. (14). In
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terms of vector 8 the components of the probability current are
as following:

Ji = 8†6i8 , i = x, y, z (15)

where 4 × 4 matrices 6i are calculated by comparison of
expressions Eqs. (14) and (15):

6x =
1

i

(

Sp2 0
0 Sp2

)

, 6y =

(

−σx 0
0 σx

)

, (16)

6z =
1

i

(

0 σx
−σx 0

)

and Sp2 =

(

0 1
−1 0

)

. (17)

The conservation constraint of total current 15 gives the
conditions forM-matrix:

M†6iM = 6i , i = x, y, z (18)

Besides trivial solution for M-matrix consisting of two MX2,3-
blocks (no spin-flip), simple algebra gives the nontrivial 1-
parametric solution of Eq. (18):

Mr =









1 0 0 r
0 1 0 0
0 r 1 0
0 0 0 1









, r ∈ R (19)

with

Mr1 Mr2 = Mr1+r2 .

and b.c. of the form









ψ↑

ψ ′
↑

ψ↓

ψ ′
↓









0+0

= Mr 80−0 =









ψ↑ + rψ ′
↓

ψ ′
↑

ψ↓ + rψ ′
↑

ψ ′
↓









0−0

(20)

This defines the spin-flip variant of X4-extension. E.g.,
corresponding scattering matrix forMr is as following:

Ŝr =
1

k2 r2 + 4









k2 r2 4 −2 i k r 2 i k r
4 k2 r2 2 i k r −2 i k r

−2 i k r 2 i k r k2 r2 4
2 i k r −2 i k r 4 k2 r2









(21)

The scattering characteristics related to the scattering matrix
Eq. (21) are in Figure 1.

Another solution of Eq. (18) is

M̃r̃ =









1 0 0 0
0 1 r̃ 0
0 0 1 0
r̃ 0 0 1









, r̃ ∈ R (22)

with the b.c. of the form:








ψ↑

ψ ′
↑

ψ↓

ψ ′
↓









0+0

= M̃r̃ 80−0 =









ψ↑

ψ ′
↑ + r̃ψ↓

ψ↓

ψ ′
↓ + r̃ψ↑









0−0

(23)

FIGURE 1 | Scattering of |↑〉 - state on r − X4 defect.

FIGURE 2 | Resonator.

It can be considered as the δ-potential (X1-extension) augmented
with the spin-flip mechanism. From the explicit form of the
boundary conditions, e.g.,:









ψ↑

ψ ′
↑

ψ↓

ψ ′
↓









0+0

= Mr MX2 80−0 =









µ−1 ψ↑ + µ rψ ′
↓

µψ ′
↑

µ−1ψ↓ + µ rψ ′
↑

µψ ′
↓









0−0

(24)

where MX2 is the block-diagonal matrix of X2-extensions. Thus
the boundary condition for s = 1/2 particle with the spin-flip
contact interaction can be written in general form:

80+0 = M̃r̃ Mr MX2 . (25)

Note that X3-extension can not be augmented with the spin-flip
mechanism since it decouples from r, r̃-couplings. In accordance
with the spin-momentum nature of the r-couplings the physical
reason of such factorization is that X3 contact interaction does
not include spatial inhomogeneity in electric field potential ϕ.
This is quite consistent with the difference between X2 and X3

from the point of view of breaking the gauge symmetry [14, 17].
Using the b.c. obtained above the standard test systems and

their transport characteristics can be calculated straightforwardly
in order to demonstrate spin-filtering properties. We give just
two examples. First is the resonator (see Figure 2) for which
the scattering amplitudes are in Figures 3, 4. Also we give the
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FIGURE 3 | Intensity of reflected spin-↓ state for r − X4 resonator (see Figure 2) at different values of r.

FIGURE 4 | Intensity of reflected spin-↓ state for r̃ − X1 resonator (see Figure 2) at different values of r̃.

FIGURE 5 | Amplitude of the wave function |↑〉 , |↓〉-components in the

resonant region.

results of calculation of the resonant (quasilocalized) states (see
Figure 5). Second is the filter (see Figure 6) with scattering
characteristics are in Figure 7. The intensity of spin-flip process,
generating the spin-↓ state from incident spin-↑ state is shown
in Figure 3. These results demonstrate that spin-flip mechanism
even at small values of r-coupling can reach high probabilities

FIGURE 6 | Filter.

with increasing the energy of incident particle. Of course this
directly follows from the boundary conditions (19) and (22)
since the effects depend on both r and the momentum. Figure 4
represents the spin-flip effect for X1-resonator. Using such device
it is possible to create the resonant (quasibound) states in the
area between the wall and the defect (see Figure 5) for X4-filter.
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FIGURE 7 | Transmission r − X4 filter intensity for different values of r.

FIGURE 8 | Comb structure.

Comparison of r̃ − X1 and r − X4 cases shows that the last one is
more effective as spin-flip mechanism.

The zone structure for periodic comb (see Figure 8) can
be also calculated in standard way using Bloch representation
of the wave function and imposing the corresponding b.c. In
comparison with the spinless case considered in Albeverio et al.
[3] here the spin degree of freedom doubles the number of zones
(see Figures 9, 10). The corresponding dispersion laws are:

cos q = cos k±
rX1

2 k
sin k (26)

cos q = cos k±
rX4 k

2
sin k (27)

where q is the quasimomentum vector. Note that in case of
X4-comb the lowest states belong to two parabolic zones with
different effective masses at rX4 < 1:

E±(k) =
h̄2 k2

2m±
, m± = 1± rX4 (28)

At r = 1 one branch of excitations becomes massless:

E(k) = 2
√
3 k+ . . . (29)

Of course this is the remnant of what happens in standard X4-
structure (see e.g., [3]). More intriguing problem here is the
inclusion of the correlation effects due to spin statistics and
investigation of phases with magnetic (dis)order in dependence
on the intensity of point-like interactions. This way of research
may be useful formodeling 1-dimensionalmagnetic systems [18].

2.1. Spin-Flip Contact Interaction in 3D
As is known 3D case with the spherical symmetry can be
effectively reduced to one dimensional problem on semi-axis
r > 0 of the radial coordinate. Indeed let us define φ(r) = rψ(r)
as the effective 1D wave function and consider natural definition
domain of free Hamiltonian:

||Ĥ09||2 =

∞
∫

0

|(rψ)′′|2d r <∞ (30)

then the limiting value φ(0) as well as its derivative φ′(0) is
defined since Eq. (30) is well defined on the corresponding
Sobolev spaceW2

2 (R+) which is dense in L2(R+). The probability
current is as following:

J =

∞
∫

0

Im

(

9† ∂9

∂r

)

r2 dr =

∞
∫

0

Im

(

(r9†)
∂(r9)

∂r

)

dr (31)

so the results for 1D case can be used. Introducing 2-spinor
boundary-value vectors:

8 =

(

φ↑
φ↓

)

, 8′ =

(

φ′↑
φ′↓

)

(32)
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FIGURE 9 | Zone structure of r − X1 - comb. Red and green are for “minus” and “plus” branches in Eq. (26) correspondingly.

FIGURE 10 | Zone structure of r − X4 - comb. Red and green are for “minus” and “plus” branches in Eq. (27) correspondingly.
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where

φα = lim
r→0

rψα(r)

from Eq. (31) we get:

8′ = W8 (33)

whereW is the hermitean matrix. In standard decomposition on
the Pauli matrices:

W = � I + w · σ (34)

the scalar part (first term) corresponds to standard point-like
potential b.c. [2, 19]:

8′ = �8 (35)

and the states |↑〉 , |↓〉 evolve independently. There is also spin-
dependent repulsive/attractive version of 35:

8′ = ω

(

1 0
0 −1

)

8 (36)

which might be interpreted as the point-like potential with
internal spin so that the sign of the potential depends on the
spin-spin orientation of the particle and the center. The vector
part (traceless second term) of Eq. (34) describes polarizational
contact interactions with the spin-flip b.c.:

8′ =

(

0 z
z∗ 0

)

8 , z ∈ C (37)

These b.c.’s in general describe how spin of an incident particle
(e.g., an electron) interacts with the electrostatic potential
localized at the singular point. In the absence of the external
magnetic field the only mechanism for acting on spin in such
situation is the relativistic spin-momentum coupling which we
discuss in the following section.

3. PHYSICAL ORIGIN OF THE SPIN-FLIP
BOUNDARY CONDITIONS

The spin-flip point interactions introduced above make the

spin operator no longer the integral of motion. There are two
obvious physical origins for it (a) an external magnetic field
with x, y-components and (b) spin-momentum coupling (Rashba
coupling). The explicit k-dependence of the amplitudes of the
spin-flip processes indicates that these interactions are due to
spin-momentum coupling. Thus the physical interpretation of
interactions represented by the b.c. matricesMr , M̃r̃ can be given
in terms of the Rashba Hamiltonian [7, 8] (see also [20] and
reference therein). Indeed, the Pauli Hamiltonian Eq. (1) as well
as the current density Eq. (3) can be derived as the non relativistic
limit for the Dirac Hamiltonian

ĤD = α ·
(

p̂− A
)

+ β m+ ϕ (38)

where α = αi, i = 1, 2, 3 and β are the Dirac matrices

α =

(

0 σ

σ 0

)

, β =

(

I 0
0 −I

)

(39)

with I being 2 × 2 unit matrix. They act in the space of
bispinors9 :

9D =

(

ξ

η

)

(40)

where spinors ξ and η represent particle and hole with respect
to the Dirac vacuum states respectively [10]. The probability
density is:

JD = 9
†
D α9D (41)

and in non relativistic limit transforms into

J = ξ∗ σ η + η∗ σ ξ (42)

with

η =
1

2m
v̂ ξ (43)

Here v̂ is the velocity operator. In the absence of external
electromagnetic field this is equivalent to the following reduction
of the bispinor in 1-dimensional case

9D →

(

ξ

ξ ′

)

(44)

so that the boundary element 4-vector 12 appears. Also we refer
to the paper [21] where mass jump matching conditions were
derived for the Dirac Hamiltonian in a graphen-like material
where the velocity vF at the Fermi level serves as the speed of light.

The expansion of next order generates the spin dependent
operator in the Hamiltonian:

ĤSP = λ σ ·
(

∇ϕ × p̂
)

(45)

It couples the spin with the momentum due to inhomogeneous
background of the electric potential ϕ. In the limiting case of
point-like interaction on the axis when ∇ϕ → 0 on both
sides of the singular point this term drops out and should be
interchanged with the boundary condition for the boundary
vector 12 of the Pauli Hamiltonian 1. The conservation of the
corresponding probability density current Eq. (3) provides self-
adjointess of the boundary conditions for Eq. (1) in the presence
of point-like singularity.

As a result, all extensions Xi , i = 1, 2, 4 which are
singular limiting cases of the spatial distribution of the external
electric field potential ϕ can be augmented with the spin-flip
mechanism. Thus Eq. (25) defines the one-dimensional analog
of the Hamiltonian with the point-like Rashba spin-momentum
interaction [7].

4. CONCLUSION

The main result of the paper is that those extensions of the
Schrödinger operator which are physically constructed on the
basis of the inhomogeneous distribution of the electric field
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potential ϕ(x) can be augmented with the spin-flip mechanism.
Note that in Eq. (24) both r-coupling andµ-parameter determine
the spin-flip mechanism. This is in coherence with the results
of Kulinskii and Panchenko [17] where X2 and X4 extensions
were treated on the common basis of the spatial dependent
effective mass. In its turn it is caused by the electrostatic field
of the crystalline background. So it is not a surprise that these
extensions can be combined through spin-momentum coupling
in the Rashba Hamiltonian thus forming the “internal” magnetic
field. In contrast to this pure “magnetic” X3-extension which is
due to the external magnetic field does not couple with other
Rashba point-like interactions.

Thus we can state that all point-like interactions δ, δ′-local and
δ′-nonlocal (in terms of [22]) which are due to inhomogeneous
electrostatic background can be augmented with the Rashba
(spin-momentum) coupling. It is interesting to check this result
independently using the Kurasov’s distribution theory technique
[12] and modified correspondingly for spin 1/2 case. Also we
expect that such b.c.’s can be related to the zero-range potential
models with the internal structure of the singular point studied
in Pavlov [23]. This will be the subject of future work.
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We introduce contact interactions defined by boundary conditions at the contact

manifold Ŵ ≡ ∪i,j{xi = xj}. There are two types of contact interactions, weak and strong.

Both provide self-adjoint extensions of Ĥ0 the free hamiltonian restricted away from Ŵ.

We analyze both of them by “lifting” the system to a space of more singular functions:

the map is fractioning and mixing. In the new space we use tools of Functional Analysis.

After returning to physical space we use Gamma convergence, a well-known variational

tool. We prove that contact interactions are strong resolvent limits of potentials with

finite range. Weak contact of one boson with two other bosons leads to the low-density

Bose-Einstrin condensate. Simultaneous weak contact of three bosons produces the

high-density condensate which has an Efimov sequence of bound states. In Low Energy

Physics strong contact of one particle with another two produces an Efimov sequence of

bound states (we will comment briefly on the relation with the effect with the same name

in Quantum Mechanics). For N bosons strong contact gives a lower bound −CN for the

energy. A system of fermions in strong contact (unitary gas) has a positive hamiltonian.

We give several examples in dimension 3,2,1. In the Appendix we describe the ground

state of the Polaron.

Keywords: contact, gamma convergence, interaction, Efimov, Bose Einstein

1. INTRODUCTION

In Classical Mechanics constraints we describe forces restricting the motion of two systems when
they are in contact.

In Quantum Mechanics it is convenient to use the Heisenberg representation and describe the
system by means of self-adjoint operators on some function space. Each self-adjoint operator has a
domain of definition.

We consider first in some detail the dynamics in R3 and later consider the case of dimension two
and dimension one.

Contact (zero range) interactions in R3 are defined by imposing that the wave function in the
domain of the hamiltonian satisfies at the coincidence manifold Ŵ

Ŵ ≡ ∪i,jŴi,j Ŵi,j ≡ {xi − xj} = 0, i 6= j xi ∈ R3. (1)

the boundary conditions

φ(X) =
Ci,j

|xi − xj|
+ Di,j i 6= j (2)

18
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These conditions were used already in 1935 by Bethe and
Peirels [1] in the description of the interaction between a proton
and neutron.

They were later used by Ter-Martirosian and Skorniakov [2]
in their analysis of the three-body scattering within the Faddeev
formalism. We shall call them Ter-Martrosian [2] boundary
conditions. In the weak contact case for each contact there
is a zero-energy resonance i.e., a function that at infinity is
proportional to 1

|xi−xj|
.

For contact interactions it is easy to determine the spectra;
the interest in the subject was renewed in Theoretical Physics
by recent advances in the theoretical formulation of low energy
physics and also by the flourishing of research on ultra-cold
atoms interacting through potentials of very short range.

The T-M boundary conditions can be described by potentials
Vi,j(|xi − xj|) and Ui,j(|xi − xj|) hat are distributions supported by
the boundary

Vi,j = −Ci,jδ(xi − xj)
d

dρi,j
Ui,j(ρi,j) = −Di,jδ(xi − xj)

Ci,j > 0 Di,j > 0 ρi,j = |xi − xj| (3)

This can be verified by taking the scalar product with a function
in the domain of Ĥ0 (the free hamiltonian restricted to functions
that vanish in a neighborhood of Ŵ) and integrating by parts.

This condition implies a very singular modification of the free
dynamics at coincidence hyper-planes.

At the boundary, the solutions are not in the domain of the
free hamiltonian; solution of the Schrödinger equation is only
meant in a weak sense, after averaging with a smooth function
and integrating by parts.

The equation holds in the sense of quadratic forms. Quadratic
form techniques play an important role.

2. STRONG AND WEAK CONTACT

We call strong contacts the self-adjoint extension characterized by
Di,j = 0 and weak contacts the one characterized by Ci,j = 0.

From a mathematical point of view, the resulting operators
are self-adjoint extensions of the symmetric operator Ĥ0 , the free
hamiltonian for three particles of mass m defined on functions
that have support away form Ŵ.

Notice in the case of strong contact both the free hamiltonian
and the potential define quadratic forms (of opposite sign) on
absolutely continuous functions.

The (negative) potential is defined on the larger class of
continuous functions and there takes a finite value.

On continuous functions that are not absolutely continuous
the quadratic form of the free hamiltonian “is infinite.”

Therefore, in a two-particle system strong contact cannot
be defined.

Weak contact can be defined but its domain contains a zero-
energy resonance.

We shall prove that in three particle system separate strong
contact of one particle with two other particles can be defined.

If the potential is sufficiently strong the system has an
Efimov spectrum.

We consider mainly the case in which all particles have the same
mass. In the case of strong contact of one of the particles with the
other two the spectrum of Efimov type.

A small difference in the masses does not change the structure
of the spectrum.

The (energy) scale is given by the mass and by the ratio
between the strong and weak contact coefficients, if they are
both present.

In the case of weak contact, the distributional potential at
the boundary has the same scaling property under dilation as
the kinetic energy. Therefore, the hamiltonian of weak contact
is scale covariant under the dilation group.

This by itself is an indication of the presence of a resonance.
Point interactions [3] can be seen as a weak contact interaction
between two particles one of which is infinitely massive (with
wave function concentrated in a point).

We emphasize that both strong and weak contact hamiltonian
are needed to classify completely the zero range interactions.

We will prove that they produce complementary and
independent effects.

Both effects are independent from those due to the
possible presence of regular potentials (that may cause
further resonances).

For the proof of independence, we shall use a general form for
the resolvent of the interacting system, due to Krein (we use the
Konno and Kuroda [4] improved version).

It should be noted that there is another “natural” extension of
Ĥ0 which is obtained by imposing Dirichlet boundary conditions
on some or all contact, manifold.

Imposing Dirichlet boundary conditions is an alternative
procedure and does not correspond to the limit of attractive
potentials Vǫ .

Remark: To make a connection with the interaction trough
two-body potentials, we will prove that the three-body strong
contact hamiltonian is limited, in a strong resolvent sense, to
Hamiltonians with two body potentials that scale as Vǫ(|x|) =
1
ǫ3
V( |x|

ǫ
).

Two body weak contact is the limit, in strong resolvent sense,

of hamiltonian with potentials that scale as Uǫ(|x|) = 1
ǫ2
U( |x|

ǫ
)

and have a zero energy resonance.
We will show that in general (and not only for point

interactions [3]) weak contact requires the approximating
hamiltonians to have a zero-energy resonance (infinite
scattering length).

Since in the case of contact interactions the spectra and
spectral properties can be given explicitly, contact interactions
are a valuable tool for very short-range potentials.

We shall analyze in detail the case of the separate strong contact
of a particle with other two (all particles have the same mass)
and the case of the (weak) contact between two pairs of particles
which are themselves in strong contact.

With the same formalism we analyze the case of three particles
in which every particle has a weak contact interaction with the
other two.

Notice that simultaneous strong contact of three particles leads
to divergences [5].
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3. MATHEMATICAL FORMULATION

From a mathematical point of view the problem of zero range
interaction between three particles was first analyzed by Pavlov
[6] who investigated the self-adjoint extensions defined by the
condition that the wave function takes a finite value at the
boundary Ŵi,j (weak contact).

The problem was later studied by Minlos [7, 8] concentrating
on (the physically relevant) case of two identical particles one
interacting through “zero range potentials” with a particle of the
same mass.

The same analysis applies to a system of three identical
particles in which each has a strong contact with the other two.
For the sake of simplicity all particles have mass one.

To analyze the system, we introduced a compact invertible
map (the Krein map K ) to a space of more singular functions.
The map depends on a positive parameter λ; this parameter will
play a role in the semiclassical limit.

We call the map “Krein map” K because our steps are in
the path of the theory of self-adjoint extensions of positive
operators by Birman [9] and Krein [10], but on the side of
quadratic forms as suggested in Klaus and Simon [11] (the
advantage of this formalism is also remarked in Cassano and
Pizzichillo [12]).

The idea of using this map came from reading [7, 8] and
therefore we will call Minlos spaceM the image space.

The Krein operator is (H0 + λ)
− 1

2 .
The Krein map acts differently on the kinetic term and on the

potential tem.
It acts on the kinetic energy (seen as operator) as follows

(H0 + λ) → (H0 + λ)
1
2 .

It acts on the delta potential (seen as quadratic form) as follows

δ → (H0 + λ)
− 1

2 δ(H0 + λ)
− 1

2 .
Since for strong and weak contact the distributional potential

“commutes” with the free hamiltonian (as seen by taking the
Fourier transfor) in M the quadratic form is also the quadratic
form of δ(H0 + λ−1 and this shows a formal relation with
Birman [9] and Krein [10].

For very short distances the Krein map enhances the potential
term with respect to the kinetic energy.

As a consequence, the quadratic form kinetic energy
+ potential may become unbounded below (the potential
is attractive).

Notice that the Krein is invertible; after inversion, the system
was not changed.

The Krein map is only a tool to extract information, a
magnifying glass

We distinguish between two cases.

a) Weak contact
If inM the result is a unique strongly closed quadratic form,
by rotation invariance it can be decomposed into strictly
convex quadratic form.
Their image under inversion of the Krein map are weakly
closed strictly convex quadratic forms.
Since the forms are bounded below (the inversion
changes the topology of the space) they can be closed

strongly [13] and define self-adjoint operators in
“physical” space.
Depending on the strength of the potential there may be a
finite number of bound states.

b) Strong contact
In position space in for l = 0 by construction the potential
term is the sum of a first order pole (with negative coefficient
−C0) and a smooth positive quadratic form 40 which is zero
on the diagonal.
The form 40 corresponds to a bounded positive operator; its
contribution can be analyzed using perturbation theory.
Since the Krein map is only an instrument to evidence
general features of the interaction term at small distance, such
bounded operators play no role in the following. We shall
therefore neglect it.

If C0 is sufficiently large one has a Weyl limit circle degeneracy
[14] and a one-parameter family of self-adjoint extensions all
unbounded below and each with an infinite negative point
spectrum that diverges linearly. Inversion of the Krein map gives
a family of quadratic forms that are only weakly closed and
bounded below.

If there is one which admits a strong closure, this form defines a
self-adjoint operator in physical space with an Efimov spectrum.

This form is obtained using Gamma convergence, a procedure
often used in the analysis of finely fragmented materials (we will
give later the definitions).

It is a minimization procedure for families of strictly convex
forms (not necessary quadratic).

Gamma-convergence selects from a sequence of strictly convex
forms, a unique one that has a strong closure. This selected form
is called Gamma limit. The name Gamma limit is used because
Gamma convergence is a minimization process.

Recall that the Gamma limit of a sequence of strictly convex
weakly closed forms Fn in a topological space Y is the unique
weakly closed quadratic form F such that for any subsequence
the following holds

∀y ∈ Y , yn → y, F(y) ≤ liminfF(yn) limsupF(yn) ≥ F(y)
(4)

The limited form is strictly convex and therefore
strongly closable.

The condition for the existence of the Gamma-limit is that the
sequence be contained in a compact set of Y . In the present case
Y has the Frechet topology given by Sobolev semi-norms.

Compactness of bounded sets is assured by the absence of zero
energy resonances,

Therefore, there is a minimizing (Palais-Smale) sequence.
From the point of view of Functional Analysis, it is important

that Gamma convergence implies resolvent convergence [15].
Notice that this is precisely what is done in the study

of composite materials: one first acquires information on
the “small scale structure” and then draws conclusions at a
macroscopic scale.

We have noticed that the Krein map is fractioning andmixing.
This explains why inverting the Krein map requires tools

from the theory of homogenization (Gamma convergence
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[15]) a procedure often used in the analysis of finely
fragmented materials.

If the interaction is strong enough there is an Efimov sequence
of bound states.

It is easy to verify that these states (called “trimers”
in the Physics literature) have increasingly larger
essential support.

Therefore, only the first few members of the series can be
detected experimentally.

For an outlook on experimental and theoretical results on the
three and four body problem one can consult [16, 17].

4. STRONG AND WEAK CONTACT

INTERACTIONS AS LIMITS

a) Strong contact
We prove that strong-contact hamiltonians

are limited in a strong resolvent sense of finite
range hamiltonians.

This makes contact hamiltonians a valuable tool in the study
of interactions of a very small range.

We require that the potential V(|x|) be of class C1. It defines
therefore a quadratic form inH

1.
By duality, it is a bounded map from H

2 to C1

(this explains why we find hamiltonians that are
bounded below).

We consider separately the restriction to irreducible
representation of the rotation group (the approximating
potentials are invariant under rotation).

The quadratic form associated to the potentials Vǫ is a
decreasing function of ǫ (the potential is negative).

Since there is no zero-energy resonance the sequence of the
approximating hamiltonians belongs to a compact subset for
topology given by the Sobolev semi-norms.

The potential V is negative therefore for any choice of V ∈
C1 ∩L1 the ǫ-dependent quadratic forms are stricly decreasing as
function of ǫ.

A lower bound is the quadratic form of the contact interaction.
A decreasing sequence in a compact set with a lower bound

always admits a converging subsequence.
If the sequence is strictly decreasing the limit point is unique.
If the potential is of class C1 the limit of this converging

minimizing subsequence belongs to the limit set of the
contact interactions.

Since this set contains only one element for any choice
of the L1 norm of the approximating potentials, the limit is
unique and coincides with the contact interaction with the
same strength.

Gamma convergence implies strong resolvent convergence
[15]. Therefore the sequence of self-adjoint operators with
potentials H0 + Vǫ , Vǫ ∈ C1 have in strong resolvent sense
a limit which is the resolvent of the strong contact hamiltonian
(which depends on the L1 norm of the approximation potentials
but not on the shape).

In turn strong resolvent convergence implies
convergence of spectra and of the Wave Operator in
Scattering Theory.

We have proved

Theorem 1: The hamiltonian of a system describing the strong
contact interactions of a particle with two identical bosons is
limit, in the strong resolvent sense, of hamiltonians with two
body negative potentials of class C1 that have support that shrinks

to a point with law Vǫ(|x|) = 1
ǫ3
V( |x|

ǫ
). The limit hamiltonian is

bounded below.
There are constant C1, C2 such that if |V|1 < C1 the negative

spectrum is empty, if C1 ≤ |V|1 < C2 the strong contact
hamiltonian has a finite negative spectrum while if |V1| ≥,C2 the
negative spectrum is of Efimov type (the sequence of eigenvalues
converges geometrically to zero).

In this latter case the eigenfunctions are centered on the
barycenter of the system and have increasing support. ♦

Remark: The same is true with the same proof in a three-
particle system in which each pair has a separate strong
contact interaction.

b) Weak contact
In the case of weak contact, the proof does not apply

because the domain of the limit operators contains a zero-energy
resonance and compactness in the topology of the Sobolev semi-
norms fails.

This is the reason why the approximating potentials V must
have a zero-energy resonance.

Since the potentials Vǫ are obtained by scaling the resonance
is independent from ǫ and can be chosen to be the same as the
resonance of the weak contact hamiltonian.

Therefore, the domain of difference between the
approximating potentials and the weak contact is inL2 and
one has compactness in the Sobolev semi-norms.

5. THE BIRMAN-KREIN-SCHWINGER

FORMULA

The role on Gamma convergence in Quantum Mechanics is
clearly seen considering the Birman-Krein -Schwinger formula
for the difference of the resolvents of two self-adjoint operators
H and H0 both bounded below.

(H + λ)−1 − (H0 + λ)
−1) = (H0 + λ)

−1Wλ(H0 + λ)
−1 (5)

where λ is greater than the lower bound of the spectra.
Wλ is the Krein kernel, the quadratic form of a symmetric

operator.
Usually H0 is the free hamiltonian, but one can make other

choices (for example H0 may be the magnetic free hamiltonian, a
positive operator).

The B-K-S formula, which is the basis for a perturbative
analysis, clearly shows the role of Gamma convergence for strong
contact in a non-perturbative setting.

This formula can be written as

(H + λ)−1 − (H0 + λ)
−1) = {Kλ}{Kλ}Wλ) (6)

where {Kλ} is the Krein map.
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This formula is ill-defined as it stands because the image of the
Krein map is a weakly closed form and the Krein map is defined
only for strongly closed forms (self-adjoint operators).

If the image is closable in the strong topology one can take its
closure before the second Krein map.

If not, one must select one of the weakly closed forms that has
a strong closure.

Gamma convergence is the instrument to make this selection.
In the more general setting the formula should be replaced by

(H + λ)−1 − (H0 + λ)
−1) = {Kλ}Ŵ({Kλ}Wλ) (7)

where the symbol Ŵ indicates that it is necessary to use
Gamma convergence.

6. BOUNDARY CHARGES

An important aspect of contact interactions is that they are
extension ofH0 that are entirely due to “charges at the boundary.”

In the present case the boundary is internal i.e., they are the
contact manifolds.

Compare with electrostatics: in that case the boundary
has co-dimension one and the Krein map can be
identified with the Weyl map from potentials to
charges.

It is therefore natural to refer to Minlos space as the space of
charges [18].

The distribution of “charges at the boundary” determine
uniquely the self-adjoint extension; each function in the domain
can be written as the sum of a part determined by the charges
and a regular part in the domain of H0. We sketch here the
proof.

Let H be the self-adjoint extension that represent the
contact interaction.

Choose λ in such a way that H + λI is invertible.
By construction, the quadratic form ofH+λ is the sum of the

quadratic form of H0 + λ and a quadratic form in Krein space.
The elements in the form domain of the contact hamiltonian

H are of the form ψ = φ + ζ where φ ∈ D(H0) and ζ is in Krein
space [11].

The action of H on elements in its domain is

(H + λ)ψ = (H0 + λ)φ ψ = φ + {Kλ}ψ (8)

The formal proof (modulo control of the domains) is as follows

((H + λ)ψ ,
1

H0 + λ
(H + λ)ψ)

= ((H0 + λ)φ,
1

H + λ
(H0 + λ)φ)

= (φ, (H0 + λ)φ)+ ({Kλ}φ,Wλ{Kλ}φ) (9)

This is same procedure as for finite range potentials; Gamma
convergence substantiates this formal argument.

Therefore, only “the space of charges” enters in the description
of the domain.

Notice the analogy with electrostatics; the singular part is
determined by the charges. The Weyl map takes the role of the
Krein map. ♥

7. SOME REMARKS

I
It is worth stressing the connection with the theory of

boundary triples [19].
This a generalization of the Weyl map in electrostatics from

potential in a bounded set � in R3 with regular boundaries to
charges at the boundary ∂�.

In this context the Krein map may be regarded as a Weyl map
between “potentials” and “charges” (the charges belong to a space
of more singular functions).

But in the present setting the “boundary charges” are placed on
a boundary of co-dimension three (the contact manifold) and not
on an external boundary of co-dimension one as in electrostatics
(and in most of the papers on boundary triples).

For contact interactions the boundary is internal [20].

II

As is often the case for variational arguments for quadratic
forms, the eigenfunctions of the minima are not in the domain
of the free hamiltonian.

The minimum is obtained “by compensation” of the
divergences of the kinetic and the potential contributions.

Since the eigenstates are not in the domain of H0 perturbation
theory does not apply.

The solutions of the Schrödinger equation with contact
interaction belong to the space 4 of functions that are at
any time twice differentiable (more precisely in H

2) away
from the contact manifold but have a 1

|xi−xk|
singularity at the

contact manifold.
Since the Schrödinger flow is dispersive the entire set of

solutions has this property.
Bound states are critical points of the energy functional (as in

the classical case). Scattering and Wave operators are defined in
the space4.

III
It worth recalling that Gamma convergence gives simple

results but since it is not a perturbative method it is difficult to
evaluate the error made in using contact interactions. The error
is of second order in ǫ (it is a minimization process) but the
coefficient is not determined.

In the application to nuclear physics a comparison with
experimental data [16, 17, 21] gives a reasonable agreement.

IV
One can take the limit in which the two masses of the particles

that are not in contact is taken to be infinite; the resulting
system is a particle in strong contact with two fixed points (a
two-point interaction).

Also, this system has no zero-energy resonance.
On the contrary one cannot assign infinite mass to the

particles which interact separately with the two other particles
(two identical particles in strong contact with a fixed point); the
procedure we follow gives in this limit a divergent result.
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8. ON THE ROLE OF GAMMA

CONVERGENCE

It is surprising that a formalism invented by de Giorgi more
than 50 years ago to handle singular variational problems, and
of common use in applied mathematics (and in industry) to
treat finely fractured materials, plays an important role in such
diverse fields as in the construction of self-adjoint extensions of
positive symmetric operators, in the determination of the Efimov
structure of three and four bodies systems in high energy physics,
in explaining the role of zero energy (Fesbach) resonances (and
the secret of the missing 1

N ) in the dilute case of Bose Einstein
condensates and in finding the structure of the ground state in at
high density.

9. SEMICLASSICAL LIMIT

The energy form for a three-body problem in which all particles
have equal mass and each particle has a strong contact interaction
with the other two can be evaluated on coherent states centered
on the points xi, i = 1, 2, 3 and with “classical momentum”
p1, p2, p3.

The result is the “classical” energy functional of the newtonian
three body problem.

The hamiltonian of the classical three-body problem
admits infinitely many periodic solutions which correspond to
critical points of the classical energy functional. Their energy
decreases geometrically.

The three-body problem and its periodic solutions are well
studied in Classical Mechanics.

In quantummechanics for identical bosons in strong pairwise
contact interactions there is an Efimov sequence of bound states
i.e., infinite sequence of bound states with negative eigenvalues
that decrease geometrically to zero (as in the classical case).

These are critical points of the quantum energy functional.
This suggests that the classical newtonian three body problem

be the semiclassical limit of the quantum mechanical problem of
strong contact interaction of one particle with the other two in a
system of three identical particles.

Notice that variational problems are studied using quadratic
forms (and not operators).

In the next section we shall show that the Krein map is related
to the semiclassical limit.

10. RELATION OF THE KREIN MAP WITH

SEMICLASSICAL LIMIT

We have indicated that in Milnos space the kinetic part of the
hamiltonian is represented by

√
H0 + λ for some (arbitrary)

positive λ.
In the three-body problem with strong contact in M the

contact potential is represented by the quadratic form of an
attractive Coulomb potential.

For the Krein map we can choose λ > 0 with the only
requirement that the operator H + λ is positive.

For λ large on can develop on a dense domain the square
root as

√

H0 + λ =
√
λ+

1

2

H0
√
λ
+ O(λ−

3
2 ) (10)

Setting 1√
λ
= h̄, apart from an irrelevant constant, this is to first

order in h̄ the free hamiltonian of the quantum system.
When evaluated on coherent states this is the classical

free hamiltionian.
When λ is large, in M strong contact potentials are

represented by the Coulomb potential− C
|xi−xi|

C > 0.

Therefore, for λ very large themapKλ can be related to a semi-
classical limit and in M the free hamiltonian tends (a part for a
large constant) to the Classical hamiltonian.

In the semiclassical limit the free hamiltonian is scaled by a
factor to h̄−2 and the Coulomb potential is scaled by a factor h̄−1.

If we identify the radius of the potential (the parameter ǫ ) with
h̄ (both have the dimension of a length) the limit h̄ = ǫ → 0 gives
contact interaction at a quantum scale, Coulomb interaction at a
semiclassical scale.

Therefore, the Newtonian three body problem can be considered
semiclassical limit of the quantum three body problem with
pairwise strong contact interaction.

Addition of a magnetic potential is represented as usual with
the substitution i∇ → i∇ + A.

11. WEAK CONTACT

Now we consider the case of weak contact.
Since the weak contact potential has the same

scaling properties under dilations as the kinetic energy
in order to have an hamiltonian which is bounded
below there can be at most as many weak contacts as
particles.

In R3 with Riemann stricture weak contact of two
particles as self-adjoint extension can occur only if there is
a zero-energy resonance (infinite scattering length for the
approximation potential).

If one of the particles has infinite mass (so that it
may be considered as a fixed point) weak contact is called
point interaction.

In Adami et al. [22], it is proved that this
extension cannot exist in a three-dimensional
manifold with a sub-Riemmannian manifold so
that the operator defined on R3 − {0} is essentially
self-adjoint.

In spite of the richness of the mathematics it has produced
weak contact of two particles has severe limitations in the
physical applications.

This is not the case for weak contact of two particles
in a three-particle system (the difference is that the position
of the barycenter of the two-particle subsystem cannot be
fixed).

In this case there is a self-adjoint extension which has a
bound state.

One can also consider simultaneous weak contact of three
particles. In this case the extension has an Efimov spectrum.
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We will discuss this case when we will analyze the Bose gas in
the high-density regime.

We shall consider first the case of two particles in
weak contact.

Now the [2] boundary conditions require that functions in the
domain take a finite value at the boundary.

In the study of weak contact, we can proceed as in the case of
strong contact and introduce the Minlos space.

The Krein map is induced again by the operator (H0 + λ)
− 1

2 .
This corresponds to fractioning but there is no mixing.
InM the kinetic energy is represented by the operator (H0 +

λ)
1
2 and the potential has a log(|xi − xj|) singularity at the

coincidence manifold.
The hamiltonian is covariant under dilation
Due to scale covariance this is the behavior of the wave

function also at large distances; this is the origin of the zero-
energy resonance.

Inverting the Krein map one has in physical space a weakly
closed quadratic form bounded below with a 1

|xi−xj|
behavior at

large distances and therefore a zero-energy resonance (the Krein
map does not alter the long-distance behavior).

It is strongly closed [13] and corresponds to a self-adjoint
operator bounded below and with a zero-energy resonance.

The hamiltonian and the Krein map are invariant under
rotations. Therefore, one can study separately the irreducible
components in the angular momentum sectors.

In each of them the weak contact hamiltonian is the limit in
strong resolvent sense of the hamiltonian with the approximation
potentials Vǫ but in the L = 0 sector a zero energy resonance must
be subtracted away before on can use compactness to prove the
existence of the limit.

This explains why in the case of weak contact of two particles
the approximating potentials must have a zero-energy resonance.

Remark: The case of a weak interaction in a two-particle system
is discussed in Albeverio and Hoegh-Krohn [3] using methods
of Functional analysis in the case when one of the particles has
infinite mass. This particle may be considered as a fixed point
(point interaction).

The presence of a zero-energy resonance implies a singularity
of the resolvent at zero momentum and this requires an accurate
and difficult estimate of the zero-energy limit in the B.K.S.
formula for the difference of two resolvents [3].

In Albeverio and Hoegh-Krohn [3], this analysis is presented
for the weak contact interaction of a particle with a fixed point (a
particle of infinite mass) but the same analysis can be done for the
case of weak contact interaction of two particles in the reference
frame of the barycenter.

12. A PARTICLE IN WEAK CONTACT WITH

A PAIR OF IDENTICAL PARTICLES

Consider now the case of a particle in weak contact with a pair of
identical particles.

We use the same Krein map as the case of strong contact.
Therefore, it corresponds to fragmenting the wave functions and
in mixing the two channels.

Again, we restrict attention to product states.
The Krein map is mixing and fractioning.
In Minlos space the boundary potentials are represented by

a function that has a logarithmic singularity at coincidence
hyperplanes (the derivative in polar coordinates has a

1
|xi−xj|

singularity).

The boundary potential and the kinetic energy transform
covariantly under dilation.

Therefore, the boundary potential in Minlos space behaves
also at infinity as log(|xi − xj|).

The kinetic energy is still represented by
√
H0 + λ.

Lifting to physical space one has a unique a three-body
operator. In the B.K.S. formula for the difference between the
resolvent of weak contact and the free resolvent, at the origin
in momentum space one has the inverse of a two-by-two matrix
with zero on the diagonal.

The matrix is therefore invertible and has a negative
eigenvalue (one may say that the two zero energy resonances
conspire to give a bound state).

Therefore, if the potential of the weak contact is
strong enough the system has a bound state and no zero
energy resonances.

The same occurs for the sequence of approximating potentials
with a zero-energy resonance.

Since there is no zero energy resonance in the difference, the
sequence in physical space of the difference the quadratic of the
weak contact and that form associated to the potentials Vǫ is
compact in bounded sets in the Sobolev topology it converges to
zero when ǫ → 0.

It has a (Palais.Smale) limit that represents

Proposition 1: A particle in weak contact with a pair of identical
particles is represented by a self-adjoint operator with one bound
state and no zero energy resonances.

It is the limit of the hamiltonians with potential Vǫ that scale
as Vǫ(x) = 1

ǫ2
V( |x|

ǫ
).

There may zero energy resonances due to additional regular
potentials, but we shall prove that their contribution is
independent of that of weak contact.

A direct study “in physical space” of the limit is not difficult.
We sketch some details (based on an unpublished manuscript
with A. Michelangeli).

From the analysis of B.K.S it follows that the resolvent R(z) =
1

H+z of H satisfies

R(z)− R0(z) = [R0(z)A
∗
ǫ ](1− Qǫz))

−1[AǫR0(z)] (11)

Aǫ =
√

Vǫ1 + Vǫ2 Qǫ(z) = Aǫ
1

R 0
(z)A∗

ǫ R0(z) = H0 − ǫz

(12)
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If V1 and V2 are of class C1, under the scaling V → Vǫ(x) =
ǫ−2V( x

ǫ
) one has

limǫ→0[
√

Vǫ1 (y1)+ Vǫ2 (y2)−
√

Vǫ1 (y1)−
√

Vǫ2 (y2)] = 0 (13)

and therefore the “overlap” vanishes when ǫ → 0 and one can
substitute A =

√

Vǫ(y1)+
√

Vǫ(y2).
Since Aǫ is the sum of two terms, one has four summands.
To estimate the limit ǫ → 0 perform in the integral over

internal variables a scaling x → ǫ
3
2 x.

The two integrations implicit in the right-hand side of (12)
provide a factor ǫ3; the product of the two potential provide a
factor ǫ−4.

Therefore, to find the limit one can neglect all contributions
that are of order>1 in ǫ.

To first order in ǫ there is only a separate contributions of the
zero energy resonances in each channel.

This is an invertible two-by-two symmetric matrix with zero
on the diagonal. It has therefore a negative eigenvalues.

Substitution in the B.K.S. formula for the difference of two
resolvents this produces a bound state if the potential is strong
enough and ǫ is sufficiently small.

The limit ǫ → 0 is the resolvent of the hamiltonian of the
system made of a particle of mass 1 in weak contact interaction
with two identical bosons of mass one.

Remark 1: The scaling x → ǫ
3
2 x that enters in the rescaling of

the integral over the internal variables transforms weak contact
interaction into strong contact.

We shall come back to this point when we will discuss the
Bose-Einstein gas in the high-density case.

Remark 2: The result does not depend on the masses of the
particles provided that they are not all zero.

If two of the particles have zero mass the bound state is the
Polaron [23]; we will consider this case in detail in Appendix 1.

If two of the particles have infinite mass the system represents
weak contact interaction with two fixed point (point interaction
with two fixed points).

This system has zero energy resonances and therefore the
Wave operator is a bounded map Lp → Lq for 1 < p ≤ q <∞.

13. THREE PARTICLES IN PAIRWISE WEAK

CONTACT: LOW DENSITY BOSE-EINSTEIN

CONDENSATE

The Bose-Einstein condensate is a relatively dilute gas of identical
bosons in weal contact.

The density is such that the probability to find a third particle
nearby is negligible.

Still, due to the zero-energy resonance, (a long-range effect)
the presence of a third particle is essential (the particle we
consider has a weak contact with two particles).

We have seen in the preceding section there is a
bound state.

We shall call�w this bound state.

Weak contact is the limit of an attractive potentials of very
short radius ǫ and a zero-energy resonance.

If ǫ is very small and if the gas is diluted one can choose
ǫ−1 = N and regard the subsystems as composed of only three
particles in weak contact. The bound state �w is stable because
the hamiltonian of the two-particle subsystem is positive (and
have a zero-energy resonance).

A zero energy (Fesbach) resonance is required for the interaction
of the two-body pairs. Once formed, the pairs are stable.

Since the gas is very diluted the probability that all three
particles are very close is negligible (notice the interaction has
range ǫ).

But the particles are identical and satisfy
Bose-Einstein statistics.

Their state is therefore “entangled,” and each pair has equal
probability to be in weak contact.

Since the particles are identical, it is as
if the system be composed of separate pairs
of particles.

The ground state of the system of 2N particles is the tensor
product of the vectors ⊗�i

w for all different two-body pairs
(properly symmetrized since the particles are identical bosons).

The error is of order 1
N .

Since the two (identical) bosons in the pair are in (weak)
contact and each of them satisfies the Schrödinger equation with
as potential the density of the other, each of two bosons satisfies
the Gross-Pitaewskii equation for a Bose-Einstein condensate
with an effective coupling potential due to the presence of a
zero-energy resonance [24].

Remark 1: In Benedikter et al. [25] to have the right scaling one
adds an extra N factor (N is the number of particles).

This scaling is justified with the assumption that each particle
contributes for a fraction 1

N .
In our approach the correct scaling is a consequence of

weak contact.

The probability of having a correlation with a third particle
(and therefore with another pair) vanishes as ǫ and this is the
basis for the proof of condensation in Khowles and Pickl [26].
Since weak contact is limit of a potential with very short range
1
N and the gas is very diluted the error term in neglecting the

interaction with the other pairs is proportional to 1
N and one can

use perturbation theory to describe the interaction between pairs.
To first order the ground state is a collection of non-

interacting weakly bound pairs.
Choosing ǫ ≡ 1

N permits a Fock space analysis.
We will not analyze further here this problem .

14. BOSE-EINSTEIN CONDENSATE, THE

HIGH-DENSITY CASE, THE NEW GROUND

STATE

Consider now the high-density case.
The particles are now simultaneously in weak contact.
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The interaction s represented, before taking the limit ǫ → 0
by the hamiltonian

Hint = H0 +
∑

i6=j6=k

1

ǫ2
V(

|xi − xj|

ǫ
) (14)

In Krein space we can use perturbation theory.
In the perturbation formula for the resolvent the terms that

depend only on two of the potentials give the same result of the
weak contact interaction of one particle with a pair.

We are interested in the contribution of terms that depend on
all three potentials.

In this contribution we can “artificially” take away two ǫ from
the denominator of one of the potential and “give” an ǫ−1 factor
to each of the other two (this artifice does not alter the result).

The remaining potential now plays no role.
Redistributing the ǫ is an artifice but it leads to the conclusion

that at high density the ground state of system is better described
considering a system of three particles one of which is in strong
contact with the other two.

The strong contact interaction takes place separately with the
two particles; since the particles are identical one has a gas two
particles strongly bound.

Remark that the presence of a third particle is mandatory
to define strong contact. The role of the third particle is to
prevent free motion for the barycenter of the two particles in
strong contact.

Call�s the ground state. To first order the ground state of the
high-density Bose-Einstein gas is⊗i�

i
s.

It is not related to the ground state ⊗i�
i
w of the diluted

Bose-Einstein gas.
Since the two (identical) bosons in the pair are in

strong contact, each of them satisfies the Schrödinger
equation with as potential the density of the other i.e.,
the focusing cubic Schrödinger equation (and not the
Gross-Pitaewskii equation which has a different effective
coupling constant due to the presence of a zero energy
resonance) [24].

15. EFIMOV EFFECT IN QUANTUM

MECHANICS

The Efimov effect in Quantum Mechanics is the presence of an
Efimov sequence of bound states for a particle that moves in a
potential that is the sum of two potentials which taken separately
have a zero-energy resonance.

In spite of the same name, the effects have totally
different origin.

They lead to the same result because in the two cases there is
the same balance of kinetic and potentials energies.

We assign +2 for each of the three particles particle (since they
satisfy a second order differential equation) and –3 two strong
contacts (the power of ǫ−1 in the scaling). If the difference is zero
one has Efimov spectrum.

In the quantum mechanical case there is only one second
order differential operator and there are two weak contacts with

two resonances; for the counting of weights this is the same as a
weak contact with the resulting bound state.

One assigns - 2 to weak contact with bound state. The net sum
is zero as in the three-particle case with strong contact.

Therefore, one can expect to have the same effect (this
counting is not a substitute for proofs but, in spite of its empirical
flavor, provides very efficient indications).

A proof of the Efimov effect in Quantum Mechanics for
contact interactions can be obtained using the Krein map.

The Krein map is well defined.
Setting equal to one the mass of the particle in Minlos space

the kinetic term is
√

− 1
21+ λ.

The two zero energy resonances conspire to a give a bound
state and this gives a negative quadratic form with a singularity
of degree –1 at the origin in position space.

This leads to a Weyl limit circle singularity as in the three
particles case.

Inverting the Krein map and making use of Gamma
convergence one obtains the Efimov spectrum as in the three-
particle case.

Remark: Notice that we have used only the existence of two zero
energy resonances and the fact that the Schr odinger equation is
of second order; therefore, this analysis through the Krein map
applies as well to the case of smooth potentials, leading to an
alternative proof usual Efimov effect in QM [27, 28].

In the same way one can analyze the case of the Pauli equation
for non-relativistic spinors.

The Pauli equation is a first order differential equation (for
spinors) with positive generator.

In one dimension one can use as contact potential the delta
function; this gives a contact of weak type at the vertex for a
system of three particles that move on a Y-shaped graph and
interact at the vertex.

There is a bound state since there are three operators and
only two weak contacts (in one dimension the delta function
represents a weak contact interaction because it scales as the
differential operator).

At the end we shall return briefly to this system.

16. STRONG AND WEAK CONTACT ARE

INDEPENDENT

Theorem 2: In three dimensions for N ≥ 3 contact
interactions and weak-contact interactions contribute separately
and independently to the spectral properties and to the boundary
conditions at the contact manifold.

Contact interaction contribute to the Efimov part of the
spectrum and to the T-M boundary condition

ci,j
|xj−xi|

at the

boundary Ŵ ≡ ∪i,jŴi,j.
Weak-contact interactions contribute to the constant terms

at the boundary and may contribute to the (finite) negative
part spectrum. ♦
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Remark: This theorem states that all results of the weak-contact
case (in particular for point interactions) remain valid when
strong contact interactions are added.

Proof. For an unified presentation (which includes also the proof
that the addition of a regular potential does not change the
picture) it is convenient to use a symmetric presentation due to
Konno and Kuroda [4] (who generalize previous work by Krein
and Birman) for hamiltonians that can be written in the form

H = H0 +Hint Hint = B∗A (15)

where B, A are densely defined closed operators with D(A) ∩
D(B) ⊂ D(H0) and such that, for every z in the resolvent set of
H0, the operator A

1
H0+zB

∗ has a bounded extension, denoted by
Q(z). We give details in the case N = 3.

Since we consider the case of attractive forces, and therefore
negative potentials it is convenient to denote by−Vk(|y|) the two
body potentials.

The particle’s coordinates are xk ∈ R3, k = 1, 2, 3.
We take the interaction potential to be of class C1 and set

Vǫ(X) =
∑

i6=j

[Vǫ1 (|xi − xj|)+ Vǫ2 (|xi − xj|) (16)

where V1 and V2 are negative and V3(|y) is a regular potential.

For each pair of indices i, j we define Vǫ1 (|y|)) =
1
ǫ3
V1(

|y|
ǫ
) and

Vǫ2 (|y|) =
1
ǫ2
V2(

|y|
ǫ
).

The limit corresponds, respectively to contact and
weak-contact.

We define Bǫ = Aǫ =
√
−Vǫ .

For ǫ > 0 using Krein resolvent formula one can give
explicitly the operator Bǫ as convergent power series of products
of the free resolvent R0(z),Rez > 0 and the square roots of the
sum of potentials Vǫ

k
k = 1, 2, 3. One has then for the resolvent

R(z) ≡ 1
H+z the following form [4]

R(z)−R0(z) = [R0(z)B
ǫ][1−Qǫ(z)]−1[BǫR0(z)] z > 0 (17)

with

R0(z) =
1

H0 + z
Qǫ(z) = Bǫ

1

H0 + z
Bǫ (18)

If ǫ > 0 the Born series converges and the resolvent can be cast
in the Konno-Kuroda form [4], where the operator B is given as
(convergent) power series of convolutions of the potentialUǫ and
Vǫ1 with the resolvent of H0.

In general

√

Vǫ1 (|y|)+ Uǫ(|y|) 6=
√

Vǫ1 (|y|)+
√

Uǫ(|y|) (19)

and in the Konno-Kuroda formula for the resolvent of the
operator Hǫ one loses separation between the two potentials Vǫ1
and Uǫ .

Notice however that, ifVǫ1 andU
ǫ are of class C1 , the L1 norm

of Uǫ vanishes as ǫ → 0 uniformly on the support of Vǫ1 .

By the Cauchy inequality one has

limǫ→0‖
√

Vǫ1 (y).
√

Uǫ(y)‖1 = 0 (20)

Therefore, if the limit exists the strong and weak contact
interactions act independently.

In the same way one proves the independence of the strong
and weak contact interactions from the regular interaction.

The weak-contact part has a limit in strong resolvent sense.
The limit is unconditional, i.e., it does not depend on the

particular denumerable subsequence ǫn → 0 used.
The strong contact part has a limit along minimizing

sequences by Theorem 1.
Therefore, the joint limit exits along these

minimizing sequences. ♥

17. WEAK-CONTACT CASE: SEPARATION

OF THE REGULAR PART

Consider now separateweak-contact interaction of a particle with
a pair of identical particles.

We allow for the presence of a “regular part” represented by
a smooth two body L1 potential of finite range and call singular
part the quasi contact interaction and the resonance.

Theorem 3: For a weak-contact interactions the singular term
(pure weak-contact ) and the regular term in the two-body part
of the interaction contribute separately to the spectral structure of
the hamiltonian. ♦

Proof. For the proof we use again the Konno-Kuroda resolvent
formula but now for a system with potentials Vǫ2 + V3.

Recall that set Vǫ2 (|x|) =
1
ǫ2
V2(

|x|
ǫ
).

The Konno-Kuroda formula is now for Re(z) > 0 and Rǫ0(z) =
H0 + ǫz

1

Hǫ + z
−

1

H0 + z
= −

1

H0 + z
QǫBǫQǫ

1

H0 + z
(21)

Bǫ =
√

Vǫ2 + V3 Qǫ(z) = Bǫ
1

R 0
(z)Bǫ R0(z) = (H0 + ǫz)

−1

(22)
One can now repeat the procedure in Theorem 3.

By assumption V2 and V3 are of class C
1 and as ǫ → 0 on the

support of Vǫ2 the L2 norm of V3 is of order ǫ.
Therefore

‖(
√

Vǫ3 +
√

Vǫ2 )
2 − Vǫ3 − Vǫ2‖ = 0(ǫ) (23)

We conclude that in limit the potentials V2 and V3 contribute
additively to spectral properties.

The potential V2 (weak-contact) may contribute for a finite
or infinite number of elements of the spectrum (depending on
the masses and the coupling constants), the potential V3 gives a
contribution to the spectral measure.
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In both case there are no singularities at the bottom of the
(absolutely) continuous spectrum.

This proves Theorem 3. ♥

Remark: The zero-energy resonance we have found is due to a
very sort range potential (in the limit, zero range) whereas the
possible resonances of the regular potentials are due to their very
long range.

The presence of one does not interfere with the presence of
the other.

18. CONNECTION WITH OTHER

APPROACHES

Heat kernel renormalization

We comment briefly on the relation with the “heat kernel”
renormalization introduced in Erman and Turgut [29].

Start with the identity

∫ τ

0
e−H0+λdt = τ +

1

H0 + λ
+ O(

1

τ
) (24)

where H0 is the free hamiltonian.
The heat kernel renormalization consists by definition in

taking the limit τ → ∞ and neglecting the divergent constant.
SinceH0 + λ commutes (formally) with a delta distribution (a

constant in Fourier space) the heat kernel renormalization of the
potential Vǫ for the three-body system

Vǫ →
1

√
H0 − λ

Vǫ
1

√
H0 + λ

(25)

may be defined as a regularization map for ǫ > 0 and in the limit
ǫ → 0 is the interaction potential inM.

Recall that the Krein map is a “fractioning” of the “wave
function” (the wave function becomes more singular) while
switching the channels which results in mixing.

In this case this “renormalization” consists in using Gamma
convergence after the inversion of the Krein map (i.e., in
physical space).

This is clearly a non-perturbative scheme and does not require
“removing infinities.”

We recall that Gamma-convergence is equivalent to resolvent
convergence i.e., roughly speaking, convergence under the
assumption that one considers sequences of states on which the
hamiltonian stays bounded (this is the role of renormalization).

Interior boundary conditions

This approach has been proposed recently, mostly in view of a
second-quantization scheme [20, 30, 31].

With different wording and different analytical techniques
this approach has some similarities with the one which is
developed here.

After all, the boundary conditions at the contact manifold are
“interior boundary conditions.”

In an Appendix we develop a second quantization scheme
(similar to that in Lampart [30]) adapted to the self-adjoint
extensions discussed here.

It is a “baby second quantization scheme,” adapted to
the three-body contact interaction for one massive and two
massless particles, in which only the zero mass particles undergo
second quantization.

Notice that a quantum mechanical three body problem arises
naturally if creation and annihilation operators are “partially
dequantized” by choosing for two of the zero mass particles the
ground state of a system in which the zero mass particles are in
strong contact interaction with the massive one.

The ground state of the system is then obtained choosing
for the remaining particles the vacuum state of a suitable
representation of the c.c.r.

The resulting ground state is a model for the polaron [32],
the ground state of the Nelson model [23]. We discuss this
model in the Appendix. We can also in the same way find the
excited states below the continuum by choosing different bound
states of the three-body problem and the vacuum of another
suitable representation.

Changing the bound state changes also the representation.
Notice that this procedure limits the role

of strong contact interaction in quantization
problems to linear couplings of a particle and a
quantized field.

19. DETAILS FOR SOME SIGNIFICANT

CASES IN THREE DIMENSIONS

We study in the following systems of non-relativistic bosons and
fermions that satisfy the Schrödinger equation.

Later we will consider on a lattice electrons which are fermions
and satisfy the Pauli equation.

Since the Pauli equation is a first order differential equation,
weak contact plays the same role as strong contact in the
bosonic case.

For boson we shall discuss in what follow, both for strong
and weak contact , some relevant case; they are sufficient to draw
conclusions on a system of an arbitrary number of particles.

In particular we shall consider in three dimensions

I) A particle of mass m in strong or weak contact interaction
with two identical bosons of unit mass.

II) A particle of mass 1 in strong contact with two fermions of
the same mass.

III) Two pairs of identical bosons in strong contact whose
barycenters are in weak contact

IV) The same problem for fermions,
V) N pairs of boson or fermions in strong contact.

In the case of strong contact for fermions we prove that the
hamiltonian is positive for any value of N. This system is called
Unitary gas.

In the case of bosons, the (negative) lower bound of the
spectrum is linear in N.
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I

Consider first the case of a particle of massm in strong contact
interaction with two identical bosons of unit mass.

Setting again for simplicity λ = 0 the quadratic form in M is
the sum of two terms

Q = Q1 + Q2 (26)

where

Q1(φ) =
m

m+ 1
(φ,

√

H0φ) (27)

while the kernel of Q2 is

Q2(p, q) = −

2
1+m (p.q)

(p2 + q2)− 1
(1+m)

(p.q)
(28)

Again, this kernel quadratic reaches its minimum value at q = p .
In Fourier transform one has

B(m)
√
−1− D(m)

1

|x|
+4"(m) (29)

where B(m),D(m) are suitable positive functions of the parameter
m and 4′′ is a positive form with a smooth kernel that vanishes
on the diagonal.

We consider only the case 4 = 0. The contribution of 4 is
small and does not alter the conclusions.

Following Derezinky and Richard [14] proves that for each
eigenvalue l of the angular momentum there are threshold
N∗
l
, N∗∗

l
such that for m > N∗∗

l
the spectrum is absolutely

continuous and positive.
For N∗

l
< m ≤ N∗∗

l
there is a continuous family of self-

adjoint extensions, each with a negative eigenvalue, and for 0 <
m ≤ N∗

l
the negative spectrum is pure point and accumulates

geometrically to−∞ (a Weyl limit circle effect).
One can verify that for equal masses N∗∗

0 > 1 while N∗
l
< 1

for all l ≥ 1.
Therefore, in the equal mass case there is a family of

extensions; for each of them there is a family of bound states with
energies that diverge linearly to−∞.

Inverting the Krein map by Gamma convergence one has

Proposition 2: The hamiltonian of a pair identical bosons in strong
contact interaction with a third particle of the same mass has an
Efimov sequence of bound states if the interaction is strong enough.
The support of the wave functions is larger for decreasing energy;
the wave functions belong to the form domain. ♦

II

We consider next in R3 the case of a particle of mass m in
strong contact with a pair of fermions with the same mass.

The analysis proceeds as in the strong contact case but since
the contact is weak the integral in the integrand in Q2 must be
anti-symmetrized.

Now one has

(φ,Q1φ) =
m

m+ 1
(φ,

√

H0 + λφ) (30)

while the kernel of Q2 is

Q2(p, q) =
2

1+m

1

|p− q|2
(p2 + q2)2 −

4

(1+m)2(p.q)2
(31)

These are the quadratic forms inM that correspond, respectively
the kinetic energy and to the distributional potential.

For the study of spectral properties, it is convenient to notice
that the kernel of Q2 is positive (it has a positive maximum
at p = q).

Since the Krein map is positivity preserving in physical space
the operator is positive.

Proposition 3: The hamiltonian of a pair of fermions of mass m
which are in strong contact with a third particle of the same mass
has a positive spectrum. ♦

20. III, STRONG AND WEAK CONTACT IN A

FOUR BOSONS SYSTEM

We have analyzed the case of three particles.
Consider now a four bosons system. We assume that there is

a strong contact of any particle with two other particles ad in
addition there is a weak contact between the barycenters of any
two pairs.

Notice that the total degree of the kinetic terms is eight (two
for each particle) and the total degree of the interaction term
is also eight (three for each strong contact and two for the
weak contact).

Therefore, we expect to have an Efimov sequence of four-
bound states (quadrimers).

The analysis is simple in momentum space.
The explicit expressions of these forms in momentum space

were known to R.Minlos (private communication).
We choose as coordinates the difference of the coordinates

of the particles in strong contact and the difference of the
coordinates of the barycenters.

The strong interactions within a triple gives a contribution
that we have already analyzed.

The only difference is the presence of the weak interaction
between the barycenters. In Minlos space the kinetic energy is
represented by

√
H0 + λ.

The interaction is the sum of three terms Ci, i = 1, 2, 3.
C1 and C2 are the images inM of the convolution of the four-

particle Green function with the strong interaction potentials.

(φ,C1φ) = (φ,C2φ)

=

∫

dkdsdwφ̄(k,w)
φ(s,w)+ φ(k, s)

k2 + s2 + w2 + (k, s)+ (k,w)+ (s,w)

(32)

ContributionsC1,C2 refer to the three-particle case, i.e., a particle
in strong contact with two other particles.

It is different from the case of three particles we have
considered before because of the presence of a fourth particle.
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The presence of a fourth particle is irrelevant because it only
enters the definition of the Krein map, which is inverted at
the end.

C3 is a genuine four particle term which is not present in the
three-particle sector. It describes the (weak) interaction of the
two barycenters.

The corresponding quadratic form in M is

(φ,C3φ) = −

∫

dwdsdk
φ̄(k, s)φ(w− k+s

2 ,−w− k+s
2 )

w2 + 3
4 (k

2 + s2)+ 1
2 (k, s)

(33)

(this quadratic form was known to R. Minlos,
private communication).

The form has a simpler structure when written as a function of
the difference of coordinates of the barycenters of the two pairs.
In these coordinates it is the image in the four-particle sector of
an “effective” weak contact interaction between the barycenters
of the two pairs. Weak contact between the two barycenters gives
a system with at most a finite number of bound states.

Therefore, in Krein space the system is described by a two-
parameters family of operators which have an infinite number of
bound states with eigenvalues that diverge linearly to ∞ and a

self-adjoint operator wit at most a finite number of bound states.
Inverting the Krein map one obtains a two parameter families

of weakly closed forms.
By construction, the form is invariant under rotation but also

under permutation of the particles.
We decompose again in irreducible representation of the

rotation group and quotient it by the permutation group.
Each component is now strictly convex, and we can use

Gamma convergence to extract a convergent subsequence.
This give a unique weakly closed quadratic form bounded

below that can be closed strongly and provides a self-adjoint
operator with an Efimov spectrum.

Since it is a four-body system it describes an Efimov sequence
of quaternions.

Therefore

Proposition 4: If the interaction is strong enough a system of two
pairs of bosons in strong contact and with a weak contact between
the barycenter has an Efimov sequence of quaternions. ♦

Four-body Efimov states have been reported experimentally
[16, 21].

21. IV. THE CASE OF FERMIONS

Consider the system of two pairs of identical spin 1
2 fermions

of mass one which satisfy the Schrödinger equation and in
contact interaction. Spin 1

2 is required because antisymmetry
of the wave functions of parallel spins is zero at contact. The
generalization to N identical spin 1

2 fermions will describe the
unitary gas.

In M the quadratic form of the system is the sum a term
C0 which represents the kinetic part of form minus three forms
C1, C2 C3.

The explicit expressions of these forms in momentum space
were known to R.Minlos (private communication).

C1 and C2 are the images in M of the convolution of the
four-particle Green function with two delta singularities of the
potential between two fermions with opposite spin.

(φ,C1φ) = (φ,C2φ)

=

∫

dkdsdwφ̄(k,w)
φ(s,w)+ φ(k, s)

k2 + s2 + w2 + (k, s)+ (k,w)+ (s,w)

(34)

As in the tree particles case, when written in space
coordinates they have a Coulomb type singularity in
different variables related to the possible triples. But now
due to antisymmetry the coefficient of the Coulomb term
is positive.

C3 is a genuine four particle term which is not present in the
three-particle sector.

It represents an effective interaction between the barycenters of
the two pairs.

Notice that a pair of fermions with opposite spin has the
symmetry a boson.

The corresponding quadratic form in M is

(φ,C3φ) = −

∫

dwdsdk
φ̄(k, s)φ(w− k+s

2 ,−w− k+s
2 )

w2 + 3
4 (k

2 + s2)+ 1
2 (k, s)

(35)

It has a simpler expression when written as a function of the
difference of coordinates of the barycenters of the two pairs. In
these coordinates it is the image in the four-particle sector of M

of an “effective” contact interaction between the barycenters of
two pairs with opposite spin. Notice that only pairs of particles
enter this term.

The form can be decomposed into a symmetric and
antisymmetric part under interchange of the two pairs.

Only the kinetic energy contributes to the antisymmetric part;
this part is positive.

Also, the symmetric term of is positive.
Therefore, the quadratic form is positive.
Since the Krein map is positivity preserving the

same is true in physical space and the system is
described by a positive hamiltonian (with a zero-energy
bound state).

Proposition 5: The operator associated to a system two pairs of
identical fermions in strong contact and such that the barycenters
are in weak contact is a positive self-adjoint operator in L2(R12).
Its hamiltonian is the limit, in the strong resolvent sense, of
a sequence of approximating hamiltonians with potentials of
decreasing support. ♦

Remark: In Michelamgeli and Pfeiffer [33], positivity of the
spectrum was conjectured with the aid of a computer.

V: the case of N particles. We have considered so far the cases
N = 3 and N = 4.
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Consider now the case of N identical bosons.
For N particles the negative part of the spectrum

is entirely due either to a strong contact of tree
bodies or to the four-body contact described in
Proposition 4.

Therefore

Proposition 6: The energy of a gas of N bosons in strong
contact interaction is bounded below by −CN which
the positive constant C depends on the strength of
the interactions.

The system described by any number of identical
fermions in weak or strong interaction is described by a
positive hamiltonian. This system is often call often called
Unitary gas. ♦

22. TWO DIMENSIONS; SIMULTANEOUS

PAIRWISE WEAK CONTACT

In the two-dimensional case strong contact interaction is a
distributional potential δ(|xi − xj|) at the coincidence manifold.

It is the limit of the interaction through two-body potentials

of that scale as Vǫ(|y|) = 1
ǫ2
V(

|y|
ǫ
).

The Krein map is the same as in three-dimensional case.
Again, in Minlos space the free hamiltonian H0 is represented

by (H0 + λ)
1
2 and the potentials differ from − C

|xixj|
for a smooth

positive quadratic form.
One has therefore

Propostion 7: In two dimensions strong simultaneous pairwise
weak contact interaction of three bosons is represented by the
potential −C

∑

δ(|xi − xk), C > 0.
It is well defined in physical space through Gamma convergence.

It is the limit for ǫ → 0 of potentials that scale as Vǫ(|x|) =
1
ǫ2
V( |x|

ǫ
)

The system has an Efimov sequence of bound states. ♦

Since there are no zero energy resonances the mapping
properties of the Wave operator in physical space are Lp → Lq

for 1 < p ≤ q <∞.
This result has been obtained also for regular potentials in

Erdogan et al. [34]).

23. TWO DIMENSIONS, SEPARATE

STRONG CONTACT

Consider now a system of three identical bosons in which each
has a strong contact with the other two.

We describe in detail the hamiltonian of the resulting system.
To study the structure of the operator we study its quadratic

form and assume a before that the particles are identical bosons.
The wave function in the frame of reference of the barycenter is
best written as a function of one radial coordinate r and two Euler
coordinates on S3.

We define r2 = (|x1 − x3|)
2 + (|x2 − x3|)

2 xk ∈ R2, r ∈ R+.
In the Theoretical Physics literature this coordinates are

called “homogeneous.”

The quadratic forms we consider have the same structure
as in the case of three dimensions but in two dimension the
singularities are different.

Again, we use a Krein map with the compact operator
√
H0 + λ

− 1
2 ( for each particle there are two contacts).

For simplicity we take λ = 0 in the following formulae.
If we denote by xk ∈ R2 k = 1, 2, 3 the coordinates of

the three points with x1 + x2 + x0 = 0 one has in M for the
quadratic forms

Q(φ) = Q0(φ)+ Q1(φ) (36)

where

Q0 = (φ,
√

H0 + λ)φ) (37)

In the center of mass, using Fourier coordinates conjugated with
x1 − x3 and x2 − x3 , the kernel of Q1 is

1

(q21 + q22 + (q1, q2)+ λ)(q1 + q2)2 + λ
qi ∈ R2 (38)

Setting

(x1 − x3)
2 + (x2 − x3)

2 = r2 r ∈ R+ (39)

the kernel Q1 can be written in spatial homogeneous coordinates
as integral over S3 of a kernel −C 1

r + W(x1, x2, λ) where C > 0
andW is a smooth kernel which vanished in the diagonal.

On now proceeds as in the three-body case in R3 with weak
contact interactions.

Proposition 8: In two dimensions the pairwise strong contact of
three identical bosons is represented by a hamiltonian which, if the
interaction is strong enough, has a bound state.

Since there are no zero energy resonances the Wave Operator
for the system is a bounded map from Lp to Lp for all
1 < p <∞. ♦

24. ONE DIMENSION. LATTICE

STRUCTURE. THE FERMI SEA

The purpose of the following section is manly to have a rough
picture of the Fermi sea.

We follow the usual description according to which nuclear
forces the conduction electrons to move on a graph-like stricture
with Y-shaped vertices.

The nucleus can be considered fixed at the center of the cell
have a weak contact with the two inner electrons (weak contact
at a larger scale is Coulomb interaction).

The system has therefore a bound state of energy −K and the
two internal electrons have a wave function (essentially) localized
at the center of the cell.

Conduction electrons move on the graph and satisfy the
Pauli equation (a first order differential equation for a two-
component spinor).

The generator is the (positive) Pauli operator

P ≡ iσ .∇ +mI, m > 0 (40)
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(σi are the Pauli matrices and I is the unit matrix).
Notice that the structure of the graph is entirely due to the

position of the nuclei. The vertices are Y-shaped.
The interaction of the conduction electrons on the lattice takes

place at the vertices.
The lattice stricture forces the conduction electrons to change

direction at the vertices; before and after the vertex the conduction
electrons are closer to the nucleus.

This can be represented by a (negative) potential. The kinetic
energy is not changed; in this sense the interaction is attractive.

We describe it by a weak contact at the vertex and therefore
there is a zero-energy resonance.

Since there are two electrons moving on the lattice this gives a
bound state.

Since the momentum is discontinuous at the vertex the
interaction depends on both position a momentum.

We represent this by allowing the (negative) energy of this
bound state to be in an interval [−c, 0).

In an extended crystal by the Pauli exclusion principle all these
states are occupied: this is the Fermi sea.

The electrons “near the surface” have negligible energy.
The wave functions are essentially flat, and they have “a
Dirac spectrum.”

In presence of an electric field along the edge, since the
electrons are charged particles, a flow of current is generated.
Spins at the two ends of an edge form a magnetic dipole;
in presence of a magnetic field the orientation of the dipole
is changed.

At the semiclassical scale one can introduce smooth magnetic
fields (in the previous scale they correspond to discontinuous
potentials); at this scale the motion of electrons on the surface
of the Fermi sea is seen as classical motion of point particles
which satisfy the laws of classical electrodynamics [35]. The
formalism we have described leaves room also to the “magnetic”
Pauli operator.

Of course, at the semiclassical level in presence of
electromagnetic fields the Fermi surface can have a
complicated structure and the description of dynamics
of a point on the Fermi surface may require a refined
analysis [35].
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APPENDIX 1

A. THE POLARON

We treat the Polaron problem ([N][G][FS]) in the context of
second quantizaton.

Second quantization can be thought as Weyl quantization for
a system with an infinite number of particles.

Lebesgue measure is substituted by a measure on function
space (Gauss measure in the Bose case).

Functions on phase space can be represented by the
coefficients of their Fourier transforms.

Very roughly speaking for bosons in second quantization a
wave function f is substituted with of a scalar field 9(f ) =
a(f ) + a∗(f̄ ) where a(f ) (resp. a∗(f̄ )) destroys (resp. creates) a
particle with wave f . Both terms are linear in f .

The field satisfies the (non-relativistic) commutation relations
[9(f̄ ),9(g)] = (f , g).

In the Fock representation one postulates the existence of a
vector � (the “vacuum”) such that a(f )� = 0 ∀f in the Hilbert
space.

Fock space is the space generated by repeated action of the
a∗(f ) on� (this justifies the name “creation operators”).

We shall use the formalism of second quantization and denote
by a((k) (resp. a∗(k)) the annichilation (resp. creation) of a
zero mass particle “of momentum k” (we omit the more precise
definition).

In the following we consider the contact interaction of the
particle of mass m with any two non relativistic zero mass
particles in the second quantization formulation for the field.

This system is called polaronic and the ground state is the
polaron [N].

We take the interaction to be weak contact of the massive
particle with any two of the zero mass particles.

We approximate the interaction by using the two-body

potential Vǫ = 1
ǫ2
V( |xi−x|

ǫ
) where V ∈ C1.

Hǫ = H0 +

∫

Vǫ(x− y1)9(y1)dy1 +

∫

Vǫ(x− y2)9(y2)dy2

H0 = −
1

2m
1x +

∫

ω(p)a∗(p)a(p)dp (A1)

where ω(p) = |p|2 and the a(k) satisfy the c.c.r.
The limit ǫ → 0 is the contact interaction of the particle with

the field.
We have proved that this system has a bound state 9 . We

denote by Ĥ the hamiltonian.
We use the formalism of second quantization paying attention

to the fact that for zero mass particles there infinitely inequivalent
representations of the c.c.r.

A vector of finite energy in the Hilbert space may contain
an infinity of zero mass particles with smaller and smaller
momentum (this is known as infrared problem).

We denote byH the limit hamiltonian. It describes the contact
interaction of the massive particle with the cloud of zero mass
particles.

To find the structure of the ground state (the Polaron) we will
“partially dequantize” the field by choosing properly the state of
two of the zero mass particles (and therefore the representation of
the c.c.r. since the zero mass particles are identical).

We have previously remarked that the weak contact
interaction of a particle of massm with two particles of zero mass
leads to a bound state.

Let8(x) be the wave function.
To find the ground state of the combined system we fiber the

second quantization space of the zero mass particles choosing as
parameter the position of the particle of mass m.

We choose the representation by defining annichilation
operators

Ax(y) = a(y)−8(x) (A2)

For each value of x the (distribution valued) operators Ax(y)
satisfies the same c.c.r as the operators a(y) but the two
representations are inequivalent.

Different values of the position of the particle of mass m
correspond to a different “infrared behavior” of the mass zero
field.

If one writes the Hamiltonian as a function of the field Ax(y)
one obtains

H = Ĥ +

∫

ω(p)A∗
x(p)Ax(p)dp

Remark: In the Theoretical Physics literature this operation goes
under the name of “completing the square” and the particle of
positive mass is now “dressed” with the a particles

In order to minimize the energy one must choose the Fock
representation for Ax for every x. .

The minimum of energy is obtained on the vaccum.
It is convenient therefore to write the relation between Ax and

a in the following way

a(y) = Ax(y)+8(x) (A3)

The self-adjoint operator Ĥ has a ground state8.
There is no coupling.
Therefore, the ground state 9 of the entire system (i.e., the

polaron) is at each point x the product 8 × �x, where �x is the
vacuum in the Ax representation, properly symmetrized. .

By construction the Ax representation is inequivalent to the a
representation.

The ground state of the system (the polaron) is a “cloud” of
infinitely manymass zero identical particle with distribution that
depends on the wave function�(x).

The cloud depends on the coordinate of the heavy particle. [N]
[F,S], [L,S], [S].

APPENDIX 2

B. A FIELD THEORY APPROACH

In the following we make some (tentative) comments on a Field
Theory approach.
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In case of the Polaron we have chosen a non relativistic
quantization for the Bose field since the particle is non relativistic.

The theory is hybrid since Fock space is used for the mass zero
field but not for the particle.

On can place contact interaction in a fully relativistic setting
in the context of Relativistic Quantum Field Theory.

Notice that “being in contact at a given time” is a relativistic
invariant statement.

Define the Krein map as in the non relativistic case but now
with the free relativistic hamiltonian Hrel of Relativistic Field
Theory (a positive operator in Fock space).

The Krein map acts differently on the kinetic part and on the
interaction term, and also this is a relativistic invariant statement.

Gamma convergence is a minimization procedure, and
therefore a relativistic invariant.

The Fock representation is a Gaussian measure space in
the case of bosons, Berezin-Segal measure space in the case of
fermions.

We consider here only the case of bosons.
In relativistic Fock (r-Fock space) space the free hamiltonian

for bosons is H0 =
∑

n(−1n +mn)
1
2 .

In order to have “strong contact” with interaction hamiltonian
density formally given by “φ3(x)” one must use a space in
which the hamiltonian is a second order differential operator and

therefore one must use a Fock space based onH
− 1

2 .
We call this space nr- Fock space (non-relativistic Fock space)

As measure spaces, the two Fock spaces are not equivalent.
In nr-Fock space the free hamiltonian is Ĥ0 =

∑

n(−1n +

mn)
1
2 .

As usual we use the Krein as a way to explore the system.
In the non relativistic we introduce (weak) contact by a

: :φ3(x) : : interaction density as in QuantumMechanics.
With the symbol : : . : : we denote the normal ordered defined

by the condition [L,S,T,T] that the last term (from the right) in the
product is an annichilation operator and the first one is a creation
operator (so that the choice is only in the middle term).

It a relativistically invariant definition. It has the consequence
that the vacuum is invariant.

By construction the interaction hamiltonian has matrix
elements only between states that contain at least one particle
each.

Let ψ1(x) and ψ2(x) the wave functions of these two particles.
Without loss of generality we choose ψ1 = ψ2 ≡ ψ(x).

One is therefore back to contact of a particle with two identical
particles.

We have discussed this case at length. Depending on the
strength of the contact the system has a bound state or an Efimov
sequence of bound states. .

We must now pass to the r-Fock space.
The topology of r-Foch space as measure space is weaker than

that of nr-Fock space (the topology in r-Foch space is given by the
relativistic hamiltonian, a first order differential operator, while
the topology in a nr-Fock space is given by the non relativistic
hamiltonian, a second order differential operator).

But also the covariance is different and the two effect concel.
Therefore, in r-Fock space there are bound states, states of

fixed energy in any reference frame.
They correspond to particles.
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The quantum vacuum energy for a hybrid comb of Dirac δ-δ′ potentials is computed by

using the energy of the single δ-δ′ potential over the real line that makes up the comb.

The zeta function of a comb periodic potential is the continuous sum of zeta functions

over the dual primitive cell of Bloch quasi-momenta. The result obtained for the quantum

vacuum energy is non-perturbative in the sense that the energy function is not analytical

for small couplings.

Keywords: quantum vacuum, casimir effect (theory), condensed matter, quantum field theories (QFT), selfadjoint

extensions

1. INTRODUCTION

In this paper we analyse a generalization of the Kronig-Penney model [1] in which the periodic
point potential considered is a combination of the Dirac δ-potential and its first derivative, i.e., the
δ-δ′ potential (see ref. [2]). Note that the Kronig-Penney model is an example of a one dimensional
exactly solvable periodic potential, widely used in Solid State Physics to describe electrons moving
in an infinite periodic array of rectangular potential barriers. The δ-δ′ potential has been a focus of
attention over the last few years [3–7], but the δ-δ′ comb as a classical background in interaction
with a scalar quantum field has not been considered.

The main goal of this work is to compute the quantum vacuum energy of a scalar field
propagating in a (1+1)-dimensional spacetime in interaction with the background of a generalized
Dirac comb composed of δ-δ′ potentials (see [2–4]). Interpreting the scalar field as electrons
(disregarding spin) we would get a (non-additive) contribution to the internal energy of the lattice.
In a periodic structure it is possible to calculate the quantum vacuum energy per unit cell, which
gives a contribution to the internal pressure of the lattice. In addition, it is possible to interpret
the quantum scalar field as phonons of the lattice. In such a case we would obtain the phonon
contribution to the internal pressure of the lattice when computing the quantum vacuum energy
per unit cell. However, since the (1+1)-dimensional quantum field theory is a highly simplified
theoretical model we will not go into more detail about the interpretation.

Specifically, we study the one dimensional periodic Hamiltonian

H = −
h̄2

2m

d2

dx2
+ V(x) where V(x) =

∑

n∈Z

µδ(x− nd)+ 2λδ′(x− nd), (1)

with couplings µ, λ ∈ R, and lattice spacing d > 0. We will work with dimensionless quantities
defined as

y =
mc

h̄
x, a =

mc

h̄
d, w0 =

1

h̄c
µ, w1 =

m

h̄2
λ, (2)

so that [y, a,w0,w1] = 1. In that way, the dimensionless time independent Schrödinger equation
for the one-particle states of a quantum scalar field is

36
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(

−
∂2

∂y2
+ V(y)

)

φ(y) = k2φ(y),

V(y) =
∑

n∈Z

w0δ(y− na)+ 2w1δ
′(y− na). (3)

Its solutions enables us to determine the energy levels and energy
bands of the crystal. Following ref. [8] the general form of the
band equation in terms of scattering coefficients (t, rR, rL) for the
compact supported potential from which the comb is built is

cos(qa) =
eiak(t(k)2 − rR(k)rL(k))+ e−iak

2t(k)
, (4)

being q the quasi-momentum. This equation relates the quasi-
momenta q ∈ [−π/a,π/a] in the first Brillouin zone and
the wave-vector k. The quasi-momentum determines the Bloch
periodicity for a given wave function on the lattice:

φ(y+ a) = eiqaφ(y). (5)

Since the cosine of the left hand side in (4) is a bounded
function, the energy spectrum of the system is organized into
allowed/forbidden energy bands/gaps. As a particular case, when
the scattering data for a Dirac-δ potential V = w0δ(x) on
the line [9]

tδ(k) =
2ik

2ik− w0
, rδ(k) =

w0

2ik− w0
(6)

are plugged into equation (4) we obtain

cos
(

qa
)

= cos
(

ka
)

+
w0

2k
sin
(

ka
)

(7)

which is the well known band equation for the Kronig-Penney
model [1].

The general secular equation (4) will enable us to calculate the
vacuum energy of the crystal. The vacuum energy per unit cell
(in the interval [0, a]) is computed by spatially integrating the
expectation value of the 00-component of the energy-momentum
tensor Tµν :

E0 =

∫ a

0
dy 〈0|T00 |0〉 . (8)

The non regularized infinite quantum vacuum energy can be
represented as well as the summation over modes of the spectrum
corresponding to the one-particle states of the field theory.

E0 =

∫ a

0
dy 〈0|T00 |0〉 =

∑

n

kn (9)

being {ω2
n = kn} the eigenvalues characterizing the one-

particle states of the quantum field theory given by equation
(4). The ultraviolet divergences that appear naturally in this
expression must be subtracted taking into account the self-
energy of the individual potential that makes up the comb and
the fluctuations of the field in the chosen background. The

calculation of 〈0|T00 |0〉 provides the energy density per unit
length within a unit cell. This of course contains much more
information than just the total energy contained in a unit cell.
Nevertheless, the calculation using Green functions will not be
addressed in this paper for most general combs. On the other
hand we can compute E0 using spectral zeta functions [10] to
skip the intermediate calculation of 〈0|T00 |0〉 for which the exact
Green function of the quantum field on the crystal is needed.
When using the zeta function approach the infinite contributions
are subtracted using the regularized expression for the quantum
vacuum energy:

E0(s) =
∑

n

k−s
n . (10)

This expression is nothing but the spectral zeta function
associated to the Schödinger operator defined in equation (3). In
order to subtract the divergences one has to perform the analytic
continuation of equation (10) for s to the whole complex plane,
and then subtract the contribution of the pole at s = −1. A
detailed explanation of how to proceed in most general cases is
explained in refs. [10–12].

The structure of the present paper is the following. In section
2 we reproduce some basic results on spectral zeta functions
that are needed throughout the paper. The section 3 provides
a way to re-interpret a general comb formed by superposition
of identical potentials with compact support centered at the
lattice points, as a 1-parameter family of pistons mimicked
by quasi-periodic boundary conditions using the formalism
to characterise selfadjoint extensions developed in ref. [13].
Afterwards in section 4 and subsection 5.1, we will use the
results from refs. [13, 14] to give a general formula for the finite
quantum vacuum energy general comb formed by superposition
of identical potentials with compact support. The subtraction of
infinites follows from ref. [13]. The rest of section 5 is dedicated to
the numerical results for the particular example of the δ-δ′ comb,
and the non-perturbative character inherent to the quantum
vacuum energy of this particular example. Finally in section 6 we
explain the conclusions of our paper.

2. SOME BASICS FORMULAS ON

SPECTRAL ZETA FUNCTIONS

In general, given an arbitrary potential with small1 support and
its associated comb, the secular equation (4) can not be solved.
Nevertheless, the summation over eigenvalues in (10) can be
rewritten down using the residue theorem. In this section we
explain the method to replace the summation over eigenvalues
in equation (10) by a complex contour integral involving the
logarithmic derivative of the function that defines the secular
equation (4).

Let Ĥ be an elliptic non-negative selfadjoint, second order
differential operator and fĤ(z) an holomorphic function on C

1Many of the results of this paper generalize straightforward to any comb built

from a superposition of potentials with compact support centered at the lattice

points, provided that the compact support of such potentials is smaller than the

lattice spacing.
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such that

i) lim
z→0

fĤ(z) 6= 0,∞.

ii)If we define

Z(fĤ) ≡ {kn ∈ R/fĤ(kn) = 0}

σ̃ (Ĥ) ≡ {λn ∈ R
+/λn is eigenvalue},

then ∀kn ∈ Z(fĤ), k
2
n = λn ∈ σ̃ (Ĥ). The multiplicity of kn is the

degeneracy of λn.

The formal definition of the spectral zeta function associated to
Ĥ is

ζĤ(s) =
∑

σ̃ (Ĥ)

λ−s
n for Re(s)> certain positive real number.

