
EDITED BY : Guoqi Li, Yam Song (Yansong) Chua, Haizhou Li, Peng Li,

Emre O. Neftci and Lei Deng

PUBLISHED IN : Frontiers in Neuroscience

SPIKING NEURAL NETWORK LEARNING,
BENCHMARKING, PROGRAMMING AND
EXECUTING

https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 1 May 2020 | SNN Learning, Benchmarking, Programming, Executing

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a

pioneering approach to the world of academia, radically improving the way scholarly

research is managed. The grand vision of Frontiers is a world where all people have

an equal opportunity to seek, share and generate knowledge. Frontiers provides

immediate and permanent online open access to all its publications, but this alone

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access,

online journals, promising a paradigm shift from the current review, selection and

dissemination processes in academic publishing. All Frontiers journals are driven

by researchers for researchers; therefore, they constitute a service to the scholarly

community. At the same time, the Frontiers Journal Series operates on a revolutionary

invention, the tiered publishing system, initially addressing specific communities of

scholars, and gradually climbing up to broader public understanding, thus serving

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include some

of the world’s best academicians. Research must be certified by peers before entering

a stream of knowledge that may eventually reach the public - and shape society;

therefore, Frontiers only applies the most rigorous and unbiased reviews.

Frontiers revolutionizes research publishing by freely delivering the most outstanding

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals

Series: they are collections of at least ten articles, all centered on a particular subject.

With their unique mix of varied contributions from Original Research to Review

Articles, Frontiers Research Topics unify the most influential researchers, the latest

key findings and historical advances in a hot research area! Find out more on how

to host your own Frontiers Research Topic or contribute to one as an author by

contacting the Frontiers Editorial Office: researchtopics@frontiersin.org

Frontiers eBook Copyright Statement

The copyright in the text of
individual articles in this eBook is the

property of their respective authors
or their respective institutions or

funders. The copyright in graphics
and images within each article may

be subject to copyright of other
parties. In both cases this is subject

to a license granted to Frontiers.

The compilation of articles
constituting this eBook is the

property of Frontiers.

Each article within this eBook, and
the eBook itself, are published under

the most recent version of the
Creative Commons CC-BY licence.

The version current at the date of
publication of this eBook is

CC-BY 4.0. If the CC-BY licence is
updated, the licence granted by

Frontiers is automatically updated to
the new version.

When exercising any right under the
CC-BY licence, Frontiers must be

attributed as the original publisher
of the article or eBook, as

applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of

others may be included in the
CC-BY licence, but this should be

checked before relying on the
CC-BY licence to reproduce those

materials. Any copyright notices
relating to those materials must be

complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed

in any copy, derivative work or
partial copy which includes the

elements in question.

All copyright, and all rights therein,
are protected by national and

international copyright laws. The
above represents a summary only.

For further information please read
Frontiers’ Conditions for Website

Use and Copyright Statement, and
the applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-88963-767-6

DOI 10.3389/978-2-88963-767-6

https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/journals/neuroscience
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:researchtopics@frontiersin.org

Frontiers in Neuroscience 2 May 2020 | SNN Learning, Benchmarking, Programming, Executing

SPIKING NEURAL NETWORK LEARNING,
BENCHMARKING, PROGRAMMING AND
EXECUTING

Topic Editors:
Guoqi Li, Tsinghua University, China
Yam Song (Yansong) Chua, Huawei Technologies (China), China
Haizhou Li, National University of Singapore, Singapore
Peng Li, University of California, Santa Barbara, United States
Emre O. Neftci, University of California, Irvine, United States
Lei Deng, University of California, Santa Barbara, United States

Citation: Li, G., Chua, Y. S., Li, H., Li, P., Neftci, E. O., Deng, L., eds. (2020). Spiking
Neural Network Learning, Benchmarking, Programming and Executing.
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-88963-767-6

https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/journals/neuroscience
http://doi.org/10.3389/978-2-88963-767-6

Frontiers in Neuroscience 3 May 2020 | SNN Learning, Benchmarking, Programming, Executing

05 Editorial: Spiking Neural Network Learning, Benchmarking, Programming
and Executing

Guoqi Li, Lei Deng, Yansong Chua, Peng Li, Emre O. Neftci and Haizhou Li

09 Investigation of Event-Based Surfaces for High-Speed Detection,
Unsupervised Feature Extraction, and Object Recognition

Saeed Afshar, Tara Julia Hamilton, Jonathan Tapson, André van Schaik and
Gregory Cohen

28 REMODEL: Rethinking Deep CNN Models to Detect and Count on a
NeuroSynaptic System

Rohit Shukla, Mikko Lipasti, Brian Van Essen, Adam Moody and
Naoya Maruyama

43 ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural
Network for Memory-Efficient Neuromorphic Computing

Gopalakrishnan Srinivasan and Kaushik Roy

61 A Delay Learning Algorithm Based on Spike Train Kernels for Spiking
Neurons

Xiangwen Wang, Xianghong Lin and Xiaochao Dang

77 Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent
Plasticity

Bruno U. Pedroni, Siddharth Joshi, Stephen R. Deiss, Sadique Sheik,
Georgios Detorakis, Somnath Paul, Charles Augustine, Emre O. Neftci and
Gert Cauwenberghs

95 A Soft-Pruning Method Applied During Training of Spiking Neural
Networks for In-memory Computing Applications

Yuhan Shi, Leon Nguyen, Sangheon Oh, Xin Liu and Duygu Kuzum

108 Neuromorphic Hardware Learns to Learn

Thomas Bohnstingl, Franz Scherr, Christian Pehle, Karlheinz Meier and
Wolfgang Maass

122 First Error-Based Supervised Learning Algorithm for Spiking Neural
Networks

Xiaoling Luo, Hong Qu, Yun Zhang and Yi Chen

136 A Spike Time-Dependent Online Learning Algorithm Derived From
Biological Olfaction

Ayon Borthakur and Thomas A. Cleland

150 Constructing an Associative Memory System Using Spiking Neural
Network

Hu He, Yingjie Shang, Xu Yang, Yingze Di, Jiajun Lin, Yimeng Zhu,
Wenhao Zheng, Jinfeng Zhao, Mengyao Ji, Liya Dong, Ning Deng,
Yunlin Lei and Zenghao Chai

165 Deep Liquid State Machines With Neural Plasticity for Video Activity
Recognition

Nicholas Soures and Dhireesha Kudithipudi

Table of Contents

https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/journals/neuroscience

Frontiers in Neuroscience 4 May 2020 | SNN Learning, Benchmarking, Programming, Executing

177 SpykeTorch: Efficient Simulation of Convolutional Spiking Neural
Networks With at Most One Spike per Neuron

Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-Dalini and
Timothée Masquelier

189 Unsupervised Learning on Resistive Memory Array Based Spiking Neural
Networks

Yilong Guo, Huaqiang Wu, Bin Gao and He Qian

205 A Swarm Optimization Solver Based on Ferroelectric Spiking Neural
Networks

Yan Fang, Zheng Wang, Jorge Gomez, Suman Datta, Asif I. Khan and
Arijit Raychowdhury

219 Reinforcement Learning With Low-Complexity Liquid State Machines

Wachirawit Ponghiran, Gopalakrishnan Srinivasan and Kaushik Roy

https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing
https://www.frontiersin.org/journals/neuroscience

EDITORIAL
published: 15 April 2020

doi: 10.3389/fnins.2020.00276

Frontiers in Neuroscience | www.frontiersin.org 1 April 2020 | Volume 14 | Article 276

Edited by:

Timothy K. Horiuchi,

University of Maryland, United States

Reviewed by:

Scott Michael Koziol,

Baylor University, United States

*Correspondence:

Guoqi Li

liguoqi@mail.tsinghua.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 13 November 2019

Accepted: 10 March 2020

Published: 15 April 2020

Citation:

Li G, Deng L, Chua Y, Li P, Neftci EO

and Li H (2020) Editorial: Spiking

Neural Network Learning,

Benchmarking, Programming and

Executing. Front. Neurosci. 14:276.

doi: 10.3389/fnins.2020.00276

Editorial: Spiking Neural Network
Learning, Benchmarking,
Programming and Executing

Guoqi Li 1,2*†, Lei Deng 3†, Yansong Chua 4, Peng Li 3, Emre O. Neftci 5 and Haizhou Li 6

1Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing, China,
2 Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China, 3Department of Electrical and Computer

Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States, 4Huawei Technologies, Shenzhen,

China, 5Department of Cognitive Science, University of California, Irvine, Irvine, CA, United States, 6Department of Electrical

Engineering, National University of Singapore, Singapore, Singapore

Keywords: deep spiking neural networks, SNN learning algorithms, programming framework, SNN benchmarks,

neuromorphics

Editorial on the Research Topic

Spiking Neural Network Learning, Benchmarking, Programming and Executing

INTRODUCTION

A spiking neural network (SNN), a type of brain-inspired neural network, mimics the biological
brain, specifically, its neural codes, neuro-dynamics, and circuitry. SNNs have garnered great
interest in both Artificial Intelligence (AI) and neuroscience communities given its great potential
in biologically realistic modeling of human cognition and development of energy efficient,
event-driven machine learning hardware (Pei et al., 2019; Roy et al., 2019). Significant progress has
been made across a wide spectrum of AI fields, such as image processing, speech recognition, and
machine translation. They are largely driven by the advance in Artificial Neural Networks (ANN)
in systematic learning theories, explicit benchmarks with various tasks and data sets, friendly
programming tools [e.g., TensorFlow (Abadi et al., 2016) and Pytorch (Paszke et al., 2019) machine
learning tools], and efficient processing platforms [e.g., graphics processing unit (GPU) and tensor
processing unit (TPU) (Jouppi et al., 2017)]. In comparison, SNNs are still at an early stage in these
aspects. To further exploit the advantages of SNNs and attract more researchers to contribute in this
field, we proposed a Research Topic in Frontiers in Neuroscience to discuss themain challenges and
future prospects of SNNs, emphasizing on its “Learning algorithms, Benchmarking, Programming,
and Executing.” We are confident that SNNs will play a critical role in the development of energy
efficient machine learning devices through algorithm-hardware co-design.

This Research Topic brings together researchers of different disciplines in order to present
their recent work in SNNs. We received 22 submissions worldwide and accepted 15 papers. The
scope of the accepted papers covers learning algorithms, model efficiency, programming tools, and
neuromorphic hardware.

LEARNING ALGORITHMS

Learning algorithms play perhaps the most important role in AI techniques. Machine learning
algorithms, in particular those for deep neural networks (DNN), have become the standard
bearer in a wide spectrum of AI tasks. Some of the more common learning algorithms include
backpropagation (Hecht-Nielsen, 1992), stochastic gradient descent (SGD) (Bottou, 2012), and

5

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00276
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00276&domain=pdf&date_stamp=2020-04-15
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liguoqi@mail.tsinghua.edu.cn
https://doi.org/10.3389/fnins.2020.00276
https://www.frontiersin.org/articles/10.3389/fnins.2020.00276/full
http://loop.frontiersin.org/people/368709/overview
http://loop.frontiersin.org/people/368959/overview
http://loop.frontiersin.org/people/36075/overview
http://loop.frontiersin.org/people/577111/overview
http://loop.frontiersin.org/people/3753/overview
http://loop.frontiersin.org/people/582745/overview
https://www.frontiersin.org/research-topics/8540/spiking-neural-network-learning-benchmarking-programming-and-executing

Li et al. SNN Learning, Benchmarking, Programming, Executing

ADAM optimization (Kingma and Ba, 2014). Other techniques
such as batch normalization (Ioffe and Szegedy, 2015) and
distributed training (Dean et al., 2012) facilitate learning in
DNNs and enable them to be applied in various real-world
applications. In comparison, there are relatively fewer SNN
learning algorithms and techniques. Existing SNN learning
algorithms fall into three categories: unsupervised learning
algorithms such as the original spike timing dependent
plasticity (STDP) (Querlioz et al., 2013; Diehl and Cook, 2015;
Kheradpisheh et al., 2016), indirect supervised learning such as
ANN-to-SNN conversion (O’Connor et al., 2013; Pérez-Carrasco
et al., 2013; Diehl et al., 2015; Sengupta et al., 2019), and direct
supervised learning such as spatiotemporal backpropagation
(Wu et al., 2018, 2019a,b). We note that progress in STDP
research includes introducing a reward or supervision signal such
as spike timing which, in combination with this third factor,
dictates the weight changes (Paugam-Moisy et al., 2006; Franosch
et al., 2013). Despite the progress made, no algorithm can yet
train a very deep SNN efficiently, which has become almost the
holy grail of our field. Below, we briefly summarize the accepted
algorithm papers in this Research Topic.

Inspired by the mammalian olfactory system, Borthakur and
Cleland develop an SNN model trained using STDP for signal
restoration and identification. It is broadly applicable to sensor
array inputs. Luo et al. propose a new weight update mechanism
that adjusts synaptic weights, leading to the first wrong output
spike-timing to classify input spike trains with time-sensitive
information accurately. He et al. divide the learning (weight
training) process into two phases: the structure formation phase
using Hebb’s rule, and the parameter training phase using
STDP and reinforcement learning, so as to form an SNN-
based associative memory system. In contrary to just training
synaptic weights, Wang et al. propose training both the synaptic
weights and delays using gradient descent so as to achieve better
performance. Based on a structurally fixed small SNNwith sparse
recurrent connections, Ponghiran et al. use Q-learning to train
only its output layer so as to achieve human-level performance on
complex reinforcement learning tasks such as Atari games. Their
research demonstrates that a small random recurrent SNN is
able to provide a computationally efficient alternative to state-of-
art deep reinforcement learning networks with several layers of
trainable parameters. The above works have made good progress
toward better performing SNN learning algorithms. We believe
that further progress will be made in this field in the future.

MODEL EFFICIENCY

In recent years, hardware oriented DNN compression techniques
have been proposed that offer significant memory saving and
hardware acceleration (Han et al., 2015a, 2016; Zhang et al.,
2016; Huang et al., 2017; Aimar et al., 2018). At present, many
compression techniques are proposed that provide a trade-off
between processing efficiency and application accuracy (Han
et al., 2015b; Novikov et al., 2015; Zhou et al., 2016). Such an
approach has also caught on in the design of SNN accelerators
(Deng et al., 2019), with the following contribution in this

Research Topic. Afshar et al. investigate how a hardware-efficient
variant of STDP may be used for event-based feature extraction.
Using a rigorous testing framework, a range of spatio-temporal
kernels with different surface decaying methods, decay functions,
receptive field sizes, feature numbers, and backend classifiers
are evaluated. This detailed investigation provides useful insight
and heuristics with regards to the trade-off between performance
and complexity while using the STDP rule. Pedroni et al. study
the impact of different arrangements of synaptic connectivity
tables on weight storage and STDP updates for large-scale
neuromorphic systems. Based on their analysis, they present an
alternative formulation of STDP via a delayed causal update
mechanism that permits efficient weight storage and access for
both full and sparse connectivity.

Other than model complexity, several other papers focus on
direct compression of SNNs. Soures and Kudithipudi propose
Deep-LSM, a combination of randomly connected hidden layers
and unsupervised winner-take-all layers to capture network
dynamics followed by an attention modulated readout layer
for classification. The connections between hidden layers and
winner-take-all layers are partially trained using STDP. Their
SNN model is applied in a first-person video activity recognition
task, achieving state-of-the-art performance with >90% memory
and operation saving compared to the long-short term memory
(LSTM). Based on a single fully-connected layer with the STDP
learning rule, Shi et al. propose a soft-pruning method that
sets a fraction of the weights to the lower bound during
training, effectively achieving>75% pruning. Srinivasan and Roy
implement spiking convolutional layers comprising of binary
weight kernels which are trained using probabilistic STDP, as well
as non-spiking fully-connected layers which are trained using
gradient descent. A residual convolutional SNN is proposed,
which achieves >20x model compression.

PROGRAMMING TOOLS

Programming Tools have been one of the key components
driving development in ANN research, examples of which
include Theano (Al-Rfou et al., 2016), TensorFlow (Abadi et al.,
2016), Caffe (Jia et al., 2014) and Pytorch (Paszke et al., 2019),
MXNet (Chen et al., 2015), Keras (Chollet, 2015). These user-
friendly programming tools enable researchers to build and train
large-scale ANNs using only basic programming know-how. In
comparison, the programming tools for SNNs are rather limited.
To the best of our knowledge, only SpiNNaker (Furber et al.,
2014), BindsNET (Hazan et al., 2018), and PyNN (Davison et al.,
2009) provide a basic programming interface to support simple
and small SNN simulations. Generally researchers have to build
an SNN from the ground up which can be time-consuming
and require significantly more programming know-how. Thus,
developing user-friendly programming tools to efficiently deploy
a large scale SNN is imperative to the advancement of our field. In
this Research Topic, an open-source high-speed SNN simulation
framework based on PyTorch has been proposed. SpykeTorch
(Mozafari et al.) simulates convolutional SNNs with at most one
spike per neuron (rank-order coding scheme), and STDP-based

Frontiers in Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 2766

https://doi.org/10.3389/fnins.2019.00656
https://doi.org/10.3389/fnins.2019.00559
https://doi.org/10.3389/fnins.2019.00650
https://doi.org/10.3389/fnins.2019.00252
https://doi.org/10.3389/fnins.2019.00883
https://doi.org/10.3389/fnins.2018.01047
https://doi.org/10.3389/fnins.2019.00357
https://doi.org/10.3389/fnins.2019.00686
https://doi.org/10.3389/fnins.2019.00405
https://doi.org/10.3389/fnins.2019.00189
https://doi.org/10.3389/fnins.2019.00625
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. SNN Learning, Benchmarking, Programming, Executing

learning rules. Although programming tools for SNNs are still
in their infancy, we believe that more research needs to be done
so that the training of SNNs may approach the efficiency of
training ANNs.

NEUROMORPHIC HARDWARES

Recent advances made in modeling SNNs in-silico, as
demonstrated by Neurogrid of Stanford University (Benjamin
et al., 2014), BrainScales of Heidelberg University (Schemmel
et al., 2012), SpiNNaker of University of Manchester, Tianjic
of Tsinghua University (Pei et al., 2019), IBM’s TrueNorth
(Akopyan et al., 2015), and Intel’s Loihi (Davies et al., 2018),
attest to the great potential of hardware implementation of
SNNs. In this Research Topic, Shukla et al. re-model large-scale
CNNs so as to mitigate hardware constraints and implement
them on the IBM TrueNorth. A CNN used for car detection
and counting was demonstrated, with reasonable accuracy
compared to a GPU trained CNN but with much lower energy
consumption. Bohnstingl et al. implement a learning-to-learn
SNN on a neuromorphic chip which accelerates the learning
process by extracting abstract knowledge from prior experiences.
Other than conventional CMOS circuits, emerging devices such
as memristors have also been studied in this Research Topic.
Guo et al. propose a STDP-based greedy training algorithm
for SNNs to reduce weight levels and enhance robustness
toward device non-idealities. They demonstrate online learning
on a resistive random access memory (RRAM) system with
non-ideal behaviors. Fang et al. propose a generalized swarm
intelligence model on SNN: the SI-SNN. SNNs are implemented
as agents in swarm intelligence with interactive modulation
and synchronization. They implement such neural dynamics
on a ferroelectric field-effect transistor (FeFET) based hardware
platform to solve optimization problems with high performance
and efficiency.

CONCLUSIONS

In conclusion, it is believed that SNNs achieve superior
performance in processing complex, sparse, and noisy

spatiotemporal information with high power efficiency
exploiting neural dynamics in the event-driven regime. Event-
driven communication is particularly attractive in enabling

energy efficient AI systems with in-memory computing that will
play an important role in ubiquitous intelligence. SNN research
is ongoing, and much more progress is to be expected in its
learning algorithms, benchmarking framework, programming

tools, and efficient hardware. Through cross-discipline exchange
of ideas and collaborative research, we hope to build a truly
energy-efficient and intelligent machine. This Research Topic

is but a small step in this direction; we look forward to more
disruptive ideas that distinguish SNNs and neuromorphic
computing from the mainstream machine learning approaches

in the near future.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

This work was partially supported byNational Key R&DProgram

of China (No. 2018AAA0102600 and 2018YFE0200200), Beijing
Academy of Artificial Intelligence (BAAI), Initiative Scientific
Research Program, and a grant from the Institute for Guo Qiang,
TsinghuaUniversity, and key scientific technological innovation

research project by Ministry of Education, and Tsinghua–Foshan

Innovation Special Fund.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“Tensorflow: a system for large-scale machine learning,” in 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16)

(Savannah, GA), 265–283.

Aimar, A., Mostafa, H., Calabrese, E., Rios-Navarro, A., Tapiador-Morales, R.,

Lungu, I.-A., et al. (2018). Nullhop: a flexible convolutional neural network

accelerator based on sparse representations of featuremaps. IEEE Trans. Neural

Netw. Learn. Syst. 30, 644–656. doi: 10.1109/TNNLS.2018.2852335

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau,

D., Ballas, N., et al. (2016). Theano: a Python framework for fast

computation of mathematical expressions. arXiv [preprint] arXiv: 1605.

02688.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Bottou, L. (2012). “Stochastic gradient descent tricks,” in Neural Networks: Tricks

of the Trade, eds G. Montavon, G. B. Orr, and K-R. Müller (Berlin; Heidelberg:

Springer), 421–436.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., et al. (2015). Mxnet: a flexible

and efficient machine learning library for heterogeneous distributed systems.

arXiv [preprint] arXiv: 1512.01274.

Chollet, F. (2015). Keras [Online]. Available online at: https://keras.io.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009). PyNN: a common interface for neuronal network simulators.

Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Dean, J., Corrado, G.,Monga, R., Chen, K., Devin,M.,Mao,M., et al. (2012). “Large

scale distributed deep networks,” in Advances in Neural Information Processing

Systems (Lake Tahoe, NV), 1223–1231.

Deng, L.,Wu, Y., Hu, Y., Liang, L., Li, G., Hu, X., et al. (2019). Comprehensive SNN

compression using ADMM optimization and activity regularization. arXiv

[preprint] arXiv: 1911.00822.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Frontiers in Neuroscience | www.frontiersin.org 3 April 2020 | Volume 14 | Article 2767

https://doi.org/10.3389/fnins.2019.00004
https://doi.org/10.3389/fnins.2019.00483
https://doi.org/10.3389/fnins.2019.00812
https://doi.org/10.3389/fnins.2019.00855
https://doi.org/10.1109/TNNLS.2018.2852335
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JPROC.2014.2313565
https://keras.io
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/fncom.2015.00099
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Li et al. SNN Learning, Benchmarking, Programming, Executing

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8.

Franosch, J. M. P., Urban, S., and van Hemmen, J. L. (2013). Supervised

spike-timing-dependent plasticity: a spatiotemporal neuronal learning rule

for function approximation and decisions. Neural Comput. 25, 3113–3130.

doi: 10.1162/NECO_a_00520

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., et al. (2016). EIE:

efficient inference engine on compressed deep neural network.ACM SIGARCH

Comput. Architect. News 44, 243–254. doi: 10.1145/3007787.3001163

Han, S., Mao, H., and Dally, W. J. (2015a). Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

[preprint] arXiv: 1510.00149.

Han, S., Pool, J., Tran, J., and Dally, W. (2015b).”Learning both weights and

connections for efficient neural network,“in Advances in Neural Information

Processing Systems, 1135–1143.

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T.,

et al. (2018). Bindsnet: a machine learning-oriented spiking neural networks

library in python. Front. Neuroinform. 12:89. doi: 10.3389/fninf.2018.00089

Hecht-Nielsen, R. (1992). “Theory of the backpropagation neural network,”” in

Neural Networks for Perception, ed H. Wechsler (Elsevier), 65–93.

Huang, H., Ni, L., Wang, K., Wang, Y., and Yu, H. (2017). A highly parallel

and energy efficient three-dimensional multilayer CMOS-RRAM accelerator

for tensorized neural network. IEEE Trans. Nanotechnol. 17, 645–656.

doi: 10.1109/TNANO.2017.2732698

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv [preprint] arXiv:1502.03167.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014).

“Caffe: convolutional architecture for fast feature embedding,” in Proceedings of

the 22nd ACM International Conference onMultimedia (Orlando, FL), 675–678.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). “In-datacenter performance analysis of a tensor processing unit,”

in Proceedings of the 44th Annual International Symposium on Computer

Architecture (Toronto, ON), 1–12.

Kheradpisheh, S. R., Ganjtabesh, M., and Masquelier, T. (2016). Bio-inspired

unsupervised learning of visual features leads to robust invariant object

recognition.Neurocomputing 205, 382–392. doi: 10.1016/j.neucom.2016.04.029

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv

[preprint] arXiv:1412.6980.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P. (2015). “Tensorizing

neural networks,” in Advances in Neural Information Processing Systems

(Montreal, QC), 442–450.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-

time classification and sensor fusion with a spiking deep belief network. Front.

Neurosci.7:178. doi: 10.3389/fnins.2013.00178

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.

(2019). “PyTorch: an imperative style, high-performance deep learning library,”

in Advances in Neural Information Processing Systems (Vancouver, BC),

8024–8035.

Paugam-Moisy, H., Martinez, R., and Bengio, S. (2006). A supervised learning

approach based on STDP and polychronization in spiking neuron networks,

IDIAP, EPFL.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards

artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,

106–111. doi: 10.1038/s41586-019-1424-8

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-

driven vision systems by low-rate rate coding and coincidence processing–

application to feedforward ConvNets. IEEE Trans. Pattern Anal. Mach. Intell.

35, 2706–2719. doi: 10.1109/TPAMI.2013.71

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to

device variations in a spiking neural network with memristive nanodevices.

IEEE Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.22

50995

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Schemmel, J., Grübl, A., Hartmann, S., Kononov, A., Mayr, C., Meier, K., et al.

(2012). “Live demonstration: a scaled-down version of the brainscales wafer-

scale neuromorphic system,” in 2012 IEEE International Symposium on Circuits

and Systems (Seoul: IEEE), 702–702.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Wu, J., Chua, Y., Zhang, M., Yang, Q., Li, G., and Li, H. (2019a). “Deep spiking

neural network with spike count based learning rule,” in 2019 International

Joint Conference on Neural Networks (IJCNN) (Budapest: IEEE), 1–6.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019b). “Direct training

for spiking neural networks: faster, larger, better,” in Proceedings of the AAAI

Conference on Artificial Intelligence (Honolulu, HI), 1311–1318.

Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., et al. (2016). “Cambricon-

x: an accelerator for sparse neural networks,” in 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO) (Taipei: IEEE), 1–12.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016). Dorefa-

net: training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv [preprint] arXiv: 1606.06160.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Li, Deng, Chua, Li, Neftci and Li. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 2768

https://doi.org/10.1162/NECO_a_00520
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1109/TNANO.2017.2732698
https://doi.org/10.1016/j.neucom.2016.04.029
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2018.00331
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 17 January 2019

doi: 10.3389/fnins.2018.01047

Frontiers in Neuroscience | www.frontiersin.org 1 January 2019 | Volume 12 | Article 1047

Edited by:

Haizhou Li,

National University of Singapore,

Singapore

Reviewed by:

Huajin Tang,

Sichuan University, China

Arren Glover,

Fondazione Istituto Italiano di

Technologia, Italy

*Correspondence:

Saeed Afshar

s.afshar@westernsydney.edu.au

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 August 2018

Accepted: 24 December 2018

Published: 17 January 2019

Citation:

Afshar S, Hamilton TJ, Tapson J, van

Schaik A and Cohen G (2019)

Investigation of Event-Based Surfaces

for High-Speed Detection,

Unsupervised Feature Extraction, and

Object Recognition.

Front. Neurosci. 12:1047.

doi: 10.3389/fnins.2018.01047

Investigation of Event-Based
Surfaces for High-Speed Detection,
Unsupervised Feature Extraction,
and Object Recognition
Saeed Afshar*, Tara Julia Hamilton, Jonathan Tapson, André van Schaik and

Gregory Cohen

Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western

Sydney University, Sydney, NSW, Australia

In this work, we investigate event-based feature extraction through a rigorous framework

of testing. We test a hardware efficient variant of Spike Timing Dependent Plasticity

(STDP) on a range of spatio-temporal kernels with different surface decaying methods,

decay functions, receptive field sizes, feature numbers, and back end classifiers. This

detailed investigation can provide helpful insights and rules of thumb for performance

vs. complexity trade-offs in more generalized networks, especially in the context of

hardware implementation, where design choices can incur significant resource costs.

The investigation is performed using a new dataset consisting of model airplanes being

dropped free-hand close to the sensor. The target objects exhibit a wide range of

relative orientations and velocities. This range of target velocities, analyzed in multiple

configurations, allows a rigorous comparison of time-based decaying surfaces (time

surfaces) vs. event index-based decaying surface (index surfaces), which are used to

perform unsupervised feature extraction, followed by target detection and recognition.

We examine each processing stage by comparison to the use of raw events, as well

as a range of alternative layer structures, and the use of random features. By comparing

results from a linear classifier and an ELM classifier, we evaluate how each element of the

system affects accuracy. To generate time and index surfaces, the most commonly used

kernels, namely event binning kernels, linearly, and exponentially decaying kernels, are

investigated. Index surfaces were found to outperform time surfaces in recognition when

invariance to target velocity was made a requirement. In the investigation of network

structure, larger networks of neurons with large receptive field sizes were found to

perform best. We find that a small number of event-based feature extractors can project

the complex spatio-temporal event patterns of the dataset to an almost linearly separable

representation in feature space, with best performing linear classifier achieving 98.75%

recognition accuracy, using only 25 feature extracting neurons.

Keywords: event-based vision, recognition and classification, neuromorphic, event-based, unsupervided learning

9

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.01047
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.01047&domain=pdf&date_stamp=2019-01-17
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:s.afshar@westernsydney.edu.au
https://doi.org/10.3389/fnins.2018.01047
https://www.frontiersin.org/articles/10.3389/fnins.2018.01047/full
http://loop.frontiersin.org/people/95660/overview
http://loop.frontiersin.org/people/21622/overview
http://loop.frontiersin.org/people/784/overview
http://loop.frontiersin.org/people/12768/overview
http://loop.frontiersin.org/people/70336/overview

Afshar et al. Index Surfaces vs. Time Surfaces

INTRODUCTION

The last decade has seen significant development in the field

of event-based cameras. Cameras such as the Dynamic Vision

Sensor (DVS) (Lichtsteiner et al., 2008) and the Asynchronous
Time-based Image Sensor (ATIS) (Posch et al., 2011) attempt to

model the operation of the human retina by generating events
at each pixel in response to changes in illumination. By only
reporting changes in the visual field, event-based sensors perform
compressive sensing at the pixel level, significantly reducing the
output data-rate of the sensor relative to frame-based sensors that
generate output regardless of the salience of its visual content.
These cameras have spurred the development of a range of
visual processing algorithms to tackle existing problems such as
optical flow detection (Benosman et al., 2012), scene stitching
(Klein et al., 2015), motion analysis (Litzenberger and Sabo,
2012), hand gesture recognition (Lee et al., 2014), hierarchical
feature recognition (Orchard et al., 2015b), unsupervised visual
feature extraction, and learning (Giulioni et al., 2015; Lagorce
et al., 2015a), and tracking (Lagorce et al., 2015b; Glover and
Bartolozzi, 2016, 2017). In addition to these works, in Ghosh et al.
(2014) a frame based convolutional neural network was mapped
to an event-based network using conversion of the event stream
to static images via recent event presence, event counts, and event
polarity. In Zhao et al. (2015), a hierarchical feature extractor
network is presented where manually designed features are based
on models of features in the visual cortex. In Peng et al. (2017),
a bag of events method is used to perform feature extraction. An
especially useful feature of this method is that only a single hyper-
parameter needs to be tuned. This is in contrast to most proposed
methods, which often have a large number of parameters, such
that a rigorous analysis of their performance requires careful
characterization and/or adversarial parameter selection, both of
which are performed in this work.

More recently, the Hierarchy of Time Surfaces (HOTS)
(Lagorce et al., 2017) was introduced which makes use of layers
of time-decaying event-surfaces, or time surfaces, and feature-
based clustering, with the features learnt in an unsupervised
manner. The HOTS approach processes events in the temporal
domain and is functionally similar to the feature extraction layer
used in this work. The time surfaces which are used in HOTS
and which also form part of the investigation in this work
are a particularly effective method of implementing event-based
convolutional networks.

In this work, we set out to rigorously quantify in detail
the share in performance improvement attributable to each
element of the system, namely: the memory generation and decay
methods, commonly used memory kernels, use of raw events
relative to use of feature events, the event-based convolutional
structure of the feature extractors and the performance of the
back-end classifier.

An important question arising at every stage of any event-
based algorithm is whether the event rate should inform the
progression of the algorithm through time. In this work, we
investigate this question through comparisons of time surfaces
and index surfaces where the memory of events decay as a
function of time or event index, respectively.

Processing event memory as a function of time is straight-
forward and intuitive. By decaying event memory as a function of
time, all elements of an event-based system operate in a uniform
time-based manner regardless of the informational content in
any part of the sensor’s field of view. The behavior of time-
based decaying memory does not vary as a function of sensor
size or any aspect of the visual scene that alters the event
generation rate, such as scene contrast or texture. However,
once the sensor event rate is incorporated into the operation
of the system, these invariances may no longer hold, since a
change in event rate may alter the decay rate of the memory
of the event stream, potentially resulting in information loss.
Therefore, algorithms using event rate information in memory
decay require more careful testing, parameter selection, and
potentially secondary solutions such as localized memory decay
mechanisms to mitigate information loss. On the other hand,
processing event memory as a function event count or index does
have one crucial advantage over a purely time-based processing
system. In general, event-based vision sensors generate more
events in response to faster moving objects when holding other
variables constant. This approximately proportional relationship
between local event rate and local velocity allows an algorithm
operating as a function of event index to effectively make
computational decisions at approximately the same speed as the
object being observed. Previous works have suggested that the
use of event index to decay memory provides greater robustness
in the presence of such variance in target velocity (Ghosh
et al., 2014; Glover and Bartolozzi, 2016, 2017). In Glover and
Bartolozzi (2016) an event-based Hough transform was used for
tracking and in Ghosh et al. (2014) this was augmented with
an event-based particle filter to improve tracking performance.
The Hough transform in these works was implemented using
a window of fixed event size, thus incorporating the event-
rate information into the algorithm. The results showed that
higher target velocities increased the update rate of the algorithm,
allowing better tracking performance at high velocity. In Ghosh
et al. (2014), windows of fixed event number and fixed time
windows were compared in their performance in simultaneous
tracking and recognition, and a slightly higher recognition
accuracy was achieved when the algorithm was tested for velocity
invariance. Such robustness to observed velocities in the data
can be critical in a range of real world applications. These
results, and the potential utility of velocity robust algorithms
in real world applications of event-based sensors, motivate a
central element of the investigation presented in this work.
One such example is one of the few current applications of
event-based sensors: the field of event-based Space Situational
Awareness (SSA), where event-based sensors uniquely allow
observation and tracking of non-terrestrial targets during both
night and day (Cohen et al., 2017). However, a major challenge
in such a task is the extremely limited collection of event-
based observations of objects of interest. A major aspect of
this limitation is that particular targets may only have been
observed at a single velocity relative to the sensor yet must
be detected, tracked, and identified robustly regardless of their
relative velocity. This requirement of robustness to target velocity
variations motivates the detailed rigorous examination of time

Frontiers in Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 104710

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

and index surfaces in combination with a range of commonly
used decay kernels.

Another important element in a wide range of event-based

algorithms is the use of feature extractors. The contribution of

the feature extraction layer as a whole is the simplest to determine

and yet can often be missing in the literature as a baseline

performance measure. This involves directly feeding sensor

events into the final stage classifiers in the same manner as the

output feature layer, skipping the intervening feature extraction

layer(s). A more subtle question is how effective the learnt

features are. In other words, howwell does the learning algorithm
orient the feature set with respect to the data so as to cover the

underlying non-linearities in the dataset? This can be ascertained

by comparing the mean recognition performance of multiple
independently learnt features against random instantiations of

features with the same network structure and feature weight

distribution. The power of random features to cover non-linear
feature spaces has been demonstrated by the Extreme Learning

Machine (Clady et al., 2015) literature. By comparing feature
extraction algorithms to a baseline of random features a better

understanding of the relative improvement can be ascertained.
Finally, the most complex measure that is investigated is the

role of the classifier on the performance. While there are a
wide range of potential back-end classifiers that may be used,
we propose that the combined use of linear classifiers and
large hidden layer ELMs have particular utility in providing a
rigorous measure of residual non-linearity following each stage
of processing. This is because, unlike other classifiers, which
through learning orient their non-linear features toward the
training data, the random non-linear projections of the ELM’s
hidden layer create projections that are approximately uniform
with regard to the structure of the data. As such the size of the
hidden layer provides a reasonably “unbiased” measure of the
residual non-linearities present after each a processing layer.

METHODOLOGY

Generating the Dataset
The system presented in this paper constitutes an event-based
and high-speed classification system, and makes use of a real-
world task, and its associated dataset, to demonstrate and
characterize its performance.

A variety of event-based datasets now exist, such as the N-
MNIST and N-Caltech101 (Orchard et al., 2015a), MNIST_DVS
(Serrano-Gotarredona and Linares-Barranco, 2015), and the
event-based UCF-50 datasets (Hu et al., 2016). One common
facet of these datasets is that they have been generated under
highly constrained conditions, especially with respect to the
range of target object velocities. For a static image, event-based
cameras only produce data in response to motion and therefore
require either the static image, or the camera itself to be moving.
Therefore, the velocities involved in many of the event-based
datasets are strictly controlled. This is often a desirable trait
to ensure consistency across all samples, but this constraint is
a strongly artificial one. Other event-based datasets, such as
the visual navigation dataset found in Barranco et al. (2016),
do not control velocity in the same manner, but represent a
fundamentally different task and are therefore not well-suited to
exploring detection and feature extraction mechanisms.

The need to explore the effect of variances in velocity
is important as these tend to produce significant variance
in the spatio-temporal event patterns generated by event-
based cameras. This can have a significant impact on the
performance of a classifier or detection algorithm. A primary
focus of this work is on the comparison of different event-
based processing approaches in the presence of such variance.
This required the creation of a new dataset designed to test
event-based classification algorithms under conditions that are
less constrained and closer to those found in real-world tasks.
However, as well as being reasonably difficult, the dataset was

FIGURE 1 | Data collection setup and samples of the airplane dropping dataset. (A) The physical setup used for recording dataset in which an ATIS camera is

attached to a table and the airplanes dropped freehand in front of the camera. (B) A top-down and labeled view of the four model airplanes used to generate the

dataset. (C) Examples of the variation in the dataset in terms of position, scale, orientation, and speed. Each image represents a frame rendered from the same 3ms

of events extracted from each recording with ON events represented with white pixels and OFF events represented with black pixels. The twenty random samples

clearly demonstrate the difficulty of the recognition task. Unlike most event-based datasets, the camera was not tuned or biased for the application, simulating real

world noisy dynamic environments where such fine tuning would be difficult or impossible. As a result of this arbitrary untuned camera configuration the OFF events

(black) in the entire dataset produced essentially noise clouds and as such were discarded. Airplane class key ordered from top left to bottom right, Mig-31: {2, 3, 7,

11, 12}, F-117: {9, 15, 16, 18, 19}, Su-24: {1, 5, 8, 14, 20}, and Su-35: {4, 6, 10, 13, 17}.

Frontiers in Neuroscience | www.frontiersin.org 3 January 2019 | Volume 12 | Article 104711

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

also designed to be constrained enough to allow a rigorous
comparison of the various parameters and architectures of
interest. As such the dataset was specifically designed to act as
a proxy for a noisy local region in a larger real-world dataset.

The task is to identify model airplanes as they rapidly pass
through the field of view of an ATIS camera. The airplanes
were dropped free-hand, and from varying heights and distances
from the camera, as shown in Figure 1A. Four model airplanes
were used, each made from steel and all painted uniform gray,
as shown in Figure 1B. This served to remove any distinctive
textures or marking from the airplanes, thereby increasing the
difficulty of the task. The airplanes are models of a Mig-31, an F-
117, a Su-24, and a Su-35, with wingspans of 9.1, 7.5, 10.3, and
9.0 cm, respectively.

The recordings were captured using the same model of ATIS
camera and the same acquisition software used in capturing the
N-MNIST dataset in Orchard et al. (2015a), and the recordings
were stored in the same file formats, thereby maximizing
compatibility with other neuromorphic algorithms and systems.
Themodels were dropped 100 times each from a distance ranging
from 120 to 160 cm above the ground and at a horizontal distance
of 40 to 80 cm from the camera. This ensured that the airplanes
passed rapidly through the field of view of the camera, with
the planes crossing the field of view in an average of 242 ±

21ms. No mechanisms were used to enforce consistency of the
airplane drops, resulting in a wide range of observed speeds
from 0 to >1500 pixels per second. Additionally, there were
variable delays before and after each drop, resulting in recordings
of varying lengths. The dataset was augmented with left-right
flipped versions of the recordings, resulting in 200 drops for each
airplane type. An example of the variability in the airplane drops

is demonstrated in Figure 1C, which shows binned events in the
same 3ms slice of data from 20 randomly selected recordings
from the dataset. The samples demonstrate significant variations
in the positions of the airplanes, their orientations, and their
sizes. No attempt was made to fine tune the sensors biases for
the particular light condition or target velocities. This lack of
tuning is likely in real-world environments where the recording
conditions may not be known a priori. An example of this is
the previously mentioned SSA application (Cohen et al., 2017),
where acquired data is inevitably noisy, often with one of sensors
polarities entirely unable to capture useful events from the target
due to the sensor biases not being matched to the lighting or
velocity profile of the target. Even when the sensor biases are ideal
for the lighting and temperature conditions of the recording,
there are always fainter targets of interest in the field of view
which can only be viewed by lowering sensor biases and “delving
deeper into the noise” to accumulate events from these fainter
objects. Thus, allowing noise and un-tuned biases into datasets,
additional real-world challenges, such as structured noise and
unevenly performing polarities, become apparent, motivating the
implementation of robust solutions and new network behaviors
that would otherwise be missed.

Figure 2A shows the event time vs. event index profiles of
all recordings in the dataset showing the significant inter and
intra recording variance in data-rate present in the dataset.
While the number of recordings in the augmented dataset is
800, the number of surface samples making up the data points
presented to the detection and recognition algorithm is >20,000
samples. The free-hand drop methodology resulted in significant
variance in velocity and orientation of the model airplane
within each recording. As a result, the spatio-temporal output

FIGURE 2 | The Dataset Summary. (A) Event timestamp profiles of all airplane drops in the dataset showing the event timestamps of each recording as a function of

event index. The timestamp profiles demonstrate the variable rates of event generation within and across the recordings. These differences are a function of the

speed, size, and shape of the airplanes and the distance from the camera. Note the color assigned to each recording profile is arbitrary. (B) Distribution of the number

of frames per recording for each recording in the dataset. (C) Distribution of the number of events per recording for each recording in the dataset. (D) Distribution of

the duration of each recording in the dataset.

Frontiers in Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 104712

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

patterns varied significantly through each recording, as shown in
Figure 2A and discussed in later sections. The distribution of the
number of surface samples per recording is shown in Figure 2B.
Figures 2C,D show the distribution in the number of events per
recording and recording duration for the dataset. The full dataset
can be found at Afshar et al. (2018).

Time-Surface vs. Index Surfaces
An event evi from the ATIS camera can be described
mathematically by:

evi = [xi, ti, pi]
T (1)

where i is the index of the event, xi = [xi, yi] is the spatial address
of the source pixel corresponding to the physical location on the
sensor, pi ∈ {−1 , 1} is the polarity of event indicating whether
the log intensity increased or decreased, and ti is the absolute
time at which the event occurred (Clady et al., 2015). The time
ti is applied to the event by the ATIS camera hardware and has a
resolution of 1ms.

Event-based algorithms require iterative processing of each
event, and therefore require that each new observation be
combined with previously observed local events, both in space
and in time. This is accomplished using a variation of the time
surfaces from the HOTS algorithm (Lagorce et al., 2017), but
extended to cover surfaces decaying based on time (time surface)
and based on event index (index surface). Each new incoming
event updates the surface and defines a region representing the
spatio-temporal neighborhood on which further processing may
be performed.

The timing and polarity information contained in each event,
as shown in equation (1), allows the generation of two useful
surfaces, based on time and polarity, from which more complex
surfaces can be constructed. The first surface, referred to as Ti,
maps the time of the most recent event to spatial pixel location
and is described in (2), with the corresponding surface Pi for
event polarity given by (3). Note as discussed above due to the
noisiness of the OFF events due to untuned biases, only ON
events with pi = 1 were used.

Ti :R
2 → R

x : t → Ti(x) (2)

Pi :R
2 → {−1, 1}

x : p → Pi(x) (3)

Here, we compare the time surfaces introduced in the HOTS
algorithm, which decay as a function of time, with index surfaces,
where the surface values for all pixels decay not as a function of
time, but in response to new incoming events. We then define
the analogous function to (2) for index surfaces. This surface, Ii,
is defined in (4) and stores the indices of incoming event for each
spatial pixel.

Ii :R
2 → R

x : i → Ii(x) (4)

In addition to exploring time-based decay and index-based
decay, three different transfer functions or temporal kernels are

investigated. These kernels are event binning (BTS/BIS), linear
decay (LTS/LIS) and exponential decay (ETS/EIS). As a point
of reference, the HOTS algorithm makes use of exponential
decaying time kernels.

In all surface generation methods, when a new event arrives,
the surface at xi is set to Pi. When using the event binning
technique, the value on the surface maintains its value over a
temporal window τe or index window Ne, after which it is reset
to zero. The event binning method for surface generation is
described by equations (5) for the time-based binning (BTS) and
(6) for the index-based binning (BIS).

BTSi (x, t) =

{

Pi (x) , t − Ti (x) ≤ τe
0, t − Ti (x) > τe

(5)

BISi (x) =

{

Pi (x) , i− Ii (x)≤ Ne

0, i− Ii (x)> Ne
(6)

For the linearly decaying time surface (LTS) and linearly decaying
index surface (LIS), the initial value set on the surface in response
to a new event instead decays toward zero linearly as a function
of time. These surfaces are described by (7) for time-based linear
decay or in response to incoming events as described by (8) for
index-based linear decay.

LTSi (x, t) =

{

Pi (x) .(1+
Ti(x)−t
2τe

), t−Ti (x) ≥ 2τ e
0, t−Ti (x) < 2τ e

(7)

LISi (x) =

{

Pi (x) .(1+
Ii(x)−i
2Ne

), i− Ii (x) ≥ 2Ne

0, i− Ii (x) < 2Ne
(8)

The exponential decay method works in a similar manner to
the linear decay, with the value placed on the surface decaying
exponentially instead of linearly with respect to either time or
event. This results in the equations for the exponentially decaying
time surface (ETS) shown in (9), and the exponentially decaying
index surface (EIS) shown in (10).

ETSi (x, t) = Pi (x) .e
Ti(x)−t

τe (9)

EISi (x) = Pi (x) .e
Ii(x)−i
Ne (10)

The equations for these surfaces make use of a constant
parameter, time constant τe for time-based methods and index
constant Ne for the index-based methods and the chosen values
for these parameters are shown in Figures 3A,B. The plots show
the time surface and index surface generation kernels which have
an area under the curve of 3ms in (a), and 554 events in (b),
respectively. These values were chosen based on the mean data
rate over all recordings.

Given the 184.5 k event/s event rate for the entire dataset
the area under the curves in Figures 3A,B, τe = 3 and Ne =

554, respectively were chosen to be approximately equal, thus
resulting in approximately equal total surface activation for the
time and index based decay methods over the entire dataset, but
not for any individual recording or section thereof.

To illustrate the difference in the two decay methods, Figure 4
shows index surface subtracted from the time surface for a

Frontiers in Neuroscience | www.frontiersin.org 5 January 2019 | Volume 12 | Article 104713

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 3 | Plots of the six methods for generating time and index surfaces.

(A) Shows the three time-based kernels over time. Note that the area under all

kernels is the time constant τe=3 ms. (B) shows the value of the index-based

kernel as a function of event index. Here the mean dataset event rate over all

recordings (∼184.5 k events/s) was used to obtain equivalent sized kernels

with index constant Ne=554 events.

single recording from the dataset. The figure shows that the
binning time surface has a lower activation than the binning
index surface when the speed of the airplane is low (at the start of
the recording). As the airplane speeds up through its fall, the total
time surface activation continues to increase whilst the index
surface remains approximately constant. In fact, at t = 157ms,
the total activation on the time surface is approximately twice
that of the index surface which remains relative stable throughout
the recording. This stability of index surface activation is the
direct result of the decay process. Since both the increase and
decrease in surface activation are a function of event index,
all decay kernels with a finite impulse response will inevitably
generate stable surface activations. This is in contrast to the time
decay method where no coupling exists between the activation
and decay of the surface. Figures 4D–F show that the difference
between the two decay methods are greatest for the binning
method, followed by linear decay and finally exponential decay,
which is the result of a slight reduction in surface activation
from binning to linear to exponential decay for the time surfaces.
This reduction is due to the kernel width such that the arrival
of new events overwrite the entries for pixels that have recently
been activated. This effect is more pronounced for kernels with
a longer time window as the surface maintains the value for
longer. This same effect is also present in the index surfaces, but
is less prominent due to the lower variance of the index-based
activation plots. Overall, Figure 4 highlights the event-overwrite

effect for different decay methods and kernels, as well as the
significantly lower variance of index surface activation in the
presence of change in velocity (due to gravity) relative to time
surfaces. Such lower variance potentially allows downstream
processing stages to be optimized for the stable operating point
of the index surface.

Target Velocity vs. Surface Activation
Prior to the feature extraction and recognition, the airplane is
detected and the location within the field of view is determined.
The speed of the airplanes is much faster than any other stimulus
expected within the field of view of the camera, such as the
body of the author accidently entering the frame, as can be seen
in the lower right pane of Figure 5c. Therefore, summation of
events across the rows and columns of the camera’s field of view
(after normalization and thresholding as shown in Figures 5a,b

provides a simple method to detect the boundary of the airplane
in the limited context of this investigation. While the presence of
slow moving objects in the background can be rejected as shown
in Figure 5c, complex background objects with similar velocities
to the target would impair this simple object detector.

In terms of limitations, the presented dataset is constrained in
the sense of having only a single high-speed object in the field
of view against an effectively blank background. This restriction
allows a more focused investigation of different methodologies
as well as of the sources of variance in the data such as target
orientation and velocity. While the restriction may appear to
limit the generalization of the results to more complex scenes, the
dataset and the resulting network solutions should be viewed as
investigating a local region within a more complex visual scene
and the processing required for it which would be represent a
small section in a larger system.

By using the detection method described we can plot the
estimated vertical position of each target airplane as shown
in Figure 6, both in terms of time in Figure 6A and event
index Figure 6B. These vertical position profiles serve to further
highlight the difference between the index-based and time-
based approaches in the context of local velocity. Whereas,
the estimated position plots take on their expected parabolic
shape when plotted against time, when plotted against index, the
trajectories are linear to a first approximation. The linearity of
target position with respect to event index provides an interesting
insight into the potential use of index surfaces for tracking,
however, this is beyond the scope of the work presented here,
which focuses on detection and recognition.

Figure 7 illustrates the wide range of velocities in the dataset
and the associated mean rate of change in surface activation
for time surfaces, index surfaces. The exponentially decay kernel
was used for this test. The line of best fit through the data
demonstrates different relationships between velocity and change
in surface activation which arise from the different geometries
of the airplanes. In all cases, however, surface activation is
significantly more sensitive to velocity when using time surfaces
than index surfaces. This invariance hints at potential utility
of index surfaces for velocity invariant feature generation,
where features learnt from a dataset with a particular velocity
distribution operate equally well on a dataset with an entirely

Frontiers in Neuroscience | www.frontiersin.org 6 January 2019 | Volume 12 | Article 104714

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 4 | Comparison of surface activation for a single recording. (A–C) show the surface differences (BTSi−BISi),
(

LTSi−LISi
)

, and (ETSi−EISi), respectively at the

beginning of the recording (t=36 ms). This moment in the recording is marked (1) on (D) which displays total surface activation for the binning method
∑

x,y BTSi and
∑

x,y BISi . The two traces in (D) show that at the beginning of the recording when the target airplane’s speed is low the binning time surface has a lower activation

than the binning index surface. However, as the target speeds up, the total time surface activation also increases, while the index surface remains approximately

stable, such that by t=157ms the time surface activation
∑

x,y BTSi is approximately twice that of
∑

x,y BISi . (E,F) show a similar but slightly less pronounced relative

increase for the linear and exponential decay surfaces. (G–I) show this relative increase for the binning, linear, and exponential decay surfaces by plotting the

differences of (A–C) at t=157ms.

different velocity distribution, which is not the case for time
surfaces. We explore the ramifications of this invariance further
in section Velocity Segregated Dataset.

Event-Based Feature Extraction
An event-based feature extractor was used to learn the most
common spatio-temporal features generated by the recordings.

The unsupervised spike-based feature extraction algorithm
was developed for hardware implementation, as previously
described in Afshar et al. (2014). In this algorithm, the Synapto-
dendritic Kernel Adaptation Network (SKAN), a single layer of
neurons with adaptive synaptic kernels and adaptive thresholds
compete in the temporal domain to learn commonly observed
spatio-temporal spike patterns. These adaptive synapto-dendritic

Frontiers in Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 104715

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 5 | Screenshot from a live demonstration of the airplane drop test after 0.08 s. (a,b) are a smoothed summation of recent events across columns and rows,

respectively. The smoothing was performed by using an 8-pixel wide rectangular moving average window. Due to the relatively high speed of the airplane these

summations, when normalized and thresholded at 0.1, could reliably be used to extract the fast-moving airplane from the static background or slower moving objects.

The generated target object’s boundary is shown in (c). Note that movement of the body of the author (light vertical trace on the left) as he drops the airplane is slow

relative to the airplane and generates relatively few events and so does not reach even the low set (th = 0.1) detection threshold.

kernels provide an abstracted representation of the coupling
of pre- and post-synaptic neurons via multiple synaptic and
dendritic pathways allowing unsupervised learning and inference
of precise spike timings. By conceptually combining multiple
synapses, the most numerous elements of any neuromorphic
system, into a single adaptive kernel, the SKAN algorithm allows
an efficient yet reasonably complex model of STDP to be realized
in hardware. In Afshar et al. (2015) the algorithm was extended
using a simplified model of Spike Timing Dependent Plasticity
(STDP) (Markram et al., 1997) to provide synaptic encoding
of afferent Signal to Noise Ratio. In Sofatzis et al. (2014) the
algorithm was used to perform real-time unsupervised hand
gesture recognition using an FPGA. In this work, the event-based
approach is continued at the feature extraction layer with the
output spike of the winning neuron representing a feature event.

The SKAN layer operates via two simple feedback loops: a
synaptic kernel adaptation loop and a threshold adaptation loop.
Each input event ui(t) in a spatio-temporal pattern activates a
triangular post synaptic kernel ri(t) as described by (11) and (12).
The kernels are summed at the soma to generate a membrane
potential. While this membrane potential is above the neurons

adaptive threshold Θ(t), the neuron output s(t) goes high, which
is analogous to a series of action potentials or a neuronal burst,
as described in (13). While the neuron output s(t) is high, the
kernels perform their temporal adaptation operation as described
by (12). According to this rule every time step where the neuron
output is high and the kernel is rising (pi = 1), the synaptic
kernel’s slope 1ri is reduced by a small amount ddr, thus moving
the kernel peak later in time to better match the observed pattern.
Conversely if the event is too early, the kernel’s slope 1ri is raised
contracting the kernel and moving its peak earlier in time.

pi (t) =























1 if
(

ui (t) = 1 ∧ pi (t − 1) = 0
)

∨
(

pi (t − 1) = 1 ∧ ri (t − 1) < wi

)

−1 if
(

pi (t − 1) = 1 ∧ ri (t − 1) ≥ wi

)

∨
(

pi (t − 1) = −1 ∧ ri (t − 1) > 0
)

0 else

(11)

[

ri (t)
1ri (t)

]

=

[

ri (t − 1)
1ri (t − 1)

]

+ pi (t − 1)

[

1ri (t − 1)
ddr × s (t − 1)

]

(12)

s (t) =

{

1 if
∑

i ri (t) > 2 (t − 1)
0 else

(13)

Frontiers in Neuroscience | www.frontiersin.org 8 January 2019 | Volume 12 | Article 104716

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 6 | Estimated vertical position of the target as a function of time (A)

and as a function of event index (B). The dashed black line marks the mean

position over all recordings. For the entire dataset, the mean time interval from

the first valid object boundary detection event to the last was 156.2ms with a

standard deviation of 17.8ms. The target’s position was defined as the

midpoint between the object boundaries as shown in Figure 5 (C). The gray

bar at the top left in (A) indicates the time window used for investigating the

effect of target velocities on surface activation in Figure 7. The same gray time

window bar is shown in lower (B) panel as a function of event index. The

relative thickness of the bar is proportional number of recordings in the time

window of (A) at each event index. Note the color assigned to each recording

profile is arbitrary.

The neuron’s thresholds adapt via a similar mechanism to the
kernels. At each time step where the neuron output is high the
neuron’s threshold also rises. In addition at the falling edge of the
neuron output pulse, the threshold falls by a small value. A single
inhibitory neuron prevents multiple neurons spiking at the same
time thus preventing duplicate learning of the same pattern by
multiple neurons.

2(t) =















2(t − 1) + 2rise if
∑

i ri (t) > 2 (t − 1)
2 (t − 1) − 2fall if

∑

i ri (t)

= 0 ∧
∑

i ri (t − 1) > 0
2(t − 1) else

(14)

This simple hardware implementable rule-set allows the neurons
to orient their spatio-temporal receptive fields from a random
starting point toward the most commonly observed patterns,
thus attempting to optimally represent the observed data
given a limited number of features. It is in the class of
unsupervised training algorithms used in wide range of
neuromorphic algorithms such as STDP. For detailed description
of the hardware implementation of the algorithm and resultant
behaviors see (Afshar et al., 2014).

When the camera detects a new event, a 13 × 13-pixel region
of the surface around it is converted to a temporally coded spatio-
temporal spike pattern. This value to time encoding method was
originally used inMasquelier and Thorpe (2007). The normalized
real-valued intensity of the surface is first rescaled from 0–1
to 0–255 and then mapped to an 8-bit unsigned integer. This
8-bit encoding of the surface allows for potential hardware
implementation of the SKAN kernels, without needing floating
point operations. This integer representation of the local surface
region is then encoded into spike delays forming a spatio-
temporal spike pattern. The resultant pattern is then used as
the input to a 25-neuron network. The neurons were trained
10 times independently using half the dataset consisting of 50
recordings from each plane type augmented by the left-right
flipped version of these recordings. Learning (adaptation) in
the feature detection neurons was then disabled. Independent
training of SKAN on randomly selected sections of the dataset
consistently resulted in similar spatio-temporal features being
learnt. The panels in Figure 8 show the resulting feature set from
two independent trials at different network sizes to demonstrate
this. As the comparison of the trained feature sets shows the
same consistent features were learnt at each network size,
with the features coding for the leading edge of the airplane
nose cones and wings dominating the feature sets. In addition,
variants of a solitary noise spike produced often by the ATIS
camera are represented as noise features appearing in top left of
Figures 8B–D. This consistency was also observed over training
epochs of the individual trials. As the number of neurons is
increased some of the neurons no longer code for the same
features, as can be best seen in the bottom right neurons of
Figure 8D. Note also the increasing number of variants of the
“noise feature” as the network size is increased. These variants of
the “noise feature” encode weak traces of features which are too
weak to show in the full color scale.

Of the many network sizes shown in Figure 8 the 25 neuron
network was chosen for the investigation of the other parameters
in the system. In section Feature Extractor Size and Number,
we return to investigate the effect of network and feature sizes
in greater detail. Following feature extraction, and with learning
disabled, the neurons compete to recognize incoming spatio-
temporal event patterns generated from the same 13 × 13-
pixel region of the surface following each new event with the
spike output of the winning neuron representing a feature event.
These feature events were then stored onto 25 separate feature
time surface or feature index surfaces, which were generated
identically to the event surfaces described in section Time-
Surface vs. Index Surfaces using the same decay method and
decay factor.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2019 | Volume 12 | Article 104717

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 7 | Relationship between change in surface activation and target velocity and the resultant mean rate of change in surface activation. Each point represents a

single recording in the dataset. The mean value of target velocity and change in surface activation was calculated over the time window indicated in Figure 6 (A). For

each panel m indicates the slope of the line of best fit.

Spatial Pooling of Feature Surfaces
In order to reduce the required processing and speed up
simulation, the subsystems following the feature surfaces were
operated in a frame-based manner such that at periodic intervals
the estimated target region from each feature surface was
sampled to generate feature frames. The interval used for
sampling was the same as the time surface decay constant τe =

3ms. The surface sampling was time-based for both the time
and index surfaces so as not to bias the comparison. To reduce
the input size to the classifier, spatial pooling of the feature
surfaces was performed. To perform this spatial pooling, the
estimated object boundary region was summed along the rows
and columns, generating two one dimensional feature vectors,
one for the rows and one for the columns. The length of these
vectors would vary at each feature frame depending on the size of
the estimated target region. Thus, in a network with N neurons

for each feature a target region of size R rows and C columns
would generate two one-dimensional vectors (of length R and C,
respectively) resulting from the summation of the image region
across rows and columns for each of N surfaces. In order to
provide the classifier with a uniform input layer size, the varied
length feature vectors R and C need to be resampled to a uniform
length. This was done using linear interpolation and the uniform
vector length chosen was 72, which, when multiplied by the
number of pooling dimensions (2), and the number of features
(25), produced a 3,600-input layer for the classifier. The resultant
end-to-end system is shown in Figure 9.

Parameter Selection
In order to fairly evaluate the relative performance in terms
of recognition accuracy resulting from different decay kernels,
surfaces decay methods, feature extractor numbers, and their

Frontiers in Neuroscience | www.frontiersin.org 10 January 2019 | Volume 12 | Article 104718

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 8 | Consistency of feature generation at multiple network scales. (A–D) show 4, 9, 25, and 64 spatio-temporal features, respectively, extracted from the ATIS

airplane drop dataset. Each panel show results from two independent trials. To allow for visual comparison of the two feature sets, the features from the first trial have

been ordered based on the sum of the squares of the weight of each pixel in each feature. The features of the second trial were then sorted based on cosine distance

to the first feature set. Only the feature-set obtained from two instances of the time-based, exponentially decaying surface is shown above for brevity. The features

resulting from the other kernels resulted in qualitatively similar features dominated by wing edge, nose cone tail features as well as features coding for noise.

FIGURE 9 | Block diagram of the full event-based detection feature extraction and recognition system. The target is sensed by the sensor and the generated ON

events are processed using a time or index surface. Each event triggers a comparison of a local patch around the event with a set of features or neurons. The winning

neuron outputs an event which in turn is placed on a feature surface. The feature surfaces are summed across the rows and columns and presented to the back end

classifier. The classifier is here depicted as a network with a hidden layer but we also use a linear classifier. Note that in the feature surface pooling stage only the

vector summing the feature surfaces across columns is shown, with the second vector showing the summation across rows omitted for clarity.

receptive field sizes, a large number of free system parameters
must first be selected. These parameters, listed in Table 1, are
used to implement event and feature surface generation, surface
sampling, object detection, feature extraction, spatial pooling,
regularization, and classification. In order to ensure that the
selected parameters do not advantage the index-surfaces or the

feature extraction methods that are the focus of this work, all
subsystem parameters would need to be evaluated in terms
of their combined effects on the performance of each method
under testing. However, this represents a prohibitively large
search space to explore in a brute force fashion. Instead, the
approach taken in this work to remove possible parameter

Frontiers in Neuroscience | www.frontiersin.org 11 January 2019 | Volume 12 | Article 104719

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

TABLE 1 | Free parameters used in the system (unless otherwise stated).

Subsystem Parameter Value

Surface generation Time constant τe = 3 ms

Surface generation Index constant Ne = 554 events

Detector Smoothing window size 8 pixels

Detector Smoothing window type Moving average

Detector Normalized threshold 0.1

SKAN Number of features 25

SKAN Number of input channels 13 × 13 = 169

SKAN Other parameters Same as Afshar

et al. (2014)

Classifier Input size using raw event surface (E) 72 × 2 = 144

Classifier Input size feature event surfaces (F) 72 × 25 × 2 =

3,600

Classifier ELM hidden layer size 30,000 Neurons

Classifier Surface sampling interval 3 ms

selection bias in favor of the proposed methods was to optimize
all parameters to achieve the highest recognition accuracy on
what may be considered the null hypothesis: that simple time-
based binning kernels used on raw input events outperform other
kernels, decay methods, and feature extractors. To this end, the
parameters in Table 1 and all algorithm design choices where
selected via a manual heuristic search for optimal recognition
performance using the time-based binning surface BTSi whose
spatially pooled output was fed directly to the classifier without
the use of feature extractors. The classifiers were then selected
for optimal performance on the output data generated by the
selected parameters. Once optimized in this way for the “null
hypothesis,” these same parameters and network structures were
used for all other tests, ensuring that recognition results were
biased in favor of the simple time-based binning approach and
not those proposed in this work.

Classification
Choosing Classifiers
The choice of a back-end classifier used to map feature
outputs to classes can play a critical role in the performance
of a convolutional feature extraction layer or network. Well-
regularized high capacity classifiers with internal non-linearities
can provide significant improvement in performance over and
above the underlying feature extractors used. In many proposed
event-based recognition systems, only a single type of classifier
is tested and often only a single instance of such a classifier
(the best performing configuration) is reported. While this
approach encourages greater attention to the presented work,
it can also overstate the performance of the overall system, due
to fine tuning. What’s more, the use of well-optimized powerful
classifiers without concurrently testing simple linear classifiers
obscures the role of the event-based feature extractors in the
system performance. Here, we propose a dual classifier testing
protocol, which ideally should be applied before and after each
stage of processing, to provide insights into the effectiveness of
the elements under test. For the baseline test, a simple linear

classifier is used tomeasure how linearly separable the underlying
data is before and after processing. In addition to this baseline
classifier we utilize a large capacity ELM, which, by virtue of
the large number of random hidden layer neurons, is likely to
project the non-linearities of the dataset into a linearly separable
higher dimensional feature space. In addition, the lack of feature
learning in the ELM allows a reasonable unbiased estimate of the
residual non-linearity in data. This framework of testing provides
significant insights, as detailed in the results section, which would
not be revealed if only the results from the best performing
classifier were reported.

To evaluate the performance of the system, two measures of
recognition accuracy were considered: per-frame accuracy and
per-drop accuracy. For the per-framemeasure, the feature vectors
described Section Event-Based Feature Extraction were presented
to the classifier at periodic time intervals τe. At each frame, the
class with the largest output was selected as the winner for that
frame. For the per-drop accuracy measure, the class with the
highest number of per-frame during the entire recording was
selected.

A linear classifier and an Extreme Learning Machine (ELM)
classifier (Cohen et al., 2017) with a hidden layer size of 30,000
neurons were trained using the time-based binning method to
achieve the highest per-frame recognition accuracy. Figure 10
details the results from this parameter search and the selected
classifiers.

RESULTS

Results on the Full Dataset
The per-frame recognition results on the full dataset are shown in
Figure 10. For each of the panels, the same performance pattern
is observed: when operating on raw event surfaces as inputs,
the large capacity ELM (ELM-E) significantly outperforms the
linear classifier (L-E). This demonstrates the non-linearity of
the classification boundaries in this case. In comparison, when
feature surfaces are used as inputs, the improvement margin
gained by the ELM (ELM-F) is small relative to the linear
classifier (L-F) suggesting that the output of the 25 feature
extractors is significantly more linearly separable, with less room
for improvement through further non-linear expansion. Also
noteworthy is that the linear classifier operating on feature
surfaces (L-F) outperforms the ELM operating on the event
surfaces (ELM-E) for all surfaces generationmethods. This shows
that the application of a small number of trained local feature
extractors is more effective than using a much larger globally
connected network of neurons with random input weights. The
ratio of errors between the ELM and the linear classifier indicated
at the bottom of each panel quantifies this reduction in error for
each case.

Comparing the results across the panels for the linear classifier
operating on events (L-E), the exponentially decaying surfaces
outperform linear surfaces by a margin of 1.75% for the index
surfaces and 0.24% for the time-surfaces. In turn the linear
surfaces outperform the binning method by 3.06 and 1.36% for
the index surfaces and time surfaces, respectively. For the case
of the linear classifier operating on feature surfaces (L-F), the

Frontiers in Neuroscience | www.frontiersin.org 12 January 2019 | Volume 12 | Article 104720

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 10 | Per-frame recognition accuracy on the full dataset over n = 20 independent trials. Each panel shows results from four network arrangements. In (L-E),

and (ELM-E) the linear classifier and the 30K hidden layer ELM chosen in section Choosing classifiers operate on inputs from raw event surfaces. In (L-F), and (ELM-F)

the same classifiers use 25 feature surfaces as inputs. Each panel shows results for a different surface generation method: The top three panels show time-based

methods using (A) binning, (B) linear decaying, and (C) exponentially decaying surfaces. The bottom three panels show corresponding index-based binning (D), linear

decaying (E), and exponentially decaying surfaces (F). The two ratios at the bottom of each panel indicate the median error ratio of the ELM over the linear classifier.

exponentially decaying surfaces outperform linear surfaces by
a margin of 0.57% for the index surfaces and 0.22% for the
time-surfaces, and in turn the linear surfaces outperform the
binning method by 3.07 and 1.91% for the index surfaces and
time surfaces, respectively. Also, consistently, the improvement
of exponential kernels over linear kernels is not as significant as
their margin with the binning method.

It is worth noting that, when the ELM is chosen as the back-
end classifier, the margin in performance improvement obtained
from feature extraction is reduced. This is to be expected, since
the randomly situated hidden layer neurons of the ELM have a
greater chance of improving the linear separability of segments
of the dataset, if such segments are not already linearly separable
due to processing in the preceding layer. This effect of obscuring
the performance of other subsystems is not limited to the ELM.
A similar effect would be expected with any other classifier
performing non-linear expansion. This underlines the need to
include results from a simple linear classifier when comparing
alternative systems. Also worth noting is that for the preceding
results (features outperforming raw events, and exponential and
linear kernels outperforming binning) all system parameters
were optimized for the time-based binning method. These results
therefore confirm the suitability of exponential kernels for time

and index-surface generation. This conclusion is also supported
by results in Akolkar et al. (2015), where the information from
the visual scene is found to rapidly rise within a small initial
temporal window, but thereafter fall gradually with increasing
window size, as is best described by an exponentially decaying
kernel. By weighing events in an approximately compensatory
manner to their information content as described in Akolkar et al.
(2015), the exponentially decaying kernel results in the highest
information content for the classifier. Another observation from
Figure 10 is that all time-based decay methods outperform the
index-based decay methods by ∼1% on the full dataset with the
largest performance disparity observed between the index-based
binning method BISi and the time-based binning method BTSi.
This would be expected, since the later method was used during
all parameter optimizations and would be most advantaged by
the selected parameters. Based on the results shown in Figure 10

we narrow further investigations by selecting linear classifiers L-
E and L-F and focus on exponentially decaying surfaces EISi and
ETSi.

Frame Balanced Dataset
In order to generate a balanced dataset, an equal number of
frames from each recording was selected. In this way, the total

Frontiers in Neuroscience | www.frontiersin.org 13 January 2019 | Volume 12 | Article 104721

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

number of presentations to the classifier for each class was
equalized. As Figure 11 shows 1, 2, 4, 8, 16, and 32 frames were
sampled from each of the airplane recordings and presented to
the linear classifier operating on events surfaces L-E and feature
surfaces L-F for each of the EISi and ETSi surfaces.

As Figure 11 shows, both the per-frame and per-drop
accuracy increase as a function of the number of frames used
during training. Additionally a sharper increase and higher final
accuracy is observed for the per-drop accuracy measure, as
would be expected, since the per-drop measure is analogous to a
max pooling operation which benefits from increased pool size.
The relative performance margin of the network using feature
surfaces over raw event surfaces is reduced in the per-drop
measure, as more information is accumulated over a recording,
reducing error, and approaching the 100% accuracy upper bound.
The highest number of random frames used per recording was
32, as this was approximately equal to the total number of
frames in the shortest recording (see Figure 2B). Table 2 details
the accuracy results for this balanced dataset while Figure 12

shows misclassified recordings for one instance of the highest
performing network using index-based decaying feature surfaces
and a linear classifier, illustrating that some drops are almost
impossible to classify correctly.

Interestingly, in contrast to the full unbalanced dataset results
detailed in section Results on the Full Dataset, the per frame
balanced results in Figure 11 and Table 2 show little significant
difference in accuracy between the index-based and time-
based surfaces for either the per-frame or per-drop measures,

suggesting that the observed slight advantages in accuracy on the
full dataset may be due to the use of time-based surfaces during
parameter selection of section Parameter Selection and linked to
imbalances in the number of frames per recording present in the
full dataset for the two different methods.

Velocity Segregated Dataset
As outlined in section Target Velocity vs. Surface Activation, the
apparent velocity invariance property of index surfaces motivates
a test using a modified dataset which is split in terms of target
velocity. Thus, in order to compare index-based and time-based
surfaces in terms of target velocity invariance, the recordings
were divided into 200 “slow” and 200 “fast” recordings based
on the estimated vertical airplane velocity at the midpoint (in
time) of each recording. Since the airplanes speed up during

TABLE 2 | Per-frame and Per-drop accuracy results on the frame balanced

dataset for four selected systems: Linear classifier operating on events surfaces

(L-E) and feature surfaces (L-F) for each of the EISi and ETSi surfaces.

Per-frame (%) Per-drop (%)

Time-based Event surface 90.60 +/−1.02 96.64 +/−1.47

Index-based Event surface 91.03 +/−0.89 96.90 +/−1.34

Time-based Feature surfaces 95.64 +/−0.79 98.52 +/−0.75

Index-based feature surfaces 96.15 +/−0.84 98.75 +/−0.78

Number of trials used is 20.

FIGURE 11 | Comparison of (B) per-drop and (A) per-frame recognition accuracy as a function of the number of randomly selected frames used during training from

each recording. The index-based EISi surface and time-based ETSi surfaces are compared. Results shown are over N = 20 trials. A linear classifier was used in all test.

Frontiers in Neuroscience | www.frontiersin.org 14 January 2019 | Volume 12 | Article 104722

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

FIGURE 12 | The three drops misclassified by an instance of a linear classifier using 25 exponentially decaying index-based feature surfaces. Captured frames show

airplanes at mid-point (in time) of recording.

the fall, the system was trained on the n-first (slowest) frames
of the slow recordings and tested on the n-last (fastest) frames
of the fast recordings. In this way, by varying the number of
frames n, datasets with different degrees of velocity segregation
could be tested. The resulting recognition accuracies in Figure 13
demonstrate that with increasing n, and thus decreasing velocity
segregation in the data, the recognition accuracy of all systems
rise. Figure 13 further shows that although training on a speed
segregated dataset significantly reduces accuracies for all systems
in comparison to training using a randomly sampled dataset
(such as shown in Figure 11), the decline is significantly larger
for time-based decaying surfaces. This difference demonstrates
the relative robustness of index-based decay surfaces to variance
in velocity and their utility in applications where the full range of
potential target velocities to be encountered during testing is not
available in the training data.

Therefore, given the results in the previous section, it can
be concluded that, at the local scale, with a single target in the
field of view, systems using index-based decay surfaces tend
to match equivalent systems using time-based decay surfaces,
when presented with an adequately wide range of velocities in
the training data, since their advantage of velocity invariance
is effectively neutralized. But when the available range of
velocity distributions for training is incomplete, index-based
decay surfaces tend to produce more robust performance. Given
this finding, and in order to limit the scope in the next section,
we narrow our focus exclusively on index-based surfaces and
investigate the effect of different feature extraction networks
and their effect on recognition accuracy. This is also supported
by findings in Ghosh et al. (2014), where a small superiority
was found when using fixed event windows over time windows.
However, those tests were performed using a randomly sampled
training set, likely containing data with velocity distributions that
were similar to the test set. As such their results are similar to the

FIGURE 13 | Mean and standard deviation per-frame accuracy on a speed

segregated dataset over 10 trials clearly demonstrates superior performance

of index-based surfaces in the presence of velocity varying data.

full dataset results examined in section Frame Balanced Dataset
of this work, which only showed a slight improvement due to the
velocity variance available in the training dataset. In this work,
by additionally testing the algorithms using a range of velocity
segregated datasets, the robustness of the index surface method is
more completely investigated.

The Decay Constants
An important element of any event-based surface is the value
of its decay constant. In this work the value of decay constants,
τe = 3ms andNe = 554 events were effectively chosen arbitrarily.

Frontiers in Neuroscience | www.frontiersin.org 15 January 2019 | Volume 12 | Article 104723

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

This raises an important question about the optimality of the
chosen decay constants and the robustness of the generated
features and recognition accuracy to different values of these
decay constants. A closely related question, which applies only
to index surfaces, is whether targets which generate more or
fewer events, e.g., due to different object size or contrast,
could still be learnt and recognized with the decay constants
chosen. To investigate these questions a wide range of decay
constants across six orders of magnitudes were tested on a frame
balanced randomized training and testing dataset. The resulting
recognition accuracies and selected feature sets are shown in
Figure 14. The results show a similar pattern for time and index
surfaces with little significant difference in accuracy. At the
extreme decay rate of 10 events and 54 µs the systems perform
little better than chance, since virtually all event information
is decayed away before it can be extracted. This leaves all the
features coding for variants of the noise feature. As the decay
constant increases to by two orders of magnitude, coherent
features begin to emerge coinciding with a rapid increase in

recognition accuracy. At this event rate there are still multiple
features coding for a single noise spike. Index decay constants of
between three and four orders of magnitude of events correspond
with a plateau in recognition performance. This region coincides
with the range where the noise feature is only represented by one
or two neurons with all remaining neurons coding for complex
features. After four orders of magnitude increase in the decay
constant, the accuracy begins to decline slightly. In this region
the noise features begin to be represented oncemore but this time
with a highly activated background which is a direct result of the
much slower decay rate.

As Figure 14 illustrates, when sweeping the decay constant,
the number of variants of the noise feature in the network roughly
correlates to the feature extraction performance of the network.
The feature set with the fewest representations of the noise
feature (ideally only one) performs the best. This is expected since
the noise feature is unlikely to be correlated to any particular class
of object and the frequency of its representation in a feature-set
reduces the efficiency of that feature-set, leaving fewer neurons

FIGURE 14 | Classification accuracy and typical feature sets as a function of the decay constants for time and index surfaces. The lower panel shows accuracy

plotted against the index decay constant Neon a logarithmic scale. The time surface results are plotted on the same logarithmic scale where a 1event to 5.4152 µs

conversion rate is used to align the results. This conversion rate is based on the average event rate over the entire dataset. The vertical solid line at Ne = 554 and

τe = 3ms (τe = 554 × 5.4152 µs) indicates the value of the index and time decay constants used in rest of the work. The horizontal dotted line indicates chance

accuracy. All tests were performed over N = 20 independent feature extraction trials. The feature sets above the panel show instances of the feature sets for four

points on the decay constant axis. The feature set shown are from index-based surfaces.

Frontiers in Neuroscience | www.frontiersin.org 16 January 2019 | Volume 12 | Article 104724

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

to represent classification relevant feature information. Figure 14
also shows a wide central region of stable performance that is
robust to the choice of τe and Ne. The results also show that
over estimating the optimal value of the decay constant is less
harmful than under estimating with significantly less reduction
in accuracy.

Feature Extractor Size and Number
In order to characterize the effectiveness of the feature extraction
subsystem in an unbiased manner, a range of feature sizes and
a number of feature extractors were investigated and assessed
in terms of the resultant recognition accuracy. In addition,
for each point on the feature size-feature number space, the

results of the learning algorithm described in section Event-
Based Feature Extraction was compared to those of equivalent
sized networks using random feature sets. The mean accuracy
results in Figure 15 (top panels) demonstrate that learnt features
outperform random features at every scale while exhibiting
slightly lower variance in accuracy (bottom panels).

In addition, while the results from the random features suggest
a slight trend toward increased accuracy as a function of both
feature numbers and feature size, the learnt feature results clearly
show that the larger feature sizes (17 × 17 and 13 × 13)
generate higher accuracy with increasing number of features,
while the smallest feature sizes (3 × 3 and 5 × 5) exhibits
a weak downward trend with the number of features. When
the feature size is small, only a few distinct combinations exist.

FIGURE 15 | Per-frame accuracy on the full dataset as a function of feature size and number of features used in the feature extraction layer for both learnt and

random features. N = 10 independent feature sets with 10 cross validating classifications per feature set. Note that the baseline linear accuracy using the raw event

surface with no feature extraction layer was 91.38 +/− 0.81% as shown in Table 2.

Frontiers in Neuroscience | www.frontiersin.org 17 January 2019 | Volume 12 | Article 104725

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

Therefore, when and a large number of them are trained, several
features will be very similar, resulting in near identical input
generating very different input to the classifier. This reduction in
accuracy resulting from the addition of more redundant features
is due to the OR operation which must be performed by the
back-end classifier. This insight demonstrates that convolutional
features layers can, if poorly configured, “over-fit” the data
by representing overly specific variants of the same pattern.
This effect only becomes apparent with the combined use of a
large number of feature, small feature sizes, and relatively small
datasets. But this might be an issue in future applications of
event-based convolutional networks, where resource efficiency of
a hardware implementation may allow a very large number of
features in a layer to be trained (especially in the first layer) while
the level of independent features in the recorded data may be
limited.

We can also note that for both the random and learnt
feature sets, the feature size has little effect on accuracy when
the number of features becomes very small. This is because
there is very little additional discriminatory information that
can be captured by the larger sized features when a wide
range of unrelated, heterogeneous spatio-temporal patterns
become effectively averaged together to generate the (too) few
features used in the network. Thus, local spatial complexity
of observed data determines optimal feature size and feature
number relationships, which, if not considered during hardware
implementation, can result in inappropriately scaled network
architectures and effectively wasting hardware resources.

DISCUSSION

While binning methods examined in this work were shown
to perform less well than linearly decaying surfaces and
exponentially decaying surfaces, the significantly simpler
implementation of the binning method allows for much more
efficient implementations of event surfaces in neuromorphic
hardware. In a similar fashion, the selection of feature sizes and
number of features implemented at any layer of a multi-layer
event-based network generates trade-offs between hardware
resource and performance. In this context, the network and
feature size investigations presented here provide guidelines for
such network designs.

The four class dataset presented allows reasonably accurate
classification using a single layer of feature extraction in
combination with a linear classifier; the task can be made
increasing difficult by increasing the number of classes in the
dataset. In such a case the output of the feature extraction
layer would retain significantly greater residual non-linearity.
This would increase the performance of gap between the linear
classifier and the large ELM. Conversely adding additional feature
extraction layers will work in the opposite direction, producing
output that is more and more linearly separable and thus
reducing the performance gap between the linear classifier and
ELM.

The presented recordings in the dataset were varied to cover
a wide range of target speeds. As a result any random splitting

of training and testing data provided an overlapping range of
target speeds in both set. This overlap removed any advantage
of index-based decaying surfaces which provide robustness to
target velocity. However, in many applications, such as the
SSA applications of Cohen et al. (2017), the range of velocities
in the training set is limited so that features trained on this
limited set of target velocities must generalized to a wide range
of as yet unobserved velocity profiles. In this work, such a
condition was simulated by iteratively segregating the data based
on speed to highlight the utility of the index-based decay
method.

One weakness of the index-based decaying method is that
it can only be used locally (or globally but on a single target).
If events from other non-target object cause a decay in the
surface activation of the target, vital information may be lost.
Such information loss is not present if target segregation has
already occurred via an upstream system, or, more generally, if
the surface decay mechanism is viewed as a local mechanism
acting on a sub-region of a larger global surface. As such, the
presented dataset and the resulting performance of the index-
based systems can best be viewed as focusing on a locally
operating subsystem within a larger processing system. When
viewed as a rigorous analysis of such a central building block
of a larger event-based network the value of the investigation
presented here becomes more apparent. On the other hand,
if a system needs to operate with a single decay method,
then the standard time-based decay mechanism would be
more optimal, as it can process the entire surface in a global
manner.

CONCLUSION

In this work, we investigated in detail an event-based feature
extraction layer. In order to rigorously investigate the effects
of different kernels, decaying methods, classifiers, and feature
sizes and numbers, we limited the exploration to a single
layer network. Yet the design of deeper networks can be
informed by these single layer results. Using a dataset
featuring a range of target shapes, scales, orientations, and
velocities, it was observed that exponentially decaying kernels
outperform other kernels, and that index-based decaying surfaces
perform equally as well as time-based decaying surfaces, when
robustness to target speed is not required, and outperform
them when it is required. We also showed a clear superiority
of learnt features over random features and showed that
the largest networks of neurons with the largest receptive
fields using the most complex kernels outperform all other
configurations.

AUTHOR CONTRIBUTIONS

SA, GC, and TH designed dataset. SA and GC generated the
dataset. SA and GC performed pre-processing. SA, GC, JT, and
AvS designed the algorithms. SA implemented the algorithms.
SA analyzed the data and results. SA wrote the manuscript. All
authors assisted in editing.

Frontiers in Neuroscience | www.frontiersin.org 18 January 2019 | Volume 12 | Article 104726

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Afshar et al. Index Surfaces vs. Time Surfaces

REFERENCES

Afshar, G., Hamilton, S., Tapson, T. J., van Schaik, J., and Cohen, A. (2018).

ATIS Plane Dataset. Available online at: https://www.westernsydney.edu.au/

bens/home/reproducible_research/atis_planes

Afshar, S., George, L., Tapson, J., van Schaik, A., and Hamilton, T., J. (2014). Racing

to learn : statistical inference and learning in a single spiking neuron with

adaptive kernels. Front. Neurosci. 8:377. doi: 10.3389/fnins.2014.00377

Afshar, S., George, L., Thakur, C. S., Tapson, J., van Schaik, A., de Chazal,

P., et al. (2015). Turn down that noise: synaptic encoding of afferent SNR

in a single spiking neuron. IEEE Trans. Biomed. Circuits Syst. 9, 188–196.

doi: 10.1109/TBCAS.2015.2416391

Akolkar, H., Meyer, C., Clady, Z., Marre, O., Bartolozzi, C., and Panzeri,

S. (2015). What can neuromorphic event-driven precise timing add

to spike-based pattern recognition? Neural Comput. 27, 561–593.

doi: 10.1162/NECO_a_00703

Barranco, F., Fermuller, C., Aloimonos, Y., and Delbruck, T. (2016). A dataset

for visual navigation with neuromorphic methods. Front. Neurosci. 10:49.

doi: 10.3389/fnins.2016.00049

Benosman, R., Ieng, S. H., Clercq, C., Bartolozzi, C., and Srinivasan, M. (2012).

Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–7.

doi: 10.1016/j.neunet.2011.11.001

Clady, X., Ieng, S. H., and Benosman, R. (2015). Asynchronous event-

based corner detection and matching. Neural Netw. 66, 91–106.

doi: 10.1016/j.neunet.2015.02.013

Cohen, G., Afshar, S., van Schaik, A., Wabnitz, A., Bessell, T., Rutten, M., et al.

(2017). “Event-based Sensing for Space Situational Awareness,” in Advanced

Maui Optical and Space Surveillance Technologies Conference (AMOS) (Maui,

HI), 1–13.

Ghosh, R., Mishra, A., Orchard, G., and Thakor, N. V. (2014). “Real-time object

recognition and orientation estimation using an event-based camera and

CNN,” in IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014

- Proceedings (Lausanne), 544–547.

Giulioni, M., Corradi, F., Dante, V., and del Giudice, P. (2015). Real time

unsupervised learning of visual stimuli in neuromorphic VLSI systems. Sci. Rep.

5:14730. doi: 10.1038/srep14730

Glover, A., and Bartolozzi, C. (2016). “Event-driven ball detection and gaze fixation

in cluttter,” in IEEE International Conference on Intelligent Robots and Systems

(Daejeon), 2203–2208.

Glover, A., and Bartolozzi, C. (2017). “Robust visual tracking with a freely-moving

event camera,” in IEEE International Conference on Intelligent Robots and

Systems (Vancouver, BC), 3769–3776.

Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS benchmark datasets

for object tracking, action recognition, and object recognition. Front. Neurosci.

10:405. doi: 10.3389/fnins.2016.00405

Klein, P., Conradt, J., and Liu, S. C. (2015). “Scene stitching with event-driven

sensors on a robot head platform,” in 2015 IEEE International Symposium on

Circuits and Systems (Lisbon: ISCAS), 2421–2424.

Lagorce, X., Ieng, S. H., Clady, X., Pfeiffer, M., Benosman, R., et al. (2015a).

Spatiotemporal features for asynchronous event-based data. Front. Neurosci.

9:46. doi: 10.3389/fnins.2015.00046

Lagorce, X., Meyer, C., Ieng, S. H., Filliat, D., and Benosman, R. (2015b).

Asynchronous event-based multikernel algorithm for high-speed visual

features tracking. IEEE Trans. Neural Netw. Learn. Syst. 26, 1710–1720.

doi: 10.1109/TNNLS.2014.2352401

Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Benosman, R.

B. (2017). Hots: a hierarchy of event-based time-surfaces for pattern

recognition. IEEE Trans. Pattern Analy. Mach. Intell. 39.7, 1346–1359.

doi: 10.1109/TPAMI.2016.2574707

Lee, J. H., Delbruck, T., Pfeiffer, M., Park, P. K. J., Shin, C.-W., Ryu, H., et al.

(2014). Real-time gesture interface based on event-driven processing from

stereo silicon retinas. IEEE Trans. Neural Netw. Learn. Syst. 25, 2250–2263.

doi: 10.1109/TNNLS.2014.2308551

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120

dB 15 µs latency asynchronous temporal contrast vision sensor.

IEEE J. Solid State Circuits 43, 566–576. doi: 10.1109/JSSC.2007.

914337

Litzenberger, S., and Sabo, A. (2012). Can silicon retina sensors be

used for optical motion analysis in sports? Proc. Eng. 34, 748–753.

doi: 10.1016/j.proeng.2012.04.128

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215. doi: 10.1126/science.275.5297.213

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual features

through spike timing dependent plasticity. PLoS Comput. Biol. 3, 0247–0257.

doi: 10.1371/journal.pcbi.0030031

Orchard, G., Jayawant, A., Cohen, G., K., and Thakor, N. (2015a). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015b). “HFirst: a temporal approach to object

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040.

doi: 10.1109/TPAMI.2015.2392947

Peng, X., Zhao, B., Yan, R., Tang, H., and Yi, Z. (2017). Bag of events:

an efficient probability-based feature extraction method for AER

image sensors. IEEE Trans. Neural Netw. Learn. Syst. 28, 791–803.

doi: 10.1109/TNNLS.2016.2536741

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with ldossless pixel-level video

compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and

MNIST-DVS. Their history, how they were made, and other details. Front.

Neurosci. 9:481. doi: 10.3389/fnins.2015.00481

Sofatzis, R. J., Afshar, S., and Hamilton, T. J. (2014). “Rotationally invariant

vision recognition with neuromorphic transformation and learning networks,”

in 2014 IEEE International Symposium on Circuits and Systems (ISCAS)

(Melbourne, VIC), 469–472.

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2015).

Feedforward categorization on AERmotion events using cortex-like features in

a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26, 1963–1978.

doi: 10.1109/TNNLS.2014.2362542

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Afshar, Hamilton, Tapson, van Schaik and Cohen. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 January 2019 | Volume 12 | Article 104727

https://www.westernsydney.edu.au/bens/home/reproducible_research/atis_planes
https://www.westernsydney.edu.au/bens/home/reproducible_research/atis_planes
https://doi.org/10.3389/fnins.2014.00377
https://doi.org/10.1109/TBCAS.2015.2416391
https://doi.org/10.1162/NECO_a_00703
https://doi.org/10.3389/fnins.2016.00049
https://doi.org/10.1016/j.neunet.2011.11.001
https://doi.org/10.1016/j.neunet.2015.02.013
https://doi.org/10.1038/srep14730
https://doi.org/10.3389/fnins.2016.00405
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1109/TNNLS.2014.2308551
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1016/j.proeng.2012.04.128
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/TNNLS.2016.2536741
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.3389/fnins.2015.00481
https://doi.org/10.1109/TNNLS.2014.2362542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 22 February 2019

doi: 10.3389/fnins.2019.00004

Frontiers in Neuroscience | www.frontiersin.org 1 February 2019 | Volume 13 | Article 4

Edited by:

Yansong Chua,

Institute for Infocomm Research

(A*STAR), Singapore

Reviewed by:

Hesham Mostafa,

University of California, San Diego,

United States

Roshan Gopalakrishnan,

Institute for Infocomm Research

(A*STAR), Singapore

*Correspondence:

Rohit Shukla

rshukla3@wisc.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 30 October 2018

Accepted: 04 January 2019

Published: 22 February 2019

Citation:

Shukla R, Lipasti M, Van Essen B,

Moody A and Maruyama N (2019)

REMODEL: Rethinking Deep CNN

Models to Detect and Count on a

NeuroSynaptic System.

Front. Neurosci. 13:4.

doi: 10.3389/fnins.2019.00004

REMODEL: Rethinking Deep CNN
Models to Detect and Count on a
NeuroSynaptic System
Rohit Shukla 1*, Mikko Lipasti 1, Brian Van Essen 2, Adam Moody 2 and Naoya Maruyama 2

1Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, United States,
2 Lawrence Livermore National Laboratory, Livermore, CA, United States

In this work, we perform analysis of detection and counting of cars using a low-power IBM

TrueNorth Neurosynaptic System. For our evaluation we looked at a publicly-available

dataset that has overhead imagery of cars with context present in the image. The trained

neural network for image analysis was deployed on the NS16e system using IBM’s

EEDN training framework. Through multiple experiments we identify the architectural

bottlenecks present in TrueNorth system that does not let us deploy large neural

network structures. Following these experiments we propose changes to CNN model

to circumvent these architectural bottlenecks. The results of these evaluations have

been compared with caffe-based implementations of standard neural networks that were

deployed on a Titan-X GPU. Results showed that TrueNorth can detect cars from the

dataset with 97.60% accuracy and can be used to accurately count the number of cars

in the image with 69.04% accuracy. The car detection accuracy and car count (–/+ 2

error margin) accuracy are comparable to high-precision neural networks like AlexNet,

GoogLeNet, and ResCeption, but show a manifold improvement in power consumption.

Keywords: deep learning, convolutional neural network, IBM TrueNorth Neurosynaptic System, neuromorphic

computing, spiking neural network, aerial image analysis

1. INTRODUCTION

Neural networks today are achieving state-of-the-art performance in competitions across a range
of fields. Recent advances in deep learning (LeCun et al., 2015) have motivated the development
of neural hardware substrates that are tailored to implementing deep networks with extremely
low power and efficiency for a variety of embedded systems applications. Hardware that mimics
the computational capabilities of a human brain through spiking neural networks has been
shown to be not only extremely energy-efficient, but also capable of scaling up to large neural
networks. Examples include the IBM TrueNorth Neurosynaptic System (Merolla et al., 2014),
SpiNNaker (Furber et al., 2014), and the BrainScaleS project (Schemmel et al., 2008), all of
which mimic the computational behavior of spiking neurons and can also be used to deploy deep
neural networks.

One of the major challenges that these spiking neural network-based platforms faced was
deploying convolutional neural networks (CNNs) on spiking neurons. This issue was addressed
in the recent work from Cao et al. (2015) and Esser et al. (2016), and Eta Compute (Moore,
2018). The authors in Esser et al. (2016) have proposed an algorithm named energy-efficient deep
neuromorphic networks (EEDN) to map CNNs on TrueNorth. EEDN networks achieved at or
near state of the art accuracy when compared with traditional 32-bit precision neural networks

28

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00004
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00004&domain=pdf&date_stamp=2019-02-22
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rshukla3@wisc.edu
https://doi.org/10.3389/fnins.2019.00004
https://www.frontiersin.org/articles/10.3389/fnins.2019.00004/full
http://loop.frontiersin.org/people/460238/overview
http://loop.frontiersin.org/people/659670/overview
http://loop.frontiersin.org/people/676589/overview

Shukla et al. Rethinking CNN Models for TrueNorth

on standard benchmarks and they operated at a much higher

throughput (Frames Per Second) per watt. These promising

results show potential for deploying spiking neural network

based platforms for a variety of applications where battery life
and power consumption are primary concerns. Such applications
include video surveillance, UAV surveillance, aerial image
analysis, etc.

Prior work such as Esser et al. (2015, 2016), Wen et al. (2016),

Rueckauer et al. (2017), and Sengupta et al. (2018) have discussed

about how to efficiently train neural network models so that
the inference neural network can be easily mapped onto low

precision hardware such as TrueNorth without any loss in output

accuracy. But these prior works have only done the evaluations

against small object recognition datasets such as MNIST, CIFAR-

10, and CIFAR-100.
Prior work never listed out the challenges that might occur

when mapping large CNN or DNN structures on TrueNorth
for bigger datasets with large annotated images. For bigger
datasets resource limitations and the CNN model limitations
that TrueNorth can support start becoming a bottleneck. In
this paper we evaluate the challenges related to deployment
of EEDN trained neural network on TrueNorth hardware.
Discussions that have been reported in this article are meant to
complement the opportunities and challenges for spiking neural
network hardware that have been reported in Pfeiffer and Pfeil
(2018). The evaluations have been done against publicly-available
dataset of overhead aerial images of cars that was proposed
by Mundhenk et al. (2016) (Henceforth referred as COWC
dataset). Examples from COWC dataset have been shown in
Figure 1. As the neural network structures start becoming more
complex, we have to keep in mind limited number of TrueNorth
(Henceforth referred as TN) cores that are available and design
a neural network structure so that we can obtain benefits by
using hardware substrates more judiciously. This paper presents
design decisions that a developer would have to make to design
a neural network for the TrueNorth NS16e system (Sawada

FIGURE 1 | Sample images from COWC dataset (Mundhenk et al., 2016). Images are 192-by-192 pixels. For detection, (A,B), the model’s goal is to detect whether a

car is present in the center 48-by-48 pixels or not. Even though there are cars present in (B), the label has been set to false because there is no car in the center

48-by-48 pixels of the image. For the counting task, (C), the goal is to count the exact number of cars present in an image. The example shown in the figure has the

label value “13,” since there are 13 cars in the image.

et al., 2016) that is shown in Figure 2A. The goal of this work
is to present how knowledge of hardware architecture affects
the decisions and parameter choices made while training and
deploying neural networks on TrueNorth. These observations
can assist us in maximizing the benefits of TrueNorth’s available
hardware computational resources.

Contributions of the research proposed in this paper are:

• Evaluate TrueNorth deployed CNNs for counting and
detection tasks on COWC dataset (Mundhenk et al., 2016).

• Resources consumed by AlexNet (Krizhevsky et al., 2012) and
VGG-16 (Simonyan and Zisserman, 2014) neural networks
when deployed on NS16e hardware (Sawada et al., 2016).
Identifying the architectural bottlenecks of these CNN
structures and proposed changes to the CNN structure so that
it could be deployed on NS16e hardware.

• Analysis of change in resource consumption and output
accuracy based on the prior works such as, network-in-
network structure (Lin et al., 2013), MobileNets (Howard
et al., 2017), and YOLO (Redmon and Farhadi, 2016) neural
network models.

• Discussions presented in section 4 outline the opportunities
that are present in SNN hardware that can address the
challenges present in TrueNorth architecture and EEDN
training algorithm.

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Cars Overhead With Context Dataset
Paraphrasing the work presented by Mundhenk et al. (2016), the
cars overhead with context (COWC) data set is a large set of
annotated overhead aerial images that contain cars. This dataset
is useful for training Deep Neural Networks (DNNs) so that they
are able to perform area based surveillance by detecting and
counting cars that are present in the image. This dataset could
be potentially used to keep track of volume of cars by deploying

Frontiers in Neuroscience | www.frontiersin.org 2 February 2019 | Volume 13 | Article 429

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 2 | (A) NS16e hardware system that was developed by IBM (Image from Shah, 2016). (B) Single neurosynaptic core which forms the computational block of

the TrueNorth chips with the details presented in Cassidy et al. (2013) and Nere (2013).

the trained DNNs on unmanned aerial vehicles or drones. The
goal of this dataset is to allowDNNs to determine the relationship
between context and appearance such that something that looks
very much like a car is detected even if it is in an unusual
place. Unlike datasets such as MNIST, CIFAR-10, and CIFAR-
100, where the maximum image size for which the neural
network models were trained was 64-by-64 pixels (Esser et al.,
2015, 2016), the COWC dataset consists of annotated images
of size 192-by-192 pixels and this dataset requires us to solve a
regression problem (counting the number of cars present in the
entire image).

Figure 1 shows some of the sample images from the dataset.
The goal of our work is to map this problem onto a low-power
neural network architecture such as TrueNorth and evaluate its
performance. The images in this dataset cannot be cropped out
for training because the labels have been set for the entire image.
For example, if the image shown in Figure 1C was cropped out
for training, then the label “13” won’t be correct, because the
cropped out piece of image won’t have the same number of cars
as the label.

2.1.2. NS16e System
Summarizing the details of TrueNorth, as presented in Sawada
et al. (2016), a single chip consists of 4,096 neurosynaptic
cores (as shown in Figure 2B), tiled as a 64×64 array. Neurons
integrate incoming spikes weighted by the synaptic strength
and when a neuron membrane potential integrates beyond
its threshold, it fires a spike, transmitting it to a target
axon on any core in the network. In the same clock tick
when neuron fired, the neuron would reset its membrane
potential. Truenorth chips can be scaled beyond a single chip
using SerDes links. As a result it is relatively simple to tile
TrueNorth chips in a two-dimensional array, enabling the NS16e
scale-up system.

Figure 3 shows a high-level setup for NS16e system and,
the flow of computations happens between the off-chip system
and NS16e hardware. In TrueNorth (as shown in Figure 3A)
image binarization (data transduction) happens outside the TN
chips, that is, in the CPU/FPGA hybrid system. 1 When an
RGB image is fed to the TrueNorth system, 2 based on the
learned convolutional layer weights and output feature count of
the transduction layer, a corresponding number of binary images
is produced. 3 These binary images are then sent to TN chips
and on these TN chips these image features are fanned out using
splitters (Figure 3B) so that multiple filter weights can operate in
parallel on the same set of binary image features.

2.2. CNN Design Decisions
In this section we present design decisions for modifying
standard neural network structures for NS16e hardware
platform. First we will understand different set of computations
that happen in standard neural network architectures, followed
by what are the resource or architectural bottlenecks that we
face when mapping these standard neural network architectures.
Once we have understood the challenges and the architectural
bottlenecks, we will look at how these issues can be addressed by
proposing different neural network structure design.

2.2.1. Formulate Regression Problem as a

Classification Problem
To maintain high throughput, TrueNorth performs operations
in stream of single bits. A trained TrueNorth network will have
ternary weights {–1,0,1} and binary activation {0,1}; as a result,
algorithms that require us to solve regression problems, i.e.,
infer continuous output values, such as the car count in the
image, present a challenge. Being able to estimate high precision
values by using binary activation functions is a hard problem.
In the context of TrueNorth and spiking neural networks, prior

Frontiers in Neuroscience | www.frontiersin.org 3 February 2019 | Volume 13 | Article 430

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 3 | The figure describes the NS16e system setup. (A) NS16e system consists of three stages. The hybrid CPU/FPGA system performs data pre/post

processing and image binarization. The computed spikes are later sent to TN chips on which the CNN has been deployed (B) An image of how splitters are used on

TrueNorth for increasing a neuron’s fan-out.

work such as Diehl et al. (2016) and Shukla et al. (2017,
2018) have represented regression output values using rate
coding scheme, where the expected value of spike train over a
time window represented the value. But with this scheme the
operating frequency of hardware starts becoming the bottleneck.
To match the biological clock rate TrueNorth operates at 1 KHz
frequency (Akopyan et al., 2015); as a result, if the problem
requires us to estimate continuous numbers, we would have to
count the number of spikes received over a window of time
to estimate the output and this ends up slowing down the
computation time. We can circumvent this issue by recasting
the regression problem as a classification problem with estimated
discrete values as outputs. This approach might require more
hardware neurons for a large number of output bins. For the
dataset that we are studying, the car counting problem would
predict from 65 classes. As noted in Mundhenk et al. (2016), the
number of cars in each image patch lie in the interval between
0 to 64.

2.2.2. Case Study: Map AlexNet Neural Network

Model Onto TrueNorth
We will start off the discussion by mapping AlexNet neural
network model onto TrueNorth NS16e hardware. The accuracy
and hardware analysis of AlexNet-TrueNorth model has been
presented in Table 1.

Figure 4A shows the neural network model of a standard
AlexNet structure and Figure 5A shows the modified AlexNet
neural network model for TrueNorth ns16e hardware. The

TABLE 1 | Convolutional neural network structure analysis and testing accuracy.

Model name Detection

accuracy

(in %)

Counting

accuracy

(in %)

Chips required

for first 3 TN

CNN layers

AlexNet (Figure 4A) 97.62 67.97 N/A

AlexNet modified (Figure 5A) 89.98 48.82 3.19

VGG-16 modified (1) (Figure 8A) 96.09 67.96 8.67

VGG-16 modified (2) (Figure 8B) 97.25 67.82 8.67

Deeper CNN structure 1

(Figure 11A)

97.52 68.21 11.16

Deeper CNN structure 2

(Figure 11B)

97.60 69.04 11.16

difference between the neural network is highlighted using the
rectangular box as described in Figures 4B, 5B. As shown in Esser
et al. (2016), Equation (1) defines the activation function used by
CNN layers that are deployed on TN.

TN defined activation function =

{

1 neuron filter response ≥ 0

0 otherwise

(1)

2.2.2.1. Challenges with AlexNet neural network model
In TrueNorth, neural network architectures where a large set
of convolutional network neurons need to be connected to
fully connected layers will consume a considerable amount

Frontiers in Neuroscience | www.frontiersin.org 4 February 2019 | Volume 13 | Article 431

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 4 | This figure shows the standard AlexNet neural network architecture. The numbers written on top of the blocks show the output feature dimension of that

block in CNN model. (A) Shows the standard AlexNet neural network model (Krizhevsky et al., 2012). (B) Sections in the standard AlexNet neural network structure

that pose a problem when trying to map it onto TrueNorth.

FIGURE 5 | This figure shows the AlexNet implementation on TrueNorth. The numbers written on top of the blocks show the output feature dimension of that block in

CNN model. (A) Shows the modified AlexNet architecture for TrueNorth implementation. (B) Sections in the modified AlexNet neural network structure there later fixed

when trying to map the standard AlexNet onto TrueNorth. The output feature dimensions of 9th CNN layer in the proposed modified AlexNet is different for standard

AlexNet model (Figure 4). This is because the 8th CNN layer in this modified layer has a padding of 1, unlike the standard AlexNet mode where the 8th CNN layer did

not have any padding.

of hardware resources. Thus, the proposed CNN avoid fully-
connected layers, and instead the convolutional features are
progressively downsampled to a one-by-one convolution. For
example, in AlexNet (Krizhevsky et al., 2012), there are 9,216
neurons that present the output features of the 5th convolutional
layer and these have to be connected to 4,096 neurons present
in first fully connected layer. This kind of structure is crucial for
datasets where we have to scan through the entire image pixels
before predicting an output, such as counting the number of
cars in our experiments. Prior work done by the authors have
used either only a convolutional neural network structure (Esser
et al., 2016) or just a fully connected neural network (Esser et al.,
2015) in the context of object recognition. Earlier work have
not addressed how to interface convolutional to fully connected
layers. Mapping such CNN outputs on TrueNorth would require
us to connect each convolutional layer neuron to all neurons in
the fully connected layer. As a result, we might either end up
using large number of cores as splitters to implement this fanout,

as shown in Figure 3B, or we might use additional hardware
resources to rearrange the 3D convolutional layers for a 1D fully
connected layer.

2.2.2.2. Proposed modification for AlexNet neural network

model
We have addressed the challenges associated with convolutional
layer and fully connected layer connections by downsampling the
CNN output all the way down to a one-by-one convolution using
strided convolutions. The downsampling has been performed
by having a convolutional layer that has convolution window
of size 7 x 7 pixels and a stride of 7, as shown by the
rectangular box in Figure 5A. Similar downsampling has been
used in MobileNets (Howard et al., 2017). This structure ensures
that the output layer considers the entire image but is more
friendly to TrueNorth’s limited fanout capability. The proposed
AlexNet Figure 5A requires 9 TN chips for deployment onto
NS16e hardware.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2019 | Volume 13 | Article 432

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 6 | This figure shows the standard VGG-16 neural network architecture implementation. The numbers written on top of the blocks show the output feature

dimension of that block in CNN model. (A) Shows the standard VGG-16 neural network model (Simonyan and Zisserman, 2014). (B) Three sections in the standard

VGG-16 neural network structure that pose a problem when trying to map it onto TrueNorth.

FIGURE 7 | This figure shows the standard VGG-16 neural network architecture that has been modified for TrueNorth implementation. The numbers written on top of

the blocks show the output feature dimension of that block in CNN model. Similar to AlexNet, this standard VGG-16 neural network model has CNN features that

have been downsampled all the way down to a one-by-one convolution using convolution kernels of size 7 x 7 and stride of 7.

Readers should observe that the output feature dimensions of
9th CNN layer is different for standard AlexNet model (Figure 4)
andmodified AlexNet model (Figure 5A). This is because the 8th
CNN layer in this modified layer has a padding of 1, unlike the
standard AlexNet model where the 8th CNN layer did not have
any padding.

2.2.3. Case Study: Map VGG-16 Neural Network

Model Onto TrueNorth
Next we will look at the challenges that come up when we map
VGG-16 style architecture onto the TrueNorth ns16e hardware.
As explained earlier, Equation (1) defines the activation function
used by CNN layers deployed on TN.

Figure 6A shows the neural network model of a standard
VGG-16 structure. Three different sections of VGG-16
neural network structure that pose a problem for TrueNorth
implementation have been highlighted using the rectangular box
in Figure 6B.

Figure 7 shows the standard VGG-16 neural network
architecture that has been modified for TrueNorth
implementation. Similar to AlexNet, this standard VGG-
16 neural network model has CNN features that have
been downsampled all the way down to a one-by-one
convolution using convolution kernels of size 7 x 7 and
stride of 7.

2.2.3.1. Challenges in VGG-16: hardware resource limitation
If the users were to map the standard VGG-16 neural network
model that has been shown in Figure 7, then the EEDN trained
CNN model would require more than 49 TrueNorth chips to
deploy the said neural network; whereas, NS16e hardware has
only 16 available TN chips. It is important for us to understand
the architectural bottlenecks in the NS16e hardware that does not
allow us to map the VGG-16 neural network structure and how
can it be addressed when designing a neural network model for
an application.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2019 | Volume 13 | Article 433

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 8 | This figure shows the modified VGG-16 neural network architecture for TrueNorth ns16e hardware. The numbers written on top of the blocks show the

output feature dimension of that block in CNN model. (A) Shows the modified VGG-16 neural network model (1) where the input image size if kept at 224x224 pixels.

(B) Shows the modified VGG-16 neural network model (2) where the input image size if kept at 192x192 pixels.

2.2.3.2. Challenges in VGG-16: input feature size and feature

count
In TrueNorth (as shown in Figure 3A) image binarization (data
transduction) happens outside the TN chips, that is, in the
CPU/FPGA hybrid system. As discussed in section 2.1.2, step
3 , the binary image features representation are fanned out
inside TN chips, thus, a considerable amount of resources are
taken up by splitters for this pixel fan-out. That is, neurons that
could have been potentially used for computation, have to be
utilized as resources that would create multiple copies of the
input features so that different convolutional filters can operate
on these input features in parallel. Since prior work (Esser et al.,
2015, 2016) have trained neural networks for a maximum input
image size of 64-by-64 pixels, this problem of fan-out becomes
more significant if the dataset has larger image size (192-by-
192 pixels in case of COWC dataset). To minimize the fan-
out resource utilization we have to either reduce the image
size or reduce the number of input features. Next section will
explain the reduction in required hardware resources for fan-
out with the modified VGG-16 architecture (Figure 8). A more
thorough analysis on the trade-off between fan-out requirement
and, different input features and smaller input image sizes, has
been presented in section 3.2.

2.2.3.3. Proposed modification for VGG-16 input
Figures 8A,B show themodified neural networkmodels of VGG-
16 structure and Figure 9 shows the hardware requirements
for mapping CNN layers on TrueNorth. For understanding the
hardware resource consumption, we focus on the TN chips

required by first three layers of CNNs deployed on TN and
splitters. Figure 8A keeps the input image size same as the one
for standard VGG-16 structure, but the number of features in
the initial layer had to be reduced from 64 to 40. This is because
having a feature count of 64 for the first layer requires 14 chips
just to handle the fan-out using splitters. By reducing the number
of feature count to 40, TrueNorth requires 3 chips for fan-out.
Similarly, the fan-out constraints can be addressed by reducing
the input image size as shown in Figure 8B. Here the goal was
to keep the number of features in the initial layer to be 64,
same as the one standard VGG-16 structure. To achieve this
we have proposed an input image of comparatively smaller size,
that is, instead of having an image of size 224 x 224 pixels,
we have an input image of size 192 x 192 pixels. As explained
earlier (section 2.1.1), the COWC dataset has images of size
192 x 192 pixels. Therefore, by having a comparatively smaller
images as input we do not sacrifice any pixel level information,
but after this modification we require only 5 TN chips to serve
as splitters.

Figure 9 shows the breakdown of chip utilization for the

splitters, and convolutional layers 2, 3, and 4, since these four

layers consumed the most number of hardware resources. It can
be inferred from Figure 9 that by having small input feature size,
TN requires significantly less number of hardware resources for
splitters and the first CNN layer that is deployed on TN. AlexNet
downsamples the input images by having a CNN layer of stride 5
in the initial layer. Whereas, for VGG-16 models, the user would
have to keep inmind the input feature count and input image size
because the initial layer has CNN layer of stride 2.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 434

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 9 | Percentage of TN chips required on NS16e system for splitters and the three CNN layers that are deployed on the hardware. These chip consumption

values are for AlexNet CNN presented in Figure 5, VGG-16 CNN models that have been presented in Figures 7, 8.

2.2.3.4. Challenges in VGG-16: size of convolutional kernels
Selecting an appropriate convolutional kernel size is crucial for
deploying CNNs on a hardware constrained substrate. Hence,
smaller convolutional kernel would be very helpful. TrueNorth
convolutional layers support 1 x 1 convolutions that were
proposed by Lin et al. (2013). The pooling layers in EEDN
networks have been implemented as convolutional operations
with a stride of 2, as proposed by Springenberg et al. (2014).
Larger kernels such as 5 x 5 kernels are good for learning higher
level features in an image, whereas smaller kernels such as 3 x 3
and 1 x 1 kernels are good for learning lower level features and 1 x
1 convolutions can add non-linearity at a pixel level of the image.
These convolution operations tend to learn the object properties
and give prediction results based on these properties.

2.2.3.5. Proposed method for selecting kernel size
Convolution kernels that are bigger than 3 x 3, are used
only in the preprocessing layers. As presented in section 2.1.2
and Figure 3A, image binarization or preprocessing happens
off-chip. As a result, even if larger convolutional kernels are
selected for the first CNN layer, TrueNorth resources do not
get consumed because the first layer (or preprocessing layer)
gets implemented off-chip. Therefore, as shown in Figure 8, the
first CNN layer of modified VGG-16 structure has convolutional
kernels of size 5 x 5 pixels and this layer is implemented off-chip.
Similarly, we were able to have convolutional kernels of size 11 x
11 for the first CNN layer in modified AlexNet model as shown
in Figure 5A. On the other hand, rest of the CNN layers have
smaller sized convolutional kernels, that is, the convolutional
kernels are of size 3 x 3 or 1 x 1. Smaller kernels require fewer
computational resources, enabling us to fit a denser and wider
network on the TrueNorth substrate. The 1 x 1 convolution layers
require 9 times fewer groups than the 3 x 3 layers and 25 times
fewer groups than the 5 x 5 layers. A similar idea of having only
1 x 1 and 3 x 3 convolution layers in the CNN structure was
proposed by the authors of SqueezeNet (Iandola et al., 2016).

Figure 10 shows a comparison between hardware resources
required by replacing certain 3 x 3 convolutions in standard
VGG-16 neural network structure with 1 x 1 convolutions.
Note that the x-axis of plot in Figure 10 shows the CNN
layer in standard VGG-16 that were replaced with 1 x 1
convolution kernels. 5th convolution layer of standard VGG-
16 corresponds to 3rd convolution layer of modified VGG-
16 structures; similarly 8th convolution layer of standard
VGG-16 corresponds to 6th convolution layer of modified
VGG-16 structures, 12th convolution layer of standard VGG-
16 corresponds to 9th convolution layer of modified VGG-
16 structures and 16th convolution layer of standard VGG-
16 corresponds to 12th convolution layer of modified VGG-
16 structures. It can be observed from the plots that by
having smaller convolutional kernels, modified VGG model (1)
(Figure 8A) is able to achieve up to 6.6x reduction in hardware
resources; similarly modified VGG model (2) (Figure 8B) is
able to achieve up to 8.3x hardware resources. Note that the
second modified VGG model is performing computations on
comparatively smaller image patches, as a result, it requires less
number of hardware resources when compared with all of the
other neural network structure models.

