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Editorial on the Research Topic

Immunonutrient Supplementation

Nowadays, food-related diseases are exponentially increasing worldwide. In fact, also in developing
countries population has started consuming western diet. On these bases, overweight/obesity
and diabetes represent a pandemy, thus, leading to associated diseases such as cardiac events,
neurodegeneration, and cancer (1–3). Correct diets, e.g., Mediterranean diet (MeD), as well as
nutrient supplementation represent a suitable approach to prevent and/or mitigate food-related
diseases. In particular, among bioactive principles contained in foods, mostly polyphenols, have
been investigated for their anti-oxidant, anti-inflammatory activities, even including DNA damage
protection (4–9).

The present special issue entitled “Immunonutrient supplementation” encompasses a series
of reviews and original articles which point out the modulatory effects of diet and of different
nutrients (polyphenols, amino acids, unsaturated fatty acids, vitamin D, and iron, respectively) on
the immune response.

Ruiz-Leòn et al. have reviewed the principles of immune nutrition in relation to atherosclerosis
development. MeD, for its content in bioactive compounds, has been associated to prevention or
attenuation of atheroma inflammation. Here, Authors have analyzed the molecular mechanisms
related to the in vivo protective actions of MeD.

Wu et al. have reviewed the efficacy of interventions with unsaturated fatty acids,
micronutrients, functional foods and tea derivatives on the immune function. Despite controversial
results, there is strong evidence that all above mentioned principles play a protective role in
autoimmune and inflammatory disorders also reducing infections.

Campbell et al. have reported the effects of two polyphenols, carnosol and curcumin, on the
metabolism of dendritic cells (DCs). Metabolic regulation of DCs exerted by these polyphenols
seems to be related to AMP-Activated Protein Kinase (AMPK) activation, which leads to the
inhibition of mTOR pathway in lipopolysaccharide-primed DCs. In addition, activation of
AMPK induces Heme Oxygenase-1 (HO-1), which, in turn, controls maturation, and function of
human DCs.

Zhang et al. have studied the effects of Inonotus sanghuang polyphenols on the interaction
between macrophages and adipocytes. Results show that these polyphenols are able to decrease
chronic inflammation in adipose tissue, suppressing the cross talk between macrophages,
and adipocytes.

Tuyaerts et al. have reported the effects of dietary curcumin (2 g/day for 2 weeks) in seven
endometrial carcinoma (EC) patients. During this clinical trial, several inflammatory biomarkers
were measured, even including COX-2 and frequency of T cells, DCs, natural killer cells and
myeloid-derived suppressor cells. In addition, quality of life (QoL) questionnaires were completed
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by patients at the start and the end of treatment. Authors
conclude that this treatment does not lead to significant
modifications of all parameter analyzed as well as
of QoL.

Wang et al. have evaluated the effects of naringenin, a
polyphenol, on CD4+ T cells in a model of experimental
autoimmune encephalomyelitis (EAE). Among major effects
exerted by naringenin, inhibition of differentiation of CD4+ cells
to Th1 and Th17 cells, decrease of Th17 cells and promotion of T
regulatory (Treg) cell polarization have been reported. Then, all
these activities would explain the beneficial effects of naringenin
in preventing/mitigating EAE.

Azam et al. have reviewed the effects of polyphenols in the
treatment of neurodegenerative diseases. Special emphasis has
been placed on the ability of various polyphenols to dampen over-
expression of inflammatory mediators interrupting the Toll-
like receptor (TLR)-4/NF-κB/STAT pathway in microglia and
macrophages. In the same direction, other polyphenols can
decrease neuronal apoptosis, regulating the TLR-4/MyD88/NF-
κB signaling. Therefore, modulation of TLR functions by
polyphenols may represent a novel therapeutical tool in the
treatment of neurodegeneration.

Lee et al. have reported on the effects of L-arginine and L-
citrulline supplementation on rat Treg cells. Male infantile rats
received L-arginine or L-citrulline (200 mg/kg/day i.p.) over
postnatal day 8 to day 14. Both amino acids increased interleukin
(IL)-10 release, while enhancing SIRT-1 expression. Only in
the case of L-citrulline increase in the transforming growth
factor (TGF)-β1 and FoxP3 expression was noted. In conclusion,
these amino acids have the ability to induce a tolerogenic
pathway, thus, favoring anti-inflammatory activities under
pathological conditions.