(11)
Taking into account that the function

d

dz
log
(

fĤ(z)
)

(12)

has poles at Z(fĤ) and that the residue coincides with the
multiplicity of the corresponding zero, the summation over λn
is equivalent to the summation over the zeroes of fĤ(z) and
therefore can be written as

∑

σ̃ (Ĥ)

{...} =
∑

Z(fĤ)

{...} =

∮

C
dz

d

dz
log
(

fĤ(z)
)

{...} (13)

where C is a contour that encloses all the zeroes contained in
Z(fĤ). Since Ĥ is an elliptic non-negative selfadjoint, second
order differential operator we can ensure Z(fĤ) ⊂ R. Hence
we can choose C to be the semicircle in the complex plane
[−iR, iR] ∪ {z ∈ C/ |z| = R, and arg(z) ∈ [−π ,π]} and then
deform the contour taking the limit R → ∞. After the limit is
done, and with the properties assumed for fĤ(z) we obtain an
expression for the spectral zeta function that admits analytical
continuation to the whole complex plane:

ζĤ(s) =
sin(πs)

π

∫ ∞

0
dkk−2s∂k log[fĤ(ik)]. (14)

In this representation the information about the poles of ζĤ(s)
and the values at s ∈ Z is contained in

sin(πs)

π

∫ ∞

1
dkk−2s∂k log[fĤ(ik)]. (15)

Hence it all reduces to study (15) in order to obtain the pole
structure (Res) and ζĤ(s ∈ Z). In subsection 3.2 of ref. [14]
it can be seen an example where all the calculations can be
performed analytically.

3. THE COMB AS A PISTON

In order to perform the calculation of the quantum vacuum
energy per unit cell for the comb, it is of great interest to re-
interpret the corresponding quantum system as a one-parameter

family of hamiltonians defined over the finite interval, by
using general quantum boundary conditions in the formalism
described in refs. [13, 15]. Bloch’s theorem ensures that knowing
the wave functions on a primitive cell is equivalent to the
knowledge of the wave function in the whole lattice. Hence, if
the origin of the real line is chosen in a way that it is coincident
with one of the lattice potential centers, then it is enough
to study the quantum mechanical system characterized by the
quantum hamiltonian

H = −
d2

dx2
+ w0δ(x)+ 2w1δ

′(x), (16)

defined over the closed interval [−a/2, a/2], being a the
lattice spacing. Since the hamiltonian in (16) is not essentially
selfadjoint when is defined over the square integrable functions
over the closed interval [−a/2, a/2] we need to impose
boundary conditions at x = ±a/2 over the boundary values
{ψ(±a/2),ψ ′(±a/2)}. If in addition such boundary condition
ensures that the domain of the corresponding selfadjoint
extension is a set of wave functions that satisfy Bloch’s semi-
periodicity condition2, then we can understand the comb as a
1-parameter family of selfadjoint extensions where the parameter
is to be interpreted as the quasi-momentum. Below we construct
the family of selfadjoint extensions that model the comb.

To start with, let us study the δ-δ′ potential sitting at x = 0
and confined in the interval [-a/2, a/2]. The hamiltonian of the
system is given by (16) and its domain (the space of quantum
states) in general would be characterized by the general boundary
condition
(

ψ(−a/2)+ iψ ′(−a/2)
ψ(a/2)− iψ ′(a/2)

)

=U

(

ψ(−a/2)− iψ ′(−a/2)
ψ(a/2)+ iψ ′(a/2)

)

,(17)

where U ∈ SU(2). In general any U ∈ SU(2) makes
(16) selfadjoint in the interval [−a/2, a/2]. Nevertheless,
we are focused on mimicking with (17) Bloch’s semi-
periodicity condition:

ψ(a/2) = eiqaψ(−a/2)

ψ ′(a/2) = eiqaψ ′(−a/2). (18)

It is straightforward to see that the U that gives rise to (18) is
given by

UB =

(

0 eiθ

e−iθ 0

)

. (19)

Plugging (19) in (17) one gets

ψ(a/2)+ iψ ′(a/2) = e−iθ [ψ(−a/2)+ iψ ′(−a/2)]

ψ(a/2)− iψ ′(a/2) = e−iθ [ψ(−a/2)− iψ ′(−a/2)]. (20)

Adding and subtracting both expressions we obtain

ψ(a/2) = e−iθψ(−a/2)

2It is of note that in the interval [−a/2, a/2], the subinterval [−a/2, 0) belongs

to one primitive cell, meanwhile the subinterval (0, a/2] belongs to a different

primitive cell.
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ψ ′(a/2) = e−iθψ ′(−a/2), (21)

and making θ = −qa, we obtain the equations (18). Hence, the
selfadjoint extension that gives Bloch’s condition is given by

UB =

(

0 e−iqa

eiqa 0

)

. (22)

In addition let us remember that the matching conditions that
define the potential V = w0δ(x)+ 2w1δ

′(x) are given by (see
ref. [2])

(

ψ(0+)
ψ ′(0+)

)

=

(

α 0
β 1/α

)(

ψ(0−)
ψ ′(0−)

)

α =
1+ w1

1− w1
,

β =
w0

1− w2
1

. (23)

When we solve the equation:

−
d2

dx2
ψ(x) = k2ψ(x), (24)

with the matching conditions (23) and the boundary condition
(17) with U = UB given by (22) we can rearrange everything to
write down the secular equation and the general solution in terms
of the scattering data for the δ-δ′ potential over the real line as was
done in ref. [8]. This approach enables to interpret the δ-δ′ comb
as a one-parameter family of quantum pistons by reinterpreting
the primitive cell of the comb in the following way:

1. The middle piston membrane is represented by the δ-δ′

potential placed at x = 0. To ensure that the lattice
quantum fields satisfy the matching conditions (23) we can
assume the ansatz for the one-particle states wave functions in
[−a/2, a/2] is given by a linear combination of the two linear
independent scattering states determined by the scattering
amplitudes of the δ-δ′ potential (see refs. [2–4])

t =
−2k(w2

1 − 1)

2k(w2
1 + 1)+ iw0

, rR =
−4kw1 − iw0

2k(w2
1 + 1)+ iw0

,

rL =
4kw1 − iw0

2k(w2
1 + 1)+ iw0

. (25)

From this amplitudes the determinant of the scattering matrix
reads

⇒ det Sδδ′ = t2 − rRrL =
2k(w2

1 + 1)− iw0

2k(w2
1 + 1)+ iw0

. (26)

2. The endpoints of the primitive cell correspond to the external
walls of the piston placed at x = ±a/2, and the quantum
field satisfies the one-parameter family of quantum boundary
conditions depending on the parameter θ = −qa, which is the
quasi-momentum, given by the unitary matrix UB in (19).

The spectral function for U = UB written in terms of
the scattering data (t, rR, rL) and the quasi-momentum q is
(see formula 34 in ref. [8])

h(k) = 4k [2t cos
(

qa
)

− e−ika − eika(t2 − rRrL)]. (27)

The band structure of this comb is given by those kj such
that h(kj) = 0. In general the solutions {k0, k1, ..., kn, ...} are
functions of q ∈ [−π/a,π/a], so kj(q)

2 is an energy band
when we let q take its continuum values in [−π/a,π/a]. In
order to use zeta function regularization we need to remove
in (27) the 4k global factor to get the “good” spectral function
according to section 2 (see refs. [10, 14]). Hence the spectral
function to be used in our zeta function regularization approach
is given by

fq(k) = 2t

[

cos
(

qa
)

−
1

2t
(e−ika + eika(t2 − rRrL))

]

. (28)

In (27) and (28), t, rR, rL are the scattering data for the compact
supported potential from which the comb is built up on the real
line. In addition it is trivial to see that

fq(k) = 0 → cos
(

qa
)

=
1

2t
[e−ika + eika(t2 − rRrL)], (29)

which is the usual form for the band equation written in standard
text books such as [16], and generalized in [8]. Note that because
t2− rRrL is the determinant of the unitary scattering matrix, then
t(0)2 − rR(0)rL(0) 6= 0. Hence, in general we can work under the
assumption that

lim
k→0

fq(k) 6= 0,∞. (30)

REMARK

It is of note that all the formulas presented in this section,
specially (28) is valid for any comb built from repetition of
potentials with compact support smaller than the lattice spacing.
All that is needed are the scattering amplitudes for a single
potential of compact support over the real line, to obtain the
corresponding spectral function that characterises the band
structure of the corresponding comb.

4. SPECTRAL ZETA FUNCTION FOR THE

CRYSTAL

Following the interpretation of the comb as a 1-parameter family
of selfadjoint extensions given in the previous section we rethink
the band spectrum in the following way

1. For a fixed value of q ∈ [−π/a,π/a], fq(k) = 0 with fq(k)
given by (28), gives a discrete set of values of k in one-to-one
correspondence with N.

2. If we let q take values from −π/a to π/a and put together all
the discrete spectra from the previous item, thenwewill obtain
all the allowed energy bands.

Hence in order to perform the calculation of the quantum
vacuum energy for a massless scalar field we can write down
the spectral zeta function that corresponds to the Schrödinger
Hamiltonian of the comb

∑

bands

∫

√

ǫ
(n)
max

√

ǫ
(n)
min

dkk−2s=

∫ π/a

−π/a

dq a

2π

sin(πs)

π

∫ ∞

0
dkk−2s∂k log fq(ik).

(31)
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In this way we can write in general the spectral zeta function for
the comb as

ζC(s) =
a

2π

∫ π/a

−π/a
dq

sin(πs)

π

∫ ∞

0
dkk−2s∂k log fq(ik). (32)

Since the integration in q runs over a finite interval, and q enters
as a parameter of the selfadjoint extension associated to the
unitary operator UB in (22), all the infinite contributions of the
quantum vacuum energy are enclosed in the zeta function for a
δ-δ′ potential placed at x = 0 confined between two plates placed
at x = ±a/2, i. e.

ζq(s) =
sin(πs)

π

∫ ∞

0
dkk−2s∂k log fq(ik). (33)

As a result of the formulas for the spectral zeta function it is
easy to conclude that the finite quantum vacuum energy for the

comb, E
fin

comb
, can be obtained from the finite quantum vacuum

energy E
fin
0 (q) for the quantum scalar field confined between two

plates placed at x = ±a/2 represented by the boundary condition
associated to (22), and under the influence of a δ-δ′ potential
placed at x = 0:

E
fin

comb
=

a

2π

∫ π/a

−π/a
dqE

fin
0 (q). (34)

Hence our problem reduces to compute E
fin
0 (q).

5. THE FINITE QUANTUM VACUUM

ENERGY AT ZERO TEMPERATURE FOR

GENERALIZED DIRAC COMBS

5.1. General Formulas
From this point we will use formula 2.26 in ref. [13] to obtain

E
fin
0 (q). In ref. [13] there was no point potential between plates,

so the final result arising there did not depend on the reference
length L0 used to subtract the infinite parts. In our case the
existence of a potential with compact support between plates
forces to take the limit L0 → ∞. Physically this limit means
that what we subtract is the quantum vacuum energy of the
potential with compact support on the whole real line.With these
assumptions and changing the length L in ref. [13] by our lattice
spacing a we can write

E
fin
0 (q) = lim

a0→∞

−a0

2π(a− a0)
×

∫ ∞

0
dk k

[

a− a0 −
d

dk
log

(

f aq (ik)

f
a0
q (ik)

)]

. (35)

In taking this limit, we must keep qa = qa0 = −θ as a
free parameter coming from the selfadjoint extension, and just
after having done the limit and obtained a finite result make the
replacement θ = −qa. Hence to avoid confusion we can write

E
fin
0 (θ) = lim

a0→∞

−a0

2π(a− a0)

∫ ∞

0
dk k

[

a− a0 −
d

dk
log

(

f aθ (ik)

f
a0
θ (ik)

)]

, (36)

with

f aθ (k) = 2t

[

cos(θ)−
1

2t
(e−ika + eika(t2 − rRrL))

]

, (37)

and finally

E
fin

comb
=

∫ π

−π

dθ

2π
E
fin
0 (θ), (38)

being θ the parameter of the selfadjoint extension defined by
UB that is to be interpreted after obtaining a finite answer as
θ = −qa.

5.2. Some Comments on Efin
comb

and Efin
0
(θ )

With the formulas written above for the finite quantum vacuum

energy of the comb (E
fin

comb
) and the finite quantum vacuum

interaction energy between two plates modeled by the boundary
condition associated to UB with a compact supported potential

centered in the middle point of both plates (E
fin
0 (θ)), we are

assuming that the zero point energy corresponds to the situation
in which we have a free scalar quantum field over the real line.
Under this assumption when the potential with compact support
between plates is made identically zero (t = 1, rR = rL = 0),
the quantity

E0(θ) ≡ E
fin
0 (θ)

∣

∣

∣

t=1,rR=rL=0
6= 0,∞, (39)

is nothing but the scalar quantum vacuum interaction energy
between two plates mimicked by quasi-periodic boundary
conditions. This was analytically obtained in refs. [13, 17] for the
1D, 2D, and 3D cases. The fact that E0(θ) 6= 0,∞means that one
would expect

E
fin

comb
(t = 1, rR = rL = 0) =

∫ π

−π

dθ

2π
E0(θ) 6= 0,∞, (40)

which makes sense, since turning off the potential with
compact support does not leave us with a quantum scalar
field over the real line, because the Bloch periodicity condition
remains. Nevertheless, if we take into account that any plane
wave on the real line satisfies Bloch periodicity, the energy

E
fin

comb
(t = 1, rR = rL = 0) should be that of the

free scalar field on the real line, i.e., zero. Knowing from
refs. [17, 18] that

E0(θ) =
1

2a

(

|θ | −
θ2

2π
−
π

3

)

,

it is straightforward to see that

E
fin

comb
(t = 1, rR = rL = 0) =

∫ π

−π

dθ

2π
E0(θ) = 0. (41)

As a result, we ensure that our general formula (38) gives total
quantum vacuum energy for the comb identically zero when the
potentials with compact support that form the comb are zero, as
it should be.
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5.3. Efin
comb

for the δ-δ′ Comb
Plugging the scattering amplitudes given in (28) and after some
algebraic manipulations we obtain

fθ (k) = −
4k(1+ w2

1)

1δδ′

[

� cos(θ)+ cos
(

ka
)

+
γ

2k
sin
(

ka
)

]

,

(42)
being1δδ′ = [2k(w2

1+1)+iw0]
2,� ≡ (w2

1−1)/(w2
1+1) and γ ≡

w0/(1 + w2
1). In order to have a well behaved spectral function

(fθ (k → 0) 6= 0) we have to remove the global −4k(1 + w2
1)

factor. In addition, the global factor 1/1δδ′ does not change the
zeroes of the spectral function so it can also be dropped. Hence
we obtain the following expression for the spectral function of the
δ-δ′ comb:

gθ (k) = � cos(θ)+ cos
(

ka
)

+
γ

2k
sin
(

ka
)

. (43)

The quantum vacuum energy is obtained from equation (38) after
taking the limit a0 → ∞:

E
fin

δδ′comb
=

∫ π

−π

dθ

4π2

∫ ∞

0
dk Fδδ′ (k, θ), (44)

where

Fδδ′ (k, θ) =
A(k)

B(k)+ C(k) cos θ
+ ak−

γ

γ + 2k
, (45)

and A(k), B(k), and C(k) are defined as

A(k) = −akγ cosh
(

ka
)

+ (−2ak2 + γ ) sinh
(

ka
)

(46)

B(k) = 2k cosh
(

ka
)

+ γ sinh
(

ka
)

, C(k) = 2k�. (47)

Since now everything is finite in (44) we can exchange the order
of integration to do first the integration in θ

Iδδ′ (k) =

∫ π

−π

dθ

4π2
Fδδ′ (k, θ). (48)

The integral in (48) can be obtained from ref. [19] (page 402
formula 3.645)

∫ π

0

cosn(x)

(b+ τ cos x)n+1
=

π

2n(b+ τ )n
√
b2 − τ 2

×

n
∑

k=0

(−1)k
(2n− 2k− 1)!!(2k− 1)!!

(n− k)!k!

(

τ + b

b− τ

)k

,

for b2 > τ 2. In order to use this integral to obtain I(k) in (48) we
need to ensure that B2(k, a) > C2(k, a). Taking into account the
definition of B(k),C(k) in (47), this condition is always fulfilled
because−1 < � < 1 and

cosh
(

ka
)

+
γ

2k
sinh

(

ka
)

> 1, ∀k, a, γ > 0. (49)

Hence the integration in θ is given by

Iδδ′ (k) =
1

2π

[

A(k)
√

B2(k)− C2(k)
+ ak−

γ

γ + 2k

]

. (50)

With this result the quantum vacuum energy for the comb is
finally reduced to a single integration in k :

E
fin

δδ′comb
=

∫ ∞

0
dkIδδ′ (k). (51)

This integral can be calculated numerically with Mathematica.
The results are shown below. As can be seen in Figure 2 the
quantum vacuum energy produced by a quantum scalar field
can be positive (repulsive force), negative (attractive force), or
zero. Taking into account that the potentials sitting in each
lattice node mimic atoms that have lost their most external
electron, classically the force between them is repulsive (they
all have positive charge). The fact that the quantum vacuum
energy of the scalar field can be negative and hence reduce the
repulsive classical force means that when the quantum vacuum
energy is negative the lattice spacing tends to be smaller. On
the other hand when the quantum vacuum force is positive the
classical repulsion is enhanced promoting that the lattice spacing
in the crystal becomes bigger. Figure 1 shows the behavior of
the quantum vacuum energy (51) as a function of the lattice
spacing a. In all the cases shown the quantum vacuum energy
becomes zero as a → ∞ and tends to ±∞ as a → 0. In
addition it is very easy to check that in the limit γ → ∞,
i.e., w0 → ∞,

lim
γ→∞

Iδδ′ (k) = −
ka e−ka csch(ka)

2π
, (52)

one recovers the very well-known result for the quantum vacuum
energy between two Dirichlet plates in 1 + 1: E0 = −π/(24a).
The limit w0 → ∞ gives the minimum quantum vacuum energy
that the δ-δ′ can have. On the other hand from Figure 2 it is
easy to see that the maximum energy is positive, and it occurs
for� = γ = 0, i.e., w1 = ±1 and w0 = 0. In this case

lim
�,γ→0

Iδδ′ (k) = −
ka(tanh

(

ka
)

− 1)

2π
⇒

E
fin

δδ′comb
(� = γ = 0) =

π

48a
, (53)

and it corresponds to mixed boundary conditions [20, 21], where
Dirichlet boundary conditions are imposed on one side and
Neumann ones on the other.

It is interesting to remark that, as it happens for the quantum
vacuum interaction energy between two Dirac- δ plates in a 1+ 1
dimensional scalar quantum field theory, the limit

lim
w0→0

E
fin

δδ′comb
(� = −1,w0), (54)

is not analytical in w0 due to the infrared divergence that appears
in the Feymann diagrams (see refs. [22, 23]). This can be seen in
(50) if we take into account that the non analyticity is enclosed in
the third term of the r.h.s.
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FIGURE 1 | Quantum vacuum energy as a function of the distance a for different values of the δδ′ couplings.

FIGURE 2 | Quantum vacuum energy for a = 0.5 in the coupling

space γ -�. The black line represents the zero energy curve.

6. CONCLUSIONS AND FURTHER

COMMENTS

We calculated the quantum vacuum energy of a comb formed
by linear combinations of δ- and δ′-functions given in (1). The
method presented in this paper is based on the spectral zeta
function. We showed that the δ-δ′ comb with lattice spacing a
is equivalent to a single δ-δ′ potential in the interval [−a/2, a/2]
at x = 0 together with a 1-parameter family of quasi-periodic
boundary conditions at x = ±a/2 given by (22). The band
structure (27) arises when one takes into account that the
spectrum of the comb is the set obtained by the union of all the
discrete spectra of all the selfadjoint extensions obtained from
the 1-parameter family of boundary conditions (22). The method
can be easily generalized to any comb formed by the repetition of
potentials with compact support, as long as the compact support
is smaller than the lattice spacing. The ultraviolet divergences

FIGURE 3 | Plot of Efin
δδ′comb

(� = −1,w0 → 0)/(w0 logw0) for a = 1.

The w0 axis is in logarithmic scale.

of these combs are the same as those of the quantum vacuum
energy for one potential with compact support over the real
line, which does not have a band structure but a continuum
spectrum. Therefore, the ultraviolet divergences for the kind of
combs studied in this paper do not depend on the lattice spacing.
Subtracting these contributions we get a finite quantum vacuum
energy that represents the part of the vacuum expectation value of
the Hamiltonian of the quantum field theory, which depends on
the lattice spacing. As expected, the generalized vacuum energy
vanishes in the limit of infinite lattice spacing. This procedure
has already been applied in ref. [24] for two δ-functions. The
interpretation of this vacuum energy is a contribution (one-loop
quantum correction) to the elastic lattice forces produced by the
quantum scalar field of the phonons.

The calculations are to a large extent explicit. The result (51),
has a fast converging single integration over k with the integrand
(50), given in terms of elementary functions: exponential
and hyperbolic functions. This integration is over imaginary
frequency after performing a Wick rotation [24]. In addition, the
result presented in (51) enables us to infer that when w1 = 0,
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i.e., � = −1, the function E
fin

δδ′comb
(� = −1, γ = w0) is

not analytical when w0 → 0. Moreover, the plot in Figure 3

shows that

E
fin

δδ′comb
(� = −1,w0 → 0) ∼ w0 logw0, (55)

as known from the vacuum energy of a single delta function (see
refs. [22, 23]).

From this we can conclude that E
fin

δδ′comb
(w1,w0) does not admit

a perturbative expansion in powers of w0 around w0 = 0
when w1 = 0. Hence the result given in formula (51) is non-
perturbative in the sense that there is no power series expansion

for E
fin

δδ′comb
(� = −1,w0) when w0 → 0.

With a two-dimensional parameter space (the strength w0

of the δ-potential and the strength w1 of the δ′-potential) the
quantum vacuum energy can be positive (repulsive force between
nodes of the lattice) and negative (attractive force between nodes
of the lattice). The interface between the two regimes mentioned
is the line of zero quantum vacuum energy in the �-γ plane
shown in Figure 2.

The techniques developed in this paper have provide a
framework to calculate relevant quantities such as the free energy
and the entropy at finite temperatures different from zero.
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The paper is devoted to the spectral properties of one-dimensional Schrödinger

operators

Squ (x) =

(

−
d2

dx2
+ q (x)

)

u (x) , x ∈ R, (1)

with potentials q = q0+qs, where q0 ∈ L∞ (R) is a regular potential, and qs ∈ D′ (R) is a

singular potential with support on a discrete infinite setY ⊂ R. We consider the extension

H of formal operator (1) to an unbounded operator in L2 (R) defined by the Schrödinger

operator Sq0 with regular potential q0 and interaction conditions at the points of the set

Y. We study the closedness and self-adjointness of H. If the set Y ≃ Z has a periodic

structure we give the description of the essential spectrum of operatorH in terms of limit

operators. For periodic potentials q0 we consider the Floquet theory of H, and apply the

spectral parameter power series method for determining the band-gap structure of the

spectrum. We also consider the case when the regular periodic part of the potential is

perturbed by a slowly oscillating at infinity term. We show that this perturbation changes

the structure of the spectra of periodic operators significantly. This works presents several

numerical examples to demonstrate the effectiveness of our approach.

Keywords: periodic Schrödinger operators, limit operators method, spectral parameter power series (SPPS)

method, dispersion equation, monodromy matrices, slowly oscillating at infinity perturbation

1. INTRODUCTION

We consider formal one-dimensional Schrödinger operators

Squ (x) =

(

−
d2

dx2
+ q (x)

)

u (x) , x ∈ R (2)

with potentials q = q0 + qs, where q0 ∈ L∞ (R) is a regular potential and qs ∈ D
′ (R) is a

singular potential with support on an infinite discrete set Y ⊂ R. The Schrödinger operator Sq
is a far-reaching generalization of the well-known Kronig-Penney Hamiltonian

H = −
d2

dx2
+
∑

γ∈Z

αδ (x− γ ) , α ∈ R
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describing the electron propagation in one-dimensional crystals
[1, 2]. There exists an extensive literature devoted to the different
spectral problems of one-dimensional Schrödinger operators
with singular potentials (see, e.g., [3–9]).

Let Y =
{

yj
}

j∈Z
be a sequence of points yj ∈ R such that yj <

yj+1 for every j ∈ Z, ej =
(

yj, yj+1

)

, j ∈ Z, and
∣

∣ej
∣

∣ = yj+1 − yj,
j ∈ Z, is the length of ej. We assume that

0 < inf
j∈Z

∣

∣ej
∣

∣ ≤ sup
j∈Z

∣

∣ej
∣

∣ <∞.

Let the formal Schrödinger operator (2) have the potential q =
q0 + qs, where q0 ∈ L∞ (R) and

qs (x) =
∑

y∈Y

(

α
(

y
)

δ
(

x− y
)

+ β
(

y
)

δ′
(

x− y
))

(3)

is a singular potential, which is a distribution in D
′ (R) with

support at Y . We assume that the functions α
(

y
)

, β
(

y
)

belong
to the space l∞ (Y) with the norm ‖u‖l∞(Y) = supy∈Y

∣

∣u
(

y
)
∣

∣.

Note that the operator Sq coincides with the operator Sq0
on the space C∞

0 (R \ Y). Following the Kurasov paper [9] we

consider the extension of Sq
∣

∣

C∞
0 (R\Y)

to the unbounded operator

Hq0 in L2 (R) defined by the Schrödinger operator Sq0 with

domain DomHq0 = ˜H2 (Ŵ), being

˜H2 (Ŵ) =

{

u ∈ H2 (Ŵ) :

(

u
(

y+
)

u′
(

y+
)

)

= A
(

y
)

(

u
(

y−
)

u′
(

y−
)

)

, ∀ y ∈ Y

}

,

where Ŵ = R \ Y =
⋃

j∈Z ej, H
2 (Ŵ) =

⊕

j∈ZH2
(

ej
)

, being

H2
(

ej
)

the Sobolev spaces of the order 2 on the intervals ej,
u
(

y±
)

= limε→+0 u
(

y± ε
)

, u′
(

y±
)

= limε→+0 u
′
(

y± ε
)

, and

A
(

y
)

=

(

a11
(

y
)

a12
(

y
)

a21
(

y
)

a22
(

y
)

)

is a complex 2× 2-matrix with entries aij
(

y
)

∈ l∞ (Y), i, j = 1, 2.
For potential (3) the matrix A

(

y
)

is of the form

A
(

y
)

=





4−α(y)β(y)
4+α(y)β(y)

−4β(y)
4+α(y)β(y)

4α(y)
4+α(y)β(y)

4−α(y)β(y)
4+α(y)β(y)



 , α
(

y
)

β
(

y
)

6= −4, y ∈ Y .

The following results are obtained in the paper:

1. We prove an a priori estimate for the operator Sq0 of the form

‖u‖
˜H2(Ŵ) ≤ C

(

∥

∥Sq0u
∥

∥

L2(R)
+ ‖u‖L2(R)

)

, u ∈ ˜H2 (Ŵ) .

This estimate implies that the operator Hq0 is closed.
Moreover, if the potential q0 and the entries of thematrixA

(

y
)

are real-valued such that detA
(

y
)

= 1 for every y ∈ Y , the
operatorHq0 is self-adjoint.

2. Let the set Y of the singular points of the potential q to have a
periodic structure. This means that the set Y is invariant with
respect to the groupG = ℓZ, ℓ > 0. Let

{

gm
}

be a sequence of
points of the group G tending to ∞. We associate with

{

gm
}

the operator-valued sequence
{

V−gmHq0Vgm

}

. We define the
limit operators Hqg , which are the limits in some sense of
the operator sequences

{

V−gmHq0Vgm

}

, where Vhu (x) =
u
(

x− h
)

, x ∈ R, h ∈ G is the shift operator. Then we give
the general description of the essential spectrum spessHq0 in
terms of the limit operators.

3. Let every sequence G ∋ gm → ∞ have a subsequence G ∋
hm → ∞ defining a limit operatorHqh0

. Then we prove that

spessHq0 =
⋃

H
qh0
∈Lim(Hq0)

spHqh0
, (4)

where Lim
(

Hq0

)

is the set of all limit operators ofHq0 .
4. Periodic structures. Let the potential q0 (x), x ∈ R, and the

matrix A
(

y
)

, y ∈ Y , be periodic with respect to the group
G and real-valued. Moreover, we assume that detA

(

y
)

=
1 for all y ∈ Y . Then Hq0 is a self-adjoint operator and
formula (4) yields

spessHq0 = spHq0 .

On applying the Floquet transform we obtain that

spHq0 = {λ ∈ R : |D (λ)| ≤ 1} ,

where D (λ) = 1
2

(

ϕ1 (ℓ, λ)+ (ϕ2)
′
x (ℓ, λ)

)

is a function
defined from a pair of linearly independent solutions ϕ1,
ϕ2 of the Schrödinger equation Sq0u (x) = λu (x), x ∈
[0, ℓ), which satisfy the Cauchy conditions ϕ1 (0, λ) = 1,

(ϕ1)
′
x (0, λ) = 0, ϕ2 (0, λ) = 0, (ϕ2)

′
x (0, λ) = 1, as

well as interaction conditions at the points y ∈ Y0 ⊂
[0, ℓ). In the paper we obtain an explicit expression for
function D in terms of monodromy matrices associated to
the point interactions from the singular potential (3). Entries
of monodromy matrices are calculated by means of the
SPPS method [10], which allows to consider arbitrary regular
potentials q0 satisfying certain smoothness conditions. This
approach in turn leads to an effective numerical method for
calculating the edges of the spectral bands of Schrödinger
operatorsHq0 .

5. Slowly oscillating at infinity perturbations of periodic
potentials. We say that a function a ∈ L∞ (R) is slowly
oscillating at infinity and belongs to the class SO (R) if

lim
x→∞

sup
x′∈K

∣

∣a
(

x+ x′
)

− a (x)
∣

∣ = 0

for every compact set K ⊂ R. As above we assume that
the set Y is invariant with respect to the group G. We apply
formula (4) for the investigation of the perturbation of the
periodic operatorsHq by adding to the potential q0 ∈ L∞ (R)

a slowly oscillating term q1 ∈ SO (R). Let Hq0 be a periodic
operator with respect to the groupG given by the Schrödinger
operator Sq0 with G-periodic real-valued potential q0 and
the G-periodic real matrices A

(

y
)

satisfying detA
(

y
)

= 1
for every y ∈ Y . We consider the operator Hq0+q1 , where
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q1 ∈ SO (R) is a real-valued function. Note that the operator
Hq0has a band-gap spectrum

spHq0 =

∞
⋃

k=1

[

ak, bk
]

, bk ≤ ak+1, k ∈ N.

The limit operators of the operator Hq0+q1 are of the form

H
h
q0+q1

= Hq0+qh1
, where qh1 ∈ R. Hence

spHq0+qh1
=

∞
⋃

k=1

[

ak + qh1 , bk + qh1

]

.

Applying formula (4) we obtain the essential spectrum of the
operatorHq0+q1 as

spessHq0+q1 =

∞
⋃

k=1

[

ak +mq1 , bk +Mq1

]

,

where mq1 = lim infx→∞ q1 (x), Mq1 = lim supx→∞ q1 (x).
Above formula shows that if the oscillation of q1 at infinity
is large enough, that is ak+1 − bk < Mq1 − mq1 , the gap
(

bk, ak+1

)

of the spectrum of periodic operatorHq0 disappears
in spessHq0+q1 . Hence, the slowly oscillating perturbations of
the periodic potentials can substantially change the structure
of the essential spectrum ofHq0 .

6. Numerical calculation of the spectra of Schrödinger operator
with periodic point interactions. We consider several
examples for showing the application of the theory
here presented, and calculate approximations of their
corresponding spectra.

Notations
We will use the standard notations: C∞ (R) is the space of
infinitely differentiable functions on R, C∞

b (R) is a subspace
of C∞ (R) of functions with all bounded derivatives on R,
D (R) = C∞

0 (R) is a subspace of C∞ (R) consisting of functions
with compact support, D

′ (R) is the space of distributions
under D (R). We denote by Hs (R), s ∈ R, the Sobolev space
with the norm

‖u‖Hs(R) =

(∫

R

(

1+ ξ 2
)s ∣
∣û (ξ)

∣

∣

2
dξ

)1/2

,

where û (ξ) is the Fourier transform of u (x). If� ⊆ R is an open
set, then Hs (�) is the space of restrictions on � of functions on
R with the standard norm of restriction.

If exist, we denote the one-sided limits of f at x0 by

f
(

x−0
)

:= lim
x→x0 ,
x<x0

f (x) , f
(

x+0
)

:= lim
x→x0 ,
x>x0

f (x) ,

and by
[

f
]

x0
: = f

(

x+0
)

− f
(

x−0
)

the (finite) jump of f at x0.

Let X,Y be Banach spaces, then B (X,Y) is the space of all
bounded linear operators acting from X into Y , and K (X,Y) is
a subspace of B (X,Y) consisting of all compact operators acting

from X into Y . If X = Y we simply write B (X) and K (X),
respectively.

Let A be an unbounded closed operator in a Hilbert space
H with domain Dom (A) dense in H. The essential spectrum
spessA of operator A is the set of numbers λ ∈ C for which the
operator A − λ is not Fredholm as an unbounded operator in
H. If A is self-adjoint in H then its discrete spectrum is given by
spdisA = spA \ spessA, where spA denotes the spectrum of A.

2. ONE-DIMENSIONAL SCHRÖDINGER
OPERATORS WITH POINT INTERACTIONS

In this section we consider one-dimensional Schrödinger
operators with potentials involving a countable set of point
interactions and investigate some of their functional properties
such as closedness, self-adjointness, Fredholmness, as well as
their essential spectrum.

2.1. A Self-Adjoint Extension of
Schrödinger Operators With a Point
Interaction
Let us consider a singular distribution

qs (x) = αδ (x)+ βδ′ (x) , (5)

which represents a point interaction with support at x = 0. By
the definitions

δ (x) u (x) = δ (u) δ (x) = u (0) δ (x) ,

and

δ′ (x) u (x) = δ′ (u) δ′ (x) = −u′ (0) δ′ (x) ,

it follows that the action of qs on the test functions in D (R) is
defined by

qsu = αu (0) δ (x)− βu′ (0) δ′ (x) .

In the study of Schrödinger operators involving point
interactions we define a space of discontinuous test functions
at x = 0,

D0 (R) : = C∞
0

(

R+

)

⊕ C∞
0

(

R−

)

where R± : = {x ∈ R : x ≷ 0}, and C∞
0

(

R±

)

are the spaces of

restrictions on R± of functions in C∞
0 (R). Continuations of δ-

and δ′-distributions on functions inD0 (R) are defined as follows

˜δ (u) : =
u
(

0+
)

+ u
(

0−
)

2
, ˜δ′ (u) : = −

u′
(

0+
)

+ u′
(

0−
)

2
,

u ∈ D0 (R) .

If u ∈ D (R) it follows that˜δ (u) = δ (u) and˜δ′ (u) = δ′ (u).
Let us consider the formal one-dimensional Schrödinger

operator

Squ (x) =

(

−
d2

dx2
+ q (x)

)

u (x) , x ∈ R, (6)
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where q = qs + q0, with q0 ∈ L∞ (R) as a regular
potential, and qs ∈ D

′ (R) as a singular potential defined in
(5). Note that operator Sq coincides with operator Sq0 on the
space C∞

0 (R \ {0}). A domain Dom
(

Sq
)

of operator Sq as an
unbounded operator in L2 (R) must consist of functions u ∈
L2 (R) such that Squ ∈ L2 (R). This condition is fulfilled by
functions u ∈ D0 (R) satisfying at the origin the following
interaction conditions

(

u
(

0+
)

u′
(

0+
)

)

= A0

(

u
(

0−
)

u′
(

0−
)

)

, A0 =

(

4−αβ
4+αβ

−4β
4+αβ

4α
4+αβ

4−αβ
4+αβ

)

, αβ 6= −4,

where matrix A0 satisfies detA0 = 1.
The embedding theorem for Sobolev space implies that if

u ∈ H2 (R \ {0}) : = H2 (R+) ⊕ H2 (R−) the one-sided
limits u

(

0±
)

, u′
(

0±
)

exist, and the jumps [u]0,
[

u′
]

0
are well

defined. Let Hq0 be the unbounded operator in L2 (R) defined

by the Schrödinger operator Sq0 = − d2

dx2
+ q0 with domain

Dom
(

Hq0

)

= ˜H2 (R \ {0}) where

˜H2 (R \ {0}) =

{

u ∈ H2 (R \ {0}) :

(

u
(

0+
)

u′
(

0+
)

)

= A0

(

u
(

0−
)

u′
(

0−
)

)}

.

If q0 ∈ L∞ (R) is a real-valued function,A0 is a real 2×2-matrix,
and detA0 = 1, thenHq0 is a self-adjoint operator. We will prove
this result in a more general setting in forthcoming Theorem 2.
Thus the unbounded operatorHq0 generated by the Schrödinger
operator Sq0 with domain ˜H2 (R \ {0}) is a self-adjoint extension
of formal Schrödinger operator Sq0+qs .

Schrödinger operators involving point interactions of the
form qs (x) = αδ (x) + βδ′ (x) have been considered as norm
resolvent approximations of certain families of Schrödinger
operators with potentials depending on parameters tending
to zero. The norm resolvent convergence of such families
of operators was established and a class of solvable models
that approximate the quantum systems was obtained in the
works [11–13].

2.2. Properties of Schrödinger Operators
With a Countable Set of Point Interactions
Let Y =

{

yj
}

j∈Z
be a sequence of real numbers such that yj <

yj+1 for every j ∈ Z. We denote by ej : =
(

yj, yj+1

)

, j ∈ Z, the
corresponding interval between a pair of adjacent points yj and
yj+1. The interval ej has a length

∣

∣ej
∣

∣

: = yj+1 − yj, such that

0 < inf
j∈Z

∣

∣ej
∣

∣ ≤ sup
j∈Z

∣

∣ej
∣

∣ <∞.

We denote

Ŵ := R \ Y =
⋃

j∈Z

ej, and H2 (Ŵ) : =
⊕

j∈Z

H2
(

ej
)

.

Let us consider the Schrödinger operator Sq defined in (6) with
the regular potential q0 ∈ L∞ (R), and the singular potential

qs (x) =
∑

y∈Y

(

α
(

y
)

δ
(

x− y
)

+ β
(

y
)

δ′
(

x− y
))

, (7)

which is a distribution in D
′ (R) with support at Y ⊂ R. We

assume that α,β ∈ l∞ (Y), where the space l∞ (Y) consists
of all bounded complex-valued functions on the set Y , which
is equipped by the norm ‖u‖l∞(Y) := supy∈Y

∣

∣u
(

y
)∣

∣. Note that

the operator Sq coincides with the Schrödinger operator Sq0 :=

− d2

dx2
+ q0 on the space C∞

0 (Ŵ) :=
⊕

j∈Z C∞
0

(

ej
)

. Following

the ideas of the work [9], the operator Sq defined on C∞
0 (Ŵ) is

extended to an unbounded operator Hq0 in L2 (R) defined by

the Schrödinger operator Sq0 with domain Dom
(

Hq0

)

= ˜H2 (Ŵ),

where ˜H2 (Ŵ) is a subspace of H2 (Ŵ) given by

˜H2 (Ŵ) =

{

u ∈ H2 (Ŵ) :

(

u
(

y+
)

u′
(

y+
)

)

= A
(

y
)

(

u
(

y−
)

u′
(

y−
)

)

, ∀ y ∈ Y

}

,

where

A
(

y
)

=

(

a11
(

y
)

a12
(

y
)

a21
(

y
)

a22
(

y
)

)

, y ∈ Y ,

are complex 2×2-matrices with entries aij ∈ l∞ (Y) (i, j = 1, 2).
In the case of potential (7), the corresponding matrices are of the
form

A
(

y
)

:=





4−α(y)β(y)
4+α(y)β(y)

−4β(y)
4+α(y)β(y)

4α(y)
4+α(y)β(y)

4−α(y)β(y)
4+α(y)β(y)



 , α
(

y
)

β
(

y
)

6= −4, y ∈ Y ,

which satisfy detA
(

y
)

= 1, for every y ∈ Y .
If the conditions:

1. regular potential q0 ∈ L∞ (R), and

2. matrices A
(

y
)

=
(

aij
(

y
))2

i,j=1
are such that aij ∈ l∞ (Y) for

every y ∈ Y

are fulfilled, then the operator Sq0 is bounded from ˜H2 (Ŵ) into
L2 (R). Let us consider the following results for Schrödinger
operators involving a countable set of point interactions.

Theorem 1 (An a priori estimate). Let infj∈Z
∣

∣ej
∣

∣ > 0, and
conditions (1), (2) be satisfied. Then, there exists a constant C > 0
such that for every function u ∈ ˜H2 (Ŵ) the following estimate

‖u‖
˜H2(Ŵ) ≤ C

(

∥

∥Sq0u
∥

∥

L2(R)
+ ‖u‖L2(R)

)

(8)

holds.

Proof: A priori estimate (8) is proved similarly as in the theory of
general boundary-value problems (see, e.g., [14]), but instead of
a finite partition of unity we use a countable partition of unity of
finite multiplicity. The proof is similar to that of Theorem 3.1 in
Rabinovich [15].

Theorem 1 implies the following propositions.

Proposition 1 (Closedness). Let conditions (1), (2) hold. Then,
the operatorHq0 is closed in L2 (R).

Proposition 2 (Parameter dependent Schrödinger operators).
Let

Sµ2u (x) := −
d2u (x)

dx2
+ µ2u (x) , x ∈ Ŵ, µ > 0
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be a Schrödinger operator acting from ˜H2 (Ŵ) into L2 (R). We
assume that the entries of matrices A

(

y
)

, y ∈ Y , are real-valued,
and lim infy→∞

∣

∣a12
(

y
)∣

∣ > 0 or there exists a finite set N ⊂ Y

such that a12
(

y
)

= 0 for every y ∈ Y \ N . Then, there exists
µ0 > 0 such that the operator Sµ2 :˜H2 (Ŵ)→ L2 (R) is invertible
for every µ ≥ µ0.

Proof: To prove this proposition we follow the approach of the
well-known paper [16] where the authors studied general elliptic
boundary-value problems depending on a parameter in bounded
domains in R

n. Similarly to the proof of Theorem 1, here we
use a partition of unity and construct local inverses depending
on a parameter, and then we form the global inverse operator
by sticking these inverses for large values of the parameter.
Unlike the paper [16], here we use a countable partition of
unity of finite multiplicity, and follow the proof of Proposition
2 in Rabinovich [17].

Theorem 2 (Self-adjointness). Let q0 ∈ L∞ (R) be real-valued,

and let matrices A
(

y
)

=
(

aij
(

y
))2

i,j=1
possess real-valued entries

aij ∈ l∞ (Y). We assume: (i) lim infy→∞

∣

∣a12
(

y
)∣

∣ > 0 or there
exists a finite setN ⊂ Y such that a12

(

y
)

= 0 for every y ∈ Y \N ;
(ii) detA

(

y
)

= 1, for every y ∈ Y . Then, the unbounded operator

Hq0 defined by the Schrödinger operator Sq0 = − d2

dx2
+ q0 with

domain ˜H2 (Ŵ) is self-adjoint in L2 (R).

Proof: Let u, v ∈ Dom
(

Hq

)

. On applying integration by parts
twice we obtain
∫

Ŵ

Squ (x) v (x) dx =

∫

Ŵ

u (x) Sqv (x) dx+
∑

y∈Y

(

[

uv′
]

y
−
[

u′v
]

y

)

.

Note that
[

uv′
]

y
−
[

u′v
]

y
=
(

u
(

y+
)

v′
(

y+
)

− u
(

y−
)

v′
(

y−
)

)

−
(

u′
(

y+
)

v
(

y+
)

− u′
(

y−
)

v
(

y−
))

= det

(

u
(

y+
)

v
(

y+
)

u′
(

y+
)

v′
(

y+
)

)

− det

(

u
(

y−
)

v
(

y−
)

u′
(

y−
)

v′
(

y−
)

)

=
(

detA
(

y
)

− 1
)

det

(

u
(

y−
)

v
(

y−
)

u′
(

y−
)

v′
(

y−
)

)

= 0, ∀ y ∈ Y ,

where we have used the condition detA
(

y
)

= 1. Hence,

the operators − d2

dx2
and Sq0 with domain ˜H2 (Ŵ) are symmetric

operators in L2 (R). It follows from Proposition 2 that there
exists µ0 > 0 such that Sq0 + µ2

0 :
˜H2 (Ŵ) → L2 (R) is an

isomorphism. To prove that Hq0 + µ2
0 with domain ˜H2 (Ŵ)

is a self-adjoint operator in L2 (R) we have to show that
Dom

((

Sq0 + µ
2
0

)∗)
= Dom

(

Sq0 + µ
2
0

)

. Since Sq0 + µ2
0 is a

symmetric operator Dom
(

Sq0 + µ
2
0

)

⊂ Dom
((

Sq0 + µ
2
0

)∗)
.

Assume that u ∈ Dom
((

Sq0 + µ
2
0

)∗)
, then

(

Sq0 + µ
2
0

)∗
u = f ∈

L2 (R). Since Sq0 + µ
2
0 :Dom

(

Sq0
)

→ L2 (R) is an isomorphism,
there exists v ∈ Dom

(

Sq0 + µ
2
0

)

such that
(

Sq0 + µ
2
0

)

v = f .

Since Dom
(

Sq0 + µ
2
0

)

⊂ Dom
((

Sq0 + µ
2
0

)∗)
we obtain that

(

Sq0 + µ
2
0

)∗
v = f . Hence

u− v ∈ ker
(

Sq0 + µ
2
0

)∗
=
(

Im
(

Sq0 + µ
2
0

))⊥
= {0} .

Therefore, u = v ∈ Dom
(

Sq0 + µ
2
0

)

and Dom
(

Sq0 + µ
2
0

)

=

Dom
((

Sq0 + µ
2
0

)∗)
. Thus, Sq0 + µ2

0 is a self-adjoint operator in
L2 (R) with domain Dom

(

Sq0
)

= ˜H2 (Ŵ). Note that the operator
of multiplication by µ2

0 is strongly dominated by the operator
Sq0 (see, e.g., [18, p. 73]). Hence, Hq0 with domain ˜H2 (Ŵ) is a
self-adjoint operator.

2.3. Fredholm Property and Essential
Spectrum of Schrödinger Operators With
Point Interactions
In this subsection we give the necessary and sufficient conditions

of Fredholmness for Schrödinger operators Sq0 :˜H
2 (Ŵ) →

L2 (R) with point interactions in terms of limit operators. We
apply these results to the description of the essential spectrum
of the corresponding unbounded operators Hq0 . Through this
subsection we assume that the sequence of points Y =

{

yj
}

j∈Z
⊂

R where the singular potential qs is supported is periodic with
respect to the group G = ℓZ, ℓ > 0. We also assume that
matrices Y ∋ y 7→ A

(

y
)

are periodic with respect toG.

Definition 1. A potential q0 ∈ L∞ (R) is said to be rich if for every
sequence g =

(

gm
)

, G ∋ gm → ∞, there exists a subsequence

h =
(

hm
)

, hm → ∞, and a limit function qh0 ∈ L∞ (R) such that
for every segment

[

a, b
]

⊂ R

lim
m→∞

sup
x∈[a,b]

∣

∣

∣
qh0 (x)− q0

(

x+ hm
)

∣

∣

∣
= 0.

Definition 2. The Schrödinger operator Sqh0
:˜H2 (Ŵ) → L2 (R)

defined by

Sqh0
u (x) : =

(

−
d2

dx2
+ qh0 (x)

)

u (x) , x ∈ Ŵ,

with a limit function qh0 replacing the rich potential q0 is called
a limit operator of Sq0 :˜H

2 (Ŵ) → L2 (R). The set of all limit
operators of Sq0 is denoted by Lim

(

Sq0
)

.

Let ϕ ∈ C∞
0 (R) such that 0 ≤ ϕ (x) ≤ 1, where ϕ (x) = 1

if |x| ≤ 1
2 , and ϕ (x) = 0 if |x| ≥ 1. Let ϕR (x) = ϕ (x/R), and

ψR (x) = 1− ϕR (x).

Theorem 3. Let q0 ∈ L∞ (R) be a rich potential, and let matrices
Y ∋ y 7→ A

(

y
)

be G-periodic. Then Sq0 :˜H
2 (Ŵ) → L2 (R) is a

Fredholm operator if and only if all limit operators Sqh0
:˜H2 (Ŵ)→

L2 (R) are invertible.

Proof: One can prove that the operator Sq0 :˜H
2 (Ŵ) → L2 (R)

is locally Fredholm, that is for every R > 0 there exist operators
LR,RR ∈ B

(

L2 (R) ,˜H2 (Ŵ)
)

such that

LRSq0ϕR = ϕR + T
(1)
R , ϕRSq0RR = ϕR + T

(2)
R ,

where T
(1)
R ∈ K

(

˜H2 (Ŵ)
)

, and T
(2)
R ∈ K

(

L2 (R)
)

since Sq0 is an
elliptic operator. Hence, in order to prove that Sq0 :˜H

2 (Ŵ) →
L2 (R) is a Fredholm operator we have to study the local
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invertibility of Sq0 at infinity, i.e., we have to prove that there
exists R0 > 0 and operators L∞

R0
,R∞

R0
∈ B

(

L2 (R) ,˜H2 (Ŵ)
)

such
that

L
∞
R0
Sq0ψR0 = ψR0 , ψR0Sq0R

∞
R0

= ψR0 .

Let µ0 > 0 be such that the operator Sµ2
0
:˜H2 (Ŵ)→ L2 (R) is an

isomorphism. We set

A = Sq0S
−1
µ2
0

: L2 (R)→ L2 (R) .

It is easy to prove that Sq0 :˜H
2 (Ŵ) → L2 (R) is locally invertible

at infinity if and only if A is locally invertible at infinity. For the
study of local invertibility at infinity we use the results of the book
[19], and the work [20].

Let φ ∈ C∞
b (R), and φt (x) = φ (tx), t ∈ R. Then it is easy to

prove that

lim
t→0

‖[φt ,A]‖ = lim
t→0

‖φtA−Aφt‖ = 0,

that is,A belongs to the C∗-algebra of so-called band-dominated
operators in L2 (R) (see, e.g., [20]). We introduce the limit
operators of A as follows. For G ∋ hm → ∞ let Vhmu (x) : =
u
(

x− hm
)

be the corresponding sequence of shift operators. We

say that Ah is a limit operator defined by the sequence h =
(

hm
)

if
∥

∥

∥

(

V−hmAVhm −A
h
)

ϕ

∥

∥

∥

B(L2(R))

=
∥

∥

∥
ϕ

(

V−hmAVhm −A
h
)∥

∥

∥

B(L2(R))
= 0 (9)

for every ϕ ∈ C∞
0 (R). One can see that

V−hmAVhm = V−hmHq0VhmS
−1
µ2
0
. (10)

Formulas (9), (10) imply that

A
h = Sqh0

S−1
µ2
0
.

Moreover, since the potential q0 is rich the operator A is rich,
that is, every sequence g =

(

gm
)

of G tending to infinity has
a subsequence h =

(

hm
)

tending to infinity that defines the

limit operator Ah. It follows from the results of Rabinovich et al.
[19] and Lindner and Seidel [20] that the operator A is locally
invertible at infinity if and only if all limit operators A

h are
invertible. Since Sµ2

0
:˜H2 (Ŵ) → L2 (R) is an isomorphism, this

yields the statement of the theorem.

Theorem 3 leads to the following description of the essential
spectrum of operatorHq0 .

Theorem 4. Let q0 ∈ L∞ (R) be a rich potential, and let the
matrices Y ∋ y 7→ A

(

y
)

beG-periodic. Then

spessHq0 =
⋃

H
qh0
∈Lim(Hq0)

spHqh0
, (11)

where Hqh0
is the limit operator of Hq0 defined as an unbounded

operator in L2 (R), generated by the Schrödinger operator Sqh0
with

domain ˜H2 (Ŵ).

3. SPECTRAL ANALYSIS OF PERIODIC
SCHRÖDINGER OPERATORS WITH POINT
INTERACTIONS

In this section we study the band-gap spectra of periodic
Schrödinger operators with point interactions by using the
Floquet transform (see e.g., [21]). We also analyze the case
when the regular potential q0 is perturbed by a slowly oscillating
at infinity term by means of the limit operators method, and
provide expressions for the essential spectrum of corresponding
Schrödinger operator.

3.1. Periodic Schrödinger Operators With
Point Interactions
From now on we will assume that:

1. the sequence of points Y =
{

yj
}

j∈Z
⊂ R on which the

singular potential qs is supported is periodic with respect to
the groupG = ℓZ, ℓ > 0;

2. the matrices A
(

y
)

=
(

aij
(

y
))2

i,j=1
are periodic with respect

to the group G, that is, A
(

y+ g
)

= A
(

y
)

for every g ∈ G

and y ∈ Y . The entries aij ∈ l∞ (Y) of the matrices are such
that detA

(

y
)

= 1 for every y ∈ Y ; and
3. the potential q0 is a real-valued, piecewise continuous

function, periodic with respect to the groupG.

Let Ŵ0 : = [0, ℓ), and B = [−π/ℓ,π/ℓ) be the reciprocal unit
cell (also known as Brillouin zone) of Ŵ0. Let Y0 : = Y ∩ Ŵ0 =
{

y1, · · · , yn
}

be the set of points of discontinuity inside Ŵ0, which
satisfy 0 < y1 < · · · < yn < ℓ. We also assume that the finite
jumps

[

q0
]

yj
, not necessarily zero, are well-defined.

From conditions (1–3) and Theorem 3 it follows that the
operator Hq0 with domain ˜H2 (Ŵ) is self-adjoint in L2 (R).
Moreover, the operator Sq0 is invariant with respect to the shifts
on the elements of the groupG, that is

VgSq0u (x) = −
d2u

(

x+ g
)

dx2
+ q0

(

x+ g
)

u
(

x+ g
)

= −
d2u

(

x+ g
)

dx2
+ q0 (x) u

(

x+ g
)

= Sq0Vgu (x) ,

for every g ∈ G. SinceVgSq0 = Sq0Vg , and from (11), it yields that
spessHq0 = spHq0 , and spdisHq0 = Ø. In addition, the operator
Sq0 is semi-bounded from below, that is

〈

Sq0u, u
〉

≥ mq0 ‖u‖
2
L2(R)

,

wheremq0 := infx∈R q0 (x). This implies that

spHq0 ⊂
[

mq0 ,+∞
)

.
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We introduce the Hilbert space H : = L2
(

Ŵ0, L
2 (B)

)

of
vector-valued functions with components in L2 (Ŵ0), which is
equipped by the norm

‖u‖H =

(∫

Ŵ0

‖u (x, · )‖2L2(B) dx

)1/2

.

The Floquet transform is the map F : L2 (R) → H defined for
functions f that decay sufficiently fast by

(

F f
)

(x, θ) =˜f (x, θ) :=
1

√
2π

∑

α∈Z

f (x− αℓ) eiαθ , x ∈ R, θ ∈ B,

where the parameter θ is often called the quasi-momentum. The
Floquet transform is an isometry from L2 (R) toH, whose inverse
is given by

(

F
−1̃f

)

(x) =
1

√
2π

∫

B

˜f (x, θ) dθ .

Let us consider the problem

Hq0u (x) = λu (x) , u ∈ ˜H2 (Ŵ) , (12)

where λ ∈ R is the spectral parameter. The Floquet transform
applied to (12) gives a spectral problem depending on the
parameter θ ∈ B, defined by the differential equation

Sq0 ũ (x, θ) = λ̃u (x, θ) , x ∈ (0, ℓ) \ Y0, θ ∈ B,

with the interaction conditions at the discontinuity points

(

ũ
(

y+, θ
)

ũ′x
(

y+, θ
)

)

= A
(

y
)

(

ũ
(

y−, θ
)

ũ′x
(

y−, θ
)

)

, y ∈ Y0,

and the quasi-periodic conditions

ũ (ℓ, θ) = eiθℓũ (0, θ) , ũ′x (ℓ, θ) = eiθℓũ′x (0, θ) .

The operator Sq0 = FSq0F
−1 is represented as the

orthogonal sum

Sq0 = FSq0F
−1 =

⊕

θ∈B

Sθq0 , (13)

where

Sθq0u (x, θ) := −
d2u (x, θ)

dx2
+ q0 (x) u (x, θ) , x ∈ (0, ℓ) \ Y0.

For each θ ∈ B, the operator Sθq0 defines an unbounded operator

H
θ
q0
in L2 (Ŵ0) with domain Dom

(

H
θ
q0

)

= ˜H2 (Ŵ0 \ Y0), where

˜H2 (Ŵ0 \ Y0)

=

{

u ∈ H2 (Ŵ0 \ Y0) :

(

u
(

y+, θ
)

u′x
(

y+, θ
)

)

= A
(

y
)

(

u
(

y−, θ
)

u′x
(

y−, θ
)

)

, y ∈ Y0,

u (ℓ, θ) = eiθℓu (0, θ) , u′x (ℓ, θ) = eiθℓu′x (0, θ) , θ ∈ B

}

.

Operators Hθ
q0
, θ ∈ B, with domain ˜H2 (Ŵ0 \ Y0) have discrete

spectra

spHθ
q0

=
{

λ1 (θ) < λ2 (θ) < · · · < λj (θ) < · · ·
}

,

where λj (θ) are continuous functions on B. Expression (13)
implies that

spHq0 =
⋃

θ∈B

spHθ
q0
. (14)

If the image of the Brillouin zone B under λj is
[

aj, bj
]

, aj ≤ bj,
j ∈ N, then formula (14) gives

spHq0 =

∞
⋃

j=1

[

aj, bj
]

, (15)

that is, the spectrum of Schrödinger operator Hq0 with
G-periodic potential q0 involving point interactions has a
band-gap structure.

3.2. Spectral Analysis of Periodic
Schrödinger Operators With Point
Interactions
For each θ ∈ B we define the spectral problem

H
θ
q0
u (x, θ) = λ (θ) u (x, θ) , u ∈ ˜H2 (Ŵ0 \ Y0) .

Solutions of this problem are sought in the form

u (x, θ; λ) = C1 (θ , λ) ϕ1 (x, λ)+ C2 (θ , λ) ϕ2 (x, λ) ,

where C1, C2 are arbitrary coefficients, and ϕ1,ϕ2 are linearly
independent solutions of the Schrödinger equation

Sq0u = λu, x ∈ (0, ℓ) \ Y0

satisfying the interaction conditions

(

u
(

y+
)

u′x
(

y+
)

)

= A
(

y
)

(

u
(

y−
)

u′x
(

y−
)

)

, y ∈ Y0,

as well as the initial conditions

ϕ1 (0, λ) = 1, (ϕ1)
′
x (0, λ) = 0, (16a)

ϕ2 (0, λ) = 0, (ϕ2)
′
x (0, λ) = 1. (16b)

By the Liouville identity, the Wronskian of ϕ1 and ϕ2 satisfies

det

(

ϕ1 (0, λ) ϕ2 (0, λ)
(ϕ1)

′
x (0, λ) (ϕ2)

′
x (0, λ)

)

= det

(

ϕ1 (x, λ) ϕ2 (x, λ)
(ϕ1)

′
x (x, λ) (ϕ2)

′
x (x, λ)

)

= 1,

∀ x ∈ [0, ℓ] \ Y0.

From the quasi-periodic property

u (ℓ, θ) = eiθℓu (0, θ) , u′x (ℓ, θ) = eiθℓu′x (0, θ)
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we obtain the following system of equations

C1 (θ , λ) ϕ1 (ℓ, λ)+ C2 (θ , λ) ϕ2 (ℓ, λ) = eiθℓC1 (θ , λ) ,
(17a)

C1 (θ , λ) (ϕ1)
′
x (ℓ, λ)+ C2 (θ , λ) (ϕ2)

′
x (ℓ, λ) = eiθℓC2 (θ , λ) ,

(17b)

with C1,C2 as unknowns. System (17) implies
that

(

C1 (θ , λ) C2 (θ , λ)
)⊺

is an eigenvector of the
monodromy matrix

M (λ) =

(

ϕ1 (ℓ, λ) ϕ2 (ℓ, λ)
(ϕ1)

′
x (ℓ, λ) (ϕ2)

′
x (ℓ, λ)

)

associated to the eigenvalue µ := eiθℓ. In order for system (17) to
possess non-trivial solutions its determinant must vanish, that is

det

(

ϕ1 (ℓ, λ)− µ ϕ2 (ℓ, λ)
(ϕ1)

′
x (ℓ, λ) (ϕ2)

′
x (ℓ, λ)− µ

)

= 0

This leads to the dispersion equation

µ2 − 2µD (λ)+ 1 = 0, (18)

where

D (λ) :=
1

2

(

ϕ1 (ℓ, λ)+ (ϕ2)
′
x (ℓ, λ)

)

.

Equation (18) has solutions of the form µ := eiθℓ, θ ∈ B, if and
only if |D (λ)| ≤ 1. Hence, the spectrum ofHq0 is given by

spHq0 = {λ ∈ R : |D (λ)| ≤ 1} ,

and the edges of the spectral bands of spHq0 are solutions λedge ∈
R of the equation

∣

∣D
(

λedge
)∣

∣ = 1.

3.3. Periodic Potentials Perturbed by
Slowly Oscillating at Infinity Terms
A function a ∈ L∞ (R) is slowly oscillating at infinity if the limit

lim
x→∞

sup
y∈K

∣

∣a
(

x+ y
)

− a (x)
∣

∣ = 0

holds for every compact set K ⊂ R. We denote by SO (R) the
class of such functions. One can prove (see, e.g., [19, Chap. 3.1])
that all limit functions ah of a ∈ SO (R) defined by the sequence
G ∋ hm → ∞ are real constants.

Let us consider a Schrödinger operatorHq :˜H
2 (Ŵ)→ L2 (R)

with a perturbed potential q = q0 + q1 consisting of a periodic
part q0 ∈ L∞ (R) satisfying conditions (3), and a real-valued
perturbation q1 ∈ SO (R). The result of Theorem 4 can be
used for analyzing the essential spectrum of Hq. Note that the
spectrum of operator Hq0 has a band-gap structure according

to (15). The limit operators of Hq = Hq0+q1 are of the form

Hqh = Hq0+qh1
, where qh1 ∈ R. Therefore

spHq0+qh1
=

∞
⋃

j=1

[

aj + qh1 , bj + qh1

]

.

On considering formula (11) and previous expression we obtain
the essential spectrum of perturbed operator Hq = Hq0+q1 ,
that is

spessHq =

∞
⋃

j=1

[

aj +m∞
q1
, bj +M∞

q1

]

, (19)

where

m∞
q1

: = lim inf
x→∞

q1 (x) , M∞
q1

: = lim sup
x→∞

q1 (x) .

Formula (19) implies that some spectral bands of spessHq may
overlap depending on the intensity of the perturbation q1. Let
(

bl +M∞
q1
, al+1 +m∞

q1

)

, l ∈ N, be a gap of spessHq, hence if the

relation

M∞
q1

−m∞
q1
> al+1 − bl (20)

holds the gap will disappear due to the merging of the adjacent
bands. If condition (20) is satisfied for all l ∈ N, all spectral gaps
of spessHq will disappear resulting a continuous spectrum, that is

spessHq =
[

a1 +m∞
q1
,+∞

)

, and spdisHq ⊂
[

mq0 , a1 +m∞
q1

)

.

4. DISPERSION EQUATION FOR PERIODIC
SCHRÖDINGER OPERATORS WITH POINT
INTERACTIONS

In this section we determine the function D (λ) from a set of
monodromy matrices specified at the points where the singular
potential is supported in the fundamental domain Ŵ0. We
also apply the spectral parameter power series method [10] to
derive a numerical method for calculating the spectral bands of
Schrödinger operators Hq0 with arbitrary regular potentials q0
satisfying certain smoothness conditions.

4.1. Calculation of Function D (λ) in Terms
of Monodromy Matrices
We begin by determining a general solution of the equation

−
d2u (x)

dx2
+ q0 (x) u (x) = λu, x ∈ (0, ℓ) \ Y0, (21)

satisfying the interaction conditions





u
(

y+j

)

u′
(

y+j

)



 = A
(

yj
)





u
(

y−j

)

u′
(

y−j

)



 ,

A
(

yj
)

=





4−αjβj
4+αjβj

−4βj
4+αjβj

4αj
4+αjβj

4−αjβj
4+αjβj



 , αjβj 6= −4,
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at the points of discontinuity yj ∈ Y0 (j = 1, · · · , n). By abusing
the notation, we set y0 ≡ 0, and yn+1 ≡ ℓ. The interval between
two adjacent points of discontinuity yj, yj+1 is denoted by ej =
(

yj, yj+1

)

(j = 0, · · · , n). Let φ1,j, φ2,j (j = 0, · · · , n) be a pair of
linearly independent solutions of Equation (21) on the interval ej,
which satisfy the Cauchy conditions

φ1,j
(

yj
)

= 1, φ2,j
(

yj
)

= 0, (22a)

φ′1,j
(

yj
)

= 0, φ′2,j
(

yj
)

= 1. (22b)

From these solutions we define the monodromy matrices

Mj,j+1 : =

(

φ1,j
(

yj+1

)

φ2,j
(

yj+1

)

φ′1,j

(

yj+1

)

φ′2,j

(

yj+1

)

)

, j = 0, · · · , n.

Let uej = u|ej (j = 0, · · · , n) be the restriction of solution u of

Equation (21) on ej, which can be written as

uej (x) = uej
(

yj
)

φ1,j (x)+ u′ej
(

yj
)

φ2,j (x) , x ∈ ej.

Hence, on the full interval [0, ℓ), a general solution of Equation
(21) is given by the piecewise continuous function

u (x) =























ue0
(

y0
)

φ1,0 (x)+ u′e0
(

y0
)

φ2,0 (x) , 0 ≤ x < y1,

ue1
(

y1
)

φ1,1 (x)+ u′e1
(

y1
)

φ2,1 (x) , y1 < x < y2,
...

...

uen
(

yn
)

φ1,n (x)+ u′en
(

yn
)

φ2,n (x) , yn < x < ℓ,

where the coefficients uej
(

yj
)

and u′ej
(

yj
)

(j = 1, · · · , n) are given

in a matrix form by

(

uej
(

yj
)

u′ej
(

yj
)

)

= Aj

(

uej−1

(

yj
)

u′ej−1

(

yj
)

)

= AjMj−1,j · · ·A1M0,1

(

ue0
(

y0
)

u′e0
(

y0
)

)

, j = 1, · · · , n. (23)

The restriction uen and its derivative u′en evaluated at x = ℓ gives
the matrix relation

(

uen (ℓ)
u′en (ℓ)

)

= Mn,n+1

(

uen
(

yn
)

u′en
(

yn
)

)

. (24)

By plugging formulas (23) and (24) we obtain the expression

(

u (ℓ; λ)
u′ (ℓ; λ)

)

= T (λ)

(

u (0; λ)
u′ (0; λ)

)

=

(

T11 (λ) T12 (λ)

T21 (λ) T22 (λ)

)(

u (0; λ)
u′ (0; λ)

)

,

whereT : = Mn,n+1AnMn−1,n · · ·A2M1,2A1M0,1 is a 2×2-matrix
called the transmission matrix.

Therefore, solutions ϕ1 and ϕ2 that fulfill conditions (16)
satisfy the matrix equations

(

ϕ1 (ℓ, λ)
(ϕ1)

′
x (ℓ, λ)

)

= T (λ)

(

1
0

)

=

(

T11 (λ)

T21 (λ)

)

,

(

ϕ2 (ℓ, λ)
(ϕ2)

′
x (ℓ, λ)

)

= T (λ)

(

0
1

)

=

(

T12 (λ)

T22 (λ)

)

,

thereby the function D (λ) can be written in the form

D (λ) =
1

2
(T11 (λ)+ T22 (λ)) . (25)

4.2. Some Solvable Models With Periodic
Singular Potentials
If the potential q0 vanishes identically onR it is possible to obtain
exact solutions of Equation (21) on the interval ej =

(

yj, yj+1

)

.

One can see that φ1,j (x, λ) = cos
√
λ
(

x− yj
)

, φ2,j (x, λ) =
1√
λ
sin

√
λ
(

x− yj
)

are solutions of the Schrödinger equation for

a free-particle

−
d2u (x)

dx2
= λu, x ∈ ej, j = 0, 1 · · · , n,

with energy λ, which satisfy Cauchy conditions (22). In this case,
monodromy matrices read

Mj,j+1 (λ) =

(

cos
√
λ
∣

∣ej
∣

∣

1√
λ
sin

√
λ
∣

∣ej
∣

∣

−
√
λ sin

√
λ
∣

∣ej
∣

∣ cos
√
λ
∣

∣ej
∣

∣

)

, j = 0, · · · , n.

Periodic Potential With Only δ-Distributions
The periodic potential involving only Dirac delta distributions

qδ (x) =
∑

n∈Z

αδ

(

x−

(

n+
1

2

)

ℓ

)

, α ∈ R (26)

defines at each singular point y ∈ Y the interaction matrix

Aα
(

y
)

=

(

1 0
α 1

)

. (27)

Let Hδ be the Hamiltonian defined by the ℓ-periodic potential
qδ (x). In this case Y0 = {ℓ/2}, that is, y0 = 0, y1 = ℓ/2, and
y2 = ℓ, thereby the transmission matrix reads

Tδ (λ) = M1,2 (λ)AαM0,1 (λ)

=

(

cos ℓ
√
λ+ α

2
√
λ
sin ℓ

√
λ 1√

λ
sin ℓ

√
λ+ α

λ
sin2 ℓ

√
λ/2

α cos2 ℓ
√
λ/2−

√
λ sin ℓ

√
λ cos ℓ

√
λ+ α

2
√
λ
sin ℓ

√
λ

)

,

hence, the spectrum spHδ of Hamiltonian Hδ consists of λ ∈ R

satisfying

− 1 ≤ cos ℓ
√
λ+

α

2
√
λ
sin ℓ

√
λ ≤ 1. (28)

This is the so-called Kronig-Penney model (see [1, 2] and
[4, §III.2.3]) that describes the non-relativistic interaction of
electrons in a fixed crystal lattice, with ions represented by
δ-distributions.

Periodic Potential With Only δ
′-Distributions

Consider the periodic singular potential

qδ′ (x) =
∑

n∈Z

βδ′
(

x−

(

n+
1

2

)

ℓ

)

, β ∈ R
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with the following matrix

Aβ
(

y
)

=

(

1 −β
0 1

)

defined at the each singular point y ∈ Y . Like in the previous case
only one point interaction lies inside the fundamental domain
Ŵ0, i.e., Y0 = {ℓ/2}. Let Hδ′ be the Hamiltonian defined by
the periodic potential qδ′ (x). The corresponding transmission
matrix is

Tδ′ (λ) = M1,2 (λ)AβM0,1 (λ)

=

(

cos ℓ
√
λ+ β

2

√
λ sin ℓ

√
λ 1√

λ
sin ℓ

√
λ− β cos2 ℓ

√
λ/2

−
√
λ sin ℓ

√
λ− βλ sin2 ℓ

√
λ/2 cos ℓ

√
λ+ β

2

√
λ sin ℓ

√
λ

)

.

Hence, the spectrum spHδ′ of HamiltonianHδ′ consists of λ ∈ R

satisfying

−1 ≤ cos ℓ
√
λ+

β

2

√
λ sin ℓ

√
λ ≤ 1.

This is the analogous of the Kronig-Penney relation (28), [4,
Chap. III.3].

The analysis of problems involving δ′-interactions has gained
interest over the years [22–24]. In particular, the spectral analysis
of Wannier-Stark Hamiltonians including a countable set of δ′-
interactions lead to models for describing high-energy scatterers
with vanishing transmission amplitudes as the wave-number
k → ∞ (see, e.g., [25–29]).

4.3. Spectral Parameter Power Series
Method for the Calculation of Function
D (λ)

In previous subsection it was defined a set of monodromy
matrices for the pointsY0∪{0} fromwhich a transmissionmatrix
T is defined. This leads to a neat expression for the function
D (λ), defined in (25). Given a potential q0 with discontinuities
at the points Y0, obtaining solutions φ1,j, φ2,j (j = 0, · · · , n)
of Schrödinger equation (21) in the intervals ej (j = 0, · · · , n)
could be a challenging task. However, it is always possible to apply
some numerical method for calculating approximations ˜φ1,j, ˜φ2,j
of the solutions. Nonetheless, if the potential q0 satisfies certain
smoothness conditions it is possible to obtain exact solutions of
the equation in the form of power series of the spectral parameter.
Here we employ the SPPS method [10, 30] for constructing
the entries of transmission matrix T from which we construct
function D (λ).

Let u0,j be a particular solution of the equation

−
d2u0,j (x)

dx2
+ q0,j (x) u0,j (x) = 0, x ∈ ej,

such that u20,j, 1/u
2
0,j ∈ C

(

ej
)

, where q0,j : = q0
∣

∣

ej
(j = 0, · · · , n)

is the restriction of potential q0 on the interval ej. Then a general
solution of (21) on ej (j = 0, · · · , n) has the form

uj (x) = c1u1,j (x)+ c2u2,j (x) , x ∈ ej,

where c1, c2 are arbitrary coefficients,

u1,j (x) = u0,j (x)

∞
∑

k=0

λk˜X
(2k)
j (x) ,

u2,j (x) = u0,j (x)

∞
∑

k=0

λkX
(2k+1)
j (x) , (29)

with the functions˜X
(n)
j , X

(n)
j defined by the recursive integration

˜X
(0)
j ≡ 1, ˜X

(n)
j (x) =















∫ x

yj

˜X
(n−1)
j (s) u20,j (s) ds, n odd,

−

∫ x

yj

˜X
(n−1)
j (s)

1

u20,j (s)
ds, n even,

(30a)

X
(0)
j ≡ 1, X

(n)
j (x) =















−

∫ x

yj

X
(n−1)
j (s)

1

u20,j (s)
ds, n odd,

∫ x

yj

X
(n−1)
j (s) u20,j (s) ds, n even.

(30b)
Moreover, series (29) converge uniformly on ej. From the
recursive integration procedure we deduce that solutions u1,j, u2,j
satisfy the conditions

u1,j
(

yj
)

= u0,j
(

yj
)

, u′1,j
(

yj
)

= u′0,j
(

yj
)

,

u2,j
(

yj
)

= 0, u′2,j
(

yj
)

=
−1

u0,j
(

yj
) .

We can see that the following solutions

φ1,j (x) =
1

u0,j
(

yj
)u1,j (x)+ u′0,j

(

yj
)

u2,j (x) ,

φ2,j (x) = −u0,j
(

yj
)

u2,j (x)

fulfill conditions (22). Hence, the monodromy matrices can be
calculated from the matrix expressions

Mj,j+1 (λ) = Vj (λ)Uj, j = 0, · · · , n,

where

Uj :=

(

1
u0,j(yj)

0

u′0,j
(

yj
)

−u0,j
(

yj
)

)

, and

Vj (λ) :=

(

u1,j
(

yj+1; λ
)

u2,j
(

yj+1; λ
)

u′1,j
(

yj+1; λ
)

u′2,j
(

yj+1; λ
)

)

j = 0, · · · , n.

In the numerical implementation of the problem, power series
(29) should be truncated up to a finite number of terms. Let ũ1,j,
ũ2,j be the truncated versions of u1,j, u2,j, respectively, which are
given by the sums

ũ1,j (x) = u0,j (x)

N
∑

k=0

λk˜X
(2k)
j (x) ,

ũ2,j (x) = u0,j (x)

N
∑

k=0

λkX
(2k+1)
j (x) .
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From these approximate solutions we construct approximate
matrices ˜Vj (λ) (j = 0, · · · , n), and approximate monodromy
matrices as follows

˜Mj,j+1 (λ) = ˜Vj (λ)Uj, j = 0, · · · , n,

from which we obtain an approximation of the transmission
matrix

˜T := ˜Mn,n+1An˜Mn−1,n · · ·A2˜M1,2A1˜M0,1,

thereby, function D (λ) is approximated by

˜D (λ) =
1

2

(

˜T11 (λ)+˜T22 (λ)
)

. (31)

Regarding the accuracy of approximate solutions ũ1,j, ũ2,j, a
rough estimation of the tail of u1,j is given by (see [10])

∣

∣u1,j − ũ1,j
∣

∣ = max
∣

∣u0,j
∣

∣

∣

∣

∣

∣

∣

cosh
√

ζj −

N
∑

k=0

ζ kj
(

2k
)

!

∣

∣

∣

∣

∣

,

where

ζj : = |λ|
(

max
∣

∣

∣
u20,j

∣

∣

∣

)

(

max

∣

∣

∣

∣

∣

1

u20,j

∣

∣

∣

∣

∣

)

∣

∣yj+1 − yj
∣

∣

2
.

The corresponding estimation of the tail of u2,j involves the tail of
the function sinh

√

ζj. According to these expressions, the error
associated to ũ1,j mainly depends on the value of the spectral
parameter λ, and on the length of the interval ej. If a number N
of terms does not provides the required accuracy, the interval ej
can be subdivided, and the resulting initial value problems should
be sequentially solved. The particular solution u0,j also influences
the accuracy of ũ1,j, ũ2,j. This solution can be obtained by means
of numerical techniques, or by the SPPS method itself [10].

Given that the error increases for the large values of λ, a
shifting of the spectral parameter (29) can be implemented for
reducing the error. More precisely, if u0,j is a solution of the
equation

−
d2u0,j (x)

dx2
+ q0,j (x) u0,j (x) = λ0u0,j (x) x ∈ ej,

FIGURE 1 | Plot of the approximate function ˜D (λ) for the Kronig-Penney

model from Example 1.

corresponding to λ = λ0, then the series

u1,j (x) = u0,j (x)

∞
∑

k=0

(λ− λ0)
k
˜X
(2k)
j (x) ,

u2,j (x) = u0,j (x)

∞
∑

k=0

(λ− λ0)
k X
(2k+1)
j (x)

satisfy equation (21) in the interval ej (j = 0, · · · ,N).

5. NUMERICAL EXAMPLES

In this section we employ the SPPS approach for the calculation
of the band edges of the spectral bands of periodic Schrödinger
operators with point interactions. For this aim we use the
approximate version ˜D (λ) of the function D (λ) given by
(31), and fix N = 200 as the number of terms in the
approximate solutions ũ1,j and ũ2,j. This implies calculating finite

sets of formal powers
{

˜X
(k)
j

}2N

k=0
and

{

X
(k)
j

}2N+1

k=0
according to

recursive integration procedure (30). We employ of Wolfram
Mathematica for the numerical study of the spectra of the
examples considered in this section. For accurately handling
the upper formal powers, even the double-precision floating-
point format is not enough, nonetheless Wolfram Mathematica
provides the instruction SetPrecision[] for increase the
precision of the numbers. In this work we fix the precision of
numerical results up to 100 decimal places. For the numerical
implementation of our approach we distinguish two main parts,
namely, calculating the formal powers, and searching for the
zeros of the equation

∣

∣
˜D
(

λedge
)
∣

∣ = 1

that define the band edges.
For calculating the formal powers, the integrands are

numerically handled by an array of their values at a discrete
set �j ⊂ ej of M + 1 points. These values are interpolated
by cubic splines with the instruction Interpolation[], and
then integrated by the instruction Integrate[]. Here we have
segmented each ej into M = 2, 000 parts. Once formal powers
are computed, approximate monodromy matrices ˜Mj,j+1 (λ) are
determined from the functions ˜φ1,j (x) and ˜φ2,j (x), which were
calculated at the points of �j. In turn these matrices lead to

the approximate transmission matrix˜T that defines the function
˜D (λ) according to (31). Calculating the band edges reduces to
calculating the polynomial roots of ˜D (λ) ± 1 = 0. We use the
instruction FindRoot[] to search for numerical solutions of
the polynomial equations near the real axis of the complex λ-
plane. We prescribe a small tolerance ε > 0 such that if the
imaginary part of a root λj satisfies

∣

∣ℑλj
∣

∣ ≤ ε then its real
part can be considered as an approximate band edge, that is,
˜λedge = ℜλj.

Example 1 (Kronig-Penney model). Let us consider the Kronig-
Penney model with the singular potential specified by (26). It
was shown that transmission matrix in this case reads T (λ) =
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M1,2 (λ)AαM0,1 (λ), where matrix Aα is defined in (27). For
showing the accuracy of the SPPS approach, in this example we
compare the zeros from of the approximate equations˜D (λ)±1 =
0 and those obtained from the exact Kronig-Penney relation
(28), where we take α = 10 and ℓ = 1, see Figure 1. In
Table 1 we can see that the results coincide in at least eight
decimal places in the least accurate results, and up to fourteen
decimal places in the most accurate result. The loss in accuracy
is due to the fact that truncated power series with center at
λ = 0 depart from exact solutions as |λ| increases. The
accuracy of the results can be improved by either increasing
the number of subdivisions of the intervals ej, by increasing
the number N of terms of the truncated series, or by means
of the shifting of the spectral parameter, in which power series
are expanded about another center λ0 6= 0, as was explained
above.

Example 2 (Potential without point interactions). Suppose that
operator Sq has a potential q consisting on only the regular part
q0 defined by

q0 (x) = −2− sech (x− 2) , 0 ≤ x < 4, (32a)

q0 (x+ 4) = q0 (x) , ∀ x ∈ R. (32b)

It follows that n = 0, ℓ = 4, and Y0 = Ø. Operator Sq0 defines
an unbounded operator Hq0 in L2 (R) with domain H2 (R). The
transmissionmatrix is given byT = M0,1, where themonodromy
matrix

M0,1 (λ) =

(

φ1 (ℓ; λ) φ2 (ℓ; λ)
(φ1)

′
x (ℓ; λ) (φ2)

′
x (ℓ; λ)

)

is defined from a pair of solutions φ1,φ2 of the equation Sq0u =
λu, 0 < x < ℓ, satisfying the Cauchy conditions φ1 (0; λ) = 1,
φ′1 (0; λ) = 0, φ2 (0; λ) = 0, φ′2 (0; λ) = 1. In this example the
function D (λ) = 1

2

(

φ1 (ℓ; λ)+ (φ2)
′
x (ℓ; λ)

)

is approximated

by the SPPS approach described in subsection 4.3. In Figure 2

we can see the plot of the approximate function ˜D (λ) and its
intersections with the horizontal lines±1 that define the spectral
bands

[

aj, bj
]

. In Table 2 we observe some spectral bands ofHq0 ,
whose edges were calculated from the zeros of the equations
˜D (λ) ± 1 = 0. The fourth and fifth columns of the table
show the widths of the bands and the gaps, respectively. We
can see a monotonically increasing of the band widths, while the

gaps monotonically decrease. Such a behavior is a characteristic
of smooth periodic potentials (see, e.g., [31]) The considered
potential q0 is smooth except at a countable set of points of the
form xk = kℓ, k ∈ Z, nonetheless the potential is continuous at
these points.

Example 3 (Potential including δ-interactions). Let the potential
q of Schrödinger operator Sq be a π-periodic function defined by

q (x) = q0 +
∑

n∈Z

2δ

(

x+

(

n+
1

2

)

π

)

,

FIGURE 2 | Plot of the approximate function ˜D (λ) from Example 2.

TABLE 2 | Some spectral bands
[

aj ,bj
]

of the Hamiltonian Hq0 from Example 2.

j aj bj bj − aj aj − bj−1

1 −2.67428666671436 −2.21034342939206 0.463943 —

2 −1.86953451704338 −0.18788534501576 1.68165 0.340809

3 −0.16355607594023 2.89703477791651 3.06059 0.0243293

4 2.91041104450921 7.21694695958455 4.30654 0.0133763

5 7.22365825701727 12.76922201025541 5.54556 0.0067113

6 12.77350452947204 19.55493528380191 6.78143 0.00428252

7 19.55787702778062 27.57420128901233 8.01632 0.00294174

8 27.57635166441515 36.82709282973720 9.25074 0.00215038

9 36.82873349589631 47.31364139486438 10.4849 0.00164067

10 47.31493463461126 59.03386368002606 11.7189 0.00129324

TABLE 1 | Some spectral bands of the Kronig-Penney model calculated from the SPPS approach and the exact expression (28).

SPPS approach Exact Kronig-Penney expression Absolute differences

j aj bj a∗
j

b∗
j

∣

∣

∣
aj − a∗

j

∣

∣

∣

∣

∣

∣
bj − b∗

j

∣

∣

∣

1 5.21872875114394 9.86960440108947 5.21872875114393 9.86960440108935 1.06581× 10−14 1.19016× 10−13

2 22.66987264962470 39.47841760436475 22.66987264962356 39.47841760435743 1.14042 × 10−12 7.31859× 10−12

3 55.70646200094253 88.82643960988765 55.70646200092423 88.82643960980421 1.82965 × 10−11 8.34319× 10−11

4 106.63889490746644 157.91367041789846 106.63889490733228 157.91367041742975 1.34149 × 10−10 4.68702× 10−10

5 176.52421330245437 246.74011002902202 176.52421330183057 246.74011002723395 6.23799 × 10−10 1.78807× 10−9

6 265.79200348467112 355.30575844455604 265.79200348251038 355.30575843921678 2.16073 × 10−9 5.33925× 10−9

7 374.62223620638347 483.61061566684185 374.62223620027810 483.61061565337854 6.10538 × 10−9 1.34633× 10−8
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FIGURE 3 | Plot of the approximate function ˜D (λ) from Example 3.

TABLE 3 | Some spectral bands
[

aj ,bj
]

of the Hamiltonian Hq0 from Example 3.

j aj bj bj − aj aj − bj−1

1 3.06183781347907 3.46162839690882 0.399791 —

2 5.69859494475109 6.52258314515798 0.823988 2.23697

3 12.41958132212809 13.72611107363096 1.30653 5.89699

4 19.18349016467425 20.94891270433824 1.76542 5.45738

5 29.80585404067745 31.98452624002360 2.17867 8.85694

6 40.84052913551672 43.46896744277874 2.62844 8.85600

7 55.26982482796178 58.31214991061162 3.04233 11.8009

8 70.47604145435538 73.95789867313669 3.48186 12.1639

9 88.77758666329101 92.67469008649469 3.89710 14.8197

10 108.09491317730821 112.42506663387381 4.33015 15.4202

where the regular potential is the piecewise continuous periodic
function

q0 (x) =

{

sin (2x)+ 1, 0 ≤ x < π/2,

−1, π/2 ≤ x < π ,
(33a)

q0 (x+ π) = q0 (x) , ∀ x ∈ R. (33b)

It follows that n = 1, ℓ = π , and Y0 = {π/2}. The transmission
matrix is given by T (λ) = M1,2 (λ)A1M0,1 (λ), where

A1 =

(

1 0
2 1

)

.

The approximation of function D (λ) = 1
2 (T11 (λ)+ T22 (λ))

obtained by the SPPS approach is plotted in Figure 3. In Table 3

we observe some spectral bands of Hq0 , whose edges were
calculated from the zeros of the equations ˜D (λ) ± 1 = 0.
According to the fourth and fifth columns of the table we can
see that both the band widths and gaps have a tendency to grow.
Moreover, the band-to-gap ratio also has an exponential tendency
to grow. This characteristic is shared by operators with singular
potentials including point interactions (cf. [25]).

Example 4 (Potential including δ′-interactions). Let us consider
a periodic potential q involving δ′-interactions

q (x) = q0 +
∑

n∈Z

(

δ′
(

x+ n+ 1
4

)

+ 2δ′
(

x+ n+ 1
2

))

,

FIGURE 4 | Plot of the approximate function ˜D (λ) from Example 4.

where the regular potential is defined by

q0 (x) = 4x− 2, q0 (x+ 1) = q0 (x) , ∀ x ∈ R. (34)

In this example n = 2, ℓ = 1, and Y0 =
{

1
4 ,

1
2

}

. The transmission
matrix is given by

T (λ) = M2,3 (λ)A2M1,2 (λ)A1M0,1 (λ) , (35)

where

A1 =

(

1 −1
0 1

)

, A2 =

(

1 −2
0 1

)

.

The approximate function ˜D (λ) obtained from the SPPS
approach is plotted in Figure 4. In this case the spectral bands
are indicated by thin vertical strips in the plot. In Table 4 we
observe some spectral bands of Hq0 calculated from the zeros of
the equations˜D (λ)± 1 = 0. The table shows a narrowness of the
bands compared with the large gaps, which can be understood on
the fact that at the high values of λ the unit cells of the periodic
problem get decoupled since δ′-interaction approximates to
Neumann conditions [25, 26]. We also observe that the peaks of
the plot of˜D are dominated by a straight line with positive slope,
which accounts for the increasing gaps of the spectrum. The
considered problem has spectral properties that resemble those
of Wannier-Stark ladders for a periodic array of δ′-scatterers
[26]. These observations agree with the spectra of systems with
periodically distributed δ′-distributions (see, e.g., [22, 27, 28]).