2.2.3.6. Discussion on fully convolutional neural network of

VGG-16
As presented in section 2.2.2, one of the challenges that
users might face when mapping standard neural network
structures onto TrueNorth is that currently the proposed
hardware architecture does not support convolutional layer to
fully connected layer connections. Similar to modified AlexNet
model, while mapping VGG-16 onto TrueNorth, the CNN
features are downsampled all the way down to a one-by-
one convolution using strided convolutions. The downsampling
has been performed by having a convolutional layer that has
convolution window of size 7 x 7 pixels and a stride of 7, (as
shown in Figure 8A) or by having a convolutional layer that has

Frontiers in Neuroscience | www.frontiersin.org 8 February 2019 | Volume 13 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 10 | Hardware savings that is achieved by replacing 3 x 3 convolution kernels in standard VGG-16 model with 1 x 1 convolution kernels. Modified VGG-16

model (1) refers to the CNN structure presented in Figure 8A, and modified VGG-16 model (2) refers to the CNN structure presented in Figure 8B. X-axis shows the

convolutional layer in standard VGG-16 (Simonyan and Zisserman, 2014) CNN that originally had 3 x 3 convolution kernel, but they were replaced by 1 x 1 kernels in

the modified VGG-16 (Figure 8) model for NS16e. Y-axis shows the number of chips that were consumed by the CNN layer when deployed onto NS16e.

convolution window of size 6 x 6 pixels and a stride of 6 (as shown
in Figure 8B).

2.2.4. Case Study: Deeper Fully Convolutional Neural

Network
As we have discussed in earlier designs, TrueNorth does not
support convolutional layer to fully connected layer connections.
The proposed solutions for the earlier neural network designs
were to downsample intermediate CNN features all the way down
to a one-by-one convolution using strided convolutions. We
achieved this by taking average of CNN features that are of size 7
x 7 pixels (as shown in Figures 5A, 8A) or 6 x 6 pixels (as shown
in Figure 8B). In this section we propose having a deeper fully
convolutional neural network for modified VGG-16 network
(that were earlier shown in Figure 8). Unlike the proposed
previous two designs, the CNN features are downsampled all
the way down to a one-by-one convolution using additional
strided convolutions of size 2 x 2 instead of having convolutional
filters of size 7 x 7 or 6 x 6. The deeper convolutional neural
network has been shown in Figure 11. The proposed deep
CNN model does not require any additional TrueNorth chips
for deployment. Since the image size has become significantly
small, we do not observe any significant change in hardware
requirements. As a result, the proposed deep CNN model can be
mapped using all of the 16 TrueNorth chips that are available on
NS16e hardware.

3. RESULTS

This section describes how the decisions that have been proposed
in section 2.2 affect accuracy and hardware resource utilization.
The EEDN-trained CNN structures have been compared against
more standard neural network models that were deployed on
Titan X GPU. All of the neural networks were trained only for
COWC dataset. For EEDN trained CNNs the output layer has a
softmax loss function. The car detection dataset had two output

classes, whereas the car counting dataset has 65 output classes
which predict car count from 0 to 64. Momentum was set at
0.9; the spikeDecay parameter which controls the backpressure
of input spikes to a neuron was set at 7.5e − 5; and weightDecay
parameter was set at 1e− 6 for all of the layers.

3.1. Accuracy Analysis
Table 2, shows the detection and accuracy for Alexnet (baseline
neural network) and different CNN models that have been
proposed in Figures 5A, 8A, 8B, 11A, 11B. The results of this
table also quantifies the number of chips that are utilized to map
the first three TN-deployed convolutional layers.

Based on the results reported in Table 1, a modified
AlexNet model (Figure 5A) achieves significantly low accuracy
compared to is floating-point counterpart (Figure 4A) that was
implemented on a GPU. This loss in accuracy is due to ternary
weight and binary activation representation that IBM TrueNorth
computes on (as explained in McKinstry et al., 2018), as well as,
aggressively downsampling the input images by a factor of 4 in
the first layer because of which, the EEDN based CNN is not able
to capture the unique features properly. Whereas, we can observe
a significant improvement in accuracy with modified VGG-16
neural network models. Unlike AlexNet, the modified VGG-16
models (Figures 8A,B) are much deeper and are able to learn
distinguishable features much more efficiently.

Figure 12 shows a comparison between counting labels
estimated by AlexNet CNN structure (Figure 5A) and deep
modified VGG-16 model (Figure 12B) that were deployed on
TrueNorth. As stated earlier, AlexNet model is not able to learn
the distinguishable features as efficiently as the deeper CNN
models. It can be observed from the plots in Figure 12 that
average error is high for high value of counting labels. For high
label values (45–49 and 50–54) images have high density of cars
in them, therefore, it is important to have CNN structures that
are able to learn the features which can detect individual cars and
later use them for counting task.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2019 | Volume 13 | Article 436

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 11 | This figure shows deeper convolutional neural network architecture for TrueNorth ns16e hardware. The numbers written on top of the blocks show the

output feature dimension of that block in CNN model. These CNN models are extensions of the VGG-16 models that were proposed in Figure 8. (A) shows the deep

convolutional neural network model where the input image size is kept at 224x224 pixels. (B) shows the deep convolutional neural neural network model where the

input image size is kept at 192x192 pixels.

FIGURE 12 | Error in estimating the label of car count vs the actual car count label. The plot compares the counting labels that were predicted with AlexNet CNN

(Figure 5A) and deep modified VGG-16 model (Figure 11B). X-axis shows the range of labels associated with the counting dataset. For example, in the x-axis a

value of 0–9 represents all of the counting dataset labels that were counting values in the range from 0 to 9. In (A) Y-axis plots the average error in estimating car

count, and in (B) Y-axis plots the standard deviation of error in estimating car count.

Table 2, shows the detection and accuracy for Alexnet and
different CNN models that have been proposed in Figure 13.
The results of this table also quantifies the number of
chips that are utilized to map the first three TN-deployed
convolutional layers.

3.2. Experiments With Additional Neural
Network Structures
Figure 13 shows the different CNN models that were trained
using EEDN training algorithm. All of these proposed CNN
models are a variation of deep CNN structure that was shown

in Figure 11. Equation (1) shows the activation function used by
CNN layers deployed on TN. It is important for us to understand
how different input image size or feature count of convolutional
layers would affect the hardware resource consumption and
the test accuracy. If the CNN structure is designed naively,
then we might waste critical compute resources for performing
operations such as creating multiple instances of input data. On
the other hand, if the proposed design is extremely conservative,
then the accuracy may reduce significantly. Therefore, in this
section we will discuss how different design proposals will affect
hardware usage and dataset accuracy.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2019 | Volume 13 | Article 437

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

TABLE 2 | Hardware resource analysis and testing accuracy for additional CNN

structures.

Model name Detection

accuracy (in

%)

Counting

accuracy (in

%)

Chips required

for first 3 TN

CNN layers

AlexNet 97.62 67.97 N/A

CNN Model 1 (Figure 13A) 97.87 68.62 19.88

CNN Model 2 (Figure 13B) 97.21 66.73 9.45

CNN Model 3 (Figure 13C) 97.52 68.21 8.67

CNN Model 4α (Figure 13D) 97.60 69.04 11.16

CNN Model 4β (Figure 13E) 90.98 53.4 11.16

CNN Model 5 (Figure 13F) 97.1 65.31 8.99

Each of the proposed CNN structure has a different
input image size, and different output feature counts for the
first four convolutional layers. The first convolutional layer
(or transduction layer) is deployed on CPU/FPGA off-chip
system (Esser et al., 2016; Sawada et al., 2016), whereas
convolutional layers 2, 3, and 4 are deployed on the TrueNorth
hardware. The proposed CNNmodels, Figures 13B–F require 16
chips to be deployed on TN hardware.

The CNN models shown in Figures 13A–D,F, are all 23-
layered CNN models, and the final layer serves as softmax loss
function. Figures 13D,E are meant for comparison with prior
approach to model CNNs. Figure 13E is a 19-layered CNN
model, and in this structure we do not downsample the image
features to a 1× 1 patch. Instead for CNNmodel 4β (Figure 13E)
we downsample the patches until the size of the patch is 6-by-
6 pixels. Even though CNN models 4α (Figure 13D) and 4β
(Figure 13E) have a different number of layers, the input image
size and feature count in the initial layers are the same for the
both models

Figure 14 shows the breakdown of chip utilization for the
splitters, and convolutional layers 2, 3, and 4, since these four
layers consumed the most number of hardware resources. In
section 2.2.3.2 we introduced the concept of balancing input
image size with the transduction layer’s output feature count
so that a minimum number of chips are used up for fan-out
while keeping the test accuracy comparable to more standard
approaches. Table 2 shows that by proposing a neural network
architecture that is similar to CNN model 4, we can have
test accuracy that is similar to the full precision AlexNet
implementation. In CNNmodel 4 (Figure 13C), the input image
is of size 192-by-192 pixels, as a result, there is no loss in
pixel information due to early downsampling. If input images
are downsampled aggressively (by using pooling layers), or the
number of features is reduced significantly, test accuracy for
detection and counting will also decrease. For example, if the
input images are downsampled from 160-by-160 pixels to a small
size of say 80-by-80 pixels in the first convolutional layer, then
we can have more number of features, but the output accuracy
is still less compared to CNN model 4. Having more output
feature does not help in improving the test accuracy because
the image features do not get captured nicely with an aggressive
downsampling operation.

3.3. Comparison With Prior Approach
Section 2.2.3.6 motivated the need for fully convolutional neural
networks where the image patch has been downsampled to a 1
× 1 patch. Prior work by Esser et al. (2016) proposed a fully
convolutional neural network where a 64-by-64 pixel input image
was downsampled to an 8-by-8 patch for output prediction. We
compare our proposed CNN structure with the decision that was
presented (Esser et al., 2016) and (Alom et al., 2018). We perform
this comparison by analyzing the test accuracy of CNNmodel 4α
(Figure 13D) and CNN model 4β (Figure 13E). In CNN model
4β , the input image patch is downsampled only to a 6-by-6 pixel
patch. Both of these CNN models require 16 TN chips to be
deployed. The training parameters were also the same for both
of these models.

Based on the results shown in Table 2, we can observe there is
a significant difference in test accuracy between the two models.
This might be because CNN model 4β does not get to scan the
entire image before making the prediction. In contrast, CNN
model 4α is able to find a relationship between all of the pixels
in the image and provide a better output prediction. There is a
difference of 6.62% in detection accuracy and 15.64% in counting
accuracy between CNN model 4α and CNN model 4β , with
our approach of CNN model 4α having a considerably higher
test accuracy.

3.4. Hardware Analysis
As per the detection and counting accuracies shown in Table 2,
CNN model 4α (Figure 13C) has the best accuracy among all of
the neural network models that were evaluated. This model can
also be deployed on NS16e TrueNorth hardware. Therefore, rest
of the discussion in this section will focus on the test accuracy
results obtained from CNN model 4, as well as report hardware
analysis for this neural network model.

Table 2 shows the results for COWC dataset after the trained
network (CNN model 4) was deployed on NS16e system.
Neural network structures for both counting and detection tasks
consumed all of the 16 chips available in NS16e platform. The
standard neural networks were implemented using the Caffe
neural network framework (Jia et al., 2014) and the trained full-
precision neural networks were deployed on NVIDIA Titan X
GPU. Table 3 shows the percentage accuracy for three different
tasks. The first task is car detection, a binary classification
problem where the goal is to predict whether a car has been
detected in the center of the image or not. For the entire
detection test dataset, accuracy of car detection with CNNmodel
4 (Figure 13C) is 97.35%, precision score is 96.36%, recall score
is 97.33%, and the F1 score of this task is 96.84%. Overall, the
mapped neural network on TrueNorth does very well in detecting
the objects. The second task is to count the number of cars in
the image and predict how many cars are present in the image in
the range from 0 to 64. The third goal is to count the number of
cars in the image by relaxing the output prediction condition; that
is, if an error margin of −/+ 2 is allowed for estimating the car
count, then what would be the prediction accuracy. For example,
in Figure 1C the correct label is 13 for counting. With −/+ 2
margin error, if the neural network predicts any label in the range

Frontiers in Neuroscience | www.frontiersin.org 11 February 2019 | Volume 13 | Article 438

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

FIGURE 13 | Convolutional neural network structures trained using EEDN for COWC dataset. The numbers written on top of the blocks show the output feature

dimension of that block in CNN model. (A–F) shows different design decisions for all of the six CNN models. Each of the proposed CNN model either has (1) different

input image size, or (2) different output feature count for first four convolutional layers, or (3) different number of pooling layers (CNN models 4α and 4β). (A–D) and (F)

are all 23-layered CNN models, and the final layer serves as softmax loss function. (D) and (E) are meant for comparison with prior approach to model CNNs. (E) is a

19-layered CNN model, and in this structure we do not downsample the image features to a 1 × 1 patch.

FIGURE 14 | Stacked bar plot illustrating percentage chips utilized in the NS16e system by splitters and convolutional layers for different convolutional models.

Frontiers in Neuroscience | www.frontiersin.org 12 February 2019 | Volume 13 | Article 439

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

TABLE 3 | This table reports accuracy for car detection and car counting on TrueNorth and NVIDIA Titan X, as well as throughput for car counting on these platforms.

Neural network

structure

Detection

accuracy

(in %)

Counting

accuracy

(in %)

Counting accuracy

with −/+2 error

margin (in %)

Frames per second

(FPS) for counting

task

FPS per watt

Truenorth (EEDN) 97.60 69.04 96.57 3.38 0.444 (at 0.775 V) 0.387 (at 1.0 V)

AlexNet 97.62 67.97 98.82 11.48 0.046

GoogLeNet 99.12 80.35 98.87 2.73 0.011

ResCeption 99.14 80.34 98.86 2.91 0.012

∈ [11, 15] our model would classify that as a correct output with
respect to the input image of Figure 1C.

As per the results for CNN model 2 (Figure 13C) in
Table 3, neural networks deployed on TrueNorth with EEDN
framework have accuracy that is close to AlexNet, but have
a considerable difference when compared with GoogLeNet (as
proposed in Szegedy et al., 2014) and ResCeption (as proposed
in Mundhenk et al., 2016). This could be due to the rich feature
representations that GoogLeNet and ResCeption can capture.
Each layer in these two neural networks has different-sized filters
operating in parallel, and the outputs from these filters get
depth concatenated. As a result GoogLeNet and ResCeption can
capture robust, differentiable features. However, this difference
reduces significantly with an allowed errormargin of−/+ 2 when
predicting the car count.

Table 3 shows the frames per Second (FPS) for car counting
based classification problem for the neural networks that were
deployed on different hardware platforms. As per (Mundhenk
et al., 2016) a single frame in FPS is defined as the scene of
size 2048-by-2048 pixels with additional padding so that the first
patch has a center at (0,0). The image frame is divided into
multiple patches of 192-by-192 pixels and a stride of 167 pixels.
Therefore, the frames per Second (FPS) for counting task is
meant to quantify how fast the CNN models can scan though an
entire image frame of 2048-by-2048 pixel and be able to count the
number of cars in this entire frame. The tick period of TrueNorth
operation had to be increased to 1.75 ms (operating frequency
was reduced to 571.43 Hz) to get the results shown in Table 3,
possibly because for smaller tick period, spikes were getting
bottlenecked when trying to cross chip boundaries. Article on
TrueNorth ecosystem (Sawada et al., 2016) presents how spikes
travel during inter-chip communication. First a spike has to
traverse one row of the network-on-chip, then travel through
the chip I/O peripheral circuitry and finally it is delivered to the
destination chip through limited I/O connections that are present
between two chips. Since the spikes have to travel peripheral
circuitry and limited I/O connections that are present between
two chips, these sections become a bottleneck for inter-chip
communication if the spike rate is high. As a result, the spikes
were not getting delivered for smaller tick periods since the inter-
chip communication bandwidth was becoming the bottleneck
for multi-chip networks. Prior work by Akopyan et al. (2015)
have proposed wire-length minimization placement algorithm
for TrueNorth. A better placement of cores could improve the
runtime as well as the FPS.

In this section we report the first-order analysis of NS16e
TrueNorth power consumption values based on the analysis
that was presented in Merolla et al. (2014) and Sawada et al.

(2016). TrueNorth chips can operate at 0.775 V and 1.0 V. The
power consumption values were calculated with an operating
frequency of 571.43 Hz, static power was set to 70 mW for 0.775
V operating voltage and 114 mW for 1.0 V operating voltage.
We assumed that dynamic power is the same as static power
for an operating frequency 1KHz and later these dynamic power
values were scaled down linearly to account for the chip operating
frequency of 571.43 Hz. When all of the chips on NS16e board
are computing at the same time, the total combined active power
consumed by TrueNorth chips is 1.76 W and 2.87 W with the
operating voltage set at 0.775 V and 1.0 V, respectively. Total
peak power consumed by the NS16e system is 7.62 W for 0.775
V operating voltage and 8.73 W for 1.0 V operating voltage. In
contrast, an NVIDIA Titan X GPU can consume a peak power of
250W to run these neural network structures at its highest frames
per second rate.

4. DISCUSSION

4.1. Summary
In this paper we described four design decisions that a
designer would have to address to deploy CNN structures on a
neurosynaptic system such as IBM TrueNorth. These decisions
are very important if the goal is to perform tasks such as detection
and counting in a hardware constrained environment. Section 2.2
introduced the need to have a systematic approach for proposing
neural network designs that can be mapped onto TrueNorth.
Here we discussed how we can leverage prior work that have
been proposed for CNN design and extend those ideas to EEDN
based CNNmodels for TrueNorth. We showed that if a standard
VGG-16 CNN model is modified systematically, while keeping
in mind the architectural bottlenecks that are present in NS16e,
hardware resource requirements can be reduced by 3x (refer to
Figures 9, 10).

Similarly, we discussed in Table 1 that with systematic
approach to mapping CNNs on TrueNorth, the accuracy could
be improved by 8% for detection based task and by 20% for
counting based task when compared to having a naive ternary-
weight AlexNet implementation on NS16e. Results presented in
Table 2 show that EEDN trained neural network can have similar
accuracy as full precision AlexNet.

It is important for us to consider how many TN cores are
performing relevant computations. The analysis presented in
Figure 14 shows that it is extremely important for users to
consider the trade-off between the hardware resources that is
available for mapping the neural network, and the input image
size and feature counts of initial layers, to achieve the desired
test accuracy.

Frontiers in Neuroscience | www.frontiersin.org 13 February 2019 | Volume 13 | Article 440

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

Section 3.4 analyzes the cost of the deployed neural network
on TN hardware. As per the results presented in Table 3, the
EEDN-trained neural network when deployed on TN hardware
has test accuracy that is comparable to high-precision neural
networks like AlexNet, GoogLeNet, and ResCeption, but shows
a manifold improvement in FPS per watt.

4.2. Extending This Work to Other
Benchmarks and Neuromorphic Chips
As neuromorphic computing is becoming more promising, it is
important for researchers to understand the challenges that came
up in TrueNorth architecture/algorithm and address these issues
in future neuromorphic computing architectures/algorithms.

First, it is important for us to have a new set of benchmarks
and datasets that can be used to evaluate neuromorphic
hardware for bigger CNN models or that require us to estimate
continuous numbers such as regression problems. There have
been benchmarks that were proposed keeping in mind SNN
algorithms, viz., N-MNIST (Orchard et al., 2015) and CIFAR-
10 DVS (Li et al., 2017), but both of these benchmarks have
very small image sizes and both of these benchmarks can solved
using classification models. Problems that require us to estimate
continuous numbers bring out the architectural limitations that
might arise if the goal is to predict large range of numbers.
On the other hand, benchmarks from domains such as Micro-
Aerial Vehicles (Ma et al., 2013) and video surveillance would
be very interesting for the SNN community because these small
drones already have SNN controllers in them (Clawson et al.,
2016). Having video surveillance dataset fromMAVs, will help us
realize potential of SNNs to be deployed in energy-constrained
environments. Evaluating the hardware with bigger CNNmodels
will help us understand the architectural limitations that are
present in the hardware and it will also motivate researchers to
investigate better algorithms for hardware/software co-design on
neural networks.

Second, it is critical to investigate the fan-out limitations
of architectures such as TrueNorth, so that neural networks
can also support connections between convolutional and fully-
connected layers. Even though there have been prior research
that have proposed algorithms to train inception neural networks
or residual networks for SNN hardware (Rueckauer et al.,
2017; Sengupta et al., 2018), the current architectural limitations
related to fan-out in SNN hardware such as TrueNorth, do not
support such skip connection based CNNs. Concurrently, CNN
structures such as MobileNets (Howard et al., 2017) have shown
to significantly reduce the memory accesses and computations
for embedded platforms. To the best of author’s knowledge,
currently there is no research that has successfully trained ternary
quantized model for depthwise separable filters, which is a
critical part of MobileNets. Prior work done in Holesovsky
and Maki (2018) have attempted to train a depthwise separable
CNN with ternary weights and activation, but reported a

significant drop in accuracy when compared to the same
CNN structure that was trained with single precision weights
and activation.

Third, it is important to address the architecture bottlenecks
present between the CPU/FPGA hybrid system and the
neuromorphic chips, otherwise, a considerable amount
of computation resources may end up getting used up
to handle these interactions, as shown in CNN baseline
example of Figure 14. Another direction that researchers can
potentially investigate is improving the speed of deployed neural
networks by analyzing the bottleneck present during inter-chip
communication on a scaled-up hardware such as NS16e system.

Finally, as neural network models become deeper and
wider, there will be a considerable amount of communication
happening between neurons mapped onto different chips. This
bottleneck could be addressed by having a better placement
algorithm formulti-chip placement whichwould constrain group
neurons that communicate a lot with each other to a single
chip, unlike the work proposed in Akopyan et al. (2015) where
the goal of the placement algorithm is to minimize the wire-
length of placed neurons. Or, researchers can propose a new
interconnect architecture for inter-chip communication that
could handle high backpressure of spikes that get delivered from
one neuromorphic chip to another.

Pruning may not always be the best approach to address
hardware constraints while DNN training. As presented
in Yazdani et al. (2018) even though pruningmay give correct test
accuracy, the inference confidence score reduces significantly.
Researchers from hardware community have proposed pruning
algorithms to reduce the size of bigger CNNs for hardware
deployment (Han et al., 2015; Iandola et al., 2016). At present
EEDN trained CNN models are highly sparse due to ternary
weight representation, having more aggressive, such as pruning
away TN cores for deep learning model, pruning technique may
result in further drop in test accuracy. Therefore, rethinking
the placement strategy for deep learning models on SNN
may be an important step forward to address the issue of
hardware constraints.

AUTHOR CONTRIBUTIONS

RS was the one that led this project. He came up with the idea,
suggested the plan of execution, performed all of the experiments
and wrote this paper. ML, BV, AM, and NM provided feedback
for the work that RS did and also gave suggestions about how to
improve the manuscript.

ACKNOWLEDGMENTS

Prepared by LLNL under Contract DE-AC52-07NA27344
(LLNL-JRNL-767281). Experiments were performed at the
Livermore Computing facility.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Alom, M. Z., Josue, T., Rahman, M. N., Mitchell, W., Yakopcic, C., and Taha, T. M.

(2018). “Deep versus wide convolutional neural networks for object recognition

Frontiers in Neuroscience | www.frontiersin.org 14 February 2019 | Volume 13 | Article 441

https://doi.org/10.1109/TCAD.2015.2474396
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shukla et al. Rethinking CNN Models for TrueNorth

on neuromorphic system,” in 2018 International Joint Conference on Neural

Networks (IJCNN) (Rio de Janeiro), 1–8. doi: 10.1109/IJCNN.2018.8489635

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vision 113,

54–66. doi: 10.1007/s11263-014-0788-3

Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-

Icaza, R., et al. (2013). “Cognitive computing building block: A versatile

and efficient digital neuron model for neurosynaptic cores,” in The 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–10.

doi: 10.1109/IJCNN.2013.6707077

Clawson, T. S., Ferrari, S., Fuller, S. B., and Wood, R. J. (2016). “Spiking neural

network (SNN) control of a flapping insect-scale robot,” in 2016 IEEE 55th

Conference on Decision and Control (CDC) (Las Vegas, NV), 3381–3388.

doi: 10.1109/CDC.2016.7798778

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci, E., and Zarrella, G.

(2016). “TrueHappiness: neuromorphic emotion recognition on TrueNorth,”

in 2016 International Joint Conference on Neural Networks (IJCNN) (Vancouver,

BC), 4278–4285. doi: 10.1109/IJCNN.2016.7727758

Esser, S. K., Appuswamy, R., Merolla, P. A., Arthur, J. V., and Modha, D. S.

(2015). “Backpropagation for energy-efficient neuromorphic computing,” in

Proceedings of the 28th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’15 (Cambridge, MA: MIT Press), 1117–

1125.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–

11446. doi: 10.1073/pnas.1604850113

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: compressing deep

neural network with pruning, trained quantization and Huffman coding. CoRR

abs/1510.00149.

Holesovsky, O., and Maki, A. (2018). “Compact ConvNets with ternary weights

and binary activations,” in 23rd Computer Vision Winter Workshop (Cesky

Krumlov).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv[Preprint].arXiv:1704.04861.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Han, S., Dally, J., et al.

(2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<1MB model size. arXiv[Preprint].arXiv:1602.07360.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,

et al. (2014). Caffe: Convolutional architecture for fast feature embedding.

arXiv[Preprint].arXiv:1408.5093.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems 25, eds F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger (Lake Tahoe, NV: Curran Associates, Inc.), 1097–1105.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. (2017). Cifar10-dvs: an event-stream dataset

for object classification. Front. Neurosci. 11:309. doi: 10.3389/fnins.2017.00309

Lin, M., Chen, Q., and Yan, S. (2013). Network in network. CoRR, abs/1312.4400.

Ma, K. Y., Chirarattananon, P., Fuller, S. B., and Wood, R. J. (2013). Controlled

flight of a biologically inspired, insect-scale robot. Science 340, 603–607.

doi: 10.1126/science.1231806

McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani, D., Arthur, J. V., Yildiz,

I. B., et al. (2018). Discovering low-precision networks close to full-precision

networks for efficient embedded inference. arXiv[Preprint].arXiv:1809.04191.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Moore, S. K. (2018). Eta Compute Debuts Spiking Neural Network Chip for Edge

AI. IEEE spectrum. Available online at: https://spectrum.ieee.org/tech-talk/

semiconductors/processors/eta-compute-debuts-spiking-neural-network-

chip-for-edge-ai

Mundhenk, T. N., Konjevod, G., Sakla, W. A., and Boakye, K. (2016). “A large

contextual dataset for classification, detection and counting of cars with deep

learning,” in 14th European Conference on Computer Vision (Amsterdam).

Nere, A. (2013). Computing with Hierarchical Attractors of Spiking Neurons. PhD

thesis, University of Wisconsin - Madison.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Redmon, J., and Farhadi, A. (2016). Yolo9000: Better, faster, stronger.

arXiv[Preprint].arXiv:1612.08242.

Rueckauer, B., Lungu, I. A., Hu, Y., Pfeiffer, M., and Liu, S. C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Sawada, J., Akopyan, F., Cassidy, A. S., Taba, B., Debole, M. V., Datta, P.,

et al. (2016). “TrueNorth ecosystem for brain-inspired computing: scalable

systems, software, and applications,” in SC16: International Conference for High

Performance Computing, Networking, Storage and Analysis (Salt Lake City, UT),

130–141.

Schemmel, J., Fieres, J., and Meier, K. (2008). “Wafer-scale integration of analog

neural networks,” in Proceedings of the International Joint Conference on Neural

Networks (Hong Kong), 431–438.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2018). Going

deeper in spiking neural networks: VGG and residual architectures.

arXiv[Preprint].arXiv:1802.02627.

Shah, A. (2016). Ibm’s Brain-mimicking Computers are Getting Bigger Brains.

Available online at: https://www.pcworld.com/article/3050444/hardware/ibm-

is-creating-larger-brain-mimicking-computers.html

Shukla, R., Jorgensen, E., and Lipasti, M. (2017). “Evaluating hopfield-network-

based linear solvers for hardware constrained neural substrates,” in 2017

International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK),

1–8.

Shukla, R., Khoram, S., Jorgensen, E., Li, J., Lipasti, M., and Wright, S. (2018).

Computing generalized matrix inverse on spiking neural substrate. Front.

Neurosci. 12:115. doi: 10.3389/fnins.2018.00115

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv[Preprint].arXiv:1409.1556.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A. (2014). Striving

for simplicity: the all convolutional net. arXiv[Preprint].arXiv:1412.6806.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., et al. (2014).

Going deeper with convolutions. arXiv[Preprint].arXiv:1409.4842.

Wen, W., Wu, C., Wang, Y., Nixon, K., Wu, Q., Barnell, M., et al. (2016). “A

new learningmethod for inference accuracy, core occupation, and performance

co-optimization on truenorth chip,” in Proceedings of the 53rd Annual Design

Automation Conference, DAC ’16 (New York, NY: ACM), 18:1–18:6.

Yazdani, R., Riera, M., Arnau, J., and González, A. (2018). “The dark

side of DNN pruning,” in 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA) (Los Angeles, CA), 790–801.

doi: 10.1109/ISCA.2018.00071

Conflict of Interest Statement:ML has financial interest in Thalchemy corp. and

is co-founder of the said corporation. Thalchemy corp. was not at all involved in

this research project in any form.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Shukla, Lipasti, Van Essen, Moody and Maruyama. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 February 2019 | Volume 13 | Article 442

https://doi.org/10.1109/IJCNN.2018.8489635
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/IJCNN.2013.6707077
https://doi.org/10.1109/CDC.2016.7798778
https://doi.org/10.1109/IJCNN.2016.7727758
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.1126/science.1231806
https://doi.org/10.1126/science.1254642
https://spectrum.ieee.org/tech-talk/semiconductors/processors/eta-compute-debuts-spiking-neural-network-chip-for-edge-ai
https://spectrum.ieee.org/tech-talk/semiconductors/processors/eta-compute-debuts-spiking-neural-network-chip-for-edge-ai
https://spectrum.ieee.org/tech-talk/semiconductors/processors/eta-compute-debuts-spiking-neural-network-chip-for-edge-ai
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2017.00682
https://www.pcworld.com/article/3050444/hardware/ibm-is-creating-larger-brain-mimicking-computers.html
https://www.pcworld.com/article/3050444/hardware/ibm-is-creating-larger-brain-mimicking-computers.html
https://doi.org/10.3389/fnins.2018.00115
https://doi.org/10.1109/ISCA.2018.00071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 19 March 2019

doi: 10.3389/fnins.2019.00189

Frontiers in Neuroscience | www.frontiersin.org 1 March 2019 | Volume 13 | Article 189

Edited by:

Yansong Chua,

Institute for Infocomm Research

(A*STAR), Singapore

Reviewed by:

Timothée Masquelier,

Centre National de la Recherche

Scientifique (CNRS), France

Andrew Rowley,

University of Manchester,

United Kingdom

*Correspondence:

Gopalakrishnan Srinivasan

srinivg@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 29 November 2018

Accepted: 18 February 2019

Published: 19 March 2019

Citation:

Srinivasan G and Roy K (2019)

ReStoCNet: Residual Stochastic

Binary Convolutional Spiking Neural

Network for Memory-Efficient

Neuromorphic Computing.

Front. Neurosci. 13:189.

doi: 10.3389/fnins.2019.00189

ReStoCNet: Residual Stochastic
Binary Convolutional Spiking Neural
Network for Memory-Efficient
Neuromorphic Computing
Gopalakrishnan Srinivasan* and Kaushik Roy

Department of ECE, Purdue University, West Lafayette, IN, United States

In this work, we propose ReStoCNet, a residual stochastic multilayer convolutional

Spiking Neural Network (SNN) composed of binary kernels, to reduce the synaptic

memory footprint and enhance the computational efficiency of SNNs for complex

pattern recognition tasks. ReStoCNet consists of an input layer followed by

stacked convolutional layers for hierarchical input feature extraction, pooling layers

for dimensionality reduction, and fully-connected layer for inference. In addition,

we introduce residual connections between the stacked convolutional layers to

improve the hierarchical feature learning capability of deep SNNs. We propose Spike

Timing Dependent Plasticity (STDP) based probabilistic learning algorithm, referred

to as Hybrid-STDP (HB-STDP), incorporating Hebbian and anti-Hebbian learning

mechanisms, to train the binary kernels forming ReStoCNet in a layer-wise unsupervised

manner. We demonstrate the efficacy of ReStoCNet and the presented HB-STDP based

unsupervised training methodology on the MNIST and CIFAR-10 datasets. We show that

residual connections enable the deeper convolutional layers to self-learn useful high-level

input features and mitigate the accuracy loss observed in deep SNNs devoid of residual

connections. The proposed ReStoCNet offers >20× kernel memory compression

compared to full-precision (32-bit) SNNwhile yielding high enough classification accuracy

on the chosen pattern recognition tasks.

Keywords: convolutional SNN, spiking ResNet, binary kernels, probabilistic STDP, unsupervised feature learning

1. INTRODUCTION

The proliferation in real-time content generated by the ubiquitous battery-powered edge devices
necessitates a paradigm shift in neural architectures to enable energy-efficient neuromorphic
computing. Spiking Neural Networks (SNNs) offer a promising alternative toward realizing
intelligent neuromorphic systems that require lower computational effort than the artificial neural
networks. SNNs encode and communicate information in the form of sparse spiking events.
The intrinsic sparse event-driven processing capability, which entails neuronal computations and
synaptic weight updates only in the event of a spike fired by the constituting neurons, leads to
improved energy efficiency in neuromorphic hardware implementations (Sengupta et al., 2019).
Spike Timing Dependent Plasticity (STDP) (Bi and Poo, 1998) is a localized hardware-friendly
plasticity mechanism used for unsupervised learning in SNNs. STDP-based learning rules (Song
et al., 2000) modify the weight of a synapse interconnecting a pair of input (pre) and output

43

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00189
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00189&domain=pdf&date_stamp=2019-03-19
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:srinivg@purdue.edu
https://doi.org/10.3389/fnins.2019.00189
https://www.frontiersin.org/articles/10.3389/fnins.2019.00189/full
http://loop.frontiersin.org/people/504600/overview
http://loop.frontiersin.org/people/502975/overview

Srinivasan and Roy ReStoCNet

(post) neurons depending on the degree of correlation between
the respective spike times. The spike timing information is
encoded in the bit-precision of the synaptic weight. In an effort
to reduce the synaptic memory footprint, Suri et al. (2013),
Querlioz et al. (2015), and Srinivasan et al. (2016) proposed two-
layer fully-connected SNN composed of binary synaptic weights.
The fully-connected SNN learns complete input representations
rather than distinctive features making up the input patterns.
As a result, it requires large number of trainable parameters to
attain competitive classification accuracy (Diehl and Cook, 2015),
which negatively impacts the scalability of such shallow SNNs for
complex pattern recognition tasks.

We propose deep Residual Stochastic Binary Convolutional
Spiking Neural Network, referred to as ReStoCNet, as a scalable
architecture to achieve improved classification accuracy with
compressed synaptic memory. ReStoCNet consists of an input
layer followed by stacked convolutional layers with Leaky-
Integrate-and-Fire (LIF) spiking non-linearity (Dayan and
Abbott, 2001) for hierarchical input feature extraction, spatial
pooling layers for dimensionality reduction, and one or more
fully-connected layers for inference. We introduce residual or
shortcut connections between the stacked convolutional layers,
inspired by the organization of deep residual networks (He et al.,
2016), in order to improve the representations learnt by the
later convolutional layers. In addition, we enforce binary synaptic
weights for the convolutional kernels during both training
and inference. We propose STDP-based probabilistic learning
rule, referred to as Hybrid-STDP (HB-STDP), incorporating
Hebbian and anti-Hebbian learning mechanisms to train the
binary kernels. Based on HB-STDP, a binary synaptic weight
is probabilistically potentiated for small positive time difference
between excitatory pre- and post-spikes, which is in agreement
with the Hebbian learning theory (Hebb, 1949). On the other
hand, it is probabilistically depressed for large positive time
difference (anti-Hebbian in nature) or small negative time
difference (Hebbian in nature) between the respective spikes.
The spike timing information is essentially encoded in the
synaptic switching probability, which is held constant within
the Hebbian potentiation, Hebbian depression, and anti-Hebbian
depression windows, and is zero elsewhere. We note that Suri
et al. (2013) proposed an STDP-based learning rule employing
constant switching probabilities, where the potentiation and
depression windows extend over the entire STDP timing window.
On the contrary, HB-STDP contains dead zone in the STDP
timing window, where the switching probability is zero. We
visually demonstrate the significance of dead zone for efficient
feature learning using binary fully-connected SNN.

We present HB-STDP based layer-wise unsupervised training
methodology for ReStoCNet, where we train the binary kernels
interconnecting successive convolutional layers using HB-STDP.
Once a given layer is trained, we forward propagate the
spikes from the input through the trained layers and update
the binary kernels of the following convolutional layer. After
all the convolutional layers are trained, we feed the input
dataset, estimate the spiking activations of the spatially pooled
convolutional spike maps by accumulating the spikes at every
time instant and decaying the resultant sum between successive

spike timing instants, and pass them on to the fully-connected
layer, trained using error backpropagation (Rumelhart et al.,
1986), for inference. We validate the efficacy of ReStoCNet and
the HB-STDP based unsupervised training methodology on the
MNIST (LeCun et al., 1998) and CIFAR-10 datasets (Krizhevsky,
2009). We show that residual connections enable the deeper
convolutional layers to extract useful high-level input features
and effectively mitigate the accuracy degradation observed in
deep SNNs devoid of residual connections (Lee et al., 2018b).
We note that Masquelier and Thorpe (2007), Panda and Roy
(2016), Lee et al. (2016), Stromatias et al. (2017), Srinivasan
et al. (2018), Tavanaei et al. (2018), Kheradpisheh et al. (2018),
Ferré et al. (2018), Thiele et al. (2018), Lee et al. (2018a,b), and
Mozafari et al. (2018) have demonstrated convolutional SNNs
composed of full-precision kernels. Recently, Sengupta et al.
(2019) and Hu et al. (2018) presented residual SNNs, trained
using error backpropagation with real-valued inputs and artificial
ReLU neurons (Nair and Hinton, 2010), which are mapped to
spiking neurons post training for energy-efficient inference. To
the best of our knowledge, ReStoCNet is the first demonstration
of STDP-trained deep residual convolutional SNN composed
of binary kernels for complex pattern recognition tasks. We
believe that ReStoCNet, with event-driven computing capability
and memory-efficient learning with binary kernels trained
using hardware-friendly probabilistic-STDP learning rule, offers
a promising alternative for energy-efficient neuromorphic
computing in battery-powered edge devices. Overall, the key
contributions of our work are:

1. We propose ReStoCNet, a deep residual convolutional
SNN composed of binary kernels, for memory-efficient
neuromorphic computing.

2. We present HB-STDP, an STDP-based probabilistic learning
rule incorporating Hebbian and anti-Hebbian learning
mechanisms, for training the binary kernels constituting
ReStoCNet in a layer-wise unsupervised manner for
hierarchical input feature extraction.

3. We validate the efficacy of ReStoCNet on the MNIST and
CIFAR-10 datasets, and show that residual connections enable
the deeper convolutional layers to learn useful high-level input
features and mitigate the accuracy loss incurred by STDP-
trained deep SNNs without residual connections.

2. MATERIALS AND METHODS

2.1. ReStoCNet: Residual Stochastic Binary
Convolutional Spiking Neural Network
ReStoCNet consists of an input layer followed by stacked
convolutional layers for hierarchical input feature extraction,
spatial pooling layers for dimensionality reduction, and one
or more fully-connected layers for inference as illustrated in
Figure 1. The pixels in the input image maps are converted
to Poisson spike trains firing at a rate proportional to the
corresponding pixel intensities. At any given time, the input
spike maps are convolved with the binary kernels, which
are constrained to logic states −1 (wlow) and +1 (whigh), to
produce the convolutional output maps. The convolutional

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 18944

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

FIGURE 1 | Illustration of ReStoCNet consisting of an input layer followed by stacked convolutional layers with Leaky-Integrate-and-Fire (LIF) spiking non-linearity,

which are interconnected via binary kernels. The deeper convolutional layers receive residual inputs that are summed up with direct inputs from the preceding

convolutional layer as depicted in the inset. The binary kernels forming the convolutional layers are trained using probabilistic Hybrid-STDP (HB-STDP) based

layer-wise unsupervised training methodology. After all the convolutional layers are trained, the respective spike maps are spatially pooled using average pooling with

2×2 unit-weight kernels followed by Integrate-and-Fire (IF) spiking non-linearity to produce the pooled spike maps. The spike trains of the pooling layers are low-pass

filtered to obtain their spiking activations over the time period for which the input is presented, which are fed to the fully-connected layer, trained using error

backpropagation, for inference.

outputs, referred to as post-synaptic currents, are fed to non-
linear layer of Leaky-Integrate-and-Fire (LIF) spiking neurons
(Dayan and Abbott, 2001). An LIF neuron integrates the post-
synaptic current into its membrane potential, whose dynamics
are described by

τmem
dVmem

dt
= −Vmem + Ipost (1)

where Vmem is the neuronal membrane potential, τmem is
the membrane potential leak time constant, and Ipost is the
post-synaptic current. The LIF neuron emits a spike when
its membrane potential exceeds a definite firing threshold
after which the membrane potential is reset to zero. Every
convolutional output map yields a corresponding spike map
based on the LIF spiking neuronal dynamics, which is directly fed
to the following convolutional layer. In addition, we introduce
residual connections feeding into the deeper convolutional
layers, which is inspired by the architecture of deep residual
networks (He et al., 2016). The second convolutional layer
receives residual connections from the input layer while the
third convolutional layer receives residual connections from the
input and first convolutional layer as shown in Figure 1. The
residual connections feeding into a target convolutional layer

perform identity mapping, i.e., the residual path spike maps are
simply added to the direct path spike maps from the preceding
convolutional layer and fed to the target convolutional layer.
In the event of a mismatch in the number of spike maps (or
channels) between the residual and direct paths, the spike maps
in the residual path are replicated to be consistent with the
number of channels in the direct path. Consider, for instance,
the second convolutional layer that receives spike maps from
the input layer via the residual path and the first convolutional
layer via the direct path. Let us suppose that the input image
pattern is stored in RGB colorspace. Consequently, each image
pattern yields 3 input spike maps that needs to be summed
up with the spike maps of the first convolutional layer, which
typically contains more than 3 spike maps. Hence, the 3 input
spike maps are replicated to match the number of spike maps in
the first convolutional layer, summed up with the spike maps of
the first convolutional layer, and fed to the second convolutional
layer. Note that the summed spike maps from the residual
and direct paths are constrained to unit magnitude to produce
resultant spike maps feeding into the target convolutional
layer. The binary kernels constituting the convolutional layers
are trained using probabilistic Hybrid-STDP (HB-STDP) based
layer-wise unsupervised training methodology. We find that the
residual connections ensure rich and diverse inputs for deeper

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 18945

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

convolutional layers and enable them to self-learn useful high-
level input features as shown in subsection 3.3. The improved
feature learning capability mitigates the accuracy loss incurred
by stacked convolutional layers without residual connections
as experimentally validated in subsection 3.3 and enhances the
scalability of deep SNNs.

After all the convolutional layers are trained, we feed the input
dataset and spatially pool the spike maps of the convolutional
layers. Spatial pooling is the mechanism used to suitably combine
the neighboring pixels of a convolutional feature map to reduce
the map size (height and width) while retaining the salient
features. Spatial pooling also renders the network invariant to
slight translations in the input features (Jaderberg et al., 2015).
We perform a class of spatial pooling operation known as
average pooling with 2×2 kernels composed of unit weights and
stride length of 2 as detailed below. The spikes in every 2×2
non-overlapping region of the convolutional maps are summed
up and normalized by the kernel size (4 for a 2×2 kernel)
to produce the pooled output maps, which are then fed to
a layer of Integrate-and-Fire (IF) spiking neurons to generate
the pooled spike maps. An IF neuron integrates the input into
its membrane potential and spikes if the membrane potential
exceeds pre-specified threshold (θpool) after which the membrane
potential is reset. The IF neurons, in effect, fire based on the
average spiking activity of the spatially pooled convolutional
spike maps. We low-pass filter the spike trains of the pooled
maps by integrating the spikes at every time instant and decaying
the resultant sum between successive spike timing instants to
estimate their spiking activations over the time period for which
the input is presented. The spiking activations of the pooledmaps
pertaining to all the convolutional layers are fed to the fully-
connected layer composed of ReLU neurons (Nair and Hinton,
2010) for inference. This ensures that the input features learnt
independently by the convolutional layers in an unsupervised
manner are combined optimally by the fully-connected layer to
yield the best accuracy. We note that LIF neurons can instead
be used in the fully-connected layer, which can be trained
using spike-based backpropagation algorithms (Lee et al., 2016,
2018a; Panda and Roy, 2016; Jin et al., 2018; Wu et al., 2018).
In this work, we use fully-connected layer of ReLU neurons
trained with backpropagation algorithm commonly used for
deep learning networks since we are primarily interested in
evaluating the efficacy of the proposed probabilistic HB-STDP
based unsupervised training methodology for the convolutional
layers that is detailed in the following subsection.

2.2. Hybrid-STDP (HB-STDP) for Binary
Synaptic Weights
We propose STDP-based probabilistic learning rule, referred
to as Hybrid-STDP (HB-STDP), integrating Hebbian and anti-
Hebbian learning mechanisms to train the binary synaptic
weights constituting an SNN. We present two versions of the
HB-STDP learning rule, namely, excitatory HB-STDP (eHB-
STDP) and inhibitory HB-STDP (iHB-STDP) to train the
binary synaptic weights connecting excitatory and inhibitory pre-
neurons, respectively, to excitatory post-neurons. An excitatory

neuron is modeled as a neuron firing unit positive spikes while
an inhibitory neuron fires unit negative spikes. Input image pixels
with intensities ranging from 0 to 255 are mapped to excitatory
pre-neurons firing unit positive spikes at a rate proportional to
the respective pixel intensities. On the contrary, input images
when pre-processed by normalizing the raw pixel intensities
to zero mean and unit variance result in normalized images
with positive and negative pixel intensities. The normalized
pixels with negative intensities are mapped to inhibitory pre-
neurons firing unit negative spikes. The normalized input maps
containing excitatory and inhibitory pre-neurons offer richer
spike-encoding of the image patterns, resulting in efficient STDP-
based feature learning. We find that input normalization is
critical for natural images like those from the CIFAR-10 dataset
(Krizhevsky, 2009) that do not have clear separation between the
region of interest and the background unlike digit patterns from
the MNIST dataset (LeCun et al., 1998).

Binary synapses require a probabilistic learning rule to prevent
rapid switching of the weights between the allowed levels,
which could otherwise render the synapses memoryless. Both
the proposed eHB-STDP and iHB-STDP learning rules map
the time difference between a pair of pre- and post-spikes to
the switching probability of the interconnecting binary synapse.
We first detail the eHB-STDP learning rule for excitatory pre-
neurons and subsequently discuss how the learning dynamics are
adapted for inhibitory pre-neurons. According to eHB-STDP, if
an excitatory pre-spike (at time instant, tpre) triggers the post-
neuron to fire (at time instant, tpost) and the difference between
the respective spike times (1t = tpost − tpre) is smaller than a
pre-specified time period (tHebb_pot), we switch the synapse from
low to high (‘L’→‘H’) state with a constant probability, pHebb_pot ,
as illustrated in Figure 2A and described by

PL→H =

{

pHebb_pot , if 0 < 1t ≤ tHebb_pot

0, for all other 1t
(2)

where PL→H is the probability of synaptic potentiation.
Probabilistic synaptic potentiation is carried out for small time
difference between causally related pre- and post-spikes following
the Hebbian learning principle that can be summarized as
“neurons that fire together, must wire together” (Lowel and
Singer, 1992). Hence, the corresponding timing window is
designated as the Hebbian potentiation window. On the other
hand, probabilistic synaptic depression is carried out for large
positive or small negative time difference between the pre- and
post-spikes as specified by

PH→L =











pantiHebb_dep, if 1t > 0 ∩ 1t ≥ tantiHebb_dep

pHebb_dep, if tHebb_dep ≤ 1t ≤ 0

0, for all other 1t

(3)

where PH→L is the probability of synaptic depression. We
depress the synapse from high to low state with a constant
probability, pantiHebb_dep, if the time difference between causally
related pre- and post-spikes is larger than tantiHebb_dep, which
is anti-Hebbian in nature. Hence, the corresponding STDP

Frontiers in Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 18946

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

FIGURE 2 | (A) Illustration of eHB-STDP, an STDP-based probabilistic learning rule, incorporating Hebbian and anti-Hebbian learning mechanisms, for training the

binary synaptic weights interconnecting excitatory pre- and post-neurons firing positive spikes. The synaptic weight is probabilistically potentiated for small positive

time difference (Hebbian in nature) while it is probabilistically depressed for large positive (anti-Hebbian in nature) or small negative time difference (Hebbian in nature)

between the pre- and post-spikes. The switching probability is held constant within the Hebbian potentiation, Hebbian depression, and anti-Hebbian depression

windows, and is zero in the dead zone. (B) Illustration of iHB-STDP for binary synaptic weights connecting inhibitory pre-neurons firing negative spikes to excitatory

post-neurons. The iHB-STDP dynamics are obtained by mirroring the eHB-STDP dynamics about the 1t (tpost − tpre) axis.

timing window is referred to as the anti-Hebbian depression
window. Anti-Hebbian depression enables the synapses to
unlearn features lying outside the neuronal receptive field
like noisy background in image patterns. Synaptic depression,
in addition, is carried out with a probability, pHebb_dep, if
a pre-spike follows a post-spike and the difference between
the respective spike times lies within the negative Hebbian
depression ([tHebb_dep, 0]) window. It is important to note
that eHB-STDP contains a dead zone in the STDP timing
window, where the switching probability is zero, between the
Hebbian potentiation and anti-Hebbian depression windows as
depicted in Figure 2A. We find that expanding the anti-Hebbian
depression window toward the Hebbian potentiation window
leads to depression of moderately correlated features in addition
to the weakly correlated ones. On the other hand, expanding the
Hebbian potentiation window causes the synapses connecting
a post-neuron to encode multiple overlapping input features,
which negatively impacts the selectivity of the post-neuron and
degrades the inference capability of the SNN. The dead zone,
in effect, ensures that binary synapses learn and retain strongly
correlated input features and unlearn only the weakly correlated
ones by facilitating optimal balance between the potentiation
and depression updates.We visually demonstrate the significance
of dead zone for efficient feature learning using binary fully-
connected SNN in subsection 3.1.

Next, we discuss how the eHB-STDP dynamics are adapted
for binary synapses connecting inhibitory pre-neurons firing
negative spikes. The iHB-STDP dynamics (shown in Figure 2B)
are obtained by symmetrically inverting the eHB-STDP dynamics
(shown in Figure 2A) about the 1t (tpost − tpre) axis. As a
result, the erstwhile potentiation windows are converted to
depression windows, and vice versa. According to iHB-STDP,
if an inhibitory pre-spike causes the post-neuron to fire and
the spike timing difference is smaller than a pre-specified time
period, we probabilistically depress the binary synaptic weight.
This ensures that the strongly correlated inhibitory (negative)
pre-spike modulated by the depressed synaptic weight causes
an effective increase in the post-neuronal membrane potential,
thereby improving the chances of a post-spike at subsequent

time instants. Probabilistic synaptic depression enables a post-
neuron to integrate the small positive time difference between
an inhibitory pre-spike and the ensuing post-spike, which
conforms to the Hebbian learning theory. Probabilistic synaptic
potentiation, on the other hand, causes an inhibitory pre-spike
modulated by the synaptic weight to lower the post-neuronal
membrane potential, thus reducing the chances of a post-spike at
subsequent time instants. Hence, it is carried out for large positive
time difference (anti-Hebbian in nature) or small negative time
difference (Hebbian in nature) between the pre- and post-
spikes. The iHB-STDP learning rule for inhibitory pre-neurons
effectively incorporates the learning dynamics of eHB-STDP
for excitatory pre-neurons by mirroring the potentiation and
depression windows about the 1t axis.

In this work, we use trace-based technique to estimate
spike timing differences as it is commonly adopted for efficient
implementation of STDP learning rules (Diehl and Cook, 2015).
For instance, the positive time difference between a pair of
pre- and post-spikes is estimated by generating an exponentially
decaying pre-trace (with time constant τpre) that is reset to unity
at the time instant of a pre-spike, and sampling it in the event of a
post-spike. Smaller the time difference between the pre- and post-
spikes, larger is the sampled pre-trace, and vice versa. Every pre-
neuron has a pre-trace that is sampled upon a post-spike to obtain
the positive spike timing difference. Likewise, every post-neuron
has a post-trace (with time constant τpost) that is sampled upon
a pre-spike to obtain the negative spike timing difference. As
a result, the eHB-STDP (iHB-STDP) hyperparameters, namely,
tHebb_pot (tHebb_dep), tantiHebb_dep (tantiHebb_pot), and tHebb_dep
(tHebb_pot) are mapped to preHebb_pot (preHebb_dep), preantiHebb_dep
(preantiHebb_pot), and postHebb_dep (postHebb_pot), respectively.

2.3. Unsupervised Training Methodology
for the Convolutional Layers
We train the binary kernels forming ReStoCNet in a layer-wise
unsupervised manner using the proposed probabilistic e/iHB-
STDP learning rule. Consider a k × k binary kernel (kernellij)

connecting the ith input spike map in layer “l − 1” (mapl−1
i)

Frontiers in Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 18947

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

FIGURE 3 | (A) Illustration of HB-STDP based unsupervised training methodology for kernell
ij
connecting the ith input spike map in layer “l − 1” (mapl−1

i
) to the jth

output spike map in layer “l” (mapl
j
). The kernell

ij
is updated using HB-STDP based on the spike timing difference between the spiking post-neuron in output mapl

j
and the corresponding pre-neurons in input mapl−1

i
. The HB-STDP based weight updates are carried out on all the kernels in layer “l” based on the respective input

and output maps. (B) Illustration of HB-STDP based mini-batch training methodology for mini-batch size of 2. The kernell
ij
is now updated based on the average spike

timing difference between the spiking post-neurons in the output mini-batch (mapl
j1 and mapl

j2) and the respective pre-neurons in the input mini-batch (mapl−1
i1 and

mapl−1
i2).

to the jth output spike map in layer “l” (maplj) as shown in

Figure 3A. Let us suppose that a post-neuron in the output
maplj spikes at a particular time instant: the kernel weights

are then probabilistically updated based on the time difference
between the post-spike and the corresponding k × k pre-

spikes in the input mapl−1
i . We use the eHB-STDP learning

rule for excitatory pre-neurons and iHB-STDP learning rule for
inhibitory pre-neurons as described in subsection 2.2. If multiple
post-neurons in the output maplj spike, we update kernel

l
ij based

on the average spike timing difference between the spiking
post-neurons and the respective pre-neurons, which leads to
generalized feature learning. However, in order to achieve
optimal generalization performance, we average the spike timing
differences computed with fixed stride, known as STDPstride,
over the output maplj. As an example, for STDPstride of 2, we

average the spike timing differences computed between every
alternate spiking post-neuron in output maplj and the respective

pre-neurons. Larger the STDPstride, fewer is the number of post-
neurons whose spike timing difference estimates are averaged
to update the kernel. Consequently, there is loss of generality
and added specificity in the features learnt by the kernel for
larger STDPstride. We experimentally determine the STDPstride for
optimal generalization performance that yields the highest test
accuracy for a given pattern recognition task.

STDP-based learning is typically performed in an online
manner by feeding the input patterns sequentially. STDP-based
online learning has been shown to work well particularly for
two-layer fully-connected SNNs, where each output or excitatory
neuron learns to spike exclusively for a unique class of input
patterns by encoding a general input representation in the
input to excitatory synaptic weights (Diehl and Cook, 2015).
Convolutional SNNs, on the other hand, require each kernel to
extract features shared across different input classes. In order
to enable the kernel to extract general features characterizing
different input classes, we performmini-batch learning following
recent works by Lee et al. (2018b) and Ferré et al. (2018). The
proposed HB-STDP based mini-batch training methodology is

illustrated in Figure 3B, where the kernellij is now shared by a

mini-batch of ith inputmap in layer “l−1” (inputmini-batch) and
jth output map in layer “l” (output mini-batch). We first average
the spike timing differences between the spiking post-neurons
and the respective pre-neurons, estimated using fixed STDPstride,
over each output map in the mini-batch to obtain the resultant
spike timing difference per output map in the mini-batch. We
subsequently average the resultant spike timing differences of the
output maps across the mini-batch and probabilistically update
kernellij using HB-STDP as shown in Figure 3B for a specific

post-neuron in the output mini-batch. At every time instant, the
HB-STDP driven mini-batch weight updates are carried out on
all the kernels in a given layer. This process is repeated over
the entire time duration, TSTDP, for which the training patterns
are presented.

Finally, in order to ensure that different kernels in a layer
learn diverse input features, we incorporate the uniform firing
threshold adaptation scheme proposed by Lee et al. (2018b) and
dropout (Srivastava et al., 2014) for the output maps. In the
beginning of training, the firing threshold of all the post-neurons
in every output mini-batch is reset to zero. When a mini-batch of
training patterns is presented,multiple post-neurons in an output
mini-batch spike and encode definite input features in the kernel
weights. We then increase the firing threshold of all the post-
neurons in the output mini-batch by an amount 1thresh, which
is specified by

1thresh = βthresh ×
output spike count

output map size
(4)

where βthresh is the rate of threshold increase, output spike count
is the number of spikes per output map summed over the mini-
batch, and output map size is the product of the height and width
of the output maps. The amount of threshold increase depends
on the output spike count normalized by the output map size
to account for the drop in spiking activity of the output maps
across successive convolutional layers due to gradual reduction

Frontiers in Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 18948

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

in the respective sizes. Higher the normalized spiking activity of
the output mini-batch, greater is the corresponding increase in
its firing threshold, and vice versa. Firing threshold adaptation
effectively regulates the spiking activity of the output mini-
batch and provides an opportunity for the hitherto dormant
output mini-batches to spike and learn, thereby ensuring that
no single output mini-batch completely dominates the learning
process during a mini-batch training iteration. In addition, we
introduce dropout (Srivastava et al., 2014) for the output maps to
achieve diversity in feature learning across successive mini-batch
training iterations. At the beginning of every training iteration,
we randomly drop a fraction of output mini-batches based on the
dropout probability, pdrop, by forcing the respective spike outputs
to zero. Dropout ensures that the same output mini-batch
does not spike repeatedly for every training iteration, thereby
promoting diversity in feature learning among the kernels in
a layer. Once a layer is trained, we propagate the spikes from
the input through the trained layers, and update the kernels
and firing thresholds of the output maps in the following layer
using the presented training methodology. The training process
is repeated for all the convolutional layers in ReStoCNet.

2.4. Supervised Training Methodology for
the Fully-Connected Layer
After all the convolutional layers are trained, we pool the
respective spike maps using average pooling as detailed in
subsection 2.1. We then low-pass filter the spike trains of the
pooled maps, by integrating the spike outputs at every time
instant and decaying the resultant sum between successive time
instants, to obtain their spiking activations as described in Lee
et al. (2016, 2018a) and specified by

pooll
lpf
(t) = e

−
1tsim
τlpf × pooll

lpf
(t − 1tsim)+ pooll(t)

poollout =
pooll

lpf
(Tsim)

Tsim

(5)

where pooll
lpf
(t) is the low-pass filtered output of the pooled spike

map pooll(t) in layer “l” at any given time t, τlpf is the low-pass
filter time constant, 1tsim is the simulation time-step, Tsim is the
simulation period for which the input patterns are presented, and
poollout is the spiking activation of the pooled map in layer “l”
over the simulation period. The spiking activation thus obtained
accounts for the highly non-linear leaky-integrate-and-fire and
membrane potential reset dynamics of the spiking neurons in
the convolutional layers. The spiking activations of the pooled
maps of all the convolutional layers are concatenated and fed to
the fully-connected layer, trained using error backpropagation
(Rumelhart et al., 1986), for inference. We use full-precision
synaptic weights in the fully-connected layer to comprehensively
validate the efficacy of the proposed probabilistic HB-STDP
learning rule for training the binary kernels in the convolutional
layers. The full-precision synaptic weights can be binarized using
algorithms proposed for training binary deep learning networks
(Courbariaux et al., 2015; Rastegari et al., 2016; Hubara et al.,
2017). It is important to note that the presented HB-STDP based
learning methodology effectuates plasticity by probabilistically

switching the binary weights, thereby precluding the need to
store the full-precision weights during training. Binarization
algorithms for deep learning networks, on the other hand,
update the full-precision weights during training, which are
subsequently binarized for forward propagation and computing
the error gradients.

3. RESULTS

We first validate the efficacy of HB-STDP, by visually
demonstrating the significance of having distinct potentiation
and depression windows separated by a dead zone for efficient
feature learning, using two-layer binary fully-connected SNN
trained on the MNIST dataset. We then comprehensively
evaluate ReStoCNet and the presented HB-STDP based
unsupervised mini-batch training methodology on the MNIST
and CIFAR-10 datasets. We show that the residual connections
are critical to achieving efficient unsupervised learning in
deeper convolutional layers and minimizing the accuracy
degradation incurred by STDP-trained deep SNNs without
residual connections. We use the classification accuracy on the
test set and the synaptic memory compression obtained by using
binary kernels as the evaluationmetrics for ReStoCNet compared
to full-precision (32-bit) SNN under iso-accuracy conditions.

3.1. Two-Layer Binary Fully-Connected
SNN for MNIST Digit Recognition
The binary fully-connected SNN (Diehl and Cook, 2015) consists
of an input layer fully-connected via binary synapses to neurons
in the excitatory layer, which are connected in a one-to-one
manner to neurons in the subsequent inhibitory layer. Each
inhibitory neuron laterally inhibits all the excitatory neurons
except the one from which it receives a forward connection.
Lateral inhibition facilitates competitive learning and enables
each excitatory neuron to spike exclusively and recognize a
unique class of input patterns. The input to excitatory synaptic
weights are trained using three different configurations of the
eHB-STDP learning rule that are enumerated below:

1. eHB-STDP – This is the proposed eHB-STDP learning rule
containing distinct Hebbian potentiation and anti-Hebbian
depression windows separated by a dead zone as shown
in Figure 4A.

2. eHB-STDP2 – This is a variant of the eHB-STDP learning
rule where the dead zone is replaced with a wider Hebbian
potentiation window as depicted in Figure 4B.

3. eHB-STDP3 – This is an alternative variant of the eHB-
STDP rule where the dead zone is replaced with a wider
anti-Hebbian depression window as illustrated in Figure 4C.

Note that the excitatory↔inhibitory synaptic weights are fixed
a priori and are not subjected to STDP-based learning.
We simulated the fully-connected SNN using BRIAN
(Goodman and Brette, 2008), which is an open-source SNN
simulation framework, on the MNIST dataset. The input
image pixels are converted to Poisson spike trains firing at
a rate constrained between 0 and 63.75 Hz depending on

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 18949

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

FIGURE 4 | MNIST digit representations (re-arranged in 28×28 format) learnt by the synapses connecting the input to each excitatory neuron in a binary

fully-connected SNN of 400 neurons (arranged in 20×20 grid). The binary fully-connected SNN is trained using (A) the proposed eHB-STDP containing distinct

Hebbian potentiation and anti-Hebbian depression windows separated by a dead zone, (B) eHB-STDP2 where the dead zone is replaced with a wider Hebbian

potentiation window, and (C) eHB-STDP3 where the dead zone is replaced with a wider anti-Hebbian depression window.

the respective pixel intensities for a simulation period of
350 ms. Note that the simulation time-step is 0.5 ms. We
use the spiking neuronal model detailed in Diehl and Cook
(2015) whose parameters are adopted from Jug (2012). The
eHB-STDP hyperparameters used in our simulations are listed
in Table 1.

We first train a binary fully-connected SNN of 400 excitatory
neurons using the three different eHB-STDP configurations on
3500 MNIST digit patterns. Figure 4A illustrates that eHB-
STDP causes each excitatory neuron to self-learn general
representation of a unique digit in the input to excitatory
synaptic weights. On the other hand, eHB-STDP2, with a
wider Hebbian potentiation window instead of the dead zone,
causes certain excitatory neurons to self-learn overlapping
input representations as highlighted in Figure 4B. Overlapping
input representations negatively impact the selective spiking
behavior of the excitatory neurons for specific input classes
and degrade the recognition capability of the SNN. The final
eHB-STDP configuration, eHB-STDP3, leads to insufficient
representation learning as depicted in Figure 4C due to the
dominance of synaptic depression over synaptic potentiation
weight updates. Thus, the proposed eHB-STDP learning rule
offers superior representation learning capability compared to
the explored variants by maintaining optimal balance between
the potentiation and depression weight updates. This is further
corroborated by the accuracy results shown in Figure 5A, which
is evaluated as explained below. At the end of eHB-STDP based
training, each excitatory neuron is tagged as having learnt the

class of input patterns for which it spiked the most during the
training phase. A test pattern is predicted to belong to the class
(or tag) represented by the group of neurons with the highest
average spike count over the simulation period. The binary fully-
connected SNN of 400 neurons trained using eHB-STDP yielded
79.94% accuracy on the MNIST test set, which is higher by
>8% compared to that achieved using the remaining eHB-STDP
variants. The accuracy can be further improved by increasing
the number of excitatory neurons as shown in Figure 5B. We
now estimate the synaptic memory compression offered by the
binary SNN compared to full-precision (32-bit) SNN, which is
specified by

synaptic memory compression

=
#input neurons× #excitatory neuronsfull−precisionSNN × 32

#input neurons× #excitatory neuronsbinarySNN × 1

(6)

where #input neurons is 784 for the MNIST dataset. Figure 5B
indicates that binary SNN of 6400 neurons offers comparable
accuracy (∼92%) to that provided by full-precision (32-bit)
SNN of 1600 neurons (Diehl and Cook, 2015), leading to 8×
synaptic memory compression under iso-accuracy conditions.
Note that the accuracy of ∼92% is higher than that reported
in related works for binary fully-connected SNN, trained using
probabilistic STDP-based learning rules, as shown in Table 2.

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 18950

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

However, the fully-connected SNN introduces scalability issues
as the network depth is increased due to explosion in the
number of trainable parameters. We demonstrate ReStoCNet,
which is a scalable multilayer convolutional SNN composed of
binary kernels, trained using the optimal e/iHB-STDP based
unsupervised mini-batch training methodology.

3.2. ReStoCNet for MNIST Digit
Recognition
The MNIST dataset contains 60,000 training patterns and
10,000 test patterns of handwritten digits that are stored
as 28×28 Grayscale images. In this work, we developed a
custom simulation framework using Pytorch (Paszke et al.,
2017) to evaluate ReStoCNet and the presented HB-STDP
based unsupervised training methodology. The simulation
parameters for the Leaky-Integrate-and-Fire (LIF) neuron in
the convolutional layers and the Integrate-and-Fire (IF) neuron
in the spatial pooling layers are shown in Table 3. The
binary kernels in every convolutional layer are initialized

TABLE 1 | Simulation parameters for training the binary fully-connected SNN on

the MNIST dataset.

Parameters Values

Simulation time-step, 1tsim 0.5ms

Simulation period, Tsim 350ms

Maximum input spike rate 63.75Hz

Pre-trace time constant, τpre 20ms

Post-trace time constant, τpost 20ms

preHebb_pot (eHB-STDP) 0.85

preantiHebb_dep (eHB-STDP) 0.10

postHebb_dep (eHB-STDP) 0.80

pHebb_pot (eHB-STDP) 0.08

pantiHebb_dep (eHB-STDP) 0.06

pHebb_dep (eHB-STDP) 0.005

Maximum synaptic weight (whigh) 1.0

Minimum synaptic weight (wlow) 0.0

to logic high state (whigh) with a probability, phigh, which
is specified by

phigh =

√

αweight_init

fan_in+ fan_out
(7)

where αweight_init is the proportionality constant controlling phigh,
and fan_in and fan_out are the total number of input and
output synaptic weights, respectively, for a given convolutional
layer. The remaining kernel weights in the convolutional layer
are initialized to logic low state (wlow). The firing threshold
of the LIF neurons in every convolutional layer are initialized
to zero.

We first simulated a 16C3-2P-10FC ReStoCNet, composed
of single convolutional layer with 16 maps and 3×3 binary
kernels followed by pooling layer whose spiking activations are
directly fed to the final softmax layer. The input image pixels
are mapped to excitatory pre-neurons firing at a rate constrained
between 0 and 200 Hz depending on the corresponding pixel
intensities. The eHB-STDP model parameters are provided in
Table 3. We trained the convolutional layer in ReStoCNet using
2,000 MNIST digit patterns with a mini-batch size of 200.
We thereafter fed the entire training dataset to ReStoCNet,
spatially pooled the spike maps of the convolutional layer,
and low-pass filtered the pooled spike trains over a simulation
period of 100 ms to estimate their spiking activations. The
pooling layer spiking activations are passed on to the fully-
connected softmax layer, which is trained using the Adam
optimizer (Kingma and Ba, 2014) and cross-entropy loss
function for 100 epochs. The training parameters used for the
fully-connected layer are mentioned in Table 4. The shallow
ReStoCNet yielded an accuracy of 95.21% on the MNIST test
set, which increased to 98.22% for a wider 36C3-2P-10FC
ReStoCNet in which the convolutional layer is trained using
10,000 MNIST digit patterns. Further improvement in accuracy
is obtained by augmenting the classifier in ReStoCNet with an
additional fully-connected layer of 128 neurons prior to the
softmax output layer as shown in Figure 6, which indicates that
36C3-2P-128FC-10FC ReStoCNet offers an improved accuracy

FIGURE 5 | (A) Classification accuracy of binary fully-connected SNN of 400 excitatory neurons trained using the three different eHB-STDP configurations illustrated

in Figure 4. (B) Classification accuracy of binary fully-connected SNN, trained using the proposed eHB-STDP learning rule, compared to full-precision (32-bit) SNN

(Diehl and Cook, 2015) for different network sizes.

Frontiers in Neuroscience | www.frontiersin.org 9 March 2019 | Volume 13 | Article 18951

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

TABLE 2 | Classification accuracy of binary fully-connected SNNs on the MNIST test set.

Model #Excitatory neurons Training methodology Accuracy (%)

Binary SNN (Querlioz et al., 2015) 50 Probabilistic Rectangular STDP 60

Binary SNN (Srinivasan et al., 2016) 400 Probabilistic Exponential STDP 70.15

Binary SNN (our work) 400 Probabilistic eHB-STDP 79.94

Binary SNN (our work) 6400 Probabilistic eHB-STDP 92.14

TABLE 3 | Simulation parameters for training the convolutional layers in

ReStoCNet.

Parameters Values

C1 C1 C2/C3

Input dataset MNIST CIFAR-10 CIFAR-10

Maximum synaptic weight (whigh) +1.0 +1.0 +1.0

Minimum synaptic weight (wlow) −1.0 −1.0 −1.0

Weight initialization constant

(αweight_init)

75 30 30

Simulation time-step, 1tsim 1 ms 1 ms 1 ms

Simulation period for STDP, TSTDP 25 ms 25 ms 25 ms

Maximum input spike rate for STDP 200 Hz 200 Hz 500 Hz

Dropout probability for STDP, pdrop 0.5 0.5 0.5

STDPstride 5 5 5

Pre-trace decay time constant, τpre 1.45 ms 1.45 ms 1.45 ms

preHebb_pot (eHB-STDP) 0.50e-1 0.20e-1 0.20e-1

preantiHebb_dep (eHB-STDP) 0.50e-2 0.50e-2 0.50e-2

pHebb_pot (eHB-STDP) 0.01 0.05 0.05/25

pantiHebb_dep (eHB-STDP) 0.01 0.01 0.01/25

pHebb_dep (eHB-STDP) 0 0 0

preHebb_dep (iHB-STDP) – 0.20e-1 0.20e-1

preantiHebb_pot (iHB-STDP) – 0.50e-2 0.50e-2

pHebb_dep (iHB-STDP) – 0.05 0.05/25

pantiHebb_pot (iHB-STDP) – 0.01 0.01/25

pHebb_pot (iHB-STDP) – 0 0

Leaky-Integrate-and-Fire (LIF) neuron

leak time constant, τmem

9.5 ms 9.5 ms 9.5 ms

Rate of increase of LIF neuronal firing

threshold, βthresh

6e-4 6e-4 6e-4 (C2)

8e-4 (C3)

Integrate-and-Fire (IF) neuron pooling

threshold, θpool

0.80 0.80 0.80

Simulation period to estimate spiking

activation, Tsim

100 ms 100 ms 100 ms

Maximum input spike rate to estimate

spiking activation

500Hz 500Hz 500Hz

Low-pass filter time constant to

estimate spiking activation, τlpf

99.5 ms 99.5 ms 99.5 ms

of 98.54% on the MNIST test set. Note that we did not
simulate deep ReStoCNets for MNIST digit recognition since
the shallow networks yield >98% accuracy, and that any
further increase in the depth of STDP-trained convolutional
layers would not provide commensurate improvements in the
classification accuracy.

TABLE 4 | Simulation parameters for training the fully-connected layer in

ReStoCNet.

Parameters Values

MNIST CIFAR-10

Batch size 256 256

Number of epochs 100 100

Learning rate (Adam) 1.5e-3 1.0e-4

betas (Adam) (0.9, 0.999) (0.9, 0.999)

eps (Adam) 1e-8 1e-8

Weight decay (Adam) 0 0

Dropout probability 0.5 0.5

FIGURE 6 | Classification accuracy of ReStoCNet, composed of single

convolutional layer followed by a pooling layer and one or more fully-connected

layers, vs. the number of output (C1) maps, on the MNIST test set.

3.3. ReStoCNet for CIFAR-10 Image
Recognition
The CIFAR-10 dataset contains 50,000 training images and
10,000 test images, 32×32×3 in dimension, spanning 10 output
classes. We pre-processed the CIFAR-10 images using global
contrast normalization followed by ZCA whitening (Krizhevsky,
2009). Global contrast normalization is performed by subtracting
and scaling the pixel intensities of each input channel by the
corresponding mean and standard deviation computed over
the training set. The normalized image is then transformed by
multiplying with whitening filters as explained in Krizhevsky
(2009), which enables a network to learn higher-order pixel
correlations. Figure 7 illustrates a few original and pre-processed

Frontiers in Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 18952

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

images from the CIFAR-10 dataset. The simulation parameters
used for training the convolutional layers are provided in
Table 3 while those used for training the fully-connected
layer are listed in Table 4. The binary kernels and firing
thresholds of the convolutional layers are initialized as described
in subsection 3.2.

In our first experiment, we simulated a 36C3-2P-1024FC-
10FC ReStoCNet, designated as ReStoCNet-1, consisting of
a single convolutional layer with 36 maps and 3×3 binary
kernels followed by fully-connected layer containing 1024 ReLU
neurons and a final softmax layer with 10 output neurons.
The pre-processed CIFAR-10 images are composed of pixels
with positive and negative intensities, which are, respectively,
mapped to excitatory and inhibitory pre-neurons firing at a
rate constrained between 0 and 200 Hz depending on the
absolute value of the corresponding pixel intensities. The e/iHB-
STDP model parameters are listed in Table 3. Note that the
e/iHB-STDP switching probability is set to zero in the negative
STDP timing window to facilitate optimal balance between
the potentiation and depression updates for a smaller 3×3
kernel shared by 32×32 pre-neurons in the input map and
30×30 post-neurons in the convolutional map. The binary
kernels in ReStoCNet-1 are trained using 5,000 images, with
mini-batch size of 200, for simulation period of 25 ms per
mini-batch training iteration. Note that we used a simulation
time-step of 1 ms. Figure 8A illustrates the low-level input
features self-learnt by the binary kernels, enabled by the e/iHB-
STDP based unsupervised training methodology. The shallow
ReStoCNet-1, wherein the fully-connected layer is trained on
the entire dataset, yielded 64.31% test accuracy that is higher
than an accuracy of 59.42% obtained using randomly initialized
binary kernels and zero firing thresholds in the convolutional
layer. In order to determine if accuracy loss is incurred
as a result of using binary kernels, we trained ReStoCNet-
1 composed of full-precision (32-bit) kernels using standard
exponential STDP rule (Song et al., 2000) with learning rate
of 0.01 for the positive STDP timing window and 0 for the
negative STDP timing window. ReStoCNet-1 with full-precision
kernels provided 64.30% test accuracy, which is comparable
to that obtained using binary kernels. Figure 8B shows that
the test accuracy improves with the number of maps in
the convolutional layer. As explained in subsection 2.3, the
classification accuracy of ReStoCNet has a strong dependence
on the chosen STDPstride used for computing the average
spike timing difference of the spiking post-neurons in the
convolutional maps. Figure 8C indicates that the accuracy of
ReStoCNet-1 degrades for STDPstride smaller than 4 or greater
than 5. If the STDPstride is small, the binary kernels are updated
based on the spike timing difference averaged over large number
of spiking post-neurons in the convolutional maps, leading
to degradation in the learnt features. On the contrary, if the
STDPstride is large, the binary kernels are updated based on the
spike timing difference estimates of few post-neurons, leading
to loss of generality in the learnt features. We use the optimal
STDPstride of 5 for all the ReStoCNet experiments presented
in this work.

Next, we simulated a 36C3-36C3-2P-1024FC-10FC
ReStoCNet, designated as ReStoCNet-2, composed of two
convolutional layers, each with 36 maps and 3×3 binary
kernels. The first convolutional layer is trained as described
in the previous paragraph. The binary kernels and firing
thresholds of the second convolutional layer are trained using
a different subset of 5,000 CIFAR-10 images with a mini-batch
size of 200. Note that the e/iHB-STDP hyperparameters are
similar for both the convolutional layers except the synaptic
switching probabilities, which are scaled down for the second
convolutional layer as shown in Table 3. The lower switching
probabilities for the second convolutional layer accounts for
the fact that every constituting post-neuron receives weighted
input from 36 maps each in the residual and direct paths
while a post-neuron in the first convolutional layer receives
weighted input from just the 3 maps in the input layer. We
simulated two versions of ReStoCNet-2: one without residual
connections and the other with residual connections from
the input to second convolutional layer. Figure 9 shows that
ReStoCNet-2 with residual connections learns diverse high-
level input features compared to the one without residual
connections. As a result, ReStoCNet-2 with residual connections
yielded 65.79% accuracy, which is roughly 1.5% higher than
that provided by ReStoCNet-2 without residual connections
as well as ReStoCNet-1. This begs the following question:
is ReStoCNet-2 yielding higher accuracy that ReStoCNet-
1 just due to increased number of synaptic weights in the
fully-connected layer as a consequence of concatenating the
pooled spiking activations of both the convolutional layers? To
answer this question, we compare ReStoCNet-2, in which
the spiking activations of the 72 pooled maps are fed to a
fully-connected layer of 1024 neurons, with ReStoCNet-1 in
which the spiking activations of the 36 pooled maps are fed
to a larger fully-connected layer of 2048 neurons. Figure 9C
indicates that ReStoCNet-2 offers higher accuracy than that
provided by ReStoCNet-1 with 2048 neurons in the fully-
connected layer, which is a testament to the improved feature
learning capability of the second convolutional layer in the
presence of residual inputs. Figure 9D shows that ReStoCNet-2
provides only modest improvement in accuracy as the number
of output maps is increased in the second convolutional
layer. The accuracy limitation is caused by the inability of the
unsupervised training methodology to effectively optimize an
over-parameterized network.

Finally, we evaluated a deeper 36C3-36C3-36C3-2P-1024FC-
10FC ReStoCNet, referred to as ReStoCNet-3, composed
of three convolutional layers as depicted in Figure 1. We
inverted the residual inputs to the third convolutional layer
to ensure diversity in the residual maps received by the
second and third layers from the input layer. We trained
the third convolutional layer with the same hyperparameters
(shown in Table 3) as those used for training the second
convolutional layer, albeit on a different subset of 5,000
images from the CIFAR-10 dataset. In addition to ReStoCNet-
3 (with residual connections), wherein the pooled spiking
activations of all the convolutional layers are used for

Frontiers in Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 18953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

FIGURE 7 | (A) Original 32×32×3 CIFAR-10 images. (B) CIFAR-10 images pre-processed using global contrast normalization followed by ZCA whitening (Krizhevsky,

2009).

FIGURE 8 | (A) Binary kernels (3×3 in size) of ReStoCNet-1 (36C3-2P-1024FC-10FC ReStoCNet), trained using e/iHB-STDP based unsupervised training

methodology, on 5,000 images from the CIFAR-10 dataset. (B) Classification accuracy of ReStoCNet vs. the number of convolutional maps. (C) Classification

accuracy of ReStoCNet-1 vs. the STDPstride used to compute the average spike timing difference of the spiking post-neurons in the convolutional maps.

inference, we simulated the following variants to demonstrate
the significance of residual connections for the scalability of
deep SNNs:

1. ReStoCNet-3a – This is a variant of ReStoCNet-3 without
residual inputs to the third convolutional layer. In addition,
the pooled spiking activations of only the third convolutional
layer are fed to the fully-connected layer for inference.

2. ReStoCNet-3b – This is a variant of ReStoCNet-3 with residual
inputs to the third convolutional layer, wherein the pooled
spiking activations of only the third convolutional layer are
used for inference.

ReStoCNet-3a, devoid of residual connections, yielded
44.75% accuracy on the CIFAR-10 test set, which is 17.5%
lower compared to an accuracy of 62.26% provided by
ReStoCNet-3b with residual connections as shown in
Figure 10A. The higher accuracy of ReStoCNet-3b can be
directly attributed to its improved feature learning capability,
rendered possible by the residual inputs feeding into the third
convolutional layer. The optimal ReStoCNet-3 configuration
(with residual connections), wherein the pooled spiking

activations of all the convolutional layers are used for inference,
offered 65.25% accuracy, which is only comparable to an
accuracy of 65.79% provided by ReStoCNet-2 as shown
in Figure 10B.

Our analysis on ReStoCNet, trained using the e/iHB-STDP
based unsupervised training methodology, offers the following
key insights. First, it shows that the residual connections are
critical for the scalability of deep SNNs. Second, it reveals that
the maximum achievable accuracy is limited by the STDP-based
unsupervised training methodology as further corroborated
by Figure 11, which illustrates the unsupervised clustering
capability of ReStoCNet-3 for different training images from
the CIFAR-10 dataset. In order to visualize the efficiency of
unsupervised clustering offered by ReStoCNet-3, we reduce the
dimension of the pooled spiking activations of the convolutional
layers using Principal Component Analysis (PCA) followed by
t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten
and Hinton, 2008), and plot the first two t-SNE components
for the training images. The t-SNE dimensionality reduction
technique computes pair-wise similarities between the data
points (images) in the high-dimensional space and projects

Frontiers in Neuroscience | www.frontiersin.org 12 March 2019 | Volume 13 | Article 18954

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

FIGURE 9 | Binary kernels (in second convolutional layer) of ReStoCNet-2 (36C3-36C3-2P-1024FC-10FC ReStoCNet) (A) without residual connections, and (B) with

residual connections from the input to second convolutional layer. (C) Classification accuracy of ReStoCNet-2 with and without residual connections compared to that

provided by ReStoCNet-1. (D) Classification accuracy of ReStoCNet-2 (with residual connections) vs. the number of output maps in the second convolutional layer.

FIGURE 10 | (A) Classification accuracy of three different ReStoCNet-3 (36C3-36C3-36C3-2P-1024FC-10FC) configurations on the CIFAR-10 test set.

(B) Comparison between the classification accuracy of different ReStoCNet configurations presented in this work.

them to a low-dimensional space that preserves the measured
similarities. We refer the readers to Maaten and Hinton (2008)
for a review of the t-SNE algorithm for visualizing high-
dimensional input data. Figure 11A shows the t-SNE scatter
plot for 15,000 training images spanning three different classes
from the CIFAR-10 dataset, namely, airplane, bird, and frog.
The primary objective of any machine learning model is to
cluster the images per class together while ensuring sufficient
separation among different classes. The t-SNE scatter plot
of the pooled spiking activations of ReStoCNet-3 (shown in

Figure 11B) indicates that, although distinct clusters are formed
for the images in each class, there exists considerable overlap
among different image clusters.

4. DISCUSSION

4.1. Comparison With Related Works
We compare ReStoCNet with convolutional SNNs, which employ
unsupervised training methodology for the convolutional layers
and supervised training algorithms like error backpropagation

Frontiers in Neuroscience | www.frontiersin.org 13 March 2019 | Volume 13 | Article 18955

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

FIGURE 11 | (A) Scatter plot of the first two t-SNE components for 15,000 training images from the CIFAR-10 dataset from the classes: airplane, bird, and frog.

(B) t-SNE scatter plot of the pooled spiking activations of the convolutional layers in ReStoCNet-3 for the corresponding training images.

for the fully-connected layer, using classification accuracy (on
the test set) and kernel memory compression as the evaluation
metrics. The memory compression offered by ReStoCNet as a
result of using binary kernels in the convolutional layers, referred
to as kernel memory compression, is computed as specified by

kernel memory compression

=
Nbaseline × ksizebaseline × ksizebaseline × nbitsfull_precision

NReStoCNet × ksizeReStoCNet × ksizeReStoCNet × nbitsbinary

(8)

where NReStoCNet (Nbaseline) and ksizeReStoCNet (ksizebaseline)
are the number of kernels and kernel size, respectively, in
ReStoCNet (baseline convolutional SNN used for comparison),
and nbitsbinary and nbitsfull_precision are the hardware bit-precision
required for storing the binary and full-precision kernels,
which are set to 2-bits and 32-bits, respectively. Note that
the binary kernels in ReStoCNet require storage capacity
of 2-bits per synaptic weight since they are constrained to
binary states −1 and +1. Table 5 shows that the classification
accuracy offered by ReStoCNet for MNIST digit recognition is
comparable to that reported for convolutional SNNs composed
of full-precision kernels trained using unsupervised learning
methodologies. Specifically, a 36C3-2P-128FC-10FC ReStoCNet
offers 98.54% accuracy on the MNIST test set, which compares
favorably with that (98.36%) provided by the convolutional
SNN presented in Tavanaei and Maida (2017), composed
of single convolutional layer with 32 maps and 5×5 full-
precision kernels trained using STDP. The proposed ReStoCNet
offers 39.5× kernel memory compression by virtue of using
smaller 3×3 binary kernels under iso-accuracy conditions for
MNIST digit recognition. On the contrary, very few works have
benchmarked convolutional SNNs, trained using unsupervised
learning algorithms, on the CIFAR-10 dataset. Panda and
Roy (2016) proposed spike-based convolutional Auto-Encoders,
where the kernels in every convolutional layer are trained
in an unsupervised manner using error backpropagation to
regenerate the input spike patterns. Ferré et al. (2018) presented
convolutional SNN (without residual connections), where the
kernels are trained using a simple Hebbian STDP learning
rule. Table 6 shows that ReStoCNet provides 4–5% lower
accuracy than that reported in both the related works. In

particular, a 256C3-2P-1024FC-10FC ReStoCNet yields 4.97%
lower accuracy than that provided by the 64C7-8P-512FC-
512FC-10FC convolutional SNN (Ferré et al., 2018) while
offering 21.7× kernel memory compression. Note that the
convolutional SNN presented in Ferré et al. (2018) is simulated
by single-step forward propagation using input rates while
ReStoCNet is simulated using input spike trains over multiple
time-steps.

Finally, we note that deep learning Binary Neural Networks
(BNNs) (Courbariaux et al., 2015; Rastegari et al., 2016; Hubara
et al., 2017), which use binary activations for the neurons in every
layer except the input and output layers and binary weights, have
been demonstrated to yield superior classification accuracy than
that provided by ReStoCNet. Nevertheless, ReStoCNet offers the
following advantages over BNNs. First, ReStoCNet is inherently
suited for processing spatiotemporal spike trains from event-
based audio and vision sensors as shown by Stromatias et al.
(2017) for convolutional SNNs with full-precision weights since
it computes with static image pixels mapped to spike trains.
BNNs, on the contrary, use real-valued pixel intensities for
the input layer. Second, ReStoCNet is amenable for efficient
implementation in event-driven asynchronous neuromorphic
hardware platforms like IBM TrueNorth (Merolla et al., 2014)
and Intel Loihi (Davies et al., 2018) since it uses {0, 1} for the
outputs of the spiking neurons in every convolutional layer. The
weighted sum of the input spikes with the synaptic weights in
the convolutional layers needs to be computed only in the event
of a spike fired by the corresponding input neurons. In addition,
only the sparse spiking events need to be transmitted between
the layers. The event-driven computing capability offered by
ReStoCNet can be exploited to achieve higher energy efficiency
in neuromorphic hardware implementations by minimizing
the computation and communication energy in the absence
of spiking events. BNNs, on the other hand, use {1, −1}
for the neuronal activations and either {1, −1} (Courbariaux
et al., 2015) or {α, −α} (Rastegari et al., 2016) where α is
a layer-wise scaling factor for the weights to achieve good
accuracy and stable training convergence (Pfeiffer and Pfeil,
2018). Hence, the computation of the weighted input sum
and communication of the binarized neuronal activations need
to be carried out for all the neurons in every layer in a
synchronous manner, which is in contrast to the event-based
asynchronous computing capability provided by ReStoCNet.

Frontiers in Neuroscience | www.frontiersin.org 14 March 2019 | Volume 13 | Article 18956

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

TABLE 5 | Classification accuracy of SNN models, which use unsupervised training methodology for the hidden/convolutional layers and supervised training algorithm for

the output (classification) layer, on the MNIST test set.

Model Size Training methodology Accuracy (%)

FC_SNN (Yousefzadeh et al., 2018) 6400FC-10FC Probabilistic STDP + 95.70

ANN backpropagation

ConvSNN (Panda and Roy, 2016) 12C5-2P-64C5-2P-10FC SNN backpropagation 99.08

ConvSNN (Stromatias et al., 2017) 18C7-2P-10FC Fixed Gabor kernels + 98.20

ANN backpropagation

ConvSNN (Lee et al., 2018b) 16C3-16C3-2P-10FC STDP 91.10

ConvSNN (Ferré et al., 2018) 8C5-2P-16C5-2P- STDP + 98.49

120FC-60FC-10FC ANN backpropagation

ConvSNN (Kheradpisheh et al., 2018) 30C5-2P-100C5-2P-10FC STDP + 98.40

Support Vector Machine

ConvSNN (Tavanaei et al., 2018) 64C5-2P-1500FC-10FC STDP 98.61

ConvSNN (Mozafari et al., 2018) 30C5-2P-250C3-3P-200C5-5P Reward-modulated STDP 97.20

ConvSNN (Tavanaei and Maida, 2017) 32C5-2P-128FC-10FC STDP + 98.36

Support Vector Machine

ReStoCNet (our work) 36C3-2P-128FC-10FC Probabilistic eHB-STDP + 98.54

ANN backpropagation

TABLE 6 | Classification accuracy of SNN models, which use unsupervised training methodology for the hidden/convolutional layers and supervised training algorithm for

the output (classification) layer, on the CIFAR-10 test set.

Model Size Training methodology Accuracy (%)

ConvSNN (Panda and Roy, 2016) 32C5-2P-32C5-2P-64C4-10FC SNN backpropagation 70.16

ConvSNN (Ferré et al., 2018) 64C7-8P-512FC-512FC-10FC STDP + 71.20

ANN backpropagation

ReStoCNet (our work) 256C3-2P-1024FC-10FC Probabilistic e/iHB-STDP + 66.23

ANN backpropagation

Last, ReStoCNet offers a memory-efficient solution for enabling
on-chip intelligence in resource-constrained battery-powered
Internet of Things (IoT) edge devices since the binary kernels are
trained using probabilistic-STDP based local learning rule that
can be efficiently implemented on-chip. Learning is achieved by
probabilistically switching the binary kernel weights between the
allowed states based on spike timing, which precludes the need
for storing the full-precision weights and enhances the memory
efficiency during training. BNNs, on the other hand, are trained
using error backpropagation algorithms that update the full-
precision weights based on the backpropagated error gradients
and binarize the modified weights for forward propagation
and computing the error gradients. Thus, ReStoCNet provides
a promising alternative for energy- and memory-efficient
computing during both training and inference in IoT edge
devices, for instance, surveillance cameras, which produce large
volumes of real-time data. It is inefficient for these devices
to continuously offload raw/compressed data to the cloud for
training. This is because the sheer volume of generated data could
exceed the bandwidth available for transmitting them to the
cloud. Alternatively, there could be connectivity issues restricting
communication between the edge and the cloud. In addition,
there are also security and data privacy issues that need to be

addressed while sending (receiving) data to (from) the cloud.
Hence, it is highly desirable to equip the edge devices with on-
chip intelligence so that they can learn from real-time input
data and invoke the cloud occasionally to update the on-chip
trained weights using more complex algorithms. The proposed
approach is also suited for building intelligent autonomous
systems like robots and self-flying drones. For example, it is
beneficial to embed on-chip learning in autonomous robots
used for disaster relief operations that enables them to navigate
obstacles and scour the disaster site for survivors. In the
instance of self-flying drones used for reconnaissance operations,
on-chip intelligence can enable them to effectively navigate
the enemy territory and improve the chances of a successful
mission.

The classification accuracy of ReStoCNet for complex
applications could be improved by augmenting the layer-wise
unsupervised training methodology with a global supervised
training mechanism. Recent works have proposed error
backpropagation algorithms for the supervised training
of SNNs (Lee et al., 2016, 2018a; Panda and Roy, 2016;
Jin et al., 2018; Mostafa, 2018; Wu et al., 2018). However,
the backpropagation algorithms for SNNs, some of which
backpropagate errors at multiple time-steps, are computationally

Frontiers in Neuroscience | www.frontiersin.org 15 March 2019 | Volume 13 | Article 18957

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

prohibitive and prone to unstable convergence behaviors (Lee
et al., 2018a). In this regard, Neftci et al. (2017) proposed
event-driven random backpropagation that prevents the need
for calculating and backpropagating precise error gradients.
Future works could explore a hybrid unsupervised (local)
and supervised (global) training methodology for ReStoCNet
to obtain favorable trade-offs between classification accuracy
and training effort as was shown by Lee et al. (2018a) for
full-precision convolutional SNNs without residual connections.
Such a hybrid approach would also preclude the need for
using the pooled spiking activations of all the convolutional
layers for inference, thereby enhancing the scalability of deep
ReStoCNets.

4.2. Applicability of ReStoCNet for
Neuromorphic Hardware Implementations
Together with research efforts that are geared toward the
exploration of bio-plausible SNN algorithms (architectures
and learning methodologies), parallel efforts are underway to
develop neuromorphic hardware implementations with on-chip
intelligence, which can exploit the inherent computational
efficiency offered by the SNN algorithms. IBM TrueNorth
(Merolla et al., 2014) and Intel Loihi (Davies et al., 2018) are
recent demonstrations of event-driven neuromorphic hardware
that were realized using the conventional CMOS technology.
CMOS-based neuromorphic hardware implementations
are area- and power-intensive because of the mismatch
between the spiking neuronal/synaptic circuits and the
neuroscience processes governing their dynamics. In this
regard, nanoelectronic devices such as Ag-Si memristor (Jo
et al., 2010), Phase-Change Memory (PCM) (Suri et al., 2011),
Resistive Random Access Memory (Rajendran et al., 2013) and
domain-wall Magnetic Tunnel Junctions (MTJs) (Sengupta
et al., 2016a) that are capable of naturally mimicking multilevel
synaptic dynamics have been proposed as potential candidates
for achieving improved energy efficiency compared to CMOS-
only realizations. However, as the technology is scaled, the
multilevel memristive and spintronic devices suffer from limited
bit-precision and exhibit stochastic behavior in the presence of
thermal noise. The proposed ReStoCNet, which is composed
of binary kernels trained using probabilistic HB-STDP, is
naturally suited for neuromorphic hardware implementations
based on stochastic device technologies as elaborated in the
following paragraph.

Stochastic device technologies such as Conductive-Bridge
Random Access Memory (CBRAM) (Suri et al., 2013), RRAM
(Kavehei and Skafidas, 2014), MTJ (Vincent et al., 2015; Sengupta
et al., 2016b; Srinivasan et al., 2016), and PCM (Tuma et al., 2016)
have been shown to efficiently implement stochastic neuronal
and synaptic models. The intrinsic stochastic switching behavior
of these devices can be exploited to realize the probabilistic
switching of a binary synapse during training without the
need for costly random number generators to implement the
stochastic operations as illustrated with MTJ-based synapse.
An MTJ is composed of two ferromagnetic layers, namely, a
pinned layer whose magnetization is fixed and a free layer
whose magnetization can be switched, separated by a tunneling
oxide barrier. It exhibits two stable conductance states based

on the relative orientation of the pinned layer and free layer
magnetizations, which can be switched probabilistically by
passing charge current through a Heavy Metal (HM) located
underneath the MTJ structure. Srinivasan et al. (2016) showed
that the MTJ-HM heterostructure, with independent spike-
transmission and programming current paths, can efficiently
realize a stochastic binary synapse. During training, the MTJ is
switched probabilistically based on the time difference between
pre- and post-spikes by passing the appropriate current through
the HM. During inference, an input pre-spike gets modulated
with the trained MTJ conductance to produce resultant current
into the post-neuron. Srinivasan et al. (2016) also presented
peripheral circuits required to implement an exponential
probabilistic-STDP rule, which needs to be modified for realizing
the proposed HB-STDP rule. We note that CBRAM, RRAM,
and PCM devices can similarly be used to realize a stochastic
binary synapse during training by modulating the input voltage
based on spike timing (Suri et al., 2013; Kavehei and Skafidas,
2014). Crossbar-based hardware implementations based on these
stochastic device technologies with on-chip learning capability
have been demonstrated for efficiently realizing binary fully-
connected SNNs (Suri et al., 2013; Srinivasan et al., 2016),
which consists of a unique synaptic weight connecting every
pair of pre- and post-neurons. Recently Wijesinghe et al.
(2018) showed that weight-shared convolutional SNNs such
as ReStoCNet can be mapped to crossbar-based hardware
implementations. However, large-scale networks with increased
number of neurons and synapses cannot be mapped to a single
large crossbar due to non-idealities that could result in erroneous
computations. Hardware architectures composed of multiple
smaller crossbars can be used to efficiently realize large-scale
networks (Shafiee et al., 2016; Ankit et al., 2017; Song et al., 2017).
Finally, we note that the fully-connected classification layer
in ReStoCNet, which is composed of artificial ReLU neurons,
cannot be directly implemented in event-driven asynchronous
neuromorphic hardware platforms. The fully-connected layer of
ReLU neurons could be mapped to Integrate-and-Fire neurons
post training for inference within the neuromorphic fabric as
shown by Diehl et al. (2015). Alternatively, fully-connected layer
of Leaky-Integrate-and-Fire neurons can be trained using spike-
based backpropagation algorithms for training and/or inference
within the neuromorphic fabric.

5. CONCLUSION

In this work, we proposed ReStoCNet, a residual stochastic
multilayer convolutional SNN composed of binary kernels,
for memory-efficient neuromorphic computing. We presented
probabilistic Hybrid-STDP (HB-STDP) learning rule, integrating
Hebbian and anti-Hebbian learning mechanisms, for training
the binary kernels constituting ReStoCNet in a layer-wise
unsupervised manner. We demonstrated up to 3-layer deep
ReStoCNet and showed that residual connections are critical to
enabling the deeper convolutional layers to self-learn useful high-
level input features and improving the scalability of deep SNNs.
ReStoCNet offered 98.54% accuracy and 39.5× kernel memory
compression compared to full-precision (32-bit) convolutional
SNN under iso-accuracy conditions forMNIST digit recognition.

Frontiers in Neuroscience | www.frontiersin.org 16 March 2019 | Volume 13 | Article 18958

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

On the CIFAR-10 dataset, ReStoCNet provided 66.23% accuracy
and 21.7× kernel memory compression, albeit with 5% accuracy
degradation compared to full-precision convolutional SNN. We
believe that ReStoCNet, with event-driven computing capability
and memory-efficient probabilistic learning with binary kernels,
is ideally suited for neuromorphic hardware implementations
based on CMOS and stochastic emerging device technologies
like Resistive Random Access Memory, Phase-Change Memory,
and Magnetic Tunnel Junctions that can potentially lead
to much improved energy efficiency in battery-powered IoT
edge devices.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.cs.toronto.edu/~kriz/cifar.html.

AUTHOR CONTRIBUTIONS

GS wrote the paper and performed the simulations. All authors
helpedwith developing the concepts, conceiving the experiments,
and writing the paper.

FUNDING

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA, by the Semiconductor Research Corporation, the
National Science Foundation, Intel Corporation, the DoD
Vannevar Bush Fellowship, and by the U.S. Army Research
Laboratory and the U.K. Ministry of Defense under Agreement
Number W911NF-16-3-0001.

REFERENCES

Ankit, A., Sengupta, A., Panda, P., and Roy, K. (2017). “Resparc: a reconfigurable

and energy-efficient architecture with memristive crossbars for deep spiking

neural networks,” in Proceedings of the 54th Annual Design Automation

Conference 2017 (Austin, TX: ACM), 27.

Bi, G.-Q., and Poo, M.-m. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: training

deep neural networks with binary weights during propagations,” in Advances

in Neural Information Processing Systems (Montréal, QC), 3123–3131.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience, Vol. 806. Cambridge,

MA: MIT Press.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” inNeural Networks (IJCNN), 2015 International Joint Conference on

(Killarney: IEEE), 1–8.

Ferré, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature

learning with winner-takes-all based stdp. Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Goodman, D. F., and Brette, R. (2008). Brian: a simulator for

spiking neural networks in python. Front. Neuroinformatics 2:5.

doi: 10.3389/neuro.11.005.2008

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning

for image recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (Las Vegas, NV),

770–778.

Hebb, D. (1949). The organization of behavior. New York, NY: Wiley.

Hu, Y., Tang, H., Wang, Y., and Pan, G. (2018). Spiking deep residual network.

arXiv:1805.01352v1.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017).

Quantized neural networks: training neural networks with low precision

weights and activations. J. Mach. Learn. Res. 18, 6869–6898. Available online

at: http://jmlr.org/papers/v18/16-456.html

Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). “Spatial transformer

networks,” in Advances in Neural Information Processing Systems (Montreal,

QC), 2017–2025.

Jin, Y., Zhang, W., and Li, P. (2018). “Hybrid macro/micro level backpropagation

for training deep spiking neural networks,” in Advances in Neural Information

Processing Systems (Montréal, QC), 7005–7015.

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.

10, 1297–1301. doi: 10.1021/nl904092h

Jug, F. (2012).On Competition and Learning in Cortical Structures. Doctoral thesis,

ETH Zurich.

Kavehei, O., and Skafidas, E. (2014). “Highly scalable neuromorphic hardware

with 1-bit stochastic nano-synapses,” in Circuits and Systems (ISCAS), 2014

IEEE International Symposium on (Melbourne, VIC: IEEE), 1648–1651.

doi: 10.1109/ISCAS.2014.6865468

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

Stdp-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.

arXiv:1412.6980.

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features From

Tiny Images, Vol. 1. Technical report, University of Toronto, 7.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018a). Training deep

spiking convolutional neural networks with stdp-based unsupervised

pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2018b). “Deep

spiking convolutional neural network trained with unsupervised

spike timing dependent plasticity,” in IEEE Trans. Cogn.

Dev. Syst. doi: 10.1109/TCDS.2018.2833071. [Epub ahead of

print].

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lowel, S., and Singer, W. (1992). Selection of intrinsic horizontal connections

in the visual cortex by correlated neuronal activity. Science 255, 209–212.

doi: 10.1126/science.1372754

Maaten, L. v. d., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.

Learn. Res. 9, 2579–2605. Available online at: http://www.jmlr.org/papers/v9/

vandermaaten08a.html

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

Frontiers in Neuroscience | www.frontiersin.org 17 March 2019 | Volume 13 | Article 18959

https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2018.00024
https://doi.org/10.3389/neuro.11.005.2008
http://jmlr.org/papers/v18/16-456.html
https://doi.org/10.1021/nl904092h
https://doi.org/10.1109/ISCAS.2014.6865468
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.1109/TCDS.2018.2833071
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1126/science.1372754
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1371/journal.pcbi.0030031
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Srinivasan and Roy ReStoCNet

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking

neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

doi: 10.1109/TNNLS.2017.2726060

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., and Masquelier,

T. (2018). Combining stdp and reward-modulated stdp in deep convolutional

spiking neural networks for digit recognition. arXiv: 1804.00227.

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

boltzmann machines,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (Haifa), 807–814.

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven

random back-propagation: enabling neuromorphic deep learning machines.

Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE), 299–306.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).

“Automatic differentiation in pytorch,” in NIPS Workshop (Long Beach, CA).

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Querlioz, D., Bichler, O., Vincent, A. F., and Gamrat, C. (2015). Bioinspired

programming of memory devices for implementing an inference engine. Proc.

IEEE 103, 1398–1416. doi: 10.1109/JPROC.2015.2437616

Rajendran, B., Liu, Y., Seo, J.-S., Gopalakrishnan, K., Chang, L., Friedman,

D. J., et al. (2013). Specifications of nanoscale devices and circuits for

neuromorphic computational systems. IEEE Trans. Electron Devices 60, 246–

253. doi: 10.1109/TED.2012.2227969

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “Xnor-

net: imagenet classification using binary convolutional neural networks,” in

European Conference on Computer Vision (Amsterdam: Springer), 525–542.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323:533.

doi: 10.1038/323533a0

Sengupta, A., Banerjee, A., and Roy, K. (2016a). Hybrid spintronic-cmos spiking

neural network with on-chip learning: devices, circuits, and systems. Phys. Rev.

Appl. 6:064003. doi: 10.1103/PhysRevApplied.6.064003

Sengupta, A., Panda, P., Wijesinghe, P., Kim, Y., and Roy, K. (2016b). Magnetic

tunnel junction mimics stochastic cortical spiking neurons. Sci. Rep. 6:30039.

doi: 10.1038/srep30039

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci.

13:95. doi: 10.3389/fnins.2019.00095

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu,

M., et al. (2016). Isaac: a convolutional neural network accelerator with in-situ

analog arithmetic in crossbars. ACM SIGARCH Comput. Architect. News 44,

14–26. doi: 10.1145/3007787.3001139

Song, L., Qian, X., Li, H., and Chen, Y. (2017). “Pipelayer: a pipelined reram-based

accelerator for deep learning,” in High Performance Computer Architecture

(HPCA), 2017 IEEE International Symposium on (Austin, TX: IEEE), 541–552.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3:919.

doi: 10.1038/78829

Srinivasan, G., Panda, P., and Roy, K. (2018). Stdp-based unsupervised feature

learning using convolution-over-time in spiking neural networks for energy-

efficient neuromorphic computing. J. Emerg. Technol. Comput. Syst. 14, 44:1–

44:12. doi: 10.1145/3266229

Srinivasan, G., Sengupta, A., and Roy, K. (2016). Magnetic tunnel junction

based long-term short-term stochastic synapse for a spiking neural

network with on-chip stdp learning. Sci. Rep. 6:29545. doi: 10.1038/srep

29545

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958.

Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). An event-driven classifier for spiking neural networks fed

with synthetic or dynamic vision sensor data. Front. Neurosci. 11:350.

doi: 10.3389/fnins.2017.00350

Suri, M., Bichler, O., Querlioz, D., Cueto, O., Perniola, L., Sousa, V., et al. (2011).

“Phase change memory as synapse for ultra-dense neuromorphic systems:

application to complex visual pattern extraction,” in 2011 IEEE International

Electron Devices Meeting (IEDM), (Washington, DC: IEEE), 4.

Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., et al.

(2013). Bio-inspired stochastic computing using binary cbram synapses. IEEE

Trans. Electron Devices 60, 2402–2409. doi: 10.1109/TED.2013.2263000

Tavanaei, A., Kirby, Z., and Maida, A. S. (2018). “Training spiking convnets by

stdp and gradient descent,” in 2018 International Joint Conference on Neural

Networks (IJCNN) (Rio de Janeiro), 1–8.

Tavanaei, A., and Maida, A. S. (2017). “Multi-layer unsupervised learning

in a spiking convolutional neural network,” in 2017 International

Joint Conference on Neural Networks (IJCNN) (Anchorage, AK: IEEE),

2023–2030.

Thiele, J. C., Bichler, O., and Dupret, A. (2018). Event-based, timescale invariant

unsupervised online deep learning with STDP. Front. Comput. Neurosci. 12:46.

doi: 10.3389/fncom.2018.00046

Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A., and Eleftheriou, E.

(2016). Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699.

doi: 10.1038/nnano.2016.70

Vincent, A. F., Larroque, J., Locatelli, N., Romdhane, N. B., Bichler, O., Gamrat, C.,

et al. (2015). Spin-transfer torque magnetic memory as a stochastic memristive

synapse for neuromorphic systems. IEEE Trans. Biomed. Circ. Syst. 9, 166–174.

doi: 10.1109/TBCAS.2015.2414423

Wijesinghe, P., Ankit, A., Sengupta, A., and Roy, K. (2018). An all-memristor

deep spiking neural computing system: a step toward realizing the low-

power stochastic brain. IEEE Trans. Emerging Top. Comput. Intell. 2, 345–358.

doi: 10.1109/TETCI.2018.2829924

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.00331

Yousefzadeh, A., Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Linares-

Barranco, B. (2018). On practical issues for stochastic stdp hardware with

1-bit synaptic weights. Front. Neurosci. 12:665. doi: 10.3389/fnins.2018.

00665

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Srinivasan and Roy. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 March 2019 | Volume 13 | Article 18960

https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1109/JPROC.2015.2437616
https://doi.org/10.1109/TED.2012.2227969
https://doi.org/10.1038/323533a0
https://doi.org/10.1103/PhysRevApplied.6.064003
https://doi.org/10.1038/srep30039
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1145/3007787.3001139
https://doi.org/10.1038/78829
https://doi.org/10.1145/3266229
https://doi.org/10.1038/srep29545
https://doi.org/10.3389/fnins.2017.00350
https://doi.org/10.1109/TED.2013.2263000
https://doi.org/10.3389/fncom.2018.00046
https://doi.org/10.1038/nnano.2016.70
https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.1109/TETCI.2018.2829924
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2018.00665
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 27 March 2019

doi: 10.3389/fnins.2019.00252

Frontiers in Neuroscience | www.frontiersin.org 1 March 2019 | Volume 13 | Article 252

Edited by:

Yansong Chua,

Institute for Infocomm Research

(A*STAR), Singapore

Reviewed by:

Shaista Hussain,

Institute of High Performance

Computing (A*STAR), Singapore

Liam P. Maguire,

Ulster University, United Kingdom

*Correspondence:

Xianghong Lin

linxh@nwnu.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 08 October 2018

Accepted: 04 March 2018

Published: 27 March 2019

Citation:

Wang X, Lin X and Dang X (2019) A

Delay Learning Algorithm Based on

Spike Train Kernels for Spiking

Neurons. Front. Neurosci. 13:252.

doi: 10.3389/fnins.2019.00252

A Delay Learning Algorithm Based on
Spike Train Kernels for Spiking
Neurons
Xiangwen Wang, Xianghong Lin* and Xiaochao Dang

College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China

Neuroscience research confirms that the synaptic delays are not constant, but can

be modulated. This paper proposes a supervised delay learning algorithm for spiking

neurons with temporal encoding, in which both the weight and delay of a synaptic

connection can be adjusted to enhance the learning performance. The proposed

algorithm firstly defines spike train kernels to transform discrete spike trains during the

learning phase into continuous analog signals so that common mathematical operations

can be performed on them, and then deduces the supervised learning rules of synaptic

weights and delays by gradient descent method. The proposed algorithm is successfully

applied to various spike train learning tasks, and the effects of parameters of synaptic

delays are analyzed in detail. Experimental results show that the network with dynamic

delays achieves higher learning accuracy and less learning epochs than the network with

static delays. The delay learning algorithm is further validated on a practical example

of an image classification problem. The results again show that it can achieve a good

classification performance with a proper receptive field. Therefore, the synaptic delay

learning is significant for practical applications and theoretical researches of spiking

neural networks.

Keywords: spiking neural networks, supervised learning, spike train kernels, delay learning, synaptic delays

1. INTRODUCTION

Spiking neural networks (SNNs) that composed of biologically plausible spiking neurons are usually
known as the third generation of artificial neural networks (ANNs) (Maass, 1997). The spike trains
are used to represent and process the neural information in spiking neurons, which can integrate
many aspects of neural information, such as time, space, frequency, and phase, etc. (Whalley, 2013;
Walter et al., 2016). As a new brain-inspired computational model of the neural network, SNN
has more powerful computing power compared with a traditional neural network model (Maass,
1996). SNNs can simulate all kinds of neural signals and arbitrary continuous functions, which are
very suitable for processing the brain neural signals (Ghosh-Dastidar and Adeli, 2009; Beyeler et al.,
2013; Gütig, 2014).

Supervised learning for SNNs refers to that for multiple given input spike trains and desired
output spike trains, finding an appropriate synaptic weightmatrix of the SNNs in order to assimilate
the actual output spike trains of output neurons to the corresponding desired output spike trains,
that is, the value of the error evaluation function between them is the smallest. Researchers have
proposed many supervised multi-spike learning algorithms for spiking neurons in recent years
(Lin et al., 2015b). The basic ideas of these algorithms mainly include gradient descent, synaptic
plasticity, and spike train convolution.

61

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00252
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00252&domain=pdf&date_stamp=2019-03-27
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:linxh@nwnu.edu.cn
https://doi.org/10.3389/fnins.2019.00252
https://www.frontiersin.org/articles/10.3389/fnins.2019.00252/full
http://loop.frontiersin.org/people/614274/overview
http://loop.frontiersin.org/people/447469/overview
http://loop.frontiersin.org/people/702789/overview

Wang et al. A Delay Learning Algorithm

Supervised learning algorithms based on gradient descent use
gradient computation and error back-propagation for adjusting
the synaptic weights, and ultimately minimize the error function
that indicates the deviation between the actual and desired
output spike trains. Xu et al. (2017) proposed a supervised
learning algorithm for spiking neurons based on gradient
descent, in which an online adjustment mechanism is used. The
basic idea of supervised learning algorithms based on synaptic
plasticity is using the mechanism of synaptic plasticity caused
by the timing correlation of spike trains of presynaptic and
postsynaptic neurons to design the supervised learning rules.
Representative algorithms are the remote supervised method
(ReSuMe) (Ponulak and Kasiński, 2010) and its extensions (Lin
et al., 2016, 2018). Supervised learning algorithms based on
spike train convolution are constructed by the inner products
of spike trains (Paiva et al., 2009; Park et al., 2013). Discrete
spike trains are firstly converted to continuous functions through
the convolution calculation of the specific kernel function, and
then constructing the supervised learning algorithm for SNNs.
The adjustment of synaptic weights depends on the convolved
continuous functions corresponding to spike trains, which can
realize the learning of the spatio-temporal pattern of the spike
trains. Representative algorithms are spike pattern association
neuron (SPAN) (Mohemmed et al., 2012), precise-spike-driven
(PSD) (Yu et al., 2013), and the work of Lin et al. (Lin et al., 2015a;
Wang et al., 2016; Lin and Shi, 2018).

Experimental research (Minneci et al., 2012) proves that
synaptic delays widely exist in biological neural networks. The
time delay has an effect on the processing ability of the nervous
system (Xu et al., 2013). At present, in most supervised learning
algorithms for SNNs, only the connection strength, namely the
synaptic weight between pre- and post-synapse, is adjusted.
Neuroscientific studies have shown that the synaptic delays in
the biological nervous system are not always invariant, but
can be modulated (Lin and Faber, 2002; Boudkkazi et al.,
2011). However, efficient synaptic delay learning algorithms
are few. In recent years, researchers have introduced the delay
learning to ReSuMe learning rule (Ponulak and Kasiński, 2010)
and proposed some ReSuMe-based delay learning algorithms
(Taherkhani et al., 2015a,b, 2018; Guo et al., 2017). Simulation
results show that the delay versions of ReSuMe achieve learning
accuracy and learning speed improvements compared with the
original ReSuMe. Shrestha et al. (Shrestha and Song, 2016)
formulated an adaptive learning rate scheme for delay adaptation
in the SpikeProp algorithm (Bohte et al., 2002) based on
delay convergence analysis. Simulation results of spike train
learning show that the extended algorithm improves learning
performance of the basic SpikeProp algorithm. There are also
some other delay learning algorithms (Napp-Zinn et al., 1996;
Wang et al., 2012; Hussain et al., 2014) have been proposed, and
further implemented by hardware.

In this paper, we propose a new supervised delay learning
algorithm based on spike train kernels for spiking neurons, in
which both the synaptic weights and the synaptic delays can
be adjusted. The rest of this paper is organized as follows. In
section 2, we first introduce the spiking neuron model and the
kernel representation of the spike train used in this paper and

FIGURE 1 | Spike response function.

then derive the supervised learning rules of both synaptic weights
and synaptic delays using gradient descent method. A series of
spike train learning tasks and an image classification task are
performed to test and verify the learning performance of our
proposed learning algorithm in section 3. The discussion of
our proposed algorithm is presented in section 4. Finally, we
conclude this paper in section 5.

2. MATERIALS AND METHODS

2.1. Spiking Neuron and Spike Train
Representation
2.1.1. Spike Response Model
The short-term memory spike response model (SRM) (Gerstner
and Kistler, 2002) is employed in delay learning. It expresses
the membrane potential u at time t as an integral over the past,
including a model of refractoriness. In the short-term memory
SRM, only the last fired spike tlo contributes to the refractoriness.
Assuming that a neuron has NI input synapses, the ith synapse
transmits a total of Ni spikes and the f th spike (f ∈ [1,Ni]) is

fired at time t
f
i . The internal state u(t) of the neuron at time t is

given by:

u(t) =

NI
∑

i=1

Ni
∑

f=1

wiε(t − t
f
i − di)+ η(t − tlo) (1)

wherewi and di are the synaptic weight and the synaptic delay for
the ith synapse, respectively. When the internal state variable u(t)
crosses the firing threshold θ , the neuron fires a spike.