Zhang et al. have evaluated the effects of dietary L-
tryptophan treatment on the Chinese mitten crab, Eriochier (E.)
sinensis under cheliped autotomy stress. In treated individuals,
mortality decreased with an increase in total hemocyte
count, hemocyanin and glutathione (GSH) content and GSH
peroxidase. Furthermore, increase in phagocytic rate and anti-
oxidant activity was observed. These data were in agreement
with the higher expression of anti-bacterial related protein genes.
Taken together, these results indicate the ability of polyphenols to
increase survival of E. sinensis under cheliped autotomy stress.

Machado et al. have demonstrated the ability of dietary
methionine to improve immune and inflammatory responses
and disease resistance in European sea bass (Dicentrarchus
labrax). Then, following bacterial challenge a higher
survival was observed in comparison to untreated fish,
thus, suggesting a reinforcement of immune response after
4 weeks of methionine treatment, thus, supporting the
anti-bacterial activity.

Xia et al. have summarized the mechanisms of betaine
in IL-1β production release. This compound, which is a
critical nutrient for mammal health, inhibits IL-1β release
blocking exocytosis of IL-1β containing secretory lysosomes,

thus, reducing shedding of IL-1β containing plasma membrane
microvesicles. Then, these mechanisms reduce the passive efflux
of IL-1β through plasma membrane in the course of pyroptotic
cell death, representing a therapeutical tool in the course of IL-1β
associated-inflammatory disease.

Saika et al. have reviewed the effect of lipid metabolites
in the host and the participation of intestinal bacteria in this
process. In particular, the role of metabolites from omega-3
fatty acids, such as resolvins, protectins, and marensins has been
described. Special emphasis has been placed on themetabolites of
17, 18-epoxyeicosatetraenoic acid, which exert anti-allergic and
anti-inflammatory activities.

Goncalves-Mendes et al. have conducted a trial investigating
the effects of vitamin D supplementation on deficient elderly
persons in relation to influenza vaccination. Vitamin D
supplementation has been shown to trigger elevated plasma
levels of TGF-β in response to influenza vaccination, thus,
polarizing the immune response toward a tolerogenic pathway.
No enhancement of antibody production to influenza vaccine
was observed.

Dufrusine et al. have analyzed the influence of iron on
the 5-lipoxygenase (LOX) trafficking and human macrophage
activation. Results indicate that iron regulates the biological
activity of 5-LOX inmacrophages, enhancing its ability to bind to
nuclear membranes. In relevance to this effect, iron overloading
induced an increased expression of IL-6 in macrophages which
was abolished by pre-treating cells with the iron-chelating
agent deferoxamine.

As overall, the manuscripts have discussed different aspects
related to immunonutrient supplementation, ranging from in
vitro, ex vivo and human studies, highlighting the complexity,
and the multi-faced aspects of the interactions between nutrient
supplementation and immune function. Despite more research
is needed, we think that this special issue should allow readers
to increase their knowledge on the beneficial and sometimes
adverse effects related to the role of nutrient supplementation on
immune function.
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1 Institute of Infection and Immunity of Huaihe Hospital, Henan University, Kaifeng, China, 2College of Life Science, Henan
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Disrupted balance in the lineages of CD4+ T cell subsets, including pro-inflammatory T

helper (Th) cells and anti-inflammatory regulatory T cells (Treg), is a primary pathogenic

factor for developing autoimmunity. We have found that this immunomodulatory

effect of naringenin on effector T cells and T-cell mediated experimental autoimmune

encephalomyelitis (EAE). We therefore explored the effects of naringenin on the

development of different effector CD4+ T cells. Naïve CD4+ T cells were differentiated

under respective Th1, Th2, Th17, and Treg polarizing conditions with naringenin.