Example 5 (Potential including both δ- and δ′-interactions). In
this example we consider the following periodic potential

q (x) = q0 +
∑

n∈Z

(

2δ
(

x+ n+ 1
4

)

− 2δ′
(

x+ n+ 3
4

))

,

which involves both δ- and δ′-interactions, where the regular
potential is given by

q0 (x) = 10
(

x− 1
2

)2
, q0 (x+ 1) = q0 (x) , ∀ x ∈ R.
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TABLE 4 | Some spectral bands
[

aj ,bj
]

of the Hamiltonian Hq0 from Example 4.

j aj bj bj − aj aj − bj−1

1 −7.85411657153512 −6.83369602987881 1.02042 —

2 −0.65046048277948 1.84587555882338 2.49634 6.18324

3 11.65425503800808 13.43273085127024 1.77848 9.80838

4 68.26969354771300 69.03634328596869 0.76665 54.8369

5 144.85052700115227 148.79531015416193 3.94478 75.8142

6 157.67353066071464 161.42975111317477 3.75622 8.87822

7 273.31957684722038 273.70125145939630 0.38167 111.8898

8 439.51292832002877 439.81704937865748 0.30412 165.8116

9 618.73286597182914 622.54765426193728 3.81479 178.9158

FIGURE 5 | Plot of the approximate function ˜D (λ) from Example 5.

In this case n = 2, ℓ = 1, Y0 =
{

1
4 ,

3
4

}

, and the transmission
matrix is given by expression (35), where the matrices

A1 =

(

1 0
2 1

)

, A2 =

(

1 2
0 1

)

.

On applying the SPPS approach we calculate the approximate
function ˜D (λ), which is shown in Figure 5. From the zeros of
the equations ˜D (λ) ± 1 = 0 we obtain the spectral bands of
Hq0 , which are shown in Table 5. The spectrum of this operator
shares common characteristics with the previous spectra, for
instance, the large gap-to-band ratio due to the presence of δ-
and δ′-interactions.

Previous examples show the applicability of the SPPS method
in the numerical determination of the spectral bands of periodic
Schrödinger operators with point interactions. For numerically
simulating the influence of a slowly oscillating at infinity potential
q1 on the gaps of the essential spectrum of the operators it
is necessary to determine the numbers m∞

q1
and M∞

q1
, and

employ formula (19) for calculating the essential spectrum of the
perturbed operator.

Example 6 (Perturbed periodic potential). Let q1 (x) =
A sin |x|ε , ε ∈ (0, 1), A > 0, x ∈ R. Since q1 ∈ SO (R) , it is
easy to see that for every sequence R ∋ hm → ∞ the limit qh1 is

TABLE 5 | Some spectral bands
[

aj ,bj
]

of the Hamiltonian Hq0 from Example 5.

j aj bj bj − aj aj − bj−1

1 2.86762223529348 10.23246965803260 7.36485 —

2 45.56882948698923 48.61942765089296 3.05059 35.3364

3 101.27707819595177 106.08760865097772 4.81053 52.6577

4 163.54551092639027 170.36688233214974 6.82137 57.4579

5 225.66146649230063 231.02984943621416 5.36838 55.2946

6 361.63534945045842 364.93962223189151 3.30427 130.606

7 512.49899820086693 517.49353325243941 4.99454 147.559

8 637.30399761249782 644.20426504160877 6.90027 119.810

9 761.93050746223082 767.18997844883585 5.25947 117.726

TABLE 6 | Some spectral bands
[

aj ,bj
]

of the perturbed Hamiltonian Hq0+q1
from Example 2.

j ãj = aj +m∞
q1

b̃j = bj +M∞
q1

b̃j − ãj ãj − b̃j−1

1 −3.67428666671436 −1.21034342939206 2.46394 —

2 −2.86953451704338 0.81211465498424 3.68165 −1.65919

3 −1.16355607594023 3.89703477791651 5.06059 −1.97567

4 1.91041104450921 8.21694695958455 6.30654 −1.98662

5 6.22365825701727 13.76922201025541 7.54556 −1.99329

6 11.77350452947204 20.55493528380191 8.78143 −1.99572

7 18.55787702778062 28.57420128901233 10.0163 −1.99706

8 26.57635166441515 37.82709282973720 11.2507 −1.99785

9 35.82873349589631 48.31364139486438 12.4849 −1.99836

10 46.31493463461126 60.03386368002606 13.7189 −1.99871

a real constant. The limiting values satisfy
∣

∣

∣
qh1

∣

∣

∣
≤ A for every real

sequence h =
{

hm
}

, hence,m∞
q1

= −A andM∞
q1

= A.
Let us consider the previous Example 2 and suppose that

its regular potential q0 defined in (32) is perturbed by the
potential q1 ∈ SO (R) with A = 1. In Table 6 we observe the
influence of this slowly oscillating function on the spectrum of
the unperturbed operator Hq0 . We observe the broadening of
the bands and their corresponding overlapping when the gaps
are negative. Since the gaps of the unperturbed problems are
monotonically decreasing all the bands will overlap producing a
continuous spectrum

spessHq0+q1 =
[

a1 +m∞
q1
,+∞

)

= [−3.67428666671436,+∞) .

Now, let us consider the previous Example 3, and suppose that
its regular potential q0 defined in (33) is perturbed by a more
intense perturbation q1 ∈ SO (R) with A = 6. The bands of the
resulting perturbed operatorHq0+q1 are shown in Table 7. In this
case the first seven bands of the spectrum overlap, yielding the
merged band

[

a1 +m∞
q1
, b7 +M∞

q1

]

= [−2.93816218652093, 64.31214991061162]

⊂ spessHq0+q1 .
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TABLE 7 | Some spectral bands
[

aj ,bj
]

of the perturbed Hamiltonian Hq0+q1
from Example 3.

j ãj = aj +m∞
q1

b̃j = bj +M∞
q1

b̃j − ãj ãj − b̃j−1

1 −2.93816218652093 9.46162839690882 12.399791 —

2 −0.30140505524891 12.52258314515798 12.823988 −9.76303

3 6.41958132212809 19.72611107363096 13.30653 −6.10299

4 13.18349016467425 26.94891270433824 13.76542 −6.54262

5 23.80585404067745 37.98452624002360 14.17867 −3.14306

6 34.84052913551672 49.46896744277874 14.62844 −3.14399

7 49.26982482796178 64.31214991061162 15.04233 −0.19914

8 64.47604145435538 79.95789867313669 15.48186 0.163892

9 82.77758666329101 98.67469008649469 15.89710 2.819690

10 102.09491317730821 118.42506663387381 16.33015 3.420221

TABLE 8 | Some spectral bands
[

aj ,bj
]

of the perturbed Hamiltonian Hq0+q1
from Example 4.

j ãj = aj +m∞
q1

b̃j = bj +M∞
q1

b̃j − ãj ãj − b̃j−1

1 −10.85411657153512 −3.83369602987881 7.02042 —

2 −3.65046048277948 4.84587555882338 8.49634 0.18323

3 8.65425503800808 16.43273085127024 7.77848 3.80838

4 65.26969354771300 72.03634328596869 6.76665 48.8369

5 141.85052700115227 151.79531015416193 9.94478 69.8142

6 154.67353066071464 164.42975111317477 9.75622 2.87822

7 270.31957684722038 276.70125145939630 6.38167 105.8899

8 436.51292832002877 442.81704937865748 6.30412 159.8119

9 615.73286597182914 625.54765426193728 9.81479 172.9158

From the eighth band, the gaps of the spectrum are open. Hence,
in order to closemore gaps, it is necessary to increase the intensity
of the perturbation.

Finally, on considering the potential (34) from Example 4
and the perturbation q1 ∈ SO (R) with A = 3 we obtain the
spectral bands shown in Table 8. In this case, though the bands
get broader, none of them overlap with the given perturbation.

6. CONCLUSIONS

In this work we have approached one-dimensional Schrödinger
operators with point interactions from their corresponding self-
adjoint extensions. On assuming that the point interactions are
supported on an infinite countable set with a periodic structure
we were able to employ the limit operators method for analyzing
their essential spectra. If the regular potentials are periodic the
Floquet-Bloch theory leads to a formula defining the band-gap

spectra of the periodic operators, which is given in terms of a
function D (λ). This function is obtained from the monodromy
matrices specified at the points where the singular potential is
supported. In this work the function D (λ) is determined by
the SPPS method, which allows to consider arbitrary regular
potentials q0 satisfying certain smoothness conditions, and to
derive numerical methods for calculating the band edges of
spectra of periodic problems involving point interactions.

We also considered the case when periodic problems are
perturbed by slowly oscillating at infinity terms, which can
model impurities in the crystals. The perturbed problems are
also approached by the limit operators method, which gives a
neat formula for their essential spectra. The spectral analysis
of perturbed periodic problems relies on a pair of numbers
m∞

q1
and M∞

q1
that depend on the perturbation q1 ∈ SO (R)

specified in the problem. These numbers, in general, lead to
the broadening (narrowing) of the bands (gaps), which may
change significantly the spectra of the operators. The SPPS
approach together with the determination of the numbers m∞

q1
,

M∞
q1

give a simpler way for determining the spectra of perturbed
periodic problems.

The applicability of the SPPS method and the limit operators
method is shown by the numerical examples considered in
this work that involved δ- and δ′-interactions as well as a
periodic regular potential q0. The accuracy of the results relies
on the uniform convergence of power series of the spectral
parameter that define the solutions of the involved Schrödinger
equations, so that an increasingly number N of terms in the
truncated series will reduce the associated errors in the numerical
values. Finally, the theory developed in this work can be used
for analyzing photonic crystals and electromagnetic waveguides
with periodic refractive profiles, as well as quantum problems
involving periodic potentials.
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One-dimensional Schrödinger operators with singular perturbed magnetic and electric

potentials are considered. We study the strong resolvent convergence of two families

of the operators with potentials shrinking to a point. Localized δ-like magnetic fields are

combined with δ′-like perturbations of the electric potentials as well as localized rank-two

perturbations. The limit results obtained heavily depend on zero-energy resonances of the

electric potentials. In particular, the approximation for a wide class of point interactions

in one dimension is obtained.

Keywords: 1D Schrödinger operator, magnetic potential, zero-energy resonance, half-bound state, short range

interaction, point interaction, δ-potential, δ
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1. INTRODUCTION

The present paper is concerned with the convergence of families of singularly perturbed
one-dimensional magnetic Schrödinger operators. Ourmotivation of the study on this convergence
comes from an application to the scattering of quantum particles by sharply localized potentials and
finite rank perturbations. The main purpose is to construct solvable models in terms of the point
interactions describing with admissible fidelity the real quantum interactions. The Schrödinger
operators with potentials that are distributions supported on discrete sets (such potentials are
usually termed point interactions) have attracted considerable attention since the 1980s. It is an
extensive subject with a large literature (see [1, 2], and the references given therein).

It is well-known that all nontrivial point interactions at a point x can be described by the
coupling conditions

(

ψ(x+ 0)
ψ ′(x+ 0)

)

= eiϕ
(

c11 c12
c21 c22

) (

ψ(x− 0)
ψ ′(x− 0)

)

, (1.1)

where ϕ ∈ [−π
2 ,

π
2 ], ckl ∈ R, and c11c22 − c12c21 = 1 (see, e.g., [3, 4]). The nontriviality of point

interactions means that the associated self-adjoint operator cannot be presented as a direct sum
of two operators acting in L2(−∞, 0) and L2(0,∞). For the quantum systems described by the
Schrödinger operators with regular potentials localized in a neighborhood of x one can often assign
the Schrödinger operators with the point interactions (1.1) so that the corresponding zero-range
models govern the quantum dynamics of the true interactions with adequate accuracy, especially
for the low-energy particles. In this context, the inverse problem is also of interest. The important
question is how to approximate a given point interaction by Schrödinger operators with localized
regular potentials or finite-rank perturbations.
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Golovaty Some Remarks on 1D Schrödinger Operators

We study the families of the Schrödinger operators that can be
partially viewed as regularizations of the pseudo-Hamiltonians

(

i
d

dx
+ aδ(x)

)2

+ bδ′(x)+ cδ(x),

(

i
d

dx
+ aδ(x)

)2

+ b
(

〈δ′(x), · 〉 δ(x)+ 〈δ(x), · 〉 δ′(x)
)

+ cδ(x),

(1.2)

where δ is Dirac’s delta function. We note that δ′(x)y =
y(0)δ′(x) − y′(0)δ(x) for continuously differentiable functions y
at the origin. Thus we may formally regard the δ′ potential as
rank-two perturbation δ′(x)y = 〈δ(x), y〉 δ′(x) + 〈δ′(x), y〉 δ(x).
However, both the heuristic operators have generally no ma-
thematical meaning. So it is not surprising that different re-
gularizations of the distributions in (1.2) lead to different
self-adjoint operators in the limit. Therefore, the pseudo-
Hamiltonians (1.2) can be regarded as a symbolic notation only
for a wide variety of quantum systems with quite different
properties depending on the shape of the short-range potentials.

Recently a class of the Schrödinger operators with piece-
wise constant δ′-potentials were studied by Zolotaryuk [5–8];
the resonances in the transmission probability for the scattering
problem were established. As was shown in Golovaty et al.
[9], Golovaty and Hryniv [10, 11], and Man’ko [12] these
resonances deal with the existence of zero-energy resonances
and the half-bound states for singular localized potentials. The
zero-energy resonances have a profound effect on the limiting
behavior of the Schrödinger operators with δ′-potentials. Such
operators also arose in connection with the approximation of
smooth planar quantum waveguides by quantum graph [13–15];
a similar resonance phenomenon was obtained. The reader also
interested in the literature on other aspects of δ′-potentials and
δ′-interactions as well as approximations of point interactions by
local and non-local perturbations is referred to Albeverio and
Nizhnik [16], Albeverio et al. [17, 18], Exner and Manko [19],
Gadella et al. [20–22].

It is known that one dimensional Schrödinger operators

H(b) =

(

i
d

dx
+ b(x)

)2

+ V(x)

with continuous magnetic potentials are not especially
interesting, because any continuous field b is equivalent
under a smooth gauge transformation to 0. This means that
the operator H(b) with a continuous gauge field is unitarily

equivalent to the Schrödinger operator H(0) = − d2

dx2
+ V(x)

without a magnetic field. The authors of Coutinho et al. [23] have
even asserted that the phase parameter ϕ in conditions (1.1) is
redundant and it produces no interesting effect. They have stated
that if the time-reversal invariance is imposed, the number of
the parameters that specify the interactions (1.1) can be reduced
to three.

For the case of singular magnetic potentials, however, there
are certain nontrivial examples [24], pointing out that this
case is more subtle. Albeverio et al. [24] have shown that the
phase parameter is not redundant if non-stationary problems

are concerned. The phase parameter can be interpreted as the
amplitude of a singular gauge field. As stated in Kurasov [25]
a nonzero phase ϕ in the coupling conditions (1.1) may appear
if and only if the singular gauge field is present. However, it is
noteworthy that the factor eiϕ also appeared in the solvable model
for the Schrödinger operators without a magnetic field that is
perturbed by a rank-two operator [26]. We also want to note that
Theorem 2 in the present paper gives an example of an exactly
solvable model in which the magnetic field has an effect on all
coefficients ckl in (1.1), not only on factor eiϕ .

Another reason to study the 1-D Schrödinger operators with
magnetic fields comes from the quantum graph theory which is
a useful tool in modeling numerous physical phenomena. One
of the fundamental questions of this theory consists of justifying
the possibility of approximating dynamics of a quantum particle
confined to real-world mesoscopic waveguides of small width d
by its dynamics on the graph obtained in the limit as d vanishes.
In Exner et al. [27], the authors demonstrated that any self-
adjoint coupling in a quantum graph vertex can be approximated
by a family of magnetic Schrödinger operators on a tubular
network built over the graph.

The magnetic Schrödinger operators and the Dirac
Hamiltonians with Aharonov-Bohm fields have been discussed
from various aspects by many authors. We confine ourself to a
brief overview of the most relevant papers. For the mathematical
foundation of the magnetic Schrödinger operators we refer the
reader to the paper of Avron et al. [28]. In two dimension, the
norm resolvent convergence of the Schrödinger operators

Hε =
(

i∇ + ε−1A(x/ε)
)2

+ ε−2V(x/ε)

with singularly scaled magnetic and electric potentials was
studied by Tamura [29]. The magnetic potential had the δ-like
field ε−2b(x/ε) = ε−1∇ × A(x/ε), and b and V were smooth
vector functions in R

2 of compact support. The limit operator
strongly depends on the total flux of magnetic field and on the
resonance space at zero energy. The scattering by a magnetic
field with small support and the convergence to the scattering
amplitude by δ magnetic field were studied in Tamura [30].
In Tamura [31], the case of relativistic particles moving in the
Aharonov-Bohm magnetic field with a δ-like singularity was
considered. The author approximated the point–like field by
smooth ones and found the limit self-adjoint operators uniquely
specified by physically and mathematically reasonable boundary
conditions at the origin.

The present paper can be viewed as a natural continuation of
our previous works [26, 32–34], in which the case without of a
magnetic field was treated.

2. STATEMENT OF PROBLEM AND MAIN
RESULTS

Let us consider the Schrödinger operator

H0 = −
d2

dx2
+ V0
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in L2(R), where potential V0 is real-valued, measurable and
locally bounded. We also assume that V0 is bounded from below
in R. We turn now to our primary task of studying the limit
behavior of two families of operators in L2(R), which can be
treated as perturbations of H0.

2.1. Hamiltonians With Localized Potentials
First we consider the self-adjoint operators

Hεν =
(

i
d

dx
+
1

ε
A
(x

ε

))2
+V0(x)+

α

ε2
V

(x

ε

)

+
1

ν
U

( x

ν

)

, (2.1)

where ε and ν are small positive parameters, and α is a
real coupling constant. Let A, V , and U be real-valued,
measurable, and bounded functions of compact support. Suppose
furthermore that A ∈ AC(R). The domain ofHεν coincides with
domH0, because the perturbation has a compact support. Note
that we consciously equipped potential V only with a coupling
constant. As we will see later, the limit behavior of Hεν crucially
depends on α.

The potentials αε−2V(ε−1x) + ν−1U(ν−1x) converge, as ε
and ν go to zero, to a distribution having the form b1δ

′(x) +
b0δ(x), if V has a zero-mean value, and they diverge otherwise.
Hence parameter ε describes the rate of shrinking for the δ′-like
potential (as well as the magnetic potential), while ν is the rate
of shrinking for the δ-like potential. The sequence ε−1A(ε−1x)
converges to µδ(x) as ε → 0 in the sense of distributions, where

µ =

∫

R

A(x) dx. (2.2)

In the partial cases, operators Hεν can be regarded as a
regularization of the first pseudo-Hamiltonian in (1.2).
Let us introduce some characteristics of the potentials V and U.

Definition 1. We say that the Schrödinger operator − d2

dx2
+ αV

in L2(R) possesses a zero-energy resonance if there exists a non
trivial solution vα : R → R of the equation−v′′+αVv = 0 that is
bounded on the whole line. We call vα the half-bound state of αV.

We will simply say that the potential αV is resonant and it
possesses a half-bound state vα . Let us denote by R(V) the set of
all coupling constants α for which the potential αV is resonant,
and introduce the mapping θ : R(V) → R defined by

θ(α) =
v+α

v−α
, (2.3)

where v−α = lim
x→−∞

vα(x) and v+α = lim
x→+∞

vα(x). Let 3 =

[0,+∞] be the set containing the point+∞.
We also define the mapping γ : R(V)×3→ R as follows:

γ (α, 0) =
v2α(0)

v−α v+α

∫

R

U dt, (2.4)

γ (α, λ) =
1

v−α v+α

∫

R

U(t) v2α(λt) dt for λ ∈ (0,+∞), (2.5)

γ (α,+∞) = θ(α)

∫

R+

U dt + θ(α)−1

∫

R−

U dt. (2.6)

We follow the notation used in Golovaty [33]. This mapping
describes different kinds of the resonance interactions between
the potentials αV and U in the limit. Both the mappings θ and γ
are well defined as we will show below in Lemma 1.

Let us introduce the subspace V in L2(R) as follows. We
say that h belongs to V if there exist two functions h− and h+
belonging to domH0 such that h(x) = h−(x) for x < 0 and
h(x) = h+(x) for x > 0.

Theorem 1. Suppose that a sequence {νε}ε>0 of positive numbers
is such that νε → 0 and ratio νε/ε tends to λ ∈ 3 as ε → 0, i.e.,
this ratio has a finite or infinite limit. If α ∈ R(V), then family of
operators Hενε converges in the strong resolvent sense as ε → 0
to the operator H = H(α, λ) defined by Hφ = −φ′′ + V0φ on
functions φ in V subject to the conditions

(

φ(+0)
φ′(+0)

)

= eiµ
(

θ(α) 0
γ (α, λ) θ(α)−1

) (

φ(−0)
φ′(−0)

)

. (2.7)

By analogy with the results in Golovaty [33], if potential αV
is not resonant, the limit operator is the direct sum of two
Dirichlet operators acting in L2(−∞, 0) and L2(0,+∞); that is,
coupling conditions (2.7) must be substituted by the Dirichlet
condition φ(0) = 0.

It is worth noting that explicit relations (2.3)-(2.6) between
the matrix entries θ(α), γ (α, λ) and potentials V and U
make it possible to carry out a quantitative analysis of this
quantum system, e.g., to compute approximate values of the
scattering data.

2.2. Hamiltonians With Localized Rank-Two
Perturbations
We now turn our attention to another family of operators

Tε =
(

i
d

dx
+

1

ε
A
(x

ε

))2
+ V0(x)+

1

ε3
Fε +

1

ε
U

(x

ε

)

, (2.8)

where Fε = Fε(f1, f2) are rank-two operators having the form

(Fεφ)(x) = β̄ 〈f2(ε
−1 · ),φ〉 f1

(

x
ε

)

+ β 〈f1(ε
−1 · ),φ〉 f2

(

x
ε

)

=

∫

R

(

β̄f1
(

x
ε

)

f̄2
(

s
ε

)

+ β f̄1
(

s
ε

)

f2
(

x
ε

)

)

φ(s) ds. (2.9)

Here 〈·, ·〉 is the inner scalar product L2(R). From now on, the
norm in L2(R) will be denoted by ‖·‖. Operators Tε can be viewed
as a regularization of the second pseudo-Hamiltonian in (1.2).
Assume that f1, f2 and q are measurable and bounded functions
of compact support and β is a complex coupling constant. The
potential q is real-valued.

Let us also consider rank-two perturbation of the free the
Schrödinger operator

B = −
d2

dx2
+ β̄ 〈h2, · 〉 h1 + β 〈h1, · 〉 h2, domB = W2

2 (R),

where h1 and h2 are functions of compact support.
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Definition 2. We say that operator B possesses a zero-
energy resonance provided there exists a nontrivial solution of
the equation

− v′′ + β̄ 〈h2, v〉 h1 + β 〈h1, v〉 h2 = 0 (2.10)

that is bounded on the whole line. This solution is called a half-
bound state of B. We also say that B admits a double zero-
energy resonance, if there exist two linearly independent half-
bound states.

We will denote by R(h1, h2) the set of all coupling constants
β , for which operator B admits a double zero-energy resonance.

Let h(−1) and h(−2) be the first and second antiderivatives

h(−1)(x) =

∫ x

−∞
h(s) ds, h(−2)(x) =

∫ x

−∞
(x− s)h(s) ds

for functions of compact support. Note if h has zero mean, then
h(−1) is also a function of compact support. Also, we set

a(x) =

∫ x

−∞
A(t) dt. (2.11)

Let us introduce notation

gk = e−iafk, nk = ‖g
(−1)
k

‖, p = 〈g1
(−1), g2

(−1)〉, (2.12)

provided g1 and g2 are functions of zero mean values. Therefore

nk and p are well defined, since g
(−1)
k

are functions of compact
support. Let

ωβ = ei arg(β
−1+p)n2g

(−2)
1 − n1g

(−2)
2 .

Function ωβ is constant outside some compact set containing the
supports of fk. Of course ωβ (x) = 0 for negative x with the large
absolute value. Write

̹ = lim
x→+∞

ωβ (x).

In the case of the double zero-energy resonance function ωβ is
a half-bound state of B with hk = gk (see Lemma 2 below). We
also set

a0 =

∫

R

U dx, a1 =

∫

R

U ωβ dx, a2 =

∫

R

U |ωβ |
2 dx.

Theorem 2. Assume that f1 and f2 are linearly independent,
e−iaf1 and e−iaf2 have zero means, and β ∈ R(e−iaf1, e

−iaf2).
Suppose also that a2 6= ¯̹a1. Then operator family Tε converges
as ε → 0 in the strong resolvent sense to operator T defined by
T φ = −φ′′ + V0φ on functions φ in V subject to the conditions

(

φ(+0)
φ′(+0)

)

= ei
(

µ−arg(a2−̹a1)
)









a0|̹|
2 − 2Re(̹a1)+ a2

|a2 − ̹a1|

|̹|2

|a2 − ̹a1|
a0a2 − |a1|

2

|a2 − ̹a1|

a2

|a2 − ̹a1|









(

φ(−0)
φ′(−0)

)

. (2.13)

Note in these conditions that parameters a1, a2 and ̹ depend
nonlinearly on coupling constant β as well as functions f1, f2, a
via ωβ ; all elements of the matrix are real, since a0 and a2 are
real number. The limit operator T is self-adjoint, because the
determinant of matrix in (2.13) is equal to 1 [cf. (1.1)]. In fact,

|a2 − ̹a1|
−2 det

(

a0|̹|
2 − 2Re(̹a1)+ a2 |̹|2

a0a2 − |a1|
2 a2

)

= |a2−̹a1|
−2

(

a0a2|̹|
2−2a2Re(̹a1)+a22−a0a2|̹|

2+|̹|2|a1|
2
)

= |a2 − ̹a1|
−2

(

a22 − 2a2Re(̹a1)+ |̹|2|a1|
2
)

= |a2 − ̹a1|
−2 |a2 − ̹a1|

2 = 1.

Though conditions (2.13) contain the full matrix, we can not
assert that it is possible to approximate any point interaction (1.1)
by operators Tε . For instance, such approximation does not exist
for the point interactions (1.1) with matrices

(

c11 0

c21 c−1
11

)

,

where c11 is different from 1; if ̹ = 0, then the matrix in (2.13)
has the unit diagonal. Therefore, Theorems 1 and 2 are in some
sense mutually complementary.

Remark also that for any pair of linearly independent
functions f1, f2 satisfying the assumptions of the theorem there
exists a wide class of potentials U for which condition a2 6=
¯̹a1 holds.

In view of Theorems 1 and 2 in Golovaty [26] we can expect
that there exist at least six essentially different cases of the
limiting behavior for Tε as ε → 0. However, in this paper we
restrict ourselves to analyzing only the case that is described
in Theorem 2. Just this case covers the widest class of point
interactions in the limit.

3. ZERO-ENERGY RESONANCES AND
HALF-BOUND STATES

We show first that the set R(V) of all resonance coupling

constants for operator− d2

dx2
+ αV is not empty and furthermore

it is rich enough for any function V of compact support.

Lemma 1. (i) For each measurable function V of compact support,
the resonant setR(V) is a countable subset of the real line with one
or two accumulation points at infinity.

(ii) For each α ∈ R(V), the corresponding half-bound state vα
is unique up to a scalar factor. Moreover, both the limits

v−α = lim
x→−∞

vα(x), v+α = lim
x→+∞

vα(x) (3.1)

exist and are different from zero.

Proof: Without loss of generality we assume that suppV ⊂ I ,

where I = (−1, 1). Then operator − d2

dx2
+ αV possesses a

half-bound state if and only if the problem

− v′′ + αVv = 0, x ∈ I , v′(−1) = 0, v′(1) = 0 (3.2)
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has a non-trivial solution. In fact, a half-bound state vα is
constant outside I as a bounded solution of equation v′′ = 0
and hence v′α(−1) = v′α(1) = 0. From this we also deduce
that there exist the limits (3.1). Obviously we have v−α = vα(−1)
and v+α = vα(1). In addition, both the values vα(−1) and vα(1)
are different from zero in view of uniqueness for the Cauchy
problem, because vα is a non-trivial solution.

Problem (3.2) can be regarded as a spectral problem with
spectral parameter α. If V is a function of fixed sign, then (3.2) is
a standard Sturm-Liouville problem andR(V) coincides with the
spectrum of a self-adjoint operator in weighted Lebesgue spaces
L2(V , I). Otherwise, we can interpret (3.2) as the eigenvalue
problem with indefinite weight function V ; the problem can be
associated with a self-adjoint non-negative operator K in a Krein
space [9, 32]. In both the cases the spectra of such operators are
real and discrete with accumulation points at −∞ or +∞ only.
Moreover all nonzero eigenvalues are simple; for the case of the
Krein space, α = 0 is generally semi-simple. The reader can
also refers to Iohvidov et al. [35] for the details of the theory
of self-adjoint operators in Krein spaces. It follows from the
simplicity of spectra that half-bound state vα is unique up to a
scalar factor.

The set R(h1, h2) of coupling constants, for which the
operator B possesses the double zero-range resonance, is also

rich for any pair of h1 and h2. We set mk = ‖h
(−1)
k

‖ and τ =

〈h
(−1)
1 , h

(−1)
2 〉.

Lemma 2. Assume that h1, h2 are linearly independent functions
of zero mean. Then set R(h1, h2) of double zero-range resonance
for operator B is the circle

R(h1, h2) = {β ∈ C : |β − β0| = ρ}

in the complex plane, where

β0 =
τ̄

m2
1m

2
2 − |τ |2

, ρ =
m1m2

m2
1m

2
2 − |τ |2

.

In addition, if β ∈ R(h1, h2), then the constant function and
function

ωβ = ei arg(β
−1+τ )m2h

(−2)
1 −m1h

(−2)
2

are two linearly independent half-bound states of B.

Note that circle R(h1, h2) is well defined for linearly
independent h1 and h2, because then the first antiderivatives

h
(−1)
1 and h

(−1)
2 are also linearly independent, and |τ | < m1m2

in view of the Cauchy-Schwartz inequality. For instance, if

functions h
(−1)
1 and h

(−1)
2 are orthonormal, then R(h1, h2) is a

unit circle centered at the origin, since m1 = m2 = 1 and τ = 0.

If h
(−1)
1 and h

(−1)
2 are simply orthogonal, then R(h1, h2) = {β ∈

C : |β| = m−1
1 m−1

2 }. In the case when h2 = h1+εg and ε is small,
that is to say, the angle between h1 and h2 is small, the center β0
is far from the origin and the radius ρ is large, because then the
differencem1m2 − |τ | is of order ε.

Proof: We start with the observation that v = 1 is obviously a
solution of equation

−v′′ + β̄ 〈h2, v〉 h1 + β 〈h1, v〉 h2 = 0,

since hk are functions with zero-mean values. For the same

reason, the second anti-derivatives h
(−2)
k

are bounded on
the whole line. Then regarding this equation as the “non-
homogeneous” one

v′′ = β̄ 〈h2, v〉 h1 + β 〈h1, v〉 h2, (3.3)

we can look for another half-bound state in the form
ω = c1h

(−2)
1 +c2h

(−2)
2 . We do not take into account solution x of

the homogeneous equation, because it is unbounded as |x| → ∞.
Since h1 and h2 are linearly independent, substituting ω into

(3.3) yields

{

β 〈h1, h
(−2)
1 〉 c1 + (β 〈h1, h

(−2)
2 〉 − 1) c2 = 0,

(β̄ 〈h2, h
(−2)
1 〉 − 1) c1 + β̄ 〈h2, h

(−2)
2 〉 c2 = 0.

(3.4)

Because hj has compact support, the scalar product 〈hj, h
(−2)
k

〉

is finite, even though antiderivative h
(−2)
k

does not belong to

L2(R). In addition, the integrating by parts shows 〈hj, h
(−2)
k

〉 =

−〈h
(−1)
j , h

(−1)
k

〉. Then (3.4) becomes

{

βm2
1 c1 + (βτ + 1) c2 = 0,

(βτ + 1) c1 + β̄m2
2 c2 = 0.

(3.5)

This system has a non-trivial solution (c1, c2) if and only if
|β|m1m2 = |βτ + 1|. The condition can be written as
|β−1 + τ | = m1m2.

Given a ∈ C and r ∈ R, we consider the circle {z ∈ C : |z −
a| = r}. Suppose that |a| < r. Themapping z 7→ z−1 is a bijection
from this circle onto another one

{

z ∈ C :

∣

∣

∣

∣

z +
ā

r2 − |a|2

∣

∣

∣

∣

=
r

r2 − |a|2

}

,

as is easy to check. Therefore, the resonance region R(h1, h2)
arises as the image of the circle {z ∈ C : |z + τ | = m1m2}
under the transformation z 7→ z−1. Note that |τ | < m1m2 by
the Cauchy-Schwartz inequality.

If β ∈ R(h1, h2), then (3.5) admits a nontrivial solution having
the form

c1 = ei arg(β
−1+τ )m2, c2 = −m1.

In fact, substituting this solution into the first equation yields

βm2
1 c1 + (βτ + 1) c2 = βm2

1m2e
i arg(β−1+τ ) −m1(βτ + 1)

= βm1 |β
−1 + τ | ei arg(β

−1+τ ) −m1(βτ + 1)

= βm1(β
−1 + τ )−m1(βτ + 1) = 0,

since m1m2 = |β−1 + τ |. Hence, ωβ = ei arg(β
−1+τ )m2h

(−2)
1 −

m1h
(−2)
2 is a half-bound state of B, which is different from the

constant one.
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4. PROOF OF MAIN RESULTS

We start with some assertions, which will be used below.

Lemma 3. Let {Sε}ε>0 be a family of self-adjoint operators in a
Hilbert space L and {Wε}ε>0 be a family of unitary operators in
L. Assume that Sε → S as ε → 0 in the norm resolvent sense,
Wε → W in the strong operator topology as ε → 0 and W
is a unitary operator in L. Then the family of operators Qε =
WεSεW

−1
ε converges in the strong resolvent sense to the operator

Q = WSW−1 with the domain {φ ∈ L : W−1φ ∈ dom S}.

Proof: We first note that

(Qε − ζ )
−1 − (Q− ζ )−1 = Wε

(

(Sε − ζ )
−1 − (S− ζ )−1

)

W−1
ε

+Wε(S− ζ )
−1(W−1

ε −W−1)+ (Wε −W)(S− ζ )−1W−1,

provided ζ ∈ C \ R. The operator S is self-adjoint as a limit of
self-adjoint operators Sε in the norm resolvent topology. From
the last relation and the self-adjointness of S we have

‖(Qε − ζ )
−1f − (Q− ζ )−1f ‖ ≤ ‖(Sε − ζ )

−1 − (S− ζ )−1‖ ‖f ‖

+ | Im ζ |−1‖(W−1
ε −W−1)f ‖ + ‖(Wε −W)(S− ζ )−1W−1f ‖

(4.1)

for all f ∈ L. The first term in the right-hand side tends to zero
as ε → 0, since operators Sε converge to S in the norm resolvent
sense. The last two terms are infinitely small as ε → 0, in view of
the strong convergence ofWε .

We introduce two unitary operators

(Wεf )(x) = e
ia

(

x
ε

)

f (x), (Wf )(x) = eiµH(x)f (x), (4.2)

in L2(R), where a and µ given by (2.11) and (2.2), respectively,
and H is the Heaviside step function

H(x) =

{

0, for x < 0,

1, for x > 0.

Lemma 4. Let Wε and W be the unitary operators given by (4.2).
Then Wε converge to W as ε → 0 in the strong operator topology.

Proof: Without loss of generality we can assume that the support
of themagnetic potentialA lies in (−1, 1). Therefore, a(ε−1x) = 0
for x < −ε and a(ε−1x) = µ for x > ε. For each f ∈ L2(R)
we have

‖Wεf −Wf ‖2 ≤

∫

R

∣

∣

∣

∣

e
ia

(

x
ε

)

− eiµH(x)

∣

∣

∣

∣

2

|f (x)|2 dx

=

∫ ε

−ε

∣

∣

∣

∣

e
ia

(

x
ε

)

− eiµH(x)

∣

∣

∣

∣

2

|f (x)|2 dx ≤ 4

∫ ε

−ε
|f (x)|2 dx, (4.3)

since a(ε−1x) = µH(x) for |x| > ε. The right-hand side of
(4.3) tends to zero as ε → 0, by absolute continuity of the
Lebesgue integral.

4.1. Proof of Theorem 1
Let us consider the Schrödinger operators

Sε = −
d2

dx2
+ V0(x) +

α

ε2
V

(x

ε

)

+
1

νε
U

(

x

νε

)

,

dom Sε = W2
2 (R). (4.4)

It is of course that Sε is a version of operator Hεν given by (2.1)
when the magnetic potential is disabled. We also denote by S =
S(θ , γ ) the Schrödinger operator acting via Sψ = −ψ ′′ + V0ψ

on functions ψ in V obeying the interface conditions

(

ψ(+0)
ψ ′(+0)

)

=

(

θ 0
γ θ−1

) (

ψ(−0)
ψ ′(−0)

)

(4.5)

at the origin. For all real θ and γ , this operator is self-adjoint.
The proof of Theorem 1 is based on the results obtained in

Golovaty [32, 33]. Let {νε}ε>0 be a sequence such that νε → 0
as ε → 0 and the ratio νε/ε tends to λ ∈ 3. If the potential αV
is resonant, then the operator family Sε converges in the norm
resolvent sense as ε → 0 to operator S = S(θ(α), γ (α, λ)), where
θ , γ are given by (2.3)–(2.6). We see at once that operator Hενε

is unitarily equivalent to operator Sε , i.e., Hενε = WεSεW
−1
ε

with the unitary operator (the gauge transformation) Wε given
by (4.2) [28]. For instance, it is easy to check that

−e
ia

(

x
ε

)

d2

dx2

(

e
−ia

(

x
ε

)

φ(x)

)

=
(

i
d

dx
+

1

ε
A
(x

ε

))2
φ(x),

since a′ = A. Next, W−1(domH) ⊂ dom S, where W−1f =
e−iµH f . In fact, given φ ∈ domH, we set ψ = W−1φ = e−iµHφ.
Then we have ψ(+0) = e−iµφ(+0), ψ ′(+0) = e−iµφ′(+0),
ψ(−0) = φ(−0) and ψ ′(−0) = φ′(−0). Rewriting conditions
(2.7) for φ in the form

(

e−iµφ(+0)

e−iµφ′(+0)

)

=

(

θ(α) 0
γ (α, λ) θ(α)−1

) (

φ(−0)
φ′(−0)

)

,

we ascertain that ψ satisfies (4.5) and therefore ψ ∈
dom S. Obviously,

W−1
: domH → dom S

is a linear isomorphism. Therefore, the limit operator H in
Theorem 1 can be written asH = WSW−1.

In view of Lemma 4, the gauge transformations Wε converge
to W in the strong operator topology. Since the resolvents of
Sε converge to the resolvent of S uniformly, we deduce from
Lemma 3 that

Hενε = WεSεW
−1
ε → WSW−1 = H as ε → 0

in the strong resolvent sense.
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4.2. Proof of Theorem 2
We can now argue almost exactly as in the proof of Theorem 1.
First of all note that operators Tε given by (4.6) are unitarily
equivalent to operators

Tε = −
d2

dx2
+ V0(x)+

1

ε3
Gε +

1

ε
U

(x

ε

)

, (4.6)

namely Tε = WεTεW
−1
ε with the gauge transformationWε given

by (4.2). Operator Gε = Gε(g1, g2) is a rank-two operator of
the form

(Gεψ)(x) = β̄ 〈g2(ε
−1 · ),ψ〉 g1(ε

−1x)+β 〈g1(ε
−1 · ),ψ〉 g2(ε

−1x),

where g1 = e−iaf1 and g2 = e−iaf2 are the same functions as in
(2.12). In fact, a trivial verification shows that Fε = WεGεW

−1
ε .

In Theorem 2 we assumed g1, g2 were linearly independent
functions of zero mean. Moreover, a2 6= ¯̹a1. It has recently been
proved in Golovaty [26] that if additionally coupling constant
β belongs to the set R(g1, g2) of double zero-energy resonance

for B = − d2

dx2
+ β̄ 〈g2, · 〉 g1 + β 〈g1, · 〉 g2, then operators Tε

converge as ε → 0 in the norm resolvent sense to operator
Tψ = −ψ ′′ + V0ψ acting on functions ψ ∈ V obeying the
interface conditions

(

ψ(+0)
ψ ′(+0)

)

= ei arg(a2−̹ā1)









|̹|2a0 − 2Re(̹a1)+ a2

|a2 − ̹a1|

|̹|2

|a2 − ̹a1|
a0a2 − |a1|

2

|a2 − ̹a1|

a2

|a2 − ̹a1|









(

ψ(−0)
ψ ′(−0)

)

at the origin. Therefore, T = WTW−1, by reasoning similar to
that in the proof of Theorem 1. We can now repeatedly apply

Lemma 3 for operator families {Tε}ε>0 and {Wε}ε>0 to deduce
the strong resolvent convergence

Tε = WεTεW
−1
ε → WTW−1 = T

as ε → 0.

5. FINAL REMARKS

In Theorem 1 we obtained in the limit the coupling conditions

(

φ(+0)
φ′(+0)

)

= eiµ(A)
(

θ(V) 0

γ (V ,U) θ−1(V)

) (

φ(−0)
φ′(−0)

)

,

in which the magnetic potential A appeared only in the phase
factor eiµ(A). This situation is typical for potential perturbations
of Schrödinger operators.

Unlike the previous case, in which the potential perturbation
was invariant with respect to the gauge transformation Wε ,
the finite-rank perturbation Fε is not invariant. In fact, Fε =
WεGεW

−1
ε ; transformation Wε rotates the plane span{f1, f2}

when we change parameter ε. This is certainly the main reason
why the magnetic field A has an effect on all coefficients in the
coupling conditions

(

φ(+0)
φ′(+0)

)

= eiµ(A)
(

c11(A) c12(A)
c21(A) c22(A)

) (

φ(−0)
φ′(−0)

)

appearing as the solvable model in Theorem 2. Of course, the
coefficients ckj depend on potentials V ,U and functions f1, f2 too.
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The double-well potential is a good example, where we can compute the splitting

in the bound state energy of the system due to the tunneling effect with various

methods, namely path-integral, WKB, and instanton calculations. All these methods are

non-perturbative and there is a common belief that it is difficult to find the splitting in

the energy due to the barrier penetration from a perturbative analysis. However, we will

illustrate by explicit examples including singular potentials (e.g., Dirac delta potentials

supported by points and curves and their relativistic extensions) it is possible to find the

splitting in the bound state energies by developing some kind of perturbation method.

Keywords: Dirac delta potentials, Krein’s formulae, resolvent, perturbation theory, tunneling, Dirac delta potentials

supported by curves, heat kernel, bound state energy

1. INTRODUCTION

Most real quantum mechanical systems can not be solved exactly and we usually apply some
approximation methods, the most common one being perturbation theory, to get information
about the energy levels and scattering amplitudes. However, not all quantum systems can be
analyzed by perturbative methods. There are various class of problems where we can not deduce
any information by simply using perturbation theory since these problems are inherently non-
perturbative phenomena like the formation of bound states and penetration through a potential
barrier. For such non-perturbative phenomenon, other tools, such as WKB [1, 2] and instanton
calculations [3], are particularly useful. The particle moving in a one-dimensional anharmonic

potential V(x) = λ2

8 (x
2 − a2)2 is a classic example, where we can show the barrier penetration

through the WKB analysis.
When the energy scale determined by the length scale a is extremely small compared with

the binding energy of the system, i.e., h̄2/2ma2 << EB, or λa
2 >> 1, the potential separates

into two symmetrical wells with a very high barrier (see Figure 1). In this extreme regime, as a
first approximation, each well has separately quantized energy levels and these energy levels are
degenerate due to the symmetry. However, once the large but finite value of the coupling constant
λ is taken into account, the particle initially confined to one well can tunnel to the other well so the
degeneracy in the energy levels disappear. The splitting in the resulting energy levels (between the
true ground state and the first excited level due to the tunneling) is given by Landau [1] and Das [2]

δE = E2 − E1 ≈
4e

π

√

mh̄ω3/2a exp

(

−
1

h̄
S0

)

(1)

where S0 = 2mωa2

3 and ω2 = λ2a2

m . The above exponentially decaying factor with respect to the
separation between the wells illustrates the tunneling effect. The true ground state corresponds to
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a symmetric combination and the excited level corresponds to
the anti-symmetric combination of the WKB corrected wave
functions.

Among the exactly solvable potentials in quantummechanics,
Dirac delta well potentials are the most well-known text book
example [4]. Moreover, it has been studied extensively in
mathematical physics literature from the different point of
views, in particular in the context of self-adjoint extension
of symmetric operators [5]. Although it is easier to define it
rigorously in one dimension through the quadratic forms, one
possible way to define it in higher dimensions is to consider
the free symmetric Hamiltonian defined on a dense domain
excluding the point, where the support of the Dirac delta
function is located, and then apply the self-adjoint extension
techniques developed by J. Von Neumann [see the monograph
[6] for the details and also for the historical development
with extensive literature in the subject]. Then, the formal (or
heuristic) definition of one-dimensional Dirac delta potentials
in the physics literature is understood as the one particular
choice among the four parameter family of the self-adjoint
operators, where the matching conditions of the wave function
are just obtained from the boundary conditions (which define
the domain of our self-adjoint operator) constructed through
the extension theory. Another way to introduce these point
interactions uses the resolvent method, developed by M. Krein,
and it is based on the observation that for such type of potentials
the resolvent can be found explicitly and expressed via the so-
called Krein’s formula [7].Within this approach, the Hamiltonian
for point interaction (in two and three dimensions) is first
approximated (regularized) by a properly chosen sequence of
self-adjoint operators Hǫ and then the coupling constant (or
strength) of the potential is assumed to be a function of the
parameter ǫ in such a way that one obtains a non-trivial limit.
This convergence is actually in the strong resolvent sense, so
the limit operator is self-adjoint [8]. Since the Dirac delta
potentials in two and three dimensions require renormalization,
it is usually considered as a toy model for the renormalization
originally developed in quantum field theories and it helps
us to better understand the various ideas in field theory
such as renormalization group and asymptotic freedom [9–
12]. Furthermore, point like Dirac delta interactions have been
also extended to various generalizations. For our approach, to
illustrate the main ideas, we are mainly concerned with the
delta potentials supported by points on flat and hyperbolic
manifolds [13–15], and delta potentials supported by curves in
flat spaces, and its various relativistic extensions in flat spaces
[16–19].

In this paper, we explicitly demonstrate for a class of singular
potential problems that the splitting in the energy levels due to
the tunneling can be realized by simply developing some kind
of perturbation theory. We have two basic assumptions here:
(1) Binding energies of individual Dirac delta potentials are all
different. Otherwise we need to employ degenerate perturbation
theory. Actually, we briefly discus a particular degenerate case,
namely the two center case in two dimensions to compare with
the double well potential. (2) The support of singular interactions
are sufficiently separated from one another, as a result the

FIGURE 1 | Anharmonic potential.

bound state wave functions decay rapidly over the distances
between them.

All the findings about the splitting in the bound state energies
for singular potentials on hyperbolicmanifolds treated here could
be applied to the two dimensional systems such as graphite
sheets. We can model impurities in these systems as attractive
centers in some approximation and these sheets can be put
in various shapes. This is especially true for surfaces with
variable sectional curvature which is not completely negative.
The negatively curved surfaces, of course, cannot be realized as
embedded surfaces in three dimensions due to Hilbert’s well-
known theorem. Nevertheless, we may envisage these models
as an effective description of unusual quasi-particle states of
some two dimensional systems. Due to the interactions, the
system may develop a gap in the spectrum and the effective
description may well be best understood through a negative
sectional curvature space. Moreover, the problems related with
point interactions on Lobachevsky plane have been studied
from different points of view [20, 21]. The point interactions
can be extended on more general class of manifolds as well
[22]. In particular, they have been studied on some particular
surfaces in R

3, namely on the infinite planar strip as a
natural model for quantum wires containing impurities [23]
and on the torus [24]. A more heuristic approach for point
interactions on Riemannian manifolds has been constructed
through the heat kernel in Altunkaynak et al. [13] and Erman
and Turgut [14]. The physical motivation behind studying the
Dirac delta potentials supported by curves is based on the
need for modeling semiconductor wires [25]. They could be
considered as a toy model for electrons confined to narrow
tube-like regions.

The paper is organized as follows: In section 2, we formally
summarize the resolvent formulae, called Krein’s formulae, for
Hamiltonians perturbed by singular potentials including Dirac
delta potentials supported by points and curves. The principal
matrices for each case are given explicitly. The relativistic and
the field theoretical extension of it has been also reviewed
in the subsections of this section. In section 3, we briefly
discuss the analytic structure of the principal matrix and the
bound state spectrum for such type of singular interactions.
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In Section 4, we discuss how the off-diagonal terms of the
principal matrix change in the tunneling regime. section 5
and section 6 contain the formulation of the perturbative
analysis and explicit calculations of the splitting in the bound
state energy when these singular interactions are far away
from each other, which is the main result of the paper. We
finally discuss the degenerate case and wave functions, and
compare the one dimensional results with the exact result in
section 7.

2. KREIN’S FORMULAE FOR FREE

HAMILTONIANS PERTURBED BY

SINGULAR INTERACTIONS

Before we are going to discuss the perturbative analysis of
singular interactions for large separations of the support of
the potentials, we first present the basic results about our
formulation of the singular Hamiltonians. In this paper, we are
mainly concerned with the Dirac delta potentials supported by
finitely many points and finitely many curves in flat spaces,
and their extension to the hyperbolic manifolds. Moreover,
we also consider some relativistic extensions of these singular
interactions.

Since we study the spectral properties of different kinds
of Dirac delta potentials, we first introduce the notation for
Dirac delta functions of interest. The Dirac delta distribution
δa supported by a point a in R

n is defined as a continuous
linear functional whose action on the test functions ψ is
given by

〈δa,ψ〉 = ψ(a) . (2)

Similarly, Dirac delta distribution δγ supported by a curve Ŵ in
R
n is defined as a continuous linear functional whose action on

the test functions ψ is given by Appel [26]

〈δγ ,ψ〉 =

∫

Ŵ

ds ψ(γ (s)) . (3)

The left hand sides in the definitions (2) and (3) can
be expressed in the Dirac’s bra-ket notation, most
common in physics literature, as 〈a|ψ〉 and 〈γ |ψ〉,
respectively.

As we have already emphasized in the introduction, there
are several ways to define rigorously the Hamiltonian for Dirac
delta potentials. Here, we start with a finite rank perturbations
of self-adjoint free Hamiltonian H0 (e.g., H0 = P2/2m in
the non-relativistic case and H0 =

√
P2 +m2 in the semi-

relativistic case):

H = H0 −

N
∑

i=1

λi〈ϕi, .〉 ϕi , (4)

where ϕi ∈ H and 〈., .〉 denotes the sesqui-linear inner
product in the Hilbert space H. Then, it is well-known that
the resolvent of H can be explicitly found in terms of the

resolvent of the free part by simply solving the inhomogenous
equation [7]

(H − z)ψ = ρ , (5)

for a given ρ ∈ H and ψ ∈ D(H0) = D(H). Here D stands
for the domain of the operator and we assume that ℑ(z) > 0.
It is well-known that H is self-adjoint on D(H0) due to the
Kato-Rellich theorem [5]. The resolvent of H could be found
in two steps: First, we apply the resolvent of the free part to
the Equation (5)

(H0 − z)−1ρ = ψ −

N
∑

i=1

λi〈ϕi,ψ〉 (H0 − z)−1ϕi , (6)

and project this on the vector ϕj, we can then find the solution
〈ϕi,ψ〉 so that the resolvent Rz(H) = (H − z)−1 of the
Hamiltonian H at z is:

Rz(H) = Rz(H0)+

N
∑

i,j=1

Rz(H0)ϕi [8
−1(z)]ij 〈Rz̄(H0)ϕj, .〉 , (7)

where

8ij(z) =

{ 1
λi
− 〈ϕi,Rz(H0)ϕi〉 if i = j

−〈ϕi,Rz(H0)ϕj〉 if j 6= j′
. (8)

Actually, the resolvent formula (7) is valid even in the case
where the vectors ϕi’s do not belong to the Hilbert space. Such
perturbations represent the singular type of interactions, e.g.,
Dirac delta potentials supported by points or curves [6, 16].
In Dirac’s bra-ket notation, one can also express the above
resolvent formula as:

Rz(H) = Rz(H0)+

N
∑

i,j=1

Rz(H0)|ϕi〉 [8
−1(z)]ij 〈ϕj|Rz(H0) . (9)

The explicit expression of the resolvent (7) or (9) is known
as Krein’s resolvent formula. Alternatively, these singular
interactions can be defined directly through von Neumann’s self-
adjoint extension theory (or quadratic forms in some cases).
Since our aim is the spectral behavior and especially the bound
state problem of such singular interactions, Krein’s explicit
formula is much more useful. Throughout the paper, following
the terminology introduced by Rajeev [27] we call the matrix 8
as the principal matrix (this is equivalent to the matrix Ŵ used in
Albeverio et al. [6]).

Actually, one can also develop the above resolvent formula
(9) to relativistic and field theoretical extensions of the singular
models, as we will discuss in the next subsections. Let us
now summarize explicitly the resolvent formulae and principal
matrices in all classes of singular interactions that we are going to
discuss in this paper:
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2.1. Point-Like Dirac Delta Interactions in R

The Hamiltonian for the non-relativistic particle moving in fixed
N point like Dirac delta potentials in one dimension can be
expressed in terms of the formal projection operators given by
the Dirac kets |ai〉

H = H0 −

N
∑

i=1

λi|ai〉〈ai| , (10)

where H0 is the non-relativistic free Hamiltonian, and λj’s are
positive constants, called coupling constants or strengths of the
potential. Throughout this paper, we will use the units such that
h̄ = 2m = 1 for non-relativistic cases and h̄ = c = 1
only for the relativistic case. Since we have fairly complicated
expressions, this simplifies our writing, hoping that this does
not lead to any further complications. It is well-known in the
literature that there are different ways to make sense of this
formal Hamiltonian in a mathematically rigorous way [strictly
speaking, the above expression (10) has no meaning as an
operator in L2(R)]. Let us define Rz(H) : = R(z) and Rz(H0) : =
R0(z) for simplicity. Even though it is hard to make sense
of the Hamiltonian, one can find the resolvent of this formal
operator algebraically and the result is consistent with the one
given by a more rigorous formulation. Choosing ϕi as the
Dirac kets |ai〉 formally in the previous section, the resolvent is
explicitly given by

R(z) = R0(z)+

N
∑

i,j=1

R0(z)|ai〉[8
−1(E)]ij〈aj|R0(z) , (11)

where8 is an N × N matrix

8ij(z) =

{ 1
λi
− R0(ai, ai; z) if i = j

−R0(ai, aj; z) if i 6= j
. (12)

Here R0(ai, aj; z) = 〈ai|(H0 − z)−1|aj〉 is the free resolvent
kernel. It is useful to express the principal matrix in terms of the
heat kernel Kt(ai, aj) - the fundamental solution to the Cauchy
problem associated with the heat equation—using

R0(ai, aj; z) = 〈ai|(H0 − z)−1|aj〉 = 〈ai|

∫ ∞

0
dt et(H0−z)|aj〉

=

∫ ∞

0
dt Kt(ai, aj) e

tz . (13)

Then, we obtain

8ij(z) =

{ 1
λi
−
∫∞
0 dt Kt(ai, ai)e

tz if i = j

−
∫∞
0 dt Kt(ai, aj)e

tz if i 6= j
. (14)

These expressions should be considered as analytical
continuations of the formulae beyond their regions of
convergence in the variable z. From the resolvent (11), one
can also write down the resolvent kernel

R(x1, x2; z) = R0(x1, x2; z)+

N
∑

i,j=1

R0(x1, ai; z)[8
−1]ijR0(aj, x2; z) .

(15)

Using the explicit expression of the integral kernel of the free
resolvent

R0(x, y; z) =
i

2
√
z
ei
√
z|x−y| , (16)

we have

8ij (z) =

{

1
λi
− i

2
√
z

if i = j

− i
2
√
z
ei
√
z|ai−aj| if i 6= j

. (17)

Here
√
z is defined as the unambiguous square root of z with

ℑ
√
z is positive. Since we study the bound state spectrum, it is

sometimes convenient to express the above matrix8(z) in terms
of a real positive variable ν = −i

√
z, i.e.,

8ij(z)

∣

∣

∣

∣

z=−ν2
: = 8ij(ν) =

{ 1
λi
− 1

2ν if i = j

− 1
2ν e−ν|ai−aj| if i 6= j

. (18)

2.2. Point-Like Dirac Delta Interactions in

R
2 and R

3

We assume that the centers of the Dirac delta potentials do
not coincide, that is, ai 6= aj whenever i 6= j. If we follow
the same steps outlined above, we find exactly the same formal
expression for the resolvent for point interactions in two and
three dimensions except for the fact that the explicit expression
of the integral kernel of the free resolvent in R

2 and R
3 [6] are

given by

R0(r1, r2; z) =
i

4
H

(1)
0 (

√
z|r1 − r2|) , (19)

R0(r1, r2; z) =
ei
√
z|r1−r2|

4π |r1 − r2|
, (20)

respectively. Here H
(1)
0 is the Hankel function of the first kind

of order zero and ℑ
√
z > 0. Unfortunately, the diagonal part

of the free resolvent kernels are divergent so the diagonal part
of the principal matrices are infinite. This is clear for the three
dimensional case from the asymptotic behavior of the Hankel
function [28]

H
(1)
0 (x) ≈ −

2i

π
log(2/x) , (21)

as x → 0.
This difficulty can be resolved by the so-called regularization

and renormalization method. Instead of starting with the
higher dimensional version of the formal Hamiltonian (10),
we first consider the regularized Hamiltonian through the
heat kernel

Hǫ = H0 −

N
∑

i=1

λi(ǫ) |a
ǫ
i 〉〈a

ǫ
i | , (22)

where 〈r|ai
ǫ〉 = Kǫ/2(r, ai). The heat kernel associated with the

heat equation ∇2ψ − ∂ψ

∂t = 0 in R
n is given by

Kt(r1, r2) =
1

(4π t)n/2
e−

|r1−r2 |
2

4t . (23)
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It is important to note that

Kǫ/2(r, ai) → δ(r− ai) , (24)

as ǫ → 0+ in the distributional sense. Then, we can easily find
the resolvent kernel associated with the regularized Hamiltonian
(22)

Rǫ(r1, r2; z) = R0(r1, r2; z)

+

N
∑

i,j=1

R0 (r1, ai; z)
[

8ǫ(z)
]−1

ij
R0
(

aj, r2; z
)

, (25)

where

[8ǫ(z)]ij =

{ 1
λi(ǫ)

−
∫∞
0 dt Kt+ǫ(ai, ai) e

tz if i = j

−
∫∞
0 dt Kt+ǫ(ai, aj) e

tz if i 6= j
. (26)

If we choose

1

λi(ǫ)
=

∫ ∞

0
dt Kt+ǫ(ai, ai) e

tEiB (27)

where EiB < 0 (the spectrum of the free Hamiltonian only
includes the continuous spectrum: [0,∞]) is the bound state
energy of the particle to the i th center in the absence of all the
other centers and take the formal limit ǫ → 0+ we find

R(r1, r2; z) = R0(r1, r2; z)

+

N
∑

i,j=1

R0 (r1, ai; z)
[

8(z)
]−1

ij
R0
(

aj, r2; z
)

, (28)

where

8ij(z) =

{

∫∞
0 dt Kt(ai, ai)

(

etE
i
B − etz

)

if i = j

−
∫∞
0 dt Kt(ai, aj) e

tz if i 6= j
. (29)

Kt(x, y) =



















√
2

κ

1

(4π t)3/2
e−κ

2t/4

∫ ∞

κd(x,y)
ds

s e−s2/4κ2t

√

cosh s− cosh κd(x, y)
for n = 2

κd(x, y)

(4π t)3/2 sinh κd(x, y)
e−κ

2t−
d2(x,y)

4t for n = 3 ,

(34)

From the explicit form of the heat kernel formula (23), we
obtain

8ij(z) =







1
2π log

(

−i
√

z/|EiB|

)

if i = j

− i
4H

(1)
0 (

√
z|ai − aj|) if i 6= j

, (30)

in two dimensions and

8ij(z) =







(

−i
√
z−
√

|EiB|
)

4π if i = j

− e
i
√
z|ai−aj |

4π |ai−aj|
if i 6= j

, (31)

in three dimensions.

Since we deal with the bound states in this paper, it is
convenient to express the principal matrices in terms of the real
positive variable ν = −i

√
z:

8ij(z)|z=−ν2 =







1
2π log

(

ν/

√

|EiB|

)

if i = j

− 1
2π K0(ν|ai − aj|) if i 6= j

, (32)

in two dimensions and

8ij(z)|z=−ν2 =







(

ν−
√

|EiB|
)

4π if i = j

− e
−ν|ai−aj |

4π |ai−aj|
if i 6= j

, (33)

in three dimensions. Here we have used K0(z) = iπ
2 H1

0(iz) with
−π < arg(z) < π/2 and K0(z) is the modified Bessel function of
the third kind [28].

2.3. Point-Like Dirac Delta Interactions in

H
2 and H

3

Here we assume that the particle is intrinsically moving in
the manifold. Our heuristic approach to study such type of
interactions on Riemannian manifolds is based on the idea of
using the heat kernel as a regulator for point interactions on
manifolds [13, 14]. Thanks to the fact (24), the regularized
interaction is chosen as the heat kernel on Riemannian
manifolds. Once we have regularized the Hamiltonian, one
can follow essentially the same steps outlined in the previous
section, and obtain exactly the same form of the resolvent and
principal matrix as in (28) and (29), respectively. In this paper,
we only consider the particular class of Riemannian manifolds,
namely two and three dimensional hyperbolic manifolds for
simplicity. The heat kernel on hyperbolic manifolds of constant
sectional curvature −κ2 can be analytically calculated and given
by Grigoryan [29]

where d(x, y) is the geodesic distance between the points x and
y on the manifold. The explicit form of the principal matrix inH3

can then be easily evaluated [15]:

8ij(z) =























1

4π

(

√

κ2 − z −

√

κ2 − EiB

)

if i = j

−





κ exp
(

−d(ai, aj)
√
κ2 − z

)

4π sinh
(

κd(ai, aj)
)



 if i 6= j .

(35)

Similarly, the principal matrix in H
2 can simply be evaluated by

interchanging the order of integration with respect to t and s
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8ij(z) =























1

2π



ψ

(

1

2
+

√

−
z

κ2
+

1

4

)

− ψ





1

2
+

√

−
EiB
κ2

+
1

4







 if i = j

−
1

2π
Q 1

2+
√

− z
κ2

+ 1
4

(

cosh(κd(ai, aj))
)

if i 6= j ,

(36)

where ψ is the digamma function with its integral
representation [28]

ψ(w) =

∫ ∞

0

(

e−t

t
−

e−tw

1− e−t

)

dt , (37)

forℜ(w) > 0, and Q is the Legendre function of second type [28]
with its integral representation

Qα(cosh a) =

∫ ∞

a

e−(α+ 1
2 )r

√
2 cosh r − 2 cosh a

dr , (38)

for real and positive a and ℜ(α) > −1.
Since the spectrum of the free Hamiltonian in H

n includes
only the continuous part starting from (n− 1)2κ2/4, it is natural
to assume EiB < (n− 1)2κ2/4.

2.4. Two Types of Relativistic Extensions of

Point-Like Dirac Delta Interactions
We first consider the so-called semi-relativistic Salpeter type free
Hamiltonian (also known as relativistic spin zero Hamiltonian)
perturbed by point like Dirac delta potentials in one dimension.
This problem for the single center case has been first studied in
Albeverio and Kurasov [30] from the self-adjoint extension point
of view. The formal Hamiltonian is exactly in the same form as in
(10), except for the free part

H =

√

−
d2

dx2
+m2 −

N
∑

i=1

λi|ai〉〈ai| , (39)

in the units where h̄ = c = 1. This non-local operator is a
particular case of pseudo-differential operators and defined in
momentum space as multiplication by

√

p2 +m2 [31], which
is known as the symbol of the operator. After following
the renormalization procedure outlined above for the point
interactions in two and three dimensions, the resolvent and the
principal matrix is exactly the same form as in (28) and (29),
respectively. However, the explicit expression of the heat kernel
in this case is given by Lieb and Loss [31]

Kt(x, y) =
mt

π
√

(x− y)2 + t2
K1

(

m

√

(x− y)2 + t2
)

, (40)

where K1 is the modified Bessel function of the first kind. Due to
the short-time asymptotic expansion

K1(mt) ∼
1

mt
, (41)

the diagonal term in the principal matrix (29) is divergent.
In contrast to the one-dimensional case for point Dirac delta
potentials, this problem therefore requires renormalization, as

noticed by Erman et al. [18] and Al-Hashimi et al. [32]. Choosing
the coupling constants as in (27) by substituting the heat kernel
(40) and taking the limit ǫ → 0+, we obtain the resolvent in the
form of the Krein’s formula (11). The explicit form of the diagonal
principal matrix is given by Erman et al. [18]

8ii(z) = ϕ(EiB)− ϕ(z) , (42)

where

ϕ(z) =
z

π
√
m2 − z2

(

π

2
+ arctan

z
√
m2 − z2

)

. (43)

Its off-diagonal part is given by

8ij(z) =















− 1
π

∫∞
m dµ e−µ|ai−aj|

√
µ2−m2

µ2−m2+z2
if ℜz < 0

−i e
i
√

z2−m2|ai−aj|
√

1− m2

z2

− 1
π

∫∞
m dµ e−µ|ai−aj|

√
µ2−m2

µ2−m2+z2
if ℜz > 0

,

(44)

where EiB is the bound state energy to the i th center in the
absence of all the other centers. Since the spectrum of the free
Hamiltonian includes only the continuous spectrum starting
fromm, it is natural to expect that EiB < m.

An alternative relativistic model can be introduced from a
field theory perspective in two dimensions. If we take very heavy
particles interacting with a light particle, in the extreme limit of
static heavy particles one recovers the following model:

H =

∫∫

R2

d2p

(2π)2

√

(

p2 +m2
)

a†(p)a(p)

−

N
∑

i=1

λiφ
(−)(ai)φ

(+)(ai) , (45)

where ai refer to the locations of static heavy particles. Here

φ(+)(x) =

∫∫

R2

d2p

(2π)2
eip·x

√
2(p2 +m2)1/4

a(p) and

φ(−) =
(

φ(+)
)†

, (46)

where † denotes the adjoint. Since this model was worked out
in Dogan and Turgut [17], we will be content with the resulting
formulae only referring to the original paper for the details. We
can compute the diagonal principal matrix as

8ii(z) =
1

2π
ln
( m− z

m− EiB

)

, (47)
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and the off-diagonal part as

8ij(z) = −
1

2π

∫ ∞

0

ds

(s2 + 1)1/2
e−|ai−aj|[m(s2+1)1/2−zs] , (48)

for −m < ℜ(z) < m. Moreover, the binding energy of the single
center should satisfy−m < EiB < m, and the lower bound is due
to the stability requirement, to prevent pair creation to reduce
the energy further thus rendering the model unrealistic in single
particle sector.

2.5. Dirac Delta Interactions Supported by

Curves in R
2 and in R

3

We consider N Dirac delta potentials supported by non-
intersecting smooth curves γj :[0, Lj] → R

n of finite length Lj
(n = 2, 3). Each curve is assumed to be simple, i.e., γj(s1) 6= γj(s2)
whenever s1 6= s2, where s1, s2 ∈ (0, Lj). Our formulation also
allows the simple closed curves.

The Hamiltonian of the system is given by

H = H0 −

N
∑

i=1

λi

Li
|γi〉〈γi| , (49)

where 〈γi|r〉 =
∫

Ŵi
ds δ(r−γi(s)). Then, the Schrödinger equation

(H|ψ〉 = E|ψ〉) associated with this Hamiltonian is

−∇2ψ(r) −

N
∑

i=1

λi

Li

∫

Ŵi

dsi δ(r− γi(si))

∫

Ŵi

ds′i ψ(γi(s
′
i))

= Eψ(r) . (50)

In contrast to the point-like Dirac delta interactions, this
equation is a generalized Schrödinger equation in the sense that
it is non-local. The resolvent kernel of the above Hamiltonian is
explicitly given in the same form associated with point like Dirac
delta potentials, namely

R(r1, r2; z) = R0(r1, r2; z)

+

N
∑

i,j=1

1
√

LiLj
R0 (r1, γi; z)

[

8(z)
]−1

ij
R0
(

γj, r2; z
)

,

(51)

where

8ij(z) =

{

1
λi
− 1

Li
〈γi|R0(z)|γi〉 if i = j

− 1√
LiLj

〈γi|R0(z)|γj〉 if i 6= j , (52)

or if we express it in terms of the heat kernel

8ij(z) =

{

1
λi

− 1
Li

∫∫

Ŵi×Ŵi
dsi ds

′
i

∫∞
0 dt etz Kt(γi(si), γi(s

′
i)) if i = j

− 1√
LiLj

∫∫

Ŵi×Ŵj
dsi ds

′
j

∫∞
0 dt etz Kt(γi(sj), γj(s

′
j)) if i 6= j .

(53)

Using the explicit form of the heat kernel in two dimensions, the
above principal matrix becomes

8ij(z) =







1
λi

− i
8πLi

∫∫

Ŵi×Ŵi
dsi ds

′
i H

(1)
0 (

√
z|γi(si)− γi(s

′
i)|) if i = j

− i

8π
√

LiLj

∫∫

Ŵi×Ŵj
dsi ds

′
j H

(1)
0 (

√
z|γi(si)− γj(s

′
j)|) if i 6= j

.

(54)

The spectrum of the free Hamiltonian includes only continuous
spectrum starting from zero, so we expect that the bound state
energies must be below z = 0. For this reason, we restrict the
principal matrix to the negative real values, i.e., z = −ν2, ν > 0.
Then, we have

8ij(z)|z=−ν2 =

{

1
λi

− 1
4πLi

∫∫

Ŵi×Ŵi
dsi ds

′
i K0(ν|γi(si)− γi(s

′
i)|) if i = j

− 1

4π
√

LiLj

∫∫

Ŵi×Ŵj
dsi ds

′
j K0(ν|γi(si)− γj(s

′
j)|) if i 6= j .

(55)
For non self-intersecting curve γi, we can expand it around the

neighborhood of s′i = si in the Serret-Frenet frame at si [33]:

γi(s
′
i) = γi(si)+

(

(s′i − si)− k2i (si)
(s′i − si)

3

3!

)

ti(si)

+

(

ki(si)

2
(s′i − si)

2 − k
′

i(si)
(s′i − si)

3

3!

)

ni(si)+ Ri(si) ,

(56)

where ti(si) and ni(si) are the tangent and normal vectors at
si, and Ri(si) is the remainder term which vanishes faster than
(s′i − si)

3 as s′i → si. We have an extra term proportional to

the binormal vector bi(si) in three dimensions (− ki(si)τi(si)
3! (s′i −

si)
3bi(si), where τi(si) is the torsion of the curve). In the first

approximation, keeping only the linear terms in s′i − si, and
translating and rotating the Serret-Frenet frame attached to the
coordinate system Oxy in such a way that ti(si) = (1, 0) and
ni(si) = (0, 1), we have

|γi(s
′
i)− γi(si)| ≈ |s′i − si| . (57)

Then, the integral in the diagonal part of the principal matrix (55)
around s′i = si in the first approximation is

∫∫

Ŵi×Ŵi

dsi ds
′
i K0(ν|s

′
i − si|) . (58)

By making change of coordinates ξi =
(s′i+si)

2 and ηi =
(s′i−si)

2 , the
above integral becomes

4

∫ Li/2

0
dηi(Li − 2ηi)K0(2νηi) . (59)

Using
∫ Li/2
0 dηi(Li − 2ηi)K0(2νηi) ≤

∫∞
0 dηi(Li − 2ηi)K0(2νηi)

and the integrals of modified Bessel functions [34]

∫ ∞

0
dx xn K0(ax) = 2n−1a−n−1Ŵ2

(

1+ n

2

)

, (60)

where n = 0, 1 and Ŵ is the gamma function, it is easy to see that
the integral that we consider is finite around ηi = 0 (s′i = si).
For non self-intersecting curves, the integrals in the diagonal and
off-diagonal terms in (55) are finite whenever s′i 6= si due to the
upper bounds of the Bessel functions [14]

K0(x) <
2

1+ x
e−

x
2 + e−

x
2 ln

(

x+ 1

x

)

. (61)
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In three dimensions, the Dirac delta potentials supported by
curves requires the renormalization. Using the explicit formula
of the heat kernel (23) for three dimensions, we find

8ij(z) =











1
λi
− 1

4πLi

∫∫

Ŵi×Ŵi
dsi ds

′
i
ei
√
z|γi(si)−γi(s

′
i)|

|γi(si)−γi(s
′
i)|

if i = j

− 1

4π
√

LiLj

∫∫

Ŵi×Ŵj
dsi ds

′
j
e
i
√
z|γi(si)−γj(s

′
j)|

|γi(si)−γj(s
′
j)|

if i 6= j
.

(62)
One can show that the diagonal part of the above principal matrix
(53) includes a term

∫∫

Ŵi×Ŵi

dsi ds
′
i

ei
√
z|γi(si)−γi(s

′
i)|

|γi(si)− γi(s
′
i)|

, (63)

which is divergent around s′i = si. This can be immediately
seen using the similar method outlined above, that is, the above
integral includes the following integral in the new variable ηi:

∫ Li/2

0
dηi

e2i
√
zηi

ηi
, (64)

which is divergent around ηi = 0.
Similar to the non-relativistic and relativistic point

interactions, we first regularize the resolvent and then by
choosing the coupling constant as a function of the cut-off
parameter ǫ:

1

λi(ǫ)
=

∫ ∞

0
dt etE

i
BKt+ǫ(γi(si), γi(s

′
i)) , (65)

and taking the formal limit ǫ → 0+, we obtain the resolvent
which is exactly the same form as in (51) except the matrix 8
is given by

8ij(z) =







1
Li

∫∫

Ŵi×Ŵi
dsi ds

′
i

∫∞
0 dt (etE

i
B − etz)Kt(γi(si), γi(s

′
i)) if i = j

− 1√
LiLj

∫∫

Ŵi×Ŵj
dsi ds

′
j

∫∞
0 dt etz Kt(γi(si), γj(s

′
j)) if i 6= j

.

(66)
Here, EiB is the bound state energy of the particle to the

delta interaction supported by ith curve in the absence of
all the other delta interactions. Since the spectrum of the
free Hamiltonian only includes the continuous part starting
from zero, we have EiB < 0. Using the explicit form
of the heat kernel, the principal matrix turns out to be a
finite expression:

8ij(z) =











1
4πLi

∫∫

Ŵi×Ŵi
dsi ds

′
i

1
|(γi(si)−γi(s

′
i))|

(e−
√

|EiB||(γi(si)−γi(s
′
i))| − ei

√
z|(γi(si)−γi(s

′
i))|) if i = j

− 1

4π
√

LiLj

∫∫

Ŵi×Ŵj
dsi ds

′
j
e
i
√
z|(γi(si)−γj(s

′
j))|

|(γi(si)−γj(s
′
j))|

if i 6= j
. (67)

A semi-relativistic generalization of particles interacting with
curves is presented in Kaynak and Turgut[19]. The formal
Hamiltonian can be written as

H =

∫∫

R2

d2p

(2π)2

(

p2 +m2
)

a†(p)a(p)

−

N
∑

i=1

λi

Li

∫

dsi φ
(−)(γi(si))

∫

ds′i φ
(+)(γi(s

′
i)). (68)

We refer to this work for the details and we are content
with writing down the resulting 8 matrix, since for tunneling
corrections to the bound spectra this is all we need:

8ii(z) =
m

√
2π2Li

∫ ∞

0
dt

∫

Ŵi×Ŵi

dsids
′
i

K1

(

m
√

t2 + |γi(si)− γi(s
′
i)|

2
)

√

t2 + |γi(si)− γi(s
′
i)|

2

(

eE
i
Bt − ezt

)

,

(69)

8ij(z) = −
m

√

2LiLjπ2

∫ ∞

0
dt

∫

Ŵi×Ŵj

dsidsj
K1

(

m
√

t2 + |γi(si)− γj(sj)|2
)

√

t2 + |γi(si)− γj(sj)|2
ezt . (70)

As usual, these formulae must be analytically continued in z
outside of their region of convergence. In our approach we are
interested in the bound states for which these formulae are valid.

3. ANALYTIC STRUCTURE OF THE

PRINCIPAL MATRICES AND THE BOUND

STATE SPECTRUM

It is well-known that the bound state spectrum is determined by
the poles of the resolvent, so the bound state spectrum should
only come from the points z below the spectrum of the free
Hamiltonian, where the matrix8 is not invertible, i.e., the bound
state energies are the real solutions of the equation

det8(E) = 0 , (71)

where E < σ (H0). From all the explicit form of the principal
matrices8ij(z), they are all matrix-valued holomorphic function
on their largest possible set of the complex plane. The analytical
structure of the principal matrices can be determined by using the
generalized Loewner’s theorem [35], which simply states that if f0
is a real valued continuously differentiable function on an open
subset1 of (−∞,∞), then the following are equivalent:

• There exists a holomorphic function f with ℑf ≥ 0 on the
upper half-plane of the complex plane such that f has an
analytic continuation across1 that coincides with f0 on1.

• For each continuous complex valued function F on 1 that
vanishes off a compact subset of1,

∫

1

∫

1

dζ dη K(ζ , η)F̄(ζ )F(η) ≥ 0 , (72)

where for ζ , η ∈ 1,

K(ζ , η) =

{

f0(ζ )−f0(η)
ζ−η if ζ 6= η

f ′0(ζ ) if ζ = η
. (73)
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For simplicity, let us explicitly show the analytical structure of
the principal matrix associated with the Dirac delta potential
supported by a single curve in two dimensions. In this case,
the principal matrix (52) is just the diagonal part, say 8(E),
and continuously differentiable function of E, where E is on the
negative real axis. Then, we have

8(ζ )−8(η)

ζ − η
= −

1

L

1

ζ − η
〈γ |R0(ζ )− R0(η)|γ 〉 , (74)

where ζ , η is on the negative real axis and L is the length of the
curve Ŵ. Using the resolvent identity for the free resolvent, i.e.,
R0(ζ )− R0(η) = (η − ζ )R0(ζ )R0(η), we find

∫

1

∫

1

dζ dη F̄(ζ )F(η)

(

8(ζ )−8(η)

ζ − η

)

=
1

L

∣

∣

∣

∣

∫

1

dη F(η)R0(η)|γ 〉

∣

∣

∣

∣

2

> 0 , (75)

where R†
0(η) = R0(η̄) = R0(η). The positivity is preserved in

the limiting case ζ → η as well. This shows that the analytically
continued function, say 8̃ is a Nevallina function. We denote
the analytically continued function by the same letter 8 for
simplicity. The aforementioned theorem can be generalized to
the matrix valued function 8ij(E), as a result to ensure the
holomorphicity we verify that:

∫

1

∫

1

dζ dη

N
∑

i,j=1

F̄i(ζ )Fj(η)

(

8ij(ζ )−8ij(η)

ζ − η

)

=

∣

∣

∣

∣

∣

∫

1

dη

N
∑

i=1

1

Li
Fi(η)R0(η)|γi〉

∣

∣

∣

∣

∣

2

> 0 , (76)

and the principal matrix in all the other cases including
the relativistic extension of the problem can be similarly
analyzed. Hence, for a large region of the complex plane,
which contains the negative real axis, the principal matrix is a
matrix-valued holomorphic function so that its eigenvalues and
eigenprojections are holomorphic near the real axis [36]. In fact,
we get poles on the real axis for the eigenvalues and the residue
calculus can be used the calculate the associated projections.

Let us consider the eigenvalue problem for the principal
matrix depending on the real parameter E:

8(E)Ak(E) = ωk(E)Ak(E) , (77)

where k = 1, 2, . . . ,N and we assume there is no degeneracy for
simplicity (we consider the generic case). In order to simplify the
notation, we sometimes suppress the variable E in the equations,
e.g., Ak(E) = Ak and so on. Then, the bound state energies can
be found from the zeroes of the eigenvalues ω, that is,

ωk(E) = 0 , (78)

for each k. Thanks to Feynman-Hellmann theorem [37, 38], we
have the following useful result

∂ωk

∂E
= 〈Ak,

∂8

∂E
Ak〉 , (79)

where 〈., .〉 denotes the inner product on C
N . Using the

expression of the principal matrices in all class of singular
interactions described above and using the positivity of the heat
kernel, it is possible to show that

∂ωk

∂E
< 0 . (80)

This is an important result, since it implies that every eigenvalue
cuts the real axis only once, that particular value gives us a bound
state if it is below the spectrum of the free part. Moreover, we
deduce that the ground state energy corresponds to the smallest
eigenvalue of8.

4. OFF-DIAGONAL TERMS OF THE

PRINCIPAL MATRICES IN THE TUNNELING

REGIME

For simplicity, we assume that all binding energies EiB’s or/and
λi’s are different. We consider the situation where the Dirac
delta potentials (supported by points and curves) are separated
far away from each other in the sense that the de Broglie
wavelength of the particle is much smaller than the minimum
distance d between the point Dirac delta potentials or than the
minimum distance between the delta potentials supported by
non-intersecting regular curves with finite length, namely

d≫ λde Broglie , (81)

or in the semi-relativistic case, this can be stated as d≫λCompton.
This regime can be also defined in terms of the energy scales,
namely

1

d2
≪ EB , (82)

where EB is the minimum of the binding energies to the single
delta potentials in the absence of all the others (recall that h̄ =
2m = 1).

In the non-relativistic problem for point interactions in one
and three dimensions, it is clear from the explicit form of the
principal matrices (18), (33) all the off-diagonal terms are getting
exponentially small as d increases, i.e.,

|8ij(ν)| =
exp(−νdij)

2ν
≤

exp(−νd)

2ν
→ 0 , (83)

and

|8ij(ν)| =
exp(−νdij)

4πdij
≤

exp(−νd)

4πd
→ 0 , (84)

as d → ∞. For point interactions in two dimensions, thanks to
the upper bound of the Bessel function [14],

K0(x) <
2

x
exp(−x/2) , (85)
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for all x, the off-diagonal terms of the principal matrix (32)

|8ij(ν)| ≤
1

2π
K0(ν|ai − aj|) ≤

1

2π
K0(νd) <

1

νπd
exp(−νd) ,

(86)
is going to zero exponentially as d → ∞. In the above
expressions for principal matrices, we have expressed them in
terms of a real positive variable ν for simplicity. Not all the
bound state spectrum of the potentials we consider in this paper
is negative, so it is not always useful to express the principal
matrix in terms of a real positive variable ν. For that purpose, we
will consider the principal matrices restricted to the real values,
namely z = E, where E is the real variable (not necessarily
negative).

For point interactions in three dimensional hyperbolic
manifolds, the off-diagonal principal matrix restricted to the real
values E < κ2

|8ij(E)| ≤





κ exp
(

−d
√
κ2 − z

)

4π sinh
(

κd
)



 (87)

is exponentially small as d → ∞. Here d is the minimum
geodesic distance between the centers.

As for the point interactions in two dimensional hyperbolic
manifolds, the off-diagonal principal matrix restricted to the real
values E < κ2/4 becomes

|8ij(E)| =
1

2π
Q 1

2+
√

− E
κ2

+ 1
4

(

cosh(κd(ai, aj))
)

. (88)

Using the series representation of the Legendre function of
second kind [28]

Qv(coshα) =

∞
∑

k=0

Ŵ(k+ v+ 1)Ŵ
(

k+ 1
2

)

Ŵ
(

k+ v+ 3
2

)

Ŵ(k+ 1)
e−α(2k+v+1) , (89)

where v = 1
2 +

√

− E
κ2

+ 1
4 > 1 and α = κd(ai, aj), and splitting

the sum, we obtain

|8ij(E)| =
Ŵ(v+ 1)Ŵ

(

1
2

)

Ŵ
(

v+ 3
2

)

Ŵ(1)
e−α(v+1)

+
Ŵ(1+ v+ 1)Ŵ

(

1+ 1
2

)

Ŵ
(

1+ v+ 3
2

)

Ŵ(1+ 1)
e−α(2+v+1)

+

∞
∑

k=2

Ŵ(k+ v+ 1)Ŵ
(

k+ 1
2

)

Ŵ
(

k+ v+ 3
2

)

Ŵ(k+ 1)
e−α(2k+v+1) . (90)

Since Gamma function is increasing on [2,∞],
Ŵ(k+v+1)Ŵ

(

k+ 1
2

)

Ŵ
(

k+v+ 3
2

)

Ŵ(k+1)
<

1 for all k ≥ 2, and v > 1, we can find an upper bound for the
above the infinite sum as

e−4κd−κd(v+1)
∞
∑

k=0

e−2kκd , (91)

which is simply a geometric series. All these show that the
off-diagonal principal matrix in two dimensional hyperbolic
manifolds is exponentially small as d → ∞ and the leading term
is given by the first term of the series expansion.

As for the delta interactions supported by curves, the
minimum of the pairwise distances between the supports of Dirac
delta potentials always exists since dij(s, s

′) =
√

|(γi(s)− γj(s′))|
is a continuous function on compact interval s ∈ [0, L], so we
have

|(γi(si)−γj(s
′
j))|

2 ≥ min
si ,s

′
j

|(γi(si)−γj(s
′
j))|

2
: = dij ≥ min

ij
dij : = d ,

(92)
for i 6= j. Then,

|8ij(E)| ≤
√

Li Lj

∫ ∞

0
dt

e−d2/4t+tE

4π t
=

√

Li Lj

2π
K0(

√
−Ed) .

(93)
Due to the upper bound of the Bessel function (85), the off-
diagonal principal matrix is going to zero as d → ∞.

Similarly, the explicit forms of the off-diagonal parts of the
principal matrices (44) and (48) in the relativistic cases are
exponentially going to zero as d → ∞ (by assuming the
order of the limit and the integral can be interchanged). For the
other relativistic cases (including the relativistic delta potentials
supported by curves), the off diagonal terms of the principal
matrices can also be shown to be exponentially small.

Therefore, we see that the principal matrices for all the above
models are diagonally dominant in the “large" separation regime.
However, the exponentially small off-diagonal terms are not
analytic in the small parameter ( 1

EBd2
). Nevertheless, we can keep

track of small values of the off-diagonal terms by introducing an
artificial parameter ǫ in order to control the orders of terms in the
perturbative expansion, that we are going to develop in the next
section.

5. SPLITTING IN BOUND STATE ENERGIES

THROUGH PERTURBATION THEORY

Let us consider the family of principal matrices restricted to the
real axis E:

8(E) = 80(E)+ ǫ δ8(E) , (94)

where 80 is the diagonal part of the principal matrix, and
δ8 is off-diagonal part of it and this is the “small" correction
(perturbation) to the diagonal part. Since 8(E) is symmetric
(Hermitian), we can apply standard perturbation techniques to
the principal matrix [5, 36, 39]. For this purpose, let us assume
we can expand the eigenvalues and eigenvectors as follows:

ωk = ωk
0 + ǫ ω

k
1 + ǫ

2 ωk
2 + . . .