The spike response function ε(t − t
f
i − di) describes the effect

of the presynaptic spike on the internal state of the postsynaptic
neuron, as shown in Figure 1. It is expressed as:

ε(t − t
f
i − di) =

{

t−t
f
i−di
τ

exp(1−
t−t

f
i−di
τ

) , t − t
f
i − di > 0

0 , t − t
f
i − di ≤ 0

(2)
where τ indicates the time decay constant of postsynaptic
potentials, which determines the shape of the spike
response function.

In addition, η(t − tlo) is the refractoriness function, which is
mainly reflected in the effect that only the last output spike tlo

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 25262

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

contributes to the refractoriness:

η(t − tlo) =

{

−θ exp(−
t−tlo
τR

) , t − tlo > 0

0 , t − tlo ≤ 0
(3)

where θ is the neuron threshold. τR is the time constant, which
determines the shape of refractoriness function. When t − tlo ∈
(0,∞), the refractoriness function η(t − tlo) is negative. When
t − tlo → 0, the minimum value of η(t − tlo) is −θ . When
t − tlo →∞, the value of η(t − tlo) is gradually increased to 0.

2.1.2. Spike Train and Its Kernel Representation
The spike train s = {tf ∈ Ŵ : f = 1, · · · ,N} represents the
ordered sequence of spike times fired by the spiking neuron in
the time interval Ŵ = [0,T], and can be expressed formally as:

s(t) =

N
∑

f=1

δ

(

t − tf
)

(4)

where tf is the f th spike time in s(t), N is the number of spikes
in s(t), and δ(·) represents the Dirac delta function, δ(x) = 1 if
x = 0 and δ(x) = 0 otherwise. Considering the synaptic delay in
the input spike train, the input spike train si(t− di) with synaptic
delay is defined as:

si(t − di) =

Ni
∑

f=1

δ

(

t − t
f
i − di

)

(5)

where t
f
i is the f th spike in the input spike train si(t − di), di is

the synaptic delay between presynaptic neuron i and postsynaptic
neuron, and Ni is the number of spikes in si(t − di).

In order to facilitate the analysis and calculation, we can
choose a specific kernel function κ(·), using the convolution to
convert the discrete spike train to a continuous function:

fs(t) = s(t) ∗ κ(t) =

N
∑

f=1

κ

(

t − tf
)

(6)

Therefore, the convolved continuous functions corresponding to
the input spike train si(t − di), actual output spike train so(t),
and desired output spike train sd(t) can be expressed as follows
according to Equation (6):

fsi (t − di) = si(t − di) ∗ κ(t) =
∑Ni

f=1
κ

(

t − t
f
i − di

)

(7)

fso (t) = so(t) ∗ κ(t) =
∑No

h=1
κ

(

t − tho

)

(8)

fsd (t) = sd(t) ∗ κ(t) =
∑Nd

g=1 κ
(

t − t
g

d

)

(9)

where t
f
i , t

h
o , and t

g

d
are spikes in si(t − di), so(t), and sd(t),

respectively. Ni, No, and Nd are numbers of spikes in si(t − di),
so(t), and sd(t), respectively.

In SNNs, neural information or external stimuli is encoded
into spike trains. The computation performed by a single spiking

FIGURE 2 | Network structure of neurons with synaptic delays.

neuron can be defined as a mapping from the presynaptic
spike trains to the appropriate postsynaptic spike train. In
order to analyze the relationship between the presynaptic and
postsynaptic spike trains, we use linear-nonlinear Poisson (LNP)
model (Schwartz et al., 2006), in which the spiking activity of
the postsynaptic neuron is defined by the estimated intensity
functions of the presynaptic neurons. Some researches show
that the relationship between the postsynaptic spike train so(t)
and the contributions of all presynaptic spike trains si(t − di)
can be expressed as a linear relationship for excitatory synapse
through the convolved continuous functions (Cash and Yuste,
1999; Carnell and Richardson, 2005):

fso (t) =

NI
∑

i=1

wifsi (t − di) (10)

where wi represents the synaptic weight between the presynaptic
neuron i and the postsynaptic neuron, and NI is the number of
presynaptic neurons.

2.2. Learning Rules Based on Spike Train
Kernels
In this section, we use the gradient descent method to deduce the
learning rule of synaptic weights and delays. We consider a fully
connected feed-forward network structure of spiking neurons as
shown in Figure 2. There are NI input neurons and one output
neuron in this model. There is only one synaptic connection
between an input neuron and an output neuron. Each synapse
has a connection weight wi and a time delay di. The aim of the
delay learning method is to train the neuron to produce a desired
output spike train sd(t) in response to multiple spatio-temporal
input spike patterns si(t − di). In the synaptic delay learning
model, both the synaptic weight wi and the synaptic delay di are
adjusted to train the output neuron to fire the actual output spike
train so(t) toward the desired output spike train sd(t).

Defining the error function of the network is an important
prerequisite for supervised learning of spiking neurons. The
instantaneous error for the network can be formally defined in
terms of the square difference between the convolved continuous
functions fso (t) and fsd (t) corresponding to the actual output spike
train so(t) and desired output spike train sd(t) at time t. It can be
represented as:

E(t) =
1

2

[

fso (t)− fsd (t)
]2

(11)

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 25263

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

So, the total error of the network in the time interval Ŵ is E =
∫

Ŵ
E(t)dt.

2.2.1. Learning Rule of Synaptic Weights
According to the gradient descent rule, the change of synaptic
weight 1wi from the presynaptic neuron i to the postsynaptic
neuron is computed as follows:

1wi = −η∇Ew (12)

where η is the learning rate of synaptic weights and ∇Ew is
the gradient of the spike train error function E for the synaptic
weight wi. The gradient can be expressed as the integration of the
derivative of the instantaneous error E(t) with respect to synaptic
weight wi in the time interval Ŵ:

∇Ew =

∫

Ŵ

∂E(t)

∂wi
dt (13)

Using the chain rule, the derivative of the error function E(t) at
time t to synaptic weight wi can be represented as the product of
two partial derivative terms:

∂E(t)

∂wi
=

∂E(t)

∂fso (t)

∂fso (t)

∂wi
(14)

According to Equation (11), the first partial derivative term of the
right-hand part of Equation (14) is computed as:

∂E(t)

∂fso (t)
=

∂

[

1
2

[

fso (t)− fsd (t)
]2
]

∂fso (t)
= fso (t)− fsd (t) (15)

According to Equation (10), the second partial derivative term of
the right-hand part of Equation (14) is computed as:

∂fso (t)

∂wi
=

∂

[

∑NI
i=1 wifsi (t − di)

]

∂wi
= fsi (t − di) (16)

Therefore, the gradient ∇Ew in Equation (13) can be computed
as follows according to Equations (15 and 16):

∇Ew =

∫

Ŵ

[

fso (t)− fsd (t)
]

fsi (t − di)dt (17)

On the basis of the deduction process discussed above, a
supervised learning rule of synaptic weights based on spike train
kernels for spiking neurons with synaptic delays is given. The
learning rule of the synaptic weights is expressed as follows:

1wi = −η∇Ew = η

∫

Ŵ

[

fsd (t)− fso (t)
]

fsi (t − di)dt (18)

According to Equations (7–9), the synaptic weights learning can
be further rewritten as:

1wi = η





Nd
∑

g=1

Ni
∑

f=1

κ

(

t
g

d
− t

f
i − di

)

−

No
∑

h=1

Ni
∑

f=1

κ

(

tho − t
f
i − di

)





(19)

The learning rate η has a great influence on the convergence
speed of the learning process, which can directly affect the
training time and the training accuracy. Here we define an
adaptive adjustment method of learning rate according to the
firing rate of actual output spike train of neurons. Firstly, a scaling
factor β is defined according to the different firing rates of the
spike train. It is assumed that the firing rate of the spike train of
neurons is r, and the referenced firing rate range is [rmin, rmax].
When r ∈ [rmin, rmax], the scaling factor is β = 1; otherwise, the
expression of β is:

β =

{

rmin−r
rmax−rmin

, r < rmin
r−rmax

rmax−rmin
, r > rmax

(20)

The learning rate in the referenced firing rate range is called the
referenced learning rate η∗, and its value is the best learning rate
for a given firing rate range. According to the scaling factor β

and the referenced learning rate η∗ in the firing rate range, the
adaptive adjustment method of learning rate is:

η =







(1+ β)η∗ , r < rmin

η∗ , rmin ≤ r ≤ rmax

η∗/(1+ β) , r > rmax

(21)

2.2.2. Learning Rule of Synaptic Delays
Here we derive the learning rule of synaptic delays with the
similar derivation of synaptic weights. The synaptic delay change
1di from the presynaptic neuron i to the postsynaptic neuron is
computed as follow:

1di = −α∇Ed (22)

where α is the learning rate of synaptic delays and ∇Ed is the
gradient of the spike train error function E for the synaptic
delay di. The gradient can be expressed as the integration of the
derivative of the instantaneous error E(t) with respect to synaptic
delay di in the time interval Ŵ:

∇Ed =

∫

Ŵ

∂E(t)

∂di
dt (23)

Using the chain rule, the derivative of the error function E(t) to
synaptic delay di at time t can be calculated as the product of two
partial derivative terms:

∂E(t)

∂di
=

∂E(t)

∂fso (t)

∂fso (t)

∂di
(24)

According to Equations (7 and 10), the second partial derivative
term of the right-hand part of Equation (24) is computed as:

∂fso (t)

∂di
=

∂

[

∑NI
i=1 wifsi (t − di)

]

∂di

=
∂

[

∑NI
i=1 wi

∑Ni

f=1
κ(t − t

f
i − di)

]

∂di

= wi

∂

[

∑Ni

f=1
κ(t − t

f
i − di)

]

∂di
(25)

Frontiers in Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 25264

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

For simplicity, here we choose the Laplacian kernel function to
convert spike trains. It is defined as:

κ(s) = exp

(

−
|s|

τ

)

(26)

where τ is the scale parameter of the Laplacian kernel function.
So the partial derivative term of the right-hand part of Equation
(25) is computed as:

∂

[

∑Ni

f=1
κ(t − t

f
i − di)

]

∂di
=

∂

[

∑Ni

f=1
exp

(

−
|t−t

f
i−di|

τ

)]

∂di

=
1

τ

Ni
∑

f=1

exp

(

−
|t − t

f
i − di|

τ

)

=
1

τ
fsi (t − di)

(27)

Therefore, on the basis of Equations (15), (25), and (27), the
derivative ∂E(t)/∂di in Equation (23) can be further rewritten as:

∂E(t)

∂di
=

1

τ
wi

[

fso (t)− fsd (t)
]

fsi (t − di) (28)

According to the deduction process discussed above, a supervised
learning rule of synaptic delays based on spike train kernels for
spiking neurons with Laplacian kernel is given. The learning rule
of the synaptic delays is expressed as follows:

1di = −α∇Ed = α
1

τ
wi

∫

Ŵ

[

fsd (t)− fso (t)
]

fsi (t − di)dt (29)

According to Equations (7–9), the learning rule of synaptic delays
can be further rewritten as:

1di = α
1

τ
wi





Nd
∑

g=1

Ni
∑

f=1

κ

(

t
g

d
− t

f
i − di

)

−

No
∑

h=1

Ni
∑

f=1

κ

(

tho − t
f
i − di

)





(30)

2.3. Supervised Learning Algorithm for
Spiking Neurons
Algorithm 1 represents the training process of spike train
learning using our proposed supervised learning rule. In the
beginning, we initialize all parameters of SNNs, mainly including
the spiking neuron model and its parameters, the input and
desired output spike trains, the synaptic weights and delays.
Secondly, we calculate the actual output spike train of the output
neuron according to the input spike trains and the spiking
neuron model and then calculate the spike train error of the
output neuron according to the actual and desired output spike
train. Finally, we adjust all synaptic weights and delays according
to our proposed learning rules of synaptic weights and delays.
This process is called a learning epoch. Repeating the training
process until the network error E = 0 or the upper limit of
learning epochs is exceeded, the training process is ended.

Algorithm 1: supervised learning algorithm for spiking
neurons.
1: set up SNN
2: initialize synaptic weights wi and delays di
3: initialize input spike trains si(t − di) and desired

output spike trains sd(t)
4: calculate fsi (t − di) according to si(t − di)
5: calculate fsd (t) according to sd(t)
6: repeat

7: for all input neurons do
8: input si(t − di) into SNN
9: end for

10: for all output neurons do
11: calculate output spike trains so(t)
12: calculate fso (t) according to so(t)
13: calculate network error E
14: end for

15: for all synapses do
16: calculate learning rate of synaptic weights

η

17: calculate 1wi

18: wi ← wi +1wi

19: calculate 1di
20: di ← di +1di
21: end for

22: until network error E = 0 OR upper limit of
learning epochs is exceeded

3. RESULTS

In this section, a series of spike train learning experiments and
an image classification task are presented to demonstrate the
learning capabilities of our proposed learning algorithm. At first,
we analyze the learning process of our proposed algorithm. Then,
we analyze the effects of the parameters of synaptic delays on
learning performance, such as the learning rate of synaptic delays,
the maximum allowed synaptic delays and the upper limit of
learning epochs. In addition, we also analyze the effects of the
parameters of network simulation on learning performance, such
as the number of synaptic inputs, the firing rate of spike trains
and the length of spike trains, and compare with the network
with static synaptic delays on learning performance. Finally, we
use the proposed delay learning algorithm to solve an image
classification problem and compare with some other supervised
learning algorithms for spiking neurons.

3.1. Parameter Settings and Learning
Evaluation
Our experiments run on Java 1.7 on a quad-core system with 4-
GB RAM in aWindows 10 environment.We use the clock-driven
simulation strategy with time-step dt = 0.1ms to implement the
spike train learning tasks. All reference parameters are shown in
Table 1. Initially, the synaptic weights and the synaptic delays are
generated as the uniform distribution in the interval [wmin,wmax]
and [dmin, dmax], respectively. Every input spike train and desired

Frontiers in Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 25265

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

TABLE 1 | Reference parameters in the simulation.

Parameters Identifiers Value

Number of input neurons NI 500

Number of output neurons NO 1

Network simulation Firing rate of input spike

trains

rin 20 Hz

Firing rate of desired output

spike trains

rout 50 Hz

Length of spike trains Ŵ 200 ms

Time constant of

postsynaptic potential

τ 2 ms

SRM neuron model Time constant of refractory

period

τR 50 ms

Spike firing threshold θ 1

Length of the absolute

refractory period

tR 1 ms

Minimum synaptic weights wmin 0

Synaptic weights Maximum synaptic weights wmax 0.5

Referenced learning rate of

synaptic weights

η∗ 0.005

Minimum synaptic delays dmin 0 ms

Synaptic delays Maximum synaptic delays dmax 15 ms

Learning rate of synaptic

delays

α 3

output spike train is generated randomly by a homogeneous
Poisson process within the time interval of Ŵ with firing rate rin
and rout , respectively. Except for the learning process of spike
trains demonstrated in section 3.2.1 and the image classification
problem presented in section 3.3, the all simulation results are
averaged over 100 trials, and on each testing trial, the learning
algorithm is applied for a maximum of 500 learning epochs
or until the network error E = 0. In the training process,
the learning rate of synaptic weights is adjusted adaptively.
The spiking neurons are described by the short-term memory
SRM. The Laplacian kernel function κ(s) = exp(−|s|/τ) with
parameter τ = 10 is used in all simulations.

To quantitatively evaluate the learning performance, we use
the spike train kernels to define a measure C to express the
distance between the desired output spike train sd(t) and the
actual output spike train so(t), which is equivalent to the
correlation-based metric C (Schreiber et al., 2003). The metric is
calculated after each learning epoch according to:

C =
〈fsd (t), fso (t)〉

‖fsd (t)‖‖fso (t)‖
(31)

where 〈fsd (t), fso (t)〉 is the inner product of fsd (t) and fso (t).
‖fsd (t)‖ =

√
〈fsd (t), fsd (t)〉 and ‖fso (t)‖ =

√
〈fso (t), fso (t)〉

are the Euclidean norms of convolved continuous functions
corresponding to spike trains sd(t) and so(t), respectively. In
order to keep in line with the measure described in Schreiber
et al. (2003), here we use the Gaussian filter function to convert
the spike trains. Measure C = 1 for identical spike trains and
decreases toward 0 for loosely correlated spike trains.

3.2. Learning Sequences of Spikes
3.2.1. Analysis of the Learning Process
Figure 3 demonstrates the spike train learning process of one trial
using the proposed synaptic delay learning rule to reproduce the
desired output spatio-temporal spike pattern. Figure 3A shows
the complete learning process in the time interval Ŵ, which
includes the desired output spike train, the initial output spike
train before learning and the actual output spike trains during the
learning process. It can be seen that the actual output spike trains
are closer to the desired output spike train during the learning
process. The evolution of learning accuracy with measure C
during the learning process is presented in Figure 3B. During the
learning process, especially in the early stage, dithering occurs
easily. However, the learning accuracy C increases gradually.
After 30 learning epochs, the learning accuracy C reached 1.0.
The synaptic delays before and after learning are shown in
Figures 3C,D, respectively. These learning results show that the
spiking neuron can successfully learn the desired output spike
train using the proposed synaptic delay learning algorithm.

3.2.2. Parametric Analysis of Synaptic Delays
Here we test our proposed delay learning algorithm with the
different learning rates of synaptic delays α, the maximum
allowed synaptic delays dmax and the upper limit of learning
epochs. Figure 4 shows the learning results of delay learning
algorithm with the different learning rates of synaptic delays α.
The α takes 0.05, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10.0 in total of eight
values. The learning accuracy with measure C after 500 learning
epochs is shown in Figure 4A. It can be seen that the measure C
increases slightly when α increases gradually. When α = 3.0, the
learning accuracy is C = 0.9874. When α increases further, the
measure C decreases slightly, in addition, the standard deviation
increased. When α = 8.0, the learning accuracy is C = 0.9664.
Figure 4B shows the learning epochs when the learning accuracy
C reaches the maximum value. From Figure 4B we can see
that when α increases gradually, the learning epochs do not
change too much. When α = 3.0, the mean learning epoch is
276.07. When α = 8.0, the mean learning epoch is 249.14. This
simulation indicates that the proposed delay learning algorithm
can well learn with the different learning rates of synaptic delays
in a large range. In the rest of the simulations, the learning rate of
synaptic delays is α = 3.0.

Neuroscience experiments give evidence to the variability
of synaptic delay values, from 0.1 to 44 ms (Swadlow, 1992;
Toyoizumi et al., 2005; Paugam-Moisy et al., 2008). This
simulation tests the proposed delay learning algorithm with the
different maximum allowed synaptic delays dmax, the learning
results are shown in Figure 5. dmax increases from 5 to 30ms with
an interval of 5 ms. Figure 5A shows the learning accuracy with
measure C after 500 learning epochs. From Figure 5A we can see
that the delay learning algorithm can learn with high learning
accuracy. The learning accuracy C basically remains the same
when dmax less than 20 ms. When dmax increases further, the
learning accuracy decreases, in addition, the standard deviation
is increasing. For example, when dmax = 10 ms, the learning
accuracy is C = 0.9821. When dmax = 25 ms, the learning
accuracy is C = 0.9629. Figure 5B shows the learning epochs

Frontiers in Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 25266

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35A

simulation time/ms

le
a

rn
in

g
 e

p
o

c
h

0 5 10 15 20 25 30 35
0.6

0.7

0.8

0.9

1B

learning epoch

C

0 50 100 150 200 250 300 350 400 450 500
0

3

6

9

12

15C

synaptic input

s
y
n

a
p

ti
c
 d

e
la

y

0 50 100 150 200 250 300 350 400 450 500
0

3

6

9

12

15D

synaptic input

s
y
n

a
p

ti
c
 d

e
la

y

FIGURE 3 | The spike train learning process of proposed synaptic delay learning algorithm. (A) The complete learning process. △, the initial actual output spike train

before learning; ▽, desired output spike train; •, actual output spike trains during the learning process. (B) The evolution of learning accuracy with measure C. (C) The

synaptic delays before learning. (D) The synaptic delays after learning.

when the learning accuracy C reaches the maximum value. It
can be seen that the learning epochs do not change too much
when dmax increases gradually. For example, when dmax = 10
ms, the mean learning epoch is 274.06. When dmax = 25 ms,
the mean learning epoch is 242.68. This simulation indicates that
the proposed delay learning algorithm can learn from different
maximum synaptic delays dmax in a large range. It is robust
for various synaptic delays. In the rest of the simulations, the
maximum synaptic delays is dmax = 15 ms.

The upper limit of learning epochs is a relatively important
evaluation factor for supervised learning. If the upper limit of

learning epochs is too small, the network cannot be fully trained,
which will lead to the problem that the model cannot solve
problems well. Conversely, if the upper limit of learning epochs
is too large, it will take too much time to train the network. In
this simulation, we test the proposed delay learning algorithm
with the different upper limit of learning epochs, the learning
results are shown in Figure 6. The upper limit of learning epochs
increases from 100 to 1, 000 with an interval of 100, while the
other settings remain the same. Figure 6A shows the learning
accuracy with measure C. It can be seen that in the beginning, the
learning accuracy C increases when the upper limit of learning

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 25267

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

0.05 0.5 1 2 3 5 8 10
0.8

0.85

0.9

0.95

1A

learning rate of synaptic delays

C

0.05 0.5 1 2 3 5 8 10
0

100

200

300

400

500B

learning rate of synaptic delays

le
a

rn
in

g
 e

p
o

c
h

FIGURE 4 | The learning results with the different learning rates of synaptic delays α after 500 learning epochs. (A) The learning accuracy C. (B) The learning epochs

when the learning accuracy C reaches the maximum value.

5 10 15 20 25 30
0.85

0.9

0.95

1

A

maximum synaptic delay

C

5 10 15 20 25 30
0

100

200

300

400

500B

maximum synaptic delay

le
a

rn
in

g
 e

p
o

c
h

FIGURE 5 | The learning results with the different maximum allowed synaptic delays dmax after 500 learning epochs. (A) The learning accuracy C. (B) The learning

epochs when the learning accuracy C reaches the maximum value.

epochs increases gradually. When the upper limit of learning
epochs increases further, the learning accuracy C does not change
too much. For example, when the upper limit of learning epochs
is 400, the learning accuracy is C = 0.9849. When the upper limit
of learning epochs is 800, the learning accuracy is C = 0.9850.
Figure 6B shows the learning epochs when the learning accuracy
C reaches the maximum value. From Figure 6B we can see that

when the upper limit of learning epochs increases gradually, the
actual learning epochs increase. When the upper limit of learning
epochs is 600, themean learning epoch is 315.78.When the upper
limit of learning epochs increases further, the actual learning
epochs do not change too much, but the standard deviation
is increasing. When the upper limit of learning epochs is 900,
the mean learning epoch is 330.98. This simulation indicates

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 25268

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

100 200 300 400 500 600 700 800 900 1000
0.92

0.94

0.96

0.98

1

1.02A

upper limit of learning epochs

C

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600
B

upper limit of learning epochs

le
a

rn
in

g
 e

p
o

c
h

FIGURE 6 | The learning results with the different upper limit of learning epochs. (A) The learning accuracy C. (B) The learning epochs when the learning accuracy C

reaches the maximum value.

that the proposed delay learning algorithm can learn with high
learning accuracy, and increasing the upper limit of learning
epochs cannot significantly improve learning accuracy. In the rest
of the simulations, the upper limit of learning epochs is 500.

3.2.3. Comparative Analysis With Static Synaptic

Delays
In this section, we analyze the parameters of network
simulation that may influence the learning performance of delay
learning algorithm and compare with the network with static
synaptic delays on learning performance. The first simulation
demonstrates the learning ability of ourmethodwith the different
numbers of synaptic input NI . The learning results are shown in
Figure 7. The NI increases from 100 to 1, 000 with an interval of
100, while the other settings remain the same. Figure 7A shows
the learning accuracy after 500 learning epochs. It can be seen
that both the network with dynamic delays and static delays
can learn with high accuracy, but the learning accuracy of the
network with dynamic delays is higher. The learning accuracy
of both two methods increases when NI increases gradually. For
example, the measure C = 0.9709 for the network with dynamic
delays and C = 0.9189 for the network with static delays when
NI = 400. When NI = 900, the measure C = 0.9941 for the
network with dynamic delays and C = 0.9516 for the network
with static delays. Figure 7B shows the learning epochs when the
measure C reaches the maximum value. From Figure 7B we can
see that when NI increases gradually, the learning epochs of both
the network with dynamic delays and static delays are increased
slightly, but the learning epochs of the network with dynamic
delays are less than that of the network with static delays. When
NI = 400, themean learning epoch is 266.83 for the network with
dynamic delays and 338.89 for the network with static delays.

When NI = 900, the mean learning epoch is 314.95 for the
network with dynamic delays and 368.82 for the network with
static delays.

The second simulation demonstrates the learning ability of
our proposed algorithm with the different firing rates of input
and desired output spike trains. The learning results are shown
in Figure 8. The firing rate of spike trains increases from 20 to
200 Hz with an interval of 20 Hz and the firing rate of input spike
trains equals to that of desired output spike trains, while the other
settings remain the same. Figure 8A shows the learning accuracy
with measure C after 500 learning epochs. From Figure 8A

we can see that when the firing rate of spike trains increases
gradually, the learning accuracy of the network with dynamic
delays decreases slightly, while the learning accuracy of the
network with static delays decreases first, and then increases
slightly, but the learning accuracy of the network with dynamic
delays is higher than that of the network with static delays. For
example, the measure C = 0.9841 for the network with dynamic
delays and C = 0.8588 for the network with static delays when
the firing rate of spike trains is 60 Hz. When the firing rate of
spike trains is 140 Hz, the learning accuracy C = 0.9504 for the
network with dynamic delays and C = 0.8801 for the network
with static delays. Figure 8B shows the learning epochs when the
learning accuracy C reaches the maximum value. It can be seen
that the learning epochs of the network with dynamic delays are
less than that of the network with static delays in the most case.
When the firing rate of spike trains is 140 Hz, the mean learning
epoch for the network with dynamic delays is 246.98, and 368.82
for the network with static delays.

The third simulation demonstrates the learning ability of our
proposed algorithm with the different lengths of spike trains. The
learning results are shown in Figure 9. The length of spike trains

Frontiers in Neuroscience | www.frontiersin.org 9 March 2019 | Volume 13 | Article 25269

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

100 200 300 400 500 600 700 800 900 1000
0.6

0.7

0.8

0.9

1

number of synaptic inputs

C

A

dynamic delay

static delay

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

number of synaptic inputs

le
a

rn
in

g
 e

p
o

c
h

B

dynamic delay static delay

FIGURE 7 | The learning results with the different numbers of synaptic input NI for the network with dynamic delays and static delays after 500 learning epochs. (A)

The learning accuracy C. (B) The learning epochs when the learning accuracy C reaches the maximum value.

20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95

1

firing rate of spike trains/Hz

C

A

dynamic delay

static delay

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

firing rate of spike trains/Hz

le
a

rn
in

g
 e

p
o

c
h

B

dynamic delay static delay

FIGURE 8 | The learning results with the different firing rates of spike trains for the network with dynamic delays and static delays after 500 learning epochs. (A) The

learning accuracy C. (B) The learning epochs when the learning accuracy C reaches the maximum value.

increases from 100 to 1, 000 ms with an interval of 100 ms, while
the other settings remain the same. Figure 9A shows the learning
accuracy C after 500 learning epochs. It can be seen that the
learning accuracy of both the network with dynamic delays and
static delays decreases when the length of spike trains increases
gradually, but the learning accuracy of the network with dynamic
delays is higher. For example, the learning accuracy C = 0.9767

for the network with dynamic delays and C = 0.8743 for the
network with static delays when the length of spike trains is
300 ms. When the length of spike trains is 700 ms, the learning
accuracy C = 0.9461 for the network with dynamic delays and
C = 0.7460 for the network with static delays. Figure 9B shows
the learning epochs when the learning accuracy C reaches the
maximum value. It can be seen that the learning epochs of the

Frontiers in Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 25270

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

100 200 300 400 500 600 700 800 900 1000
0.6

0.7

0.8

0.9

1

length of spike trains/ms

C

A

dynamic delay

static delay

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

length of spike trains/ms

le
a

rn
in

g
 e

p
o

c
h

B

dynamic delay static delay

FIGURE 9 | The learning results with the different lengths of spike trains for the network with dynamic delays and static delays after 500 learning epochs. (A) The

learning accuracy C. (B) The learning epochs when the learning accuracy C reaches the maximum value.

network with dynamic delays are less than that of the network
with static delays when the length of spike trains is short. For
example, when the length of spike trains is 300 ms, the mean
learning epoch for the network with dynamic delays is 215.68,
and 302.86 for the network with static delays.

3.3. Image Classification
3.3.1. Simulation Setup
Here we use the proposed delay learning algorithm to solve
an image classification problem, and compare with some other
supervised learning algorithms for spiking neurons. The general
structure of the network for image classification is shown in
Figure 10. It contains 2 functional parts: encoding and learning.
In the encoding part, the latency-phase encoding method
(Nadasdy, 2009) is used to transform the pixels of the image
receptive field into precisely timed spike trains. In the learning
part, each spike train corresponding to an input neuron is input
into the spiking neural networks. The synaptic weights and delays
are learned by the proposed delay learning algorithm. The spiking
neural network outputs the target spike pattern for given images.

We choose the outdoor road images and the outdoor city
street images from the LabelMe dataset (Russell et al., 2008) in
the simulation. Each kind of images includes 20 samples, in a
total of 40 samples. Figure 11 shows some typical outdoor road
images (top) and outdoor city street images (bottom). In our
simulation, we choose 10 samples randomly from the outdoor
road images and the outdoor city street images respectively (in
total 20 samples, 50%) to constitute the training set, while the
remaining 20 samples (50%) are constituted the testing set. The
original images are converted into 256 × 256 gray images and
then encoded into spike trains by the latency-phase encoding. In
addition, we need to set the desired output spike trains of two

kinds of images. The desired output spike train of the outdoor
road images is set as [20, 40, 60, 80] ms, while that of the outdoor
city street images is set as [40, 60, 80, 100] ms. The upper limit of
learning epochs in the image classification is 50, and each result
is averaged over 20 trials.

3.3.2. Learning With Different Sizes of Receptive Field
Table 2 shows the image classification accuracy on the testing set
of the LabelMe dataset with different sizes of receptive field. The
number of input neurons NI equals the size of an image divided
by the size of receptive field RF. The size of receptive field takes
2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32, and 64 × 64 in totals of
six values. As seen from the table, with the increasing of RF, the
testing accuracy of both the network with dynamic delays and
static delays are firstly increased, and then decreased. In addition,
the testing accuracy of the network with dynamic delays is higher
than that of the network with static delays. When the size of the
receptive field is 8 × 8, the testing accuracy of both the network
with dynamic delays and static delays reached the highest 99.17
and 98.75%, respectively. The receptive field cannot be too large
or too small. The appropriate size of the receptive field will
obtain higher testing accuracy. The simulation results show that
the proposed delay learning algorithm can be applied to image
classification problem and achieve high classification accuracy.

3.3.3. Compare With Other Algorithms
The ReSuMe algorithm (Ponulak and Kasiński, 2010) has been
used to solve the image classification problem (Hu et al., 2013),
while the DL-ReSuMe algorithm (Taherkhani et al., 2015a) is
a ReSuMe-based delay learning algorithm. In addition, SPAN
(Mohemmed et al., 2012) and PSD (Yu et al., 2013) are two
typical supervised learning algorithms for spiking neurons based

Frontiers in Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 25271

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

FIGURE 10 | Network structure for image classification.

FIGURE 11 | Some images from the LabelMe dataset.

on spike train convolution, which are similar to our proposed
learning algorithm. Therefore, we use our proposed learning
algorithm and DL-ReSuMe, ReSuMe, SPAN, PSD to solve the
image classification problem, and further compare the image
classification accuracy of these algorithms. The size of the
receptive field is 8×8. The resulting image classification accuracy
of these algorithms on the testing set is shown in Figure 12. The
image classification accuracy of these algorithms on the testing
set is 99.17% (dynamic delays), 98.75% (static delays), 98.74%
(DL-ReSuMe), 97.56% (ReSuMe), 97.78% (SPAN), and 97.92%
(PSD), respectively. It can be seen that all these algorithms can

achieve high classification accuracy, but the accuracy of the
network with dynamic delays is the highest.

4. DISCUSSION

In section 2.2.1, we introduced a supervised learning rule of
synaptic weights based on spike train kernels for spiking neurons.
The spike train is converted to a unique continuous function
through a specific kernel function using the convolution.
Then we construct the spike train error function through the
convolved continuous functions corresponding to the actual

Frontiers in Neuroscience | www.frontiersin.org 12 March 2019 | Volume 13 | Article 25272

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

output spike train and desired output spike train, and further
deduce the supervised learning rule of synaptic weights by
gradient descent method. The learning rule of synaptic weights
is finally represented as the form of spike train kernels, which
is similar to SPAN (Mohemmed et al., 2012) and PSD (Yu
et al., 2013). It can be seen as a general framework of
supervised learning algorithms for spiking neurons based on
spike train convolution, in which different kernel functions can
be used. The derivation of our proposed learning algorithm is
independent of the spiking neuron model; it can be theoretically
applied to any spiking neuron models. In the training process,
the learning rate of synaptic weights is adjusted adaptively
according to the firing rate of actual output spike train of
neurons.

A new supervised learning rule of synaptic delays based
on spike train kernels for spiking neurons is presented
in section 2.2.2. The learning rule of synaptic delays is
finally represented as the form of spike train kernels,
which is similar to the learning rule of synaptic weights.
For the sake of simplicity, we use the Laplacian kernel
function in the derivation of learning rules. In fact, the
general expression of the learning rule of synaptic delays
is:

1di = αwi

∫

Ŵ







[

fsd (t)− fso (t)
]

∂

[

∑Ni

f=1
κ(t − t

f
i − di)

]

∂di







dt

(32)

TABLE 2 | The image classification accuracy on the testing set with different sizes

of receptive field.

RF NI Dynamic delays Static delays

2× 2 16, 384 90.36%± 0.09 89.54%± 0.07

4× 4 4, 096 92.68%± 0.06 91.39%± 0.07

8× 8 1, 024 99.17%± 0.03 98.75%± 0.03

16× 16 256 97.46%± 0.05 95.41%± 0.05

32× 32 64 91.40%± 0.08 89.73%± 0.08

64× 64 16 90.80%± 0.11 85.21%± 0.13

In theory, as long as the kernel function κ(t − t
f
i − di)

is differentiable to di, such kernel functions can be used
in the delay learning rule. If we choose different kernel
functions, then the expression of the partial derivative in
Equation (32) is different, and consequently, the expression of
1di is different.

There are some supervised delay learning algorithms for
SNNs have been proposed in recent years. The first kind of
supervised delay learning algorithms is ReSuMe-based delay
learning algorithms (Taherkhani et al., 2015a,b, 2018; Guo
et al., 2017). These algorithms merge the delay shift approach
and ReSuMe-based weight adjustment (Ponulak and Kasiński,
2010) to enhance the learning performance of the original
ReSuMe algorithm. Corresponding to the learning rules of
synaptic weights, these algorithms can be regarded as supervised
synaptic delay learning algorithms based on synaptic plasticity.
The second kind of supervised delay learning algorithms is
SpikeProp-based delay learning algorithms (Schrauwen and
Van Campenhout, 2004; Matsuda, 2016; Shrestha and Song,
2016). These algorithms provide additional learning rule for
the synaptic delays to improve the learning ability of the
SpikeProp algorithm (Bohte et al., 2002). Similarly, these
algorithms can be regarded as supervised synaptic delay learning
algorithms based on gradient descent rule. There are also
some other delay learning algorithms (Napp-Zinn et al., 1996;
Wang et al., 2012; Hussain et al., 2014; Matsubara, 2017)
have been proposed. Our proposed delay learning algorithm
employs the spike train kernel to construct the error function,
and then deduce the supervised learning rules of synaptic
weights and delays. It can be seen as supervised synaptic
delay learning algorithms based on spike train convolution.
The kernel function is important for this kind of algorithm,
in which different kernel functions can lead to different
expressions of delay learning rule. It is an open question to
consider which kernel function to choose in theory and practical
application.

Analysis of the simulations in section 3 indicates that
the proposed delay learning algorithm can obtain comparable
learning results with different learning parameters. At first, the
algorithm is applied to the learning sequences of spikes. The
learning results show that the proposed delay learning algorithm
can successfully learn the desired output spike train. Then

dynamic delay static delay DL−ReSuMe ReSuMe SPAN PSD

96

98

100

102

learning algorithms

a
c
c
u

ra
c
y
/%

FIGURE 12 | The image classification accuracy of different algorithms.

Frontiers in Neuroscience | www.frontiersin.org 13 March 2019 | Volume 13 | Article 25273

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

TABLE 3 | Learning accuracy C of the delay learning algorithm.

Static weights Dynamic weights

Static delays 0.6123± 0.0862 0.9274± 0.0616

Dynamic delays 0.6528± 0.0739 0.9874± 0.0178

the parameters of synaptic delays are analyzed by simulation
of spike train learning. The learning results show that the
proposed delay learning algorithm can learn with the different
learning rates of synaptic delays and the maximum allowed
synaptic delays in a large range. The upper limit of learning
epochs is also analyzed. The simulation results show that after
500 learning epochs, the proposed delay learning algorithm
can obtain a relatively high learning accuracy. In addition, we
analyze the factors that may influence the learning performance
and compare with the network of static synaptic delays on
learning performance. The simulation results show that the
network with dynamic synaptic delays achieved higher learning
accuracy and less learning epochs than that of the network
with static synaptic delays. When the number of synaptic
inputs increases, the learning accuracy of network with dynamic
synaptic delays increases. When the firing rate of spike trains
or the length of spike trains increases, the learning accuracy
of network with dynamic synaptic delays decreases. Finally, we
use the proposed delay learning algorithm to solve an image
classification problem and archived higher classification accuracy
in comparison of other similar supervised learning algorithms for
spiking neurons.

The synaptic weight training is the dominant element
of supervised learning for SNNs. However, delay training
can improve the learning accuracy of SNNs. We tested the
learning results of dynamic weights versus static weights
under benchmark conditions (Table 1) over 100 trials. The
corresponding learning accuracy C is shown in Table 3. When
both the synaptic delays and weights are static, which means
the random initial state of the SNNs, the learning accuracy is
C = 0.6123. When the synaptic weights are static while the
synaptic delays are dynamic, the learning accuracy is C = 0.6528.
It shows that the dynamic delays can improve learning accuracy.
When the synaptic weights are dynamic while the synaptic
delays are static, the learning accuracy is C = 0.9274, which is
significantly higher than that of the network with static weights.
When both the synaptic delays and weights are dynamic, the
learning accuracy C = 0.9874 is height. In summary, both the
synaptic weights and delays have an impact on network training,
but the impact of synaptic weights is greater. Delay training
cannot replace weight training but can improve the learning
accuracy of SNNs.

5. CONCLUSION

In this paper, we introduced a new supervised delay learning
algorithm based on spike train kernels for spiking neurons.
In this method, both the synaptic weights and the synaptic
delays can be adjusted. We applied the proposed algorithm

to a series of spike train learning experiments and an image
classification problem to demonstrate the learning ability of
spike train spatio-temporal pattern, and compared with the
network with static synaptic delays on learning performance.
Simulation results show that both the network with dynamic
delays and static delays can successfully learn a random
spike train and solve image classification problem, and the
network with dynamic delays has higher learning accuracy
and less learning epochs than that of the network with
static delays.

Generally speaking, the more complex a neural network
is, the more powerful its computing power is. The proposed
supervised learning algorithm of synaptic delays in this paper
can be applied only for a single layer SNNs, which limits the
computing power of SNNs. We have proposed two supervised
learning algorithms of synaptic weights for multi-layer feed-
forward SNNs (Lin et al., 2017) and recurrent SNNs (Lin
and Shi, 2018) based on inner products of spike trains. In
the future work, we will extend the proposed delay learning
algorithm to multi-layer feed-forward SNNs and recurrent SNNs
to solve more complex and practical spatio-temporal pattern
recognition problems.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: http://labelme.csail.mit.edu/Release3.0/.

AUTHOR CONTRIBUTIONS

XW wrote the paper and performed the simulations. XL
conceived the theory and designed the simulations. XD
discussed about the results and analysis, and reviewed
the manuscript. All authors helped with developing
the concepts, conceiving the simulations, and writing
the paper.

FUNDING

This work is supported by the National Natural Science
Foundation of China under Grants No. 61762080 and
No. 61662070, and the Program for Innovative Research
Team in Northwest Normal University under Grant
No. 6008-01602.

REFERENCES

Beyeler, M., Dutt, N. D., and Krichmar, J. L. (2013). Categorization and decision-

making in a neurobiologically plausible spiking network using a STDP-like

learning rule. Neural Netw. 48, 109–124. doi: 10.1016/j.neunet.2013.07.012

Bohte, S. M., Kok, J. N., and Poutré, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.

doi: 10.1016/S0925-2312(01)00658-0

Boudkkazi, S., Fronzaroli-Molinieres, L., and Debanne, D. (2011).

Presynaptic action potential waveform determines cortical synaptic

Frontiers in Neuroscience | www.frontiersin.org 14 March 2019 | Volume 13 | Article 25274

http://labelme.csail.mit.edu/Release3.0/
https://doi.org/10.1016/j.neunet.2013.07.012
https://doi.org/10.1016/S0925-2312(01)00658-0
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

latency. J. Physiol. 589, 1117–1131. doi: 10.1113/jphysiol.2010.

199653

Carnell, A., and Richardson, D. (2005). “Linear algebra for times series of spikes,”

in Proceedings of 2005 European Symposium on Artificial Neural Networks

(Bruges), 363–368.

Cash, S., and Yuste, R. (1999). Linear summation of excitatory inputs by

CA1 pyramidal neurons. Neuron 22, 383–394. doi: 10.1016/S0896-6273(00)

81098-3

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models:

Single Neurons, Populations, Plasticity. Cambridge: Cambridge

University Press.

Ghosh-Dastidar, S., and Adeli, H. (2009). Spiking neural networks. Int. J. Neural

Syst. 19, 295–308. doi: 10.1142/S0129065709002002

Guo, L., Wang, Z., Cabrerizo, M., and Adjouadi, M. (2017). A

cross-correlated delay shift supervised learning method for

spiking neurons with application to interictal spike detection in

epilepsy. Int. J. Neural Syst. 27:1750002. doi: 10.1142/S0129065717

500022

Gütig, R. (2014). To spike, or when to spike? Curr. Opin. Neurobiol. 25, 134–139.

doi: 10.1016/j.conb.2014.01.004

Hu, J., Tang, H., Tan, K. C., Li, H., and Shi, L. (2013). A spike-timing-

based integrated model for pattern recognition. Neural Comput. 25, 450–472.

doi: 10.1162/NECO_a_00395

Hussain, S., Basu, A., Wang, R. M., and Hamilton, T. J. (2014). Delay learning

architectures for memory and classification. Neurocomputing 138, 14–26.

doi: 10.1016/j.neucom.2013.09.052

Lin, J.-W., and Faber, D. S. (2002). Modulation of synaptic delay during synaptic

plasticity. Trends Neurosci. 25, 449–455. doi: 10.1016/S0166-2236(02)02212-9

Lin, X., Chen, G., Wang, X., and Ma, H. (2016). “An improved

supervised learning algorithm using triplet-based spike-timing-dependent

plasticity,” in International Conference on Intelligent Computing

(Lanzhou: Springer), 44–53.

Lin, X., Li, Q., and Li, D. (2018). “Supervised learning algorithm for multi-spike

liquid state machines,” in International Conference on Intelligent Computing

(Wuhan: Springer), 243–253.

Lin, X., Ning, Z., and Wang, X. (2015a). “An online supervised learning algorithm

based on nonlinear spike train kernels,” in International Conference on

Intelligent Computing (Fuzhou: Springer), 106–115.

Lin, X., and Shi, G. (2018). “A supervised multi-spike learning algorithm for

recurrent spiking neural networks,” in International Conference on Artificial

Neural Networks (Rhodes: Springer), 222–234.

Lin, X., Wang, X., and Hao, Z. (2017). Supervised learning in multilayer spiking

neural networks with inner products of spike trains. Neurocomputing 237,

59–70. doi: 10.1016/j.neucom.2016.08.087

Lin, X., Wang, X., Zhang, N., and Ma, H. (2015b). Supervised learning algorithms

for spiking neural networks: a review. Acta Electron. Sin. 43, 577–586.

doi: 10.3969/j.issn.0372-2112.2015.03.024

Maass, W. (1996). Lower bounds for the computational power of networks of

spiking neurons. Neural Comput. 8, 1–40. doi: 10.1162/neco.1996.8.1.1

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Matsubara, T. (2017). Conduction delay learning model for unsupervised

and supervised classification of spatio-temporal spike patterns.

Front. Comput. Neurosci. 11:104. doi: 10.3389/fncom.2017.

00104

Matsuda, S. (2016). “BPSpike: a backpropagation learning for all parameters

in spiking neural networks with multiple layers and multiple spikes,”

in International Joint Conference on Neural Networks(Vancouve, BC),

293–298.

Minneci, F., Kanichay, R. T., and Silver, R. A. (2012). Estimation of the

time course of neurotransmitter release at central synapses from the

first latency of postsynaptic currents. J. Neurosci. Methods 205, 49–64.

doi: 10.1016/j.jneumeth.2011.12.015

Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. (2012). SPAN:

spike pattern association neuron for learning spatio-temporal spike

patterns. Int. J. Neural Syst. 22:1250012. doi: 10.1142/S012906571

2500128

Nadasdy, Z. (2009). Information encoding and reconstruction from the phase

of action potentials. Front. Syst. Neurosci. 3:6. doi: 10.3389/neuro.06.0

06.2009

Napp-Zinn, H., Jansen, M., and Eckmiller, R. (1996). Recognition and

tracking of impulse patterns with delay adaptation in biology-inspired

pulse processing neural net (BPN) hardware. Biol. Cybern. 74, 449–453.

doi: 10.1007/BF00206711

Paiva, A. R. C., Park, I., and Príncipe, J. C. (2009). A reproducing kernel Hilbert

space framework for spike train signal processing.Neural Comput. 21, 424–449.

doi: 10.1162/neco.2008.09-07-614

Park, I. M., Seth, S., Paiva, A. R. C., Li, L., and Principe, J. C. (2013). Kernel methods

on spike train space for neuroscience: a tutorial. IEEE Signal Process. Mag. 30,

149–160. doi: 10.1109/MSP.2013.2251072

Paugam-Moisy, H., Martinez, R., and Bengio, S. (2008). Delay learning and

polychronization for reservoir computing. Neurocomputing 71, 1143–1158.

doi: 10.1016/j.neucom.2007.12.027

Ponulak, F., and Kasiński, A. (2010). Supervised learning in spiking

neural networks with ReSuMe: sequence learning, classification, and

spike shifting. Neural Comput. 22, 467–510. doi: 10.1162/neco.2009.11-

08-901

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). LabelMe:

a database and web-based tool for image annotation. Int. J. Comput. Vis. 77,

157–173. doi: 10.1007/s11263-007-0090-8

Schrauwen, B., and Van Campenhout, J. (2004). “Improving SpikeProp:

enhancements to an error-backpropagation rule for spiking neural networks,”

in Proceedings of the 15th ProRISC Workshop, Vol. 11 (Veldhoven),

301–305.

Schreiber, S., Fellous, J. M., Whitmer, D., Tiesinga, P., and Sejnowski,

T. J. (2003). A new correlation-based measure of spike timing

reliability. Neurocomputing 52, 925–931. doi: 10.1016/S0925-2312(02)0

0838-X

Schwartz, O., Pillow, J. W., Rust, N. C., and Simoncelli, E. P. (2006).

Spike-triggered neural characterization. J. Vis. 6, 484–507. doi: 10.1167/

6.4.13

Shrestha, S. B., and Song, Q. (2016). “Adaptive delay learning in SpikeProp based

on delay convergence analysis,” in International Joint Conference on Neural

Networks (IJCNN) (Vancouver, BC), 277–284.

Swadlow, H. A. (1992). Monitoring the excitability of neocortical efferent neurons

to direct activation by extracellular current pulses. J. Neurophysiol. 68, 605–619.

doi: 10.1152/jn.1992.68.2.605

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015a). DL-

ReSuMe: a delay learning-based remote supervised method for spiking

neurons. IEEE Trans. Neural Netw. Learn. Syst. 26, 3137–3149.

doi: 10.1109/TNNLS.2015.2404938

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015b). “Multi-DL-

ReSuMe: multiple neurons delay learning remote supervised method,” in

International Joint Conference on Neural Networks (IJCNN) (Killarney), 1–7.

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2018). A supervised

learning algorithm for learning precise timing of multiple spikes in multilayer

spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–14.

doi: 10.1109/TNNLS.2018.2797801

Toyoizumi, T., Pfister, J.-P., Aihara, K., and Gerstner, W. (2005). Generalized

Bienenstock-Cooper-Munro rule for spiking neurons that maximizes

information transmission. Proc. Natl. Acad. Sci. U.S.A. 102, 5239–5244.

doi: 10.1073/pnas.0500495102

Walter, F., Röhrbein, F., and Knoll, A. (2016). Computation by

time. Neural Process. Lett. 44, 103–124. doi: 10.1007/s11063-015-

9478-6

Wang, R., Tapson, J., Hamilton, T. J., and van Schaik, A. (2012). “An aVLSI

programmable axonal delay circuit with spike timing dependent delay

adaptation,” in IEEE International Symposium on Circuits and Systems (Seoul),

2413–2416.

Wang, X., Lin, X., Zhao, J., and Ma, H. (2016). “Supervised learning algorithm

for spiking neurons based on nonlinear inner products of spike trains,”

in International Conference on Intelligent Computing (Lanzhou: Springer),

95–104.

Whalley, K. (2013). Neural coding: timing is key in the olfactory system. Nat. Rev.

Neurosci. 14, 458–458. doi: 10.1038/nrn3532

Frontiers in Neuroscience | www.frontiersin.org 15 March 2019 | Volume 13 | Article 25275

https://doi.org/10.1113/jphysiol.2010.199653
https://doi.org/10.1016/S0896-6273(00)81098-3
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1142/S0129065717500022
https://doi.org/10.1016/j.conb.2014.01.004
https://doi.org/10.1162/NECO_a_00395
https://doi.org/10.1016/j.neucom.2013.09.052
https://doi.org/10.1016/S0166-2236(02)02212-9
https://doi.org/10.1016/j.neucom.2016.08.087
https://doi.org/10.3969/j.issn.0372-2112.2015.03.024
https://doi.org/10.1162/neco.1996.8.1.1
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fncom.2017.00104
https://doi.org/10.1016/j.jneumeth.2011.12.015
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.3389/neuro.06.006.2009
https://doi.org/10.1007/BF00206711
https://doi.org/10.1162/neco.2008.09-07-614
https://doi.org/10.1109/MSP.2013.2251072
https://doi.org/10.1016/j.neucom.2007.12.027
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.1016/S0925-2312(02)00838-X
https://doi.org/10.1167/6.4.13
https://doi.org/10.1152/jn.1992.68.2.605
https://doi.org/10.1109/TNNLS.2015.2404938
https://doi.org/10.1109/TNNLS.2018.2797801
https://doi.org/10.1073/pnas.0500495102
https://doi.org/10.1007/s11063-015-9478-6
https://doi.org/10.1038/nrn3532
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wang et al. A Delay Learning Algorithm

Xu, B., Gong, Y., and Wang, B. (2013). Delay-induced firing behavior

and transitions in adaptive neuronal networks with two types of

synapses. Sci. China Chem. 56, 222–229. doi: 10.1007/s11426-012-4

710-y

Xu, Y., Yang, J., and Zhong, S. (2017). An online supervised learning method based

on gradient descent for spiking neurons. Neural Netw. 93, 7–20. doi: 10.1016/j.

neunet.2017.04.010

Yu, Q., Tang, H., Tan, K. C., and Li, H. (2013). Precise-Spike-Driven synaptic

plasticity: learning hetero-association of spatiotemporal spike patterns. PLoS

ONE 8:e78318. doi: 10.1371/journal.pone.0078318

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Wang, Lin and Dang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 March 2019 | Volume 13 | Article 25276

https://doi.org/10.1007/s11426-012-4710-y
https://doi.org/10.1016/j.neunet.2017.04.010
https://doi.org/10.1371/journal.pone.0078318
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 24 April 2019

doi: 10.3389/fnins.2019.00357

Frontiers in Neuroscience | www.frontiersin.org 1 April 2019 | Volume 13 | Article 357

Edited by:

Chiara Bartolozzi,

Istituto Italiano di Tecnologia, Italy

Reviewed by:

James Courtney Knight,

University of Sussex, United Kingdom

Quansheng Ren,

Peking University, China

Alejandro Linares-Barranco,

Universidad de Sevilla, Spain

*Correspondence:

Bruno U. Pedroni

bpedroni@eng.ucsd.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 22 November 2018

Accepted: 28 March 2019

Published: 24 April 2019

Citation:

Pedroni BU, Joshi S, Deiss SR,

Sheik S, Detorakis G, Paul S,

Augustine C, Neftci EO and

Cauwenberghs G (2019)

Memory-Efficient Synaptic

Connectivity for Spike-Timing-

Dependent Plasticity.

Front. Neurosci. 13:357.

doi: 10.3389/fnins.2019.00357

Memory-Efficient Synaptic
Connectivity for Spike-Timing-
Dependent Plasticity
Bruno U. Pedroni 1*, Siddharth Joshi 2, Stephen R. Deiss 1, Sadique Sheik 3,

Georgios Detorakis 4, Somnath Paul 5, Charles Augustine 5, Emre O. Neftci 4 and

Gert Cauwenberghs 1

1 Integrated Systems Neuroengineering Laboratory, Department of Bioengineering, University of California, San Diego, La

Jolla, CA, United States, 2Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN,

United States, 3 aiCTX, Zurich, Switzerland, 4Department of Cognitive Sciences, University of California, Irvine, Irvine, CA,

United States, 5 Intel Corporation - Circuit Research Lab, Hillsboro, OR, United States

Spike-Timing-Dependent Plasticity (STDP) is a bio-inspired local incremental weight

update rule commonly used for online learning in spike-based neuromorphic systems. In

STDP, the intensity of long-term potentiation and depression in synaptic efficacy (weight)

between neurons is expressed as a function of the relative timing between pre- and

post-synaptic action potentials (spikes), while the polarity of change is dependent on

the order (causality) of the spikes. Online STDP weight updates for causal and acausal

relative spike times are activated at the onset of post- and pre-synaptic spike events,

respectively, implying access to synaptic connectivity both in forward (pre-to-post) and

reverse (post-to-pre) directions. Here we study the impact of different arrangements

of synaptic connectivity tables on weight storage and STDP updates for large-scale

neuromorphic systems. We analyze the memory efficiency for varying degrees of density

in synaptic connectivity, ranging from crossbar arrays for full connectivity to pointer-based

lookup for sparse connectivity. The study includes comparison of storage and access

costs and efficiencies for each memory arrangement, along with a trade-off analysis

of the benefits of each data structure depending on application requirements and

budget. Finally, we present an alternative formulation of STDP via a delayed causal

update mechanism that permits efficient weight access, requiring no more than forward

connectivity lookup. We show functional equivalence of the delayed causal updates to

the original STDP formulation, with substantial savings in storage and access costs and

efficiencies for networks with sparse synaptic connectivity as typically encountered in

large-scale models in computational neuroscience.

Keywords: synaptic plasticity, neuromorphic computing, data structure, memory architecture, crossbar array

1. INTRODUCTION

Extensive research in the field of artificial neural networks (ANNs) in the past decade has given rise
to diverse neuron functions, network topologies, and training techniques (Nair and Hinton, 2010;
Krizhevsky et al., 2012; Goodfellow et al., 2014; Kingma and Ba, 2014; Ioffe and Szegedy, 2015),
capable of solving complex cognitive tasks, such as image classification (Krizhevsky et al., 2012),
sequence generation (Graves, 2013), speech recognition (Graves et al., 2013), and game playing

77

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00357
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00357&domain=pdf&date_stamp=2019-04-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bpedroni@eng.ucsd.edu
https://doi.org/10.3389/fnins.2019.00357
https://www.frontiersin.org/articles/10.3389/fnins.2019.00357/full
http://loop.frontiersin.org/people/129879/overview
http://loop.frontiersin.org/people/14426/overview
http://loop.frontiersin.org/people/50888/overview
http://loop.frontiersin.org/people/26862/overview
http://loop.frontiersin.org/people/37464/overview
http://loop.frontiersin.org/people/416694/overview
http://loop.frontiersin.org/people/407389/overview
http://loop.frontiersin.org/people/3753/overview
http://loop.frontiersin.org/people/12771/overview

Pedroni et al. Memory-Efficient STDP

(Silver et al., 2016). However, the components of these
algorithms are normally only loosely based on actual biological
neural networks, particularly with respect to the non-local
learning rules (e.g., the widely used backpropagation algorithm,
Rumelhart et al., 1986) and the continuous activation functions
(e.g., sigmoid unit and rectified linear unit). Spiking neural
networks (SNNs), in contrast, incorporate multiple aspects
of biological nervous systems into its components (Gerstner
and Kistler, 2002), including biologically relevant neuron
models, binary activation functions and communication, event-
driven processing, and local learning rules (i.e., where all the
information required for adjusting parameters between neurons
is collocated with these neurons). The neuron models can
range from simple single-variable differential equations (e.g.,
McCulloch-Pitts and integrate-and-fire), to complex systems
with dynamics more homologous to real neurons (e.g., Hodgkin-
Huxley). In SNNs, neurons communicate between each other
via a binary event known as an action potential (or spike),
which is elicited whenever a neuron variable (typically, the
membrane potential) crosses a threshold value. Whenever a
neuron produces an action potential, this spike event information
is conveyed to its population of downstream post-synaptic
neurons, resulting in an update of their respective internal
variables based on the values of synaptic efficacy (or weight). Due
to their binary nature, the time at which spikes occur is essential
information when training SNNs.

The origins of hardware designed to emulate the biological
nervous system, also known as neuromorphic systems Mead
(1990), targeted design of neural properties at the device level,
with natural focus on analog circuits (Maher et al., 1989; Andreou
et al., 1995; Koch and Mathur, 1996). More recently, however,
neuromorphic systems such as TrueNorth (Merolla et al., 2014),
SpiNNaker (Furber et al., 2014), and Loihi (Davies et al., 2018)
were designed with purely digital components, being capable
of emulating large-scale SNNs with real-time dynamics in the
millisecond timescale. Additionally, large digital systems have
the advantage of being more readily verifiable in simulation
and a software-hardware equivalence is typically possible. While
ANNs operate in a sequential manner, where data propagates
through the network one layer at a time, neuromorphic systems
typically present multiple cores running in parallel at biological
timescales, with synaptic memory local to each core. Systems
with distributed processing and memory move away from
the traditional von Neumann architecture, where memory is
centralized and a high-frequency global clock is responsible for
fast computation and memory access (Merolla et al., 2014).

Among the bio-inspired learning mechanisms, spike-timing-
dependent plasticity (STDP) is perhaps the most widely
considered form of induced synaptic modification (Markram
et al., 1997). STDP originated from experimental data collected
in cultures of dissociated rat hippocampal neurons, where
scientists observed that a causal relationship between spike
times of pre- and post-synaptic neurons could induce synaptic
strengthening or weakening, and this change was correlated with
the relative temporal difference of spikes (Bi and Poo, 1998). The
experiments showed that long-term potentiation and long-term
depression could both be induced in synapses depending on the

order of spike occurrence, where a causal relationship (i.e., pre-
synaptic neuron spikes before post-synaptic neuron) potentiated
the synapse, while an acausal relationship (i.e., post-synaptic
spikes before pre-synaptic) weakened the synapse. The authors
then approximated the measured synaptic modification with a
mathematical model. In themodel, the STDP function (or kernel)
defines the change of the weight as a function of the relative
time between pre- and post-synaptic action potentials, and the
duration of the causal (and acausal) influence of spikes is called
the STDP learning window (Sjöström and Gerstner, 2010). An
important aspect of STDP is that, though it is a local learning rule,
weight updates occur at the onset of both pre- and post-synaptic
spikes, requiring for the algorithm to be able to not only identify
all neurons which the pre-synaptic neuron sends its spikes to,
but also locate all the neurons which the post-synaptic neuron
receives its spikes from. This is a fundamental property of STDP,
and throughout our work we will refer to reading the neuron
addresses and weights from pre-to-post connectivity as forward
access and reading from post-to-pre connectivity as reverse access.

In traditional ANNs, the typical data structure used to
represent the weights between neurons is a dense matrix,
constituting a fully connected topology. However, more realistic
and biologically relevant neural networks, such as small-world
and locally connected random networks (Bassett and Bullmore,
2006; Bullmore and Sporns, 2009; Seeman et al., 2018), do not
conform to this structured topology. In these cases, synaptic
weight storage costs can benefit greatly using compressed
representations. For physical realizations of the STDP learning
rule, the arrangement used to organize the synaptic weights in
memory has a direct impact on the ease of forward and reverse
access. As we will later show, dense matrices typically have
the advantage of natively facilitating both types of connectivity
access. Conversely, compressed memory arrangements suffer
greatly when trying to access in the reverse direction, making
causal STDP weight updates in these structures computationally
intensive. In this work, we discuss the complexity of storing and
accessing synaptic weights in different types of data structures
and their impact on implementations of the STDP algorithm, and
propose a novel method of performing STDP using only single-
direction connectivity access, consequently taking advantage of
compressed structures.

Storage costs associated to synaptic weight memory
arrangements have been previously studied (Moradi et al.,
2013; Pedroni et al., 2016; Joshi et al., 2017; Kornijcuk et al.,
2018). In Materials and Methods, we give an overview of four
typical data structures used for representing synaptic weights,
and analyze storage costs based on different network parameters
(number of neurons and weight bit-length) and varying degrees
of network connectivity density. We extend our analysis to verify
the memory access cost and efficiency associated to each data
structure, focusing particularly on the computational complexity
and requirements for performing STDP. Inspired by our
previous work (Pedroni et al., 2016), we propose a definite pre-
synaptic-driven solution for obtaining a quantitatively equivalent
algorithm to STDP. Previous attempts in approximating STDP
using forward-only connectivity include (1) simplifying the
STDP rule by equally updating all the synaptic weights based

Frontiers in Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 35778

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

on recent spike activity (Bichler et al., 2012; Yousefzadeh et al.,
2017), (2) using other variables (usually post-synaptic membrane
potential) as a proxy for the post-synaptic spike times when
computing causal updates (Brader et al., 2007; Davies et al.,
2012; Lagorce et al., 2015; Sheik et al., 2016), and (3) delaying
the weight updates (Jin et al., 2010; Davies et al., 2018). In the
discussion, we compare our method to these, particularly with
the third type, currently present in SpiNNaker and Loihi, and
explain how our solution can produce exact STDP while previous
methods rely on particular balanced firing rate conditions in
the network or simply produce qualitative approximations to
STDP. In Results, a network composed of 256 pre-synaptic
and 256 post-synaptic neurons is simulated using our proposed
method and compared against the original STDP learning rule,
showing that our method produces the same post-synaptic
membrane potentials, resulting in identical spiking activity and
synaptic weights.

2. MATERIALS AND METHODS

2.1. Digital Neuromorphic Core
Neuromorphic systems emulate the biophysics of neural
computation in correspondingly tailored electronic circuits
(Mead, 1990). Whereas artificial neural networks are typically
deployed as software applications in general purpose hardware,
neuromorphic systems are normally developed accounting
for the properties and limitations that a physical hardware
implementation entails. These include biologically plausible
neurons (i.e., spiking neurons) and learning rules, binary event
communication (i.e., neurons communicating via spikes), limited
and local synaptic memory, and parallel and distributed neuron
processing (Mahowald, 1993; Liu and Delbruck, 2010; Indiveri
et al., 2011; Park et al., 2017).

The current state-of-the-art digital neuromorphic processors,
such as TrueNorth (Merolla et al., 2014) and Loihi (Davies
et al., 2018), partition the network into cores, where typically
the population of post-synaptic neurons in a core shares inputs
from a common pool of pre-synaptic neurons. At a high level,
the core comprises of a digital finite-state machine, with weights
stored in digital memory elements (e.g., random access memory
- RAM), and with the state of the neural and synaptic variables
progressing in discrete time steps (1t), representing the temporal
precision of the system. Figure 1A illustrates an abstract digital
neuromorphic core and its components. The core operates by
processing incoming pre-synaptic spikes (irrespective of their
origins) and updating the post-synaptic state variables (e.g.,
membrane potential) with the associated weight between the pre-
and post-synaptic neurons. Once all pre-synaptic spikes have
been processed, the post-synaptic neurons are evaluated. Any
new post-synaptic spike is then routed to its destination (on
another or the same core), where there it is treated as an incoming
pre-synaptic spike and is buffered to be used in the next system
time step.

For realizing STDP learning in digital neuromorphic systems,
a core must locally store (or have access to) the following: pre-
synaptic spike times, synaptic weights, and post-synaptic neurons

and spike times. Collocating the synaptic weights with the post-
synaptic neurons ensures that all the information required for
local and distributed learning strategies can be accessed with
minimum overhead (Joshi et al., 2017). Interestingly, since our
proposed method operates in pre-synaptic spike-driven fashion,
a core does not require storing the pre-synaptic spike times. In
other words, the spike times only need to be stored at the origin
of the spike (i.e., at the post-synaptic neuron).

Lastly, an important consideration throughout our work is
that we analyze the storage and access efficiency of the different
memory arrangements based on the data structure used for
storing synaptic weights. For this, we abstract away the physical
storage elements by considering that each position in memory
contains only a single “packet” of information (of arbitrary
length), and that only one position in memory can be accessed
at a time (i.e., each read/write command targets one “packet” at
a time). Though memory storage and access in dynamic RAMs
(DRAMs), for example, is typically not performed on an arbitrary
number of bits (i.e., usually each read/write command targets a
few bytes at a time), and complete random access is less efficient
than bursts of sequential addresses of data, understanding the
efficiency of each memory arrangement would become too
involved if we were to consider the intricacies of exact physical
models. For simplicity, we consider that storage costs take into
account only the total number of bits for storing the connectivity
and weight tables, and that each read/write command accesses
only one address of the table at a time. Thus, the computational
complexity of locating neuron addresses and weights in the
data structures, denoted as access cost, considers the number of
variables which must be accessed until the desired information is
located, and can perhaps serve as a proxy for indirectly evaluating
latency and energy of the methods.

2.2. Spike-Timing-Dependent Plasticity
(STDP)
Spike-Timing-Dependent Plasticity is a biologically inspired
form of Hebbian learning which considers the relative spike
time of pre- and post-synaptic neurons for updating the synaptic
efficacy (or weight) (Caporale and Dan, 2008). Though STDP
is believed to be a fundamental learning mechanism in the
mammalian brain (Dan and Poo, 2004) and has been widely
explored in computational neuroscience (Song and Abbott, 2001;
Izhikevich, 2007; Sjöström and Gerstner, 2010), results obtained
in machine learning applications (Nessler et al., 2009; Diehl
and Cook, 2015; Yousefzadeh et al., 2017; Kheradpisheh et al.,
2018) suggest it may also be an interesting solution in non-
biological scenarios.

STDP operates by modifying synaptic weights at the onset
of pre- and post-synaptic spikes. “Causal updates” occur when
a pre-synaptic spike precedes a post-synaptic spike, resulting
in an increase in synaptic efficacy (i.e., long-term potentiation).
Conversely, when a pre-synaptic spike proceeds a post-synaptic
spike, an “acausal update” occurs and the efficacy is reduced
(i.e., long-term depression). Figure 1B identifies the causal and
acausal regions of the STDP function. The strength in which
these changes take place is dependent on the temporal difference

Frontiers in Neuroscience | www.frontiersin.org 3 April 2019 | Volume 13 | Article 35779

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 1 | (A) An abstract representation of a neuromorphic spiking neural network core and the components required for implementing pre-synaptic spike-driven

STDP. (B) The causal and acausal regions of the STDP function. (C) Typical STDP kernels implemented in neuromorphic systems.

between the spikes, and can also consider other factors (such as
the current weight value). In sum, the polarity of change depends
on the order of the spikes, while the intensity of change depends
on the temporal difference of the spikes. The basic model for
STDP is defined mathematically by

1wij =

Tj
∑

a=1

Ti
∑

b=1

W(taj − tbi), (1)

where the weight change between pre-synaptic neuron j and
post-synaptic neuron i is defined by the STDP kernel, W,
using all Tj pre-synaptic spike times, tj, and all Ti post-synaptic
spike times, ti.

The STDP kernel is a function which defines how weights
are modified based on the relative temporal difference between
pre- and post-synaptic spikes. Figure 1C highlights the causal
(when tpre < tpost) and acausal (when tpre > tpost) regions of
the STDP function in three commonly used kernels: (truncated)
exponential, ramp, and box. The basic STDP model in Equation
(1) considers a causal relationship of infinite duration between
all pre- and post-synaptic spikes. However, physical realizations
of STDP cannot account for a limitless amount of data to be
stored and analyzed at every instant of weight update. Therefore,
two considerations must be made for temporal spike interaction
when implementing STDP in a neuromorphic system: (1) the
duration of the kernel is finite and (2) the number of spike
times which can be stored is finite. For the first consideration,
the typical STDP kernels in Figure 1C present finite causal
and acausal window duration. In hardware, this duration is
defined by the limit of the STDP timers used in the system.
The exponential kernel, in theory, has a window duration of
infinite time; nonetheless, for physical realizations of the kernel,
we define a limit (i.e., truncation) on how far apart in time two
spikes can influence weight change. With the ramp and box
kernels, this limit is naturally occurring. For simplifying things

further, we normally select symmetric kernels (i.e., with identical
duration of the causal and acausal windows) as not to require
different STDP timers for each side of the STDP kernel. The
second consideration affects the temporal spike interaction and
is, in part, addressed by the finite kernel duration since “older”
spikes (i.e., spikes which have already left the learning window)
can be discarded.

Lastly, throughout this paper we will represent the STDP
window duration as Tstdp and the refractory period duration
as Trefr. Since we are considering implementations on digital
neuromorphic systems, both of these duration values are defined
as integer multiples of the system time step, 1t. Additionally,
it is worth mentioning that there are basically two alternatives
for storing spike times: using a bitmap or using multiple timers.
In section A1 we detail how the latter is always at least as
efficient as the former and, thus, this will be our method of choice
throughout the paper. Nevertheless, the proposed STDP learning
method using multiple timers can be transferred seamlessly to a
bitmap representation of spike times if desired.

2.3. Synaptic Weight Data Structures
Storage costs associated to synaptic weight memory
arrangements have been previously studied (Moradi et al.,
2013; Joshi et al., 2017; Kornijcuk et al., 2018), and here we give
an overview of four typical data structures used for representing
synaptic weights. We analyze the storage costs (in number of
bits) based on number of neurons, weight bit-length, and varying
degrees of network connectivity density. Depending on the
network topology being emulated, particularly with regards to
the connectivity density between pre- and post-synaptic neurons,
some of the data structures have clear advantages over the more
traditional dense matrix representation. The data structures
present common memory tables, which include: adjacency
table, pointer table, and weight table. Which tables are used and
how they are organized defines the synaptic weight memory
arrangement of the network.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 35780

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

As will be presented next, crossbars consume memory
even for nonexistent synaptic connections, while pointer-based
models store only the existent connections, making them ideal
candidates when representing sparsely connected networks. For
our analyses, the network connectivity density, ρ, represents
the percentage of post-synaptic neurons which are connected
to a given pre-synaptic neuron, while sparsity can be computed
simply as (1−ρ). Both crossbars and pointer-based architectures
present a weight table (WT) for storing the values of the synaptic
weights; however, the latter must (directly or indirectly) also
include inWT the address of the post-synaptic neuron associated
with each weight, along with an additional memory called the
pointer table (PT).

2.3.1. Fully Connected: Crossbar
The most intuitive representation of synaptic weight memory
arrangement is by means of a dense matrix, representing full
connectivity between the inputs (pre-synaptic neurons) and
outputs (post-synaptic neurons). Alternatively, in neuromorphic
systems, the dense matrix is sometimes referred to as a crossbar
(Merolla et al., 2014). In a crossbar, every connection between a
pre- and post-synaptic neuron has a reserved space in WT, even
if the connection between the neurons does not exist.

An important aspect of WT to consider is that, when using a
dense matrix to represent a sparsely connected network, the zero-
valued weights can represent either (1) a nonexistent connection
or (2) an existent connection with weight currently equal to zero
(“inactive”). When simply testing the network (i.e., while not
performing synaptic plasticity), both of these cases produce the
same results. However, when actually training the network, there
should be a distinction between a nonexistent connection and
a weight which can momentarily take on the value of zero. To
distinguish between these two cases, the first option is to use
an additional memory called the adjacency table (AT), where
each position aij in AT stores a binary value representing the
existence (aij = 1) or nonexistence (aij = 0) of the synaptic
connection between pre-synaptic neuron Aj and post-synaptic
neuron Bi (Joshi et al., 2017). The second option is to use one of
the 2W weight values—whereW represents the bit-length of each
weight—to represent a nonexistent connection. The advantage of
using this second option is that it removes the memory overhead
required for storing AT, thus only using one weight value—
instead of an additional bit per weight—to differentiate between
existent and nonexistent connections. Throughout our work,
crossbars will be implemented using this second option.

The top left panel in Figure 2 depicts a crossbar with M
pre-synaptic and N post-synaptic neurons. Though WT can be
represented inmatrix-form, in the actual memory the weights are
stored sequentially, starting with all the weights of pre-synaptic
neuron A1 (i.e., w11 to wN1), then all the weights of A2 (i.e.,
w12 to wN2), and so forth, until weights w1M to wNM . Since the
crossbar presents a structured WT, the start and stop locations of
the weights in WT for each pre-synaptic neuron can be obtained
simply by the pre-synaptic address, thus eliminating the need
for pointers: the location of the first weight for pre-synaptic
neuron Aj can be computed by A∗

j = (j − 1)N + 1, with j ∈

[1,M]. Therefore, forward access in crossbars is performed by

starting at address WT(A∗
j) and reading N consecutive weights.

The figure also illustrates forward access (in yellow) for a single
pre-synaptic neuron.

2.3.2. Pointer-Based Compressed Sparse Row

(PB-CSR)
Using the compressed sparse row (CSR) format (Saad, 2003),
each position of WT stores an address-weight pair, (Bi, wij),
of the post-synaptic neuron Bi and the respective incoming
weight from pre-synaptic neuron Aj. In this manner, WT is
only populated by existent synaptic connections, and is the most
efficient method for storing very sparse networks. The top right
panel in Figure 2 exemplifies the PB-CSRmodel. As shown in the
figure, an important aspect of this model is that, when accessing
the weights for pre-synaptic neuron Aj, since we do not have
explicit information of the number of existent connections for
this neuron, we must always read the start, PT(j), and stop,
PT(j+ 1), addresses. Therefore, for performing forward access of
pre-synaptic neuron Aj, start at position PT(j) = A∗

j in WT and

consecutively read addresses and weights until position A∗
j+1− 1.

The figure also illustrates the forward path (in yellow) for a single
pre-synaptic neuron in PB-CSR, requiring two reads in PT (for
start and stop) and ρN reads in WT for the existent connections.

2.3.3. Pointer-Based Run-Length Encoding (PB-RLE)
Run-length encoding (RLE) is a method of lossless data
compression particularly useful when consecutive sequences of
the same value are present (Oliver, 1952). This concept can be
used to replace explicit storage of post-synaptic neuron addresses
of adjacent nonexistent connections. In PB-RLE, sequences of
consecutive nonexistent connections are stored as run counts,
and each position in WT stores a “run bit” followed by the
run/weight value. A run bit equal to “0” indicates the existence
of the synaptic connection, and the value that follows the bit
specifies the respective synaptic weight. If the run bit equals “1,”
then the data that follows it specifies the run length, representing
the number of consecutive post-synaptic neurons which do not
have connections with the respective pre-synaptic neuron and
are, thus, “skipped” when sequentially reading through WT.

The bottom left panel in Figure 2 illustrates the PB-RLE
model. Since the resulting WT after compression depends on the
specific distribution of the existent connections in the network,
we included equations for the worst-case scenario of perfectly
interleaved runs and weights. In other words, for ρ < 0.5, no
two consecutive positions in WT contain existent connections;
for ρ ≥ 0.5, no two consecutive connections are nonexistent,
resulting in only runs of unit length. The figure also illustrates
the forward path (in yellow) for a single pre-synaptic neuron, Aj,
which consists on starting at position PT(j) = A∗

j in WT and

consecutively reading weights and processing runs until post-
synaptic neuron N. When reading the last weight or run, the
pointer should be in position A∗

j+1 − 1 in WT. Forward access

requires one read in PT and a variable number of reads in WT,
which depends on the distribution of connections between the
pre- and post-synaptic neurons. The equations in the figure are

Frontiers in Neuroscience | www.frontiersin.org 5 April 2019 | Volume 13 | Article 35781

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 2 | Synaptic weight memory arrangements and storage costs (in bits). Tables: adjacency table (AT), pointer table (PT), and weight table (WT). Parameters:

number of pre-synaptic neurons (M), number of post-synaptic neurons (N), weight bits (W), and connectivity density (ρ). The forward memory access path has been

highlighted. The pointer-based data structures compress data storage, resulting in non-structured solutions which depend on the connectivity and weight distribution

in the network. The equations for PB-RLE refer to worst-case scenarios of perfectly interleaved runs and weights.

defined for the worst-case scenario of perfectly interleaved runs
and weights.

2.3.4. Pointer-Based Bitmap (PB-BMP)
Mixing properties of the crossbar and the previous pointer-based
data structures, the PB-BMP includes PT, WT, and an additional
fully connected adjacency table. As with PB-RLE, bitmaps do not
require explicit storage of post-synaptic neuron addresses in WT,
while its equivalent run-length encoding is realized via AT. The
bottom right panel in Figure 2 illustrates the PB-BMP model
and the forward access path (in yellow) for a single pre-synaptic
neuron. The start address is stored in PT, and AT stores binary
information about connection existence. For forward access of
pre-synaptic neuron Aj, start the pointer in WT at position
PT(j) = A∗

j , and in matrix-form AT continuously read the entire

row j in the following manner: for every position in AT which
aij = 1, read the current weight in WT and move the pointer in
WT to the next position; if aij = 0, do not change the pointer
in WT. After reading the entire row j in AT, the pointer in WT
should be at positionA∗

j+1. The entire forward access requires one

read in PT, N reads in AT, and ρN reads in WT.

2.3.5. Data Structure Storage Costs
When considering a complete neuromorphic system, memory
elements must also be accounted for storing neuron variables
(e.g., synaptic current, membrane potential, etc.) and the
aforementioned STDP timers. However, for a network with k

pre-synaptic and k post-synaptic neurons, the space complexity
of storing the synaptic weights is O(k2), while neuron variables
and timers are unique to each neuron and do not depend on
the synaptic weight memory arrangement being used, resulting
in O(k) space complexity. Therefore, our analyses of memory
storage cost and efficiency only incorporate the memory required
for storing pointer, adjacency and weight tables, and do not
account for the neuron variables and STDP timers.

A summary of the storage costs (in number of bits) for the
different synaptic weight memory arrangements is presented in
Table 1. The crossbar does not require AT since one of the 2W

weight values can be used to indicate nonexistent connections.
The upper limit of PB-RLE costs vary depending on connectivity
density: for ρ < 0.5 we considered no two consecutive existent
connections, while for ρ ≥ 0.5 we considered every run is of
unit length. Actual costs for PB-RLE (presented in Figure 6)
were obtained via simulation, where networks were generated
by randomly creating connections based on the value of ρ, then
producing the respective PT and WT and computing their costs
in terms of number of bits required for storage.

2.3.6. Data Structure Access Costs
Both forward and reverse access to synaptic connections are
required for implementing the original STDP learning rule.
When a pre-synaptic neuron spikes, we perform forward access
in the connectivity table and apply the acausal updates, since
this specific pre-synaptic spike must have occurred after any

Frontiers in Neuroscience | www.frontiersin.org 6 April 2019 | Volume 13 | Article 35782

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

post-synaptic spikes which have already taken place. When a
post-synaptic neuron spikes, we perform reverse access in the
connectivity table and apply the causal updates, since any pre-
synaptic spike must have occurred before this specific post-
synaptic spike.

In the diagrams in Figure 2, the forward (“fwd”) path for
accessing weights from pre- to post-synaptic neurons in the
weight tables was highlighted in yellow. The structured memory
arrangement in crossbars facilitates reverse access by simply
performing forward access in the transposed WT. Due to
the manner in which weights are stored in memory, pointer-
based data structures natively present access only to forward
connectivity. For accessing post-to-pre connections (i.e., reverse
access), two alternatives are possible: (1) using forward access
and sweeping through the entire AT or WT to verify if
each pre-synaptic neuron is connected to the post-synaptic
neuron of interest or (2) including PT and WT for the reverse
connections as well. The first solution does not affect hardware
costs, but can be extremely inefficient in terms of computation
time (particularly for densely connected networks). The second
solution facilitates reverse access by creating explicit tables for
this purpose, yet at the cost of basically doubling the memory
requirements. In this subsection we will only treat the first option
since the second option can be trivially implemented by simply
executing forward access on the reverse tables. A final alternative
will be presented in section 2.4, where we describe how STDP
learning can actually be executed without the need for reverse
access, availing of the benefits of pointer-based models (i.e.,
memory compression and efficient forward access).

An important practical aspect to consider is that memory
access in digital memory elements, such as double data rate
synchronous dynamic random-access memory (DDR SDRAM),
typically occurs in blocks of multiple bytes per read command.
Additionally, there is a variable amount of row and column
address strobe overhead that precedes the single memory access
depending on whether the read is from the same row or from
the next column item. For single item accesses, this can add
many clock cycles of overhead for reading. Memory controllers
can try to optimize memory command scheduling to overcome
some of this, but never all of it. Nonetheless, for simplification
purposes, in our work we have considered that accessing any
single position in memory (to read the value of a single variable)
consumes one “computational unit,” and that only one position in

TABLE 1 | Storage costs (in bits) for different synaptic weight memory

arrangements.

Architecture AT PT WT

Crossbara 0 0 MNW

PB-CSR 0 M log2(MρN) MρN(log2 N +W)

ρ < 0.5 M log2(MN) MρN(2+ log2 N +W)+M log2 N
PB-RLEb

ρ ≥ 0.5
0

M log2(MN) MN(1+ (1− ρ) log2 N + ρW)

PB-BMP MN M log2(MρN) MρNW

aThe crossbar does not require AT since one of the 2W weight values will be used to

indicate nonexistent connections.
bThis is the upper limit of the cost, considering perfectly interleaved runs and weights.

More realistic values were obtained via simulation.

memory can be accessed at a time. With this, the computational
(or access) cost of performing STDP can be summarized simply
by the number of positions in memory which must be accessed
to obtain address and weight information for executing the
learning rule.

A summary of the access costs for the different synaptic
weight data structures is presented in Table 2. In the table,
forward costs refer to the average number of positions in
the data that must be accessed for a single pre-synaptic
neuron, while reverse costs refers to the average number of
positions in the data that must be accessed for a single post-
synaptic neuron. The equations in the table consider worst-case
scenarios for PB-RLE in forward access, as well as worst-case
scenarios for all pointer-based data structures in reverse access.
Exact closed-form solutions, particularly for reverse access, are
difficult to obtain for pointer-based models since the location
and distribution of existent connections can greatly impact
the data compression, consequently affecting the search for
addresses and weights. In any case, since our proposed method
removes reverse access altogether, we will focus uniquely on
forward access throughout the paper, with the equations in
the table merely serving as an assessment of the complexity of
reverse access.

2.4. STDP Learning Rule With
Forward-Only Connectivity Access
Based on the equations presented in Table 2, reverse access in
pointer-based data structures can be quite inefficient. Because of
this limitation, multiple efforts have been made in approximating
STDP learning using forward-only connectivity, including
simplifying the STDP rule by equally updating all the synaptic
weights based on recent spike activity, using other variables as a
proxy for the post-synaptic spike times when computing causal
updates, and delaying the weight updates. Our method falls
under the latter category; however, contrary to these approximate
alternatives, it can produce exact equivalence to STDP, as will be
shown in the Results section.

When using pointer-based data structures for storing synaptic
weights, acausal updates can be immediately performed at

TABLE 2 | Access costs (per neuron) for different synaptic weight memory

arrangements.

Direction Architecture AT PT WT

Forward

Crossbar 0 0 N

PB-CSR 0 2 ρN

ρ < 0.5 1+ 2ρN
PB-RLEb

ρ ≥ 0.5
0

1 N

PB-BMP N 1 ρN

Reversea

Crossbar 0 0 M

PB-CSR 0 M M(ρN)

ρ < 0.5 M(1+ 2ρN)
PB-RLE

ρ ≥ 0.5
0

M MN

PB-BMP M+ ρM(N − 1) ρM ρM

aThe equations for the pointer-based models consider worst-case scenarios. The values

presented in Figure 6 were obtained via simulation.
bThis is the upper limit of the cost, considering perfectly interleaved runs and weights.

More realistic values were obtained via simulation.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 35783

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

the onset of a pre-synaptic spike using forward connectivity
access of PT. Causal STDP updates, however, should be
performed at the onset of post-synaptic spikes, requiring reverse
connectivity access. Since pointer-based models natively have
only forward connectivity access, we have devised a method
which performs causal updates at the onset of yet another pre-
synaptic neuron event: the STDP timer expiration. Therefore,
instead of immediately applying the causal updates at the onset of
post-synaptic spikes, the update is delayed until the pre-synaptic
STDP timer expires, at which point the causal influence of a
spike ceases. The two types of weight updates in our proposed
algorithm are described below:

• Acausal update: At the onset of a pre-synaptic spike from
neuron Aj, perform forward access in WT starting at position
PT(j) = A∗

j , and verify the STDP timers of the post-synaptic

neurons connected to Aj. For every post-synaptic neuron
which has spiked not long ago (i.e., with an active STPD timer),
perform the acausal weight update.

• Causal update: At the moment of expiration of the pre-
synaptic STDP timer of neuron Aj, perform another forward
access in WT starting at position PT(j) = A∗

j , once again

verifying the STDP timers of the post-synaptic neurons
connected to Aj. For every post-synaptic neuron which has
recently spiked (i.e., with an active STPD timer), perform the
causal weight update.

For clarifying the proposed algorithm, Figure 3 illustrates four
different instants during system evolution for a causal and an
acausal STDPwindow duration of 8 time steps each. These events
are described below:

1. The first event illustrates a new post-synaptic spike, at which
time this neuron’s STDP timer is initialized and no weight
updates occur.

2. In the second event, the pre-synaptic neuron elicits a new
spike, initializing its STDP timer and also performing the
acausal weight update. This update is performed just as
it would be in the original STDP algorithm via forward
connectivity access.

3. The third event illustrates the expiration of the post-synaptic
STDP timer. No action is required since the acausal update of
its weight has already been serviced.

4. In the fourth event, the pre-synaptic STDP timer expires, at
which point the causal weight update takes place. Unlike the
original STDP algorithm, in which causal updates would have
taken place at the onset of a post-synaptic spike, the proposed
method delays the update until the pre-synaptic STDP timer
expires, requiring, therefore, only a second forward access and
avoiding reverse connectivity access altogether.

Using our method, if every neuron is configured to be able
to spike at most once during the STDP window, then the
weight updates will always fall under one of these four scenarios
and produce results which exactly match those obtained by
the original STDP algorithm (this will be shown in section
3.3). However, if a neuron is allowed to spike multiple times
during Tstdp, then many different scenarios may arise between
the moment a post-synaptic neuron spikes and the moment
the STDP timer of its pre-synaptic neuron expires. In this case,
the proposed method may incur in incorrect weight updates, as
shown next.

2.4.1. Drawbacks of Allowing Multiple Spikes Inside

the STDP Window
If the system is designed without guaranteeing that no neuron
spikes more than once inside its STDP window, some natural
drawbacks arise. Below we list these cases to better illustrate the
importance of the two criteria— three of the drawbacks present
direct solutions, while the fourth does not. To generate these
specific cases, we will consider nearest-neighbor temporal spike
interaction (where only the nearest spikes are considered; refer
to subsection 2.4.3), and we will configure the neurons with
Trefr < Tstdp and use a single timer of length ⌈log2(Tstdp + 1)⌉
bits per neuron.
Case 1: High-firing pre-synaptic neuron (refer to Figure 4A):

If a second pre-synaptic spike occurs while the first spike
is still inside the STDP window, the timer will be restarted
and information about the first spike will be lost. Since the

FIGURE 3 | The four typical events which occur during the proposed STDP learning algorithm. The first event illustrates post-synaptic spike generation, while the third

event is the moment a post-synaptic spike exists the learning window (i.e., its STDP timer expires); in both cases, no weight updates are performed since the

algorithm is driven only by pre-synaptic events. The second event illustrates pre-synaptic spike generation, resulting in acausal update. The fourth event illustrates

pre-synaptic STDP timer expiration, resulting in causal update. Note that the post-synaptic spikes in the third and fourth instants are distinct spike events, used to

highlight that acausal and causal updates can take place between the same pair of neurons depending on the order of the spikes.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2019 | Volume 13 | Article 35784

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

post-synaptic spikes occur after the second pre-synaptic spike,
the correct update will take place since only nearest-neighbor
influence is considered.
Case 2: High-firing post-synaptic neuron (refer to Figure 4B):

If a second post-synaptic spike occurs before the pre-synaptic
spike, information about its first spike time will be lost. Since the
pre-synaptic spike occurs after the second post-synaptic spike,
once again the correct update will take place since only nearest-
neighbor influence is considered.
Case 3: High-firing pre-synaptic neuron (refer to Figure 4C):

If a second spike occurs for a pre-synaptic neuron whose STDP
timer has not yet expired, then the timer will be restarted and
information about the first spike will be lost. As a solution,
first service the pending causal updates (relative to the first
spike), then service the acausal updates (relative to the second
spike) only for post-synaptic spikes which have occurred after
the first pre-synaptic spike. The reason for this is that the
acausal updates of post-synaptic spikes older than the first
pre-synaptic spike have already been performed at the onset
of this first spike. Lastly, restart the STDP timer for the
new spike.
Case 4: High-firing post-synaptic neuron (refer to Figure 4D):

If we have a post-synaptic neuron which spikes frequently (i.e.,
before the pre-synaptic timer expires and the causal updates
are performed), then the nearest-neighbor spike information
between pre- and post-synaptic neurons will be lost and

overwritten by the new post-synaptic spike time (since the
post-synaptic STDP timer is restarted). An objective, yet inexact,
solution is to simply ignore this issue given that a single pre-
synaptic spike should not have a strong causal relation with
a high-firing post-synaptic neuron. With this, a causal update
will still take place at the expiration of the pre-synaptic STDP
timer, except it will just not be with the nearest-neighbor post-
synaptic spike. To prevent this scenario from occurring, we
must ensure that a maximum of a single spike can occur in the
duration of each timer, demanding that the system be designed
as presented next.

2.4.2. Criteria for Exactness Between Methods
The effect of not being able to implement nearest-neighbor causal
updates has the effect of the weights not increasing as much as
expected, resulting in lower synaptic efficacy and, consequently,
fewer post-synaptic spikes. For the results of the proposed
method to exactly match those obtained by the original STDP
algorithm, each neuron must present one timer per refractory
period, capturing every possible spike, and resulting possibly in
multiple timers to cover the entire duration of the STDP learning
window. In other words, we must use ⌈Tstdp /Trefr⌉ timers, each
of length ⌈log2(Trefr + 1)⌉ bits. Note that if Trefr ≥ Tstdp, this
reduces to the expected single timer of length ⌈log2(Trefr + 1)⌉
bits. This rule has the advantage of allowing different types of
temporal spike interaction (see subsection 2.4.3).

FIGURE 4 | Special cases which arise when using a single timer and Trefr < Tstdp. (A–C) By considering nearest-neighbor temporal spike interaction, cases 1–3 can

be correctly addressed, (D) yet case 4 does not present a direct solution. To overcome all the drawbacks inherent to the proposed method, the neurons in the system

must be configured as to ensure that they spike at most once during each timer duration. If the neurons can be configured with Trefr ≥ Tstdp, then we guarantee that

only one spike can occur inside the STDP window. However, if the neurons present Trefr < Tstdp, then the only manner of capturing all the spikes is to use multiple

timers for the STDP window, each with duration Trefr.

Frontiers in Neuroscience | www.frontiersin.org 9 April 2019 | Volume 13 | Article 35785

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

Details of the multi-timer method are presented in
Appendix A1 and shown in Figure A1. To implement our
proposed method of STDP learning using multiple timers,
we must simply treat each individual timer as was done in
Figure 3. The causal updates, however, can be implemented in
two different manners.

1. During the traversal of the spike through the timers, at the
instant of timer expiration the causal updates are performed
between the current spike and all “newer” post-synaptic
spikes. This means that whenever any of the multiple pre-
synaptic timers expires, perform weight updates with the
post-synaptic spikes which have recently entered the queue—
meaning we must verify only the first timer of the post-
synaptic neurons.

2. The second option implies in performing the causal update
only when the T-th (i.e., the last) pre-synaptic timer expires.
This method has the advantage of possibly incurring only two
instants of updates: when the spike enters and when it exists
the spike history queue. However, if a new pre-synaptic spike
occurs while a spike is still traversing the queue, then the
causal weight updates between the first spike and any post-
synaptic spikes that occurred after it must be performed prior
to updating the post-synaptic neuron variables. This effect is
similar to that of case 3 in Figure 4.

It may appear at first glance that both of these alternatives incur
in more memory access than the original STDP algorithm. The
first method can, in fact, produce more updates than the second
alternative, particularly for sparse pre-synaptic activity—though
it is a more systematic way of implementing updates since we
must only verify the first timers for the post-synaptic neurons.
The second alternative, however, implements updates only when
actually required, consuming (on average) the same number
of memory accesses as the original STDP learning rule. This
can be elucidated by considering the case of a high-firing post-
synaptic neuron: the original algorithm would search through all
its pre-synaptic neurons even if most have not spiked, while the
proposed algorithm would only verify the pre-synaptic neurons
which have recently spiked and could, therefore, have some
causal influence on the post-synaptic spikes. If we consider the
case of a high-firing pre-synaptic neuron, then the inverse is
valid, thus resulting most likely in a similar average cost for
both methods.

2.4.3. Temporal Spike Interaction
Temporal spike interaction can go to the extreme of considering
only the nearest spikes, known as nearest-neighbor interaction
(Morrison et al., 2008). At the other extreme, all-to-all interaction
considers influence of the entire spike history. A third variant
is a triplet-based interaction (Pfister and Gerstner, 2006), where
a sequence of post-pre-post spikes, for example, is a template
for updating weights. Examples illustrating these temporal spike
interactions using multiple timers for Tstdp = 12 and Trefr = 5
are presented in Figure 5. The procedure when using multiple
timers follows that of a single timer: weights are updated at
the onset of a new pre-synaptic spike and at the expiration of
the (last) pre-synaptic STDP timer. Note in Figure 5C that the

triplet-based interaction requires spikes to be stored for a longer
duration since the “older” post-synaptic spike in the post-pre-
post triplet may already have left its active region (i.e., the timers
to the right of the red bar), but is still of use for an active pre-
synaptic spike. From the figure we show that, independently of
the type of temporal spike interaction being implemented, as long
as the appropriate number of timers is used and we address the
pending causal updates before sending the weights to the post-
synaptic neurons (as per case 3 in Figure 4C), then our method
produces exact equivalent results to original STDP.

3. RESULTS

3.1. Data Structure Efficiency
Based on the data structure storage and access costs, a
comparison of storage and forward access efficiencies formultiple
network sizes, weight bit-lengths, and connectivity densities is
shown in Figure 6. By varying the number of pre-synaptic (M)
and post-synaptic (N) neurons, the connectivity density (ρ),
and the number of bits used to represent each weight (W),
we empirically verified the performance of each data structure
for different network configurations. For each data structure,

storage cost, Cs, is compared to the reference cost value, C
ref
s =

MρNW, representing the amount of memory required to store
the weights of only the existent connections in the network.

Storage efficiency is then computed as ηs = C
ref
s /Cs. Forward

access cost, Ca, is compared to the reference computational cost

value, C
ref
a = ρMN, representing the total number of variables to

be accessed when reading data for all pre-synaptic neurons once
(i.e., obtaining the entire network address-weight pairs). Forward

access efficiency is then computed as ηa = C
ref
a /Ca. The results in

the plots were obtained by generating 1,000 randomly connected
networks according to the parameter set, and averaging the costs
of these networks per connectivity density. The light-shaded
regions behind each plot indicate the model with the highest
efficiency for specific values of ρ.

As we can observe in Figure 6A, pointer-based models have
a great advantage over crossbars due to their data compression,
with the PB-BMP model showing the best overall performance
for a large range of ρ. Naturally, for larger weights, pointer-
based models show a greater advantage, particularly for sparsely
connected networks (i.e., small values of ρ). Increasing network
size has only a slight impact on PB-BMP models, since in
these models the only additional memory required beyond the
reference value is the rather low-cost AT. Conversely, PB-CSR
and PB-RLE are clearly affected when mapping larger networks
since they directly (for PB-CSR) or indirectly (in run-lengths
for PB-RLE) must store larger post-synaptic addresses in WT.
For forward access, Figure 6B shows that pointer-based models
PB-CSR and PB-RLE have a natural advantage over the other
two models since they do not require reading every position in
their tables. Between these two models, PB-CSR performs better
than PB-RLE (except for ρ = 1) because the latter requires
decompressing the data by reading run-lengths, while the former
requires only two read commands in PT (the start and stop
addresses) along with the ρMN weights to be read. The PB-BMP

Frontiers in Neuroscience | www.frontiersin.org 10 April 2019 | Volume 13 | Article 35786

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 5 | Example scenarios of proposed method for different types of temporal spike interactions using multiple timers. Pre-synaptic spikes in red represent event

of interest: a new spike event or the last STDP timer expiration event. (A1) Perform pending causal update before acausal update. (A2) No updates required since no

post-synaptic spikes occurred after the previous pre-synaptic spike. (A3) Perform causal update. (A4) No update required because the causal update was performed

when the most recent pre-synaptic spike occurred. (B1) Perform causal updates with post-synaptic spikes which occurred after the previous pre-synaptic spike,

followed by the acausal updates. (B2) No causal updates required since no post-synaptic spikes occurred after the previous pre-synaptic spike. (B3) Perform causal

updates. (B4) Only a single causal update is required since the other causal update was performed when the most recent pre-synaptic spike occurred. (C)

Triplet-based spike interaction requires spikes to be stored for a longer duration. For pre-synaptic spikes, the timers to the right of the red bar represent the active

region. (C1) Perform triplet update since the previous pre-synaptic spike is still in the active region. (C2) No triplet update required since the previous pre-synaptic

spike is already in the inactive region (i.e., left-side timers). (C3) Perform triplet update at expiration of pre-synaptic STDP timer. (C4) No triplet update required since it

was performed when the most recent pre-synaptic spike occurred.

model can achieve a maximum efficiency of about 50% because
it requires two read commands per existent connection: one read
in AT to identify if the connection exists and one read in WT to
find the weight value of the connection. The performance of the
crossbar grows linearly with connectivity density, and is efficient
at very large values of ρ.

3.2. Budget Efficiency
In order to identify the optimal solution for a given
implementation budget in terms of memory storage and
computational effort (i.e., memory accesses), we defined the
budget efficiency metric as η = ληs + (1 − λ)ηa, where ηs is
storage efficiency, ηa is forward access efficiency, and λ is a
tunable parameter defining the storage-versus-access trade-off.
Note that ηa is computed as the forward access efficiency since
(1) both causal and acausal updates only require this type of
access in pointer-basedmodels and (2) reverse access in crossbars
is just as efficient as forward access.

The graphs in Figure 7 illustrate the optimal models (based
on the shaded colors) for different network parameter settings

in the ρλ-plane. For networks where memory access efficiency
is priority (i.e., small values of λ) and/or for sparse networks
(i.e., small values of ρ), the PB-CSR model is the clear optimal
solution. This is mainly due to the compression method in
PB-CSR, where no AT and no decompression (as in PB-RLE)
are required, making weight storage simple and forward access
efficient. However, when memory storage is priority (i.e., for
large values of λ), the PB-BMP model spans the longest range
of connectivity densities as the optimal solution. For densely
connected models, the crossbar appears as the best alternative
since the nonexistent connections entail only a small amount
of storage overhead, while presenting efficient forward access.
Interestingly, the PB-RLE model spans only a small region close
to the center of the graph (especially for small weight bit-
lengths), resulting as the optimal solution for more specific cases
of ρ and λ.

3.3. Proof-of-Concept Example
Many of the examples and results presented thus far throughout
our work were obtained via simulation of various network

Frontiers in Neuroscience | www.frontiersin.org 11 April 2019 | Volume 13 | Article 35787

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 6 | Data structure storage and forward access efficiencies for different parameter settings and varying connectivity density. Parameters: number of

pre-synaptic neurons (M), number of post-synaptic neurons (N), bits per weight (W), and connectivity density (ρ). The light-shaded regions behind each plot indicate

the most efficient model for specific values of ρ. (A) Storage efficiency in pointer-based models is higher than in crossbars for nearly all values of ρ. Increasing weight

bit-length is more impactful than increasing network size. PB-BMP efficiency improves for larger networks since it does not explicitly store post-synaptic addresses

(except as binary values in AT). All data structures show higher efficiency for larger networks. (B) Forward access is efficiently performed in pointer-based models due

to their compression mechanism, particularly in sparsely connected networks. PB-CSR has advantage over the other models throughout most values of ρ because it

does not require data decompression to obtain address-weight pairs.

topologies and connectivity distributions. In this section, we
present an additional example to highlight the equivalence of our
proposed algorithm with the original STDP learning rule—when
implementing one of the two criteria presented in subsection
2.4.2. The effect of case 4 from subsection 2.4.1— where nearest-
neighbor causal updates are lost—will be demonstrated, along
with an example of all-to-all temporal spike interaction which
perfectly matches the original STDP algorithm.

The experimental setup involves 256 post-synaptic neurons
receiving spike inputs from 256 pre-synaptic neurons. Initial
weight values were sampled from a Gaussian distribution with
0.1 mean and unit variance. All the neurons were configured with
symmetric STDP ramp kernel of window duration of Tstdp =

16 and maximum weight change of ±0.01, spiking threshold
of Vth = 1.0, and refractory period duration of Trefr = 4.
Pre-synaptic neurons were set with spiking probability of 10%
when outside the refractory period. The leaky integrate-and-fire
neuron model was used for the post-synaptic neurons, governed
by the equation Vi(t + 1) = αVi(t) +

∑

j wijsj(t), where the

membrane memory constant, α was set to 0.9. The network
dynamics were simulated for 1, 000 time steps, during which all
the weights and membrane potentials were recorded at each time
step. Since causal weight updates occur at different instants of the
algorithm for the original STDP learning rule and our proposed
method, directly observing the weight values at each time step
for such a large number of weights is not feasible. Therefore, to
validate our method, we compared the post-synaptic membrane
potentials for each neuron throughout the entire simulation.
Additionally, for completeness, the post-synaptic spiking activity
was analyzed by computing the distance between the van Rossum
spike traces (Rossum, 2001) for the two algorithms. The time
constant of the exponential kernel for generating the continuous
traces was set as the time constant of the membrane potential and
computed as τR = −1 / log(α) ≈ 9.5.

The simulation results for the network are presented in
Figure 8, where we verify the convergence of our proposed
method for STDP learning. The left column illustrates results
when one timer is used and simply nearest-neighbor interaction

Frontiers in Neuroscience | www.frontiersin.org 12 April 2019 | Volume 13 | Article 35788

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 7 | Budget efficiency, η = ληs + (1− λ)ηa. Parameters: ηs is the storage efficiency, ηa is the forward access efficiency, and λ is a tunable parameter defining

the storage-versus-access trade-off. Given efficiency priority and overall network connectivity density, the optimal memory arrangement for synaptic weights can be

obtained. Pointer-based models cover most of the range of values for ρ and λ because the proposed STDP algorithm takes advantages of their efficient memory

compression and forward access.

is considered for the original algorithm and our method. The
right column illustrates results when multiple timers (in this
case, 4 timers) are used to capture all possible spikes which can
occur inside the STDP window and all-to-all spike interaction
is performed for the original algorithm and our method. Note
that the single-timer and multi-timer results were obtained from
different simulations since only one temporal spike interaction
can be considered at a time.

The top row shows how the total mean squared error (MSE)
of all post-synaptic membrane potentials between the original
STDP algorithm and our method diverge when using only one
timer; this is the effect described in case 4 in subsection 2.4.1,
where post-synaptic weights receive smaller causal updates than
expected. For the multi-timer solution, the membrane potentials
alwaysmatch those obtained by the original STDP algorithm, and
the resulting MSE is zero.

The second row shows the total van Rossum spike traces
obtained by adding all traces after passing each spike through

the exponential kernel. In this example, the effect of smaller
weight updates because of lost causal nearest-neighbor updates
is clearly observed by the decreasing post-synaptic spike activity
when using a single timer. As expected, the multi-timer solution
produces post-synaptic spikes identical to those obtained by the
original STDP algorithm.

Lastly, the bottom row illustrates the MSE of all incoming
weights for post-synaptic neuron B1. Once again, the effect of case
4 causes the weights to diverge for the single-timer solution. For
the multi-timer solution, we can see that the MSE momentarily
increases but soon after returns to zero; this effect occurs because
of the delayed causal updates, but always produces the correct
weight at the moment the weight must be effectively used. Note
in the graphs that in the last Tstdp time steps the membrane
potentials and spike traces for the single timer method also
converge to zero, simply because we enforced all pre-synaptic
neurons to stop spiking during this duration for the final weights
obtained by the multi-timer solution to exactly match those of

Frontiers in Neuroscience | www.frontiersin.org 13 April 2019 | Volume 13 | Article 35789

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

FIGURE 8 | Example of convergence of proposed method for STDP learning for a network with 256 pre-synaptic and 256 post-synaptic neurons, configured with

Tstdp = 16 and Trefr = 4. The left column illustrates results when one timer is used and simply nearest-neighbor interaction is considered. The right column illustrates

results when multiple timers (in this case, 4 timers) are used to capture all possible spikes which can occur inside the STDP window. The top row shows how the total

mean squared error (MSE) of all post-synaptic membrane potentials between the original STDP algorithm and our method diverges when using only one timer; this is

caused by the effect described in case 4 in section 2.4.1. For the multi-timer solution, the membrane potentials always match, and the resulting MSE is zero. The

second row shows the continuous van Rossum spike traces, where the effect of smaller weight updates in the case of using a single timer is clearly observed by the

decreasing post-synaptic spike activity over time. As expected, the multi-timer solution produces post-synaptic spikes identical to those obtained by the original STDP

algorithm. The bottom row illustrates the MSE of all incoming weights for post-synaptic neuron B1. Once again the lost causal nearest-neighbor updates make the

weights diverge for the single timer solution; for the multi-timer solution, we can see that the MSE temporarily increases but soon after returns to zero, which is simply

the effect of the delayed causal updates.

the original STDP algorithm at the last simulation time step (i.e.,
so the delayed causal updates could be completed and all timers
could return to zero).

4. DISCUSSION

Storage costs associated to synaptic weight memory
arrangements have been previously studied. In Moradi et al.
(2013), the authors describe a network clustering scheme which
uses a two-stage routing architecture to reduce the overall
memory storage requirements. This method is also mentioned
in Joshi et al. (2017) and is referred to as “clustered addressing.”
In both of these studies, the storage savings comes at the cost
of reduced flexibility in network connectivity, since a specific
topology must exist for groups of neurons to be clustered
together. Instead, we decided not to constrain our networks
to any structured topology. In Joshi et al. (2017), the authors
describe the data structures we have presented, highlighting,
particularly, the storage cost savings obtained for a large range
of connectivity density when using the PB-BMP architecture.

However, the impact of pointer-based models on learning
algorithms was only briefly mentioned, and memory access
costs were not analyzed. More recently, the impact of using
different memory arrangements on spike routing and network
traffic congestion was described in Kornijcuk et al. (2018).
Though the work describes a theoretical means of routing-rate
evaluation and results for maximum network sizes for each
of their memory arrangements, it does not target any specific
learning algorithm, and the experimental results focus only on
an inference task without synaptic plasticity. More recently,
the authors in Kim et al. (2018) proposed a modified SRAM
which enables transposable memory access. The method is
interesting as it facilitates the reverse (post-to-pre) access for
causal updates; however, it can only be applied to fully connected
network topologies (i.e., crossbars), and, thus, are not efficient for
representing sparse networks since compressed data structures
are typically not transposable.

In terms of spike-driven learning, there have been multiple
attempts to replicate or approximate STDP with forward-
only connectivity. The motivation for storing synaptic weights

Frontiers in Neuroscience | www.frontiersin.org 14 April 2019 | Volume 13 | Article 35790

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

in a pre-synaptic perspective (i.e., pre-to-post) is because
post-synaptic-driven systems are not as efficient in terms of
number of memory accesses as pre-synaptic-driven systems; this
is mainly because, as we sweep through neurons to update
their states during a system time step, 1t, for each post-
synaptic neuron we must verify the spike state of every pre-
synaptic neuron, even if none of these has spiked. Conversely,
pre-synaptic-driven systems operate in an on-demand fashion,
accessing the pre-synaptic spike states only as needed.

In Pedroni et al. (2016); Detorakis et al. (2018), we described a
less-detailed version of our method; yet, we did not study all the
data structures nor were we able to address all of the drawbacks
incurred by delayed causal updates (as we have shown in the
current paper). One of the earliest works which evaluated the
complexity of implementing the STDP learning algorithm in a
neuron address domain was presented in Vogelstein et al. (2003).
The authors discussed how the address-event representation
(AER) protocol could support STDP learning in the address
domain. Being pioneering work, the paper considered only small
networks, consequently not addressing the different possible
arrangements for organizing synaptic weights in memory and
the implications of requiring reverse access for performing
causal updates.

Methods that approximate STDP learning by equally updating
all the synaptic weights based on recent spike activity have been
proposed. In Bichler et al. (2012), the authors use a special
form of STDP which equally depresses all the synapses that
did not recently contribute to the post-synaptic spike activation
regardless of their activation time; in contrast, synapses that
were activated with a pre-synaptic spike a short time before
post-synaptic spikes are strongly potentiated. The authors in
Yousefzadeh et al. (2017) created a more hardware-friendly
version of this model by limiting the number of synapses to
be potentiated (instead of limiting the STDP time window
duration), eliminating the need for time-stamping the spikes.
Though efficient in terms of memory access, with both of these
methods it is not possible to depress synapses whose activation
time is precisely not correlated with the post-synaptic spike,
and the methods only work if LTD is systematically applied to
synapses not undergoing an LTP. Additionally, the methods are
post-synaptic-driven, undergoing the aforementioned drawbacks
of this mechanism.

Another alternative to approximating STDP is by using other
variables (usually post-synaptic membrane potential) as a proxy
for the post-synaptic spike times when computing causal updates.
This learning rule was proposed in Brader et al. (2007) and has
even been incorporated in the SpiNNaker system (Davies et al.,
2012; Lagorce et al., 2015). More recent work describes how to
use the rule for learning sequences of spikes (Sheik et al., 2016).
Once again, though very efficient in terms of memory access and
spike time storage, in this method exact STDP is not possible as
post-synaptic potential serves only as a [deterministic (Lagorce
et al., 2015) or probabilistic (Sheik et al., 2016)] proxy of the post-
synaptic spike time and, inmany cases, is not capable of capturing
the subtle spike time causalities of STDP.

The third category of methods for approximating STDP
consists on delaying the weight updates, and is the category

which our proposed method falls under. In the Loihi system,
the authors adopt a less event-driven method where synaptic
modification is performed in an epoch-basedmechanism (Davies
et al., 2018). Their method delays the updating of all synaptic
states to the end of a periodic learning epoch time, and, to
avoid receiving more than one spike in a given epoch, the
epoch period is normally set to the minimum refractory delay of
all neurons in the network. Though Loihi implements forward
connectivity tables for supporting generalized STDP rules, the
periodic servicing (i.e., non-event-driven methodology) can
result in inexact weights being delivered to post-synaptic neurons
since multiple pre-synaptic spikes may occur before a weight
update takes place. Therefore, certain conditions in firing rates
must be guaranteed for their method to be equivalent to STDP.

In the current version of the SpiNNaker system, STDP
learning is approximated using a trace-based approach via
delayed updates (Mikaitis et al., 2018). Since in trace-based STDP
each spike leaves an exponentially decaying trace (Morrison
et al., 2008), this renders possible linearly accumulating the
spike traces into a single variable, representing the total current

effect of all past spikes. In this manner, weight updates can
then be performed in an online fashion at the onset of either

pre- or post-synaptic spikes. In SpiNNaker, however, the updates
only occur at the onset of pre-synaptic spikes, meaning that,

for the method to follow rather closely to original STDP, the
system relies on frequently firing pre-synaptic neurons. This

issue can be observed in the case when a post-synaptic neuron
spikes multiple times soon after a pre-synaptic spike (typically

resulting in large causal updates): if the pre-synaptic neuron

spikes again in a much later time, then the causal updates
will be practically null due to the almost completely decayed

traces (somewhere along the lines of the problem encountered
in case 4 in Figure 4D). Additionally, besides serving only as

an approximation to STDP, the trace-based method requires an

exponentially decaying kernel, and, thus, other kernels such as
those in Figure 1C cannot be implemented.

Perhaps the most similar work to ours has been presented in
Jin et al. (2010), which uses a deferred-event approach and stores
spike times for postponed processing at the time of the next event
following them. This method has been previously implemented
in the SpiNNaker system under their “deferred event driven
model” (Rast et al., 2008; Diehl and Cook, 2014; Galluppi et al.,
2015). It is similar to our proposedmethod in that weight updates
are driven by pre-synaptic spikes and causal updates are delayed;
however, some important distinctions should be highlighted:

• A neuron’s spike history is stored as a bitmap in an array.
However, as presented in Appendix A1, using multiple timers
is at least as efficient as using a bitmap array, and becomes
extremely more efficient for large Trefr.

• Acausal updates are not immediately processed and are also
deferred to the future, once more pre-synaptic spikes have
arrived. This implies that larger arrays are required to store
spikes on both sides of the STDP window for post-synaptic
neurons. In fact, in their work the post-synaptic bitmap
array is three times larger than the pre-synaptic array. In
our solution, applying the acausal updates immediately at

Frontiers in Neuroscience | www.frontiersin.org 15 April 2019 | Volume 13 | Article 35791

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

the onset of pre-synaptic spikes demands that we use timers
that must cover only one side (i.e., the longest side) of the
STDP window.

• Since the bitmap array is only updated at the onset of new
spikes (but not necessarily at the expiration of the pre-synaptic
STDP timer) and STDP updates can only take place when an
“old” pre-synaptic spike eventually exits the bitmap array, this
means that both causal and acausal updates rely on frequently
firing pre-synaptic neurons. This demands that pre-synaptic
spikes arrive at a high enough rate to ensure that the pre-
synaptic spike time bitmap array is frequently updated so
weight updates are not lost. In their work, the minimum firing
rate for pre-synaptic neurons is 10.4 Hz.

• Since multiple pre-synaptic spikes may occur before an
“old” pre-synaptic spike eventually exits the bitmap array,
this implies that the weights being used for updating post-
synaptic neuron variables at each pre-synaptic spike event
could (or most likely will) be an “old” set of weights since
the causal and acausal updates have been deferred. Therefore,
though qualitatively similar, a quantitative equivalence with
the original STDP algorithm will probably not occur.

5. CONCLUSIONS

There are multiple forms of organizing data structures for storing
synaptic weights. Among these different memory arrangements,
pointer-based models are capable of data compression by storing
only the existent connections in the network. In pointer-
based models, weights are stored, in a high-level sense, as
lists of post-synaptic addresses and weights, where the pointer
to the list is defined by the pre-synaptic neuron address.
Biologically relevant neural networks are typically unstructured
and sparsely connected, making pointer-based architectures
particularly efficient at storing these network topologies. In
this work, we studied the storage costs (in bits) of each data
structure and identified the most efficient based on network
parameters (e.g., network size and weight bit-length) and
connectivity density.

For the different data structures, we analyzed the
computational complexity (in number of memory accesses)
of obtaining synaptic address and weight when accessing the
tables in forward and reverse directions. Though efficient in
terms of storage for a wide range of connectivity density values,
pointer-based models natively present only forward connectivity
access, making them inefficient when implementing spike-time-
based local learning rules such as STDP—which requires both
forward (pre-to-post) and reverse (post-to-pre) connectivity
access. Therefore, we devised a novel means of efficiently
implementing STDP by forward-only synaptic connectivity
access, benefiting from the reduced memory storage property of

pointer-based data structures. In the traditional STDP algorithm,
causal updates are performed at the onset of post-synaptic spikes,
demanding reverse access at this instant. Our proposed method
operates by delaying the causal weight updates until the instant
of expiration of the pre-synaptic STDP timer. With this, forward
access is performed for both causal and acausal updates, driven
by pre-synaptic events.

Natural drawbacks arise when delaying the causal updates,
particularly with respect to high-firing post-synaptic neurons. All
the drawbacks can be addressed by a very simple rule: the number
of STDP timers for each neuron should be equal to the number
of spikes which can occur inside the STDP learning window.
This rule can be obtained by using multiple timers when Trefr <

Tstdp, with each timer lasting Trefr time steps. Using this strategy
results in the possibility of implementing nearest-neighbor and
all-to-all temporal spike interaction. Additionally, by extending
the number of timers, the more complex triplet-based temporal
interaction can also be deployed.