Percent populations of each differentiated CD4+ T cell subsets were determined and

the corresponding regulating pathways were investigated as underlying mechanisms.

Naringenin mainly inhibited CD4+ T cell proliferation and differentiation to Th1 and Th17,

but did not affect Th2 cells. Impeded Th1 polarization was associated with inhibition of its

specific regulator proteins T-bet, p-STAT1, and p-STAT4 by naringenin. Likewise, Th17

regulator proteins RORγt, p-STAT3, and Ac-STAT3 were also inhibited by naringenin.

In addition, naringenin promoted Treg polarization and also prevented IL-6-induced

suppression of Treg development via down-regulation of p-Smad2/3 as well as inhibition

of IL-6 signaling, and the latter was further supported by the in vivo results showing lower

soluble IL-6R but higher soluble gp130 levels in plasma of naringenin-fed compared to

the control EAE mice. Naringenin impacts CD4+ T cell differentiation in a manner that

would explain its beneficial effect in preventing/mitigating T cell-mediated autoimmunity.

Keywords: Naringenin, CD4+ T cells, T cell subsets, cell differentiation, autoimmune diseases

INTRODUCTION

Naïve CD4+ T cells can differentiate into distinct effector helper T cell (Th) subsets, including Th1,
Th2, and Th17 cells, as well as regulatory T cells (Treg) (1–3). Th1, Th17, and Treg cell subsets have
been regarded as major players in immunopathology of autoimmune diseases. Th1 and Th17 cells
are pro-inflammatory subsets that promote the development of autoimmunity and tissue damage,
while Treg cells maintain immunotolerance and prevent autoimmunity. Thus, maintaining the
balance of anti-inflammatory Treg cells and pro-inflammatory Th1 and Th17 cells has significant
implication in preventing and/or attenuating autoimmunity and chronic inflammation.

Protective, nonpathogenic Th1 and Th2 cells can be generated in vitro from naïve T cells by
using IL-12 and IL-4 which is regulated by their specific transcription factors T-bet and GATA3,
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respectively (4, 5).The cytokine TGF-β drives the conversion
of naïve T cells into induced Treg (iTreg) cells, while TGF-β,
together with pro-inflammatory cytokines, in particular IL-6,
drives naïve CD4+ T cell differentiation toward Th17 (3,
6). Mechanistically, TGF-β alone can activate its downstream
transcription factors Smad2 and Smad3 to induce expression of
Treg-specific marker Foxp3, which control the generation and
function of Treg. In contrast, IL-6 induces activation of STAT3
to promote expression of Th17 cell-specific transcription factor
RORγt critical for IL-17 expression.

Furthermore, TGF-β-induced Foxp3 suppressed RORγt
function partly via their interaction (7). Therefore, the fate of
naïve CD4+ T cells upon stimulation by antigens to turn into
Th17 or Treg cells for a significant part depends on the micro-
environmental cytokine-regulated balance of RORγt and Foxp3.

Naringenin, a major flavanone in grapefruits, has a wide
range of anti-inflammatory and neuro-protective properties (8).
We recently reported that dietary naringenin supplementation
ameliorated experimental autoimmune encephalomyelitis (EAE)
in mice, which was associated with the decrease in Th1 and Th17
cell populations and pro-inflammatory cytokine IL-6 production,
which promotes CD4+ T cells differentiation into Th17 cells (9).
In addition, our in vitro study showed that naringenin directly
inhibited effector T cell functions, including T cell proliferation,
cell division, and production of cytokines IL-6, IFN-γ, and IL-17,
in normal and EAEmice (10). These data suggest that naringenin
may affect CD4+ T cell differentiation process. However, there
was no direct evidence to substantiate this hypothesis and
furthermore, if it is the case, it would be important to know
through what molecular mechanisms naringenin exerts its such
effect. Thus, in the present study, using in vitro model, we
characterized (1) which type of T cells (CD4+ or CD8+) are
affected by naringenin, and (2) how naringenin modulates CD4+

T cell differentiation into effector lineages (Th1, Th17, and Treg),
and (3) what regulating networks are involved in the effects of
naringenin on regulating CD4+ T cell differentiation.