Ak = Ak
0 + ǫ A

k
1 + ǫ

2 Ak
2 + . . . , (95)

for each k.
The solution to the related unperturbed eigenvalue problem

80A
k
0 = ωk

0A
k
0 , (96)
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is given by

ωk
0 = [80]kk . (97)

Once we have found the eigenvalues and eigenvectors of the
diagonal part of the principal matrix or unperturbed eigenvalue
problem, we can perturbatively solve the full problem. The
standard perturbation theory gives us the eigenvalues ωk up to
second order:

ωk
1(E) = 〈Ak

0(E), δ8(E)A
k
0(E)〉 =

[

δ8(E)
]

kk
, (98)

ωk
2(E) =

N
∑

l=1
l 6=k

∣

∣

∣
〈Ak

0(E), δ8(E)A
k
0(E)〉

∣

∣

∣

2

ωk
0(E)− ω

l
0(E)

=

N
∑

l=1
l 6=k

8lk(E)8kl(E)

ωk
0(E)− ω

l
0(E)

. (99)

and the first order correction to the eigenvectors Ak is given by

Ak
1(E) =

N
∑

j=1
j 6=k

δ8jk(E)

ωk
0(E)− ω

j
0(E)

A
j
0(E) . (100)

Since the bound state energies are determined from the solution
of Equation (78), the bound state energies in the zeroth order
approximation can easily be found from ωk

0(E) = 0. The solution
is given by

E = Ek0 = EkB , (101)

and the corresponding eigenvector is

Ak
0(E

k
B) ≡ Ak

0 ≡ ek ≡

















0
...
1
...
0

















, (102)

where 1 is located in the kth position of the column and other
elements of it are zero or we can write

Aki
0 = eki = δki . (103)

Here eki s form a complete orthonormal set of basis.

N
∑

i=1

eki e
l
i = δkl . (104)

The bound state energies to the full problem up to the second
order is then determined by solving the following equation

ωk(E) = ωk
0(E)+ ǫ

2 ωk
2(E) = 0 , (105)

where we have used the first order result

ωk
1 = 0 (106)

from the Equation (98).
Let us now expand ωk

0(E) and8kl(E) for k 6= l around E = EkB:

ωk
0(E) =

∂ωk
0(E)

∂E

∣

∣

∣

∣

∣

E=EkB

δEk +O((δEk)2) ,

8kl(E) = 8kl(E
k
B)+

∂8kl(E)

∂E

∣

∣

∣

∣

E=EkB

δEk +O((δEk)2) ,(107)

where ωk
0(E

k
B) = 0. If we substitute (107) into (105) and (99),

and use Feynman-Hellman theorem given in previous section,
the condition (105) up to the second order turns out be

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

δEk − ǫ2
N
∑

l=1
l 6=k

1

8ll(E
k
B)

[

8kl(E
k
B)8lk(E

k
B)

+

(

8kl(E
k
B)
∂8lk(E)

∂E

∣

∣

∣

∣

E=EkB

+8lk(E
k
B)
∂8kl(E)

∂E

∣

∣

∣

∣

E=EkB

)

δEk

]

×

[

1+
1

8ll(E
k
B)

(

∂8ll(E)

∂E

∣

∣

∣

∣

E=EkB

−
∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)

δEk

]−1

+ O((δEk)2) = 0 . (108)

If we also expand the last factor in the powers of (δEk) and
ignore the second order terms and combine the terms using the
symmetry property of principal matrix, we find

[

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

+ ǫ2
N
∑

l=1
l 6=k

8kl(E
k
B)8lk(E

k
B)

82
ll
(EkB)

(

∂8ll(E)

∂E

∣

∣

∣

∣

E=EkB

−
∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)

− 2

N
∑

l=1
l 6=k

8kl(E
k
B)

8ll(E
k
B)

∂8lk(E)

∂E

∣

∣

∣

∣

E=EkB

]

δEk

= ǫ2
N
∑

l=1
l 6=k

8kl(E
k
B)8lk(E

k
B)

8ll(E
k
B)

+O((δEk)2) .

(109)

Ignoring the second and third terms on the left hand side of
the equality (this is guaranteed by the assumption 8kk(E

k
B) ≫

|8kl(E
k
B)|) and setting ǫ = 1, we get the change in Ek (to first

order) as,

δEk ≃

(

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)−1 N
∑

l=1
l 6=k

8kl(E
k
B)8lk(E

k
B)

8ll(E
k
B)

+O((δEk)2) .

(110)
This is our main formula for all types of singular interactions we
consider. It is striking that it contains the information about the
tunneling regime.
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6. EXPLICIT EXAMPLES FOR THE

SPLITTING IN THE ENERGY

Let us now compute explicitly how the bound state energies
change in the tunneling regime for the above class of singular
potentials.

For point Dirac delta potentials in one dimension, the bound

state energies are negative so EkB = −|EkB| and

δEk ≃

√

|EkB|

N
∑

l=1
l 6=k

1
(

1
λl
− 1

2

√

|EkB|

) exp

(

−2

√

|EkB| |ak − al|

)

, (111)

in the tunneling regime d
√
|EB| ≫ 1.

For point Dirac delta potentials in two dimensions, the bound
state energies are negative and

δEk ≃

N
∑

l=1
l 6=k

2π
√

|EkB||ak − al| log(E
k
B/E

l
B)

exp

(

−2

√

|EkB||ak − al|

)

, (112)

again in the tunneling regime. Here we have used the asymptotic
expansion of the modified Bessel function of the third kind

K0(x) ≈
√

π
2x exp(−x) for x≫ 1 [28].

In three dimensions, we have

δEk ≃

N
∑

l=1
l 6=k

2

√

|EkB|

4π2|ak − al|2

exp

(

−2

√

|EkB||ak − al|

)

(

√

|EkB| −
√

|ElB|

) . (113)

For point interactions in three dimensional hyperbolic
manifolds, the bound state energies are below κ2 (see [15]
for details) and

δEk ≃

√

κ2 − EkB

N
∑

l=1
l 6=k

4κ2
√

κ2 − EkB −
√

κ2 − ElB

exp

(

−2d(ak, al)

(

κ +

√

κ2 − EkB

))

, (114)

in the tunneling regime. Here we have used sinh2 x ≈ e2x

4 as x≫1.
For point interactions in two dimensional hyperbolic

manifolds, the bound state energies are below κ2/4 (see [15]) and

δEk ≃
2κ2

√

1
4 −

EkB
κ2

ψ (1)

(

1
2 +

√

1
4 −

EkB
κ2

)

N
∑

l=1
l 6=k

1

ψ

(

1
2 +

√

1
4 −

EkB
κ2

)

− ψ

(

1
2 +

√

1
4 −

ElB
κ2

)

×

∞
∑

m=0

Ŵ

(

m+ 3
2 +

√

1
4 −

EkB
κ2

)

Ŵ(m+ 1
2 )

Ŵ

(

m+ 2+

√

1
4 −

EkB
κ2

)

Ŵ(m+ 1)

exp



−κd(ak, al)



2m+
3

2
+

√

1

4
−

EkB
κ2







 ,

(115)

where ψ (1) is the polygamma function and we have used the
infinite series representation of the Legendre function of second
kind (89).

For semi-relativistic point interactions in one dimensions, the
bound state energies are below m. Let us first find explicitly
integrals in the off-diagonal part of the principal matrix
asymptotically

1

π

∫ ∞

m
dµe−µ|ak−al|

√

µ2 −m2

µ2 −m2 + (EkB)
2

(116)

in the tunneling regime md ≫ 1. For this purpose, let us rescale
the integration variable s = µ/m so that the above integral

becomes m2

π

∫∞
1

e−sm|ak−al |
√
s2−1

m2(s2−1)+(EkB)
2
. Note that −s in the exponent

has its maximum at s = 1 on the interval (1,∞). Then,
only the vicinity of s = 1 contributes to the full asymptotic
expansion of the integral for large m|ak − al|. Thus, we may

approximate the above integral by m2

π

∫ ǫ

1
e−sm|ak−al |

√
s2−1

m2(s2−1)+(EkB)
2
, where

ǫ > 1 and replace the function
√
s2−1

m2(s2−1)+(EkB)
2
in the integrand

by its Taylor expansion [40]. It is important to emphasize that the
full asymptotic expansion of this integral asm|ak−al| → ∞ does
not depend on ǫ since all other integrations are subdominant
compared to the original integral. Hence, we find

m2

π

∫ ǫ

1

e−sm|ak−al|
√
s2 − 1

m2(s2 − 1)+ (EkB)
2

∼
m2

π

∫ ǫ

1
ds e−sm|ak−al|

√
2
√
s− 1

(EkB)
2

∼
m2

π

∫ ∞

1
ds e−sm|ak−al|

√
2
√
s− 1

(EkB)
2

∼
1

√
2π

(

m

EkB

)2
1

m|ak − al|3/2

exp (−m|ak − al|) , (117)

where we have used the fact that the contribution to the integral
outside of the interval (1, ǫ) is exponentially small. Substituting
this result into Equation (110), we find

δEk ≃
(

ϕ′(EkB)
)−1

N
∑

l=1
l 6=k

1

2π

(

m

EkB

)4
1

m|ak − al|
3

1

ϕ(EkB)− ϕ(E
l
B)

exp
(

−2m|ak − al|
)

(118)

when EkB < 0 and
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δEk ≃
(

ϕ′(EkB)
)−1

N
∑

l=1
l 6=k

1

ϕ(EkB)− ϕ(E
l
B)

(

e
−

√

m2−(EkB)
2|ak−al|EkB

√

m2 − (EkB)
2

+
1

√
2π

(

m

EkB

)2
1

m|ak − al|3/2

exp (−m|ak − al|)

)2

(119)

when EkB > 0.
For the field theory motivated relativistic version we can use a

saddle point approximation, assuming that tunneling condition,

given by
√

m2 − (EiB)
2dij >> 1 is satisfied. Here it is enough to

consider the functionm(1+s2)1/2−EiBs and expand it around the

maximum EiB/
√

m2 − (EiB)
2. The denominator can be replaced

by its value at the maximum, we find that the leading behavior
goes as

8ij(E
i
B) ∼ −

1

2π

√

m2 − (EiB)
2

m
e−dij

√
m2−(EiB)

2

∫ ∞

−EiB/
√

m2−(EiB)
2
dξ e

−dij[m
2−(EiB)

2]3/2 ξ2

2m2 , (120)

(assuming that EiBdij’s remain large) evaluating the integral we
end up with,

8ij ∼ −
1

√
2π

1

[dij

√

m2 − (EiB)
2]1/2

e−dij
√

m2−(EiB)
2
. (121)

Once we obtain the off-diagonal terms responsible for the
tunneling contributions, calculating the derivatives of the
diagonal parts are simple,

∂8ii(E)

∂E

∣

∣

∣

E=EiB

= −
1

2π

1

m− EiB
. (122)

Substituting these expressions into the general formulae we have
derived, will give the tunneling contribution to energy levels that
leads to small shifts in the binding energies.

For Dirac delta potentials supported by curves in two
dimensions: we define a kind of center of mass by

xi =
1

Li

∫

Ŵi

dsi γ (si) , (123)

and write

|γ (si)− γj(sj)| = |γ (si)− xi − γj(sj)+ xj + (xi − xj)| , (124)

in the argument of the functions in the principal matrix. When
we evaluate the expressions we expand these terms by keeping
only first order terms in the small quantities. The resulting Bessel

functions can be expanded again to find the leading corrections
for the curve to curve interaction terms. We use the expression
above for the off diagonal terms and define dij = |xi − xj| for

simplicity and introduce a unit vector as d̂ij in a similar way. As a
result we have the leading order expansion,

K0(
√
−Edij)−K1(

√
−Edij)

1

dij

[

d̂ij ·(γi(si)−xi)−d̂ij ·(γj(sj)−xj)
]

.

(125)
When we insert this into 8ij expression and integrate over the
curve, we find

∫

dsi d̂ij · (γi(si)− xi) = d̂ij ·

∫

dsi (γi(si)− xi) = 0 , (126)

and similarly for the other part. Thus, we see that the only
contribution comes from the second order which we neglect for
our purposes. However, a systematic expansion in powers of 1

dij

can be developed for higher order correction as described. Using
the asymptotic expansion of K0(z) for large values of z [28],

Kν(z) ∼

√

π

2z
e−z , (127)

for all ν ≥ 0 we get from (110) a more elegant expression,

δEk ≃

(

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)−1 N
∑

l=1
l 6=k

(

LkLl/8π

√

|EkB|dkl

)

(

8ll(E
k
B)
)

exp

(

−2

√

|EkB|dkl

)

+O((δEk)2) , (128)

where 8ll and its derivative at EkB can be computed from the
explicit expression of the principal matrix (54). For Dirac delta
potentials supported by curves in three dimensions, there is
really no change, since renormalization is required only for the
diagonal parts, we have the off-diagonal expressions already in a
simpler form, as a result of the above analysis, the leading order
expression is found to be,

δEk ≃

(

∂8kk(E)

∂E

∣

∣

∣

∣

E=EkB

)−1 N
∑

l=1
l 6=k

(

LkLl/16π
2d2

kl

)

(

8ll(E
k
B)
)

exp

(

−2

√

|EkB|dkl

)

+O((δEk)2) , (129)

where 8ll and its derivative at EkB can be computed from the
explicit expression of the principal matrix (67).

In a similar way, we look at the tunneling correction to bound
state energies for relativistic particle coupled to Dirac potentials
supported over curves. Again we use the approximation that
the separation of the curves are large and the extend of the
curves compared to these distances are small. This is not the only
possible approximation, one can envisage a situation in which the
separations are large but the extend of the curves are also large.
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The essential ideas are captured by our example so to achieve
technical simplicity we keep this approximation. Essential point
is to expand the off-diagonal terms in the leading order. By
scaling t variable in the integral we can write 8ij(E

i
B) term as,

8ij(E
i
B) = −

m
√

2LiLjπ2

∫ ∞

0
dt

∫

Ŵi×Ŵj

dsidsj
K1

(

m|γ (si)− γ (sj)|
√
t2 + 1

)

√
t2 + 1

eE
i
Bt|γ (si)−γ (sj)|

∼ −

∫

Ŵi×Ŵj

dsidsj
m1/2

2
√

|γ (si)− γ (sj)|(LiLj)1/2π3/2

∫ ∞

0
dt

e−|γ (si)−γ (sj)|[m
√
t2+1−EiBt]

(t2 + 1)3/4
, (130)

where in the second line we used the asymptotics of K1 for large
argument (127). We may now use the same argument by means
of the center of mass of the curves to define center to center
distances and expand around the center of mass, not surprisingly
we again find that the first order corrections become zero, only
the center to center distance matters. Therefore, to leading order
we have a simpler expression,

8ij(E
i
B) ∼ −

m1/2(LiLj)
1/2

2π3/2d
1/2
ij

∫ ∞

0
dt

e−dij[m
√
t2+1−EiBt]

(t2 + 1)3/4
. (131)

This is of the type we have worked out for the semi-relativistic
particle, and in the same manner, a saddle point approximation
can be applied in a simple way, resulting

8ij(E
i
B) ∼ −

(LiLj)
1/2

√
2πdij

e−dij
√

m2−(EiB)
2
. (132)

We may now employ our general expressions to find the
tunneling corrections. The derivative of the diagonal term can be

simplified by means of ∂K0(z)
∂z = −K1(z).

7. DEGENERATE CASE AND WAVE

FUNCTIONS FOR POINT INTERACTIONS

Let us now compute the energy splitting of two equal strength
delta functions supported by the points −a and a in two
dimensions. This is exactly the problem we discuss in the
introduction, yet this version can be solved exactly. The
approximation we use corresponds to the standard WKB
approach. Let us recall that when we have two degenerate
eigenvalues

ω1
0(E) = ω2

0(E), (133)

the degeneracy is lifted by the diagonal perturbation and as is
well-known the diagonalizing the perturbation matrix in the
degeneracy subspace gives us the first order correction:

ω1
1(E) = +|812(E)| ,
ω2
1(E) = −|812(E)| . (134)

If we call the common bound state as EB, for k = 1, 2 to get the
first order correction we truncate the eigenvalue equations as,

ωk
0(EB + Ek1)+ ω

k
1(EB) = 0 (135)

which leads to

Ek1 ∼ (−1)k+12|EB|K0(2
√

|EB|a) ∼ (−1)k+1 |EB|
3/4√π
√
a

e−2
√
|EB|a ,

(136)

where we have used the asymptotic expansion of K0 given by
(127). Thus, the splitting is given by

δE1 = E11 − E21 ∼ 2
|EB|

3/4√π
√
a

e−2
√
|EB|a , (137)

which should be compared with the usual one-dimensional
double well potential splitting given in the introduction. Note
that in the former case, the strength of each harmonic well is
proportional to the square of the separation therefore the initial
energy level is not independent as in the delta function case and
is proportional to the square of the separation. the exponent
thus gets the square of the distance as the suppression factor,
if we assume that EB ∼ |a|2 one can see that the exponents
behave exactly the same way. Actually, one can also compare
the first order perturbation result for the splitting δE1 with the
numerical result by solving det8(ν) = ln(ν/µ) − ±K0(2aν) =
0 numerically for each a by Mathematica (see Figure 2). We
assume that a > eγ in order to guarantee the existence of the
second bound states, where γ is the Euler’s constant.

The same method can also be applied to the one-dimensional
case. In the symmetrically placed Dirac delta potentials with
equal strengths λ, the exact bound state energies when they are
sufficiently far away from each other (when a > 1/λ, there are
two bound state energies) can analytically be computed [41]

E± = −

(

λ

2
+

1

2a
W
(

±aλe−aλ
)

)2

, (138)

whereW is the LambertW function [42], which is defined as the
solution y(x) of the transcendental equation yey = x. From (17),
the principal matrix in this case reads

8ij(E) =

{ 1
λ
− 1

2
√
−E

if i = j

− 1
2
√
−E

e−2a
√
−E if i 6= j

. (139)

Then, the first order perturbation result following the above
procedure gives

δE1 = λ2e−aλ , (140)

where we have used well-known result EB = − λ2

4 . Then, one can
easily find the error between the exact result δEexact = E+ − E−
and the first order perturbation result δE1 in the splitting of the
energy, see the Figure 3.

The three dimensional case can also be studied in this way and
we can similarly solve det8(ν) = (ν − µ) − ± 1

2a e
−2aν in terms
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FIGURE 2 | Numerical and first order perturbation results for the splitting in the energy as a function of a for µ = 1 unit in two dimensions.

FIGURE 3 | Exact and first order perturbation results for the splitting in the energy as a function of a for λ = 1 unit in one dimension.

of the Lambert W function and compare with the first order
perturbation result for the splitting in the energy (Figure 4):

Here we assume that a > 1/2µ in order to guarantee the
existence of second bound states.

Let us emphasize that in the usual WKB approach one
constructs the wave functions in classically allowed and
forbidden regions respectively and use a subtle argument to
connect the different regions. In this case, there is really no
forbidden region, except the supports of the attractive regions.
Indeed right here classically there is no sensible way to define
the motion of a particle. Nevertheless, it is possible to find the
effect of tunneling for the wave functions from our formalism.

It relies on the first order corrections to the eigenstates of the
principal operator, notice that an expansion of the eigenstates of
the principal operator can be found in the non-degenerate case as

Ak(EkB) = Ak
0(E

k
B)+

∑

r 6=k

〈Ak
0(E

k
B), δ8kr(E

k
B)A

r
0(E

k
B)〉

ωk
0(E

k
B)− ω

r
0(E

k
B)

Ar
0(E

k
B) .

(141)
Note that to this order the normalization is not important,
moreover we do not need to use a subtle argument about the
shift of the eigenvalues since the change of eigenvalue is already
second order in the exponentially small quantities, any such

Frontiers in Physics | www.frontiersin.org 15 May 2019 | Volume 7 | Article 6982

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Erman and Turgut A Perturbative Approach to the Tunneling Phenomena

FIGURE 4 | Exact and first order perturbation results for the splitting in the energy as a function of a for µ = 1 unit in three dimensions.

correction will be of lower order as we have seen in the shift of
energy calculations.

It is well-known that the wave function of the system
associated with the bound states can be found from the explicit
expression of the resolvent formula. Since the eigenvalues
are isolated we can find the projections onto the subspace
corresponding to this eigenvalue by the following contour
integral (Riesz Integral representation) [5]:

Pk = −
1

2π i

∮

Ck

dz R(z), (142)

where Ck is a small contour enclosing the isolated eigenvalue, say
Ek. We note that the free resolvent does not contain any poles
on the negative real axis for the Dirac delta potentials supported
by points, so all the poles on the negative real axis will come
from the poles of inverse principal matrix 8−1(z). Since the
principal matrix is self-adjoint on the real axis, we can apply the
spectral theorem. Moreover, its eigenvalues and eigenprojections
are holomorphic near the real axis, as emphasized in section 3.
Then, we can write the spectral resolution of the inverse principal
matrix,

8
−1
ij (z) =

∑

k

1

ωk(z)
Pk(z)ij , (143)

where Pk(z)ij = Aik(z)Ajk(z), Aki(z) is the normalized

eigenvector corresponding to the eigenvalue ωk(z). Then, from
the residue theorem, we find the square integrable wave function
associated with the bound state energy Ek as

ψk(x) =α

N
∑

i=1

R0(x, ai;Ek)A
ki(Ek) , (144)

where α = (− ∂ωk

∂E

∣

∣

Ek
)−1/2 is the normalization constant. This is

actually a general formula for the bound state wave function for
the Dirac delta potentials supported by points in R

n. For n = 2,
we have

ψk(x) =
α

2π

N
∑

i=1

K0(
√

−Ek|x− ai|)A
ki(Ek) . (145)

Let us recall that the eigenstates for the unperturbed levels are
given by unit vectors (103), when we write this into the formula
for the wave function (145). As a result, using the first order

correction (100) to the eigenstate Ak we find that the change of
the wave original wave function in the first order becomes,

δψk(x) =
(4πEkB)

1/2

2π

∑

l 6=k

1

ln(|EB
k
|/|EB

l
|)
K0(

√

|EB||ak − al|)K0(
√

|EB
k
||x− al|)

∼
√
2|EkB|

1/4
∑

l 6=k

1

ln(|EB
k
|/|ElB|)

e
−

√

|EkB ||ak−al |

√
|ak − al|

K0(

√

|EkB||x− al|) ,

(146)

where we use

1
(

−
∂ωk

0(E)

∂E

∣

∣

∣

EkB

)
= 4π |EkB| . (147)

This form of the wave function clearly shows the tunneling nature
of the wave functions. It is now quite straightforward to compute
the wave functions in this approximation for all the other cases
we consider.

CONCLUSION

In this paper, we have first reviewed the basic results about
some singular interactions, such as the Dirac delta potentials
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supported by points on flat spaces and hyperbolic manifolds, and
delta potentials supported by curves in flat spaces. Moreover,
the results in the relativistic extensions of the above-mentioned
potentials have been also reviewed which was essentially given
in Altunkaynak et al. [13], Erman and Turgut [14], Erman [15],
Dogan and Turgut [17], Erman et al. [18], and Kaynak and
Turgut[19]. The main result of this paper is to develop some
kind of perturbation theory applied to some class of singular
potentials in order to find the splitting in the energy due to the
tunneling. This was only developed for Dirac delta potentials
supported by points in Erman and Turgut [14], here we extend
the method for various kind of Dirac delta potentials as well as its
relativistic extensions.

It is possible to give some bounds over the error terms if we
assume that the errors in perturbation theory can be estimated.
Typical perturbative expansions are asymptotic therefore a
truncation is needed to get more accurate results, one knows that
it gets worse beyond a few terms. Themore accurate thing to do is
to obtain a Borel summed version but that is beyond the content
of the present paper, it will depend very much of the specifics of
the model whereas we prefer to give a broader perspective.

The comparison with conventional methods certainly would
be very useful, nevertheless at present we do not know how a
more conventional approach, such as WKB or instanton calculus
can be performed in these singular problems. Since the potentials
are localized at points or along the curves, the variation of
the potential relative to any wavelength is always much more

important. Indeed this unusual behavior changes the problem
completely. We need to give a meaning to these potentials first
and redevelop the WKB analysis. Our main point here is that
in this description of the singular potentials via resolvents, the
WKB’s reincarnation is given by a perturbative analysis of the
eigenvalues of the principal operator for large separations of
the supports.
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We develop an approach on how to define single-point interactions under the application

of external fields. The essential feature relies on an asymptotic method based on

the one-point approximation of multi-layered heterostructures that are subject to bias

potentials. In this approach, the zero-thickness limit of the transmission matrices of

specific structures is analyzed and shown to result in matrices connecting the two-sided

boundary conditions of the wave function at the origin. The reflection and transmission

amplitudes are computed in terms of these matrix elements as well as biased data.

Several one-point interaction models of two- and three-terminal devices are elaborated.

The typical transistor in the semiconductor physics is modeled in the “squeezed limit”

as a δ- and a δ′-potential and referred to as a “point” transistor. The basic property of

these one-point interaction models is the existence of several extremely sharp peaks

as an applied voltage tunes, at which the transmission amplitude is non-zero, while

beyond these resonance values, the heterostructure behaves as a fully reflecting wall.

The location of these peaks referred to as a “resonance set” is shown to depend

on both system parameters and applied voltages. An interesting effect of resonant

transmission through a δ-like barrier under the presence of an adjacent well is observed.

This transmission occurs at a countable set of the well depth values.

Keywords: one-dimensional quantum systems, transmission, point interactions, resonant tunneling, controllable

potentials, heterostructures

1. INTRODUCTION

One-dimensional quantum systems modeled by Schrödinger operators with singular zero-range
potentials have been discussed widely in both the physical and mathematical literature [see
books [1–3] for details and references]. Additionally, a whole body of literature beginning from the
early publications [4–11] (to mention just a few) has been published, where the one-dimensional
stationary Schrödinger equation

− ψ ′′(x)+ V(x)ψ(x) = Eψ(x), (1)

with the potentialV(x) given in the form of distributions, whereψ(x) is the wave function and E the
energy of an electron, was shown to exhibit a number of peculiar features with possible applications
to quantum physics. Currently, because of the rapid progress in fabricating nanoscale quantum
devices, of particular importance is the point modeling of different structures like quantum
waveguides [12, 13], spectral filters [14, 15], or infinitesimally thin sheets [16, 17].
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In the present paper we follow the traditional approach [see
the work [7] by Albeverio et al. and references therein], according
to which there exists a one-to-one correspondence between
the full set of self-adjoint extensions of the one-dimensional
free Schrödinger operator and the two families of boundary
conditions: non-separated and separated. The non-separated
extensions describe non-trivial four-parameter point interactions
subject to the two-sided at x = ±0 boundary conditions on
the wave function ψ(x) and its derivative ψ ′(x) given by the
connection matrix of the form

(

ψ(+0)
ψ ′(+0)

)

= 3

(

ψ(−0)
ψ ′(−0)

)

, 3 = eiχ
(

λ11 λ12
λ21 λ22

)

, (2)

where χ ∈ [0, π), λij ∈ R fulfilling the condition λ11λ22 −
λ12λ21 = 1. The separated point interactions are described by
the direct sum of the free Schrödinger operators defined on the
half-lines (−∞, 0), (0, ∞) and subject to the following pair of
boundary conditions:

ψ ′(−0) = h−ψ(−0) and ψ ′(+0) = h+ψ(+0), (3)

where h± ∈ R ∪ {∞}. For instance, if {h−, h+} = {∞, ∞},
Equation (3) describe the Dirichlet boundary conditions
ψ(± 0) = 0. In physical terms, a separated self-adjoint
extension means that the corresponding point potential is
completely opaque for an incident particle. Alternatively, the
boundary conditions can be connected using the Asorey-Ibort-
Marmo formalism [18] or the Cheon-Fülöp-Tsutsui approach
[19, 20]. The advantage of both these connecting representations
is that they enable to include all the self-adjoint extensions
without treating the particular cases as any parameters tend to
infinity. In other words, the relations (3) are excluded from
the consideration.

Some particular examples of Equation (1) and the
corresponding 3-matrix (2) are important in applications.
The most simple and widespread potential is Dirac’s delta
function δ(x), i.e., V(x) = αδ(x) where α is a strength constant
(or intensity). The wave function ψ(x) for this interaction (called
the δ-interaction or δ-potential) is continuous at the origin
x = 0, whereas its derivative undergoes a jump, so that the
boundary conditions read ψ(− 0) = ψ(+ 0) = :ψ(0) and
ψ ′(+ 0)− ψ ′(− 0) = αψ(0) yielding the3-matrix in the form

3 =

(

1 0
α 1

)

. (4)

In the simplest case, this point potential is constructed from
constant functions defined on a squeezed interval.

The dual point interaction for which the derivative ψ ′(x) is
continuous at the origin, but ψ(x) discontinuous, is called a δ′-
interaction (the notation adopted in the literature [2]). This point
interaction with strength β defined by the boundary conditions
ψ ′(− 0) = ψ ′(+ 0) = :ψ ′(0) and ψ(+ 0) = ψ(− 0) = βψ ′(0)
has the3-matrix of the form

3 =

(

1 β

0 1

)

. (5)

As a particular example of the Cheon-Shigehara approach
[21], the δ′-interaction can be constructed from the spatially
symmetric configuration consisting of three separated δ-
potentials having the intensities scaled in a non-linear way as
the distances between the potentials tend to zero. Following this
approach, Exner et al. [22] have approximated the δ-potentials by
regular functions and realized rigorously the similar one-point
limit in the norm resolvent topology. In particular, they have
proved that the resulting limit takes place if the distances between
the peaks of δ-like regularized potentials tend to zero sufficiently
slow relative to shrinking these potentials to the origin. The
other aspects of the δ′-interaction and its approximations by local
and non-local potentials have been investigated, for instance, by
Albeverio and Nizhnik [23–27], Fassari and Rinaldi [28] (see also
references therein). The δ′-interaction can be used together with
background potentials. Thus, Albeverio et al. [29] have rigorously
defined the self-adjoint Hamiltonian of the harmonic oscillator
perturbed by an attractive δ′-interaction of strength β centered at
the origin x = 0 (the bottom of a confining parabolic potential),
explicitly providing its resolvent. In a subsequent publication
[30], their study has been extended for the perturbation by a
triple of attractive δ′-interactions using the Cheon-Shigehara
approximation. It is worth mentioning the recent publication
[31], where Golovaty has constructed a new approximation to
the δ′-interaction involving two parameters in the boundary
conditions. Here the connection matrix

3 =

(

θ β

0 θ−1

)

(6)

describes the two-parametric family of point interactions being
the generalization of the δ′-interaction with θ = 1.

It should be emphasized that the term “δ′-interaction” is
somewhat misleading because the point interaction described by
the 3-matrix (5) does not correspond to Equation (1) in which
the potential part is the derivative of the Dirac delta function
in the distributional sense, i.e., V(x) = γ δ′(x) with strength γ .
Since the term δ′(x)ψ(x) is not defined for discontinuous ψ(x),
Kurasov [5] has developed the distribution theory based on the
space of discontinuous at x = 0 test functions.Within this theory,
as a particular example, the point interaction that corresponds to
the potential V(x) = γ δ′(x) is given by the connection matrix

3 =

(

θ 0
0 θ−1

)

, (7)

where θ = (2 + γ )/(2 − γ ), γ ∈ R \ {± 2}. Since the term “δ′-
interaction” is reserved for the case with the connectionmatrix of
the type (5), Brasche andNizhnik [32] suggested to refer the point
interactions described by the matrices of the form (7) even if the
element θ 6= 1 does not correspond to the delta prime potential.
We will follow this terminology in the present paper.

The Kurasov approach has been followed in many
applications (see, e.g., [32–39]) including more general examples.
Thus, in the context of this approach, Gadella et al. [33] have
shown that Equation (1) with the potentialV(x) = aδ(x)+bδ′(x),
a < 0, b ∈ R, has a bound state and calculated the energy of
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this state in terms of the parameters a and b. A new approach
based on the integral form of the Schrödinger Equation (1)
has been developed by Lange [35, 36] with some revision of
Kurasov’s theory. The potential V(x) = aδ(x) + bδ′(x) has
also been used by Gadella and coworkers as a perturbation of
some background potential, such as a constant electric field
and the harmonic oscillator [34] or the infinite square well
[37]. The spectrum of a one-dimensional V-shaped quantum
well perturbed by three types of a point impurity as well as
three solvable two-dimensional systems (the isotropic harmonic
oscillator, a square pyramidal potential and their combination)
perturbed by a point interaction centered at the origin has been
studied by Fassari et al. in the recent papers [40–42].

On the other hand, as derived in the series of publications
[43–47] for some particular cases and proved rigorously by
Golovaty with coworkers [48–52] in a general case, the potential
V(x) = γ δ′(x) appears to be partially transparent at some
discrete values forming a countable set {γn} in the γ -space.
The corresponding 3-matrix is diagonal, i.e., of the form (7)
where the element θ = {θn} takes discrete values that depend
on the sequence {γn}. Except the distribution δ′(x), which is
obtained as a limit of regular δ′-like functions, the diagonal
form of the 3-matrix can be realized even if the squeezed limit
of regular functions does not exist. Beyond the “resonance” set
{γn}, the δ

′-potential is fully opaque satisfying the boundary
conditions of the type (3). However, this resonant-tunneling
behavior contradicts with the 3-matrix (7) where the element
θ continuously depends on strength γ . It is remarkable that this
controversy can be resolved using the one-dimensional model for
the heterostructure consisting of two or three squeezed parallel
homogeneous layers approaching to one point [53, 54]. Here a
“splitting” effect of one-point interactions has been described.

As for two-point interactions in one dimension, one should
mention the recent studies concerning quantum tunneling times
and the associated questions such as, for instance, the Hartman
effect and its generalized version [see, e.g., [55–59] and references
therein]. Another important aspect regarding the application
of double-point potentials is the Casimir effect that arises in
the behavior of the vacuum energy between two homogeneous
parallel plates. For the interpretation of this effect, Muñoz-
Castañeda and coworkers [60–66] reformulated the theory of
self-adjoint extensions of symmetric operators over bounded
domains in the framework of quantum field theory. Particularly,
they have calculated the vacuum energy and identified which
boundary conditions generate attractive or repulsive Casimir
forces between the plates. Bordag and Muñoz-Castañeda [67]
have calculated the quantum vacuum interaction energy between
two kinks of the sine-Gordon equation (for a review on non-
linear localized excitations including topological solitons see,
e.g., the work [68]) and shown that this interaction induces an
attractive force between the kinks in parallel to the Casimir force
between conducting mirrors. A rigorous mathematical model
of real metamaterials has been suggested in Nieto et al. [69].
The resonant tunneling through double-barrier scatters is still an
active area of research for the applications to nanotechnology.
In the context of the Cheon-Fülöp-Tsutsui approach [19, 20],
the conditions for the parameter space under which the perfect

resonant transmission occurs through two point interactions,
each of which is described by four parameters, have been found
by Konno et al. [70, 71].

The pioneering studies [72–74] demonstrated that
the resonant transmission through quantum multilayer
heterostructures of electronic tunnel systems are of considerable
general interest. These structures are not only important in
micro- and nanodevices, but their study involves a great deal
of basic physics. In recent years it has been realized that the
study of the electron transmission through heterostructures
can be investigated in the zero-thickness limit approximation
materialized when their width shrinks to zero. Within such an
approximation it is possible to produce various point interaction
models, particularly those as described above which admit exact
closed analytic solutions. These models are required to provide
relatively simple configurations where an appropriate way of
squeezing to the zero-width limit must be compatible with the
original real structure. Additionally, as a rule, the nanodevices
are subject to electric fields applied externally. In this regard,
is of great interest to produce point interaction models with
bias potentials. So far no models have been elaborated for such
devices using one-point approximation methods.

The present paper is devoted to the investigation of planar
heterostructures composed of extremely thin layers separated by
small distances in the limit where both the layer thickness and
the distance between the layers simultaneously tend to zero. The
electron motion in the systems of this type is usually confined
in the longitudinal direction (say, along the x-axis); the latter is
perpendicular to the transverse planes where electronic motion
is free. The three-dimensional Schrödinger equation of such
a structure can be separated into longitudinal and transverse
parts, writing the total electron energy as the sum of the
longitudinal and transverse energies: El + h̄2k2t /2m

∗, where m∗

is an effective electron mass and kt the transverse wave vector;
for such additive Hamiltonian the wave function is expressed
as a product, i.e. ψ = ψlψt . As a result, we arrive at the
reduced one-dimensional Schrödinger equation with respect to
the longitudinal component of the wave function ψl(x) and the
electron energy El. For brevity of notations, in the following we
omit the subscript “l” at both ψl(x) and El. Thus, in the units
as h̄2/2m∗ = 1, the one-dimensional stationary Schrödinger
equation reduces to the form (1) where V(x) is a potential
for electrons. Concerning the dimensions of the longitudinal
electron position x, the potential V(x) and the electron energy
E, in the system h̄2/2m∗ = 1 we have [x] = nm and [V ,E] =
nm−2. For computations we choosem∗ = 0.1me and in this case,
1 eV = 2.62464 nm−2.

2. TRANSMISSION CHARACTERISTICS OF
MULTI-LAYERED STRUCTURES

This introductory section generalizes the approach described in
Lui and Fukuma [75]. We consider the Schrödinger Equation
(1), where the potential V(x) is an arbitrary piecewise function
defined on the interval (x0, xN) with N subsets (xi−1, xi), i =
1,N, N = 1, 2, . . . . Each Vi(x) is a real bounded function
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defined on this interval, so that we have the set of functions:
V1(x), . . . ,VN(x). Next, we express the transmission matrix in
terms of the interface values of the linearly independent solutions
of the Schrödinger equation.

The solution of the Schrödinger equation across the interval
(xi−1, xi), ψi(x), will be given as

ψi(x) = C
(1)
i ui(x)+ C

(2)
i vi(x), 1,N, (8)

where ui(x) and vi(x) are linearly independent solutions on
the interval (xi−1, xi). At the interface xi, i = 1,N − 1, the
particle conservation requires the continuity of the wave function
ψ(x), while themomentum conservation demands the continuity
of the first derivative of the wave function ψ ′(x) resulting in
the equations

ψi(xi) = ψi+1(xi), ψ
′
i (xi) = ψ ′

i+1(xi), i = 1,N − 1, (9)

where the prime denotes first derivative with respect to x.

2.1. Transmission Matrix
Using Equation (8), the boundary conditions (9) can be realized
as a system of two linear equations with two unknowns such that

Mi(xi)Ci = Mi+1(xi)Ci+1, i = 1,N − 1, N ≥ 2, (10)

where

Ci : = col
(

C
(1)
i ,C

(2)
i

)

=

(

C
(1)
i

C
(2)
i

)

and Mi(x) : =

(

ui(x) vi(x)
u′i(x) v′i(x)

)

(11)
are Wronskian matrices. Next, using Equation (10), one can
connect the column vectors C1 and CN as follows

CN = M−1
N (xN−1)MN−1(xN−1)M

−1
N−1(xN−2) . . .M2(x2)M

−1
2 (x1)M1(x1)C1

= M−1
N (xN−1)3N−1(xN−2, xN−1) . . . 32(x1, x2)M1(x1)C1, N ≥ 2,

(12)

where we have introduced the following matrices:

3i(xi−1, xi) : = Mi(xi)M
−1
i (xi−1), i = 2,N − 1, N ≥ 3. (13)

Here eachmatrix3i(xi−1, xi) connects the boundary values of the
corresponding Wronskian matrix Mi(x) at x = xi−1 and x = xi.
Yet, it is not obvious that the matrices 3i’s are transmission
matrices connecting the boundary conditions imposed on the
wave functions ψi(x) at x = xi−1 and x = xi. To prove this fact,
we compute the right-hand matrix product of (13) and obtain

3i(xi−1, xi) =

(

λi,11 λi,12
λi,21 λi,22

)

, (14)

where

λi,11(xi−1, xi) =
[

ui(xi)v
′
i(xi−1)− u′i(xi−1)vi(xi)

]

/Wi ,

λi,12(xi−1, xi) =
[

ui(xi−1)vi(xi)− ui(xi)vi(xi−1)
]

/Wi ,

λi,21(xi−1, xi) =
[

u′i(xi)v
′
i(xi−1)− u′i(xi−1)v

′
i(xi)

]

/Wi ,

λi,22(xi−1, xi) =
[

ui(xi−1)v
′
i(xi)− u′i(xi)vi(xi−1)

]

/Wi , (15)

with the Wronskian

Wi = Wi(xi−1) = ui(xi−1)v
′
i(xi−1)− u′i(xi−1)vi(xi−1) (16)

computed at x = xi−1, which does not depend on x on the
interval (xi−1, xi). Using Equations (15) and (16), one can check
the equality

|3i| = λi,11λi,22 − λi,12λi,21 = 1. (17)

There is an infinite number of the linearly independent solutions
ui(x) and vi(x). The representation of the 3i-matrix elements
can be simplified if we choose these solutions satisfying the
initial conditions:

ui(xi−1) = 1, u′i(xi−1) = 0, vi(xi−1) = 0, v′i(xi−1) = 1. (18)

Inserting thus these conditions into Equations (15) and (16), we
get thatWi = 1 and, as a result,

3i(xi−1, xi) =

(

ui(xi) vi(xi)
u′i(xi) v′i(xi)

)

. (19)

The next step is to compute the product
3i(xi−1, xi)col

(

ψi(xi−1),ψ
′
i (xi−1)

)

. This computation
immediately results in col

(

ψi(xi),ψ
′
i (xi)

)

, so that we have
the matrix relation

(

ψi(xi)
ψ ′
i (xi)

)

= 3i(xi−1, xi)

(

ψi(xi−1)
ψ ′
i (xi−1)

)

, (20)

confirming that Equation (13) indeed defines the transmission
matrix 3i(xi−1, xi) expressed in terms of the matrices Mi(xi−1)
andMi(xi). Thus, each transmission matrix3i(xi−1, xi) connects
the boundary conditions at x = xi−1 and x = xi.

Equation (12) that connects the column vectors C1 and CN

can be transformed to the equation connecting the boundary
conditions at x = x0 and x = xN . To this end, we define the
lateral transmission matrices3i(xi−1, xi) with i = 0,N. Thus, on
one side, one can write

M1(x1)C1 =

(

ψ1(x1)
ψ ′
1(x1)

)

= 31(x0, x1)

(

ψ1(x0)
ψ ′
1(x0)

)

. (21)

On the other hand, multiplying from the left Equation (12) by
MN(xN) and using that

MN(xN)CN =

(

ψN(xN)
ψ ′
N(xN)

)

, (22)

one finds the relation that connects the boundary conditions at
x = x0 and x = xN :

(

ψN(xN)
ψ ′
N(xN)

)

= 3(x0, xN)

(

ψ1(x0)
ψ ′
1(x0)

)

(23)
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with

3(x0, xN) = 3N(xN−1, xN) . . . 31(x0, x1). (24)

Thus, the transmission matrix for each layer defined on the
interval (xi−1, xi) can be computed through the solutions ui(x)
and vi(x) and their derivatives taken at the boundaries x = xi−1

and x = xi, resulting in the elements given by Equations (15)
and (16).

2.2. Reflection-Transmission Coefficients
Consider now the solutions outside the interval (x0, xN). In the
region x < x0 and x > xN where the potential is a constant,
the wave function is the well-known free particle solution of the
Schrödinger Equation (1) as follows

ψ0(x) = A1 exp[ikL(x− x0)]+ A2 exp[−ikL(x− x0)] (25)

for x < x0 and

ψN+1(x) = B1 exp[ikR(x− xN)]+ B2 exp[−ikR(x− xN)] (26)

for x > xN , where kL : =
√
E− VL and kR : =

√
E− VR . Then

the continuity of the boundary conditions at x = x0 and x = xN
leads to the following equations:

ψ0(x0) = ψ1(x0), ψ
′
0(x0) = ψ ′

1(x0),

ψN(xN) = ψN+1(xN), ψ
′
N(xN) = ψ ′

N+1(xN), (27)

which can be represented in the matrix form as follows

MLA = M1(x0)C1, MN(xN)CN = MRB, (28)

where A : = col(A1,A2), B : = col(B1,B2) and

ML : =

(

1 1
ikL − ikL

)

, MR : =

(

1 1
ikR − ikR

)

. (29)

Using these matrix equations in Equation (12), we obtain the
following basic equation, which allows us to represent the
reflection-transmission coefficients through the elements (15) of
the transmission matrix3(x0, xN):

3(x0, xN)MLA = MRB. (30)

Thus, if there is no incidental particle coming from the right, one
can set

A1 = 1, A2 = RL, B1 = TL, B2 = 0, (31)

so that in Equation (30) we have A = col(1,RL) and B =
col(TL, 0). Similarly, if there is no incidental particle from the left,
we put

A1 = 0, A2 = TR, B1 = RR, B2 = 1, (32)

hence A = col(0,TR) and B = col(RR, 1) in (30). Then Equation
(29) becomes a set of two linear equations with respect to the

pair {RL,TL} or {RR,TR}. Solving these equations and using the
relation λ11λ22 − λ12λ21 = 1, we find

RL = −
p+ iq

D
, TL =

2kL/kR

D
, RR =

p− iq

D
, TR =

2

D
, (33)

where

p : = λ11 − (kL/kR)λ22 , q : = kLλ12 + k−1
R λ21 (34)

and

D : = λ11 + (kL/kR)λ22 − i(kLλ12 − k−1
R λ21). (35)

The current j(x) = (i/2)(ψ∂xψ
∗ − ψ∗∂xψ) has to be conserved

across the transition region x0 ≤ x ≤ xN . Using the definition of
the reflection-transmission coefficients given above, we find the
left-to-right current jL(x0) = kL(1 − |RL|

2), jL(xN) = kR|TL|
2

and the right-to-left current jR(x0) = − kL|TR|
2, jR(xN) =

− kR(1 − |RR|
2). From the equations jL,R(x0) = jL,R(xN) we

obtain the conservation law for both the directions of the current:
RL,R + TL,R = 1, where

RL : = |RL|
2, TL : = (kR/kL)|TL|

2, RR : = |RR|
2, TR : = (kL/kR)|TR|

2.

(36)

One can derive that |D|2 = 4kL/kR + p2 + q2 and, as a result,
the reflection-transmission amplitudes can be represented in
the form

RL,R =
p2 + q2

4kL/kR + p2 + q2
, TL,R =

4kL/kR

4kL/kR + p2 + q2
. (37)

In its turn, the scattering matrix can also be represented in terms
of the elements of the transmission matrix 3. Indeed, due to
Equations (33) and (36), this representation reads

S =

(

RL
√

kL/kR TR
√

kR/kL TL RR

)

=
1

D

(

− p− iq 2
√

kL/kR
2
√

kL/kR p− iq

)

,

(38)
where p, q and D are defined by Equations (34) and (35).

3. SCHRÖDINGER EQUATION AND
TRANSMISSION MATRIX FOR THE LAYER
WITH A LINEAR POTENTIAL PROFILE

Consider now the particular case of a linear potential profile
for the layer defined on the interval (xi−1, xi). In this case
the solutions ui(x) and vi(x) and thus the transmission matrix
3i(xi−1, xi) can be written explicitly. The Schrödinger Equation
(1) for the ith layer, i = 1,N, can be rewritten as

− ψ ′′
i (x)+ Vi(x)ψi(x) = Eψi(x), (39)

where the potential Vi(x) is a linear function defined on the
interval xi−1 < x < xi of length li : = xi − xi−i, i.e.,

Vi(x) = ηi(x− xi)+ Vi(xi), ηi : =
Vi(xi)− Vi(xi−1)

li
. (40)
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These equations can be transformed to the Airy equation

d2ψi(zi)

dz2i
− ziψi(zi) = 0, (41)

by setting zi(x) = σi(x − si), where the constants σi and si are
given by

σi = η
1/3
i , si = xi + η

−1
i [E− Vi(xi)]. (42)

According to the general expressions (15), we use the Airy
functions of the first and the second order as linearly independent
solutions to Equation (41), setting ui(x) = Ai(zi(x)) and vi(x) =
Bi(zi(x)). On the interval−∞ < zi <∞, these solutions are real-
valued. The interface (boundary) values of the (dimensionless)
function zi(x) at the edges of the ith layer, to be used in Equations
(15) and (16), are

zi,i−1 : = zi(x)|x=xi−1 = − η
−2/3
i k2i,i−1, (43)

zi,i : = zi(x)|x=xi = − η
−2/3
i k2i,i ,

where

ki,i−1 : =
√

E− Vi,i−1 , ki,i : =
√

E− Vi,i , Vi,i−1 (44)

: = Vi(xi−1), Vi,i : = Vi(xi).

TheWronskian with respect to the variable z isW{Ai(z),Bi(z)} =
1/π , therefore with respect to x, it is W{Ai(zi(x)),Bi(zi(x))} =
σi/π . Then the elements of the3i-matrix are

λi,11(xi−1, xi) = π
[

Ai(zi,i)Bi
′(zi,i−1)− Ai′(zi,i−1)Bi(zi,i)

]

,

λi,12(xi−1, xi) = (π/σi)
[

Ai(zi,i−1)Bi(zi,i)− Ai(zi,i)Bi(zi,i−1)
]

,

λi,21(xi−1, xi) = σiπ
[

Ai′(zi,i)Bi
′(zi,i−1)− Ai′(zi,i−1)Bi

′(zi,i)
]

,

λi,22(xi−1, xi) = π
[

Ai(zi,i−1)Bi
′(zi,i)− Ai′(zi,i)Bi(zi,i−1)

]

, (45)

where the prime denotes the differentiation with respect to z.
In the ηi → 0 limit as Vi(xi−1) → Vi(xi), we obtain

zi(x) → − σisi = σi

[

−xi −
E− Vi(xi)

σ 3
i

]

→ σ
−2
i

[

Vi(xi)− E
]

,

(46)
yielding Equation (39) with a constant profile Vi(x) ≡ Vi. In this
limit case, one can choose the linearly independent solutions to
Equation (39) as

ui(x) = cos[ki(x− xi−1)],

vi(x) = k−1
i sin[ki(x− xi−1)], ki : =

√

k2 − Vi , (47)

satisfying the initial conditions (18). Therefore, due to Equations
(19) and (47), the3i-matrix becomes

3i(xi−1, xi) =

(

cos(kili) k−1
i sin(kili)

− ki sin(kili) cos(kili)

)

. (48)

4. ASYMPTOTIC REPRESENTATIONS OF
THE SINGLE-LAYER TRANSMISSION
MATRIX

Similarly to the previous section, here we also focus on one of
the layers and for brevity of notations we replace for while in the
above expressions the subscripts {i, i−1} and {i, i} by “0” and “1”,
respectively. Then, according to Equations (43) and (44), we write

z0 = −

(

l

V1 − V0

)2/3

k20, z1 = −

(

l

V1 − V0

)2/3

k21, (49)

σ =

(

V1 − V0

l

)1/3

,

where we have replaced Vi,i−1, Vi,i, ki,i−1, ki,i by V0, V1, k0,
k1, respectively. Using next the two asymptotic expressions for
the Airy functions and their derivatives known in the limit as
z → 0 and z → ±∞, below we will derive the corresponding
asymptotic representations of the elements (45) in the two limits
as (i) z0, z1 → 0 and (ii) z0, z1 → ±∞. It is reasonable to assume
that everywhere z0 and z1 are of the same sign. We omit for a
while the subscript “i” for the matrix3i and its elements.

4.1. Asymptotic Representation of the
3-Matrix in the Limit as z0, z1 → 0
For the z0, z1 → 0 limit to be carried out in Equation (45), one
can use the series representation of the Airy functions and their
first derivatives in the neighborhood of the origin z = 0. It is
sufficient to explore only the two first terms:

Ai(z) →
1

32/3Ŵ(2/3)
−

z

31/3Ŵ(1/3)
+ . . . ,

Ai′(z) → −
1

31/3Ŵ(1/3)
+

z2

2 · 32/3Ŵ(2/3)
+ . . . ,

Bi(z) →
1

31/6Ŵ(2/3)
+

31/6z

Ŵ(1/3)
+ . . . ,

Bi′(z) →
31/6

Ŵ(1/3)
+

z2

2 · 31/6Ŵ(2/3)
+ . . . . (50)

As a result of applying these expansion formulae to Equation
(45) and using Euler’s reflection formula for the gamma function,
Ŵ(1 − z)Ŵ(z) = π/ sin(πz), z /∈ Z, we get the following
asymptotic representation of the3-matrix elements:

λ11 → 1− z20z1/2, λ22 → 1− z0z
2
1/2,

λ12 →
z1 − z0

σ
= l, λ21 →

σ

2
(z21 − z20) = −

l

2
(k20 + k21) (51)

as z0, z1 → 0.
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4.2. Asymptotic Representation of the
3-Matrix in the Limit as z0, z1 → ±∞

In the limit as z → −∞, for the Airy functions and their
derivatives we have the following asymptotics:

Ai(z) →
sin
[

2
3 (−z)3/2 + π/4

]

√
π(−z)1/4

, Bi(z) →
cos
[

2
3 (−z)3/2 + π/4

]

√
π(−z)1/4

,

(52)

Ai′(z) →
1
4 (−z)−3/4 sin

[

2
3 (−z)3/2 + π/4

]

− (−z)3/4 cos
[

2
3 (−z)3/2 + π/4

]

√
π(−z)1/2

,

Bi′(z) →
1
4 (−z)−3/4 cos

[

2
3 (−z)3/2 + π/4

]

+ (−z)3/4 sin
[

2
3 (−z)3/2 + π/4

]

√
π(−z)1/2

.

(53)

Using this asymptotic representation in Equations (45) as
z0, z1 → −∞, we obtain

λ11 → (−z0)
1/4(−z1)

−1/4 cosχ− − (4z0)
−1(−z0)

−1/4(−z1)
−1/4 sinχ− ,

λ12 → − σ−1(−z0)
−1/4(−z1)

−1/4 sinχ− ,

λ21 → σ (−z0)
−1/2(−z1)

−1/2

×
{[

(−z0)
3/4(−z1)

3/4 + 4−2(−z0)
−3/4(−z1)

−3/4
]

sinχ−

+ 4−1
[

(−z0)
3/4(−z1)

−3/4 − (−z1)
3/4(−z0)

−3/4
]

cosχ−
}

,

λ22 → (−z1)
1/4(−z0)

−1/4 cosχ− + (4z1)
−1(−z0)

−1/4(−z1)
−1/4 sinχ− ,

(54)

where

χ− : =
2

3

[

(−z1)
3/2 − (−z0)

3/2
]

. (55)

One can check that |3| = λ11λ22 − λ12λ21 = 1. According to
Equations (50), this representation corresponds to a well (Vj < 0,
j = 0, 1). However, these formulae can be “continued” to positive
values of z0 and z1 that correspond to a barrier with E < Vj.
To prove this, we use the asymptotic representation of the Airy
functions and their derivatives in the limit as z0, z1 → +∞:

Ai(z) →
e−

2
3 z

3/2

2
√
πz1/4

, Bi(z) →
e
2
3 z

3/2

√
πz1/4

, (56)

Ai′(z) → −
z3/4 + 1

4 z
−3/4

2
√
πz1/2

e−
2
3 z

3/2
, Bi′(z) →

z3/4 − 1
4 z

−3/4

√
πz1/2

e
2
3 z

3/2

(57)

and, as a result, we find

λ11 → (z0/z1)
1/4 coshχ+ + (4z0)

−1(z0z1)
−1/4 sinhχ+ ,

λ12 → σ−1(z0z1)
−1/4 sinhχ+ ,

λ21 → σ (z0z1)
−1/2

{[

(z0z1)
3/4 − 4−2(z0z1)

−3/4
]

sinhχ+

+ 4−1
[

(z1/z0)
3/4 − (z0/z1)

3/4
]

coshχ+
}

,

λ22 → (z1/z0)
1/4 coshχ+ − (4z1)

−1(z0z1)
−1/4 sinhχ+ , (58)

where z0 and z1 are positive and

χ+ : =
2

3

(

z
3/2
1 − z

3/2
0

)

. (59)

Similarly, for the elements (58) one can also check that |3| =
1. In fact, Equations (58) with (59) appear to coincide with
Equations (54) and (55) if we assume that in the latter equations
z0 and z1 are positive. To show this, we note that (−z)3/2 =
i3z3/2 = −iz3/2 and, as a result, we get the relation χ− = −iχ+
for positive z0 and z1 in both Equations (55) and (59). Next,
the elements (58) are obtained from the representation (54) if
we note that (−z0)

1/4(−z1)
1/4 = i(z0z1)

1/4, (−z0)
1/2(−z1)

1/2 =
−(z0z1)

1/2 and (−z0)
3/4(−z1)

3/4 = −i(z0z1)
3/4. Therefore, in

the following it is sufficient to consider only the representation

given by Equations (54) and (55), being valid for both negative
and positive z0 and z1.

Using the explicit values for z0 and z1 given by Equations (49),
the expression (55) for χ− can be transformed to

χ− = sgn(V0 − V1) k1,0 l, (60)

where

k1,0 : =
2(k20 + k21 + k0k1)

3(k0 + k1)
, kj : =

√

E− Vj j = 0, 1. (61)

Inserting next the expressions (49) and (60) into Equations (54),
one can write the elements of the3-matrix in terms of k0 and k1
as follows

λ11 →

(

k0

k1

)1/2

cos(κ l)+
k21 − k20

4l
k
−5/2
0 k

−1/2
1 sin(k1,0 l),

λ12 → k
−1/2
0 k

−1/2
1 sin(k1,0 l),

λ21 →
3(k20 − k21)

2k1,0

8lk
5/2
0 k

5/2
1

cos(k1,0 l)

− k
1/2
0 k

1/2
1

[

1+

(

k20 − k21
4l

)2

k−3
0 k−3

1

]

sin(k1,0 l),

λ22 →

(

k1

k0

)1/2

cos(κ l)+
k20 − k21

4l
k
−1/2
0 k

−5/2
1 sin(k1,0 l),(62)

where k1,0 is defined by Equation (61). One can check that the
matrix elements (62) together with the argument (61) satisfy
the condition |3| = 1. Note that the only restriction for the
existence of the representation (62) are the asymptotics z0, z1 →
±∞. Both k0 and k1 are either real-valued or imaginary. In the
particular case V1 = V0 (k1 = k0), Equations (61) and (62)
reduce to the matrix representation (48).

5. REALIZATION OF POINT
INTERACTIONS IN THE ZERO-THICKNESS
LIMIT FOR ONE LAYER

Keeping in the following the same notations with respect to the
subscripts “0” and “1”, let us consider the linear potential (40)
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rewritten as

V(x) = V0 +
V1 − V0

l
x, V0, V1 ∈ R, (63)

on the interval 0 < x < l, where V0 and V1 are the potential
values at the left and right edges of the layer with width l.
Consider first the case when this potential is constant, i.e., V0 =
V1. A point interaction can be realized in the limit as the layer
thickness l → 0, whereas V0 → ±∞. To this end, one can use
the parametrization of the potential V(x) ≡ V0 introducing a
dimensionless parameter ε > 0 that controls the shrinking of the
layer to zero width as ε → 0. It is natural to consider the power
parametrization setting

V0 = a ε−µ, l = εd, a ∈ R, µ, d > 0. (64)

In the squeezed limit (as ε → 0), a one-parameter family of
point interactions at x = 0 is realized. It is determined by the
power µ ∈ (0,∞): the transmission is perfect for µ ∈ (0, 1), at
µ = 1 the potential takes the form of Dirac’s delta function αδ(x)
with the transmission matrix (4), where α = ad is the strength
of the δ-interaction, and for µ ∈ (1,∞) the interaction acts as
a fully reflecting wall satisfying the Dirichlet boundary condition
ψ(±0) = 0 for the wave function ψ(x).

In the case when the difference V1 −V0 is non-zero, as shown
in Figure 1, one deals with two potential values V0 and V1 at
the layer edges that must tend to infinity in the zero-thickness
limit. Both the potential values V0 and V1 are supposed to be of
the same sign. In general, the rate of this divergence to infinity
can differ and therefore the parametrization of the potential (63)
should involve two parameters. We introduce the two powers µ
and ν, where the parameters µ and ν describe how rapidly the
potential V0 at the left layer edge and the difference V1−V0 tend
(escape) to infinity as ε → 0, respectively. The particular case
when this difference is a constant not depending on ε can also be

FIGURE 1 | Schematics of one-layer potential (63) tilted by difference V1 − V0
(solid line) with notations given in (65) at ε = 1: V1 − V0 = b = VR. The dashed

line represents potential with b = 0.

included. Thus, we set

V0 = aε−µ,

V1 = V0 + b ε−ν , 0 < µ <∞, 0 ≤ ν ≤ µ, a, b ∈ R, l = ε d,
(65)

including the following two situations in the squeezed limit: (i)
V1 − V0 is constant (ν = 0) and (ii) the “escaping-to-infinity”
rate of V1 − V0 does not exceed the rate of V0 (ν ≤ µ). In the
electronics domain the difference V1 − V0 or bmay play the role
of a bias voltage.

Due to Equations (43), we have the asymptotics z0, z1 ∼
ε2(1+ν)/3−µ. Consequently, the line L0,∞ : = {0 < µ ≤
2, ν = 3µ/2 − 1} separates the asymptotic representations
z0, z1 → 0 and z0, z1 → ±∞ on the (µ, ν)-plane as illustrated
by the diagram depicted in Figure 2. Here, we have the two
triangle sets:

S0 : = {0 < µ < 2, max{0, 3µ/2− 1} < ν ≤ µ} (66)

∪{0 < µ < 2/3, ν = 0},

S∞ : = {2/3 < µ ≤ 2, 0 ≤ ν < 3µ/2− 1},

where the asymptotic representations z0, z1 → 0 and z0, z1 →
±∞ take place, respectively. The corresponding angles are
formed by the boundary lines: S0 by L0,1 : = {0 < µ < 2/3, ν =
0}, L0,2 : = {0 < µ < 2, ν = µ} and S∞ by L∞,1 : = {2/3 < µ ≤
2, ν = 0}, L∞,2 : = {µ = 2, 0 < ν < 2}.

FIGURE 2 | Regions of asymptotic representations z0, z1 → 0 (S0) and

z0, z1 → ±∞ (S∞) with separating line L0,∞. Three balls indicate

characteristic points P1,1 : = {µ = ν = 1} ∈ S0 ,

P2,0 : = {µ = 2, ν = 0} ∈ S∞ and P2,1 : = {µ = 2, ν = 1} ∈ S∞.
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5.1. Point Interactions Realized in the Limit
as z0, z1 → 0
Let us consider the boundary lines L0,1 and L0,2 of the angle
S0. On the line L0,1, we find that z0, z1 ∼ ε2/3−µ, so that the
z0, z1 → 0 limit takes place on the interval 0 < µ < 2/3. Next,
we have k20, k

2
1 ∼ ε−µ and according to Equations (51), λ12 → 0

and λ21 ∼ ε1−µ → 0, so that the3-matrix becomes the identity
(3 = I) because µ < 1.

Similarly, on the line L0,2 , where z0, z1 ∼ ε(2−µ)/3, from
Equations (49) and (51) we get the asymptotics

λ11 → 1− c1ε
2−µ, λ12 → εd,

λ21 → (a+ b/2)d ε1−µ, λ22 → 1− c2 ε
2−µ (67)

with

c1 : = (a2/2)(a+ b)(d/b)2, c2 : = (a/2)(a+ b)2(d/b)2. (68)

Therefore, on the interval 0 < µ < 1 the transmission matrix is
the identity I, while on the interval 1 < µ < 2 the transmission
matrix does not exist. In this case the point interaction acts as
a fully reflecting wall (the boundary conditions for this point
interaction are of the Dirichlet type). The value µ = 1 describes
the intermediate situation with a partial transmission through
the system, namely the δ-interaction with bias b, which separates
both these regimes. The limit transmission matrix (as ε → 0)
corresponds to the δ-interaction described by the connection
matrix (4) with the strength constant

α = (a+ b/2)d. (69)

This result also includes the constant case when V0 = V1, i.e.,
b = 0. This approximation is appropriate for modeling the δ-
potential. Note that similar analysis can be done for µ and ν
belonging to the interior of S0. In this case in the above equations
we have to set b = 0.

Using the second formula (37), one can compute the
transmission amplitude for this δ-interaction. We get

T =
4k kR

(k+ kR)2 + α2
, (70)

where α is given by (69). In the unbiased case (b = 0, kR = k) this

formula reduces to T =
[

1+ (α/2k)2
]−1

with α = ad, the well
known expression for the constant potential. Equation (70) has
been obtained for any a ∈ R. However, for negative values of a,
i.e., for a δ-like well, it does not describe the oscillating behavior
with respect to the constant α that takes place under tunneling
across a well with finite thickness l.

5.2. Point Interactions Realized in the Limit
as z0, z1 → ±∞

Consider now the characteristic point P2,1 ∈ S∞ setting in
Equation (62) µ = 2 and ν = 1. Here k20 − k21 = V1 −
V0 = b ε−1 and k0, k1, k1,0 →

√
− a ε−1, so that the asymptotic

representation of Equation (62) in the limit as ε → 0 becomes

λ11 → cos(κd)− ε g sin(κd),

λ12 → ε κ−1 sin(κd),

λ21 → − ε−1κ sin(κd)+O(ε),

λ22 → cos(κd)+ ε g sin(κd), (71)

where

κ : =
√
− a, g : = κ−3(b/4d). (72)

As follows from these asymptotic expressions derived at the point
P2,1, in the limit as ε → 0, the transmission through a barrier is
zero, while across a well (a < 0) it appears to be resonant. The
resonance set consists of the roots of the equation sin(κd) = 0.
At fixed d > 0, these roots form the countable set 6 = ∪∞

n=0σn
formed from the points σn : = − (nπ/d)2. On this resonance set,
the discrete-valued matrix is 3n : = 3|6 = (−1)nI. Beyond
these resonance values, the δ-like well is opaque and, instead of
the identity matrix I, the two-sided boundary conditions for the
wave function are of the Dirichlet type: (ψ(± 0) = 0).

6. MULTI-LAYERED
HETEROSTRUCTURES WITH BIAS

Now we are ready to apply the expressions obtained above for
a single layer to the total structure consisting of an arbitrary
number N of layers replacing µ → µi , ν → νi , b →
bi , d → di . Taking for account that the left boundary value for
the potential of the ith layer ai is shifted because of the biases
b1 , . . . bi−1 in the left-hand layers, we need to use the following
replacement rule:

a → ai +

i−1
∑

j=1

bj , i = 1,N, (73)

where the sum vanishes if i = 1. Then Equation (65) are
transformed to

V0 → Vi,i−1 =



ai +

i−1
∑

j=1

bj



ε−µi ,

V1 → Vi,i = Vi,i−1 + bi ε
− νi . (74)

Next, all the other expressions derived above should be rewritten
for the ith layer using the following replacement rules:

z0 → zi,i−1 =

(

di

bi

)2/3






ai +

i−1
∑

j=1

bj



ε−µi − E



ε2(1+νi)/3,

z1 → zi,i =

(

di

bi

)2/3






ai +

i−1
∑

j=1

bj



ε−µi + bi ε
−νi − E



ε2(1+νi)/3,

α → αi =



ai +

i−1
∑

j=1

bj + bi/2



di , σ → σi =

(

bi

di

)1/3

ε−(1+νi)/3,

κ → κi =

√

√

√

√

√−



ai +

i−1
∑

j=1

bj



, g → gi =
bi

4κ3i di
,
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c1 → ci,1 =
1

2



ai +

i−1
∑

j=1

bj





2

ai +

i
∑

j=1

bj





(

di

bi

)2

,

c2 → ci,2 =
1

2



ai +

i−1
∑

j=1

bj







ai +

i
∑

j=1

bj





2
(

di

bi

)2

. (75)

In the following we will consider some particular examples of
multi-layered structures with N = 2, 3. It will be shown that
in some cases two- and three-lateral quantum devices can be
approximated by one-point interactions.

6.1. Two-Layered Structures
Consider now the structure consisting of two layers (N =
2). The piecewise linear potential of a barrier-well form is
shown in Figure 3. For an arbitrary two-layered structure,
the limit transmission matrix is the product 3 = 3231,
where the matrices 3i’s can be constructed from the asymptotic
approximations (67) and (71) by applying the replacement rules
(73)–(75). Applying these rules in Equations (67), (68) and (71),
(72) to the matrices31 and32, below we compute their product
for two different situations. Note that due to the presence of
the factor ε−1 in the expression λ21 [see Equation (71)], the
terms of order O(ε) must be kept in the product 3231 because
limε→032 · limε→031 6= limε→0(3231).

Point interactions of a δ′-type: Consider the zero-thickness
limit determined by the powers µ1 = µ2 = 2 and ν1 =
ν2 = 1. Then, the product 3 = 3231 yields the following

FIGURE 3 | Schematics of tilted (solid line) and piecewise constant (dashed

line) barrier-well potential, where notations correspond to Equations (73) and

(74) for N = 2 and ε = 1. Potential values at layer edges are V1,0 = a1,

V1,1 = a1 + b1 (barrier, a1 > 0) and V2,1 = a2 + b1, V2,2 = a2 + b1 + b2
(well, a2 < 0). Polarity is shown positive (left-to-right electron flow, b1 ,b2 < 0).

Dashed lines show unbiased potential (b1 = b2 = 0).

asymptotic representation of the 3-matrix elements for the total
double-layer system:

λ11 → cos(κ1d1) cos(κ2d2)− (κ1/κ2) sin(κ1d1) sin(κ2d2),

λ12 → 0,

λ21 → α − ε−1
[

κ1 sin(κ1d1) cos(κ2d2)+ κ2 cos(κ1d1) sin(κ2d2)
]

,

λ22 = cos(κ1d1) cos(κ2d2)− (κ2/κ1) sin(κ1d1) sin(κ2d2), (76)

where the ε → 0 limit has been performed and

α = (κ2g1 − κ1g2) sin(κ1d1) sin(κ2d2). (77)

The second term in the element λ21 diverges as ε → 0 and it
vanishes if the equation

κ1 tan(κ1d1)+ κ2 tan(κ2d2) = 0 (78)

takes place. Using this equation in the elements λ11 and λ22 [see
Equation (76)], we find the total transmission matrix

3 =

(

cos(κ1d1)/ cos(κ2d2) 0
α cos(κ2d2)/ cos(κ1d1)

)

. (79)

Equation (78) admits a countable set of solutions if at least one
of the layer potential has a well profile. In particular, if a1 > 0
(barrier) and a2 + b1 < 0 (well), Equation (78) reduces to

√
a1 tanh(

√
a1 d1) =

√

|a2 + b1| tan(
√

|a2 + b1| d2). (80)

It is reasonable to assume that − b1 < a1 (otherwise the right-
edge barrier potential becomes negative), so that on the interval
(− a1, 0), under appropriate values of the layer parameters, only
a finite set of discrete (resonance) values of b1 can be found.
According to the classification of point interactions given in
Brasche and Nizhnik [32], the interactions described by the
connection matrix with diagonal elements λ11, λ22 6= 1 may
be referred to as a family of (resonant) δ′-potentials, despite
the distribution δ′(x) in general does not exist. Similarly to the
single δ-well potential, beyond the resonance set, the two-sided
boundary conditions are of the Dirichlet type: ψ(±0) = 0.

On the resonance set 6 = ∪nσn, the explicit expressions for
the3-matrix (79) and the element (77) become

3|6 =

(

θn 0

αn θ−1
n

)

, (81)

where

θn =
cosh(

√
a1 d1)

cos(
√

|a2 + b1,n| d2)
6= ± 1,

αn =
1

4

[ √
a1 b2

|a2 + b1,n|3/2d2
−

√

|a2 + b1,n| b1,n

a
3/2
1 d1

]

× sinh(
√
a1 d1) sin(

√

|a2 + b1,n| d2). (82)
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The transmission amplitude on the resonance set 6 is

Tn =
4k kR,n

(kθ−1
n + kR,nθn)2 + α2n

, (83)

where kR,n =
√

k2 − b1,n .
Resonant transmission through a δ-barrier: Let us consider

now the two-layered structure in which the potential of one of
the layers in the squeezed limit has a δ-like form. We specify this
situation by the power parameters µ1 = ν1 = 1 (point P1,1 ∈ S0)
for the barrier, and µ2 = 2 and ν2 = 1 (point P2,1 ∈ S∞) for the
well. Even in the unbiased case this potential has no distributional
limit, however the transmission matrix does exist. Applying the
replacement rules (73)-(75) in the asymptotics (67) with µ = 1
yielding the 31-matrix, and in the representation (71) creating
the32-matrix, we obtain the ε → 0 limit for the elements of the
total matrix3 = 3231 in the form

λ11 → cos(κ2d2),

λ12 → 0,

λ21 → α1 cos(κ2d2)+ c1,1κ2 sin(κ2d2)− ε
−1κ2 sin(κ2d2),

λ22 → cos(κ2d2)− κ2d1 sin(κ2d2). (84)

While the first and the second terms in λ21 are finite, the third one
diverges as ε → 0. However, it vanishes at the values satisfying
the equation sin(κ2d2) = 0, i.e., for

a2 + b1,n = − (nπ/d2)
2, (85)

where the integer n = n0, n0 + 1, . . . with some n0. These values
form the countable resonance set 6 on which the transmission
matrix 3 corresponds to the δ-interaction, whereas beyond
this set the interaction acts as a fully reflecting wall. The limit
transmission matrix is

3|6 = (−1)n
(

1 0
αn 1

)

, (86)

where αn = α1,n = (a1 + b1,n)/2)d1 . Note that the effect of the
resonant transmission through a δ-barrier keeps to be valid in the
unbiased case when b1 = b2 = 0.

Thus, we have realized the resonant δ-interaction, due to the
presence of an adjacent well with depth a2 < 0. In the case
when the system parameters a1, a2, d1, d2 are supposed to be
fixed, the biased potential b1 may be considered as a tunable
parameter. The transmission is resonant on the set given by (85).
The potential at the right edge of the first layer keeps to be positive
for all values of b1 satisfying the inequality− b1 < a1. Therefore,
this is a constraint that limits the resonance set to a finite number
of resonances.

The existence of the resonant tunneling through a δ-
like barrier can be supported numerically calculating the
transmission amplitude T according to Equations (37) and (34),
where the matrix elements are given by Equation (45). For
different values of the squeezing parameter ε, the result of these
calculations is illustrated by Figure 4.

FIGURE 4 | Transmission amplitude T as a function of bias −b1 plotted for

parameter values: E = 0.1 eV, a1 = 0.5 eV, a2 = − 0.1 eV, d1 = 2 nm,

d2 = 10 nm. Computations have been carried out with powers µ1 = ν1 = 1

(point P1,1) and µ2 = 2, ν2 = 1 (point P2,1). Squeezing scenario is displayed

for ε = 0.5 (curve 1, black), 0.25 (curve 2, red), and 0.1 (curve 3, blue).

Location of all three peaks converges to set {−b1,n} defined by Equation (85)

with n = 2, 3, 4.

FIGURE 5 | Schematics of typical transistor, where notations correspond to

Equations (73) and (74) for N = 3 and ε = 1 with replacement: b1 → −VEB
(emitter-to-base voltage) and b3 → −VCB (collector-to-base voltage).

Potential values at layer edges are V1,0 = a1, V1,1 = a1 − VEB (a1 > 0),

V2,1 = V2,2 = −VEB and V3,2 = a3 − VEB, V3,3 = a3 + VR (a3 > 0). Polarity

is shown to be positive (left-to-right electron flow, VEB ,VCB > 0).

6.2. Modeling of Point Transistors
It is of interest to give an interpretation for a semiconductor
transistor in the limit as its dimensions are extremely tiny. This
is a three-terminal device [76] described by a tilted double-
barrier potential profile as illustrated by Figure 5. Here the
potential between the barriers is constant depending on the
emitter-to-base voltage VEB as a parameter tuned externally. The
other external parameter VCB is the collector-to-base voltage
being fixed. For the description of this device by a one-point
interaction model, we assume that in the zero-thickness limit
both the barriers as well as the distance between them tend to
the point x = 0.
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Similarly to the double-layer structure [see the general
formula (24)], the transmission matrix for the total system is
the product 3 = 333231, where the matrices 31 and 33

correspond to the barriers and the 32-matrix to the space
between the barriers. Setting b1 ≡ −VEB, b2 = 0 and b3 ≡
−VCB, according to (73), we replace: a → a1 for31, a → −VEB

(a2 = 0) for 32 and a → a3 − VEB for 33. In the case of
positive polarity, as shown in the figure, both the voltages are
non-negative parameters. Applying next the replacement rules
(75) in the terms (68), (69), and (72), we write the following
explicit expressions for the matrices31 and33:

κ1 =
√
− a1 , κ2 =

√

VEB , κ3 =
√

VEB − a3 ,

α1 = (a1 − VEB/2)d1 , α3 = (a3 − VEB − VCB/2)d3 ,

c1,1 = (a21/2)(a1 − VEB)(d1/VEB)
2,

c1,2 = (a1/2)(a1 − VEB)
2(d1/VEB)

2,

c3,1 = [(a3 − VEB)
2/2](a3 − VEB − VCB)(d3/VCB)

2,

c3,2 = [(a3 − VEB)/2](a3 − VEB − VCB)
2(d3/VCB)

2,

g1 = − κ−3
1 (VEB/4d1), g3 = − κ−3

3 (VCB/4d3). (87)

The 32-matrix is defined by (48) for i = 2, where k2 = κ2ε
−1

and l2 = εd2.
Below we examine the following two zero-thickness limits: (i)

µ1 = µ3 = ν1 = ν3 = 1 (points P1,1) and (ii) µ1 = µ3 = 2,
ν1 = ν3 = 1 (points P2,1).

(i) δ-potential model: The matrix multiplication yields the
asymptotic representation in the limit as ε → 0:

λ11 → cos(κ2d2)− κ2d3 sin(κ2d2),

λ12 → 0,

λ21 → (α1 + α3) cos(κ2d2)+ (c1,1 + c3,2)κ2 sin(κ2d2)−

ε−1κ2 sin(κ2d2),

λ22 → cos(κ2d2)− κ2d1 sin(κ2d2). (88)

Here, the element λ21 diverges as ε → 0 and it will be finite if
sin(κ2d2) = 0, resulting in the resonance set

VEB,n = (nπ/d2)
2, n = 1, n0 , (89)

where the integer n0 depends on the interval of admissible values
of the bias potential VEB. This interval is determined by the
requirement that the barrier potential values V1,1 and V3,3 must
be positive, leading to the inequalities 0 < VEB < a1 and
0 < VEB + VCB < a3. Therefore, the potential VEB is allowed
to tune within the interval 0 < VEB < min{a1, a3 − VCB}.

Thus, the limit transmission matrix is of the form (86) with

αn = α1,n+α3,n = (a1−VEB,n/2)d1+(a3−VEB,n−VCB/2)d3 > 0.
(90)

realizing the δ-potential defined on the resonance set described
by Equation (89).

According to the general expressions (37) and (34), the
transmission amplitude, being non-zero on this resonance set,
is given by the formula (83), where θn = 1 and kR,n =
√

k2 + VEB,n + VCB . The transmission amplitude T displayed

FIGURE 6 | Transmission amplitude T as a function of emitter-to-base

voltage VEB for parameter values: E = 0.1 eV, a1 = a3 = 0.5 eV, a2 = 0,

VCB = 0.2 eV, d1 = d3 = 2 nm, d2 = 10 nm. Computations have been

carried out with powers µ1 = ν1 = µ3 = ν3 = 1 (points P1,1) and µ2 = 2,

ν2 = 0. Squeezing scenario is displayed for ε = 0.5 (curve 1, black), 0.25

(curve 2, red), and 0.1 (curve 3, blue). Location of all three peaks approaches

set {VEB,n} given by Equation (89) with n = 1, 2, 3.

in Figure 6 illustrates the convergence of the location of the peaks
to the roots of Equation (89).

(ii) δ′-potential model: The three-lateral device can also be
approximated by a δ′-interaction with a bias if we choose for
the zero-thickness limit the powers µ1 = µ2 = µ3 = 2 and
ν1 = ν3 = 1. The multiplication of the matrices yields

λ11 → cos(κ1d1) cos(κ2d2) cos(κ3d3)

−(κ1/κ2) sin(κ1d1) sin(κ2d2) cos(κ3d3)

− (κ1/κ3) sin(κ1d1) cos(κ2d2) sin(κ3d3)

−(κ2/κ3) cos(κ1d1) sin(κ2d2) sin(κ3d3),

λ12 → 0,

λ21 → κ2[g1 sin(κ1d1) cos(κ3d3)

−g3 cos(κ1d1) sin(κ3d3)] sin(κ2d2)

+ (κ3g1 − κ1g3) sin(κ1d1) cos(κ2d2) sin(κ3d3)

− ε−1[κ1 sin(κ1d1) cos(κ2d2) cos(κ3d3)

+ κ2 cos(κ1d1) sin(κ2d2) cos(κ3d3)

+κ3 cos(κ1d1) cos(κ2d2) sin(κ3d3)

− (κ1κ3/κ2) sin(κ1d1) sin(κ2d2) sin(κ3d3)],

λ22 → cos(κ1d1) cos(κ2d2) cos(κ3d3)

−(κ2/κ1) sin(κ1d1) sin(κ2d2) cos(κ3d3)

− (κ3/κ1) sin(κ1d1) cos(κ2d2) sin(κ3d3)

− (κ3/κ2) cos(κ1d1) sin(κ2d2) sin(κ3d3), (91)

where the notations for κ1 , κ2 , κ3, and g1 , g3 can be found in
Equation (87). The arguments of the trigonometric functions are
finite and the element λ21 diverges as ε → 0 because of the
presence of the factor ε−1. Therefore, the only opportunity to
define properly a point interaction is a full cancelation of all the
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terms at this factor, so that λ21 becomes finite. As a result, this
cancelation yields the following equation:

κ1κ3

κ2

3
∏

i=1

tan(κidi) =

3
∑

i=1

κi tan(κidi). (92)

Using the resonance equation (92), we derive that the pair
{λ11, λ22} admits the following sixteen representations:

{λ11, λ22} = {I1, I2, J
−1
1 , J−1

2 } × {I−1
1 , I−1

2 , J1, J2}, (93)

where

I1 =
cos(κ1d1) cos(κ2d2)− (κ1/κ2) sin(κ1d1) sin(κ2d2)

cos(κ3d3)
,

I2 = −
κ1 sin(κ1d1) cos(κ2d2)+ κ2 cos(κ1d1) sin(κ2d2)

κ3 sin(κ3d3)
,

J1 =
cos(κ2d2) cos(κ3d3)− (κ3/κ2) sin(κ2d2) sin(κ3d3)

cos(κ1d1)
,

J2 = −
κ2 sin(κ2d2) cos(κ3d3)+ κ3 cos(κ2d2) sin(κ3d3)

κ1 sin(κ1d1)
.(94)

These representations follow from the equations I1 = I2, J1 =
J2, and I1J1 = 1, which can be checked using the condition
(92). As a result, we have |3| = λ11λ22 = 1 if Equation (92)
is fulfilled.

Equation (92) can be rewritten in the explicit form as follows

√

a1/VEB tanh(
√
a1 d1)+

√

a3/VEB − 1 tanh(
√

a3 − VEB d3)

=
[

1−
√

a1/VEB

√

a3/VEB − 1 tanh(
√
a1 d1) tanh(

√

a3 − VEB d3)
]

× tan(
√

VEB d2). (95)

This form shows the existence of the roots forming a resonance
set 6 = {VEB,n}. Inserting next these roots into Equation (94),
one can get the discrete values of the diagonal elements λ11,n and
λ22,n of the matrix set 3|6 . One can write then θn : = λ11,n =
λ
−1
22,n = I1,n = I2,n = J−1

1,n = J−1
2,n . Finally, one can represent the

off-diagonal element λ21,n = αn as

αn = a
−3/2
1 (VEB,n/4d1) sinh(

√
a1 d1)

× [
√

VEB,n cosh(
√

a3 − VEB,n d3) sin(
√

VEB,n d2)

−
√

a3 − VEB,n sinh(
√

a3 − VEB,n d3) cos(
√

VEB,n d2)]

− (a3 − VEB,n)
−3/2(VCB/4d3) sinh(

√

a3 − VEB,n d3)

× [
√

VEB,n cosh(
√
a1 d1) sin(

√

VEB,n d2)

−
√
a1 sinh(

√
a1 d1) cos(

√

VEB,n d2)]. (96)

Similarly to the double-layer structure with the limit
transmission matrix (81), we refer this one-point interaction
to as the δ′-potential because λ11,n , λ22,n 6= 1. The
transmission amplitude is given by the same formula
(83) in which θn = λ11,n and αn = λ21,n is given by the
expression (96).

7. CONCLUDING REMARKS

In the present work we addressed the family of point interactions
as the zero-thickness limit of heterostructures composed of
several layers. The latter have energy diagrams stemming from
tilted linear potentials that arise as a result of the application
of external electric fields. The analysis starts from the solution
of the one-dimensional stationary Schrödinger equation for the
structure with finite size using the transfer matrix approach.
Within this approach, we find the transmission matrices for
each layer; their product quantifies the penetration amplitude
of electrons through the whole system. In order to realize
point interactions we introduce a squeezing parameter ε >

0 in the structural parameters of the system (layer width,
potentials at layer edges, etc.) leading to shrinking the thickness
of the system as ε → 0. In this limit the potential values
at the interfaces of layers must go to infinity if we wish to
create a point interaction in the squeezed limit. At ε =
1, the structural parameters correspond to realistic values of
the device.

One of interesting features discovered in the previous
publications [17, 43–45, 48, 49, 51] is the appearance of
electron tunneling through one-point barriers that occurs at
some discrete values of system parameters, whereas beyond
these values the system behaves as a fully reflecting wall. The
origin of this phenomenon is an oscillating behavior of particle
transmission. Surprisingly, as the system shrinks to a point,
the oscillating regular function that describes the transmission
amplitude, converges pointwise to the function with non-
zero finite values only at some discrete points in the space
of system parameters, whereas beyond this (resonance) set,
the system acts a fully reflecting wall (see, e.g., Figure 1 in
Zolotaryuk and Zolotaryuk [17]). In other words, the maxima
of the oscillating amplitude correspond in the squeezing limit
to the set of extremely sharp peaks. On the other hand, in
many devices the oscillating behavior of transmitted particles
appears as a function of tuning some controllable (not system)
parameters. For instance, in the typical point transistor, an
emitter-to-base voltage may be served as such a parameter.
Indeed, the electron flow across this device is an oscillating

function of this voltage. In this regard, it is of interest to
construct the point interactions with a resonance set controllable
by parameters applied externally and this is the main goal of the
present paper.

In conclusion, in the present paper we have tried to develop
the general approach on how to realize the point interactions
as a zero-thickness limit of structures composed of an arbitrary
number of layers with biased potentials. This approach is
specified by the examples describing one layer, the double-
and three-layer systems. The piecewise linear potentials are
not required to have any distributional limit as ε → 0.
Despite this, the ε → 0 limit of the transmission matrices
has been shown to exist enable us to compute analytically
the transmission amplitude. The most interesting phenomenon
discussed in the present paper is the appearance of the
resonant transmission through a δ-like barrier in the presence
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of an adjacent well. The origin of this effect emerges from
the fact that the particle transmission across a well has an
oscillating behavior. This behavior keeps to be of the same
nature after tunneling through a barrier. Therefore, in the
squeezed limit this oscillating transforms into the function
with non-zero values only at discrete points, whereas on
the intervals between these points, this function converges
pointwise to zero resulting in blocking the tunneling trough
the barrier.

DATA AVAILABILITY

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

AUTHOR CONTRIBUTIONS

AZ, GT, and YZ contributed equally in all stages of this work. YZ
contributed to calculations of transmission amplitudes.

ACKNOWLEDGMENTS

One of us (AZ) acknowledges partial financial support
from the National Academy of Sciences of Ukraine (project
No. 0117U000238). GT acknowledges support by the European
Commission under project NHQWAVE (MSCA-RISE 691209).
YZ acknowledges support from the Department of Physics and
Astronomy of the National Academy of Sciences of Ukraine
under project No. 0117U000240. The authors are indebted to
both the Referees for their suggestions and corrections resulting
in the significant improvement of the paper.

REFERENCES

1. Demkov YN, Ostrovskii VN. Zero-Range Potentials and Their Applications in

Atomic Physics. New York, NY: Plenum Press (Leningrad University Press,

Leningrad, 1975) (1988).

2. Albeverio S, Gesztesy F, Høegh-Krohn R, Holden H. Solvable Models in

Quantum Mechanics. 2nd ed. With appendix by P. Exner. Providence, RI:

AMS Chelsea (2005).