Lastly, besides the comparison of storage and access
costs and efficiencies for each data structure, we devised
a budget efficiency figure of merit for a trade-off analysis
of the benefits of each model depending on application
requirements and storage and access budget. In sum, we feel
our work is unique in that it presents a methodology for
identifying the optimal memory arrangement solution based
on system requirements and network topology, including
also the cost of memory access, and supplying the first
viable and exact solution for implementing STDP learning in
systems organized with either crossbar arrays or forward-only
connectivity tables.

AUTHOR CONTRIBUTIONS

BP and GC developed the main part of the work, including
the algorithms, simulations, analyses, and results. All authors
contributed to the manuscript.

FUNDING

This work was partly supported by the National Science
Foundation (CNS-1823366), the Office of Naval Research
(N00014-18-1-2248), the Brazilian National Council of
Technological and Scientific Development (CNPq-CsF
201174/2012-0), and Intel Corporation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00357/full#supplementary-material

REFERENCES

Andreou, A. G., Meitzler, R. C., Strohbehn, K., and Boahen, K. (1995).

Analog VLSI neuromorphic image acquisition and pre-processing

systems. Neural Netw. 8, 1323–1347. doi: 10.1016/0893-6080(95)

00098-4

Bassett, D. S., and Bullmore, E. (2006). Small-world brain networks. Neuroscientist

12, 512–523. doi: 10.1177/1073858406293182

Frontiers in Neuroscience | www.frontiersin.org 16 April 2019 | Volume 13 | Article 35792

https://www.frontiersin.org/articles/10.3389/fnins.2019.00357/full#supplementary-material
https://doi.org/10.1016/0893-6080(95)00098-4
https://doi.org/10.1177/1073858406293182
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C.

(2012). Extraction of temporally correlated features from dynamic vision

sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.

doi: 10.1016/j.neunet.2012.02.022

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186.

doi: 10.1038/nrn2575

Caporale, N., and Dan, Y. (2008). Spike timing-dependent plasticity:

a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46.

doi: 10.1146/annurev.neuro.31.060407.125639

Dan, Y., and Poo, M.-m. (2004). Spike timing-dependent plasticity of neural

circuits. Neuron 44, 23–30. doi: 10.1016/j.neuron.2004.09.007

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davies, S., Galluppi, F., Rast, A. D., and Furber, S. B. (2012). A forecast-based

STDP rule suitable for neuromorphic implementation. Neural Netw. 32, 3–14.

doi: 10.1016/j.neunet.2012.02.018

Detorakis, G., Sadique Sheik, C. A., Paul, S., Pedroni, B. U., Dutt, N.,

Krichmar, J., et al. (2018). Neural and synaptic array transceiver: a brain-

inspired computing framework for embedded learning. Front. Neurosci. 12:583.

doi: 10.3389/fnins.2018.00583

Diehl, P. U., and Cook, M. (2014). “Efficient implementation of STDP rules on

SpiNNaker neuromorphic hardware,” in IJCNN (Beijing), 4288–4295.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.1109/IJCNN.2014.6889876

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber,

S. B., et al. (2015). A framework for plasticity implementation on the

SpiNNaker neural architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.

00429

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.

doi: 10.1017/CBO9780511815706

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). “Generative adversarial nets,” in Advances in Neural Information

Processing Systems (Montréal), 2672–2680.

Graves, A. (2013). Generating sequences with recurrent neural networks.

arXiv:1308.0850.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). “Speech recognition with

deep recurrent neural networks,” in Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on (Vancouver: IEEE),

6645–6649.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.1109/ICASSP.2013.6638947

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv:1502.03167.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of

STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452. Ioffe and Szegedy,

2015

Jin, X., Rast, A., Galluppi, F., Davies, S., and Furber, S. (2010). “Implementing

spike-timing-dependent plasticity on SpiNNaker neuromorphic hardware,”

in Neural Networks (IJCNN), The 2010 International Joint Conference on

(Barcelona: IEEE), 1–8.

Joshi, S., Pedroni, B. U., and Cauwenberghs, G. (2017). “Neuromorphic event-

driven multi-scale synaptic connectivity and plasticity,” in Signals, Systems, and

Computers, 2017 51st Asilomar Conference on (Pacific Grove, CA: IEEE), 1–5.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T.

(2018). STDP-based spiking deep convolutional neural networks for

object recognition. Neural Netw. 99, 56–67. doi: 10.1109/IJCNN.2010.55

96372

Kim, J., Koo, J., Kim, T., and Kim, J.-J. (2018). Efficient synapse memory structure

for reconfigurable digital neuromorphic hardware. Front. Neurosci. 12:829.

doi: 10.3389/fnins.2018.00829

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.

arXiv:1412.6980.

Koch, C., and Mathur, B. (1996). Neuromorphic vision chips. IEEE Spectrum 33,

38–46.

Kornijcuk, V., Park, J., Kim, G., Kim, D., Kim, I., Kim, J., et al.

(2018). Reconfigurable spike routing architectures for on-chip local

learning in neuromorphic systems. Adv. Mater. Technol. 4:1800345.

doi: 10.1002/admt.201800345

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Lake Tahoe), 1097–1105.

Lagorce, X., Stromatias, E., Galluppi, F., Plana, L. A., Liu, S.-C., Furber, S. B.,

et al. (2015). Breaking the millisecond barrier on SpiNNaker: implementing

asynchronous event-based plastic models with microsecond resolution. Front.

Neurosci. 9:206. doi: 10.3389/fnins.2015.00206

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems.

Curr. Opin. Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.

03.007

Maher, M. A. C., Deweerth, S. P., Mahowald, M. A., and Mead, C. A. (1989).

Implementing neural architectures using analog VLSI circuits. IEEE Trans.

Circ. Syst. 36, 643–652.

Mahowald, M. A. (1993). The Address-Event Representation Communication

Protocol. AER 0.02. Pasadena, CA: California Institute of Technology.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,

213–215.

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mikaitis, M., Pineda García, G., Knight, J. C., and Furber, S. B.

(2018). Neuromodulated synaptic plasticity on the SpiNNaker

neuromorphic system. Front. Neurosci. 12:105. doi: 10.3389/fnins.2018.

00105

Moradi, S., Imam, N., Manohar, R., and Indiveri, G. (2013). “A memory-efficient

routing method for large-scale spiking neural networks,” in Circuit Theory

and Design (ECCTD), 2013 European Conference on (Dresden: IEEE), 1–4.

doi: 10.1109/ECCTD.2013.6662203

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

Boltzmann machines,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (Haifa), 807–814.

Nessler, B., Pfeiffer, M., and Maass, W. (2009). “STDP enables spiking neurons

to detect hidden causes of their inputs,” in Advances in Neural Information

Processing Systems (Vancouver), 1357–1365.

Oliver, B. (1952). Efficient coding. Bell Syst. Tech. J. 31, 724–750.

Park, J., Yu, T., Joshi, S., Maier, C., and Cauwenberghs, G. (2017). Hierarchical

address event routing for reconfigurable large-scale neuromorphic

systems. IEEE Trans. Neural Netw. Learn. Syst. 28, 2408–2422.

doi: 10.1109/TNNLS.2016.2572164

Pedroni, B. U., Sheik, S., Joshi, S., Detorakis, G., Paul, S., Augustine, C.,

et al. (2016). “Forward table-based presynaptic event-triggered spike-timing-

dependent plasticity,” in Biomedical Circuits and Systems Conference (BioCAS)

(Shanghai: IEEE), 580–583.

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model

of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682.

doi: 10.1523/JNEUROSCI.1425-06.2006

Frontiers in Neuroscience | www.frontiersin.org 17 April 2019 | Volume 13 | Article 35793

https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1016/j.neunet.2012.02.022
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1038/nrn2575
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1016/j.neunet.2012.02.018
https://doi.org/10.3389/fnins.2018.00583
https://doi.org/10.1109/IJCNN.2014.6889876
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2014.00429
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/IJCNN.2010.5596372
https://doi.org/10.3389/fnins.2018.00829
https://doi.org/10.1002/admt.201800345
https://doi.org/10.3389/fnins.2015.00206
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00105
https://doi.org/10.1109/ECCTD.2013.6662203
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1109/TNNLS.2016.2572164
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Pedroni et al. Memory-Efficient STDP

Rast, A., Jin, X., Khan, M., and Furber, S. (2008). “The deferred event

model for hardware-oriented spiking neural networks,” in International

Conference on Neural Information Processing (Berlin: Springer),

1057–1064.

Rossum, M. v. (2001). A novel spike distance. Neural Comput. 13, 751–763.

doi: 10.1162/089976601300014321

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323:533.

doi: 10.1038/323533a0

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems,

Vol. 82. Philadelphia, PA: SIAM. doi: 10.1137/1.97808987

18003

Seeman, S. C., Campagnola, L., Davoudian, P. A., Hoggarth, A., Hage, T. A.,

Bosma-Moody, A., et al. (2018). Sparse recurrent excitatory connectivity in

the microcircuit of the adult mouse and human cortex. bioRxiv 292706.

doi: 10.7554/eLife.37349

Sheik, S., Paul, S., Augustine, C., and Cauwenberghs, G. (2016). “Membrane-

dependent neuromorphic learning rule for unsupervised spike pattern

detection,” in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS)

(Shanghai: IEEE), 164–167.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van

Den Driessche, G., et al. (2016). Mastering the game of Go with deep

neural networks and tree search. Nature 529:484. doi: 10.1038/nature

16961

Sjöström, J., and Gerstner, W. (2010). Spike-timing dependent plasticity. Front.

E-books 35.

Song, S., and Abbott, L. F. (2001). Cortical development and remapping

through spike timing-dependent plasticity. Neuron 32, 339–350.

doi: 10.1016/S0896-6273(01)00451-2

Vogelstein, R. J., Tenore, F., Philipp, R., Adlerstein, M. S., Goldberg, D. H., and

Cauwenberghs, G. (2003). “Spike timing-dependent plasticity in the address

domain,” in Advances in Neural Information Processing Systems (Vancouver),

1171–1178.

Yousefzadeh, A., Masquelier, T., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). “Hardware implementation of convolutional STDP for on-line visual

feature learning,” in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS) (Baltimore: IEEE), 1–4.

Conflict of Interest Statement: SP and CA were employed by company Intel

Corporation. SS was employed by company aiCTX.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Pedroni, Joshi, Deiss, Sheik, Detorakis, Paul, Augustine, Neftci

and Cauwenberghs. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 April 2019 | Volume 13 | Article 35794

https://doi.org/10.1162/089976601300014321
https://doi.org/10.1038/323533a0
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.7554/eLife.37349
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/S0896-6273(01)00451-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 26 April 2019

doi: 10.3389/fnins.2019.00405

Frontiers in Neuroscience | www.frontiersin.org 1 April 2019 | Volume 13 | Article 405

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Richard Miru George,

Dresden University of Technology,

Germany

Priyadarshini Panda,

Purdue University, United States

*Correspondence:

Duygu Kuzum

dkuzum@eng.ucsd.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 23 November 2018

Accepted: 09 April 2019

Published: 26 April 2019

Citation:

Shi Y, Nguyen L, Oh S, Liu X and

Kuzum D (2019) A Soft-Pruning

Method Applied During Training of

Spiking Neural Networks for

In-memory Computing Applications.

Front. Neurosci. 13:405.

doi: 10.3389/fnins.2019.00405

A Soft-Pruning Method Applied
During Training of Spiking Neural
Networks for In-memory Computing
Applications
Yuhan Shi, Leon Nguyen, Sangheon Oh, Xin Liu and Duygu Kuzum*

Electrical and Computer Engineering Department, University of California, San Diego, San Diego, CA, United States

Inspired from the computational efficiency of the biological brain, spiking neural networks

(SNNs) emulate biological neural networks, neural codes, dynamics, and circuitry. SNNs

show great potential for the implementation of unsupervised learning using in-memory

computing. Here, we report an algorithmic optimization that improves energy efficiency of

online learning with SNNs on emerging non-volatile memory (eNVM) devices. We develop

a pruning method for SNNs by exploiting the output firing characteristics of neurons.

Our pruning method can be applied during network training, which is different from

previous approaches in the literature that employ pruning on already-trained networks.

This approach prevents unnecessary updates of network parameters during training.

This algorithmic optimization can complement the energy efficiency of eNVM technology,

which offers a unique in-memory computing platform for the parallelization of neural

network operations. Our SNN maintains ∼90% classification accuracy on the MNIST

dataset with up to ∼75% pruning, significantly reducing the number of weight updates.

The SNN and pruning scheme developed in this work can pave the way toward

applications of eNVM based neuro-inspired systems for energy efficient online learning

in low power applications.

Keywords: spiking neural networks, unsupervised learning, handwriting recognition, pruning, in-memory

computing, emerging non-volatile memory

INTRODUCTION

In recent years, brain-inspired spiking neural networks (SNNs) have been attracting significant
attention due to their computational advantages. SNNs allow sparse and event-driven parameter
updates during network training (Maass, 1997; Nessler et al., 2013; Tavanaei et al., 2016; Kulkarni
and Rajendran, 2018). This results in lower energy consumption, which is appealing for hardware
implementations (Cruz-Albrecht et al., 2012; Merolla et al., 2014; Neftci et al., 2014; Cao et al.,
2015). Emerging non-volatile memory (eNVM) arrays have been proposed as a promising in-
memory computing platform to implement SNN training in an energy efficient manner. eNVM
devices can implement spike-timing-dependent plasticity (STDP) (Jo et al., 2010; Kuzum et al.,
2011), which is a commonly used weight update rule in SNNs. Most demonstrations utilize eNVM
crossbar arrays to parallelize computation of the inner product (Alibart et al., 2013; Choi et al.,
2015; Prezioso et al., 2015; Eryilmaz et al., 2016; Ge et al., 2017; Wong, 2018). In addition, there
are several works focus on using eNVM hardware such as spintronic devices or crossbars with

95

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00405
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00405&domain=pdf&date_stamp=2019-04-26
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dkuzum@eng.ucsd.edu
https://doi.org/10.3389/fnins.2019.00405
https://www.frontiersin.org/articles/10.3389/fnins.2019.00405/full
http://loop.frontiersin.org/people/531920/overview
http://loop.frontiersin.org/people/471509/overview
http://loop.frontiersin.org/people/711449/overview
http://loop.frontiersin.org/people/489007/overview
http://loop.frontiersin.org/people/71880/overview

Shi et al. Soft-Pruning During SNN Training

additional algorithmic optimization of STDP learning rules to
perform hardware implementation of SNN (Sengupta et al.,
2016; Srinivasan et al., 2016; Ankit et al., 2017; Panda et al.,
2017a,b). While eNVM crossbar arrays improve energy efficiency
at a device level for SNN training, network level algorithmic
optimization is still important to further improve energy
efficiency for wide adoption of SNNs in low power applications.

Pruning network parameters, i.e., synaptic weights, is a recent
algorithmic optimization (Han et al., 2015) that is widely used for
compressing the network to improve the energy efficiency for the
inference operation of deep neural networks. Although synaptic
pruning has been demonstrated in many biophysical SNN
models (Iglesias and Villa, 2007; Deger et al., 2012, 2017; Kappel
et al., 2015; Spiess et al., 2016), how the pruning can be used for
non-biophysical SNN has not been fully explored yet. Moreover,
this method is applied on already-trained networks and it
does not address the high-energy consumption during training,
which requires iterative weight updates. A new approach toward
network training that improves the energy efficiency of SNNs
is crucial to develop online learning systems that can learn and
perform inference in real world scenarios.

Here, we develop an algorithm to prune during training for
SNNs with eNVMs to improve network level energy efficiency
for in-memory computing applications. Although Rathi et al.
(Rathi et al., 2018) has showed pruning in SNN before, there are
several key innovations and differences of the pruning method
in this work compared to Rathi et al.’ work. Our method
considers the spiking activity of the output neurons to decide
when to prune during the training while Rathi et al. performs the
pruning at regular intervals for every batch without considering
the characteristics of the output neurons. In addition, once the
weights have been pruned during the training, we do not update
the pruned weights for the rest of the training while Rathi et al.
only temporally removes the pruned weights and they can still be
updated when new batches present to the network. Finally, we
develop soft-pruning as an extension of pruning. Soft-pruning
sets the pruned weights to a constant non-zero values. Therefore,
it is novel in terms of treating pruned weights. Rathi et al. only
implement pruning.

Our paper is organized as follows: first, we describe our
unsupervised SNN model and the weight update rule. Then, we
introduce a pruning method that exploits spiking characteristics
of the SNN to decrease the number of weight updates and thus
energy consumption during training. Finally, we discuss how
our SNN training and pruning algorithm can potentially be
realized using eNVM crossbar arrays and perform circuit-level
simulations to confirm the feasibility for online unsupervised
learning to reduce the energy consumption and training time.

In section Input layer to section Testing, we discuss our
SNN model and the algorithms relating to weight updates.
In section Pruning during training, we discuss methods to
prune during training. In section Results and discussion, we
discuss our software simulation results, compare our SNN
with state-of-the-art unsupervised SNN algorithms on MNIST
and explore the method to implement our SNN model and
pruning algorithm using the eNVM crossbar array through
circuit-level simulations.

NEURAL NETWORK ARCHITECTURE

Inspired by the information transfer in biological neurons via
precise spike timing, SNNs temporally encode the inputs and
outputs of a neural network layer using spike trains. The weights
of the SNN are updated via a biologically plausible STDP, which
modulates weights based on the timing of input and output spikes
(Nessler et al., 2013; Tavanaei et al., 2016). This can be easily
implemented on an eNVM crossbar array (Kuzum et al., 2011),
making it ideal for online learning in hardware.

Our SNN performs unsupervised classification of handwritten
digits from the MNIST dataset. It is a single layer network
defined by the number of inputs neurons n, the number
of outputs neurons m, and an m by n weight matrix.
The number of input neurons can vary depending on
preprocessing, but by default there are 784 input neurons
to account for each grayscale pixel in a training sample.
The output layer consists of 500 neurons to classify the 10
classes of the MNIST dataset (60,000 training images and
10,000 testing images). Figure 1 describes the fully connected
network architecture.

As an overview of the pipeline, we first train the SNN
by sequentially presenting samples from the training set. The
purpose of training is to develop the weights of each output
neuron so that they selectively fire for a certain class in MNIST.
Afterwards, we present the training set for a second time to label
each trained output neuron with the class of training samples
that has the highest mean firing rate. This organizes the output
neurons into populations that each respond to one of the classes.
Finally, we test the SNN by predicting the label of each of the test
samples based the class of output neurons with the highest mean
firing rate.

FIGURE 1 | Each training sample is represented by n input neurons (n-1 input

neurons and a bias term). The weight matrix is an m by n array composed of

the weights that connect input neurons to output neurons in the single

layer network.

Frontiers in Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 40596

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

Input Layer
We first remove the pixels that are used to represent the
background in at least 95% of the training samples to reduce the
number of input layer neurons. Because the grayscale pixels have
intensity values in the range [0, 1], the pixels with a value of 0
correspond to the background and are thus checked for removal.
After this step, we retain 397 of the original 784 pixels, reducing
the complexity of the SNN. Therefore, we have 398 input neurons
for a given training sample after accounting for an additional
bias input neuron, which has a value of 1. Our output neurons
do not have refractory periods and there is no lateral inhibition
between them.

We encode each of these inputs as a Poisson spike train at a
frequency of 200 times its value, leading to a maximum input
firing rate of 200Hz. We round the timing of each spike that
is generated by the Poisson process to the nearest millisecond,
which is the time of one time step in the SNN. The SNN displays
each training sample for the first 40ms of a 50ms presentation
period, and thus the input spikes for a given training sample
can only occur in this 40ms window. Figure 2A shows an
example of the input spiking activity for the duration of three
training samples.

Output Layer
For output spikes, we use the Bayesian winner-take-all (WTA)
firing model (Nessler et al., 2013). Unlike traditional integrate-
and-fire models (Gupta and Long, 2007; Diehl and Cook, 2015a),
this model is shown to demonstrate Bayes’ rule (Nessler et al.,
2013), which is a probabilistic model for learning and cognitive
development (Perfors et al., 2011). The SNN fires an output spike
from any given output neuron according to a 200Hz Poisson
process. The output neuron that fires is chosen from a softmax
distribution of the output neurons’ membrane potentials:

p (uk) =
exp (uk)

∑m
i=1 exp (ui)

, (1)

where
{

p (uk)
}

k=1, ...,m
is the softmax probability distribution of

the membrane potentials {uk}k=1, ...,m.m is the number of output
neurons. Our firing mechanism is probabilistic instead of hard
thresholding the membrane potentials. Therefore, the neuron
with higher membrane potential means that it has higher chance
to fire. We calculate membrane potentials uk using (2)

uk =
∑

i

WkiXi + bk (2)

where Wki is the weight between input neuron i and output
neuron k, Xi is the spike train generated by input neuron i and bk
is the weight of the bias term. Equation (2) calculates an output
neuron’s membrane potential as the inner product between the
input spikes at a given time step and the output neuron’s weights,
but this does not need to be integrated with each time step.
Instead, we only calculate the membrane potentials at time
steps when an output neuron fires because it is only used to
determine which output neuron to fire. This removes additional
parameters and resources needed with typical integrate-and-
fire neuron models, which use the membrane potential to also

find when to fire output neurons, allowing for a more efficient
hardware implementation.

Weight Updates: STDP Rule
When an output neuron fires, a simple STDP rule determines
which weights to update via long-term potentiation (LTP) or
long-term depression (LTD). As shown in Figure 3A, if an input
neuron’s most recent spike is within σ = 10ms of the output
spike, then the weight for this input-output synapse is increased
(LTP). Otherwise, if it is beyond this 10ms window of the output
spike, then the weight is decreased (LTD).

This 10ms window is in accordance with the fact that
training samples are not displayed during the final 10ms of their
presentation period—they are only displayed for the first 40ms
of the 50ms presentation period. Thus, there are no input spikes
in the final 10ms of each presentation, as seen in Figure 2A.
Therefore, this STDP window prevents LTP weight updates that
are potentially caused by the input spiking activity of the previous
training sample. For example, when a new training sample is
inputted to the SNN, an output spike occurring at simulation
time t = 50ms cannot have a spike-timing difference with an
input spike occurring from t = 41ms to t = 49ms, since this is
within the 10ms window for LTP weight updates.

Figure 2B shows an example of the output spiking activity
for 10 representative output neurons with randomly initialized
weights, illustrating the random spiking activity of an untrained
SNN. The effect of performing weight updates is to train the
network to selectively fire to certain classes of inputs. At the
start of training, we randomly initialize all weight values between
[−1, 1], and the LTP and LTD update rules keep the weight
values within the range [−1, 1]. The LTP weight update is
an exponential function of the form 1wLTP(w) = ae−b(w+1)

(Figure 3B), where a ∈ {R : 0 < a < 1} and b ∈ R>0 are
parameters that control the scale of the exponential, and w is
the current weight value. For LTP updates to keep weight values
within the upper bound of 1, we pick the parameters such that the
weight update decays toward 0 as the current weight approaches
1. As a result, exponential LTP updates will guarantee that the
weights converge to the upper bound of 1.

Unlike LTP, the LTD weight update is a constant function
that disregards the current weight value: wLTD = −c,
where c ∈ {R : 0 < c < 1} is a parameter that controls the
magnitude of the weight decrease. Because there is no guarantee
of convergence as with the exponential LTP update, the SNN
clips weights to the lower bound of −1. Alternatively, we
can have an exponential LTD update that is mirrored about
w = 0 from the exponential LTP update, i.e., 1wLTD (w) =

−aeb(w−1), and choose parameters to have weight convergence
as in the case of LTP. However, the constant LTD update
is easier to implement in hardware since there are less
parameters to tune. The specific parameter choices of a, b ,and
c are shown in Table 1 and they come from cross validation
of the parameter set to optimize the classification accuracy.
Several previously published papers have proposed probabilistic
synapses to perform STDP weight update (Vincent et al., 2014;
Srinivasan et al., 2016). It is worth to note that the synapses
in our network is deterministic and only the firing mechanism

Frontiers in Neuroscience | www.frontiersin.org 3 April 2019 | Volume 13 | Article 40597

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

FIGURE 2 | Spike raster plots showing examples of (A) input spiking activity, (B) output spiking activity for an untrained SNN, and (C) output spiking activity for a

trained SNN. For (B) and (C), 10 output neurons’ spiking activities are selected as a representative example. After the SNN is trained, the output spike firing activity is

more coordinated, which is indicated by the output neurons selectively firing to certain input stimuli. The time duration on the x axis indicates the presentation of

training samples. Since the output neuron firing rate is 200Hz, therefore there are around 10 spikes (# of spikes = presentation time × frequency = 50ms × 0.001 ×

200Hz = 10) will be generated within 50ms presentation time.

FIGURE 3 | (A) STDP rule showing the 10ms window for an output-input

spike time difference (tout–tin) that determines whether an LTP or an LTD

update is performed. If the output-input spike time difference (tout–tin) is within

10ms, the weight corresponding to this input-output synapse is updated via

LTP. Otherwise, the weight is updated via LTD. The LTP update is an

exponential function that depends on the current weight, and the LTD update

is a constant. (B) The exponential LTP update is dependent on the current

weight w and it helps keep the weight values within the range [−1, 1].

of output neurons is probabilistic as explained in section
Output layer.

Scaling Weight Updates as a
Normalization Method
To perform a weight update, we add to the current weight wt the
weight update, which is scaled by an additional factor depending
on whether the update is LTP or LTD:

wt+1 =

{

wt +
d
n1wLTP(wt), LTP

wt +
p
n1wLTD, LTD

(3)

where d is the number of weights to undergo LTD, p is the
number of weights to undergo LTP, and n is the total number
of weights for an output neuron, which also corresponds to
the number of input neurons. Because of the STDP rule, all n
weights of an output neuron are updated at any given output
neuron firing event, which means that d + p = n. Because

TABLE 1 | Simulation parameters used in training, labeling and testing for this

work.

Parameters 10–digits

Training Labeling Testing

of neuron Input 398

Output 500

Firing rate (Hz) Input 200 200 200

Output 200 200 600

Image presenting time (ms) 50 50 200

Neuron removal threshold – 0.75 –

Pruning threshold Prune

parameter (r)

10 – –

Spice count 8 – –

STDP a = 0.0667

b = 2.5

c = 0.0167

the number of LTP updates is often disproportionate with
that of LTD due to the probabilistic spike firing, the scaling
factors d and p keep the net weight change of both types
of updates proportional so that for all output neurons, the
distribution of weight values have roughly the same mean and
variance. With this, an overview of the SNN training method is
outlined in Figure 4.

This scaling of LTP and LTD weight updates is used
to prevent certain output neurons from firing more than
others. It effectively normalizes the weight distributions of each
output neuron so that they fire according to the correlation
between their weights and the training sample, rather than
firing because the magnitude of their weights artificially
increases their membrane potential. This foregoes the need
to normalize the weight distributions of each output neuron
through calculating the mean and standard deviation, which
requires additional resources when implementing the weight
update in hardware.

Frontiers in Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 40598

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

FIGURE 4 | SNN training algorithm.

Testing
After training is done, we fix the trained weights and assign a
class to each neuron by the following steps: First, we present
the whole training set to the SNN and record the cumulative
number of output spikes Nkj, where k = 1, ..., m (m is number
of output neurons) and j = 1, . . . , n (n is number of classes, for
MNIST, n = 10). Then, for each output neuron i, we calculate its
response probability Zkj to each class j using Eq. (4). Finally, each
neuron k is assigned to the class that gives the highest response
probability Zkj.

Zkj =
Nkj

∑n
j=1 Nkj

(4)

After training and labeling are done, we fix the weights and
present test set to our network. We use Eq. (5) to predict the
class of each sample, where Sjk is the number of spikes for the
kth output neuron that are labeled as class j and Nj is the number
of output neurons labeled as class j.

J = argmax
j

∑Nj

k=1
Sjk

Nj
(5)

Pruning During Training
Pruning is a concept inmachine learning that removes redundant
branches from a decision tree to reduce complexity and improve
accuracy of the classifier. It prevents overfitting by learning the
general structure of the input data instead of learning minute
details. Han et al. implement pruning on trained convolutional
neural networks to remove unimportant weights that have low
contribution to the output (Han et al., 2015). For example,
weights with values close to 0 can be removed since their inner
product with their respective inputs will yield low output values.
This removal effectively sets the weight values to 0, allowing for
a sparser representation of the network for mobile applications
while still retaining the same classification performance. Instead
of pruning after training, we propose a method to prune during
training on SNNs to reduce the number of weight updates.

Our implementation of pruning removes unimportant
weights belonging to each output neuron, and each output
neuron is only pruned once during training. When an output
neuron fires, its weights can potentially be pruned based on the
level of development in its weights. There is a tradeoff in choosing
when to prune an output neuron. If we prune weights early
during training, we save computation by not having to update
these weights later on. However, by pruning early, the weights
might not be trained enough to recognize a certain class in the
dataset at the time of pruning, and this early pruning can hamper
the future development of the weights. Conversely, pruning late
better insures that the weights are trained at the expense of
computing more weight updates.

To determine when to prune the weights of an output neuron,
we refer to the spiking activity of the output neurons. The
output neuron spiking activity is an inherent feature of SNNs that
indicates the level of development in an output neuron’s weights.
Once an output neuron is trained enough to recognize a certain
class from the dataset, it will start to fire more consistently, as
in Figure 2C, due to its high membrane potential. To quantify
this consistent output neuron firing behavior, we accumulate a
count of the occurrences where there are at least 8 consecutive
output spikes (Table 1) from a specific output neuron during
the 40ms presentation period of a training sample. This count

is kept for each output neuron as shown in Figure 5, and
once an output neuron accumulates r (r = 10 in our case as

shown in Table 1) such counts during training, the SNN prunes

a user-defined percentage of its weights. We choose to look
for 8 consecutive output spikes based on the 200Hz output
firing rate, and the 10 count threshold is a hyperparameter
to control how early or late to prune an output neuron. It is
worth noting that the pruning percentages are set externally in
our method and they can be chosen according to the dataset,
the accuracy requirement and power/latency budget of the
specific applications.

We explore two different methods of pruning in this work.
We use the conventional pruning method (Han et al., 2015)
to prune the weights by setting their values to 0, which we
also refer to pruning in this work. We also investigate a soft-
pruning method (Kijsirikul and Chongkasemwongse, 2001) as
an extension of conventional pruning. Instead of completely

Frontiers in Neuroscience | www.frontiersin.org 5 April 2019 | Volume 13 | Article 40599

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

FIGURE 5 | The illustration of consecutive output spikes of 10 output neurons

as a representative example. The consecutive output spikes of Neuron 8 are

boxed in red.

removing the weights by setting them to 0, soft-pruning keeps the
pruned weights constant at their current values for the remainder
of training, or even keeping certain weights constant at the
lowest or highest weight values allowed. This allows for more
flexible criteria in regard to which weights are pruned, and what
values they take as a result of pruning. In this work, we set the
pruned weights to the lowest possible weight values, which is
−1 for our network. The advantage of pruning is in reducing
the representation of the weight matrix by introducing more
sparsity. Figure 6 demonstrates this by the physical removal of
synapses. However, depending on the dataset, the number of
weights that will be close enough to 0 to comfortably prune
without losing important information can vary. While soft-
pruning does not necessarily introduce more sparsity, it can
allow for more weights to be pruned, thus saving computation
by preventing more weight updates without drastically altering
the weight distribution. Figure 6 shows the pruned weights via
soft-pruning as dashed lines to indicate that they still need to
be stored in memory and participate in the testing. Soft-pruning
does not increase the sparsity of weight matrix. However, since
these weights are no longer updated, this can reduce energy
consumption in the hardware implementation.

The usage of these two different pruning methods is
dependent on the dataset to be classified. For example, the
features of an image from MNIST can be separated into binary
categories, i.e., the foreground and the background. In such a
case, an example of soft-pruning is to prune a percentage of
the lowest-valued weights of an output neuron by keeping these
weight values at the lowest possible value, which for our SNN is
−1. This variant of soft-pruning is analogous to learning a weight
representation where the pixels representing the background take
a single value, but the pixels representing the foreground can
take on a range of values. Intuitively, soft-pruning results in a
weight representation that does not waste resources to encode the
black background pixels in MNIST in order to learn the details
of the foreground, which can have varying levels of intensity

FIGURE 6 | Pruning prunes weights with values around 0 by setting these

weights to 0. Much like a sparse matrix, these weights do not have to be

stored in memory if their index is stored. Therefore, the synapses are physically

removed to represent pruning. In contrast, soft-pruning prunes weights with

values meeting certain criteria by keeping these weights constant at a certain

value for the rest of training. Therefore, the pruned weights still need to be

stored because they can be nonzero, but they are represented by dashed lines

to indicate that they no longer need to be updated during training of the SNN.

due to the stroke weight of the handwriting. The top row of
Figure 7 shows an example of the learned weight visualizations
of 10 representative output neurons when the SNN is trained on
theMNIST dataset in three cases: without pruning, with pruning,
and with soft-pruning. By the seeding of the random number
generator, we control the spiking activity of all three cases so
that the third output neuron (N3) is the first to meet the pruning
criteria. Therefore, up to the point before N3 is pruned, the SNNs
for each of the three cases have the exact same spiking activity
and weight update history for all output neurons. For example,
the middle row of Figure 7 shows that N3’s weight distribution is
the same for all three cases. After this point, the different pruning
methods between the three cases cause the weights of the output
neurons between each case to develop differently.

Comparing the weight distributions for N3 in the final row
of Figure 7, we can verify that soft-pruning is more reasonable
than pruning for the MNIST dataset because it better preserves
the shape of the original weight distribution, without pruning,
in Figure 7A. In this example, we use both pruning methods to
prune half of an output neuron’s weights to clearly demonstrate
the effect of each pruning method on the weight distribution.
For pruning in Figure 7B, pruning 50% of the weights centered
about the value 0 results in compressing a wide range of weights,
shown by the space between the two dashed lines in the middle
panel. Effectively, these pruned weights, most of which represent
the foreground features of the MNIST dataset, are set to 0.
Although the final panel of Figure 7B shows a somewhat binary
weight distribution, which matches the binary foreground and
background features of the MNIST dataset that we want to
learn, the problem is that the shape of this weight distribution
is drastically different than that of the weight distribution when
the weights develop without pruning, as seen in the final panel of
Figure 7A. In contrast, the effect of soft-pruning on the shape of
the weight distribution, as seen in the final panel of Figure 7C, is
minimal when compared to the case without pruning. Therefore,
the pruned output neurons will produce comparable membrane

Frontiers in Neuroscience | www.frontiersin.org 6 April 2019 | Volume 13 | Article 405100

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

FIGURE 7 | Pruning example. (Top row) Weight visualization of the 10 representative output neurons after the SNN is trained in 3 different cases: (1) without pruning,

(2) with pruning (while pruning 50% of the weights), and (3) with soft-pruning (while pruning 50% of the weights). (Middle row) Weight distribution of a representative

output neuron (N3) before it is about to be pruned during training. (Bottom row) Weight distribution of the same output neuron at the end of training. It is worth to note

that we only recover the removed pixels (black pixels) for visualizing the learned weights. Since those pixels are not used during training, histograms only include

corresponding digit pixels (color bar) and pruned pixels (white pixels). (A) Without pruning, the STDP rule causes the weights for the MNIST dataset to follow a

distribution where many of the weight values saturate at the lowest possible value. These low weights represent the background of MNIST training samples that are

being learned by the SNN. (B) Pruning prunes the weights between the two dashed lines, which represent the 50% of the weights that centered about 0, and sets their

values to 0 (red bar). (C) Soft-pruning prunes the weights to the left of the dashed line, which represent the 50% of the weights that are the lowest-valued weights, to

the lowest possible value, which is at −1 (red bar). For both pruning and soft-pruning, the weights that are not pruned continue to develop for the rest of training.

potentials to the unpruned output neurons during training,
resulting in balanced training between all output neurons.

With more complex datasets, e.g., color images, we might
want to prune weights by setting weights around 0 to 0, or by
setting weights to their current value. Han et al. demonstrate the
former (Han et al., 2015). In the latter case, an interpretation
can be that we set unimportant weights to their current
value with the assumption that their current representation is
already satisfactory for learning. Another approach is to freeze
important, high-valued weights, which is a recently explored
neuro-inspired concept called consolidation (Mnih et al., 2015).

RESULTS AND DISCUSSION

We simulate our SNN model, pruning and soft-pruning in
MATLAB. To determine a suitable size for the training dataset,
we find via Figure 8A that three epochs (60,000 training samples
per epoch) is sufficient to reach ∼94% classification accuracy.
Additionally, from Figure 8B, we use a 50ms presentation period
per training sample because longer presentation times show
diminishing improvements in classification accuracy. Figure 8C
shows the accuracy increases as the number of output neurons
increase. However, adding output neurons will significantly

increase the simulation time. Therefore, we choose to use 500
output neurons.

Following the pruning methods described in section Pruning
During Training, we investigate the performance through
software simulations. Simulation of classification accuracy for
different p values in Figure 9A suggests that r = 10 provides
the high accuracy even for very large pruning percentages (up
to 80%). Figure 9B shows the performance of pruning and
soft-pruning for varying pruning percentages when applied
after training and during training. When applied after training,
pruning and soft-pruning are comparable with each other until
∼50% pruning rate. After this point, the accuracy for the
regular pruning method falls below ∼90% at ∼60% pruning
rate, but with soft-pruning, the accuracy stays at ∼90% until
∼75% pruning rate. When each method is applied during
training to save on computation of weight updates, the
accuracy with pruning falls below ∼90% at around a ∼40% of
pruning rate, and the accuracy with soft-pruning falls below
this mark at a ∼75% of pruning rate. The performance of
pruning drops much earlier than soft-pruning because pruning
compresses the representation of important weights and causes
uneven firing between output neurons, as mentioned in section
Pruning During Training. Soft-pruning during training provides
comparable accuracy to pruning after training for up to 75%

Frontiers in Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 405101

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

FIGURE 8 | Classification accuracy vs. (A) number of training epochs, (B) sample-present time and (C) output neuron numbers. Classification accuracy does not

have noticeable increase after 3 epochs and 50ms present time. Therefore, 3 epochs and 50ms are used in the training. Although the accuracy can be further

improved if neuron number increases, it will significantly increase the simulation time. Therefore, we choose to use 500 output neurons in our simulation.

pruning rate while preventing excess computation on weight
updates. Additionally, when soft-pruning is applied during
training, the classification accuracy is maintained at ∼94% with
a pruning rate up to 60%. The aim of our work is mainly
energy optimization during SNN training. Therefore, soft-
pruning is chosen to maintain high accuracy with larger pruning
percentage, while providing significant energy reduction during
training. Since soft-pruning does not completely remove synaptic
weights, it is not the best way to achieve memory optimization.
Alternatively, conventional pruning (Han et al., 2015) presented
in this work completely removes synaptic weights and it can be
used to reduce the size of memory array used for inference with a
little loss in accuracy (Figure 9B).

We also compare the number of weight updates of
conventional STDP (Song et al., 2000), STDP used in this work
and STDP used in this work with 50% soft-pruning in Table 2.
Since conventional STDP demonstrated by Song et al. bound the
number of weight update of excitatory synapses (ga) between 0
and gmax while our STDP bound the weights between −1 and
1, the number of weight updates of conventional STDP and
our STDP are almost the same as shown in the Table 2. On
the other hand, STDP+Soft-pruning significantly reduces the
number of device updates for 50% soft pruning. In addition,
soft-pruning is conceptually similar to stop learning that has
been proposed in semisupervised models (Brader et al., 2007;
Mostafa et al., 2016). However, there are two major differences
between soft-pruning and stop-learning. Our SNN training is
unsupervised. Therefore, the criterion for our soft-pruning to
stop updating the synapses is when an output neuron can
generate enough count of consecutive spikes to a specific class
of MNIST digits (See section Pruning during training in the
manuscript). Brader et al. (2007) use a semi-supervised model.
Therefore, stop-learning will happen when the total current h
of an output neuron is in agreement with instructor signal
(target). The threshold θ is chosen to determine if the output
neuron satisfies the criterion. Furthermore, our soft-pruning
stops updating part of the synapses of an output neuron
depending on the pruning percentage the user set. This means

TABLE 2 | The number of weight updates of conventional STDP (Song et al.,

2000), STDP used in this work with and without 50% soft-pruning.

of weight updates

Conventional STDP (Song et al., 2000) 649289638

STDP (this work) 648669156

STDP (this work) + 50% Soft-pruning 357656929

that the un-pruned synapses still can be updated for the rest
of the training. However, Brader et al. stop updating all the
synapses of an output neuron once the stop-learning criterion
is satisfied.

Our classification accuracy is comparable to previous software
implementations of unsupervised learning for theMNIST dataset
with SNNs (Table 3). As can be seen from the table, multilayer
SNNs (Diehl and Cook, 2015a; Kheradpisheh et al., 2017;
Tavanaei and Maida, 2017; Ferré et al., 2018) generally have
higher accuracy than single layer SNNs. However, the works
with accuracy higher than 95% (Kheradpisheh et al., 2017;
Tavanaei and Maida, 2017; Ferré et al., 2018) all require using
multiple convolution and pooling layers, and other complex
processing techniques, which are difficult to implement in
hardware. Compared to the SNNs without convolution layers,
our classification accuracy is much higher than previous single
layer SNNs (Nessler et al., 2013; Al-Shedivat et al., 2015)
and achieves performance very close to Diehl and Cook
(2015a) with much fewer neurons and synapses. Our single
layer SNN architecture does not require complex processing
and is particularly suitable for easy hardware implementation.
Differing from all previous approaches, we present a novel
pruning method to reduce the number of updates to network
parameters during SNN training. Hence, despite only part
of the synapses in our network needing to be updated
during training, our SNN still maintains a high classification
accuracy with up a 75% pruning rate. Therefore, our pruning
scheme can potentially reduce the energy consumption and

Frontiers in Neuroscience | www.frontiersin.org 8 April 2019 | Volume 13 | Article 405102

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

FIGURE 9 | (A) Classification accuracy vs. prune parameter (r) for varying pruning percentages. Prune parameter is the criterion to decide when to prune for each

neuron during training. (B) Classification accuracy vs. pruning percentage for pruning and soft-pruning when applied during training and after training. The data points

are taken in steps of 10%. The dashed line represents classification accuracy of 90%. Soft-pruning during the training performs better than pruning especially for high

pruning percentages. Soft-pruning maintains > 90% up to 75% pruning percentage while pruning falls below 90% at only 40% pruning. Although we focus on pruning

during training, we also present results from pruning weights after training as a baseline for previously established pruning methods from the literature. The parameters

used in the simulation are specified in Table 1.

TABLE 3 | Classification accuracy comparison between this work and the state-of-the-art software demonstrations of unsupervised learning of SNNs on the MNIST

dataset.

Architecture Complex Processing Learning rule #Neurons/synapses Pruning during training Performance

Spiking deep neural network

(Kheradpisheh et al., 2017)

Convolution, DOG filter, Pooling Simplified STDP N/A None 98.4%

Multi layer (Ferré et al., 2018) Convolution, Pooling, Dropout Binary STDP N/A None 98.49%

Three layer (Tavanaei and

Maida, 2017)

Convolution, Pooling Probabilistic STDP N/A None 98.36%

Two layer (Diehl and Cook,

2015a)

None Exponential STDP 7,184/5,017,600 None 95%

One layer (Al-Shedivat et al.,

2015)

Population Coding Probabilistic STDP 1,696/200,704 None 78.4%

One layer (Nessler et al., 2013) Population Coding Exponential STDP 808/70,800 None 80.14%

One layer (this work) None Simplified STDP 898/∼199,000 Yes (∼75%) 94.05%

The table lists the complex processing techniques used, the learning rule, and the #Neurons/synapses used in each work. The table also indicates if pruning during training is involved

in the work. The numbers of neurons are counted by summing the input and output neurons.

training time in hardware implementation. The simple one-
layer SNN architecture and STDP rule proposed in our work
mainly focus on demonstrating the idea of pruning during
the training. Scaling our SNN algorithm to larger datasets can
be achieved by modifying the network architecture in several
approaches such as by adding more fully connected layers
(Diehl et al., 2015b; Lee et al., 2016; O’connor and Welling,
2016) or convolutional layers (Diehl et al., 2015b; Lee et al.,
2016; Tavanaei and Maida, 2017; Kulkarni and Rajendran,
2018), adjusting learning rule and involving the supervision
(Kulkarni and Rajendran, 2018).

Our single layer SNN network (Figure 10A) can be directly
mapped to a crossbar array based on eNVMdevices (Figure 10B)

to perform online learning. The input of the network is decoded
into a Poisson spike train based on the pixel intensity (see

section Input layer for details) and it can be mapped to the input

voltage spikes of the crossbar array (Figure 10A). There are many

demonstrations showing that eNVM devices can have multilevel
conductance states to emulate analog weight tuning (Jo et al.,
2010; Kuzum et al., 2011). Therefore, the weights in the SNN can
be represented using the conductance of eNVMdevices. Since the
weights in our network is ranging from −1 to 1, there are two
ways to use device conductance to represent the weights. One
approach could be using a single device to represent a synaptic
weight. The weights in the network are linearly transformed to
the conductance range as shown in Equation (6) for the hardware
implementation (Serb et al., 2016; Kim et al., 2018; Li et al., 2018;
Oh et al., 2018; Shi et al., 2018).

G = W
(Gmax − Gmin)

2
+

(Gmax+Gmin)

2
(6)

An alternative approach could be using of two devices as
one synaptic weight as shown in previous literature (Burr
et al., 2015; Li et al., 2018). Both positive and negative

Frontiers in Neuroscience | www.frontiersin.org 9 April 2019 | Volume 13 | Article 405103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

FIGURE 10 | (A) Schematic of SNN with n input neurons and m output neurons. The pixel intensities of input image are decoded into passion spiking training and fed

to the input of the network. The weights (W13, W23, …, WN3) of output neuron Z3 has been highlighted. (B) Schematic of a crossbar array based on eNVM devices.

The input of (A) can be mapped to the voltage. The weights (W13, W23, …, WN3) are mapped to the conductance (G13, G23, …, GN3) of the devices. The weighted

sum can be obtained by measuring the current at the end of each column. The postspike pulses are generated based on the weighted sums (I). The overlap of pre

and post spike pulses as shown in callout window programs the device to different conductance states.

FIGURE 11 | (A) Analog synaptic core uses a single cell with multi-level conductance states to represent one synaptic weight. One transistor is added to each cell in

order to avoid sneak path problem. The crossbar wordline (WL) decoder can activate all WLs, bitline (BL) read out the weighted sum results, and source line (SL) can

be used to perform weight update. Multiplexer (MUX) is used to share the neuron circuitry. The neuron circuit contains analog-to-digital converters (ADCs), adders,

registers and shift adders, which are used to perform weighted sum. (B) The energy and (C) latency without and with overhead estimation for soft-pruning from 10 to

80% with a step of 10% using SNN+NeuroSim. Without overheads (W/O overheads) results mean that flagging mechanism is implemented in software. With

overheads (W/ overheads) results mean that flagging mechanism is implemented in hardware.

weights can be represented by taking the difference
between conductance of two devices (G = G+ − G−).
The weighted sum operation for calculating membrane
potential (see section Output layer for details) can be
calculated in a single step by accumulating the current
flowing through each column in the crossbar array
(Eryilmaz et al., 2016). Our STDP weight update rule can
be realized by overlapping of the prespike and postspike
pulses (Figure 10B) to program the device to different
conductance levels, as shown in previous demonstrations
(Kuzum et al., 2011, 2012).

In order to implement pruning in hardware, the pruned cells
need to be flagged to prevent them from being updated further.
One solution is to use an extra binary device associated with
each eNVM synaptic weight to serve as a hardware pruning flag.
This binary device is initially programmed to “0” (the lowest
conductance state), to indicate that the cell has not been pruned.
We update the pruning flag of an output neuron’s weights to
“1” (the highest conductance state) when it has been pruned
during training. Before the weight update, we read the hardware
flag of the winning neuron’s weight to decide whether or not
to update. The weights are only pruned once during the entire

Frontiers in Neuroscience | www.frontiersin.org 10 April 2019 | Volume 13 | Article 405104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

training. As a result, each hardware flag is just written once
and hence the energy overhead will be negligible. However, the
hardware pruning flag will slightly increase the area of the array.
If the size of the array is crucial for a system, an alternative
way can be used to implement the hardware flag without area
overhead. The pruned cells can be reset to a very low conductance
state with additional reset current (Arita et al., 2015; Xia et al.,
2017). Such cells generally require reforming to be programmed
to a multi-level conductance state regime again (Wong et al.,
2012). Therefore, the pruned cells will not be further updated
during training and we can use its very low conductance state
as pruning flag.

In order to confirm the feasibility of the proposed hardware
implementation of pruning during SNN training. We perform
circuit-level benchmarking simulations with NeuroSim (Chen
et al., 2018) to evaluate the performance of a full system of analog
synaptic core as shown in Figure 11A. NeuroSim is a C++

based simulator with hierarchical organization starting from
experimental device data and extending to array architectures
with peripheral circuit modules and algorithm-level neural
network models (Chen et al., 2018). We develop a SNN
platform for NeuroSim (SNN+NeuroSim). SNN+NeuroSim
can simulate circuit-level performance metrics (area, energy
and latency) at run-time of online learning using eNVM
arrays. We implement the hardware flagging mechanism
of pruning in SNN+NeuroSim and estimate energy and
latency overheads caused by flagging mechanism. Figures 11B,C
show energy and latency without and with overheads due
to pruning. The results show that the energy and latency
can be significantly decreased as the pruning percentages
increase. The results also suggest that energy consumption
and latency do not significantly increase due to the overheads
associated with the hardware flag for the pruning percentages
from 10 to 80%.

CONCLUSION

In this work, we first demonstrate a low-complexity single
layer SNN training model for unsupervised learning on MNIST.
We then develop a new method to prune during training for
SNNs. Our pruning scheme exploits the output spike firing
of the SNN to reduce the number of weight updates during
network training. With this method, we investigate the impact
of pruning and soft-pruning on classification accuracy. We show
that our SNN can maintain high classification accuracy (∼90%)
on the MNIST dataset and the network can be extensively
pruned (75% pruning rate) during training. We also discuss
and simulate the possible hardware implementation of our
SNN and pruning algorithm with eNVM crossbar arrays using
SNN+NeuroSim. Our algorithmic optimization approach can
be applied to improve network level energy efficiency of other
SNNs with eNVM arrays for in-memory computing applications,
enabling online learning of SNNs in power-limited settings.

AUTHOR CONTRIBUTIONS

YS, LN, and DK conceived the idea. YS and LN developed the
pruning algorithm. YS, LN, and SO implemented unsupervised
learning neural network simulation, and analysis the data
obtained from the simulation. All authors wrote the manuscript,
discussed the results and commented on the manuscript. DK
supervised the work.

ACKNOWLEDGMENTS

The authors acknowledge support from the Office of Naval
Research Young Investigator Award (N00014161253), National
Science Foundation (ECCS-1752241, ECCS-1734940) and
Qualcomm FMA Fellowship for funding this research.

REFERENCES

Alibart, F., Zamanidoost, E., and Strukov, D. B. (2013). Pattern classification by

memristive crossbar circuits using ex situ and in situ training. Nat. Commun.

4:2072. doi: 10.1038/ncomms3072

Al-Shedivat, M., Naous, R., Cauwenberghs, G., and Salama, K. N. (2015).

Memristors empower spiking neurons with stochasticity. IEEE J. Emerg.

Select. Topics Circuits Syst. 5, 242–253. doi: 10.1109/JETCAS.2015.24

35512

Ankit, A., Sengupta, A., Panda, P., and Roy, K. (2017). “Resparc: a reconfigurable

and energy-efficient architecture with memristive crossbars for deep spiking

neural networks,” in Proceedings of the 54th Annual Design Automation

Conference 2017: ACM (Austin, TX), 27.

Arita, M., Takahashi, A., Ohno, Y., Nakane, A., Tsurumaki-Fukuchi, A.,

and Takahashi, Y. (2015). Switching operation and degradation of

resistive random access memory composed of tungsten oxide and copper

investigated using in-situ TEM. Sci. Rep. 5:17103. doi: 10.1038/srep

17103

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world

stimuli in a neural network with spike-driven synaptic dynamics.

Neural Comput. 19, 2881–2912. doi: 10.1162/neco.2007.19.

11.2881

Burr, G. W., Shelby, R. M., Sidler, S., Di Nolfo, C., Jang, J., Boybat, I., et al. (2015).

Experimental demonstration and tolerancing of a large-scale neural network

(165 000 synapses) using phase-changememory as the synaptic weight element.

IEEE Trans. Electron Devices 62, 3498–3507. doi: 10.1109/TED.2015.24

39635

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Chen, P.-Y., Peng, X., and Yu, S. (2018). NeuroSim: a circuit-level macro

model for benchmarking neuro-inspired architectures in online learning.

IEEE Trans. Comput. Aided Design Integrat. Circuits Syst. 37, 3067–3080.

doi: 10.1109/TCAD.2018.2789723

Choi, S., Sheridan, P., and Lu, W. D. (2015). Data clustering

using memristor networks. Sci. Rep. 5:10492. doi: 10.1038/srep

10492

Cruz-Albrecht, J. M., Yung, M. W., and Srinivasa, N. (2012). Energy-

efficient neuron, synapse and STDP integrated circuits. IEEE Trans.

Biomed. Circuits Syst. 6, 246–256. doi: 10.1109/TBCAS.2011.21

74152

Deger, M., Helias, M., Rotter, S., and Diesmann, M. (2012). Spike-

timing dependence of structural plasticity explains cooperative

synapse formation in the neocortex. PLoS Comput. Biol. 8:e1002689.

doi: 10.1371/journal.pcbi.1002689

Deger, M., Seeholzer, A., and Gerstner, W. (2017). Multicontact co-operativity

in spike-timing-dependent structural plasticity stabilizes networks. Cerebral.

Cortex 28, 1396–1415. doi: 10.1093/cercor/bhx339

Frontiers in Neuroscience | www.frontiersin.org 11 April 2019 | Volume 13 | Article 405105

https://doi.org/10.1038/ncomms3072
https://doi.org/10.1109/JETCAS.2015.2435512
https://doi.org/10.1038/srep17103
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/TCAD.2018.2789723
https://doi.org/10.1038/srep10492
https://doi.org/10.1109/TBCAS.2011.2174152
https://doi.org/10.1371/journal.pcbi.1002689
https://doi.org/10.1093/cercor/bhx339
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

Diehl, P. U., and Cook, M. (2015a). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook,M., Liu, S.-C., and Pfeiffer, M. (2015b).

“Fastclassifying, high-accuracy spiking deep networks through weight and

threshold balancing,” in 2015 International Joint Conference onNeural Networks

(IJCNN): IEEE (Killarney), 1–8.

Eryilmaz, S. B., Neftci, E., Joshi, S., Kim, S., Brightsky, M., Lung, H.-

L., et al. (2016). Training a probabilistic graphical model with resistive

switching electronic synapses. IEEE Trans. Electron Devices 63, 5004–5011.

doi: 10.1109/TED.2016.2616483

Ferré, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature

learning with winner-takes-all based STDP. Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Ge, R., Wu, X., Kim, M., Shi, J., Sonde, S., Tao, L., et al. (2017).

Atomristor: nonvolatile resistance switching in atomic sheets of transition

metal dichalcogenides. Nano Lett. 18, 434–441. doi: 10.1021/acs.nanolett.7b

04342

Gupta, A., and Long, L. N. (2007). “Character recognition using spiking

neural networks,” in Neural Networks, 2007. IJCNN 2007. International Joint

Conference on: IEEE (Orlando, FL), 53–58.

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems (Montreal, QC), 1135–1143.

Iglesias, J., and Villa, A. E. (2007). Effect of stimulus-driven pruning on

the detection of spatiotemporal patterns of activity in large neural

networks. BioSystems 89, 287–293. doi: 10.1016/j.biosystems.2006.

05.020

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.

10, 1297–1301. doi: 10.1021/nl904092h

Kappel, D., Habenschuss, S., Legenstein, R., and Maass, W. (2015). “Synaptic

sampling: a bayesian approach to neural network plasticity and rewiring,”

in Advances in Neural Information Processing Systems (Montreal, QC),

370–378.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., Masquelier, T. (2017). STDP-

based spiking deep convolutional neural networks for object recognition.

Neural Netw. (2017). doi: 10.1016/j.neunet.2017.12.005

Kijsirikul, B., and Chongkasemwongse, K. (2001). “Decision tree pruning using

backpropagation neural networks,” in Proceedings of IEEE International

Conference on Neural Networks (Washington, DC), 1876–1880.

Kim, H., Kim, T., Kim, J., and Kim, J.-J. (2018). Deep neural network

optimized to resistive memory with nonlinear current-voltage characteristics.

ACM J. Emerg. Technol. Comput. Syst. (JETC) 14:15. doi: 10.1145/31

45478

Kulkarni, S. R., and Rajendran, B. (2018). Spiking neural networks for handwritten

digit recognition-Supervised learning and network optimization. Neural

Networks 103, 118–127. doi: 10.1016/j.neunet.2018.03.019

Kuzum, D., Jeyasingh, R. G., Lee, B., and Wong, H.-S. P. (2011). Nanoelectronic

programmable synapses based on phase change materials for brain-

inspired computing. Nano Lett. 12, 2179–2186. doi: 10.1021/nl20

1040y

Kuzum, D., Jeyasingh, R. G. D., Yu, S., and Wong, H. S. P. (2012). Low-energy

robust neuromorphic computation using synaptic devices. IEEE Trans. Electron

Devices 59, 3489–3494. doi: 10.1109/TED.2012.2217146

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., et al. (2018). Analogue

signal and image processing with large memristor crossbars. Nat. Electron. 1,

52–59. doi: 10.1038/s41928-017-0002-z

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Networks 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Mostafa, H., Mayr, C., and Indiveri, G. (2016). “Beyond spike-timing dependent

plasticity in memristor crossbar arrays,” in 2016 IEEE International Symposium

on Circuits and Systems (ISCAS): IEEE, 926–929.

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs,

G. (2014). Event-driven contrastive divergence for spiking

neuromorphic systems. Front. Neurosci. 7:272. doi: 10.3389/fnins.2013.

00272

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation

emerges in generic cortical microcircuits through spike-timing-dependent

plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.10

03037

O’connor, P., and Welling, M. (2016). Deep spiking networks. arXiv

preprint arXiv:1602.08323.

Oh, S., Shi, Y., Liu, X., Song, J., and Kuzum, D. (2018). Drift-enhanced

unsupervised learning of handwritten digits in spiking neural network

with PCM synapses. IEEE Electron Device Lett. 39, 1768–1771.

doi: 10.1109/LED.2018.2872434

Panda, P., Srinivasan, G., and Roy, K. (2017a). Convolutional spike timing

dependent plasticity based feature learning in spiking neural networks. arXiv

preprint arXiv:1703.03854.

Panda, P., Srinivasan, G., and Roy, K. (2017b). “EnsembleSNN: distributed assistive

STDP learning for energy-efficient recognition in spiking neural networks,”

in 2017 International Joint Conference on Neural Networks (IJCNN): IEEE,

2629–2635.

Perfors, A., Tenenbaum, J. B., Griffiths, T. L., and Xu, F. (2011). A tutorial

introduction to bayesian models of cognitive development. Cognition 120,

302–321. doi: 10.1016/j.cognition.2010.11.015

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G., Likharev, K. K.,

and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521:61–64.

doi: 10.1038/nature14441

Rathi, N., Panda, P., and Roy, K. (2018). STDP based pruning of connections

and weight quantization in spiking neural networks for energy-efficient

recognition. IEEE Trans. Comput. Aided Design Integrat. Circuits Syst. 38,

668–677. doi: 10.1109/TCAD.2018.2819366

Sengupta, A., Parsa, M., Han, B., and Roy, K. (2016). Probabilistic deep spiking

neural systems enabled bymagnetic tunnel junction. IEEE Trans. Electr. Devices

63, 2963–2970. doi: 10.1109/TED.2016.2568762

Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R., and Prodromakis,

T. (2016). Unsupervised learning in probabilistic neural networks with

multi-state metal-oxide memristive synapses. Nat. Commun. 7:12611.

doi: 10.1038/ncomms12611

Shi, Y., Nguyen, L., Oh, S., Liu, X., Koushan, F., Jameson, J. R., et al. (2018).

Neuroinspired unsupervised learning and pruning with subquantum

CBRAM arrays. Nat. Commun. 9:5312. doi: 10.1038/s41467-018-0

7682-0

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.

doi: 10.1038/78829

Spiess, R., George, R., Cook, M., and Diehl, P. U. (2016). Structural plasticity

denoises responses and improves learning speed. Front. Comput. Neurosci.

10:93. doi: 10.3389/fncom.2016.00093

Srinivasan, G., Sengupta, A., and Roy, K. (2016). Magnetic tunnel junction

based long-term short-term stochastic synapse for a spiking neural

network with on-chip STDP learning. Sci. Rep. 6:29545. doi: 10.1038/srep

29545

Tavanaei, A., and Maida, A. S. (2017). “Multi-layer unsupervised learning

in a spiking convolutional neural network,” in Neural Networks (IJCNN),

International Joint Conference on: IEEE (Anchorage, AK), 2023–2030.

Tavanaei, A.,Masquelier, T., and Maida, A. S. (2016). “Acquisition of visual

features through probabilistic spike-timing-dependent plasticity,” in Neural

Networks (IJCNN), 2016 International Joint Conference on: IEEE (Vancouver,

BC), 307–314.

Vincent, A. F., Larroque, J., Zhao, W., Romdhane, N. B., Bichler, O., Gamrat, C., et

al. (2014). “Spin-transfer torque magnetic memory as a stochastic memristive

Frontiers in Neuroscience | www.frontiersin.org 12 April 2019 | Volume 13 | Article 405106

https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/TED.2016.2616483
https://doi.org/10.3389/fncom.2018.00024
https://doi.org/10.1021/acs.nanolett.7b04342
https://doi.org/10.1016/j.biosystems.2006.05.020
https://doi.org/10.1021/nl904092h
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1145/3145478
https://doi.org/10.1016/j.neunet.2018.03.019
https://doi.org/10.1021/nl201040y
https://doi.org/10.1109/TED.2012.2217146
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1038/s41928-017-0002-z
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/nature14236
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.1109/LED.2018.2872434
https://doi.org/10.1016/j.cognition.2010.11.015
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/TCAD.2018.2819366
https://doi.org/10.1109/TED.2016.2568762
https://doi.org/10.1038/ncomms12611
https://doi.org/10.1038/s41467-018-07682-0
https://doi.org/10.1038/78829
https://doi.org/10.3389/fncom.2016.00093
https://doi.org/10.1038/srep29545
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shi et al. Soft-Pruning During SNN Training

synapse,” in 2014 IEEE International Symposium on Circuits and Systems

(ISCAS): IEEE (Melbourne, VIC), 1074–1077.

Wong, H.-S. P. (2018). “The end of the road for 2 Dscaling of silicon CMOS and the

future of device technology,” in 2018 76th Device Research Conference (DRC):

IEEE (Santa Barbara, CA), 1–2.

Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-

S., et al. (2012). Metal-oxide RRAM. Proc. IEEE. 100, 1951–1970.

doi: 10.1109/JPROC.2012.2190369

Xia, L., Liu, M., Ning, X., Chakrabarty, K., and Wang, Y. (2017). “Fault-tolerant

training with on-line fault detection for RRAM-based neural computing

systems,” in Proceedings of the 54th Annual Design Automation Conference

2017: ACM, 33.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Shi, Nguyen, Oh, Liu and Kuzum. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 April 2019 | Volume 13 | Article 405107

https://doi.org/10.1109/JPROC.2012.2190369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 21 May 2019

doi: 10.3389/fnins.2019.00483

Frontiers in Neuroscience | www.frontiersin.org 1 May 2019 | Volume 13 | Article 483

Edited by:

Yansong Chua,

Institute for Infocomm Research

(A∗STAR), Singapore

Reviewed by:

Sadique Sheik,

AiCTX AG, Switzerland

Garibaldi Pineda García,

University of Sussex, United Kingdom

*Correspondence:

Thomas Bohnstingl

boh@zurich.ibm.com

†Present Address:

Thomas Bohnstingl,

IBM Research - Zurich, Rüschlikon,

Switzerland

‡These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 31 January 2019

Accepted: 29 April 2019

Published: 21 May 2019

Citation:

Bohnstingl T, Scherr F, Pehle C,

Meier K and Maass W (2019)

Neuromorphic Hardware Learns to

Learn. Front. Neurosci. 13:483.

doi: 10.3389/fnins.2019.00483

Neuromorphic Hardware Learns to
Learn
Thomas Bohnstingl 1*†‡, Franz Scherr 1‡, Christian Pehle 2, Karlheinz Meier 2 and

Wolfgang Maass 1

1 Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria, 2 Kirchhoff-Institute for Physics,

Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Hyperparameters and learning algorithms for neuromorphic hardware are usually chosen

by hand to suit a particular task. In contrast, networks of neurons in the brain were

optimized through extensive evolutionary and developmental processes to work well on

a range of computing and learning tasks. Occasionally this process has been emulated

through genetic algorithms, but these require themselves hand-design of their details

and tend to provide a limited range of improvements. We employ instead other powerful

gradient-free optimization tools, such as cross-entropy methods and evolutionary

strategies, in order to port the function of biological optimization processes to

neuromorphic hardware. As an example, we show these optimization algorithms enable

neuromorphic agents to learn very efficiently from rewards. In particular, meta-plasticity,

i.e., the optimization of the learning rule which they use, substantially enhances

reward-based learning capability of the hardware. In addition, we demonstrate for the first

time Learning-to-Learn benefits from such hardware, in particular, the capability to extract

abstract knowledge from prior learning experiences that speeds up the learning of new

but related tasks. Learning-to-Learn is especially suited for accelerated neuromorphic

hardware, since it makes it feasible to carry out the required very large number of

network computations.

Keywords: spiking neural networks, learning-to-learn, markov decision processes, multi-armed bandits,

neuromorphic hardware, HICANN-DLS, meta-plasticity, transfer learning

1. INTRODUCTION

The computational substrate that the human brain employs to carry out its computational
functions, is given by networks of spiking neurons (SNNs). There appear to be numerous reasons
for evolution to branch off toward such a design. For example, networks of such neurons facilitate
a distributed scheme of computation, intertwined with memory entities, thereby overcoming
known disadvantages in contemporary computer designs such as the von Neumann bottleneck.
Importantly, the human brain serves as an inspiration for a power efficient learning machine,
solving demanding computational tasks while consuming little resources. A characteristic property
that makes energy efficient computation possible is the distinct communication among these
neurons. In particular, neurons do not need to produce an output at all times. Instead, information
is integrated over time and communicated sparsely using a format of discrete events, “spikes.”

The connectivity structure, the development of computational functions in specific brain
regions, as well as the active learning algorithms are all subject to an evolutionary process. In
particular, evolution has shaped the human brain and successfully formed a learning machine,

108

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00483
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00483&domain=pdf&date_stamp=2019-05-21
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:boh@zurich.ibm.com
https://doi.org/10.3389/fnins.2019.00483
https://www.frontiersin.org/articles/10.3389/fnins.2019.00483/full
http://loop.frontiersin.org/people/615875/overview
http://loop.frontiersin.org/people/679677/overview
http://loop.frontiersin.org/people/677385/overview
http://loop.frontiersin.org/people/2505/overview
http://loop.frontiersin.org/people/10884/overview

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

capable of carrying out a range of complex computations. In
close connection to this, a characteristic property of learning
processes in humans is the ability to take advantage of previous,
related experiences and use them in novel tasks. Indeed, humans
show both, the ability to quickly adapt to new challenges in
various domains, and the ability to transfer prior acquired
knowledge about different, but related tasks to new, potentially
unseen ones (Taylor and Stone, 2009; Robert Canini et al., 2010;
Wang and Zheng, 2015).

One strategy to investigate the benefit of a knowledge transfer
between different, but related learning tasks is to impose a so-
called Learning-to-Learn (L2L) optimization. L2L employs task-
specific learning algorithms, but also tries to mimic the slow
evolutionary and developmental processes that have prepared
brains for the learning tasks humans have to face. In particular,
L2L introduces a nested optimization procedure, consisting of an
inner loop and an outer loop. In the inner loop, specific tasks
are learned, while an additional outer loop aims to optimize
the learning performance on a range of different tasks. This
concept gave rise to an interesting body of work (Hochreiter
et al., 2001; Wang et al., 2016; Finn et al., 2017) and showed that
one can endow artificial learning systems with transfer learning
capabilities. Recently, this concept was also extended to networks
of spiking neurons. In a study by Bellec et al. (2018) it is shown
that a biologically inspired circuit can encode prior assumptions
about the tasks it will encounter.

Usually, one takes advantage of the availability of gradient
information to facilitate optimization, here instead, we
employ powerful gradient-free optimization algorithms
in the outer loop that emulate the evolutionary process.
In particular, we demonstrate the benefits of evolutionary
strategies (ES) (Rechenberg, 1973) and cross entropy methods
(CE) (Rubinstein, 1997), as they are able to deal with noisy
function evaluations and perform in high-dimensional spaces.
In the inner loop, on the other hand, we consider reinforcement
learning problems (RL problems), such as Markov Decision
Processes and Multi-armed bandits. Problems of this type
appear quite often in general and therefore, a rich literature has
emerged. However, it still remains that learning from rewards
is particularly inefficient, as the feedback is given by a single
scalar quantity, the reward. We show that by employing the
concept of L2L we can produce agents that learn efficiently
from rewards and exploit previous experiences on related,
new tasks.

As another novelty, we implement the learning agent
on a neuromorphic hardware (NM hardware). Specialized
hardware of this type has emerged by taking inspiration
of principles of brain computation, with the intent to port the
advantages of distributed and power efficient computation to
silicon chips (Mead, 1990). This holds the great promise to
install artificial intelligence in devices without cloud connection
and/or limited resource. Numerous architectures have been
proposed that are either based on analog, digital or mixed-signal
approaches: (Schemmel et al., 2010; Furber et al., 2014; Furber,
2016; Pantazi et al., 2016; Aamir et al., 2018; Ambrogio et al.,
2018; Davies et al., 2018; Wunderlich et al., 2018). We refer to
Schuman et al. (2017) for a survey on neuromorphic systems.

In order to further enhance the learning capabilities of
NM hardware, we exploit the adjustability of the employed
neuromorphic chip and consider the use of meta-plasticity. In
other words, we evolve a highly configurable plasticity rule that
is responsible for learning in the network of spiking neurons.
To this end, we represent the plasticity rule as a multilayer
perceptron (section 2.5.2) and demonstrate that this approach
can significantly boost learning performance as compared to
the level that is achieved by plasticity rules that we derive from
general algorithms, see section 3.3.

NM hardware is especially well-suited for L2L because it
renders the large number of simulations that need to be carried
out feasible. Spiking neurons that are simulated on NM hardware
typically exhibit accelerated dynamics as compared to their
biological counterparts. In addition, the chosen neuromorphic
hardware allows to emulate both, the RL environment as
well as the learning algorithm at the same acceleration factor
and hence, one unlocks the full potential of the specialized
neuromorphic chip.

First, in section 2 we will discuss our approaches andmethods,
as well as the set of tools (https://github.com/bohnstingl/
Neuromorphic_Hardware_learns_to_learn) that was used in
our experiments. In particular, the employed NM hardware is
discussed in section 2.3. Then, in section 3.1 we will exhibit the
increase in performance and learning speed that we obtained
on NM hardware for the conducted tasks and discuss which
gradient-free algorithms worked best for our setting. Afterwards,
we discuss in section 3.3 that performance can be further
increased by the adoption of a highly customizable learning rule,
i.e., meta-plasticity, that is shaped through L2L, and discuss its
relevance in transfer learning. We also discuss the impact in
terms of simulation time thanks to the underlying NM hardware.
Finally, we conclude our findings and results in section 4.

2. METHODS AND MATERIALS

This section provides the technical details to the conducted
experiments. First, we describe the background for L2L in
section 2.1, and discuss the gradient-free optimization techniques
that are employed. Subsequently, we provide details to the
reinforcement learning tasks that we considered (section 2.2).

Since the agent that interacts with the RL environments is
implemented on a NM hardware, we discuss the corresponding
chip in section 2.3.We exhibit the network structure that we used
throughout all our experiments in section 2.4. Subsequently, we
provide details to the learning algorithms that we used in section
2.5 and discuss methods for analysis.

2.1. Learning-to-Learn and Gradient-free
Optimization
The goal of Learning-to-Learn is to enhance a learning systems’
capability to learn. In models of neural networks, learning
performance can be enhanced by several methods. For example,
one can optimize hyperparameters that affect the learning
procedure or optimize the learning procedure as such. Often, this
optimization is carried out manually and involves a lot of domain

Frontiers in Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 483109

https://github.com/bohnstingl/Neuromorphic_Hardware_learns_to_learn
https://github.com/bohnstingl/Neuromorphic_Hardware_learns_to_learn
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

knowledge. Here instead, we evolve suitable hyperparameters as
well as learning algorithms automatically by the means of L2L.

In particular, L2L introduces a nested optimization that
consists of two loops: an inner loop and an outer loop as displayed
in Figure 1. In the inner loop, one considers a particular taskCi in
which the modelN has to use its learning capabilities to succeed.
The outer loop, on the other hand, is responsible to adapt the
learning procedure that is used by N such that it becomes better
at learning tasks in a given family F that share some similar
concepts. To express the quality of the learning procedure, we
introduce a learning fitness f (Ci;2) that measures how well the
model N can learn a task Ci, e.g., what is the cumulative reward
that was achieved. This learning fitness depends on both the
specific task that is being learnt, as well as the hyperparameters
2 that characterize the learning procedure. We write the goal of
L2L is then as an optimization problem, where we want to find
hyperparameters that yield the best learning procedure for tasks
in the family F :

max
2′

EC∼F

[

f (C;2′)
]

. (1)

In practice, the family of tasks could be comprised of
infinite tasks and hence, the expectation in Equation
(1) is approximated using batches of N different tasks:
EC∼F

[

f (C;2)
]

≈ 1
N

∑N
i=1 f (Ci;2) = ̂f (2). As a result of

considering different tasks Ci in the inner loop each time, the
hyperparameters can only assume task independent concepts
that are shared throughout the family. In fact, one can consider
L2L as an optimization that happens on two different timescales:
fast learning of single tasks in the inner loop, and a slower
learning process that adapts hyperparameters in order to boost
learning on the entire family of learning tasks.

The L2L scheme allows separating the learning process in
the inner loop from the optimization algorithms that work in
the outer loop. We used Q-Learning and Meta-Plasticity to
implement learning in the inner loop (discussed in section 2.5),

FIGURE 1 | Learning-to-Learn scheme. Learning-to-Learn introduces a

nested optimization with two loops. In the inner loop a model is required to

perform a learning task Ci from a family F . The learning capabilities of the

model are influenced by hyperparameters 2 that are optimized in the outer

loop in order to maximize the average learning fitness over the entire task

family F .

while at the same time, we considered several gradient-free
optimization techniques in the outer loop. The requirements
for a well-suited optimization algorithm in the outer loop are
the ability to operate in a high-dimensional parameter space,
the ability to deal with noisy fitness evaluations, the ability to
find a good final solution and the ability to do so using a
small number of fitness evaluations. Due to this broad set of
requirements, the choice of the outer loop algorithm is non-
trivial and needs to be adjusted based on the task family that
is considered in the inner loop. We selected a set of gradient-
free optimization techniques such as cross-entropy methods,
evolutionary strategies, numerical gradient-descent as well as a
parallelized variation of simulated annealing. In the following,
we provide a brief outline of the algorithms used and refer to
the corresponding literature. For the concrete implementation,
we employ a L2L software framework that provides several such
optimization methods (Subramoney et al., 2019). In particular,
the L2L optimization is carried out on a Linux-based host
computer, whereas the inner loop is simulated in its entirety on
the later discussed neuromorphic hardware, section 2.3.

2.1.1. Cross-entropy (CE) (Rubinstein, 1997)
In each iteration, this algorithm fits a parameterized distribution
p(·;φ) to the set of n best-performing hyperparameters
in terms of maximum likelihood. In the subsequent step,
new hyperparameters are sampled from this distribution and
evaluated. Afterwards, the procedure starts over again until a
stopping criterion is met. Through this process, the algorithm
tries to find a region of individuals where the performance is high
on average. We used a univariate Gaussian distribution with a
dense covariance matrix.

2.1.2. Evolution Strategies (ES) (Rechenberg, 1973)
In each iteration, this algorithm maintains base hyperparameters
2 which are perturbed by random deviations ǫ to form a new set
of n hyperparameters. This set is then evaluated and ranked by
their fitness. In a subsequent step, the perturbations are weighted
according to their rank to produce a direction of increasing
fitness, which is used to update the base hyperparameters. Similar
to Cross-entropy, ES also finds a region of hyperparameters
with high fitness, rather than just a single one. Note that many
variations of this algorithm have been proposed that differ for
example in the way how the ranking or how the perturbations
are computed (Salimans et al., 2017). In particular, we used
Algorithm 1 from Salimans et al. (2017).

2.1.3. Simulated Annealing (SA) (Kirkpatrick et al.,

1983)
In each iteration, the algorithm maintains hyperparameters
2 and a temperature T. The hyperparameters are
perturbated with a random ǫ, whose size depends on the
temperature T, and are evaluated later. The fitness of the
unperturbed hyperparameters 2 is then compared with
the perturbated hyperparameters 2′. The 2′ replaces 2

with a probability of min
(

1, exp
(

−

(

̂f (2′)−̂f (2)
)

/T
))

.

In the next step, the temperature is decreased following
a predefined schedule and the new hyperparameters get

Frontiers in Neuroscience | www.frontiersin.org 3 May 2019 | Volume 13 | Article 483110

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

perturbed. In contrast to the other methods discussed
before, a single set of hyperparameters is the result.
In our experiments, we simultaneously perform a
number of parallel SA optimizations, using a linear
temperature decay.

2.1.4. Numerical Gradient-Descent (GD)
In each iteration, the algorithm maintains hyperparameters 2

which are perturbed randomly in many directions and then
evaluated. Subsequently, the gradient is numerically estimated
and an ascending step on the fitness landscape is performed.

2.2. Reinforcement Learning Problems
In all our experiments we considered reinforcement learning
problems. Tasks of this type usually require many trials
and sophisticated algorithms in order to produce a well-
performing agent, since a teacher signal is only available in
the form of a scalar quantity, the reward. To the worse,
a reward does not arrive at every time step, but is often
given very sparsely and only for certain events. Figure 2A

depicts a generic reinforcement learning loop. The agent
observes the current state s(t) of the environment and has
to decide on an action a(t). In particular, the agent samples
an action according to policy π(a|s), which is a probability
distribution over actions a given a state s. Upon executing
the action, the environment will advance to a new state
s(t + 1) and the agent receives a reward r(t). In all our
experiments, the RL environment was simulated on the
neuromorphic chip.

2.2.1. Markov Decision Process
Markov Decision Processes (MDPs) are a well-known and
established model for decision making processes in literature. A
MDP is defined by a five-tuple (S,A, p, r, γ), with S representing
the state space, A the action space, p the state transition function,
r the reward function and γ a discount factor that weights
future rewards differently from present ones. In particular, we

are concerned here with such MDPs that exhibit discrete and
finite state and action spaces. In addition, rewards are given in
the range of [0, 1]. Figure 2B shows a simple example of such a
MDP with ‖A‖ = 2 and ‖S‖ = 3.

The goal of solving aMDP is to find a policy actions that yields
the largest discounted cumulative reward R that is defined as:

R =

T
∑

t=0

γ tr(t) (2)

In order to perform well on MDPs, the agent has to keep track
of the rewarding transitions and must therefore represent the
transition probabilities. Furthermore, the agent has to make a
trade-off between exploring new transitions and consolidating
already known transitions. Such problems have been studied
intensively in literature and a mathematical framework was
developed to optimally solve them by Bellman et al. (1954).
The so-called Value-Iteration (VI) algorithm emerged from
this framework and yields an optimal policy. Therefore, this
algorithm is considered as the optimal baseline in all following
MDP results.

In order to apply the L2L scheme, we introduce a family of
tasks consisting of MDPs with a fixed size of the action and the
state space. MDPs of that family are generated according to the
following sampling procedure: whenever a new task is required,
the rewards r and the transition probabilities p are randomly
sampled from the range [0, 1]. In addition, the elements of p are
normalized such that the outgoing probabilities for all actions in
each state sum up to 1.

We report our results in the form of a normalized discounted
cumulative reward, where we scale between the performance of
a random action selection and the performance of an optimal
action selection, given by a policy produced by VI.

2.2.2. Multi-Armed Bandits
As a second category of RL problems, we consider multi-armed
bandit (MAB) problems. A MAB is best described as a collection

FIGURE 2 | Structure of reinforcement learning problems with examples for Markov Decision Processes (MDPs) and Multi-armed bandits (MABs). (A) General

structure for reinforcement learning problems. An agent interacts with an environment in a loop. The agent selects an action based on state observations and receives

a reward. (B) Example MDP with three states and two actions. State transitions are marked as arrows with annotated transition probabilities. A reward for a particular

transition is indicated by a red arrow with the reward value along. Transitions with a probability of 0 or rewards with a value of 0 are omitted. (C) Illustration of a MAB:

bandit arms can be pulled that produce a reward stochastically. “Multi-Armed Bandit” by Carson Reynolds is licensed under CC BY-SA 3.0.

Frontiers in Neuroscience | www.frontiersin.org 4 May 2019 | Volume 13 | Article 483111

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

of several one-armed bandits, each of which produces a reward
stochastically when pulled. A depiction of which can be found
in Figure 2C. In other words, one can view MAB problems
as MDPs with a single state and multiple actions. Despite the
deceptive simplicity of such problems, a great deal of effort was
made in science to study these problems and the celebrated
result of Gittins and Gittins (1979) showed that a learning
strategy exists.

For the sake of brevity, we use the same notations for MABs as
for MDPs. In particular, we say that the environment is always in
one state s1 and the agent is given the opportunity to pull several
bandit arms i, which corresponds to actions ai. In all experiments
regarding MABs, we considered two-armed bandits, where each
bandit produces a reward of either 0 or 1 with a fixed reward
probability pi. We investigate the impact of L2L on the basis of
two different families of MAB tasks:

1. unstructured bandits: A task of this family is generated
by sampling each of the two reward probabilities p1, p2
independently and uniform in [0, 1].

2. structured bandits: A task of this family is generated by
sampling the reward probability p1 uniformly in [0, 1] and
compute p2 = 1− p1.

Similar to MDPs, we report our results for MABs in the form
of a normalized cumulative reward, where we scale between the
performance of a random action selection and the performance
of an oracle that always picks the best possible bandit arm. As
a comparison baseline, we employ the Gittins index policy and
note that the computation of the Gittins index value is calculated
in the same way for both families. In particular, the Gittins index
values are calculated assuming that the reward probabilities are
independent (unstructured bandits).

2.3. Neuromorphic Hardware - HICANN
DLSv2
Various approaches for specialized hardware systems
implementing spiking neural networks emerged and
fundamentally differ in their realizations, ranging from
pure digital over pure analog solutions using optical fibers up
to mixed-signal devices (Indiveri et al., 2011; Nawrocki et al.,
2016; Schuman et al., 2017). Every NM hardware comes with
certain advantages and limitations, one promising platform is
the HICANN-DLS (Friedmann et al., 2017), herein it is used in
the prototype version 2.

The hardware is a prototype of the second generation
BrainScaleS-2 system currently under development as part of the
Human Brain Project neuromorphic platform (Markram et al.,
2011). It represents a scaled-down version of the future full-size
chip and is used to evaluate and demonstrate new features as
illustrated in this work.

Conceptually the chip is a mixed-signal design with analog
circuits for neurons and synapses, spike-based, continuous time
communication and an embedded microprocessor. The NM
hardware is realized in a 65 nm CMOS process node by the
company TSMC. It features 32 neurons of the leaky-integrate-
and-fire (LIF) type connected by a 32x32 crossbar array of

synapses such that each neuron can receive inputs from a
column of 32 synapses. Synaptic weights can be set with a
precision of 6-bits and can be configured row-wise to deliver
excitatory or inhibitory inputs. Synapses feature local short-term
(STP) and long-term (STDP) plasticity, which is implemented by
the embedded microprocessor described later. All analog time
constants are scaled down by a factor of 1000 to represent an
accelerated neuromorphic system compared to biological time-
scales, a feature that is strongly exploited in this paper.

The embedded microprocessor is a 32-bit CPU implementing
the Power-PC instruction set with custom vector extensions.
It is used as a plasticity processing unit (PPU) to implement
all synaptic weight changes. In particular, the PPU allows to
devote memory to synapses in order to equip them with tagging
mechanisms such as eligibility traces. As a general purpose
processor, it can also act on any other on-chip data like neuron
and synapse parameters as well as on the network connectivity.
It can also send and receive off-chip signals like rewards or
other control signals. Because of the large freedom in specifying
programs for the PPU (written in C), we investigated different
learning algorithms that are explained in section 2.5. They all
exploit the proposed network structure from section 2.4 and
have the commonality, that the reward information of the state
transitions is encoded in the synaptic efficacy. In addition to
learning algorithms, the plasticity processing unit also allows
implementing environments for an agent. Since the system
features a high speedup factor, any environment must also
provide the same speedup factor in order to unlock full potential
of the neuromorphic hardware, when using a closed-loop setup.

Some of the basic design rationales behind the second
generation BrainScaleS-2 system with special emphasis on the
PPU are described in Friedmann et al. (2017). Figure 3A

shows the micrograph of the hardware and Figure 3B shows
the measurement setup. In addition to other components,
the measurement setup hosts the neuromorphic chip, a USB-
Interface to connect the baseboard with a host computer as
well as a separate FPGA board to control the experiments.
The micrograph of the neuromorphic chip shows the different
components and where they are located. A description of the
actual prototype used in this work including details on the
neuron implementation and the synaptic array can be found in
Aamir et al. (2016).

2.4. Network Structure and Action
Selection
As discussed in section 2.2, the agent is required to select
an appropriate action a(t) given a particular state s(t) of
the environment. We discuss in this Section how the agent
can be implemented using a network of spiking neurons on
neuromorphic hardware. Since our experiments were concerned
with either Multi-armed bandits or Markov Decision Processes,
we designed the network structure for the more general MDP
problems. In particular, the design is based on the Markov
Property of MDPs, using the fact that the next state s(t + 1)
solely depends on the chosen action a(t) and the current state
s(t), similarly to Friedrich and Lengyel (2016).

Frontiers in Neuroscience | www.frontiersin.org 5 May 2019 | Volume 13 | Article 483112

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

Concretely, we make use of a feed-forward network of spiking
neurons with two populations, as illustrated in Figure 4A.
One population encodes the state of the environment (state
population, marked in red) and the second population encodes
all possible action choices (action population, marked in blue).
We assume that all states exhibit the same number of possible

actions. Under this assumption, the resulting agent commits to
specific actions by the following action selection protocol: Given
that the agent finds itself in state sj, then the corresponding state
neuron receives stimulating input and produces output spikes
that are transmitted to the neurons ai of the action population by
excitatory synapses wij. Eventually, this stimulation will trigger

FIGURE 3 | Neuromorphic chip micrograph and measurement setup adopted from Aamir et al. (2016). (A) Micrograph of the neuromorphic hardware. The plasticity

processing unit, the area responsible for the synaptic part, the neuronal part, a memory area as well as analog to digital converters (ADCs) are marked. (B)

Measurement setup and prototype board. The board shows the neuromorphic chip itself, the interface to the host computer and a supportive FPGA board.

FIGURE 4 | Neural network structure and realization on neuromorphic hardware. (A) Network structure with two populations: state population (red), action population

(blue). Excitatory synapses wij (black and red) are plastic and used for learning. Inhibitory synapses (gray) introduce mutual inhibition in the action population. (B)

Mapping of the network onto the neuromorphic hardware. Synapses are organized in crossbar array of size (32 x 32). We use autapses (green) for persistent exication

of state neurons. Persistent excitation is stopped by additional inhibitory synapses that connect the action population to the state population. (C) Three examples of

the action selection process. In case 1, none of the action neurons received enough input to emit a spike: a random action is selected. In case 2, each action neuron

emits a spike: A random action among active neurons is selected. In case 3, only a single neuron of the action population emits a spike that determines the selected

action.

Frontiers in Neuroscience | www.frontiersin.org 6 May 2019 | Volume 13 | Article 483113

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

a spike in the action population, depending on the synaptic
strengths wij. The action a(t) that will be taken is determined
by the neuron of the action population that emits a spike first.
In addition, neurons coding for actions are connected inhibitory
among each other with synapses of strength ξ , through which a
WTA-like network structure arises. Due to thismutual inhibition,
mostly a single neuron of the action population will emit a spike
and hence, trigger the corresponding action.

In practice, additional tricks are required to implement the
proposed scheme on the neuromorphic device, see Figure 4B.
To continually excite the active state neuron, we send a single
spike that triggers a persistent firing through strong excitatory
autapses (marked in green). If a neuron from the action
population eventually emits a spike, the active state neuron
needs to be prevented from further spiking. For this purpose,
we use inhibitory synapses of strength ζ projecting from action
neurons to state neurons. Due to synaptic delays, more than
one action neuron may emit a spike. In such a case, an action
is randomly selected among the set of active neurons. It is to
be noted that smaller inhibition weights lead to more random
exploration, because insufficient inhibition will not prevent
spikes of other action neurons, in which case action selection
becomes randomized.

One other implementation detail comes from the fact that the
synaptic weights on the NM hardware yield a limited resolution
of only 6 bit. This might cause that weights saturate at either 0
or the maximum weight value and prevent efficient learning. To
avoid this problem, the weights wij are rescaled with a certain
frequency frescale according to:

k =
Wmax −Wmin

max(wij)−min(wij)
(3)

d = Wmax − kmax(wij) (4)

w′
ij = kwij + d (5)

where Wmax and Wmin provide the upper and lower
rescale boundary.

Figure 4C depicts typical examples of the action selection
process for three common cases occurring throughout the
learning process. In case 1 (usually before training), a state
neuron, i.e., corresponding to state 2, is active and persistently
emits a spike. However, none of the synapses connecting to the
action neurons is strong enough to cause a spike. In such a case,
after a predefined time, the state neuron is externally inhibited
and a random action is selected by the implementation of the
environment. In case 2 (likely during learning), another state
neuron is active, but all synapses to the action neurons are strong
enough to cause every action neuron to spike before the mutual
inhibition sets in. In such a case, a random action among the
active action neurons is selected (random selection is performed
by the environment). Eventually, the system reaches case 3 (after
learning), where a single action neuron is excited by a given
state neuron.

Learning in this network structure is implemented by synaptic
plasticity rules that act upon the excitatory weights wij projecting
from the state to the action population. In particular, these

weights pin down which action has the highest priority for
each state.

2.5. Learning Algorithms
2.5.1. Q-Learning
MDPs have been studied intensively in computer science and
a rigorous framework on how to solve problems of this kind
optimally was introduced by Bellman. An important quantity
in MDPs is the so-called Q-Function, or Action-Value function.
The Q-Function Qπ (s, a) expresses the expected discounted
cumulative reward, when the agent starts in state s, takes action
a and subsequently proceeds according to its policy π . Formally,
one writes this as:

Qπ (sj, ai) = E

[

∞
∑

k=0

γ kr(t + k+ 1)|s(t) = sj, a(t) = ai

]

(6)

where γ is the discount factor of the MDP and r(t) is the
immediate reward at time step t. As discussed before in section
2.2.1, we consider only discrete MDPs and the Q-Functions can
therefore be represented in a tabular form. This property suits our
network structure, since the synapses that project from the state
population to the action populationwij can represent all Q-values

Qπ (sj, ai). Hence, we define wij
def
= Qπ (sj, ai).

To solve MDPs, the goal is to determine the optimal policy
π∗. A common approach is to infer the Q-Function of an optimal
policy Q∗ and then reconstruct the policy according to:

π∗(a|s) =

{

1 if a = arg maxa′Q
∗(s, a′)

0 else
(7)

Indeed, as we aim to encode Q-values in synaptic weights wij, we
emphasize that the argmax operation will be naturally carried out
by the spiking neural network, as proposed in section 2.4. To infer
the Q-values of the optimal policy, we derive rules of synaptic
plasticity based on temporal difference algorithms as proposed
by Sutton and Barto (1998).

2.5.1.1. TD(1)-Learning
Temporal Difference Learning (TD(1)-Learning) was developed
as a method to obtain the optimal policy. The estimate of the
optimal Q-Function is improved based on single interactions
with the environment and TD(1)-Learning is guaranteed to
converge to the correct solution (Watkins and Dayan, 1992;
Dayan and Sejnowski, 1994). Based on TD(1), the synaptic weight
updates take on the following form:

wij(t + 1) = wij(t)+ α

(

r(t)+ γ max
k

wkj(t)− wij(t)

)

for s(t) = sj, a(t) = ai (8)

Where α denotes a learning rate.

Frontiers in Neuroscience | www.frontiersin.org 7 May 2019 | Volume 13 | Article 483114

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

2.5.1.2. TD(λ)-Learning
The convergence speed of TD(1)-Learning can be further
improved if one uses additional eligibility traces eij(t) per synapse.
The resulting algorithm is then referred to as TD(λ)-Learning. In
particular, the trace eij indicates to what extent a current reward
makes the earlier visited state-action pair (sj, ai) more valuable
and several convergence proofs of the resulting algorithm have
been established (Dayan, 1992; Dayan and Sejnowski, 1994). To
implement the algorithm, we update eligibility traces at every
time step t according to the schedule

eij(t) =

{

γ λeij(t − 1)+ 1 if s(t) = sj and a(t) = ai

γ λeij(t − 1) otherwise
(9)

where the parameter λ ∈ [0, 1] controls how many state
transitions are taken into account. In the limit of λ = 1 one
obtains TD(1)-Learning. In addition, we define an error δ(t)
according to

δ(t) = r(t)+γ max
k

wkj(t)−wij(t) for s(t) = sj, a(t) = ai (10)

which enables us to express the resulting plasticity rule as a
product of the eligibility trace and error δ(t). This update is
carried out for every synapse wij:

wij(t + 1) = wij(t)+ αδ(t)eij(t) for all i, j (11)

2.5.2. Meta-Plasticity
In order to tailor the specific update rule toward the actual
task family at hand, we approached the problem also from the
perspective of meta-plasticity. That is, we represent the synaptic
weight update by a parameterized function approximator. We
then optimize its parameters with L2L in such a way that a
useful learning rule for a given task family emerges. We used
a multilayer perceptron, the architecture of which is visualized
in Figure 5. The perceptron receives five inputs, computes seven
hidden units with sigmoidal activation and provides one output,
the weight update 1wij. Effectively, the input to output mapping
of this approximator is specified by a number of free parameters
θ (weights of the multilayer perceptron) that are considered as
hyperparameters and optimized as part of the L2L procedure.
Since the multilayer perceptron is a type of an artificial neural
network, this plasticity rule is referred to as ANN learning rule.
The update of synaptic weights wij thus takes on the general
form of:

wij(t + 1) = wij(t)+ fANN(inputsij(t); θ) (12)

The specific choice of inputs is salient for the possible set of
learning rules that can emerge. In the case of the ANN learning
rule, we only considered structured MAB, where each of the two
synapses is updated at every time step. We set the inputs in this
case to a vector

inputsi 1(t) =













t
11a(t)=ai
r(t)

wi 1(t)
w3−i 1(t)













(13)

FIGURE 5 | Meta-plasticity for a two-armed bandit task. The plasticity rule is

represented by a parametrized multi-layer perceptron with one hidden layer

(denoted as ANN). It receives as inputs the time step t, a binary flag 1a(t)=ai
that indicates if the weight to be updated was responsible for the selected

action, the obtained reward r(t), as well as the weights wi 1 and w3−i 1.

that is composed of the current time step t, the obtained reward
r(t), the weight wi 1(t), and the weight of the synapse associated
to the other bandit arm w3−i 1(t). In addition, we included here a
binary flag 11a(t)=ai that is one iff the postsynaptic neuron caused
the executed action at the last time step.

2.6. Analysis of Meta-Plasticity
After optimizing an artificial neural network in our meta-
plasticity approach, we may have limited insight in what causes
the emergent plasticity rule to work well. Therefore, we conduct
in section 3.3 an analysis of the arising plasticity rule based on
an approach called functional Analysis of Variance (fANOVA)
which was presented by Hutter et al. (2014). This method
originally aims to assess the importance of hyperparameters in
the machine learning domain. It does so by fitting a random
forest to the performance data of themachine learningmodel that
was gathered using different hyperparameters.

We adopted this method but applied it to a slightly different,
but related problem. Our goal is to assess the impact of each input
of the ANN rule with respect to its output. To do so, the weights
2 of the plasticity network remain fixed, while the input values
to the plasticity network as well as the output from the plasticity
network are considered as inputs to the fANOVA framework.
Based on this data, a random forest with 30 trees is fitted and
the fraction of the explained variance of the output with respect
to each input variable can be obtained.

3. RESULTS

This section presents the results of our approach implemented
on the described neuromorphic hardware. First, we report
how L2L can improve the performance and learning speed
in section 3.1. Then, we investigate the impact of outer loop
optimization algorithms in section 3.2 and demonstrate in
section 3.3 that Meta-Plasticity yields competitive performance,
while also enhancing transfer learning capabilities. Finally, we
investigate the speedup gained from the neuromorphic hardware
by comparing our implementation on the NM hardware

Frontiers in Neuroscience | www.frontiersin.org 8 May 2019 | Volume 13 | Article 483115

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

to a pure software implementation of the same model in
section 3.4.

3.1. Learning-to-Learn Improves Learning
Speed and Performance
Here, we first demonstrate the generality of our network
structure when applied to Markov Decision Processes. Then, we
examine the effects of an imposed task structure more closely by
investigating Multi-armed Bandit problems. To efficiently train
the network of spiking neurons, we employed Q-Learning and
derived corresponding plasticity rules, as described in see section
2.5.1. The plasticity rule, as well as the concrete implementation
on NM hardware, are influenced by hyperparameters 2 that we
optimized by L2L, such that the cumulative discounted reward
for a given family of tasks is improved on average, see section 2.1.

We implemented a neuromorphic agent that learns MDPs.
In fact, the proposed network structure in section 2.4 is
particularly designed for such tasks and we applied concretely
TD(λ), see Equation (11). Hyperparameters included all
occurring parameters of the employed TD(λ)-Learning rule
α, γ , λ, the inhibition strength among the action neurons
ξ , the strength of inhibitory weights connecting the action
neurons to the state neurons ζ , as well as the variables
influencing the hardware-specific rescaling frescale,Wmax and
Wmin. Therefore, the complete hyperparameter vector was
given as 2 = (α, γ , λ, ξ , ζ , frescale,Wmax,Wmin). We used
the discounted cumulative reward, Equation (2), as the fitness
function f (C;2) and optimized 2 using CE. We used a batch
size of N = 20.

The results for theMDP tasks are depicted in Figure 6Awhere
we report the discounted cumulative reward for T = 2, 000 steps.
The discounted cumulative reward is normalized in such a way,
that VI is scaled to 1 and the random policy is scaled to 0. To
compare with, we used TD(λ)-Learning as a baseline, using the
implementation from a software library1 without a spiking neural
network (green line).

We found that applying L2L improved the discounted
cumulative reward (red solid line), compared to the case
where the hyperparameters are randomly chosen (blue line). In
addition, the learning speed was also increased, which can be seen
in the zoom depicted in Figure 6B.

In the case of MABs, we focused on small networks and
two arms in the bandit, which allowed us to complement the
results that were obtained for general MDPs of larger size.
We considered two families of MABs: unstructured bandits
and structured bandits (2.2.2) which the neuromorphic agent
had to learn using the TD(1)-Learning rule, see Equation (8),
where we set γ = 1. In addition, we introduced here a
learning rate schedule α(t) = αt

decay
· α0 that decays a base

learning rate α0 at every time step by a constant decay factor of
αdecay ∈ [0, 1]. We then used L2L to carry out a hyperparameter
optimization separately for both MAB families and optimized
the parameters of the TD(1)-Learning rule α0 and αdecay, the
inhibition strength among action neurons ξ and the inhibitory

1https://pymdptoolbox.readthedocs.io/en/latest/index.html

FIGURE 6 | Impact of L2L for Markov Decision processes. (A) Average

learning performance on the MDP task family (‖S‖ = 2, ‖A‖ = 4) using

TD(λ)-Learning, see Equation (11). Learning performance is expressed as the

normalized cumulative discounted reward (0 random, 1 optimal) and is

averaged over 50 different tasks. Shaded areas mark the uncertainty of the

mean. (B) Zoom into the first 200 steps to emphasize increased learning

speed.

weights of synapses that connect the action population to the
state population ζ . Hence, the hyperparameter vector was given
as 2 = (α0,αdecay, ξ , ζ). We used the cumulative reward as the
fitness function f (C;2) and optimized 2 using CE. We used a
batch size of N = 40.

In Figure 7 we report the performance results that were
obtained before and after applying L2L. The agent interacted
for T = 100 steps with a single MAB and we compare with a
baseline given by the Gittins index policy, as described in section
2.2.2. We found that after performing a L2L optimization the
performance was enhanced, which was even more apparent for
structured bandits. In particular, L2L endowed the agent with
a better learning speed, which is exhibited by a faster rising
of the performance curve. This can only be achieved when
the hyperparameters of the learning system are well-tailored
to the tasks that are likely to be encountered, which was the
responsibility of L2L. We also observed that the agent could
still learn a MAB task to a reasonable level even if no L2L
optimization was carried out. This is implied by the fact that
TD(1)-Learning is primed to learn RL tasks. However, this also
raises the question of how well such a general plasticity rule can

Frontiers in Neuroscience | www.frontiersin.org 9 May 2019 | Volume 13 | Article 483116

https://pymdptoolbox.readthedocs.io/en/latest/index.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

FIGURE 7 | Impact of L2L for Multi-armed Bandit tasks. We report the

normalized cumulative reward (0 random, 1 optimal) on MAB tasks averaged

over 1, 000 different tasks. The shaded areas mark the uncertainty of the

mean. The neuromorphic agent uses TD(1)-Learning, see Equation (8). (A)

unstructured bandits (B) structured bandits.

adapt to the level of variations exhibited by analog circuitry. We
consider extensions in section 3.3.

3.2. Performance Comparison of
Gradient-Free Optimization Algorithms in
the Outer Loop
The results presented so far suggest that the concept of L2L can
improve the overall performance and also lays the foundation
that abstract knowledge about the task family at hand is
integrated into an agent. However, the choice of a proper outer
loop optimization algorithm is also crucial for this scheme to
work well. The modular structure of the L2L approach used in
this paper allows to interchange different types of optimization
algorithms in the outer loop for the same inner loop task. To
demonstrate the impact in terms of performance when using
different optimization algorithms, several such algorithms were
investigated for both general MDPs and also for specialized
MAB tasks. Figure 8 shows a comparison of the final discounted
cumulative reward at the end of the tasks for different outer loop
optimization algorithms.

Depending on the inner loop task considered, we found
that the cross-entropy (CE) method, as well as evolution
strategies (ES), work well because both aim to find a region

FIGURE 8 | Performance impact of different outer loop algorithms. We exhibit

the performance of an L2L optimized neuromorphic agent on MDP tasks with

‖S‖ = 2 and ‖A‖ = 4. The performance is measured as the final normalized

discounted cumulative reward after T = 2, 000 steps and are averaged over

50 different tasks. We compare Cross-Entropy (CE), Evolution strategies (ES),

Simulated annealing (SA), and numerical Gradient descent (GD), as described

in section 2.1. The dimensionality of the hyperparameter vector was 8, as in

section 2.2.1.

in the hyperparameter space, where the fitness is high. This
property is particularly desired when it comes to noise in
the fitness landscape due to imperfections of an underlying
neuromorphic hardware. In addition, both can cope with noisy
fitness evaluations and do not overestimate a single fitness
evaluation which could easily lead to a wrong direction in the
presence of high noise in the fitness landscape.

However, a simpler algorithm such as simulated annealing
(SA) can also find a hyperparameter set with rather
high fitness. Especially when running multiple separate
annealing processes in parallel with different starting points,
the results can almost compete with the ones found by
CE or ES. However, SA does not aim at finding a good
parameter region but just tries to find a single good set of
working hyperparameters. This is prone to cause problems
because a single good set of hyperparameters offers less
robustness compared to an entire region of well-performing
hyperparameters. A simple numerical gradient-based approach
did not yield good results at all because of the noisy fitness
landscape. In general, the developer is free to choose any
optimization algorithm in the outer loop when using L2L.
New algorithms can also be implemented which are specially
tailored to a particular problem class, which can lead to a new
research direction.

3.3. Performance Improvement Through
Meta-Plasticity
Since the plasticity rule used so far is based on TD(1)-
Learning, and also agnostic to the hardware being used, we
raised the question if one could improve training on particular
tasks by using an evolved plasticity rule, tailored specifically
toward the neuromorphic device and task family at hand. We
specified the plasticity rule by a multilayer perceptron with 7
hidden units (Figure 9) and considered the weights thereof as
hyperparameters. This is apparently the first example of meta-
plasticity on neuromorphic hardware, where a rule for synaptic
plasticity is evolved through optimization by L2L.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2019 | Volume 13 | Article 483117

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

FIGURE 9 | Meta-plasticity for a two-armed bandit task. (A) The plasticity rule is represented by a parametrized multi-layer perceptron. (B) Performance of the

meta-plasticity as compared to an optimized TD(1)-Learning neuromorphic agent and Gittins index on structured MABs. (C) Relative contributions of each input to the

variance of the weight update as computed by fANOVA. Mostly responsible are the action flag and the reward signal. (D) The weight update as shown for the different

possible cases of 1a(t)=ai and r(t) depending on the current weight wi 1. Shaded areas indicate effects of inputs that are not fixed by the variables on the axes: t and

w3−i 1.

To test the approach, we used L2L to optimize all occurring
hyperparameters on the task family of structured bandits. In
particular, the hyperparameter vector was composed of the
parameters of the plasticity rule θ and the inhibition strengths
ξ and ζ : 2 = (θ , ξ , ζ). We used the cumulative reward,
Equation (2), as the fitness function f (C;2) and optimized 2

using CE with a batch size of N = 40.
We summarize our results in Figure 9 and observed a

drastic increase in learning performance. Clearly, the use of
meta-plasticity endowed the agent with better skill at learning
structured bandits, as compared to the TD(1)-Learning rule. It
also allows the agent to achieve a performance that is on the same
level as the Gittins index policy. This highlights that the evolved
plasticity rule can absorb task-structure, and counteract possible
negative effects of imperfections in the neuromorphic hardware.

Even though the arising learning rule performswell on average
on the family of tasks it has been trained on, there is no theoretical
guarantee for that. Hence, an analysis of the optimized learning
rule was conducted, where we examined the importance of the
multiple inputs provided to the update rule for the resulting
output, see Figure 9C. Apparently, the most important inputs
are the flag that represents if the current weight was responsible
for the last action and the obtained reward. Since both of the
inputs can assume only two values, one can visualize the four
different cases in four different curves. We report the expected
weight change depending on the current weight, see Figure 9D,

where we average over other unspecified inputs. Updates for
weights which were responsible for the previous action are in the
direction of the obtained rewards. Hence, the meta-plasticity rule
reinforced actions depending on the reward outcome, similarly
to Q-learning rules. Interestingly however, the update of the
synaptic weight which had not caused the last action was always
negative independently of the reward. We believe that L2L
simply found that it does not matter what happens to the
weight that did not cause actions, because as long as it does
not increase, it will not disturb the current belief of the best
bandit arm.

To test if the reinforcement learning agent on the
neuromorphic hardware has been optimized for a particular
range of tasks, we carried out another experiment. We tried
to answer if the agent can take advantage of the abstract
task structure if it was present. To do so, we always tested
learning performance on structured bandits, denoted as
F ′. For optimization with L2L, we instead used either
unstructured bandits or structured bandits, and we denote
the family on which hyperparameter optimization was
carried out by F . This experimental protocol (Figure 10A)
allowed us to determine to which extent abstract task
structure can be encoded in hyperparameters. We report
the results for neuromorphic agents in Figure 10B, where we
considered the TD(1)-Learning rule and the meta-plasticity
learning rule. Consistently, we observed that optimizing

Frontiers in Neuroscience | www.frontiersin.org 11 May 2019 | Volume 13 | Article 483118

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

FIGURE 10 | Transfer-learning. (A) Setup to investigate transfer learning capabilities. (B) Comparison of transfer-learning capabilities of different learning rules. The

meta-plasticity update rule (ANN) can potentially encode more task structure through a greater dimensionality of the hyperparameter vector 2.

hyperparameters for the appropriate task family enhances
performance. However, we conjecture that the greater
adjustability of the meta-plasticity learning rule renders it
to be better suited for transfer learning as compared to
TD(1)-Learning rule.

3.4. Exploiting the Benefit of Accelerated
Hardware for L2L
One of the main features of neuromorphic hardware devices
is the ability to simulate spiking neural networks very fast and
efficiently. To make this more explicit for the MDP tasks, a
software implementation with the same network structure and
the same plasticity rule was conducted on a standard desktop PC
using one single core of an IntelTM XeonTM CPU X5690 running
at 3.47 GHz. The spiking neural network was implemented using
the Neural Simulation Tool (NEST) (Gewaltig and Diesmann,
2007) with a Python interface and the plasticity rule as well as the
environment were also implemented in Python. To have a better
comparison, two families ofMDP tasks with different sizes of ‖S‖
and ‖A‖ were defined. The first family is defined by ‖S‖ = 2 and
‖A‖ = 4 (small MDP) and the second family by ‖S‖ = 6 and
‖A‖ = 8 (large MDP).

Figure 11A shows a comparison of the simulation time
needed for a single randomly selected MDP tasks, averaged
over 50 MDPs and for each of the two families. The simulation
times include implementation specific overheads, for example,
the communication overhead with the neuromorphic hardware.
One can see that the simulation time needed for MDP tasks with
both sizes are shorter using the neuromorphic hardware and
in addition, the simulation time needed to solve the larger task
does not increase. First, this indicates, that the neuromorphic
hardware can carry out the simulation of the spiking neural
network faster and second, that using a larger network structure
does not yield an additional cost, as long as the network can fit
on the NM hardware. In contrast to this, using more neurons
requires longer simulation times in pure software. A similar key
message can be found in Figure 11B, where instead of a single
MDP run, an entire L2L run is evaluated on the neuromorphic
hardware as well as with the software implementation. Both, the
L2L run on neuromorphic hardware as well as the one in software

can in principle be easily parallelized when using more hardware
systems or more CPU cores which would decrease the overall
simulation time. Note that scheduler overheads are not taken
into considerations.

4. DISCUSSION

Outstanding successes have been achieved in the field of deep
learning, ranging from scientific theories and demonstrators to
real-world applications. Despite impressive results, deep neural
networks are not out of the box suitable for low-power or
resource-limited applications. Instead, spiking neural networks
are inspired by the brain, an arguably very power efficient
computing machine. In this work we employ a neuromorphic
hardware that was designed to port key aspects of the astounding
properties of this biological circuitry to silicon devices.

The human brain has been prepared by a long evolutionary
process with a set of hyperparameters and learning algorithms
that can be used to cover a large variety of computing and
learning tasks. Indeed, humans are able to generalize task
concepts and port them to new, similar tasks, which provides
them with a tremendous advantage as compared to most of the
contemporary neural networks. In order to mimic this behavior,
we employed gradient-free optimization techniques, such as the
cross-entropy method or evolutionary strategies (see section 2.1),
applied in a Learning-to-Learn setting. This two-looped scheme
combines task-specific learning with a slower evolutionary-
like process that results in a good set of hyperparameters as
demonstrated in section 3.1. The approach is generic in the sense
that both, the algorithms mimicking the slower evolutionary
process and the learning agent can be exchanged. In principle,
any agent with learning capabilities can be used as the learning
agent and any optimization algorithms as the evolutionary
process. We found that some outer loop optimization algorithm
perform better than others and the optimization algorithms
should ideally be chosen with the inner loop task in mind.
Outer loop optimization algorithms need to operate in a high-
dimensional parameter space, have the ability to deal with noisy
result evaluations, have the ability to find a good final solution
and also require a low number of parameter evaluations before

Frontiers in Neuroscience | www.frontiersin.org 12 May 2019 | Volume 13 | Article 483119

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

FIGURE 11 | Impact of accelerated neuromorphic hardware on simulation time. (A) Shows the comparison of the required simulation time, averaged over 50 different

MDP tasks of two different sizes. In software simulations, only a single CPU core was used. The simulation time of the NM hardware is shorter and remains constant

for the two families. (B) Shows the duration comparison for an entire L2L optimization for two different families.

reaching a good solution. Algorithms that aim to find a region
of hyperparameters with high performance such as evolution
strategies or cross-entropy worked the best for us, see section 3.2.

L2L offers both, either to find optimal hyperparameters for
a fixed individual task or to boost transfer learning capabilities
of an agent when using a family of tasks. In addition, new
optimization algorithms can be developed to further improve
performance in the outer loop of L2L. In this work, we
used reinforcement learning problems in connection with NM
hardware to demonstrate the aforementioned benefits.

In particular, the concept of L2L allows to shape highly
adjustable plasticity rules for specific task families. The usage
is not only limited to spiking neural networks but can also be
applied to artificial neural networks. This may yield potential
for a future research direction. Apparently, this is the first
time that the idea of L2L and Meta-Plasticity was applied to a
NM hardware, see section 3.3. In addition, the NM hardware
provides the possibility to implement advanced plasticity rule
on a separate digital processor on-chip. This enables the
search for new plasticity rules and might also enable new
research directions.

A central role in the approaches explained in this paper is the
used NM hardware. It allows to emulate a spiking neural network
with a significant speedup compared to the biological equivalent,
which makes a large number of computations, required in the
L2L scheme feasible. To quantify the overall speedup of the
accelerated NM hardware, a comparison with a pure software
simulation on a conventional computer was carried out (see
Figure 11). We conclude that the two-looped L2L scheme as
well as the highly adjustable on-chip plasticity rule are especially
suited for accelerated neuromorphic hardware.

AUTHOR CONTRIBUTIONS

WM, TB, and FS developed the theory and experiments.
TB implemented and conducted experiments with regard
to MDPs, benchmarked performance impact of outer loop
optimization algorithms and probed the performance benefit
of NM hardware. FS implemented and conducted experiments
with regard to MABs. FS, CP, and WM conceived meta-
plasticity, FS and CP implemented it. FS tested the benefits
in transfer learning. TB, FS, CP, WM, and KM wrote
the paper.

FUNDING

This research/project was supported by the HBP Joint
Platform, funded from the European Union’s Horizon 2020
Framework Programme for Research and Innovation under
the Specific Grant Agreement No. 785907 (Human Brain
Project SGA2).

ACKNOWLEDGMENTS

We thank Anand Subramoney for his support and the
contributions to the Learning-to-Learn framework. We
are also grateful for the support during the experiments
with the neuromorphic hardware. In particular, we like to
thank David Stöckel, Benjamin Cramer, Aaron Leibfried,
Timo Wunderlich, Yannik Stradmann, Christian Mauch,
and Eric Müller. Furthermore, we also like to thank
Elias Hajek for useful comments on earlier versions of
the manuscript.

REFERENCES

Aamir, S. A., Muller, P., Hartel, A., Schemmel, J., and Meier, K. (2016). “A highly

tunable 65-nm CMOS LIF neuron for a large scale neuromorphic system,”

in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference

(IEEE), 71–74.

Aamir, S. A., Stradmann, Y., Müller, P., Pehle, C., Hartel, A., Gruebl, A., et al.

(2018). An accelerated LIF neuronal network array for a large scale mixed-

signal neuromorphic architecture. IEEE Trans. Circuits Syst. 12, 4299–4312.

doi: 10.1109/TCSI.2018.2840718

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo,

C., et al. (2018). Equivalent-accuracy accelerated neural-network training

Frontiers in Neuroscience | www.frontiersin.org 13 May 2019 | Volume 13 | Article 483120

https://doi.org/10.1109/TCSI.2018.2840718
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Bohnstingl et al. Neuromorphic Hardware Learns to Learn

using analogue memory. Nature 558, 60–67. doi: 10.1038/s41586-018-

0180-5

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018).

“Long short-term memory and Learning-to-learn in networks of spiking

neurons,” in Advances in Neural Information Processing Systems 31, eds.

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett (Curran Associates, Inc.), 787–797. Available online

at: http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-

to-learn-in-networks-of-spiking-neurons.pdf

Bellman, R., Glicksberg, I., and Gross, O. (1954). The theory of dynamic

programming as applied to a smoothing problem. J. Soc. Indus. Appl. Math.

2, 82–88. doi: 10.1137/0102007

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P. (1992). The convergence of TD(X) for general X. Mach. Learn. 8,

341–362. doi: 10.1007/BF00992701

Dayan, P., and Sejnowski, T. J. (1994). TD(λ) converges with probability 1.Mach.

Learn. 14, 295–301. doi: 10.1007/BF00993978

Finn, C., Abbeel, P., and Levine, S. (2017). “Model-agnostic meta-learning for

fast adaptation of deep networks,” in Proceedings of the 34th International

Conference on Machine Learning, Proceedings of Machine Learning Research,

Vol. 70, eds. D. Precup and Y. Whye Teh (Sydney, NSW: International

Convention Centre), 1126–1135.

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier,

K. (2017). Demonstrating hybrid learning in a flexible neuromorphic

hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142.

doi: 10.1109/TBCAS.2016.2579164

Friedrich, J., and Lengyel, M. (2016). Goal-directed decision making with spiking

neurons. J. Neurosci. 36, 1529–1546. doi: 10.1523/JNEUROSCI.2854-15.2016

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.

13:051001. doi: 10.1088/1741-2560/13/5/051001

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The

SpiNNaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.