3. Albeverio S, Kurasov P. Singular Perturbations of Differential Operators:

Solvable Schrödinger-Type Operators.Cambridge: Cambridge University Press

(1999).

4. Šeba P. Some remarks on the δ′-interaction in one dimension. Rep Math Phys.

(1986) 24:111–20.

5. Kurasov P. Distribution theory for discontinuous test functions and

differential operators with generalized coefficients. J Math Anal Appl. (1996)

201:297–323. doi: 10.1006/jmaa.1996.0256

6. Coutinho FAB, Nogami Y, Perez JF. Generalized point interactions in one-

dimensional quantum mechanics. J Phys A Math Gen. (1997) 30:3937–45.

doi: 10.1088/0305-4470/30/11/021

7. Albeverio S, Da̧browski L, Kurasov P. Symmetries of Schrödinger

operators with point interactions. Lett Math Phys. (1998) 45:33–47.

doi: 10.1023/A:1007493325970

8. Coutinho FAB, Nogami Y, Tomio L.Many-body systemwith a four-parameter

family of point interactions in one dimension. J Phys A Math Gen. (1999)

32:4931–42. doi: 10.1088/0305-4470/32/26/311

9. Albeverio S, Nizhnik L. On the number of negative eigenvalues of a one-

dimensional Schrödinger operator with point interactions. Lett Math Phys.

(2003) 65:27–35. doi: 10.1023/A:1027396004785

10. Nizhnik LP. A Schrödinger operator with δ′-interaction. Funct Anal Appl.

(2003) 37:72–4. doi: 10.1023/A:1022932229094

11. Nizhnik LP. A one-dimensional Schrödinger operator with point

interactions on Sobolev spaces. Funct Anal Appl. (2006) 40:143–7.

doi: 10.1007/s10688-006-0022-3

12. Albeverio S, Cacciapuoti C, Finco D. Coupling in the singular limit of

thin quantum waveguides. J Math Phys. (2007) 48:032103. doi: 10.1063/

1.2710197

13. Cacciapuoti C, Exner P. Nontrivial edge coupling from a Dirichlet network

squeezing: the case of a bent waveguide. J Phys A Math Theor. (2007)

40:F511–23. doi: 10.1088/1751-8113/40/26/F02

14. Turek O, Cheon T. Threshold resonance and controlled filtering in quantum

star graphs. Europhys Lett. (2012) 98:50005. doi: 10.1209/0295-5075/98/50005

15. Turek O, Cheon T. Potential-controlled filtering in quantum star graphs. Ann

Phys. (2013) 330:104–41. doi: 10.1016/j.aop.2012.11.011

16. Zolotaryuk AV, Zolotaryuk Y. Controllable resonant tunnelling through

single-point potentials: a point triode. Phys Lett A. (2015) 379:511–7.

doi: 10.1016/j.physleta.2014.12.016

17. Zolotaryuk AV, Zolotaryuk Y. A zero-thickness limit of multilayer structures:

a resonant-tunnelling δ′-potential. J Phys A Math Theor. (2015) 48:035302.

doi: 10.1088/1751-8113/48/3/035302

18. Asorey M, Ibort A, Marmo G. Global theory of quantum boundary

conditions and topology change. Int J Mod Phys A. (2005) 20:1001–26.

doi: 10.1142/S0217751X05019798

19. Cheon T, Fülöp T, Tsutsui I. Symmetry, duality, and anholonomy

of point interactions in one dimension. Ann Phys. (2001) 294:1–23.

doi: 10.1006/aphy.2001.6193

20. Tsutsui I, Fülöp T, Cheon T. Möbius structure of the special space of

Schrödinger operators with point interaction. J Math Phys. (2001) 42:5687–97.

doi: 10.1063/1.1415432

21. Cheon T, Shigehara T. Realizing discontinuous wave functions with

renormalized short-range potentials. Phys Lett A. (1998) 243:111–6.

22. Exner P, Neidhardt H, Zagrebnov VA. Potential Approximations to δ′: an

inverse Klauder phenomenon with norm-resolvent convergence. Commun

Math Phys. (2001) 224:593–612. doi: 10.1007/s002200100567

23. Albeverio S, Nizhnik L. Approximation of general zero-range potentials. Ukr

Mat Zh. (2000) 52:582–9.

24. Albeverio S, Nizhnik L. Approximation of general zero-range potentials. Ukr

Math J. (2001) 52:664–72. doi: 10.1007/BF02487279

25. Albeverio S, Nizhnik L. A Schrödinger operator with a δ′-interaction on a

Cantor set and Krein-Feller operators.Math Nachrichten. (2006) 279:467–76.

doi: 10.1002/mana.200310371

26. Albeverio S, Nizhnik L. Schrödinger operators with nonlocal

point interactions. J Math Anal Appl. (2007) 332:884–95.

doi: 10.1016/j.jmaa.2006.10.070

27. Albeverio S, Nizhnik L. Schrödinger operators with nonlocal potentials.

Methods Funct Anal Topol. (2013) 19:199–210.

28. Fassari S, Rinaldi F. On the spectrum of the Schrödinger Hamiltonian with

a particular configuration of three one-dimensional point interactions. Rep

Math Phys. (2009) 64:367–93. doi: 10.1016/S0034-4877(10)00004-2

29. Albeverio S, Fassari S, Rinaldi F. A remarkable spectral feature of the

Schrödinger Hamiltonian of the harmonic oscillator perturbed by

an attractive δ′-interaction centred at the origin: double degeneracy

and level crossing. J Phys A Math Theor. (2013) 46:385305.

doi: 10.1088/1751-8113/46/38/385305

30. Albeverio S, Fassari S, Rinaldi F. The Hamiltonian of the harmonic oscillator

with an attractive δ′-interaction centred at the origin as approximated by the

one with a triple of attractive δ-interactions. J Phys A Math Theor. (2016)

49:025302. doi: 10.1088/1751-8113/49/2/025302

31. Golovaty Y. Two-parametric δ′-interactions: approximation by Schrödinger

operators with localized rank-two perturbations. J Phys A Math Theor. (2018)

51:255202. doi: 10.1088/1751-8121/aac110

32. Brasche JF, Nizhnik LP. One-dimensional Schrödinger operators with general

point interactions.Methods Funct Anal Topol. (2013) 19:4–15.

33. Gadella M, Negro J, Nieto LM. Bound states and scattering coefficients

of the − aδ(x) + bδ′(x) potential. Phys Lett A. (2009) 373:1310–3.

doi: 10.1016/j.physleta.2009.02.025

34. Gadella M, Glasser ML, Nieto LM. One dimensional models with a singular

potential of the type − aδ(x) + bδ′(x). Int J Theor Phys. (2011) 50: 2144–52.

doi: 10.1007/s10773-010-0641-6

Frontiers in Physics | www.frontiersin.org 14 June 2019 | Volume 7 | Article 8799

https://doi.org/10.1006/jmaa.1996.0256
https://doi.org/10.1088/0305-4470/30/11/021
https://doi.org/10.1023/A:1007493325970
https://doi.org/10.1088/0305-4470/32/26/311
https://doi.org/10.1023/A:1027396004785
https://doi.org/10.1023/A:1022932229094
https://doi.org/10.1007/s10688-006-0022-3
https://doi.org/10.1063/1.2710197
https://doi.org/10.1088/1751-8113/40/26/F02
https://doi.org/10.1209/0295-5075/98/50005
https://doi.org/10.1016/j.aop.2012.11.011
https://doi.org/10.1016/j.physleta.2014.12.016
https://doi.org/10.1088/1751-8113/48/3/035302
https://doi.org/10.1142/S0217751X05019798
https://doi.org/10.1006/aphy.2001.6193
https://doi.org/10.1063/1.1415432
https://doi.org/10.1007/s002200100567
https://doi.org/10.1007/BF02487279
https://doi.org/10.1002/mana.200310371
https://doi.org/10.1016/j.jmaa.2006.10.070
https://doi.org/10.1016/S0034-4877(10)00004-2
https://doi.org/10.1088/1751-8113/46/38/385305
https://doi.org/10.1088/1751-8113/49/2/025302
https://doi.org/10.1088/1751-8121/aac110
https://doi.org/10.1016/j.physleta.2009.02.025
https://doi.org/10.1007/s10773-010-0641-6
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Zolotaryuk et al. Point Interactions With Bias Potentials

35. Lange RJ. Potential theory, path integrals and the Laplacian of the indicator. J

High Energy Phys. (2012) 2012:1-32. doi: 10.1007/JHEP11(2012)032

36. Lange RJ. Distribution theory for Schrödinger’s integral equation. J Math Phys.

(2015) 56:122105. doi: 10.1063/1.4936302

37. Gadella M, García-Ferrero MA, González-Martín S, Maldonado-Villamizar

FH. The infinite square well with a point interaction: a discussion on

the different parameterizations. Int J Theor Phys. (2014) 53:1614–27.

doi: 10.1007/s10773-013-1959-7

38. Kulinskii VL, Panchenko DY. Physical structure of point-like interactions for

one-dimensional Schrödinger operator and the gauge symmetry. Physica B

(2015) 472:78–83. doi: 10.1016/j.physb.2015.05.011

39. Gadella M, Mateos-Guilarte J, Muñoz-Castañeda JM, Nieto LM.

Two-point one-dimensional δ-δ′ interactions: non-abelian addition

law and decoupling limit. J Phys A Math Theor. (2016) 49:015204.

doi: 10.1088/1751-8113/49/1/015204

40. Fassari S, Gadella M, Glasser ML, Nieto LM. Spectroscopy of a one-

dimensional V-shaped quantum well with a point impurity. Ann Phys. (2018)

389:48–62. doi: 10.1016/j.aop.2017.12.006

41. Fassari S, Gadella M, Glasser ML, Nieto LM. Level crossings of eigenvalues of

the Schrödinger Hamiltonian of the isotropic harmonic oscillator perturbed

by a central point interaction in different dimensions. Nanosyst Phys Chem

Math. (2018) 9:179–86. doi: 10.17586/2220-8054-2018-9-2-179-186

42. Fassari S, Gadella M, Glasser ML, Nieto LM, Rinaldi F. Spectral properties

of the two-dimensional Schrödinger Hamiltonian with various solvable

confinements in the presence of a central point perturbation. Phys Script.

(2019) 94:055202. doi: 10.1088/1402-4896/ab0589

43. Christiansen PL, Arnbak NC, Zolotaryuk AV, Ermakov VN, Gaididei YB. On

the existence of resonances in the transmission probability for interactions

arising from derivatives of Dirac’s delta function. J Phys A Math Gen. (2003)

36:7589–600. doi: 10.1088/0305-4470/36/27/311

44. Zolotaryuk AV, Christiansen PL, Iermakova SV. Scattering properties

of point dipole interactions. J Phys A Math Gen. (2006) 39:9329–38.

doi: 10.1088/0305-4470/39/29/023

45. Toyama FM, Nogami Y. Transmission-reflection problem with a potential of

the form of the derivative of the delta function. J Phys A Math Theor. (2007)

40:F685–90. doi: 10.1088/1751-8113/40/29/F05

46. Zolotaryuk AV. Boundary conditions for the states with resonant

tunnelling across the δ′-potential. Phys Lett A. (2010) 374:1636–41.

doi: 10.1016/j.physleta.2010.02.005

47. Zolotaryuk AV, Zolotaryuk Y. Intrinsic resonant tunneling properties of the

one-dimensional Schrödinger operator with a delta derivative potential. Int J

Mod Phys B. (2014) 28:1350203. doi: 10.1142/S0217979213502032

48. Golovaty YD, Man’ko SS. Solvable models for the Schrödinger operators with

δ′-like potentials. Ukr Math Bull. (2009) 6:169–203.

49. Golovaty YD, Hryniv RO, On norm resolvent convergence of Schrödinger

operators with δ′-like potentials. J Phys A Math Theor. (2010) 43:155204.

doi: 10.1088/1751-8113/43/15/155204

50. Golovaty Y. Schrödinger operators with (αδ′ + βδ)-like potentials:

Norm resolvent convergence and solvable models.Methods Funct Anal Topol.

(2012) 18:243–55.

51. Golovaty YD, Hryniv RO. Norm resolvent convergence of singularly scaled

Schrödinger operators and δ′-potentials. Proc R Soc Edinb. (2013) 143A:791–

816. doi: 10.1017/S0308210512000194

52. Golovaty Y. 1D Schrödinger operators with short range interactions: two-scale

regularization of distributional potentials. Integr Equat Oper Theor. (2013)

75:341–62. doi: 10.1007/s00020-012-2027-z

53. Zolotaryuk AV. Families of one-point interactions resulting from the

squeezing limit of the sum of two- and three-delta-like potentials.

J Phys A Math Theor. (2017) 50:225303. doi: 10.1088/1751-8121/aa6dc2

54. Zolotaryuk AV. A phenomenon of splitting resonant-tunneling one-point

interactions. Ann Phys. (2018) 396:479–94. doi: 10.1016/j.aop.2018.07.030

55. Calçada M, Lunardi JT, Manzoni LA. Salecker-Wigner-Peres clock

and double-barrier tunneling. Phys Rev A. (2009) 79:012110.

doi: 10.1103/PhysRevA.79.012110

56. Lunardi JT, Manzoni LA, Monteiro W. Remarks on point interactions

in quantum mechanics. J Phys Conf Ser. (2013) 410:012072.

doi: 10.1088/1742-6596/410/1/012072

57. Calçada M, Lunardi JT, Manzoni LA, MonteiroW. Distributional approach to

point interactions in one-dimensional quantummechanics. Front Phys. (2014)

2:23. doi: 10.3389/fphy.2014.00023

58. Lee MA, Lunardi JT, Manzoni LA, Nyquist EA. On the generalized Hartman

effect for symmetric double-barrier point potentials. J Phys Conf Ser. (2015)

574:012066. doi: 10.1088/1742-6596/574/1/012066

59. Lee MA, Lunardi JT, Manzoni LA, Nyquist EA. Double general point

interactions: symmetry and tunneling times. Front Phys. (2016) 4:10.

doi: 10.3389/fphy.2016.00010

60. Asorey M, Garciá-Alvarez D, Muñoz-Castañeda JM. Casimir effect and global

theory of boundary conditions. J Phys A Math Theor. (2006) 39:6127–36.

doi: 10.1088/0305-4470/39/21/S03

61. Asorey M, Muñoz-Castañeda JM. Vacuum boundary effects. J Phys A Math

Theor. (2008) 41:304004. doi: 10.1088/1751-8113/41/30/304004

62. Guilarte JM, Muñoz-Castañeda JM. Double-delta potentials: one dimensional

scattering. The Casimir effect and kink fluctuations. Int J Theor Phys. (2011)

50:2227–41. doi: 10.1007/s10773-011-0723-0

63. Asorey M, Muñoz-Castañeda JM. Attractive and repulsive Casimir vacuum

energy with general boundary conditions. Nucl Phys B. (2013) 874:852–76.

doi: 10.1016/j.nuclphysb.2013.06.014

64. Muñoz-Castañeda JM, Guilarte JM, Mosquera AM. Quantum vacuum

energies and Casimir forces between partially transparent δ-function

plates. Phys Rev D. (2013) 87:105020. doi: 10.1103/PhysRevD.87.

105020

65. Muñoz-Castañeda JM, Kirsten K, Bordag M. QFT over the finite

line. Heat kernel coefficients, spectral zeta functions and selfadjoint

extensions. Lett Math Phys. (2015) 105:523549. doi: 10.1007/s11005-015-

0750-5

66. Muñoz-Castañeda JM, Guilarte JM. δ-δ′ generalized Robin boundary

conditions and quantum vacuum fluctuations. Phys Rev D. (2015) 91:025028.

doi: 10.1103/PhysRevD.91.025028

67. Bordag M, Muñoz-Castañeda JM. Quantum vacuum interaction between

two sine-Gordon kinks. J Phys A Math Theor. (2012) 45:374012.

doi: 10.1088/1751-8113/45/37/374012

68. Hennig D, Tsironis GP. Wave transmission in nonlinear lattices.

Phys. Rep. (1999) 307:333–432. doi: 10.1016/S0370-1573(98)

00025-8

69. Nieto LM, Gadella M, Guilarte JM, Muñoz-Castañeda JM, Romaniega C.

Towards modelling QFT in real metamaterials: singular potentials

and self-adjoint extensions. J Phys Conf Ser. (2017) 839:012007.

doi: 10.1088/1742-6596/839/1/012007

70. Konno K, Nagasawa T, Takahashi R. Effects of two successive parity-

invariant point interactions on one-dimensional quantum transmission:

resonance conditions for the parameter space. Ann Phys. (2016) 375:91–104.

doi: 10.1016/j.aop.2016.09.012

71. Konno K, Nagasawa T, Takahashi R. Resonant transmission in

one-dimensional quantum mechanics with two independent point

interactions: full parameter analysis. Ann Phys. (2017) 385:729–43.

doi: 10.1016/j.aop.2017.08.031

72. Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett. (1973)

22:562–4.

73. Chang LL, Esaki L, Tsu R. Resonant tunneling in semiconductor double

barriers. Appl Phys Lett. (1974) 24:593–5.

74. Esaki L, Chang LL. New transport phenomenon in a semiconductor

“superlattice”. Phys Rev Lett. (1974) 33:495–8.

75. Lui WW, Fukuma M. Exact solution of the Schrödinger equation across

an arbitrary one-dimensional piecewise-linear potential barrier. J Appl Phys.

(1986) 60:1555–9. doi: 10.1063/1.337788

76. Jogai B, Wang KL. Dependence of tunneling current on structural variations

of superlattice devices. Appl Phys Lett. (1985) 46:167–8. doi: 10.1063/1.

95671

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Zolotaryuk, Tsironis and Zolotaryuk. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 15 June 2019 | Volume 7 | Article 87100

https://doi.org/10.1007/JHEP11(2012)032
https://doi.org/10.1063/1.4936302
https://doi.org/10.1007/s10773-013-1959-7
https://doi.org/10.1016/j.physb.2015.05.011
https://doi.org/10.1088/1751-8113/49/1/015204
https://doi.org/10.1016/j.aop.2017.12.006
https://doi.org/10.17586/2220-8054-2018-9-2-179-186
https://doi.org/10.1088/1402-4896/ab0589
https://doi.org/10.1088/0305-4470/36/27/311
https://doi.org/10.1088/0305-4470/39/29/023
https://doi.org/10.1088/1751-8113/40/29/F05
https://doi.org/10.1016/j.physleta.2010.02.005
https://doi.org/10.1142/S0217979213502032
https://doi.org/10.1088/1751-8113/43/15/155204
https://doi.org/10.1017/S0308210512000194
https://doi.org/10.1007/s00020-012-2027-z
https://doi.org/10.1088/1751-8121/aa6dc2
https://doi.org/10.1016/j.aop.2018.07.030
https://doi.org/10.1103/PhysRevA.79.012110
https://doi.org/10.1088/1742-6596/410/1/012072
https://doi.org/10.3389/fphy.2014.00023
https://doi.org/10.1088/1742-6596/574/1/012066
https://doi.org/10.3389/fphy.2016.00010
https://doi.org/10.1088/0305-4470/39/21/S03
https://doi.org/10.1088/1751-8113/41/30/304004
https://doi.org/10.1007/s10773-011-0723-0
https://doi.org/10.1016/j.nuclphysb.2013.06.014
https://doi.org/10.1103/PhysRevD.87.105020
https://doi.org/10.1007/s11005-015-0750-5
https://doi.org/10.1103/PhysRevD.91.025028
https://doi.org/10.1088/1751-8113/45/37/374012
https://doi.org/10.1016/S0370-1573(98)00025-8
https://doi.org/10.1088/1742-6596/839/1/012007
https://doi.org/10.1016/j.aop.2016.09.012
https://doi.org/10.1016/j.aop.2017.08.031
https://doi.org/10.1063/1.337788
https://doi.org/10.1063/1.95671
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 25 July 2019

doi: 10.3389/fphy.2019.00101

Frontiers in Physics | www.frontiersin.org 1 July 2019 | Volume 7 | Article 101

Edited by:

Manuel Asorey,

University of Zaragoza, Spain

Reviewed by:

Yilun Shang,

Northumbria University,

United Kingdom

Yuriy Golovaty,

Lviv University, Ukraine

Pavel Kurasov,

Stockholm University, Sweden

*Correspondence:

Luiz A. Manzoni

manzoni@cord.edu

Specialty section:

This article was submitted to

Mathematical Physics,

a section of the journal

Frontiers in Physics

Received: 29 March 2019

Accepted: 01 July 2019

Published: 25 July 2019

Citation:

Calçada M, Lunardi JT, Manzoni LA,

Monteiro W and Pereira M (2019) A

Distributional Approach for the

One-Dimensional Hydrogen Atom.

Front. Phys. 7:101.

doi: 10.3389/fphy.2019.00101

A Distributional Approach for the
One-Dimensional Hydrogen Atom

Marcos Calçada 1, José T. Lunardi 1, Luiz A. Manzoni 2*, Wagner Monteiro 3 and

Marciano Pereira 1

1Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil, 2Department of

Physics, Concordia College, Moorhead, MN, United States, 3Departamento de Matemática, Universidade Federal de São

Carlos, São Carlos, Brazil

We consider the one-dimensional Hydrogen atom, with the Coulomb interaction

V (x) = γ

|x| (γ < 0), and use Schwartz’s theory of distributions to address the

non-integrable singularity at the origin. This singularity renders the interaction term

V (x)ψ (x) in the Schrödinger’s equation, where ψ (x) is the wave function, an ill-defined

product in the ordinary sense. We replace this ill-defined product by a well-defined

interaction distribution, S[ψ ,V ](x), and by imposing that it should satisfy some

fundamental mathematical and physical requirements, we show that this distribution is

defined up to a 4-parameter family of contact interactions, in agreement with the method

of self-adjoint extensions. By requiring that the interaction distribution be invariant under

parity, we further restrict the 4-parameter family of interactions to the subfamily of all the

parity invariant Coulomb interactions. Finally, we present a systematic study of the bound

states within this subfamily, addressing the frequently debated issues of the multiplicity

and parity of the bound states, and the boundedness of the ground state energy.

Keywords: one-dimensional quantummechanics, singular interactions, contact interactions, Coulomb interaction,

one-dimensional Hydrogen atom, Schwartz’s distribution theory, parity invariance

1. INTRODUCTION

The one-dimensional (1D) hydrogen atom, with a Coulomb-like interaction1, is defined by the

Hamiltonian (throughout this paper we use Rydberg atomic units h̄
2m = 1)

H = −
d2

dx2
+
γ

|x|
, x 6= 0, γ < 0, (1)

and it has been a source of considerable interest since the paper by Loudon [1], who investigated
this problem due to its relevance for the physics of excitons in strong magnetic fields. The 1D
Coulomb potential finds applications in several fields, such as the quasi one-dimensional hydrogen
atom in astrophysical systems with very strong magnetic fields [2], in quantum wires and carbon
nanotubes (see, e.g., [3–5] and references therein), etc.—for a recent review of the applications of
the 1D Coulomb interaction see Loudon [6].

Despite its many applications and deceptive simplicity, the 1D hydrogen atom has been a source
of great controversy in the literature. This is due to the fact that the 1D Coulomb potential has
a non-integrable singularity at the origin, rendering its mathematical treatment non-trivial. In

1It should be noticed that the potential in Equation (1), V(x) = γ

|x| , is not the solution of the 1D Maxwell’s equations for a

point source, see for example [7, 8]. Nevertheless, we follow the practice in the literature and call it the 1D Coulomb potential.
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particular, the singularity at the origin makes it unclear what
are the boundary conditions (b.c.) to be used there and,
consequently, whether the potential is impenetrable or not at
the singularity (see, e.g., [7]). This singularity also obscures the
properties of the system under parity transformations, since the
behavior of V(x) = γ

|x| on R\{0} is not sufficient to ensure that

the system is parity invariant (see section 3 for further details).
Several treatments, including Loudon’s [1], regularize the

potential by introducing a small cutoff a via V(x) = γ /(|x| + a),
and taking the limit a → 0 at the end. This regularization
procedure has led to conflicting results in which concerns the
degeneracy or not of the spectrum, the existence of even wave
functions and whether the associated spectrum is continuous
or discrete, and the stability of the model (unboundedness of
the ground state energy from below, in the a → 0 limit)
[1, 6, 9, 10]. This is, perhaps, unsurprising, since regularization
procedures need to be employed with great care and often need
additional input, such as symmetry, to yield meaningful results,
as is well-known in quantum field theory [11] or in the study of
chemical indices [12, 13]—see [14, 15] for rigorous treatments
of the regularized 1D Coulomb potential, and [16] for a general
treatment of regularized Sturm-Liouville operators.

Many other approaches, such as the use of generalized Laplace
transform [17], Fourier transform [18], superpotentials [8],
among others [19–23], have also been employed in the solution
of the 1D hydrogen atom. Still, these either have not addressed or
have not been able to unequivocally resolve all the issues above
mentioned. Recognizing that the Hamiltonian corresponding to
(1) is symmetric, but not self-adjoint, has led to the application of
the rigorous theory of self-adjoint extensions (SAE) of symmetric
operators to this problem by several authors [7, 24–27], who have
shown that the Hamiltonian (1) is not essentially self-adjoint and,
therefore, does not have a unique self-adjoint extension [28]. In
fact, it has been shown in the SAE approach that this Hamiltonian
admits a four-parameter family of extensions [7, 29].

Despite SAE’s rigorous and unequivocal results, confusion still
persists in the literature, particularly concerning the parity of
the solutions and the boundedness or not of the ground state
energy. In addition, although the method of SAE clarifies the
possible extensions of the Hamiltonian, it cannot decide which
extension (or b.c.) is the physically sensible one. Thus, a more
physically appealing, albeit still rigorous, alternative method is
certainly desirable andmay help to shed light on some of the open
problems remaining in the field. With this in mind, in section 2
we revisit the 1DCoulomb interaction and address the singularity
using the Schwartz’s theory of distributions, thus generalizing
the method recently developed for 1D contact interactions
[30] (also see [31]) to include long-range singular interactions.
In this approach we deal with the non-integrable singularity
of the potential at the origin by replacing the (generally) ill
defined product V(x)ψ(x) in the Schrödinger equation by a
well-defined interaction distribution S[ψ ,V], to be determined
from fundamental mathematical and physical requirements.
Such requirements are imposed on the interaction distribution in
order that fundamental postulates of quantum mechanics, such
as the superposition principle and probability conservation, be
satisfied also in the singular case. The interaction distribution is,

essentially, a distributional regularization of the (ill-defined) term
V(x)ψ(x) and, by a general result of the distribution theory [32],
it is determined only up to a sum of contact interactions at the
singularity (that is, the Dirac delta and it’s derivatives). We show
that the requirements imposed on the interaction distribution
reduce the contact terms to a four parameter family of point
interactions, thus agreeing with the SAE results [7, 29]. It should
be noticed that Kurasov used distributional methods to address
singular potentials, including the 1D Coulomb potential [24].
However, Kurasov uses distribution theory in the context of the
self-adjoint operator theory, in order to obtain the particular
Friedrichs extension of the symmetric operator (1), also see [25,
33, 34]. Our approach is fundamentally different in which here
the only requirements are from within the distribution theory
and simple physical requirements from quantum theory. In
addition, an explicit general form for the interaction distribution
S[ψ ,V] is constructed, including all interactions of the four-
parameter family of contact interactions, a feature that renders
the distributional approach particularly suitable for symmetry
analyses [30, 31].

We argue that, given the parity invariance of the original
Coulomb potential on R\{0}, it is natural to impose the
same property for the interaction distribution—we, again, stress
that the parity invariance of the potential V(x) on R\{0} is
not sufficient to ensure that the interaction, defined on the
entire R, is invariant: the behavior of the contact interactions
must also be taken into account. Thus, in section 3 we show
that requiring parity invariance further reduces the allowed
interactions to either a two-parameter interaction (permeable
origin) or an one-parameter interaction (impermeable origin)
[30]. We then present, in section 4, a systematic study of
the bound states for the subfamily of all parity invariant
interactions, addressing questions that are at the origin of the
controversies about the 1D hydrogen atom in the literature,
such as the multiplicities of bound state energies, the parity of
the corresponding eigenfunctions and the boundedness of the
ground state (see [6, 7, 26] and references therein)—as far as
we know, such a systematic investigation, including all possible
parity invariant b.c., is missing in the literature and it may
help to clarify the controversies mentioned above. The results
are discussed in section 5 and two appendices, on essentials of
distribution theory and the solutions of the Whittaker equation,
are included for convenience.

2. A DISTRIBUTIONAL APPROACH TO THE

1D HYDROGEN ATOM INTERACTION

The time independent 1D Schrödinger equation

−
d2

dx2
ψ(x)+ V(x)ψ(x) = Eψ(x) (2)

introduces the interaction of a quantum particle with an external
potential V(x) via the product V(x)ψ(x), which is well-defined
for potentials described by regular distributions. However, for
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singular potentials, such as the (attractive) 1D Coulomb potential

V(x) =
γ

|x|
, x 6= 0, γ < 0, (3)

the product V(x)ψ(x) is ill-defined, due to the singularity of
the potential at the origin. We will address this difficulty by
considering the Schrödinger equation in the distributional sense,
that is, every term in Equation (2) must correspond to a
distribution. This requires particular attention to the product
term V(x)ψ(x), not only due to the singularity of the 1D
Coulomb potential, but also because the naive product of two
distributions is not necessarily a well-defined distribution.

2.1. The 1D Coulomb Potential as a

Distribution
The 1D Coulomb potential, Equation (3), has a (Lebesgue)
non-integrable singularity at the origin (its integral diverges
logarithmicaly near the origin). As a consequence, it does not
define a regular distribution2 on any open interval including the
origin. However, it defines a regular distribution on any open
interval which does not include the origin, such as R\{0}. Any
distribution defined on the entire real line and which coincides
with V(x) on R\{0} [that is, a distributional regularization of
V(x)] will necessarily be singular, and it will not be unique. In
fact, the difference between any two distributions satisfying this
requirement [i.e., between two distributional regularizations of
V(x)] is a distribution concentrated at the origin, hence given by
a linear combination of the delta distribution and its derivatives
up to (and including) the greatest order of the two distributions
(see the Theorem in Appendix 1).

Let rc be the order of any distribution Vc(x) defined on the
entire real line and coinciding with V(x) = γ

|x| on R\{0}. Then,

the minimum possible value for rc is zero. To see this, observe
that on R\{0} any primitive of Vc(x) must have the general

form V
(−1)
c (x) = γ sgn(x) log |x| + c1 + c2θ(x), with c1 and c2

arbitrary constants and θ the Heaviside theta distribution3 (see

Appendix 1 for the notation). The function V
(−1)
c (x) diverges

logarithmically as x → 0±, but it is integrable around the
origin and, thus, it must be the derivative of a continuous (but

not differentiable at x = 0) function. It follows that V
(−1)
c =

W(1)(x), with

W(x) = γ |x|(log |x| − 1)+ c1x+ c2t(x)+ c3, (4)

where t(x) = xθ(x) is a continuous function [a primitive of
θ(x)] and c3 is another arbitrary constant. We have, for instance,
that W(0) ≡ limx→0 γ |x|(log |x| − 1) + c3 = c3. Therefore, we
have found a continuous functionW(x), not differentiable at the
origin, whose second distributional derivative is a distribution
Vc(x) which coincides with

γ

|x| onR\{0}. Hence, we conclude that

W(x) has order−2 and, consequently,Vc(x) = W(2)(x) has order
zero (see Appendix 1). Any other distribution coinciding with

2For a definition of the main terms of distribution theory used in this work refer to

the Appendix 1.
3Notice that it is possible to have different arbitrary constants on opposite sides of

the origin.

γ

|x| on R\{0}, and also having order zero, must differ from Vc(x)

only by a multiple of the delta distribution (see the Theorem
in Appendix 1).

2.2. The Interaction Distribution
Let us now, following the approach introduced in Calçada et al.
[30], substitute the ill-defined product V(x)ψ(x) in the time
independent Schrödinger equation by a well-defined distribution
S[ψ ,V]4. Then, the distributional Schrödinger equation takes
the form:

ψ ′′ + Eψ = S[ψ ,V]. (5)

The interaction distribution S[ψ ,V] must be determined from
fundamental mathematical and physical requirements, namely,

R1. The distribution S[ψ ,V], defined on the entire real line,
must coincide with V(x)ψ(x) on R\{0};
R2.The distribution S[ψ ,V] must depend linearly on the wave
function ψ and its derivative.
R3. The wave function must correspond to a regular
distribution (i.e., to a locally integrable function in the
Lebesgue sense) in any interval around the origin. Thus, its
order, rψ , must be bounded from above by rψ ≤ −1.
R4. The probability flux must be conserved across the origin.

The reasons why any well-defined system needs to satisfy these
requirements are as follows.R1 is a purelymathematical necessity
from the definition of a distributional regularization (and it is
self-evident). R2 is necessary for the superposition principle to
hold and in order for the dynamics to be given by Schrödinger’s
equation for local interactions. R3 is necessary (although not
sufficient) to obtain square integrable wave functions around
the origin—both R3 and R4 are necessary requirements of
the probabilistic interpretation of quantum mechanics. Taken
together, R1–R4 are equivalent to require self-adjointness of the
Hamiltonian (see [28] for requirements similar to R3 and R4,
notice that there R1 and R2 are automatically satisfied).

Equation (5), with requirement R1, applied to the 1D
Coulomb interaction, implies that

ψ ′′ + Eψ = S[ψ ,V] =
γ

|x|
ψ ,

for x ∈ R\{0} = (−∞, 0) ∪ (0,+∞) . (6)

The general solution for this equation is presented in the
Appendix 2, in terms of the well-known Whittaker’s functions.
In what follows, an important property of the solution there
presented is the fact thatψ(x) has finite lateral limitsψ(0±) when
x → 0± [see Equation (A6)].

Following the ideas of the previous subsection, we need to find
a (ordinary) primitive of the term γ

|x|ψ , defined on R\{0}. It is

not difficult to see that, by conveniently choosing the integration
constants, we can obtain a primitive in the form of the following

4The notation S[ψ ,V] is due to the functional dependence on V(x) and ψ(x).
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ordinary function5

G[ψ ,V](x) = γ

{

ψ(x) sgn(x) ln |x| − ψ ′(x)|x|
(

ln |x| − 1
)

−

∫ x

0
ψ(t) (|t|E− γ )

(

ln |t| − 1
)

dt

}

, (7)

where sgn(x) = θ(x)− θ(−x) stands for the sign function. It can
be easily checked that the (ordinary) derivative of G[ψ ,V](x)
coincides with the ordinary function γ

|x|ψ on R\{0}, as desired.

It is important to notice that the function G[ψ ,V](x) is locally
integrable and, thus, defines a distribution over the entire real line.
To demonstrate this, it is enough to check the integrability in
any finite interval containing the origin: the first term within the
brackets in (7) is locally integrable because ψ(x) is bounded (see
Appendix 2) and ln |x| is integrable; the third term (the integral)
defines a continuous function for all x, since the integrand is an
integrable function, by the same reason of the first term; finally,
the middle term is also integrable, since, for any fixed R > 0 and
arbitrary η > 0,

∫ R

η

ψ ′(x) |x|
(

ln |x| − 1
)

dx = |x|
(

ln |x| − 1
)

ψ(x)
∣

∣

R

η

−

∫ R

η

ψ(x) ln |x| dx,

and both terms in the r.h.s of this equation have well-defined
limits when η → 0+. The same holds for the integral
∫ −η
−R ψ

′(x) |x|
(

ln |x| − 1
)

dx.
The fact that G[ψ ,V](x) defines a regular distribution on

the entire real axis implies that its order is rG ≤ −1.
As a consequence, its distributional derivative G′[ψ ,V](x) ≡
S0[ψ ,V](x) is defined over the entire real axis, has order≤ 0 and,
as mentioned above, coincides with the product γ

|x|ψ(x) when

restricted to the region R\{0}. Any other distribution S[ψ ,V](x)
satisfying R1must differ from S0[ψ ,V](x) only by a distribution
concentrated at the origin (a contact interaction) and, from the
Theorem on Appendix 1, we have that

S[ψ ,V](x) = S0[ψ ,V](x)+

r
∑

n=0

cn[ψ ,V]δ
(n)(x), (8)

where the (complex) coefficients cn[ψ ,V] must be linear
functionals of ψ(x) and its derivative, to satisfy requirement
R2. From R3 and the fact that indefinite integration (taking the
primitive) decreases the order by one (seeAppendix 1), the order

5The ordinary function G[ψ ,V](x), defined on R\{0}, can be obtained by

following a simple procedure. For x > 0, one may start by taking the following

primitive of γψ|x|
∫ x

1

γψ

|x|
dx, x > 0.

After integrating twice by parts and using the Schrödinger Equation (6) to rewrite

the integrand resulting from the last integration by parts, one finds a primitive

defined on x > 0. A primitive defined on x < 0 may be obtained in a similar way,

by replacing the lower limit in the above integral by−1 and repeating the process.

Finally, the function G[ψ ,V](x) can be obtained from these two primitives, found

on each side of the origin, by choosing suitable arbitrary constants.

of S[ψ ,V](x), rs, must be at most rs = +1, since it follows
from Equation (5) that the distribution S[ψ ,V](x) must have the
same order as ψ ′′(x) (the orders of the δ and δ′ are 0 and +1,
respectively [32]). Therefore, requirements R1–R3 imply that the
distributional Schrödinger equation, Equation (5), with the most
general interaction distribution S[ψ ,V](x), can be written as

ψ ′′(x)+ Eψ(x) = S0[ψ ,V](x)+ c0[ψ ,V] δ(x)

+c1[ψ ,V] δ
′(x), (9)

with S0[ψ ,V](x) = G′[ψ ,V](x) and G[ψ ,V](x) given by
the regular distribution defined by Equation (7). In the above
equation the only undetermined quantities are the (functional)
coefficients c0[ψ ,V] and c1[ψ ,V], which determine the contact
term. Below we show that these coefficients are associated to the
b.c. that the wave function and its derivative must satisfy around
the origin and, thus, requirement R4 will restrict the possible
choices for them. To this purpose, by taking a primitive of (9),
we obtain

[

ψ ′(x)− G[ψ ,V](x)
]

− c0[ψ ,V] θ(x)− c1[ψ ,V] δ(x)

= −Eψ (−1)(x)+ c2, (10)

with c2 an arbitrary constant. The distribution on the r.h.s of (10)
is a continuous function, since its order is−2.

The lateral and point limits of a singular distribution can
be defined (if they exist) even at the singular point [35, 36].
In particular, the lateral limits of the δ-distribution are zero, as
follows directly from the fact that the δ vanishes in the open
intervals (−∞,−ǫ) and (+ǫ,+∞) for any ǫ > 0 (see [37],
p. 64). Hence, it follows from (10) that the lateral limits of
[

ψ ′(x)− G[ψ ,V](x)
]

exist and are given by

[

ψ ′ − G
]

+
= c0[ψ ,V]− Eψ (−1)(0)+ c2;

[

ψ ′ − G
]

−
= −Eψ (−1)(0)+ c2,

where we used the shorthand notation
[

ψ ′ − G
]

0±
≡ limx→0±

{

ψ ′(x)− G[ψ ,V](x)
}

. Subtracting
these equations we obtain

[

ψ ′ − G
]

0+
−

[

ψ ′ − G
]

0−
= c0[ψ ,V], (11)

On the other hand, from Equation (7) we obtain that

[

ψ ′ − G
]

0±
= φ̃(0±) ≡ lim

x→0±
φ̃(x),

where φ̃(x) is defined as (see also [7])

φ̃(x) ≡ ψ ′(x)− sgn(x) γ ψ(x) ln |x|. (12)

Thus, the boundary condition (11) can be rewritten as (see
[15, 25] for alternative proofs)

φ̃
(

0+
)

− φ̃
(

0−
)

= c0[ψ ,V]. (13)

Now, by taking a primitive of Equation (10) we obtain, after
some rearrangement,

ψ(x)− c1[ψ ,V] θ(x) = G(−1)[ψ ,V](x)+ c0[ψ ,V]T(x)

−Eψ (−2)(x)+ c2 x+ c3,
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where T(x) = θ (−1)(x) = xθ(x) and c3 is another arbitrary
constant. The r.h.s. of the above equation is a continuous
function (G(−1)[ψ ,V](x) is a continuous distribution, since it is
a primitive of a regular distribution) and, thus, both sides of the
equation have well-defined lateral limits when x → 0±. Taking
the lateral limits and subtracting the corresponding equations we
obtain the second boundary condition

ψ
(

0+
)

− ψ
(

0−
)

= c1[ψ ,V]. (14)

Equations (13,14) give the b.c. satisfied by the wave function
and its derivative around the origin in terms of the yet
undefined coefficients c0[ψ ,V] and c1[ψ ,V] [which are, in fact,
complex-valued linear functionals of ψ(x) and ψ ′(x)]. Hence,
once specified, these coefficients will completely determine
the interaction.

Let us now use the requirement R4, taking into account
the b.c. (13) and (14), to restrict the possibilities for
c1[ψ ,V] and c2[ψ ,V]. First, notice that on R\{0} the
probability current can be conveniently rewritten in terms
of φ̃(x) as

j(x) = −i
[

ψ∗(x)ψ ′(x)− ψ(x)ψ ′∗(x)
]

= −i
[

ψ∗(x)φ̃(x)− ψ(x)φ̃∗(x)
]

, (15)

which has well-defined lateral limits around the origin.
Probability current conservation now reads j

(

0+
)

= j
(

0−
)

and it may establish (when the current does not vanish) a
connection between the values of ψ (x) and φ̃ (x) on both
sides of the origin. This, together with the b.c. (13) and (14),
allows us to determine the most general form for c0[ψ ,V] and
c1[ψ ,V]. The procedure to find these coefficients is identical
to that followed in reference [30], and all of the Equations (9–
28) from Calçada et al. [30] apply to the current system by
replacing ψ ′

(

0±
)

→ φ̃
(

0±
)

. Thus, below we just summarize
the results.

Permeable Interactions. In this case the wave function and
its derivative [via φ̃(x)] on both sides of the origin are
connected (hence, the origin is permeable). These non-separated
interactions [30, 38] are characterized by four parameters, and
the interaction distribution S[ψ ,V](x), in Equation (9), is
given by:

S[ψ ,V](x) = S0[ψ ,V](x)+ c0[ψ ,V] δ(x)+ c1[ψ ,V] δ
′(x), (16)

c0[ψ ,V] =
[

c eiϕψ
(

0−
)

+
(

d eiϕ − 1
)

φ̃
(

0−
)

]

, (17)

c1[ψ ,V] =
[

(

a eiϕ − 1
)

ψ
(

0−
)

+ b eiϕ φ̃
(

0−
)

]

, (18)

where a, b, c, d ∈ R, ad − bc = 1 and ϕ ∈ [0,π). The b.c. can be
written in the matrix form as:

8
(

0+
)

= 38
(

0−
)

, 8
(

0±
)

=

[

ψ
(

0±
)

φ̃
(

0±
)

]

, 3 = eiϕ
[

a b

c d

]

.

(19)

Alternatively, the expression (16) can be rewritten in terms
of ψ

(

0+
)

, φ̃
(

0+
)

by inverting the relations (19), resulting in
Calçada et al. [30]:

c0[ψ ,V] =
[

c e−iϕψ
(

0+
)

−
(

a e−iϕ − 1
)

φ̃
(

0+
)

]

, (20)

c1[ψ ,V] = −
[

(

d e−iϕ − 1
)

ψ
(

0+
)

− b e−iϕ φ̃
(

0+
)

]

. (21)

Impermeable Interactions. In this case we have a separated
two-parameter family of interactions [30, 38], characterized by
j
(

0−
)

= j
(

0+
)

= 0, such that ψ(x) and φ̃(x) on both sides of
the origin are not connected (hence, an impermeable origin). The
associated b.c. are given by

φ̃
(

0±
)

= h±ψ
(

0±
)

, (22)

where h± ∈ R∪{+∞}, with he interaction distribution assuming
the form6

S[ψ ,V](x) = S0[ψ ,V](x)+ c0[ψ ,V] δ(x)+ c1[ψ ,V] δ
′(x), (23)

c0[ψ ,V] =
[

h+ψ
(

0+
)

− h−ψ
(

0−
)]

=
[

φ̃
(

0+
)

− φ̃
(

0−
)

]

,(24)

c1[ψ ,V] =
[

ψ
(

0+
)

− ψ
(

0−
)]

=

[

1

h+
φ̃

(

0+
)

−
1

h−
φ̃

(

0−
)

]

.

(25)

3. SYMMETRY: PARITY INVARIANCE

As we have seen in the previous section, the fundamental
requirements R1-R4, which must be satisfied by all
interactions, restrict the possible choices for the coefficients
c0[ψ ,V] and c1[ψ ,V] to either a family of interactions
with four independent parameters (in the permeable
case) or to a family of interactions with two independent
parameters (in the impermeable case). To further restrict
the possible interactions we need to impose additional,
physical, requirements.

A natural way to select subfamilies of interactions is by
requiring that the underlying symmetries of the potential be
maintained in the distributional theory. Hence, given that
the Coulomb potential (3) is invariant under parity [i.e., an
even function], we will require that the distribution interaction
S[ψ ,V](x) introduced in (9) also be invariant under parity
transformation. It should be noticed that, despite the fact that
Coulomb’s potential is an even function under parity, S[ψ ,V](x)
does not necessarily have a definite parity. It is only for particular
values of the parameters that the interaction distribution is
invariant, as seen below.

6It is important to notice that choosing h+ = +∞ (h− = +∞) implies ψ
(

0+
)

=

0 [ψ
(

0−
)

= 0]. The choice h± ∈ R ∪ {−∞} (instead of h± ∈ R ∪ {+∞}) in

these expressions does not change the b.c., resulting in the same interaction. Thus,

it is enough to consider the parametrization above for h±, a choice of sign that will

prove to be convenient in section 4.
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For a regular potential V(x), under a parity transformation,

P : x → −x, ψ(x) → ψ(−x) ≡ χ(x) and V(x) → Ṽ(x) ≡
V(−x), the Schrödinger equation changes as Schiff [39]

− ψ ′′(x)+ V(x)ψ(x) = Eψ(x)
P

−→ −χ ′′(x)+ Ṽ(x)χ(x) = Eχ(x).

(26)

Invariance under parity is automatically fulfilled ifV(x) is an even
function and, thus, the transformed equation is identical to the
original one. Similarly, for a regular potential, the corresponding
transformation properties of the interaction distribution follow
directly from the fact that, in this case, S[ψ ,V](x) = V(x)ψ(x),

which transforms as S[ψ ,V](x)
P

−→ S[ψ ,V](−x) ≡ S̃[χ , Ṽ](x).
Then, the interaction distribution is invariant (i.e., even) under
parity if S̃[χ , Ṽ](x) = S[χ ,V](x), and, equivalently, the
interaction distribution is odd under parity if S̃[χ , Ṽ](x) =
−S[χ ,V](x).

For a singular interaction, as it is the case of the Coulomb
potential considered here, as we have seen, the product V(x)ψ(x)
is in general ill-defined and we must generalize the singular
interaction distribution using the method employed in the last
section. Then, the characterization of the properties of S[ψ ,V](x)
under a symmetry transformation is made by extending the
behavior of this distribution in the regular case to the singular
one [30]. Therefore, under a transformation of parity the
distributional Schrödinger equation transforms as

ψ ′′(x)+ Eψ(x) = S[ψ ,V](x)
P

−→ χ ′′(x)+ Eχ(x) = S̃[χ , Ṽ](x),

and the interaction distribution is characterized as

− Even : if S[ψ ,V](x)
P

−→ S̃[χ , Ṽ](x) = S[χ ,V](x), (27)

− Odd : if S[ψ ,V](x)
P

−→ S̃[χ , Ṽ](x) = −S[χ ,V](x), (28)

regardless of whether the interaction is singular or regular. As
expected, invariance under parity transformations requires an
even S[ψ ,V](x).

Now we can consider the properties of the interaction
distribution (9), with c0[ψ ,V] and c1[ψ ,V] given by (16) or (23),
under a parity transformation. This can be further simplified
by considering the behavior of S0[ψ ,V](x) and the contact
interactions in separate. To see how S0[ψ ,V](x) behaves under
parity, notice that, since G[ψ ,V](x) is a regular distribution, it
can be represented by the ordinary function on the r.h.s. of (7).
Thus, in the sense of ordinary functions, it follows that

G[ψ ,V](−x)=γ

{

− χ(x)sgn(x) ln |x| + χ ′(x) |x|
(

ln |x| − 1
)

+

∫ x

0
χ(t) (|t|E− γ )

(

ln |t| − 1
)

dt

}

=−G[χ ,V](x),

that is, the regular distribution G[ψ ,V](x) is odd under
parity. As a consequence, since S0[ψ ,V](x) = G′[ψ ,V](x)
(derivative in the distributional sense), we conclude that the

distribution S0[ψ ,V](x) is even under parity: S0[ψ ,V](x)
P

−→

S0[χ ,V]
7. Therefore, the whole interaction term S[ψ ,V](x) =

S0[ψ ,V](x) + c0[ψ ,V] δ(x) + c1[ψ ,V] δ
′(x) will be even if, and

only if, the distribution corresponding to the contact terms,
c0[ψ ,V] δ(x)+ c1[ψ ,V] δ

′(x) is also even, i.e., if, and only if8

c0[ψ ,V] δ(−x)+ c1[ψ ,V] δ
′(−x) = c0[χ ,V] δ(x)+ c1[χ ,V] δ

′(x). (29)

In reference [30] it was shown that this condition is satisfied
for permeable interactions if, and only if, the parameters in
(16) satisfy

a = d and ϕ = 0, (30)

thus reducing the allowed permeable interactions to a subfamily
with only two independent parameters. For impermeable
interactions, condition (29) is satisfied if, and only if, the
parameters in (23) are given by

h+ = −h− = h, with h finite, or h+ = h− = +∞, (31)

thus reducing the allowed impermeable interactions from two
parameters to just one. Below we present a systematic study of the
properties of the bound states for the subfamily of parity invariant
(even) Coulomb interactions.

4. BOUND STATES FOR PARITY

INVARIANT COULOMB INTERACTIONS

For bound states (E < 0), the general solution for the one-
dimensional Schrödinger equation with a Coulomb potential
outside the origin [i.e., Equation (6)] is given by (A5), in the
Appendix 2, and reproduced below

ψ(x) = W −γ√
−4E

, 12

(√
−4E |x|

)

[

B− θ(−x)+ B+ θ(x)
]

. (32)

The relationship between the constants B+ and B− in this
expression is established by the boundary conditions at the
origin, which, in turn, are determined by the parameters of the
interaction, according to the results of the sections 2.2 and 3.
Let us now investigate the properties of the bound states of
parity invariant Coulomb interactions in both the permeable and
impermeable cases.

4.1. Permeable Interactions
For the subfamily of even interactions with a permeable origin,
the boundary conditions are given by (19), with a = d and
ϕ = 0. By using the lateral limits given in the Appendix 2 by
the expressions (A6) and (A8), these boundary conditions can
be written as the following system of equations for the unknown
coefficients B+ and B−:







W0(E)B+ +
[

b F0(E)− aW0(E)
]

B− = 0 ;

F0(E)B+ +
[

a F0(E)− cW0(E)
]

B− = 0,
(33)

7It is a simple task to show that, if f (x) is an odd distribution, then
〈

f ′(x),ϕ(x)
〉

=
〈

f ′(−x),ϕ(x)
〉

[32] and, therefore, f ′(−x) = f ′(x), i.e., the distributional derivative

f ′(x) is an even distribution. Similarly, if f (x) is an even distribution, its

distributional derivative is odd. Hence, as with ordinary functions, taking the

distributional derivative changes the parity of the (resulting) distribution.
8Note that ψ

(

0±
)

= χ
(

0∓
)

, ψ ′
(

0±
)

= −χ ′
(

0∓
)

, δ(−x) = δ(x) and

δ′(−x) = −δ′(x).
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where the functions W0(E) and F0(E) are defined in the
Appendix 2. These equations allow for non-trivial solutions for
B± if, and only if,

b F0(E)
2 + cW0(E)

2 − 2aW0(E) F0(E) = 0. (34)

The values of E which solve this equation determine the allowed
bound states energies. Below we consider separately the cases
with b 6= 0 or b = 0.

4.1.1. b 6= 0

When b 6= 0, the allowed energies must be such thatW0(E) 6= 0.
Otherwise, Equation (34) has no solution, since F0(E) andW0(E)
cannot vanish simultaneously [see Equations (A10) and (A11) in
the Appendix 2]. Therefore, Equation (34) can be rewritten in

the form of a quadratic equation for Q(E) = F0(E)
W0(E)

,

bQ(E)2 − 2aQ(E)+ c = 0, (35)

whose solutions (obtained using the fact that a2 − bc = 1)

Q(±)(E) =
a± 1

b
, (36)

are transcendental equations that determine the allowed binding
energies – the explicit form and some of the properties of Q(E)
are given in the Appendix 2.

The relationship between the coefficients B± is obtained by
substituting (35) into (33), obtaining

B
(±)
+ = ∓B

(±)
− . (37)

Therefore, for each value of E that solves the condition Q(+)(E)
in (36) there is an associated eigenfunction given by (32)

with B
(+)
+ = −B

(+)
− , which is an odd function under parity.

Similarly, for each energy E satisfying Q(−)(E) in (36), there

is an eigenfunction (32) with B
(−)
+ = B

(−)
− , which is an even

function under parity. Thus, in this case, the bound states have
eigenfunctions with defined parity, and their binding energies are
not degenerate.

It is instructive to consider a plot of the function Q(E) to
illustrate the structure of the binding energies and the parity
of the associated bound states (even though to determine the
actual binding energies one needs consider a specific choice of
the parameters). In Figure 1 the two horizontal lines illustrate
the two values in the r.h.s of (36), and the intersections between
these lines and the graph of Q(E) determine the allowed binding
energies. Since Q(E) is monotonic in the intervals between
two successive discontinuities, as |E| increases from zero the
intersections will alternate between the lines—that is, the binding
energies alternate between the solutions of Q(+)(E) and Q(−)(E)
in (36). If b > 0 (b < 0), the intersections with the upper
line correspond to the solutions of Q(+)(E) [Q(−)(E)] in (36)
and, therefore, to odd (even) eigenstates, whereas the energies
associated to the intersections with the lower line are given
by the solutions of Q(−)(E) [Q(+)(E)] and, thus, correspond to
even (odd) eigenstates. Therefore, as |E| increases from zero we

encounter a discrete set of bound states, each one having definite
parity, with the parity alternating between successive states.

Finally, for any physically acceptable (finite) choice of the
interaction parameters a, b, c (b 6= 0, a2 − bc = 1), the r.h.s
of (36) is finite. Hence, there will always be a finite largest value
of |E| (E < 0) for which the graph of Q(E) intercepts the lower
horizontal line, sinceQ(E) → −∞ as E → −∞ [see (A13) in the
Appendix 2], corresponding to a ground state with finite binding
energy and whose (definite) parity depends on the sign of b, as
mentioned above.

4.1.2. b = 0

Taking b = 0 in (19) implies that c is arbitrary and a = ±1 (with
each choice of sign corresponding to a different interaction). In
this case, Equation (34) is equivalent to

W0(E) = 0 or cW0(E)− 2a F0(E) = 0 (38)

The first condition in (38),W0(E) = 0, gives [see Equation (A10)
in the Appendix 2]

E = ǫn = −
γ 2

4n2
, n = 1, 2, 3, · · · (39)

Substituting W0(E) = 0 into the second equation in (33), and
taking into account the fact that F0(ǫn) 6= 0 [see Equation (A11)],
we conclude that

B+ = −a B−,

and the corresponding eigenfunctions are odd (even) under
parity transformations if a = +1 (a = −1).

The second solution in (38), sinceW0(E) and F0(E) cannot be
simultaneously zero, can be rewritten in terms of Q(E) as

Q(E) =
c

2a
. (40)

Substituting this condition into the first equation in (33)
we obtain

B+ = a B−,

and the corresponding eigenfunctions are even (odd) if a =
+1 (a = −1), thus with parity opposite to the eigenfunctions
associated with the conditionW0(E) = 0

The values of energy that solve (40) correspond to the
intersections of the curve Q(E) with the horizontal line crossing
the vertical axis at c

2a (similarly to the case b 6= 0 that
was illustrated in Figure 1). In the intervals between any two
successive discontinuities of Q(E), which occur at the energies
ǫn, there is always exactly one such intersection, since Q(E) is
monotonic in these intervals. Therefore, as |E| increases from
zero, the allowed energies alternate between those in the set
{ǫn} and the solutions of (40), with the parity of corresponding
eigenstates alternating between even and odd.

In what concerns the ground state energy and the parity of the
associated eigenstate, notice that while the set of energies {ǫn} is
bounded from below (with the minimum energy corresponding
to n = 1), the set of energies given by (40) is also bounded from
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FIGURE 1 | Plot of Q(E), for E < 0, and γ = −1 (in Rydberg atomic units). The vertical dotted lines correspond to the energies ǫn = −
γ 2

4n2
, n = 1, 2, 3, · · · , for which

Q(E) is discontinuous [such that W0 (ǫn) = 0]. The two horizontal lines illustrate the two values on the r.h.s of the Equation (36). If b > 0 (b < 0) the upper (lower)

horizontal line correspond to Q(+)(E) [and [Q(−)(E)] in Equation (36) and to the respective b.c. in Equation (37). Since Q(E) is monotonic between two discontinuity

points, as the |E| increases the intersections of Q(E) with the horizontal lines alternate between the two lines.

below, since c/2a is finite and Q(E) → −∞ when E → −∞
(seeAppendix 2). Therefore, the ground state energy is finite and
given by the most negative energy satisfying the condition (40),
and its parity is even (odd) if a = +1 (a = −1)9.

Having considered all the possibilities of bound states for a
parity invariant Coulomb interaction with permeable origin, it is
instructive to consider a few examples that illustrate these results,
before proceeding to the analysis of impermeable interactions.

4.1.3. Examples of Permeable Interactions

Example 1. First, let us consider the case a = +1, b = 0 and c
arbitrary, which corresponds to a “pure delta" interaction for the
contact term in (16). In this case, the conditions for the allowed
binding energies and the parity of the corresponding eigenstates
are as follows.

• W0(E) = 0, with binding energies given by (39) and
eigenstates that are odd under a parity transformation.

• Q(E) = c
2 , with the eigenstates having even parity and the

binding energies given by the set of values of E such that Q(E)
intersects the line c/2 – the ground state corresponds to the
most negative (finite) energy in this set.

Example 2. Consider the so-called “delta prime" interaction for
the contact term in (16), i.e., a = +1, b 6= 0 and c = 0. In this
case the allowed binding energies are given by the solutions of

9That the ground state energy Eg will always belong to the set of energies satisfying

(40) can be seen from the fact that, as |E| increases, the last intersection between

Q(E) and the horizontal line c
2a will always occur at an energy Eg < ǫ1.

• Q(+)(E) = 2
b
, corresponding to eigenstates that are odd under

parity. If b < 0, the ground state will correspond to the lowest
(finite) energy of this set.

• Q(−)(E) = 0, resulting in even eigenstates. If b > 0, the
eigenstate is given by the lowest (finite) energy in this set.

Example 3. As our third example, we consider the “pure
Coulomb" interaction, identified by the absence of a contact term
in (16), i.e., S[ψ ,V] = S0[ψ ,V]

10 [7] – obtained by choosing
the parameters a = 1, b = c = 0. In this case the binding
energies satisfy:

• W0(E) = 0, which results in odd eigenstates with eigenvalues
given by (39).

• Q(E) = 0, with the allowed energies corresponding to the
intersection points of Q(E) with the horizontal axis (see
Figure 1), and eigenstates that are even under parity. The
ground state is the lowest (finite) energy in this set.

4.2. Impermeable Interactions
At the end of the section 3 we saw that an impermeable
interaction is even under parity if the parameters h± in (22) are
such that h+ = −h− = h (for h real and finite), or h+ = h− =
+∞. Below we consider these two cases separately.

4.2.1. h Real and Finite

For impermeable interactions satisfying h+ = −h− = h with h
finite, using (A6) and (A8), the boundary conditions (22) imply

[

F0(E)− hW0(E)
]

B± = 0, (41)

10This interaction is sometimes identified by the so-called “periodic" boundary

conditions ψ
(

0+
)

= ψ
(

0−
)

and φ̃
(

0+
)

= φ̃
(

0−
)

Frontiers in Physics | www.frontiersin.org 8 July 2019 | Volume 7 | Article 101108

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Calçada et al. Distributional Approach for the 1D Hydrogen Atom

which has non-trivial solutions for B± if, and only if,

F0(E) = hW0(E). (42)

This condition is never satisfied if W0(E) = 0, since F0(E) =
0 and W0(E) do not vanish simultaneously (see Appendix 2).
Therefore, (42) can be satisfied only if W0 6= 0, in which case
it can be rewritten as a condition for Q(E),

Q(E) = h. (43)

For each energy satisfying this condition, the system (41) allows
arbitrary solutions for B+ and B− and, as expected, these
coefficients are not connected through the origin due to the
impermeability of the interaction. Thus, in this case, each binding
energy is doubly degenerated. In addition, since the interaction is
even, it is always possible to choose the pair of eigenfunctions
associated with each energy eigenvalue to have definite parity
(that is, one eigenfunction even, the other odd).

Once again, the set of allowed binding energies given by
Equation (43) can be graphically visualized as the energies at
which the graph of Q(E) intersects the single horizontal line
crossing the vertical axis at the finite height h (which can be
zero, positive or negative), similarly to the situation depicted in
Figure 1. From the finiteness of h and the fact that Q(E) → −∞
when E → −∞, it follows that the doubly degenerated ground
state has finite energy – the ground state binding energy can be
made arbitrarily large, by taking h sufficiently large and negative,
but it is still finite, since in this case h is not allowed to assume
infinite values. Finally, a glance at the graph of Q(E) in Figure 1

shows that for large h > 0 the binding energies tend to the set
{ǫn}, i.e., to the energies associated to the discontinuities of Q(E).

4.2.2. h = +∞

Let us now consider the last remaining possibility for a parity
invariant (even) Coulomb interaction, namely, the impermeable
case given by the choice h+ = h− = h = +∞ in (22). As we
mentioned before, this is equivalent to imposing Dirichlet b.c. [7]

ψ
(

0±
)

= 0, (44)

with φ̃
(

0±
)

assuming arbitrary values. By using the expressions
(A6) and (A8) from the Appendix 2, Equation (44) can be
rewritten as

B±W0(E) = 0, (45)

which results in non-trivial solutions for B± if, and only if, the
binding energies satisfy W0(E) = 0, that is, the eigenvalues
of energy are given by (39). Similarly to the previous case,
conditions (45) with W0(E) = 0 allow arbitrary values for
the coefficients B±, resulting in doubly degenerated energy
eigenvalues and, as before, the pair of eigenfunctions associated
with each ǫn can be chosen to be formed by an even and an
odd eigenfunction.

Finally, we observe that the results for the case being
considered here can be obtained as the limit h → +∞ of the
previous case, subsection 4.2.1. However, we emphasize that the
present case cannot be obtained from the results in the previous
subsection by taking the limit h → −∞, since this would imply
that the ground state energy tends to E = −∞, violating the
requirement W0(E) = 0 [notice that limE→−∞W0(E) = 1 as
seen in (A12)].

5. CONCLUSION

We investigated the one-dimensional hydrogen atom, with an 1D
Coulomb interaction given by (3), by extending the distributional
method, introduced in Calçada et al. [30] for contact interactions,
to treat long-range interactions exhibiting a point singularity.
After showing that the non-integrable singularity of the potential
at the origin renders the ordinary Schrödinger equation ill-
defined, we introduced a distributional Schrödinger equation,
Equation (5), with an interaction distribution S[ψ ,V] to be
determined from the fundamental physical and mathematical
requirements R1–R4, which follow from the general structure
of quantum mechanics (section 2.2)—these requirements are
expected to be satisfied by any interaction. Requirements R1 –
R4 allowed us to define the interaction rigorously—no ill-defined

TABLE 1 | Bound state energies and properties under parity of the corresponding eigenstates, for all subfamilies of parity invariant (even) attractive Coulomb interactions.

Interaction Bound states energies Eigenstates Ground state

Permeable Q(E) = a+1
b

odd Finite energy

b 6= 0 Q(E) = a−1
b

even (even) (odd) if (b > 0) (b < 0)

Permeable W0(E) = 0 odd (even) if a = +1 (a = −1) Finite energy

b = 0

a = ±1 Q(E) = c
2a even (odd) if a = +1 (a = −1) even (odd) if a = +1 (a = −1)

Impermeable Doubly degenerated Finite energy

Q(E) = h Doubly degenerated

h real and finite (even and odd eigenstates) (even and odd eigenstates)

Impermeable Doubly degenerated Finite energy

(Dirichlet) W0(E) = 0 Doubly degenerated

h = +∞ (even and odd eigenstates) (even and odd eigenstates)

The binding energies associated to the zeros of W0 (E) are given by Equation (39). For permeable origin interactions, the parity alternates between successive bound states.
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steps or infinities ever appear—and to restrict the interaction to
a long range term outside the origin plus a family of contact
interactions at the origin. The contact terms are obtained up to
a four-parameter family of contact interactions, for the case of a
penetrable origin, or up to a two-parameter family of interactions
in the case of an impenetrable origin, in complete agreement with
the SAE method (see, e.g., [7] and references therein).

The requirements R1 – R4 are not enough to completely
specify the interaction and, in particular, cannot determine the
specific b.c. at the origin—additional physical input is necessary
to that end. As it is well-known, symmetry is an excellent guide
in these circumstances. Therefore, since the Coulomb potential
is even under parity transformations, it is natural to require
that the interaction distribution S[ψ ,V] associated with this
potential also be invariant (even) under parity. We stress that
the invariance of the Coulomb potential (V(x) = γ

|x| , x 6= 0)

under parity transformations is not sufficient to ensure that the
interaction will be even under parity—information about the
contact term is crucial to address this issue. In this context,
it should be noticed that by providing an explicit form for
S[ψ ,V], the distributional approach proves to be particularly
adequate to deal with symmetry transformations. We have
taken advantage of the explicit expression for the most general
Coulomb distribution (i.e., the interaction distribution) to prove,
in section 3, that the long-range term S0[ψ ,V] is even under
parity transformations. In this way, we concluded that the parity
invariance of the total Coulomb interaction can be ensured if,
and only if, the contact term also is invariant under parity
transformations. As a consequence, we have shown that the
additional requirement of parity invariance further reduces the
possible contact terms associated with the generalized Coulomb
interaction to a two-parameter family [26] (penetrable origin
case) or a one-parameter interaction (impenetrable case). This,
of course, still leaves considerable freedom in the choice of
the b.c. at the origin, leading to several possible extensions
of the Coulomb interaction—to further specify the interaction,
additional input from the experimental situation must be
considered [26, 34].

After giving a complete characterization of the subfamily of all
parity invariant (attractive) Coulomb interactions, we conducted
a systematic study of the bound states for all possible interactions
in this subfamily. A summary of the results obtained is presented
in Table 1, for convenience. From our analysis it follows that for
parity invariant Coulomb interactions:

(i) the ground state energy is always finite;
(ii) for permeable interactions, the bound state energies

are always non degenerated and the corresponding

eigenfunctions have definite parity (which alternates
between even and odd for successive bound states).

(iii) for impermeable interactions, all the bound states energies
are doubly degenerated and, for each binding energy, the
corresponding pair of eigenfunctions can be chosen to have
a definite parity (with one degenerate eigenfunction even
and the other odd).

Thus, our results, obtained from a mathematically well-
defined treatment of the 1D Hydrogen atom, clarify the highly
controversial issues concerning the boundedness of the ground
state and the parity as well as the degenerescence of the bound
states (see [6] and references therein).

Finally, this work demonstrates that the method developed in
Calçada et al. [30] for contact interactions can be generalized
for long-range interactions having point singularities (in fact,
it makes essential use of the results derived in Calçada et al.
[30]). The distributional approach proves to be particularly
suited for symmetry analyses (see also [31]), in addition to
being a physically appealing alternative to SAE methods, and
it could be used to investigate other one-dimensional singular
interactions such as the 1/x2 potential. In particular, for odd
interactions (such as the 1/x potential) the approach here
developed specifies completely the interaction, since there exists
no 1D odd contact interaction [30]. Finally, an important open
problem is the generalization of the distributional approach to
higher dimensions.
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1. APPENDIX: BASIC NOTIONS ON

SCHWARTZ’S DISTRIBUTION THEORY

In this Appendix, for convenience of the reader, we briefly present
some of the concepts of the Schwartz distribution theory that
are directly necessary for an understanding of the main text.
For an extensive presentation of distribution theory we refer to
Zemanian [32].

A distribution f is a continuous linear (complex) functional
on a space of test functions. Here we will consider the test
functions space as the space D0 formed by all the (complex-
valued) functions ϕ(x), defined on the entire real line, which are
infinitely smooth and have compact support (i.e., they vanish
outside some finite interval, which does not need to be the same
for all the test functions).

Let ϕ be a test function, and f be a distribution. The complex
number associate to ϕ by the distribution f is denoted by
〈

f ,ϕ
〉

. If f (x) is a locally integrable function (i.e., a function
which is Lebesgue integrable over every finite interval), then the
distribution f associated to the function f (x) is said to be regular,
and it is given by

〈

f ,ϕ
〉

=

∫ ∞

−∞
f (x) ϕ(x) dx ,

for any test function ϕ. Distributions that can not be associated
in this way to locally integrable functions are said to be singular
— a well-known example is the Dirac delta functional δ, defined
by 〈δ,ϕ〉 = ϕ(0), ∀ϕ. When a distribution is regular we will
not distinguish between the function and the regular distribution
associated to it, and we will often use the abusive notation f (x) to
refer to the distribution f (even for singular distributions).

Any distribution can be infinitely differentiated. Denoting the
n-th derivative of a test function or a distribution by a superscript
(n), we have

〈

f (n),ϕ
〉

≡ (−1)n
〈

f ,ϕ(n)
〉

,

for all test functions ϕ. Every distribution has primitives
(indefinite integrals), and any two primitives of a given
distribution differ by a constant. We denote the primitive of a
distribution or test function by the superscript (−1). Considering
a fixed test function ϕ0 satisfying

∫ ∞
−∞ ϕ0(x) dx = 1, a primitive

of f is a distribution f (−1) defined as

〈

f (−1),ϕ
〉

≡ 〈c,ϕ〉 −
〈

f ,ψ
〉

, ∀ϕ

where c is an arbitrary constant, ψ(x) =
∫ x
−∞ χ(t) dt and

χ(x) = ϕ(x)− ϕ0(x)
∫ ∞
−∞ ϕ(t) dt.

On any closed finite interval I every distribution f can be
written as the (r + 2)-th order derivative of a distribution h
associated to a continuous function whose derivative is not
continuous in this interval (in the ordinary sense) — see [32],

p. 162. In other words,
〈

f ,ϕ
〉

=
〈

h(r+2),ϕ
〉

, for all ϕ with support

in I. The integer r is the order of the distribution f . Therefore,
if r = −2 the distribution f corresponds to a continuous

function whose derivative is not continuous on the interval I;
if r = −1, f is the derivative of a continuous distribution,
but f is not continuous; if r = 0, f is not locally integrable
and corresponds to a singular distributon (since f (−1) is not
continuous). Summarizing, r ≤ −2 characterizes distributions
that correspond to continuous functions (regular distributions),
r ≥ 0 characterizes singular distributions, and distributions
with r = −1 may be either singular or regular. If r = −∞
the distribution is infinitely smooth on I (see [32], p. 162, for
details). When the order is finite, differentiation increases the
order by one, whereas indefinite integration decreases the order
by one. The order of a finite sum of distributions is the maximum
order among the various terms, except when the distributions of
largest order cancel each other, resulting a lower order for the
sum [32].

Two distributions f and g are said to be equal on an open
set I if they associate the same number

〈

f ,ϕ
〉

=
〈

g,ϕ
〉

to every
test function ϕ whose support is contained in I (if I = R then
the two distributions are simply said to be equal). Two functions
that are locally integrable and differ on a set of zero Lebesgue
measure define the same distribution. Thus, the same regular
distribution is associated to the class of all locally integrable
functions which differ among themselves only on a set of zero
Lebesgue measure.

Any distribution f can be multiplied by an infinitely
smooth function η(x), resulting in a new distribution ηf ,
according to

〈

ηf ,ϕ
〉

≡
〈

f , ηϕ
〉

. If f and g are two
locally integrable functions such that their product fg is also
locally integrable, then the product of the corresponding
regular distributions exists, and it is the regular distribution
defined as

〈

f g,ϕ
〉

≡

∫ ∞

−∞
f (x)g(x)ϕ(x) dx, ∀ϕ.

However, it is an important fact of Schwartz’s distribution theory
that the product of two arbitrary distributions cannot be defined
in a unique way. For example, the function f (x) = 1√

|x|
is

locally integrable and thus defines a regular distribution. The
function g(x) = 1

|x| , on the other hand, is not integrable on

any interval including the origin. Therefore, the product f 2(x) =
g(x) does not define a regular distribution (in addition, one
can define several non-equivalent singular distributions which
coincide with 1

|x| over any interval which does not include

the origin).
The following Theorem and its corollary are of crucial

importance in this work.
Theorem. Zemanian ([32], p. 98) A necessary and sufficient

condition for a distribution f (x) onR to have a support consisting
of a single point x0 is that it be a finite sum

f (x) =

rm
∑

n= 0

anδ
(n) (x− x0) , (A1)

where the an are constants, arm 6= 0, and rm is the singular order
of the distribution f .
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As a corollary, it follows that if two distributions f and g
are equal on the open region R\{0}, then their difference f − g
must have its support concentrated at a single point (the origin),
and it is a finite linear combination of the delta distribution
and its derivatives.

2. APPENDIX: BOUND STATES OF THE 1-D

HYDROGEN ATOM

Here we present some properties of the (well-known) bound
state solutions of the Schrödinger equation for the 1D Hydrogen
atom, given by (6), on the disjoint union (−∞, 0) ∪ (0,+∞).
By performing the change of variable z =

√
−4E |x|, x 6= 0,

Equation (6) becomes a special case of the Whittaker equation,
namely [40]

β ′′(z)+

(

γ̃

z
−

1

4

)

β(z) = 0, z 6= 0, (A2)

with γ̃ = −γ√
−4E

. For bound states (E < 0), both z and γ̃ are

real and positive (since in this work we are considering only
the attractive Coulomb potential, γ < 0). The two linearly
independent solutions of Whittaker’s equation, Equation (A2),
are [40]

Mγ̃ , 12
(z)=z e−

z
2 M (1− γ̃ , 2, z) , (A3)

Wγ̃ , 12
(z)=z e−

z
2 U (1− γ̃ , 2, z) (A4)

whereM
(

a, b, z
)

and U(a, b, z) are the confluent hypergeometric
functions of the first and of the second kind, respectively.

For negative energies M −γ√
−4E

, 12

(√
−4E|x|

)

is not an

acceptable solution, since it diverges when |x| → ∞. Therefore,
the general solution of (A2) for bound states is

ψ(x) = W −γ√
−4E

, 12

(√
−4E |x|

)

[

B− θ(−x)+ B+ θ(x)
]

, (A5)

where θ(x) is the Heaviside theta function and the arbitrary
constants B± must be related by the boundary conditions at the
origin, which depend on the specific choice of the parameters
determining the interaction (see section 2.2). It follows from the
properties of theWhittaker functions (see [40], Ch. 13) that ψ(x)
has finite limits at both sides of the origin, namely

ψ
(

0±
)

= B± W −γ√
−4E

, 12
(0) = B±W0 (E) , (A6)

where we have defined

W0 (E) ≡
1

Ŵ

(

1+ γ√
−4E

) . (A7)

In section 2 the function φ̃(x), Equation (12), was introduced
and shown to have finite lateral limits at both sides of
the origin. From (A5), these lateral limits can be explicitly
obtained as

φ̃
(

0±
)

= ±B± F0 (E) , (A8)

with

F0 (E) = W0(E)Q(E),

Q(E) =

[

1

2
γ log(−4E)+ γψ (0)

(

γ

2
√
−E

)

+ 26γ γ +
√
−E

]

,

(A9)

where 6γ is the Euler’s constant and ψ (0)(x) is the digamma

function, defined as ψ (0)(x) = 1
Ŵ(x)

d
dx
Ŵ(x) [40].

The functions W0(E), F0(E) and Q(E) have the following
important properties, which are used in the main text of
the paper.

- W0(E) is continuous and has simple zeros at the
points in which the gamma function in (A7) diverges,
namely at

E = ǫn = −
γ 2

4n2
, n = 1, 2, 3, · · · . (A10)

- F0 (E) is continuous, and at the zeros of W0(E) it assumes the
nonzero values

F0(ǫn) = (−1)n(n− 1)! γ , n = 1, 2, 3, · · · . (A11)

- Q(E) = F0(E)
W0(E)

is continuous in any interval E ∈ (ǫn, ǫn+1),

with n a positive integer. At the boundaries of these intervals
Q(E) diverges.

- In the limit E → −∞ we have

lim
E→−∞

W0(E) = 1, (A12)

lim
E→−∞

Q(E) = −∞, (A13)

lim
E→−∞

F0(E) = −∞. (A14)
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In this note we consider a quantum mechanical particle moving inside an infinitesimally

thin layer constrained by a parabolic well in the x-direction and, moreover, in the

presence of an impurity modeled by an attractive Gaussian potential. We investigate the

Birman-Schwinger operator associated to a model assuming the presence of a Gaussian

impurity inside the layer and prove that such an integral operator is Hilbert-Schmidt, which

allows the use of the modified Fredholm determinant in order to compute the bound

states created by the impurity. Furthermore, we consider the case where the Gaussian

potential degenerates to a δ-potential in the x-direction and a Gaussian potential in the

y-direction. We construct the corresponding self-adjoint Hamiltonian and prove that it is

the limit in the norm resolvent sense of a sequence of corresponding Hamiltonians with

suitably scaled Gaussian potentials. Satisfactory bounds on the ground state energies

of all Hamiltonians involved are exhibited.

Keywords: Gaussian potential, Birman-Schwinger operator, Hilbert-Schmidt operator, contact interaction,

quantum well

1. INTRODUCTION

The study of point potentials in Quantum Physics has recently received a lot of attention for a
wide range of interests. First of all, point potentials serve as solvable or quasi-solvable models that
approximate the action of intense and very short range potentials [1–3]. They have been used to
model several kinds of extra thin structures [4, 5], to mimic point defects in materials, or to study
heterostructures [6–9]. In addition, point potentials play a role in modeling impurities in quantum
field theory [10–13]. Furthermore, they play an important role after a recent interpretation of the
Casimir effect [14, 15]. The unexpected relations between contact potentials and group theory
should also be noted [16]. They also play a role in modeling Kronig-Penney crystals in condensed
matter physics in various dimensions [1, 17–22].

More examples of physical applications of this kind of interactions are: Bose-Einstein
condensation in a harmonic trap with a tight and deep “dimple” potential, modeled by a Dirac delta
function [23]; non-perturbative study of the entanglement of two directed polymers subjected to
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repulsive interactions given by a Dirac δ-function potential [24];
a periodic array of Dirac delta interactions is useful to investigate
the light propagation in a one-dimensional realistic dielectric
superlattice, which has been investigated for the transverse
electric and magnetic fields and for omnidirectional polarization
modes [25–27].

One-dimensional quantum models with contact interactions
are also useful to study a wide range of quantum properties,
including scattering, since these models are quite often solvable.
They also serve to acquire experience in order to analyse
systems with contact potentials in higher dimensions. However,
an important difference is to be pointed out: while one-
dimensional contact potentials are usually defined through
matching conditions at isolated points, their proper definition in
higher dimensions requires a process of regularization.

Quantum two-dimensional systems are particularly
interesting for their physical applications. In this particular
context, the graphene deserves a special mention because of its
importance, although this is not the only one two-dimensional
quantum system of interest in physics. From a theoretical point
of view, quantum theory in two dimensions has not yet been
developed to the same extent of its one-dimensional and three-
dimensional analogs, in spite of its enormous interest. Although
two-dimensional quantum systems look rather simple, due to
the presence of logarithmic singularities in the resolvent kernel
of their free Hamiltonian, their level of complexity and, hence,
their difficulty of study is far higher than the one-dimensional
case (and, to a great extent, the three-dimensional case).

An important contribution to the understanding of two-
dimensional quantummechanics was provided by Duclos’ article
[28] on the two-dimensional hydrogen atom perturbed by a point
interaction, a model that had not been dealt with in Albeverio
et al. [1]. One of the main results of that paper is that the free
Hamiltonian of that model, namely that of the 2D hydrogen
atom, was rigorously shown to be the norm resolvent limit of
the Hamiltonian of the 3D Hamiltonian of the hydrogen atom
confined to an infinite planar slab of width a > 0 as a → 0+.

A remarkable feature of two-dimensional models with contact
interactions, manifesting itself even in the simple case of
the negative Laplacian perturbed by a point interaction, is
represented by their peculiar dependence of the bound state
energies on the coupling constant. As is well known, the one-
dimensional model exhibits a single bound state only when
the point interaction is attractive and the eigenvalue is a
quadratic function of the strength of the interaction. The three-
dimensional case also exhibits a single bound state only in
the attractive case but the eigenvalue depends quadratically
on the reciprocal of the renormalized coupling constant. In
two dimensions the bound state keeps existing even if the
contact interaction is repulsive and the dependence becomes
exponential (see [1]). The latter behavior is confirmed even when
a confinement potential is present in addition to the contact
potential, which physically mimics the presence of impurities or
thin barriers in the material inside which the quantum particle is
moving [29, 30].

In this note, partly motivated by Duclos’ paper, we intend
to study a different two-dimensional model with the free

Hamiltonian given by:

H0 =

(

−
1

2

d2

dx2
+

x2

2

)

−
1

2

d2

dy2
, (1.1)

to which we add an attractive impurity assumed to be modeled
by the isotropic Gaussian potential

W(x, y) = −λV(x, y) = −λe−(x2+y2), λ > 0 , (1.2)

so that the total Hamiltonian is

Hλ = H0+W(x, y) = H0−λV(x, y) = H0−λe
−(x2+y2), λ > 0.

(1.3)
It is worth mentioning that the recent literature [31–34] has
shown a renewed interest in the spectral analysis of the one-
dimensional Hamiltonian with a Gaussian potential, namely

H : = −
1

2

d2

dx2
− λ e−x2/2, λ > 0. (1.4)

Therefore, (1.3) could also be regarded as a possible two-
dimensional generalization of (1.4).

At this point, it is interesting to recall that a three-dimensional
material with confinement in only one dimension is said to be
a quantum well [35], while a 3D material with two-dimensional
confinement is called a quantum wire. Therefore, in the limiting
case of a quantumwell inside a layer with zero thickness, it makes
sense to consider the model in which the confining potential
is parabolic. Due to the mathematical subtleties required, in
this note we have chosen to omit the proof of the resolvent
convergence of the Hamiltonian of a three-dimensional parabolic
quantum well inside a thin layer to the 2D Hamiltonian (1.3) as
the thickness of the layer vanishes.

Instead we start directly by writing the Green function of the
two-dimensional Hamiltonian with a one-dimensional harmonic
potential. Once a perturbation given by an attractive two-
dimensional Gaussian potential is added, we study the properties
of the corresponding Birman-Schwinger operator, that is to say
the crucial part in the interaction term of the resolvent of the
perturbed Hamiltonian. We remind the reader that the resolvent
is the key to obtain the energy eigenvalues. We later consider the
model in which the 2D Gaussian impurity potential gets replaced
by one having a Dirac delta for the coordinate subjected to the
harmonic confinement maintaining the Gaussian character for
the other coordinate.

It may be worth pointing out that the Hamiltonian (1.1) has
been used by Dell’Antonio and collaborators [36] as the free
Hamiltonian in the model of a quantum system consisting of two
one-dimensional particles, one of which is harmonically bound
to its equilibrium position, mutually interacting by means of
the contact interaction δ(x − y). In other words, the interaction
studied in [36] will be replaced by the one in (1.2).

Solving the eigenvalue problem for this kind of Hamiltonians
is not, in general, an easy task and often requires rather
sophisticated tools. One of the most widely used is the Birman-
Schwinger operator, namely the integral operator

BE = (sgnW)|W|
1
2 (H0 − E)−1|W|

1
2 , (1.5)
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and the related technique: as in most applications BE can be
shown to be compact, the solutions of the eigenvalue problem
for the Hamiltonian are given by those values of E for which
BE has an eigenvalue equal to -1 (see [22, 37, 38] and references
therein as well as [39], p. 99). Therefore, the detailed study of the
properties of the Birman-Schwinger operator arising from our
model is quite relevant. In the present note, we show that the
Birman-Schwinger operator is Hilbert-Schmidt. We also show
that Hλ is self-adjoint and bounded from below.

In addition, Hλ has a special relation with a kind of
two-dimensional contact operator that will be studied in
section 2.1. This is given by the Hamiltonian described
heuristically by

B̃2E
(

x, x2, y, y2
)

= e−(x2+y2)/2







∫ ∞

−∞

∫ ∞

−∞





∞
∑

m=0

e
−

√

2
(

m+ 1
2−E

)

|y−y′|
√

2
(

m+ 1
2 − E

)

φm(x)φm(x
′)





× e−(x′2+y′2)





∞
∑

n=0

e
−

√

2
(

n+ 1
2−E

)

|y′−y2|
√

2
(

n+ 1
2 − E

)

φn(x
′)φn(x2)



 dx′dy′







e−(x22+y22)/2, (2.3)

Hδλ = H0 − λ
√
π δ(x) e−y2 , λ > 0, (1.6)

where δ(x) is the Dirac delta centered at the origin. We show that
Hδλ is self-adjoint on a natural domain and can be obtained as the
limit in the norm resolvent sense as n 7−→ ∞ of the following
sequence of Hamiltonians:

Hn,λ : = H0 − λn e
−(n2x2+y2), λ > 0, (1.7)

thus with Gaussian type potentials (as was the case forHλ) which
become increasingly more attractive and anisotropic as n goes
to infinity.

Finally, it will be shown that the Hamiltonian Hλ (resp. H
δ
λ) is

bounded from below and its lower bound can be obtained using
a certain transcendental equation.

2. THE BIRMAN-SCHWINGER OPERATOR

FOR OUR MODEL

Starting from the Hamiltonian H0 in (1.1), it is rather
straightforward to infer that the associated Green function,
namely the integral kernel of the resolvent operator, reads for any
E < 1

2 :

(H0 − E)−1(x, x′, y, y′) =

∞
∑

n=0

e
−

√

2
(

n+ 1
2−E

)

|y−y′|
√

2
(

n+ 1
2 − E

)

φn(x)φn(x
′),

(2.1)
where φn(x) is the normalized n-th eigenfunction of the one-
dimensional harmonic oscillator.

Once the above attractive Gaussian perturbation (1.2) is
added, the total Hamiltonian is Hλ in (1.3). Therefore, its

associated Birman-Schwinger integral kernel [22, 31, 32, 37, 38,
40, 41] given by (1.5) is:

BE = −λ B̃E
(

x, x1, y, y1
)

= −λ |V|
1
2 (H0 − E)−1 |V|

1
2 (x, x1, y, y1) =

= −λe−(x2+y2)/2





∞
∑

n=0

e
−

√

2
(

n+ 1
2−E

)

|y−y1|
√

2
(

n+ 1
2 − E

)

φn(x)φn(x1)



 e−(x21+y21)/2,

(2.2)

The main goal of this brief note is to rigorously prove that such an
integral operator is Hilbert-Schmidt, that is to say tr(B̃2E) < ∞,

given the evident positivity of the operator B̃E (and our choice
λ > 0). As the kernel of the positive operator B̃2E is clearly

its trace reads

tr(B̃2E) =

∫ ∞

−∞

∫ ∞

−∞
B̃2E

(

x, x, y, y
)

dxdy

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dxdydx′dy′ e−(x2+y2)e−(x′2+y′2)

×

∞
∑

m=0

∞
∑

n=0

e
−

(

√

2(m+ 1
2−E)+

√

2(n+ 1
2−E)

)

|y−y′|

2
√

(m+ 1
2 − E)(n+ 1

2 − E)

φm(x)φm(x
′)φn(x)φn(x

′). (2.4)

The latter multiple integral can be rewritten as:

∞
∑

m=0

∞
∑

n=0









∫ ∞

−∞

∫ ∞

−∞
e−y2 e

−

(

√

2(m+ 1
2−E)+

√

2(n+ 1
2−E)

)

|y−y′|

2
√

(m+ 1
2 − E)(n+ 1

2 − E)
e−y′2dydy′









〈

φm, e
−(·)2φn

〉2
(2.5)

where 〈f , g〉 denotes the standard scalar product of the
two functions.