2304638

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gittins, A. J. C., and Gittins, J. C. (1979). Bandit processes and

dynamic allocation indices. J. R. Stat. Soc. Ser. B, 41, 148–177.

doi: 10.1111/j.2517-6161.1979.tb01068.x

Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001). “Learning to learn using

gradient descent,” in ICANN, volume 2130 of Lecture Notes in Computer Science

(Springer), 87–94.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). “An efficient approach for

assessing hyperparameter importance,” in Proceedings of the 31st International

Conference onMachine Learning, volume 32 of Proceedings of Machine Learning

Research, E. P. Xing and T. Jebara (Bejing: PMLR), 754–762.

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-

Cummings, R., Delbruck, T.,et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science 220, 671–80. doi: 10.1126/science.220.4598.671

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S.,

et al. (2011). Introducing the human brain project. Proc. Comput. Sci. 7, 39–42.

doi: 10.1016/j.procs.2011.12.015

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Nawrocki, R. A., Voyles, R. M., and Shaheen, S. E. (2016). A mini review

of neuromorphic architectures and implementations. IEEE Trans. Electron

Devices 63, 3819–3829. doi: 10.1109/TED.2016.2598413

Pantazi, A., Woźniak, S., Tuma, T., and Eleftheriou, E. (2016). All-memristive

neuromorphic computing with level-tuned neurons. Nanotechnology

27:355205. doi: 10.1088/0957-4484/27/35/355205

Rechenberg, I. (1973). Evolutionsstrategie : Optimierung Technischer Systeme Nach

Prinzipien der Biologischen Evolution. Stuttgart: Frommann-Holzboog.

Robert Canini, K., Shashkov, M. M., Griffiths, T. L. (2010). “Modeling transfer

learning in human categorization with the hierarchical dirichlet process,” in

Proceedings of the 27th International Conference on Machine Learning (ICML-

10), eds J. Fürnkranz and T. Joachims (Haifa: Omnipress), 151–158. Available

online at: https://icml.cc/Conferences/2010/papers/180.pdf

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare

events. Eur. J. Oper. Res. 99, 89–112.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. (2017). Evolution strategies as a

scalable alternative to reinforcement learning. CoRR abs:1703.03864

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems (IEEE), 1947–1950.

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G.

S., et al. (2017). A survey of neuromorphic computing and neural networks in

hardware. CoRR abs:1705.06963.

Subramoney, A., Rao, A., Scherr, F., Bohnstingl, T., Jordan, J., Kopp, N., et al.

(2019). IGITUGraz/L2L: v0.4.3.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning : An Introduction.

MIT Press.

Taylor, M. E., and Stone, P. (2009). Transfer learning for reinforcement

learning domains: a survey. J. Mach. Learn. Res. 10, 1633–1685.

doi: 10.1007/978-3-642-01882-4

Wang, D., and Zheng, T. F. (2015). “Transfer learning for speech and language

processing,” in Asia-Pacific Signal and Information Processing Association

Annual Summit and Conference (APSIPA) (Hong Kong: IEEE), 1225–1237.

doi: 10.1109/APSIPA.2015.7415532

Wang, J. X., Kurth-Nelson, Z., Soyer, H., Leibo, J. Z., Tirumala, D., Munos, R., et

al. (2016). “Learning to reinforcement learn,” in Proceedings of the 39th Annual

Meeting of the Cognitive Science Society, eds. G. Gunzelmann, A. Howes, T.

Tenbrink, and E. J. Davelaar (London: cognitivesciencesociety.org). Available

online at: https://mindmodeling.org/cogsci2017/papers/0252/index.html

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning. Mach. Learn. 8, 279–292.

doi: 10.1023/A:1022676722315

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A.,

et al. (2018). Demonstrating advantages of neuromorphic computation: a pilot

study. arxiv:1811.03618. doi: 10.3389/fnins.2019.00260

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Bohnstingl, Scherr, Pehle, Meier and Maass. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 May 2019 | Volume 13 | Article 483121

https://doi.org/10.1038/s41586-018-0180-5
http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons.pdf
http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons.pdf
https://doi.org/10.1137/0102007
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1007/BF00992701
https://doi.org/10.1007/BF00993978
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1523/JNEUROSCI.2854-15.2016
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.procs.2011.12.015
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/TED.2016.2598413
https://doi.org/10.1088/0957-4484/27/35/355205
https://icml.cc/Conferences/2010/papers/180.pdf
https://doi.org/10.1007/978-3-642-01882-4
https://doi.org/10.1109/APSIPA.2015.7415532
https://mindmodeling.org/cogsci2017/papers/0252/index.html
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.3389/fnins.2019.00260
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 06 June 2019

doi: 10.3389/fnins.2019.00559

Frontiers in Neuroscience | www.frontiersin.org 1 June 2019 | Volume 13 | Article 559

Edited by:

Yansong Chua,

Institute for Infocomm Research

(A*STAR), Singapore

Reviewed by:

Angel Jimenez-Fernandez,

University of Seville, Spain

Melika Payvand,

Institute of Neuroinformatics, ETH

Zurich, Switzerland

*Correspondence:

Hong Qu

hongqu@uestc.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 26 February 2019

Accepted: 15 May 2019

Published: 06 June 2019

Citation:

Luo X, Qu H, Zhang Y and Chen Y

(2019) First Error-Based Supervised

Learning Algorithm for Spiking Neural

Networks. Front. Neurosci. 13:559.

doi: 10.3389/fnins.2019.00559

First Error-Based Supervised
Learning Algorithm for Spiking
Neural Networks
Xiaoling Luo, Hong Qu*, Yun Zhang and Yi Chen

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

Neural circuits respond to multiple sensory stimuli by firing precisely timed spikes.

Inspired by this phenomenon, the spike timing-based spiking neural networks (SNNs)

are proposed to process and memorize the spatiotemporal spike patterns. However,

the response speed and accuracy of the existing learning algorithms of SNNs are still

lacking compared to the human brain. To further improve the performance of learning

precisely timed spikes, we propose a new weight updating mechanism which always

adjusts the synaptic weights at the first wrong output spike time. The proposed learning

algorithm can accurately adjust the synaptic weights that contribute to the membrane

potential of desired and non-desired firing time. Experimental results demonstrate that the

proposed algorithm shows higher accuracy, better robustness, and less computational

resources compared with the remote supervisedmethod (ReSuMe) and the spike pattern

association neuron (SPAN), which are classic sequence learning algorithms. In addition,

the SNN-based computational model equipped with the proposed learning method

achieves better recognition results in speech recognition task compared with other

bio-inspired baseline systems.

Keywords: spike neural networks, supervised learning, synaptic plasticity, first error learning, speech recognition

1. INTRODUCTION

For years, researchers have been exploring and trying to simulate the brain’s powerful and
high-speed information processing capabilities and learning mechanisms. While the traditional
artificial neural networks (ANNs) have achieved outstanding performance in various application
fields, they assume that sensory information is represented and transmitted via the firing rate of
the neuron. Nevertheless, the rate-based coding does not seem to transmit all the information
associated with the rapid processing sensory tasks, such as vision, smell, and hearing stimulus
modalities (Hopfield, 1995; Gautrais and Thorpe, 1998; Cariani, 2004; Mohemmed et al., 2013).
A new type of artificial neural network that is dedicated to the study of more biologically plausible
neuronal models and neural networks has emerged and has been well used (Wu et al., 2018a,b),
which is called spiking neural networks (SNNs). On the other hand, many recent studies have
shown that spike-timing neural activities exist in several areas of the brain, such as the visual
cortex (Bair and Koch, 1996), the retina (Meister, 1998; Uzzell and Chichilnisky, 2004; Gollisch
and Meister, 2008), and the lateral and geniculate nucleus (Reinagel and Reid, 2000). Temporally
encoded SNNs that represent information as precisely timed spikes rather than mean firing rates
have also been studied extensively (Maass, 1997; Andrew, 2002; Ghosh-Dastidar and Adeli, 2009b;
Nguyen et al., 2012; Wang et al., 2012). Though the powerful computing performance of SNNs

122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00559
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00559&domain=pdf&date_stamp=2019-06-06
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hongqu@uestc.edu.cn
https://doi.org/10.3389/fnins.2019.00559
https://www.frontiersin.org/articles/10.3389/fnins.2019.00559/full
http://loop.frontiersin.org/people/693155/overview
http://loop.frontiersin.org/people/694045/overview
http://loop.frontiersin.org/people/744175/overview
http://loop.frontiersin.org/people/744176/overview

Luo et al. FE-Learn Algorithm for SNNs

has been demonstrated (Keller and Hahnloser, 2009), its practical
application is still limited by its computational complexity, and
the learning algorithms applicable to SNNs are also generally
short of high efficiency and stability. Therefore, it is of great
significance to develop new effective and robust learning
algorithms to take full advantage of the powerful computing
performance of SNNs.

In many cases, learning behavior is thought to be performed
by utilizing the error signals, i.e., the mismatches between
expected and actual spiking behaviors (Thach, 1996; Bastos et al.,
2012; Keller et al., 2012; Wu et al., 2019). Supervised learning
based on error signals has obtained the most documented
evidence in the study of the cerebellum and cerebellar cortex of
the central nervous system, although the exact mechanism still
remains unclear (Ito, 2000). The aim of supervised learning is to
minimize the gap between actual output and expected output,
and according to the different ways of reducing the gap, the
existing learning algorithms of SNNs can be divided into two
categories. One is to utilize rigorous mathematical analysis to
derive formulas of loss reduction, and the other is to make weight
updating according to the inspiration of biological mechanisms,
such as the Widrow-Hoff rule (Widrow and Lehr, 1990) and
the spike-timing dependent plasticity (STDP) rule (Masquelier
et al., 2009), where the synaptic strength is enhanced when the
presynaptic neuron elicits spikes before the postsynaptic neuron
and vice versa.

Many methods based on mathematical analysis adopt the
idea of gradient descent, but they define the cost function in
different ways. SpikeProp (Bohte et al., 2002) minimizes the loss
defined by the distance between the true firing time and the
single desired firing time using gradient descent rule, and later
this algorithm was improved to emit multiple spikes (Ghosh-
Dastidar and Adeli, 2009a; Xu et al., 2013a). In addition to
these methods, Tempotron (Gütig and Sompolinsky, 2006), an
algorithm that has been proved to be effective for binary temporal
classification but unable to handle the firing of multiple spikes,
and some other algorithms (Zhang et al., 2018, 2019a) define
the cost function as the distance between the membrane voltage
and the firing threshold. Recently, there is another thought of
defining cost function of multi-spike sequences. For example,
Multi-Spike Tempotron (MST) (Gütig, 2016) is designed to
decrease the difference between a hypothetical threshold and
the fixed threshold. MST also employs the gradient descent
strategy, and in each iteration the difference between the fixed
biological firing threshold and the hypothetical threshold under
which neurons emit the expected amount of spikes is calculated.
However, it requires multiple recursive calculations to derive the
hypothetical threshold, making the learning process indirect and
computationally time-consuming. TDP1 and TDP2 (Yu et al.,
2018) simplify the calculation of MST to some extent, which
improves the learning efficiency, but there is still the problem of
seeking the hypothesis threshold through iteration.

The Remote Supervised Method (ReSuMe) (Ponulak and
Kasiński, 2010) is a classic algorithm that combines the STDP
and anti-STDP learning rules to modulate the synaptic weights.
There are also some improved algorithms to further strengthen
the learning property of the ReSuMe by integrating it with delay

learning (Taherkhani et al., 2015a,b, 2018), and particle swarm
optimization (PSO) algorithm (Xie et al., 2014), etc. In addition,
the Spike Pattern Association Neuron (SPAN) (Mohemmed
et al., 2012), Chronotron E-learning (Florian, 2012), and the
Precise-Spike-Driven (PSD) (Yu et al., 2013) algorithm are in a
similar vein, whereby they transform spike trains or sequences
into analog signals by convolution, then apply the Widrow-
Hoff rule to update weights. SPAN uses a variant metric of
the van Rossum metric (van Rossum, 2001) to define the
distance between the actual and desired spike sequences, while
Chronotron E-learning uses the Victor and Purpura metric
(Victor and Purpura, 2009). SPAN transforms all the discrete
input, actual and desired output spikes to continuous signals,
while only input signals are convolved in PSD. Compared with
algorithms requiring convolution operation, algorithms based on
the perceptron rule, such as the perceptron-based spiking neuron
learning rule (PBSNLR) (Xu et al., 2013b) and its improved
version (Qu et al., 2015), the normalized perceptron based
learning rule (NPBLR) (Xie et al., 2017), are easier to calculate.
In general, these algorithms are more biologically plausible
and have lower computational complexity than the algorithms
based on the gradient descent rule, but they are still not very
effective and robust in the task of learning target spatiotemporal
spike patterns.

Except for these algorithms, the algorithm Learning Spike
Sequences with Finite Precision (FP) (Memmesheimer et al.,
2014) uses the existing postsynaptic potential to adjust the
synaptic weights at the first unmatched time between the actual
and desired output spike trains in each trial. However, the simple
and crude way of weight modification makes it use less spike
information and also lack good robustness in the face of noise.
Then in this paper, we propose a new efficient and robust learning
algorithm. The proposed algorithm not only utilizes the first
wrong spike time, but also utilizes all previous spike temporal
information to calculate the weight update quantities. Simulation
results demonstrate that the proposed learning rule has higher
learning accuracy, efficiency, and better robustness as compared
with ReSuMe and SPAN. In addition, in this paper, we also
put forward a dynamic decoding strategy for precise multi-
spike learning algorithms. With a combination of the proposed
learning algorithm and the decoding strategy, the SNN-based
computational model outperforms other bio-inspired baseline
systems in a speech recognition task.

The structure of the article is as follows. In section 2, after a
brief introduction of the neuron model, our method is presented.
In section 3, we conduct some experiments to explore the
performance of the method, and the simulation results are
provided. The different properties of the proposed algorithm,
ReSuMe and SPAN are analyzed and compared in section 4.
Finally, we draw the conclusion in section 5.

2. NEURON MODEL AND LEARNING
ALGORITHM

In this section, we first introduce the spiking neuron model
used in this article, then elaborate on the algorithm we

Frontiers in Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 559123

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

proposed. Finally, the measurement used to evaluate the learning
performance is introduced.

2.1. Neuron Model
Many spiking neuron models have been proposed over the
years, among which conductance-based models can simulate
biological neurons’ dynamics accurately to a large extent but
require considerable computational cost because of the inherent
complexity of their expressions. By contrast, the current-based
leaky integrate-and-fire (LIF) (Gerstner and Kistler, 2002) model
can well simulate the dynamics of biological neurons with lower
computation cost, which has made it a widely used model in
many papers, including this one.

In the LIF model, learning neuron accumulates its membrane
voltage V(t) by integrating synaptic currents from N upstream
neurons, yielding

V(t) =

N
∑

i=1

wi

∑

t
j
i<t

K
(

t − t
j
i

)

− ϑ
∑

t
j
s<t

exp

(

−
t − t

j
s

τm

)

, (1)

where t
j
i is the firing time of the jth spike from the ith synapse

and t
j
s is the firing time of the jth spike generated by the learning

neuron. ϑ is the firing threshold. wi represents the synaptic
strength of the ith synapse, and it controls the amplitude of the
postsynaptic potential induced by its spike, while the kernel K(·)
controls the shape, and it is defined as

K(x) = Vnorm

[

exp

(

−
x

τm

)

− exp

(

−
x

τs

)]

, (2)

where τm and τs are the time constants of themembrane potential
and the synaptic current, respectively. Vnorm is the normalization
constant that stretches the peak value of K(·) to unit, and it is
calculated by

Vnorm =
ββ/(β−1)

β − 1
, (3)

with β = τm/τs. If the voltage V (t) reaches the firing threshold,
it triggers a spike immediately, then this new spike causes the
membrane voltage of the neuron to encounter a reset operation,
which is expressed by the second term in Equation (1).

2.2. First Error Learning Algorithm
The aim of our learning algorithm is to modify the neuron’s
synaptic weights so that it can generate the target spike sequence
corresponding to the given input spike pattern. Most existing
algorithms train the neuron to fire spikes directly toward the
desired times, but here we set a tolerance window with a
small width ε (less than the distance between any two desired
spike times) at each desired time, and by training the neuron
to emit a spike within the corresponding tolerance window
in chronological order, the requirement of firing target spike
sequence is finally achieved. Accordingly, we present our learning
method taking advantage of the idea of running synaptic
modification rules only at the first wrong spike time in each trial
in Memmesheimer et al. (2014).

There are different types of wrong spike times, but in general
they all fall into one of the three categories and are shown
in Figure 1:

• If there is a spike fired outside all tolerable windows, this spike
time is a wrong spike time of type a;

• If there are two spikes generated within a same window, the
second spike time is a wrong spike time of type b;

• If there is no spike within the desired tolerable window, the
desired spike time is a wrong spike time of type c.

Following the idea of running synaptic modification rules only at
the first wrong spike time in each trial, the proposed First Error
Learning rule (FE-Learn) calculates weight adjustment in a new
way that utilizes more temporal information between the input
and output spike trains. Based on the different error types, the
proposed method employs two weight updating processes. The
cost function is defined as

E = ± (ϑ − V (terr)) , (4)

where terr is the first wrong spike time and the± sign corresponds
to weight increment and decrement, respectively.

2.2.1. Weight Increment at Desired Output Spike

Times
In terms of error type c, a spike is supposed to be emitted within

the tolerable window of a desired output spike time t
j

d
, while it is

not, so terr is equal to t
j

d
. Then, we apply the gradient descent

method to stretch the membrane potential at time terr to the
threshold ϑ .

In gradient-based learning, the weight modification 1wi is
proportional to the negative of the derivative of the cost function
with respect to wi:

1wi = −λ1
dE

dwi
= λ1

dV (terr)

dwi
, (5)

where λ1 > 0 is the learning rate that defines the size
of the weight increment. From Equation (1), the membrane
potential V(terr) not only receives the direct influence of the
synaptic weights, but also the indirect influence of them, which

FIGURE 1 | Three error types: undesired spike outside the tolerable window

(a), undesired spike inside the tolerable window (b) and missed spike within

the tolerable window (c). The gray vertical bars near the desired spike times t
j
d

are the respective tolerable windows.

Frontiers in Neuroscience | www.frontiersin.org 3 June 2019 | Volume 13 | Article 559124

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

is transmitted by the previous output spike times t
j
o < terr , j =

1, 2, · · · ,m. The derivative term in Equation (5) is hence given by

dV (terr)

dwi
=

∂V (terr)

∂wi
+

m
∑

j=1

∂V (terr)

∂t
j
o

dt
j
o

dwi
. (6)

From Equation (1), the first term of Equation (6) can be
expressed as

∂V (terr)

∂wi
=
∑

t
j
i<terr

K
(

terr − t
j
i

)

, (7)

and the partial derivative in the second term is

∂V (terr)

∂t
j
o

= −
ϑ

τm
exp

(

−
terr − t

j
o

τm

)

, (8)

while for the derivative dt
j
o/dwi, applying the chain rule,

we can get

dt
j
o

dwi
=

∂t
j
o

∂V(t
j
o)

dV(t
j
o)

dwi

=
∂t

j
o

∂V(t
j
o)





∂V(t
j
o)

∂wi
+

j−1
∑

k=1

∂V(t
j
o)

∂tko

dtko
dwi





≈
∂t

j
o

∂V(t
j
o)

∂V(t
j
o)

∂wi
,

(9)

in order to save the computation cost, we eliminate the
iterative computation term in Equation (9). Following the linear
assumption of threshold crossing in Bohte et al. (2002), Ghosh-
Dastidar and Adeli (2009a), and Yu et al. (2018), the neuron’s
membrane potential is thought to increase linearly in the
infinitesimal time step before the firing time. Hence, there is

∂t
j
o

∂V(t
j
o)

= −

(

∂V(t
j
o)

∂t
j
o

)−1

, (10)

where

∂V(t
j
o)

∂t
j
o

=
∂V(t)

∂t
|
t=t

j−
o

=
Vnorm

τs

N
∑

i=1

wi

∑

t
j
i<t

j
o

exp

(

−
t
j
o − t

j
i

τs

)

−
Vnorm

τm

N
∑

i=1

wi

∑

t
j
i<t

j
o

exp

(

−
t
j
o − t

j
i

τm

)

+
ϑ

τm

j−1
∑

k=1

exp

(

−
t
j
o − tko
τm

)

,

(11)

and ∂V(t
j
o)/∂wi can be solved by Equation (7), and ∂t

j
o/∂V(t

k
o)

with tko < t
j
o can be solved by Equation (8).

Note that each actual output spike time t
j
o before the terr is

within the tolerable window of the corresponding desired spike

time t
j

d
, and there is usually a slight deviation between t

j
o and t

j

d
.

So the weight modification strategy based on Equation (6) may
exacerbate this deviation aftermultiple updates, resulting inmore
unnecessary adjustments. In order to address this, in the actual

weight adjustment, we substitute t
j
o for t

j

d
in Equation (6) through

Equation (11) and give a scaling factor Sr (> 0) to the second

term of Equation (6) to control the weight updating at t
j

d
(< terr)

not excessively (the detailed analysis is presented in section 4),
which is proven to be meaningful and vital by experiments.

2.2.2. Weight Decrement at Undesired Output Spike

Times
When there is a spike fired outside the tolerable window
(error type a) or there is more than one spike fired inside the
same tolerable window (error type b), the contributory synaptic
weights should be weakened to prevent the extra spike. Instead
of utilizing all the past firing spikes (actual or desired) like the
case of weight increment, for error types a and b, synaptic weight
decrement depends only on the error time terr , i.e., the scaling
rate Sr is set to zero. As a result, the second term in Equation (6)
is removed, and the updating rule at undesired output spikes is
defined as

1wi = −λ2
dE

dwi
= −λ2

dV (terr)

dwi
≈ −λ2

∂V (terr)

∂wi
, (12)

where λ2 > 0 is the learning rate which defines the size of the
weight decrement. ∂V (terr) /∂wi is solved by Equation (7).

The intention of removing the second term in Equation (6)
is to avoid disturbing the properly emitted output spikes before
terr . How this affects the previously emitted spikes is explained
in section 4. To better illustrate the process of the proposed
FE-Learn algorithm, we give a flowchart in Figure 2.

2.3. Metric of Learning Performance
The correlation-based metric C defined in Schreiber et al.
(2003) is adopted in the next experiments to evaluate the
learning performance of the learning algorithm, and it was
also used in Ponulak and Kasiński (2010) and Taherkhani
et al. (2015a). C (0 < C < 1) represents the similarity degree
of two vectors, and the larger the value of C, the higher the
similarity between the two vectors. The metric is defined in the
following equation:

C =
υd · υo

|υd||υo|
, (13)

where υo and υd are vectors which are the convolution (in
discrete time) of actual and desired output spike trains by a
symmetric Gaussian filter given as f (t, σ) = exp

(

−t2/2σ 2
)

,
respectively. The parameter σ determining the width of the filter
is set to 2 in this article. And υd · υo represents the dot product
of the two vectors, while |υd| and |υo| are the Euclidean norms of
them, respectively.

Frontiers in Neuroscience | www.frontiersin.org 4 June 2019 | Volume 13 | Article 559125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

FIGURE 2 | The flowchart of the algorithm FE-Learn.

3. SIMULATION RESULTS

Next, we conduct extensive experiments to explore the
influence of different parameters with different values on
the learning performance of the FE-Learn. Moreover, the
robustness in the face of noise of different intensities is
tested, and finally, FE-Learn is applied to a practical speech
recognition task.

3.1. Performance Evaluation of FE-Learn
The effects of several important parameters on learning
performance are investigated in this section, including the time
duration of spike trains, the number of synaptic inputs, and
the firing rates of input and output spike trains. We compared
the FE-Learn against ReSuMe and SPAN. In these simulations,
the time constant of the membrane potential and the synaptic
currents, τm and τs, are set to 10 and 2.5 ms, respectively. And
the firing threshold and the time step are set to 1 mV and 1
ms, respectively. The synaptic weights are randomly initialized
by the Gaussian distribution N(0.01, 0.01). Twenty trials with
different input and desired output pairs are conducted for
each experiment.

3.1.1. Effect of the Time Duration
In this section, the learning neuron has 400 synaptic afferents.
The aim is to train the neuron to reproduce a desired spike train
with a time duration of 200 ∼ 3,000 ms and the length of the
interval is 200 ms. Before each training trial, the desired output
is a spike train with a firing rate of 100 Hz, and input spike
trains with a firing rate of 10 Hz are generated according to
the homogeneous Poisson processes. During each training, the
maximum value of C and the running time required to reach

FIGURE 3 | Effect of the time duration of spike trains on learning performance.

When the time duration of spike trains is in [200, 1,000], [1,200, 2,000], [2,200,

3,000] ms, the corresponding width of the tolerable window is 1, 3, and 5 ms,

respectively. Learning accuracy comparison of FE-Learn, SPAN, and ReSuMe

under different time duration of spike trains (A), running time comparison of

FE-Learn, SPAN, and ReSuMe under different time duration of spike trains (B).

it are recorded. After 20 training trials, the average values of all
maximum C and corresponding running times are reported.

Figure 3A shows the variation trend in learning accuracies of
FE-Learn, SPAN, and ReSuMe. The learning accuracies of the
three algorithms can reach one when the time duration of spike
trains varies from 200 to 600 ms, but when the time duration
exceeds 800 ms, the learning accuracies of SPAN and ReSuMe
start to decline, and the learning times increase gradually.
Meanwhile, the learning accuracy of FE-Learn is limited by the
width of the tolerable window ε, so it can keep constant at 1 when
ε = 1, C ≈ 0.96 when ε = 3 and C ≈ 0.89 when ε = 5, and
the learning accuracy drops significantly when the width of the
tolerable window changes. Under the same width of the tolerable
window, the learning time increases with the increase of spike
train length. The general trend is that FE-Learn can obtain higher
learning accuracy than SPAN and ReSuMe with less time.

3.1.2. Effect of the Number of the Synaptic Inputs
The effect of the number of the synaptic inputs is investigated
in this section, and it varies from 100 to 500 with an interval of
50. The time duration of the spike trains is set to 800 ms. The
desired output spike train with a firing rate of 100 Hz and input
spike train with a firing rate of 10 Hz are generated according
to the homogeneous Poisson processes at the beginning of each
training trial.

Figure 4 shows the experimental results. As shown in
Figure 4A, a small number of synaptic inputs lead to a low
learning accuracy for both SPAN and ReSuMe—for instance, the
learning accuracy of SPAN is only 0.81 and for ReSuMe it is
0.79—when the neuron is trained with only 100 synaptic inputs,
but SPAN takes a very short time, and although FE-Learn with
ε = 5 takes more time, it can achieve higher accuracy. When

Frontiers in Neuroscience | www.frontiersin.org 5 June 2019 | Volume 13 | Article 559126

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

FIGURE 4 | Effect of the number of the synaptic inputs on learning

performance. When the synaptic input is in 100, [150, 250], [300, 500], the

corresponding width of the tolerable window is 5, 3, and 1, respectively.

Learning accuracy comparison of FE-Learn, SPAN, and ReSuMe with different

number of the synaptic inputs (A), running time comparison of FE-Learn,

SPAN, and ReSuMe with different number of the synaptic inputs (B).

the number of synaptic inputs is greater than or equal to 300,
the width of the tolerable window of FE-Learn is set to 1 ms.
Then, the learning accuracy of it can reach 1, while the learning
accuracies of SPAN and ReSuMe slowly increase to 1 with the
increase of the number of synaptic inputs. Additionally, under
the same width of the tolerable window, the learning time of
FE-Learn can decrease with the increase of the number of the
synaptic inputs. In short, FE-Learn performs better than ReSuMe
both in terms of accuracy and running time, and obtains higher
accuracy than SPAN with comparable time.

3.1.3. Effect of the Firing Rate
The effect of the firing rate of the spike trains is evaluated in the
following experiments. For the input spike trains, the firing rates
(rin) are varied from 6 to 18 Hz with an interval of 4 Hz, while
for the desired output spike trains the firing rates (rout) vary from
20 to 160 Hz with an interval of 20 Hz. The time duration of the
spike trains is 800 ms and the amount of the synaptic inputs is set
to 400. In each trial, the learning continues until the algorithm
converges and the averages of the maximum obtained C from 20
trials are reported in Figure 5.

From Figure 5A, the learning accuracy of FE-Learn can
achieve 1 except when the firing rates of the input spike train and
the desired output spike trains are 6 and 160 Hz, respectively, but
even in this worst case, the accuracy still reaches 0.986. However,
the performances of SPAN and ReSuMe become worse with the
decrease of rin and the increase of rout , and their lowest accuracies
are about 0.97, as shown in Figure 5B.

3.2. Robustness to Noise
In this section, the robustness of the neuron trained by FE-
Learn and ReSuMe is investigated. The neuron has 400 synaptic

FIGURE 5 | Effect of the firing rate of the spike trains on learning performance

of FE-Learn (A), SPAN (B), and ReSuMe (C). All parameters except the firing

rates of input spike trains rin and the desired output spike trains rout are fixed.

The width of the tolerable window ε is set to 1.

FIGURE 6 | Antinoise capability of FE-Learn, SPAN, and ReSuMe against

background voltage noise. The width of the tolerable window ε is set to 1.

inputs. The time duration of the input and expected spike
trains is set as 500 ms, both of which are Poisson spike trains,
and the firing rates of them are 10 and 100 Hz, respectively.
After deterministic training, the response reliability of the
neuron is considered in the case of adding background noise
on the membrane potential and adding jittering noise on the
input pattern.

3.2.1. Robustness to Background Noise on the

Membrane Potential
After training, the membrane potential of the trained neuron
is affected by background Gaussian white noise with mean
0 and variance σb ∈ [0.03, 0.33] mV in this case. The
variance interval is 0.03 mV, and for every value of σb,
20 independent experiments are conducted. The metric C is
still used to measure the similarity of the actual output and
desired output.

As shown in Figure 6, the learning accuracies of the
three algorithms decrease with the increase of noise
intensity. However, the correlation metric C achieved by
the neuron trained by FE-Learn is consistently higher than
that of SPAN and ReSuMe, confirming that the neuron
trained by FE-Learn is more robust when encountering
background noise.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2019 | Volume 13 | Article 559127

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

3.2.2. Robustness to Jittering Noise on the Input

Pattern
In this case, a Gaussian jitter with mean 0 and variance σj ∈

[0.2, 2] ms is added to each input spike after deterministic
training. In addition, every spike of the noisy input pattern may
be randomly deleted with a probability of 0.05 while some new
spikes may be randomly added into the noisy input pattern,
which are generated by a 1Hz homogeneous Poisson process. Just
as before, the correlation measure C of the distance between the
actual and the desired output spike sequences is calculated.

As can be seen from Figure 7, with the increase of the noise
intensity, the correlation between the actual and the desired
output spike trains shows a gradual downward trend, but for FE-
Learn, it stays about 0.05 and 0.1 higher than that of SPAN and
ReSuMe, respectively. Unlike before, SPAN performs better than
ReSuMe when exposed to jitter noise. However, neurons trained
by the FE-Learn have better anti-noise performance against jitter
noise than either of them.

3.3. Effect of Learning Parameters
The width of the tolerance window ε and the scaling rate Sr are
two important parameters of FE-Learn. We conduct experiments
to explore the influence of them on learning efficiency and
robustness of FE-Learn. Then we give a spatiotemporal spike
pattern recognition experiment, and show the effect of ε on the
testing performance.

3.3.1. Effect on Efficiency
In this section, the learning neuron has 400 synaptic afferents,
and the time duration is 800 ms. Input pattern and target pattern
are generated as in the previous experiments with a firing rate of
10 and 400, respectively. The scaling rate varies from 0 to 2 with
an interval of 0.2, and the width of the tolerance window has four
different values, 1, 3, 5, and 7 (under the condition that time step
equals one, width equal to 2 is actually the same as width equal to
1, so there is no need to explore the situation of 2, 4, and 6). For
each pair of ε and Sr , the learning continues until the algorithm
converges and the average of the maximum obtained C from 20
trials are reported in Figure 8.

Tolerance window width determines the learning accuracy of
convergence, and Figure 8A shows this obviously, and it also
shows that no matter what the scaling rate is, the algorithm will

FIGURE 7 | Antinoise capability of FE-Learn, SPAN, and ReSuMe against

jittering noise. The width of the tolerable window ε is set to 1.

eventually converge to the accuracy limited by the corresponding
window width. From Figures 8B,C, we can see that, only when
the tolerance window width is 1, the time of convergence
increases as the scaling rate increases, and is always much higher
than other cases, i.e., when the width is greater than 1, the
scaling rate has little impact on the convergence speed, and the
convergence time is always very small.

3.3.2. Effect on Robustness
The experiment settings are the same as last section, except that
the time duration is changed to 500 ms. We add background
noise and jittering noise to the network after each training trial.

As seen in Figure 9, whether for background noise or jittering
noise, the smaller the tolerance window width, the stronger
the noise resistance. From Figure 9A, the antinoise capability
against background noise becomes stronger with the increase of
scaling rate, but from Figure 9B, the antinoise capability against
jittering noise does not change obviously with the change of
scaling rate.

Combined with Figures 8, 9, when the window width
is greater than 1, FE-Learn can converge rapidly and the
convergence speed is not sensitive to the scaling rate, but
increasing it can improve the antinoise performance to
background noise. When the width is 1, the convergence speed
of the algorithm is very slow, and the smaller the scaling rate is,
the faster the convergence speed is, but the worse the antinoise
performance to background noise is.

3.3.3. Effect of the Width of Tolerance Window on

Overfitting
In this section, we conduct experiments to investigate the effect
of the width of tolerance window on overfitting. Three different

FIGURE 8 | Effect of tolerance window width and scaling rate on learning

efficiency. The evaluation index includes learning accuracy (A), the number of

epochs (B), and the running time (C).

Frontiers in Neuroscience | www.frontiersin.org 7 June 2019 | Volume 13 | Article 559128

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

FIGURE 9 | Effect of tolerance window width and scaling rate on robustness.

(A) Antinoise capability against background noise with standard deviation

σb = 0.2. (B) Antinoise capability against jittering noise with standard deviation

σj = 1.

FIGURE 10 | Effect of tolerance window width on overfitting.

spatiotemporal spike patterns are randomly generated with 400
synaptic afferents, all of which are triggered at 5 Hz. The time
duration of each spatiotemporal spike pattern is 200 ms. For each
spike pattern, 25 samples are generated for training by adding a
jitter noise drawn from a Gaussian distribution with a standard
deviation of 3 ms, resulting in a training set with 3× 25 samples.
The test set is obtained in the same way. The learning neuron
is trained to emit the corresponding desired output spike trains
([5:15:170], [15:15:180], [25:15:190]) in response to the three
kinds of spike patterns. When the actual output spike train is
most similar to the desired output spike train of a category, then
the input pattern is classified into that category. For each ε, the
average recognition accuracy on the test set from 20 trials is
reported in Figure 10.

FIGURE 11 | Classification capability of FE-Learn, SPAN, and ReSuMe on

spatiotemporal spike patterns.

As shown in Figure 10, when ε is less than or equal to 7ms, the
classification accuracy on the test set increases with the increase
of window width. This is because a smaller window means more
rigorous learning on the training set, which will lead to overfitting
and reduce the generalization on the test set. For example, when
the window width is 7 ms, the mean recognition accuracy on
the test set is 96%. However, when the window width is 1 ms,
the accuracy is only about 88%. On the other hand, an overly
large window will make the training insufficient, thus reducing
the recognition accuracy. For instance, the recognition accuracy
decreases to 93.80% when the window width is 9 ms. In a
nutshell, a relatively large ε generalizes better, and the recognition
accuracy on the unseen data is higher.

3.4. Classification Task
3.4.1. Spatiotemporal Spike Pattern Classification
In this experiment, we investigate the ability of the proposed
FE-Learn in classifying spatiotemporal patterns. The setup for
the experiment is the same as in section 3.3.3. The aim of the
task is to classify three different spatiotemporal spike patterns.
Both the training set and test set contain 3 × 25 samples. For
each algorithm, after 300 learning epochs on the training set, the
classification performance on the training set and test set is tested.
The results are shown in Figure 11.

As can be seen from Figure 11, the classification accuracies
of FE-learn, SPAN, and ReSuMe on the training set are 1,
0.986, and 0.998 while those on the test set are 0.978, 0.95,
and 0.971, respectively. FE-Learn achieves better performance
in both the training set and test set. On the other hand, from
the respective differences between the training accuracy and the
testing accuracy (0.022 for FE-Learn, 0.036 for SPAN, 0.027 for
ReSuMe), FE-Learn has a better generalization ability.

3.4.2. Speech Classification
SNNs have great advantages in handling temporally rich signals
since they can transform the spatiotemporal information into

Frontiers in Neuroscience | www.frontiersin.org 8 June 2019 | Volume 13 | Article 559129

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

desired output spike patterns, which means that SNNs are
well-suited for realistic tasks such as motion and speech
recognition. In order to verify the capability of FE-Learn, the
spiking neurons trained by the algorithm are used to conduct
a spoken digit classification task. In this work, we investigate
the TIDIGITS corpus (Leonard and Doddington, 1993), one
of the most commonly used data sets in benchmarking speech
recognition algorithms. The utterances of this data set were
collected from speakers who come from 22 different dialectical
regions and are digit sequences, containing 11 words: “zero,”
“one,” · · · , “nine,” and “oh.”

In this case, the threshold encoding mechanism (Gütig et al.,
2009) is adopted to encode the speech data into spike patterns,
and the encoding mode is the same as that in Zhang et al.
(2019b). Firstly, a Constant-Q Transform (CQT) cochlear filter
bank (Pan et al., 2018) is used to filter the original speech
waveform to get a spectrogram. Then, the spectrogram is divided
into multiple frequency bins. For each bin, a cochlear filter of the
corresponding frequency is used to filter it into a series of spikes
by recording events that cross thresholds up and down. Finally,
the spikes filtered by all cochlear filters are vertically integrated
to obtain a complete input spike pattern. Referring to the
visualization processing tool of auditory information provided
in Dominguez-Morales et al. (2016), a visual representation
of this process is given in Figure 12. In the experiment, the
training set and test set include 2,464 and 2,486 speech spike
patterns, respectively.

The computational model used here is shown in Figure 13.
There are eleven groups of output neuron in the classification
layer, and each group contains ten neurons, which correspond

to the same category. The goal of this experiment is to train

the target group of neurons to emit a desired spike train when
receiving the input patterns of the corresponding category, and to

remain silent otherwise. However, it is not clear how to determine
the target output spike train corresponding to each category as

each speech digit category contains many different sub-patterns

and the differences between these sub-patterns make a fixed
desired output spike train impractical. To resolve this problem,

a strategy for dynamically determining the target spike train is
proposed as follows.

When entering a training input pattern, we record the

membrane voltage traces of target neurons and non-target
neurons. The desired spike trains Td and the first wrong time terr
are defined as follows.

1. For the non-target neurons: Td = ∅.

• If no spike is generated, no learning is required.

• If the actual output spike trains To 6= ∅, then the first

wrong spike time terr is the first actual output spike time.

2. For the non-target neurons: Td is dynamically determined,
and suppose tmax is the time instant when the maximum
membrane voltage Vmax under the threshold is reached. ϑe

(< ϑ) is a pre-defined encoding threshold.

• If no spike is generated, Td = {tmax}, then obviously,
terr = tmax.

• If the actual output spike trains To 6= ∅ and Vmax is
above the pre-defined encoding threshold ϑe, then Td =

To ∪ {tmax}, terr = tmax.

FIGURE 12 | Threshold coding mechanism of speech data. (A) The Encoding process of a speech utterance “Two.” (B) The Encoding process of a speech utterance

“Seven.” The left column shows the original speech waveforms, the middle column shows corresponding spectrograms and the right column shows the final encoded

spike pattern.

Frontiers in Neuroscience | www.frontiersin.org 9 June 2019 | Volume 13 | Article 559130

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

FIGURE 13 | Network architecture of speech classification. The three diagrams on the left show the encoding process of the speech data and the network structure

is on the right. The input layer contains 620 neurons and the output layer contains 11 groups of neuron (mullion), corresponding to 11 output categories, and each

group is composed of ten neurons. Among the ten output neurons with the same serial number in these 11 groups, the one that emits the most spikes is the

“activated” neuron (red circle). The output category belongs to the group with the largest number of “activated” neurons.

• If the actual output spike trains To 6= ∅ and Vmax is below
the pre-defined encoding threshold ϑe, then Td = To and
no learning is required.

According to the defined Td and terr , the corresponding weight
updating formula is called for learning. During the test, the
output category belongs to the group with the largest number
of activated neurons (red neuron shown in the output layer
in Figure 13). Moreover, the training strategy with margins
in Gütig (2016) is applied in this work. We also test the
performance of ReSuMe and SPAN on this task with the same
network configuration, encoding method, and training strategy
as FE-Learn.

As shown in Table 1, the spiking convolutional neural
network (Tavanaei and Maida, 2016) and the deep recurrent
network (Neil and Liu, 2016) perform well in this speech
recognition task, and they can obtain an accuracy of 96 and
96.1%, respectively. However, compared with their complex
network structures, the computational model we used here is
very simple while the accuracy of our method is higher than
others. As shown in Table 1, the single layer spiking neural
network with the proposed FE-Learn algorithm obtains an
accuracy of 96.42%, which is superior to other biologically
motivated baselines, as well as ReSuMe and SPAN with the same
network structure, encoding scheme, and training strategy. The
excellent performance of FE-Learn shows its great potential in
practical application.

TABLE 1 | Comparison of speech recognition performance among several

frameworks.

Model Accuracy

Spiking CNN and HMM (Tavanaei and Maida, 2016) 96.00%

Single-layer SNN and SVM (Tavanaei and Maida, 2017) 91.00%

AER Silicon Cochlea and Deep RNN (Neil and Liu, 2016) 96.10%

Liquid State Machine (Zhang et al., 2015) 92.30%

AER Silicon Cochlea and SVM (Abdollahi and Liu, 2011) 95.58%

Auditory Spectrogram and SVM (Abdollahi and Liu, 2011) 78.73%

Single-layer SNN with SPAN 91.22%

Single-layer SNN with ReSuMe 93.52%

Single-layer SNN with FE-Learn 96.42%

Additionally, in order to investigate the performance of
FE-Learn in more complex cases, we also conduct speech
classification experiments of the three algorithms with different
input noise intensities. The standard deviation of jitter noise
added to the input spike pattern increases from 0.5 to 5
ms with an interval of 0.5 ms. As shown in Figure 14, the
classification accuracy of the proposed FE-Learn is 94.69% even
when the noise intensity is 5 ms, which is much higher than
ReSuMe and SPAN with the same noise level. Therefore, the
robustness of the FE-Learn is better than ReSuMe and SPAN in
practical application.

Frontiers in Neuroscience | www.frontiersin.org 10 June 2019 | Volume 13 | Article 559131

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

FIGURE 14 | Speech recognition performance of FE-learn, SPAN, and

ReSuMe in the test set in the face of input noise.

4. DISCUSSION

In this section, we first analyze the difference between the three
algorithms and explain the role of the parameter Sr through a
concrete example. Then we figure out the reasons that contribute
to FE-Learn’s better performance over ReSuMe and SPAN in
accuracy, computation time, and generalization.

The membrane potential curves before and after a single
weight updating have been shown in Figures 15A,C, respectively.
In Figure 15B, the synaptic learning curves depict the spike-
timing dependence of weight adjustment at time terr . ReSuMe
has an exponential learning curve (the gray dashed line),
which means that the closer the input spike time is to terr ,
the larger the synaptic weight update is. However, due to
the existence of the time constants of the membrane voltage
and synaptic current, the input spike closest to terr does not
make the largest contribution to the membrane voltage at
terr , so the learning of ReSuMe does not serve the aim very
well. As for SPAN, we depict its spike-timing dependence
curve (green dotted line) of weight adjustment with α-kernel
in Mohemmed et al. (2012) at time terr . From Figure 15A,
each actual output spike time before the terr is within the
tolerable window of the corresponding desired spike time.
Accordingly, the convolution of the error is very small,
resulting in very little weight change at terr . The shape of
the learning curve is determined by the convolution kernel,
and the inconsistency between the convolution kernel and
the current kernel of the neuron model can also lead to
mismatching between the weight change of the synaptic and its
potential contribution.

As we already know, FE-learn with Sr = 1 utilizes all the
spike times before terr to calculate weight increment, so the
learning curve of it has multiple crests compared with that of
FE-learn with Sr = 0 which has one crest. It means that the
former would promote the synaptic weights whose input spikes

happened before t3
d
with a larger amount, but for those spikes

fired between t3
d
and t4

d
, the weight updates are the same (the

red solid line and the blue dashed line coincide). As shown
in Figure 15C, the membrane potential at t4

d
is successfully

raised in all cases, and the spike times before t4
d
are pushed

forward a little bit. But for FE-learn with Sr = 1, this is
more obvious than others because of the greater weight updates
and thus the greater voltages at these times, which means that
it is more robust to noise disturbance. However, an overly
strong weight update may cause the previous output spikes to
be removed from the corresponding tolerable windows, so the
appropriate strength of weight adjustment at previous desired
spike times which is controlled by the scaling factor Sr is crucial.
As for the case of weight decrement, we only want to reduce
the membrane voltage at terr , but do not want the previously
correctly emitted spikes to be affected, so setting Sr to zero
is reasonable.

As shown in the experimental results, FE-Learn achieves
a higher learning accuracy with less training time and has
a better generalization. First of all, the reason for the high
accuracy of our method is that our method follows the BPBA
(Bigger PSP, Bigger Adjustment) (Xu et al., 2013a) principle
to effectively overcome learning interference among multiple
desired spikes, while the weight update rules in ReSuMe and
SPAN cannot be combined with the BPBA principle. Besides,
to improve the efficiency of the program, we have calculated
and stored the PSPs (Postsynaptic potentials) of every time
step before training. For example, when the time duration is
T, the time step is dt and the number of the synaptic inputs
is N, storing the calculated PSPs requires N · T/dt storage
units. For the three algorithms, the calculation of the neuron
dynamics and weight adjustments are all based on the stored
PSPs, and the additional memory costs required by them are
very small, implying that they have a similar memory overhead.
On the other hand, in each training epoch, ReSuMe makes
multiple weight adjustments at each desired and actual firing
time, while SPAN changes weight at each time step. However,
FE-Learn only makes a weight adjustment once at terr in
one epoch, and the membrane potential after terr does not
need to be calculated in our experiments. This is the reason
that FE-Learn requires less computation time. Finally, as the
constraint on the tolerable window for spiking loosens, the
generalization ability of proposed FE-learn learning is much
better than others. This is the reason for the better results
in Figure 11.

5. CONCLUSION

The proposed FE-Learn is designed for identifying
spatiotemporal spike patterns, i.e., the neuron is trained to
output the specific spike sequence for the given input spike
pattern. FE-Learn adjusts the synaptic weights at the first wrong
output spike time, and only when the trained neuron correctly
fires the first spike at the desired time does FE-Learn begin
to focus on adjusting the weights to fire the second desired
spike. The adjustment of the synaptic weight is proportional

Frontiers in Neuroscience | www.frontiersin.org 11 June 2019 | Volume 13 | Article 559132

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

FIGURE 15 | Comparison between FF-learn, SPAN, and ReSuMe for one weight updating. The neuron has been trained to elicit the first three spikes in

corresponding tolerable windows, which are represented by the gray shadow region, the desired spike times are located at the middle of the windows. The black

vertical dashed lines represent the first wrong time terr . (A) Membrane dynamics of the neuron before this learning. (B) Synaptic learning curves of FE-Learn with

scaling rate Sr = 1 (red solid line) FE-Learn with scaling rate Sr = 0 (blue dotted line), SPAN (green dotted line), and ReSuMe (gray dashed line). (C) Membrane

dynamics of the neuron after one learning using different rules.

to the derivative of the membrane voltage of the first wrong
time with respect to the synapse. These three error types
described above actually belong to two types: one is at the
desired spike time, the other is at the actual spike time.
They correspond to the two opposite cases of increasing and
decreasing synaptic weights. For the first case, the desired spike
times before the wrong spike time are also used to calculate the
derivative, but for the second case, only the wrong spike time
is used.

Although the proposed FE-Learn has reliable performance
in the experiments, the inherent properties of this
algorithm make it converge to the narrow window
of the desired spike times, and it is difficult to emit
a precisely timed spike. Hence we will explore how
to balance the width of the window (accuracy) and
the learning speed in the next work. Furthermore,
extending FE-Learn to multi-layer deep spiking
neural networks is another interesting future direction
to explore.

DATA AVAILABILITY

The datasets analyzed for this study can be found in
the TIDIGITS speech corpus https://catalog.ldc.upenn.edu/
LDC93S10.

AUTHOR CONTRIBUTIONS

XL performed the experiments and writing. XL, HQ, YC, and
YZ contributed to the experiment’s design and interpretation of
the results.

FUNDING

This work was supported in part by the National Science
Foundation of China under Grant 61573081 and Grant
61806040, and in part by the Foundation for Youth Science
and Technology Innovation Research Team of Sichuan Province
under Grant 2016TD0018.

Frontiers in Neuroscience | www.frontiersin.org 12 June 2019 | Volume 13 | Article 559133

https://catalog.ldc.upenn.edu/LDC93S10
https://catalog.ldc.upenn.edu/LDC93S10
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

REFERENCES

Abdollahi, M., and Liu, S.-C. (2011). “Speaker-independent isolated digit

recognition using an aer silicon cochlea[c],” in Biomedical Circuits & Systems

Conference IEEE (La Jolla, CA).

Andrew, A. M. (2002). Spiking neuron models: single neurons, populations,

plasticity. Kybernetes 4, 277C280. doi: 10.1108/k.2003.06732gae.003

Bair, W., and Koch, C. (1996). Temporal precision of spike trains in

extrastriate cortex of the behaving macaque monkey. Neural Comput. 8:1185.

doi: 10.1162/neco.1996.8.6.1185

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R.,

Fries, P., and Friston, K. J. (2012). Canonical microcircuits for

predictive coding. Neuron 76, 695–711. doi: 10.1016/j.neuron.2012.

10.038

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.

doi: 10.1016/S0925-2312(01)00658-0

Cariani, P. A. (2004). Temporal codes and computations for sensory

representation and scene analysis. IEEE Trans. Neural Netw. 15, 1100–1111.

doi: 10.1109/TNN.2004.833305

Dominguez-Morales, J. P., Jimenez-Fernandez, A., Dominguez-Morales, M., and

Jimenez-Moreno, G. (2016). Navis: neuromorphic auditory visualizer tool.

Neurocomputing 237, 418–422. doi: 10.1016/j.neucom.2016.12.046

Florian, R. A. V. (2012). The chronotron: a neuron that learns to fire temporally

precise spike patterns. PLoS ONE 7:e40233. doi: 10.1371/journal.pone.0040233

Gautrais, J., and Thorpe, S. (1998). Rate coding versus temporal

order coding: a theoretical approach. Biosystems 48, 57–65.

doi: 10.1016/S0303-2647(98)00050-1

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models. Cambridge:

Cambridge University Press.

Ghosh-Dastidar, S., and Adeli, H. (2009a). A new supervised learning algorithm

for multiple spiking neural networks with application in epilepsy and seizure

detection. Neural Netw. 22, 1419–1431. doi: 10.1017/CBO9780511815706

Ghosh-Dastidar, S., and Adeli, H. (2009b). Spiking neural networks. Int. J. Neural

Syst. 19, 295–308. doi: 10.1142/S0129065709002002

Gollisch, T., andMeister, M. (2008). Rapid neural coding in the retina with relative

spike latencies. Science 319, 1108–1111. doi: 10.1126/science.1149639

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-

label learning. Science 351:aab4113. doi: 10.1126/science.aab4113

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Gütig, R., Sompolinsky, H., and Deweese, M. R. (2009). Time-warp-invariant

neuronal processing. PLoS Biol. 7:e1000141. doi: 10.1371/journal.pbio.1000141

Hopfield, J. J. (1995). Pattern recognition computation using action potential

timing for stimulus representation. Nature 376, 33–36. doi: 10.1038/376033a0

Ito, M. (2000). Mechanisms of motor learning in the cerebellum. Brain Res. 886,

237–245. doi: 10.1016/S0006-8993(00)03142-5

Keller, G. B., Bonhoeffer, T., and Hübener, M. (2012). Sensorimotor mismatch

signals in primary visual cortex of the behaving mouse. Neuron 74, 809–815.

doi: 10.1016/j.neuron.2012.03.040

Keller, G. B., and Hahnloser, R. H. (2009). Neural processing of auditory

feedback during vocal practice in a songbird. Nature 457, 187–90.

doi: 10.1038/nature07467

Leonard, R. G., and Doddington, G. (1993). Tidigits Speech Corpus. Philadelphia,

PA: Linguistic Data Consortium.

Maass, W. (1997). Network of spiking neurons: the third generation of

neural network models. Trans. Soc. Comput. Simul. Int. 14, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive

stdp-based spike pattern learning. Neural Comput. 21:1259.

doi: 10.1162/neco.2008.06-08-804

Meister, M. (1998). “Refractoriness and neural precision,” in Conference on

Advances in Neural Information Processing Systems (Denver, CO), 110–116.

Memmesheimer, R. M., Ran, R., ölveczky, B., and Sompolinsky, H.

(2014). Learning precisely timed spikes. Neuron 82, 925–938.

doi: 10.1016/j.neuron.2014.03.026

Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. (2012). Span: spike

pattern association neuron for learning spatio-temporal spike patterns. Int. J.

Neural Syst. 22:1250012. doi: 10.1142/S0129065712500128

Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. (2013). Training spiking

neural networks to associate spatio-temporal inputcoutput spike patterns.

Neurocomputing 107, 3–10. doi: 10.1016/j.neucom.2012.08.034

Neil, D., and Liu, S. C. (2016). “Effective sensor fusion with event-based sensors

and deep network architectures,” in IEEE International Symposium on Circuits

and Systems (Montréal, QC).

Nguyen, V. A., Starzyk, J. A., Goh, W. B., and Jachyra, D. (2012). Neural network

structure for spatio-temporal long-term memory. IEEE Trans. Neural Netw.

Learn. Syst. 23, 971–983. doi: 10.1109/TNNLS.2012.2191419

Pan, Z., Li, H., Wu, J., and Chua, Y. (2018). “An event-based cochlear filter

temporal encoding scheme for speech signals,” in 2018 International Joint

Conference on Neural Networks(IJCNN) (Rio de Janeiro), 1–8.

Ponulak, F., and Kasiński, A. (2010). Supervised learning in spiking neural

networks with resume: sequence learning, classification, and spike shifting.

Neural Comput. 22, 467–510. doi: 10.1162/neco.2009.11-08-901

Qu, H., Xie, X., Liu, Y., Zhang, M., and Li, L. (2015). Improved perception-based

spiking neuron learning rule for real-time user authentication.Neurocomputing

151, 310–318. doi: 10.1016/j.neucom.2014.09.034

Reinagel, P., and Reid, R. C. (2000). Temporal coding of visual information in the

thalamus. J. Neurosci. 20:5392. doi: 10.1523/JNEUROSCI.20-14-05392.2000

Schreiber, S., Fellous, J. M., Whitmer, D., Tiesinga, P., and Sejnowski, T. J. (2003).

A new correlation-based measure of spike timing reliability. Neurocomputing

52, 925–931. doi: 10.1016/S0925-2312(02)00838-X

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015a). Dl-

resume: a delay learning-based remote supervised method for spiking

neurons. IEEE Trans. Neural Netw. Learn. Syst. 26, 3137–3149.

doi: 10.1109/TNNLS.2015.2404938

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2015b). “Multi-

dl-resume: multiple neurons delay learning remote supervised method,” in

International Joint Conference on Neural Networks (Killarney), 1–7.

Taherkhani, A., Belatreche, A., Li, Y., and Maguire, L. P. (2018). A supervised

learning algorithm for learning precise timing of multiple spikes in multilayer

spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 1–14.

doi: 10.1109/TNNLS.2018.2797801

Tavanaei, A., and Maida, A. (2017). “Bio-inspired multi-layer spiking

neural network extracts discriminative features from speech signals,” in

International Conference on Neural Information Processing (Guangzhou),

99–908.

Tavanaei, A., and Maida, A. S. (2016). A spiking network that learns to

extract spike signatures from speech signals. Neurocomputing 240, 191–199.

doi: 10.1016/j.neucom.2017.01.088

Thach, W. T. (1996). On the specific role of the cerebellum in motor learning and

cognition: clues from pet activation and lesion studies in man. Behav. Brain Sci.

19, 411–433. doi: 10.1017/S0140525X00081504

Uzzell, V. J., and Chichilnisky, E. J. (2004). Precision of spike trains in primate

retinal ganglion cells. J. Neurophysiol. 92, 780–789. doi: 10.1152/jn.01171.2003

van Rossum, M. C. (2001). A novel spike distance. Neural Comput. 13, 751–763.

doi: 10.1162/089976601300014321

Victor, J. D., and Purpura, K. P. (2009). Metric-space analysis of spike trains:

theory, algorithms and application. Netw. Comput. Neural Syst. 8, 127–164.

doi: 10.1088/0954-898X/8/2/003

Wang, W., Subagdja, B., Tan, A. H., and Starzyk, J. A. (2012). Neural modeling of

episodic memory: encoding, retrieval, and forgetting. IEEE Trans. Neural Netw.

Learn. Syst. 23, 1574–1586. doi: 10.1109/TNNLS.2012.2208477

Widrow, B., and Lehr, M. A. (1990). 30 years of adaptive neural networks:

perceptron, madaline, and backpropagation. Proc. IEEE 78, 1415–1442.

doi: 10.1109/5.58323

Wu, J., Chua, Y., and Li, H. (2018a). “A biologically plausible speech recognition

framework based on spiking neural networks,” in 2018 International Joint

Conference on Neural Networks (IJCNN) (Rio de Janeiro: IEEE), 1–8.

Wu, J., Chua, Y., Zhang, M., Li, H., and Tan, K. C. (2018b). A spiking neural

network framework for robust sound classification. Front. Neurosci. 12:836.

doi: 10.3389/fnins.2018.00836

Frontiers in Neuroscience | www.frontiersin.org 13 June 2019 | Volume 13 | Article 559134

https://doi.org/10.1108/k.2003.06732gae.003
https://doi.org/10.1162/neco.1996.8.6.1185
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1109/TNN.2004.833305
https://doi.org/10.1016/j.neucom.2016.12.046
https://doi.org/10.1371/journal.pone.0040233
https://doi.org/10.1016/S0303-2647(98)00050-1
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1126/science.1149639
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1038/nn1643
https://doi.org/10.1371/journal.pbio.1000141
https://doi.org/10.1038/376033a0
https://doi.org/10.1016/S0006-8993(00)03142-5
https://doi.org/10.1016/j.neuron.2012.03.040
https://doi.org/10.1038/nature07467
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1162/neco.2008.06-08-804
https://doi.org/10.1016/j.neuron.2014.03.026
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.1016/j.neucom.2012.08.034
https://doi.org/10.1109/TNNLS.2012.2191419
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1016/j.neucom.2014.09.034
https://doi.org/10.1523/JNEUROSCI.20-14-05392.2000
https://doi.org/10.1016/S0925-2312(02)00838-X
https://doi.org/10.1109/TNNLS.2015.2404938
https://doi.org/10.1109/TNNLS.2018.2797801
https://doi.org/10.1016/j.neucom.2017.01.088
https://doi.org/10.1017/S0140525X00081504
https://doi.org/10.1152/jn.01171.2003
https://doi.org/10.1162/089976601300014321
https://doi.org/10.1088/0954-898X/8/2/003
https://doi.org/10.1109/TNNLS.2012.2208477
https://doi.org/10.1109/5.58323
https://doi.org/10.3389/fnins.2018.00836
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Luo et al. FE-Learn Algorithm for SNNs

Wu, J., Chua, Y., Zhang, M., Yang, Q., Li, G., and Li, H. (2019). Deep

spiking neural network with spike count based learning rule. arXiv [preprint].

arXiv:1902.05705.

Xie, X., Hong, Q., Liu, G., and Liu, L. (2014). “Recognizing human actions by

using the evolving remote supervised method of spiking neural networks,” in

International Conference on Neural Information Processing (Kuching).

Xie, X., Qu, H., Liu, G., and Zhang, M. (2017). Efficient training of supervised

spiking neural networks via the normalized perceptron based learning rule.

Neurocomputing 241, 152–163. doi: 10.1007/978-3-319-12637-1_46

Xu, Y., Zeng, X., Han, L., and Yang, J. (2013a). A supervised multi-spike learning

algorithm based on gradient descent for spiking neural networks. Neural Netw.

43, 99–113. doi: 10.1016/j.neunet.2013.02.003

Xu, Y., Zeng, X., and Zhong, S. (2013b). A new supervised learning algorithm for

spiking neurons. Neural Comput. 25:1472V1511. doi: 10.1162/NECO_a_00450

Yu, Q., Li, H., and Tan, K. C. (2018). Spike timing or rate? neurons

learn to make decisions for both through threshold-driven

plasticity. IEEE Trans. Cybern. 49, 2178–2189. doi: 10.1109/

TCYB.2018.2821692

Yu, Q., Tang, H., Tan, K. C., and Li, H. (2013). Precise-spike-driven synaptic

plasticity: Learning hetero-association of spatiotemporal spike patterns. PLoS

ONE 8:e78318. doi: 10.1371/journal.pone.0078318

Zhang, M., Hong, Q., and Xie, X. (2018). Empd: an efficient membrane potential

driven supervised learning algorithm for spiking neurons. IEEE Trans. Cogn.

Dev. Syst. 10, 151–162. doi: 10.1109/TCDS.2017.2651943

Zhang, M., Qu, H., Belatreche, A., Chen, Y., and Yi, Z. (2019a). A highly

effective and robust membrane potential-driven supervised learning method

for spiking neurons. IEEE Trans. Neural Netw. Learn. Syst. 30, 123–137.

doi: 10.1109/TNNLS.2018.2833077

Zhang, M., Wu, J., Chua, Y., Luo, X., Pan, Z., Liu, D., et al. (2019b). “MPD-AL:

an efficient membrane potential driven aggregate-label learning algorithm for

spiking neurons,” in Thirty-Third AAAI Conference on Artificial Intelligence

(Honolulu, HI).

Zhang, Y., Li, P., Jin, Y., and Choe, Y. (2015). A digital liquid state

machine with biologically inspired learning and its application to speech

recognition. IEEE Trans. Neural Netw. Learn. Syst. 26, 2635–2649.

doi: 10.1109/TNNLS.2015.2388544

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Luo, Qu, Zhang and Chen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2019 | Volume 13 | Article 559135

https://doi.org/10.1007/978-3-319-12637-1_46
https://doi.org/10.1016/j.neunet.2013.02.003
https://doi.org/10.1162/NECO_a_00450
https://doi.org/10.1109/TCYB.2018.2821692
https://doi.org/10.1371/journal.pone.0078318
https://doi.org/10.1109/TCDS.2017.2651943
https://doi.org/10.1109/TNNLS.2018.2833077
https://doi.org/10.1109/TNNLS.2015.2388544
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 27 June 2019

doi: 10.3389/fnins.2019.00656

Frontiers in Neuroscience | www.frontiersin.org 1 June 2019 | Volume 13 | Article 656

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Hesham Mostafa,

University of California, San Diego,

United States

Thomas Nowotny,

University of Sussex, United Kingdom

*Correspondence:

Ayon Borthakur

ab2535@cornell.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 02 February 2019

Accepted: 07 June 2019

Published: 27 June 2019

Citation:

Borthakur A and Cleland TA (2019) A

Spike Time-Dependent Online

Learning Algorithm Derived From

Biological Olfaction.

Front. Neurosci. 13:656.

doi: 10.3389/fnins.2019.00656

A Spike Time-Dependent Online
Learning Algorithm Derived From
Biological Olfaction

Ayon Borthakur 1* and Thomas A. Cleland 2

1Computational Physiology Laboratory, Field of Computational Biology, Cornell University, Ithaca, NY, United States,
2Computational Physiology Laboratory, Department of Psychology, Cornell University, Ithaca, NY, United States

We have developed a spiking neural network (SNN) algorithm for signal restoration

and identification based on principles extracted from the mammalian olfactory system

and broadly applicable to input from arbitrary sensor arrays. For interpretability and

development purposes, we here examine the properties of its initial feedforward

projection. Like the full algorithm, this feedforward component is fully spike timing-based,

and utilizes online learning based on local synaptic rules such as spike timing-dependent

plasticity (STDP). Using an intermediate metric to assess the properties of this initial

projection, the feedforward network exhibits high classification performance after

few-shot learning without catastrophic forgetting, and includes a none of the above

outcome to reflect classifier confidence. We demonstrate online learning performance

using a publicly available machine olfaction dataset with challenges including relatively

small training sets, variable stimulus concentrations, and 3 years of sensor drift.

Keywords: SNN, online learning, olfaction, STDP, local learning, spike time coding

INTRODUCTION

Convolutional networks have enabled tremendous progress in image recognition. However,
analogous problems in high-dimensional modalities that lack the two-dimensional internal
structure of visual images are not well-addressed by these networks, and the development of
brain-mimetic network-based signal identification strategies in such modalities has lagged. This
is unfortunate, as there are innumerable applications for such classifiers, including medical
screening, genomics, and machine olfaction. Among these, machine olfaction methods have been
directly inspired by the mammalian and insect olfactory systems—highly structured and well-
studied biological networks that learn rapidly and non-iteratively, utilize local learning rules,
resist catastrophic forgetting, can identify and learn new classes of odors (i.e., that do not map
to existing representations), and can robustly identify signals of interest in the presence of strong
interference. We studied the mammalian olfactory system in order to extract computational
principles and algorithms that could underlie its unmatched ability to identify and classify
genuinely high-dimensional signals under a variety of challenging conditions.

Most current research effort in machine olfaction is devoted to sensor development, including
technologies such as multi-chamber metal oxide semiconductor (MOS) sensors (Gonzalez et al.,
2011), high-density polymer sensors (Beccherelli et al., 2010), molecularly imprinted MOS and
polymer sensors (Shi et al., 1999; Iskierko et al., 2016; Zhang et al., 2017), and surface acoustic
wave sensors (Länge et al., 2008). In an effort to mimic properties of the biological system, there
even have been efforts to develop sensors based on G protein-coupled receptor proteins bound to

136

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00656
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00656&domain=pdf&date_stamp=2019-06-27
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ab2535@cornell.edu
https://doi.org/10.3389/fnins.2019.00656
https://www.frontiersin.org/articles/10.3389/fnins.2019.00656/full
http://loop.frontiersin.org/people/85378/overview
http://loop.frontiersin.org/people/7130/overview

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

carbon nanotube transistors (Liu et al., 2006). In contrast,
there has been relatively little effort spent mining the post-
sensory networks of the olfactory system for clues to its
unmatched performance, despite a broad understanding that
biological odorant receptors are neither particularly specific nor
particularly sensitive to odor stimuli. Rather, the power of the
biological olfactory system derives from the concerted effects
of the large numbers and diversity of its sensors, and by its
post-sensory signal processing in the olfactory bulb and related
cortices. These core principles inform recent developments
in neuromorphic olfaction (Persaud et al., 2013; Schmuker
et al., 2015), and have been highlighted in contemporary
artificial systems work based on the similarly-structured olfactory
system of insects (Schmuker et al., 2014; Mehta et al., 2017;
Diamond et al., 2019).

We here present a spiking neural network (SNN)-based online
learning algorithm, based on principles and motifs derived from
the mammalian olfactory system, that can accurately classify
noisy high-dimensional signals into categories that have been
dynamically defined by few-shot learning. In order to better
interpret the basis for the algorithm’s capabilities, the present
work focuses entirely on the properties of the first feedforward
projection, omitting the spike timing-based feedback loop that
forms the core network of the full OB model (Imam and Cleland,
2019). Glomerular-layer processing is represented here by two
preprocessing algorithms, whereas plasticity for rapid learning
is embedded in subsequent processing by the external plexiform
layer (EPL) network. Information in the EPL network is mediated
by patterns of spike timing with respect to a common clock
corresponding to the biological gamma rhythm, and learning
is based on localized spike timing-based synaptic plasticity
rules. The algorithm is implemented in PyTorch for GPU
computation, but designed for later implementation on state-
of-the-art neuromorphic computing hardware (Davies et al.,
2018); the initial version of the complete attractor model has
been implemented on Intel Loihi (Imam and Cleland, 2019). We
here demonstrate the interim performance of the feedforward
algorithm using a well-established machine olfaction dataset
with distinct challenges including multiple odorant classes,
variable stimulus concentrations, physically degraded sensors,
and substantial sensor drift over time.

CORE PRINCIPLES

The network is based on the architecture of the mammalian
olfactory bulb (reviewed in Cleland, 2014; Nagayama et al.,
2014). Primary olfactory sensory neurons (OSNs) express a single
odorant receptor type from a family of hundreds (depending
on animal species). The axons of OSNs that express the same
receptor type converge to a common location on the surface
of the olfactory bulb (OB), forming a mass of neuropil called
a glomerulus. Each glomerulus thus is associated with exactly
one receptor type, and serves as the basis for an OB column.
The profile of glomerular activation levels across the hundreds
of receptor types (∼400 in humans, ∼1,200 in rats and mice)
that are activated by a given odorant constitutes a high-
dimensional vector of sensory input (Zaidi et al., 2013). Within
this first (glomerular) layer of the OB, a number of preprocessing

computations also are performed, including a high-dimensional
form of contrast enhancement (Cleland and Sethupathy, 2006)
and an intricate set of computations mediating a type of global
feedback normalization that enables concentration tolerance
(Cleland et al., 2012). The cellular and synaptic properties of
this layer also begin the process of transforming stationary
input vectors into spike timing-based representations discretized
by 30–80Hz gamma oscillations (Kashiwadani et al., 1999; Li
and Cleland, 2017). The EPL, which constitutes the deeper
computational layer of the OB, comprises a matrix of reciprocal
interactions between principal neurons activated by sensory
input (mitral cells; MCs) and inhibitory interneurons (granule
cells; GCs). Computations in this layer depend on fine-timescale
spike timing (Lepousez and Lledo, 2013) and odor learning
(Lepousez et al., 2014; Mandairon et al., 2018), and modify the
information exported from the OB to its follower cortices.

Chemical sensing in machine olfaction is similarly based
upon combinatorial coding (Persaud andDodd, 1982); specificity
is achieved by combining the responses of many poorly-
selective sensors. In the present algorithm, networks were
defined with a number of columns such that each column
received input from one type of sensor in the connected input
array. Columns each comprised one external tufted (ET) cell
and one periglomerular (PG) cell to mediate glomerular-layer
preprocessing, and one MC and a variable number of GCs to
mediate EPL odorant learning and classification (Figure 1; see
section Online Learning). Sensory input was preprocessed by
the ET and PG cells of the glomerular layer (for concentration
tolerance), and then delivered as excitation to the array of
MCs, which generated action potentials. Each MC synaptically
excited a number of randomly determined GCs drawn from
across the entire network, whereas activated GCs synaptically
inhibited the MC in their home column. Importantly, for present
purposes, these inhibitory feedback weights were all reduced to
zero to disable the feedback loop and EPL attractor dynamics,
enabling study of the initial feedforward transformation based
on excitatory synaptic plasticity alone. During learning, the
excitatory synapses followed a STDP rule that systematically
altered their weights, thereby modifying the complex receptive
fields of recipient GCs in the service of odor learning. In the
present study, in lieu of the modified spike timing of the MC
ensemble that characterizes the output of the full model (Imam
and Cleland, 2019), the binary vector describing GC ensemble
activity in response to odor stimulation (0: non-spiking GC;
1: spiking GC) served as the processed data for classification.
Because we here report the capacities of the initial feedforward
projection of preprocessed data onto the GC interneuron array
within the EPL—an initial transformation that sets the stage for
ongoing dynamics not discussed herein—we refer to our present
method as the EPLff network algorithm.

MATERIALS AND METHODS

Data Preprocessing
Sensor Scaling
We defined a set of preprocessing algorithms, any or all of
which could be applied to a given data set to prepare it for
efficient analysis by the core algorithm. The first of these,

Frontiers in Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 656137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

FIGURE 1 | Schematic model of EPLff network circuitry (three columns depicted). Sensor-scaled input data are presented in parallel to excitatory external tufted (ET)

cells and inhibitory periglomerular (PG) cells in the glomerular layer. This glomerular-layer circuit performs an unsupervised concentration tolerance preprocessor step

based on the graded inhibition of ET cells by PG cells. The concentration-normalized ET cell activity then is presented as input to their co-columnar mitral cells (MCs).

In the external plexiform layer (EPL), comprising MC interactions with inhibitory granule cells (GCs), levels of sensory input are encoded in MCs as a spike time

precedence code across the MC population. MCs project randomly onto GCs with a connection probability of 0.4. These synaptic connections are plastic, following a

standard STDP rule that enables GCs to learn high-order receptive fields (Linster and Cleland, 2010). The GC population consequently learns to recognize specific

odorants by measuring the similarity of high dimensional GC activity vectors with the Hamming distance metric.

sensor scaling, is applied to compensate for heterogeneity in the
scales of different sensors—for example, an array comprising
a combination of 1.8V and 5V sensors. One simple solution
is to scale the responses of each sensor by the maximum
response of that sensor. Let x1, x2, x3, ..., xn be the responses of
n sensors to a given odor and s1, s2, s3, ..., sn be the maximum
response values of those sensors. Then, x1s1 ,

x2
s2
, x3s3 , ...,

xn
sn

represent
the sensor-scaled responses. The maximum sensor response
vector S could be predetermined (as in sensor voltages), or
estimated using a model validation set. Here, we defined S
using the model validation set (10% of Batch 1 data; see
section Dataset) and utilized the same value of S for scaling all
subsequent learning and inference data (see section Sensor Drift).
This preprocessing algorithm becomes particularly useful when
analyzing data from arbitrary or uncharacterized sensors, or from
arrays of sensors that have degraded and drifted non-uniformly
over time.

Unsupervised Concentration Tolerance
Concentration tolerance is a critical feature of mammalian as well
as insect olfaction (Cleland and Sethupathy, 2006; Cleland et al.,
2012; Serrano et al., 2013). Changes in odorant concentration
evoke non-linear effects in receptor activation patterns that are
substantial in magnitude and often indistinguishable from those
based on changes in odor quality. Distinguishing concentration
differences from genuine quality differences appears to rely upon
multiple coordinated mechanisms within olfactory bulb circuitry
(Cleland et al., 2012), but the most important of these is a
global inhibitory feedback mechanism instantiated in the deep

glomerular layer (Cleland et al., 2007; Banerjee et al., 2015).
The consequence of this circuit is that MC spike rates are not
strongly or uniformly affected by concentration changes, and
the overall activation of the olfactory bulb network remains
relatively stable. We implemented this concentration tolerance
mechanism as the graded inhibition of external tufted cells (ET)
by periglomerular cell (PG) interneurons in the OB glomerular
layer (Figure 1)—a mechanism based upon recent experimental
findings in which ET cells serve as the primary gates of MC
activation (Gire et al., 2012; Banerjee et al., 2015)—and tested
its importance empirically on machine olfaction data sets. This
concentration tolerance mechanism facilitates recognition of
odor stimuli even when they are encountered at concentrations
on which the network has not been trained; moreover, once
an odor has been identified, its concentration can be estimated
based on the level of feedback that the network delivers in
response to its presentation. This preprocessing step requires
no information about input data labels, and greatly facilitates
few-shot learning.

Input from each sensor was delivered directly to PG and

ET interneurons associated with the column corresponding to
that sensor, and the resulting PG cell activity was delivered

via graded synaptic inhibition onto all ET cells within all
columns in the network. ET cells in turn then synaptically
excited their corresponding, cocolumnar MCs (Figure 1). The
approximate outcome of this preprocessor algorithm is as
follows: given that xET1 , xET2 , xET3 , ..., xETn denote the responses
of ET cells to odor inputs (prior to their inhibition by PG
cells), and x

pg
1 , x

pg
2 , x

pg
3 , ..., x

pg
n denote the analogous responses of

Frontiers in Neuroscience | www.frontiersin.org 3 June 2019 | Volume 13 | Article 656138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

PG interneurons to these same inputs, the resulting input to
MC somata from ET cells following their PG-mediated lateral
inhibition will be

xET1
∑

xpg
,

xET2
∑

xpg
,

xET3
∑

xpg
,...,

xETn
∑

xpg
(1)

A version of this algorithm has been implemented using
spiking networks on IBM TrueNorth neuromorphic hardware
(Imam et al., 2012).

Core Algorithm
Cellular and Synaptic Models
We modeled the MCs and GCs as leaky integrate-and-fire
neurons with an update period of 0.01ms. The evolution of
the membrane potential v of MCs and GCs over time was
described as

τ
dv

dt
= −v+ IR (2)

where τ = rmcm was the membrane time constant and rm and
cm denote themembrane resistance and capacitance, respectively.
For MCs, the input current I corresponded to sensory input
received from ET cells (after preprocessing by the ET and
PG neurons of the glomerular layer; Figure 1), whereas for
GCs, I constituted the total synaptic input from convergent
presynaptic MCs. In GCs, the parameter R was set to equal rm,
whereas in MCs it was set to rm/rshunt , where rshunt was the
oscillatory shunting inhibition of the gamma clock (described
below). When v ≥ vth, where vth denotes the spike threshold,
a spike event was generated and v was reset to 0. The total
excitatory current to GCs was modeled as

I = gw(En − v) (3)

where En was the Nernst potential of the excitatory current
(+70mv), v was the GC membrane potential, and gw =
n
∑

i=1
wigmax

τ1τ2
τ1−τ2

(e
−(t−ti)

τ1 − e
−(t−ti)

τ2) describes the open probability

of the AMPA-like synaptic conductances. Here, ti denotes
presynaptic spike timing, wi denotes the synaptic weight, and
gmax is a scaling factor.

The parameters cm, rm, rshunt ,En, gmax, τ1, and τ2 were
determined only once each for MCs and GCs using a synthetic
data set (Borthakur and Cleland, 2017) and remained unchanged
during the application of the algorithm to real datasets. The
value of wiat each synapse also was set to a fixed starting value
based on synthetic data, but was dynamically updated according
to the STDP learning rule. The spiking thresholds vth of MCs and
GCs were determined by assessing algorithm performance on
the training and validation sets. Because we observed that using
heterogeneous values of vth across GCs improved performance,
the values of vth were randomly assigned across GCs from a
uniform distribution.

Gamma Clock and Spike Precedence Code
Oscillations in the local field potential are observed throughout
the brain, arising from the synchronization of activity in neuronal

ensembles. In the OB, gamma-band (30–80Hz) oscillations are
associated with the coordinated periodic inhibition of MCs by
GCs (Li and Cleland, 2017; Peace et al., 2017) that constrains
MC spike timing (Kashiwadani et al., 1999), thereby serving as a
common clock. For this work, we modeled a single cycle gamma
oscillation as a sinusoidal shunting inhibition rshunt delivered
onto all MCs,

rshunt = −3.8∗ cos(
2π∗f ∗t

1000
)+ 5 (4)

where f is the oscillation frequency (40Hz) and t is the simulation
time. We used a spike precedence coding scheme for MCs
(Panzeri et al., 2010) where earlier MC spike phases correspond
to stronger sensor input and are correspondingly more effective
at growing and maintaining spike timing-dependent plastic
synapses (Linster and Cleland, 2010). In the full model, the
gamma clock serves as the iterative basis for the attractor; for
present purposes in the EPLff context it served only to structure
the spike times of active MCs converging onto particular
GCs (precedence coding), and thereby to govern the changes
in excitatory synaptic weights according to the STDP rule
(see below).

Connection Topology
MC lateral dendrites support action potential propagation to GCs
across the entire extent of the OB (Xiong and Chen, 2002; Peace
et al., 2017), whereas inhibition of MCs by GCs is more localized.
Excitatory MC-GC synapses were initialized with a uniformly
distributed random probability cp of connection and a uniform
weightw0; synaptic weights were modified thereafter by learning.
The initial connection probability cp was determined using a
synthetic data set (Borthakur and Cleland, 2017), and was set
to cp = 0.4 in the present simulations. For present purposes,
as noted above, GC-MC inhibitory weights were set to zero to
disable attractor dynamics.

Spike Timing-Dependent Plasticity Rule
We used a modified spike timing-dependent plasticity rule
(STDP; Song et al., 2000; Dan and Poo, 2004) to regulate MC-GC
excitatory synaptic weight modification. Briefly, synaptic weight
changes were initiated by GC spikes and depended exponentially
upon the spike timing difference between the postsynaptic GC
spike and the presynaptic MC spike. When a presynaptic MC
spike preceded its postsynaptic GC spike within the same gamma
cycle, w for that synapse was increased; in contrast, when MC
spikes followed GC spikes, or when a GC spike occurred without
a presynaptic MC spike, w was decremented. Synaptic weights
were limited by a maximum weight wmax. The pairing of STDP
with MC spike precedence coding discretized by the gamma
clock generated a k winners take all rule, in which the value
of k depended substantially on the GC spike threshold vth
and the maximum excitatory synaptic weight wmax. Under this
rule, activated GCs were transformed from non-specialized cells
receiving weak inputs from a broad and random distribution of
MCs into specialized, fully differentiated neurons that responded
only to coordinated activation across a specific ensemble of k
MCs. Under all training conditions, for present purposes, we set

Frontiers in Neuroscience | www.frontiersin.org 4 June 2019 | Volume 13 | Article 656139

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

a high learning rate such that, after one cycle of learning, each of
the synapses could have one of only three values: w0, wmax , or 0.

The STDP parameters were similar to our previous work
using a synthetic data set (Borthakur and Cleland, 2017);
among these, only the maximum synaptic weight wmax was
tuned based on validation set performance. For this feedforward
implementation, online learning without the requirement of
storing training data yielded its best validation set performance
when wmax = w0, such that learning was limited to long-term
synaptic depression (Borthakur and Cleland, 2017).

Classification
For the classification of test odorants in this reduced feedforward
EPLff implementation, we calculated the Hamming distance
between the binary vectors of GC odorant representations.
Specifically, for every input, GCs generated a binary vector based
upon whether the GC spiked (1) or did not spike (0).Wematched
the similarity of test set binary vectors with the training set
vector(s) using the Hamming distance and classified the test
sample based upon the label of the closest training sample.
Alternatively, an overlap metric between GC activation patterns
also was calculated (Equation 6 from Linster and Cleland, 2010);
results based on this method were reliably identical to those
of the Hamming distance and hence were omitted from this
report. Classification was set to none of the above if the Hamming
distance of the GC binary vectors was >0.5, or if the overlap
metric was <0.5.

Dataset
We tested our algorithm on the publicly available UCSD gas
sensor drift dataset (Vergara et al., 2012; Rodriguez-Lujan et al.,
2014), slightly reorganized to better demonstrate online learning.
The original dataset contains 13,910 measurements from an
array of 16 polymer chemosensors exposed to six gas-phase
odorants spanning a wide range of concentrations (10–1,000
ppmv) and distributed across 10 batches that were sampled
over a period of 3 years to emphasize the challenge of sensor
drift over time (Table 1). Owing to drift, the sensors’ output
statistics change drastically over the course of the 10 batches;
between this property, the six different gas types, and the
wide range of concentrations delivered, this dataset is well-
suited to test the capabilities of the present algorithm without
exceeding the learning capacity of its feedforward architecture
(Figure 1). For the online learning scenario, we sorted each batch
of data according to the odorant trained, but did not organize
the data according to concentration. Hence, each training set
comprised 1–10 odorant stimuli of the same type but at randomly
selected concentrations. Test sets always included all six different
odorants, again at randomly selected concentrations. For sensor
scaling and the fine-tuning of the algorithm, we used 10% of the
Batch 1 data as a validation set. The six odorants in the dataset
are, in the order of training used herein: ammonia, acetaldehyde,
acetone, ethylene, ethanol, and toluene. Batches 3–5 included
only five different odorant stimuli, omitting toluene.

Eight features per chemosensor were recorded in the UCSD
dataset, yielding a 128-dimensional feature vector. However, in
contrast to previous efforts (Liu et al., 2015; Zhang and Zhang,

2015; Yan et al., 2017; Ma et al., 2018), we chose to use only
one feature per sensor in our analysis (the steady state response
level), for a total of 16 features. We imposed this restriction to
challenge our algorithm, and because generating features from
raw data requires additional processing, energy and time, all of
which can impair the effectiveness of field-deployable hardware
(Yin et al., 2018). Importantly, however, the sensor scaling and
concentration tolerance preprocessors described above (section
Data Preprocessing) would enable the EPLff network to utilize
the full 128-dimensional dataset without specific adaptations
other than expanding the number of columns accordingly.

RESULTS

Data Preprocessing
All sensory input data were preprocessed before being presented
to the network. First, sensor scaling was applied to weight
the 16 sensors equally in subsequent computations. The mean
raw responses of the 16 sensors differed widely, with some
sensors exhibiting an order of magnitude greater variance than
others across the 10 odorants tested (Figure 2A). Sensor scaling
(Figure 2B) mitigated this effect by scaling each sensor’s gain
such that the dynamic ranges of all sensors across the test
battery were effectively equal. This process enabled each sensor
to contribute a comparable amount of information to subsequent
computations (up to a limit imposed by each sensor’s signal to
noise ratio), and improved network performance by maintaining
consistent mean activity levels across test odorants.

Since each odorant was presented at a wide range of randomly
selected concentrations, the response of the sensor array to a
given odorant varied widely across presentations (most clearly
observable in Figure 2B). Application of the unsupervised
concentration tolerance preprocessor sharply and selectively
reduced the concentration-specific variance among responses
to presented odorants (Figure 2C). These preprocessed odorant
signatures then were presented to the plastic EPLff network
for training or classification. Notably, this preprocessor step
greatly facilitated cross-concentration odorant recognition, even
enabling the accurate classification of samples presented at
concentrations that were not included in the training set. This
was particularly important for one- and few-shot learning, in
which the network was trained on just one or a few exemplars
(respectively), at unknown concentration(s), such that most of
the odorants in the test set were presented at concentrations on
which the network had never been trained.

The sensor scaling preprocessor (retaining the scaling factors
determined from the 10% validation set of Batch 1), combined
with the normalization effects of the subsequent concentration
tolerance preprocessor, had the additional benefit of restoring
the dynamic range of degraded sensors in order to better match
classifier network parameters. Because of this, the network
did not need to be reparameterized to effectively analyze the
responses of the degraded sensors in the later batches of
this dataset. Compared to the raw sensor output of Batch 1
(Figure 2A; collected from new sensors), the raw sensor output
of Batch 7 (Figure 2D; collected after 21 months of sensor
deterioration) was reduced to roughly a third of its original range.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2019 | Volume 13 | Article 656140

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

TABLE 1 | Properties of the UCSD gas sensor drift dataset.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10

Months 1–2 3–10 11–13 14–15 16 17–20 21 22–23 24–30 36

#Samples 445 1,244 1,586 161 197 2,300 3,613 294 470 3,600

Months denotes the age of the sensor array during the sampling of the corresponding dataset. #Samples denotes the number of samples provided by the dataset in that particular batch.

FIGURE 2 | Sensor drift and the application of the sensor scaling and concentration tolerance preprocessors. (A) Raw sensory data from the Batch 1 training set. The

abscissa denotes the 16 different sensors of the array; the ordinate denotes the magnitude of their responses to specific odorants. The six different colors denote the

six odorants of the dataset battery (ammonia, purple; acetaldehyde, blue; acetone, aqua; ethylene, green; ethanol, orange; and toluene, red). Note that each odorant

is presented at many different concentrations (Vergara et al., 2012). (B) Sensory input from the Batch 1 data shown in (A) after preprocessing for sensor scaling. The

absolute range of output values is now rendered consistent across all of the sensors in the array. (C) Sensory input from the same Batch 1 data after subsequent

preprocessing for concentration tolerance by glomerular layer circuitry (Figure 1, ET and PG). The sensory signatures of each of the six odors are now more internally

consistent, with less variance owing to the concentration differences inherent in the original data (D–F). As (A–C) but with Batch 7 training data. These data were

taken from the same set of sensors as depicted in (A–C), but after 21 months of operational degradation, including intermittent periods of use and disuse (Table 1).

Sensor scaling (Figure 2E) mitigated this effect by magnifying
sensor responses into the dynamic range expected by the
network. Subsequent preprocessing for concentration tolerance
effectively reduced concentration-specific variance, revealing a
set of odorant profiles (Figure 2F) that, while qualitatively
dissimilar to their profiles based on the same sensors 21 months
prior (Figure 2C), appear only modestly degraded in terms of
their distinctiveness from one another.

For many machine olfaction applications, it is useful
to estimate the concentrations of gases in the vicinity of
the sensors. We sought to use the information extracted

from the concentration tolerance preprocessor to estimate
the concentrations of test samples after classification. The
concentration estimation curve was a function of both odorant
identity and the total sensor response profile. Using the sum
of the 16 sensor responses (S), we fitted an odorant-specific
quadratic curve for an implicit model of response profiles across
concentrations C :C = ax2 + b, where the parameters a and
b were determined from the training set. Figure 3 illustrates
total sensor responses across concentrations compared to this
theoretical prediction for all six odorant gases in Batches 1 and
7. The mean absolute error (MAE) of the prediction (in ppmv)

Frontiers in Neuroscience | www.frontiersin.org 6 June 2019 | Volume 13 | Article 656141

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

FIGURE 3 | Concentration response function predicted by the algorithm (curves) compared with measured sensor responses across multiple concentrations (stars).

(A) Batch 1 data with five-shot training. (B) Batch 7 data with five-shot training. (C) Batch 1 data with 10-shot training. (D) Batch 7 data with 10-shot training. The

colors denoting particular odorants are the same as in Figure 2.

TABLE 2 | Concentration estimation performance on test sets of all batches of UCSD gas sensor drift dataset for 5- and 10-shot learning (see Figure 3).

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Mean error

5 shot 35.14 51.39 32.00 44.73 66.02 37.01 76.60 17.89 0.34 71.06 43.22

10 shot 23.35 33.60 28.97 35.75 64.71 25.23 58.18 19.66 0.84 52.61 34.29

Concentrations were estimated using the predicted labels and raw sensor input. Errors represent experimental deviation from the predicted quadratic concentration curves and are in

units of ppmv.

was estimated as

∑

n

∣

∣Cpred − Cactual

∣

∣

n
(5)

where n denotes the total number of samples. For the five-shot
training of Batch 1 (i.e., five random samples drawn from Batch 1
for each odorant), the MAE was 35.14 units (Table 2). This error
was reduced to 23.35 for 10-shot learning (Table 2). Similarly,
the MAE for Batch 7 decreased from 76.60 (five-shot) to 58.18
(10-shot). To the best of our knowledge, this is the first parallel
network architecture to provide an estimate of concentration
along with concentration tolerance.

Online Learning
Unlike biological odor learning, artificial neural networks
optimized for a certain task tend to suffer from catastrophic
forgetting, and the pursuit of online learning capabilities in deep
networks is a subject of active study (McCloskey and Cohen,
1989; Kemker and Kanan, 2017; Kirkpatrick et al., 2017; Velez
and Clune, 2017; Zenke et al., 2017; Serrà et al., 2018). In contrast,
the EPLff learning network described herein naturally resists
catastrophic forgetting, exhibiting powerful online learning using
a fast spike timing-based coding metric. Moreover, we include
a none of the above outcome which permits classification only
above a threshold level of confidence (Huerta and Nowotny,
2009). Hence, after being trained on one odorant, the network

Frontiers in Neuroscience | www.frontiersin.org 7 June 2019 | Volume 13 | Article 656142

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

could identify a test sample as either that odorant or none of
the above. After subsequently training the network on a second
odorant, it could classify a test sample as either the first trained
odorant, the second trained odorant, or none of the above. This
online learning capacity enables ad hoc training of the network,
with intermittent testing if desired, with no need to train on or
even establish the full list of classifiable odorants in advance.
It also facilitates training under missing data conditions (e.g.,
batches 3–5 contain samples from only five odorants, unlike the
other batches which include six odorants), and could be utilized
to trigger new learning in an unsupervised exploration context.
Finally, once learned, the training set data need not be stored.

To analyze the 16-sensor UCSD dataset, we constructed a
16-column spiking network with 4800 GC interneurons and a
uniformly random MC-GC connection probability cp = 0.4.
This number of GCs was selected because it was the smallest
network that achieved asymptotic performance on the validation
dataset (Batch 1, one-shot learning; Table 3). We then trained
this network on ammonia using 10 different few-shot training
schemes: one-shot, two-shot, three-shot, up through 10-shot
in order to measure the utility of additional training. Test
data (across all trained odorants and all concentrations in
the dataset) were classified with 100.0% accuracy in all cases
(Figure 4A; average of three runs). We subsequently trained
each of these trained networks on acetaldehyde, using the same
number of training trials in each case. After one-shot learning
of acetaldehyde, the network classified all trained odorants with
99.61± 0.28% accuracy (average of three runs). After subsequent
one-shot learning of acetone, classification performance was
95.65± 0.19%; after ethylene, 96.06± 0.17%; after ethanol, 90.94
± 0.0%, and finally, after one-shot training on the sixth and
final odorant, toluene, test set classification performance across
all odorants was 90.27± 0.12%. Multiple-shot learning generally
produced correspondingly higher classification performance as
the training regimen expanded (Figure 4A). Classification using
an overlap metric (Linster and Cleland, 2010) rather than the
Hamming distance yielded almost identical results (not shown).
Critically, classification performance did not catastrophically
decline as additional odorants were learned in series (Figure 4,
purple to red (orange) traces in order), particularly when
higher-quality sensors were used (Figures 4A–E) or when larger
multiple-shot training sets were employed (Figure 4, panel
abscissas). These results illustrate that the EPLff network, even
in the absence of the full model’s recurrent component, exhibits
true online learning.

The availability of data in the UCSD dataset from over
3 years of sensor deterioration enabled the testing of this
online learning algorithm with both fresh and degraded sensor
arrays. Figures 4B–J presents classification results from the
same procedures described above but using progressively older
and more degraded sensors (Batches 2–10; Table 1; Vergara
et al., 2012). Classification performance declined overall as the
sensors deteriorated in later batches (Figures 4F–J), but could
be substantially rescued by expanding the training regimen from
one-shot to few-shot learning. Overall, multiple-shot training
reliably improved classification performance, though the residual
variance across different training regimes suggests that the

TABLE 3 | Effect of increased numbers of GCs in the network (GC vector length)

on EPLff classification accuracy by the Hamming distance criterion, based on

one-shot learning using the Batch 1 validation set.

#GC 1 class 2 classes 3 classes 4 classes 5 classes 6 classes

trained trained trained trained trained trained

160 100.0 100.0 95.65 96.15 85.71 84.44

1,600 100.0 100.0 95.65 96.15 85.71 86.67

4,800 100.0 100.0 95.65 96.15 85.71 88.89

9,600 100.0 100.0 95.65 96.15 85.71 88.89

14,400 100.0 100.0 95.65 96.15 85.71 88.89

19,200 100.0 100.0 95.65 96.15 85.71 88.89

Connection probabilities and initial synaptic weights were consistent across

all simulations.

random selection of better or poorer class exemplars for training
(particularly noting the uncontrolled variable of concentration)
exerted a measurable effect on performance (Figure 4; Table 4).

Batch 10 of the UCSD dataset poses a relatively challenging
classification problem. To produce it, the sensors were
intentionally degraded and contaminated by turning off
sensor heating for 5 months following the production of Batch
9 data (Vergara et al., 2012). Prior work with this dataset has
achieved up to 73.28% classification performance on Batch
10, without online learning and using a highly introspective
approach tailored for this specific dataset (Yan et al., 2017). In
contrast, 10-shot learning on Batch 10 using the present EPLff
algorithm achieved 85.43% classification accuracy.

To compare the EPLff network’s resistance to catastrophic
forgetting against an existing standard method, we built a 16-
input multi-layer perceptron (MLP) comprising 16 input units
for raw sensor input (ReLu activation), 4,800 hidden units (ReLu
activation), and six output units for odorant classification. The
MLP was trained using the Adam optimizer (Kingma and Ba,
2014) with a constant learning rate of 0.001. Since there was no
straightforward way of implementing none of the above in an
MLP, the MLP was only trained using two or more odorants
(Figure 5). After initial, interspersed training on two odorants
from Batch 1, the MLP classified test odorants at high accuracy
(99.41 ± 0.0%; average of three runs; Figure 5A). However,
its classification accuracy dropped sharply after the subsequent,
sequential learning of odorant 3 (30.61 ± 0.0% accuracy),
odorant 4 (16.24 ± 9.29%), odorant 5 (18.13 ± 0.0%), and
odorant 6 (15.99 ± 0.0%) (Figure 5). Catastrophic forgetting is
a well-known limitation of MLPs, and is presented here simply to
quantify the contrast in online learning performance between the
EPLff implementation and a standard network of similar scale.

Online Reset Learning for Mitigating

Sensor Drift
One of the most challenging problems of machine olfaction
is sensor drift, in which the sensitivity and selectivity profiles
of chemosensors gradually change over weeks to months of
use or disuse. Efforts to compensate for this drift have taken
many forms, from simply replacing sensors to designing highly
introspective or specific corrective algorithms. For example,

Frontiers in Neuroscience | www.frontiersin.org 8 June 2019 | Volume 13 | Article 656143

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

FIGURE 4 | EPLff algorithm performance on UCSD gas sensor drift dataset. (A) Classification performance during online training and testing of Batch 1 data. Plotted

values depict the average classification performance for all test samples of the trained classes. Ammonia was trained first; the purple plot (One trained class) denotes

the classification accuracy of ammonia test samples as either ammonia or none of the above. Acetaldehyde was trained second; the blue plot (Two trained classes)

denotes the classification accuracy of trained-class samples as either ammonia, acetaldehyde, or none of the above. Online training proceeded with acetone (aqua),

ethylene (green), ethanol (orange), and toluene (red) in that order, with the final plot (red or orange) finally denoting the average classification accuracy of all samples

into one of the six (or five) odorant classes or, potentially, as none of the above. Classification performance degraded slightly as the number of trained odorant

representations in the network increased, but improved as the number of learning shots increased (B). As (A), but after training and testing with Batch 2 data (C–J).

As (A,B), but after training and testing with Batch 3–10 data, in corresponding order. The colors denoting particular odorants are consistent with Figures 2, 3.

one approach requires the non-random, algorithmically guided
selection of relevant samples across batches and/or the utilization
of test data as unlabeled data for additional training (Zhang and
Zhang, 2015; Yan et al., 2017; Ma et al., 2018). Despite some
partial successes in these approaches, the real-world challenge
of sensor drift is a fundamentally ill-posed problem, in which
the rapidity and nature of functional drift is highly dependent
on the idiosyncratic chemistry of individual sensors and specific
sensor-analyte pairs.

We argue that the most practical solution to this challenge
is to retrain the network as needed to maintain performance,
leveraging its rapid, online learning capacity. Specifically, MC-
GC synaptic weights are simply reset to their untrained values
and the network then is rapidly retrained using the new
(degraded) sensor response profiles (reset learning). Retraining
is not a new approach, of course, but overtly choosing a
commitment to heuristic retraining as the primary method for
countering sensor drift is important, as it determines additional
criteria for real-world device functionality that candidate
solutions must address, such as the need for rapid, ideally online

retraining in the field and potentially a tolerance for lower-fidelity
training sets. Specifically, retraining a traditional classification
network may require:

1. Prior knowledge of the number of possible odor classes to
be identified,

2. A sufficiently large and representative training set
incorporating each of these classes,

3. The retuning of network hyperparameters to match the
altered characteristics of the degraded sensors, requiring an
indeterminate number of training iterations.

The EPL network is not constrained by the above requirements.
As demonstrated above, it can be rapidly retrained using
small samples of whatever training sets are available and
then be updated thereafter—including the subsequent
introduction of new classes. The storage of training data
for retraining purposes is unnecessary as the network does
not suffer from catastrophic forgetting. Finally, the present
network does not require hyperparameter retuning. Here,
only the MC-GC weights were updated during retraining

Frontiers in Neuroscience | www.frontiersin.org 9 June 2019 | Volume 13 | Article 656144

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

TABLE 4 | Mean EPLff classification accuracies across all test odorants on the UCSD drift data set by the Hamming distance criterion.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Average

1 shot 95.42 83.62 92.48 69.43 88.89 80.97 79.37 87.59 93.04 74.11 84.49

2 shot 95.15 90.38 93.97 93.68 89.35 91.35 80.98 90.41 94.68 77.36 89.73

3 shot 96.28 89.91 93.60 93.02 95.78 87.30 82.98 93.52 96.51 85.72 91.46

4 shot 96.62 90.29 97.02 92.64 96.87 91.25 83.89 93.26 97.02 82.58 92.14

5 shot 97.99 93.47 95.54 86.94 96.40 92.42 87.35 92.89 99.05 87.19 92.92

6 shot 96.00 85.44 94.70 99.69 93.01 92.22 87.77 92.93 98.73 87.36 92.78

7 shot 98.80 94.22 96.54 96.66 97.03 93.47 87.79 95.11 98.30 88.39 94.63

8 shot 98.59 96.45 95.79 95.48 95.64 92.78 89.43 96.16 98.81 90.34 94.95

9 shot 98.39 96.92 94.11 95.35 98.06 90.37 88.92 94.84 98.82 88.32 94.41

10 shot 99.39 92.44 94.95 97.73 98.22 94.55 89.74 92.30 99.48 90.46 94.93

Odorant-specific classification accuracies are depicted in Figure 4.

FIGURE 5 | Multilayer perceptron (MLP) performance on UCSD gas sensor drift dataset during online learning. (A) Classification performance during online training

and testing of Batch 1 data. The network was first trained with ammonia and acetaldehyde (see text); the blue plot denotes the classification accuracy of test samples

of these two odorants. Online training proceeded with acetone (aqua), ethylene (green), ethanol (orange), and toluene (red) in that order, with the final plot denoting the

average classification accuracy of all samples into one of the five (or four) odorant classes. Unlike the EPLff algorithm, the MLP suffered catastrophic forgetting after

training on new sample types. (B–J) MLP performance during online training and testing of Batch 2–10 data, in corresponding order. Except for the combination of

ammonia and acetaldehyde in the first training set, the colors denoting particular odorants are consistent with Figures 2–4.

(using the same STDP rule); sensor scaling factors and all
other parameters were ascertained once, using the 10%
validation set of Batch 1, and held constant thereafter.
Moreover, the none of the above classifier confidence feature
facilitates awareness of when the network may require
retraining; an increase in none of the above classifications

provides an initial cue that then can be evaluated using
known samples.

To assess the efficacy of this approach, we tested the EPLff
algorithm on the UCSD dataset framed as a sensor drift problem.
The procedure for this approach, and consequently the results,
are identical to those of section Online Learning above (Figure 4;

Frontiers in Neuroscience | www.frontiersin.org 10 June 2019 | Volume 13 | Article 656145

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

Table 4). Importantly, the sensor scaling factors and network
parameters were tuned only once, using the validation set from
Batch 1, on the theory that the concept of rapid reset was
incompatible with a strategy of re-optimizing multiple network
hyperparameters. Hence, no parameter changes were permitted,
other than the MC-GC excitatory synaptic weights that were
updated normally during training according to the STDP rule
(In order to avoid duplication of figures, this constraint was
observed in the simulations of section Online Learning as well).
As described above (Figure 4), Batch 1 training samples from all
six odorants again were presented to the network in an online
learning configuration, and classification performance then was
assessed by Batch 1 test data. MC-GC synaptic weights then were
reset to the default values (the reset), after which Batch 2 training
samples were presented to the network in the same manner,
followed by testing with Batch 2 test data including all odorants
and concentrations. We repeated this process for batches 3–
10. We also assessed post-reset classification performance across
all batches based on a maximally rapid reset (i.e., one-shot
learning) and compared this to performance after expanded
training protocols up through 10-shot learning. All classification
performance results (averaged across three full repeats each)
are depicted in Figure 4 and Table 4. In general, while modest
increases in classification accuracy were observed when the
training set size was larger, these results demonstrate scalability,
showing that the EPLff algorithm classifies large sets of test data
with reasonable accuracy even based on small training sets and
lacking control over the concentrations of presented odorants.

DISCUSSION

We present a neural network algorithm that achieves superior
classification performance in an online learning setting while not
being specifically tuned to the statistics of any particular dataset.
This property, coupled with its few-shot learning capacity and
SNN architecture, renders it particularly appropriate for field-
deployable devices based on learning-capable SNN hardware
(Davies et al., 2018; Imam and Cleland, 2019), recognizing that
the interim use of the Hamming distance for nearest-neighbor
classification in the present EPLff framework will not be part
of such a deployable system. This algorithm is inspired by the
architecture of the mammalian olfactory bulb, but is comparably
applicable to any high-dimensional dataset that lacks internal
low-dimensional structure.

The present EPLff incarnation of the network utilizes
one or more preprocessor algorithms to prepare data for
effective learning and classification by the core network.
Among these is an unsupervised concentration tolerance
algorithm derived from feedback normalization models of
the biological system (Cleland et al., 2007, 2012; Banerjee
et al., 2015), a version of which has been previously
instantiated in SNN hardware (Imam et al., 2012). Inclusion
of this preprocessor enables our algorithm to quickly learn
reliable representations based on few-shot learning from
odorant samples presented at different and unknown
concentrations. Moreover, the network then can generalize

across concentrations, correctly classifying unknown test
odorants presented at concentrations on which the network
was never trained, and even estimating the concentrations of
these unknowns.

The subsequent, plastic EPL layer of the network is based
on a high-dimensional projection of sensory input data onto a
network of interneurons known as granule cells (GCs). In the
present feed-forward implementation, our emphasis is on the
roles and capacities of two sequential preprocessor steps followed
by the STDP-driven plasticity of the excitatory MC-GC synapses.
Subsequent extensions of this work will restore the feedback
architecture of the original model (Imam and Cleland, 2019)
while enabling a more sophisticated development of learned
classes within the high-dimensional projection field. Even in its
present feedforward form, however, the EPLff algorithm exhibits
(1) rapid, online learning of arbitrary sensory representations
presented in arbitrary sequences, (2) generalization across
concentrations, (3) robustness to substantial changes in the
diversity and responsivity of sensor array input without requiring
network reparameterization, and, by virtue of these properties,
is capable of (4) effective adaptation to ongoing sensor drift
via a rapid reset-and-retraining process termed reset learning.
This capacity for fast reset learning represents a practical
strategy for field-deployable devices, in which a training sample
kit could be quickly employed in the field to retune and
restore functionality to a device in which the sensors may
have degraded. Importantly for such purposes, the EPLff
algorithm was not, and need not be, crafted to the statistics
of any particular data set, nor was the network pre-exposed
to testing set data as has been done in some approaches
(Zhang and Zhang, 2015; Yan et al., 2017).

Because field-deployable devices require a level of generic
readiness for undetermined or underdetermined problems, and
these EPLff properties favor such readiness, we have emphasized
the portability of these algorithms to neuromorphic hardware
platforms that may come to drive such devices. Interestingly,
many of the features of the biological olfactory system that
have inspired this design are appropriate for such devices. Spike
timing and event-based algorithms are attractive candidates
for compact, energy-efficient hardware implementation (Imam
et al., 2012; Merolla et al., 2014; Qiao et al., 2015; Diehl
et al., 2016; Esser et al., 2016; Davies et al., 2018). Spike
timing metrics can compute similar transformations as analog
and rate-based representations; indeed, it has been proposed
that spike based computations could in principle exhibit all
of the computational power of a universal Turing machine
(Maass, 1996, 2015). STDP is a localized learning algorithm that
is highly compatible with the colocalization of memory and
compute principle of neuromorphic design, and its theoretical
capacities have been thoroughly explored in diverse relevant
contexts (Nessler et al., 2009; Linster and Cleland, 2010;
Schmiedt et al., 2010; Bengio et al., 2015; O’Connor et al.,
2018). Our biologically constrained approach to algorithm design
also provides a unified and empirically verified framework to
investigate the interactions of these various algorithms and
information metrics, to better interpret and apply them to
artificial network design.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2019 | Volume 13 | Article 656146

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

Other groups have previously proposed networks for
gas sensor data analysis inspired by biological olfactory
systems. Models of olfactory bulb and piriform cortical
activity have been applied to analyze chemosensor array data
(Raman and Gutierrez-Osuna, 2005; Raman et al., 2006).
Algorithms based on the insect olfactory system have been
employed to learn and identify odor-like inputs (Diamond
et al., 2016; Delahunt et al., 2018) as well as to identify
handwritten digits—visual inputs incorporating additional
low-dimensional structure (Huerta and Nowotny, 2009;
Delahunt and Kutz, 2018; Diamond et al., 2019). More
broadly, insect mushroom bodies in particular have been
deeply studied in terms of both their pattern separation
and associative learning capacities (Hige, 2018; Cayco-Gajic
and Silver, 2019). These capacities potentiate one another
in service to odor learning and the classification of learned
odor-like signals, though they also have been applied to more
complex tasks (Ardin et al., 2016; Peng and Chittka, 2017).
In the present work, we sought to design artificial learning
networks to replicate some of the most powerful capabilities
of the biological olfactory system, in particular its capacity for
rapid online learning and the fast and effective classification
of learned odorants despite ongoing changes in sensor
properties and the unpredictability of odor concentrations.
Future work will extend this framework to incorporate the

feedback dynamics of the biological system, increase the
dimensionality of sensor arrays, and develop more sophisticated
biomimetic classifiers.

AUTHOR CONTRIBUTIONS

TC originally conceived the algorithm, which was vetted and
modified for present purposes by AB and TC. AB designed,
programmed, and performed the simulations. AB and TC
designed the figures and wrote the paper.

FUNDING

This work was supported by a Cornell University Sage fellowship
to AB and an Intel Neuromorphic Research Community faculty
award and NIH/NIDCD awards DC014367 and DC014701
to TC.

ACKNOWLEDGMENTS

The authors acknowledge Dr. Nabil Imam for interesting
discussions regarding the EPLff algorithm, and Dr. Ramon
Huerta and Dr. Jordi Fonollosa for discussions regarding the
UCSD Gas Sensor Array Drift Dataset.

REFERENCES

Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., and Webb, B. (2016).

Using an insect mushroom body circuit to encode route memory

in complex natural environments. PLoS Comput. Biol. 12:e1004683.

doi: 10.1371/journal.pcbi.1004683

Banerjee, A., Marbach, F., Anselmi, F., Koh, M. S., Davis, M. B., Garcia da

Silva, P., et al. (2015). An interglomerular circuit gates glomerular output and

implements gain control in the mouse olfactory bulb. Neuron 87, 193–207.

doi: 10.1016/j.neuron.2015.06.019

Beccherelli, R., Zampetti, E., Pantalei, S., Bernabei, M., and Persaud, K. C.

(2010). Design of a very large chemical sensor system for mimicking biological

olfaction. Sens. Actuators B Chem. 146, 446–452. doi: 10.1016/j.snb.2009.11.031

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards

biologically plausible deep learning. arXiv:1502.04156 [cs]. Available online

at: http://arxiv.org/abs/1502.04156 (accessed May 13, 2018).

Borthakur, A., and Cleland, T. A. (2017). “A neuromorphic transfer learning

algorithm for orthogonalizing highly overlapping sensor array responses,”

in 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic

Nose (ISOEN) (Montreal, QC), 1–3.

Cayco-Gajic, N. A., and Silver, R. A. (2019). Re-evaluating circuit

mechanisms underlying pattern separation. Neuron 101, 584–602.

doi: 10.1016/j.neuron.2019.01.044

Cleland, T. A. (2014). Construction of odor representations by

olfactory bulb microcircuits. Prog. Brain Res. 208, 177–203.

doi: 10.1016/B978-0-444-63350-7.00007-3

Cleland, T. A., Chen, S.-Y. T., Hozer, K. W., Ukatu, H. N., Wong, K. J., and

Zheng, F. (2012). Sequential mechanisms underlying concentration invariance

in biological olfaction. Front. Neuroeng. 4:21.

Cleland, T. A., Johnson, B. A., Leon, M., and Linster, C. (2007). Relational

representation in the olfactory system. Proc. Natl. Acad. Sci. U.S.A. 104,

1953–1958. doi: 10.1073/pnas.0608564104

Cleland, T. A., and Sethupathy, P. (2006). Non-topographical

contrast enhancement in the olfactory bulb. BMC Neurosci. 7:7.

doi: 10.1186/1471-2202-7-7

Dan, Y., and Poo, M.-M. (2004). Spike timing-dependent plasticity

of neural circuits. Neuron 44, 23–30. doi: 10.1016/j.neuron.2004.

09.007

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Delahunt, C. B., and Kutz, J. N. (2018). A Moth Brain Learns to Read MNIST.

Available online at: https://openreview.net/forum?id=HyYuqoCUz (accessed

May 13, 2018).

Delahunt, C. B., Riffell, J. A., and Kutz, J. N. (2018). Biological mechanisms

for learning: a computational model of olfactory learning in the Manduca

sexta moth, with applications to neural nets. Front. Comput. Neurosci. 12:102.

doi: 10.3389/fncom.2018.00102

Diamond, A., Schmuker, M., Berna, A. Z., Trowell, S., and Nowotny, T. (2016).

Classifying continuous, real-time e-nose sensor data using a bio-inspired

spiking network modelled on the insect olfactory system. Bioinspir. Biomim.

11:026002. doi: 10.1088/1748-3190/11/2/026002

Diamond, A., Schmuker, M., and Nowotny, T. (2019).

An unsupervised neuromorphic clustering algorithm. Biol. Cybern.

doi: 10.1007/s00422-019-00797-7

Diehl, P. U., Pedroni, B. U., Cassidy, A., Merolla, P., Neftci, E., and Zarrella,

G. (2016). TrueHappiness: neuromorphic emotion recognition on truenorth.

arXiv:1601.04183 [q-bio, cs]. Available online at: http://arxiv.org/abs/1601.

04183 (accessed May 13, 2018).

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,

R., Andreopoulos, A., et al. (2016). Convolutional networks for fast,

energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci.U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Gire, D. H., Franks, K. M., Zak, J. D., Tanaka, K. F., Whitesell, J. D.,

Mulligan, A. A., et al. (2012). Mitral cells in the olfactory bulb are mainly

excited through a multistep signaling path. J. Neurosci. 32, 2964–2975.

doi: 10.1523/JNEUROSCI.5580-11.2012

Gonzalez, J., Monroy, J. G., Garcia, F., and Blanco, J. L. (2011). “The multi-

chamber electronic nose (MCE-nose),” in 2011 IEEE International Conference

on Mechatronics (Istanbul), 636−641.

Frontiers in Neuroscience | www.frontiersin.org 12 June 2019 | Volume 13 | Article 656147

https://doi.org/10.1371/journal.pcbi.1004683
https://doi.org/10.1016/j.neuron.2015.06.019
https://doi.org/10.1016/j.snb.2009.11.031
http://arxiv.org/abs/1502.04156
https://doi.org/10.1016/j.neuron.2019.01.044
https://doi.org/10.1016/B978-0-444-63350-7.00007-3
https://doi.org/10.1073/pnas.0608564104
https://doi.org/10.1186/1471-2202-7-7
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1109/MM.2018.112130359
https://openreview.net/forum?id=HyYuqoCUz
https://doi.org/10.3389/fncom.2018.00102
https://doi.org/10.1088/1748-3190/11/2/026002
https://doi.org/10.1007/s00422-019-00797-7
http://arxiv.org/abs/1601.04183
http://arxiv.org/abs/1601.04183
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1523/JNEUROSCI.5580-11.2012
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

Hige, T. (2018). What can tiny mushrooms in fruit flies tell us about learning and

memory? Neurosci. Res. 129, 8–16. doi: 10.1016/j.neures.2017.05.002

Huerta, R., and Nowotny, T. (2009). Fast and robust learning by reinforcement

signals: explorations in the insect brain. Neural Comput. 21, 2123–2151.

doi: 10.1162/neco.2009.03-08-733

Imam, N., and Cleland, T. A. (2019). Rapid online learning and robust recall in

a neuromorphic olfactory circuit. arXiv:1906.07067 Cs Q-Bio. Available online

at: http://arxiv.org/abs/1906.07067 (accessed June 17, 2019).

Imam, N., Cleland, T. A., Manohar, R., Merolla, P. A., Arthur, J. V.,

Akopyan, F., et al. (2012). Implementation of olfactory bulb glomerular-

layer computations in a digital neurosynaptic core. Front. Neurosci. 6:83.

doi: 10.3389/fnins.2012.00083

Iskierko, Z., Sharma, P. S., Bartold, K., Pietrzyk-Le, A., Noworyta, K., and Kutner,

W. (2016). Molecularly imprinted polymers for separating and sensing of

macromolecular compounds and microorganisms. Biotechnol. Adv. 34, 30–46.

doi: 10.1016/j.biotechadv.2015.12.002

Kashiwadani, H., Sasaki, Y. F., Uchida, N., and Mori, K. (1999). Synchronized

oscillatory discharges of mitral/tufted cells with different molecular receptive

ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792.

doi: 10.1152/jn.1999.82.4.1786

Kemker, R., and Kanan, C. (2017). FearNet: brain-inspired model for incremental

learning. arXiv:1711.10563 [cs]. Available online at: http://arxiv.org/abs/1711.

10563 (accessed January 24, 2019).

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.

arXiv:1412.6980 [cs]. Available online at: http://arxiv.org/abs/1412.6980

(accessed January 30, 2019).

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,

et al. (2017). Overcoming catastrophic forgetting in neural networks. Proc. Natl.

Acad. Sci. 114, 3521–3526. doi: 10.1073/pnas.1611835114.

Länge, K., Rapp, B. E., and Rapp, M. (2008). Surface acoustic wave biosensors: a

review. Anal. Bioanal. Chem. 391, 1509–1519. doi: 10.1007/s00216-008-1911-5

Lepousez, G., and Lledo, P.-M. (2013). Odor discrimination requires

proper olfactory fast oscillations in awake mice. Neuron 80, 1010–1024.

doi: 10.1016/j.neuron.2013.07.025

Lepousez, G., Nissant, A., Bryant, A. K., Gheusi, G., Greer, C. A., and Lledo,

P.-M. (2014). Olfactory learning promotes input-specific synaptic plasticity

in adult-born neurons. Proc. Natl. Acad. Sci. U.S.A. 111, 13984–13989.

doi: 10.1073/pnas.1404991111

Li, G., and Cleland, T. A. (2017). A coupled-oscillator model of

olfactory bulb gamma oscillations. PLoS Comput. Biol. 13:e1005760.

doi: 10.1371/journal.pcbi.1005760

Linster, C., and Cleland, T. A. (2010). Decorrelation of odor representations

via spike timing-dependent plasticity. Front. Comput. Neurosci. 4:157.

doi: 10.3389/fncom.2010.00157

Liu, Q., Cai, H., Xu, Y., Li, Y., Li, R., and Wang, P. (2006). Olfactory cell-based

biosensor: a first step towards a neurochip of bioelectronic nose. Biosens.

Bioelectron. 22, 318–322. doi: 10.1016/j.bios.2006.01.016

Liu, Q., Hu, X., Ye, M., Cheng, X., and Li, F. (2015). Gas recognition

under sensor drift by using deep learning. Int. J. Intell. Syst. 30, 907–922.

doi: 10.1002/int.21731

Ma, Z., Luo, G., Qin, K., Wang, N., and Niu, W. (2018). Online sensor drift

compensation for E-nose systems using domain adaptation and extreme

learning machine. Sensors 18:E742. doi: 10.3390/s18030742

Maass, W. (1996). Lower bounds for the computational power of networks of

spiking neurons. Neural Comput. 8, 1–40. doi: 10.1162/neco.1996.8.1.1

Maass, W. (2015). To spike or not to spike: that is the question. Proc. IEEE 103,

2219–2224. doi: 10.1109/JPROC.2015.2496679

Mandairon, N., Kuczewski, N., Kermen, F., Forest, J., Midroit, M., Richard,

M., et al. (2018). Opposite regulation of inhibition by adult-born granule

cells during implicit versus explicit olfactory learning. eLife 7:e34976.

doi: 10.7554/eLife.34976

McCloskey,M., and Cohen, N. J. (1989). Catastrophic interference in connectionist

networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165.

doi: 10.1016/S0079-7421(08)60536-8

Mehta, D., Altan, E., Chandak, R., Raman, B., and Chakrabartty, S. (2017).

“Behaving cyborg locusts for standoff chemical sensing,” in 2017 IEEE

International Symposium on Circuits and Systems (ISCAS) (Baltimore,

MD), 1–4.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Nagayama, S., Homma, R., and Imamura, F. (2014). Neuronal

organization of olfactory bulb circuits. Front. Neural Circuits 8:98.

doi: 10.3389/fncir.2014.00098

Nessler, B., Pfeiffer, M., and Maass, W. (2009). “STDP enables spiking neurons

to detect hidden causes of their inputs,” in Advances in Neural Information

Processing Systems 22, eds Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.

Williams, and A. Culotta (Curran Associates, Inc.), 1357–1365. Available online

at: http://papers.nips.cc/paper/3744-stdp-enables-spiking-neurons-to-detect-

hidden-causes-of-their-inputs.pdf (accessed May 16, 2018).

O’Connor, P., Gavves, E., Reisser, M., andWelling, M. (2018). Temporally Efficient

Deep Learning with Spikes. Available online at: https://openreview.net/forum?

id=HyYuqoCUz (accessed May 18, 2018).

Panzeri, S., Brunel, N., Logothetis, N. K., and Kayser, C. (2010). Sensory neural

codes using multiplexed temporal scales. Trends Neurosci. 33, 111–120.

doi: 10.1016/j.tins.2009.12.001

Peace, S. T., Johnson, B. C., Li, G., Kaiser, M. E., Fukunaga, I., Schaefer, A. T.,

et al. (2017). Coherent olfactory bulb gamma oscillations arise from coupling

independent columnar oscillators. bioRxiv 213827. doi: 10.1101/213827

Peng, F., and Chittka, L. (2017). A simple computational model of the bee

mushroom body can explain seemingly complex forms of olfactory learning

and memory. Curr. Biol. 27, 224–230. doi: 10.1016/j.cub.2016.10.054

Persaud, K., and Dodd, G. (1982). Analysis of discrimination mechanisms in

the mammalian olfactory system using a model nose. Nature 299, 352–355.

doi: 10.1038/299352a0

Persaud, K. C., Marco, S., and Gutiérrez-Gálvez, A. (eds.). (2013). Neuromorphic

Olfaction. Boca Raton: CRC Press/Taylor & Francis.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Raman, B., and Gutierrez-Osuna, R. (2005). “Mixture segmentation and

background suppression in chemosensor arrays with a model of olfactory bulb-

cortex interaction,” in Proceedings 2005 IEEE International Joint Conference on

Neural Networks (Montreal, QC), Vol. 1, 131–136.

Raman, B., Sun, P. A., Gutierrez-Galvez, A., and Gutierrez-Osuna, R.

(2006). Processing of chemical sensor arrays with a biologically inspired

model of olfactory coding. IEEE Trans. Neural Netw. 17, 1015–1024.

doi: 10.1109/TNN.2006.875975

Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M., and Huerta, R.

(2014). On the calibration of sensor arrays for pattern recognition using the

minimal number of experiments. Chemom. Intell. Lab. Syst. 130, 123–134.

doi: 10.1016/j.chemolab.2013.10.012

Schmiedt, J., Albers, C., and Pawelzik, K. (2010). “Spike timing-dependent

plasticity as dynamic filter,” in Advances in Neural Information Processing

Systems 23, eds J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,

and A. Culotta (Curran Associates, Inc.), 2110–2118. Available online at: http://

papers.nips.cc/paper/3917-spike-timing-dependent-plasticity-as-dynamic-

filter.pdf (accessed May 18, 2018).

Schmuker, M., Nawrot, M., and Chicca, E. (2015). “Neuromorphic sensors,

olfaction,” in Encyclopedia of Computational Neuroscience, eds D. Jaeger and

R. Jung (New York, NY: Springer), 1991–1997.

Schmuker, M., Pfeil, T., and Nawrot, M. P. (2014). A neuromorphic network

for generic multivariate data classification. Proc. Natl. Acad. Sci. U.S.A. 111,

2081–2086. doi: 10.1073/pnas.1303053111

Serrà, J., Surís, D., Miron, M., and Karatzoglou, A. (2018). Overcoming

catastrophic forgetting with hard attention to the task. arXiv:1801.01423 [cs,

stat]. Available online at: http://arxiv.org/abs/1801.01423 (accessed January 24,

2019).

Serrano, E., Nowotny, T., Levi, R., Smith, B. H., andHuerta, R. (2013). Gain control

network conditions in early sensory coding. PLoS Comput. Biol. 9:e1003133.

doi: 10.1371/journal.pcbi.1003133

Shi, H., Tsai, W.-B., Garrison, M. D., Ferrari, S., and Ratner, B. D. (1999).

Template-imprinted nanostructured surfaces for protein recognition. Nature

398, 593–597. doi: 10.1038/19267

Frontiers in Neuroscience | www.frontiersin.org 13 June 2019 | Volume 13 | Article 656148

https://doi.org/10.1016/j.neures.2017.05.002
https://doi.org/10.1162/neco.2009.03-08-733
http://arxiv.org/abs/1906.07067
https://doi.org/10.3389/fnins.2012.00083
https://doi.org/10.1016/j.biotechadv.2015.12.002
https://doi.org/10.1152/jn.1999.82.4.1786
http://arxiv.org/abs/1711.10563
http://arxiv.org/abs/1711.10563
http://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1007/s00216-008-1911-5
https://doi.org/10.1016/j.neuron.2013.07.025
https://doi.org/10.1073/pnas.1404991111
https://doi.org/10.1371/journal.pcbi.1005760
https://doi.org/10.3389/fncom.2010.00157
https://doi.org/10.1016/j.bios.2006.01.016
https://doi.org/10.1002/int.21731
https://doi.org/10.3390/s18030742
https://doi.org/10.1162/neco.1996.8.1.1
https://doi.org/10.1109/JPROC.2015.2496679
https://doi.org/10.7554/eLife.34976
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fncir.2014.00098
http://papers.nips.cc/paper/3744-stdp-enables-spiking-neurons-to-detect-hidden-causes-of-their-inputs.pdf
http://papers.nips.cc/paper/3744-stdp-enables-spiking-neurons-to-detect-hidden-causes-of-their-inputs.pdf
https://openreview.net/forum?id=HyYuqoCUz
https://openreview.net/forum?id=HyYuqoCUz
https://doi.org/10.1016/j.tins.2009.12.001
https://doi.org/10.1101/213827
https://doi.org/10.1016/j.cub.2016.10.054
https://doi.org/10.1038/299352a0
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/TNN.2006.875975
https://doi.org/10.1016/j.chemolab.2013.10.012
http://papers.nips.cc/paper/3917-spike-timing-dependent-plasticity-as-dynamic-filter.pdf
http://papers.nips.cc/paper/3917-spike-timing-dependent-plasticity-as-dynamic-filter.pdf
http://papers.nips.cc/paper/3917-spike-timing-dependent-plasticity-as-dynamic-filter.pdf
https://doi.org/10.1073/pnas.1303053111
http://arxiv.org/abs/1801.01423
https://doi.org/10.1371/journal.pcbi.1003133
https://doi.org/10.1038/19267
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Borthakur and Cleland Online Learning in Neuromorphic Olfaction

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.

doi: 10.1038/78829

Velez, R., and Clune, J. (2017). Diffusion-based neuromodulation can eliminate

catastrophic forgetting in simple neural networks. PLoS ONE 12:e0187736.

doi: 10.1371/journal.pone.0187736

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., and Huerta, R.

(2012). Chemical gas sensor drift compensation using classifier ensembles.

Sens. Actuators B Chem. 166–167, 320–329. doi: 10.1016/j.snb.2012.01.074

Xiong, W., and Chen, W. R. (2002). Dynamic gating of spike

propagation in the mitral cell lateral dendrites. Neuron 34, 115–126.

doi: 10.1016/S0896-6273(02)00628-1

Yan, K., Zhang, D., and Xu, Y. (2017). Correcting instrumental variation and time-

varying drift using parallel and serial multitask learning. IEEE Trans. Instrum.

Meas. 66, 2306–2316. doi: 10.1109/TIM.2017.2707898

Yin, H., Wang, Z., and Jha, N. (2018). A hierarchical inference model

for internet-of-things. IEEE Trans. Multi-Scale Comput. Syst. 4, 260–271.

doi: 10.1109/TMSCS.2018.2821154

Zaidi, Q., Victor, J., McDermott, J., Geffen, M., Bensmaia, S., and Cleland, T. A.

(2013). Perceptual spaces: mathematical structures to neural mechanisms. J.

Neurosci. 33, 17597–17602. doi: 10.1523/JNEUROSCI.3343-13.2013

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic

intelligence. arXiv:1703.04200 [cs, q-bio, stat]. Available online at: http://arxiv.

org/abs/1703.04200 (accessed January 24, 2019).

Zhang, L., and Zhang, D. (2015). Domain adaptation extreme learning machines

for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 64,

1790–1801. doi: 10.1109/TIM.2014.2367775

Zhang, Y., Zhao, J., Du, T., Zhu, Z., Zhang, J., and Liu, Q. (2017). A gas sensor

array for the simultaneous detection of multiple VOCs. Sci. Rep. 7:1960.

doi: 10.1038/s41598-017-02150-z

Conflict of Interest Statement: Both authors are listed as inventors on a

Cornell University provisional patent (8631-01-US) covering other aspects of

this algorithm.

Copyright © 2019 Borthakur and Cleland. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2019 | Volume 13 | Article 656149

https://doi.org/10.1038/78829
https://doi.org/10.1371/journal.pone.0187736
https://doi.org/10.1016/j.snb.2012.01.074
https://doi.org/10.1016/S0896-6273(02)00628-1
https://doi.org/10.1109/TIM.2017.2707898
https://doi.org/10.1109/TMSCS.2018.2821154
https://doi.org/10.1523/JNEUROSCI.3343-13.2013
http://arxiv.org/abs/1703.04200
http://arxiv.org/abs/1703.04200
https://doi.org/10.1109/TIM.2014.2367775
https://doi.org/10.1038/s41598-017-02150-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 03 July 2019

doi: 10.3389/fnins.2019.00650

Frontiers in Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 650

Edited by:

Yansong Chua,

Institute for Infocomm Research

(A∗STAR), Singapore

Reviewed by:

Alexantrou Serb,

University of Southampton,

United Kingdom

Arash Ahmadi,

University of Windsor, Canada

*Correspondence:

Xu Yang

yangxu@tsinghua.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 28 January 2019

Accepted: 06 June 2019

Published: 03 July 2019

Citation:

He H, Shang Y, Yang X, Di Y, Lin J,

Zhu Y, Zheng W, Zhao J, Ji M,

Dong L, Deng N, Lei Y and Chai Z

(2019) Constructing an Associative

Memory System Using Spiking Neural

Network. Front. Neurosci. 13:650.

doi: 10.3389/fnins.2019.00650

Constructing an Associative Memory
System Using Spiking Neural
Network
Hu He 1, Yingjie Shang 1, Xu Yang 2*, Yingze Di 2, Jiajun Lin 2, Yimeng Zhu 2, Wenhao Zheng 2,

Jinfeng Zhao 2, Mengyao Ji 2, Liya Dong 1, Ning Deng 1, Yunlin Lei 2 and Zenghao Chai 2

1 Institute of Microelectronics, Tsinghua University, Beijing, China, 2 School of Computer Science and Technology, Beijing

Institute of Technology, Beijing, China

Development of computer science has led to the blooming of artificial intelligence (AI),

and neural networks are the core of AI research. Although mainstream neural networks

have done well in the fields of image processing and speech recognition, they do not

perform well in models aimed at understanding contextual information. In our opinion,

the reason for this is that the essence of building a neural network through parameter

training is to fit the data to the statistical law through parameter training. Since the

neural network built using this approach does not possess memory ability, it cannot

reflect the relationship between data with respect to the causality. Biological memory

is fundamentally different from the current mainstream digital memory in terms of the

storage method. The information stored in digital memory is converted to binary code

and written in separate storage units. This physical isolation destroys the correlation of

information. Therefore, the information stored in digital memory does not have the recall

or association functions of biological memory which can present causality. In this paper,

we present the results of our preliminary effort at constructing an associative memory

system based on a spiking neural network. We broke the neural network building process

into two phases: the Structure Formation Phase and the Parameter Training Phase. The

Structure Formation Phase applies a learning method based on Hebb’s rule to provoke

neurons in the memory layer growing new synapses to connect to neighbor neurons as

a response to the specific input spiking sequences fed to the neural network. The aim of

this phase is to train the neural network tomemorize the specific input spiking sequences.

During the Parameter Training Phase, STDP and reinforcement learning are employed to

optimize the weight of synapses and thus to find a way to let the neural network recall the

memorized specific input spiking sequences. The results show that our memory neural

network could memorize different targets and could recall the images it had memorized.

Keywords: spiking neural network, artificial intelligence, associative memory system, Hebb’s rule, STDP

1. INTRODUCTION

Development of computer science has led to the blooming of artificial intelligence (AI). Research
on AI has become extremely popular these days due to the ever-growing demands from
application domains such as pattern recognition, image segmentation, intelligent video analytics,
autonomous robotics, and sensorless control (Rowley et al., 1996; Lecun et al., 1998; Zaknich, 1998;

150

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00650
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00650&domain=pdf&date_stamp=2019-07-03
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yangxu@tsinghua.edu.cn
https://doi.org/10.3389/fnins.2019.00650
https://www.frontiersin.org/articles/10.3389/fnins.2019.00650/full
http://loop.frontiersin.org/people/729012/overview
http://loop.frontiersin.org/people/712348/overview
http://loop.frontiersin.org/people/677802/overview
http://loop.frontiersin.org/people/738047/overview
http://loop.frontiersin.org/people/702841/overview

He et al. Constructing Associative Memory Using SNN

Egmont-Petersen et al., 2002). Neural networks are the core of
AI research. Deep-learning neural networks (DNNs), the second
generation of artificial neural networks (ANNs), have become the
research hotspot of neural networks (Schmidhuber, 2014) and
have won numerous contests against people, including the most
famous one: recently, Google’s AlphaGoDNNdefeated Lee Sedol,
a famous professional I-go player.

To date, many studies have been conducted on DNN, focusing
on development of the learning and training methods (Jennings
and Wooldridge, 2012; Yoshua et al., 2013; Lecun et al., 2015)
of DNN. Researchers studying DNN typically use a fixed neural
network structure and train their DNN using a large amount of
data to optimize the weight of the connections/synapses.

Although the mainstream neural networks have done well in
the fields of image processing and speech recognition, they do
not perform well in models aimed at understanding contextual
information. In our opinion, the reason for this is that the essence
of building a neural network through parameter training is to fit
the data to the statistical law through parameter training. Since
the neural network built using this approach does not possess
memory ability, it cannot reflect the relationship between data
with respect to the causality. Recurrent neural networks (RNNs)
use a special network structure to address this issue, but the
complexity of its structure also leads to many limitations.

Spiking neural networks (SNNs) are the third generation of
ANNs. Compared with DNNs, SNNs are more similar to the
biological neural network; SNNs use spiking neurons, which
emit spiking signals when activated. The generated spiking trains
(sequences of spiking signals) are used to communicate between
neurons. Spiking train expresses time dimension information
naturally; therefore, SNNs offer an advantage when dealing with
information having string contextual relevance. However, due
to the lack of effective training algorithms, SNNs have not yet
been applied to many domains. Many studies on SNNs have
been published, but most of these involve using SNNs to perform
simple classification or image recognition.

Neural networks in organisms can perform many complex
functions, including memory. Since SNNs are more similar
to the biological neural network, we endeavored to use it to
construct a bionic memory neural network. Biological memory
is fundamentally different from the current mainstream digital
memory in terms of the storage method. The information stored
in digital memory is converted to binary code and written
in separate storage units. This physical isolation destroys the
correlation of information. Therefore, the information stored in
digital memory does not have the recall or association functions
of biological memory which can present causality.

The great capability and potential of biological neural network
fascinates us. So in this paper, we present our preliminary effort
at constructing an associative memory neural network based
on SNN. We present our method which could guide the grow
process of the memory neural network. We present our method
to optimize the weight of synapses of the neural network. And
through our experimental results, we show that the memory
neural network built using our method could possess memory
and recall ability after only undergoing a small scale of training.

In our method, we broke the neural network building
process into two phases: the Structure Formation Phase and
the Parameter Training Phase. The Structure Formation Phase
applies a learning method based on Hebb’s rule to provoke
neurons in the memory layer to new synapses to connect to
neighbor neurons as a response to the specific input spiking
sequences fed to the neural network. The aim of this phase
is to train the neural network to memorize the specific input
spiking sequences. During the Parameter Training Phase, STDP
and reinforcement learning are employed to optimize the weight
of synapses and thus find a way let the neural network recall the
memorized specific input spiking sequences.

The remaining text is organized as follows: section 2
discusses related work, section 3 mentions our motivation,
section 4 provides the study background, and section 5 discusses
our method to implement the memory neural network; the
experimental results are reported and discussed in section 6. The
conclusion is provided in section 7.

2. RELATED WORKS

Neural network construction has a long history, and many
algorithms have been proposed (Śmieja, 1993; Fiesler, 1994;
Quinlan, 1998; Perez-Uribe, 1999).

As the second generation of ANNs, DNNs have many
advantages. However, they rely heavily on data for training. With
the construction of DNN becoming increasingly complex and
powerful, the training process requires an increasing number of
computations, which has become a great challenge. Each session
of training becomes increasingly time and resource consuming,
which may become a bottleneck for DNNs in the near future.
Now, an increasing number of researchers are turning their
attention to SNNs.

In 2002, Bohte et al. (2000) derived the first supervised
training algorithm for SNNs, called SpikeProp, which is
an adaptation of the gradient-descent-based error-back-
propagation method. SpikeProp overcame the problems
inherent to SNNs using a gradient-descent approach by allowing
each neuron to fire only once (Wade et al., 2010). In 2010, Wade
et al. presented a synaptic weight association training (SWAT)
algorithm for spiking neural networks (SNNs), which merges
the Bienenstock-Cooper-Munro (BCM) learning rule with spike
timing dependent plasticity (STDP) (Wade et al., 2010).

In 2013, Kasabov et al. (2013) introduced a new model called
deSNN, which utilizes rank-order learning and Spike Driven
Synaptic Plasticity (SDSP) spike-time learning in unsupervised,
supervised, or semi-supervised modes. In 2017, they presented
a methodology for dynamic learning, visualization, and
classification of functional magnetic resonance imaging (fMRI)
as spatiotemporal brain data (Kasabov et al., 2016). The
method they presented is based on an evolving spatiotemporal
data machine of evolving spiking neural networks (SNNs)
exemplified by the NeuCube architecture (Kasabov, 2014), which
adopted both unsupervised learning and supervised learning in
different phases.

Frontiers in Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 650151

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

FIGURE 1 | Traditional Memory and CAM.

In 2019, He et al. (2019) proposed a bionic way to implement
artificial neural networks through construction rather than
training and learning. The hierarchy of the neural network is
designed according to analysis of the required functionality,
and then module design is carried out to form each hierarchy.
The results show that the bionic artificial neural network built
through their method could work as a bionic compound eye,
which can achieve the detection of an object and its movement,
and the results are better on some properties, compared with the
Drosophila’s biological compound eyes.

Some studies have already attempted to design neural
networks that behave similar to a memory system. Lecun et al.
(2015) proposed RNNs for time domain sequence data; RNNs
use a special network structure to address the aforementioned
issue, but the complexity of their structure also leads to
many limitations.

Hochreiter and Schmidhuber (1997) presented the long
short-term memory neural network, which is a variant of
RNNs. This neural network inherits the excellent memory ability
of RNNs with regard to the time series and overcomes the
limitation of RNN, that is, difficulty in learning and preserving
long-term information. Moreover, it has displayed remarkable
performance in the fields of natural language processing and
speech recognition. However, the efficiency and scalability of long
short-term memory is poor.

Hopfield (1988) has established the Hopfield network,
which is a recursive network computing model for simulating
a biological neural system. The Hopfield network can simulate
the memory and learning behavior of the brain. The successful
application of this network to solve the traveling salesman
problem shows the potential computing ability of the neural
computing model for the NP class problem. However, the

network capacity of the Hopfield network model is determined
by neuron amounts and connections within a given network, thus
the number of patterns that the network can remember is limited.
Also, since patterns that the network uses for training (called
retrieval states) become attractors of the system, repeated updates
would eventually lead to convergence to one of the retrieval
states. Thus, sometimes the network will converge to spurious
patterns (different from the training patterns). And when the
input patterns are similar, the network cannot always recall the
correct memorized pattern, which means the fault-tolerance is
affected by the relationship between input patterns.

3. MOTIVATION

In traditional memory, as shown in the left part of Figure 1, when
we input an address, the memory outputs data stored in that
address. In content addressable memory (CAM), as shown in the
right part of Figure 1, when we input data, the address of that
data is outputted.

In biological memory systems, both input and output are
contents (Figure 2). Traditional memory and CAM can be
cascaded to expand, as shown in Figure 3. However, due to
the designing and addressing method of CAM, it is difficult to
implement very large scale CAM. So, it is not able to implement
cascaded CAM with large capacity in this way.

Biological memory systems are built on a neural network,
which is composed of neurons. This kind of memory has a simple
structure, large capacity, and can be easily expanded to a very
large scale (Figure 3).

Therefore, the goal of this study was to build a bionic memory
neural network.

Frontiers in Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 650152

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

4. BACKGROUND

4.1. Neuron Model
The leaky integrate and fire neuron model was used in this
study (Indiveri, 2003). It is one of the most widely used models
due to its computing efficiency. This model’s behavior can be
described as Equation 1.

V(t) =

{

β · V(t − 1)+ Vin(t) when V < Vth

Vreset and set a spike when V ≥ Vth

where V(t) is the state variable and β is the leaky parameter;
Vth is the threshold state and Vreset is the reset state. Once V(t)
exceeds the threshold Vth, the neuron fires a spike and V(t) is
reset to Vreset .

4.2. Spiking Neural Networks
SNNs are inspired by the manner in which brain neurons
function: through synaptic transmission of spiking trains.
Spiking encoding integratesmultiple aspects of information, such

FIGURE 2 | Three different mechanism of memory.

as time, space, frequency, and phase. It is an effective tool for
complex space-time information processing. In addition, because
SNNs contain time dimension information, its information
processing ability is stronger than that of the previous two
generations of neural networks, especially in the processing of
information with strong contextual relevance.

There are many kinds of SNNs. In SNNs, all the information
is encoded in spiking signals. Spiking trains, consisting of
sequences of spiking signals, are transmitted in the neural
network to implement communication between neurons.

4.3. Spike-Timing-Dependent Plasticity
Spike-timing-dependent plasticity (STDP) is one of the most
important unsupervised learning rules in the SNNs. As a
biological process, it describes the regulatory mechanism of
synapses between neurons in the brain. In our method, STDP is
used to guide the adjustment of the weight of synapses during the
training of SNNs.

Let us suppose that there is a synapse from neuron Npre

to neuron Nsuc in an SNN, and the firing time of Npre is t1
while that of Nsuc is t2. According to STDP, if t1 < t2, then
the weight of the synapse from Npre to Nsuc should increase; if
t1 > t2, then the weight of the synapse from Npre to Nsuc should
decrease; if t1 = t2, then nothing should happen. The value of the
increase/decrease in weights depends on the difference between
t1 and t2.

4.4. Hebb’s Learning Rule
The structure of a biological neural network is neither regular
nor completely disordered, which is the result of the reflection
to the input spiking sequences it receives. Or, we can say
that it is the input spiking signals that define the structure
of a biological neural network through learning and training.
For example, in biological auditory systems, the structure
of neural networks is related to their sensitivity to different
frequencies of sound. However, the relationship between network
structure and external stimulation is difficult to describe using a
mathematical formula.

In our algorithm, we have applied a learning method based on
Hebb’s rule to form the structure of the memory neural network
as a response or reflection of the input spiking sequences. Hebb’s

FIGURE 3 | Memory’s cascading mechanism.

Frontiers in Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 650153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

learning rule (Hebb, 1988) is a neuropsychological theory put
forward by Donald Hebb in 1949. According to Hebb’s learning
rule (Hebb, 1988), when an axon of cell A is sufficiently close to
excite a cell B, and repeatedly or persistently takes part in firing it,
some growth-related process or metabolic changes take place in
one or both cells such that A’s efficiency, as one of the cells firing
B, is increased.

5. METHOD TO CONSTRUCT BIONIC
MEMORY NEURAL NETWORK

Our method for constructing the bionic memory neural network
consists of four major phases:

1. Initialization phase: Initialize the input spiking sequences and
initialize the neural network;

2. Structure Formation phase: Applies a learning method based
on Hebb’s rule to provoke neurons in the memory layer
growing new synapses to connect to neighbor neurons as
a response to the specific input spiking sequences fed to
the input layer of the neural network, until the connection
between the memory layer and the output layer is completed;

3. Parameter Training phase: STDP and reinforcement learning
are employed to optimize and adjust the weight of synapses in
the neural network;

4. Pruning phase: Comply with biological rules to
delete unnecessary connections, thus enhancing the
energy efficiency.

The detail process of our method is described in Algorithm 1.
In this work, the MNIST dataset (Lecun and Cortes, 2010)

was selected to test our proposed method. The MNIST is a
widely used dataset for optical character recognition, with 60,000
handwritten digits in the training set and 10,000 in the testing set.
The size of handwritten digital images in this dataset is 28× 28.

As stated in Algorithm 1, during the parameter training phase,
we would test the memory neural network if it could recall
the image it has already memorized. We would present one
image fromMNIST (already been processed and transferred into
spiking sequence) to the input layer for a certain time duration.
The input spiking sequence would be transferred to the memory
layer. Neurons in the output layer would receive responses from
the memory layer and fire if necessary, thus we could record the
firing sequence from the output layer. Since one image would
only be fed to the input layer for a limited time duration, after
a while, there would be no more firing in the output layer, which
indicates the end of the firing sequence. Then we will decide the
meaning of this firing sequence by the majority votes method.

5.1. Initialization Phase
5.1.1. Initialize the Input Spiking Sequences
Since the input to our memory neural network should be spiking
sequences, the MNIST images should first be transferred into
the spiking sequence. When the input spiking sequences are
initialized, a data preprocessing process is designed to convert the
MNIST images into spiking sequences.

Algorithm 1: Experiment Process

Input:

Input Image Set, S;
Original Memory Neural Network, NN;

Output:

Trained Memory Neural Network, NN;
1: Initialize the Input Spiking Sequences by employing the data

preprocessing process to convert S into spiking sequences set
SS;

2: Initialize the memory neural network;
3: Set the turn mark of the Structure Formation phase, TMSF =

0;
4: while (TMSF < 2) do
5: Set the training set of the Structure Formation phase, S1 =

SS;
6: while (S1 6= φ) do
7: Pick one input spiking sequence R from S1, and delete it

from S1;
8: Feed R to the memory neural network, and perform

Structure Formation phase;
9: end while

10: TMSF = TMSF + 1;
11: end while

12: Set the training set of the Parameter Training phase, S2 = SS;
13: while (S2 6= φ) do
14: Pick one input spiking sequence R from S2;
15: Feed R to the memory neural network;
16: if Result of the output layer is correct then
17: Delete R from S2;
18: else

19: Perform the Parameter Training phase for R;
20: end if

21: end while

The data preprocessing process is shown in Figure 4.
The convolution layer and the pooling layer are added to

abstract the features of the MNIST images, thus reducing the
amount of information our memory neural network needs
to memorize. Four 4 × 4 convolution kernels are used in
the convolution layer, which are shown in Figure 5. MNIST
images would be first processed by the four convolution kernels
separately, then the result of the four convolution kernels would
be processed by the pooling layer. The pooling layer employs 2×2
max_pooling operation.

The conversion layer is used to convert the images outputted
by the pooling layer into spiking sequences according to
the spiking encoding method. There are many kinds of
encoding methods in literature. The principle of priority
transmission of important information in the ROC (Rank
Order Coding) coding method (Thorpe and Gautrais, 1998)
is used to help design the encoding method in this paper.
The spiking encoding method used in this paper converts the
pixel value of the image into the delay time of the spiking
signal, and the higher the pixel value is, the shorter the
delay time is.

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 650154

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

FIGURE 4 | Data preprocessing process for initializing MNIST images into input spiking sequences.

FIGURE 5 | Four convolution kernels used in our method.

Suppose the set of pixels in an image is D, then for each
pixel d ∈ D, min_max normalization would first be employed
to avoid the singular sample data affecting the convergence
of the network:

R(d) =
d − dmin

dmax − dmin
(1)

where dmax and dmin are the maximum and minimum value
in D, respectively.

Four different spiking encoding methods have been designed
in this paper:

Method 1: Linear encodingmethod, where S(d) = Tmax−R(d)×
(Tmax − Tmin);
Method 2: Exponential encoding method, where S(d) =

(0.5R(d)−1 − 1)× (Tmax − Tmin)+ Tmin;
Method 3: Inverse encoding method, where S(d) = (2

R(d)+1
−

1)× (Tmax − Tmin)+ Tmin;

Method 4: Power encoding method, where S(d) = (R(d)−1)2×
(Tmax − Tmin)+ Tmin.

where Tmax and Tmin are the stop time and start time of the
spiking sequence for that image, while S(d) is the converted
spiking time for pixel d.

The relationship between the pixel value and the spiking time
for those four methods is compared in Figure 6. In the graph,
the horizontal coordinates represent the pixel values, while the
vertical coordinates are the encoded spiking times. According
to the comparison, we can conclude that the power encoding
method could emit more important information in an earlier
time, thus we chose the power encoding method as the spiking
encoding method for this paper.

The pixel value range of the MNIST images is [0,255]. After
being processed by the conversion layer, an image from the
MNIST set would be converted into an input spiking sequence
with spiking signals in a time range of [0, 100 ms].

Frontiers in Neuroscience | www.frontiersin.org 6 July 2019 | Volume 13 | Article 650155

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

5.1.2. Initialize the Neural Network
Our memory neural network consists of three layers: the input
layer, the memory layer and the output layer, as shown in
Figure 7. The input layer is in charge of receiving input spiking
sequences and feeding the input spiking sequences into the
memory layer. The memory layer would grow new connections
as a response of input spiking sequences to remember them, then
through proper training recall them and output the correct result
through the output layer. The output layer exists because we not
only want our neural network to possess memory ability, but also
to be able to output recall result. The number of neurons in the
output layer is set as the same as the number of targets that the
memory neural network needs to be memorized.

The task of this initialization phase is to initialize all three
layers and initialize the connections between the input layer and
the memory layer. The number of neurons in the input layer is
determined by the size of the target to be memorized. As shown
in Figure 9, neurons in the input layer are connected to neurons

FIGURE 6 | Comparison of the four encoding methods.

in the memory layer with a one-to-one style. So, the number
of neurons in the memory layer is same as the input layer. The
weight of synapses in this work is set in the range [0, 100]. In
order to provoke enough responses in the memory layer to allow
the learning method based on Hebb’s rule to work, the initialized
weight of connection from the input layer to the memory layer
should be strong enough, and is set as 50 in this work.

Since the original MNIST image is 28×28, after the operation
of the four convolution kernels in the convolution layer, the result
is 4 parts each with sizes of 25 × 25, and after the pooling layer,
the result is 4 parts each with sizes of 12×12. Since the result after
the pooling layer is 4 parts each with sizes of 12×12, there are 576
spiking signals in the spiking sequence in total after the process
of the conversion layer. Thus, in this work, we set 576 neurons
in the input layer of our memory neural network. Each spiking
signal in the spiking sequence would feed into one of the input
neurons. And since the connection style between input layer and
memory layer is one-to-one, there are also 576 neurons in the
memory layer in this work.

Ten images, each of different number (that is one image of
each from 0 to 9), are chosen from MNIST to form the Input
Image Set S of this work, as shown in Figure 8. Thus the number
of neurons in the output layer is 10, corresponding to the 10
images needed to be memorized.

FIGURE 8 | Input Image Set S.

FIGURE 7 | Structure of our memory neural network.

Frontiers in Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 650156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

FIGURE 9 | Different delay for each connection from input layer to memory layer to capture spatial information.

Each neuron in the input layer and memory layer will be
assigned a coordinate, as shown in Figure 9. The coordinates
of neurons in the memory layer would be used to calculate the
distance between them in later course of our algorithm.

As stated before in the paper, we use MNIST images as the
input. There are two kinds of information in a Mnist image.
The value of the pixel, and the location of that pixel. We use
the power encoding method to convert the value of the pixel
into the spiking time of that pixel. And in order to capture the
spatial information of the pixels, we have implemented a spatial-
to-temporal mechanism to decide the delay of a connection from
neurons in the input layer to neurons in the memory layer, as
shown in Figure 9. The delay of a connection from neuron i(x,y)
in a p× q input layer to neuronm(x,y) in a p× qmemory layer is
calculated as:

delayim(x,y) = x ∗ p+ y+ 1 (2)

here (x, y) is the coordinate of that neuron.
This acts as a way to encode spatial information into temporal

information, which then could be captured by SNNs.

5.2. Structure Formation Phase
During the structure formation phase, input spiking sequences
would be fed to the input layer of the memory neural network,
which would then be fed to the memory layer through
connections between the input layer and the memory layer.
The behavior of all the neurons in the memory layer would be

recorded. Additionally, a learning method is conducted to direct
the growing of new connections in the memory layer.

According to Hebb’s learning rule (Hebb, 1988), when an axon
of cell A is sufficiently near to excite a cell B, and repeatedly or
persistently takes part in firing it, some growth-related process
or metabolic changes take place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.

A learning method based on Hebb’s learning rule is designed
to direct the growing of new connections (synapses) in the
structure formation phase. According to our learning algorithm,
if the firing times of two neurons are very close, and there is no
connection between them, a connection is established between
them. In order to prevent the explosive growth of network
connections, our approach considers the coordinate of neurons
and does not establish connections when the Euclidean distance
between neurons exceeds a pre-defined threshold.

The detail description of this algorithm is provided below:

Step 1: Start the simulation, record firing behaviors of neurons
in the memory layer;
Step 2: Examine whether there exists a pair of neurons N1

and N2 in the memory layer such that both have fired during
the simulation, and the distance between neurons N1 and N2

satisfies that Dis(N1 to N2) < Disthreshold (where Disthreshold
is a pre-defined distance threshold for our algorithm). If any,
proceed to Step 3; otherwise, proceed to Step 4;
Step 3: Suppose the firing time of N1 is t1, and that of N2 is
t2. If 0 < abs(t1 − t2) < Threshold and (t1 < t2), establish
a connection from N1 to N2 with weight of 10, and proceed to

Frontiers in Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 650157

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

FIGURE 10 | Different growing behavior due to different learning Threshold.

Frontiers in Neuroscience | www.frontiersin.org 9 July 2019 | Volume 13 | Article 650158

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

Step 4; if 0 < abs(t1 − t2) < Threshold and (t1 > t2), establish a
connection from N2 to N1 with weight of 10, proceed to Step 4;
if abs(t1 − t2) ≥ Threshold, proceed to Step 4;
Step 4: If the stop criterion is satisfied, end the simulation;
otherwise, go to Step 2.

Since the connections in the memory layer are grown under
guidance of the learning method based on Hebb’s learning rule,

the distance threshold Disthreshold is used to control the number
of connections generated in the memory layer. If the threshold is
smaller, then there would be less connections. If the threshold is
larger, there would be more connections. The Disthreshold in this
work is set as 2.

This process continues until the stop criterion is satisfied.
Then, neurons in the memory layer are connected to the neurons
in the output layer according to their firing behavior. As we

FIGURE 11 | Different memory layer structure to memory different input images.

Frontiers in Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 650159

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

have discussed in section 5.1, a spatial-to-temporal mechanism
has been introduced to decide the delay of a connection from
input layer to memory layer, since the neuron model we used
is a LIF model. In order to avoid the unnecessary reduction of
firing activity of neurons in the output layer, due to the leaking
characteristics of the LIF model, we have also implemented
a temporal-to-spatial mechanism to calculate the delay of
connection from neurons in the memory layer to neurons in the
output layer. The delay of a connection formed between neuron
m(x,y) in the memory layer and neuron oz in the output layer is
calculated as:

delaymo(x,y) = [Nm − delayim(x,y)]+ 1 (3)

where Nm is the total number of neurons in the memory layer,
while (x, y) is the coordinate of neurons in the memory layer as
shown in Figure 9.

In our opinion, if a neuron in the memory layer fired
when we fed the input spiking sequence related to a specific
target, then it has causality with the memory behavior of that
specific target. Since neurons in the output layer correspond
to the targets needed to be memorized, we connect neurons
in the memory layer which fired when we fed the input
spiking sequence related to a specific target, to the neuron
in the output layer which represents that specific target.
The initialized weight of a connection established this way
is weight/n, where weight is a pre-defined constant, and n
is the number of neurons in the memory layer which are
connected to that neuron in the output layer. This is an
approximate process. The weight of connections from neurons

in the memory layer to neruons in the memory layer or
connections from neurons in the memory layer to neurons
in the output layer would be optimized during the parameter
training phase.

5.3. Parameter Training Phase
Through structure formation phase, we have made the neural
network to memorize specific targets represented by input
spiking sequences. However, as a memory, we still need to have a
recall mechanism. When fed the specific input spiking sequence
again, which the neural network has already memorized, the
memory neural network needs to recall it and output a correct
result, represented by the correct behavior of the output
layer. During the parameter training phase, we will rely on
STDP and reinforcement learning to optimize the weight of
connections (synapses) in the neural network to implement
the recall mechanism. The weight of connections between the
input layer and memory layer would not be optimized during
this phase. In the parameter training phase, the STDP option
of NEST (the evaluation platform we used for this work) is
always on.

The algorithm for parameter training phase is
described below:

Step 1: Pick one input from the input spiking sequences
training set;
Step 2: Feed the picked input to the input layer and examine the
result sequence of the output layer;
Step 3: If the result sequence of the output layer is correct, go to
Step 1; Otherwise go to Step 4;

FIGURE 12 | Generated memory neural network with learning Threshold of 5 ms.

Frontiers in Neuroscience | www.frontiersin.org 11 July 2019 | Volume 13 | Article 650160

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

Step 4: Identify the set of incorrectly firing neurons in the output
layer as SO and identify the set of firing neurons in the memory
layer as SM ;

Step 5: If neuron i is in SM , and neuron j is in SO, and there is
a connection from neuron i to neuron j, suppose the weight of

this connection isWi,j, thenWi,j = Wi,j ∗ Shrink_Coeff , and go
to Step 2;

During the parameter training phase, when a specific input
spiking sequence is fed to the input layer to train the memory
neural network, the firing behavior of the neurons in the output

FIGURE 13 | Recall response for images in the Input Image Set.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2019 | Volume 13 | Article 650161

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

layer would be recorded. The label corresponding to the most
frequently fired neuron in the output layer is identified as the
output result for this specific input spiking sequence. If the result
is correct, then we suppose the memory neural network could
correctly recall. If not, optimization needs to be done to establish
the right recall mechanism.

TABLE 1 | Recall test result for memory neural network.

Label Firing sequence of output neurons Output Result

0 [9 0 7 4 6 0 0 3 7 6 5 0] 0 Correct

1 [1] 1 Correct

2 [9 7 2 5 3 4 0 8 1 6 2 7 8 9 5 2 2] 2 Correct

3 [9 8 5 3 6 7 9 0 2 8 3 5 7 9 3 3] 3 Correct

4 [1 9 4 9 4 6 4 4] 4 Correct

5 [5 7 9 0 6 3 5 5] 5 Correct

6 [6 9 6 4 5 8 6 6] 6 Correct

7 [9 7 9 7 7 9 7] 7 Correct

8 [8 8 5 2 6 3 9 7 4 8 8] 8 Correct

9 [9 7 9 9 6 7 4 9] 9 Correct

As we said before, causality is the basis on which we built
our method. If a specific input spiking sequence is fed to
the input layer of the memory neural network, but the most
frequently fired neuron in the output layer is not the correct
one, it means that some of the fired neurons in the memory
layer have contributed to the result under incorrect causality
and thus need to be corrected while the contribution needs to
be weakened.

The algorithm would seek out those connections, and
STDP and reinforcement-based methods are used to
optimize the weight of those connections, as shown in the
algorithm description.

5.4. Pruning Phase
One of the most important advantages of the biological neural
network is its energy efficiency. In ourmethod, we introduced the
pruning phase to delete redundant and unnecessary connections
from the trained neural network. The method examines the
weight of all connections. If the weight of a connection is
smaller than a pre-defined threshold (set as 3 in this work),
that connection is deleted. Further, if a neuron has no output
connection, all the input connections of that neuron are also

FIGURE 14 | Verification of the association ability.

Frontiers in Neuroscience | www.frontiersin.org 13 July 2019 | Volume 13 | Article 650162

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

deleted. The pruning phase helps enhance the energy efficiency
of the neural network.

6. EXPERIMENT RESULTS

6.1. Evaluation Framework
We built our simulation platform based on the neural simulation
tool NEST (Plesser et al., 2015), which is a simulation platform
specially designed for SNN research. Biological spiking neural
networks are characterized by the parallel operation of thousands
of spiking neurons and the exchange of information between
them by spiking trains sent via synapses. This mode of
functioning fits the characteristics of the message passing
interface parallel mechanism in particular. NEST supports
message passing interface parallelization. Further, NEST provides
users a method of asynchronous multi-process concurrent
execution, which makes the program execute the model
asynchronously and efficiently, and automatically synchronizes
the process during the simulation without user interaction.
Parallel computing reduces the time required and increases the
scale of operations.

We conducted two sets of experiments. In the first set
of experiments, in order to show the difference between the
structures of the memory layer when used to memorize different
targets, we used 10 identical SNNs to train 10 different images
each, numbered from “0” to “9.” In the second set of experiments,
we used 1 SNN to train on all those 10 images to test the recall
(with those 10 images it already memorized) and association
(using an image it has not seen before) ability.

6.2. Results and Discussion
6.2.1. Growing Process of the Memory Layer
After the Initialization phase, there was no connection in the
memory layer. During the Structure Formation phase, when the
input spiking sequences are fed to the input layer of our memory
neural network, under the control of the learning method, new
connections would grow in the memory layer. An illustration
of the growing process of the memory layer during Structure
Transformation phase under different Threshold value choices is
shown in Figure 10. The 4x different subpanels in each relevant
panel correspond to the parts in the memory layer which are
the output of each kernel. The input image is a “0” from the
MNIST set. From the comparison we could conclude that, when
the Threshold is smaller, the connection in the memory layer is
more sparse, thus the memory layer could remember more due
to the larger available capacity.

6.2.2. Results of Memory Process
In order to verify that our memory neural network could
remember different targets, we conducted the first set of
experiments and built 10 memory neural networks, each fed with
a different image numbered from 0 to 9 (as shown in Figure 8).
The results of the memory layer after the Structure Formation
phase are shown in Figure 11, and the learning Threshold was
set to 5 ms. The 4x different subpanels in each relevant panel
correspond to the parts in the memory layer which are the output
of each kernel. Each memory neural network is trained with only
1 image. According to Figure 11, we could see that our memory

neural network could grow different connections in the memory
layer to memory different targets.

6.2.3. Results of Recall Process
In order to test the recall ability of our memory neural network,
we conducted the second set of experiment. First, we used all
the images in the Input Image Set S as shown in Figure 8 to
perform the Structure Formation phase. Then we used the images
in the Input Image Set S again to perform the Parameter Training
phase and the Pruning phase. The memory layer of the generated
memory neural network is shown in Figure 12. The 4x different
subpanels in each relevant panel correspond to the parts in the
memory layer which are the output of each kernel.

Figure 13 shows the firing behavior of the memory layer when
we feed the images from the Input Image Set S to the generated
memory neural network. The 4x different subpanels in each
relevant panel correspond to the parts in the memory layer which
are the output of each kernel. Different color represents different
firing time, as shown in the vertical coordinate line beside each
sub-figure. It could be seen that different images would provoke
different parts in the memory layer to respond and generate
different firing behavior. As described in section 5, when an
image is fed to the memory neural network, a firing sequence of
output neurons would be observed to decide the output result
for that image using the majority votes method. The results are
recorded in Table 1.

The results show that our memory neural network could recall
the images it has memorized.

6.2.4. Verification of the Association Ability
We also want to test whether, if we feed images that our memory
neural network has not seen before but are similar with the
images it has memorized, it has the association ability to give a
correct result. Figure 14 shows one of the example tests. The 4x
different subpanels in each relevant panel correspond to the parts
in the memory layer which are the output of each kernel. The
memory neural network used is the one generated in the second
set of experiments. The left top part is the image used in the
process to generate our memory neural network, while the right
top image is a new one to test the association ability.

The left bottom part is the recall response of the left top image,
while the right bottom part is the response of the memory layer
when the new one is fed to the memory neural network. When
the left top image is fed to the memory neural network, the firing
sequence observed in the output layer is [6 9 6 4 5 8 6 6], andwhen
the right top image is fed to the memory neural network, the
firing sequence observed in the output layer is [6 9 4 6]. So when
fed with unseen (unmemorized) but similar images, our memory
neural network could illustrate some degree of association ability.

7. CONCLUSION

In this paper, we presented our effort at constructing an
associative memory neural network through SNNs. We broke
the neural network building process into two phases: the
Structure Formation Phase and the Parameter Training Phase.
The Structure Formation Phase applies a learning method
based on Hebb’s rule to provoke neurons in the memory layer

Frontiers in Neuroscience | www.frontiersin.org 14 July 2019 | Volume 13 | Article 650163

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

He et al. Constructing Associative Memory Using SNN

growing new synapses to connect to neighbor neurons as a
response to the specific input spiking sequences fed to the neural
network. The aim of this phase is to train the neural network
to memorize the specific input spiking sequences. During the
Parameter Training Phase, STDP and reinforcement learning are
employed to optimize the weight of synapses, to find a way to
allow the neural network to recall the memorized specific input
spiking sequences.

Results show that, when the input spiking sequences are
fed to the input layer of our memory neural network, under
the control of the learning method, new connections would
grow in the memory layer, and learning the Threshold value
could be used to control the sparsity of the generated memory
layer. Experiments show that our memory neural network
was able to memorize different targets and could recall the
images it has memorized. Further experimentation showed that
when fed with unseen (unmemorized) but similar images, our
memory neural network could also illustrate some degree of
association ability.

Future work might include: (1)To teach our memory neural
network to memorize more complex targets; (2) to enhance our
memory neural network’s association ability; (3) to grow our
memory neural network into a large-scale memory inference
system using our method; and (4) the goal of constructing a

memory system with causality reasoning nearly the size of a
biological brain.

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

YD, JL, and YZ were in charge of data curation. WZ and JZ were
in charge of formal analysis. HH, YS, and XY were in charge of
methodology. MJ and LD were in charge of software. YL was
in charge of validation. ZC was in charge of visualization. XY
was in charge of writing. HH, ND, and XY were in charge of
funding acquisition.

FUNDING

This work was supported by the National Natural Science
Foundation of China (under Grant No. 91846303),
National Natural Science Foundation of China (under
Grant No. 61502032), and Tsinghua and Samsung
Joint Laboratory.

REFERENCES

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review

and new perspectives. IEEE Trans. Patt. Analy. Mach. Intell. 35, 1798–1828.

doi: 10.1109/TPAMI.2013.50

Bohte, S. M., La Poutre, J. A., and Kok, J. N. (2000). Error-Backpropagation

in Temporally Encoded Networks of Spiking Neurons. Technical Report, CWI

(Centre for Mathematics and Computer Science), Amsterdam.

Egmont-Petersen, M., Ridder, D. D., and Handels, H. (2002). Image

processing with neural networks: a review. Pattern Recogn. 35, 2279–2301.

doi: 10.1016/S0031-3203(01)00178-9

Fiesler, E. (1994). “Comparative bibliography of ontogenic neural networks,” in

International Conference on Artificial Neural Networks (Sorrento), 26–29.

He, H., Yang, X., Xu, Z., Deng, N., Shang, Y., Liu, G., et al. (2019). Implementing

artificial neural networks through bionic construction. PLoS ONE 14:e0212368.

doi: 10.1371/journal.pone.0212368

Hebb, D. O. (1988). “The organization of behavior,” in Neurocomputing:

Foundations of Research.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory.

Neuralcomputation 9, 1735–1780.

Hopfield, J. J. (1988). Artificial neural networks. IEEE Circ. Dev. Magaz. 4, 2–10.

doi: 10.1109/101.8118

Indiveri, G. (2003). “A low-power adaptive integrate-and-fire neuron

circuit,” in International Symposium on Circuits and Systems (Bangkok).

doi: 10.1109/ISCAS.2003.1206342

Jennings, N. R., and Wooldridge, M. J. (2012). Foundations of Machine Learning

(MIT Press).

Kasabov, N., Dhoble, K., Nuntalid, N., and Indiveri, G. (2013). Dynamic evolving

spiking neural networks for on-line spatio- and spectro-temporal pattern

recognition. Neural Netw. 41, 188–201. doi: 10.1016/j.neunet.2012.11.014

Kasabov, N. K. (2014). Neucube: a spiking neural network architecture for

mapping, learning and understanding of spatio-temporal brain data. Neural

Netw. 52, 62–76. doi: 10.1016/j.neunet.2014.01.006

Kasabov, N. K., Doborjeh, M. G., and Doborjeh, Z. G. (2016). Mapping,

learning, visualization, classification, and understanding of fmri data in the

neucube evolving spatiotemporal data machine of spiking neural networks.

Trans. Neural Netw. Learn. Syst. 99, 1–13. doi: 10.1109/TNNLS.2016.2612890

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436–444.

doi: 10.1038/nature14539

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.

Lecun, Y., and Cortes, C. (2010). The Mnist Database of Handwritten Digits.

Available online at: http://yann.lecun.com/exdb/mnist/

Perez-Uribe, A. (1999). Structure-Adaptable Digital Neural Networks.

Plesser, H. E., Diesmann, M., Gewaltig, M. O., and Morrison, A. (2015). NEST: the

Neural Simulation Tool. New York, NY: Springer.

Quinlan, P. T. (1998). Structural change and development in real and artificial

neural networks. Neural Netw. Off. J. Int. Neural Net. Soc. 11, 577–599.

Rowley, H. A., Baluja, S., and Kanade, T. (1996). Neural network-based face

detection. IEEE Trans. Patt. Analy. Mach. Intell. 20, 203–208.

Schmidhuber, J. (2014). Deep learning in neural networks: an overview. Neural

Netw. 61, 85–117. doi: 10.1016/j.neunet.2014.09.003

Śmieja, F. J. (1993). Neural network constructive algorithms: trading

generalization for learning efficiency? Circ. Syst. Signal Proc. 12, 331–374.

Thorpe. S., and Gautrais, J. (1998). “Rank order coding,” in Computational

Neuroscience (Springer).

Wade, J. J., Mcdaid, L. J., Santos, J. A., and Sayers, H. M. (2010). Swat: a

spiking neural network training algorithm for classification problems.

IEEE Trans. Neural Netw. 21, 1817–1830. doi: 10.1109/TNN.2010.

2074212

Zaknich, A. (1998). Introduction to the modified probabilistic neural network for

general signal processing applications. IEEE Trans. Signal Proc. 46, 1980–1990.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 He, Shang, Yang, Di, Lin, Zhu, Zheng, Zhao, Ji, Dong, Deng, Lei

and Chai. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 July 2019 | Volume 13 | Article 650164

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1016/S0031-3203(01)00178-9
https://doi.org/10.1371/journal.pone.0212368
https://doi.org/10.1109/101.8118
https://doi.org/10.1109/ISCAS.2003.1206342
https://doi.org/10.1016/j.neunet.2012.11.014
https://doi.org/10.1016/j.neunet.2014.01.006
https://doi.org/10.1109/TNNLS.2016.2612890
https://doi.org/10.1038/nature14539
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/TNN.2010.2074212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 04 July 2019

doi: 10.3389/fnins.2019.00686

Frontiers in Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 686

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Hesham Mostafa,

University of California, San Diego,

United States

Arindam Basu,

Nanyang Technological University,

Singapore

*Correspondence:

Nicholas Soures

nms9121@rit.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 01 March 2019

Accepted: 17 June 2019

Published: 04 July 2019

Citation:

Soures N and Kudithipudi D (2019)

Deep Liquid State Machines With

Neural Plasticity for Video Activity

Recognition. Front. Neurosci. 13:686.

doi: 10.3389/fnins.2019.00686

Deep Liquid State Machines With
Neural Plasticity for Video Activity
Recognition
Nicholas Soures* and Dhireesha Kudithipudi

Neuromorphic AI Laboratory, Rochester Institute of Technology, Rochester, NY, United States

Real-world applications such as first-person video activity recognition require intelligent

edge devices. However, size, weight, and power constraints of the embedded

platforms cannot support resource intensive state-of-the-art algorithms. Machine

learning lite algorithms, such as reservoir computing, with shallow 3-layer networks

are computationally frugal as only the output layer is trained. By reducing network

depth and plasticity, reservoir computingminimizes computational power and complexity,

making the algorithms optimal for edge devices. However, as a trade-off for their frugal

nature, reservoir computing sacrifices computational power compared to state-of-the-art

methods. A good compromise between reservoir computing and fully supervised

networks are the proposed deep-LSM networks. The deep-LSM is a deep spiking

neural network which captures dynamic information over multiple time-scales with

a combination of randomly connected layers and unsupervised layers. The deep-

LSM processes the captured dynamic information through an attention modulated

readout layer to perform classification. We demonstrate that the deep-LSM achieves

an average of 84.78% accuracy on the DogCentric video activity recognition task,

beating state-of-the-art. The deep-LSM also shows up to 91.13% memory savings

and up to 91.55% reduction in synaptic operations when compared to similar recurrent

neural network models. Based on these results we claim that the deep-LSM is capable

of overcoming limitations of traditional reservoir computing, while maintaining the low

computational cost associated with reservoir computing.

Keywords: spiking, LSM, local learning, deep, recurrent

1. INTRODUCTION

Enabling intelligence on the edge minimizes the round trip delay in decision-making,
lowers communication costs, load-balances for the end user, and enhances security with caching
or local algorithms to pre-process the data. An emerging input source for edge devices is streaming
visual data from first person cameras, such as in smart vehicles, or wearable devices. Being
able to accurately process streaming video is crucial for edge devices to understand and react
to their environment in a wide range of applications (eg: path planning, action selection, or
surveillance). A popular application for demonstrating understanding of first-person video data
in machine learning and computer vision is video activity recognition. However, majority of
state-of-the-art methods for video activity recognition do not target low-end embedded platforms.
Complex networks are not amenable for on-device intelligence due to their compute and memory

165

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00686
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00686&domain=pdf&date_stamp=2019-07-04
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nms9121@rit.edu
https://doi.org/10.3389/fnins.2019.00686
https://www.frontiersin.org/articles/10.3389/fnins.2019.00686/full
http://loop.frontiersin.org/people/533479/overview
http://loop.frontiersin.org/people/209835/overview

Soures and Kudithipudi Deep Spiking Neural Networks

intensive operations (networks with 10–60 million synapses
require 0.32–2GB to store synaptic weights Alom et al., 2018) and
long training times (in the order of hours to days with GPUs Fu
and Carter, 2016).

In the early 2000s, a computationally light algorithm known
as reservoir computing (RC) was proposed by two research
groups independently. The two algorithms are otherwise known
as the Echo State Network (ESN) (Jaeger, 2001) and the Liquid
State Machine (LSM) (Maass et al., 2002). The main difference
between the two is that the LSM is a biologically inspired
spiking neural network (SNN), whereas the ESN is a rate-
based approximation. In this work we focus on the LSM,
a neurally inspired algorithm, with innate characteristics for
edge devices that bring in size, weight, and power constraints.
In particular SNNs can store the neuronal activation’s in a
single bit (all or nothing signal), can consume as low as
≈ 20pJ per spike (Neftci et al., 2017), and shown to be
computationally at least as powerful as sigmoid and threshold
neurons (Maass, 1997).

The LSM is a three-layer neural network which consists
of an input layer, a liquid layer, and a readout layer. The
recurrent connections in the liquid layer allow it to capture
dynamic information, where information fades out over time.
The advantage of the LSM is that all the synaptic connections,
except for those which connect to the readout layer, are randomly
initialized and remain fixed. Unique inputs will produce distinct
perturbations in the state of the high-dimensional liquid layer
from which information can be extracted. By using fixed
connections, the LSM can circumvent the need for expensive
learning rules and the problem of vanishing gradients which can
impede learning with gradient descent approaches in recurrent
neural networks. In Soures et al. (2017), it was shown that
these networks are robust to internal noise, making them
a natural choice for embedded systems, particularly analog
implementations which are prone to device noise. However,
the conventional LSM model has shown limited applicability in
complex real-world problems owing to the single dynamical layer
driven by an input signal (Hermans and Schrauwen, 2013; Ma
et al., 2017). The single layer constricts the temporal dynamics
of the LSM resulting in very large reservoir networks to solve
trivial tasks. Another drawback with LSM is its dependence
on the initialization of random synaptic connections. Recent
literature highlights the gaps in conventional LSM, RC networks
in general, and the need to extend the capabilities of these
networks (Jaeger, 2007; Triefenbach et al., 2010, 2013; Gallicchio
and Micheli, 2016; Wang and Li, 2016; Ma et al., 2017; Bellec
et al., 2018). Motivated by these observations, we propose a novel
framework that drastically reduces the overall computational
resources without sacrificing the overall performance in complex
spatiotemporal task. Specific contributions of this work are

1. Deep-LSM, a semi-trained deep spiking recurrent neural
network with LSM as a core building block, capable of
capturing information over multiple time-scales.

2. Demonstrate that a modular/deep architecture significantly
reduces the memory requirements for storing synaptic
weights.

3. Use local, unsupervised plasticity mechanisms to partially
train the network yields state-of-the-art performance while
minimizing the cost of training.

4. Design an attention modulated readout layer to selectively
process information in the deep-LSM with limited
computational resources.

5. Analyze the model performance on first-person video activity
recognition with DogCentric dataset (Iwashita et al., 2014)
and demonstrate state-of-the-art performance.

6. Observe ≈ 90% memory savings and reduction in number
of operations compared to a LSTM and ≈ 25% reduction of
memory consumption in comparison to a standard LSM and
16% decrease in number of operations.

2. RELATED WORK

2.1. Video Activity Recognition
Egocentric video activity recognition is quickly becoming a
pertinent application area due to first person wearable devices
such as body cameras or in robotics. In these application
domains, real-time learning is critical for deployment beyond
controlled environments (such as deep space exploration), or
to learn continuously in novel scenarios. Many research groups
have focused on solving video activity recognition problems
with 2D and 3D convolutions (Tran et al., 2015), optical flow
(Simonyan and Zisserman, 2014; Zhan et al., 2014; Ma et al.,
2016; Song et al., 2016a), hand-crafted features (Ryoo et al., 2015),
combining motion sensors with visual information (Song et al.,
2016a,b), or using long-short term memory (LSTM) networks
to capture dynamics about spatial information extracted by a
convolutional neural network (CNN) (Baccouche et al., 2011;
Yue-Hei Ng et al., 2015). These approaches, while befitting for
high-end compute platforms, are often not suitable for wearable
devices due to the resource intensive networks or the long
training times.

Efficient video activity recognition designed for mobile
devices has been studied by several research groups. An energy
aware training algorithm was proposed in Possas et al. (2018),
to demonstrate energy efficient video activity recognition on
complex problems. In this work, the authors use reinforcement
learning to train a network on both video and motion
information captured by sensors while penalizing actions that
have high energy costs. Another approach to minimizing energy
consumption in mobile devices when using an accelerometer for
activity recognition is tominimize the sampling rate (Zheng et al.,
2017). In Yan et al. (2012) and Lee and Kim (2016), the authors
investigate a network with adaptive features, sampling frequency,
and window size for minimizing energy consumption during
activity recognition.

Recently Graham et al. (2017) proposed convolutional drift
networks (CDNs) for enabling real-time learning on mobile
devices. CDNs are an architecture for video activity recognition
which use a pre-trained CNN to extract features from video
frames and an ESN to capture temporal information. The
motivation behind the CDNs is to minimize the training time
and compute resources for spatiotemporal tasks when compared

Frontiers in Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 686166

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

to networks akin to LSTMs (Yue-Hei Ng et al., 2015; Graham
et al., 2017). A similar sized RC network requires one fourth of
the weights, has faster training, and lower energy consumption
as that of an LSTM.

2.2. Hierarchical Reservoir Computing
As conventional reservoir networks are shallow and capture
information in short time-scales, recently several research groups
have investigated hierarchical reservoir models. A hierarchical
ESN is introduced in Jaeger (2007) with the goal of developing
a hierarchical information processing system which feeds on
high-dimension time series data and learns its own features
and concepts with minimal supervision. The hierarchical layers
help the system to process information on multiple timescales
where faster information is processed in the earlier layers and
information on slower timescales is processed in the final layers.
The outputs of each reservoir feed sequentially into the next
reservoir in the network. The networks prediction is made from
a combination of all the reservoir outputs. More recently, a
hierarchical ESN was proposed in Ma et al. (2017). In this
work the authors explore the use of trained auto-encoders,
principal component analysis, and random connections as
encoding layers between each reservoir layer. The downside
to this approach is that the output layer is trained on the
activity of every encoding layer, the last reservoir, and the
current input. This means as the number of layers increases,
the output layer size will increase. Another hierarchical model
was developed in Triefenbach et al. (2010). This model is
implemented by stacking trained ESNs on top of each other
to create a hierarchical chain of reservoirs. The hierarchical
ESN is applied to speech recognition where the intermediary
layers have a readout layer trained to perform the tasks and
the inputs to the hierarchical layers are the predictions of the
previous layers. With this approach each layer corrects the
error from the previous layer. The authors later designed a
hierarchical ESN where each layer was trained on a broad
representation of the output, which became more specific at
later layers (Triefenbach et al., 2013). Another hierarchical
ESN proposed in Gallicchio and Micheli (2016) connects an
ensemble of ESNs together. In Carmichael et al. (2018), our
group has proposed a mod-deepESN architecture, a modular
architecture that allows for varying topologies of deep ESNs.
Intrinsic plasticity mechanism is embedded in the ESN that
contributes more equally toward predictions and achieves better
performance with increased breadth and depth. In Wang and
Li (2016), a deep LSM model is proposed for image processing
which uses multiple LSMs as filters with a single response. The
authors use convolution and pooling similar to the process of
CNNs and train the LSMs with an unsupervised learning rule.
In Bellec et al. (2018), the authors introduce an approximation
of backpropagation-through-time for LSMs to optimize the
temporal memory of the LSM. The network shows a large
improvement in performance on sequential MNIST and speech
recognition with the TIMIT speech corpus. Another approach to
optimizing the LSM is Roy and Basu (2016), which proposes a
computationally efficient on-line learning rule for unsupervised
optimization of reservoir connections.

This work aims to develop an algorithm that overcomes few of
the gaps in the vanilla RC network while focusing onmaintaining
the inherent efficiency of LSMs.

3. DEEP-LSM MODEL

The proposed deep-LSM, shown in Figure 1, is a network
comprised of deep randomly initialized hidden layers to capture
the key dynamics of input streams. Sandwiched between
the hidden layers, unsupervised winner-take-all (WTA) layers
encode a low-dimensional representation of the dynamic
information captured by the high-dimensional hidden layer.
The encoded representation is then passed to the next hidden
layer in the network. The main role of the WTA layer is to
extract features from the hidden layer to represent its dynamic
behavior as a low dimensional input. As data flows through
the deep-LSM, different hidden layers process information over
multiple time-scales. The main elements of the proposed deep-
LSM are optimization of short-term plasticity and initialization
of the random hidden layers, the use of spike-timing dependent
plasticity (STDP) to implement the unsupervised WTA layers,
and the attention modulated readout layer.

3.1. Hidden Layer Optimization
The hidden layers in the deep-LSM are similar to the liquid
layer in the LSM. The connections between neurons in the input
layer to the hidden layer are random and sparse. The probability
of a connection is drawn from a uniform random distribution
and the degree of sparsity varies based on the application and
number of input signals. In Litwin-Kumar et al. (2017), the
authors state that the granule cells produce a 10–30x increase
in dimensionality. They also highlight that the granule cells
need to connect to a sparse number of inputs to produce a
unique high-dimensional representation. Using these claims as
guiding principles for the initialization of the hidden layer, the
number of neurons is set to be approximately 10x the size of
the input space in this work. The hidden layer consists of two
populations of neurons, primary neurons which are connected to
the input layer, and auxiliary neurons which only have recurrent
connections within the hidden layer but do not connect to the
input layer. Each primary neuron only connects to a sparse
number of input neurons, creating a selective response such
that no neuron responds to the same feature or set of features.
The auxiliary neurons then help to capture dynamic information
through their recurrent connections and propagate information
through the network.

The hidden layer in this work is implemented with excitatory
(E) and inhibitory (I) leaky integrate-and-fire neurons whose
dynamics are modeled by (1).

τ
∂V

∂t
= −V + Iext ∗ R, (1)

When a neuron recieves a pre-synaptic spike, the current
is modeled by a square pulse of current with a magnitude
proportional to the synaptic strength for 3 ms after the spike
occurs. The LIF neurons are instantiated as a 3D grid of neurons

Frontiers in Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 686167

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

FIGURE 1 | Architecture of deep-LSM with three layers. (1) The input signals are randomly projected to a high dimensional space in the first hidden layer. (2) Hidden

layers with random recurrent connections capture temporal information. (3) Spiking winner-take-all layers extract temporal features from the random hidden layers

through the deep-LSM. (4) An attention function condensed the representation of the deep-LSM’s hidden layers for efficient classification. (5) A readout layer is trained

to perform a specific task.

with a ratio of 4:1 for the number of excitatory to inhibitory
neurons. The probability of a recurrent connection forming is
computed by (2).

Pr
(

wres
i,j 6= 0

)

= Cexp
(

−D(i, j)/λ
)2
, (2)

Where the probability of a connection depends on a scalar
C (determined by the neuron types and the direction of
the connection) which sets the maximum probability of a
connection, and the Euclidean distance between the neurons
scaled by λ which controls how quickly the probability
of a connection drops off as the distance increases. The
recurrent connections are initialized using fixed weights for each
connection type where excitatory to excitatory (EE) connections
have a synaptic strength of 3, EI have a strength of 3, IE have a
strength of 4, and II have a strength of 1. In Renart et al. (2003)
it was shown that neurons having homogeneous excitability is
important in the dynamics of temporal memory. To maintain a
homogeneous excitability in the hidden layer, the excitatory and
inhibitory pre-synaptic connections are normalized so the sum of
excitatory synapses and sum of inhibitory synapses is consistent
for all neurons.

Another biologically inspired mechanism in the hidden layer
is the use of short-term plasticity (STP). STP acts as a form of
hiddenmemory in the hidden layer by reflecting a neurons recent
firing activity. It also helps to regulate the overall firing activity

by reducing the strength of spikes from highly active neurons. To
optimize the STP function for neuromorphic systems, we reduce
the computational cost of the STP equations fromMarkram et al.
(1998) to (3) which simplified the model from an exponential
function to a simple linear model.

S(n) = S(n− 1)− α ∗ (x(n)− β) (3)

where S is the synaptic efficacy regulating the strength of a
neurons action potential and is bounded between 0 and 1. If a
neuron emits a spike (x(n) = 1), the strength of S is decreased
and if x(n) = 0 then S is increased. α and β are hyper-parameters
used to control the dynamics of STP. A timestep of 1ms is used
for all results presented in this work. The benefits of the STP rule
in 3 are (i) changes in synaptic efficacy are constant and, (ii) are
not dependent on the previous state of the synaptic efficacy.

The outputs of the hidden layer need to be sent to a readout
layer to perform classification or prediction. If a binary state
matrix (i.e., if a neuron fired) is used to represent the hidden
layer’s activity, several states collapse upon each other which
can impact the networks ability to distinguish the different
temporal patterns. Typically an exponential filtering operation
is performed on the output of each neuron in the hidden layer
(Schrauwen et al., 2007). In this work a synaptic trace operation
is implemented at the output of each hidden neuron before
transmitting to the readout layer which does not require the

Frontiers in Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 686168

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

computation of any exponential terms. This operation is given
by Equation (4)

dXtrace

dn
=

−Xtrace

τtrace
+

∑

nf

δ(n− nf) (4)

where the synaptic trace (Xtrace) keeps track of the behavior of
the spike activity of a neuron (x(n)) by increasing the trace by a
count of one every time a spike occurs and slowly decaying over
time. This trace value is used by the readout layer to perform
classification and prediction by capturing the short term behavior
of each hidden neuron.

3.2. Deep-LSM Implementation
In Jaeger (2007), the authors provide evidence that deep networks
are computationally more efficient and powerful than a shallow
(single-layer) architecture. A deep model allows the network
to learn more complex abstractions of the input and process
the input on different timescales in the case of RNNs (Jaeger,
2007). Therefore the deep-LSM can extract higher level temporal
features in each subsequent hidden layer before finally sending
the information to a readout layer.

The inputs to each layer in the deep-LSM can be described by
Equations (5)–(7)

IL1 (n) = Win
L1

∗ u(n)+Wrec
L1

∗ xL1 (n− 1) (5)

IEk (n) = Win
Ek

∗ xLl=k
(n) (6)

ILl (n) = Win
Ll
∗ xEk=l−1

(n)+Wrec
Ll

∗ xLl (n− 1) (7)

where (5) is the input to the first hidden layer L1 which combines
information from the input layer u(n) and input from the
spiking activity of the hidden layer xL1 through the recurrent
connections. The input to the kth WTA layer is described by
(6) where xLl=k

(n) is the spiking activity of the previous hidden

layer. Lastly, (7) is the input to the lth hidden layer which
receives the spiking activity at the current timestep from the
previous encoding layer xEk=l−1

(n) and input about the hidden
layer’s previous spiking activity xLl (n − 1) through recurrent
connections. In this architecture there is always one more hidden
layer than the number of WTA layers because the activity of the
hidden layer is what is used for classification.

In the deep-LSM architecture shown in Figure 2, the synaptic
connections from the input layer to the first hidden layer, and
from the WTA layers to the hidden layers are sparse. The
synaptic connections from the hidden layers to the WTA layers
(represented by dashed lines) are fully connected and trained
with Spike-time Dependent Plasticity (STDP). STDP is a form
of hebbian learning which postulates that neurons which fire
together grow together (Hebb, 1949). In this case if a pre-synaptic
potential occurs before a post-synaptic potential the synaptic
strength is increased and vice-versa, if a post-synaptic potential
occurs before a pre-synaptic potential the synaptic strength
is decreased.

A simple learning rule based on a pre-synaptic trace from
Diehl and Cook (2015) is used to model STDP. The pre-synaptic

trace is a function which tracks the recent activity of the pre-
synaptic neurons given by (4). The unsupervised learning rule
can then be defined as

1Wi,j = α ∗ (Xtrace
j − Xtar) (8)

where α is a hyper-parameter to control the magnitude of the
weight change. The change in the synaptic strength between
pre-synaptic neuron j and post-synaptic neuron i is increased
proportional to the difference between the trace of pre-synaptic
activity Xtrace

j and the threshold activity level Xtar which

determines whether potentiation or depression occurs.
STDP alone can exhibit runaway dynamics which result

in synaptic strengths saturating. In order to stabilize the
performance of STDP, it is necessary to use the same synaptic
scaling function used in the initialization step and intrinsic
plasticity (Watt and Desai, 2010). Synaptic scaling normalizes the
sum of pre-synaptic connections to α, as shown in (9).

Wi,j =
Wi,j

N
∑

j=1
Wi,j

∗ α (9)

Here, the synaptic connection from pre-synaptic neuron j to
post-synaptic neuron i (Wi,j) is scaled so the total sum of the
synaptic connections to neuron i remains constant. This helps
stabilize the weights while maintaining the hebbian relation
between synapses and removes the effect of noise on the network.

Global inhibition forces unsupervised learning through STDP
to generate competition between neurons and causes neurons to
learn different patterns. Global inhibition results in a winner-
take-all network so that when a neuron fires to a specific
pattern, it inhibits all other neurons from firing and learning
that same pattern. To prevent a single neuron from constantly
inhibiting other neurons, intrinsic plasticity (Watt and Desai,
2010) regulates how often a neuron fires by regulating the
neurons firing threshold according to (10)

Vth = Vth + 2 (10)

where the neurons firing threshold Vth is increased by 2 and 2

is increased every time a neuron fires and decays back toward
its resting value when a neuron does not fire according to a
time constant τ shown in (11) (Zhang and Linden, 2003). The
increased firing threshold decreases the probability of a neuron
spiking multiple times in succession to allow other neurons
to learn.

τ
d2

dt
= −2 (11)

Unsupervised STDP with homeostatic mechanisms results in
meaningful, low-dimensional representations of information
present in the hidden layers utilizing only local plasticity
mechanisms in contrast to training the entire network with
expensive gradient descent based learning algorithms. This
allows the deep-LSM to extract temporal information over

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 686169

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

FIGURE 2 | Diagram of connectivity between layers in the deep-LSM. Dashed lines represent connections trained with STDP from a hidden layer to a WTA layer.

multiple time-scales with only local learning rules which is ideal
for neuromorphic implementations (Neftci et al., 2017).

To summarize the information processing in the deep-LSM,
the hidden layers capture dynamic information about the input
signal over multiple times-scales. The WTA layers are trained
to condense the high-dimensional hidden layer activity into a
meaningful low-dimensional representation. This ensures that
the inputs to each hidden layer provide useful information,
while keeping the inputs to each hidden layer low-dimensional.
This is important because the hidden layers rely on creating a
high-dimensional representation of their input, by forming low-
dimensional inputs it reduces the size of the deeper hidden layer
which improves the scalability of the architecture.

3.3. Attention Mechanism
Another neural mechanism in the deep-LSM is the use of
attention to selectively process information in the hidden layers
as shown in Figure 3. As the size of the deep-LSM grows,
attention allows the readout layer to perform classification
with limited resources. Attention is applied by adding two
separate single layer neural networks, which compute a weighted
summation of all the hidden layers. This results in a single
representation with the same dimensionality as one hidden layer
being passed to the output layer. The attention networks receive
the filtered state of the deep-LSM based on (4), Xdeep−LSM =

[X1,X2, ...,XL−1,XL] where L is the number of hidden layers in
the deep-LSM, to predict the appropriate attention coefficients.

First, the deep attention network predicts the importance of
each layer in the deep-LSM. The attention network will predict
a coefficient for each hidden layer in the deep-LSM based on
the current state. The function of the deep attention network’s
operation is given by

A
deep

l
= softmaxl(W

Adeep
∗ Xdeep−LSM) (12)

where Al refers to the attention coefficient for the lth hidden layer

in the network such that Adeep = [A
deep
1 ,A

deep
2 , ...,A

deep
L−1,A

deep
L]

and L represents the total number of layers and WA
deep

l are
the learned weights of the deep attention network. A softmax
function is used to assign a probability to each layer which
represents the importance of that layer. Then, based on the
attention coefficients, a weighted sum of all the hidden layers is

computed to generate a final representation of the deep-LSM (XS)
as shown in (13)

XS =

L
∑

l=1

A
deep

l
∗ Xl (13)

Second, the spatial attention network will predict the importance
of each neuron in the final representation XS. The second
attention network receives the same input as the first attention

network and will predict a coefficient A
Spatial
n for every value in

the final representation XS, this can be applied to every neuron
or a population of neurons. This will assign a weight to each
neuron/population, allowing the output layer to focus on a select

subset of signals. The operation for computing A
Spatial
n is given by

A
Spatial
n = σ (WASpatial

n ∗ Xdeep−LSM) (14)

where each coefficient A
Spatial
n is determined based on the

learned weights for the nth neuron in the spatial attention

network, WAspatial

n , the state of the deep-LSM, and ASpatial =

[A
Spatial
1 ,A

Spatial
2 , ...,A

Spatial
N−1 ,A

Spatial
N] where N is the total number

of neurons in a hidden layer. The coefficients in ASpatial will then
be used to produce a weighted representation of XS where

XF = XS ⊙ ASpatial (15)

where the final representation of deep-LSM’s state XF , is
computed by an element-wise multiplication between the spatial
attention coefficients and their corresponding location in XS. XF

is then sent to the output layer which performs classification or
prediction, given by (16)

y(n) = σ (Wout ∗ XF) (16)

where y(n) is the output of the readout layer based on the state
HF of the deep-LSM at time t = n.

4. EXPERIMENTS

The proposed deep-LSM was benchmarked for video activity
recognition using the DogCentric dataset (Iwashita et al., 2014).
The DogCentric dataset consists of 209 videos recorded for ten

Frontiers in Neuroscience | www.frontiersin.org 6 July 2019 | Volume 13 | Article 686170

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

FIGURE 3 | Attention applied to the cumulative deep-LSM network referred to as the deep attention network (Left) and spatially to a single hidden layer through the

spatial attention network (Right).

FIGURE 4 | Sample video frame sequence from DogCentric dataset for the shake class [models tested with hand crafted features (HFC) and without HFCs

are separated].

different activities being performed by four different dogs from
a first-person view point. A sample of the image frames for the
shake class is shown in Figure 4. The videos possess rapid and
erratic movement, similar to a person running around with a
camera, making it challenging to process what is occurring. There
is also an imbalance in the datasamples with unequal number of
videos per class. To make a fair comparison with prior networks,
samples for every class were distributed equally between training
and test data, similar to Graham et al. (2017).

The video frame features were extracted with a pre-
trained ResNet-50 architecture which were then reduced to
100 dimensions using principal component analysis. The 100-
dimensional features for each frame were used as an input to
the deep-LSM and LSM models for classification at the end
of each video sequence. The framelength in the DogCentric
dataset varies from 30 frames to 650, with an average of 157
frames per video. Results were averaged for 150 runs of each
model. The deep-LSM outperformed state-of-the-art models
shown in Table 1, including a single layer LSM with an equal
number of neurons and an attention modulated readout layer.
The parameters used to obtain the results presented are given
in Table 2.

To analyze the impact of different architectures in the
deep-LSM, the network was studied for a different number of
layers, for different sizes of the hidden layer, and for different
sizes of the WTA layer. As shown in Figure 5, a single layer LSM
is inferior to a deep-LSM with multiple layers and as the number
of layers increases from three to five, the deep-LSM is better at
processing the complex temporal information in the video.

The next analysis was how the size of the hidden layer
affects performance shown in Figure 6. Increasing the size of
the hidden layers or the WTA layers does not result in much
difference in performance. For the size of the hidden layer,
it is already sufficient with 1,000 neurons to create a high-
dimensional representation of the input for extracting temporal
information and further increases do not result in any change. If
we decrease the hidden layer size, eventually a point is crossed
where the high-dimensional representation does not capture
enough information about the input and the performance will
drop. This can be seen from the degradation in accuracy as the
hidden layer size decreases to 250 neurons.

Lastly, Figure 7 shows the performance as a function of the
size of theWTA layer. For a 1,000 neuron hidden layer, increasing
the WTA layer size from 50 to 100 neurons shows an increase in

Frontiers in Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 686171

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

TABLE 1 | Comparison of state-of-the-art accuracy results on the DogCentric

dataset.

Approach Accuracy

HCF GOFF + VIF + Log-C + Cuboids (Arabacı et al., 2018) 64.0%

HOG+HOF+LBP+Cub.+Opt.Fl. (Iwashita et al., 2014) 60.5%

ITF (Wang and Schmid, 2013; Piergiovanni et al., 2016) 67.7%

ITF+CNN (Jain et al., 2014; Piergiovanni et al., 2016) 69.2%

POT (Ryoo et al., 2015) 73.0%

POT+ITF (Ryoo et al., 2015) 74.5%

TDD (Wang et al., 2015; Piergiovanni et al., 2016) 76.6%

TDD+Temp. Fil. (Piergiovanni et al., 2016) 79.6%

TDD+Temp. Fil.+LSTM (Piergiovanni et al., 2016) 81.4%

No HCFVGG+Max Pooling (Piergiovanni et al., 2016) ≈ 57.2%

VGG+Mean Pooling (Piergiovanni et al., 2016) 59.9%

VGG+Sum Pooling (Piergiovanni et al., 2016) 59.9%

VGG+Temp. Fil.-Learned (Piergiovanni et al., 2016) ≈ 65.0%

VGG+Temp. Fil.-Learned+LSTM (Piergiovanni et al., 2016) ≈ 65.0%

CDN (VGG-16) (Graham et al., 2017) 75.8%

CDN (ResNet-50) (Graham et al., 2017) 77.2%

TCF (CaffeNet) (Kahani et al., 2017) 72.19%

TCF (VGG-16) (Kahani et al., 2017) 77.79%

TCS (VGG, TDD) (Kahani et al., 2017) 82.24%

LFP (G+SD+GS) (Kwon et al., 2018) 82.5%

Deep-LSM (ResNet-50) 84.78%

LSM (ResNet-50) 76.5%

TABLE 2 | Parameters used in proposed deep-LSM and standard LSM

implementation.

Parameter Value

Simulation timestep 1 ms

Vth 16.5 mV

τm 28 ms

Cmem 1 pF

τref 4 ms

DH (deep-LSM/LSM) 1,000/3,000

E:I Ratio 4:1

Synaptic Strength (EE/EI/II/IE) 3/3/1/4

λ (2) (EE/EI/II/IE) 3/3/3/3

C (2) (EE/EI/II/IE) 0.6/1/0.2/1

α (9) (E/I) 40/36

α (3) 0.007

β (3) 0.739

DW 50–100–150

Xtar (8) 25–50

τtrace (4) 300 ms

α (9) (Synaptic scaling in WTA layer) 15

2 (10) 1.5 mV

τ (11) 500 ms

performance because the WTA layer can capture more features
describing the hidden layer. However, when the WTA layer size
increases to 200 neurons the performance significantly drops.
Similar results were observed for a 500 neuron hidden layer,
which showed degradation in performance beyond 50 neurons.
The reason for this is that there are now too many signals
feeding into the next hidden layer which dominates the hidden

FIGURE 5 | Accuracy on the DogCentric dataset as a function of the number

of layers in the deep-LSM (each hidden layer has 1,000 neurons, while each

encoding layer has 50 neurons).

FIGURE 6 | Accuracy on the DogCentric dataset as a function of hidden layer

size in a 3-layer deep-LSM (each WTA layer has 50 neurons).

layers dynamics, and because there is likely little information
gained by the extra 100 neurons.We hypothesize that the optimal
size of the WTA layer is dependent on the size of the hidden
layer. With smaller hidden layers, there will be less features for
the WTA layer to identify and learn so increasing the number
of neurons does not have an impact on the information sent
between layers. Another way to view this is as if one was
doing principal component analysis on the hidden layers output,
only the top few principal components would be needed to
convey the important information between layers. In addition,
the dimensionality of the WTA layer cannot be too close to
the dimensionality of the hidden layer or it will negatively
impact the information processing of deeper hidden layers.
Another potential cause of this result is the hyper-parameters
for the WTA layer are not optimal for allowing the network to
efficiently learn at larger sizes (e.g., homeostatic mechanisms,
training epochs).

4.1. Theoretical Efficiency for Neuromophic
Implementations
To analyze the efficiency of the deep-LSM for on-device
implementations, we study the deep-LSM in an application
dependent framework for processing temporal information on

Frontiers in Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 686172

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

embedded platforms. The first analysis is to compare the total
number of synaptic connections as well as the types of training
computations needed to assess the scalability and memory cost
of the proposed model with respect to other recurrent neural
networks. Table 3 reports of the number of synaptic connections
based on the type of learning for three temporal networks
with an equal number of neurons; the deep-LSM, a traditional
LSM, and an standard LSTM. A hypothetical LSTM model is
used as a baseline purely for scalability analysis on the basis
of an equivalent number of neurons and does not consider
architectures such as stacked LSTMs. The analysis is performed
for a deep-LSM which consists of 100 input neurons, 3 hidden
layers with 500 neurons, two winner-take-all layers with 50
neurons, two attention networks (one with 3 neurons for each
hidden layer and one with 500 neurons for each location in the
hidden layer), and a readout layer with 10 neurons, one for each
class. To determine the synaptic connections in the LSM and
LSTM networks, we consider them to possess recurrent layers
with 1500 neurons (which is equivalent to the total number of
neurons in the three deep-LSM hidden layers). In addition, we
consider a similar attention-based readout layer for the LSM
which would implement spatial attention with 1500 neurons. As
can be seen in Table 3, the deep-LSM with attention requires
35.69% of the number of synapses as the LSM with attention,
but 613% the number of synapses as a standard LSM. However, a
deep-LSM without attention only has 77.86% as many synapses
as a standard LSM. In comparison to the LSTM model, a
deep-LSM with the proposed attention mechanism has 8.87%
of the number of synaptic connections with a similar number
of neurons.

FIGURE 7 | Accuracy on the DogCentric dataset as a function of WTA layer

size in a 3-layer deep-LSM (each hidden layer has 1,000 neurons).

From the table we can see that between the deep-LSM and
LSM, with a similar readout layer (attention or single-layer), the
deep-LSM shows a reduction in the number of synaptic weights.
These calculations account for the sparsity values which had
been used in our simulations, which was 95% sparsity in the
input connections of both models, 89.24% sparsity in the deep-
LSM hidden layers, and 95% sparsity in the LSM. Though the
degree of sparsity varied in the hidden layer between the deep-
LSM and LSM, they were generated from the same network
hyper-parameters in (2). The difference arises from the deep-
LSM having a smaller reservoir size which reduced the number of
long-range connections which tended to not form a connection.
In comparison to the LSTM, the deep-LSM with attention only
has 7.93% as many trainable synaptic connections. In addition
the deep-LSM attention weights are trained by a gradient descent
algorithm which does not require sequential back-propagation-
through-time. As for the connections trained through STDP, they
only require an accumulation of a neurons activity (which is
done per neuron rather than per synapse) and is only invoked
when a neuron fires rather than every synapse being updated
on each training operation. Therefore, the deep-LSM’s training
is computationally much lighter than the LSTM with respect to
both the number and type of operations, and total number of
trainable synapses.

The number of operations during inference and training in
each model is reported in Table 4, which we computed for the
deep-LSM and LSM based on our implementation, and for the
LSTM based on derivation of the training and inference phase
in Chen (2016) and are summarized in Table 5 for inference
and Table 6 for training. These estimates calculate the number
of multiplications needed in the specified models assuming that
the number of additions would be similar and ignoring the cost
of neuron functions and hyper-parameters. Based on the results,
the deep-LSM with attention only has 8.45% of the number of
computations as a vanilla LSTM and only 0.65% the number
of computations without the attention module. In comparison
between a deep-LSM and LSM, when an attention-based readout
layer is used the deep-LSM has 64.84% fewer operations and
significantly lower number of weight updates. Without attention
the deep-LSM shows a 16.2% decrease but a slightly higher
number of weight updates due to the unsupervised connections.
Thus, separating the attention layer from the analysis, the deep-
LSM shows a slight reduction in computational cost compared to
the standard LSM.

Another important feature for algorithms on embedded
platforms is robustness to device noise. To assess the robustness
of the deep-LSM, we mimic device noise in a neuromemristive
system by adding Gaussian noise on every read and write

TABLE 3 | Number of synaptic connections trained with different learning rules and their memory consumption for the deep-LSM, LSM, and LSTM.

Backpropagation Random Unsupervised Total Memory (Gb)

Deep-LSM 15,000 90,738 2,500 108,238 0.0035

Deep-LSM + Attention 759,500 90,738 2,500 852,738 0.0273

LSM 15,000 124,016 0 139,016 0.0044

LSM + Attention 2,265,000 124,016 0 2,389,016 0.0764

LSTM 9,615,000 0 0 9,615,000 0.3077

Frontiers in Neuroscience | www.frontiersin.org 9 July 2019 | Volume 13 | Article 686173

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

TABLE 4 | Number of synaptic operations for a single frame of training data (for

STDP synapses, only one post-synaptic neuron can win at any time frame).

Network #Multiplications

(FP)

#Multiplications

(BP)

Weight

updates

Deep-LSM 110,700 15,000 17,500

Deep-LSM + Attention 857,200 773,506 760,500

LSM 135,000 15,000 15,000

LSM + Attention 2,386,500 2,251,500 2,251,500

LSTM 9,619,500 9,675,000 9,615,000

TABLE 5 | Computation of the number of multiplications needed during

inference (FP).

Network # Multiplications (Forward pass)

Deep-LSM Sin ∗N∗Hd+2(l−1)∗Sin ∗ (W ∗Hd)+ l∗SR ∗ (Hd ∗Hd)+ l∗Hd ∗O

Deep-LSM + A Sin ∗ N ∗ Hd + 2(l − 1) ∗ Sin ∗ (W ∗ Hd)+ l ∗ SR ∗ (Hd ∗ Hd)+

l(Hd ∗ A)+ l ∗ Hd + Hd + Hd ∗ O

LSM Sin ∗ N ∗ H+ SR ∗ H ∗ H+ H ∗ O

LSM + A Sin ∗ N ∗ H+ SR ∗ H ∗ H+ H ∗ H+ H ∗ O

LSTM 4 ∗ (N ∗ H+ H ∗ H)+ 3 ∗ H+ H ∗ O

N is the dimensionlaity of the input, Hd is the dimensionality of the deep-LSM hidden

layers, W is the dimensionality of the WTA layers, A is the combined dimensionality of

both attention networks, O is the dimensionality of the output, l is the number of layers,

and H is the dimensionality of the hidden layer in the LSM and LSTM. For the LSM and

deepLSM, Sin is the input sparsity and SR is the hidden layer sparsity. Note “+ A” refers

to inclusion of the attention-based readout layer.

TABLE 6 | Computation of the number of multiplications needed during training

(Backward Pass).

Network # Multiplications (Backward pass)

Deep-LSM l ∗ (O ∗ Hd)

Deep-LSM = A 3 ∗ (O ∗ Hd)+ A ∗ Hd ∗ l + 2 ∗ Hd + 2 ∗ l + l ∗ 2 ∗ Hd

LSM H ∗ O

LSM + A H ∗O+ H ∗ H

LSTM 2 ∗ (H ∗ O)+ 30 ∗ H+ 4 ∗ (H ∗ N)+ 4 ∗ (H ∗ H)

TABLE 7 | Performance on the DogCentrric dataset for a 3 layer deep-LSM when

Gaussian noise is introduced.

Model (3 layers) Accuracy Standard deviation

Deep-LSM 82.9 6.78

Deep-LSM (with noise) 81.92 10.08

operation as in Soures et al. (2018). As shown in Table 7, the
networks performance suffers very little degradation due to the
presence of noise.

Finally, the energy consumption (estimated based on Han
et al., 2016, for 45 nm technology node) of the proposed deep-
LSM is compared with that of an LSM and LSTM. The energy
is estimated by calculating the number of addition (0.9pJ) and
multiplication (3.7pJ) operations (of 32-bit precision) for training
and inference, and the number of synaptic weights stored in
DRAM (360pJ).

Based on Table 8, it can be observed that the deep-LSM is
more energy efficient than an LSTM during training, inference,
and consumes less memory. When compared to the LSM, we
see that the deep-LSM is more energy efficient when using an
equivalent readout layer.

TABLE 8 | Energy portfolio of deep-LSM, LSM, and LSTM for inference, training,

and memory.

Inference Training Weights Total

Energy(µJ) Energy (µJ) Energy (µJ) Energy (µJ)

Deep-LSM 0.5092 0.069 38.9657 39.5439

Deep-LSM + Attention 3.9431 3.5581 306.9857 314.4869

LSM 0.621 0.069 50.0458 50.7358

LSM + Attention 10.9779 10.3569 860.0458 881.3806

LSTM 44.24 55.56 5866.6 5966.4

Estimates are for a 45 nm CMOS technology node (Han et al., 2016).

From this analysis, we conclude that the deep-LSM is a
computationally lite model for processing temporal information
with a fraction of the memory and compute operations compared
to other popular recurrent neural network architectures. The
deep-LSM has several features which result in its higher
performance with respect to other algorithms. The first key
feature of the deep-LSM is its modular reservoirs which create the
deep architecture for the network. By using a modular approach,
the deep-LSM reduces the size of the recurrent matrices needed
by the network and also demonstrates a much better capability
at extracting information over multiple time-scales as shown by
the large increase in performance over traditional RC approaches.
The second key feature of the deep-LSM is the use of spiking
WTA layers in between hidden layers. This allows to extract
meaningful features to propagate through the network and helps
alleviate the dependence of traditional RC approaches on their
initialization. The WTA layers learn their features through an
unsupervised local learning rule which allows the network to
learn and optimize its connections at a lower cost than gradient
descent. Additionally, because STDP is a local learning rule
the layers can be trained without waiting for information to
be propagated backwards speeding up the training time and
allowing the WTA layers to be updated in parallel. Finally, the
last feature of the deep-LSMwhich contributes to its performance
are the attention layers. Due to the large savings in total number
of synaptic connections and reduced amount of training due to
random connections, the deep-LSM can implement the attention
layers while still maintaining an overall reduction in the number
of synapses.

5. CONCLUSIONS

We proposed a new approach for performing spatio-temporal
tasks on a budget. The proposed deep-LSM has promising results
in video activity recognition achieving 84.78% on a representative
dataset and surpasses state-of-the-art algorithms in accuracy.
More importantly, the deep-LSM consumes significantly lower
synaptic memory storage and computational resources. Edge
devices naturally benefit from this computationally light
algorithm and the following benefits ensue.

1. Edge intelligence framework: Suitable for real-time on-device
learning and inference.

2. Local unsupervised plasticity mechanisms: Enable fine-
grained tuning to trade-off compute complexity vs. accuracy.

Frontiers in Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 686174

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

3. Broaden applicability of RC approaches to complex temporal
problems that require integration of information over
multiple time-scales.

4. An overall reduction in energy consumption and memory
requirements compared to current recurrent networks.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: http://robotics.ait.kyushu-u.ac.jp/~yumi/db/
first_dog.html.

AUTHOR CONTRIBUTIONS

NS as the first author performed the experiments and was
responsible for writing and creating figures and tables. DK

was responsible for writing and guidance in the design
and experiments.

FUNDING

This material is based on research sponsored by AirForce
Research Laboratory under agreement number FA8750-16-1-
0108. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of AirForce Research Laboratory or the
U.S. Government.

978-1-5090-1370-8/16/$31.00 ©2016 Crown.

REFERENCES

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Hasan, M., Van Esesn, B. C.,

et al. (2018). The history began from alexnet: a comprehensive survey on deep

learning approaches. arXiv [Preprint]. arXiv: 1803.01164. Available online at:

https://arxiv.org/abs/1803.01164

Arabacı, M. A., Özkan, F., Surer, E., Jančovič, P., and Temizel, A. (2018).

Multi-modal egocentric activity recognition using audio-visual features. arXiv

[Preprint]. arXiv: 1807.00612. Available online at: https://arxiv.org/abs/1807.

00612

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and Baskurt, A. (2011).

“Sequential deep learning for human action recognition,” in International

Workshop on Human Behavior Understanding (Berlin; Heidelberg: Springer),

29–39.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long

short-term memory and learning-to-learn in networks of spiking neurons.

arXiv [Preprint]. arXiv: 1803.09574. Available online at: https://arxiv.org/abs/

1803.09574

Carmichael, Z., Syed, H., Burtner, S., and Kudithipudi, D. (2018). “Mod-deepesn:

modular deep echo state network,” in Conference on Cognitive Computational

Neuroscience (Philadelphia, PA).

Chen, G. (2016). A gentle tutorial of recurrent neural network with error

backpropagation. arXiv [Preprint]. arXiv: 1610.02583. Available online at:

https://arxiv.org/abs/1610.02583

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Fu, I., and Carter, C. (2016). Benchmarking Training Time for CNN-based Detectors

With Apache mxnet. Available online at: https://aws.amazon.com/blogs/

machine-learning/benchmarking-training-time-for-cnn-based-detectors-

with-apache-mxnet/ (accessed November 16, 2018).

Gallicchio, C., and Micheli, A. (2016). “Deep reservoir computing: a critical

analysis,” in European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning (Bruges).

Graham, D., Langroudi, S. H. F., Kanan, C., and Kudithipudi, D. (2017).

“Convolutional drift networks for video classification,” in Rebooting

Computing (ICRC), 2017 IEEE International Conference on IEEE

(Washington, DC), 1–8.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., et al. (2016). “Eie:

efficient inference engine on compressed deep neural network,” in Computer

Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on

IEEE (Seoul), 243–254.

Hebb, D. O. (1949). The Organization of Behavior: A

Neuropsychological Approach. London: Psychology Press; John

Wiley & Sons.

Hermans, M., and Schrauwen, B. (2013). “Training and analysing deep recurrent

neural networks,” in Advances in Neural Information Processing Systems

(Stateline, NV), 190–198.

Iwashita, Y., Takamine, A., Kurazume, R., and Ryoo, M. S. (2014). “First-

person animal activity recognition from egocentric videos,” in Pattern

Recognition (ICPR), 2014 22nd International Conference on IEEE (Stockholm),

4310–4315.

Jaeger, H. (2001). The “echo state” Approach to Analysing and Training

Recurrent Neural Networks-With an Erratum Note. German National

Research Center for Information Technology GMD Technical Report 148

(Bonn).

Jaeger, H. (2007). Discovering Multiscale Dynamical Features With

Hierarchical Echo State Networks. Technical report, Jacobs University

Bremen.

Jain, M., van Gemert, J., and Snoek, C. G. (2014). “University of

amsterdam at thumos challenge 2014,” in ECCV THUMOS Challenge

(Zürich).

Kahani, R., Talebpour, A., and Mahmoudi-Aznaveh, A. (2017). A correlation

based feature representation for first-person activity recognition. arXiv

[Preprint]. arXiv: 1711.05523. doi: 10.1007/s11042-019-7429-3

Kwon, H., Kim, Y., Lee, J. S., and Cho, M. (2018). First person action recognition

via two-stream convnet with long-term fusion pooling. Patt. Recogn. Lett. 112,

161–167. doi: 10.1016/j.patrec.2018.07.011

Lee, J., and Kim, J. (2016). Energy-efficient real-time human activity

recognition on smart mobile devices. Mobile Inform. Syst. 2016, 1–12.

doi: 10.1155/2016/2316757

Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H., and Abbott, L.

(2017). Optimal degrees of synaptic connectivity. Neuron 93, 1153–1164.

doi: 10.1016/j.neuron.2017.01.030

Ma, M., Fan, H., and Kitani, K. M. (2016). “Going deeper into first-person activity

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 1894–1903.

Ma, Q., Shen, L., and Cottrell, G. W. (2017). Deep-esn: a multiple projection-

encoding hierarchical reservoir computing framework. arXiv [Preprint]. arXiv:

1711.05255. Available online at: https://arxiv.org/abs/1711.05255

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing

without stable states: a new framework for neural computation based on

perturbations. Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760

407955

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the

same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. U.S.A. 95,

5323–5328. doi: 10.1073/pnas.95.9.5323

Frontiers in Neuroscience | www.frontiersin.org 11 July 2019 | Volume 13 | Article 686175

http://robotics.ait.kyushu-u.ac.jp/~yumi/db/first_dog.html
http://robotics.ait.kyushu-u.ac.jp/~yumi/db/first_dog.html
https://arxiv.org/abs/1803.01164
https://arxiv.org/abs/1807.00612
https://arxiv.org/abs/1807.00612
https://arxiv.org/abs/1803.09574
https://arxiv.org/abs/1803.09574
https://arxiv.org/abs/1610.02583
https://doi.org/10.3389/fncom.2015.00099
https://aws.amazon.com/blogs/machine-learning/benchmarking-training-time-for-cnn-based-detectors-with-apache-mxnet/
https://aws.amazon.com/blogs/machine-learning/benchmarking-training-time-for-cnn-based-detectors-with-apache-mxnet/
https://aws.amazon.com/blogs/machine-learning/benchmarking-training-time-for-cnn-based-detectors-with-apache-mxnet/
https://doi.org/10.1007/s11042-019-7429-3
https://doi.org/10.1016/j.patrec.2018.07.011
https://doi.org/10.1155/2016/2316757
https://doi.org/10.1016/j.neuron.2017.01.030
https://arxiv.org/abs/1711.05255
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1073/pnas.95.9.5323
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Soures and Kudithipudi Deep Spiking Neural Networks

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven

random back-propagation: enabling neuromorphic deep learning machines.

Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Piergiovanni, A., Fan, C., and Ryoo, M. S. (2016). Temporal attention filters for

human activity recognition in videos. arXiv [Preprint]. arXiv: 1605.08140.

Possas, R., Caceres, S. P., and Ramos, F. (2018). “Egocentric activity recognition

on a budget,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Salt Lake City), 5967–5976.

Renart, A., Song, P., and Wang, X.-J. (2003). Robust spatial working memory

through homeostatic synaptic scaling in heterogeneous cortical networks.

Neuron 38, 473–485. doi: 10.1016/S0896-6273(03)00255-1

Roy, S., and Basu, A. (2016). An online structural plasticity rule for generating

better reservoirs. Neural Comput. 28, 2557–2584. doi: 10.1162/NECO_a_00886

Ryoo, M. S., Rothrock, B., and Matthies, L. (2015). “Pooled motion features for

first-person videos,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (Boston, MA), 896–904.

Schrauwen, B., Verstraeten, D., and Van Campenhout, J. (2007). “An overview of

reservoir computing: theory, applications and implementations,” in Proceedings

of the 15th European Symposium on Artificial Neural Networks (Burges), 471–

482.

Simonyan, K., and Zisserman, A. (2014). “Two-stream convolutional networks

for action recognition in videos,” in Advances in Neural Information Processing

Systems (Montreal, QC), 568–576.

Song, S., Chandrasekhar, V., Mandal, B., Li, L., Lim, J.-H., Sateesh Babu, G.,

et al. (2016a). “Multimodal multi-stream deep learning for egocentric activity

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops (Las Vegas, NV), 24–31.

Song, S., Cheung, N.-M., Chandrasekhar, V., Mandal, B., and Liri, J. (2016b).

“Egocentric activity recognition with multimodal fisher vector,” in Acoustics,

Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on

IEEE (Pudong), 2717–2721.

Soures, N., Hays, L., and Kudithipudi, D. (2017). “Robustness of a memristor based

liquid state machine,” in Neural Networks (IJCNN), 2017 International Joint

Conference on IEEE (Anchorage, AK), 2414–2420.

Soures, N., Kudithipudi, D., Jacobs-Gedrim, R. B., Agarwal, S., and Marinella,

M. (2018). Enabling on-device learning with deep spiking neural networks

for speech recognition. ECS Trans. 85, 127–137. doi: 10.1149/08506.

0127ecst

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). “Learning

spatiotemporal9 features with 3d convolutional networks,” in Proceedings of the

IEEE International Conference on Computer Vision (Santiago), 4489–4497.

Triefenbach, F., Jalalvand, A., Demuynck, K., and Martens, J.-P. (2013). Acoustic

modeling with hierarchical reservoirs. IEEE Trans. Audio Speech Lang. Process.

21, 2439–2450. doi: 10.1109/TASL.2013.2280209

Triefenbach, F., Jalalvand, A., Schrauwen, B., and Martens, J.-P.

(2010). “Phoneme recognition with large hierarchical reservoirs,” in

Advances in Neural Information Processing Systems (Vancouver, BC),

2307–2315.

Wang, H., and Schmid, C. (2013). “Action recognition with improved trajectories,”

in Proceedings of the IEEE International Conference on Computer Vision

(Sydney, NSW), 3551–3558.

Wang, L., Qiao, Y., and Tang, X. (2015). “Action recognition with trajectory-

pooled deep-convolutional descriptors,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Boston, MA),

4305–4314.

Wang, Q., and Li, P. (2016). “D-lsm: deep liquid state machine with

unsupervised recurrent reservoir tuning,” in Pattern Recognition

(ICPR), 2016 23rd International Conference on IEEE (Cancun),

2652–2657.

Watt, A. J., and Desai, N. S. (2010). Homeostatic plasticity and stdp: keeping

a neuron’s cool in a fluctuating world. Front. Synaptic Neurosci. 2:5.

doi: 10.3389/fnsyn.2010.00005

Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., and Aberer, K. (2012). “Energy-

efficient continuous activity recognition onmobile phones: an activity-adaptive

approach,” inWearable Computers (ISWC), 2012 16th International Symposium

on IEEE (Newcastle, UK), 17–24.

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,

and Toderici, G. (2015). “Beyond short snippets: deep networks for video

classification,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Boston, MA), 4694–4702.

Zhan, K., Faux, S., and Ramos, F. (2014). “Multi-scale conditional randomfields for

first-person activity recognition,” in Pervasive Computing and Communications

(PerCom), 2014 IEEE International Conference on IEEE (Budapest),

51–59.

Zhang, W., and Linden, D. J. (2003). The other side of the engram: experience-

driven changes in neuronal intrinsic excitability.Nat. Rev. Neurosci. 4, 885–900.

doi: 10.1038/nrn1248

Zheng, L., Wu, D., Ruan, X., Weng, S., Peng, A., Tang, B., et al. (2017). A novel

energy-efficient approach for human activity recognition. Sensors 17:2064.

doi: 10.3390/s17092064

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Soures and Kudithipudi. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2019 | Volume 13 | Article 686176

https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1016/S0896-6273(03)00255-1
https://doi.org/10.1162/NECO_a_00886
https://doi.org/10.1149/08506.0127ecst
https://doi.org/10.1109/TASL.2013.2280209
https://doi.org/10.3389/fnsyn.2010.00005
https://doi.org/10.1038/nrn1248
https://doi.org/10.3390/s17092064
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

TECHNOLOGY REPORT
published: 12 July 2019

doi: 10.3389/fnins.2019.00625

Frontiers in Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 625

Edited by:

Guoqi Li,

Tsinghua University, China

Reviewed by:

Deboleena Roy,

Purdue University, United States

Quansheng Ren,

Peking University, China

*Correspondence:

Mohammad Ganjtabesh

mgtabesh@ut.ac.ir

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 01 March 2019

Accepted: 31 May 2019

Published: 12 July 2019

Citation:

Mozafari M, Ganjtabesh M,

Nowzari-Dalini A and Masquelier T

(2019) SpykeTorch: Efficient

Simulation of Convolutional Spiking

Neural Networks With at Most One

Spike per Neuron.

Front. Neurosci. 13:625.

doi: 10.3389/fnins.2019.00625

SpykeTorch: Efficient Simulation of
Convolutional Spiking Neural
Networks With at Most One Spike
per Neuron
Milad Mozafari 1,2, Mohammad Ganjtabesh 1*, Abbas Nowzari-Dalini 1 and

Timothée Masquelier 2

1Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran,

Iran, 2CERCO UMR 5549, CNRS - Université Toulouse 3, Toulouse, France

Application of deep convolutional spiking neural networks (SNNs) to artificial intelligence

(AI) tasks has recently gained a lot of interest since SNNs are hardware-friendly

and energy-efficient. Unlike the non-spiking counterparts, most of the existing SNN

simulation frameworks are not practically efficient enough for large-scale AI tasks. In

this paper, we introduce SpykeTorch, an open-source high-speed simulation framework

based on PyTorch. This framework simulates convolutional SNNs with at most one

spike per neuron and the rank-order encoding scheme. In terms of learning rules,

both spike-timing-dependent plasticity (STDP) and reward-modulated STDP (R-STDP)

are implemented, but other rules could be implemented easily. Apart from the

aforementioned properties, SpykeTorch is highly generic and capable of reproducing the

results of various studies. Computations in the proposed framework are tensor-based

and totally done by PyTorch functions, which in turn brings the ability of just-in-time

optimization for running on CPUs, GPUs, or Multi-GPU platforms.

Keywords: convolutional spiking neural networks, time-to-first-spike coding, one spike per neuron, STDP,

reward-modulated STDP, tensor-based computing, GPU acceleration

1. INTRODUCTION

For many years, scientist were trying to bring human-like vision into machines and artificial
intelligence (AI). In recent years, with advanced techniques based on deep convolutional neural
networks (DCNNs) (Rawat and Wang, 2017; Gu et al., 2018), artificial vision has never been closer
to human vision. Although DCNNs have shown outstanding results in many AI fields, they suffer
from being data- and energy-hungry. Energy consumption is of vital importance when it comes to
hardware implementation for solving real-world problems.

Our brain consumes much less energy than DCNNs, about 20 W (Mink et al., 1981) – roughly
the power consumption of an average laptop, for its top-notch intelligence. This feature has
convinced researchers to start working on computational models of human cortex for AI purposes.
Spiking neural networks (SNNs) are the next generation of neural networks, in which neurons
communicate through binary signals known as spikes. SNNs are energy-efficient for hardware
implementation, because, spikes bring the opportunity of using event-based hardware as well as
simple energy-efficient accumulators instead of complex energy-hungry multiply-accumulators
that are usually employed in DCNN hardware (Furber, 2016; Davies et al., 2018).

177

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00625
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00625&domain=pdf&date_stamp=2019-07-12
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mgtabesh@ut.ac.ir
https://doi.org/10.3389/fnins.2019.00625
https://www.frontiersin.org/articles/10.3389/fnins.2019.00625/full
http://loop.frontiersin.org/people/732645/overview
http://loop.frontiersin.org/people/344545/overview
http://loop.frontiersin.org/people/622320/overview
http://loop.frontiersin.org/people/21932/overview

Mozafari et al. SpykeTorch

Spatio-temporal capacity of SNNs makes them potentially
stronger than DCNNs, however, harnessing their ultimate power
is not straightforward. Various types of SNNs have been proposed
for vision tasks which can be categorized based on their
specifications such as:

• network structure: shallow (Masquelier and Thorpe,
2007; Yu et al., 2013; Kheradpisheh et al., 2016), and
deep (Kheradpisheh et al., 2018; Mozafari et al., 2019),

• topology of connections: convolutional (Cao et al., 2015;
Tavanaei and Maida, 2016), and fully connected (Diehl and
Cook, 2015),

• information coding: rate (O’Connor et al., 2013; Hussain et al.,
2014), and latency (Masquelier and Thorpe, 2007; Diehl and
Cook, 2015; Mostafa, 2018),

• learning rule: unsupervised (Diehl and Cook, 2015; Ferré et al.,

2018; Thiele et al., 2018), supervised (Diehl et al., 2015; Liu
et al., 2017; Bellec et al., 2018; Mostafa, 2018; Shrestha and
Orchard, 2018; Wu et al., 2018; Zenke and Ganguli, 2018), and
reinforcement (Florian, 2007; Mozafari et al., 2018).

For recent advances in deep learning with SNNs, we refer the

readers to reviews by Tavanaei et al. (2018), Pfeiffer and Pfeil
(2018), and Neftci et al. (2019).

Deep convolutional SNNs (DCSNNs) with time-to-first-spike
information coding and STDP-based learning rule constitute
one of those many types of SNNs that carry interesting
features. Their deep convolutional structure supports visual
cortex and let them extract features hierarchically from simple
to complex. Information coding using the earliest spike time,
which is proposed based on the rapid visual processing in the
brain (Thorpe et al., 1996), needs only a single spike, making
them super fast andmore energy efficient. These features together
with hardware-friendliness of STDP, turn this type of SNNs into
the best option for hardware implementation and online on-
chip training (Yousefzadeh et al., 2017). Several recent studies
have shown the excellence of this type of SNNs in visual
object recognition (Kheradpisheh et al., 2018; Mostafa, 2018;
Mozafari et al., 2018; Mozafari et al., 2019; Falez et al., 2019;
Vaila et al., 2019).

With simulation frameworks such as Tensorflow (Abadi
et al., 2016) and PyTorch (Paszke et al., 2017), developing
and running DCNNs is fast and efficient. Conversely, DCSNNs
suffer from the lack of such frameworks. Existing state-
of-the-art SNN simulators have been mostly developed for
studying neuronal dynamics and brain functionalities and are

not efficient and user-friendly enough for AI purposes. For
instance, bio-realistic and detailed SNN simulations are provided
by NEST (Gewaltig and Diesmann, 2007), BRIAN (Stimberg
et al., 2014), NEURON (Carnevale and Hines, 2006), and
ANNarchy (Vitay et al., 2015). These frameworks also enable
users to define their own dynamics of neurons and connections.
In contrast, frameworks such as Nengo (Bekolay et al., 2014)
and NeuCube (Kasabov, 2014) offer high-level simulations
focusing on the neural behavior of the network. Recently,
BindsNet (Hazan et al., 2018) framework has been proposed as a
fast and general SNN simulator based on PyTorch that is mainly
developed for conducting AI experiments. A detailed comparison

between BindsNet and the other available frameworks can be
found in their paper.

In this paper, we propose SpykeTorch, a simulation
framework based on PyTorch which is optimized specifically
for convolutional SNNs with at most one spike per neuron.
SpykeTorch offers utilities for building hierarchical feedforward
SNNs with deep or shallow structures and learning rules such
as STDP and R-STDP (Gerstner et al., 1996; Bi and Poo, 1998;
Frémaux and Gerstner, 2016; Brzosko et al., 2017). SpykeTorch
only supports time-to-first-spike information coding and
provides a non-leaky integrate and fire neuron model with at
most one spike per stimulus. Unlike BindsNet which is flexible
and general, the proposed framework is highly restricted to and
optimized for this type of SNNs. Although BindsNet is based on
PyTorch, its network design language is different. In contrast,
SpykeTorch is fully compatible and integrated with PyTorch and
obeys the same design language. Therefore, a PyTorch user may
only read the documentation to find out the new functionalities.
Besides, this integrity makes it possible to utilize almost all of the
PyTorch’s functionalities either running on a CPU, or (multi-)
GPU platform.

The rest of this paper is organized as follows: Section 2
describes how SpykeTorch includes the concept of time in its
computations. Section 3 is dedicated to SpykeTorch package
structure and its components. In section 4, a brief tutorial on
building, training, and evaluating a DCSNN using SpykeTorch
is given. Section 6 summarizes the current work and highlights
possible future works.

2. TIME DIMENSION

Modules in SpykeTorch are compatible with those in PyTorch
and the underlying data-type is simply the PyTorch’s tensors.
However, since the simulation of SNNs needs the concept of
“time,” SpykeTorch considers an extra dimension in tensors for
representing time. The user may not need to think about this new
dimensionality while using SpykeTorch, but, in order to combine
it with other PyTorch’s functionalities or extracting different
kinds of information from SNNs, it is important to have a good
grasp of how SpykeTorch deals with time.

SpykeTorch works with time-steps instead of exact time. Since
the neurons emit at most one spike per stimulus, it is enough
to keep track of the first spike times (in time-step scale) of the
neurons. For a particular stimulus, SpykeTorch divides all of
the spikes into a pre-defined number of spike bins, where each
bin corresponds to a single time-step. More precisely, assume a
stimulus is represented by F feature maps, each constitutes a grid
of H × W neurons. Let Tmax be the maximum possible number
of time-steps (or bins) and Tf ,r,c denote the spike time (or the
bin index) of the neuron placed at position (r, c) of the feature
map f , where 0 ≤ f < F, 0 ≤ r < H, 0 ≤ c < W, and
Tf ,r,c ∈ {0, 1, ...,Tmax − 1} ∪ {∞}. The ∞ symbol stands for no
spike. SpykeTorch considers this stimulus as a four-dimensional
binary spike-wave tensor S of size Tmax × F ×H ×W where:

S[t, f , r, c] =

{

0 t < Tf ,r,c,

1 otherwise.
(1)

Frontiers in Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 625178

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

1

0

1

0

0

0

0

1

0

0

0

0

1

1

1

0

0

0

1

1

0

0

0

0

1

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

1

1

0

1

0

0

0

0 10

1

1

1

0

0

1

0 10

0

1

0

∞

∞

3

1

0

2

3

2

0

1

0

∞

3

1

∞ 0

1

1

1

0

0

1

0 10

1

1

1

0

1

1

0 10

Time

Features

Features

t = 0 t = 1 t = 2 t = 3

Spike Times

Spike-Wave Tensor

∞

FIGURE 1 | An example of generating spike-wave tensor from spike times. There are three feature maps, each constitutes a 2× 2 grid of neurons that are going to

generate a spike-wave representing a stimulus. If the maximum number of time-steps is 4, then the resulting spike-wave is a four-dimensional tensor of size

4× 3× 2× 2. If a neuron emits spike at time step t = i, the corresponding position in the spike-wave tensor will be set to 1 from time-step t = i to the final time step

(t = 3).