Let us consider the double integral in (2.5). With the notation,

f (y−y′) : = e
−

(

√

2(m+ 1
2−E)+

√

2(n+ 1
2−E)

)

|y−y′|
, g(y′) = e−y′2 ,

(2.6)
the second integral becomes the convolution (f ∗g)(y), so that the
double integral may be written as

1

2
√

(m+ 1
2 − E)(n+ 1

2 − E)

∫ ∞

−∞
e−y2 [(f ∗ g)(y)] dy . (2.7)
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Using the Schwarz inequality (2.7) is smaller than or equal to

1

2
√

(m+ 1
2 − E)(n+ 1

2 − E)
||e−(·)2 ||2 ||f ∗ g||2 , (2.8)

where || · ||p denotes the norm in Lp(R). Young’s inequality [42]
shows that

||f ∗ g||r ≤ ||f ||p ||g||q , with
1

p
+

1

q
=

1

r
+ 1 . (2.9)

Therefore, with p = r = 2 and q = 1, it follows that (2.8) is
smaller than or equal to

1

2
√

(m+ 1
2 − E)(n+ 1

2 − E)
||e−(·)2 ||22 ||f ||1 . (2.10)

The two norms in (2.9) yield two integrals which can be easily
computed, so as to obtain

√
π

2
3
2

√

(m+ 1
2 − E)(n+ 1

2 − E)

(

√

2(m+ 1
2 − E)+

√

2(n+ 1
2 − E)

)

≤

√
π

4(m+ 1
2 − E)

3
4 (n+ 1

2 − E)
3
4

. (2.11)

Hence, the trace (2.4) is bounded by:

tr(B̃2E) ≤

√
π

4

∞
∑

m=0

∞
∑

n=0

〈

φm, e
−(·)2φn

〉2

(m+ 1
2 − E)

3
4 (n+ 1

2 − E)
3
4

=
π

3
2

4

∞
∑

m=0

∞
∑

n=0

〈φmφ0,φ0φn〉
2

(m+ 1
2 − E)

3
4 (n+ 1

2 − E)
3
4

. (2.12)

The scalar products inside the double series can be estimated
using Wang’s results on integrals of products of eigenfunctions
of the harmonic oscillator [43]. While the scalar product clearly
vanishes ifm+ n = 2s+ 1, when both indices are either even or
odd we get:

〈φ2mφ0,φ0φ2n〉
2 =

1

2π

[

[2(m+ n)]!

(m+ n)!

]2 1

24(m+n)(2m)!(2n)!

≤
1

2π

[

[2(m+ n)]!

22(m+n)[(m+ n)!]2

]2

=
φ4
2(m+n)

(0)

2
, (2.13)

〈

φ2m+1φ0,φ0φ2n+1
〉2

=
1

2π

[

[2(m+ n+ 1)]!

(m+ n+ 1)!

]2

1

24(m+n+1)(2m+ 1)!(2n+ 1)!

≤
1

2π

[

[2(m+ n+ 1)]!

22(m+n+1)[(m+ n+ 1)!]2

]2

=
φ4
2(m+n+1)

(0)

2
, (2.14)

the final equalities in (2.13) and (2.14) resulting from Fassari and
Inglese [44] and Mityagin and Siegl [45]. Therefore, the r.h.s. of
(2.12) is bounded from above by:

tr(B̃2E) ≤
π

3
2

8





∞
∑

m,n=0

φ4
2(m+n)

(0)

(2m+ 1
2 − E)

3
4 (2n+ 1

2 − E)
3
4

+

∞
∑

m,n=0

φ4
2(m+n+1)

(0)

(2m+ 3
2 − E)

3
4 (2n+ 3

2 − E)
3
4



 . (2.15)

As can be gathered from Mityagin and Siegl [45] using
Stirling’s formula,

φ42n(0) ≤
1

π2n
, n ≥ 1,

φ42(m+n)(0) ≤
1

π2(m+ n)
, m, n ≥ 1,

φ42(m+n+1)(0) ≤
1

π2(m+ n+ 1)
, m, n ≥ 0, (2.16)

which implies that (2.15) is bounded by

tr(B̃2E) ≤
1

8π
1
2

[

1

( 12 − E)
3
2

+
2

( 12 − E)
3
4

∞
∑

n=1

1

n(2n+ 1
2 − E)

3
4

]

+
1

8π
1
2

∞
∑

m=1

∞
∑

n=1

1

m
1
2 (2m+ 1

2 − E)
3
4 n

1
2 (2n+ 1

2 − E)
3
4

+
1

8π
1
2

∞
∑

m=0

∞
∑

n=0

1

(m+ 1
2 )

1
2 (2m+ 3

2 − E)
3
4 (n+ 1

2 )
1
2 (2n+ 3

2 − E)
3
4

≤
1

8π
1
2

[

1

( 12 − E)
3
2

+
2

( 12 − E)
3
4

∞
∑

n=1

1

n
1
2 (2n+ 1

2 − E)
3
4

]

(2.17)

+
1

8π
1
2

[

∞
∑

n=1

1

n
1
2 (2n+ 1

2 − E)
3
4

]2

+
1

8π
1
2

[

∞
∑

n=0

1

(n+ 1
2 )

1
2 (2n+ 3

2 − E)
3
4

]2

<∞,

since both series involved in the final expression are clearly
absolutely convergent given that the summands are positive

sequences decaying like n−
5
4 . Hence, the trace of the square of

the Birman-Schwinger operator, i.e., its Hilbert-Schmidt norm, is
finite for any E < 1

2 .
Our result is not surprising at all since the norm could have

been bounded by that of the Birman-Schwinger operator with
the same impurity but with the resolvent of our H0 replaced by
that of −1

2 in two dimensions, which is known to be finite [1].
However, it provides us with a far more accurate estimate of the
norm, which in turn leads to a more precise determination of
the spectral lower bound resulting from the use of the Hilbert-
Schmidt norm of the Birman-Schwinger operator in the KLMN
theorem [46]. In fact, the latter bound is what we wish to achieve
by further estimating the bottom lines of (2.17).
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The series in (2.17) can be bounded from above by their
respective improper integrals as follows:

S1 =

∞
∑

n=1

1

n
1
2 (2n+ 1

2 − E)
3
4

=

∞
∑

n=1

√
2

(2n)
1
2 (2n+ 1

2 − E)
3
4

<

∫ ∞

0

√
2 dx

(2x)
1
2 (2x+ 1

2 − E)
3
4

=
3
√
2

4

∫ ∞

0

s
1
2 ds

(s+ 1
2 − E)

7
4

≤
3
√
2

4

∫ ∞

0

ds

(s+ 1
2 − E)

5
4

=
3
√
2

( 12 − E)
1
4

. (2.18)

S2 =

∞
∑

n=0

1

(n+ 1
2 )

1
2 (2n+ 3

2 − E)
3
4

=

√
2

( 12 − E)
3
4

+

∞
∑

n=1

√
2

(2n+ 1)
1
2 (2n+ 3

2 − E)
3
4

<

√
2

( 12 − E)
3
4

+

∫ ∞

0

√
2 dx

(2x+ 1)
1
2 (2x+ 3

2 − E)
3
4

=

√
2

( 12 − E)
3
4

−

√
2

( 12 − E)
3
4

+
3
√
2

4

∫ ∞

0

(s+ 1)
1
2 ds

(s+ 3
2 − E)

7
4

≤
3
√
2

4

∫ ∞

0

ds

(s+ 3
2 − E)

5
4

=
3
√
2

( 32 − E)
1
4

. (2.19)

Therefore, the bottom lines of (2.17) are bounded by:

tr(B̃2E) ≤
1

8π
1
2

[

1

( 12 − E)
3
2

+
6
√
2

1
2 − E

+
18

( 12 − E)
1
2

]

+
1

8π
1
2

18

( 32 − E)
1
2

=
1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2

. (2.20)

Hence, our estimate of the Hilbert-Schmidt norm of the Birman-
Schwinger operator is:

tr(B̃2E) =

∣

∣

∣

∣

∣

∣

∣

∣

e−
x2+y2

2 (H0 − E)−1e−
x2+y2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤
1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2

.

As is well known [22, 31, 32, 37, 38, 40, 41], the operator

(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2

is isospectral to the Birman-Schwinger operator so that
their Hilbert-Schmidt norms are identical. Hence, what has
been achieved so far can be summarized by means of the
following claim.

Theorem 2.1 The integral operators

(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2 and

e−
x2+y2

2 (H0 − E)−1e−
x2+y2

2

are Hilbert-Schmidt and their Hilbert-Schmidt norms satisfy

∣

∣

∣

∣

∣

∣
(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2

∣

∣

∣

∣

∣

∣

2

2

=

∣

∣

∣

∣

∣

∣

∣

∣

e−
x2+y2

2 (H0 − E)−1e−
x2+y2

2

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤
1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2

. (2.21)

As an immediate consequence of the above theorem we get:

Corollary 1 The Hamiltonian

Hλ = H0 − λe
−(x2+y2),

defined in the sense of quadratic forms, is self-adjoint and bounded
from below by E(λ), the solution of the equation:

1

2( 12 − E)
1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
9

( 32 − E)
1
2

=
4π

1
2

λ2
. (2.22)

Proof. For any E < 0 and ψ ∈ Q(H0) = D(H
1
2
0 ) (the form

domain of H0):

λ

〈

ψ , e−(x2+y2)ψ

〉

= λ

〈

(H0 − E)1/2ψ ,
[

(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2
]

(H0 − E)1/2ψ
〉

≤ λ

∣

∣

∣

∣

∣

∣
(H0 − E)−1/2e−(x2+y2)(H0 − E)−1/2

∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣(H0 − E)1/2ψ
∣

∣

∣

∣

2

2

≤ λ





1

8π
1
2 ( 12 − E)

1
2

[

3
√
2+

1

( 12 − E)
1
2

]2

+
1

4π
1
2

9

( 32 − E)
1
2





1
2

[

(ψ ,H0ψ)− E ||ψ ||22
]

. (2.23)

By taking E sufficiently negative, the first factor in the bottom
line of (2.23) can be made arbitrarily small, which ensures that
the Gaussian perturbation is infinitesimally small with respect to
H0 in the sense of quadratic forms. Hence, we need only invoke
the KLMN theorem (see [42]) to infer that Hλ is self-adjoint and
bounded from below by the quantity
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FIGURE 1 | Approximating potentials Vn (x, y) = ne−(n2x2+y2 ) for n = 15

(pink), 30 (magenta), and 70 (cyan).

λ

2π
1
4


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
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2( 12 − E)
1
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

3
√
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1

( 12 − E)
1
2





2

+
9

( 32 − E)
1
2







1
2

E,E < 0,

(2.24)
so that the supremum of such lower bounds is attained for that
particular value of E solving (2.22).

In the following subsections we first consider a Hamiltonian
with a point interaction all along the x-direction in place of the
Gaussian potential and then we investigate in detail the solution
of (2.22), that is to say the lower bound of the spectrum of Hλ.

2.1. Hamiltonian With a Point Interaction

Along the x-Direction
Let us consider now the Hamiltonian

Hδλ = H0 − λ
√
πδ(x)e−y2 ,

that is to say the energy operator given by the same H0 as before
but with the interaction term having a point interaction in place
of the Gaussian along the x-direction. Our goal is to prove that
such an operator is self-adjoint and that it is the limit in the norm
resolvent sense of the sequence H0 − λVn(x, y) as n → ∞, with

Vn(x, y) = ne−(n2x2+y2). As is to be expected, our approximating
sequence is quite different from the one used in Albeverio et al.
[1] to get the Laplacian perturbed by a point interaction in two
dimensions. Before stating and proving the main result of this
section, we wish to provide the reader with the visualization of
the approximating potentials in Figure 1.

Corollary 2 The Hamiltonian Hδλ = H0−λ
√
πδ(x)e−y2 , defined

in the sense of quadratic forms, is self-adjoint and is the norm
resolvent limit of the sequence of Hamiltonians

Hn,λ = H0 − λne
−(n2x2+y2).

Furthermore, Hδλ is bounded from below by Eδ(λ), the solution of
the equation:

1

( 12 − E)
1
2

[

1

( 12 − E)
1
2

+ 3
√
2

]2

=
4π

1
2

λ2
. (2.25)

Proof. First of all, it is quite straightforward to show that the
integral operator

(H0 − E)−1/2√πδ(x)e−y2 (H0 − E)−1/2, E < 0,

is Hilbert-Schmidt with the square of the Hilbert-Schmidt norm
given by:

π

∣

∣

∣

∣

∣

∣
(H0 − E)−1/2δ(x)e−y2 (H0 − E)−1/2

∣

∣

∣

∣

∣

∣

2

2
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∣

∣

∣

∣

∣

∣
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1
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2

∣

∣

∣

∣

∣

∣

2

2
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∫ ∞
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∫ ∞
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dydy′
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(
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

2

dydy′

=
π

2

∞
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∞
∑
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2
2n(0)
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−
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e
−
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√
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) (

2n+ 1
2 − E

)

e−y′2dydy′.

As the double integral involving the convolution has already been
estimated in (2.11), the latter expression is bounded by:

π3/2

4

∞
∑

m=0

∞
∑

n=0

φ22m(0)φ
2
2n(0)
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3
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3
4

=
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4

[

∞
∑
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φ22n(0)

(2n+ 1
2 − E)

3
4

]2

, (2.26)

which, using (2.17), is bounded by:

1

4π1/2

[

1

( 12 − E)
3
4
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∞
∑
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1

n
1
2 (2n+ 1

2 − E)
3
4

]2

≤
1
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[

1

( 12 − E)
3
4

+
3
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2

( 12 − E)
1
4

]2

=
1

4π
1
2 ( 12 − E)

1
2

[

1

( 12 − E)
1
2

+ 3
√
2

]2

,

(2.27)

having taken advantage of (2.18). As the right hand side of (2.27)
can be made arbitrarily small by taking E < 0 large in absolute
value, the KLMN theorem ensures, as was done previously in the
case of Hλ, the self-adjointness of H

δ
λ as well as the existence of

the spectral lower bound Eδ(λ) given by the solution of (2.25).

As to the convergence of Hn,λ to Hδλ, we start by noting that,

for any E < 0, the operator (H0−E)−1/2ne−(n2x2+y2)(H0−E)−1/2

Frontiers in Physics | www.frontiersin.org 6 July 2019 | Volume 7 | Article 102119

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Albeverio et al. Parabolic Well With Gaussian Impurity

converges weakly to (H0 − E)−1/2√πδ(x)e−y2 (H0 − E)−1/2 as
n → ∞. Furthermore,

∣

∣

∣

∣

∣

∣
(H0 − E)−1/2ne−(n2x2+y2)(H0 − E)−1/2

∣

∣
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∣

∣
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2

2

=

∣

∣

∣

∣

∣

∣

∣

∣
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∫ ∞
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〉2
. (2.28)

Since

〈

φl, ne
−n2(·)2φm

〉

= n
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e−n2x2φl(x)φm(x)dx

=

∫ ∞

−∞
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√
πφl(0)φm(0),

as n → ∞, the right hand side of (2.28) converges to
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2

= π

∣

∣

∣
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(H0 − E)−1/2δ(x)e−y2 (H0 − E)−1/2

∣

∣

∣

∣

∣

∣

2

2
.

Hence, the Hilbert-Schmidt norm of (H0 −
E)−1/2ne−(n2x2+y2)(H0 − E)−1/2 converges to the Hilbert-

Schmidt norm of (H0 − E)−1/2√πδ(x)e−y2 (H0 − E)−1/2 as
n → ∞. Due to Theorem 2.21 in Simon [47], this fact and
the previous weak convergence imply that the convergence
actually takes place in the Hilbert-Schmidt norm. Then, the
norm convergence of these integral operators ensures the norm
resolvent convergence of Hn,λ to Hδλ, as guaranteed by Theorem
VIII.25 in Reed and Simon [46], which completes our proof
of Corollary 2.

2.2. The Lower Bound of σ (H0 − λe−(x2+y2))
As anticipated earlier, the lower bound of the spectrum of Hλ in
(1.3) is the function E(λ) given implicitly by the equation (2.22).
From this expression, some approximate results can be easily
obtained in two different regimes. For example, it is possible to
prove that the asymptotic behavior of (2.22) for large values of
both variables E(λ), λ is

E(λ) = −
81

4π2
λ4. (2.29)

FIGURE 2 | A plot of the lower bound of the energy E as a function of λ

resulting from the solution of Equation (2.22) (blue curve), the approximate

expression valid for large values of E and λ obtained in (2.29) (yellow curve)

and the approximation for small values of λ as in (2.30) (green curve). In the

inset we have enlarged the region where λ and E are small. While the similarity

between the solution of (2.22) and the funtion (2.29) is quite acceptable for a

wide range of the parameters, the solution of (2.22) is satisfactorily

approximated by (2.30) only for very small values of λ.

On the other hand, for small values of λ we can prove that (2.22)
behaves approximately as follows

E(λ) =
1

2
−

1

4π2/3
λ4/3. (2.30)

A plot of the λ-dependence (λ being the strength of the potential
of Hλ) of the lower bound of the energy E(λ), resulting from the
solution of (2.22), as well as those of the two approximations
given by (2.29) and (2.30), are given in Figure 2.

3. FINAL REMARKS

In this note we have analyzed in detail the Birman-Schwinger
operator of the two-dimensional Hamiltonian Hλ = H0 −

λe−(x2+y2), namely the integral operator −λe−
x2+y2

2 (H0 −

E)−1e−
x2+y2

2 whereH0 = (− 1
2

d2

dx2
+ x2

2 )−
1
2

d2

dy2
. In particular, we

have rigorously shown that the operator is Hilbert-Schmidt and
have estimated its Hilbert-Schmidt norm. This fact has enabled
us to use the KLMN theorem to determine a lower bound for
the spectrum of Hλ, that is to say E(λ), the implicit function
representing the solution of an equation involving the energy
parameter and the coupling constant. Furthermore, we have

investigated the Hamiltonian Hδλ = H0 − λ
√
πδ(x)e−y2 , having

the Gaussian impurity in the direction subjected to the harmonic
confinement replaced by a point impurity.

Frontiers in Physics | www.frontiersin.org 7 July 2019 | Volume 7 | Article 102120

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Albeverio et al. Parabolic Well With Gaussian Impurity

As anticipated in the introduction, the proof of the resolvent
convergence, as the thickness of the layer vanishes, of the
Hamiltonian of a three-dimensional parabolic quantum well
inside a thin layer to the 2D Hamiltonian (1.3) has been put off as
it may deserve a separate paper.

The results of this article will enable us to study the lowest
bound states created by the Gaussian impurity potential of
the aforementioned Hamiltonian by means of the modified

Fredholm determinant det2

[

1− λe
x2+y2

2 (H0 − E)−1e−
x2+y2

2

]

,

the regularized determinant used to handle Hilbert-Schmidt
operators. Work in this direction is in progress.
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We study the spectrum of the 1D Dirac Hamiltonian encompassing the bound and

scattering states of a fermion distorted by a static background built from δ-function

potentials. After introducing the most general Dirac-δ potential for the Dirac equation

we distinguish between “mass-spike” and “electrostatic” δ-potentials. Differences in the

spectra arising depending on the type of δ-potential are studied in deep detail.

Keywords: contact interactions, Dirac equation, Dirac delta, selfadjoint extensions, relativistic quantum

mechanics

1. INTRODUCTION

The Dirac equation with various relativistic potentials mimicking string-like or vortex-like
backgrounds has a long history. The best known example is the Aharonov-Bohm [1] interaction
of charged fermions with a field of an infinitesimally thin solenoid. The scattering of fermions on
magnetic ’tHooft-Polyakov monopoles and on Abrikosov-Nielsen-Olesen strings with consequent
fractional fermion numbers and fermion number non-conservation was a hot topic in the late 70s
and early 80s [2, 3]. The cosmic strings predicted by grand unified theories also appeared to interact
with fermions (matter) via the Aharonov-Bohm mechanism [4]. The non-relativistic limit of the
scattering problem for spin-one-half particles in the Aharonov-Bohm potential in (1+2) conical
space was examined in [5, 6].

It was observed that in the case of a point magnetic vortex (Aharonov-Bohm interaction) one
can either with gauge transformation reduce the problem to a Laplace equation with delta-potential
or to a free Dirac equation with a special angular boundary condition [7]. A radial boundary
condition specifies the self-adjoint extension. From the operator theory viewpoint the Dirac
operator with relativistic point interaction (δ-function potentials) and its self-adjoint extensions
were considered in [8, 9]. In the last years the low-dimensional problems of this kind were
investigated topologically with the Levinson theorem, which proved to be closely related to an index
theorem [10].

A renewed interest to Dirac equation with singular potentials was inspired by the appearance
of the new 2D materials. Graphene in the field of a Aharonov-Bohm solenoid perpendicular to its
plane was considered in [11]. The induced current and induced charge density were calculated.
Another example is a magnetic Kronig-Penney model for Dirac electrons in single-layer graphene
developed in [12]. The model is a series of very high and very narrow magnetic δ-function barriers
alternating in sign.

In this paper we describe the distortion caused by impurities in the free propagation of fermionic
fields in the 1 + 1-dimensional Minkowski spacetime by means of Dirac δ-point interactions. We
elaborate on and develop further previous work on this subject in References [13, 14]. Thematching
conditions appropriated to define the δ-potential inserted in a Dirac Hamiltonian restricted to a line
were proposed some time ago in References [15, 16].
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Our aim is to generalize the study carried out in References
[17–19] to fermionic fields so that we can use the results in
effective QFT models of 2D materials.

Throughout the paper we shall use natural units where h̄ =
c = 1 (henceforth, L = T = M−1). In addition we will fix the
Minkowski spacetime metric tensor to be: ηµν ≡ diag(+,−).
Having done these choices, the Hamiltonian form of the Dirac
equation, governing the dynamics of a free fermionic particle of
massmmoving on a line, reads

i∂tψ(t, x) = H
(0)
D ψ(t, x) = [−iα∂x + βm]ψ(t, x), (1)

or, in covariant form:

(iγ µ∂µ −m )ψ(x) = 0.

For the fermionic anti-particle the dynamics is governed by the
conjugate Dirac Hamiltonian

i∂tφ(t, x) = H
(0)
D φ(t, x) = [−iα∂x − βm]φ(t, x), (2)

or, in covariant form

(iγ µ∂µ +m )φ(x) = 0.

Here, the {γ µ}µ=0,1 matrices close the Clifford algebra of R1,1

that can be minimally represented by “pseudo-Hermitian”two-
by-two matrices: γ µ † = γ 0γ µγ 0. Explicitly,

{γ µ, γ ν} ≡ γ µγ ν + γ νγ µ = 2ηµν ⇒

γ 0γ 0 = 1 = −γ 1γ 1 , γ 0γ 1 = −γ 1γ 0.

We shall need also the 1+1-dimensional analogue of the γ 5

matrix, denoted throughout this paper as γ 2:

γ 2 = γ 0γ 1.

The free Dirac Hamiltonians appearing in the formulas (1)–(2)
demand thus the definition of the α and β Dirac matrices:

β = γ 0, α = γ 0γ 1 = γ 2.

In order to perform explicit calculations we shall stick to the
following choice of γ -matrices:

γ 0 = σ3 = β , γ 1 = iσ2, γ 2 = σ1 = α, (3)

where σ1, σ2, σ3 are the Pauli matrices:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

Our choice of gamma matrices enables us to identify the three
discrete transformations acting on the Dirac spinors:

1. Parity transformation P : Pψ(x, t) = (−1)pγ 0ψ(−x, t), where
p = 0, 1, is the intrinsic parity of the particle

2. Time-reversal transformation T : T ψ(x, t) = γ 0ψ∗(x,−t).

3. Charge conjugation transformation C: Cψ(x, t) = γ 2ψ∗(x, t).

Parity and time-reversal are symmetries of the free Dirac
Hamiltoninan (1) and its conjugate (2). Charge conjugation,
however, transforms the free Dirac Hamiltonian into its
conjugate and viceversa. This property is the secret behind the
common wisdom in Fermi field theory where negative energy
fermions are traded by positive energy antifermions. More

precisely: both H
(0)
D and H

(0)
D have a Dirac sea of negative energy

states. The idea is to form a complete set of spinors from the

positive energy states of H
(0)
D , fermions, and the positive energy

eigen spinors of H
(0)
D , anti-fermions. In this spirit one checks

that the solutions for the conjugate Dirac equation are related
to the solutions of the Dirac equation by the charge conjugation
transformation. Given the spectral problems

H
(0)
D ψω(x) = ωψω(x), H

(0)
D φω(x) = ωφω(x), (4)

the eigenspinors are related through charge conjugation: φω =

γ 2ψ∗
ω(x). Equivalently, one finds that: CH

(0)
D C

−1 = H
(0)
D .

Consider next a bunch of relativistic Fermi particle
propagating in (1+1)D Minkowski spacetime under the
influence of a external time-independent classical background.
The most general Dirac Hamiltonian describing this situation
reads:

HD = H0 + V(x) = −iα∂x + βm+ V(x). (5)

The external potential comprises four types (see [14]):

V(x) = V0(x)1+ V1(x)α + V2(x)β + V3(x)αβ . (6)

In Ref. [14], it is shown that:

• It is possible to assume V1(x) = 0 without loss of generality
since it can be absorbed by a gauge transformation.

• It is convenient to choose V3(x) = 0 to avoid interactions of
the type ψ̄γ 2V3(x)ψ which are only consistent if V3 is purely
imaginary.

Hence, we shall focus our attention on background potentials of
the form

V(x) = ξ (x)1+M(x)β , (7)

leading to the following Dirac spectral problem

HDψ(x) = ωψ(x) ⇒ [−iα∂x + β(m+M(x))]ψ(x)

= [ω − ξ (x)]ψ(x). (8)

In formula (8) the ξ (x) potential clearly appears as an electrostatic
potential, whereas the potential energy M(x) shows itself as a
position dependent mass. Note that this last potential can be
reinterpreted as an interaction of the Dirac field with a classical
scalar field. Different elections for the electrostatic potential ξ (x),
and the mass-like potential M(x) have been done in the last two
decades: in Ref. [20] it is studied the choice of ξ (x) and M(x) as
Coulomb and quadratic vetor potentials, and and in Refs. [21, 22]
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the possibility of ξ (x) andM(x) being quadratic, linear, and other
confining potentials is considered.

We shall focus on external potentials localized in one point
meaning that the propagating fermion finds an impurity at that
point. Analytically we mimic the influence of the impurity on the
fermion by a δ-function potential. We thus choose:

V(x) = Ŵ(q, λ)δ(x); Ŵ(q, λ) = q1+ λβ . (9)

It is of note that the weight term Ŵ(q, λ) multiplying the δ(x)-
function in formula (9) is a 2 × 2 matrix depending on two
coupling constants: physically q plays the role of a dimensionless
electric charge1 and λ is also non dimensional, but plays the role
of a scalar or gravitational coupling because it couples to the
Fermi fields like a mass. Physically all this enables to interpret
the most general form of the delta potential as a point charge plus
a variable mass, in parallel to that taken in [17] devoted to scalar
field interactions with external δ-plates.

Early distributional definitions of δ-point interaction for Dirac
fields were proposed in Refs. [15, 16]. In these references,
the purely electrostatic fermionic Dirac-δ potential was defined
through a matching condition of the form

ψ(0+) = TEδ(q)ψ(0
−); TEδ(q) = 1 cos(q)− iγ 2 sin(q). (10)

Later, in Ref. [14] the matching condition (10) was extended for
the general δ-potential (9), following the approach of [16], to be:

ψ(0+) = Tδ(q, λ)ψ(0
−); Tδ(q, λ) = exp

(

−iγ 2Ŵ(q, λ)
)

(11)

Tδ(q, λ) = 1 cos�−
i

2
sin�

[

�

q+ λ
(γ 2 + γ 1)+

q+ λ

�
(γ 2 − γ 1)

]

,

being � =
√

q2 − λ2. It is straightforward to obtain the matrix
that defines the mass-spike Dirac-δ potential:

TMδ(λ) = Tδ(0, λ) = 1 cosh(λ)+ iγ 1 sinh(λ). (12)

This last particular case is what is studied in detail in Ref.
[14] regarding the Casimir effect induced by vacuum fermionic
quantum fluctuations.

In order to comprehend the results of the calculations in
the following sections it is convenient to take into account
the transformation properties of the point-supported potential
defined by equation (11) under parity (P), time-reversal (T ), and
charge conjugation (C).

• Taking into account that the parity-transformed spinor ψP ≡
Pψ satisfies

ψP(0±) = γ 0ψ(0∓),

the matching condition ψP(0+) = TP
δ (q, λ)ψ

P(0−) is
automatically satisfied:

TP
δ (q, λ) ≡ γ 0Tδ(q, λ)

−1γ 0 = Tδ(q, λ). (13)

1We shall allow q to vary as an angle proportional to the fine structure constant,

which in a 1D space is α = | e
2

m2 |, the electron charge times the Compton particle

wavelength to the square.

Thus, (13) guarantees that Tδ(q, λ) remains invariant under
parity transformation such that the general fermionic δ-
potential is parity invariant, as it happens in the bosonic
case.

• Denoting ψT(x, t) ≡ T ψ(x, t), the matching condition (11)
imposes over ψT the time-reversal transformed matching
conditon

ψT(0+) = TT
δ (q, λ)ψ

T(0−); TT
δ (q, λ) = γ 0Tδ(q, λ)

∗γ 0.
(14)

One immediately realizes that TT
δ (q, λ) = Tδ(q, λ). Hence the

fermionic δ-potential maintains the time-reversal invariance
as in the scalar case.

• The charge conjugated spinors ψC ≡ Cψ must satisfy the
conjugated matching conditions:

ψC(0+) = TC
δ (q, λ)ψ

C(0−), (15)

where the charge-conjugated matching matrix is:

TC
δ (q, λ) = γ 2Tδ(q, λ)

∗γ 2 = Tδ(−q, λ). (16)

Thus, the fermionic δ-potential as defined in (11) is not
invariant under charge conjugation changing q by −q as long
as q 6= 0. This result is what one expects implicitly considering
the term with the coupling q in (11) as an electrostatic
potential [14].

Therefore, we are led to solve simultaneously the spectral
problems for the Dirac Hamiltonian and its conjugate together
with the δ-matching condition and its conjugate:

H
(0)
D ψ(x) = ωψ(x); ψ(0+) = Tδ(q, λ)ψ(0

−), (17)

H
(0)
D φ(x) = ωφ(x); φ(0+) = Tδ(−q, λ)φ(0−). (18)

The eigenspinors of H
(0)
D with ω > m obeying the matching

condition in (17) correspond to electron scattering states,
whereas those with −m < ω < m refer to electron bound states.

On the contrary, the H
(0)
D eigenspinors with ω > m complying

with the matching condition in (18) can be treated as positron
scattering states, but those with −m < ω < m we attribute to
positron bound states.

The main objective of the present work is the study of this
spectral problem in 1D relativistic quantum mechanics in order
to build a fermionic quantum field theory system where the

one-particle/antiparticle states are the eigenstates of HD/H
(0)
D .

The fermionic Fock space is thus constructed from these eigen-
states instead of plane waves. In the next Section we introduce
the necessary notation and basic formulas to understand the
behavior of fermions in a flat background without any external
potential. In section 3 we consider the dynamics of a relativistic
1D Fermi particle and antiparticle in one electrostatic δ-potential
V = qδ(x)1 describing the effect of one impurity on the
free propagation. Fermions (antifermions) are either trapped in
bound states or distorted in scattering waves of HD (HD). The
charge density of the bound states is also computed. In section 4,
the same study is performed for a mass-spike delta potential V =
λδ(x)σ3. A summary and outlook are offered in the last section.
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2. ELECTRON/POSITRON PROPAGATION

ON A LINE

We consider the one-dimensional Dirac field

9(t, x) =

(

ψ1(t, x)

ψ2(t, x)

)

; ψ1(t, x) : R
1,1 → C, ψ2(t, x) : R

1,1 → C,

and set the following Dirac action:

SD =

∫

dt

∫

dx
{

9̄(t, x)
(

iγ µ∂µ −m
)

9(t, x)
}

, (19)

in the Dirac representation of the Clifford algebra taking into
account our choice of γ matrices. In the natural system of units,
the dimension of the Dirac field 9 is: [9] = L−1/2. The Euler-
Lagrange equation derived from the action (19) is the Dirac
equation

iσ3∂t9 = σ2∂x9 +m9 , (20)
(

i∂t −m i∂x
−i∂x −i∂t −m

)(

ψ1(t, x)
ψ2(t, x)

)

=

(

0
0

)

.

The time-energy Fourier transform

ψ1(t, x) =

∫

dω e−iωt ψω1 (x), ψ2(t, x) =

∫

dω e−iωt ψω2 (x),

reduces the PDE Dirac equation to the ODE system

(ω −m)ψω1 (x)+ i
dψω2
dx

= 0 , i
dψω1
dx

+ (ω +m)ψω2 (x) = 0.

(21)
It is clear that the system (21) is no more than the spectral
equation for the quantum mechanical free Dirac Hamiltonian:

H09
ω(x) = ω9ω(x) ,H0 = −iσ1

d

dx
+mσ3 =

(

m −i d
dx

−i d
dx

−m

)

,

acting on time-independent spinors2. We remark now that a
similar strategy based on time-energy Fourier transform also
works when the effect of an external static potential, like those
mentioned in the Introduction, is included in the action. The only
required modification is to replaceH0 byHD.

The analysis of free propagation also admits a position-
momentum Fourier transform:

ψω1 (x) =

∫

dkA(k)eikx, ψω2 (x) =

∫

dk B(k)eikx,

which converts the ODE system (21) in the algebraic
homogeneous system

(ω−m)A(k)−k B(k) = 0, kA(k)− (ω+m)B(k) = 0. (22)

2We shall refer as spinor fields to the Fermi fields even though in one-dimension

there is no spin.

Introducing the positive and negative energy eigenspinors which
satisfy (22) with k = 0,

9+(t, x) = A

(

e−imt

0

)

, 9−(t, x) = B

(

0

e+imt

)

,

it is easy to derive the non-trivial solutions of (22).
They occur if the following spectral condition holds

det

(

ω −m −k
k −(ω +m)

)

= 0 ≡ ω = ω± = ±
√

k2 +m2,

and the eigenspinors of moving electrons split in two types:
(1) Positive energy ω+ electron spinor plane waves moving along
the real axis with momentum k ∈ R. The solution of (22), B(k) =
k/(ω++m)A(k), implies that the positive energy eigenspinors are

9+(t, x; k)=A e−iω+teikx u+(k) , u+(k) =

(

1
k

ω++m

)

. (23)

(2) Negative energy ω− electron spinor plane waves moving
along the real axis with momentum k ∈ R. We choose the
solution A(k) = k/(ω− − m)B(k) of (22) to find the negative
energy eigenspinors

9−(t, x; k)=B e−iω−teikxu−(k) , u−(k) =

(

k
ω−−m

1

)

. (24)

In 1D space the concept of the holes in the Dirac sea is
implemented by replacing the negative energy spinors u−(k) with
the positron spinors,

v+(k) = γ 2u∗+(k) =

(

k
ω++m

1

)

. (25)

which are solutions of the conjugated Dirac equation:

(ω+m)φω1 (x)+i
dφω2
dx

= 0 , i
dφω1
dx

+(ω−m)φω2 (x) = 0 . (26)

Note that the v+(k) spinors are also orthogonal to the positive
energy spinors u+(k). We thus describe the propagation of 1D
fermions in terms of electron and positron plane waves:

ψ
+
k

∝ u+(k)e
ikxe−iω+t electron with momentum k, energy ω+

φ
+
k

∝ v+(k)e
ikxe−iω+t positron with momentum k, energy ω+

Therefore, from now on, we will work with the bihamiltonian
system given in (17-18), where the positron energy and the
electron energy are always chosen as ω = +

√
k2 +m2.

3. “ELECTROSTATIC”POINT

DELTA-INTERACTION

Consider now a relativistic 1D fermion whose free propagation
is disturbed by one impurity concentrated in one point
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that we describe by including a δ-potential. The one-
dimensional Dirac Hamiltonian with a single Dirac δ-potential
of “electrostatic”type is:

HEδ = −iσ1
d

dx
+ mσ3 + qδ(x)1, q = ν

e2

m2
∈ S

1 ,

ν ∈ (0, 2π
m2

e2
).

Recall that q is dimensionless: [q] = 1. The spectral equation for
this Hamiltonian HEδ9(x) = ω9(x) is equivalent to the Dirac
system of two first-order ODE’s:

− i
dψ2

dx
= (ω −m)ψ1(x), (27)

−i
dψ1

dx
= (ω +m)ψ2(x), (28)

where the eigenspinors for the free Dirac Hamiltonian in zone
I (x < 0) and those in zone II (x > 0), must be related across
the singularity at x = 0 by the “electrostatic”matching conditions
defined in (10):

(

ψ1(0
+)

ψ2(0
+)

)

=

(

cos q −i sin q
−i sin q cos q

)(

ψ1(0
−)

ψ2(0
−)

)

. (29)

Similarly, positron propagation disturbed by impurities that can
be studied through HEδ8(x) = ω8(x) is equivalent to the Dirac
system of two first-order ODE’s:

− i
dφ2

dx
= (ω +m)φ1(x), (30)

−i
dφ1

dx
= (ω −m)φ2(x). (31)

The solution of the system (30)–(31) is identical to the solution
of the previous system but the “electrostatic”matching conditions
must be conjugated:

(

φ1(0
+)

φ2(0
+)

)

=

(

cos q i sin q
i sin q cos q

)(

φ1(0
−)

φ2(0
−)

)

. (32)

Our goal is to search for, bound states, i.e., |ω| < |m|, and
scattering states, i.e., |ω| > |m|, both for the case of electrons
and positrons.

3.1. Relativistic Electron and Positron

Bound States
In order to compute bound states, exponentially decaying
solutions of (27)–(28) system in zone I must be related to
exponentially decaying solutions of the same system in zone II
by implementing the electrostatic matching conditions (29) to
identify the electron bound states and identical procedure will
provide positron bound states replacing the ODE system by
(30)–(31) and using the matching condition (32).

• Zone I: x < 0

ψ I
1(x, κ) = AI(κ)eκx, ψ I

2(x, κ) = BI(κ)eκx , κ > 0.

Plugging this ansatz in the spectral equation system (27)–(28)
one finds a linear algebraic homogeneous system in AI and
BI whose solution (taking into account that the value of the
energyω =

√
m2 − κ2 is compatible with bound states in zone

I provided that 0 < κ < |m|) is the following eigenspinor:

9I
+(x, κ) = AI

+(κ)

(

1
−iκ
ω+m

)

eκx. (33)

• Zone II: x > 0

ψ II
1 (x, κ) = AII(κ)e−κx , ψ II

2 (x, κ) = BII(κ)e−κx, κ > 0.

Similarly, plugging this ansatz in the spectral equation system
(27)–(28) one finds a linear algebraic homogeneous system in
AII and BII whose solution (taking into account the possible
value of the energy ω compatible with the existence of bound
states in zone II provided that 0 < κ < |m|) is the
following eigenspinor:

9II
+(x, κ) = AII

+(κ)

(

1
iκ
ω+m

)

e−κx. (34)

In order to join the eigenspinors in zone I with those in zone II at
x = 0, we impose the matching conditions at the origin (29) and
obtain the linear homogeneous system:

(

− cos q+
κ sin q
ω+m 1

i(sin q+
κ cos q
ω+m ) iκ

ω+m

)

·

(

AI
+

AII
+

)

=

(

0
0

)

. (35)

Non null solutions of the homogeneous system (35) correspond
to the roots of the determinant of the previous 2×2matrix. In the
same way, imposing similar anstaz for the φ field and solving the
spectral equation system (30)–(31) the possible eigenstates take
the form

• Zone I: x < 0

8I
+(x, κ) = DI

+(κ)

(

−iκ
ω+m
1

)

eκx. (36)

• Zone II: x > 0

8II
+(x, κ) = DII

+(κ)

(

iκ
ω+m
1

)

e−κx. (37)

Relating the spinors in both zones through the matching
condition for positrons in x = 0 (32) we obtain the linear
homogeneous system

(

− cos q−
κ sin q
ω+m 1

i(− sin q+
κ cos q
ω+m ) iκ

ω+m

)

·

(

DI
+

DII
+

)

=

(

0
0

)

, (38)

that allow us to obtain the bound states of positrons.
Since the parameter q is an angle and because the δ-potential

is defined by means of trigonometric functions, the signs of κ ,ω
change in every quadrant. The outcome is that there exists one
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FIGURE 1 | Bound states for electrons and positrons in an electrostatic

δ-potential (λ = 0).

bound state in each quadrant, two for electrons and two for

positrons, distributed as shown in the Figure 1.
These bound states correspond to one positive energy electron

trapped in either one positive or negative energy state and
one positive energy positron trapped alternatively in positive or
negative energy states. This structure is periodic in q.

Positron bound states

1. 0< q < π
2 ; κb = m sin q > 0, ωb =

√

m2 − κ2
b
= m cos q > 0

DII
+ = DI

+,

8(x, κb) = D+

(

i sign(x)
sin q

1+cos q

1

)

e−m|x| sin q. (39)

2. π <q< 3π
2 ; κb=−m sin q>0, ωb=

√

m2 − κ2
b
=−m cos q>0

DII
+ = −DI

+,

8(x, κb) = D+

(

i sin q
1−cos q

−sign(x)

)

em|x| sin q. (40)

Electron bound states

1. π
2 <q<π ; κb= m sin q>0, ωb =

√

m2 − κ2
b
=−m cos q > 0

AII
+ = −AI

+,

9(x, κb) = A+

(

−sign(x)
−i sin q
1−cos q

)

e−m|x| sin q. (41)

2. 3π
2 <q<2π ; κb=−m sin q>0, ωb=

√

m2−κ2
b
= m cos q > 0

AII
+ = AI

+,

9(x, κb) = A+

(

1

−i sign(x)
sin q

1+cos q

)

em|x| sin q. (42)

It is worthwhile to mention that if q = π
2 or q = 3π

2 zero modes
exist. For instance when q = π

2 we have κb = m, ωb = 0 whereas
the eigenspinor reads:

8(x,m) = D+

(

i sign(x)
1

)

e−m|x| .

We stress that the bound states just described are closer to the
bound states in the scalar case with mixed potential of the form
V(x) = −aδ(x)+bδ′(x) (see [23]). In both cases the normalizable
wave functions exhibit finite discontinuities at the origin.

3.2. On the Charge Density
The charge density can be written as:

j0(t, x) = ±Qϕ(t, x)γ 0ϕ(t, x) = ±Qϕ†(t, x)ϕ(t, x)

= ±Q
(

ϕ∗1 (t, x)ϕ1(t, x)+ ϕ
∗
2 (t, x)ϕ2(t, x)

)

, (43)

being Q a positive constant and taken into account that+ will be
chosen in the case of electrons and − for positrons. On the one
hand, if we substitute the positron bound states (39, 40) in (43)
the charge density obtained is

j0(x) = −mQ sin q e−2m|x| sin q, iff 0 < q <
π

2
. (44)

j0(x) = +mQ sin q e2m|x| sin q, iff π < q <
3π

2
. (45)

On the other hand, if we substitute the electron bound states (41,
42) in (43) the charge density obtained is

j0(x) = +mQ sin q e−2m|x| sin q, iff
π

2
< q < π . (46)

j0(x) = −mQ sin q e2m|x| sin q, iff
3π

2
< q < 2π . (47)

All the results are shown in Figure 2.

3.3. Relativistic Electron and Positron

Scattering Spinors
We pass to study the scattering of 1D Dirac particles through
a Dirac electrostatic δ-potential (V(x) = qδ(x)1) in order to
obtain the scattering amplitudes. On the one hand, electron
scattering spinors coming from the left toward the δ-impurity
(“diestro”scattering) have the form:

9R(x, k) =

{

u+(k) e
ikx + ρR(k) γ

0u+(k) e
−ikx, x < 0

σR(k) u+(k) e
ikx, x > 0

, (48)

where u+(k) is the positive energy electron spinor that solves the
free static Dirac equation for plane waves moving along the real
line (23). The solutions in both zones are related at the origin
through the electrostatic δ-matching conditions (10) if and only
if the transmission and reflection scattering amplitudes are:

σR(k) =
k

k cos q+ i
√
k2 +m2 sin q

,
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FIGURE 2 | Charge density as a function of x when Q = m = 1 and λ = 0

(electrostatic δ-potential). For 0 < q < π/2 and π < q < 3π/2 the charge

densities of a positron bound state are plotted [(44), (45), respectively]. For

π/2 < q < π and 3π/2 < q < 2π the charge densities of a electron bound

state are plotted [(46), (47), respectively].

ρR(k) = −
i m sin q

k cos q+ i
√
k2 +m2 sin q

, (49)

which obviously satisfy the unitarity condition:
∣

∣

∣
σR(k)

∣

∣

∣

2
+

∣

∣

∣
ρR(k)

∣

∣

∣

2
= 1. On the other hand, electrons coming from the

right toward the δ-impurity, (“zurdo”scattering), are described
by spinors of the form

9L(x, k) =

{

σL(k) γ
0u+(k) e

−ikx, x < 0

ρL(k) u+(k) e
ikx + γ 0u+(k) e

−ikx, x > 0
,

(50)
The δ-well matching conditions (10) for this “zurdo” scattering
ansatz are satisfied if σR(k) = σL(k) and ρR(k) = ρL(k). It is
worth noting that

• Since the scattering amplitudes for “diestro”and
“zurdo”scattering of the electrons through an electrostatic
δ-potential are identical, the processes governed by this
potential are parity and time-reversal invariants.

• Purely imaginary poles k = iκ of the transmission amplitude
σ are the bound states of the spectrum if κ is real and positive.
In formula (49) we observe that poles of this type appear if the
imaginary momentum satisfies the equation

κb
√

m2 − κ2
b

= − tan q,

which admits positive solutions for κb only if tan q < 0, i.e.,
if q lives in the second or fourth quadrant. Moreover, explicit
solutions of the previous equation are: κb = ±m sin q, i.e.,

assuming that m > 0 the plus sign must be selected in the
second quadrant and the minus sign is valid in the fourth
quadrant.

• Probability is conserved even in this relativistic quantum
mechanical context provided that ω2 > m2,m > 0.

For positrons, the “diestro”scattering ansatz of the spinor (that is
a solution of the conjugate Dirac equation in zones I and II) is

8R(x, k) =

{

v+(k) e
−ikx − ρ̃R(k) γ

0v+(k) e
ikx, x < 0

σ̃R(k) v+(k) e
−ikx, x > 0

,

(51)
where v+(k) is the positive energy positron spinor that represents
plane waves moving along the real line (25). By imposing the
matching conditions on x = 0 (18), the following scattering
coefficients are obtained

σ̃R(k) =
k

k cos q− i
√
k2 +m2 sin q

,

ρ̃R(k) =
i m sin q

k cos q− i
√
k2 +m2 sin q

. (52)

Again, unitarity is preserved:
∣

∣

∣
σ̃ (k)

∣

∣

∣

2
+
∣

∣

∣
ρ̃R(k)

∣

∣

∣

2
= 1.

The “zurdo”positron scattering ansatz, however, takes
the form

8L(x, k) =

{

−σ̃L(k) γ
0v+(k) e

ikx, x < 0

ρ̃L(k) v+(k) e
−ikx − γ 0v+(k) e

ikx, x > 0
,

(53)
Again, by imposing the matching conditions on x = 0 (18),
we find that σ̃L(k) = σ̃R(k) and ρ̃L(k) = ρ̃R(k). It is worth
noting that

• The scattering amplitudes for “diestro” and “zurdo” scattering
of positrons through an electrostatic δ-well are identical: there
is no violation of parity and time reversal invariance in the
scattering of positrons by δ-impurities.

• The purely imaginary k = iκ poles of σ̃ are the positron bound
states in the spectrum of the conjugate Dirac Hamiltonian. In
formula (52) we observe that poles of this type appear if the
imaginary momentum satisfies the equation

κb
√

m2 − κ2
b

= tan q,

which admits positive solutions for κb only if tan q > 0, i.e.,
if q lives in the first or third quadrant. Between the explicit
solutions of this equation, κb = ±m sin q, the plus sign must
be chosen in the first quadrant, and the minus sign in the third
quadrant assuming thatm > 0.

• The relations between diestro and zurdo scattering amplitudes
for electrons and positrons are as follows:

σR(k) = σL(k) = σ̃ ∗
R (k) = σ̃ ∗

L (k),

ρR(k) = ρL(k) = ρ̃∗R(k) = ρ̃∗L (k). (54)
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The unitary S-matrix

S =

(

σ (k) ρ(k)
ρ(k) σ (k)

)

, S
† · S = I,

encodes the phase shifts in its spectrum; λ± = σ ± ρ = e2iδ±(k).
The phase shifts δ±(k) in the even and odd channels are thus

tan 2δ±(k) =
Im(σ (k)± ρ(k))

Re(σ (k)± ρ(k))
,

whereas the total phase shift δ(k) = δ+(k) + δ−(k) is
easily derived:

tan 2δ(k) =
Im[σ 2(k)− ρ2(k)]

Re[σ 2(k)− ρ2(k)]
=

2k
√
k2 +m2 sin(2q)

m2 − (2k2 +m2) cos(2q)
.

4. “MASS-SPIKE”δ-POTENTIAL

Next, we consider the one-dimensional Dirac Hamiltonian with
a single Dirac δ-potential disturbing the mass term:

HMδ = −iσ1
d

dx
+ (m+ λδ(x))σ3.

4.1. Relativistic Bound States in

Mass-Spike δ Wells
Firstly, we will search for bound states where electrons and
positrons are trapped by mass-spike δ wells. In the case
of electrons, away from the singularity the positive energy
spinors take the form (33, 34). The continuation to the
whole real line is achieved by applying to those spinors the
relativistic matching conditions at the origin x = 0 (12)
as follows:

(

ψ II
1+(0, κ)

ψ II
2+(0, κ)

)

=

(

cosh λ i sinh λ
−i sinh λ cosh λ

)(

ψ I
1+(0, κ)

ψ I
2+(0, κ)

)

.(55)

In this way, we obtain the following homogeneous algebraic
system written in matrix form as:









−
(

cosh λ+ κ sinh λ

m+
√
m2−κ2

)

1

i
(

κ cosh λ

m+
√
m2−κ2

+ sinh λ
)

iκ

m+
√
m2−κ2













AI
+

AII
+



 =





0

0



 .

(56)
The determinant of this 2 × 2 matrix is zero such that there is
a non null solution of (56) if κb = −m tanh λ which provides
a normalizable spinor only if λ < 0. The energy of the electron
bound state is ωb = m sechλ. This bound state spinor is extended
to the whole line by means of the condition AII

+ = AI
+, i.e., the

spinor takes the form:

9+(x, κb) = A+

(

1

−i sign(x) sinh λ
1+cosh λ

)

em|x| tanh λ. (57)

The charge density of this bound state is obtained by

replacing the spinor (57) in the equation (43), arriving at
the result

j0(x) = −mQ tanh λ e2m|x| tanh λ, (58)

which is represented in Figure 3.
Investigation of positron bound states requires applying the

same relativistic matching conditions (12) at the origin to
the bound state positron spinors (36)–(37) in order to obtain
the following homogeneous algebraic system written in matrix
form as:







i
(

κ cosh λ

m+
√
m2−κ2

− sinh λ
)

iκ

m+
√
m2−κ2

− cosh λ+ κ sinh λ

m+
√
m2−κ2

1











DI
+

DII
+



 =





0

0



 .

(59)
The determinant of this 2 × 2 matrix is zero such that there is
a non null solution of (59) if κb = m tanh λ. This imaginary
momentum provides a normalizable spinor only if λ > 0. The
energy of this positron bound state is ωb = m sech λ. The
spinor bound state is extended to the whole line by means of the
condition DII

+ = DI
+:

8+(x, κb) = D+

(

i sign(x) sinh λ
1+cosh λ

1

)

e−m|x| tanh λ. (60)

The charge density of this bound state is obtained by replacing
the spinor (60) in the equation (43), arriving at the result

j0(x) = −mQ tanh λ e−2m|x| tanh λ, (61)

which is represented in Figure 4.

4.2. Electron and Positron Scattering

Spinors
To obtain the scattering amplitudes for electrons coming from
the left (“diestro”scattering) on mass-spike impurities the free
spinors in zones I and II away from the origin (48) must be joined
by using the SU(1, 1) matrix appearing in (55). More explicitly,

FIGURE 3 | Charge density (58) as a function of x for electrons when

Q = m = 1 and q = 0 (mass-spik δ-potential).
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FIGURE 4 | Charge density (61) as a function of x for positrons when

Q = m = 1 and q = 0 (mass-spike δ-potential).

this matching sets an algebraic system whose solutions are the
scattering coefficients:

σR(k) =
k

k cosh λ+ im sinh λ
, ρR(k) =

−i
√
k2 +m2 sinh λ

k cosh λ+ im sinh λ
,

which obviously respect probability conservation:

∣

∣

∣
σR(k)

∣

∣

∣

2
+
∣

∣

∣
ρR(k)

∣

∣

∣

2
= 1.

Repeating this procedure for the “zurdo”scattering spinorial
ansatz (50) we conclude with the same relativistic δ-interaction
scattering amplitudes as in “diestro”scattering. In sum

• The scattering amplitudes for diestro and zurdo scattering
of electrons through a mass-spike δ-interaction are identical.
This means that the mass-spike δ interaction respect both
parity and time-reversal symmetries.

• The S-matrix is unitary and the phase shifts appear as the
exponents of its eigenvalues. The total phase shift is:

tanh 2δ(k) =
Im[σ 2(k)− ρ2(k)]

Re[σ 2(k)− ρ2(k)]
=

−2km sinh 2λ

k2 +m2 + (k2 −m2) cosh 2λ
.

• The purely imaginary poles of the transmission amplitude
σ (k) with positive imaginary part are the bound states of the
spectrum and occur when: kb = iκb = −im tanh λ, i.e.,
ωb = m sechλ. It must be fulfilled that tanh λ < 0.

Investigation of the positron “diestro”scattering amplitudes is
achieved by imposing the relativistic matching conditions

8II
+(0, k) =

(

cosh λ i sinh λ
−i sinh λ cosh λ

)

·8I
+(0, k),

on the positron spinor scattering ansatz (51). This criterion is
tantamount to an algebraic system for the scattering amplitudes
whose solutions are:

σ̃R(k) =
k

k cosh λ− im sinh λ
, ρ̃R(k) =

i
√
k2 +m2 sinh λ

k cosh λ− im sinh λ
,

which also respects probability conservation:

∣

∣

∣
σ̃R(k)

∣

∣

∣

2
+
∣

∣

∣
ρ̃R(k)

∣

∣

∣

2
= 1 .

To avoid repetitions, we skip a detailed computing of the positron
scattering amplitudes for “zurdo”scattering, we merely states that
are identical to the scattering amplitudes for positrons coming
from the left toward the δ-obstacle. Thus, we summarize themain
features of positron scattering through a mass-spike δ-imputity
as follows:

• The scattering amplitudes for diestro and zurdo scattering of
positrons through a mass-spike δ-interaction are identical to
each other. Therefore, there is no breaking of either parity or
time-reversal symmetries.

• The S-matrix is unitary and the phase shifts appears as
the exponents of its eigenvalues. The total phase shifts for
positrons are

tanh 2δ̃(k) =
Im[σ̃ 2(k)− ρ̃2(k)]

Re[σ̃ 2(k)− ρ̃2(k)]
=

2km sinh 2λ

k2 +m2 + (k2 −m2) cosh 2λ
.

• The purely imaginary poles of the transmission amplitude σ̃ (k)
with positive imaginary part are the positron bound states of
the spectrum and occur when kb = iκb = im tanh λ, i.e.,
ωb = m sechλ. It must be fulfilled that tanh λ > 0.

• The relations between diestro and zurdo scattering amplitudes
for electrons and positrons in a mass-spike δ-potential are
as follows:

σR(k) = σL(k) = σ̃ ∗
R (k) = σ̃ ∗

L (k),

ρR(k) = ρL(k) = ρ̃∗R(k) = ρ̃∗L (k). (62)

5. SUMMARY AND OUTLOOK

The spectrum of the 1D Dirac Hamiltonian providing the one-
particle spectrum for 1D electrons and positrons has been
analyzed when there is one impurity that distorts the free
propagation of fermions. We have implemented the impurity
by means of Dirac δ-potentials of two types that we denote
respectively as electrostatic and mass-spike according to their
physical meaning.

In the electrostatic case (where the coupling is an angle) we
find that:

1. There are two quadrants (π/2 < q < π and 3π/2 < q <
2π) where the coupling of the δ-interaction gives rise to one
electron bound state. One positron bound state arise in the
other two quadrants (0 < q < π/2 and π < q < 3π/2).
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2. Regarding scattering amplitudes we found that positrons
and electrons are scattered by the impurity so that the
electron scattering coefficients are the conjugate of the
positron ones.

For mass-spike δ-potentials our results are:

1. There is one bound state of electrons if the coupling is negative
and other one of positrons if the coupling is positive.

2. The scattering amplitudes of electrons due to a mass-spike
δ-impurity are the conjugate of positrons ones.

We plan to continue this investigation along the following lines
of research:

• First, our purpose is to study the effect on free fermions of an
impurity carrying both electrostatic and mass-spike couplings.

• Second, it is our intention to consider two, several or even
infinity δ-impurities (often called as δ-comb potential), as the
periodic potentials arise in various materials models.

• Third, after having managed all these tasks, we envisage
to compute quantum vacuum energies and Casimir forces
induced by these 1D fermions, in a parallel analysis to that
performed for bosons in [17] and references quoted therein.
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We use the point-particle effective field theory (PPEFT) framework to describe

particle-conversionmediated by a flavor-changing coupling to a point-particle. We do this

for a toymodel of two non-relativistic scalars coupled to the same point-particle, on which

there is a flavor-violating coupling. It is found that the point-particle couplings all must be

renormalized with respect to a radial cut-off near the origin, and it is an invariant of the flow

of the flavor-changing coupling that is directly related to particle-changing cross-sections.

At the same time, we find an interesting dependence of those cross-sections on the ratio

kout/kin of the outgoing and incoming momenta, which can lead to a 1/kin enhancement

in certain regimes. We further connect this model to the case of a single-particle

non-self-adjoint (absorptive) PPEFT, as well as to a PPEFT of a single particle coupled to

a two-state nucleus. These results could be relevant for future calculations of any more

complicated reactions, such as nucleus-induced electron-muon conversions, monopole

catalysis of baryon number violation, as well as nuclear transfer reactions.

Keywords: flavor violation, effective field theories, catalysis, high energy physics - theory, nuclear theory

1. INTRODUCTION

It is often the case that physically interesting situations involve a hierarchy of characteristic scales.
For instance, solar system dynamics involve a variety of length scales, such as the sizes of the
stars and planets involved, as well as the sizes of the orbits. Exploiting such a hierarchy by means
of judicious Taylor expansions can greatly simplify otherwise very difficult problems, frequently
even providing a handle on seemingly intractable problems. In the realm of quantum field theory,
this insight has led to the development of the highly successful effective field theories, which can
reduce the complexity of quantum field theories by restricting to parameter subspaces in which an
appropriate Taylor expansion can be used to put the theory into a simpler form.

Usually, effective field theories exploit the hierarchy between interaction energies and the
masses of some heavy particles to remove those heavy particles from the theory altogether (the
quintessential example being Fermi’s theory of the Weak interaction, which removes the heavy W
and Z bosons) [1–4]. However, it is often the case that one’s interest lies in a sector of the theory that
still contains one or two of the heavy particles. For instance, in an atom, a heavy nucleus is present,
but for most purposes there is no need to go about computing loops of nucleus-anti-nucleus pairs.
Instead, higher energy nuclear dynamics are seen as finite nuclear-size effects. For this reason, an
EFT has recently been explored that describes the remnant heavy particles in position-space to
exploit the hierarchy of energy scales in a more intuitive expansion in kR, where k is the (small)
momentum of the light particle and R is the length-scale of the nuclear structure [5–7]. This is
accomplished in a simple way; the usual effective action is supplemented by a “point-particle”
action that involves all possible couplings of the light particle to the worldline of the remnant heavy
(point-like) particle (consistent with the symmetries of the low-energy theory). This type of “point-
particle” EFT (PPEFT) is conceptually the next best thing to a Fermi type of EFT. While the nuclear

133

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2019.00167
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2019.00167&domain=pdf&date_stamp=2019-11-05
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:haymanpf@mcmaster.ca
https://doi.org/10.3389/fphy.2019.00167
https://www.frontiersin.org/articles/10.3389/fphy.2019.00167/full
http://loop.frontiersin.org/people/621863/overview


Hayman and Burgess Point-Particle Catalysis

dynamics cannot be removed altogether, they are
significantly simplified.

The practicality of a PPEFT is two-fold: first it easily permits
parameterizing physical quantities in terms of small nuclear
properties, since the PPEFT expansion is directly in powers
of kR. Second, that parameterization is completely general,
and inherently includes all possible interactions, including any
potential new physics. Some obvious examples that have been
explored are cross-sections and bound-state energies of electrons
in terms of nuclear charge radii [7, 8]. In this work, we ask the
question: how do the small nuclear properties enter into physical
quantities when there are multiple channels of interaction with
the point-particle? (We ask this with mind toward eventually
describing nuclear transfer reactions, and possibly baryon-
monopole reactions which are known to suffer from questions of
self-adjointedness of the Hamiltonian similar to those we address
in this article [9, 10]).

To answer this question, we consider a simple toy model
of two bulk Schrödinger (complex) fields coupled to the same
point particle. The most general couplings to the point-particle’s
worldline yµ(τ ) are easily generalized from the single particle
species (SP) examples explored in Burgess et al. [5] to the multi-
particle (MP) case.

S
(SP)
b
= −

∫

dτ

√

−ẏ2 [M + h9∗9 + . . . ] −→

S
(MP)
b
= −

∫

dτ

√

−ẏ2 [M +9∗i hij9j + . . . ], (1.1)

where9 , 9i are bulk (complex) scalars, and the flavor index runs
over 1 and 2. hij is a matrix of coupling constants that generalizes
the single-particle coupling h, and the integral is over the proper

time τ of the point-particle (ẏµ : =
dyµ

dτ
is the point-particle’s

4-velocity). Away from the point-particle, the action is just the
usual Schrödinger action for (now) two scalars,

S
(MP)
B =

2
∑

i=1

∫

d4x

{

i

2

(

9∗i ∂t9i −9i∂t9
∗
i

)

−
1

2mi
|∇9i|

2 − V(r)|9i|
2

}

. (1.2)

[V(r) is some bulk potential that may be sourced by the point-
particle. In the main text we take it to be an inverse-square
potential, since such a potential is highly singular and known
to drive interesting behavior in a PPEFT [5]. For the moment it
suffices to drop the potential]. If the bulk action (1.2) diagonalizes
themomentum it need not diagonalize the brane action (1.1), and
it is possible the off-diagonal elements of h (the matrix of hij) can
source flavor-violating interactions.

In the center-of-mass reference frame (in the limit of infinite
point-particle mass1), the action (1.1) acts as a boundary
condition at the origin for the modes of the 9i fields. However,
in general those diverge, and so the action has to be regulated at

1We neglect here recoil effects, though those can be included by tracking the

dynamics of yµ(τ ).

some finite radius ǫ. The couplings hmust then be renormalized
to keep physical quantities independent of the regulator, and it
turns out that the (low-energy s-wave) cross-section for flavor
violation is directly related to an invariant (ǫ3) of the RG-flow
of the off-diagonal h12:

σ (1→2)
s = 4π

k2

k1
ǫ23 , (1.3)

where k1 and k2 are the incoming and outgoing momenta,
respectively. For Schrödinger particles, the factor k2/k1 =√
m2/m1 is a constant. However, the same formula holds

for spinless relativistic particles, and the ratio k2/k1 =
√

(k21 +m2
1 −m2

2)/k
2
1 leads to different qualitative behaviors of

the low-energy cross-section depending on how k1 relates to the
mass gapm2

1−m2
2. If the mass gap is positive, and k21≪m2

1−m2
2,

then the cross-section exhibits a 1/k1 enhancement. Both the
dependence on ǫ3 and on k1 may prove to be useful in a more
complicated calculation, such as in mesic transfer reactions π0 +
p→ π++ n (where the neutron and proton are in a nucleus), or
possible flavor changing reactions involving new physics, such as
µ− + N → e− + N [11, 12].

The channels of interaction with the point-particle do not
have to be different bulk species, however. If, for example, the
nucleus carried two accessible energy states, say E↑ = M +1/2
and E↓ = M − 1/2 (where 1 ≪ M is some small excitation
energy), then two channels of interaction could be a single bulk
particle interacting with each of the nuclear energy eigenstates.
In this case the “flavor-violating” cross section is again (1.3),
where now k1 and k2 are the incoming and outgoing single-

particle momenta, and k2/k1 = kout/kin =
√

(k2in ± 2m1)/k2in
with the ± corresponding to the bulk particle impinging on a
nucleus in the ground state (−) or the excited state (+), and
where m is the mass of the single bulk species (recall we work in
the non-recoil limit). On its own, this description is enough for
any simple reaction ψ + N → ψ + N∗, where an incident non-
relativistic particle just knocks a nucleus into a long-lived slightly
energized state. Together, the two-species and two-nuclear state
models form the building blocks for exploring more complicated
processes, such as nuclear transfer reaction, where an incident
particle exchanges some constituent particles with a nucleus, and
the final state both violates flavor of the bulk species and changes
the state of the source nucleus.

Finally, we can also look toward simpler models instead. One
may imagine for instance only being interested in tracking one
of the bulk-species, say particle 1 (perhaps an apparatus can only
detect particles of flavor 1). In that case, the flavor-violating cross-
section appears as an absorptive interaction when restricting to
the particle 1 subspace of the theory. In this way, our toy model
can be seen as a particular unitary completion of a model with
a single particle subject to a non-self-adjoint Hamiltonian, as
studied in Plestid et al. [13] and frequently used in the form of
nuclear optical models [14, 15].

The rest of this paper is organized as follows. First, we
briefly recall the salient details of a simple PPEFT for a single
bulk species. Then in section 3, we establish the action and
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classical solutions to a point-particle EFT involving two bulk
species, followed by section 4 in which we solve the boundary
conditions of the system, and determine how all of the point-
particle couplings run. All of this comes together in section 5
where we compute how the point-particle properties relate to
physical cross-sections, including the cross-section for flavor-
violation. In section 6 we connect the multi-bulk species story
to a single particle coupled to a two-state nucleus. Finally, we
wrap up in section 7 by restricting to a single-particle subsector
of the multi-species model, and realizing the equivalence to the
absorptive model of Plestid et al. [13].

2. POINT-PARTICLE EFT FOR A SINGLE

BULK SPECIES

We review the point-particle effective field theory for a
single Schrödinger particle in an inverse-square potential, first
described in Burgess et al. [5].

In the point-particle effective field theory approach, we
exploit the hierarchy of length-scales between the characteristic
wavelength of some low-energy particle of mass m (for
concreteness, call this some scalar electron) and the scale of some
small, almost point-like particle of massM≫m it interacts with
(similarly, we will call this a nucleus). For example, in atomic
systems, this would be the ratio R/a0 between the size R of a
nucleus and the Bohr radius a0 of the atom. For scattering, the
small parameter is more directly kR, with k the wavenumber
of the incident particle. The way we exploit this hierarchy is to
recall that the low energy dynamics of the heavy particle are well
approximated by ordinary quantum mechanics, so we imagine
only first-quantizing the nucleus. In that case the fully second-
quantized electron only couples to the 1-dimensional world-line
of the heavy particle. This amounts to writing the action for the
electron S = SB + Sb in terms of the usual bulk dynamics2

SB =

∫

d4x

{

i

2

(

9∗∂t9 −9∂t9
∗
)

−
1

2m
|∇9|2 − V(r)|9|2

}

(2.1)
as well as a boundary term consisting of interactions between the
electron and the nuclear worldline,

Sb = −

∫

dτ

√

−ẏ2
(

M + h |9(y)|2 + . . .
)

. (2.2)

In (2.1), V(r) may be some potential sourced by the point-
particle, and the dots represent terms of higher powers in kR.
In what follows, we choose V(r) =

g

r2
. On its own, the

excessive singularity of the inverse-square potential leads to
ambiguities regarding the boundary condition at the origin [16].
Considerations of the self-adjointness of the Hamiltonian are
often used to help resolve this difficulty, in particular by means
of self-adjoint extensions [17–23]. A PPEFT however provides
a natural solution to this problem by tying the near-source
boundary condition unambiguously to the high-energy physics
of the point particle, which may or may not lead to a self-adjoint

2We use a mostly plus metric, and work in units such that h̄ = c = 1.

Hamiltonian for the light degrees of freedom (for an example
where probability for the bulk field is lost see [13], and the
discussion in chapter 7, below). For a single bulk species this
was considered in detail in Burgess et al. [5], and in particular it
was shown that the inverse-square potential leads to a non-trivial
renormalization of the point-particle coupling h. We briefly recall
the results of that calculation below, and in the next section we
will ask whether or not similar behavior is seen in the flavor-
changing coupling.

Now through (2.2), there are couplings on the world-line
yµ(τ ) of the nucleus (parameterized by its proper time τ , so

that ẏµ : =
dyµ

dτ
is the 4-velocity of the nucleus). The first term

√

−ẏ2M can be recognized as the usual action for a point-particle
[24], while the second term is the lowest-order (in powers of
length) coupling between the electron and the nucleus, with
the dots representing interactions of higher order in kR. For a
spherically symmetric nucleus, the coupling h is a constant.

For simplicity, and to emphasize the value of the point-particle
interactions, we work in the limit of infinite nuclear mass, where
yµ = (t, 0, 0, 0) is the center-of-mass frame, and τ = t. This
amounts to neglecting nuclear recoil, but that can be included by
explicitly tracking the dynamics of yµ(τ ). Requiring the action to
remain stationary with respect to variations of9∗ that vanish on
the boundary yields the usual Schrödinger equation in the bulk

(

i∂t +
∇2

2m
−

g

r2

)

9 = 0, (2.3)

while including variations on the boundary leads to the
boundary condition

lim
ǫ→0

4πǫ2∂ǫ9ℓ = lim
ǫ→0

2mh9ℓ(ǫ), (2.4)

which defines ∂ǫ : = ∂r|ǫ , 9ℓ as the ℓ
th eigenfunction of angular

momentum. However, it is typically the case that one cannot
carry out the limit in (2.4)—indeed, in our effective theory, ǫ → 0
is the UV regime we do not claim to understand anyway. The
solution to this problem is to replace the point-particle action
(2.2) with a boundary action defined on the surface of a ball Bǫ
of radius ǫ centered at the world-line of the point-particle (see
Appendix A of [5]). In the center of mass frame of reference, this
has the form:

SB = −
1

4π

∫

∂Bǫ

d2�

(

M +
∑

ℓ

hℓ|9ℓ(ǫ)|
2

)

(2.5)

and yields the revised boundary condition

4πǫ2∂ǫ9ℓ = 2mhℓ9ℓ(ǫ). (2.6)

Here, h has been replaced by a different coupling hℓ to each
angular momentum mode of the bulk particle (for more on
why this is the case, see [13]). With the limit now gone, the
fictitious scale ǫ appears explicitly in the boundary condition
for the bulk field, and so runs the risk of appearing in physical
quantities. The way around this is to observe that hℓ is not itself a
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physical quantity, and so must be renormalized with ǫ such that
all physical quantities in the boundary condition (2.6) remain
ǫ-independent. We explicitly compute this running next.

The bulk equations (2.3) (now defined only outside Bǫ) are
solved by

9 = e−iEt (C+ψ+ + C−ψ−)Yℓ,m, (2.7)

where E is the electron energy, Yℓ,m are the usual spherical
harmonics, and the mode functions are

ψ±(ρ) : = ρ
1
2 (−1±ζ )e−ρ/2M

[

1

2
(1± ζ ) , 1± ζ ; ρ

]

(2.8)

which defines k2 : = 2mE, ρ : = 2ikr, and ζ : =
√

(2ℓ+ 1)2 − 8mg. For simplicity, in this paper we will restrict
to the case mg ≤ 1/8 so that ζ is always real. Taking the
small kǫ limit of (2.8), the boundary condition determines the
renormalization-group flow of the coupling hℓ through

λ̂ =
1− C−

C+
(2ikǫ)−ζ

1+ C−
C+

(2ikǫ)−ζ
=

1+ (ǫ/ǫ⋆)
−ζ

1− (ǫ/ǫ⋆)−ζ
, (2.9)

where λ̂ : = 1
ζ
(mh/πǫ + 1) (we drop the subscript ℓ for

convenience), y : = sgn(|λ̂| − 1) defines a renormalization-
group trajectory, and ǫ⋆ is an RG-invariant length scale, both
determined by the physical quantity

C−

C+
= −y(2ikǫ⋆)

ζ . (2.10)

Physical quantities like scattering cross-sections and bound-
state energies are directly related to the ratio C−/C+, and so
through (2.10) directly to the quantity ǫ⋆, which is fundamentally
a property of the source. The usefulness of the inverse-square
potential lies in how it can force non-trivial RG behavior upon
the point-particle coupling. For example, the running (2.9) has an
“infrared” fixed point of+1 when ǫ/ǫ⋆ →∞, which corresponds
to ǫ⋆ → 0. For the s-wave in the absence of an inverse-square
potential, ζ (ℓ = 0) = 1 and this would be equivalent to vanishing
point-particle coupling, but if the strength of the inverse-square
potential g 6= 0, then the fixed point is driven away from a
vanishing point-particle coupling.

In the next section, we generalize all of this to a bulk
system composed of multiple species of particles (though for
concreteness, we specialize to two species). We see how most
of the above follows through identically, but the presence of
boundary terms that mix flavors adds a new degree of complexity
to the problem, introducing a new point-particle coupling which
runs differently from (2.9) and opening the door to flavor-
changing reactions.

3. MULTI-SPECIES ACTION AND BULK

FIELD EQUATIONS

The simplest extension of the basic point-particle action (2.2) to
multiple particles is a non-diagonal quadratic one:

S
(MP)
b
= −

∫

dτ

√

−ẏ2 [M +9∗i hij9j + . . . ] (3.1)

where now there are N complex scalar Schroödinger fields 9i,
and summation over the species index is implied. The bulk action
is taken to diagonalize the momentum operator, so flavor mixing
only happens at the point particle, and the bulk action is simply
N copies of (2.1):

S
(MP)
B =

N
∑

i=1

∫

d4x

{

i

2

(

9∗i ∂t9i −9i∂t9
∗
i

)

−
1

2mi
|∇9i|

2 − V(r)|9i|
2

}

. (3.2)

For concreteness, we will work with only N = 2 species of
particles. Our interest is in single particle states, so we restrict
to the single-particle sector, for which the Hilbert space is H =
C ⊕ H1 ⊕ H2 (where Hi is the Hilbert space for particle i). On

this space, the Schrödinger operator i∂t +
∇2

2mi
−

g

r2
is diagonal.

Writing the total wavefunction 9 =

(

91

92

)

, the equations of

motion read

[

i∂t +
∇2

2m1
−

g

r2
0

0 i∂t +
∇2

2m2
−

g

r2

]

[

91

92

]

= 0. (3.3)

The time-dependence is easily solved using separation-of-

variables:9 = e−iEt
(

ψ1

ψ2

)

. Then we find

[

k21 +∇
2 −

g

r2
0

0 k22 +∇
2 −

g

r2

] [

ψ1

ψ2

]

= 0, (3.4)

which defines the wavenumbers ki : =
√
2miE (real for

continuum states and imaginary for bound states).
Away from the origin, (3.4) is solved exactly as in the single-

species problem, and a natural choice of basis for the solutions is

B =

{(

ψ1

0

)

,

(

0
ψ2

)}

, (3.5)

where

ψi =
(

Ci+ψ+(ℓi; 2ikir)+ Ci−ψ−(ℓi; 2kir)
)

Yℓimi . (3.6)

and

ψ±(ℓ; ρ) : = ρ
1
2 (−1±ζi)e−ρ/2M

[

1

2
(1± ζi) , 1± ζi; ρ

]

(3.7)
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with ρ : = 2ikr, and ζi : =
√

(2ℓ+ 1)2 − 8mig, and Yℓi ,mi the
usual spherical harmonics, as in the single-particle example.

The constants Ci± are solved by considering the boundary
conditions in the problem, typically finiteness at large- and
small-r, but for scattering problems the large-r BC is specific
to the setup (since it depends on the presence or otherwise
of incident particles). In a PPEFT, the small-r boundary
condition is derived from the boundary action, which we
describe next.

4. BOUNDARY CONDITIONS

In analogy with the single-particle system, we determine the
small-r boundary condition by varying the point-particle action
(3.1) directly [including the boundary terms in the variation of
the bulk action (3.2)]. The resulting small-r boundary conditions
are a simple generalization of (2.6):

4πǫ2∂ǫ9 = 2mh9(ǫ), (4.1)

again using 9 = e−iEt
(

ψ1

ψ2

)

and as in section 2, we define

∂ǫ : = ∂r|ǫ (and we drop the angular momentum label on h as
above). Here m and h are the mass and point-particle coupling
matrices (respectively), so that in components,

4πǫ2∂ǫψ1 − 2m1h11ψ1(ǫ)− 2m1h12ψ2(ǫ) = 0 and (4.2a)

4πǫ2∂ǫψ2 − 2m2h22ψ2(ǫ)− 2m2h21ψ1(ǫ) = 0. (4.2b)

Notice that the explicit ǫ-dependence of (4.2) again indicates
that the point-particle couplings hij must be renormalized with
ǫ whenever 9 or ∂ǫ9 diverge for small argument, in order for
the boundary condition to be compatible with the bulk equations
of motion.

The boundary condition then serves two distinct purposes:
(i) solving for the integration constants in 9 tells us how
they (and correspondingly physical quantities) depend on the
point-source physics, and (ii) isolating for the couplings hij
then tells us how exactly each coupling flows with ǫ to ensure
the physical integration constants do not. Clearly though, with
four possible degrees of freedom in h and four integration
constants in 9 , the two equations in (4.2) are insufficient by
themselves. In the next sections we invoke physical arguments
to resolve this predicament, and separately tackle both problems
(i) and (ii).

4.1. Solving for Integration Constants
The most obvious place to look for additional constraints is
at another boundary. In spherical coordinates, this amounts to
looking at the asymptotic behavior of9 as r→∞. However, the
asymptotic behavior of the system is not unique, and is a very
situation-dependent property. Since our interest in this paper
is in catalysis of flavor violation, it is most pertinent to study
scattering states.

First, focus on scattering 91 → 9j. In this case,
asymptotically we need (see Appendix A.2 for a review of

multi-species scattering) ψ1(r → ∞) → eik1z + f11(θ ,ψ)
eik1r

k1r

as usual, and now also ψ2(r →∞)→ f12(θ ,ψ)
eik2r

k2r
. Notice that

both boundary conditions and the equations of motion are linear
in 9 , so we may divide through by one integration constant. For
incident particle 1, we will choose to divide through by C1+, and
we will define

C11 : =
C1−

C1+
, and C12 : =

C2−

C1+
(1→ X scattering),

(4.3)
and eliminating the infalling wave in ψ2 fixes C2+ = RC2− with

R : = −
Ŵ (1− ζ/2)

Ŵ (1+ ζ/2)
2−2ζ e−iπζ (4.4)

As we will see in the section 5, C11 and C12 are directly
related to the physical cross-sections for 91 → 91 and
91 → 92 scattering.

Using the definitions (4.3) and (4.4) in the small-r boundary
condition (4.2) yields

4πǫ2∂ǫ (ψ1+ + C11ψ1−)− h11 (ψ1+ + C11ψ1−)

−h12C12 (Rψ2+ + ψ2−) = 0 and
(4.5a)

4πǫ2C12∂ǫ (Rψ2+ + ψ2−)− h22C12 (Rψ2+ + ψ2−)

−h21 (ψ1+ + C11ψ1−) = 0,
(4.5b)

Finally, in terms of integration constants the boundary condition
(4.5) is now a system of two equations for two unknowns, so using
the small-r forms of the bulk modes (3.7),

ψ±(ℓ; ǫ) ≈ (2ikǫ)
1
2 (−1±ζ ) H⇒

∂

∂r

∣

∣

∣

∣

ǫ

ψ±(ℓ; ρ) ≈ ik(−1± ζ )(2ikǫ)
1
2 (−3±ζ ), (4.6)

it is found (see Appendix B for details of the calculation) that
the integration constants for this system are related to the source
physics through

C11 = −(2ik1ǫ)
ζ1
̂N1

̂D
and

C12 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√

m2k2ζ1

m1k1ζ2

λ̂21

̂D
,

where

̂N1 : = 4̂λ12̂λ21 −
[

̂λ11 − 1
] [

̂λ22 + 1
]

, and

̂D : = 4̂λ12̂λ21 −
[

̂λ11 + 1
] [

̂λ22 + 1
]

, (4.7)

and the following convenient re-definitions have been made:

̂λ11 : =
1

ζ1

(

m1h11

πǫ
+ 1

)

, ̂λ22 : =
1

ζ2

(

m2h22

πǫ
+ 1

)

, and,

(4.8)
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̂λ12 : =
h12
√
m1m2

2πǫ
√
ζ1ζ2

, ̂λ21 : =
h21
√
m1m2

2πǫ
√
ζ1ζ2

. (4.9)

Of course, the choice to make particle 1 the incident particle was
not forced upon us, and with foresight to the next sections, we
also compute the quantities involved in scattering 92 → 9i.
Fortunately, this is exactly the 1 ↔ 2 inversion of the 1 → X
scattering above, so we can immediately write:

4πǫ2C12∂ǫ (Rψ2+ + ψ2−)− h22C12 (Rψ2+ + ψ2−)

− h21 (ψ1+ + C11ψ1−) = 0 and
(4.10a)

4πǫ2∂ǫ (ψ1+ + C11ψ1−)− h11 (ψ1+ + C11ψ1−)

− h12C12 (Rψ2+ + ψ2−) = 0,
(4.10b)

where as above we have defined

C22 : =
C2−

C2+
, and C21 : =

C1−

C2+
(2→ X scattering),

(4.11)
now with C1+ = RC1−. Solving for the integration constants
similarly yields

C22 = −(2ik2ǫ)
ζ2
̂N2

̂D
and

C21 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√

m1k1ζ2

m2k2ζ1

λ̂12

̂D
, (4.12)

where now

̂N2 : = 4̂λ12̂λ21 −
[

̂λ11 + 1
] [

̂λ22 − 1
]

. (4.13)

It is important to note that the Cij integration constants
are fundamentally different, as they are determined by
different asymptotic boundary conditions and correspond
to different physics. In section 5 we will see exactly how
they relate to the physical cross-sections, but having
defined them all separately is already important at the level
of renormalizing the point-particle couplings, which we
do next.

4.2. Renormalization-Group Flows and

Invariants
Next we move on to teasing out of the boundary condition (4.2)
exactly how the couplings hij must be renormalized with ǫ to
keep physical quantities independent of the regulator. One way to
do so would be to differentiate (4.7) and (4.12) with respect to ǫ
while holding the (physical) integration constants fixed, and solve
the resulting differential equations. This approach turns out to
be very difficult however, since the equations are highly coupled
and tough to disentangle. Notice however that it is important to
have knowledge of both 1 → X and 2 → X scattering to solve
for all the elements of h. This is not a coincidence. A unitary
system requires a real action, which is enforced by the condition
that h is Hermitian. At the same time, a unitary S-matrix for an
N-species system has N2 real degrees of freedom, which is the
same dimension as an N × N Hermitian matrix. Consequently,
connecting the point-particle couplings to physical quantities
requires knowledge of the entire S-matrix, and so in our case
must involve both 1 → X scattering and 2 → X scattering.
Lastly, one final simplification can be made by observing that the
phase of h12 can be removed by a field redefinition, so for the
special case of a two-species system we only have to deal with a
real matrix of point-particle couplings.

The easiest approach to solving for the flows of the
couplings hij is to go back to the boundary conditions
(4.5) and (4.10) for both 1 → X and 2 → X
systems and solve directly for the individual elements of h.
This inversion is done in detail in Appendix C, and using
the small-r form (4.6), the point-particle couplings must
take the following forms as functions of the regulator ǫ.

̂λ11 =
(1− C11(2ik1ǫ)

−ζ1 )(1+ C22(2ik2ǫ)
−ζ2 )+ C21C12(2ik1ǫ)

−ζ1 (2ik2ǫ)
−ζ2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14a)

̂λ12 =

√

m2ζ1

m1ζ2

C21

(

k1
k2

)−1/2
(2ik1ǫ)

−ζ1/2(2ik2ǫ)
−ζ2/2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14b)

̂λ21 =

√

m1ζ2

m2ζ1

C12

(

k2
k1

)−1/2
(2ik1ǫ)

−ζ1/2(2ik2ǫ)
−ζ2/2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14c)

̂λ22 =
(1+ C11(2ik1ǫ)

−ζ1 )(1− C22(2ik2ǫ)
−ζ2 )+ C21C12(2ik1ǫ)

−ζ1 (2ik2ǫ)
−ζ2

(1+ C11(2ik1ǫ)−ζ1 )(1+ C22(2ik2ǫ)−ζ2 )− C21C12(2ik1ǫ)−ζ1 (2ik2ǫ)−ζ2
, (4.14d)

using the definitions (4.9).
Equations (4.14) (together with (4.7), (4.12), (2.10), and

past work [8]) suggests the integration constants can each
be characterized by a unique RG-invariant length-scale. To
see how this works, define the scales ǫ1, ǫ2, and ǫ3 by the
following relations:

C11 = −y1(2ik1ǫ1)
ζ1 , C22 = −y2(2ik2ǫ2)

ζ2 ,

and C12 =
m2k2ζ1

m1k1ζ2
C21 = y3

√

m2k2ζ1

m1k1ζ2
(2ik1ǫ3)

ζ1/2(2ik2ǫ3)
ζ2/2,

(4.15)
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FIGURE 1 | Plot of̂λ11 vs ζ ln(ǫ/ǫ1) for ζ1 = ζ2, y1 = y2 = +1, and

(ǫ2/ǫ1)
ζ = 2 and (ǫ3/ǫ1)

ζ = 0.02. The fascinating second pole arises in certain

limits of the ratio of ǫ1 to ǫ2 and ǫ3. In the limit ǫ3 → 0, this reduces to the

classic single-particle RG.

where yi = ±1 defines a particular class of flow. In terms of these
scales, the running equations are significantly simpler:

̂λ11 =

(

1+ y1 (ǫ/ǫ1)
−ζ1
) (

1− y2 (ǫ/ǫ2)
−ζ2
)

+ (ǫ/ǫ3)
−(ζ1+ζ2)

(

1− y1 (ǫ/ǫ1)
−ζ1
) (

1− y2 (ǫ/ǫ2)
−ζ2
)

− (ǫ/ǫ3)
−(ζ1+ζ2)

,

(4.16a)

̂λ12 =̂λ21

=
y3 (ǫ/ǫ3)

−(ζ1+ζ2)/2

(

1− y1 (ǫ/ǫ1)
−ζ1
) (

1− y2 (ǫ/ǫ2)
−ζ2
)

− (ǫ/ǫ3)
−(ζ1+ζ2)

,

(4.16b)

̂λ22 =

(

1− y1 (ǫ/ǫ1)
−ζ1
) (

1+ y2 (ǫ/ǫ2)
−ζ1
)

+ (ǫ/ǫ3)
−(ζ1+ζ2)

(

1− y1 (ǫ/ǫ1)
−ζ1
) (

1− y2 (ǫ/ǫ2)
−ζ2
)

− (ǫ/ǫ3)
−(ζ1+ζ2)

,

(4.16c)

An example of̂λ11 and̂λ22 is plotted in Figure 1, and an example
of̂λ12 is plotted in Figure 2. All the couplings flow to fixed points
in the ultraviolet (ǫ/ǫi → 0) and the infrared (ǫ/ǫi → ∞). The
diagonal couplingŝλ11 and̂λ22 both flow to −1 in the UV and
+1 in the IR, exactly as the single-particle flow does, while the
off-diagonal ̂λ12 flows to vanishing coupling in both the cases.
This says something reasonable: the system is perfectly content to
live in a world where there is no species mixing, regardless of the
existence of the inverse-square potential. However, if the species
do mix, then the strength of that mixing depends on the scale it
is measured at, with the flow given by (4.16b).