Note that this way of keeping the spikes (accumulative structure)
does not mean that neurons keep firing after their first spikes.
Repeating spikes in future time steps increases the memory
usage, but makes it possible to process all of the time-steps
simultaneously and produce the corresponding outputs, which
consequently results in a huge speed-up. Figure 1 illustrates an
example of converting spike times into a SpykeTorch-compatible
spike-wave tensor. Figure 2 shows how accumulative spikes helps
simultaneous computations.

3. PACKAGE STRUCTURE

Basically, SpykeTorch consists of four python modules;
(1) snn which contains multiple classes for creating
SNNs, (2) functional that implements useful SNNs’
functions, (3) utils which gathers helpful utilities, and (4)
visualization which helps to generate graphical data out of
SNNs. The following subsections explain these modules.

3.1. snn Module
The snnmodule contains necessary classes to build SNNs. These
classes are inherited from the PyTorch’s nn.Module, enabling
them to function inside the PyTorch framework as network
modules. Since we do not support error backpropagation, the
PyTorch’s auto-grad feature is turned off for all of the parameters
in snnmodule.

snn.Convolutional objects implements spiking
convolutional layers with two-dimensional convolution kernel.
A snn.Convolutional object is built by providing the

number of input and output features (or channels), and the
size of the convolution kernel. Given the size of the kernel, the
corresponding tensor of synaptic weights is randomly initialized
using a normal distribution, where the mean and standard
deviation can be set for each object, separately.

A snn.Convolutional object with kernel size Kh × Kw

performs a valid convolution (with no padding) over an input
spike-wave tensor of size Tmax × Fin × Hin × Win with stride
equals to 1 and produces an output potentials tensor of size
Tmax × Fout ×Hout ×Wout , where:

Hout = Hin − Kh + 1,

Wout = Win − Kw + 1,
(2)

and Fin and Fout are the number of input and output features,
respectively. Potentials tensors (P) are similar to the binary
spike-wave tensors, however P[t, f , r, c] denotes the floating-
point potential of a neuron placed at position (r, c) of feature
map f , at time-step t. Note that current version of SpykeTorch
does not support stride more than 1, however, we are going to
implement it in the next major version.

The underlying computation of snn.Convolutional is
the PyTorch’s two-dimensional convolution, where the mini-
batch dimension is sacrificed for the time. According to the
accumulative structure of spike-wave tensor, the result of
applying PyTorch’s conv2D over this tensor is the accumulative
potentials over time-steps.

It is important to mention that simultaneous computation
over time dimension improves the efficiency of the framework,

Frontiers in Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 625179

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

but it has dispelled batch processing in SpykeTorch. We
agree that batch processing brings a huge speed-up, however,
providing it to the current version of SpykeTorch is not
straightforward. Here are some of the important challenges: (1)
Due to accumulative format of spike-wave tensors, keeping batch
of images increases memory usage even more. (2) Plasticity in
batch mode needs new strategies. (3) To get the most out of
batch processing, all of the main computations such as plasticity,
competitions, and inhibitions should be done on the whole batch
at the same time, especially when the model is running on GPUs.

Pooling is an important operation in deep convolutional
networks. snn.Pooling implements two-dimensional max-
pooling operation. Building snn.Pooling objects requires
providing the pooling window size. The stride is equal to the
window size by default, but it is adjustable. Zero padding is also
another option which is off by default.

snn.Pooling objects are applicable to both spike-wave and
potentials tensors. According to the structure of these tensors, if
the input is a spike-wave tensor, then the output will contain the
earliest spike within each pooling window, while if the input is
a potentials tensor, the maximum potential within each pooling
window will be extracted. Assume that the input tensor has the
shape Tmax × Fin × Hin ×Win, the pooling window has the size
Ph×Pw with stride Rh×Rw, and the padding is (Dh,Dw), then the
output tensor will have the size Tmax×Fout×Hout×Wout , where:

Hout = ⌊
Hin + 2× Dh

Rh
⌋,

Wout = ⌊
Win + 2× Dw

Rw
⌋.

(3)

To apply STDP on a convolutional layer, a snn.STDP object
should be built by providing the value of required parameters
such as learning rates. Since this simulator works with time-
to-first-spike coding, the provided implementation of the STDP
function is as follows:

1Wi,j =

{

A+ × (Wi,j − LB)× (UB−Wi,j) if Tj ≤ Ti,

A− × (Wi,j − LB)× (UB−Wi,j) if Tj > Ti,
(4)

where, 1Wi,j is the amount of weight change of the synapse
connecting the post-synaptic neuron i to the pre-synaptic neuron
j, A+ and A− are learning rates, and (Wi,j − LB) × (UB − Wi,j)
is a stabilizer term which slows down the weight change when
the synaptic weight (Wi,j) is close to the lower (LB) or upper
(UB) bounds.

To apply STDP during the training process, providing the
input and output spike-wave, as well as output potentials tensors
are necessary. snn.STDP objects make use of the potentials
tensor to find winners. Winners are selected first based on the
earliest spike times, and then based on the maximum potentials.
The number of winners is set to 1 by default. snn.STDP objects
also provide lateral inhibition, by which they completely inhibit
the winners’ surrounding neurons in all of the feature maps
within a specific distance. This increases the chance of learning
diverse features. Note that R-STDP can be applied using two
snn.STDP objects; one for STDP part and the other for anti-
STDP part.

T
im

e

t =
 0

t =
 1

t =
 2

00.5

0.50

0 101

11 00

0 1 01

1001

0 101

11 11

1 1 11

1001

12

21

1.52

21.5

Input

spike-wave

Potentials

00

00

01

10

11

11

10

0

0.5 0

0.5

0

0

0

Kernel

Convolution

Convolution

Convolution

Thereshold = 1.2

Thereshold = 1.2

Thereshold = 1.2

0 101

00 00

0 0 00

1001

000

0 0 0

001

110

0 1 1

001

111

1 1 1

001

Output

spike-wave

FIGURE 2 | An example of simultaneous processing of spikes over

time-steps. Here the input spike-wave tensor has one 5× 5 channel (feature

map) and the spikes are divided into three time-steps. When SpykeTorch

applies the convolution kernel of size 3× 3 (valid mode) simultaneously on all

of the time-steps, the resulting tensor will contain potentials in all of the

time-steps. Since spikes are stored in accumulative format, then the potentials

are accumulative as well. Applying a threshold function over the whole

potential tensor generates the corresponding output spike-wave tensor, again

in accumulative format.

3.2. functional Module
This module contains several useful and popular functions
applicable on SNNs. Here we briefly review the most important
ones. For the sake of simplicity, we replace the functional.
with sf. for writing the function names.

As mentioned before, snn.Convolutional objects give
potential tensors as their outputs. sf.fire takes a potentials
tensor as input and converts it into a spike-wave tensor based
on a given threshold. sf.threshold function is also available
separately that takes a potentials tensor and outputs another
potentials tensor in which all of the potentials lower than the
given threshold are set to zero. The output of sf.threshold
is called thresholded potentials.

Lateral inhibition is another vital operation for SNNs specially
during the training process. It helps to learnmore diverse features
and achieve sparse representations in the network. SpykeTorch’s
functional module provides several functions for different
kinds of lateral inhibitions.

sf.feature_inhibition is useful for complete
inhibition of the selected feature maps. This function
comes in handy to apply dropout to a layer.
sf.pointwise_inhibition employs competition
among features. In other words, at each location, only the
neuron corresponding to the most salient feature will be
allowed to emit a spike (the earliest spike with the highest
potential). Lateral inhibition is also helpful to be applied on input
intensities before conversion to spike-waves. This will decrease
the redundancy in each region of the input. To apply this kind
of inhibition, sf.intensity_lateral_inhibition

Frontiers in Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 625180

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

is provided. It takes intensities and a lateral inhibition
kernel by which it decreases the surrounding intensities
(thus increases the latency of the corresponding spike) of
each salient point. Local normalization is also provided by
sf.local_normalization which uses regional mean for
normalizing intensity values.

Winners-take-all (WTA) is a popular competition mechanism
in SNNs. WTA is usually used for plasticity, however, it can
be involved in other functionalities such as decision-making.
sf.get_k_winners takes the desired number of winners
and the thresholded potentials and returns the list of winners.
Winners are selected first based on the earliest spike times, and
then based on the maximum potentials. Each winner’s location is
represented by a triplet of the form (feature, row, column).

3.3. utils Module
utils module provides several utilities to ease the
implementation of ideas with SpykeTorch. For example,
utils.generate_inhibition_kernel generates
an inhibition kernel based on a series of inhibition
factors in a form that can be properly used by
sf.intensity_lateral_inhibition.

There exist several transformation utilities that are suitable
for filtering inputs and converting them to spike-waves.
Current utilities are mostly designed for vision purposes.
utils.LateralIntencityInhibition objects do the
sf.intensity_lateral_inhibition as a transform
object. utils.FilterKernel is a base class to define
filter kernel generators. SpykeTorch has already provided
utils.DoGKernel and utils.GaborKernel in order to
generate DoG and Gabor filter kernels, respectively. Objects
of utils.FilterKernel can be packed into a multi-
channel filter kernel by utils.Filter objects and applied to
the inputs.

The most important utility provided by utils is
utils.Intensity2Latency. Objects of utils.
Intensity2Latency are used as transforms in PyTorch’s
datasets to transform intensities into latencies, i.e., spike-wave
tensors. Usually, utils.Intensity2Latency is the final
transform applied to inputs.

Since the application of a series of transformations and the
conversion to spike-waves can be time-consuming, SpykeTorch
provides a wrapper class, called utils.CacheDataset,
which is inherited from PyTorch’s dataset class. Objects of
utils.CacheDataset take a dataset as their input and cache
the data after applying all of the transformations. They can cache
either on primary memory or secondary storage.

Additionally, utils contains two functions utils.
tensor_to_text and utils.text_to_tensor, which
handle conversion of tensors to text files and the reverse,
respectively. This conversion is helpful to import data from a
source or export a tensor for a target software. The format of
the text file is as follows: the first line contains comma-separated
integers denoting the shape of the tensor. The second line
contains comma-separated values indicating the whole tensor’s
data in row-major order.

3.4. visualization Module
The ability to visualize deep networks is of great importance since
it gives a better understanding of how the network’s components
are working. However, visualization is not a straightforward
procedure and depends highly on the target problem and the
input data.

Due to the fact that SpykeTorch is developed mainly for vision
tasks, its visualization module contains useful functions
to reconstruct the learned visual features. The user should note
that these functions are not perfect and cannot be used in every
situation. In general, we recommend the user to define his/her
own visualization functions to get the most out of the data.

4. TUTORIAL

In this section, we show how to design, build, train, and test a
SNN with SpykeTorch in a tutorial format. The network in this
tutorial is adopted from the deep convolutional SNN proposed
by Mozafari et al. (2019) which recognizes handwritten digits
(tested onMNIST dataset). This network has a deep structure and
uses both STDP and Reward-Modulated STDP (R-STDP), which
makes it a suitable choice for a complete tutorial. In order tomake
the tutorial as simple as possible, we present code snippets with
reduced contents. For the complete source code, please check
SpykeTorch’s GitHub1 web page.

4.1. Step 1. Network Design
4.1.1. Structure
The best way to design a SNN is to define a class inherited from
torch.nn.Module. The network proposed by Mozafari et al.
(2019), has an input layer which applies DoG filters to the input
image and converts it to spike-wave. After that, there are three
convolutional (S) and pooling (C) layers that are arranged in the
form of S1 → C1 → S2 → C2 → S3 → C3 (see Figure 3).
Therefore, we need to consider three objects for convolutional
layers in this model. For the pooling layers, we will use the
functional version instead of the objects.

As shown in Listing 1, three snn.Convolutional objects
are created with desired parameters. Two snn.STDP objects
are built for training S1 and S2 layers. Since S3 is trained by
R-STDP, two snn.STDP are needed to cover both STDP and
anti-STDP parts. To have the effect of anti-STDP, it is enough to
negate the signs of the learning rates. Note that the snn.STDP
objects for conv3 have two extra parameters where the first one
turns off the stabilizer and the second one keeps the weights in
range [0.2, 0.8].

Although snn objects are compatible with nn.
Sequential (nn.Sequential automates the forward
pass given the network modules), we cannot use it at the
moment. The reason is that different learning rules may need
different kinds of data from each layer, thus accessing each layer
during the forward pass is a must.

1https://github.com/miladmozafari/SpykeTorch

Frontiers in Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 625181

https://github.com/miladmozafari/SpykeTorch
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

Reward/Punishment

 Signal

Input Im
age

D
oG

 Filters

C
onv. Layer (S1)

Pooling Layer (C
1)

Pooling Layer (C
2)

C
onv. Layer (S2)

C
onv. Layer (S3)

STDP

STDP

R-STDP

G
lobal Pooling Layer(C

3)

D
ecision M

aking

Conv. W
indow

(real value)

Conv. W
indow

(spiking)

Pooling Window

Intensity-to-Latency

 encoding

FIGURE 3 | Overall structure of the network in the tutorial (modified figure from the work by Mozafari et al., 2019).

1 import torch.nn as nn

2 import SpykeTorch.snn as snn

3 import SpykeTorch.functional as sf

4 class DCSNN(nn.Module):

5 def __init__(self):

6 super(DCSNN, self).__init__()

7

8 #(in_channels, out_channels, kernel_size, weight_mean=0.8, weight_std=0.02)

9 self.conv1 = snn.Convolution(6, 30, 5, 0.8, 0.05)

10 self.conv2 = snn.Convolution(30, 250, 3, 0.8, 0.05)

11 self.conv3 = snn.Convolution(250, 200, 5, 0.8, 0.05)

12

13 #(conv_layer, learning_rate, use_stabilizer=True, lower_bound=0, upper_bound=1)

14 self.stdp1 = snn.STDP(self.conv1, (0.004, -0.003))

15 self.stdp2 = snn.STDP(self.conv2, (0.004, -0.003))

16 self.stdp3 = snn.STDP(self.conv3, (0.004, -0.003), False, 0.2, 0.8)

17 self.anti_stdp3 = snn.STDP(self.conv3, (-0.004, 0.0005), False, 0.2, 0.8)

Listing 1 | Defining the network class.

4.1.2. Forward Pass
Next, we implement the forward pass of the network. To this
end, we override the forward function in nn.Module. If
the training is off, then implementing the forward pass will be
straightforward. Listing 2 shows the application of convolutional
and pooling layers on an input sample. Note that each input is a
spike-wave tensor. We will demonstrate how to convert images
into spike-waves later.

As shown in Listing 2, the input of each convolutional layer
is the padded version of the output of its previous layer, thus,
there would be no information loss at the boundaries. Pooling
operations are also applied by the corresponding function
sf.pooling, which is an alternative to snn.Pooling.
According to Mozafari et al. (2019), their proposed network
makes decision based on the maximum potential among the

neurons in the last pooling layer. To this end, we use an infinite
threshold for the last convolutional layer by omitting its value
from sf.fire_ function. sf.fire_ is the in-place version
of sf.fire which modifies the input potentials tensor Pin
as follows:

Pin[t, f , r, c] =

{

0 if t < Tmax − 1,

Pin[t, f , r, c] otherwise.
(5)

Consequently, the resulting spike-wave will be a tensor in which,
all the values are zero except for those non-zero potential values
in the last time-step.

Now that we have the potentials of all the neurons in S3, we
find the only one winner among them. This is the same as doing a
global max-pooling and choosing the maximum potential among

Frontiers in Neuroscience | www.frontiersin.org 6 July 2019 | Volume 13 | Article 625182

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

1 def forward(self, input):

2 input = sf.pad(input, (2,2,2,2))

3 if not self.training:

4 pot = self.conv1(input)

5 spk = sf.fire(pot, 15)

6 pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))

7 spk = sf.fire(pot, 10)

8 pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2)))

9 # omitting the threshold parameters means infinite threshold

10 spk = sf.fire_(pot)

11 winners = sf.get_k_winners(pot, 1)

12 output = -1

13 # each winner is a tuple of form (feature, row, column)

14 if len(winners) != 0:

15 output = self.decision_map[winners[0][0]]

16 return output

Listing 2 | Defining the forward pass (during testing process).

1 def save_data(self, input_spk, pot, spk, winners):

2 self.ctx["input_spikes"] = input_spk

3 self.ctx["potentials"] = pot

4 self.ctx["output_spikes"] = spk

5 self.ctx["winners"] = winners

Listing 3 | Saving required data for plasticity.

them. decision_map is a Python list which maps each feature
to a class label. Since each winner contains the feature number
as its first component, we can easily indicate the decision of the
network by putting that into the decision_map.

We cannot take advantage of this forward pass during the
training process as the STDP and R-STDP need local synaptic
data to operate. Therefore, we need to save the required data
during the forward pass. We define a Python dictionary (named
ctx) in our network class and a function which saves the data
into that (see Listing 3). Since the training process is layer-wise,
we update the forward function to take another parameter
which specifies the layer that is under training. The updated
forward function is shown in Listing 4.
There are several differences with respect to the testing forward
pass. First, sf.fire is used with an extra parameter value. If
the value of this parameter is True, the tensor of thresholded
potentials will also be returned. Second, sf.get_k_winners
is called with a new parameter value which controls the radius
of lateral inhibition. Third, the forward pass is interrupted by the
value of max_layer.

4.1.3. Plasticity
Now that we saved the required data for learning, we can define a
series of helper functions to apply STDP or anti-STDP. Listing 5
defines three member functions for this purpose. For each call of

STDP objects, we need to provide tensors of input spike-wave,
output thresholded potentials, output spike-wave, and the list
of winners.

4.2. Step 2. Input Layer and
Transformations
SNNs work with spikes, thus, we need to transform images into
spike-waves before feeding them into the network. PyTorch’s
datasets accept a function as a transformation which is called
automatically on each input sample. We make use of this feature
together with the provided transform functions and objects by
PyTorch and SpykeTorch. According to the network proposed
by Mozafari et al. (2019), each image is convolved by six DoG
filters, locally normalized, and transformed into spike-wave. As
appeared in Listing 6, a new class is defined to handle the
required transformations.

Each InputTransform object converts the input image
into a tensor (line 9), adds an extra dimension for time
(line 10), applies provided filters (line 11), applies local
normalization (line 12), and generates spike-wave tensor (line
13). To create utils.Filter object, six DoG kernels with
desired parameters are given to utils.Filter’s constructor
(lines 15–17) as well as an appropriate padding and threshold
value (line 18).

Frontiers in Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 625183

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

1 def forward(self, input, max_layer):

2 input = sf.pad(input, (2,2,2,2))

3 if self.training: #forward pass for train

4 pot = self.conv1(input)

5 spk, pot = sf.fire(pot, 15, True)

6 if max_layer == 1:

7 winners = sf.get_k_winners(pot, 5, 3)

8 self.save_data(input, pot, spk, winners)

9 return spk, pot

10 spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))

11 pot = self.conv2(spk_in)

12 spk, pot = sf.fire(pot, 10, True)

13 if max_layer == 2:

14 winners = sf.get_k_winners(pot, 8, 2)

15 self.save_data(spk_in, pot, spk, winners)

16 return spk, pot

17 spk_in = sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2))

18 pot = self.conv3(spk_in)

19 spk = sf.fire_(pot)

20 winners = sf.get_k_winners(pot, 1)

21 self.save_data(spk_in, pot, spk, winners)

22 output = -1

23 if len(winners) != 0:

24 output = self.decision_map[winners[0][0]]

25 return output

26 else:

27 # forward pass for testing process

Listing 4 | Defining the forward pass (during training process).

1 def stdp(self, layer_idx):

2 if layer_idx == 1:

3 self.stdp1(self.ctx["input_spikes"], self.ctx["potentials"],

self.ctx["output_spikes"], self.ctx["winners"])→֒

4 if layer_idx == 2:

5 self.stdp2(self.ctx["input_spikes"], self.ctx["potentials"],

self.ctx["output_spikes"], self.ctx["winners"])→֒

6

7 def reward(self):

8 self.stdp3(self.ctx["input_spikes"], self.ctx["potentials"], self.ctx["output_spikes"],

self.ctx["winners"])→֒

9

10 def punish(self):

11 self.anti_stdp3(self.ctx["input_spikes"], self.ctx["potentials"],

self.ctx["output_spikes"], self.ctx["winners"])→֒

Listing 5 | Defining helper functions for plasticity.

4.3. Step 3. Data Preparation
Due to the PyTorch and SpykeTorch compatibility, all of the
PyTorch’s dataset utilities work here. As illustrated in Listing 7,
we use torchvision.datasets.MNIST to load MNIST
dataset with our previously defined transform. Moreover, we
use SpykeTorch’s dataset wrapper, utils.CacheDataset to
enable caching the transformed data after its first presentation.

When the dataset gets ready, we use PyTorch’s DataLoader to
manage data loading.

4.4. Step 4. Training and Testing
4.4.1. Unsupervised Learning (STDP)
To do unsupervised learning on S1 and S2 layers, we use a
helper function as defined in Listing 8. This function trains

Frontiers in Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 625184

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

1 import SpykeTorch.utils as utils

2 import torchvision.transforms as transforms

3 class InputTransform:

4 def __init__(self, filter):

5 self.to_tensor = transforms.ToTensor()

6 self.filter = filter

7 self.temporal_transform = utils.Intensity2Latency(15, to_spike=True)

8 def __call__(self, image):

9 image = self.to_tensor(image) * 255

10 image.unsqueeze_(0)

11 image = self.filter(image)

12 image = sf.local_normalization(image, 8)

13 return self.temporal_transform(image)

14

15 kernels = [utils.DoGKernel(3,3/9,6/9), utils.DoGKernel(3,6/9,3/9),

16 utils.DoGKernel(7,7/9,14/9), utils.DoGKernel(7,14/9,7/9),

17 utils.DoGKernel(13,13/9,26/9), utils.DoGKernel(13,26/9,13/9)]

18 filter = utils.Filter(kernels, padding = 6, thresholds = 50)

19 transform = InputTransform(filter)

Listing 6 | Transforming each input image into spike-wave.

1 from torch.utils.data import DataLoader

2 from torchvision.datasets import MNIST

3 MNIST_train = utils.CacheDataset(MNIST(root=data_root, train=True, download=True,

transform=transform))→֒

4 MNIST_test = utils.CacheDataset(MNIST(root=data_root, train=False, download=True,

transform=transform))→֒

5 MNIST_loader = DataLoader(MNIST_train, batch_size=1000)

6 MNIST_test_loader = DataLoader(MNIST_test, batch_size=len(MNIST_test))

Listing 7 | Preparing MNIST dataset and the data loader.

1 def train_unsupervised(network, data, layer_idx):

2 network.train()

3 for i in range(len(data)):

4 data_in = data[i].cuda() if use_cuda else data[i]

5 network(data_in, layer_idx)

6 network.stdp(layer_idx)

Listing 8 | Helper function for unsupervised learning.

layer layer_idx of network on data by calling the
corresponding STDP object. There are two important things in
this function: (1) putting the network in train mode by calling.
train function, and (2) loading the sample on GPU if the global
use_cuda flag is True.

4.4.2. Reinforcement Learning (R-STDP)
To apply R-STDP, it is enough to call previously defined reward
or punishmember functions under appropriate conditions. As
shown in Listing 9, we check the network’s decision with the label

and call reward (or punish) if it matches (or mismatches) the
target. We also compute the performance by counting correct,
wrong, and silent (no decision is made because of receiving no
spikes) samples.

4.4.3. Execution
Now that we have the helper functions, we can make an instance
of the network and start training and testing it. Listing 10

illustrates the implementation of this part. Note that the test
helper function is the same as the train_rl function, but it

Frontiers in Neuroscience | www.frontiersin.org 9 July 2019 | Volume 13 | Article 625185

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

1 import numpy as np

2 def train_rl(network, data, target):

3 network.train()

4 perf = np.array([0,0,0]) # correct, wrong, silent

5 for i in range(len(data)):

6 data_in = data[i].cuda() if use_cuda else data[i]

7 target_in = target[i].cuda() if use_cuda else target[i]

8 d = network(data_in, 3)

9 if d != -1:

10 if d == target_in:

11 perf[0]+=1

12 network.reward()

13 else:

14 perf[1]+=1

15 network.punish()

16 else:

17 perf[2]+=1

18 return perf/len(data)

Listing 9 | Helper function for reinforcement learning.

1 net = DCSNN()

2 if use_cuda:

3 net.cuda()

4 # First Layer

5 for epoch in range(epochs_1):

6 for data,targets in MNIST_loader:

7 train_unsupervised(net, data, 1)

8 # Second Layer

9 for epoch in range(epochs_2):

10 for data,targets in MNIST_loader:

11 train_unsupervised(net, data, 2)

12 # Third Layer

13 for epoch in range(epochs_3):

14 for data,targets in MNIST_loader: # Training

15 print(train_rl(net, data, targets))

16 for data,targets in MNIST_test_loader: # Testing

17 print(test(net, data, targets))

Listing 10 | Training and testing the network.

calls network.eval instead of network.train and it does
not call plasticity member functions. Also, invoking net.cuda,
transfers all the network’s parameters to the GPU.

4.5. Source Code
Through this tutorial, we omitted many parts of the actual
implementation such as adaptive learning rates, multiplication
of learning rates, and saving/loading the best state of the
network, for the sake of simplicity and clearance. The complete
reimplementation is available on SpykeTorch’s GitHub web page.
We have also provided scripts for other works (Kheradpisheh
et al., 2018; Mozafari et al., 2018) that achieve almost the same
results as the main implementations. However, due to technical
and computational differences between SpykeTorch and the

original versions, tiny differences in performance are expected.
A comparison between SpykeTorch and one of the previous
implementations is provided in the next section.

5. COMPARISON

We performed a comparison between SpykeTorch and the
dedicated C++/CUDA implementations of the network proposed
byMozafari et al. (2019) andmeasured the training and inference
time. Both networks are trained for 686 epochs (2 for the first,
4 for the second, and 680 for the last trainable layer). In each
training or inference epoch, the network sees all of the training
or testing samples, respectively. Note that during the training

Frontiers in Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 625186

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

TABLE 1 | Comparison of C++/CUDA and SpykeTorch scripts simulating the

network proposed by Mozafari et al. (2019).

Script Total training Inference epoch Accuracy

C++/CUDA 174,120 s (= 2d 00h 22m 20s) 35 s 97.2%

SpykeTorch 121,600 s (= 1d 09h 46m 40s) 20 s 96.9%

Both scripts are executed on a same machine with Intel(R) Xeon(R) CPU E5-2697 (2.70

GHz), 256G Memory, NVIDIA TITAN Xp GPU, PyTorch 1.1.0, and Ubuntu 16.04.

of the last trainable layer, each training epoch is followed by an
inference epoch.

As shown in Table 1, SpykeTorch script outperformed the
original implementation in both training and inference times.
The small performance gap is due to some technical differences
in functions’ implementations and performing a new round of
parameter tuning fills this gap. We believe that SpykeTorch
has the potentials of even more efficient computations. For
example, adding batch processing to SpykeTorch would result
in a large amount of speed-up due to the minimization of CPU-
GPU interactions.

6. CONCLUSIONS

In recent years, SNNs have gainedmany interests in AI because of
their ability to work in a spatio-temporal domain as well as energy
efficiency. Unlike DCNNs, most of the current SNN simulators
are not efficient enough to perform large-scale AI tasks. In
this paper, we proposed SpykeTorch, an open-source high-
speed simulation framework based on PyTorch. The proposed
framework is optimized for convolutional SNNs with at most
one spike per neuron and time-to-first-spike information coding
scheme. SpykeTorch provides STDP and R-STDP learning rules
but other rules can be added easily.

The compatibility and integrity of SpykeTorch with PyTorch
have simplified its usage specially for the deep learning
communities. This integration brings almost all of the PyTorch’s
features functionalities to SpykeTorch such as the ability of just-
in-time optimization for running on CPUs, GPUs, or Multi-
GPU platforms. We agree that SpykeTorch has hard limitations
on type of SNNs, however, there is always a trade-off between
computational efficiency and generalization. Apart from the
increase of computational efficiency, this particular type of SNNs
are bio-realistic, energy-efficient, and hardware-friendly that are
getting more and more popular recently.

We provided a tutorial on how to build, train, and
evaluate a DCSNN for digit recognition using SpykeTorch.
However, the resources are not limited to this paper and

additional scripts and documentations can be found on
SpykeTorch’s GitHub page. We reimplemented various
works (Kheradpisheh et al., 2018; Mozafari et al., 2018; Mozafari
et al., 2019) by SpykeTorch and reproduced their results with
negligible difference.

Although the current version of SpykeTorch is functional
and provides the main modules and utilities for DCSNNs
(with at most one spike per neuron), we will not stop here
and our plan is to extend and improve it gradually. For
example, adding automation utilities would ease programming
the network’s forward pass resulting a more readable and cleaner
code. Due to the variations of training strategies, designing a
general automation platform is challenging. Another feature that
improves SpykeTorch’s speed is batch processing. Enabling batch
mode might be easy for operations like convolution or pooling,
however, implementing batch learning algorithms that can be
run with none or a few CPU-GPU interactions is hard. Finally,
implementing features to support models for other modalities
such as the auditory system makes SpykeTorch a multi-modal
SNN framework.

DATA AVAILABILITY

The dataset analyzed for this study can be found in this link
http://yann.lecun.com/exdb/mnist/.

AUTHOR CONTRIBUTIONS

MM, MG, AN-D, and TM sketched the overall structure
of SpykeTorch, revised, and finalized the manuscript. MM
implemented the whole SpykeTorch package and wrote the first
version of the manuscript.

FUNDING

This research was partially supported by the Iranian Cognitive
Sciences and Technologies Council (Grant no. 5898) and by the
French Agence Nationale de la Recherche (grant: Beating Roger
Federer ANR-16-CE28-0017-01).

ACKNOWLEDGMENTS

The authors would like to thank Dr. Jean-Pierre Jaffrézou
for proofreading this manuscript and NVIDIA GPU Grant
Program for supporting computations by providing a
high-tech GPU.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al.

(2016). “Tensorflow: a system for large-scale machine learning,” in 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

16) (Savannah, GA), 265–283.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a python tool for building large-scale functional

brain models. Front. Neuroinformatics 7:48. doi: 10.3389/fninf.2013.

00048

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long

short-term memory and learning-to-learn in networks of spiking neurons,” in

Advances in Neural Information Processing Systems (Montréal, QC), 795–805.

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Brzosko, Z., Zannone, S., Schultz, W., Clopath, C., and Paulsen, O.

(2017). Sequential neuromodulation of hebbian plasticity offers mechanism for

effective reward-based navigation. eLife 6, 1–18. doi: 10.7554/eLife.27756

Frontiers in Neuroscience | www.frontiersin.org 11 July 2019 | Volume 13 | Article 625187

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.7554/eLife.27756
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Mozafari et al. SpykeTorch

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge, UK:

Cambridge University Press.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: A neuromorphic manycore processor with on-chip learning.

IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” inNeural Networks (IJCNN), 2015 International Joint Conference on

(Killarney: IEEE), 1–8.

Falez, P., Tirilly, P., Bilasco, I. M., Devienne, P., and Boulet, P. (2019). Multi-

layered spiking neural network with target timestamp threshold adaptation and

stdp. arXiv: 1904.01908.

Ferré, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature

learning with winner-takes-all based stdp. Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Florian, R. V. (2007). Reinforcement learning through modulation of spike-

timing-dependent synaptic plasticity. Neural Comput. 19, 1468–1502.

doi: 10.1162/neco.2007.19.6.1468

Frémaux, N., and Gerstner, W. (2016). Neuromodulated spike-timing-dependent

plasticity, and theory of three-factor learning rules. Front. Neural Circuits 9:85.

doi: 10.3389/fncir.2015.00085

Furber, S. (2016). Large-scale neuromorphic computing systems. J. Neural Eng.

13:051001. doi: 10.1088/1741-2560/13/5/051001

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A

neuronal learning rule for sub-millisecond temporal coding. Nature 383:76.

doi: 10.1038/383076a0

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., et al. (2018).

Recent advances in convolutional neural networks. Patt. Recogn. 77, 354–377.

doi: 10.1016/j.patcog.2017.10.013

Hazan, H., Saunders, D. J., Khan, H., Sanghavi, D. T., Siegelmann, H. T.,

and Kozma, R. (2018). Bindsnet: a machine learning-oriented spiking

neural networks library in python. Front. Neuroinformatics 12:89.

doi: 10.3389/fninf.2018.00089

Hussain, S., Liu, S.-C., and Basu, A. (2014). “Improved margin multi-class

classification using dendritic neurons with morphological learning,” in Circuits

and Systems (ISCAS), 2014 IEEE International Symposium on (Melbourne, VIC:

IEEE), 2640–2643.

Kasabov, N. K. (2014). Neucube: a spiking neural network architecture for

mapping, learning and understanding of spatio-temporal brain data. Neural

Netw. 52, 62–76. doi: 10.1016/j.neunet.2014.01.006

Kheradpisheh, S. R., Ganjtabesh, M., and Masquelier, T. (2016). Bio-inspired

unsupervised learning of visual features leads to robust invariant object

recognition.Neurocomputing 205, 382–392. doi: 10.1016/j.neucom.2016.04.029

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

Stdp-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Liu, T., Liu, Z., Lin, F., Jin, Y., Quan, G., and Wen, W. (2017). “Mt-spike: a

multilayer time-based spiking neuromorphic architecture with temporal error

backpropagation,” in 2017 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD) (Irvine, CA), 450–457.

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Mink, J. W., Blumenschine, R. J., and Adams, D. B. (1981). Ratio of central

nervous system to bodymetabolism in vertebrates: its constancy and functional

basis. Am. J. Physiol. Regul. Integr. Compar. Physiol. 241, R203–R212.

doi: 10.1152/ajpregu.1981.241.3.R203

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking

neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.

doi: 10.1109/TNNLS.2017.2726060

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., andMasquelier, T.

(2019). Bio-inspired digit recognition using reward-modulated spike-timing-

dependent plasticity in deep convolutional networks. Patt. Recogn. 94, 87–95.

doi: 10.1016/j.patcog.2019.05.015

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2018). First-spike-based visual categorization using reward-

modulated stdp. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190.

doi: 10.1109/TNNLS.2018.2826721

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in

spiking neural networks. arXiv: 1901.09948.

O’Connor, P., Neil, D., Liu, S. C., Delbruck, T., and Pfeiffer, M. (2013). Real-

time classification and sensor fusion with a spiking deep belief network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al.

(2017). “Automatic differentiation in pytorch,” in NIPS-W (Long Beach, CA).

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities

and challenges. Front. Neurosci. 12:774. doi: 10.3389/fnins.2018.00774

Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for

image classification: a comprehensive review. Neural Comput. 29, 2352–2449.

doi: 10.1162/neco_a_00990

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems (Montréal, QC),

1419–1428.

Stimberg, M., Goodman, D. F., Benichoux, V., and Brette, R. (2014).

Equation-oriented specification of neural models for simulations. Front.

Neuroinformatics 8:6. doi: 10.3389/fninf.2014.00006

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.

(2018). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.

doi: 10.1016/j.neunet.2018.12.002

Tavanaei, A., and Maida, A. S. (2016). Bio-inspired spiking convolutional neural

network using layer-wise sparse coding and STDP learning. arXiv: 1611.03000.

Thiele, J. C., Bichler, O., and Dupret, A. (2018). Event-based, timescale invariant

unsupervised online deep learning with stdp. Front. Comput. Neurosci. 12:46.

doi: 10.3389/fncom.2018.00046

Thorpe, S., Fize, D., andMarlot, C. (1996). Speed of processing in the human visual

system. Nature 381:520. doi: 10.1038/381520a0

Vaila, R., Chiasson, J., and Saxena, V. (2019). Deep convolutional spiking neural

networks for image classification. arXiv: 1903.12272.

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). Annarchy: a code

generation approach to neural simulations on parallel hardware. Front.

Neuroinformatics 9:19. doi: 10.3389/fninf.2015.00019

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-

temporal backpropagation for training high-performance spiking

neural networks. Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.

00331

Yousefzadeh, A., Masquelier, T., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). “Hardware implementation of convolutional stdp for on-line visual

feature learning,” in Circuits and Systems (ISCAS), 2017 IEEE International

Symposium on (Baltimore, MD: IEEE), 1–4.

Yu, Q., Tang, H., Tan, K. C., and Li, H. (2013). Rapid feedforward

computation by temporal encoding and learning with spiking neurons. IEEE

Trans. Neural Netw. Learn. Syst. 24, 1539–1552. doi: 10.1109/TNNLS.2013.

2245677

Zenke, F., and Ganguli, S. (2018). Superspike: supervised learning in

multilayer spiking neural networks. Neural Comput. 30, 1514–1541.

doi: 10.1162/neco_a_01086

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019Mozafari, Ganjtabesh, Nowzari-Dalini andMasquelier. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2019 | Volume 13 | Article 625188

https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2018.00024
https://doi.org/10.1162/neco.2007.19.6.1468
https://doi.org/10.3389/fncir.2015.00085
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1038/383076a0
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1016/j.neunet.2014.01.006
https://doi.org/10.1016/j.neucom.2016.04.029
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1152/ajpregu.1981.241.3.R203
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.3389/fncom.2018.00046
https://doi.org/10.1038/381520a0
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1109/TNNLS.2013.2245677
https://doi.org/10.1162/neco_a_01086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 06 August 2019

doi: 10.3389/fnins.2019.00812

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 812

Edited by:

Peng Li,

University of California, Santa Barbara,

United States

Reviewed by:

Amirali Amirsoleimani,

University of Toronto, Canada

Valerio Milo,

Politecnico di Milano, Italy

*Correspondence:

Huaqiang Wu

wuhq@tsinghua.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 01 March 2019

Accepted: 22 July 2019

Published: 06 August 2019

Citation:

Guo Y, Wu H, Gao B and Qian H

(2019) Unsupervised Learning on

Resistive Memory Array Based

Spiking Neural Networks.

Front. Neurosci. 13:812.

doi: 10.3389/fnins.2019.00812

Unsupervised Learning on Resistive
Memory Array Based Spiking Neural
Networks
Yilong Guo, Huaqiang Wu*, Bin Gao and He Qian

Institute of Microelectronics, Tsinghua University, Beijing, China

Spiking Neural Networks (SNNs) offer great potential to promote both the performance

and efficiency of real-world computing systems, considering the biological plausibility

of SNNs. The emerging analog Resistive Random Access Memory (RRAM) devices

have drawn increasing interest as potential neuromorphic hardware for implementing

practical SNNs. In this article, we propose a novel training approach (called greedy

training) for SNNs by diluting spike events on the temporal dimension with necessary

controls on input encoding phase switching, endowing SNNswith the ability to cooperate

with the inevitable conductance variations of RRAM devices. The SNNs could utilize

Spike-Timing-Dependent Plasticity (STDP) as the unsupervised learning rule, and this

plasticity has been observed on our one-transistor-one-resistor (1T1R) RRAM devices

under voltage pulses with designed waveforms . We have also conducted handwritten

digit recognition task simulations on MNIST dataset. The results show that the

unsupervised SNNs trained by the proposed method could mitigate the requirement

for the number of gradual levels of RRAM devices, and also have immunity to both

cycle-to-cycle and device-to-device RRAM conductance variations. Unsupervised SNNs

trained by the proposedmethods could cooperate with real RRAMdevices with non-ideal

behaviors better, promising high feasibility of RRAM array based neuromorphic systems

for online training.

Keywords: unsupervised learning, spiking neural network (SNN), memristor, RRAM (resistive random access

memories), 1T1R RRAM, STDP

1. INTRODUCTION

Spiking Neural Networks (SNNs) have been developed in the last decades as the third
generation Artificial Neural Networks (ANNs) since SNNs behave more similarly to the
natural neural systems, such as the human brain (Maass, 1997). The human brain is
capable of complex recognition or reasoning tasks at relatively low power consumption
and in a smaller volume, compared with those of training conventional ANN models
of similar accuracy. The synaptic modification manners found in cultured hippocampal
neurons introduced a great abstract model of the synaptic plasticity (Bi and Poo, 1998),
namely the Spike-Timing-Dependent Plasticity (STDP). The STDP rule describes how the
intermediate synapse changes its plasticity according to the spike timings of pre-neurons and
post-neurons. The STDP rule could be armed as an unsupervised learning mechanism in SNNs,
to implement more bio-like neural computing systems. However, SNN simulations require
much more effort for preserving and utilizing the enormous amount of spatial-temporal
information encoded in spike trains, thus are incredibly compute-intensive on conventional von

189

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00812
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00812&domain=pdf&date_stamp=2019-08-06
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wuhq@tsinghua.edu.cn
https://doi.org/10.3389/fnins.2019.00812
https://www.frontiersin.org/articles/10.3389/fnins.2019.00812/full
http://loop.frontiersin.org/people/618947/overview
http://loop.frontiersin.org/people/499923/overview

Guo et al. Unsupervised Learning on RRAM-Based SNNs

Neumann computing systems. Some dedicated Very-Large-
Scale Integration (VLSI) neuromorphic architectures have
been proposed to enhance the neural simulation performance
(Schemmel et al., 2010; Painkras et al., 2013; Qiao et al.,
2015). VLSI technology allows intensive integration of neurons;
however, the implementation of synapse arrays requires many
transistors and intricate circuit designs, to emulate the learning
and plasticity dynamics such as STDP. Recently, the analog
Resistive RandomAccess Memory (RRAM) devices have become
emerging neuromorphic hardware for artificial synapses, thanks
to the controllability on their conductances and the ability
of in-memory computing (Jo et al., 2010). The nanoscale
fabricated RRAM devices can also be easily integrated as high-
density crossbar arrays, which provide elegant solutions for the
implementation of numerous synapses in neural systems. STDP
allows the synapse tomodulate its plasticity/strength according to
the relative spike timing difference of the neurons connected by
that synapse, and RRAM devices have been proved to be capable
of providing various STDP characteristics (Jo et al., 2010; Yu
et al., 2011b; Ambrogio et al., 2013, 2016; Wang et al., 2015;
Pedretti et al., 2017; Wu and Saxena, 2017; Prezioso et al., 2018).

Typically, training neural network models in-situ on
memristive devices could be challenging due to the device
imperfectness and non-idealities, such as read noise, write
noise, write nonlinearities, asymmetric SET/RESET switching
behaviors and the limited gradual levels during programming
(Agarwal et al., 2016; Chang et al., 2017; Wu et al., 2017). To
accomplish recognition tasks such as learning handwritten digits
(LeCun et al., 1998) with memristive neuromorphic hardware,
Gokmen and Vlasov (2016) gave an estimate for the number
of states that are required to be stored on a RRAM device as
600. While the reported state-of-art technologies allow the
memristive devices to have 64 states (Park et al., 2016), up to over
200 states (Gao et al., 2015) continuously tuned by consecutive
programming pulses, it is typically impossible to precisely control
the conductance level using single shot programming (Kuzum
et al., 2011; Yu et al., 2013; Eryilmaz et al., 2016). For neural
networks trained with supervision, such as backpropagation
(LeCun et al., 1989), the conductance of memristive devices can
be fine-tuned to the desired value during the training process,
using write-verification scheme (Guan et al., 2012; Yao et al.,
2017), which introduces operation overheads to modulate the
device conductance more precisely.

However, when it comes to unsupervised neural networks
such as SNNs trained with STDP, write-verification scheme is not
compatible with unsupervised learning since there is no error
propagating backward and the weights should be self-adaptive
to the input stimulus and output responses (STDP). Therefore,
the switching behavior under consecutive programming pulses
of RRAM devices is essential for implementing unsupervised
learning algorithms. The dynamic range and minimum
achievable mean conductance change will limit the learning
rate of training algorithms (Gokmen and Vlasov, 2016). The
learning rates for typical SNN training algorithms are set at the
magnitude order around 10−4 ∼ 10−2 (Masquelier and Thorpe,
2007; Querlioz et al., 2013; Panda et al., 2018), which implies
at least 100 ∼ 1, 000 intermediate states are needed for RRAM

devices to implement such learning rules without compromise.
So far, memristive device technologies could provide with
devices of <100 multi-level states (Kuzum et al., 2013), which
limits the complexity of RRAM-based SNNs. Several SNNs of
simple structures have been simulated or demonstrated basing
on memristive devices (Wang et al., 2015; Pedretti et al., 2017),
accomplishing recognition tasks such as 4 × 4 binary patterns
with one post-neuron (Pedretti et al., 2017), 3× 3 binary patterns
with two competitive post-neurons (Pedretti et al., 2017) and
one single 8 × 8 pattern with eight pre-neurons and eight
post-neurons (Wang et al., 2015). The abrupt switching behavior
of RRAM devices limits the complexity of recognition tasks
accomplished by unsupervised SNNs. Boybat et al. (2018) have
proposed an architecture to wrap several Phase Change Memory
(PCM) devices as one single synapse, to reduce the smallest
achievable mean conductance change, therefore improving
the effective conductance change granularity. This N-in-1 (N
PCMs serving as one single synapse) architecture requires
additional arbitration control circuit to manage N PCMs for each
synapse. Their unsupervised SNN simulation with device model
achieves remarkable performance by using 9-in-1 architecture (9
PCMs as one synapse), reaching testing accuracy over 70% on
MNIST dataset with a single-layer (no hidden layer) SNN of 50
post-neurons, which is close to the float-precision baseline 77.2%
(Boybat et al., 2018).

In this work, we propose a novel scheme for training
unsupervised SNNs, with pattern/background phases and greedy
training, to cooperate with realistic RRAM characteristics. The
pattern/background phases and greedy training methods allow
input pattern spike trains to have much lower frequencies and
still guarantee the synapses to learn correct patterns and forget
irrelevant information as well. Lower firing rate of neurons in
SNNs will lead to fewer times of conductance changes for RRAM
devices. We conduct simulations of unsupervised SNNs for the
recognition of the handwritten digits from MNIST dataset, as
well as the SNNs with different levels of RRAM cycle-to-cycle
and device-to-device variations. The testing accuracy for 10,000
test images fromMNIST dataset reaches around 75% after single-
epoch unsupervised learning on 60,000 training images, with
30% cycle-to-cycle and device-to-device write variation, together
with 10% cycle-to-cycle, and device-to-device dynamic range
variation. The SNNs trained with proposed training methods
show excellent performance even with large learning rates, which
indicates that the requirement for the number of levels of RRAM
devices could be reduced, and the abrupt switching, asymmetric
switching could also be tolerated well. The unsupervised SNNs
trained with proposed training methods show high feasibility of
RRAM array based neuromorphic systems for online training.

In this article, the material details of our 1T1R device will
first be introduced in section 2.1. Then the STDP architecture
on 1T1R array and the unsupervised SNN architecture will
be explained in sections 2.2, 2.3 respectively. The STDP
characteristic of 1T1R devices measured from experiment is
shown in section 3.1. The pattern/background phases and
greedy training methods are described in sections 3.2.1, 3.2.2.
The inference technique is also included in section 3.2.3. And
classification results on digit recognition are shown in sections

Frontiers in Neuroscience | www.frontiersin.org 2 August 2019 | Volume 13 | Article 812190

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

3.2.4, 3.2.5. In section 4, more types of RRAM non-idealities
are discussed, such as endurance, failure rate and asymmetric
switching behavior. Section 5 highlights the main contributions
of this work.

2. MATERIALS AND METHODS

2.1. 1T1R Device
The one-transistor-one-resistor (1T1R) structure is used to
fabricate the RRAM crossbar array, as illustrated in Figure 1.
Each RRAM device consists of a TiN/TaOy/HfOx/TiN stack.
The transistor inside the 1T1R cell plays an important role to
overcome the shortcomings of the conventional 2-terminal 1R
or one-selector-one-resistor (1S1R) crossbar array, such as sneak
current path and programming disturbance (Yao et al., 2015).
Furthermore, the gate node offers more control over the whole
1T1R cell since the current through the device can be complied
during the SET processes. The control on gate voltage allows
more immunity to the switching voltage magnitude and achieves
better uniformity (Liu et al., 2014).

Each 1T1R cell has three main terminals: transistor gate, top
electrode and transistor source, and they are connected to the
word-line (WL, also noted as G), bit-line (BL), and source-line
(SL) respectively in the array layout. Typical switching behavior
during SET and RESET is shown in Figure 1C, where abrupt
switching during SET is observed since the generation of each
oxygen vacancy during the SET process can increase the local
electric field/temperature and accelerate the generation of other
vacancies, analogous to avalanche breakdown (Yao et al., 2017).
Gate voltage pulses are usually different during SET and RESET
processes: lower gate voltage is applied during SET to limit the
set current, while RESET process requires a higher gate voltage
to supply adequate reset current (Wu et al., 2011; Yao et al.,
2017). Furthermore, we can notice that the switching behaviors
of SET and RESET are asymmetric, which is one of the major
bottlenecks that limit the performance of memristive-based
neural computing system (Kuzum et al., 2013). Fortunately, this
asymmetric behavior could be partly compensated by tuning
device-independent parameters of proposed trainingmethods. In
the next section, we introduce an architecture for 1T1R crossbar
array to implement the biological plausible STDP feature of
synapses. This schematic is a general design which can be
configured for different 1T1R devices that require different
operating voltages.

2.2. STDP Implementation on 1T1R Array
Figure 2 shows the schematic to implement STDP characteristics
basing on the 1T1R array, where each 1T1R cell acts as one
electrical synapse. The pre-neuron layer is connected to the
synapse array via n BLs, and the post-neuron layer is connected
to m SLs, representing the fully-connected structure of two
layers in topology. In the forward mode, when the pre-spike
voltage signal is applied on the BL, corresponding current flows
through 1T1R cell and adds up with the current of other cells
in the same row at the SL node. This current stimulates the
post-neuron (leaky-integrate-and-fire neuron) to integrate and
modify the membrane voltage. Once the membrane voltage of

the post-neuron reaches a certain threshold, the spike generator
module will generate two synchronized spike signals: post-
spike and gate-control. In the feedback mode, the gate line
is controlled by a certain pulse generated by post-neuron, for
the RRAM SET/RESET processes. The voltage across the given
memristor (i, j) is determined by the voltage difference of BLj
and SLi. So the overlapped waveform of pre-spikes and post-
spikes with some time window will determine the behaviors of
1T1R cells during the feedback process. This design provides
a flow paradigm with two communication phases and allows
parallel modulation on crossbar states utilizing the overlapped
spiking events naturally. Thanks to the crossbar architecture
which binds all Gate nodes and Source nodes of all devices in
one row, the temporal all-to-all spike-interaction of STDP could
be implemented easily (Morrison et al., 2008). Similar structures
on STDP implementation have been proposed for 1R (RRAM
without any transistor, also known as 0T1R) devices (Yu et al.,
2011b; Wu and Saxena, 2017; Prezioso et al., 2018), while for
1T1R devices, additional control on Gate nodes is required.

Figure 3 shows the abstract waveform design for the STDP
architecture mentioned above. According to the STDP rule
observed in natural neural system (Bi and Poo, 1998), when
the post-spike fires slightly before the pre-spike, the synapse
should be depressed, and for the RRAM device, the conductance
should decrease. As illustrated in Figure 3A, the positive part
of post-spike pulse overlaps with the negative part of the pre-
spike pulse, causing a larger negative voltage across the 1T1R
cell, which in fact is a RESET operation given the appropriate
gate voltage, leading the synapse conductance to a lower value.
Similarly in Figure 3B, when the post-spike follows the pre-spike
closely, the voltage across the cell is a large positive value which
can SET the device into a higher conductance state. Figure 3C
shows the situation that the pre-spike does not overlap with the
post-spike, and no learning mechanism is triggered. The peak
positive voltage values of BL and SL are annotated as VBL

+ and
VSL

+, and VBL
–, VSL

– for the negative parts. VG
SET and VG

RESET

represents the appropriate gate voltage during SET and RESET
respectively. Analytically, magnitude of the voltage across the cell
varies from |VSL

–| to VBL
+ + |VSL

–| during SET, from VSL
+ to

VSL
+ + |VBL

–| during RESET. These pulse shaping parameters
(including VG

SET, VG
RESET and pulse width) can be configured

with flexibility tomeet the control requirements of different 1T1R
devices and for desired synaptic characteristics (Figure 3D). The
STDP characteristic shown by our 1T1R devices under this
scheme design is experimentally measured in section 3.1.

2.3. Unsupervised SNN Architecture
The work uses a Spiking Neural Network which consists of
two layers of neurons, as shown in Figure 4A. The neurons in
the input layer are Poisson neurons which produce spike trains
whose firing rate is proportional to the associated pixel intensity
(Diehl and Cook, 2015; Boybat et al., 2018). For one gray-scale
image stimulus, the 2-dimensional image will be flattened into a
1D vector, and each pixel is mapped to one input Poisson neuron.
The Poisson neurons are fully connected to a layer of Leaky-
Integrate-and-Fire (LIF) neurons, serving as the output layer.
The mechanism of one LIF neuron is explained in Figure 4B. In

Frontiers in Neuroscience | www.frontiersin.org 3 August 2019 | Volume 13 | Article 812191

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 1 | The architecture of 1T1R crossbar array and 3D fabrication illustration. (A) The 1T1R crossbar array layout. The transistor gates and transistor sources of

1T1R cells in the same row are connected to the G (WL) bus and SL bus respectively. The RRAM top electrodes (TE) of 1T1R cells in the same column are gathered

onto the BL bus. (B) The 3D fabrication structure schematic of the 1T1R cell. The bottom electrode (BE) of each RRAM device is connected to the transistor drain

node., and the top electrode (TE) is wired with the BL bus. When the transistor gate is open by the high voltage on the WL bus, a positive voltage across BL and SL

will help to strengthen conductive filaments in the HfOx/TaOy layer, increasing the RRAM conductance, which is known as the SET operation. FORM operation is

similar but with a higher positive voltage across BL and SL, to form the main conductive filaments in the TaOy layer for the first time. RESET requires a reverse

operation voltage that tries to cut off the filaments formed in the HfOx layer, thus decreasing the RRAM conductance. (C) Typical switching behavior of our 1T1R

device under consecutive identical operation pulses (width = 50 ns) during SET/RESET. VBL = 1.5V,VG = 2.0V,VSL = 0 for SET, and VSL = 1.4V,VG = 4.0V,

VBL = 0 for RESET. Abrupt switching is more readily observed during SET.

the forward mode, each synapse in the middle conveys the spike
signals of the certain input neuron to the output neuron via its
strength, defined as W. In the feedback (backward) mode, the
strength of the synapse is modified according to the pre-spike
and post-spike timings. The STDP variant rule, which changes
weight with soft bound is used (Kistler and Hemmen, 2000), as
shown in Equation 1. The relative weight changes 1W/W of soft
bound STDP model vary with different W states (see Equation
2). In general, when applying the same SET operation on RRAM
devices in HRS, the consequent relative conductance change
is often larger than that of devices in lower resistance states,
and similarly for the RESET operation. This nonlinear manner
of RRAM devices matches the synapse strength modulation
modeled by soft bound STDP. The STDP model with soft
bound fits better with the experimental behavior of the 1T1R
device under the STDP circuit architecture and waveform design
mentioned above, as explained in section 3.1. 1t is defined as

tpost − tpre, where tpost and tpre represent the spike timings of
the post-neuron and pre-neuron respectively. While the classical
STDP model which expects the relative weight changes to be
irrelevant with original weight states (see Equation 3) does not
match the typical nonlinear behaviors of RRAM devices.

1W =







A+(Wmax −W) exp
(

−1t
τ+

)

, if 1t > 0

−A−(W −Wmin) exp
(

−
|1t|
τ−

)

, if 1t < 0
(1)

1W

W
=







A+

(

Wmax
W − 1

)

exp
(

−1t
τ+

)

, if 1t > 0

−A−

(

1− Wmin
W

)

exp
(

−
|1t|
τ−

)

, if 1t < 0
(2)

1W

W
=







A+ exp
(

−1t
τ+

)

, if 1t > 0

−A− exp
(

−
|1t|
τ−

)

, if 1t < 0
(3)

Frontiers in Neuroscience | www.frontiersin.org 4 August 2019 | Volume 13 | Article 812192

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 2 | Schematic for FORWARD/FEEDBACK modes on 1T1R RRAM array. Each Leaky-Integrate-and-Fire neuron (namely post-neuron) is connected to the SL

and G nodes and each Poisson neuron (pre-neuron) is connected to the BL. (A) In FORWARD mode, the current stimulated by input pre-spikes can flow through the

1T1R cell and finally arrives at the integrator module of post-neurons (marked as dashed blue curve), where the input information encoded in pre-spikes is conveyed

to the post-neurons. (B) When the post-neurons generate output signals, i.e., post-spikes and gate-controls, the circuit changes to the FEEDBACK mode via the

control of the two-state switch at SLs. The conductance of RRAM devices could be programmed since the Gate is enabled and there is a voltage across the RRAM

devices because of the simultaneous presence of pre-spikes and post-spikes.

Since the synapse strength is modulated by STDP rule in an
unsupervised manner, competition mechanism is required for
the post-neurons to learn discriminated patterns (Masquelier
et al., 2009; Carlson et al., 2013; Diehl and Cook, 2015; Panda
et al., 2018). Lateral inhibitory paths are added to the output
neurons in Winner-Take-All (WTA) fashion: once a LIF neuron
fires at tpost, membrane voltage of all neurons in the output
layer will be reset to the resting voltage, and the spiking neuron
itself goes into a refractory period as illustrated in Figure 4B. All
other neurons need to re-accumulate their membrane voltage
from resting voltage, and the spiked one will be held at
resting potential during refractory, allowing LIF neurons to
compete with each other for the firing opportunity. Furthermore,
the homeostasis mechanism is also introduced among LIF
neurons. The membrane threshold of each LIF neuron is
adapted according to its recent spiking activity: threshold of
the LIF neuron with more recent firing events will increase
to lower its firing opportunity during the next several stimuli,
and vice versa.

The training methods, namely pattern/background
phases and greedy training, which allow the SNN to
cooperate with large conductance change step shown by
real RRAM devices will be introduced later in section 3.2,
where the performance on the MNIST recognition tasks is
also discussed.

3. RESULTS

3.1. STDP Characteristic of 1T1R Device
As mentioned above, the soft bound STDP (Equation 1) models
different relative weight changes of different weight states

(Equation 2), and the STDP model curves of different W states

are plotted in Figure 5. The programming pulses of designed
waveforms (Figure 3) are applied to 1T1R devices repeatedly

with different initial states using Keithley 4200A-SCS, and the

conductance changes of devices are measured. Figure 6 shows

the obtained experimental data provided with detailed operation
information, indicating that the designed pulse waveforms can
modulate the 1T1R devices’ conductance similar to the synapse
behavior modeled by soft bound STDP.

The A+,A− parameters in Equation 1 could be regarded as
the learning rate of the STDP model. For our devices, the typical
fitted value of A is larger than 0.5, up to 1.0, which indicates
strong potentiation and depression processes (abrupt switching
shown in Figure 1C) of the RRAM devices. The advance in
material and structure of RRAM devices will lead to more
ideal behaviors, such as gradual conductance switching, linear
switching and more stable intermediate conductance states,
which would allow us to model the learning mechanism with
smaller learning rates. In typical SNN training algorithms, the
learning rates are set at the magnitude order around 10−4 ∼

Frontiers in Neuroscience | www.frontiersin.org 5 August 2019 | Volume 13 | Article 812193

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 3 | Waveform design for BL (pre-spikes), SL (post-spikes) and Gate. The voltage across the 1T1R cell is also displayed as VCELL, which equals to VBL – VSL.

(A) A post-spike that fires right before the pre-spike event. (B) A post-spike that fires right after the pre-spike event. (C) A post-spike that fires without overlapping of

the pre-spike event. (D) Time parameters of three channels. The transition time of all channels are the same, and SL pulses and Gate pulses have the same

synchronized width.

10−2 (Masquelier and Thorpe, 2007; Querlioz et al., 2013;
Panda et al., 2018), which would face immense difficulties
applying on current general RRAM devices directly without
other circuit aids. To cooperate with the non-ideal abrupt
switching on RRAM conductances, we propose a novel training
workflow for SNNs, named as pattern/background phases and
greedy training methods (see sections 3.2.1, 3.2.2), which

show immunity to large conductance changes as well as the
device variations.

3.2. SNN Performance on MNIST
3.2.1. Encoding Input: Pattern/Background Phases
MNIST handwritten digits dataset is used as the application proof
of SNNs trained with proposed methods. The dataset consists of

Frontiers in Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 812194

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 4 | The architecture of SNN and mechanism of LIF neuron. (A) The two-layer SNN architecture. The input layer is responsible for converting input images into

spike trains. Poisson neurons are used in this layer. The spikes generated by the input layer are transmitted to the synapses in the middle, fully connecting the input

neurons and the output neurons. The synapses modulate the received spikes (defined as pre-spikes) by their weights and pass the spikes to the output layer. LIF

neurons in the output layer process the spikes and generate output spikes properly. The mechanism of LIF neuron is explained in (B). The output spikes (defined as

post-spikes) are passed back to the corresponding synapses and tune the synapse weights via STDP rule. Additionally, output spikes are broadcasted among output

neurons through the lateral inhibition paths, allowing competition during learning. (B) LIF neuron firing mechanism. The LIF neuron has an internal state, i.e.,

membrane potential. It integrates on the presence of received input spikes and decays exponentially with a time constant τmem. Once the membrane potential

reaches a certain threshold Vth, it fires a spike at the output port and the membrane potential is reset to the resting potential Vrest. The fired LIF neuron itself then

enters into a short refractory period, when its membrane potential holds at Vrest and does not respond to any recent input spikes.

60,000 28-by-28 gray-scale images for training, and other 10,000
unseen images of the same size for testing phase1. Each Poisson
neuron in the input layer is responsible for converting one pixel
of the input image into a temporal spike train. The generated
spike events are subject to Poisson distribution and firing rate of
the Poisson neuron is proportional to the corresponding pixel’s
intensity (Diehl and Cook, 2015). At each simulation timestep,
independent Bernoulli trials are conducted to determine whether
to fire a spike event (Boybat et al., 2018). Additionally, the
original gray-scale images from MNIST dataset are normalized
by their total pixel intensity respectively before stimulating the
Poisson neurons.

For each input image, the input encoding scheme includes
a pattern phase and a background phase. During the pattern
phase, the original image is fed to the input neurons; therefore,
the pattern pixel (of higher intensity) channels are likely to have
more spikes generated. During the following background phase,
the complementary of the original image is used to stimulate the
input layer for another period. The Poisson neurons connected to
the background pixels (of lower intensity in the original image)

1The MNIST dataset used for this study can be found in THEMNIST DATABASE

of handwritten digits.

spike more frequently in the background phase, to depress the
irrelevant synapses which are mapped to the background pixels.

3.2.2. Greedy Training
The simulation is conducted at a time step of 50 ns, to match the
time scale of the waveform configurationsmentioned in Figure 6.
The routine of the training process can be described as follows
and shown as the block diagram in Figure 7:

1. Get the k-th image I(k) from MNIST training set.

2. Normalize I(k) by its total pixel intensity. Let I
(k)
i be the

intensity of the i-th pixel (i = 1, 2, · · · , 784), then Ĩ
(k)
i ←

I
(k)
i /

∑

i I
(k)
i .

3. Pattern phase: The normalized Ĩ
(k)
i is mapped to the i-th

Poisson neuron Pi in the input layer. For Pi, the probability to

fire a spike at a given time t equals to fpattern×Ĩ
(k)
i , where fpattern

is a factor to control the overall activity of the input layer. Note

that
∑

i fpattern Ĩ
(k)
i = fpattern, which represents the average

number of total spiking events in the input layer at a single
time step, as shown in Figure 8A. In this work, fpattern = 1 is
used for all simulations, so that the average firing rate of one
Poisson neuron is 1/(50 ns× 784) ≈ 25.5 kHz.

4. The duration of the pattern phase is variable, with a maximum
of 10 µs (200 steps). Ĩ(k) is persisted to stimulate input layer

Frontiers in Neuroscience | www.frontiersin.org 7 August 2019 | Volume 13 | Article 812195

http://yann.lecun.com/exdb/mnist/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 5 | The STDP model curves of different W states. The potentiation of

lower conductance states is stronger than that of higher conductance states,

and vice versa for the depression process. Model parameters:

A+ = 1.0,A− = 0.6, τ+ = τ− = 150 ns,Wmax = 50µS,Wmin = 10µS. A− is

set to be smaller than A+, which fits the experimental behavior of RRAM

devices in Figure 6.

until one post-neuron finally reaches its membrane threshold
and fires a post-spike. Then pattern phase is switched to
background phase immediately. The input layer expects to
activate only one post-neuron during the pattern phase, this
is so-called “greedy” training (Figure 8B).

5. Background phase: The complementary version of I(k) is
defined as Ī(k) = 255 − I(k). Normalization is also conducted
to the complementary image, such that normalized ˜̄I

(k)
i ←

Ī
(k)
i /

∑

i Ī
(k)
i . Similarly, the normalized complementary image

stimulates the input layer by a factor fbackground = 7, resulting
in an average firing rate of one Poisson neuron at around
128 kHz, as illustrated in Figure 8C. The background phase
has a constant duration of 500 ns (10 steps).

6. Training iteration process of image I(k) is completed. Get the
(k+ 1)-th image fromMNIST training set. Repeat from step 2
to step 6.

For LIF neurons in the output layer, the membrane time constant
τmem = 10µs. Resting membrane potential Vrest = 0V, and
initial firing threshold is set as Vth = 0.4V. The refractory
period is disabled for simplicity. Winner-Take-All rule is used
for lateral inhibition, that is, only one LIF neuron in the same
layer is allowed to fire in any single time step (Masquelier et al.,
2009). Once some neuron fires a spike, membrane potentials of
all neurons in that layer are reset to Vrest. If more than one
neuron’s membrane potential increases over the firing threshold
in one simulation time step, the one that exceeds its threshold
the most is fired. The threshold of each LIF neuron is adapted
through homeostasis: it increases by 0.1 × (A − T) at every new
image input, whereA represents the average number of spikes per
time step for recent 1,000 images’ training iterations, and T is the
target number of spikes per time step (Boybat et al., 2018).

For synapses which fully connect the input and output
layers, the soft bound model defined by Equation 1 is used.
The parameters fitted with device experimental behaviors are
used: A+ = 1.0,A− = 0.6, τ+ = τ− = 150 ns,Wmax =

50µS,Wmin = 10µS. Initial synapse weights are uniformly
distributed in [Wmin,Wmax].

3.2.3. Inference Process
After iterating over all training images for one time, the network
will be set to static inference mode. The synapse weights and
membrane thresholds of LIF neurons will remain unchanged
during the inference process. The lateral inhibition mechanism
is still enabled to allow competition among output neurons,
and the greedy manner is also kept, therefore once some post-
neuron fires a spike for the input stimulus, the inference for
this input is completed. The training images are applied to the
network once again, and each image is persisted to stimulate the
network until some post-neuron fires. The fired neuron index
and firing time are recorded. Each image with label gives the
fired neuron a confidence score as 1

firing time
for the corresponding

label, which indicates that the earlier the output neuron fires,
the more confident the neuron is. The scores are summed up
for each neuron and label after the stimulation of all training
images, and all the LIF neurons are marked with the label
with the highest summed confidence score. Then for any input
image, once some post-neuron fires, the label corresponded with
that neuron is recorded as the predicted label, which could be
compared to the truth label. Therefore the recognition accuracy
could be evaluated.

3.2.4. Performance Without Variations
First of all, a single pattern learning task is conducted by
using proposed greedy training method (pattern/background
phases technique is always included for greedy training in
this article unless explicitly pointed out) and conventional
training method respectively. The conventional training method
is armed with self-decaying techniques to forget irrelevant
information more rapidly (Panda et al., 2018). The target
pattern is the first image of MNIST, a handwritten digit “5.”
The network consists of 784 input neurons and one single
output neuron. All parameters for both training methods keep
the same, except for some unique method-specific parameters
such as background firing rate for greedy training and decay
factor for conventional training. The efficacy of synapses is
compared with the target pattern after learning since there
is no supervision and competition among output neurons,
and an ideal learning method should be able to learn all the
details of the pattern. Therefore, the error rates of pattern
pixels and background pixels are calculated to evaluate the
learning accuracy, as shown in Figure 9. The network is
trained by both methods under different learning rates, and
Figures 9A,B show that the proposed greedy training has a better
convergence especially when the learning rate is larger, and
the speed for both methods is comparable (see green curves).
Moreover, greedy training is also able to depress the irrelevant
background synapses with the same speed as the self-decaying
mechanism (Panda et al., 2018), shown in Figures 9C,D. The

Frontiers in Neuroscience | www.frontiersin.org 8 August 2019 | Volume 13 | Article 812196

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 6 | Experimentally measured STDP characteristic of our 1T1R devices, compared with the model. The waveform parameters of BL, SL, G pulses applied on

the devices: VBL
+ = 0.6 V, VBL

– = –1.0 V, VSL
+ = 1.3 V, VSL

– = –1.0 V, VG
RESET = 4.0 V, VG

SET = 1.0 V, pulse width of VBL = 500 ns, pulse width of VSL and VG =

50 ns, all transition time = 20 ns. The model parameters used here to compare with experimental data are the same as those listed in Figure 5: A+ = 1.0,A− = 0.6,

τ+ = τ− = 150 ns,Wmax = 50µS,Wmin = 10µS. (A) The experimentally measured data on 1T1R devices (blue points with errorbar) via Keithley 4200A-SCS

equipment, and model-predicted STDP curve, around W state of 15.3µS. Each plotted experimental data point is the average relative conductance change of over

100 trials, and the standard deviation is shown by the corresponding errorbar. In each trial, the device under test is fine-tuned to the target conductance state first,

and then pulses are applied to device terminals for once, finally the conductance change is measured. (B) Measured STDP and modeled STDP around W state of

25.1 µS. (C) Measured STDP and modeled STDP around W state of 35.3 µS. (D) Measured STDP and modeled STDP around W state of 45.1 µS.

proposed training method lowers the requirement for the device
characteristics, at least in terms of the minimal achievable
conductance change.

We have also trained an SNN with 784 input neurons and 50
output neurons to learn and recognize the full MNIST dataset.
The network is of the same structure as the one in Boybat
et al. (2018) but is trained by the proposed greedy method. The
parameter values are set to be device compatible as mentioned
in the caption of Figure 6 and section 3.2.2: timestep = 50 ns
and A+ = 1.0,A− = 0.6, τ+ = τ− = 150 ns,Wmax =

50µS,Wmin = 10µS, fpattern = 1, f background = 7. The learning
windowwidth for STDP rule is set as four timesteps to reduce the

number of update operations. The pattern phase of each training
image is persisted for 200 time steps at most (since the greedy
algorithm may finish the learning of this image ahead of time),
and the background phase lasts for ten timesteps. Sixty thousand
images from the MNIST training set are fed to the network
sequentially (dataset order is not changed), and each image is
learned only once. The training process finishes after around 9.6
million timesteps, which indicates that the average learning time
for one image is around 160 steps, showing that greedy learning
could cut ∼25% off the expected training time (210 steps for one
image). The overall testing accuracy on 10,000 unseen images
from MNIST testing set reaches 78.9% and is 76.8 ± 0.8% on

Frontiers in Neuroscience | www.frontiersin.org 9 August 2019 | Volume 13 | Article 812197

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 7 | Block diagram of pattern/background phases and greedy training

methods for learning one single image. The left and the right column represent

the pattern phase and background phase respectively. The dashed lines

annotated with number show the different timing when spikes arrive at the

synapses. The pre-spikes in the pattern phase (1) arrive first, then the

post-spikes from LIF neurons (2), and finally the pre-spikes generated by the

Poisson neurons in the background phase (3). This spikes arriving sequence

allows potentiation during pattern phases [synapses modulated by (1) and (2)],

and depression during background phases [synapses modulated by

(2) and (3)].

average, as illustrated in Figure 10, which is comparable with the
float-precision baseline of 77.2% accuracy in Boybat et al. (2018).

In the next subsection, the immunity to RRAM device
variations of so-trained SNNs is explored.

3.2.5. Performance With Variations
The variations in RRAM crossbar arrays could be classified
as two types: the cycle-to-cycle variation and the device-to-
device variation. The cycle-to-cycle variation is mainly caused
by the intrinsic stochastic physics mechanisms of the memristive

devices. As mentioned in section 2.1, the conductance of our
memristive devices is controlled by the states of the internal
filaments. When a SET operation voltage is applied to the
device, the oxygen vacancies will generate stochastically and vice
versa for the RESET process. Therefore, the switching behaviors
of memristive devices may vary from cycle to cycle, showing
fluctuations even under the same operation conditions, which
is known as the cycle-to-cycle variation. There also exists the
device-to-device variation when it comes to RRAM arrays. The
fabrication mismatches, line resistances, and capacitances will
lead to different behaviors from device to device. For example,
when pre-spikes/post-spikes are applied to one column/row of
the array as illustrated in Figure 2, the actual voltage across
each cell may vary due to the IR drop, and on the other hand,
the threshold of each RRAM device is also different because
of fabrication mismatches. Besides, the non-idealities of sources
such as the misalignment for Gate pulses and SL pulses will
also incur other variations during the training process, since
the effective pulse width may vary in different operation cycles
and for different cells. Proposing accurate physics and electronics
models to predict the device manners is beyond the scope of this
work (Yu et al., 2011a), so the impact of these variations on the
proposed training methods is analyzed based on the variation
of several main parameters on algorithm level, to evaluate the
robustness of the proposed methods.

We have conducted repeated simulations with different levels
of variation on the parameters: A+,A−,Wmax,Wmin, for both
cycle-to-cycle (C2C) and device-to-device (D2D) variations. All
variations are emulated by setting a certain level of the standard
dispersion of the parameter, i.e., σ/µ (Querlioz et al., 2013;
Agarwal et al., 2016; Gokmen and Vlasov, 2016). For D2D
variation, the parameter will be sampled from the Gaussian
distribution independently for all synapses before the start of
one simulation, and this reference value for each synapse keep
unchanged during the whole training process. If a C2C variation
is also added to the simulation, the actual parameter for each
synapse will be sampled from the Gaussian distribution regarding
the D2D-varied value picked initially, every time the update
operation happens.

The aim of the proposed greedy training method is to
cooperate with the inevitable abrupt switching behavior existing
in memristive devices, so the A+,A− parameters are set to
relatively large values (A+ = 1.0,A− = 0.6 according to the
experimental results in Figure 6), and the STDP learning window
is as narrow as 4 timesteps to reduce the update operations on
each synapse (update operations only happen when |1t| ≤ 2τ).
Therefore a single update may cause a 1W at the magnitude of
8 ∼ 100% of the dynamic range, which indicates that 20-level
devices could be sufficient for greedy training. Table 1 shows
the impact of the A+,A− variations. With both cycle-to-cycle
and device-to-device variations, the accuracy drops from 76.8
to 73.9% at 30% variation level, which is already an extremely
high level of variation for an electron device, but typical for
research nanodevices (Querlioz et al., 2011). When the device-
to-device A+,A− variation reaches 50%, around 5% of devices
could not be programmed properly in at least one direction (A+
or A− becomes negative), i.e., , the conductance of these defected
devices always decreases whenever potentiation process happens

Frontiers in Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 812198

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 8 | Greedy training and pattern/background phases. (A) The schematic of greedy training. Each row with the time axis represents the spiking activity of one

neuron over time. Spikes are marked out by the blue vertical arrows. There are two phases for each image stimuli. During the pattern phase, the input neuron

corresponding to the pattern pixels are more likely to fire spikes. The pattern phase continues until any of the LIF neurons at the output layer spikes. The LIF neuron’s

spike switches the input layer into the background phase immediately, allowing the background pixels to strongly stimulate the Poisson neurons. Therefore, the

learning window shown by the gray shaded area could help the synapses learn the pattern and forget the irrelevant background efficiently. (B) The firing probability

map of Poisson neurons in one single time step. This subfigure shows that the neurons corresponding to the “0” pattern have a higher firing probability during the

pattern phase. (C) The firing probability of all pixels during the background phase. The Poisson neurons associated with background pixels are strongly stimulated

during the background phase, to enable efficient forgetting of the network.

and vice versa. In this situation, the accuracy drops around 10%.
However, the functionality of the network is not challenged. On
the other hand, the greedy training is immune to large cycle-to-
cycle write variation up to 50%, since each device may suffer from
a potentiation/depression disorder with a probability of only 5%,
every time the update operation happens.

We also simulated the impact of the dynamic range
(Wmax,Wmin) variations, as shown in Table 2. The initial
dynamic range is set to 10 ∼ 50µS, meaning that the on/off ratio
equals to only 5, which is easy to fulfill for typical memristive
devices (Kuzum et al., 2013). The network can tolerate 10%
variation level of Wmax and Wmin with <2% accuracy loss, and
still functions well with 30% cycle-to-cycle and device-to-device
Wmax,Wmin variation with a 67% testing accuracy. When the
variation goes to 50%, around 10% of devices in the simulation
are stuck at the initial value since the maximal conductance

becomes less than minimal conductance, which incurs severe
accuracy loss for MNIST application. Querlioz et al. (2011) have
shown that this type of unsupervised SNN can tolerate 50%
Wmax,Wmin variation well, however with a dynamic range of
104, which allows larger variations but is hard to implement for
most nanodevices.

Table 3 compares the performance between greedy-trained
unsupervised SNNs and conventional-trained unsupervised
SNNs (Querlioz et al., 2011; Boybat et al., 2018). The
listed three networks are of the same structure, 784 inputs
together with 50 output neurons. The learning increments and
decrements (normalized by dynamic range) for greedy training
and conventional training are compared, and we can see that
conventional training requires the synapses to be able to tune
their conductances at the magnitude of 0.5% to 1% regarding
the switching window width (Wmax − Wmin), which needs

Frontiers in Neuroscience | www.frontiersin.org 11 August 2019 | Volume 13 | Article 812199

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 9 | Comparison between the proposed training method (GREEDY) and conventional training method (CONVENTIONAL) on learning one single pattern. (A)

Error rate of pattern pixels versus training epochs of greedy training. (B) Error rate of pattern pixels versus training epochs of conventional training. The convergence of

conventional training with large learning rates is much worse than that of greedy training. (C) Error rate of background pixels versus training epochs of greedy training.

(D) Error rate of background pixels versus training epochs of conventional training.

devices to have over 200 levels under consecutive programming
pulses (Querlioz et al., 2011). Since this requirement is hard
to fulfill for most memristive devices (Gao et al., 2015; Park
et al., 2016), an architecture wrapping N devices as one single
synapse has been proposed by Boybat et al. (2018), and they
have proved that training SNNs using up to 9 devices/synapse
can achieve over 70% testing accuracy on MNIST, reducing
the required device levels to around 20, which is easy to
implement. On the other hand, the greedy training method
proposed in this work dilutes the spiking activities in the time
domain, and forces the synapses to learn greedily, with large
learning increments and decrements of 30 to 50% regarding
the switching window, therefore using one memristive device

with 20 levels as one synapse could be sufficient to achieve the
same functionality.

4. DISCUSSION

4.1. Device Endurance
Online training for neural networks on RRAM devices often
requires a large number of conductance tuning operations, where
we must consider the device endurance problem. The core
concept of greedy training is to dilute spike trains in the time
domain, thus reducing the number of device operations. Typical
update count map after training with 60,000 images is shown in
Figure 11A, where update count of an individual synapse is no

Frontiers in Neuroscience | www.frontiersin.org 12 August 2019 | Volume 13 | Article 812200

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 10 | Training result on MNIST recognition. (A) The normalized weight map corresponding to 50 post-neurons. Most patterns of 10 digits are impressively

learned without any supervision. (B) Testing accuracy on MNIST testing set of 10,000 unseen images during training. The overall testing accuracy is around 76.8%,

and most of the categories could be classified with acceptable accuracy.

TABLE 1 | The testing accuracy for different levels of variation on A+,A−.

Variation level 10% 30% 50%

C2C 76.22 ± 0.81% 75.30 ± 1.14% 74.84 ± 1.22%

D2D 76.42 ± 1.78% 76.17 ± 1.03% 65.42 ± 1.88%

Combined 75.74 ± 1.24% 73.94 ± 1.53% 63.48 ± 2.09%

Results for cycle-to-cycle (C2C) variation, device-to-device (D2D) variation, and C2C-D2D

combined variation are listed. Simulations are repeated for 12 times with each condition,

and the testing accuracy is shown as µ± σ , where µ, σ represents the mean value and

standard deviation respectively.

more than 200 times. The endurance related problems could be
ignored for greedy training learning MNIST digits since these
problems usually appear after 105 operating pulses (Zhao et al.,
2018). The parameters used by Boybat et al. (2018) indicate that
the learning window for STDP lasts for over 200 timesteps, and
at each time step, about ten spikes (calculated according to the
MNIST statistics and firing rate mentioned) are generated at the
input layer. The output layer is expected to have five spikes fired
for each image as well. Therefore, an estimate of update operation
number would be 200 × 10 × 5 = 10 k for one training image,
while the value for the proposed greedy training is around 6
× 3 × 1 ≈ 20, reducing update operations by a factor of 500.
The conventional training method may be affected by endurance
related problems more severely. Besides, reducing the number of
update operations could also make the algorithm more energy
efficient theoretically.

4.2. Array Failure Rate
Although the endurance related device failure problem could
be ignored for greedy training, we have conducted simple
simulations to explore the influence of yield. A SNN with four

TABLE 2 | The testing accuracy for different levels of variation on Wmax,Wmin.

Variation level 10% 30% 50%

C2C 76.67 ± 0.76% 71.90 ± 1.75% 63.94 ± 1.34%

D2D 74.91 ± 1.09% 71.60 ± 0.69% 65.20 ± 1.15%

Combined 75.34 ± 0.94% 67.20 ± 2.21% 56.16 ± 1.73%

Results for cycle-to-cycle (C2C) variation, device-to-device (D2D) variation, and C2C-D2D

combined variation are listed. Simulations are repeated for 12 times with each condition,

and the testing accuracy is shown as µ ± σ , where µ, σ represents the mean value and

standard deviation respectively.

TABLE 3 | Comparison table of memristive-device-based SNNs for MNIST

handwritten recognition.

This work Boybat

et al., 2018

Querlioz

et al., 2011

Training method Greedy Conventional Conventional

Network structure 784 × 50 784 × 50 784 × 50

Accuracy with variations ∼75% ∼70% ∼80%

Devices per synapse 1 ≥9 1

Learning increments, decrements ∼0.5, ∼0.3 0.01, 0.006 0.01, 0.005

Required device levels ∼20 ∼20 >200

The accuracy with variations of this work is obtained with 30% cycle-to-cycle and device-

to-device A+,A− variation, and 10% cycle-to-cyle and device-to-device Wmax,Wmin

variation. For Boybat et al. (2018), the N-in-1 architecture (non-differential) with N=9 and

with device variation model is listed. And for Querlioz et al. (2011), the data is obtained

with 25% cycle-to-cycle A+,A− variation, and 25% cycle-to-cycle Wmax,Wmin variation.

output neurons is used to recognize 1,000 “0,” “1” digit images,
and trained with different array failure rates. The failed devices
are stuck to their initial states and do not respond to any

Frontiers in Neuroscience | www.frontiersin.org 13 August 2019 | Volume 13 | Article 812201

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 11 | (A) Heat map of the update counts for each synapse after learning 60,000 MNIST training images. The maximum is <200, which could be ignored for

endurance related problems. (B) Impact of array failure rate. A simple SNN of 4 output neurons to recognize 1,000 “0,” “1” images is simulated. The failed devices are

kept at the initial state and do not respond to any input. The failure rate could have an impact on the convergence, and 30% failure rate can be tolerated in this

application. (C) Using algorithm-level parameters to compensate for the common asymmetric switching behaviors for RRAM devices. For the solid red curve, double

the background firing rate factor leads to similar performance with balanced switching conditions.

input during training. Figure 11B shows that the convergence is
affected severely, especially when the failure rate goes over 50%.
Since endurance issues are ignored, a typical failure rate of a
functional array should be around 10% (Wu et al., 2017), and
greedy training is robust for this situation.

4.3. Compensate Asymmetric Switching
Behavior
Commonly, memristive devices have asymmetric switching
behaviors (Kuzum et al., 2013), which is one of the bottlenecks
for hardware neural networks. Thanks to the pattern/background
phases of greedy training, the potentiation and depression during
SNN training happen in different time slots, and the input
firing rate for each phase could be configured independently.
Therefore, we can compensate for the asymmetric switching

behavior partly by tuning the pattern/background firing factors,
as shown in Figure 11C.

4.4. Divide Spikes Into Pattern/Background
Parts
For greedy training, it is guaranteed that potentiation happens in
the pattern phase and depression in the background phase. So we
can divide the pre-spikes and post-spikes into minor parts from
their timing middle points, then we get a negative/positive pulse
pair for each spike (the same manipulation should be applied to
gate-control signals as well). The original design of waveforms
in Figure 3 requires post-spikes and gate-control signals to be
synchronized well, so if the circuit non-idealities result in the
misalignment of post-spikes and gate-control signals, there may
cause unsafe device operations (VG

RESET applied to the gate

Frontiers in Neuroscience | www.frontiersin.org 14 August 2019 | Volume 13 | Article 812202

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

node when SET is expected). Fortunately, breaking each spike
signal into two parts and operates separately in the pattern and
background phase could solve this problem. Jittering between G
and SL signals will only lead to a lower effective overlapped pulse
width, will not cause unsafe operations anymore.

5. CONCLUSION

To work with the inevitable large conductance change step
introduced by RRAM devices, we propose novel approaches of
pattern/background phases and greedy training for unsupervised
SNNs. Pattern/background phases and greedy training method
provide an efficient workflow of unsupervised SNN learning
because they make sure that only the pattern spikes occur
just before the post-spike events, and background spikes will
follow the post-spikes. Furthermore, greedy training guarantees
that only one post-spike will be fired for each stimulus, which
allows larger weight changes. The simulated SNN model
manages to cooperate with the large learning rate incurred by
RRAM devices by diluting spikes in the temporal dimension
and therefore achieves gradual learning with very few spikes,
which significantly reduce the requirement on the number of
gradual levels of memristive devices from over 200 to around
20, and then could be fulfilled by typical memristive devices.
The greedy-trained unsupervised SNNs also have good immunity
to the conductance change variation and switching window
variation and reach ∼75% testing accuracy on the MNIST
test set with moderate variations. Furthermore, the low-density
interaction fashion of greedy training reduces the number of
SET/RESET operations on memristive devices by around 2

orders, for example a maximum of 200 operations is observed
for single-epoch learning 60,000 MNIST training images, and
this could substantially mitigate the endurance related problems
which is one of the bottlenecks for memristive devices based
online learning systems. This work shows the potential of
RRAM devices serving as neuromorphic hardware to implement
practical applications with properly-trained SNNs, even with
various imperfect behaviors.

DATA AVAILABILITY

The MNIST dataset used for this study can be found in THE
MNIST DATABASE of handwritten digits.

AUTHOR CONTRIBUTIONS

The ideas and methods are proposed and discussed by YG, HW,
and BG. The experiments and simulations mentioned in this
work are completed by YG. During the whole progress, HW, BG,
and HQ all offered suggestions which help YG to carry out the
research reported by this article.

FUNDING

This work was supported in part by the National Key
R&D Program of China (2017YFB0405604), NSFC (61851404,
61874169, 61674089), Beijing Municipal Science and Technology
Project (Z181100003218001), Beijing National Research Center
for Information Science and Technology (BNRist), and Beijing
Innovation Center for Future Chips (ICFC).

REFERENCES

Agarwal, S., Plimpton, S. J., Hughart, D. R., Hsia, A. H., Richter, I., Cox, J. A.,

et al. (2016). “Resistive memory device requirements for a neural algorithm

accelerator,” in 2016 International Joint Conference on Neural Networks (IJCNN)

(Vancouver, BC: IEEE), 929–938. doi: 10.1109/IJCNN.2016.7727298

Ambrogio, S., Balatti, S., Milo, V., Carboni, R., Wang, Z., Calderoni, A., et al.

(2016). “Novel rram-enabled 1t1r synapse capable of low-power stdp via

burst-mode communication and real-time unsupervised machine learning,”

in 2016 IEEE Symposium on VLSI Technology (Honolulu, HI: IEEE), 1–2.

doi: 10.1109/VLSIT.2016.7573432

Ambrogio, S., Balatti, S., Nardi, F., Facchinetti, S., and Ielmini, D. (2013). Spike-

timing dependent plasticity in a transistor-selected resistive switching memory.

Nanotechnology 24:384012. doi: 10.1088/0957-4484/24/38/384012

Bi, G.-q., and Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal

neurons: dependence on spike timing, synaptic strength, and postsynaptic cell

type. J. Neurosci. 18, 10464–10472.

Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Parnell, T., Tuma, T.,

et al. (2018). Neuromorphic computing with multi-memristive synapses. Nat.

Commun. 9:2514. doi: 10.1038/s41467-018-04933-y

Carlson, K. D., Richert, M., Dutt, N., and Krichmar, J. L. (2013). “Biologically

plausible models of homeostasis and stdp: stability and learning in spiking

neural networks,” in The 2013 International Joint Conference on Neural

Networks (IJCNN) (Dallas, TX: IEEE), 1–8. doi: 10.1109/IJCNN.2013.

6706961

Chang, C.-C., Liu, J.-C., Shen, Y.-L., Chou, T., Chen, P.-C., Wang, I.-

T., et al. (2017). “Challenges and opportunities toward online training

acceleration using rram-based hardware neural network,” in 2017 IEEE

International Electron Devices Meeting (IEDM) (San Francisco, CA: IEEE),

11–6. doi: 10.1109/IEDM.2017.8268373

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Eryilmaz, S. B., Joshi, S., Neftci, E., Wan, W., Cauwenberghs, G., and Wong, H.-

S. P. (2016). “Neuromorphic architectures with electronic synapses,” in 2016

17th International Symposium on Quality Electronic Design (ISQED) (Santa

Clara, CA: IEEE), 118–123. doi: 10.1109/ISQED.2016.7479186

Gao, L.,Wang, I.-T., Chen, P.-Y., Vrudhula, S., Seo, J.-s., Cao, Y., et al. (2015). Fully

parallel write/read in resistive synaptic array for accelerating on-chip learning.

Nanotechnology 26:455204. doi: 10.1088/0957-4484/26/45/455204

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural network training

with resistive cross-point devices: design considerations. Front. Neurosci.

10:333. doi: 10.3389/fnins.2016.00333

Guan, X., Yu, S., and Wong, H.-S. P. (2012). On the switching parameter

variation of metal-oxide rrampart i: Physical modeling and simulation

methodology. IEEE Trans. Elect. Dev. 59, 1172–1182. doi: 10.1109/TED.2012.

2184545

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.

10, 1297–1301. doi: 10.1021/nl904092h

Kistler, W. M., and Hemmen, J. L. v. (2000). Modeling synaptic plasticity in

conjunction with the timing of pre-and postsynaptic action potentials. Neural

Comput. 12, 385–405. doi: 10.1162/089976600300015844

Kuzum, D., Jeyasingh, R. G., Lee, B., and Wong, H.-S. (2011). Nanoelectronic

programmable synapses based on phase change materials for brain-inspired

computing. Nano Lett. 12, 2179–2186. doi: 10.1021/nl201040y

Frontiers in Neuroscience | www.frontiersin.org 15 August 2019 | Volume 13 | Article 812203

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/IJCNN.2016.7727298
https://doi.org/10.1109/VLSIT.2016.7573432
https://doi.org/10.1088/0957-4484/24/38/384012
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1109/IJCNN.2013.6706961
https://doi.org/10.1109/IEDM.2017.8268373
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/ISQED.2016.7479186
https://doi.org/10.1088/0957-4484/26/45/455204
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1109/TED.2012.2184545
https://doi.org/10.1021/nl904092h
https://doi.org/10.1162/089976600300015844
https://doi.org/10.1021/nl201040y
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Guo et al. Unsupervised Learning on RRAM-Based SNNs

Kuzum, D., Yu, S., and Wong, H. S. (2013). Synaptic electronics:

materials, devices and applications. Nanotechnology 24:382001.

doi: 10.1088/0957-4484/24/38/382001

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

et al. (1989). Backpropagation applied to handwritten zip code recognition.

Neural Comput. 1, 541–551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. et al. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

Liu, H., Lv, H., Yang, B., Xu, X., Liu, R., Liu, Q., et al. (2014). Uniformity

improvement in 1t1r rram with gate voltage ramp programming. IEEE Elect.

Dev. Lett. 35, 1224–1226. doi: 10.1109/LED.2014.2364171

Maass, W. (1997). Networks of spiking neurons: the third generation of neural

network models. Neural Netw. 10, 1659–1671.

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive

stdp-based spike pattern learning. Neural Comput. 21, 1259–1276.

doi: 10.1162/neco.2008.06-08-804

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybernet. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson,

C., et al. (2013). Spinnaker: a 1-w 18-core system-on-chip for massively-

parallel neural network simulation. IEEE J. Solid State Circ. 48, 1943–1953.

doi: 10.1109/JSSC.2013.2259038

Panda, P., Allred, J. M., Ramanathan, S., and Roy, K. (2018). Asp: learning to forget

with adaptive synaptic plasticity in spiking neural networks. IEEE J. Emerg.

Select. Top. Circ. Syst. 8, 51–64. doi: 10.1109/JETCAS.2017.2769684

Park, J., Kwak, M., Moon, K., Woo, J., Lee, D., and Hwang, H. (2016). Tio x-

based rram synapse with 64-levels of conductance and symmetric conductance

change by adopting a hybrid pulse scheme for neuromorphic computing. IEEE

Elect. Dev. Lett. 37, 1559–1562. doi: 10.1109/LED.2016.2622716

Pedretti, G., Milo, V., Ambrogio, S., Carboni, R., Bianchi, S., Calderoni, A.,

et al. (2017). Memristive neural network for on-line learning and tracking

with brain-inspired spike timing dependent plasticity. Sci. Rep. 7:5288.

doi: 10.1038/s41598-017-05480-0

Prezioso, M., Mahmoodi, M. R., Bayat, F. M., Nili, H., Kim, H., Vincent,

A., et al. (2018). Spike-timing-dependent plasticity learning of coincidence

detection with passively integrated memristive circuits. Nat. Commun. 9:5311.

doi: 10.1038/s41467-018-07757-y

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,

D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic

processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9:141.

doi: 10.3389/fnins.2015.00141

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device

variations in a spiking neural network with memristive nanodevices. IEEE

Trans. Nanotechn. 12, 288–295. doi: 10.1109/TNANO.2013.2250995

Querlioz, D., Bichler, O., and Gamrat, C. (2011). “Simulation of a memristor-

based spiking neural network immune to device variations,” in The 2011

International Joint Conference on Neural Networks (San Jose, CA: IEEE),

1775–1781. doi: 10.1109/IJCNN.2011.6033439

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S.

(2010). “A wafer-scale neuromorphic hardware system for large-scale neural

modeling,” in Proceedings of 2010 IEEE international symposium on Circuits and

systems (ISCAS) (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970

Wang, Z., Ambrogio, S., Balatti, S., and Ielmini, D. (2015). A 2-transistor/1-

resistor artificial synapse capable of communication and stochastic learning in

neuromorphic systems. Front. Neurosci. 8:438. doi: 10.3389/fnins.2014.00438

Wu, H., Yao, P., Gao, B., Wu, W., Zhang, Q., Zhang, W., et al. (2017). “Device

and circuit optimization of rram for neuromorphic computing,” in 2017 IEEE

International Electron Devices Meeting (IEDM) (San Francisco, CA: IEEE),

11–5. doi: 10.1109/IEDM.2017.8268372

Wu, M.-C., Lin, Y.-W., Jang, W.-Y., Lin, C.-H., and Tseng, T.-Y. (2011). Low-

power and highly reliable multilevel operation in zro2 1t1r rram. IEEE Elect.

Dev. Lett. 32, 1026–1028. doi: 10.1109/LED.2011.2157454

Wu, X., and Saxena, V. (2017). “Enabling bio-plausible multi-level stdp using

cmos neurons with dendrites and bistable rrams,” in 2017 International Joint

Conference on Neural Networks (IJCNN) (Anchorage, AK: IEEE), 3522–3526.

doi: 10.1109/IJCNN.2017.7966299

Yao, P., Wu, H., Gao, B., Eryilmaz, S. B., Huang, X., Zhang, W., et al.

(2017). Face classification using electronic synapses. Nat. Commun. 8:15199.

doi: 10.1038/ncomms15199

Yao, P., Wu, H., Gao, B., Zhang, G., and Qian, H. (2015). “The effect of variation

on neuromorphic network based on 1t1r memristor array,” in 2015 15th

Non-Volatile Memory Technology Symposium (NVMTS) (Beijing: IEEE), 1–3.

doi: 10.1109/NVMTS.2015.7457492

Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., and Wong, H.-S. (2013). A

low energy oxide-based electronic synaptic device for neuromorphic visual

systems with tolerance to device variation. Adv. Mater. 25, 1774–1779.

doi: 10.1002/adma.201203680

Yu, S., Guan, X., andWong, H.-S. P. (2011a). “On the stochastic nature of resistive

switching in metal oxide rram: Physical modeling, monte carlo simulation, and

experimental characterization,” in 2011 International Electron Devices Meeting

(Washington, DC: IEEE), 17–3. doi: 10.1109/IEDM.2011.6131572

Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., and Wong, H.-S. P. (2011b). An

electronic synapse device based on metal oxide resistive switching memory

for neuromorphic computation. IEEE Trans. Elect. Dev. 58, 2729–2737.

doi: 10.1109/TED.2011.2147791

Zhao, M., Wu, H., Gao, B., Sun, X., Liu, Y., Yao, P., et al. (2018).

Characterizing endurance degradation of incremental switching in analog rram

for neuromorphic systems. in 2018 IEEE International Electron Devices Meeting

(IEDM) (San Francisco, CA: IEEE), 20–2. doi: 10.1109/IEDM.2018.8614664

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Guo, Wu, Gao and Qian. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 August 2019 | Volume 13 | Article 812204

https://doi.org/10.1088/0957-4484/24/38/382001
https://doi.org/10.1109/LED.2014.2364171
https://doi.org/10.1162/neco.2008.06-08-804
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1109/JETCAS.2017.2769684
https://doi.org/10.1109/LED.2016.2622716
https://doi.org/10.1038/s41598-017-05480-0
https://doi.org/10.1038/s41467-018-07757-y
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1109/IJCNN.2011.6033439
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.3389/fnins.2014.00438
https://doi.org/10.1109/IEDM.2017.8268372
https://doi.org/10.1109/LED.2011.2157454
https://doi.org/10.1109/IJCNN.2017.7966299
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1109/NVMTS.2015.7457492
https://doi.org/10.1002/adma.201203680
https://doi.org/10.1109/IEDM.2011.6131572
https://doi.org/10.1109/TED.2011.2147791
https://doi.org/10.1109/IEDM.2018.8614664
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 13 August 2019

doi: 10.3389/fnins.2019.00855

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 855

Edited by:

Peng Li,

University of California, Santa Barbara,

United States

Reviewed by:

Garrett S. Rose,

The University of Tennessee, Knoxville,

United States

Alice Cline Parker,

University of Southern California,

United States

*Correspondence:

Yan Fang

yan.fang@gatech.edu

Arijit Raychowdhury

arijit.raychowdhury@ece.gatech.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 07 March 2019

Accepted: 30 July 2019

Published: 13 August 2019

Citation:

Fang Y, Wang Z, Gomez J, Datta S,

Khan AI and Raychowdhury A (2019)

A Swarm Optimization Solver Based

on Ferroelectric Spiking Neural

Networks. Front. Neurosci. 13:855.

doi: 10.3389/fnins.2019.00855

A Swarm Optimization Solver Based
on Ferroelectric Spiking Neural
Networks
Yan Fang 1*, Zheng Wang 1, Jorge Gomez 2, Suman Datta 2, Asif I. Khan 1 and

Arijit Raychowdhury 1*

1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 2Department of

Electrical Engineering, University of Notre Dame, Notre Dame, IN, United States

As computational models inspired by the biological neural system, spiking neural

networks (SNN) continue to demonstrate great potential in the landscape of artificial

intelligence, particularly in tasks such as recognition, inference, and learning. While SNN

focuses on achieving high-level intelligence of individual creatures, Swarm Intelligence (SI)

is another type of bio-inspired models that mimic the collective intelligence of biological

swarms, i.e., bird flocks, fish school and ant colonies. SI algorithms provide efficient

and practical solutions to many difficult optimization problems through multi-agent

metaheuristic search. Bridging these two distinct subfields of artificial intelligence has

the potential to harness collective behavior and learning ability of biological systems. In

this work, we explore the feasibility of connecting these two models by implementing a

generalized SI model on SNN. In the proposed computing paradigm, we use SNNs to

represent agents in the swarm and encode problem solutions with the spike firing rate

and with spike timing. The coupled neurons communicate and modulate each other’s

action potentials through event-driven spikes and synchronize their dynamics around

the states of optimal solutions. We demonstrate that such an SI-SNN model is capable

of efficiently solving optimization problems, such as parameter optimization of continuous

functions and a ubiquitous combinatorial optimization problem, namely, the traveling

salesman problem with near-optimal solutions. Furthermore, we demonstrate an efficient

implementation of such neural dynamics on an emerging hardware platform, namely

ferroelectric field-effect transistor (FeFET) based spiking neurons. Such an emerging

in-silico neuron is composed of a compact 1T-1FeFET structure with both excitatory

and inhibitory inputs. We show that the designed neuromorphic system can serve as an

optimization solver with high-performance and high energy-efficiency.

Keywords: ferroelectric FET, neuromorphic computing, spiking neural network, swarm intelligence, optimization

INTRODUCTION

Recent advances of deep learning models have initiated a resurgence of neural networks in the field
of artificial intelligence (LeCun et al., 2015). Spiking Neural Network (SNN), as the third generation
of neural networks, models the dynamic behavior of the biological neural system and focuses on
the timing of the spikes (Maass, 1997). SNN utilizes spike timing to encode information and is
capable of processing a significant amount of spatial-temporal information with a small number

205

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00855
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00855&domain=pdf&date_stamp=2019-08-13
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yan.fang@gatech.edu
mailto:arijit.raychowdhury@ece.gatech.edu
https://doi.org/10.3389/fnins.2019.00855
https://www.frontiersin.org/articles/10.3389/fnins.2019.00855/full
http://loop.frontiersin.org/people/622492/overview
http://loop.frontiersin.org/people/700710/overview
http://loop.frontiersin.org/people/700078/overview
http://loop.frontiersin.org/people/233473/overview
http://loop.frontiersin.org/people/253827/overview
http://loop.frontiersin.org/people/513572/overview

Fang et al. Swarm Optimization Spiking Neural Networks

of neurons and spikes (Ghosh-Dastidar and Adeli, 2009; Ponulak
and Kasinski, 2011). Meanwhile, neuromorphic computing
hardware that implements SNN continue to gain increasing
attention both in the industry and academia (Merolla et al.,
2014; Davies et al., 2018). Moreover, recent progress of emerging
nanotechnologies in devices and materials, such as resistive
RAMs (RRAM) (Indiveri et al., 2013), spintronic devices
(Romera et al., 2018) and metal-insulator transition (MIT)
materials (Parihar et al., 2018), are facilitating real-time large-
scale mixed-signal neuromorphic computing systems with the
potential to bridge the energy efficiency gap between engineered
systems and biological systems. SNN has been successfully
applied in various computational tasks, such as visual recognition
(Cao et al., 2015), natural language processing (Diehl et al.,
2016), brain-computer interface (Kasabov, 2014), robot control
(Bouganis and Shanahan, 2010). Recently, researchers have
demonstrated ways to use networks of SNNs and similar
neuromorphic systems to solve computationally more difficult
problems. Of particular interest are optimization problems
including NP-hard problem, such as constraint satisfaction
problems (CSP) (Mostafa et al., 2015; Fonseca Guerra and
Furber, 2017), vortex coloring problems (Parihar et al.,
2017) and traveling salesman problems (TSP) (Jonke et al.,
2016). These neural-inspired computing systems are designed
exclusively so that the system converges at problem solutions
by harvesting both deterministic as well as stochastic dynamics.
Nonetheless, there are very few previous works about SNN
based computing systems that address generic optimization
problems. Although solving CSP with SNN is promising, it
is enticing to note that the computational platform that we
empirically find in the human brain can also solve complex
optimization problems.

On the other hand, swarms of creatures also show collective
behavior and evolve with complex and highly optimized global
strategies. For example, a colony of ants is capable of planning
the shortest path between their nest and their food sources, which
is attributed to the collaborative deposit of chemical pheromone
on the trails (Goss et al., 1989). A school of sardine naturally
optimizes the movement of the swarm to minimize the loss
when it is attacked by sharks (Norris and Schilt, 1988). Bees
can build hives with an optimized structure in spatial efficiency
and locate nearest nectar source plants with temporal efficiency
(Michener, 1969). These swarms are composed of individuals
that have inferior intelligence and simple behaviors. However,
they exhibit highly intelligent collective behavior resulting from
the collaboration. Inspired from these natural swarms, Swarm
Intelligence (SI) constructs the computational models that
describe the collaborative behaviors in decentralized and self-
organized systems (Blum and Li, 2008). In recent years, SI is also
applied to a wide range of fields, such as path planning, control
of robotics, image processing, and communication networks
(Duan and Luo, 2015). Examples of classic SI optimization
methods include ant colony optimization (ACO) (Dorigo and Di
Caro, 1999), particle swarm optimization (PSO) (Kennedy and
Eberhart, 1999). More advanced SI optimization algorithms that
have been proposed recently include the firefly algorithm (FA)
(Fister et al., 2013) and bat algorithm (Yang, 2010).

SNN and SI are apparently two computational intelligence
models that differ in concepts, architectures and applications.
SNN is inspired by the neural system of a high-intelligent
individual, while SI mimics the collaborative behavior of
somewhat simpler creatures. However, these two sets of models
share some similarities. Both of them are bio-inspired, highly
parallelized, and composed of multiple homogeneous units
(agents and neurons) (Fang and Dickerson, 2017). Their
computational capabilities origin from the interaction and
communication between the individual units. For example, both
of the neurons in SNN and agents in SI exhibit the behavior
of phase and frequency synchronization. From the perspective
of computational neuroscience, synchronization of oscillatory
neural activity is currently one of the attractive areas of research,
due to its close connection to the rhythms of the brain, seizures
in epileptic patients and tremor in Parkinson patients (Guevara
Erra et al., 2017). Neural synchronization has also been utilized in
neuromorphic computing based on spiking or oscillatory neural
networks, such as visual processing (Fang et al., 2014), olfactory
processing (Brody and Hopfield, 2003), and solving constraint
satisfaction problems (Parihar et al., 2017). In these applications,
neural synchronization usually indicates the completeness of
computing and the stable state of dynamical systems that
presents the results. Similarly, an SI model can be viewed as a
discrete dynamical system with an energy function that matches
the objective function of the optimization problem. Agents
perform collaborative searches and eventually synchronize and
cluster around the global energy minima, which represents the
global optimal (or near-optimal) solution. Such synchronization
phenomena in SNN and SI model are the primary inspiration of
our work.

As the problem dimension and the swam sizes increase, SI
algorithms can become computationally expensive in terms of
delay and power. On the other hand, SNNs cannot harness the
collective properties of optimization problems. In our previous
work (Fang and Dickerson, 2017), we explored the opportunities
in bridging these two models and proposed a computing
paradigm based on SI and coupled spiking oscillator network to
address optimization problems. In this work, we provide details
and develop an SI-SNN architecture and demonstrate how it is
capable of solving two types of optimization problems, parameter
optimization of continuous objective functions and TSP.

Along with algorithm development, the next generation of
computing systems must harness the computational advantages
of emerging post-silicon technologies. In particular, for
neuromorphic systems, research has started in earnest to identify
materials and device systems that exhibit the inherent dynamics
of bio-inspired neurons and synapses. Various competing
technologies are being explored, including insulator-metal-
transition devices (Parihar et al., 2017), RRAMs (Ielmini, 2018),
spintronic neurons and synapses (Romera et al., 2018) as well as
scaled silicon CMOS implementations (Indiveri and Horiuchi,
2011). In this paper, we explore the use of ferroelectric field-effect
transistor (FeFET) based spiking neurons in the design of
the proposed SI-SNN architecture. An algorithm-hardware
co-design is required to provide the next breakthrough in
computational efficiency, in particularly for neuro-inspired

Frontiers in Neuroscience | www.frontiersin.org 2 August 2019 | Volume 13 | Article 855206

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

systems whose dynamics can be simulated, albeit inefficiently
in a von-Neumann system. The FeFET based spiking neuron
is a compact 1T-1FeFET in-silico neuron with both excitatory
and inhibitory inputs (Wang et al., 2017). It takes advantage
of the hysteresis of the FeFET and operates as a relaxation
oscillator that periodically generates voltage spikes. We extract a
simplified model to capture the critical voltages and spike timing
of FeFET based spiking neuron. This compact model enables the
simulation of SNN that contains a large number of neurons.

First, we show how the proposed SI-SNN organizes multiple
SNNs and performs parallel meta-heuristic searching, which
is conducted by a swarm of collaborative agents in an SI-
inspired algorithm. In this design, the spiking neurons encode
the parameters of the agents with the spiking rate, interact with
each other via spikes and search for globally optimal solutions.
The agents that find better solutions modulate the firing rates of
neurons in other agents. The modulation behavior is performed
through event-based synaptic connections. Specifically, the
excitatory input voltage of a post-synaptic FeFET neuron
is modulated by a small amount whenever a spike arrives.
Eventually, the optimal solution is represented by the firing rates
when the entire swarm synchronizes.

In the second problem demonstration, we use a similar SI-
SNN computing architecture to imitate the ACO (Dorigo and
Di Caro, 1999) algorithm and show how it is capable of solving
the TSP. Each SNN is a winner-takes-all (WTA) network and
the order of its neurons’ spikes represents the traveled route
(solution candidate) of a single agent (ant). The synaptic weight
is updated online by the spikes and shared by multiple SNNs,
resembling the pheromone trails in ACO. The travel routes of
SNNs are adapted according to the distances between cities and
the pheromone distribution. Consequently, the optimal solution
eventually evolves though such a parallel search process.

The remaining sections of this paper are organized as follow.
In Materials and Methods, we describe the dynamical behavior
model of FeFET spiking neuron as a hardware platform; it is
the neuron model we use to develop the SI-SNN computing
paradigm. Then we introduce two SI-SNN paradigms and
demonstrate solutions to different optimization problems—
continuous objective functions and TSP. In section Results, we
provide the simulation results of our proposed method. In the
final section, we draw conclusions.

MATERIALS AND METHODS

Neuromorphic Hardware Technology
Owing to the continuous dynamics of the biological nervous
systems biomimetic SNNs are much less efficient when they
are executed on digital computing machines. Neuromorphic
hardware that specifically supports SNN has been explored
theoretically and experimentally for three decades (Mead, 1989).
Nowadays neuromorphic engineering focuses on developing
large-scale neural processing systems for cognitive tasks (Indiveri
et al., 2011). In this work, we demonstrated a co-design of the
proposed SI-SNN computing paradigm and neuromorphic
hardware, where the hardware natively implements the

required neuronal dynamics. A neuromorphic hardware system,
comprises of two fundamental functional units:

(a) Neuron: This is the primary focus of this paper. Here, we
explore the spiking dynamics of a FeFET neuron based
on its excitatory and inhibitory interfaces and utilize this
dynamical behavior to enable different SNN functionalities.
The FeFET neuron has also been proven to be energy-
efficient. It costs about one-third of power as traditional
CMOS circuits and can potentially achieve the energy
efficiency of 0.36 nJ/spike with 45 nm FinFET process (Wang
et al., 2018). We discuss the detail dynamical behavior of
FeFET spiking neuron in the next section.

(b) Synapse: Various resistivememory technologies are currently
being investigated to realize synaptic behavior. The synapse
does not show complex dynamics, but rather allows
summation of the outputs of multiple pre-synaptic neurons
to modulate the membrane potential of the post-synaptic
neuron. For the sake of brevity, we do not include a detailed
discussion about the hardware implementation of synapses
because many emerging device technologies can fulfill the
requirements of SI-SNN systems (Kuzum et al., 2013).

Ferroelectric Based Spiking Neuron
FeFET is a semiconductor device that has a similar structure
as the MOSFET or FinFET, except that an additional layer
of ferroelectric (FE) material is integrated into the stack of
gate terminal (Aziz et al., 2018). The spontaneous polarization
of the FE layer is reversible under a certain electric field
applied in the correct direction. The polarization depends
on the current electric field and its history, resulted in a
hysteresis loop. For further details, interested readers are pointed
to Aziz et al. (2018). Such a feature of FE layer induces
a FeFET to switch “on” at a high voltage and “off” at a
low applied gate voltage. Figure 1 illustrate the structure of
a FeFET (red box). A relaxation oscillator based on FeFET
was recently proposed in Wang et al. (2017). Furthermore,
the proposed oscillator was utilized to implement a spiking
neuron with excitatory and inhibitory interfaces (Wang et al.,
2018). The proposed circuits employ the hysteresis of a FeFET
and a traditional NMOS transistor to periodically charge and
discharge a load capacitor and generate spikes of voltage
(Figures 1, 2A). Figure S1 shows a 3D view of the FeFET and
the NMOS transistor.

The FeFET based neuron has only two transistors and exhibits
an advantage in the energy efficiency of spikes, which is discussed
later in section Results. More importantly, this neuron model
is capable of modeling multiple neural dynamics that has been
observed in cortical and thalamic neurons. We can use two
gate voltages, VGM and VGF, of two transistors to imitate
the excitatory and inhibitory synaptic inputs, respectively of
biological neurons, and thus enable various neural firing patterns
(Fang et al., 2019). In this section, we describe a compact behavior
model of the FeFET based spiking neuron. This model captures
the critical switching voltages of FeFET and computes the current
that controls spike timing (phase) and spiking frequency. It
neglects the complex physical transitions before device switching

Frontiers in Neuroscience | www.frontiersin.org 3 August 2019 | Volume 13 | Article 855207

Fang et al. Swarm Optimization Spiking Neural Networks

and reduces the computing cost tremendously, enabling the
simulation of large scale SNN built on FeFET neuron.

Figure 1 depicts the schematic of a FeFET spiking neuron
(Wang et al., 2017). It is a relaxation oscillator that charges and
discharges the load capacitor repetitively with ID and IM , which
are the currents flowing through the FeFET and the NMOSFET.
The former one injects current to capacitor C and the latter one
provides a discharging path. To briefly explain the oscillation,

FIGURE 1 | FeFET based spiking oscillator consists of a FeFET and a normal

NMOS transistor that are used to charge and discharge a capacitor. The

FeFET (red box) can be view as a ferroelectric layer that connected to a

common FET (3D model of FeFET is shown in Figure S1).

we assume VGF , VGM , and VDD are all fixed. If we start from
the charging phase, the potential across the capacitor, VS, is low
and thus the VGS of FeFET is large enough to set the FE layer
to coercion and inject charge into the gate node Vg and quickly
switches on the FeFET. As a result, ID increases rapidly and
charges the capacitor until the end of this phase. As the capacitor
gets charged and VS rises, the discharging phase begins. The FE
layer reaches the opposite coercive threshold, drains the charge
from Vg and switches the FeFET to an OFF state. In this phase,
ID is very small and IM gets a chance to discharge the capacitor.
Due to the decrease of VS again, the whole cycle repeats with
these two phases. Therefore, VS keeps swinging between the two
critical voltages Vt1 and Vt2. In Figure 2A, the blue waveform
plots the trace of VS, illustrates the Fast Spiking mode of a
spiking neuron.

Dynamic Behavior Model
Because the switching process of FeFET is fast when compared
to the oscillation period, we assume the switching of FeFET
is instant in our model. We are primarily interested in the
timing of the spike, instead of other physical metrics of the
FeFET device. We focus our model on the critical voltages when
FeFET switches and the current that charges and discharges the
capacitors. Details of the model have been presented elsewhere
(Fang et al., 2019) and we summarize the key findings here for
the sake of completion. It is also important to point out the
key neuronal dynamics that are achievable in the FeFET neuron,

FIGURE 2 | Demonstration of model simulation: (A) waveforms of VS (VGF = 300mV and 400mV); (B) ID – VS plot shows the hysteresis loops of ID in (A); (C) VGM
v.s. frequency as VGF = 300mV; (D) flow diagrams of equation.

Frontiers in Neuroscience | www.frontiersin.org 4 August 2019 | Volume 13 | Article 855208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

that can be harnessed in the SI-SNN computational framework.
Critical voltages Vt1 and Vt2 depend on the properties of FeFET,
VG and VD (VGF and VDD) fed into the gate and drain terminals.
To capture Vt1 and Vt2, we only need to aim at the boundary
conditions when the FeFET switches. Thus, we can write the
equation based on charge (Fang et al., 2019):

VgCT = Qfe + CfeVGF + CgdVDD + CgsVS

CT = Cfe + Cgd + Cgs (1)

where, Qfe is the released bond charge. Here Vg = VGF – Vfe. Vfe

is the potential across the FE layer and equals to one of the two
coercive voltages, Vc1 and Vc2. Therefore, we can compute the
critical voltages of switching, Vt1 and Vt2 as (Fang et al., 2019):

Vt i = α(i) − γ (i)VDD +

(

1+ γ (i)
)

(VGF − Vci) , i = 1, 2

γ (i) =
Cgd

(i)

Cgs
(i)
,α(i) = −

(

CTVc
(i) + β(i)Qfe

Cgs
(i)

)

,β(1,2) = ±1(2)

i = 1,2 represent the cases of switching on and off. α(i), γ (i),
Vc1, and Vc2are device parameters that can be calibrated via
experimental measurements (Wang et al., 2018) or estimated
from physics-based models. Thus, we can obtain Vt1 and Vt2

in terms of VGF and VDD. An alternative method to obtain Vt1

and Vt2 is to calibrate the data experimentally from circuits. In
the case we shown here, we have (Vt1 = 187mV, Vt2 = 111mV)
when VGF= 300mV (Vt1 = 320mV, Vt2 = 219mV), when VGF

= 400 mV.
With Vt1 and Vt2, we can model the dynamical behavior of

the FeFET based neuron with a first-order non-linear differential
equation for VS:

dVS

dt
=

1

C
(sID − IM) ,

{

s = 0,Vt1 → Vt2

s = 1,Vt1 ← Vt2

ID = gF(Vg − VS − VGth)

IM = gM(VGM − VMth) (3)

In Equation (3), we use a binary variable s to set the current in two
phases. When s = 1, the load capacitor is being charged, while s
= 0 represent the discharging phase. ID and IM are modeled with
two piecewise linear functions. Transistor parameters gF , gM ,
VGth, and VMth are transconductances and threshold voltages. Vg

is calculated from Equation (1).
Compare to physics-based FeFET models proposed in

previous works (Aziz et al., 2016; Lenarczyk and Luisier, 2016),
our model is more concise and friendly to the system-level
simulation of SNN. Despite the simplicity, we still need to capture
the timing of spikes accurately. We verify the model by utilizing
it to recreate the dynamic behaviors and data provided in Wang
et al. (2017). In this case, we adopt the same configuration and
parameters in Wang et al. (2017), in which the FeFET is a 14 nm
FinFET node that connects to a 10 nm HfO2 FE layer with
mode detail description in Khandelwal et al. (2017). The NMOS
transistor is a FinFET but without the FE layer. For the circuits
simulation, we use the default settings of VDD = 400mV, VGM =

350mV and C= 8 nF. Here we use gF= gM = 10−4S, VMth = 250
mV, and Vg − VGth ≈ 400mV .

We simulate the circuits with varying values of VGF and VGM

and demonstrate the results in Figure 2. Figure 2A plots two
waveforms of VS when VGF = 300mV and VGF = 400mV. It is
worth noting that when VGF = 300mV, the hysteresis of FeFET
produces normal oscillation; when VGF = 400mV, VS operates
between a higher range of Vt1 and Vt2, which leads to a balance
between the charging and discharging of capacitors and cease
the oscillation. Figure 2B draws the ID – VS curves of each case,
showing the FeFET’s hysteretic behavior under VGF = 300mV.
To explain the condition of oscillation, Figure 2D plots the flow
diagram of the FeFET based oscillator. When VGF = 300mV, the
x-axis dVS/dt = 0 intersects the steep transition of the hysteretic
loop. As a result, there is no attractor or fixed point but a limit
cycle in the system to generate oscillations. On the other hand,
whenVGF = 400mV, the first derivative ofVS passes the charging
phase of the hysteretic loop and forms a fixed point near VS

= 300mV. The fixed point creates a stable state that eliminates
the oscillation. Let us assume VS as the membrane voltage of
a neuron, its non-oscillatory state can be viewed as the resting
state. The FeFET based oscillator exhibits similar dynamics as a
LIF neuron, except that it fires spikes with an opposite direction.
Namely, the FeFET spiking neuron fires when VS reaches the
low threshold voltage, Vt2, and the action potential of spikes is
reversely integrated from VDD to 0. Such a dynamical behavior is
validated experimentally in Wang et al. (2018) (Figures S3, S4).
If we fix VGF , VGM can be used to tuning the firing rate of the
FeFET spiking neuron. The VGM and frequency curve showed
in Figure 2C here is measured as the instantaneous firing rate
of spikes, instead of the mean frequency obtained from the
power spectrum.

In summary, high VGF suppress the spiking activities of the
FeFET neuron and keep it at the resting state, thus exhibiting
a prototypical “inhibitory” behavior. When the inhibition of
VGF is disabled, raising VGM increases the firing rate, and the
corresponding input behaves as an “excitatory” interface.

Biomimetic Neuronal Dynamics
The traditional Leaky Integrate-and-Fire (LIF) Neuron model
is not able to cover the dynamics of multiple ion channels
of biological neurons due to its simplicity of one dimension.
Izhikevich (2003) proposed a 2-D neuron model that efficiently
reproduces various dynamics of cortical neurons. The innovation
of Izhikevich’s model is to use a slow variable to control the leak
current of a LIF model. Inspired from such a design, we propose
to take advantage of inhibitory input VGF in FeFET spiking
neuron to imitate the function of the “slow variable” because
the FeFET is responsible for the “resetting” phase (discharging)
of a spike (Fang et al., 2019). Associated with the frequency
adaption enabled by excitatory input VGM , our neuron model
can imitate multiple types of firing patterns (Fang et al., 2019).
We demonstrate two types of spiking dynamics that we utilize for
SNN based computation for this work. These two types of firing
patterns are respectively:

• FS and LTS (Fast Spiking and Low-Threshold Spiking):
firing patterns found in inhibitory cortical cells. They
both feature with spike trains in high frequency. LTS
has a frequency adaptation. We treat them as one

Frontiers in Neuroscience | www.frontiersin.org 5 August 2019 | Volume 13 | Article 855209

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

FIGURE 3 | Two neural firing patterns, FS and RS. The plots on the left column

show the waveforms of input signals to VGF and VGM. The right column plot

the waveforms of VS (blue) and corresponding timing of spike train (red).

firing pattern (FS) for the simplicity of representation in
proposed computing paradigms.
• RS (Regular Spiking): a regular cortical firing pattern

with relatively low-frequency.

Figure 3 illustrates how the application of different configuration
ofVGF andVGM can generate these two firing patterns. Besides FS
and RS, the FeFET spike neuron model is also capable of imitated
other firing patterns such as Intrinsically Busting (IB), Chattering
(CH), and interested readers are pointed to Fang et al. (2019) for
further discussions. In the FS mode, the FeFET neuron operates
in an oscillatory mode with disabled inhibition (low VGF) for a
high frequency of firing. Meanwhile, VGM can be used to adjust
the firing frequency. In RS mode, spikes are generated through
a periodic inhibitory input which has a large duty cycle. In the
original design of FeFET spiking neuron (Wang et al., 2018), the
polarity of the spike train is inverted using an output inverter and
the input gate voltages, VGF and VGM accept voltage spikes from
pre-synaptic neurons via RC integrators. The two spiking modes,
FS, and RS can be set by using proper input of spiking trains.
Figure S2 illustrates the frequency modulation via spikes.

Swarm Intelligence (SI)—Spiking Neural
Network (SNN) Optimization
Having established the electronic equivalent of the biological
neuron, we now focus on the algorithm development which
can harness the dynamics of this neural circuit. In this section,
we introduce the SI-SNNs that imitates the collective behavior
of SI algorithms. First, we provide a general framework of
SI algorithms. Then, we describe the architectures of two
SI-SNNs, which are aimed at two different optimization
problems, respectively.

SI Algorithm Framework
To define the problem, we use the general form of optimization,
which is to find a solution of x to maximize/minimize the
objective/cost function f (x) under certain constraints. Namely,
x = argmin f (x), s.t constraint. For the parameter optimization
of continuous objective functions, we do not take constraints
into consideration.

Different SI algorithms are distinct from each other due
to the different swarm behaviors they mimic. However, a
general framework can be developed to fit most of these
algorithmic principles. In the beginning, a swarm is initialized
with multiple “agents.” Each agent’s location coordinates in
the solution space represent the parameters of the solution.
In each iteration of the optimization process, the agents move
and search for solutions by updating their parameters. Such a
collaboration operation is meta-heuristic and trades off between
the randomization and the performance of the local search. To
locate the optimal solution and to escape from local minima
simultaneously, each agent follows particular behavioral rules
and seek to balance exploration and exploitation (Crepinsek
et al., 2011). Exploration determines the swarm’s capability
of discovering new candidates of the global solution. On the
contrary, exploitation focuses on the individual local search
within the vicinities of the current best solution. The pseudo-code
in Algorithm 1 describes the framework of most SI algorithms
(Fang and Dickerson, 2017).

Algorithm 1: General SI Frameworks

1: Initialize swarm S withm agents {s1, s2, ..., sm}
2: While t < MAX_ITER or condition satisfy do

3: Update vector of parameters sti = st−1i +1st−1i for each

st−1i ∈ St−1

4: Evaluate f (sti) for each sti
5: Compute each 1sti for the next iteration based on f (sti)
6: t = t + 1
7: end while

Each agent si in swarm S is an n-dimension vector that represents
the variable of f (x) ∈ R

n → R. The behavior rule of agent that
compute 1sti vary among different SI algorithms. For example,
PSO updates si based on the history of both the best global and
local solutions. FA only requires the current global best solution.
Despite this distinction, SI algorithms are flexible and model-free
because of their similar characteristics in meta-heuristic search.
In other words, the same method can be used to address different
types of optimization problems.

SI-SNN Model Architecture for Continuous Objective

Function
Figure 4 depicts the architecture of the proposed SI-SNN for
optimizing the parameters of continuous objective functions.
Following the configuration and notation as Algorithm 1, we
consider a swarm of m agents for an n-dimension problem.
Accordingly, we prepare an m × n array of neurons (labeled as

Frontiers in Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 855210

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

FIGURE 4 | SI-SNN architecture for parameter optimization of continuous

functions.

green) to represent a parameter sij (1 < i < m, 1 < j < n) in
each agent si. The black frame with shadow encloses the neurons
that belong to the agent si. The red frame indicates the neurons
that compose the searching network for the optimization of
one parameter x

k
(1 < k < n). Namely, each column of

neurons is a fully connected spiking neural network defined
as a searching network. Each row of neurons represents an
agent. The block E (labeled as orange) evaluates the solution
found by each agent by computing the value of the objective
function f (x). The computing platform of block E depends on
the different optimization tasks and objective functions. For
compatibility, it can be another spiking neural network (Iannella
and Back, 2001), or a digital/mixed-signal computing hardware,
or feedback from the external environment gathered through
sensors such in reinforcement learning problems. The evaluation
of each solution found by an individual agent produces an
m-sized column vector (labeled as blue). These solutions are
compared to each other and used to guide the synaptic update
of the neurons.

In section Ferroelectric Based Spiking Neuron, we introduced
the FeFET spiking neuron and several of its biomimetic patterns.
In this scenario, we explore the use of frequency (firing rate) of
each neuron to represent the value of a parameter. Therefore,
an adaptable voltage-controlled high-frequency spiking mode is

necessary. We choose the FS mode of FeFET spiking neuron
(Figure 3), in which the inhibitory input is off (VGF = 300mV)
and the voltage of the capacitor VS oscillates between Vt1 =

111mV and Vt2 = 188mV. The firing rate is tuned by the
excitatory input, VGM (Figure 2C).

In a searching network, each neuron belongs to a different
agent. Its firing rate represents the value of the specific parameter
in the current solution. The firing rates are initialized by setting
VGM with random values normally distributed in a specific range.
During the optimization process, these neurons adjust each
other’s firing rates based on the results of the pairwise comparison
between solutions, following the rule described in Equation (4).
For the ith neuron in a searching network, we have

VGMi = VGMi +1vij + θη, on spike from jth neuron (4)

1vij =

{

w(VGMj − VGMi), if f (si) < f (sj)
0, otherwise

where η is a Gaussian noise term and θ is a scaling factor of
the stochastic term. Equation (4) explains an event-based rule
of updating VGM . Once a spike from the pre-synaptic neuron j
arrives at the post-synaptic neuron i and if the jth agent has a
better solution than the ith agent, VGMi is updated by adding the
difference between VGMi and VGMj so that it becomes more close
to VGMj, which reduces the difference between the firing rates of
the two neurons. w is the synaptic weight that controls the step
size of theVGM modulation. This synaptic rule is applied to all the
neurons and enables the agents with better solutions to dominate
other agents by tuning their firing rate. But the dominant agents
change behavior as the searching process continues. Sometimes
passive agents may find better solutions as a result of a stochastic
search and become active and start to modulate the neurons of
other agents. The searching process ends when the neurons in
every searching networks are synchronized with near-identical
frequencies. Such a swarm behavior is inspired by fireflies, which
attract each other via the frequency synchronization of their flash
signaling (Fister et al., 2013).

SI-SNN for Traveling Salesman Problem
TSP is an NP-hard combinatorial optimization problem. Given
the distance between nodes in a graph, the goal of TSP is to
find a path that visits all the nodes in the graph exactly once
with minimal total distance. Among SI algorithm family, ant
colony optimization algorithm (ACO) was proposed to solve TSP
(Dorigo and Di Caro, 1999). ACO is a swarm-based method
inspired by the collaborative behavior of ants. Different from
the rest of the SI algorithms, the agents (ants) in ACO do not
send information to each other directly but leave the shared
information (pheromone) on the edge of graphs (Dorigo and
Di Caro, 1999). Individual ant makes decisions based on the
concentration of pheromone on their travel route. We define a
trip as complete when an agent finishes visiting all the nodes.
In a trip, the amount of pheromone on the edge is updated by
all the ants that have passed by that edge and further influence
their choice of route in the next trip. An iteration is defined as an
event when all the agents have finished one trip. After a certain

Frontiers in Neuroscience | www.frontiersin.org 7 August 2019 | Volume 13 | Article 855211

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

FIGURE 5 | (A) Modified SI-SNN architecture for solving TSP (B) inhibitory and excitatory synapses enable that only one neuron fires after latest pre-synaptic spike in

a WTA network (C) Plot of state variable Vs and the raster plot that shows the order of fired spikes in one trip.

number of iterations, the best route eventually converges to the
optimal solution.

Before we design the SI-SNN for ACO, we notice that a
fully connected SNN with n neurons can be mapped onto a
graph of n-city TSP (Hopfield and Tank, 1985) and the travel
route can be indicated by the order of spikes (Jonke et al.,
2016). However, the behavior of a swarm of ants is difficult
to be represented simultaneously by the spike train within a
single SNN. Therefore, we use multiple SNNs to simulate the
trip of each ant. For each SNN, the difficulty in the design
of dynamics lies on how to make each neuron fire only once
and follow the correct order in one trip. In previous work
(Jonke et al., 2016), multiple WTA SNNs are used to show
the travel path of one trip. By exerting the inhibitory and
excitatory interfaces of FeFET spiking neurons, we can use the
spike train of a single SNN to represent the travel path of
one agent.

Figure 5A shows the modified architecture of SI-SNN for
solving TSP. We start with an m × n array of neurons (green)
and each neuron represents a city (node) cij (1 < i < m, 1 <

j < n) in the travel path of the agent (ant) Ai. A red frame
indicates a fully-connected WTA network, which models the
traveling behavior of an ant Ai. In one trip, each neuron in
a WTA network only fires once and the solution of the TSP
pi (labeled as blue) is represented as the order of firing of a
spike train. The collaboration between agents does not rely on
the evaluation of pi. Hence, the SI-SNN architecture for ACO
has no feedback loop and search networks as shown in the
previous section. Instead, these WTA networks simultaneously
access and update a set of shared weights that mimic the
pheromone trails of the ant colony. Meanwhile, to enable the
winner-takes-all mechanism, we employ an instant inhibitory
synapse and a delayed excitatory synapse to pair-wise connect
every neuron in the WTA network. Accordingly, we use the
regular spiking (RS) mode of FeFET neuron. Namely, after the

inhibition input VGF was set to low, the capacitor of FeFET
neuron needs to be discharged from the resting state 300mV to
the threshold voltage 111mV to generate a spike.We describe the
dynamical behavior of one WTA network (Figure 5B) as follow:

Step 1. The weight of pheromone τij between any neuron i and
j is initialized as 1. The inhibition of neuron is disabled (VGF =

300mV). A randomly selected neuron is set as the start node
with VGM = 350mV and the rest neurons are initialized with
VGM < 350 mV.

Step 2. The neuron of the starting node generates the first
spike before the rest of the neurons reach the firing threshold
and immediately set their inhibition to a high state through
the inhibitory synapse, defined as (VGF_post = 400mV on a
pre-synaptic spike). In such a circumstance, all the neurons
instantly switch to the charging stage. After they reach the
resting state at 300mV, the fired neuron will be set as inhibited
till the end of the current trip, while the rest of the neurons
are triggered by the delayed excitatory synapse, which is
defined as:











VGF_post = 300mV

VGM_post = κ
τij

p

Dij
q + θη + VMth (after delay 1t

on pre-synaptic spike) (5)

where the i and j are indices of pre-synaptic and postsynaptic
neurons, Dij is the distance between two nodes. p and q are
the weights of the pheromone and the distance between the
nodes, used for balancing the global and local information. κ
and θ are scaling factors and η is the Gaussian random term.
The rest of the neurons, which have not fired any spike yet,
are free from inhibition and start to discharge (integration
stage). However, their discharge rate is controlled by the

Frontiers in Neuroscience | www.frontiersin.org 8 August 2019 | Volume 13 | Article 855212

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

VGM-, depending on the amount of pheromone, τij and Dij in
Equation (5).

Step 3. The neuron that discharges the fastest become the
winner, fire the second spike of this trip and inhibit other
neurons. The shared weight of pheromone between the two
neurons that fires in a sequence is updated as:

τij = (1− ρ)τij +
ω

Dijmn
(6)

where ρ is a decay factor, which represents the vaporization of
pheromone and encourages agents to explore new routes. ω is
the scaling factor of the increasing amount of pheromone.

Step 4. The whole process (Step 1 ∼3) is repeated until all the
neurons in the WTA network fire a spike.

To demonstrate this process clearly, we plot the trace of VS of
neurons and the raster plot of a WTA network in Figure 5C.
The raster plot indicates the firing order of spikes in a trip of a
10-city TSP (solution provided in Figure 8).

During the optimization, the process described above is
executed by m WTA networks simultaneously and the
pheromone trails are shared and updated on the fly. Once
all the WTA networks (agents) complete a trip, a new
iteration starts with the updated pheromone weights. The
whole optimization process terminates when the maximum
iteration number is reached.

RESULTS

Parameter Optimization of Continuous
Functions
We simulate the SI-SNN computing paradigm with BRIAN,
an open source SNN simulator based on Python (Stimberg
et al., 2014). We use the dynamical model discussed in Section
2.2 to simulate FeFET based spiking neurons. For the first
demonstration, the continuous objective function we aim at is the
2-D Schwefel’s function:

f (x) =

n
∑

i=1

sin(
√

|xi|) (7)

The dimension of this function is n = 2, and xi ∈ [−500, 500].
This function has more than 50 local minima and a global
minimum at x = (418.92, 418.92). Figure 6A plots the landscape
of 2-D Schwefel’s function as a 3-D surface. In this case, we

TABLE 1 | Parameter optimization of benchmark objective functions.

Benchmark function

(dimension)

Convergence time

(Mean ± Std)

Success

rate

Michalewicz’s (n = 16) 348 ± 98ms 89%

Schwefel’s (n = 64) 782 ± 223ms 92%

Ackley’s (n = 128) 1,379 ± 928ms 99%

De Jong’s (n = 256) 945 ± 105ms 100%

FIGURE 6 | (A) Landscape of 2-D Schwefel’s function; (B) Contour map with solution traces of each agent in the optimization process of (A); (C,D) Evolution of VGM
in two searching networks with raster plots.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2019 | Volume 13 | Article 855213

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

prepare an SI-SNN with 100 agents and two searching networks
(m = 100, n = 2). The scaling factor of random noise θ = 0.02.
For such a configuration, we randomly initialize the VGM of
each FeFET spiking neuron in the range of [255mV, 355mV]
with a uniform distribution. Consequently, the firing rates of
neurons range from 0.801 to 9.852 kHz in FS mode and are
mapped to the range of xi ∈ [−500, 500]. We note that when
the network synchronizes, the VGM of most of the neurons

FIGURE 7 | Average convergence time to optimize 2-D Schwefel’s function in

different m and w. The error bars indicate the maximum and minimum time

cost.

cluster around 339mV and the firing rates are stabilized at
9.186 kHz. Such a value ofVGM corresponds to the global minima
where xi = 418.92. There exist errors between the parameter
represented by the firing rate due to the nonlinearity in the VGM

- Frequency curve. It needs to be calibrated and compensated in
the hardware design. In this simulation, we did not consider a
hardware implementation of the evaluation blocks. Figures 2C,D
plots the VGM of each neuron in two searching networks along
the optimization process. The convergence of the SI-SNN takes
1.5ms, which is∼14 cycles of spiking. Meanwhile, we notice that
the firing rates of a few of the neurons are initially attracted to
local minima and then get pulled out by the neurons of other
agents with better solutions. This phenomenon indicates that
SI-SNN model is capable of escaping from the “trap” of local
minima. Figures 6C,D also show the raster plots of all the spikes
during the simulation process. Figure 6B is a contour map of
Figure 6A with the traces of the best solutions found by each
agent during the optimization. The red circles mark the initial
positions of 100 agents in the solution space. Eventually the
swarm converges into the global minimum.

We set synaptic weight w and swarm sizem to different values
and run the simulation 200 times for each configuration. Figure 7
shows the average time for the optimization problem under
different configurations of w and m. The result indicates that
larger m and w can speed up the optimization process. However,
the best choice of w falls within a certain range. An extremely
large or small value may lead to failure in synchronization or
the network may miss of global optimum. Having more agents
improves the efficiency and performance of optimization but also
increases the demands for computing resources.

FIGURE 8 | Distance of the best solution to a 10-city TSP in each iteration of SI-SNN.

Frontiers in Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 855214

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

TABLE 2 | Performance of solving TSP.

TSP benchmark

problem

Iteration number (Mean ± Std)

(SI-SNN/Multi-SNN random Walk)

Performance

(RPD %)

my10 (n = 10) 59 ± 28/343 0

ulysses16 (n= 16) 147 ± 75/1,751 0

bays29 (n = 29) 364 ± 143/Fail 0

att48 (n = 48) 625 ± 237/Fail 3%

berlin52 (n = 52) 574 ± 126/Fail 1%

Apart from Schwefel’s function, we also test the SI-
SNN on several other benchmark objective functions with
different dimensions. The equations and landscape of these
benchmark functions can be found in Pohlheim (2005). For
the evaluation of the optimization performance, we use Relative
Percentage Deviation (RPD), which we defined as the absolute
percentage error between the objective function evaluation
of best solution founded by algorithms and the correct
optimal solution.

RPD =
abs(f (best)− f (opt))

f (opt)
× 100% (8)

Table 1 show the average convergence time with corresponding
standard deviation and the success rate in finding the near
optima with an RPD smaller than 2%. In such a test, we
employ swarms with 200-agent to optimize the parameter
of four benchmark functions. In these simulations, we keep
the same configuration of the FeFET neuron model. The
time constants are the same as previous tests and the firing
frequencies of neurons still range from 0.801 to 9.852 kHz.
The parameters such as time and voltage, are scalable with
different devices and capacitors in the FeFET based circuits,
e.g., smaller capacitors may reduce the time of charge and
discharge from microsecond to nanosecond (Wang et al.,
2018).

Solving TSP
We use the samemethod to simulate the modified SI-SNNmodel
for solving TSP. However, since the simulator does not support
conditionally terminating the simulation process, we run each
iteration separately in sequence. After all the WTA networks
finish the trip of their agents, we reset the system and continue
to run the next iteration with the updated pheromone weights.
Each iteration contains m × n spikes but the time cost only
depends on how fast the slowest agent fires n spikes. The whole
simulation process ends when the maximum iteration number is
reached. The performance and convergence speed of the original
ACO are sensitive to the hyperparameters. In the simulations
of this section, we set the swarm size twice as the size of the
problem (m = 2n), κ = 0.01, θ = 0.03, ρ = 0.03, ω = 2.
For q and p, it is recommended to use values within 2 and 4.
However, to reduce the complexity of the hardware design, we
can set both of them to 1. Figure 8 demonstrates the optimization
process of solving a 10-city TSP. It demonstrates the distances

of solutions searched in each iteration and display the best route
in several iterations. The optimal travel route was found at the
53rd iteration.

Next, we run a set of benchmark tests with our customized 10-
city TSP and four other TSP from a standard TSP library TSPLIB.
The sizes of these problems are respectively [10,16,29, 48, 52].
For each problem, we run the optimization 200 times using SI-
SNN and also using SNNs that performs random-walk-based
searches without any shared information (pheromone). Table 2
shows the mean and standard deviation of iteration numbers to
reach the best solution and the corresponding RPD. The standard
deviation is not shown for multi-SNN random search because the
successful runs are fewer than five times and such a strategy fail to
find any near-optimal solution when the problem size increases.
The results in Table 2 demonstrate that without collaboration,
the random search performed by a swarm is much less effective.
We also notice that for complex TSPs, the SI-SNN can only
approach near-optimal solutions due to the limitations inherited
from the original ACO algorithm.

In Table 3, we estimate the “time taken” and “energy
consumption” of several methods that implement ACO to solve
a 48-city TSP. Bali et al. (2016) provides the performance of
ACO executed respectively by a GPU and a CPU on laptop,
although the 48-city TSP they use may not be att48. We
conservatively estimate the energy cost of GPU and CPU
based on their idle power consumption, and subtract the
power consumed by the onboard memory. For the SI-SNN,
we compared the time and energy cost between FeFET spiking
neuron and a few of the previous literature on silicon-based
neurons. We calculate the estimation results with the total spike
numbers, timing, and energy cost per spike. In this scenario,
we do not consider the delay and power consumption of
synapses and assume the neurons of previous works is also
compatible with the WTA network in SI-SNN. For FeFET
based spiking neurons, we provide two sets of data, 45 nm
FinFET process with C = 8 nF and 14 nm FinFET process
with C = 1 pF. The first one has a relatively lower frequency
in the kHz range and higher energy consumption of ∼0.36
nJ/spike. The second one uses a predictive transistor technology
and a smaller capacitor that generates oscillation frequency
in the MHz range. The comparison in Table 3 shows that
the FeFET based SI-SNN is a promising computing paradigm
for optimization in terms of high performance and energy
efficiency. Even with traditional CMOS, event-based SI-SNN
is highly energy efficient compared to CMOS digital systems.
Compared with silicon neurons, we observe that post-CMOS,
emerging devices can effectively reduce the number of transistors
as well by harnessing the inherent neuronal dynamics. In
particular, the FeFET spiking neuron provides both excitatory
and inhibitory interfaces, which benefits the design of the
WTA network. It reduces the number of neurons and synapses.
For example, without inhibition input directly to the neuron,
representing one trip of N-city TSP requires N × N neuron
(Jonke et al., 2016), while we only use a single N-neuron WTA
network in this work. Thus, the energy reduction brought by
the unique feature of FeFET spiking neuron is not shown
in Table 3.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2019 | Volume 13 | Article 855215

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

TABLE 3 | Comparison of proposed computing paradigm and other methods.

Task: ACO for 48-city

TSP

SI-SNN GPU CPU

References Indiveri

(2003)

Wijekoon and Dudek

(2008)

Babacan et al.

(2016)

Wang et al. (2017, 2018)

used in this work

Bali et al. (2016) Bali et al. (2016)

Technology CMOS

analog

CMOS analog Memristor+CMOS FeFET+CMOS CMOS digital CMOS digital

Manufacturing process 1.5µm 0.35µm 0.18µm 45nm (14 nm) 40 nm 22 nm

Neuron model

(Dynamics)

LIF (RS) Izhkevich

(RS, FS, CH, IB)

Izhkevich

(RS, FS, CH, IB)

Izhkevich

(RS, FS, CH, IB)

GPU model: GTX

480M

CPU model:

Intel Core T

i7-4700MQ

Device count/neuron

(total)

18T (172.8k) 14T (134.4k) 1T+3M (38.4k) 1T+1FeFET (19.2k) 3 billion on chip 1.4 billion on chip

Synaptic input Excitatory Excitatory Excitatory Excitatory+Inhibitory / /

Time cost 5min 36ms 3 s 3.9 s (0.48ms) 2.4 s 6.8 s

Energy consumption of

neuron in total

90 mJ 0.1 mJ 0.5 mJ 2.2 mJ (∼nJ) ∼190J ∼320J

DISCUSSION

In this paper we propose SI-SNN as a computational platform
based on FeFET based spiking neurons. We observe that:

1. The FeFET based spiking neurons exhibit rich neuronal
dynamics. In the SI-SNN architecture, we use the rate-
based representation in the FS mode for the optimization
of the continuous objective function and the phase-based
representation in the RS mode for solving TSP. To the best
of our knowledge this is one of the first demonstrations
of a computing platform that harnesses various neuronal
dynamics for solving different optimization problems.

2. The inhibitory input of FeFET spiking neuron facilitates the
design of the WTA network in solving TSP. In our design,
the spiking behavior of neurons can inhibit and compete
with each other, and naturally mimic path planning of ants.
Without the inhibitory interface, more hardware resources
are required.

3. The design of FeFET spiking neuron is compact. The entire
circuit can run at high frequency with low energy cost.

4. The dynamical behavior model we extract is simple and
effective. It can capture the spike timing but bypass the
complex physical equations of ferroelectric devices, and
improve the efficiency of the simulation.

Given the simulation results of the first SI-SNN model in section
Parameter Optimization of Continuous Functions, we observe
two tradeoffs between the metrics of continuous function
optimizations. The first one is between the spatial cost and
the temporal cost. A larger size of a swarm results in faster
speed of convergence but also requires more neurons and spike
generators, which is equivalent to the tradeoff between efficiency
and energy. The second one is between convergence speed and
accuracy. A larger network weight and less randomization may
improve the efficiency of the search process but also increases
the risk of missing the optima. In particular, the random term
in metaheuristic search becomes increasingly important as the
problem dimension increases, because the search routine covers
less of a solution space in a higher dimension. These observations
can be used to tune model parameters.

In the SI-SNN TSP solver, our design benefits from
the dynamical feature of FeFET based spiking neurons. The
excitatory and inhibitory interfaces enable the design of the
WTA embedded in each SNN. The simulation results emphasize
the importance of shared information between agents in the
collaborative search process of swarms. Further work can be
pursued by invoking more ACO algorithms such as Max-min
ant systems (MMAS) (Stützle and Hoos, 2000) and ant colony
system (ACS) (Dorigo and Gambardella, 1997) that can improve
the performance and convergence speed at the cost of more
complicated hardware design.

As far as the hardware implementation is concerned,
the solution-based adaption of synaptic parameters can be
realized with address-event representation (AER) systems
(Park et al., 2012) or memristor crossbar arrays (Long et al.,
2016; Ielmini, 2018). The random terms in the synaptic
rule can be implemented via the emerging stochastic
devices such as spintronic device and memristors (Vincent
et al., 2015). Furthermore, future works may harness more
learning properties from synapse models with non-linear
dynamics. Also, the interplay between swarm intelligence
and individual cognitive intelligence is a research area
that remains active (Rosenberg et al., 2016). The results
will have contributions to fields as varied as multi-agent
artificial intelligence, social psychology, cognitive science and
so on.

In summary, we propose a new SNN computing paradigm

built on FeFET spiking neuron that combines swarm intelligence

in agents of spiking neural network to address optimization
problems. We simulate our SI-SNN model with SNN simulator

and demonstrate its capability to optimizing parameters of
continuous objective functions and for solving the traveling

salesman problem. In our design, we utilize two types of

neural dynamics, FS and RS, to encode information with
firing rate and spike timing, respectively, to perform varying
computational tasks. The FeFET based SNN is a promising
hardware platform for achieving the energy-efficiency and
high-performance denoted by future computing systems
(Wang et al., 2018). We demonstrate the computational

Frontiers in Neuroscience | www.frontiersin.org 12 August 2019 | Volume 13 | Article 855216

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

power of neuromorphic systems in the field of general
optimization problems. Above all, our work sheds light
on the connection between individual intelligence and
swarm intelligence.

DATA AVAILABILITY

No datasets were generated or analyzed for this study.

AUTHOR CONTRIBUTIONS

YF proposed the method of SI-SNN and performed the
simulation and data analysis. AR and YF formulate
the problem and drafted the manuscript. JG, ZW, SD,

and AK worked on the device and circuits of FeFET
spiking neuron.

FUNDING

This work was supported by ASCENT and C-BRIC, two of six
centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00855/full#supplementary-material

REFERENCES

Aziz, A., Breyer, E. T., Chen, A., Chen, X., Datta, S., Gupta, S. K., et al.

(2018). “Computing with ferroelectric FETs: devices, models, systems, and

applications,” in Proceedings of IEEE Design, Automation and Test in Europe

Conference and Exhibition (DATE) (Washington, DC: IEEE).

Aziz, A., Ghosh, S., Datta, S., and Gupta, S. K. (2016). Physics-based circuit-

compatible SPICEmodel for ferroelectric transistors. IEEE Electron Device Lett.

37, 805–808. doi: 10.1109/LED.2016.2558149

Babacan, Y., Kaçar, F., and Gürkan, K. (2016). A spiking and bursting

neuron circuit based on memristor. Neurocomputing 203, 86–91.

doi: 10.1016/j.neucom.2016.03.060

Bali, O., Elloumi, W., Abraham, A., and Alimi, A. M. (2016). “ACO-PSO

optimization for solving TSP problem with GPU acceleration,” in International

Conference on Intelligent Systems Design and Applications (Cham: Springer).

Blum, C., and Li, X. (2008). “Swarm intelligence in optimization,” in Swarm

Intelligence, eds C. Blum and D. Merkle (Berlin, Heidelberg: Springer),

43–85.

Bouganis, A., and Shanahan, M. (2010). “Training a spiking neural network to

control a 4-dof robotic arm based on spike timing-dependent plasticity,” in The

2010 International Joint Conference on Neural Networks (IJCNN) (Washington,

DC: IEEE).

Brody, C. D., and Hopfield, J. J. (2003). Simple networks for spike-timing-based

computation, with application to olfactory processing. Neuron 37, 843–852.

doi: 10.1016/S0896-6273(03)00120-X

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Computer Vis. 113,

54–66. doi: 10.1007/s11263-014-0788-3

Crepinsek, M., Mernik, M., and Liu, S. H. (2011). Analysis of exploration and

exploitation in evolutionary algorithms by ancestry trees. Int. J. Innovat.

Comput. Appl. 3, 11–19. doi: 10.1504/IJICA.2011.037947

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., and

Liao, Y., et al (2018). Loihi: a neuromorphic manycore processor with on-chip

learning. IEEE Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016).

“Conversion of artificial recurrent neural networks to spiking neural networks

for low-power neuromorphic hardware,” in Proceedings of IEEE International

Conference Rebooting Computing (ICRC) (Washington, DC: IEEE).

Dorigo, M., and Di Caro, G. (1999). “Ant colony optimization: a new meta-

heuristic,” in Proceedings of the 1999 Congress on Evolutionary Computation-

CEC99 (Cat. No. 99TH8406) (Washington, DC: IEEE).

Dorigo, M., and Gambardella, L. M. (1997). Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE Transac. Evol.

Comput. 1, 53–66. doi: 10.1109/4235.585892

Duan, H., and Luo, Q. (2015). New progresses in swarm intelligence–

based computation. Int. J. Bio-Inspired Comput. 7, 26–35.

doi: 10.1504/IJBIC.2015.067981

Fang, Y., and Dickerson, S. J. (2017). “Achieving swarm intelligence with

spiking neural oscillators,” in 2017 IEEE International Conference on Rebooting

Computing (ICRC) (Washington, DC: IEEE).

Fang, Y., Gomez, J., Wang, Z., Datta, S., Khan, A. I., and Raychowdhury, A. (2019).

Neuro-mimetic dynamics of a ferroelectric FET based spiking neuron. IEEE

Electron Device Lett. 40, 1213–1216. doi: 10.1109/LED.2019.2914882

Fang, Y., Yashin, V. V., Seel, A. J., Jennings, B., Barnett, R., Chiarulli, D. M.,

et al. (2014). “Modeling oscillator arrays for video analytic applications,” in

Proceedings of IEEE/ACM International Conference on Computer-Aided Design

(Washington, DC: IEEE).

Fister, I., Fister I. Jr., Yang, X. S., and Brest, J. (2013). A comprehensive

review of firefly algorithms. Swarm Evol. Comput. 13, 34–46.

doi: 10.1016/j.swevo.2013.06.001

Fonseca Guerra, G. A., and Furber, S. B. (2017). Using stochastic spiking

neural networks on spinnaker to solve constraint satisfaction problems. Front.

Neurosci. 11:714. doi: 10.3389/fnins.2017.00714

Ghosh-Dastidar, S., and Adeli, H. (2009). Spiking neural networks.

Int. J. Neural Syst. 19, 295–308. doi: 10.1142/S01290657090

02002

Goss, S., Aron, S., Deneubourg, J. L., and Pasteels, J. M. (1989). Self-

organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581.

doi: 10.1007/BF00462870

Guevara Erra, R., Perez Velazquez, J. L., and Rosenblum, M. (2017). Neural

synchronization from the perspective of non-linear dynamics. Front. Computat.

Neurosci. 11:98. doi: 10.3389/fncom.2017.00098

Hopfield, J. J., and Tank, D. W. (1985). “Neural” computation of decisions in

optimization problems. Biol. Cybernet. 52, 141–152.

Iannella, N., and Back, A. D. (2001). A spiking neural network architecture

for nonlinear function approximation. Neural Netw. 14, 933–939.

doi: 10.1016/S0893-6080(01)00080-6

Ielmini, D. (2018). Brain-inspired computing with resistive switching memory

(RRAM): devices, synapses and neural networks. Microelectronic Eng. 190,

44–53. doi: 10.1016/j.mee.2018.01.009

Indiveri, G. (2003). “A low-power adaptive integrate-and-fire neuron circuit,” in

Proceedings of the 2003 IEEE International Symposium on Circuits and Systems,

ISCAS’03 (Washington, DC: IEEE).

Indiveri, G., and Horiuchi, T. K. (2011). Frontiers in neuromorphic engineering.

Front. Neurosci. 5:118. doi: 10.3389/fnins.2011.00118

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., Van Schaik, A., Etienne-

Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron

circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., and

Prodromakis, T. (2013). Integration of nanoscale memristor synapses

in neuromorphic computing architectures. Nanotechnology 24:384010.

doi: 10.1088/0957-4484/24/38/384010

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transac. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Frontiers in Neuroscience | www.frontiersin.org 13 August 2019 | Volume 13 | Article 855217

https://www.frontiersin.org/articles/10.3389/fnins.2019.00855/full#supplementary-material
https://doi.org/10.1109/LED.2016.2558149
https://doi.org/10.1016/j.neucom.2016.03.060
https://doi.org/10.1016/S0896-6273(03)00120-X
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1504/IJICA.2011.037947
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/4235.585892
https://doi.org/10.1504/IJBIC.2015.067981
https://doi.org/10.1109/LED.2019.2914882
https://doi.org/10.1016/j.swevo.2013.06.001
https://doi.org/10.3389/fnins.2017.00714
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1007/BF00462870
https://doi.org/10.3389/fncom.2017.00098
https://doi.org/10.1016/S0893-6080(01)00080-6
https://doi.org/10.1016/j.mee.2018.01.009
https://doi.org/10.3389/fnins.2011.00118
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1088/0957-4484/24/38/384010
https://doi.org/10.1109/TNN.2003.820440
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Fang et al. Swarm Optimization Spiking Neural Networks

Jonke, Z., Habenschuss, S., and Maass, W. (2016). Solving constraint satisfaction

problems with networks of spiking neurons. Front. Neurosci. 10:118.

doi: 10.3389/fnins.2016.00118

Kasabov, N. K. (2014). NeuCube: a spiking neural network architecture for

mapping, learning and understanding of spatio-temporal brain data. Neural

Netw. 52, 62–76. doi: 10.1016/j.neunet.2014.01.006

Kennedy, J., and Eberhart, R. C. (1999). “The particle swarm: social adaptation in

information-processing systems,” in New Ideas in Optimization, eds D. Corne,

M. Dorigo, D. Dasgupta, P. Moscato, R. Poli, and K. V. Price (Maidenhead:

McGraw-Hill Ltd.), 379–388.

Khandelwal, S., Duarte, J. P., Khan, A. I., Salahuddin, S., and Hu, C. (2017).

Impact of parasitic capacitance and ferroelectric parameters on negative

capacitance FinFET characteristics. IEEE Electron Device Lett. 38, 142–144.

doi: 10.1109/LED.2016.2628349

Kuzum, D., Yu, S., and Wong, H. P. (2013). Synaptic electronics:

materials, devices and applications. Nanotechnology 24:382001.

doi: 10.1088/0957-4484/24/38/382001

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436.

doi: 10.1038/nature14539

Lenarczyk, P., and Luisier, M. (2016). “Physical modeling of ferroelectric field-

effect transistors in the negative capacitance regime,” in IEEE International

Conference on Simulation of Semiconductor Processes and Devices (SISPAD)

(Washington, DC: IEEE).

Long, Y., Jung, E. M., Kung, J., and Mukhopadhyay, S. (2016). “Reram crossbar

based recurrent neural network for human activity detection,” in 2016

International Joint Conference on Neural Networks (IJCNN) (Washington,

DC: IEEE).

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Mead, C. A. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-

Wesley.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Michener, C. D. (1969). Comparative social behavior of bees. Ann. Rev. Entomol.

14, 299–342. doi: 10.1146/annurev.en.14.010169.001503

Mostafa, H., Müller, L. K., and Indiveri, G. (2015). An event-based architecture

for solving constraint satisfaction problems. Nat. Commun. 6:8941.

doi: 10.1038/ncomms9941

Norris, K. S., and Schilt, C. R. (1988). Cooperative societies in three-

dimensional space: on the origins of aggregations, flocks, and schools,

with special reference to dolphins and fish. Ethol. Sociobiol. 9, 149–179.

doi: 10.1016/0162-3095(88)90019-2

Parihar, A., Jerry, M., Datta, S., and Raychowdhury, A. (2018). Stochastic IMT

(insulator-metal-transition) neurons: an interplay of thermal and threshold

noise at bifurcation. Front. Neurosci. 12:210. doi: 10.3389/fnins.2018.00210

Parihar, A., Shukla, N., Jerry, M., Datta, S., and Raychowdhury, A. (2017). Vertex

coloring of graphs via phase dynamics of coupled oscillatory networks. Sci. Rep.

7:911. doi: 10.1038/s41598-017-00825-1

Park, J., Yu, T., Maier, C., Joshi, S., and Cauwenberghs, G. (2012). “Live

demonstration: hierarchical address-event routing architecture for

reconfigurable large scale neuromorphic systems,” in 2012 IEEE International

Symposium on Circuits and Systems (Washington, DC: IEEE).

Pohlheim, H. (2005). “Geatbx examples examples of objective functions,” in

Documentation for GEATbx version 3.7 (Genetic and Evolutionary Algorithm

Toolbox for use with Matlab) (Washington, DC: IEEE).

Ponulak, F., and Kasinski, A. (2011). Introduction to spiking neural networks:

information processing, learning and applications. Acta Neurobiol. Exp.

71, 409–433. Available online at: https://ane.pl/archive?vol=71&no=4&id=7146

Romera, M., Talatchian, P., Tsunegi, S., Araujo, F. A., Cros, V., Bortolotti, P.,

et al. (2018). Vowel recognition with four coupled spin-torque nano-oscillators.

Nature 563:230. doi: 10.1038/s41586-018-0632-y

Rosenberg, L., Baltaxe, D., and Pescetelli, N. (2016). “Crowds vs swarms,

a comparison of intelligence,” in 2016 Swarm/Human Blended Intelligence

Workshop (SHBI) (Washington, DC: IEEE).

Stimberg, M., Goodman, D. F., Benichoux, V., and Brette, R. (2014).

Equation-oriented specification of neural models for simulations. Front.

Neuroinformatics 8:6. doi: 10.3389/fninf.2014.00006

Stützle, T., and Hoos, H. H. (2000). MAX–MIN ant system. Future Generat.

Computer Syst. 16, 889–914. doi: 10.1016/S0167-739X(00)00043-1

Vincent, A. F., Larroque, J., Locatelli, N., Romdhane, N. B., Bichler,

O., Gamrat, C., et al. (2015). Spin-transfer torque magnetic memory

as a stochastic memristive synapse for neuromorphic systems. IEEE

Transac. Biomed. Circuits Syst. 9, 166–174. doi: 10.1109/TBCAS.2015.24

14423

Wang, Z., Crafton, B., Gomez, J., Xu, R., Luo, A., Krivokapic, Z., et al. (2018).

“Experimental demonstration of ferroelectric spiking neurons for unsupervised

clustering,” in 2018 IEEE International Electron Devices Meeting (IEDM)

(Washington, DC: IEEE).

Wang, Z., Khandelwal, S., and Khan, A. I. (2017). Ferroelectric oscillators

and their coupled networks. IEEE Electron Device Lett. 38, 1614–1617.

doi: 10.1109/LED.2017.2754138

Wijekoon, J. H., and Dudek, P. (2008). Compact silicon neuron circuit with spiking

and bursting behaviour. Neural Netw. 21, 524–534. doi: 10.1016/j.neunet.2007.

12.037

Yang, X. S. (2010). “A new metaheuristic bat-inspired algorithm,” in Nature

Inspired Cooperative Strategies for Optimization (NICSO 2010) (Berlin,

Heidelberg: Springer).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Fang, Wang, Gomez, Datta, Khan and Raychowdhury. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 August 2019 | Volume 13 | Article 855218

https://doi.org/10.3389/fnins.2016.00118
https://doi.org/10.1016/j.neunet.2014.01.006
https://doi.org/10.1109/LED.2016.2628349
https://doi.org/10.1088/0957-4484/24/38/382001
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/science.1254642
https://doi.org/10.1146/annurev.en.14.010169.001503
https://doi.org/10.1038/ncomms9941
https://doi.org/10.1016/0162-3095(88)90019-2
https://doi.org/10.3389/fnins.2018.00210
https://doi.org/10.1038/s41598-017-00825-1
https://ane.pl/archive?vol=71&no=4&id=7146
https://doi.org/10.1038/s41586-018-0632-y
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1016/S0167-739X(00)00043-1
https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.1109/LED.2017.2754138
https://doi.org/10.1016/j.neunet.2007.12.037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 27 August 2019

doi: 10.3389/fnins.2019.00883

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 883

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Sadique Sheik,

AiCTX AG, Switzerland

Arash Ahmadi,

University of Windsor, Canada

*Correspondence:

Wachirawit Ponghiran

wponghir@purdue.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 10 April 2019

Accepted: 07 August 2019

Published: 27 August 2019

Citation:

Ponghiran W, Srinivasan G and Roy K

(2019) Reinforcement Learning With

Low-Complexity Liquid State

Machines. Front. Neurosci. 13:883.

doi: 10.3389/fnins.2019.00883

Reinforcement Learning With
Low-Complexity Liquid State
Machines
Wachirawit Ponghiran*†, Gopalakrishnan Srinivasan † and Kaushik Roy

Department of ECE, Purdue University, West Lafayette, IN, United States

We propose reinforcement learning on simple networks consisting of random

connections of spiking neurons (both recurrent and feed-forward) that can learn complex

tasks with very little trainable parameters. Such sparse and randomly interconnected

recurrent spiking networks exhibit highly non-linear dynamics that transform the inputs

into rich high-dimensional representations based on the current and past context. The

random input representations can be efficiently interpreted by an output (or readout)

layer with trainable parameters. Systematic initialization of the random connections

and training of the readout layer using Q-learning algorithm enable such small random

spiking networks to learn optimally and achieve the same learning efficiency as humans

on complex reinforcement learning (RL) tasks like Atari games. In fact, the sparse

recurrent connections cause these networks to retain fading memory of past inputs,

thereby enabling them to perform temporal integration across successive RL time-steps

and learn with partial state inputs. The spike-based approach using small random

recurrent networks provides a computationally efficient alternative to state-of-the-art

deep reinforcement learning networks with several layers of trainable parameters.

Keywords: liquid state machine, recurrent SNN, learning without stable states, spiking reinforcement learning,

Q-learning

1. INTRODUCTION

High degree of recurrent connectivity among neuronal populations is a key attribute of neural
microcircuits in the cerebral cortex and many different brain regions (Douglas et al., 1995; Harris
and Mrsic-Flogel, 2013; Jiang et al., 2015). Such common structure suggests the existence of
a general principle for information processing. However, the principle underlying information
processing in such recurrent population of spiking neurons is still largely elusive due to the
complexity of training large recurrent Spiking Neural Networks (SNNs). In this regard, reservoir
computing architectures (Maass et al., 2002, 2003; Lukoševičius and Jaeger, 2009) were proposed
to minimize the training complexity of large recurrent neuronal populations. Liquid State Machine
(LSM) (Maass et al., 2002, 2003) is a recurrent SNN consisting of an input layer sparsely connected
to a randomly interlinked reservoir (or liquid) of spiking neurons whose activations are passed
on to a readout (or output) layer, trained using supervised algorithms, for inference. The key
attribute of an LSM is that the input-to-liquid and the recurrent excitatory ↔ inhibitory synaptic
connectivity matrices and weights are fixed a priori. LSM effectively utilizes the rich non-linear
dynamics of Leaky-Integrate-and-Fire spiking neurons (Dayan and Abbott, 2003) and the sparse
random input-to-liquid and recurrent-liquid synaptic connectivity for processing spatio-temporal

219

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00883
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00883&domain=pdf&date_stamp=2019-08-27
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wponghir@purdue.edu
https://doi.org/10.3389/fnins.2019.00883
https://www.frontiersin.org/articles/10.3389/fnins.2019.00883/full
http://loop.frontiersin.org/people/719429/overview
http://loop.frontiersin.org/people/504600/overview
http://loop.frontiersin.org/people/502975/overview

Ponghiran et al. Reinforcement Learning With LSM

inputs. At any time instant, the spatio-temporal inputs are
transformed into a high-dimensional representation, referred to
as the liquid states (or spike patterns), which evolves dynamically
based on decaying memory of the past inputs. The memory
capacity of the liquid is dictated by its size and degree of
recurrent connectivity. Although the LSM, by construction, does
not have stable instantaneous internal states like Turingmachines
(Savage, 1998) or attractor neural networks (Amit, 1992), prior
studies have successfully trained the readout layer using liquid
activations, estimated by integrating the liquid states (spikes)
over time, for speech recognition (Auer et al., 2002; Maass
et al., 2002; Verstraeten et al., 2005; Bellec et al., 2018), image
recognition (Srinivasan et al., 2018), gesture recognition (Chrol-
Cannon and Jin, 2015; Panda and Srinivasa, 2018), and sequence
generation tasks (Nicola and Clopath, 2017; Panda and Roy,
2017; Bellec et al., 2019).

In this work, we propose such sparse randomly-interlinked
low-complexity LSMs for solving complex Reinforcement
Learning (RL) tasks, which involve an autonomous agent
(modeled using the LSM) trained to select actions in a manner
that maximizes the expected future rewards received from
the environment. For instance, a robot (agent) learning to
navigate a maze (environment) based on the reward and
punishment received from the environment is an example
RL task. The environment state (converted to spike trains)
is fed to the liquid, which produces a high-dimensional
representation based on current and past inputs. The sparse
recurrent connections enable the liquid to retain decaying
memory of past input representations and perform temporal
integration across different RL time-steps. We present an optimal
initialization strategy for the fixed input-to-liquid and recurrent-
liquid connectivity matrices and weights to enable the liquid to
produce high-dimensional representations that lead to efficient
training of the liquid-to-readout weights. Artificial rate-based
neurons for the readout layer takes the liquid activations and
produces action-values to guide action selection for a given
environment state. The liquid-to-readout weights are trained
using the Q-learning RL algorithm proposed for deep learning
networks (Mnih et al., 2015). In RL theory (Sutton and Barto,
1998), the Q-value, also known as the action-value, estimates the
expected future rewards for a state-action pair that specifies how
good is the action for the current environment state. The readout
layer of the LSM contains as many neurons as the number of
possible actions for a particular RL task. At any given time,
the readout neurons predict the Q-value for all possible actions
based on the high-dimensional state representation provided
by the liquid. The liquid-to-readout weights are then trained
using backpropagation (Rumelhart et al., 1986) to minimize
the error between the Q-values predicted by the LSM and
the target Q-values estimated from RL theory (Watkins and
Dayan, 1992) as described in subsection 2.2. We adopt ǫ-greedy
policy (explained in subsection 2.2) to select the suitable action
based on the predicted Q-values during training and evaluation.
Based on ǫ-greedy policy, a lot of random actions are picked
in the beginning of the training phase to better explore the
environment. Toward the end of training and during inference,
the action corresponding to the maximum Q-value is selected

with higher probability to exploit the learnt experiences. We
first demonstrate the utility of the sparse recurrent connections
in enabling the LSM to perform temporal integration across
RL time-steps by training it to perform the Cartpole-balancing
RL task (Sutton and Barto, 1998) with partial state inputs. We
feed only the cart position and pole angle to the LSM while
suppressing the cart velocity and angular velocity of the pole. We
show that the fading memory of the past cart position and pole
angle retained by the liquid enables it to make better decisions
without the velocity information compared to an LSM without
recurrent connections. We then comprehensively validate the
capability of the LSM and the presented training methodology
on complex RL tasks like Pacman (DeNero et al., 2010) and
Atari games (Brockman et al., 2016). We note that LSM has
been previously trained using Q-learning for RL tasks pertaining
to robotic motion control (Joshi and Maass, 2005; Berberich,
2017; Tieck et al., 2018). We demonstrate and benchmark
the efficacy of appropriately initialized LSM for solving RL
tasks commonly used to evaluate deep reinforcement learning
networks. In essence, this work provides a promising step toward
incorporating bio-plausible low-complexity recurrent SNNs like
LSMs for complex RL tasks, which can potentially lead to
much improved energy efficiency in event-driven asynchronous
neuromorphic hardware implementations (Merolla et al., 2014;
Davies et al., 2018).

2. MATERIALS AND METHODS

2.1. Liquid State Machine: Architecture and
Initialization
Liquid State Machine (LSM) consists of an input layer sparsely
connected via fixed synaptic weights to a randomly interlinked
liquid of spiking neurons followed by a readout layer as depicted
in Figure 1. Each spiking neuron fires an action potential
that leads to either excitatory or inhibitory effect at all of its
termination sites. Based on the terminology followed in Maass
et al. (2002) and Diehl and Cook (2015), we term a neuron that
leads to excitatory (inhibitory) effect an excitatory (inhibitory)
neuron. The input layer (denoted by P) is modeled as a group
of excitatory neurons that spike based on the input environment
state following a Poisson process. The sparse input-to-liquid
connections are initialized such that each excitatory neuron in
the liquid receives synaptic connections from approximately K
random input neurons. This guarantees uniform excitation of
the liquid-excitatory neurons by the external input spikes. The
fixed input-to-liquid synaptic weights are chosen from a uniform
distribution between 0 and α as shown in Table 1, where α is the
maximum bound imposed on the weights. The liquid consists
of excitatory neurons (denoted by E) and inhibitory neurons
(denoted by I) recurrently connected in a sparse randommanner
as illustrated in Figure 1. The number of excitatory neurons is
chosen to be 4× the number of inhibitory neurons as observed
in the cortical circuits (Wehr and Zador, 2003). We use the
Leaky-Integrate-and-Fire (LIF) model (Dayan and Abbott, 2003)
to mimic the dynamics of both excitatory and inhibitory spiking
neurons as described by the following differential equations:

Frontiers in Neuroscience | www.frontiersin.org 2 August 2019 | Volume 13 | Article 883220

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

FIGURE 1 | Illustration of the LSM architecture consisting of an input layer sparsely connected via fixed synaptic weights to randomly recurrently connected reservoir

(or liquid) of excitatory and inhibitory spiking neurons followed by a readout layer composed of artificial rate-based neurons.

TABLE 1 | Synaptic weight initialization parameters for the fixed LSM connections

for learning to balance cartpole, play Pacman, and play Atari game.

Connection type Weight

INPUT-TO-LIQUID CONNECTIONS

P→E [0, 0.6]

RECURRENT-LIQUID CONNECTIONS

E→E [0, 0.05]

E→I [0, 0.25]

I→E [0, 0.3]

I→I [0, 0.01]

dVi

dt
=

Vrest − Vi

τ
+ Ii(t) (1)

Ii(t) =
∑

l∈NP

Wli · δ(t− tl)+
∑

j∈NE

Wji · δ(t− tj)−
∑

k∈NI

Wki · δ(t− tk)

(2)

where Vi is the membrane potential of the i-th neuron in the
liquid, Vrest is the resting potential to which Vi decays to, with
time constant τ , in the absence of input current, and Ii(t)
is the instantaneous current projecting into the i-th neuron,
and NP, NE, and NI are the number of input, excitatory, and
inhibitory neurons, respectively. The instantaneous current is a
sum of three terms: current from input neurons, current from
excitatory neurons, and current from inhibitory neurons. The
first term integrates the sum of pre-synaptic spikes, denoted by
δ(t − tl) where tl is the time instant of pre-spikes, with the
corresponding synaptic weights (Wli in Equation 2). Likewise,
the second (third) term integrates the sum of pre-synaptic spikes
from the excitatory (inhibitory) neurons, denoted by δ(t − tj)
(δ(t − tk)), with the respective weights Wji (Wki) in Equation 2.
The neuronal membrane potential is updated with the sum of
the input, excitatory, and negative inhibitory currents as shown

TABLE 2 | Leaky-Integrate-and-Fire (LIF) model parameters for the liquid neurons.

Parameter Value

EXCITATORY AND INHIBITORY NEURONS

Vrest 0

Vreset 0

Vthres 0.5

τ 20 ms

τrefrac 1 ms

1t (simulation time-step) 1 ms

in Equation 1. When the membrane potential reaches a certain
threshold Vthres, the neuron fires an output spike. The membrane
potential is thereafter reset to Vreset and the neuron is restrained
from spiking for an ensuing refractory period by holding its
membrane potential constant. The LIF model hyperparameters
for the excitatory and inhibitory neurons are listed in Table 2.

There are four types of recurrent synaptic connections in the
liquid, namely, E→E, E→I, I→E, and I→I. We express each
connection in the form of a matrix that is initialized to be sparse
and random, which causes the spiking dynamics of a particular
neuron to be independent of most other neurons and maintains
separability in the neuronal spiking activity. However, the degree
of sparsity needs to be tuned to achieve rich network dynamics.
We find that excessive sparsity (reduced connectivity) leads to
weakened interaction between the liquid neurons and renders
the liquid memoryless. On the contrary, lower sparsity (increased
connectivity) results in chaotic spiking activity, which eliminates
the separability in neuronal spiking activity. We initialize the
connectivity matrices such that each excitatory neuron receives
approximately C synaptic connections from inhibitory neurons,
and vice versa. The hyperparameter C is tuned empirically as
discussed in subsection 3.1 to avoid common chaotic spiking
activity problems that occur when (1) excitatory neurons connect

Frontiers in Neuroscience | www.frontiersin.org 3 August 2019 | Volume 13 | Article 883221

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

to each other and form a loop that always leads to positive
drift in membrane potential, and when (2) an excitatory neuron
connects to itself and repeatedly gets excited from its activity.
Specifically, for the first situation, we have non-zero elements in
the connectivity matrix E→E (denoted byWEE) only at locations
where elements in the product of connectivity matrices E→I and
I→E (denoted byWEI andWIE, respectively) are non-zero. This
ensures that excitatory synaptic connections are created only for
those neurons that also receive inhibitory synaptic connections,
which mitigates the possibility of continuous positive drift in
the respective membrane potentials. To circumvent the second
situation, we force the diagonal elements of WEE to be zero and
eliminate the possibility of repeated self-excitation. Throughout
this work, we create a recurrent connectivity matrix for liquid
with m excitatory neurons and n inhibitory neurons by forming
an m × n matrix whose values are randomly drawn from a
uniform distribution between 0 and 1. Connection is formed
between those pairs of neurons where the corresponding matrix
entries are lesser than the target connection probability (= C/m).
For illustration, consider a liquid with m = 1, 000 excitatory
and n = 250 inhibitory neurons. In order to create the E→I
connectivity matrix such that each inhibitory neuron receives
synaptic connection from a single excitatory neuron (C = 1),
we first form a 1, 000 × 250 random matrix whose values are
drawn from a uniform distribution between 0 and 1. We then
create a connection between those pairs of neurons where the
matrix entries are lesser than 0.1% (1/1,000). Similar process
is repeated for connection I→E. We then initialize connection
E→E based on the product of WEI and WIE. Similarly, the
connectivity matrix for I→I (denoted byWII) is initialized based
on the product of WIE and WEI . The connection weights are
initialized from a uniform distribution between 0 and β as
shown in Table 1 for different recurrent connectivity matrices,
unless stated otherwise. Note that the weights of the synaptic
connections from inhibitory neurons are greater than that for
synaptic connections from excitatory neurons to account for
the lower number of inhibitory neurons relative to excitatory
neurons. Stronger inhibitory connection weights help ensure that
every neuron receives similar amount of excitatory and inhibitory
input currents, which improves the stability of the liquid as
experimentally validated in subsection 3.1.

The liquid-excitatory neurons are fully-connected to artificial
rate-based neurons in the readout layer for inference. The
readout layer, which consists of as many output neurons as the
number of actions for a given RL task, uses the average firing
rate/activation of the excitatory neurons to predict the Q-value
for every state-action pair. We translate the liquid spiking activity
to average rate by accumulating the excitatory neuronal spikes
over the time period for which the input (current environment
state) is presented. We then normalize the spike counts with the
maximum possible spike count over the LSM-simulation period,
which is computed as the LSM-simulation period divided by
the simulation time-step, to obtain the average firing rate of
the excitatory neurons that are fed to the readout layer. Since
the number of excitatory neurons is larger than the number of
output neurons in the readout layer, we gradually reduce the
dimension by introducing an additional fully-connected hidden

layer between the liquid and the output layer. We use ReLU
non-linearity (Nair and Hinton, 2010) after the first hidden layer
but none after the final output layer since the Q-values are
unbounded and can assume positive or negative values. We train
the synaptic weights constituting the fully-connected readout
layer using the Q-learning based training methodology that is
described in the following subsection 2.2.

2.2. Q-Learning Based LSM Training
Methodology
At any time instant t in RL task, the agent receives the
environment state st and picks action at from the set of all
possible actions. After the environment receives the action at ,
it transitions to the next state based on the chosen action and
feeds back an immediate reward rt+1 and the new environment
state st+1. As mentioned in the beginning, the goal of the agent
is to maximize the accumulated reward in the future, which is
mathematically expressed as

Rt =

∞
∑

t=1

γ t rt (3)

where γ ∈ [0, 1] is the discount factor that determines the relative
significance attributed to immediate and future reward. If γ is
chosen to be 0, the agent maximizes only the immediate reward.
However, as γ approaches unity, the agent learns to maximize
the accumulated reward in the future. Q-learning (Watkins and
Dayan, 1992) is a widely used RL algorithm that enables the agent
to achieve this objective by computing the state-action value
function (or commonly known as the Q-function), which is the
expected future reward for a state-action pair that is specified by

Qπ (s, a) = E[Rt|st = s, at = a,π] (4)

where Qπ (s, a) measures the value of choosing an action a when
in state s following a policy π . If the agent follows the optimal
policy (denoted by π∗) such that Qπ∗

(s, a) = max
π

Qπ (s, a),

the Q-function can be estimated recursively using the Bellman
optimality equation that is described by

Qπ∗
(s, a) = E[rt+1 + γ max

at+1
Qπ∗

(st+1, at+1)|s, a] (5)

where Qπ∗
(s, a) is the Q-value for choosing action a from

state s following the optimal policy π∗, rt+1 is the immediate
reward received from the environment, Qπ∗

(st+1, at+1) is the
Q-value for selecting action at+1 from the next environment
state st+1. Learning the Q-values for all possible state-action
pairs is intractable for practical RL applications. Popular
approaches approximate Q-function using deep convolutional
neural networks (Lillicrap et al., 2015; Mnih et al., 2015, 2016;
Silver et al., 2016).

In this work, we model the agent using an LSM, wherein
the liquid-to-readout weights are trained to approximate the
Q-function as described below. At any time instant t, we map
the current environment state vector st to input neurons firing
at a rate constrained between 0 and φ Hz over certain time

Frontiers in Neuroscience | www.frontiersin.org 4 August 2019 | Volume 13 | Article 883222

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

period (denoted by TLSM) following a Poisson process. The
maximum Poisson firing rate φ is tuned to ensure sufficient
input spiking activity for a given RL task. We follow the method
outlined in Heeger (2000) to generate the Poisson spike trains
as explained below. For a particular input neuron in the state
vector, we first compute the probability of generating a spike
at every LSM-simulation time-step based on the corresponding
Poisson firing rate. Note that the time-steps in the RL task are
orthogonal to the time-steps used for the numerical simulation
of the liquid. Specifically, in-between successive time-steps t and
t + 1 in the RL task, the liquid is simulated for a time period of
TLSM with 1ms separation between consecutive LSM-simulation
time-steps. The probability of producing a spike at any LSM-
simulation time-step is obtained by scaling the corresponding
firing rate by 1,000. We generate a random number drawn from a
uniform distribution between 0 and 1, and produce a spike if the
random number is lesser than the neuronal spiking probability.
At every LSM-simulation time-step, we feed the spike map of
the current environment state and record the spiking outputs
of the liquid-excitatory neurons. We accumulate the excitatory
neuronal spikes and normalize the individual neuronal spike
counts with the maximum possible spike count over the LSM-
simulation period to obtain the high-dimensional representation
(activation) of the environment state as discussed in the previous
subsection 2.1. Note that the liquid state variables, such as the
neuronal membrane potentials are not reset between successive
RL time-steps so that some information of the past environment
representations are still retained. The capability of the liquid to
retain decaying memory of the past representations enables it to
perform temporal integration over different RL time-steps such
that the high-dimensional representation provided by the liquid
for the current environment state also depends on decaying
memory of the past environment representations. However, it
is important to note that appropriate initialization of the LSM
(detailed in subsection 2.1) is necessary to obtain useful high-
dimensional representation for efficient training of the liquid-to-
readout weights as experimentally validated in section 3.

The high-dimensional liquid activations are fed to the readout
layer that is trained using backpropagation to approximate
the Q-function by minimizing the mean square error between
the Q-values predicted by the readout layer and the target
Q-values following (Mnih et al., 2015) as described by the
following equations:

θt+1 = θt + η
(

Yt − Q(st , at|θt)
)

∇θtQ(st , at|θt) (6)

Yt = rt+1 + γ max
at+1

Q(st+1, at+1|θt) (7)

where θt+1 and θt are the updated and previous synaptic weights
in the readout layer, respectively, η is learning rate, Q(st , at|θt) is
vector representing the Q-values predicted by the readout layer
for all possible actions given the current environment state st
using the previous readout weights, ∇θtQ(st , at|θt) is the gradient
of the Q-values with respect to the readout weights, and Yt is
the vector containing the target Q-values that is obtained by
feeding the next environment state st+1 to the LSM while using

the previous readout weights. To encourage exploration during
training, we follow ǫ-greedy policy (Watkins, 1989) for selecting
the actions based on the Q-values predicted by the LSM. Based
on ǫ-greedy policy, we select a random action with probability ǫ

and the optimal action, i.e., the action pertaining to the highest Q-
value with probability (1−ǫ) during training. Initially, ǫ is set to a
large value (closer to unity), thereby permitting the agent to pick
a lot of random actions and effectively explore the environment.
As training progresses, ǫ gradually decays to a small value,
thereby allowing the agent to exploit its past experiences. During
evaluation, we similarly follow ǫ-greedy policy albeit with much
smaller ǫ so that there is a strong bias toward exploitation.
Employing ǫ-greedy policy during evaluation also serves to
mitigate the negative impact of over-fitting or under-fitting. In
an effort to further improve stability during training and achieve
better generalization performance, we use the experience replay
technique proposed by Mnih et al. (2015). Based on experience
replay, we store the experience discovered at each time-step (i.e.,
st , at , rt , and st+1) in a large table and later train the LSM
by sampling mini-batches of experiences in a random manner
overmultiple training epochs, leading to improved generalization
performance. For all the experiments reported in this work, we
use the RMSProp algorithm (Tieleman and Hinton, 2012) as the
optimizer for error backpropagation with mini-batch size of 32.
We adopt ǫ-greedy policy, wherein ǫ gradually decays from 1 to
0.001−0.1 over the first 10% of the training steps. Replaymemory
stores onemillion recently played frames, which are then used for
mini-batch weight updates that are carried out after the initial 100
training steps. The simulation hyperparameters for Q-learning
are summarized in Table 3.

3. EXPERIMENTAL RESULTS

We first present results motivating the importance of careful
LSM initialization for obtaining rich high-dimensional state
representation, which is necessary for efficient training of the

TABLE 3 | Q-learning simulation parameters.

Parameter Value

Readout weights update frequency Once every

game-step

Warm up steps before training begins 100

Batch size for experience replay 32

Experience replay buffer size 1× 106

Discount factor 0.95

Initial exploration probability during training 1

Final exploration probability during training (Cartpole) 1× 10−3

Final exploration probability during training (Pacman & Atari) 1× 10−1

Exploration probability during evaluation (Cartpole & Atari) 5× 10−2

Exploration probability during evaluation (Pacman) 0

Learning rate for RMSProp algorithm 2× 10−4

Term added to denominator for RMSProp algorithm 1× 10−6

Weight decay for RMSProp algorithm 0

Smoothing constant for RMSProp algorithm 0.99

Frontiers in Neuroscience | www.frontiersin.org 5 August 2019 | Volume 13 | Article 883223

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

liquid-to-readout weights. We then demonstrate the utility
of the recurrent-liquid synaptic connections of careful LSM
initialization using classic cartpole-balancing RL task (Sutton and
Barto, 1998). We then validate the capability of appropriately
initialized LSM, trained using the presented methodology, for
solving complex RL tasks like Pacman (DeNero et al., 2010) and
Atari games (Brockman et al., 2016).

3.1. LSM Hyperparameter Tuning
Initializing LSM with appropriate hyperparameters is an
important step to construct a model that produces useful
high-dimensional representations. Since the input-to-liquid and
recurrent-liquid connectivity matrices of the LSM are fixed a
priori during training, how these connections are initialized
dictates the liquid dynamics. We choose the hyperparameters
K (governing the input-to-liquid connectivity matrix) and
C (governing the recurrent-liquid connectivity matrices)
empirically based on three observations: (1) stable spiking
activity of the liquid, (2) eigenvalue analysis of the recurrent
connectivity matrices, and (3) development of liquid-excitatory
neuron membrane potential.

Spiking activity of the liquid is said to be stable if every finite
stream of inputs results in a finite period of response. Sustained
activity indicates that small input noise can perturb the liquid
state and lead to chaotic activity that is no longer dependent
on the input stimuli. It is impractical to analyze the stability of
the liquid for all possible input streams within a finite time. We
investigate the liquid stability by feeding in random input stimuli
and sampling the excitatory neuronal spike counts at regular time
intervals over the LSM-simulation period for different values of
K and C. We separately adjust these hyperparameters for each
learning task using random representations of the environment
based on the following experimental steps. We begin by first
selecting the hyper-parameter K, which indicates the number of
pre-synaptic inputs to each neuron in the liquid. K is initialized
to a small number (=1 in our experiments) while C is set to zero.
We gradually increase K until the liquid neurons are sufficiently
excited to determine the K that leads to optimally sparse spiking
activity. The same optimal value of K can then be used for
liquid of any size since each neuron still receives similar degree
of excitation from the inputs and spikes sufficiently. Using the
optimal value of K, we increase C until the desired eigenvalue
spectrum and spiking neuronal dynamics (with respect to the
evolution of the membrane potential over time) are obtained as
explained in the following paragraph.

Analyzing the eigenvalue spectrum of the recurrent
connectivity matrix is a common tool to assess the stability
of the liquid. Each eigenvalue in the spectrum represents an
individual mode of the liquid. Real part indicates decay rate
of the mode while the imaginary part corresponds to the
frequency of the mode (Rajan et al., 2010). Liquid spiking
activity remains stable as long as all eigenvalues remain within
the unit circle. However, this condition is not easily met for
realistic recurrent-liquid connections with random synaptic
weight initialization (Rajan and Abbott, 2006). We constrain the
recurrent weights (hyperparameter β) such that each neuron
receives balanced excitatory and inhibitory synaptic currents as

previously discussed in subsection 2.1. This results in eigenvalues
that lie within the unit circle as illustrated in Figure 2A. In order
to emphasize the importance of LSM initialization, we also show
the eigenvalue spectrum of the recurrent-liquid connectivity
matrix when the weights are not properly initialized as shown
in Figure 2B where many eigenvalues are outside the unit circle.
Finally, we also use the development of the excitatory neuronal
membrane potential to guide hyperparameter tuning. The
hyperparameters C and β are chosen to ensure that membrane
potential exhibits balanced fluctuation as illustrated in Figure 2C

that plots the membrane potential of 10 randomly picked
neurons in the liquid. Note that these steps to find K and C are
based on empirical observations. We chose values of K and C
to be 3 and 4 for cartpole and Pacman experiment, respectively,
which ensures stable liquid spiking activity while enabling the
liquid to exhibit fading memory of the past inputs.

3.2. Learning to Balance a Cartpole
Cartpole-balancing is a classic control problemwherein the agent
has to balance a pole attached to a wheeled cart that can move
freely on a rail of certain length as shown in Figure 3A. The
agent can exert a unit force on the cart either to the left or
right side for balancing the pole and keeping the cart within
the rail. The environment state is characterized by cart position,
cart velocity, angle of the pole, and angular velocity of the pole,
which are designated by the tuple (χ , χ̇ ,ϕ, ϕ̇). The environment
returns a unit reward every time-step and concludes after 200
time-steps if the pole does not fall or the cart does not goes
out of the rail. Because the game is played for a finite time
period, we constrain (χ , χ̇ ,ϕ, ϕ̇) to be within the range specified
by (±2.5,±0.5,±0.28,±0.88) for efficiently mapping the real-
valued state inputs to spike trains feeding into the LSM. Each
real-valued state input is mapped to 10 input neurons which have
firing rates proportional to one-hot encoding of the input value
representing 10 distinct levels within the corresponding range.

We model the agent using an LSM containing 150 liquid
neurons, 32 hidden neurons in the fully-connected layer between
the liquid and output layer, and two output neurons. The
maximum firing rate for the input neurons representing the
environment state is set to 100 Hz and each input is presented
for 100 ms. The LSM is trained for 105 time-steps, which are
equally divided into 100 training epochs containing 1,000 time-
steps per epoch. After each epoch, the LSM is evaluated for
1,000 time-steps with the probability of choosing a random
action ǫ set to 0.05. Note that the LSM is evaluated for 1,000
time-steps (multiple gameplays) even though single gameplay
lasts a maximum of only 200 time-steps as mentioned in the
previous paragraph. We use the accumulated reward averaged
over multiple gameplays as the true indicator of the LSM
(agent) performance to account for the randomness in action-
selection as a result of the ǫ-greedy policy. We train the LSM
initialized with 10 different random seeds and obtain median
accumulated reward as shown in Figure 3B. Note that the
maximum possible accumulated reward per gameplay is 200
since each gameplay lasts at most 200 time-steps. Increase in
median accumulated reward over epochs indicates that the
LSM learnt to balance the cartpole using the dynamically

Frontiers in Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 883224

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

FIGURE 2 | Metrics for guiding hyperparameter tuning: (A) Eigenvalue spectrum of the recurrent-liquid connectivity matrix for an LSM containing 500 liquid neurons.

The LSM is initialized with synaptic weights listed in Table 1 based on hyperparameter C=4. All eigenvalues in the spectrum lie within a unit circle. (B) Eigenvalue

spectrum of the recurrent-liquid connectivity matrix initialized with synaptic weights βE→E = 0.4, βE→I = 0.1, and βI→E = 0.1. Many eigenvalues in the spectrum are

outside the unit circle. (C) Development of membrane potentials from 10 randomly picked excitatory neurons in the liquid initialized with synaptic weights listed in

Table 1 based on hyperparameter C = 4. Random representation from the cartpole-balancing problem is used as the input.

evolving high-dimensional liquid states. The ability of the liquid
to provide rich high-dimensional input representations can
be attributed to the careful initialization of the connectivity
matrices andweights (explained in subsection 2.1), which ensures
balance between the excitatory and inhibitory currents to the
liquid neurons and preserves fading memory of past liquid
activity. However, the median accumulated reward after 100
training epochs saturates around 125 and does not reach the
maximum value of 200. We hypothesize that the game score
saturation comes from the quantized representation of the
environment state, and demonstrate in the following experiment
with Pacman that the LSM can learn optimally given a better state
representation. Finally, in order to emphasize the importance
of LSM initialization, we also show the median accumulated
reward per training epoch for training in which the LSM is
initialized to have few synaptic connections. Figure 3C indicates
that the median accumulated reward is around 90 when the LSM
initialization is suboptimal.

To visualize the learnt action-value function guiding action
selection, we compare Q-values produced by the LSM during

evaluation in three different scenarios depicted in Figure 3D.
Note that each Q-value represents how good is the corresponding
action for a given environment state. In scenario 1 (see
Figure 3D-1) that corresponds to the beginning of the gameplay
wherein the pole is almost balanced, the value of both the actions
are identical. This implies that either action (moving the cart
left or right) will lead to a similar outcome. In scenario 2 (see
Figure 3D-2) wherein the pole is unbalanced to the left side, the
difference between the predicted Q values increases. Specifically,
the Q value for applying a unit force on the right side of the cart
is higher, which causes the cart to move to the left. Pushing the
cart to the left in turn causes the pole to swing back right toward
the balanced position. Similarly, in scenario 3 (see Figure 3D-3)
wherein the pole is unbalanced to the right side, the Q value
is higher for applying a unit force on the left side of the cart,
which causes the cart to move right and enables the pole to swing
left toward the balanced position. This visually demonstrates the
ability of the LSM (agent) to successfully balance the pole by
pushing the cart appropriately to the left or right based on the
learnt Q values.

Frontiers in Neuroscience | www.frontiersin.org 7 August 2019 | Volume 13 | Article 883225

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

3.3. Learning to Balance a Cartpole
Without Complete State Information
In this sub-section, we demonstrate the capability of the LSM
to learn without complete state information, thereby validating
its ability to perform temporal integration across different RL
game steps enabled by the sparse random recurrent connections.
Specifically, we modify the previous cartpole-balancing task such
that the agent only receives the cart position and angle of the
pole, designated by tuple (χ ,ϕ), as an input while the velocity
information is ignored. The objective is to determine if the
decayingmemory of the past cart position and pole angle retained
by the liquid, as a result of the recurrent-liquid connectivity,
enables the LSM to make better decisions without the velocity
information. We clip (χ ,ϕ) to be within the range specified
by (±2.5,±0.28) similar to the previous experiment; however,
each real-valued state input is mapped to only 1 input neuron
whose firing rate is proportional to the normalized state value.
A positive state input causes the corresponding neuron to fire
unit positive spikes. On the other hand, if the state input is
negative, the input neuron fires unit negative spikes at a rate
proportional to the absolute value of the input as described in
Sengupta et al. (2019). We initialize the input-to-liquid weights

from a uniform distribution between −0.4 and 0.4 to achieve
balanced input excitation in the presence of both positive and
negative spikes. Other connection weights are initialized from a
uniform distribution as shown in Table 4.

We model the agent using an LSM with 150 liquid neurons
followed by a fully-connected layer with 32 hidden neurons
and a final output layer with two neurons, which is similar
to the architecture used for the previous cartpole-balancing
experiment. Additional feedback connections between excitatory
neurons that have a large delay of 20 ms are introduced to

TABLE 4 | Synaptic weight initialization parameters for learning to balance

cartpole without complete state information.

Connection type Weight

RECURRENT-LIQUID CONNECTIONS

E→E with 1 ms delay [0, 0.4]

E→E with 20 ms delay [0, 0.4]

E→I [0, 0.4]

I→E [0, 0.4]

I→I [0, 0.01]

FIGURE 3 | (A) Illustration of the cartpole-balancing task wherein the agent has to balance a pole attached to a wheeled cart that moves freely on a rail of certain

length. (B) The median accumulated reward per epoch provided by the LSM trained across 10 different random seeds for the cartpole-balancing task. Shaded region

in the plot represents the 25-th to 75-th percentile of the accumulated reward over multiple random seeds. (C) The median accumulated reward per epoch from

cartpole training across 10 different random seeds in which the LSM is initialized to have sparser connectivity between the liquid neurons compared to that used for

the experiment in (B). (D) Visualization of the learnt Q (action-value) function for the cartpole-balancing task at three different game-steps designated as 1, 2, and 3.

Angle of the pole is written on the left side of each figure. Negative angle represents an unbalanced pole to the left and positive angle represents an unbalanced pole

to the right. Black arrow corresponds to a unit force on the left or right side of the cart depending on which Q value is larger.

Frontiers in Neuroscience | www.frontiersin.org 8 August 2019 | Volume 13 | Article 883226

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

achieve long-term temporal integration over RL time-steps. In
this experiment, we also reduced the LSM simulation time-steps
to 20 ms from 100 ms used in the previous experiment to
precisely validate the long-term temporal integration capability
of the liquid. The LSM is trained for a total of 5× 106 time-steps,
which is sufficiently long to guarantee no further improvement
in performance. Without complete state information, the LSM
achieves best median accumulated reward of 70.93 over the
last 10 epochs as illustrated in Figure 4, which is lower than
that (125) attained with complete state information. However,
the median accumulated reward of 70.93 achieved by the LSM
based on incomplete state information is still higher than that
(38.23) provided by the LSM without recurrent connections
as shown in Figure 4. This indicates that the sparse recurrent
connections provide useful information about the past input

FIGURE 4 | (A) The median accumulated reward per epoch obtained from

cartpole training with five different random seeds using an LSM with sparse

random recurrent connections. (B) The median accumulated reward per

epoch obtained from cartpole training across the same five different random

seeds using an LSM without any recurrent connections. Shaded region in the

plot represents the 25-th to 75-th percentile of the accumulated reward over

multiple random seeds.

since information about the cart velocity and angular velocity
of the pole can be derived based on the current and past cart
position and pole angle. We observe that LSM initialized based
on some random seeds provide significantly better learning than
others due to inherent stochasticity in the model, but we report
the results based on the reward statistics obtained using runs
from 5 different random seeds.

3.4. Learning to Play Pacman
In order to comprehensively validate the efficacy of the high-
dimensional environment representations provided by the liquid,
we train the LSM to play a game of Pacman (DeNero et al., 2010).
The objective of the game is to control Pacman (yellow in color)
to capture all the foods (represented by small white dots) in a grid
without being eaten by the ghosts as illustrated in Figure 5. The
ghosts always hunt the Pacman; however, cherry (represented
by large white dots) make the ghosts temporarily scared of the
Pacman and run away. The game environment returns unit
reward whenever Pacman consumes food, cherry, or the scared
ghost (white in color). The game environment also returns a
unit reward and restarts when all foods are captured. We use
the location of Pacman, food, cherry, ghost and scared ghost as
the environment state representation. The location of each object
is encoded as a two-dimensional binary array whose dimension
matches with that of the Pacman grid as shown in Figure 5. The
binary intermediate representations of all the objects are then
concatenated and flattened into a single vector to be fed to the
input layer of the LSM.

The LSM configurations and game settings used for Pacman
experiments are summarized in Table 5, where each game setting
has different degree of complexity with regards to the Pacman
grid size and the number of foods, ghosts, and cherries. In the
first experiment, we use a 7× 7 grid with three foods for Pacman
to capture and a single ghost to prevent it from achieving its
objective. Thus, the maximum possible accumulated reward at
the end of a successful game is 4. Figure 6A shows that the

FIGURE 5 | Illustration of a snapshot from the Pacman game that is translated into 5 two-dimensional binary representations corresponding to the location of

Pacman, foods, cherries, ghosts, and scared ghosts. The binary intermediate representations are then flattened and concatenated to obtain the environment state

representation.

Frontiers in Neuroscience | www.frontiersin.org 9 August 2019 | Volume 13 | Article 883227

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

median accumulated reward gradually increases with the number
of training epochs and converges closer to the maximum possible
reward, thereby validating the capability of the liquid to provide
useful high-dimensional representation of the environment state
necessary for efficient training of the readout weights using the
presented methodology. Interestingly, in the second experiment
using a larger 7 × 17 grid, we find that the median reward
converges to 12, which is greater than the number of foods
available in the grid. This indicates that the LSM does not only
learn to capture all the foods; in addition, it also learns to capture
the cherry and the scared ghosts, leading to further increase the
accumulated reward since consuming the scared ghost results in a
unit immediate reward. In the final experiment, we train the LSM
to control Pacman in 17× 19 grid with sparsely dispersed foods.
We find that larger grid requires more exploration and training

TABLE 5 | LSM configuration and game settings for different Pacman

experiments reported in this work.

Grid

size

Ghost Food Cherry Training

steps

Liquid

neurons

Hidden

neurons

7×7 1 3 0 5× 105 500 128

7×17 2 6 2 5× 105 2,000 512

17×19 1 6 0 3× 106 3,000 512

steps for the agent to perform well and achieve the maximum
possible reward, resulting in a learning curve that is less steep
compared to that obtained for smaller grid sizes in the earlier
experiments as shown in Figure 6C.

Finally, we plot the average of Q-values produced by the LSM
as the Pacman navigates the grid to visualize the correspondence
between the learnt Q-values and the environment state. As
discussed in subsection 2.2, each Q-value produced by the LSM
provides a measure of how good is a particular action for a
give environment state. The Q-value averaged over the set of
all possible actions (known as the state-value function) thus
indicates the value of being in a certain state. Figure 6D illustrates
the state-value function while playing the Pacman game in
a 7×17 grid. The predicted state-value starts at a relatively
high level because the foods are abundant in the grid and the
ghosts are far away from the Pacman (see Figure 6D-1). The
state-value gradually decreases as the Pacman navigates through
the grid and gets closer to the ghosts. The predicted state-
value then shoots up after the Pacman consumes cherry and
makes the ghosts temporarily consumable (see Figure 6D-2),
leading to potential additional reward. The predicted state-value
drops after the ghosts are reborn (see Figure 6D-3). Finally,
we observe a slight increase in the state-value toward the end
of the game when the Pacman is closer to the last food after
it consumes a cherry (see Figure 6D). It is interesting to note

FIGURE 6 | Median accumulated reward per epoch obtained by training and evaluating the LSM on three different game settings: (A) grid size 7× 7, (B) grid size

7× 17, and (C) grid size 17× 19. LSM is initialized and trained with 7 different initial random seeds. Shaded region represents the 25-th to 75-th percentile of the

accumulated reward over multiple seeds. (D) The plot on the left shows the predicted state-value function for 80 continuous Pacman game steps. The four snapshots

from the Pacman game shown on the right correspond to game steps designated as 1, 2, 3, and 4, respectively, in the state-value plot.

Frontiers in Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 883228

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

that although the scenario in Figure 6D-4 is similar to that
in Figure 6D-2, the state-value is smaller since the expected
accumulated reward at this step is at most 3 assuming that
the Pacman can capture both the scared ghost and the last
food. On the other hand, in the environment state shown
in Figure 6D-2, the expected accumulated reward is >3 since
4 foods and 2 scared ghosts are available for the Pacman
to capture.

3.5. Learning to Play Atari Games
Finally, we train the LSM using the presented methodology to
play Atari games (Brockman et al., 2016), which are widely
used to benchmark deep reinforcement learning networks. We
arbitrarily select 4 games for evaluation, namely, Boxing, Gopher,
Freeway, and Krull. We use the RAM of the Atari machine,
which stores 128 bytes of information about an Atari game, as
a representation of the environment (Brockman et al., 2016).
During training, we modified the reward structure of the game
by clipping all positive immediate rewards to+1 and all negative
immediate rewards to−1. However, we do not clip the immediate
reward during testing and measure the actual accumulated
reward following Mnih et al. (2015). For all selected Atari games,
we model the agent using an LSM containing 500 liquid neurons
and 128 hidden neurons. Number of output neurons varies for
each game as the number of possible actions is different. The
maximum Poisson firing rate for the input neurons is set to
100 Hz and each input is presented for 100ms. The LSM is trained
for 5× 103 steps.

Figure 7 illustrates that the LSM successfully learnt to play
the Atari games without any prior knowledge of the rules,

FIGURE 7 | Median accumulated reward per epoch obtained by training and

evaluating the LSM on 4 selected Atari games: (A) Boxing, (B) Freeway,

(C) Gopher, and (D) Krull. For each game, LSM is initialized and trained with

five different initial random seeds. Shaded region represents the 25-th to 75-th

percentile of the accumulated reward over multiple seeds.

leading to gradually increasing accumulated reward with the
number of training epochs.We compare themedian accumulated
reward provided by the LSM to the average accumulated
reward obtained from playing with random actions for 1 ×

105 steps. Note that the median accumulated reward used for
comparison is the highest reward achieved during the evaluation
phase over the last 10 training epochs. Table 6 shows that
the median accumulated reward offered by the LSM is higher
than the average accumulated reward obtained with random
actions for all the four Atari games, which demonstrates the
capability of the LSM to learn successful strategies in complex
RL tasks. In fact, the median accumulated reward on Boxing
and Krull reach the same level as human players reported
in Mnih et al. (2015). However, we observe that the median
accumulated reward on Freeway and Gopher are much lower
than that of the human players. In order to identify the cause
of poor learning, we trained all selected games using a deep
learning network consisting of two convolutional and two fully-
connected layers, and compared the median accumulated reward
with that provided by the LSM. The architecture of the deep
learning network used for different games is listed in Table 7.
Table 6 shows that the deep learning network trained with end-
to-end error backpropagation using the Q-learning algorithm
achieves better than human-level performance on Boxing and
Krull while yielding lower rewards on Freeway and Gopher.
Hence, the inferior performance of the LSM on Freeway and
Gopher can be attributed to the nature (or complexity) of
the respective games. However, the deep learning network
yields superior performance compared to that provided by the
LSM on all selected Atari games. We believe that the gap in
the LSM performance compared to that obtained using the
deep learning network stems from the inability of a randomly
initialized LSM to extract complex input representations and
game strategies. On the computation perspective, training a deep
learning network incurs higher cost due to additional trainable
parameters and the need for carrying out end-to-end error
backpropagation. Simpler models like LSMs with lower training
complexity offer a possible alternative for efficient training
and inference in edge devices, such as self-flying drones that

TABLE 6 | Median accumulated reward for each game is chosen from the highest

median accumulated reward over the last 10 training epochs across five different

initial random seeds.

Game Learning

with LSM

Random

actions

Human

player

Learning with deep

network

Boxing 20.2 0.8 4.3 68.2

Freeway 19.8 0.0 29.6 21.6

Gopher 611.1 279.3 2,321 1,443

Krull 3,686 1,590 2,395 4,672

Columns 1 and 4 report median accumulated rewards from learning with LSM and deep

network, respectively. Average accumulated reward in column 2 is obtained from playing

with random actions for 1×105 steps, which is a sufficiently large number for the average

accumulated reward to be stable. Accumulated reward from human players reported in

Mnih et al. (2015) is listed in column 3 for every game.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2019 | Volume 13 | Article 883229

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

TABLE 7 | Convolutional deep learning network architecture used in Atari

experiments.

Layer Output features Kernal size Stride Padding

One-dimensional

convolutional

4 4 2 1

One-dimensional

convolutional

16 4 2 1

Fully connected 128










3 for Freeway

Fully connected 8 for Gopher

18 for Boxing and Krull

operate under computational resource constraints and limited
power budget.

4. DISCUSSION

LSM, an important class of biologically plausible recurrent
SNNs, has thus far been primarily demonstrated for pattern
(speech/image) recognition (Bellec et al., 2018; Srinivasan et al.,
2018), gesture recognition (Chrol-Cannon and Jin, 2015; Panda
and Srinivasa, 2018), and sequence generation tasks (Nicola
and Clopath, 2017; Panda and Roy, 2017; Bellec et al., 2019)
using standard datasets. To the best of our knowledge, our work
is the first demonstration of LSMs, trained using Q-learning
based methodology, for complex RL tasks like Pacman and
Atari games commonly used to evaluate deep reinforcement
learning networks. The benefits of the proposed LSM-based
RL framework over the state-of-the-art deep learning models
are 2-fold. First, LSM entails fewer trainable parameters as
a result of using fixed input-to-liquid and recurrent-liquid
synaptic connections. However, this requires careful initialization
of the respective matrices for efficient training of the liquid-
to-readout weights as experimentally validated in section 3.
We note that the performance of LSMs could be further
improved by training the recurrent weights using localized
Spike Timing Dependent Plasticity (STDP) based learning rules
(Bi and Poo, 1998; Song et al., 2000; Diehl and Cook, 2015)
as demonstrated in Panda and Roy (2017) or biologically
inspired variants of backpropagation-through-time (Bellec et al.,
2018, 2019). Second, LSMs can be efficiently implemented
on event-driven neuromorphic hardware like IBM TrueNorth
(Merolla et al., 2014) or Intel Loihi (Davies et al., 2018),
leading to potentially much improved energy efficiency while
achieving comparable performance to deep learning models
on the chosen benchmark tasks. Note that the readout layer
in the presented LSM needs to be implemented outside the
neuromorphic fabric since they are composed of artificial rate-
based neurons that are typically not supported in neuromorphic
hardware realizations. Alternatively, readout layer composed
of spiking neurons could be used that can be trained using

spike-based error backpropagation algorithms (Lee et al., 2016,
2018; Panda and Roy, 2016; Jin et al., 2018; Wu et al., 2018;
Bellec et al., 2019). Future works could also explore STDP-
based reinforcement learning rules (Pfister et al., 2006; Farries
and Fairhall, 2007; Florian, 2007; Legenstein et al., 2008)
to render the training algorithm amenable for neuromorphic
hardware implementations.

5. CONCLUSION

Liquid State Machine (LSM) is a bio-inspired recurrent spiking
neural network composed of an input layer sparsely connected to
a randomly interlinked liquid of spiking neurons for the real-time
processing of spatio-temporal inputs. In this work, we proposed
LSMs, trained using Q-learning based methodology, for solving
complex Reinforcement Learning (RL) tasks like playing Pacman
and Atari that have been hitherto benchmarked for deep
reinforcement learning networks. We presented initialization
strategies for the fixed input-to-liquid and recurrent-liquid
connectivity matrices and weights to enable the liquid to produce
useful high-dimensional representation of the environment
based on the current and past input states necessary for efficient
training of the liquid-to-readout weights. We demonstrated
the significance of the sparse recurrent connections, which
enables the liquid to retain decaying memory of the past input
representations and perform temporal integration across RL
time-steps, by training it using partial input state information
that yielded higher accumulated reward than that provided by
a liquid without recurrent connections. Our experiments on the
Pacman game showed that the LSM learns the optimal strategies
for different game settings and grid sizes. Our analyses on a subset
of Atari games indicated that the LSM achieves comparable score
to that reported for human players in existing works.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/openai/gym.

AUTHOR CONTRIBUTIONS

GS and WP wrote the paper. WP performed the simulations.
All authors helped with developing the concepts, conceiving the
experiments, and writing the paper.

FUNDING

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA, by the Semiconductor Research Corporation, the
National Science Foundation, Intel Corporation, the DoD
Vannevar Bush Fellowship, and by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agreement
Number W911NF-16-3-0001.

Frontiers in Neuroscience | www.frontiersin.org 12 August 2019 | Volume 13 | Article 883230

https://github.com/openai/gym
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

REFERENCES

Amit, D. J. (1992). Modeling Brain Function: The World of Attractor Neural

Networks. New York, NY: Cambridge University Press.

Auer, P., Burgsteiner, H., and Maass, W. (2002). “Reducing communication

for distributed learning in neural networks,” in International Conference on

Artificial Neural Networks (Madrid: Springer), 123–128.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018).

“Long short-term memory and learning-to-learn in networks of spiking

neurons,” in Advances in Neural Information Processing Systems 2018

(Quebec). Available online at: http://papers.nips.cc/paper/7359-long-short-

term-memory-and-learning-to-learn-in-networks-of-spiking-neurons

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., and Maass, W. (2019).

Biologically inspired alternatives to backpropagation through time for learning

in recurrent neural nets. arXiv [Preprint] arXiv:1901.09049. Available online at:

https://arxiv.org/abs/1901.09049

Berberich, N. (2017). Implementation of a real-time liquid state machine on

spinnaker for biomimetic robot controll (Masterarbeit). Munich: TUM.

Bi, G.-q., and Poo, M.-m. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,

et al. (2016). Openai gym. arXiv [Preprint] arXiv:1606.01540. Available online

at: https://arxiv.org/abs/1606.01540

Chrol-Cannon, J., and Jin, Y. (2015). Learning structure of sensory inputs

with synaptic plasticity leads to interference. Front. Comput. Neurosci. 9:103.

doi: 10.3389/fncom.2015.00103

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. (2003). Theoretical neuroscience: computational and

mathematical modeling of neural systems. J. Cognit. Neurosci. 15, 154–155.

doi: 10.1162/089892903321107891

DeNero, J., and Klein, D. (2010). “Teaching introductory artificial intelligence

with pac-man,” in First AAAI Symposium on Educational Advances in Artificial

Intelligence (California), 1885–1889.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Douglas, R. J., Koch, C., Mahowald, M., Martin, K., and Suarez, H. H.

(1995). Recurrent excitation in neocortical circuits. Science 269, 981–985.

doi: 10.1126/science.7638624

Farries, M. A., and Fairhall, A. L. (2007). Reinforcement learning with modulated

spike timing–dependent synaptic plasticity. J. Neurophysiol. 98, 3648–3665.

doi: 10.1152/jn.00364.2007

Florian, R. V. (2007). Reinforcement learning through modulation of spike-

timing-dependent synaptic plasticity. Neural Comput. 19, 1468–1502.

doi: 10.1162/neco.2007.19.6.1468

Harris, K. D., and Mrsic-Flogel, T. D. (2013). Cortical connectivity and sensory

coding. Nature 503:51. doi: 10.1038/nature12654

Heeger, D. (2000). Poisson model of spike generation. Handout 5, 1–13. Available

online at: https://www.cns.nyu.edu/~david/handouts/poisson.pdf

Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., et al. (2015).

Principles of connectivity among morphologically defined cell types in adult

neocortex. Science 350:aac9462. doi: 10.1126/science.aac9462

Jin, Y., Zhang, W., and Li, P. (2018). “Hybrid macro/micro level backpropagation

for training deep spiking neural networks,” in Advances in Neural Information

Processing Systems, eds S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.

Cesa-Bianchi, and R. Garnett (Montréal, QC: Curran Associates), 7005–7015.

Joshi, P., and Maass, W. (2005). Movement generation with circuits of spiking

neurons. Neural Comput. 17, 1715–1738. doi: 10.1162/0899766054026684

Lee, C., Panda, P., Srinivasan, G., and Roy, K. (2018). Training deep

spiking convolutional neural networks with stdp-based unsupervised

pre-training followed by supervised fine-tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for reward-

modulated spike-timing-dependent plasticity with application to biofeedback.

PLoS Comput. Biol. 4:e1000180. doi: 10.1371/journal.pcbi.1000180

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).

“Continuous control with deep reinforcement learning,” in International

Conference on Learning Representations 2016 (San Juan, PR). Available online

at: https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:main.html

Lukoševičius, M., and Jaeger, H. (2009). Reservoir computing approaches

to recurrent neural network training. Comput. Sci. Rev. 3, 127–149.

doi: 10.1016/j.cosrev.2009.03.005

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without

stable states: a new framework for neural computation based on perturbations.

Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Maass, W., Natschläger, T., and Markram, H. (2003). “A model for real-

time computation in generic neural microcircuits,” in Advances in Neural

Information Processing Systems, eds S. Becker, S. Thrun, and K. Obermayer

(Vancouver, BC: Curran Associates), 229–236.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).

“Asynchronous methods for deep reinforcement learning,” in International

Conference on Machine Learning (New York, NY), 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

et al. (2015). Human-level control through deep reinforcement learning.Nature

518:529. doi: 10.1038/nature14236

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted

boltzmann machines,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (Haifa), 807–814.

Nicola, W., and Clopath, C. (2017). Supervised learning in spiking neural

networks with force training.Nat. Commun. 8:2208. doi: 10.1038/s41467-017-0

1827-3

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in 2016 International

Joint Conference on Neural Networks (IJCNN) (Vancouver, BC: IEEE), 299–306.

Panda, P., and Roy, K. (2017). Learning to generate sequences with combination

of hebbian and non-hebbian plasticity in recurrent spiking neural networks.

Front. Neurosci. 11:693. doi: 10.3389/fnins.2017.00693

Panda, P., and Srinivasa, N. (2018). Learning to recognize actions from limited

training examples using a recurrent spiking neural model. Front. Neurosci.

12:126. doi: 10.3389/fnins.2018.00126

Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006). Optimal

spike-timing-dependent plasticity for precise action potential firing in

supervised learning.Neural Comput. 18, 1318–1348. doi: 10.1162/neco.2006.18.

6.1318

Rajan, K., and Abbott, L. (2006). Eigenvalue spectra of random matrices for

neural networks. Phys. Rev. Lett. 97:188104. doi: 10.1103/PhysRevLett.97.

188104

Rajan, K., Abbott, L., and Sompolinsky, H. (2010). Stimulus-dependent

suppression of chaos in recurrent neural networks. Phys. Rev. E 82:011903.

doi: 10.1103/PhysRevE.82.011903

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323:533.

doi: 10.1038/323533a0

Savage, J. E. (1998). Models of Computation, Vol. 136. Reading, MA: Addison-

Wesley.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in

spiking neural networks: Vgg and residual architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

et al. (2016). Mastering the game of Go with deep neural networks and tree

search. Nature 529:484. doi: 10.1038/nature16961

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3:919.

doi: 10.1038/78829

Srinivasan, G., Panda, P., and Roy, K. (2018). Spilinc: spiking liquid-ensemble

computing for unsupervised speech and image recognition. Front. Neurosci.

12:524. doi: 10.3389/fnins.2018.00524

Frontiers in Neuroscience | www.frontiersin.org 13 August 2019 | Volume 13 | Article 883231

http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons
http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons
https://arxiv.org/abs/1901.09049
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://arxiv.org/abs/1606.01540
https://doi.org/10.3389/fncom.2015.00103
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1162/089892903321107891
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1126/science.7638624
https://doi.org/10.1152/jn.00364.2007
https://doi.org/10.1162/neco.2007.19.6.1468
https://doi.org/10.1038/nature12654
https://www.cns.nyu.edu/~david/handouts/poisson.pdf
https://doi.org/10.1126/science.aac9462
https://doi.org/10.1162/0899766054026684
https://doi.org/10.3389/fnins.2018.00435
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1371/journal.pcbi.1000180
https://iclr.cc/archive/www/doku.php%3Fid=iclr2016:main.html
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.3389/fnins.2017.00693
https://doi.org/10.3389/fnins.2018.00126
https://doi.org/10.1162/neco.2006.18.6.1318
https://doi.org/10.1103/PhysRevLett.97.188104
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1038/323533a0
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/78829
https://doi.org/10.3389/fnins.2018.00524
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ponghiran et al. Reinforcement Learning With LSM

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Tieck, J. C. V., Pogančić, M. V., Kaiser, J., Roennau, A., Gewaltig, M.-O., and

Dillmann, R. (2018). “Learning continuous muscle control for a multi-joint

arm by extending proximal policy optimization with a liquid state machine,”

in International Conference on Artificial Neural Networks (Rhodes: Springer),

211–221.

Tieleman, T., and Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by

a running average of its recent magnitude. COURSERA Neural Netw. Mach.

Learn. 4, 26–31. Available online at: https://www.cs.toronto.edu/~tijmen/

csc321/slides/lecture_slides_lec6.pdf

Verstraeten, D., Schrauwen, B., Stroobandt, D., and Van Campenhout,

J. (2005). Isolated word recognition with the liquid state machine:

a case study. Inform. Process. Lett. 95, 521–528. doi: 10.1016/j.ipl.200

5.05.019

Watkins, C. J., and Dayan, P. (1992). Q-learning. Mach. Learn. 8, 279–292.

doi: 10.1023/A:1022676722315

Watkins, C. J. C. H. (1989). Learning from delayed rewards (PhD thesis), King’s

College, Cambridge, United Kingdom.

Wehr, M., and Zador, A. M. (2003). Balanced inhibition underlies

tuning and sharpens spike timing in auditory cortex. Nature 426:442.

doi: 10.1038/nature02116

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-

temporal backpropagation for training high-performance spiking

neural networks. Front. Neurosci. 12:331. doi: 10.3389/fnins.2018.

00331

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Ponghiran, Srinivasan and Roy. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 14 August 2019 | Volume 13 | Article 883232

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1016/j.ipl.2005.05.019
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1038/nature02116
https://doi.org/10.3389/fnins.2018.00331
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Advantages
of publishing
in Frontiers

OPEN ACCESS

Articles are free to read
for greatest visibility

and readership

EXTENSIVE PROMOTION

Marketing
and promotion

of impactful research

DIGITAL PUBLISHING

Articles designed
for optimal readership

across devices

LOOP RESEARCH NETWORK

Our network
increases your

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34
1005 Lausanne | Switzerland

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org | +41 21 510 17 00

FAST PUBLICATION

Around 90 days
from submission

to decision

90

IMPACT METRICS

Advanced article metrics
track visibility across

digital media

FOLLOW US

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers
acknowledged by name

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,
and constructive

peer-review

REPRODUCIBILITY OF
RESEARCH

Support open data
and methods to enhance
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	Spiking Neural Network Learning, Benchmarking, Programming and Executing
	Table of Contents
	Editorial: Spiking Neural Network Learning, Benchmarking, Programming and Executing
	Introduction
	Learning Algorithms
	Model Efficiency
	Programming Tools
	Neuromorphic Hardwares
	Conclusions
	Author Contributions
	Funding
	References

	Investigation of Event-Based Surfaces for High-Speed Detection, Unsupervised Feature Extraction, and Object Recognition
	Introduction
	Methodology
	Generating the Dataset
	Time-Surface vs. Index Surfaces
	Target Velocity vs. Surface Activation
	Event-Based Feature Extraction
	Spatial Pooling of Feature Surfaces
	Parameter Selection
	Classification
	Choosing Classifiers

	Results
	Results on the Full Dataset
	Frame Balanced Dataset
	Velocity Segregated Dataset
	The Decay Constants
	Feature Extractor Size and Number

	Discussion
	Conclusion
	Author Contributions
	References

	REMODEL: Rethinking Deep CNN Models to Detect and Count on a NeuroSynaptic System
	1. Introduction
	2. Materials and Methods
	2.1. Background
	2.1.1. Cars Overhead With Context Dataset
	2.1.2. NS16e System

	2.2. CNN Design Decisions
	2.2.1. Formulate Regression Problem as a Classification Problem
	2.2.2. Case Study: Map AlexNet Neural Network Model Onto TrueNorth
	2.2.2.1. Challenges with AlexNet neural network model
	2.2.2.2. Proposed modification for AlexNet neural network model

	2.2.3. Case Study: Map VGG-16 Neural Network Model Onto TrueNorth
	2.2.3.1. Challenges in VGG-16: hardware resource limitation
	2.2.3.2. Challenges in VGG-16: input feature size and feature count
	2.2.3.3. Proposed modification for VGG-16 input
	2.2.3.4. Challenges in VGG-16: size of convolutional kernels
	2.2.3.5. Proposed method for selecting kernel size
	2.2.3.6. Discussion on fully convolutional neural network of VGG-16

	2.2.4. Case Study: Deeper Fully Convolutional Neural Network

	3. Results
	3.1. Accuracy Analysis
	3.2. Experiments With Additional Neural Network Structures
	3.3. Comparison With Prior Approach
	3.4. Hardware Analysis

	4. Discussion
	4.1. Summary
	4.2. Extending This Work to Other Benchmarks and Neuromorphic Chips

	Author Contributions
	Acknowledgments
	References

	ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing
	1. Introduction
	2. Materials and Methods
	2.1. ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network
	2.2. Hybrid-STDP (HB-STDP) for Binary Synaptic Weights
	2.3. Unsupervised Training Methodology for the Convolutional Layers
	2.4. Supervised Training Methodology for the Fully-Connected Layer

	3. Results
	3.1. Two-Layer Binary Fully-Connected SNN for MNIST Digit Recognition
	3.2. ReStoCNet for MNIST Digit Recognition
	3.3. ReStoCNet for CIFAR-10 Image Recognition

	4. Discussion
	4.1. Comparison With Related Works
	4.2. Applicability of ReStoCNet for Neuromorphic Hardware Implementations

	5. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

	A Delay Learning Algorithm Based on Spike Train Kernels for Spiking Neurons
	1. Introduction
	2. Materials and Methods
	2.1. Spiking Neuron and Spike Train Representation
	2.1.1. Spike Response Model
	2.1.2. Spike Train and Its Kernel Representation

	2.2. Learning Rules Based on Spike Train Kernels
	2.2.1. Learning Rule of Synaptic Weights
	2.2.2. Learning Rule of Synaptic Delays

	2.3. Supervised Learning Algorithm for Spiking Neurons

	3. Results
	3.1. Parameter Settings and Learning Evaluation
	3.2. Learning Sequences of Spikes
	3.2.1. Analysis of the Learning Process
	3.2.2. Parametric Analysis of Synaptic Delays
	3.2.3. Comparative Analysis With Static Synaptic Delays

	3.3. Image Classification
	3.3.1. Simulation Setup
	3.3.2. Learning With Different Sizes of Receptive Field
	3.3.3. Compare With Other Algorithms

	4. Discussion
	5. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

	Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
	1. Introduction
	2. Materials and Methods
	2.1. Digital Neuromorphic Core
	2.2. Spike-Timing-Dependent Plasticity (STDP)
	2.3. Synaptic Weight Data Structures
	2.3.1. Fully Connected: Crossbar
	2.3.2. Pointer-Based Compressed Sparse Row (PB-CSR)
	2.3.3. Pointer-Based Run-Length Encoding (PB-RLE)
	2.3.4. Pointer-Based Bitmap (PB-BMP)
	2.3.5. Data Structure Storage Costs
	2.3.6. Data Structure Access Costs

	2.4. STDP Learning Rule With Forward-Only Connectivity Access
	2.4.1. Drawbacks of Allowing Multiple Spikes Inside the STDP Window
	2.4.2. Criteria for Exactness Between Methods
	2.4.3. Temporal Spike Interaction

	3. Results
	3.1. Data Structure Efficiency
	3.2. Budget Efficiency
	3.3. Proof-of-Concept Example

	4. Discussion
	5. Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References

	A Soft-Pruning Method Applied During Training of Spiking Neural Networks for In-memory Computing Applications
	Introduction
	Neural Network Architecture
	Input Layer
	Output Layer
	Weight Updates: STDP Rule
	Scaling Weight Updates as a Normalization Method
	Testing
	Pruning During Training

	Results and Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	References

	Neuromorphic Hardware Learns to Learn
	1. Introduction
	2. Methods and Materials
	2.1. Learning-to-Learn and Gradient-free Optimization
	2.1.1. Cross-entropy (CE) Rubinstein1997
	2.1.2. Evolution Strategies (ES) Rechenberg1973
	2.1.3. Simulated Annealing (SA) Kirkpatrick1983
	2.1.4. Numerical Gradient-Descent (GD)

	2.2. Reinforcement Learning Problems
	2.2.1. Markov Decision Process
	2.2.2. Multi-Armed Bandits

	2.3. Neuromorphic Hardware - HICANN DLSv2
	2.4. Network Structure and Action Selection
	2.5. Learning Algorithms
	2.5.1. Q-Learning
	2.5.1.1. TD(1)-Learning
	2.5.1.2. TD(λ)-Learning

	2.5.2. Meta-Plasticity

	2.6. Analysis of Meta-Plasticity

	3. Results
	3.1. Learning-to-Learn Improves Learning Speed and Performance
	3.2. Performance Comparison of Gradient-Free Optimization Algorithms in the Outer Loop
	3.3. Performance Improvement Through Meta-Plasticity
	3.4. Exploiting the Benefit of Accelerated Hardware for L2L

	4. Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	First Error-Based Supervised Learning Algorithm for Spiking Neural Networks
	1. Introduction
	2. Neuron Model and Learning Algorithm
	2.1. Neuron Model
	2.2. First Error Learning Algorithm
	2.2.1. Weight Increment at Desired Output Spike Times
	2.2.2. Weight Decrement at Undesired Output Spike Times

	2.3. Metric of Learning Performance

	3. Simulation results
	3.1. Performance Evaluation of FE-Learn
	3.1.1. Effect of the Time Duration
	3.1.2. Effect of the Number of the Synaptic Inputs
	3.1.3. Effect of the Firing Rate

	3.2. Robustness to Noise
	3.2.1. Robustness to Background Noise on the Membrane Potential
	3.2.2. Robustness to Jittering Noise on the Input Pattern

	3.3. Effect of Learning Parameters
	3.3.1. Effect on Efficiency
	3.3.2. Effect on Robustness
	3.3.3. Effect of the Width of Tolerance Window on Overfitting

	3.4. Classification Task
	3.4.1. Spatiotemporal Spike Pattern Classification
	3.4.2. Speech Classification

	4. Discussion
	5. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

	A Spike Time-Dependent Online Learning Algorithm Derived From Biological Olfaction
	Introduction
	Core Principles
	Materials and Methods
	Data Preprocessing
	Sensor Scaling
	Unsupervised Concentration Tolerance

	Core Algorithm
	Cellular and Synaptic Models
	Gamma Clock and Spike Precedence Code
	Connection Topology
	Spike Timing-Dependent Plasticity Rule
	Classification

	Dataset

	Results
	Data Preprocessing
	Online Learning
	Online Reset Learning for Mitigating Sensor Drift

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

	Constructing an Associative Memory System Using Spiking Neural Network
	1. Introduction
	2. Related Works
	3. Motivation
	4. Background
	4.1. Neuron Model
	4.2. Spiking Neural Networks
	4.3. Spike-Timing-Dependent Plasticity
	4.4. Hebb's Learning Rule

	5. Method to Construct Bionic Memory Neural Network
	5.1. Initialization Phase
	5.1.1. Initialize the Input Spiking Sequences
	5.1.2. Initialize the Neural Network

	5.2. Structure Formation Phase
	5.3. Parameter Training Phase
	5.4. Pruning Phase

	6. Experiment Results
	6.1. Evaluation Framework
	6.2. Results and Discussion
	6.2.1. Growing Process of the Memory Layer
	6.2.2. Results of Memory Process
	6.2.3. Results of Recall Process
	6.2.4. Verification of the Association Ability

	7. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

	Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition
	1. Introduction
	2. Related Work
	2.1. Video Activity Recognition
	2.2. Hierarchical Reservoir Computing

	3. Deep-LSM Model
	3.1. Hidden Layer Optimization
	3.2. Deep-LSM Implementation
	3.3. Attention Mechanism

	4. Experiments
	4.1. Theoretical Efficiency for Neuromophic Implementations

	5. Conclusions
	Data Availability
	Author Contributions
	Funding
	References

	SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron
	1. Introduction
	2. Time Dimension
	3. Package Structure
	3.1. snn Module
	3.2. functional Module
	3.3. utils Module
	3.4. visualization Module

	4. Tutorial
	4.1. Step 1. Network Design
	4.1.1. Structure
	4.1.2. Forward Pass
	4.1.3. Plasticity

	4.2. Step 2. Input Layer and Transformations
	4.3. Step 3. Data Preparation
	4.4. Step 4. Training and Testing
	4.4.1. Unsupervised Learning (STDP)
	4.4.2. Reinforcement Learning (R-STDP)
	4.4.3. Execution

	4.5. Source Code

	5. Comparison
	6. Conclusions
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	References

	Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. 1T1R Device
	2.2. STDP Implementation on 1T1R Array
	2.3. Unsupervised SNN Architecture

	3. Results
	3.1. STDP Characteristic of 1T1R Device
	3.2. SNN Performance on MNIST
	3.2.1. Encoding Input: Pattern/Background Phases
	3.2.2. Greedy Training
	3.2.3. Inference Process
	3.2.4. Performance Without Variations
	3.2.5. Performance With Variations

	4. Discussion
	4.1. Device Endurance
	4.2. Array Failure Rate
	4.3. Compensate Asymmetric Switching Behavior
	4.4. Divide Spikes Into Pattern/Background Parts

	5. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

	A Swarm Optimization Solver Based on Ferroelectric Spiking Neural Networks
	Introduction
	Materials and Methods
	Neuromorphic Hardware Technology
	Ferroelectric Based Spiking Neuron
	Dynamic Behavior Model
	Biomimetic Neuronal Dynamics

	Swarm Intelligence (SI)—Spiking Neural Network (SNN) Optimization
	SI Algorithm Framework
	SI-SNN Model Architecture for Continuous Objective Function
	SI-SNN for Traveling Salesman Problem

	Results
	Parameter Optimization of Continuous Functions
	Solving TSP

	Discussion
	Data Availability
	Author Contributions
	Funding
	Supplementary Material
	References

	Reinforcement Learning With Low-Complexity Liquid State Machines
	1. Introduction
	2. Materials and Methods
	2.1. Liquid State Machine: Architecture and Initialization
	2.2. Q-Learning Based LSM Training Methodology

	3. Experimental Results
	3.1. LSM Hyperparameter Tuning
	3.2. Learning to Balance a Cartpole
	3.3. Learning to Balance a Cartpole Without Complete State Information
	3.4. Learning to Play Pacman
	3.5. Learning to Play Atari Games

	4. Discussion
	5. Conclusion
	Data Availability
	Author Contributions
	Funding
	References

	Back Cover