Interestingly, all three flows share a common denominator,
which can always be factorized. When ζ1 = ζ2 = : ζ , the zeroes
of the denominator lie at

ǫζa =
1

2

(

y2ǫ
ζ
2 + y1ǫ

ζ
1 ±

√

(

y1ǫ
ζ
1 − y2ǫ

ζ
2

)2
+ 4ǫ

2ζ
3

)

, (4.17)

FIGURE 2 | Plot of̂λ12 vs ζ ln(ǫ/ǫ1) for ζ1 = ζ2, y1 = y2 = y3 = +1, and

(ǫ2/ǫ1)
ζ = 2 and (ǫ3/ǫ1)

ζ = 0.02.

so there is at least one asymptote in all the flows as long as y2ǫ
ζ
2 +

y1ǫ
ζ
1 > 0. Indeed, the only regime where there is no asymptote is

where−(y2ǫ
ζ
2 + y1ǫ

ζ
1 ) >

√

(

y1ǫ
ζ
1 − y2ǫ

ζ
2

)2
+ 4ǫ

2ζ
3 > 0.

The practicality of this framework lies in how the point-
particle couplings [and in particular their RG-invariants (4.15)]
inform physical quantities, like scattering cross-sections, and we
investigate this next.

5. SCATTERING AND CATALYSIS OF

FLAVOR VIOLATION

To see how the nuclear properties enter into macroscopic
quantities, and in particular how the point-particle can induce
a violation of bulk flavor-conservation, we proceed to compute
the elements of the scattering matrix. In particular, it will be
shown that the low-energy s-wave “elastic” (9i → 9i) scattering
is as usual independent of incoming momentum, and ǫi plays
the role of the scattering length. Meanwhile, the flavor-violating
“inelastic” cross-section is uniquely characterized by ǫ3, which
can be thought of as an effective scattering length for flavor
violation. Moreover, the inelastic cross-section goes as kout/kin.
This ratio is a constant for Schrödinger particles, but for Klein-
Gordon fields (such as is appropriate for, say, incident pions)
the ratio has a dependence on the incoming momentum, and
that dependence takes on a variety of qualitatively different
forms determined by the size of k2in/|m

2
1 −m2

2|. Of particular
interest is the case where the incoming particle’s mass is greater
than the outgoing particle’s mass, and the incoming particle’s
momentum is small compared to the mass gap, in which case
the flavor-violating cross-section is catalyzed, and goes as 1/kin
(although such a setup would certainly be hard to realize
in practice).

Following the Appendix A.2, we need to identify the

scattering matrix elements S
(ℓ)
ij in terms of Cij.
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5.1. Elastic Scattering (ψi → ψi)
First consider elastic scattering of ψ1. This is the case where the
measured particle is the same as the incoming particle, so the
asymptotic form of ψ1 contains an incoming plane wave and an
outgoing spherical wave:

ψAns
1 (r→∞)→ C

(

eik1z + f11(θ ,ψ)
eik1r

r

)

. (5.1)

Starting from the general form (3.6) for particle 1,

ψ1 = (C1+ψ1+ + C1−ψ1−)Yℓ1 ,m1 , (5.2)

the large-r limit is (taking the asymptotic limit of the confluent
hypergeometric function)

ψ1(r→∞)→ Aℓ
ei(k1r−ℓπ/2)

2ik1r
+ Bℓ

e−i(k1r−ℓπ/2)

2ik1r
, (5.3)

where

Aℓ =

[

Ŵ

(

1+
1

2
ζ1

)

2ζ1C1+ + Ŵ

(

1−
1

2
ζ1

)

2−ζ1C1−

]

eiπℓ/2
√
π

, and

Bℓ =

[

Ŵ

(

1+
1

2
ζ1

)

2ζ1C1+ + Ŵ

(

1−
1

2
ζ1

)

2−ζ1 e−iπζ1C1−

]

ei(1+ζ1−ℓ)π/2
√
π

.

(5.4)

Matching to the asymptotic form (5.1), allows us to identify
(see 12.1) the overall normalization

C =
(−1)ℓ+1

2π
√
(2ℓ+ 1)

[

Ŵ

(

1+
1

2
ζ1

)

2ζ1C1+

+Ŵ

(

1−
1

2
ζ1

)

2−ζ1e−iπζ1C1−

]

ei(1+ζ1)π/2, (5.5)

and the scattering matrix element

S
(ℓ)
11 = −

Aℓ

Bℓ

=

[

Ŵ (1+ ζ1/2)+ Ŵ (1− ζ1/2) 2
−2ζ1C11

]

[

Ŵ (1+ ζ1/2)+ Ŵ (1− ζ1/2) 2−2ζ1 e−iπζ1C11

] ei(2ℓ+1−ζ1)π/2.

(5.6)

Our interest is in the regime where kiǫ is small, so the s-wave
is the dominant contribution to the cross-section. In the s-wave,
ζ1 = ζ1s : =

√
1− 8m1g, and the cross-section is (A.9), exactly

as in Burgess et al. [6]:

σ (1→1)
s =

π

k21
|S
(0)
11 |

2 =
π

k21

∣

∣

∣

∣

1−Aeiπζ1s/2

1−Ae−iπζ1s/2

∣

∣

∣

∣

2

(5.7)

where

A : = e−iπζ1/22−2ζ1C11
Ŵ[1− 1

2ζ1]

Ŵ[1+ 1
2ζ1]
= y1

(

k1ǫ1

2

)ζ1 Ŵ[1− 1
2ζ1]

Ŵ[1+ 1
2ζ1]

.

(5.8)

[The second equality uses (4.15) to exchange the integration
constants for the RG-invariant ǫ1]. Of particular note is when
there is no inverse-square potential, in which case ζ1s = 1 and
the cross-section reduces to

σ (1→1)
s = 4πǫ21 (g = 0), (5.9)

which can be identified as the cross-section for scattering from
a 3D δ-function potential (see for example [25] where our ǫ1
corresponds to their g/

√
π). Elastic scattering for the second

species ψ2 → ψ2 follows exactly the same procedure and is
trivially the 1↔ 2 inversion of (5.7) and (5.8).

σ (2→2)
s = 4πǫ22 (g = 0). (5.10)

5.2. Flavor-Violating Scattering (ψi → ψj,

i 6= j)
So much for the ordinary scattering. Finally we compute the
flavor-violating ψ1 → ψ2 cross-section, and see the point-
particle catalysis in action. This time, there is no incoming flux
of the particle to be measured, so the large-r ansatz is simply:

ψAns
2 (r→∞)→ Cf2(θ ,ψ)

eik2r

r
. (5.11)

where we have scaled out the same normalization factor C, for
convenience. The asymptotic form of the general solution for
ψ2 is exactly (5.3) subject to 1 ↔ 2, so we can immediately
observe the following. First, as was used in deriving the boundary
conditions in section 4, Bℓ = 0 so that C2+ = RC2−, where
as above

R : = −
Ŵ(1− ζ/2)

Ŵ(1+ ζ/2)
2−2ζ e−iπζ . (5.12)

Following Appendix A.2, this time we identify the inelastic

scattering element S
(ℓ)
12 using (A.15)

S
(ℓ)
12 =

e−iπℓ/2
√
4π(2ℓ+ 1)

Aℓ

C
=

Ŵ
(

1− 1
2 ζ2
)

2π
√
(2ℓ+ 1)

C2−

C
2−ζ2 (1− e−iπζ2 ),

=
(−1)−ℓ+1

2ζ1+ζ2−1
sin(πζ2/2)e

iπ(ℓ−ζ1−ζ2−1)/2
Ŵ
(

1− 1
2 ζ2
)

Ŵ
(

1+ 1
2 ζ1
)

C12

1−Ae−iπζ1/2
.

(5.13)

whereA is defined in (5.8).
Again, our interest is in the small kiǫ regime for which the s-

wave dominates. We similarly define ζ2s : =
√
1− 8m2g. Then

the low-energy cross-section is (A.16),

σ (1→2)
s =

π

k1k2

m1

m2

∣

∣

∣

∣

S
(0)
12

∣

∣

∣

∣

2

,

=
4π

2ζ1+ζ2

k
ζ1
1 k

ζ2
2

k21

ζ1

ζ2
sin2(πζ2/2)

ǫ
ζ1+ζ2
3

|1−Ae−iπζ1/2|2

(

Ŵ
(

1− 1
2 ζ2
)

Ŵ
(

1+ 1
2 ζ1
)

)2

.

(5.14)

As in the elastic case, the reverse scattering ψ2 → ψ1 is a
simple matter of exchanging 1 ↔ 2 in (5.14). In the absence
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of an inverse-square potential (ζis = 1), the cross-section (5.14)
simplifies significantly.

σ 1→2
s = 4π

k2

k1
ǫ23 (g = 0). (5.15)

On its own, this is an interesting enough result. The flavor-
violating cross-section is non-zero only when the point-particle
has non-trivial flavor-violating properties, as are encoded in ǫ3.
This is also the statement that flavor-violation only occurs if
h12 6= 0, since it is always true—regardless of the presence of
an inverse-square potential—that h12 = 0 only when ǫ3 = 03.

A particularly interesting aspect of (5.15) is the factor of
k2/k1. For Schrödinger particles, this is just a constant (ki =√
2miE H⇒ k2/k1 =

√
m2/m2). In section 6, we treat

a Schrödinger particle interacting with a multi-state nucleus,
in which case the final and initial momenta do differ non-
trivially, but even at the level of two bulk species, more interesting
dynamics can be seen just by treating the particles as relativistic
Klein-Gordon fields. For relativistic fields, the cross-section
takes the same general form as (5.15), except the momenta are

relativistic: ki =
√

ω2 −m2
i , where ω is the energy of the system.

Then ω2 = k2i +m2
i , so that

k2

k1
=

√

k21 + (m2
1 −m2

2)

k1
. (5.16)

The cross-section therefore exhibits different qualitative behavior
depending on how the incoming momentum k1 relates to the
(squared) mass gap m2

1 − m2
2. This can be broadly classified by

4 different regimes depending on the sign of m2
1 − m2

2 and the
size of the ratio r : = k21/|m

2
1 −m2

2|.
First, if the mass gap is positive, the only question is to the size

of the ratio r. If r ≪ 1, then σ
(1→2)
s ∼ k−11 . This is the regime

where the cross-section sees a low-energy enhancement similar
to the well-known enhancement of absorptive cross-sections [26]
(more on that in section 6). However, if r ≫ 1, then the cross-
section is roughly independent of the incoming momentum
altogether. The cross-over between these regimes is plotted in
Figure 3. These are indeed reasonable behaviors. If m1 > m2,
and the incoming momentum is small compared to the mass
difference, then the transition is to a lighter particle traveling
faster, which is intuitively a more favorable process—the heavier
incident particle has access to a larger phase-space than the
lighter incident particle. If the mass difference is small compared
to the incoming momentum, then the benefit of transitioning to
a particle with a smaller mass is minimal, so the process is no
more favorable than no transition. If instead the mass gap is
negative, then there is a new regime. If k21 < m2

2 − m2
1 (so if

r < 1) there is in fact no scattering. This is certainly reasonable—
if the incident particle did not have enough energy to create the
rest mass of the second particle, then it cannot scatter into that

3As noted in section 4.2, this is in contrast to the behavior of h11 and h22, whose

flows indicate that ǫ1, ǫ2 → 0 is only consistent with h11, h22 → 0 when there is

no inverse-square potential.

FIGURE 3 | Plot of the cross-over behavior in the k dependence of the

inelastic cross-section for a Klein-Gordon particle conversion in units of 1/k1,

where 1 =
√

m2
1 −m2

2 and m1 > m2. The full function
√

1+12/k21 is plotted

in blue, and the simple inelastic behavior 1/k1 is plotted in orange. Notice the

overlap for small 1/k1, and the strong enhancement for large momenta.

FIGURE 4 | Plot of the cross-over behavior in the k dependence of the

inelastic cross-section for a Klein-Gordon particle conversion in units of 1/k1,

where 1 =
√

m2
1 −m2

2 and m2 > m1. The full function
√

1−12/k21 is plotted

in blue, and the simple inelastic behavior
√

1/k1 − 1 is plotted in orange.

Notice the threshold cutoff at 1/k1 = 1, as well as the approximate overlap for

small 1/k1, and the strong suppression for large momenta.

particle (this is the threshold behavior described by [27, section
144]). If r & 1, the incident momentum is just enough to create
the second particle k21 = m2

2−m
2
1+δ, then the cross-section goes

as
√

δ/(m2
2 −m2

1). Since k
2
2 = k21 + m2

1 − m2
2 = δ ≪ m2

2, this

is also the statement that the cross-section goes as v2, the (non-
relativistic) speed of the final state particle. Finally, if r≫ 1, the
incident momentum greatly exceeds the mass gap and we again
see the cross-section behave independently from k1, as before.
These momentum-dependences are plotted in Figure 4.

Frontiers in Physics | www.frontiersin.org 9 November 2019 | Volume 7 | Article 167141

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Hayman and Burgess Point-Particle Catalysis

6. TRANSFER REACTIONS AND NUCLEAR

STRUCTURE

In many cases, a reaction with a nucleus can change not only
the incident particle, but also the nucleus. This can be the
case even when scattering energies are low compared to the
mass of the nucleus. For instance, the excitation energy of
most real nuclei is on the order of MeV compared to their
masses of order GeV [28]. A particularly interesting class of
reactions that falls into this category is transfer reactions, where
a composite particle (say a neutron) scatters off of a nucleus
and exchanges a constituent particle (say a quark) with one of
the valence nucleons, so that the outgoing particle is different
(perhaps a proton) and so is the nucleus. While this work is
not enough to describe a complete transfer reaction, we can
make progress toward a complete description, and can at least
describe the simpler process ψ + N → ψ + N∗, where N
is some nucleus and N∗ is a long-lived excited state of that
nucleus. The key observation to make is that there is essentially
no difference between a system spanned by {91 ⊗ |N〉 ,92 ⊗
|N〉} with |N〉 some nuclear state, and {9 ⊗ |N1〉 ,9 ⊗ |N2〉}
where |Ni〉 are distinct nuclear states. The only complexity lies
in describing the different nuclear states in a point-particle
EFT language.

Here we will sketch out the simplest point-particle action
that includes a two-state nucleus coupled to a single bulk
field, but a more detailed treatment of a PPEFT for a point-
particle with internal degrees of freedom will be available
in Zalavái et al. (in preparation). In addition to the single-
species action (2.2), introduce an auxiliary grassmann-valued
field Ti that satisfies the commutation relations of the generators
of su(2).

S2Nb = −

∫

dτ

√

−ẏ2
(

M + iTiṪ
i − iǫijk1iTjTk + h′|9(y(τ ))|2

−ǫijkg
′
iTjTk|9(y(τ ))|2

)

. (6.1)

Here,1i and g
′
i are 3-vector-valued parameters. For convenience,

we work in the basis such that 1i = 1δi3. Furthermore,
we collect the point-particle couplings involving 9 as
W =W†

: = h′ − i
2 g
′
iTi.

Upon quantization, the Ti can be identified with i
2σi,

the generators of su(2), and since they only live on the
point-particle’s world-line, it is easy to see that they are
associated with a two-level nuclear state. Varying the action
with respect to y(τ ) (and neglecting the subdominant

TABLE 1 | The dictionary that maps quantities in a two-bulk-species theory to

quantities in a theory of a single bulk-species coupled to a point-particle with two

accessible internal degrees of freedom.

Two-state nucleus Two-species bulk

ψ↑, ψ↓ ←→ ψ1, ψ2

k↑, k↓ ←→ k1, k2

W ←→ h

contribution from the W interactions), the nuclear
dispersion relation

〈N|p̂2N −M2 +1σz|N〉 = 0, (6.2)

(p̂N is the nuclear 4-momentum operator) leads to
distinct nuclear states |↑〉 with rest-frame energy
E↑ = M + 1/2 and |↓〉 with rest-frame energy
E↓ = M −1/2.

The bulk action for the system is exactly the single-particle
Schrödinger action (2.1), and so the solutions for 9 are precisely
(2.7) and (2.8). However, the boundary condition (2.6) becomes:

〈↑↓|4πǫ2∂ǫ9|4〉 = 〈↑↓|W9(ǫ)|4〉 , (6.3)

where |4〉 is an appropriate Fock state, |↑↓〉 are the Fock
states consisting of just the nucleus in the state with rest-frame
energy E↑↓, and 9 is interpreted as an operator-valued field.
Since energy can now be exchanged between the electron and
the nucleus, the individual energies of the electron and the
nucleus are no longer good quantum numbers, and a general
single-electron Fock state must be a linear combination |4〉 =
∣

∣9↑
〉

|↑〉 +
∣

∣9↓
〉

|↓〉, where
∣

∣9↑↓
〉

has energy ω↑↓ satisfying
ω↑ + 1/2 = ω↓ − 1/2. Then in terms of the mode-functions
9↑↓(x) = e−iω↑↓ψ↑↓ (satisfying 9

∣

∣9↑↓
〉

= 9↑↓(x)
∣

∣9↑↓
〉

), the
boundary condition (6.3) is in components,

4πǫ2∂ǫψ↑ −W↑↑ψ↑(ǫ)−W↑↓ψ↓(ǫ) = 0 and

4πǫ2∂ǫψ↓ −W↓↓ψ↓(ǫ)−W↓↑ψ↑(ǫ) = 0,
(6.4)

where we identified the Ti with
1
2σi so that W = h′I2×2 +

1
4g
′
iσi. The boundary condition (6.4) is now exactly the boundary

condition (4.2) withW ↔ h and ψ↑↓ ↔ φ1,2.
Finally, defining E : = ω↑ + 1/2 = ω↓ − 1/2, we observe

k2↑ = 2mω↑ = 2m(E −1/2) and k2↓ = 2mω↓ = 2m(E +1/2).
Choosingψ↑ ↔ ψ1 andψ↓ ↔ ψ2, wemay then identify k1 = k↑
and k2 = k↓. At this point, a complete analogy with the two-
species system is established, and the results are tabulated into
a dictionary relating the two in Table 1. A true transfer reaction
is one for which the final state involves both a different species
of bulk particle and an altered state of the nucleus, so evidently
would be equivalent to a model of 4 bulk species coupled to a
single-state point-particle. As it stands however, this system is
sufficient to describe, say, the low-energy behavior of a neutron
that knocks a nucleus into its first excited state.

TABLE 2 | The dictionary that maps quantities in a unitary two-species theory to

quantities in a non-unitary single-species theory.

Absorptive single-species Unitary two-species

ǫ⋆ ←→ ǫ1

α⋆ ←→ nπ − (2k2ǫ3)
ζ1

(

ǫ3
ǫ1

)ζ2 |R
y1

sin(πζ2/2)|

λ̂c ←→ ̂λ11 − 4 |
̂λ12 |

2

[̂λ22+1]
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7. SINGLE-PARTICLE SUBSECTOR

In many cases it is overkill to track all of the possible final state
products of a particular interaction. This is especially the case
in nuclear physics, where a summation over many unobserved
final states is the basis of the highly successful optical model
[14, 15]. The price one pays for the convenience of ignoring
certain states is the loss of unitarity, and such a non-unitary
point-particle EFT was the subject of Plestid et al. [13]. Here
we can provide a very simple explicit example of how this non-
unitarity can emerge in a subsector of a larger unitary theory.
We achieve this correspondence by matching physical quantities,
in a procedure that is significantly simpler than e.g., tracing the
partition function over the states involving92 [29, 30].

From Plestid et al. [13], the key to a point-particle inducing
a violation of unitarity is allowing the point-particle coupling to
be complex (h from section 2). In that case, the running of the
coupling is the same as (2.9), except now the constant−y→ eiα⋆

is complex. That is:

λ̂c =
1− eiα⋆ (ǫ/ǫ⋆)

−ζ

1+ eiα⋆ (ǫ/ǫ⋆)−ζ
, (7.1)

where λ̂c is the now complex coupling. Similarly, the integration
constant is analogous to (2.10),

C−

C+
= (2ikǫ)ζ

1− λ̂c

1+ λ̂c
= (2ikǫ⋆)

ζ eiα⋆ . (7.2)

At this point, we essentially have everything we need. The ratio

of integration constants C−
C+

is directly related to the physical

quantities in the single-particle problem, so choosing to track
either91 or92 tells us to equate (7.2) toC11 orC22 (respectively),
and from that determine how the RG-invariants and couplings
are related. The only obstruction at this point is that (4.15) would
at face value suggest that α⋆ = nπ and there is no absorptive
scattering. The error here is that inelastic scattering is a sub-
leading effect4, and to see it at the level of C11, we would need
to have computed that ratio of integration constants to sub-
leading order in kiǫ. This is not in itself a particularly challenging
endeavor, and is done in the Appendix B. The result is that
to sub-leading order, one finds (B.22) (choosing to track 91,
tracking92 follows trivially)

C11 = −(2ik1ǫ)
ζ1
̂N1

̂D

(

1− 4R
λ̂12λ̂21

̂N1̂D
(2ik2ǫ)

ζ2

)

= −y1(2ik1ǫ1)
ζ1 (1+ iδα1). (7.3)

From the last equality, we use that δα1 ≪ 1 to define eiα1 ≈
−y1(1 + iδα1) such that α1 : = nπ + δα1, with n an integer that

4The way to see this is through the catalysis cross-section (5.15). Absorptive

scattering generically scales as a/k for some absorptive scattering length a. The

derived cross-section (5.15) identifies a ∼ (k2ǫ3)ǫ3 and so is generically a

subdominant effect in the point-particle EFT regime.

satisfies y1 : = −e
inπ . Since (7.3) is a perturbative expression, we

may use the leading order (in kiǫ) expressions for the couplings
in δα1, and simply evaluate them at ǫ = ǫ1. An alternative but
more tedious approach would be to substitute the second equality
in (7.3) into λ̂11 [taking the whole function to sub-leading order
in kiǫ as in (C.12)] and solve for δα1 by demanding λ̂11 remain
real at sub-leading order, as it must. No matter the approach, the
result is

δα1 = −(2k2ǫ3)
ζ1

(

ǫ3

ǫ1

)ζ2 |R|

y1
sin(πζ2/2). (7.4)

In this way, we have solved for the RG-invariant quantities (and
so too the physical quantities) in the single-particle absorptive
model in terms of the RG-invariants in the unitary two-species
model simply by equating C11 to C−/C+. In fact, we can do even
better than that. We can determine how the coupling λ̂c relates to
the variouŝλij couplings. To do so, we simply arrange for ̂NA/̂D

to take the form of (λ̂c − 1)/(λ̂c + 1).

̂N1

̂D
=

4

∣

∣

∣

∣

̂λ12

∣

∣

∣

∣

2

−
[

̂λ11 − 1
] [

̂λ22 + 1
]

4

∣

∣

∣

∣

̂λ12

∣

∣

∣

∣

2

−
[

̂λ11 + 1
] [

̂λ22 + 1
]

=

̂λ11[̂λ22+1]−4

∣

∣

∣

∣

̂λ12

∣

∣

∣

∣

2

[̂λ22+1]
− 1

̂λ11[̂λ22+1]−4

∣

∣

∣

∣

̂λ12

∣

∣

∣

∣

2

[̂λ22+1]
+ 1

.

(7.5)
Evidently λ̂c = ̂λ11 − 4|̂λ12|

2/[̂λ22 + 1]. A check on this
is to directly compute the combination ̂λ11 − 4|̂λ12|

2/[̂λ22 +
1], in which case one finds it is exactly (7.1) with ǫ⋆ and α⋆
defined as above. This dictionary between these models is laid
out in Table 2.
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APPENDIX

A. MULTI-PARTICLE PARTIAL-WAVE

SCATTERING

Here we review the general framework of partial-wave scattering,
including discussion of inelastic and multi-channel scattering.

A.1. Single Particle Elastic Scattering
We consider a spinless particle scattering off of a spinless,
infinitely massive object at rest at the origin, through a spherically
symmetric interaction V(r). As usual, we employ the ansatz
that at large distances from the target, the wavefunction of the
incident particle is the sum of a plane wave incident along the
z-axis and a scattered spherical wave:

ψAns
∞ (r)→ C

(

eikz + f (θ ,φ)
eikr

r

)

. (A1)

The differential cross-section is the ratio of the flux of the
scattered particles Fsc to the flux of the incoming particles Fin.
With an incident beam of N particles, the incoming flux is N jin ·

ez = N |C|2 k/m, and the scattered flux is N|C|2
∣

∣f (θ ,φ)
∣

∣

2
k/mr2,

so that and is given by

dσ

d�
: =

Fsc

Fin
=

1

Fin
jsc · er r

2 = | f (θ)|2. (A2)

And for a spherically symmetric scatterer, f (θ ,φ) = f (θ).
At the same time, we consider solutions to the full Schrodinger

equation

1

r2
∂r
(

r2∂rψ(r)
)

−

[

ℓ(ℓ+ 1)

r2
+ 2mV(r)− k2

]

ψ(r) = 0, (A3)

with k2 : = 2mE, and the full wavefunction expanded in a
series of spherical harmonics 9(Ex, t) = e−iEtψ(r)Yℓ0 (where we
set m = 0 due to conservation of angular momentum). The
asymptotic form of these radial functions is:

ψSch
∞ (r)→ Aℓ

ei(kr−ℓπ/2)

2ikr
+ Bℓ

e−i(kr−ℓπ/2)

2ikr
, (A4)

Finding f (θ) now amounts to matching (A1) and (A4). This
can be accomplished by writing the plane-wave eikz in terms
of Legendre polynomials. The standard expansion is given as
Landau and Lifshitz [31]

eikz =

∞
∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos(θ))

→

∞
∑

ℓ=0

(2ℓ+ 1)iℓ
ei(kr−ℓπ/2) − e−i(kr−ℓπ/2)

2ikr
Pℓ(cos(θ)).

(A5)

Choosing the Condon-Shortly phase convention, the spherical
harmonics can be written
Y0
ℓ =

√

(2ℓ+ 1)/4πPℓ(cos(θ)), so by computing the difference:

ψSch
∞ (r)− Ceikz = Cf (θ)

eikr

r
, (A6)

one finds first:

Bℓ = −
√

4π(2ℓ+ 1)iℓC, (A7)

set by the fact that there can be no incoming wave in the scattered
wavefunction. Finally, one finds

f (θ) =
1

2ik

∞
∑

ℓ=0

(2ℓ+ 1)[Sℓ − 1]Pℓ(θ), (A8)

Where Sℓ = −Aℓ/Bℓ is the scattering matrix element. When the
scattering is elastic as we’ve just described (kout = kin), the matrix
element Sℓ = e2iδℓ is a pure phase. Otherwise, when the scattering
is inelastic and probability is lost, Sℓ is just a complex number, but

it is still common [14] to parameterize it as S
(in)
ℓ = e2iγℓ , where γℓ

is now a complex number.
Finally, the total cross-section is computed as the integral over

the differential cross-section, which is (using the orthogonality of
the Legendre polynomials)

σ =

∫

d�
dσ

d�
=
π

k2

∑

ℓ

(2ℓ+ 1)|Sℓ − 1|2. (A9)

A.2. Multi-Channel Scattering
It is a simple matter to generalize the above to multi-channel
scattering. We treat the case of two species of particles, but as
detailed in section 6 the results are more general. Without loss of
generality, we will only look at 1→ X scattering.

Following Landau and Lifshitz [27], we begin by assuming the
asymptotic forms for each species:

ψAns
1 (r→∞)→ C

(

eik1z + f1(θ ,φ)
eik1r

r

)

. (A10)

and

ψAns
2 (r→∞)→ Cf2(θ ,φ)

eik2r

r
. (A11)

The differential cross-sections are defined in exactly the same way
as the above. This means the 1→ 1 scattering is exactly given by
(A9), while for 1→ 2 scattering we have

dσ 1→2

d�
=

k2

k1

m1

m2
|f2(θ)|

2. (A12)

Particle 2 satisfies the same Schrödinger equation (A3), and so has
the same asymptotic form (A4). Matching to the ansatz is then as
simple as

ψSch
2,∞ = Cf2(θ)

eik2r

r
, (A13)
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which produces

B2ℓ = 0, (A14)

and

f2(θ) =
1

2ik2C

∑

ℓ

e−iπℓ/2A2ℓY
0
ℓ (θ)

=
1

2ik2

∑

ℓ

(2ℓ+ 1)S
(ℓ)
12 Pℓ(cos θ), (A15)

which defines the scattering matrix element S
(ℓ)
12 =

e−iπℓ/2[4π(2ℓ+ 1)]−1/2A2ℓ/C. Finally, the total cross-section is

σ 1→2 =
π

k1k2

m1

m2

∑

ℓ

(2ℓ+ 1)|S
(ℓ)
12 |

2
. (A16)

One important observation: as long as S
(ℓ)
12 6= 0 for any ℓ, then

S
(ℓ)
11 = e2iγ

(ℓ)
11 must satisfy that the phase γ

(ℓ)
11 is complex, since

some of the probability flux of the incident particle 1 must have
transferred to particle 2.

B. SOLVING FOR 2-PARTICLE

INTEGRATION CONSTANT RATIOS

Here we outline the details of the main calculation in section 4.1.
We do this for 1→ X scattering, but the results are easily applied
to 2→ X scattering by inverting 1↔ 2.

We begin with the boundary condition (4.2), and the general
forms

ψi = Ci+ψi+ + Ci−ψi−, (A17)

where i = 1, 2. For 1→ X scattering, we use C2+ = RC2− with
R defined in (4.4), and the boundary conditions are:

̂ψ ′1+ + C11̂ψ
′
1− = h11(ψ1+ + C11ψ1−)+ h12C12

(ψ2+R+ ψ2−), and (A18a)

C12(̂ψ
′
2+R+ ̂ψ

′
2−) = h22C12(ψ2+R2 + ψ2−)+ h21

(ψ1+ + C11ψ1−). (A18b)

where we define ̂ψ ′i± : = 2πǫ2

mi
∂ǫψi±, and as in (4.3), we define

C11 : = C1−/C1+ and C12 : = C2−/C1+.
Rearranging (A18a) for C12, one finds

C12 =

[

̂ψ ′1+ − h11ψ1+

]

+ C11

[

̂ψ ′1− − h11ψ1−

]

h12[ψ2+R+ ψ2−]
. (A19)

Substituting in (A18b),

{

[̂ψ ′1+ − h11ψ1+]+ C11[̂ψ
′
1− − h11ψ1−]

}

Z =
∣

∣h12
∣

∣

2
[ψ1+ + C11ψ1−], (A20)

where

Z : =
̂ψ ′2+R+

̂ψ ′2−

ψ2+R+ ψ2−
− h22. (A21)

Finally rearranging, we have

C11 = −
ψ1+

ψ1−

[

∣

∣h12
∣

∣

2
−

[

̂ψ ′1+
ψ1+
− h11

]

Z

]

[

∣

∣h12
∣

∣

2
−

[

̂ψ ′1−
ψ1−
− h11

]

Z

] (A22)

Plugging this back into (A19), we have

C12 =
ψ1+

ψ2−

[

̂ψ ′1+
ψ1+
− h11

][

∣

∣h12
∣

∣

2
−

[

̂ψ ′1−
ψ1−
− h11

]

Z

]

− [+ ↔ −]

h12

[

Rψ2+
ψ2−
+ 1

]

[

∣

∣h12
∣

∣

2
−

[

̂ψ ′1−
ψ1−
− h11

]

Z

] ,

=
ψ1+

ψ2−

[

̂ψ ′1+
ψ1+
−

̂ψ ′1−
ψ1−

]

h21

[

Rψ2+
ψ2−
+ 1

]

[

∣

∣h12
∣

∣

2
−

[

̂ψ ′1−
ψ1−
− h11

]

Z

] . (A23)

The integration constants in the 2 → X system are solved for in
the same way. Solutions forC22 = C2−/C2+ andC21 = C1−/C2+

in the 2 → X are obtained directly from (A22) and (A23)
(respectively) by simply inverting 1↔ 2.

In order to make use of these formulae, we now have to take
the small-r limit of the mode functions to the appropriate order.

B.1. Leading-Order in kiǫ
First, we make the usual leading-order approximation. For ψ1,
this is exactly as in (4.6):

ψ1(ǫ) ≈ x
−1/2
1

[

C1+x
ζ1/2
1 + C1−x

−ζ1/2
1

]

, and

∂rψ1(ǫ) ≈ ik1x
−3/2
1

[

(ζ1 − 1)C1+x
ζ1/2
1 − (ζ1 + 1)C1−x

−ζ1/2
1

]

,

(A24)

where for convenience here we define xi : = (2ikiǫ), for i = 1, 2.
Here we keep both the divergent (−) and the (often) finite (+)
term because the ratio C1−/C1+ arises from the point-particle
dynamics, and so is of the order kiǫ ≪ 1, which allows the two
terms in (A24) to compete. For particle 2 however, this is not the
case. C2+ = RC2− with R ∼ O(1) so that there is no balancing of
the modes, and the divergent mode is simply dominant. That is:

ψ2(ǫ) ≈ C2−x
−1/2−ζ2/2
2 , and

∂rψ2(ǫ) ≈ −(ζ2 + 1)ik2C2−x
−3/2−ζ2/2
2 . (A25)

With these approximations, we compute:

̂ψ ′i±

ψi±
≈ −

πǫ

mi
(1∓ ζi),

ψ1+

ψ1−
≈ (2ik1ǫ)

ζ1 ,

ψ2+

ψ2−
≈ 0, and

Z ≈
̂ψ ′2−

ψ2−
− h22 ≈ −

[

(1+ ζ2)
πǫ

m2
+ h22

]

. (A26)
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Then to leading order in kiǫ, it is found that:

C11 ≈− (2ik1ǫ)
ζ1

[

∣

∣h12
∣

∣

2
−
[

πǫ
m1

(1− ζ1)+ h11

] [

(1+ ζ2)
πǫ
m2
+ h22

]]

[

∣

∣h12
∣

∣

2
−
[

πǫ
m1

(1+ ζ1)+ h11

] [

(1+ ζ2)
πǫ
m2
+ h22

]] ,

(A27)

and

C12 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√

k2

k1

2πǫζ1h21

m1

[

∣

∣h12
∣

∣

2
−
[

πǫ
m1

(1+ ζ1)+ h11

] [

(1+ ζ2)
πǫ
m2
+ h22

]]

(A28)

It will become apparent that a redefinition of parameters can
significantly clean up our equations. Drawing from the next
appendix, we define

λ̂11 : =
1

ζ1

(

m1h11

πǫ
+ 1

)

λ̂12 : =
h12
√
m1m2

2πǫ
√
ζ1ζ2

,

λ̂22 : =
1

ζ2

(

m2h22

πǫ
+ 1

)

λ̂21 : =
h21
√
m1m2

2πǫ
√
ζ1ζ2

.

(A29)

In terms of these new variables, the integration constants read:

C11 = −(2ik1ǫ)
ζ1

[

4λ̂12λ̂21 −
[

λ̂11 − 1
] [

λ̂22 + 1
]]

[

4λ̂12λ̂21 −
[

λ̂11 + 1
] [

λ̂22 + 1
]] , (A30)

and

C12 = (2ik1ǫ)
ζ1/2(2ik2ǫ)

ζ2/2

√

m2k2ζ1

m1k1ζ2

4λ̂21
[

4λ̂12λ̂21 −
[

λ̂11 + 1
] [

λ̂22 + 1
]] . (A31)

B.2. Sub-Leading-Order in kiǫ
To leading order, C11 ∼ (2ikǫ)ζ1 , so that to leading order S

(ℓ)
11 is a

pure phase. In order to see the emergence of an absorptive single-
particle model in the particle 1 subsector of the theory (as covered
in section 7), it is necessary to compute C11 to the next order in
kiǫ. To that end, recall:

ψ± = (2ikǫ)
1
2 (−1±ζ )e−ikǫM

[

1

2
(1± ζ ), 1± ζ , 2ikǫ

]

, (A32)

so that

ψ± ≈ (2ikǫ)
1
2 (−1±ζ )

[

1− ikǫ +O
(

(kǫ)2
)][

1+ ikǫ +O
(

(kǫ)2
)]

,

≈ (2ikǫ)
1
2 (−1±ζ )

[

1+O
(

(kǫ)2
)]

(A33)

so at least for ζ < 2, the leading correction is only inψ2, and is to
include the (+) mode, since it is only a factor of (k2ǫ)

ζ2 compared
to the two powers from all other higher-order corrections. In fact
this is a property only of systems without a 1/r potential, as in
that case the leading correction from the hypergeometric factor
does not cancel that from the exponential.

Pushing through then, we repeat the calculation from the
previous section, now using

ψ2(ǫ) ≈ C2−x
−1/2
2

[

x
−ζ2/2
2 + R x

ζ2/2
2

]

, and

∂rψ2(ǫ) ≈ ik2C2−x
−3/2
2

[

−(ζ2 + 1)x
−ζ2/2
2 + (ζ2 − 1)R x

ζ2/2
2

]

.

(A34)

With these approximations, we compute:

ψ̂ ′i±

ψi±
≈ −

πǫ

mi
(1∓ ζi),

ψi+

ψi−
≈ (2ikiǫ)

ζi , and

Z ≈
ψ̂ ′2− + R ψ̂ ′2+
ψ2− + Rψ2+

− h22 =
ψ̂ ′2−

ψ2−

1+ R ψ̂ ′2+/ψ̂
′
2−

1+ Rψ2+/ψ2−
− h22

≈ −

[

(1+ ζ2)
πǫ

m2

]

{

1+ R

(

ψ̂ ′2+

ψ̂ ′2−

−
ψ2+

ψ2−

)}

− h22,

= −

[

(1+ ζ2)
πǫ

m2

]{

1−
2ζ2R

ζ2 + 1
(2ik2ǫ)

ζ2

}

− h22. (A35)

Substituting in (A22), one finds

C1− ≈ −(2ik1ǫ)
ζ1







∣

∣h12
∣

∣

2
−
[

πǫ
m1

(1− ζ1)+ h11

]

[

(1+ ζ2)
πǫ
m2

(

1− 2ζ2R
ζ2+1

(2ik2ǫ)
ζ2

)

+ h22

]













∣

∣h12
∣

∣

2
−
[

πǫ
m1

(1+ ζ1)+ h11

]

[

(1+ ζ2)
πǫ
m2

(

1− 2ζ2R
ζ2+1

(2ik2ǫ)
ζ2

)

+ h22

]







,

= −(2ik1ǫ)
ζ1
N1 +

[

πǫ
m1

(1− ζ1)+ h11

]

2πǫζ2R
m2

(2ik2ǫ)
ζ2

D +
[

πǫ
m1

(1+ ζ1)+ h11

]

2πǫζ2R
m2

(2ik2ǫ)ζ2
,

≈ −(2ik1ǫ)
ζ1
N1

D























1+

[
[

πǫ
m1

(1−ζ1)+h11

]

N1

−

[

πǫ
m1

(1+ζ1)+h11

]

D

]

2πǫζ2R

m2
(2ik2ǫ)

ζ2























,

(A36)

where

N1 : =
∣

∣h12
∣

∣

2
−

[

πǫ

m1
(1− ζ1)+ h11

] [

(1+ ζ2)
πǫ

m2
+ h22

]

, and

D : =
∣

∣h12
∣

∣

2
−

[

πǫ

m1
(1+ ζ1)+ h11

] [

(1+ ζ2)
πǫ

m2
+ h22

]

.

(A37)

Then (A36) simplifies to:

C11 = −(2ik1ǫ)
ζ1
̂N1

̂D

{

1− 4R
λ̂12λ̂21

̂N1̂D
(2ik2ǫ)

ζ2

}

. (A38)
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C. SOLVING FOR POINT-PARTICLE

COUPLINGS

To find the running of the point-particle couplings, we need to
isolate for them in the boundary conditions. To do so, we follow
the same prescription as B. Write:

ψi = Ci+ψi+ + Ci−ψi−, (A39)

where i = 1, 2. We again use (5.8) to define C11 : = C1−/C1+

and C12 : = C2−/C1+ in the 1 → X system, and analogously
C22 : = C2−/C2+ and C21 : = C1−/C2+ in the 2→ X system.

For convenience, define the following:

ψ11 : = ψ1+ + C11ψ1− and ψ12 : = C12 [Rψ2+ + ψ2−]
(A40)

for the 1→ X system, and

ψ22 : = ψ2+ + C22ψ2− and ψ21 : = C21 [Rψ1+ + ψ1−]
(A41)

for the 2→ X system. The small-r boundary conditions (4.5) and
(4.10) can be written

ψ̂ ′11 = h11ψ11 + h12ψ12, and (A42)

ψ̂ ′12 = h22ψ12 + h21ψ11, (A43)

and

ψ̂ ′21 = h11ψ21 + h12ψ22, and (A44)

ψ̂ ′22 = h22ψ22 + h21ψ21, (A45)

As in Appendix B, we define ψ̂ ′ : = 4πǫ2∂ǫψ . Using (A42) and
(A44), we can isolate for h11 and h12:

h11 =
ψ̂ ′11ψ22 − ψ̂

′
21ψ12

ψ11ψ22 − ψ21ψ12
and h12 =

ψ̂ ′11ψ21 − ψ̂
′
21ψ11

ψ12ψ21 − ψ22ψ11
.

(A46)
Similarly, using (A43) and (A45), we can isolate for h22 and h21:

h22 =
ψ̂ ′12ψ21 − ψ̂

′
22ψ11

ψ12ψ21 − ψ22ψ11
and h21 =

ψ̂ ′12ψ22 − ψ̂
′
22ψ12

ψ11ψ22 − ψ21ψ12
.

(A47)
To make use of these formulae, we approximate ψij using the
small-r forms as used in Appendix B:

ψ11(22)(ǫ) ≈ x
−1/2
1(2)

[

x
ζ1(2)/2

1(2)
+ C11(22)x

−ζ1(2)/2

1(2)

]

, and

4πǫ2∂r|ǫψ11(22)(ǫ) ≈ 2πǫ x
−1/2
1(2)

[

(ζ1(2) − 1)x
ζ1(2)/2

1(2)

−(ζ1(2) + 1)C11(22)x
−ζ1(2)/2

1(2)

]

,

(A48)

and

ψ21(12)(ǫ) ≈ C21(12)x
−1/2−ζ1(2)/2

1(2)
, and

4πǫ2∂r|ǫψ21(12)(ǫ) ≈ −(ζ1(2) + 1)2πǫ C21(12)x
−1/2−ζ1(2)/2

1(2)
.

(A49)

where again, xi : = (2ikiǫ), with i = 1, 2. Substituting (A48)
and (A49) into (A46) and (A47), we have the following. For h11
we find

λ̂11 =

(x
ζ1/2
1 − C11x

−ζ2/2
1 )(x

ζ1/2
2 + C22x

−ζ2/2
2 )

+C21C12x
−ζ1/2
1 x

−ζ2/2
2

(x
ζ1/2
1 + C11x

−ζ2/2
1 )(x

ζ1/2
2 + C22x

−ζ2/2
2 )

−C21C12x
−ζ1/2
1 x

−ζ2/2
2

,

=
(1− C11x

−ζ1
1 )(1+ C22x

−ζ2
2 )+ C21C12x

−ζ1
1 x

−ζ2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

, (A50)

which defines λ̂11 : =
1
ζ1

(

m1h11
πǫ
+ 1

)

. Notice the limit C21 =

C12 → 0 reduces λ̂11 to the single-species running (2.9), as it
should (the limit in which there is no mixing between particle
species). For h12, we have

λ̂12 =

√

m2ζ1

m1ζ2

C21

(

x1
x2

)−1/2

(x
ζ1/2
1 + C11x

−ζ2/2
1 )(x

ζ1/2
2 + C22x

−ζ2/2
2 )

−C21C12x
−ζ1/2
1 x

−ζ2/2
2

,

=

√

m2ζ1

m1ζ2

C21

(

x1
x2

)−1/2
x
−ζ1/2
1 x

−ζ2/2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

,

(A51)

with now λ̂12 : =
h12
√
m1m2

2πǫ
√
ζ1ζ2

. Notice again the clean limit h12 → 0

when C21 → 0. The rest follow easily:

λ̂21 =

√

m1ζ2

m2ζ1

C12

(

x2
x1

)−1/2
x
−ζ1/2
1 x

−ζ2/2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

,

(A52)

similarly with λ̂21 : =
h21
√
m1m2

2πǫ
√
ζ1ζ2

. Lastly,

λ̂22 =
(1+ C11x

−ζ1
1 )(1− C22x

−ζ2
2 )+ C21C12x

−ζ1
1 x

−ζ2
2

(1+ C11x
−ζ1
1 )(1+ C22x

−ζ2
2 )− C21C12x

−ζ1
1 x

−ζ2
2

, (A53)

with λ̂22 : =
1
ζ2

(

m2h22
2πǫ + 1

)

.
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In this work, we review two methods used to approach singular Hamiltonians in (2 + 1)

dimensions. Both methods are based on the self-adjoint extension approach. It is very

common to find singular Hamiltonians in quantum mechanics, especially in quantum

systems in the presence of topological defects, which are usually modeled by point

interactions. In general, it is possible to apply some kind of regularization procedure,

as the vanishing of the wave function at the location of the singularity, ensuring that

the wave function is square-integrable and then can be associated with a physical state.

However, a study based on the self-adjoint extension approach can lead to more general

boundary conditions that still gives acceptable physical states.We exemplify themethods

by exploring the bound and scattering scenarios of a spin 1/2 charged particle with an

anomalous magnetic moment in the Aharonov-Bohm potential in the conical space.

Keywords: curved space, self-adjoint operator, scattering, bound state, singular Hamiltonian operator, spin,

anomalous magnetic moment

1. INTRODUCTION

Singular and pathological Hamiltonians are quite common in quantummechanics and already have
a long history [1]. Probably, the first work to deal with δ-like singularities was in the Kronig-Penny
model [2] for the description of the band energy in solid-state physics. Since then, point interactions
have been of great interest in various branches of physics for their relevance as solvable models
[3]. For instance, in the famous Aharonov-Bohm (AB) effect [4] of spin-1/2 particles [5–7] a two-
dimensional δ function appears as the mathematical description of the Zeeman interaction between
the spin and the magnetic flux tube [8, 9]. The presence of this δ function cannot be discarded when
the electron spin is taken into account and it leads to changes in the scattering amplitude and cross-
section [6]. This question can also be understood in connection with the quantum mechanics of a
particle in a δ function potential in one dimension. When we wish to solve the problem for bound
states, it is well-known that such a function guarantees at least one bound state [10, 11], and this
property is maintained when studying the quantum mechanics of other physical systems in the
presence of external magnetic fields. The inclusion of the spin element in the approach of the AB
problem allows us to establish an exact equivalence with another well-known effect in the literature,
namely the Aharonov-Casher (AC) effect [12]. In the AC effect, a spin-1/2 neutral particle with a
magnetic moment is placed in an electric field generated by an infinitely long, an infinitesimally
thin line of charge. The interaction term involving the particle spin with the electric field in the
AC Hamiltonian is proportional to the δ function. Some works in the literature state that point
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interaction does not affect the scattering cross-section [13].
However, as in the spin-1/2 particle AB problem, the solution of
the equation of motion via the self-adjoint extension in the spin-
1/2 neutral particle AC problem reveals that the presence of the δ
function changes the scattering phase shift and consequently the
S-matrix [14, 15].

The study of physical systems with singular Hamiltonians
appears in various contexts of physics. In reference [16], the
discrete spectrum of a massive particle trapped in an infinitely
long cylinder with two attractive delta-interactions in the
cosmic string spacetime is studied. The authors showed that
the physical effects due to the cosmic string background are
similar to those of the AB effect in quantum mechanics. This
is verified when the cosmic string determines a deviation on
the trajectory of a particle, despite the locally flat character of
the manifold. In reference [17], the one-dimensional spinless
Salpeter Hamiltonian with finitely many Dirac delta potentials
was solved using the heat kernel techniques and self-adjoint
extension method. As in the case involving a single δ potential,
the model requires a renormalization to be made. They
investigated the problem in the context of bound states and
showed that the ground state energy is bounded from below.
Besides, they also showed that there exists a unique self-adjoint
operator associated with the resolvent formula and obtained an
explicit wave function formula forN centers. The approach using
this model to the scattering problem was addressed in reference
[18]. Such a model is a generalization of the work in reference
[19], where the Schrödinger equation for a relativistic point
particle in an external one-dimensional δ-function potential was
studied using dimensional regularization.

The physical regularization used in these models is consistent
with the self-adjoint extension theory and the idea can also be
used to study other versions of the Kronig-Penney model in
condensed matter physics. Different forms of Kronig-Penney-
type Hamiltonians can be found in the literature [20, 21]. To
approach singular Hamiltonian, it is more convenient to apply
von Neumann’s theory of self-adjoint extensions [3, 22, 23]. In
general, if we ignore the singularity, the resulting Hamiltonian
is self-adjoint and positive definite [24], its spectrum is R+ and
there are no bound states. The situation changes if we consider
the delta function because the singularity is physically equivalent
to an extraction of a single point from the plane R

2, which
leads to the loss of the self-adjointness of the Hamiltonian. This
has important consequences in the spectrum of the system [25].
However, the self-adjointness is necessary to have a unitary time
evolution. So, we must guarantee that the Hamiltonian is self-
adjoint, which here is done employing the self-adjoint extension
of symmetric operators. With this approach, a new family of
self-adjoint operators labeled by a real parameter is obtained.

The situation discussed above occurs, for instance, in the AB
scattering of a spin-1/2 particle, where it is well-known that for
all real values of the self-adjoint extension parameter, there is
an additional scattering amplitude [6], which results from the
interaction between the spin and the magnetic flux tube [26].
Moreover, there is one bound state solution with negative energy
when this parameter is <0. This situation can be considered
quite strange, however, it can be mathematically proved the

existence of this negative eigenvalue [3, 5, 27–36]. It is interesting
to comment that in reference [29], an equivalence between the
renormalization and the self-adjoint extension is discussed.

In this paper, we review some elements of the self-adjoint
extension theory which are necessary to address singular
Hamiltonians in relativistic and non-relativistic quantum theory.
As an application, we consider the model of a spin-1/2 particle
with an anomalous magnetic moment in an AB potential in the
cosmic string spacetime. As already mentioned above, in this
model, a δ function potential arises in the equation of motion
[4]. We derive the Dirac equation for this model and solve it
for the scattering and bound states on the non-relativistic limit
using the self-adjoint extensionmethod. Themain goal is to study
the physical implications of both the cosmic string background
and singularity on the properties of the system. Our application
example is motivated by the importance of studying cosmic
strings [37], which has been the usual framework for investigating
the effects of localized curvature in physical systems. There is
a significant number of articles in the literature that study the
influence of topology on physical systems using the cosmic string
as a background.

Recently, a detailed study to study geometric phase for an open
system of a two-level atom interacting with a massless scalar field
in the background spacetime of the cosmic string spacetime with
torsion was proposed in reference [38]. The authors showed that
the geometric phase depends not only on the inherent properties
of the atom, but also on the topological properties of background
spacetime. For this model, it was found that the correction to the
geometric phase of the present system derives from a composite
effect, which contains the cosmic string and screw dislocation
associated with the curvature and torsion, respectively. The
authors also showed that the phase depends on the initial state
of this atom and, in particular, there is no geometric phase
acquired for the atom if the initial state is prepared in the excited
state. Another physical model of current interest that has several
studies in cosmic string spacetime is the Dirac oscillator [39]. It is
known that the Dirac oscillator is a kind of tensor coupling with
a linear potential which leads to the simple harmonic oscillator
with a strong spin-orbit coupling problem in the non-relativistic
limit. The Dirac oscillator is an exactly soluble model and can
be an excellent example in the context of many-particle models
in relativistic and non-relativistic quantum mechanics [40]. In
reference [41], it was studied the relativistic quantum dynamics
of a Dirac oscillator subject to a linear interaction for spin-1/2
particles in a cosmic string spacetime. The authors showed in
this model that the geometric and topological properties of these
spacetimes lead to shifts in the energy spectrum and the wave-
function. In reference [42], the self-adjoint extension method
was used to study the effects of spin on the dynamics of a
two-dimensional Dirac oscillator in the magnetic cosmic string
background. For other important studies in the cosmic string
spacetime, the reader may refer to the references [43–46] and in
the context of non-relativistic quantum dynamics of a quantum
particle constrained to move on a curved surface using da Costa’s
approach [47] to the references [48–50].

The rest of this work is organized as follows. In section 2
the theory of the self-adjoint extensions is presented and two
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different methods, both based on the self-adjoint extension,
are discussed. In section 3 the Dirac equation that describes
the motion of a spin-1/2 charged particle with an anomalous
magnetic moment in the curved space is developed. The methods
presented in the previous section are then applied to this system
and the scattering and bound states scenarios are discussed. The
scattering matrix and the expression for the bound state energy is
presented. Finally, in the section 4 we present our conclusions.

2. THE SELF-ADJOINT EXTENSION

APPROACH

In this section, we review some important concepts and results
from the von-Neumann-Krein theory of self-adjoint extensions.
Let A and B two operators. If the domain of A contains the
domain of B, i.e., D(A) ⊇ D(B), and in the domain of B the
operators are equals, then we say that A is an extension of B. The
domain of an operator A is called dense if for each vector ψ in
this domain, there is a sequence ψn in such a way that ψn → ψ .
If an operator A has a dense domain, the domain of its adjoint
A†, is the set of all vectors ψ for which there is a vector A†ψ

that satisfies

(φ,A†ψ) = (Aφ,ψ), (1)

for all vectors φ ∈ D(A). Equation (1) defines A†ψ . On the other
hand, an operator with dense domain A is symmetric if

(φ,Aψ) = (Aφ,ψ), (2)

for every φ and ψ in its domain. In this case A†ψ is defined as
A†ψ = Aψ for all ψ ∈ D(A), and A† is said to be an extension
of A. If A† = A, then A is called self-adjoint or Hermitian. It is
interesting to comment that in physics it is common to assume
that Hermitian is the same as self-adjointness. However, they are
different notions in mathematics literature and only the word
Hermitian could be used for symmetric.

An important point here is that a symmetric operator can fail
to be a self-adjoint operator. For A to be a self-adjoint operator it
has to be symmetric, A = A†, and the domains of the operator
and its adjoint have to be equal as well, D(A) = D(A†). So,
in the same way as a function needs a rule, a domain and a
codomain to be defined, an operator needs not only its action
but also its domain (Hilbert space) to be completely defined.
Several traditional textbooks on quantum mechanics [51–54]
do not mention the problems that could arise by the incorrect
or incomplete definition of the operators. An exception being
the textbook of the author Ballentine [55]. The mathematical
framework of quantum mechanics is that of linear operators
in Hilbert spaces and the problems and paradoxes that could
arise come from the use of simplified rules described in many
textbooks. As an example of this is the use of the theory if
bounded operators to deal with unbounded operators [56].

2.1. The Weyl-Von Neumann’s Theorem
Following the concept of self-adjoint extension, the question we
want to answer is how many extensions, if any, are admitted by
an operator. The answer to this question lies in the concept of

deficiency index of an operator. Let A be a symmetric operator
with domain D(A) and the corresponding adjoint operator A†

with domain D(A†). The deficiency subspaces N± are defined
by [56]

N± =
{

ψ± ∈ D(A†), A†ψ± = z±ψ±, Im(z±) ≷ 0
}

, (3)

with dimensions dim {N±} = n±. The pair of non-negative
integers (n+, n−) are called deficiency indices of A. The exact
value of z± is not important as long as z+ (z−) belongs to the
upper (lower) half complex plane. For simplicity, it is chosen
as z± = ±iz0, with z0 an arbitrary positive real number, used
for dimensional reasons. In this manner, to access the deficiency
indices, all we have to do is to solve the eigenvalue equation

A†ψ± = ±iz0ψ±, (4)

and then count the number of linearly independent solutions that
belong to the domain of the adjoint operator in the Hilbert space
in question, i.e., those that are square integrable.

Theorem 1. (Weyl and Von Neumann [56]) Consider an
operator A with deficiency index (n+, n−):

1. If n+ = n−, A is essentially self-adjoint;
2. If n+ = n− = n ≥ 1, A posses an infinity number

of self-adjoint extensions parameterized by a unitary matrix
U :N+ → N− of dimension n with n2 real parameters;

3. If n+ 6= n−, A does not admit a self-adjoint extension.

Therefore, the domain of A† is

D(A†) = D(A)⊕N+ ⊕N−. (5)

So, it is important to note that even for Hermitian operators,
A = A†, its domains might be different. In this manner, the self-
adjoint extension essentially consists of extending the domain of
A using the deficiency subspacesN± to match the domain of A†.

Now that we have discussed some general concepts about
the self-adjoint extension approach, we restrict our discussion
to the specific case of singular Hamiltonian operators H in (2
+ 1) dimensions. In these cases, the singularity is characterized
by the presence of a two-dimensional δ function localized at the
r = 0. It is well-known in the literature that these Hamiltonians
are not self-adjoint and admit a one-parameter family of self-
adjoint extension [22]. Thus, our main goal is to solve the
time-independent Schrödinger equation

Hψ = Eψ , (6)

with H the Hamiltonian, ψ the wave function and E the energy.
To do so, we shall discuss two methods to characterize the
family of self-adjoint extensions of H. In both methods, the delta
function singularity is replaced by a boundary condition at the
origin. In the first one, proposed by Bulla and Gesztesy (BG) in
[57], the boundary condition is a mathematical limit allowing
divergent solutions for the Hamiltonian H at isolated points,
provided they remain square-integrable. In the second one,
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proposed by Kay and Studer (KS) in [58], the boundary condition
is a match of the logarithmic derivatives of the zero-energy
solutions for the regularized Hamiltonian and the solutions for
the Hamiltonian H without the delta function plus a self-adjoint
extension. As we shall show, the comparison between the results
of the two methods allows us to express the self-adjoint extension
parameter (a mathematical parameter that characterizes the self-
adjoint extension) in terms of the physics of the problem.

2.2. The BG Method
Let us consider the radial singular Schrödinger operator in
L2((0,∞)) given by

h = −
d2

dr2
+
ℓ(ℓ− 1)

r2
+
γ

r
+
β

ra
+W, (7)

withW ∈ L∞((0,∞)) real valued and 1/2 ≤ ℓ < 3/2, β , γ ∈ R,
0 < a < 2. Bulla and Gesztesy showed that this operator, in
the interval 1/2 ≤ ℓ < 3/2, is not self-adjoint having deficiency
indices (1, 1). Thus admitting a one-parameter family of self-
adjoint extensions. The following theorem characterizes all the
self-adjoint extension of h.

Theorem 2. (Bulla and Gesztesy [3, 57]) All the self-adjoint
extension hν of h can be characterized by

hν = −
d2

dr2
+
ℓ(ℓ− 1)

r2
+
γ

r
+
β

ra
+W, (8)

with domain

D(hν) =
{

g ∈ L2 ((0,∞))
∣

∣g, g′ ∈ ACloc ((0,∞)) ; (9)

− g′′ +
ℓ(ℓ− 1)

r2
g +

γ

r
g +

β

ra
g ∈ L2 ((0,∞))

}

(10)

with ACloc((a, b)) denoting the set of locally absolutely
continuous functions on ((a, b)) and the function g satisfies
the boundary condition

νg 0,ℓ = g1,ℓ, (11)

and

−∞ < ν ≤ ∞,
1

2
≤ ℓ <

3

2
, β , γ ∈ R, 0 < a < 2. (12)

The boundary values in (11) are defined by

g 0,ℓ = lim
r→0+

g(r)

G
(0)
ℓ
(r)

, (13)

and

g1,ℓ = lim
r→0+

g(r)− g0,ℓG
B
ℓ (r)

F
(0)
ℓ (r)

. (14)

The boundary condition g0,ℓ = 0 (i.e., ν = ∞) represents the
Friedrichs extension of h.

The functions F
(0)
ℓ (r) and G

(0)
ℓ (r) are given by

F
(0)
ℓ (r) = rℓ, (15)

and

G
(0)
ℓ
(r) =







−r1/2 ln(r), ℓ = 1
2 ,

r1−ℓ

(2ℓ− 1)
, 1

2 < ℓ < 3
2 .

(16)

GB
ℓ
(r) denotes the asymptotic expansion of Gℓ(r) for r → 0+ up

to rt , with t ≤ 2ℓ− 1.

2.3. The KS Method
The authors Kay and Studer studied, in the context of self-adjoint
extensions, the boundary conditions for singular Hamiltonians in
conical spaces and fields around cosmic strings [58]. Among the
studied problems, are the AB like problems in two dimensions.

The KS method starts by considering a regularization
procedure for the point interaction at the origin. Thus, for the
regularized Hamiltonian, where the point interaction is shifted
from the origin by a finite very small radius r0, the method is
applied in the following manner [59]:

1. We temporally forget the point interaction at the origin
substituting the singular Hamiltonian by the corresponding
non-singular one;

2. We solve the Equation (4) for the deficiency spaces of the
non-singular Hamiltonian;

3. The solutions obtained in the previous step are
used to complete the space of solutions for the
non-singular Hamiltonian;

4. In the last step, a boundary condition matching the
logarithmic derivatives of the zero-energy solutions for the
regularized Hamiltonian of step 1 and the general solutions
obtained in step 3 is employed:

lim
r0→0+

r0
ġ0

g0

∣

∣

∣

∣

r=r0

= lim
r0→0+

r0
ġρ

gρ

∣

∣

∣

∣

r=r0

. (17)

In the above equation, gρ are the solutions obtained in step 3
and g0 are the zero-energy solutions (ġ = dg/dr).

Now that we have discussed the self-adjoint extension approach
and the BG and KS methods, in what follows we exemplify
the application of both methods to the problem of a spin-1/2
charged particle with an anomalous magnetic moment under the
influence of an AB field in conical space.

3. THE DIRAC EQUATION FOR THE AB

SYSTEM IN THE CONICAL SPACE

In this section, we shall obtain the Dirac equation to describe
the motion of a spin-1/2 charged particle with mass M and
anomalous magnetic moment µB interacting with an AB field in
the cosmic string spacetime. The line element that describes this
universe written in cylindrical coordinates is given by

ds2 = dt2 − dr2 − α2r2dϕ2 − dz2, (18)
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with −∞ < (t, z) < ∞, r ≥ 0 and 0 ≤ ϕ ≤ 2π . The parameter
α in the metric (18) is related to the linear mass density m̄ of the
cosmic string through the formula α = 1 − 4m̄ and it stands for
two situations:

• It describes the surface of a cone if 0 < α < 1. This is
equivalent to removing a wedge angle of 2π(1 − α) and the
defect presents a positive curvature.

• It describes the surface of an anticone or the figure of a saddle-
like surface when α > 1. This situation corresponds to the
addition of an excess angle of 2π(α − 1) and, in this case, the
defect represents a negative curvature.

In this work, we shall discuss the case of a conical surface, so that
0 < α ≤ 1, with the equality corresponding to the flat space.

The metric in (18) can also be read as the Minkowski
spacetime with a conic singularity at r = 0 [60]. Because of this
characteristic, the only non-zero components of the curvature
tensor is found to be

Rr,ϕr,ϕ =
1− α

4α
δ2(r), (19)

where δ2(r) is the two-dimensional delta function in flat space.
The conical singularity in the tensor (19) reveals that the
curvature is concentrated on the cosmic string axis and in all
other regions it is null.

Since the spacetime is not flat, we must take into account the
spin connection in the Dirac equation. To implement this, we
need to construct a frame which allows us to obtain the Dirac
gamma matrices γ µ in the Minkowskian spacetime (defined in
terms of the local coordinates) in terms of global coordinates.

This is done by using the tetrad base e
(a)
µ (x), which allows to

contract the matrices γ µ with the inverse tetrad e
µ

(a) (x) through
the relation

γ µ (x) = e
µ

(a) (x) γ
(a), (20)

satisfying the generalized Clifford algebra

{

γ µ (x) , γ ν (x)
}

= 2gµν (x) , (21)

with

gµν (x) = e(a)µ (x) e
(b)
ν (x) η(a)(b), (22)

being the metric tensor of the spacetime in the presence of the
background topological defect, where η(a)(b) is the metric tensor

of the flat space, and (µ, ν) = (0, 1, 2, 3) represent tensor indices
while (a, b) = (0, 1, 2, 3) are tetrad indices. The tetrad and its
inverse satisfy the following properties:

e(a)µ (x) e
µ

(b)
(x) = δ

(a)

(b)
e
µ

( a) (x) e
(a)
ν (x) = δµν . (23)

Thematrices γ (a) =
(

γ (0), γ (i)
)

in Equation (20) are the standard
Dirac matrices in Minkowski spacetime, those representation is

γ (0) =

(

I 0
0 −I

)

, γ (i) =

(

0 σ i

−σ i 0

)

, (i = 1, 2, 3), (24)

where σ i =
(

σ 1, σ 2, σ 3
)

are the standard Pauli matrices and I is
the 2× 2 identity matrix.

To write the generalized Dirac equation in the cosmic string
background, we have to take into account the minimal and non-
minimal couplings of the spinor to the electromagnetic field
embedded in a classical gravitational field. The Dirac equation
then reads

[

iγ µ (x)
(

∂µ + Ŵµ (x)
)

− eγ µ (x)Aµ (x)

−
aeµB

2
σµν (x) Fµν (x)−M

]

9 (x) = 0, (25)

where e is the electric charge,

ae =
ge − 2

2
= 0, 00115965218091, (26)

is the anomalous magnetic moment defined, with ge being the
electron’s g-factor [61],

Aµ (x) = (A0,−A) , (27)

is the 4-potential of the external electromagnetic field, with A

being the vector potential and A0 the scalar potential,

Fµν = ∂µAν − ∂νAµ, (28)

is the electromagnetic field tensor whose components are
given by

(

F0i, Fij
)

=
(

Ei, εijkB
k
)

, (29)

and the operator

σµν (x) =
i

2
[e
µ

(a) (x) γ
(a), eν

(b)
(x) γ (b)]

=
i

2

[

e
µ

(a)γ
(a)eν
(b)
(x) γ (b) − eν

(b)
(x) γ (b)e

µ

(a) (x) γ
(a)

]

,

(30)

those components are given by

σ 0i = iαj = i

(

0 σ i

σ i 0

)

, (31)

σ ij = −ǫijk6
k = −

(

ǫijkσ
k 0

0 ǫijkσ
k

)

, (32)

where

6k =

(

σ k 0

0 σ k

)

(33)

is the spin operator. The spinor affine connection in Equation
(25) is related with the tetrad fields as [62]

Ŵµ (x) =
1

8
ωµ(a)(b) (x)

[

γ (a), γ (b)
]

, (34)

Frontiers in Physics | www.frontiersin.org 5 November 2019 | Volume 7 | Article 175153

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Salem et al. Singular Hamiltonians in (2 + 1) Dimensions

where ωµ(a)(b) is the spin connection, which can be calculated

from the relation

ωµ(a)(b) (x) = η(a)(c)e
(c)
ν (x) eτ

(b)
(x) Ŵντµ

−η(a)(c)e
(c)
ν (x) ∂µe

ν

(b)
(x) , (35)

and Ŵντµ are the Christoffel symbols.
Now, we need of the tetrad fields to write the Dirac equation

in curved space. For the cosmic string spacetime they are chosen
to be [63]

e(a)µ =









1 0 0 0
0 cosϕ −αr sinϕ 0
0 sinϕ αr cosϕ 0
0 0 0 1









,

e
µ

(a)
=









1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ/αr cosϕ/αr 0
0 0 0 1









. (36)

Using (36), the matrices γ µ (x) in Equation (20) are written more
explicitly as

γ 0 = β ≡ γ t , (37)

γ z ≡ γ z , (38)

γ 1 ≡ γ r = γ (2) cosϕ + γ (2) sinϕ, (39)

γ 2 ≡
γ ϕ

αr
=

1

αr

(

−γ (1) sinϕ + γ (2) cosϕ
)

, (40)

γ 3 ≡ γ z . (41)

The matrices (37)–(40) satisfy condition ∇µγ
µ = 0, which

means that they are covariantly constant. The Pauli matrices σ i

in Equation (31) have the following representation:

σ r =

(

0 e−iϕ

eiϕ 0

)

, (42)

σ ϕ =
1

αr

(

0 −ie−iϕ

ieiϕ 0

)

. (43)

Using the basis tetrad (36), the affine connection (34) is found to
be [64]

Ŵ =
(

0, 0,Ŵϕ , 0
)

, (44)

where

Ŵϕ =
1

2
(1− α) γ(1)γ(2) = −i

(1− α)

2
σ z , (45)

arises as the only non-zero component.
For simplicity, let us assume that the particle interacts with

the AB potential, which is generated by a solenoid along the z
direction. Since the motion is translationally invariant along this
direction, we require that pz = z = 0 and, in Equation (29), we

take Ei = 0 for i = 1, 2, 3. Thus, the particle has a purely planar
motion. Equation (25) takes the form

[

−i∂0 + α ·

[

1

i
(∇α + Ŵ)− eA

]

−aeµBγ
06 · B+ γ 0M

]

9(x) = 0. (46)

It is well-known that, in the non-relativistic limit, the large energy
M is the driving term in Equation (46). So, writing

9 = e−iEt

(

χ

8

)

, (47)

we obtain the coupled equations system

σ ·

[

1

i
(∇α + Ŵ)− eA

]

8 = (i∂0 + aeµBσ · B) χ , (48)

σ ·

[

1

i
(∇α + Ŵ)− eA

]

χ = (i∂0 − aeµBσ · B+ 2M)8. (49)

On the right side of Equation (49), if we assume that 2M ≫
(i∂0 − aeµBσ · B), we solve it as

8 =
1

2M
σ ·

[

1

i
(∇ + Ŵ)− eA

]

χ . (50)

Substituting (50) into (48), we get

1

2M
σ ·

[

1

i
(∇α + Ŵ)− eA

]

σ ·

[

1

i
(∇ + Ŵ)− eA

]

χ

−aeµBσ · Bχ = i∂0χ . (51)

Using the relation for Pauli’s matrices

(σ · a) (σ · b) = a · b+ iσ · (a× b) , (52)

where a and b are arbitrary vectors, Equation (51) becomes

1

2M

[

1

i
(∇α + Ŵ)− eA

]2

χ−
e

2M
(1+ ae) σ ·Bχ = i∂0χ . (53)

Now we need to define the field configuration. We consider the
magnetic field generated by an infinity long cylindrical solenoid
in the metric (18). Thus, in the Coulomb gauge, the vector
potential reads

eA = −
e8

2παr
ϕ̂ = −

φ

αr
ϕ̂, A0 = 0, (54)

and

eB = −
e8

2πα

δ(r)

r
ẑ = −

φ

α

δ(r)

r
ẑ, (55)

with φ = 8/80 being the magnetic flux and 80 = 2π/e is
the quantum of magnetic flux. As we can observe, this magnetic
field is singular at the origin. The presence of this singularity (a
point interaction) in the Hamiltonian, demands that it must be
treated by some kind of regularization or, more appropriately, by
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using the self-adjoint extension approach. We can note that χ in
Equation (53) is an eigenfunction of σ z , with eigenvalues s = ±1.
In this way, we can write σ zχ = ±χ = sχ . We can take the
solutions in the form

χ (t, r,ϕ) = e−iEt

(

χ+ (r,ϕ)
χ− (r,ϕ)

)

= e−iEtχs (r,ϕ) . (56)

Substituting (45), (54), (55), and (56) in Equation (53), we obtain

1

2M

[

1

i
∇α −

(1− α)

2αr
sϕ̂ +

φ

αr
ϕ̂

]2

χs +
1

2M

gesφ

2α

δ(r)

r
χs (r,ϕ)

= Eχs (r,ϕ) . (57)

Therefore, the eigenvalues equation associated with Equation
(25) is (k2 = 2ME)

Hχs = k2χs, (58)

with

H =

[

−i∇α −
(1− α)

2αr
sϕ̂ +

φ

αr
ϕ̂

]2

+
gesφ

2α

δ(r)

r
. (59)

By expanding the above equation, we arrive at the Laplace-
Beltrami operator in the curved space

∇2
α =

∂2

∂r2
+

1

r

∂

∂r
+

1

α2r2
∂2

∂ϕ2
. (60)

In the present system, the total angular momentum is the sum of
the angular momentum and the spin, J = −i∂/∂ϕ + s/2. Since J
commutes with H, we seek solutions of the form

χs =
∑

m

ψm(r) e
imϕ , (61)

with m = 0,±1,±2,±3, . . . being the angular momentum
quantum number and ψs(r) satisfies the differential equation

hψm(r) = k2ψm(r), (62)

with

h = h0 + λ
δ(r)

r
, (63)

and

h0 = −
d2

dr2
−

1

r

d

dr
+

j2

r2
. (64)

The parameter j represents the effective angular momentum

j =
m+ φ

α
−

(1− α)s

2α
, (65)

and

λ =
geφs

2α
. (66)

By observing equation (65), one can verify that the presence
of the spin element in the model leads to the appearance of a
δ function potential. The quantity λδ(r)/r in Equation (63) is
interpreted as the interaction between the spin of the particle
and the AB flux tube. As pointed out by Hagen [6, 7] in flat
space (α = 1), this interaction affects the scattering phase shift.
In this work, by using the self-adjoint extension approach, we
shall confirm these results and show that this delta function also
leads to bound states. This approach had to be adopted to deal
with singular Hamiltonians in previous works as, for example,
in the study of spin 1/2 AB system and cosmic strings [5, 65],
in the Aharonov-Bohm-Coulomb problem [33, 34, 66, 67], and
the study of the equivalence between the self-adjoint extension
method and renormalization [29].

3.1. Application of the BG Method
In this section, we employ the KS method to find the S-matrix
and from its poles we obtain an expression for the bound states.
To apply the BG method, we need first transform the operator
h0 in (64) to compare with the form in Equation (7). This is
accomplished by employing a similarity transformation bymeans
of the unitary operator U : L2(R+, rdr) → L2(R+, dr), given by
(Uξ )(r) = r1/2ξ (r). Thus, the operator h0 becomes

h̃0 = UH0U
−1 = −

d2

dr2
+

(

j2 −
1

4

)

1

r2
, (67)

and by comparing with (7) we must have γ = β = W = 0 and

ℓ(ℓ− 1) = j2 −
1

4
. (68)

It is well-known that the radial operator h0 is not essentially self-
adjoint for ℓ(ℓ − 1) < 3/4, otherwise it is essentially self-adjoint
[22]. Therefore, using the above equation in this inequality,
we have

|j| < 1. (69)

Before we going to the application of Theorem 2, it is interesting
to get a deeper understanding of the significance of the above
equation for it informs us for which values of the angular
momentum quantum number m the operator h0 is not self-
adjoint. From Equation (65), we see that these values are
dependent on the magnetic quantum flux φ, the value of α and
the spin parameter s. By employing the decomposition of the
magnetic quantum flux as

φ = N + β , (70)

with N being the largest integer contained in φ and

0 ≤ β < 1, (71)

the inequality in Equation (69), becomes

πAB
− (α,β) < m < πAB

+ (α,β), (72)

with
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FIGURE 1 | In this figure we show the graphs of the planes πAB
± (α,β) for the AB (top panel) and the planes πAC

± (α,β) for the AC (bottom panel) effects. The figures on

the left are for s = −1 and on the right is for s = +1. The planes delimit the region where h0 is not self-adjoint.

πAB
± (α,β) = ±α − (N + β)+

(1− α)s

2
. (73)

The planes πAB
± (α,β) delimit the region in which h0 is not self-

adjoint. Given the exact equivalence of the spin 1/2 AB and
AC effects [68], Equation (73) should be compared with the
corresponding planes obtained for the AC effect in the conical
space. In reference [14] it was shown that the planes for the AC
effect are given by1

πAC
± (α,β) = ±α − s(N + β)+

(1− α)s

2
. (74)

Although the equations for the planes are very similar, there is
an additional dependence on the spin parameter s in the AC
effect. In Figure 1 we show the planes for AB (top panel) and AC
(bottom panel) effects as a function of β and it is possible to see
in the AB effect the s parameter changes the values ofm in which
h0 is not self-adjoint and the planes are decreasing functions
of β whatever the value of s while in the AC effect, besides of
changing the values of m, it also controls the inclination of the
planes (compare the figures at the bottom panel of Figure 1). We
can have even more information about the affected m values (in
the sense of which values of it h0 is not self-adjoint) by looking

1There is a missprint in the signal of the term sN in π±(α,β) in reference [14].

at some specific values of α. Thus, in Figures 2, 3 we show cross
sections of Figure 1 for s = −1 and s = +1, respectively. In
Figures 2, 3 we can see that for s = −1 (s = +1) and α = 0.25
only for m = −N − 1 (m = −N) the operator h0 is not self-
adjoint. On the other hand, for α = 0.50 for both values of
m = −N and m = −N − 1 the operator h0 is not self-adjoint.
In fact, the minimum value of α in which h0 is not self-adjoint
for both values of m is αmin = 1/3. Moreover, for α = 1
(flat space), the operator h0 is not self-adjoint for both values of
angular momentum for all range of β , which is a very well-known
result [3, 69–71].

Now that we have discussed in detail the significance of
inequality |j| < 1, we can return to our main discussion. Thus, in
the subspace where |j| < 1, we must apply Theorem 2, in such a
way that all the self-adjoint extensions h0,ν of h0 are characterized
by the boundary condition at the origin

νψ0,j = ψ1,j, (75)

with−∞ < ν ≤ ∞,−1 < j < 1 and the boundary values are

ψ0,j = lim
r→0+

r|j|ψm(r),

ψ1,j = lim
r→0+

1

r|j|

[

ψm(r)− ψ0,j
1

r|j|

]

.
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FIGURE 2 | Cross sections of Figure 1 (top left panel) with s = −1 for: α = 0.25 (top left panel), α = 0.50 (top right panel), α = 0.75 (bottom left panel), and α = 1

(bottom right panel). The area of the stripe detached in the figure represents the region in which the operator h0 is not self-adjoint. The dashed lines refer to the values

of angular momentum quantum number.

Physically, it turns out that we can interpret 1/ν as the scattering
length of h0,ν [3]. For ν = ∞ (the Friedrichs extension of
h0), we obtain the free Hamiltonian (the case describing spinless
particles) with regular wave functions at the origin (ψm(0) =
0). This scenario is similar to imposing the Dirichlet boundary
condition on the wave function and recovers the original result
of Aharanov and Bohm [4]. On the other hand, if |ν| < ∞,
h0,ν characterizes a point interaction at r = 0 and the boundary
condition permits a r−|j| singularity in the wave functions at this
point [72].

Now that we have a suitable boundary condition, we can
return to Equation (62) and look for its solutions. Equation (62)
is nothing more than the Bessel differential equation for r 6= 0.
Thus, the general solution for r 6= 0 is given by

ψm(r) = amJ|j|(kr)+ bmJ−|j|(kr), (76)

where Jν(z) is the Bessel function of fractional order and am and
bm are the coefficients corresponding to the contributions of the
regular and irregular solutions at r = 0, respectively. By means
of the boundary condition in Equation (75), we obtain a relation
between am and bm,

bm = −µνam, (77)

which is valid in the subspace |j| < 1. The term µν is given by

µν =
k2|j|Ŵ(1− |j|) sin(|j|π)

4|j|Ŵ(1+ |j|)ν + k2|j|Ŵ(1− |j|) cos(|j|π)
, (78)

where Ŵ(z) is the gamma function. In Equation (78) one can
verify that µν controls, through ν, the contribution of the
irregular solution J−|j| for the wave function. Thus, the solution
in this subspace reads

ψm(r) = am
[

J|j|(kr)− µν J−|j|(kr)
]

. (79)

We can observe that for ν = ∞, we obtain µ∞ = 0 and, in
this case, there is no contribution of the irregular solution at the
origin for the wave function. Consequently, in this case, the total
wave function becomes

ψ =

∞
∑

m=−∞

amJ|j|(kr)e
imϕ . (80)

The coefficient am in Equation (80) must be chosen in such a way
that ψ represents a plane wave that is incident from the right. In
this case, we find the following result:

am = e−i|j|π/2. (81)
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FIGURE 3 | Cross sections of Figure 1 (top left panel) with s = +1 for: α = 0.25 (top left panel), α = 0.50 (top right panel), α = 0.75 (bottom left panel), and α = 1

(bottom right panel). The area of the stripe detached in the figure represents the region in which the operator h0 is not self-adjoint. The dashed lines refer to the values

of angular momentum quantum number.

The scattering phase shift can be obtained from the asymptotic
behavior of Equation (80). This leads to

δm =
π

2
(|m| − |j|). (82)

This is the scattering phase shift of the AB effect in the cosmic
string spacetime [26, 59]. It is important to mention that, for
α = 1, it reduces to the phase shift for the usual AB effect in
flat space δABm = π(|m| − |m+ φ|)/2 [4].

On the other hand, for |ν| < ∞, the contribution of the
irregular solution changes the scattering phase shift to

δνm = δm + arctan(µν). (83)

Thus, from standard results for the S-matrix, one obtains

Sνm = e2iδ
ν
m = e2iδm

(

1+ iµν

1− iµν

)

, (84)

which is the expression for the S-matrix given in terms of phase
shift. It can be seen in (84) that there is an additional scattering
for any value of the self-adjoint extension parameter ν. By
choosing ν = ∞, we find the S-matrix for the AB effect in the
cosmic string spacetime, as it should be.

Having obtained the S-matrix, the bound state energies can
be identified as the poles of it in the upper half of the complex
k plane. To find them, we need to examine the zeros of the
denominator in Equation (84), 1 − iµν , with the replacement
k → iκb with κb =

√
2MEb. Therefore, for ν < 0, the bound

state energy is given by

Eb = −
2

M

[

−ν
Ŵ(1+ |j|)

Ŵ(1− |j|)

]1/|j|

. (85)

Thus, for a fixed negative value of the self-adjoint extension
parameter ν, there is a single bound state and the value
2|ν|1/|j|/M fixes the energy scale. The result in Equation (85)
coincides with the bound state energy found in references [26, 59]
for the AB effect in curved space and is similar that one found in
contact interactions of anyons [73]. It is also possible to express
the S-matrix in terms of the bound state energy. The result is seen
to be

Sνm = e2iδm
[

e2iπ |j| − (κb/k)
2|j|

1− (κb/k)
2|j|

]

. (86)

It is important to comment that the above results for the
scattering matrix and the bound state energy (for ν < 0) are valid
only when |j| < 1. Moreover, all the results are dependent on a
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free parameter, the self-adjoint extension parameter ν. In what
follows we shall show that by employing the KS method, we can
find an expression relating the self-adjoint extension parameter
with physical parameters of the system.

3.2. Application of the KS Method
In this section, we employ the KS approach to find the bound
states for the Hamiltonian in Equation (63). Following the
discussion in section 2.3, we temporarily forget the δ-function
potential in h and substitute the problem in Equation (62) by the
eigenvalue equation for h0,

h0ψρ = k2ψρ , (87)

plus self-adjoint extensions. Here, ψρ is labeled by the parameter
ρ of the self-adjoint extension, which is related to the behavior
of the wave function at the origin. To turn h0 into a self-adjoint
operator its domain of definition has to be extended by the
deficiency subspace, which is spanned by the solutions of the
eigenvalue equation (cf. Equation 4)

h†
0ψ± = ±ik20ψ±, (88)

where k20 ∈ R is introduced for dimensional reasons. Since h0 is

Hermitian, h†
0 = h0, the only square integrable functions which

are solutions of Equation (88) are the modified Bessel functions
of second kind,

ψ± = K|j|(
√
∓ik0r), (89)

with Im
√
±i > 0. These functions are square integrable only

in the range j ∈ (−1, 1), for which h0 is not self-adjoint.
The dimension of such deficiency subspace is thus (n+, n−) =
(1, 1), in agreement with the results of the previous sections.
In this manner, D(hρ,0) in L2(R+, rdr) is given by the set of
functions [22]

ψρ(r) = ψm(r)+ C
[

K|j|(
√
−ik0r)+ eiρK|j|(

√
ik0r)

]

, (90)

where ψm(r), with ψm(0) = ψ̇m(0) = 0, is the regular wave
function and the mathematical parameter ρ ∈ [0, 2π) represents
a choice for the boundary condition. For different values of ρ,
we have different domains for h0. and the adequate boundary
condition will be determined by the physical system [5, 35,
36, 48]. Thus, in this direction, we use a physically motivated
regularization for the magnetic field. So, we replace the original
potential vector of the AB flux tube by the following one [6–8, 68]

eA =







−
φ

αr
ϕ̂, r > r0,

0, r < r0.
(91)

where r0 is a length that defines the defect core radius [35, 58],
which is a very small radius smaller than the Compton wave
length λC of the electron [31]. So one makes the replacement

δ(r)

r
→

δ(r − r0)

r0
. (92)

This regularized form for the delta function allows us to
determine an expression for ρ. To do so, we consider the zero-
energy solutions ψ0 and ψρ,0 for h with the regularization in (92)
and h0, respectively,

[

−
d2

dr2
−

1

r

d

dr
+

j2

r2
+ λ

δ(r − r0)

r0

]

ψ0 = 0, (93)

[

−
d2

dr2
−

1

r

d

dr
+

j2

r2

]

ψρ,0 = 0. (94)

The value of ρ is determined by the boundary condition

lim
r0→0+

r0
ψ̇0

ψ0

∣

∣

∣

r=r0
= lim

r0→0+
r0
ψ̇ρ,0

ψρ,0

∣

∣

∣

r=r0
. (95)

The left-hand side of Equation (95) can be obtained by the direct
integration of (93) from 0 to r0. The result seems to be

lim
r0→0+

r0
ψ̇0

ψ0

∣

∣

∣

r=r0
= λ. (96)

The right-hand side of Equation (95) is calculated as follows.
First, we seek the solutions of the bound states for the
Hamiltonian h0. These solutions will allow us to obtain the
solutions of the bound states for h. As before, for the bound state,
we consider k as a pure imaginary quantity, k → iκb. So, we have

[

d2

dr2
+

1

r

d

dr
−

(

j2

r2
+ κ2b

)]

ψρ(r) = 0, (97)

The solution for the above equation is the modified
Bessel functions

ψρ(r) = K|j| (κbr) . (98)

Second, we observe that these solutions belong to D(hρ,0), such
that it is of the form (90) for some ρ selected from the physics
of the problem. So, we substitute (98) into (90) and compute
limr0→0+ r0ψ̇ρ/ψρ |r=r0 by using the asymptotic representation
for Kν(z) in the limit z → 0, which is given by

Kν(z) ∼
π

2 sin(πν)

[

z−ν

2−νŴ(1− ν)
−

zν

2νŴ(1+ ν)

]

. (99)

After a straightforward calculation, we have the relation

lim
r0→0+

r0
ψ̇ρ,0

ψρ,0

∣

∣

∣

r=r0
=

|j|
[

r
2|j|
0 Ŵ(1− |j|)(κb/2)

|j| + 2|j|Ŵ(1+ |j|)
]

r
2|j|
0 Ŵ(1− |j|)(κb/2)

|j| − 2|j|Ŵ(1+ |j|)
= λ,

(100)

where we used Equations (95) and (96). Then, solving the above
equation for Eb, we find the sought bound state energy

Eb = −
2

Mr20

[(

λ+ |j|

λ− |j|

)

Ŵ(1+ |j|)

Ŵ(1− |j|)

]1/|j|

. (101)
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Now, that we have the bound state energy obtained from BG and
KS methods we can compare their results. Thus comparing (85)
with (101) we have the following relation

ν = −
1

r
2|j|
0

(

λ+ |j|

λ− |j|

)

. (102)

So, we have obtained a relation between the self-adjoint extension
parameter and physical parameters of the system.

4. CONCLUSIONS

In this work, we have discussed the self-adjoint extension
approach to deal with singular Hamiltonians in (2 + 1)
dimensions. Two different methods, both based on the self-
adjoint extension approach were discussed in details. The BG
and KS methods were applied to solve the problem of a spin-
1/2 charged particle with an anomalous magnetic moment in
the curved space. The presence of the spin gives rise to a
point interaction, requiring the use of the self-adjoint extension
approach to solving the problem. In the BG method, the S-
matrix was determined and from its poles, one bound state
energy expression was obtained. These results were obtained
by imposing a suitable boundary condition and depend on the
self-adjoint extension parameter, which can be identified as the
inverse of the scattering length of the Hamiltonian. Nevertheless,
from the mathematical point of view, this parameter is arbitrary.

Then, by applying the KS method, an expression for the bound
state energy for the same system was obtained, and it is given
in terms of physical parameters of the system. Thus comparing
the results from both methods a relation between the self-adjoint
extension parameter and physical parameters was obtained.
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We study the time-dependent Schrödinger equation with finite number of Dirac δ and δ′

potentials with time dependent strengths in one dimension. We obtain the formal solution

for generic time dependent strengths and then we study the particular cases for single

delta potential and limiting cases for finitely many delta potentials. Finally, we investigate

the solution of time dependent Schrödinger equation for δ′ potential with particular forms

of the strengths.

Keywords: propagator, delta potentials, delta prime potentials, Green’s function, time dependent Schrödinger

equation

1. INTRODUCTION

Dirac delta potentials in quantum mechanics have been used to model different physical systems
almost since the beginning of quantum mechanics. Kronig Penney model [1] is the well-known
example of these models. These potentials are the particular cases of much more general class of
potentials, namely point interactions. In one dimension, one rigorous way of defining the point
interaction at the origin is based on the self-adjoint extension of the free symmetric Hamiltonian
defined on R \ {0}. In this approach, the initially ill-defined formal δ and δ′ function potentials
appear naturally as two special cases of point interactions constructed from the self-adjoint
extension theory. In general one has a 4 -parameter family of self-adjoint extension in one
dimension. The monograph [2] includes a great deal of all the details and summarize the history
of the literature about the δ interactions. The review article [3] and the book [4] are also good
reference sources about the δ potentials from the physical point of view.

The δ′ perturbation of free HamiltonianH0 = − d2

dx2
is defined as a limit of short range potentials

in the distributional sense [5–7]. Although there are some controversial issues about δ′ interactions
(see e.g., [8–11]), they are also getting considerable amount of interest. The ambiguities about
δ′ interactions have been summarized in a very recent article [11], where the integral form of
the Schrödinger equation for δ′ potential has been studied based on the work of Kurasov [12].
We also adopt the distributional approach developed by Kurasov [12] for the functions having a
discontinuity at the point of δ′. It is possible to overcome these ambiguities by considering different
choices, as different type of δ′ interactions [13]. Therefore, the different results on the spectrum of δ′

potential obtained in [2] and in [8] using the Kurasov’s approach -as a special case of−aδ(x)+bδ′(x)
potential- can be interpreted consistently. In other words, the Kurasov’s approach corresponds
to different self-adjoint extension of the free Hamiltonian H0. These self-adjoint extensions are
given by matching conditions at the origin (or at the point supporting the perturbation) and two of
these matching conditions maybe identified as a δ′ interaction and receive the names of non-local
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and local δ′ interaction, respectively [13]. Both approaches are
used to see how the spectrum of the V-shaped potential changes
when it is perturbed by −aδ(x) + bδ′(x) perturbation in [9, 13].
The scattering, and resonant tunneling for δ′ potential in one
dimension is also a controversial issue because different results
are obtained in the literature [8, 10], depending on whether the δ′

interaction is the non-local or the local one. The results obtained
in [14–16] for the non-local δ′ potential, show that it is opaque for
all energies of an incoming beam. However, other authors [17–
20] claim that there are discrete energy values in the spectrum
of δ′ potential which lead to resonant tunneling. As an another
physical application, δ′ interactions are used to model Casimir
effect in [21, 22].

The exact expression of the propagator for one dimensional
single Dirac delta potentials have been found in different
ways [23–25]. The generalization to two center case have
been studied in Cacciari and Moretti [26]. The propagator
for general four parameter family of point interactions have
been given in Albeverio et al. [27]. Propagators for systems
involving δ potentials are also studied from various points of
view in references [28–34]. The propagator for derivatives of
Dirac delta distribution for constant strengths has been recently
studied in Lange [11]. The Cauchy problem for the non-local
δ′ potential with a time dependent strength has also been
studied rigorously in detail [35]. Moreover, time dependent one
dimensional point interactions have been studied in Campbell
[36] and the exact solution to the initial value problem for
Schrödinger equation has been given for some particular form
of strength λ(t) of the Dirac delta potential. Later on, the system
has been investigated in Hmidi et al. [37] more rigorously and the
regularity assumptions on λ(t) is determined for which the initial
value problem defines a unitary strongly continuous dynamical
system on L2(R). Such time-dependent point interactions have
been studied rigorously in order to model asymptotic complete
ionization and suitable conditions on the function λ(t) has
been determined for ionization problem [38–41]. The higher
dimensional generalizations of the problem have been studied
in great detail and summarized in the thesis by Correggi [42].
Transmission properties of a monochromatic beam and wave
packets by studying the scattering from the time-dependent δ
potential are studied in Martinez and Reichl [43] and Kuhn et al.
[32]. Utilizing δ potential with a time dependent coefficient in
an infinite well, Baek et al. [44] showed that it is possible to
split a wave function which may have applications in statistical
mechanics and condensed matter physics. However, it may also
lead to philosophical problems [44]. The time dependence of
the Dirac delta potentials could also be expressed through the
motion of its support [45]. As a physical application, a moving
Dirac δ potential is used to describe particle displacement using a
standard tunneling microscope [46].

The paper is organized as follows: In section 2, we obtain a
formal expression of the propagator for a finite number of Dirac
δ potentials with time dependent strengths and solve the time
dependent Schrödinger equation for this system. In the following
subsections, we investigate one δ potential with time dependent
strength in more detail and find the propagator for N Dirac
δ potential in the limit that centers are infinitely separated. In

section 3, we get an expression of the propagator for a finite
number of δ′ potentials with time dependent strengths and
solve the time dependent Schrödinger equation for this potential.
Finally, we elaborate on one δ′ case.

2. THE PROPAGATOR FOR N DIRAC DELTA
POTENTIALS WITH TIME DEPENDENT
STRENGTHS

We begin with a one dimensional model in which a free

Hamiltonian of the type H0 = − h̄2

2m
d2

dx2
is perturbed with a time

dependent potential

V(x, t) =

N
∑

j=1

λj(t)δ(x− xj) . (1)

The initial value problem of the time-dependent Schrödinger
equation for this potential is

i
∂

∂t
ψ(x, t) =



−
d2

dx2
+

N
∑

j=1

λj(t)δ(x− xj)



ψ(x, t) , (2)

with the given sufficiently smooth functionψ(x, 0). Here we have
used the units such that h̄ = 2m = 1 for simplicity. It is well-
known that the Laplace transform is a very useful tool to solve
initial value problems so we first take the Laplace transformation
of Equation (2) with respect to time variable t and get

ψ̄xx(x, s)− iψ(x, 0)+ isψ̄(x, s) =

N
∑

j=1

δ(x− xj)L
{

λj(t)ψ(xj, t)
}

,

(3)

where ψ̄(x, s) = L
{

ψ(x, t)
}

and ψ̄xx(x, s) = L

{

∂2

∂x2
ψ(x, t)

}

.

After this, we take the Fourier transformation of both sides of
Equation (3) with respect to the coordinate variable x and get:

− k2 ˆ̄ψ(k, s)− iψ̂(k, 0)+ is ˆ̄ψ(k, s) =

N
∑

j=1

e−ikxjL
{

λj(t)ψ(xj, t)
}

,

(4)

where ˆ̄ψ(k, s) = F(ψ̄(x, s)) denotes the Fourier transform of
ψ̄(x, s) with respect to the variable x. This equation is an algebraic

equation for the unknown wave function ˆ̄ψ(k, s) and the solution
is easily obtained as

ˆ̄ψ(k, s) = −
1

k2 − is



iψ̂(k, 0)+

N
∑

j=1

e−ikxjL
{

λj(t)ψ(xj, t)
}



 .

(5)
Now, we immediately find the inverse Fourier transform of the
ˆ̄ψ(k, s):

ψ̄(x, s) = −i

∫ ∞

−∞

dk

2π

eikx

k2 − is
ψ̂(k, 0)
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−

N
∑

j=1

L
{

λj(t)ψ(xj, t)
}

∫ ∞

−∞

dk

2π

eik(x−xj)

k2 − is
. (6)

Using ψ̂(k, 0) =
∫∞
−∞ dx′ e−ikx′ψ(x′, 0), the Equation (6)

becomes

ψ̄(x, s) = −i

∫ ∞

−∞
dx′ ψ(x′, 0)

∫ ∞

−∞

dk

2π

eik(x−x′)

k2 − is

−

N
∑

j=1

L
{

λj(t)ψ(xj, t)
}

∫ ∞

−∞

dk

2π

eik(x−xj)

k2 − is
. (7)

The integrals in Equation (7) are easily taken using
residue theorem

∫ ∞

−∞

dk

2π

eikx

k2 − is
= i

ei
√
is|x|

2
√
is

, (8)

so we obtain

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′|ψ(x′, 0)

−
i

2
√
is

N
∑

j=1

ei
√
is|x−xj|L

{

λj(t)ψ(xj, t)
}

. (9)

Now we need to take inverse Laplace transform to obtain
the solution of the time dependent equation for the potential
λ(t)δ(x). Using the Bromwich contour [47], one can easily find
the inversion

L
−1

{

ei
√
is|x|

√
is

}

=
1

√
iπ t

exp

(

ix2

4t

)

, (10)

and using the convolution theorem we get the formal solution as

ψ(x, t) =

∫ ∞

−∞
dx′

1
√
4π it

exp

[

i(x− x′)2

4t

]

ψ(x′, 0)

− i

N
∑

j=1

∫ t

0
dt′

λj(t
′)ψ(xj, t

′)
√
4π i(t − t′)

exp

[

i(x− xj)
2

4(t − t′)

]

.(11)

Although this is an explicit formal expression for ψ(x, t), it is
not completely expressed in terms of the initial condition ψ(x, 0)
and includes the unknown factorsψ(xj, t). These can be found by
simply inserting x = xj in the formal solution and then solving
the resulting coupled Volterra type integral equations

ψ(xj, t) =

∫ ∞

−∞
dx′

1
√
4π it

exp

[

i(xj − x′)2

4t

]

ψ(x′, 0)

− i

∫ t

0
dt′

λj(t
′)ψ(xj, t

′)
√
4π i(t − t′)

− i

N
∑

k=1
k6=j

∫ t

0
dt′

λk(t
′)ψ(xk, t

′)
√
4π i(t − t′)

exp

[

i(xj − xk)
2

4(t − t′)

]

,

(12)

where we split the term k = j in the summation over k. Since
this is not an easy problem for a generic function λ(t), we will
first investigate for particular cases, where λ is constant and λ
is inversely proportional to t. All these results we present in the
next subsection is previously obtained by Campbell [36] using a
slightly different method, where only one integral transformation
with the boundary conditions at the position of δ potential
was used.

2.1. Single δ Potential With a Time
Dependent Strength
As a particular case of (1), we consider a single delta potential
with time-dependent strength

V(x, t) = λ(t)δ(x) , (13)

where N = 1 and x1 = 0. We can formally obtain the solution
of the time dependent Schrödinger equation for this case using
Equation (11)

ψ(x, t) =

∫ ∞

−∞
dx′

1
√
4π it

exp

[

i(x− x′)2

4t

]

ψ(x′, 0)

−i

∫ t

0
dt′

λ(t′)ψ(0, t′)
√
4π i(t − t′)

exp

[

ix2

4(t − t′)

]

. (14)

Actually this result can be directly obtained from the Duhamel’s
formula [48] for time-dependent Schrödinger equation
associated with the Hamiltonian H = H0 + V , where H0

is self-adjoint free Hamiltonian and V is bounded (or relatively
H0 -bounded with relative bound<1):

e−itH |ψ0〉 = e−itH0 |ψ0〉 +

(−i)

∫ t

0
dt′ e−i(t−t′)H0Ve−it′H |ψ0〉 (15)

for every |ψ0〉 = |ψ(t = 0)〉. This shows that even if we
formally take V = λ(t′)|0〉〈0| which corresponds to our Dirac
delta potential, one immediately sees that the Duhamel’s formula
is still formally valid for such singular interactions.

Given the initial condition ψ(x, 0) and the function λ(t), the
function ψ(0, t) can be determined by solving the following
integral equation:

ψ(0, t) =

∫ ∞

−∞
dx′

1
√
4π it

exp

[

ix′2

4t

]

ψ(x′, 0)

−i

∫ t

0
dt′

λ(t′)ψ(0, t′)
√
4π i(t − t′)

. (16)

However, this is in general hard to solve and one usually
applies some approximation techniques, e.g., Dyson series [48].
Nevertheless, as shown in Campbell [36], there are cases where
one can calculate the Green’s function explicitly. We will show
two such cases here explicitly. Although Green’s functions for
these cases are derived in Campbell [36], we repeat these results
here for the sake of completeness. Instead of directly solving the
above integral equation for particular cases, it is convenient to
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start with the Laplace transformed wave function Equation (9)
for a single δ potential centered at the origin:

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′|ψ(x′, 0)

−
i

2
√
is
ei
√
is|x|

L
{

λ(t)ψ(0, t)
}

. (17)

The cases for constant λ and λ ∝ 1
t are reviewed in

Appendices A and B in detail.

2.2. The Propagator for N Dirac δ

Potentials in a Limiting Case
When λj’s are constant, the Laplace transformed wave function
ψ̄(x, s) given by (9) becomes

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′|ψ(x′, 0)

−
i

2
√
is

N
∑

k=1

λk e
i
√
is|x−xk|ψ̄(xk, s) . (18)

The unknown functions ψ̄(xk, s) can be found by evaluating the
above expression at x = xj:

ψ̄(xk, s) =

N
∑

j=1

[

8−1(s)
]

kj
ρ̄(xj, s) , (19)

where

8kj(s) =







1+
iλj

2
√
is

if j = k
iλk
2
√
is
ei
√
is|xj−xk| if j 6= k

, (20)

and

ρ̄(xk, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|xk−x′|ψ(x′, 0) . (21)

Substituting (19) into (18), we obtain

ψ̄(x, s) = ρ̄(x, s)−
i

2
√
is

N
∑

j=1

N
∑

k=1

λk e
i
√
is|x−xk|

[

8−1(s)
]

kj
ρ̄(xj, s) .

(22)

Although we have obtained the Laplace transformed wave
function ψ̄(x, s), it is not explicitly given since one has to invert
the matrix 8 and find the inverse Laplace transform of the
resulting expression to get the final solution ψ(x, t). In general,
it is difficult to find the inverse Laplace transforms so one may
apply some approximation schemes [49]. Moreover, one could
use some numerical computations, but we will here simply show
the limiting case, where the centers are infinitely far away from
each other.

When all the centers are infinitely separated from each other,
that is, |xj − xk| → ∞, we expect that the off-diagonal elements
of the matrix8 given in (20) vanish, so that

[

8−1(s)
]

kj
=





1

1+ iλk
2
√
is



 δkj . (23)

Then, ψ̄(x, s) can be explicitly found as

ψ̄(x, s) = ρ̄(x, s)− i

N
∑

j=1

ei
√
is|x−xj|

(

λj

2
√
is+ iλj

)

ρ̄(xj, s) ,(24)

from which the propagator G(x, x′, s) reads

G(x, x′, s) =
ei
√
is|x−x′|

2
√
is

−

N
∑

j=1

ei
√
is|x−xj|

(

λj

2
√
s+

√
iλj

)

ei
√
is|xj−x′|

2
√
s

.

(25)

Hence,

G(x, x′, t) =
1

2
√
iπ t

exp

[

i(x− x′)2

4t

]

−

N
∑

j=1

λj

4
exp

[

λj

2
(|x− xj| + |xj − x′|)+ i

λ2j

4
t

]

erfc

[

(|x− xj| + |xj − x′|)

2
√
it

+
√
it
λj

2

]

.

(26)

This is actually the superposition of the individual propagators
associated with single delta centers. This is expected since there
is no correlation among the centers when they are far away from
each other. Another limiting case is the case where all the centers
coincide.

3. THE PROPAGATOR FOR N DIRAC δ
′

POTENTIALS WITH TIME DEPENDENT
STRENGTHS

In this section we first obtain a formal solution of the time-
dependent Schrödinger equation, where the potential term is
chosen formally as

V(x, t) =

N
∑

i=1

λi(t)δ
′(x− xi) . (27)

The time dependent Schrödinger equation for this potential is

i
∂

∂t
ψ(x, t) =



−
d2

dx2
+

N
∑

j=1

λj(t)δ
′(x− xj)



ψ(x, t) . (28)
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As we mentioned in the introduction we adopt the distributional
approach given by [12] for the definition of δ′(x), for functions
having discontinuity at the point of δ′

δ′(x)f (x) = 〈f (0)〉δ′(x)− 〈fx(0)〉δ(x) , (29)

where we define 〈f (y)〉 =
f (y+)+f (y−)

2 and 〈fx(y)〉 =
fx(y

+)+fx(y
−)

2
and f (y±) denote the limits limx→y± f (x). Note that this
definition reduces to the well-known property of δ′(x) [50]

δ′(x)f (x) = f (0)δ′(x)− f ′(0)δ(x) . (30)

for continuous functions. As in the previous section we proceed
by taking the Laplace transform of all the terms in the Equation
(28) for time variable t and find

ψ̄xx(x, s)− iψ(x, 0)+ isψ̄(x, s)

=

N
∑

j=1

[

−L
{

λj(t)〈ψ(xj)〉
}

δ′(x− xj)

+L
{

λj(t)〈ψx(xj)〉
}

δ(x− xj)
]

.

(31)

Now, we take the Fourier transform with respect to the variable x

and solve ˆ̄ψ(k, s) to get:

ˆ̄ψ(k, s) = − 1
k2−is

(

iψ̂(k, 0)+
∑N

j=1−ike−ikxjL
{

λj(t)〈ψ(xj)〉
}

+e−ikxjL
{

λj(t)〈ψ(xj)〉
} )

. (32)

Before taking the inverse Fourier transform of this equation

we write ψ̂(k, 0) =
∫∞
−∞ dx′e−ikx′ψ(x′, 0) then take the inverse

Fourier transform and get

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)

−
1

2

N
∑

j=1

sgn(x− xj) e
i
√
is|x−xj| L

{

λj(t)〈ψ(xj, t)〉
}

− i
1

2
√
is

N
∑

j=1

ei
√
is|x−xj| L

{

λj(t)〈ψx(xj, t)〉
}

.

(33)

where sgn(x) denotes sign function sgn(x) =

{

1 x > 0

−1 x < 0
. We

have also used
∫∞
−∞

dk
2π

eikx

k2−is
= − i

2
√
is
ei
√
is|x| and

∫∞
−∞

dk
2π

ikeikx

k2−is
=

− 1
2
√
is
ei
√
is|x| sgn(x). Now using L

{

exp
[

i x
2

4t

]

2
√
iπ t

}

= ei
√
is|x|

2
√
is

and

L

{

(−1)3/4
exp

[

i x
2

4t

]

x

2
√
π t3/2

}

= ei
√
is|x| sgn(x) and convolution theorem

for Laplace transform we get the formal expression of the
wave function

ψ(x, t) =

∫ ∞

−∞
dx′

1
√
4π it

ei
(x−x′)2

4t ψ(x′, 0)

−

∫ t

0
dt′

{

N
∑

j=1

(−1)3/4

4
√
π
λj(t

′)〈ψ(xj)〉
exp

[

i
(x−xj)

2

4(t−t′)

]

(t − t′)3/2
(x− xj)

+
i

2
√
iπ

N
∑

j=1

λj(t
′)〈ψx(xj)〉

exp
[

i
(x−xj)

2

4(t−t′)

]

√
(t − t′)

}

.

(34)

Similar to the time dependent δ potential case, this formal
equation contains unknown functions ψ(x±j )’s and ψx(x

±
j )’s.

One can find equations for ψ(x±j )’s by inserting x = x±j to

the Equation (34). In order to find equations for ψx(xj)
±’s, the

derivative of the Equation (34) with respect to the variable x has
to be calculated. By taking this derivative we get

ψx(x, t) =
1

4
√
iπ t3/2

∫ ∞

−∞
dx′ i(x− x′) ei

(x−x′)2

4t ψ(x′, 0)

−

∫ t

0
dt′

{

−
1

8

√

i

π

N
∑

j=1

λj(t
′)〈ψ(xj)〉i(x− xj)

2
exp

[

i
(x−xj)

2

4(t−t′)

]

(t − t′)5/2

+
(−1)3/4

4
√
π

N
∑

j=1

λj(t
′)〈ψ(xj)〉

exp
[

i
(x−xj)

2

4(t−t′)

]

(t − t′)3/2

−
1

4
√
iπ

N
∑

j=1

λj(t
′)〈ψx(xj)〉(x− xj)

exp
[

i
(x−xj)

2

4(t−t′)

]

(t − t′)3/2

}

.

(35)

Now putting x = x±j in the Equation (35) one can get also

integral equations for ψx(x
±
j )’s. Finally one has to solve the

system of integral equations for ψ(x±j )’s and ψx(x
±
j )’s to get the

complete solution.

3.1. Single δ
′ Potential With a Time

Dependent Strength
Now we will elaborate more on the single δ′ interaction which is
described by the potential

V(x, t) = λ(t)δ′(x) (36)

The formal solution of the time dependent Schrödinger equation
for single δ′ can be obtained from the above section for N = 1,
x1 = 0 and λ1 = λ

ψ(x, t) =

∫ ∞

−∞
dx′

1
√
4π it

ei
(x−x′)2

4t ψ(x′, 0)

−

∫ t

0
dt′

{

(−1)3/4

4
√
π
λ(t′)〈ψ(0)〉 x

exp
[

i x2

4(t−t′)

]

(t − t′)3/2

+
i

2
√
iπ
λ(t′)〈ψx(0)〉

exp
[

i x2

4(t−t′)

]

√
(t − t′)

}

.

(37)
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Similarly the expression for the ψx(x, t) is obtained from the
Equation (35)

ψx(x, t) =
1

4
√
iπ t3/2

∫ ∞

−∞
dx′ i(x− x′) ei

(x−x′)2

4t ψ(x′, 0)

−

∫ t

0
dt′

{

−
1

8

√

i

π
λ(t′)〈ψ(0)〉 x2

exp
[

i x2

4(t−t′)

]

(t − t′)5/2

+
(−1)3/4

4
√
π
λ(t′)〈ψ(0)〉

exp
[

i x2

4(t−t′)

]

(t − t′)3/2

−
1

4
√
iπ
λ(t′)〈ψx(0)〉 x

exp
[

i x2

4(t−t′)

]

(t − t′)3/2

}

.

(38)

For a given λ(t) one gets integral equations for ψ(x, 0) and
ψx(x, 0) by inserting x = 0 in Equations (37) and (38),
respectively:

ψ(0, t) =

∫ ∞

−∞
dx′

1
√
4π it

ei
x′2

4t ψ(x′, 0)

−

∫ t

0
dt′

{

(−1)3/4

4
√
π
λ(t′)〈ψ(0)〉

1

(t − t′)3/2

+
i

2
√
iπ
λ(t′)〈ψx(0)〉

1
√
(t − t′)

}

.

(39)

ψx(0, t) =
1

4
√
iπ t3/2

∫∞
−∞ dx′ (−x′)ei

x′2

4t ψ(x′, 0)

− (−1)3/4

4
√
π

∫ t
0 dt

′ λ(t′)〈ψ(0)〉 1
(t−t′)3/2

. (40)

The Equations (39) and (40) constitute an equation system
for ψ(0, t) and ψx(0, t). Solving this system one can determine
ψ(0, t) and ψx(0, t) and insert them to Equation (37) to get
the wave function for all times. When studying special cases
the expression of the Laplace transform of the wave function is
necessary. Therefore, utilizing Equation (33) we write the general
formula of the Laplace transform of the wave function for a delta
prime at x1 = 0 and λ1(t) = λ(t):

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)

−
1

2
sgn(x) ei

√
is|x|

L
{

λ(t)〈ψ(0, t)〉
}

− i
1

2
√
is
ei
√
is|x|

L
{

λ(t)〈ψx(0, t)〉
}

.

(41)

Now will investigate some special cases.

3.1.1. Case 1: λ Is Constant

When the strength of the single δ′ interaction is constant, we
obtain from Equation (33)

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)

−
λ

2
sgn(x)ei

√
is|x| 〈 ¯ψ(0, s)〉

− i
λ

2
√
is
ei
√
is|x| 〈 ¯ψx(0, s)〉 ,

(42)

where 〈ψ̄(0, s)〉 = L
{

〈ψ(x, t)〉
}

and 〈ψ̄x(0, s)〉 = L
{

〈ψx(x, t)〉
}

.
We need also derivative of the Laplace transformed wave
function ψ̄(x, s) with respect to x.

ψ̄x(x, s) =
i

2

∫ ∞

−∞
dx′ sgn(x− x′) ei

√
is|x−x′| ψ(x′, 0)

−
iλ
√
is

2
sgn2(x)ei

√
is|x| 〈 ¯ψ(0, s)〉

−
λ

2

d sgn(x)

dx
ei
√
is|x| 〈 ¯ψ(0, s)〉 +

λ sgn(x)ei
√
is|x|

2
〈 ¯ψx(0, s)〉 ,

(43)

where we have used d|x|
dx

= sgn(x). Now we find wave function
and its derivative at 0± by choosing x = 0± in Equations (42)
and (43):

ψ̄(0±, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x′| ψ(x′, 0)∓

λ

2
〈 ¯ψ(0, s)〉

−
iλ

2
√
is

〈 ¯ψx(0, s)〉 , (44)

where we take sgn(0±) = ±1. In order to find ψ̄(x, s) we need to
calculate 〈ψ̄(0, s)〉 and 〈ψ̄x(0, s)〉. From Equation (44) we get

〈ψ̄(0, s)〉 +
iλ

2
√
is
〈ψ̄x(0, s)〉 =

1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x′| ψ(x′, 0) .

(45)

In order to find another equation for 〈ψ̄(0, s)〉 and 〈ψ̄x(0, s)〉 we
calculate ψ̄x(0

±, s)

ψ̄x(0
±, s) =

i

2

∫ ∞

−∞
dx′ sgn(−x′) ei

√
is|x′| ψ(x′, 0)

−
iλ
√
is

2
〈ψ̄(0, s)〉 ∓

λ

2
〈ψ̄x(0, s)〉 . (46)

where we take
d sgn(x)

dx
|x=0± = 0. Using this equation we get

iλ
√
is

2
〈ψ̄(0, s)〉 + 〈ψ̄x(0, s)〉 =

i

2

∫ ∞

−∞
dx′ sgn(−x′) ei

√
is|x′| ψ(x′, 0).(47)

Solving Equations (45) and (47) we get

〈ψ̄(0, s)〉 =
1

2
√
is

(

1+
λ2

4

)−1
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∫ ∞

−∞
dx′

(

1−
λ

2
sgn(x′)

)

ei
√
is|x′| ψ(x′, 0) , (48)

and

〈ψ̄x(0, s)〉 =

∫ ∞

−∞
dx′

[

−
i

2
sgn(x′)−

iλ

4

(

1+
λ2

4

)−1

(

1−
λ

2
sgn(x′)

)]

ei
√
is|x′| ψ(x′, 0) , (49)

respectively. Substituting the expressions in Equations (48) and
(49) into Equation (42) we get

ψ̄(x, s) =

∫ ∞

−∞
dx′

{

ei
√
is|x−x′|

2
√
is

+

(

1+
λ2

4

)−1 [

−
λ

4
sgn(x′)

−
λ2

8
−
λ

4
sgn(x) +

λ2

8
sgn(x) sgn(x′)

]

ei
√
is(|x|+|x′|)

√
is

}

ψ(x′, 0) .

(50)

The factor that multiplies ψ(x′, 0) in the integral of the equation
above is the Green’s function:

Ḡ(x, x′, s) =

{

ei
√
is|x−x′|

2
√
is

+

(

1+
λ2

4

)−1 [

−
λ

4
sgn(x′)−

λ2

8

−
λ

4
sgn(x) +

λ2

8
sgn(x) sgn(x′)

]

ei
√
is(|x|+|x′|)

√
is

}

.

(51)

The Green’s function in terms of s variable can be converted using
Equation (10) to get

G(x, x′, t) =
1

√
4π it

{

ei
(x−x′)2

4t +

(

1+
λ2

4

)−1 [

−
λ

2
sgn(x′)

−
λ2

4
−
λ

2
sgn(x) +

λ2

4
sgn(x) sgn(x′)

]

ei
(|x|+|x′ |)2

4t

}

.

(52)

So, we can write the wave function for all times as:

ψ(x, t) =
1

√
4π it

∫ ∞

−∞
dx′

{

ei
(x−x′)2

4t +

(

1+
λ2

4

)−1

[

−
λ

2
sgn(x′)−

λ2

4
−
λ

2
sgn(x) +

λ2

4
sgn(x) sgn(x′)

]

ei
(|x|+|x′ |)2

4t

}

ψ(x′, 0) .

(53)

This result is completely consistent with the one given in Lange
[11] except the convention λ = −c.

3.1.2. Case 2: λ(t) = α/t

The general expression (41) for the Laplace transform of the
wave function in this particular case λ(t) = α

t , where α is a
constant, becomes

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)−

1

2
sgn(x) ei

√
is|x|

L

{α

t
〈ψ(0, t)〉

}

− i
1

2
√
is
ei
√
is|x|

L

{α

t
〈ψx(0, t)〉

}

.

(54)

Using the identity given in Equation (B.2) in Appendix B this
equation becomes

ψ̄(x, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x−x′| ψ(x′, 0)−

1

2
sgn(x) ei

√
is|x|

α

∫ ∞

s
ds′〈ψ̄(0, s′)〉 − i

1

2
√
is
ei
√
is|x| α

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 .

(55)

In order to calculate this expression we need ψ(0±, s) and
ψx(0

±, s). The first of this is easily calculated by choosing x = 0±

in Equation (55)

ψ̄(0±, s) =
1

2
√
is

∫ ∞

−∞
dx′ ei

√
is|x′| ψ(x′, 0)

∓
α

2

∫ ∞

s
ds′〈ψ̄(0, s′)〉 −

iα

2
√
is

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 . (56)

In order to find ψx(0
±, s) we take the derivative of the Equation

(54) with respect to x variable and get

ψ̄x(x, s) =
i

2

∫ ∞

−∞
dx′ sgn(x− x′)ei

√
is|x−x′| ψ(x′, 0)

−
i
√
isα

2
sgn2(x) ei

√
is|x|

∫ ∞

s
ds′〈ψ̄(0, s′)〉

− 2ei
√
is|x| α

d sgn(x)

dx

∫ ∞

s
ds′〈ψ̄(0, s′)〉

+
α

2
sgn(x)ei

√
is|x|

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 .

(57)

From this equation we get

ψ̄x(0
±, s) = −

i

2

∫ ∞

−∞
dx′ sgn(x′)ei

√
is|x′| ψ(x′, 0)

−
i
√
isα

2

∫ ∞

s
ds′〈ψ̄(0, s′)〉 ±

α

2

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 . (58)

We denote u1(s) =
∫∞
s ds′〈ψ̄(0, s′)〉 and u2(s) =

∫∞
s ds′〈ψ̄x(0, s

′)〉. We obtain from Equations (56) and (58)

〈ψ̄(0, s)〉 =
I0(s)

2
√
is
−

iα

2
√
is
u1(s) (59)

and

〈ψ̄x(0, s)〉 = −i
I1(s)

2
−

i
√
isα

2
u2(s). (60)

Here I0(s) =
∫∞
−∞ dx′ ei

√
is|x′|ψ(x′, 0) and I1(s) =

∫∞
−∞ dx′ sgn x′ei

√
is|x′|ψ(x′, 0). Note that 〈ψ̄(0, s)〉 = − du1(s)

ds
and

〈ψ̄x(0, s)〉 = − du2(s)
ds

. Inserting these equalities into Equations
(59) and (60) we obtain two coupled differential equations:

du1(s)

ds
−

iα

2
√
is
u2(s) = −

I0(s)

2
√
is

(61)
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and

du2(s)

ds
−

i
√
isα

2
u1(s) = i

I1(s)

2
√
is

. (62)

Although the coefficients of the unknown functions are not
constants in these coupled equations, by taking the derivative of
the Equations (61) and (62) with respect to the variable s one
can uncouple these equations and get second order differential
equations for u1(s) and u2(s):

d2u1(s)

ds2
+

1

2s

du1(s)

ds
+
α2

4
u1(s) =

α

4
√
is
I1(s)−

1

2
√
is

dI0(s)

ds
(63)

and

d2u2(s)

ds2
−

1

2s

du2(s)

ds
+
α2

4
u2(s) =

1

4is
I1(s)−

iα

4
I0(s)+

i

2

dI1(s)

ds
.

(64)
The solutions of these equations are elementary and easily

obtained after some algebra as

u1(s) = −
π

4
√
2

∫ ∞

−∞
dx′ψ(x′, 0)

{∫ s

0
ds′

s1/4s′3/4
√
is′

g1(s, s
′)

[

α sgn(x′)+
|x′|
√
is′

]

ei
√
is′|x′|

}

(65)

where

g1(s, s
′) = J 1

4

(

αs′

2

)

J− 1
4

(αs

2

)

− J 1
4

(αs

2

)

J− 1
4

(

αs′

2

)

. (66)

Here and in the following expressions Ja(x), stands for the first
kind of Bessel’s function. The solution of the differential equation
in Equation (64) is

u2(s) = −
π

4
√
2

∫ ∞

−∞
dx′ψ(x′, 0)

{∫ s

0
ds′ s3/4s′1/4g2(s, s

′)

[

sgn(x′)

is′
− iα −

ix′
√
is′

]

ei
√
is′|x′|

}

(67)

where

g2(s, s
′) = J 3

4

(

αs′

2

)

J− 3
4

(αs

2

)

− J 3
4

(αs

2

)

J− 3
4

(

αs′

2

)

. (68)

Note that

L

{

1

t
〈ψ(0, t)〉

}

= u1(s) =

∫ ∞

s
ds′〈ψ̄(0, s′)〉 (69)

and

L

{

1

t
〈ψx(0, t)〉

}

= u2(s) =

∫ ∞

s
ds′〈ψ̄x(0, s

′)〉 . (70)

Thus using Equations (69) and (70) in (41) we get

ψ̄(x, s) =

∫ ∞

−∞
dx′ψ(x′, 0)

{

ei
√
is|x−x′|

2
√
is

ei
√
is|x−x′|

+
sgn(x)π α s1/4ei

√
is|x|

8
√
2i

∫ ∞

s
ds′s′1/4g1(s, s

′)

[

α sgn(x′)+
|x′|
√
is′

]

(71)

ei
√
is′|x′| +

√
iπ α s1/4 ei

√
is|x|

8
√
2

∫ ∞

s
ds′s′1/4g2(s, s

′)

[

sgn(x′)

is′
− iα −

ix′
√
is′

]

ei
√
is′|x′|

}

.

Thus the Green’s function in Laplace transformed space for the
Schrödinger equation with a potential
V(x, t) = α

t δ
′(x) is

G(x, x′, s) =

{

ei
√
is|x−x′|

2
√
is

ei
√
is|x−x′| +

sgn(x)π α s1/4ei
√
is|x|

8
√
2i

∫ ∞

s
ds′s′1/4g1(s, s

′)

[

α sgn(x′)+
|x′|
√
is′

]

ei
√
is′|x′|

+

√
iπ α s1/4 ei

√
is|x|

8
√
2

∫ ∞

s
ds′s′1/4g2(s, s

′)

[

sgn(x′)

is′
− iα −

ix′
√
is′

]

ei
√
is′|x′|

}

.

(72)

This Green’ s function cannot be converted in terms
of elementary functions but it is possible to use
numerical methods to obtain Green’ s function in the
position-time space.

4. CONCLUSION

In this work, we have studied some analytically solvable
time-dependent point interactions. First, we have obtained
a formal expression of the propagator for finite number of
Dirac δ potentials with time dependent strengths and solved
the time dependent Schrödinger equation for this system.
Then we have investigated one δ potential with various time
dependent strengths in more detail and found the propagator
for N Dirac δ potential in the limit that centers are infinitely
separated. Furthermore, we have found an expression of
the propagator for finite number of δ′ potentials with time
dependent strengths and solved the time dependent Schrödinger
equation for this potential. We believe that these results
obtained are useful in models of ionization problems, where
the particle is initially bound to the time dependent δ or δ′

potentials. Such type of models have been studied (see e.g.,
[42, 51]) and the results obtained are compared with the
experiment [52].

DATA AVAILABILITY STATEMENT

All datasets analyzed for this study are included in the
article/Supplementary Material.

Frontiers in Physics | www.frontiersin.org 8 April 2020 | Volume 8 | Article 65169

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Erman et al. Time Dependent Point Interactions

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

The authors thank TUBITAK for the 2221-Visiting Scientist
Fellowship Programme (2016). MG acknowledged partial

financial support from the Spanish MINECO (Grant no.
MTM2014-57129-C2-1-P) and the Junta de Castilla y León
(Grant nos. VA137G18 and BU229P18).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.
2020.00065/full#supplementary-material

REFERENCES

1. Kronig R de L, Penney WG. A quantum mechanics of electrons in crystal

lattices. Proc R Soc. (1931) 130:499.

2. Albeverio S, Gesztesy F, Hoegh-Krohn R, Holden H. Solvable Models in

Quantum Mechanics. 2nd ed. Chelsea, RI: American Mathematical Society

(2004).

3. Belloni M, Robinett RW. The infinite well and Dirac delta function

potentials as pedagogical, mathematical and physical models in quantum

mechanics. Phys Rep. (2014) 540:25. doi: 10.1016/j.physrep.2014.

02.005

4. Demkov Yu N, Ostrovskii VN. Zero-range Potentials and Their Applications

in Atomic Physics. New York, NY: Plenum Press (1988).

5. Golovaty, YD, Hryniv, RO. Norm resolvent convergence of singularly scaled

Schrödinger operators and δ′-potentials. Proc R Soc Edinb A Math. (2013)

143:791–816. doi: 10.1017/S0308210512000194

6. Golovaty Y. Two-parametric δ′-interactions: approximation by Schrödinger

operators with localized rank-two perturbations. J Phys A Math Theor. (2018)

51:255202. doi: 10.1088/1751-8121/aac110

7. Golovaty Y. Schrödinger operators with singular rank-two perturbations and

point interactions. Integr Equat Oper Theory. (2018) 90:57. doi: 10.1007/

s0002

8. Gadella M, Negro J, Nieto LM. Bound states and scattering coefficients

of the −aδ(x) + bδ′(x) potential. Phys Lett A. (2009) 373:1310–3.

doi: 10.1016/j.physleta.2009.02.025

9. Gadella M, Glasser ML, Nieto LM. One dimensional models with a singular

potential of the type −αδ(x) + βδ′(x). Int J Theor Phys. (2010) 50:2144–52.

doi: 10.1007/s10773-010-0641-6

10. Zolataryuk AV. Boundary conditions for the states with resonant

tunnelling across the δ′ potential. Phys Lett A. (2010) 374:1636–41.

doi: 10.1016/j.physleta.2010.02.005

11. Lange RJ. Distribution theory for Schrödinger’s integral equation. J Math Phys.

(2015) 56:122105. doi: 10.1063/1.4936302

12. Kurasov P. Distribution theory for discontinuous test functions and

differential operators with generalized coefficients. J Math Anal Appl. (1996)

201:297–323. doi: 10.1006/jmaa.1996.0256

13. Fassari S, Gadella M, Nieto LM, Rinaldi F. Spectroscopy of a one-dimensional

V-shaped quantum well with a point impurity. Ann Phys. (2018) 389:48–62.

doi: 10.1016/j.aop.2017.12.006

14. Seba P. Some remarks on the δ′-interaction in one dimension. Rep Math Phys.

(1986) 24:111. doi: 10.1016/0034-4877(86)90045-5

15. Patil SH. Schrödinger equation with δ′ and δ′′ potentials. Phys Scr. (1994)

49:645. doi: 10.1088/0031-8949/49/6/002

16. Coutinho FAB, Nogami Y, Perez JF. Generalized point interactions in one-

dimensional quantum mechanics. J Phys A Math Gen. (1997) 30:3937.

doi: 10.1088/0305-4470/30/11/021

17. Christiansen PL, Arnbak NC, Zolotaryuk AV, Ermakov VN, Gaididei YB. On

the existence of resonances in the transmission probability for interactions

arising from derivatives of Dirac’s delta function. J Phys A Math Gen. (2003)

36:7589. doi: 10.1088/0305-4470/36/27/311

18. Zolotaryuk AV, Christiansen PL, Iermakova SV. Scattering properties

of point dipole interactions. J Phys A Math Gen. (2006) 36:9329.

doi: 10.1088/0305-4470/39/29/023

19. Toyama FN, Nogami Y. Transmission-reflection problem with a potential of

the form of the derivative of the delta function. J Phys A Math Theor. (2007)

40:F685. doi: 10.1088/1751-8113/40/29/F05

20. Zolotaryuk AV. Two-parametric resonant tunneling across the δ′(x) potential.

Adv Sci Lett. (2008) 1:187. doi: 10.1166/asl.2008.019

21. Muñoz-Castañeda JM and Mateos-Guilarte J. Delta-delta’ generalized Robin

boundary conditions and quantum vacuum fluctuations. Phys Rev D. (2015)

91:025028. doi: 10.1103/PhysRevD.91.025028

22. Silva, JDL, Braga, AN, Alves, DT. Dynamical Casimir effect with delta-

delta’ mirrors. Phys Rev D. (2016) 94:105009. doi: 10.1103/PhysRevD.94.

105009

23. Gaveau B, Schulman LS. Explicit time-dependent Schrödinger propagators.

J Phys A Math Gen. (1986) 19:1833–46. doi: 10.1088/0305-4470/19/

10/024

24. Manoukian EB. Explicit derivation of the propagator for a Dirac delta

potential. J Phys A Math Gen. (1989) 22:67. doi: 10.1088/0305-4470/22/

1/013

25. Blinder SM. Greens function and propagator for the one-dimensional delta

function potential. Phys Rev A. (1988) 37:973. doi: 10.1103/PhysRevA.

37.973

26. Cacciari I, Moretti P. Propagator for the double delta potential. Phys Lett A.

(2006) 359:396–401. doi: 10.1016/j.physleta.2006.06.061

27. Albeverio S. Brzezniak Z, Dabrowski L. Time-dependent propagator with

point interaction. J Phys A Math Gen. (1994) 27:4933–43.

28. Elberfeld W, Kleber M. Time-dependent tunneling through thin barriers:

a simple analytical solution. Am J Phys. (1988) 56:154. doi: 10.1119/1.

15695

29. Crandall RE. Combinatorial approach to Feynman path integration. J Phys A

Math Gen. (1993) 26:3627. doi: 10.1088/0305-4470/26/14/024

30. Cheng BK, da Luz MGE. Propagator for the δ-function potential

moving with constant velocity. Phys Rev A. (1993) 47:4720–4.

doi: 10.1103/PhysRevA.47.4720

31. Scheitler G, Kleber M. Propagator for two dispersing δ-function potentials.

Phys Rev A. (1990) 42:55–60. doi: 10.1103/PhysRevA.42.55

32. Kuhn J, Zanetti FM, Azevedo AL, Schmidt AGM, Cheng BK, da Luz

MGE. Time-dependent point interactions and infinite walls: some results

for wavepacket scattering. J Opt B Quant Semiclass Opt. (2005) 7:S77–85.

doi: 10.1088/1464-4266/7/3/011

33. Laissaoui A, Chetouani L. Propagator for symmetric double delta potential

using path decomposition method. J Math Phys. (2018) 59:022106.

doi: 10.1063/1.5008516

34. Refaei A, Kheirandish F. Quantum propagator and characteristic equation in

the presence of a chain of δ potentials. Int J Mod Phys B. (2015) 29:1550099.

doi: 10.1142/S021797921550099X

35. Cacciapuoti C, Mantile A, Posilicano A. Time dependent delta-prime

interactions in dimension one. Nanosyst Phys Chem Math. (2016) 2:303–14.

doi: 10.17586/2220-8054-2016-7-2-303-314

36. Campbell J. Some exact results for the Schrödinger wave equation with

a time dependent potential. J Phys A Math Theor. (2009) 42:365212.

doi: 10.1088/1751-8113/42/36/365212

37. Hmidi T, Mantile A, Nier F. Time-dependent delta-interactions for 1D

Schrödinger Hamiltonians. Math Phys Anal Geom. (2010) 13:83–103.

doi: 10.1007/s11040-009-9070-2

Frontiers in Physics | www.frontiersin.org 9 April 2020 | Volume 8 | Article 65170

https://www.frontiersin.org/articles/10.3389/fphy.2020.00065/full#supplementary-material
https://doi.org/10.1016/j.physrep.2014.02.005
https://doi.org/10.1017/S0308210512000194
https://doi.org/10.1088/1751-8121/aac110
https://doi.org/10.1007/s0002
https://doi.org/10.1016/j.physleta.2009.02.025
https://doi.org/10.1007/s10773-010-0641-6
https://doi.org/10.1016/j.physleta.2010.02.005
https://doi.org/10.1063/1.4936302
https://doi.org/10.1006/jmaa.1996.0256
https://doi.org/10.1016/j.aop.2017.12.006
https://doi.org/10.1016/0034-4877(86)90045-5
https://doi.org/10.1088/0031-8949/49/6/002
https://doi.org/10.1088/0305-4470/30/11/021
https://doi.org/10.1088/0305-4470/36/27/311
https://doi.org/10.1088/0305-4470/39/29/023
https://doi.org/10.1088/1751-8113/40/29/F05
https://doi.org/10.1166/asl.2008.019
https://doi.org/10.1103/PhysRevD.91.025028
https://doi.org/10.1103/PhysRevD.94.105009
https://doi.org/10.1088/0305-4470/19/10/024
https://doi.org/10.1088/0305-4470/22/1/013
https://doi.org/10.1103/PhysRevA.37.973
https://doi.org/10.1016/j.physleta.2006.06.061
https://doi.org/10.1119/1.15695
https://doi.org/10.1088/0305-4470/26/14/024
https://doi.org/10.1103/PhysRevA.47.4720
https://doi.org/10.1103/PhysRevA.42.55
https://doi.org/10.1088/1464-4266/7/3/011
https://doi.org/10.1063/1.5008516
https://doi.org/10.1142/S021797921550099X
https://doi.org/10.17586/2220-8054-2016-7-2-303-314
https://doi.org/10.1088/1751-8113/42/36/365212
https://doi.org/10.1007/s11040-009-9070-2
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Erman et al. Time Dependent Point Interactions

38. Costin O, Costin RD, Lebowitz JL, Rokhlenko A. Evolution of a model

quantum system under time periodic forcing: conditions for complete

ionization. CommMath Phys. (2001) 221:1–26. doi: 10.1007/s002200100

39. Costin O, Lebowitz JL, Rokhlenko A. Decay versus survival of a localized

state subjected to harmonic forcing: exact results. J Phys A Math Gen. (2002)

35:8943–51. doi: 10.1088/0305-4470/35/42/305

40. Costin O, Lebowitz JL, Rokhlenko A. Exact results for the ionization

of a model quantum system. J Phys A Math Gen. (2000) 33:6311–9.

doi: 10.1088/0305-4470/33/36/303

41. Costin O, Costin RD, Lebowitz JL. Transition to the continuum of a particle

in time-periodic potentials. In: Karpeshina Y, Stolz G, Weikard R, Zeng Y,

editors. Advances in Differential Equations and Mathematical Physics, AMS

Contemporary Mathematics Series. Providence, RI: AMS. (2003). p. 75–86.

42. Correggi M. Time-dependent singular interactions (Ph.D. thesis),

Mathematical Physics Sector, International School for Advanced Studies

(2004).

43. Martinez DF, Reichl LE. Transmission properties of the

oscillating delta-function potential. Phys Rev B. (2001) 64:245315.

doi: 10.1103/PhysRevB.64.245315

44. Baek SK, Yi SD, KimM. Particle in a box with a time dependent delta-function

potential. Phys Rev A. Upper Saddle River: Prentice Hall (2016) 96:052124.

doi: 10.1103/PhysRevA.94.052124

45. Griffiths DJ. Introduction to QuantumMechanics. 2nd ed. Printice Hall (2005).

46. Granot E, Marchewka A. Quantum particle displacement by a

moving localized potential trap. Europhys Lett. (2009) textbf47:20007.

doi: 10.1209/0295-5075/86/20007

47. Appel W. Mathematics for Physics and Physicists. Princeton, NJ: Princeton

University Press (2007).

48. Reed M, Simon B. Methods of Modern Mathematical Physics. II. New York,

NY: Academic Press (1975).

49. Akin JE, Counts J. On rational approximation to the inverse laplace transform.

SIAM J Appl Math. (1969) 17:1035–40.

50. Hoskins RF. Delta Functions, Introduction to Generalized Functions. 2nd ed.

Cambridge: Woodhead Publishing (2011).

51. Qiu Z. Study of ionization of quantum systems with delta potentials in damped

and undamped time periodic fields (Ph.D. thesis), The Ohio State University,

Columbus, OH, United States (2009).

52. Koch PM, Van Leeuwen KAH. The importance of resonances in

microwave “ionization” of excited hydrogen atoms. Phys Rep. (1995)

255:289–403.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Erman, Gadella and Uncu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physics | www.frontiersin.org 10 April 2020 | Volume 8 | Article 65171

https://doi.org/10.1007/s002200100
https://doi.org/10.1088/0305-4470/35/42/305
https://doi.org/10.1088/0305-4470/33/36/303
https://doi.org/10.1103/PhysRevB.64.245315
https://doi.org/10.1103/PhysRevA.94.052124
https://doi.org/10.1209/0295-5075/86/20007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ORIGINAL RESEARCH
published: 28 July 2020

doi: 10.3389/fphy.2020.00252

Frontiers in Physics | www.frontiersin.org 1 July 2020 | Volume 8 | Article 252

Edited by:

Luiz A. Manzoni,

Concordia College, United States

Reviewed by:

Klas Pettersson,

Arctic University of Norway, Norway

Illia Karabash,

Institute of Applied Mathematics and

Mechanics (NASU), Ukraine

*Correspondence:

Zdzislaw Suchanecki

zsuchane@pt.lu

Specialty section:

This article was submitted to

Mathematical and Statistical Physics,

a section of the journal

Frontiers in Physics

Received: 22 March 2019

Accepted: 09 June 2020

Published: 28 July 2020

Citation:

Suchanecki Z (2020) Time Operators

Determined by Cylindrical Processes.

Front. Phys. 8:252.

doi: 10.3389/fphy.2020.00252

Time Operators Determined by
Cylindrical Processes

Zdzislaw Suchanecki*

Université du Luxembourg, Luxembourg, Luxembourg

The main purpose of this paper is to study time operators associated with cylindrical

elements, i.e., generalized functions with values in locally convex spaces. It is given the

characterization of the domains of the constructed time operators and partially resolved

the problem of decomposability of random elements.
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1. INTRODUCTION

The paper is devoted to extensions of internal time operators on the spaces of functions with values
in topological vector spaces and on the spaces of generalized functions of this type associated with
K-systems. The main reason of the introduction of time operators was the Lambda transformation
theory formulated by I. Prigogine and his collaborators (see [1–3]) as a new approach to the
theory of irreversibility in statistical physics. Precisely, to the problem of the relation between the
reversible laws of dynamics and the observed irreversible (stochastic) evolution. Let us remind,
that the classical view point was that irreversible behavior of the observed time evolution in a
dynamical system can only arise from deterministic dynamics as the result of averaging (coarse-
graining). The new approach can be formulated, in simplified terms, as a task to relate a given
unitary evolution group {Ut}t∈R acting on a Hilbert space of Gibbs’ square integrable densities with
an entropy increasing evolution semigroup {Wt}t∈R+ through a similarity transformation called
the transformation 3 (Lambda) (see [3]) as follows:

Wt3 = 3Ut , t ∈ R+ . (1)

Almost all known constructions of 3 transformations have been done so far for the dynamical
systems which admit time operators (see [4] for another approach). Such dynamical systems
allow the existence of Lyapunov variables, defined as functions of time operators, representing
non-equilibrium entropy [1]. This is also a possible way to the task of defining time operator in
quantum mechanics which in turn could allow to determine entropy operator. However, the class
of dynamical systems for which time operators can be defined is very narrow, in fact, it is limited
to K-systems.

Time operators were initially defined on the Hilbert space of square integrable functions. The
problem of an extension of the concept of time operator was motivated by a need to extend the 3

transformation theory beyond square integrable probability densities. Indeed, it is natural to ask
about a possibility to extend 3 and Wt on a larger class of states, including probability measures.
Particularly interesting, from the physical point of view, is the possibility of extension on singular
measures concentrated at single points of the phase space [2, 5–7].

Another motivation for the introduction and study of time operators is due to the recently
discovered fact that time operators can be also associated with non-invertible dynamics and used as
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a new tool in the spectral analysis of evolution semigroups
of unstable dynamical systems (see e.g., [8–13]). In this case
time operators and evolution semigroups are defined on various
topological vector spaces. The relation between the time operator
T and the evolution semigroup {Ut} is such that eachUt preserves
the domain of T and satisfies the relation

TUt = UtT + tUt . (2)

The idea behind the spectral analysis of the evolution semigroup
{Ut} on a Hilbert space with the help of the time operator T is
to decompose T in terms of a complete system of its eigenvectors
{en,k}, Ten,k = nen,k, such that Uten,k = en+t,k, as follows

T =
∑

n

n
∑

k

( · , en,k)en,k .

Similar spectral decompositions but in terms of Schauder bases
or frames can be obtained in other topological vector spaces.

In this paper we will focus on the construction of time
operators associated with K-systems acting on the spaces of
cylindrical elements. A cylindrical element is an object which
is a generalization of an E valued function, where E is a locally
convex space. More precisely, p-cylindrical element, which will
be defined in the next section, is a generalization of a weakly
p-integrable function with values in E.

Although such extensions of time operators concern various
topological vector spaces we will elaborate a unified approach
based on the idea of stochastic integral with respect to cylindrical
martingales (see [14]). We will also study the related problem
of decomposability of cylindrical elements. It can happen that
the action of a time operator or even a conditional expectation
does not leave the space of vector valued functions invariant
but leads to cylindrical elements instead. The decomposability
of cylindrical elements allows to represent them again as
measurable functions.

The paper is organized as follows. In section 2, we gathered
the basic facts on cylindrical elements, cylindrical measures
and cylindrical martingales. We focus on the Pettis integrability
of vector valued functions and cylindrical elements. We
also characterize vector spaces of Pettis integrable cylindrical
elements. Section 3 is devoted to the construction of time
operators with respect to cylindrical processes and to the solution
of the problem of decomposability in two particular cases.

2. CYLINDRICAL ELEMENTS AND

CYLINDRICAL MARTINGALES

Throughout this paper, by a locally convex space (l.c.s.) or
a topological vector space (t.v.s) we mean a Hausdorff l.c.s.
(respectively t.v.s.) not equal to {0} over the field of real or
complex scalars. If E is an l.c.s. then E′ denotes its topological dual
and 〈x, x′〉 stands for the value of a functional x′ ∈ E′ at x ∈ E.
For subsets A ⊂ E and B ⊂ E′ the symbols A◦ and B◦ denote the
polars with respect to the duality 〈E,E′〉 and 〈E′,E〉 respectively,
i.e., A◦ = {x′ ∈ E′ : |〈x, x′〉| ≤ 1, for each x ∈ A} and B◦ = {x ∈
E : |〈x, x′〉| ≤ 1, for each x′ ∈ B}. By σ (E′,E) we shall denote the

weak topology on E′ and by τ (E′,E) the Mackey topology, i.e.,
is the topology of uniform convergence on all σ (E,E′)–compact,
convex, circled subsets of E. E′τ will denote the space E′ with the
Mackey topology. An l.c.s. E is quasi-complete if each bounded
closed subset of E is complete.

Let (�,A, P) be a probability space, Lp = Lp(�,A, P), p ≥
0, and let E be an l.c.s.. By a p-cylindrical element, or simply
cylindrical element, we mean a linear operator X :E′ → Lp.
Notice that any function x(·) :� → E such that 〈x(·), x′〉 ∈ Lp

determines the cylindrical element

Xx′ = Xx(·)x
′ = 〈x(·), x′〉 .

Let us now introduce the concept of Pettis integrability of
cylindrical elements. The reason of doing this is the following.
In statistical physics the main object of interest is the time
evolution of statistical ensembles, represented mathematically
as probability distributions. However, for technical reasons we
often take only some classes of probability distributions as
the states of the system. In our case we confine to those
probability measures which are absolutely continuous with
respect to some reference measure. This allows to replace
measures by their densities (Radon-Nikodyn derivatives) or by
classes of integrable functions in general. Nevertheless, for a given
integrable function f we can recover the corresponding measure
µf putting

µf (A) =

∫

A
f dP , A ∈ A . (3)

Replacing f by a vector valued function Ef :� → E we
should be able to recover the corresponding measure µEf

like in (3) but this is not always possible. For example,

if E is a Banach space and Ef a measurable function such

that ‖Ef ‖ is integrable then (3) holds and defines E-valued
measure. However this is not true, in general, under

the weaker assumption of integrability of |〈Ef , x′〉|, for all
x′ ∈ E. Additional assumptions have to be imposed on
Ef such as the Pettis integrability defined below. The same
can happen when we replace vector valued functions by
cylindrical elements.

We say that a cylindrical element X :E′ → L0 is Pettis
integrable if X(E′) ⊂ L1 and for each A ∈ A there exists xA ∈ E
such that

〈xA, x
′〉 =

∫

A
Xx′ dP for each x′ ∈ E′ . (4)

We write
∫

A
X dP = xA . (5)

and call it the Pettis integral of the cylindrical element X.

Replacing in (4) and (5) X by a vector valued function Ef we obtain
the classical definition of the Pettis integral (see [15]).

General properties of Pettis integrable cylindrical elements
are in ref. ([16]). Here we will show relations between Pettis
integrability and continuity of cylindrical elements.
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We have
Proposition 1. ([16, 17]) Let E be a sequentially complete l.c.s.
space and X :E′ → L1 a cylindrical element. Then the following
conditions are equivalent

(1) T is Pettis integrable
(2) T is (τ (E′,E), ‖ · ‖L1 ) continuous.

Actually, the implication (2) ⇒ (1) in the above Proposition
is valid without the assumption of sequential completeness
(see [17]).

Let us also mention about two properties of Pettis integrable
cylindrical elements which will be used later:
Proposition 2. If E and F are l.c.s., S :E → F is a continuous
linear operator and X :E′ → L1 is a Pettis integrable cylindrical
element, then the linear operator X ◦ S∗ : F′ → L1 is Pettis
integrable and

S

(∫

A
X dP

)

=

∫

A
X ◦ S∗ , for each A ∈ A .

Proposition 3. If X is a Pettis integrable cylindrical element then
for each absolutely convex neighborhood of 0 in E

sup
x′∈U◦

∫

�

|Xx′| dP < ∞

The proofs of the above properties can be found in [17].
It follows fromProposition 3 that if E is a normed space thenX

is a bounded linear operator form E′ to L1 with the operator norm

‖X‖ = sup
‖x′‖≤1

∫

�

|Xx′| dP

Notice that σ (L1, L∞) compactness of a family of functions
in L1 is equivalent to its uniform integrability (Dunford-Pettis
Theorem) thus using the Vallèe-Poussin Theorem (see e.g., [18])
we obtain
Corollary. If p > 1, E is a reflexive Banach space and X :E′ → Lp

a continuous cylindrical element then X is Pettis integrable.
Let E be an l.c.s. and let Lp(E), p ≥ 1, denote the space of all

separably valued and weakly p-integrable functions x(·) :� → E
with the topology generated by the family of seminorms

|||x(·)|||U◦ = sup
x′∈U◦

∫

�

|〈x(·), x′〉|p dP < ∞ ,

where U are convex and circled neighborhoods of zero in E.
It follows from ([16], Prop. 3.2, Th. 3.1 and Th. 3.2) that if E

is a locally convex Fréchet space and p = 1 then the completion
̂L
1(E) consists of all cylindrical elements X :E′ → L1 which are

(τ (E′,E), ‖·‖L1 ) continuous and compact linear maps. In general,
we will denote by ̂L

p(E) the completion of Lp(E).
If X ∈ ̂L

p then for each fixed g ∈ Lq, 1p +
1
q = 1, the map

x′ 7−→ gXx′

from E′ to L1 is a Pettis integrable cylindrical element.
Let us also recall some relations between cylindrical elements

and cylindrical measures on a locally convex space E. Denote by

C(E) the σ -field generated by cylindrical sets in E, i.e., the sets of
the form

{x ∈ E :(〈x, x′1〉, . . . , 〈x, x
′
n〉) ∈ B} ,

where n ∈ N, x′1, . . . , x
′
n ∈ E′, B ∈ BRn (BRn denotes the Borel

σ -field in R
n).

Let µ be a finitely additive measure on C(E) and let

µx′1 ,...,x
′
n
(B)

df
=µ{x ∈ E :(〈x, x′1〉, . . . , 〈x, x

′
n〉) ∈ B} .

The measure µ is called cylindrical if for each n ∈ N and
x′1, . . . , x

′
n ∈ E′ µx′1 ,...,x

′
n
is a probability measure on (Rn,BRn).

Each cylindrical element X determines a cylindrical measure
µ defined as

µ({x ∈ E :(〈x, x′1〉, . . . , 〈x, x
′
n〉) ∈ B}) = P{(Xx′1, . . . ,Xx

′
n) ∈ B} .

Conversely, if µ is a cylindrical measure on C(E) then there
exist a probability space (�,A, P) and a cylindrical element
X :E′ → L0(�,A, P) satisfying the above equality (see [19]). The
correspondence between cylindrical measures and cylindrical
elements is one-to-one.

If µ is a cylindrical measure and Xµ the corresponding
cylindrical element such that

∫

�

|Xµx
′|p dµ < ∞ , for each x′ ∈ E′ ,

and some p > 0, then we say that µ has a weak p-order.
An important property of a cylindrical measure is its

concentration on some families of sets. Namely, letS be a family
of subsets of E and µ a cylindrical measure on C(E). We say that
µ is scalarly concentrated on S if for each ε > 0 there is A ∈ S

such that

(µx′ )∗(x
′(A)) ≥ 1− ε ,

for each x′ ∈ E′, where ∗ denotes the inner measure.
Assume that S is the family of all compact circled subsets

of E and denote by E′
S

the space E′ with the topology of
uniform convergence on the sets from S. One of the basic
relations between Pettis integrable cylindrical elements and
the corresponding cylindrical measures is contained in the
following Proposition.
Proposition 4. Let E be a complete l.c.s., S the family of all
compact circled subsets of E and X a cylindrical element. If X ∈
̂L
p(E), p ≥ 1, then the corresponding cylindrical measure µ is

scalarly concentrated onS.
The proof of this Proposition is based on the fact that X is

(τ (E′,E), ‖ · ‖Lp ) continuous cylindrical element from E′ to Lp

which transforms equicontinuous subsets of E′ into relatively
compact sets in Lp, p > 1 (see also the proof of Th.4.1 in [16]).

The converse implication is not true in general even for
Radon measures but is true for cylindrical Gaussian measures
and corresponding L2–valued cylindrical elements (see [16]
for details).
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3. TIME OPERATOR

Before defining time operator acting on cylindrical elements let
us remind the classical construction which is based on the idea
of Misra-Prigogine-Courbage [3]. Let us consider an abstract
dynamical system given by the quadruple (�,A,µ, {St}), where
{St} is a group of one-to-one µ invariant transformations of �

and either t ∈ Z or t ∈ R.
A K-flow (we will say K-system) is a probability space (�,A, P)

with a group of measure preserving transformations St , t ∈ R, of
�. We assume that there exists a σ -algebraA0 ⊂ A such that the

family {At}t∈R,At
df
= St(A0) has the properties

(i) As ⊂ At , for s < t
(ii) σ

(
⋃

t∈R At) = A

(iii)
⋂

t∈R At = A−∞ – the trivial σ -algebra, i.e., the algebra of
sets of measure 0 or 1.

where σ
(

∪t∈RAt) stands for σ -algebra generated byAt , t ∈ R.
We replace deterministic evolution of phase space points by

the Liouville evolution of probability density functions putting

Ut ρ(ω) = ρ(S−tω) , (6)

where ρ is A measurable function on �. The invariance of the
measure µ implies that the transformations Ut considered as
operators on L2 = L2(�,A,µ) form a unitary group.

In this setting a possible approach to the problem of
irreversibility can be formulated as in section 1. Namely it
is constructed the Lambda operator connecting the reversible
group {Ut}t∈R with an entropy increasing evolution semigroup
{Wt}t≥0. It is assumed that 3 is a bounded linear operator on
L2(�,A,µ) with densely defined inverse 3−1 such that Wt =
3Ut3

−1 defines, for t ≥ 0, a continuous one-parameter group of
contractions. For physical reasons it is also additionally assumed
that 3 is positivity preserving, 31 = 1 and ‖Wt(ρ − 1)‖
decreases strictly monotonically to 0, as t → +∞, for all
densities ρ 6≡ 1. The last condition means that the entropy of
the system tends strictly monotonically to zero when the system
approaches equilibrium.

In classical dynamical systems Lambda transformations have
been constructed on the Lp spaces associated with K-systems as
functions of time operators. The main idea of such construction
is ([3] see also [20–22]) that each K-system determines the family
{Et}t∈R of conditional expectations,

Et = EAt ,

which in turn defines the operator T on each space Lp =
Lp(�,A, P), p ≥ 1,

T =

∫ +∞

−∞
tdEt , (7)

which is called the time operator.
In the case of discrete time, t ∈ Z, we consider the group

{Sn}n∈Z generated by a single measure preserving transformation

S, i.e., Sn = Sn, for n 6= 0, and S0 = I. The time operator T is then
defined as

T =

∞
∑

n=−∞

nEn .

If p = 2 then the above integral, or sum, defining T is just the
spectral resolution of a selfadjoint operator. In this case {Ut}t∈R
defined in (6) is a unitary group on L2 satisfying the following
relation with T

UtTU−t = T + tI , (8)

which is equivalent to (2).
The transformation 3 is defined, up to constants, as an

operator function 3 = 3(T). Namely

3 = f (T)+ E−∞

where E−∞ is the projection on the space L2(A−∞) = R. The
function f is assumed to be positive, decreasing on R, f (−∞) =
1, f (+∞) = 0 and such that ln f is concave on R. Then, for any
such function f the corresponding operator 3 is injective on L2,
one-to-one with densely defined inverse (see ref. [21]). Moreover
the semigroup

Wt
df
=3Ut3

−1 , t ≥ 0 , (9)

is Markovian and ‖Wtp − 1‖L2 decreases to 0, for each density
ρ 6= 1 and together with {Ut} satisfies the relation (1).

The time operator as defined in (7) uses the family of
conditional expectations {Et} which can be treated as a spectral
family of projectors on the Hilbert space L2 which defines a
selfadjoint operator or, for a given ρ ∈ L2, {Etρ} can be
considered as a martingale with respect to the filtration {At}. In
the latter case the integral defining T can be understood as a
stochastic integral with respect to a martingale. Such approach
allows to define time operators on larger classes of function,
for example on L1. Moreover the stochastic integral technique
allows to replace the family of projectors {Et} by a family of
operators {Mt} such that for a given ρ {Mtρ} is a martingale with
respect to {At}. In fact, such a generalization of the definition of
time operators has been proposed in [22]. The extension of the
definition of T on L1 spaces can be found in [23].

It should be stressed that the abovementioned extension of the
time operator concerns such states (probability measures) which
have densities. However, in statistical physics the class of states
can be larger and contain, for example, singular measures. There
were successful attempts of such extension of the domain of time
operators (see [2, 5, 6]).

We will define now a time operator acting on p-cylindrical
elements. As we have seen in section 2 p-cylindrical element is
actually a generalization of a weakly p-integrable function with
values in a topological vector space. Equivalently, time operators
will act on cylindrical measures on a topological vector spaces.
This is a significant step beyond the classical Lp space.

We have to define first the conditional expectation of a
cylindrical element. Let EB : L1(A) → L1(B) denote the usual
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operator of the conditional expectation (see [18]), and let
Y :E′τ → Lp, p ≥ 1, be a p-cylindrical element obtained as the
composition of operators EB and X. Note that if X :E′τ → Lp is
continuous, then Y = EBX is also continuous. Thus, if X :E′τ →
Lp is continuous, 1 ≤ p < ∞, then for each sub σ -field B ⊂ A

the 1-cylindrical element Y = EBX :E′τ → L1 satisfies

∫

B
YdP =

∫

B
EBXdP =

∫

B
XdP ,

for each B ∈ B.
The above definition of conditional expectation applies, in

particular, to Banach space valued functions. Indeed, each
function x(·) :� → E, where E is a Banach space, which has a
weak p-order defines a cylindrical element X :E′τ → Lp. Thus we
can define the conditional expectation of x(·)

EBx(·) = EBX .

It should be noticed that it is not always possible to define the
conditional expectation of a Banach space valued function which
is not strongly integrable. Indeed one can find (see [24]) a Pettis
integrable function x(·) with values in a reflexive Banach space E
and a sub σ -algebra B for which does not exist any B measurable
function y(·) :� → E such that

∫

B
〈y(·), x′〉dP =

∫

B
〈x(·), x′〉dP , for B ∈ B , x′ ∈ E′ .

However, we have shown above that this conditional expectation
exists as a cylindrical element although not generated by a
measurable function. Thus the replacement of Pettis integrable
functions by the corresponding cylindrical elements allows
to give a meaning to a generalization of the concept of
conditional expectation.

Let us assume that E is a complete l.c.s. and I a linear ordered
set. A family {Xt}t∈I of cylindrical elements Xt :E

′ → Lp, t ∈
I , will be called the p-cylindrical process. If each Xt is Pettis
integrable then the process will be also called Pettis integrable.
Recall that Pettis integrability is equivalent (τ (E′,E), ‖ · ‖L1 )
continuity - Proposition 1.

Let {Bt}t∈I be a family of σ -fields such that Bt ⊂ A and
Bt1 ⊂ Bt2 , for t1 < t2. A p-cylindrical process {Xt}t∈I , where
p ≥ 1, is called p-cylindrical martingale if it is adapted with
respect to {Bt}t∈I , each Xt is (τ (E

′,E), ‖ · ‖Lp ) continuous, and
EBsXt = Xs, for s < t.

It is easy to show that a τ -continuous p-cylindrical process
{Xt}t∈I is p-cylindrical martingale if and only if {Xtx

′}t∈I is a
real martingale for each x′ ∈ E′. The proposition below shows
that for cylindrical martingales we have an analog of the classical
convergence theorem (see [25]).
Proposition 5. Let {Xtx

′}t∈I be a discrete time p-cylindrical
martingale with respect to {Bt}t∈I , p > 1, and assume that E′τ
is barreled Barreled space. If

sup
t∈I

E|Xtx
′|p < ∞ , for each x′ ∈ E′ ,

then there exists a continuous cylindrical element X :E′τ → Lp

such that

Xt = EBtX , for each t ∈ I ,

and Xt converges to X in Lp norm.
This proposition is not true in the case p = 1. However

assuming that

E sup
t

|Xtx
′| < ∞ , for each x′ ∈ E′ , (10)

we obtain an analog of Proposition 5.
In the case of continuous time we can obtain similar results

under the additional assumption of right continuity of the
considered martingales. The assumption of right continuity of a
martingale {mt} allows to define the stochastic integral

∫

f (t) dmt ,
where f (t) is a Borel measurable function (see [26]).

The object of our interest will be the cylindrical martingales
generated by a single cylindrical element, like in the thesis of
Proposition 5, associated with the filtration {Bt}t∈IR determined
by a given. K-flow.

Let {At} be a family of σ -algebras of a given K-flow and {Mt}
an associated operator valuedmartingale i.e., a family of bounded
operators on Lp, p ≥ 1, such that {Mt} is a right continuous
martingale with respect to {At}. In the classical approach (see
[22] for the details) it was assumed that {Mt} acts on L2, has
orthogonal increments: for s1 ≤ s2 < t1 ≤ t2 (Ms2 −
Ms1 )(Mt2 − Mt1 ) = 0 and that M∞ is a positive one-to-one
operator satisfying

M∞1 = 1 M∞Ut = UtM∞ for each t ∈ IR ,

where Ut is given by (6). It was shown that for a fixed monotonic
function f on R the transformation

ρ 7→

∫

f (t) dMtρ +M−∞ρ , ρ ∈ L2 . (11)

is well-defined on the domain Df which is dense in L2. Taking
f (t) = t we obtain the time operator. If we assume that f is a
positive non-increasing function on R with limt→−∞ f (t) = 1,
limt→∞ f (t) = 0 and such that for each t ∈ R the quotient
f (s)/f (s − t) is a bounded and non-increasing function of s
then (11) defines the discussed above similarity transformation
3 which in turn defines the Markov semigroup (9).

Note that taking Mt = Et , where Et = EAt , we obtain
an operator valued martingale satisfying the required properties.
Moreover, a cylindrical element X with values in Lp defines the p-
cylindrical martingale {EtX}. Therefore, in the case p = 2 we can
apply directly the above construction putting in (11) Xx′, x′ ∈ E′,
instead of ρ. Replacing the space L2 by L2 ⊖ 1 we can omit the
second component in (11) obtaining the following operator f (T)
acting on cylindrical elements

f (T)(X) =

∫

f (t) dEtX . (12)

We can not apply directly the above approach in the case p ≥
1 , p 6= 2. Here we have to use a different approach to stochastic
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integration. The theory of integrals
∫

f (t) dmt , where {mt} is a
p-integrable martingale can be found in Bichteler’s paper [26].
This integral is defined first for simple functions (or processes)
f (t). Then it is said that {mt} is an Lp-integrator if {mt} is p-
integrable and the linear operator f 7→

∫

f (t) dmt from the space
of elementary integrands to Lp has an extension satisfying the
dominated convergence theorem (see Def.1 in [26]).
Theorem 1. Let E be an l.c.s. and (�,A,µ, {St}) a K-flow. If
1 < p < ∞ then for any simple function f with a bounded
support the linear operator on L(E′, Lp)

f (T)(X) =

∫

f (t) dEtX .

is correctly defined, for each x′ ∈ E′, the martingale {EtXx
′} is an

Lp-integrator and we have

∥

∥

∥

∥

∫

f (t) dEtXx
′

∥

∥

∥

∥

Lp
≤ Cp‖EτXx

′‖Lp ,

where τ is such that f (t) = 0, for |t| > τ and Cp is a constant
which depends only on p.

If p = 1 then the above integral exists and the martingale
{EtXx

′} is an L1-integrator under the additional assumption that

E(|Xx′| log |Xx′|) < ∞ , for each x′ ∈ E′ , (13)

Proof. If p > 1 we can apply (3.8) from [26] which says that a
p-intergrable martingale is an Lp-integrator. If p = 1 we use Th.
7.2 from [26] and the additional assumption (13) to show that for
each x′ ∈ E" the martingale {EtXx

′} is an L1 integrator. Note that
because the martingales satisfy the assumption (13), in the latter
case, they are elements of the Hardy spaceH1, i.e., (10) is satisfied.

It follows from Theorem 1 that f (T) can be defined for
simple functions with bounded support. However, because of
the dominated convergence theorem we can extend the class of
functions taking, for example, f (t) = t to obtain the operator

T =

∫

t dEt ,

which acts on the space L(E′, Lp).
Let {Ut} be the evolution group on L(E′, Lp) associated with

the transformations {St}, i.e., for X ∈ L(E′, Lp), UtX is a
cylindrical element of the form

(UtX)x
′(ω) = Xx′(S−tω) .

Using the relation Es+tUt = UtEs valid for conditional
expectations associated with the K-system and the evolution {St}
on the ordinary Lp-space (see e.g., [21]) we obtain that also

Es+tUt = UtEs .

This leads to the following
Corollary. The operator T is a time operator on the space
L(E′, Lp) associated with the evolution {Ut}.

We can also take as f a bounded monotonic function with
the listed above properties to obtain an analog of the operator

Lambda, 3 = f (T). An important example of applications the
above construction of T is the possibility to define time operators
on the spaces of weakly integrable E-valued functions. This is
because the constructed above stochastic integral transforms
cylindrical elements into cylindrical elements. If we take as an
argument of T the cylindrical element generated by an E valued
function then after the transformation it need not to remain a
function (see remarks concerning the conditional expectation
of Pettis integrable functions). However f (T) leaves the space
L(E′, Lp) invariant.

An important question is: When a cylindrical element is
generated by a measurable function defined on � with values
in the vector space E? Similar question concerns martingales:
When the integral transformation of a p-cylindrical martingale
generated by a vector valued function will be still a function
generated martingale? The rest of this section is devoted to an
answer to these questions.

Let us introduce first the following definition:
We say that X is p-decomposable, p > 0, if there exists a
measurable function x(·) :� → E such that

10 Xx′ = 〈x(·), x′〉, for each x′ ∈ E′

20
∫

�
‖x(·)‖p dP < ∞ , for each continuous seminorm ‖·‖ on E.

Decomposability of a cylindrical element depends both on
properties of X as a linear operator and on the topological
properties of the vector space E. We will consider the problem
of decomposability in both cases. We begin with the dependence
of the decomposability of a cylindrical element X :E′ → L1 on
the properties of E. It is obvious that if E is finite dimensional
then each 1-cylindrical element is 1-decomposable. If E is infinite
dimensional then the space L

1(E) of Pettis integrable functions
on � with values in E, introduced in section 2, is not complete
in general and its completion ̂L

1(E) may contain cylindrical
elements which are not associated with any measurable function.
However, the transformations like conditional expectation or
time operator leave ̂L

1(E) invariant. Thus we can ask if there
are locally convex spaces for which this completion remains a
function space. The next theorem shows such a possibility.
Theorem 2. Let E be a locally convex nuclear Fréchet space. Then
each element of ̂L

1(E) is 1-decomposable.
Proof. In the proof we will use some results concerning tensor

products of l.c.s.. Let us first introduce the notation and remind
the relevant facts (see [27]). Let E be an l.c.s., F a Banach space
and E ⊗ F the algebraic tensor product. We define two basic
topologies on E ⊗ F. First is the ε-topology generated by the
seminorms

εU(z) = sup
x′∈U◦

sup
y′∈B◦

|〈z, x′ ⊗ y′〉| , for z ∈ E⊗ F ,

where U runs over a basis of convex and circled neighborhoods
of 0 in E and B is the unit ball in F. By E⊗̂εF we denote the
completion of E⊗ F in the ε-topology.

The second topology, called the projective topology, is
generated by the seminorms

πU(z) = inf
∑

i

pU(xi)‖yi‖
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where the infinitum is taken over all representations of the
element z =

∑n
i=1 xi ⊗ yi and U is an absolutely convex

neighborhood of 0 in E. By E⊗̂πF we denote the completion of
E⊗ F in the projective topology.

Note that the ε-topology and the projective topology are
respectively the weakest and the strongest topology on the
tensor product of two l.c.s. which are generated by cross-
seminorms (see [27]).

It is known that if E is a Banach space then E⊗̂πL
1 is

norm isomorphic to the space L1(E) of all E valued Bochner
integrable functions f on � endowed with the norm ‖f ‖L1(E) =
∫

�
‖f (ω)‖ P(dω). If E is just an l.c.s. then E⊗̂πL

1 is isomorphic
with L1(E) defined as the space of all strongly measurable
functions f such that ‖f (·)‖ is integrable for each semi-norm ‖ · ‖
on E.

We have shown in [16] that if E is a separable l.c.s. Fréchet
space then ̂L

1(E) can be identified (is isomorhic) with E⊗̂εL
1.

However, when E is a complete nuclear l.c.s. the latter space is
isomorphic to E⊗̂πL

1 (see [27]). Therefore, each element from
̂L
1(E) is represented by a Bochner integrable function which ends

the proof.
It follows from the above theorem that for a nuclear space

valued functions the Pettis integrability is equivalent to the
Bochner integrability like in the finite dimensional case.

Let now consider the dependence between decomposability
and operator properties of cylindrical elements. It is known that
if E = H – is a Hilbert space then a 2-cylindrical martingale
X :H′ → L2 is 2-decomposable if and only if the mapping

H′ ∋ h 7→ Xth ∈ L2

is a Hilbert-Schmidt operator for any t (see [14]).
We can also decompose cylindrical elements by composing

them with Hilbert-Schmidt operators or, more generally, with
absolutely summing operators. The problem of decomposability
of a cylindrical element acting on a Banach space through a
composition with an absolutely summing operator has been
already resolved (see [25, 28] and references therein). Here, we
will resolve this problem in the case of cylindrical elements acting
on locally convex spaces.

If E and F are normed spaces and 0 < p < ∞ then a linear
operator S :E → F is said to be p-absolutely summing if there
exists a constant C such that for each x1, . . . , xn ∈ E

n
∑

i=1

‖Sxi‖
p ≤ C sup

‖x′‖≤1

n
∑

i=1

|〈xi, x
′〉|p .

In the sequel we will use the following Pietsch
Majorization Theorem:
Proposition 6. ([29], p. 232) Let E and F be normed spaces. An
operator S :E → F is p-absolutely summing, 0 < p < ∞, if there
exist a constant C and a Radon probability measureµ on the unit
ball U◦ of E′, where U◦ is equipped with the σ (E′,E) - topology,
such that

‖Sx‖p ≤ C

∫

U◦
|〈x, x′〉|p dµ(x′) for all x ∈ E .

We shall now extend the definition of the p-absolutely
summing operatoron operators acting on an l.c.s. with values in
a t.v.s.. Consider first the case of an operator S :E → F, where F
is a quasi-normed space. Recall that a quasi-norm on F is a non-
negative positively defined homogenous function ‖ · ‖ such that
for some r, 0 < r ≤ 1, we have

‖x+ y‖r ≤ ‖x‖r + ‖y‖r , x, y ∈ E .

We then say that the space F is r-normed.
Remark:

(i) An r-normed space is s-normed for 0 < s ≤ r ≤ 1
(ii) If 0 < r ≤ 1 then the space Lr is r-normed.

The definition of a p-absolutely summing operator S :E → F, for
E normed and F quasi-normed space, is the same as in the case
of normed spaces. Moreover, the Proposition 6 remains true and
we have
Proposition 7. ([29]) Let � be a compact Hausdorff space and
ν a probability measure on �. Then the canonical embedding
of the space C(�) (continuous functions on �) into Lp(�, ν) is
p-absolutely summing for 0 < p < ∞.

Before we turn to the further generalization of the concept
of p-absolutely summing operators we shall introduce first
some auxiliary normed spaces and decompositions of bounded
operators on topological vector spaces.

Let E be an l.c.s. and U an absolutely convex neighborhood of
0 in E. By EU we denote the normed space

(

E/p−1
U ({0}), pU(·)

)

where pU(·) is the Minkowski functional of U. Let ÊU denotes
the completion of EU in the norm pU(·) and 8U the canonical
map from E into EU (or into ÊU). Of course 8U is continuous.
Now, let F be a t.v.s.. A subset B of F is said to be p-absolutely
convex if whenever it contains x and y it contains all αx + βy
with |α|p+|β|p ≤ 1. If p = 1 then B is absolutely convex. We put

‖x‖B = inf{λ > 0 : x ∈ λB} ,

and FB =
∞
⋃

n=1
nB. Then (FB, ‖ · ‖B) is p-normed and the

canonical injection
9B : FB → F is continuous. Moreover, FB is complete if B is
complete.

A subset B of F is called quasi-absolutely convex if it is
p-absolutely convex for some 0 < p ≤ 1.

Let E be an l.c.s., F be a t.v.s. and S : E → F a bounded linear
operator, i.e., such that there exists a neighborhood U of 0 in E
for which S(U) is bounded. Then S can be decomposed in the
following way

E F

EU FB

8U

S

S0

9B

where U is an absolutely convex neighborhood of 0 in E and B
is a bounded subset of F. If B can be chosen quasi-absolutely
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convex, then S0 is a continuous linear operator from the normed
space EU into the quasi-normed space FB. Moreover, if B is
complete then S0 has the continuous extension S0 from the
Banach space ÊU into FB. Note that if F is an l.c.s. then FB is a
normed space.

We can now define p-absolutely summing operator on a
locally convex space. Let E be an l.c.s. and F be a t.v.s.. A linear
operator S :E → F is p-absolutely summing, 0 < p < ∞,
if there exist an absolutely convex neighborhood U of 0 in
E and a bounded quasi-absolutely convex subset B of F such
that S0 :EU → FB is p-absolutely summing. This definition is
analogous with the definition of nuclear operators on locally
convex spaces (see [27]).

The next result gives sufficient conditions for p-
decomposability of cylindrical elements. It is an extension
of the Kwapien’s Theorem ([28], Th. 2) as well as ([25],
Th. 1.1) on the case of absolutely summing operators on
locally convex spaces. Moreover, the method of absolutely
summing operators on locally convex spaces allows to
simplify the proof of ([28], Th. 2) and contains the
case 0 < p < 1.
Theorem 3. Let E, F be a quasi-complete l.c.s. and let S :E → F
be p-absolutely summing linear operator, p > 0. If X :E′τ → Lp

is a continuous cylindrical element and either p ≥ 1 or F′ has the
approximation property then

(i) Y = X ◦ S∗ is p-decomposable by an F valued function y(·)
(ii) If Lp is separable then for each absolutely convex

neighborhoodU of 0 in E and each continuous seminorm ‖ · ‖
on F we have

∫

�

‖y(·)‖p dP ≤ C

∫

U◦
‖Xe′‖

p
Lp dµ(e

′)

where µ is a Radon measure on (U◦, σ (E′,E)) and C is
some constant.

Proof. Let U be an absolutely convex closed neighborhood
of 0 in E and B an absolutely convex closed subset of F such
that S0 :EU → FB is p-absolutely summing. Because F is quasi-
complete, FB is a Banach space and S0 extends to the map
S̄0 : ÊU → FB, which is also p-absolutely summing. Since (EU)

′ =
(ÊU)

′ = E′U◦ and (FB)
′ = F′B◦ , (S̄0)

∗ = S∗0 : F
′
B◦ → E′U◦ . Moreover

9V◦ : F′V◦ → F′τ is continuous. Therefore applying Kwapien’s
Theorem ([28], Th.2) to the operators S∗0 and X ◦ 9V◦ acting on
Banach spaces, we obtain that that S∗0X9V◦ is p-decomposable by
yB(·) :� → (F′B)

′ = FB (if F′ has the approximation property
then also F′B◦ has it (cf. [27] III, 9.2). Using the continuity of the
cannonical injection 9B : FB → F we see that the function

y(·) = 9ByB(·) :� → F

decomposes X ◦ S∗. Furthermore, let us note that U◦ is the unit
ball in the space (EU)

′ which is compact in σ (E′,E)-topology.
Thus using ([25] Th.1.1 (ii) we obtain the inequality

∫

�

‖y(·)‖
p
B dP ≤ C

∫

U◦
‖Xe′‖

p
Lp dµ(e

′)

where the measure µ is defined as in Proposition 6. If ‖ · ‖ is
a continuous seminorm on F then ‖ · ‖ ≤ C1‖ · ‖B′ for some
constant C1. This ends the proof of this theorem.
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