MATERIALS AND METHODS

Animals
Specific pathogen-free C57BL/6 female mice (6–8 wk) were
purchased from Nanjing Biomedical Research Institution of
Nanjing University (Nanjing, China). Mice were maintained at a
controlled environment with a 12 h light:dark cycle and provided
ad libitum access to water and mouse chow. Mice were killed
by CO2 asphyxiation followed by exsanguination and tissues
were collected post-mortem. All conditions and handling of the
animals were approved by the Institutional Animal Care and Use
Committee of Huaihe Hospital at Henan University.

T Cell Division
After mice were euthanized, inguinal lymph node (LN) cells
were collected and single cells suspension was prepared for
evaluation of CD4+ and CD8+ T cell proliferation using tracking
dye fluorescein diacetatesuccinimidyl ester (CFSE, Molecular
Probes, Eugene, OR, USA) method as previously described (10).
A stock solution of naringenin (Sigma-Aldrich, St. Louis, CA)

dissolved in DMSO at 400mM was stored at −80◦C and diluted
with culture medium to the appropriate working concentrations
immediately prior to use. Briefly, after LN cells were labeled with
1µM of CFSE, they were added to a 24-well plate at 2× 106/well
and stimulated with immobilized anti-CD3 Ab at 5µg/ml and
soluble anti-CD28 Ab at 1µg/ml (anti-CD3/CD28) (both from
Biolegend, San Jose, CA) in the presence of different levels of
naringenin for 48 h. At the end of incubation, cells were collected,
washed, and stained with fluorochrome conjugated anti-CD3,
anti-CD4, and anti-CD8 (eBioscience). Fluorescence signals of
stained cells were acquired by an Accuri C6 (Ann Arbor, MI)
flow cytometer and data were analyzed with FlowJo7.6 software
(Treestar Inc., OR, USA).

Intracellular Cytokine Measurement
After spleen cells were stimualted with anti-CD3/CD28 in the
presence of naringenin for 48 h, they were re-stimulated during
the last 4 h with 50 ng/ml PMA and 500 ng/ml ionomycin (both
from Sigma-Aldrich) in the presence of monensin (GolgiStop,
BD Pharmingen, San Jose, CA), and then the frequency and
intensity of IFN-γ and IL-4 in CD4+ and CD8+ T cells were
performed using flow cytometry method as described above.

CD4+ T Cell Differentiation
Naïve CD4+ T cells were isolated from spleens using a
CD4+CD62L+ T cell isolation kit II (Miltenyi Biotec, Auburn,
CA) and incubated at 2 × 106 cells/ml completed RPMI-
1640 medium containing 5%FBS in 24-well plate. Cells were
activated with anti-CD3/CD28 in all the experiments described
below and T cell differentiation was induced as described
previously (11). Briefly, the cultures were supplemented with
IL-12 (10 ng/ml) (R&D systems, Inc., Minneapolis, MN) and
anti-IL-4 (10µg/ml) (BD Pharmingen) for Th1 differentiation,
with IL-4 (10 ng/ml) (R&D systems, Inc.) and anti-IFN-γ
(10µg/ml) (BD Pharmingen) for Th2 differentiation, and with
IL-6 (20 ng/ml), TGF-β (5 ng/ml), IL-23 (20 ng/ml) (all from
R&D system), anti-IFN-γ, and anti-IL-4 (each 10µg/ml) for
Th17 differentiation. For Treg differentiation, naïve CD4+ T
cells were incubated in the presence of TGF-β (5 ng/ml) for
72 h. To determine if naringenin (80µM) affects the reciprocal
effect between Treg and Th17, IL-6 was also added during Treg
differentiation. Intracellular levels of Th1 (IFN-γ), Th2 (IL-4,
IL-10, and IL-13), Th17 (IL-17A), and Treg (Foxp3) (all from
eBioscience) were determined by flow cytometry as previously
described (11). In addition, differentiated cells were stained
with fluorochrome-conjugated anti-STAT1 (pY701/p-STAT1),
anti-STAT3 (pY705/p-STAT3), anti-STAT4 (pY693/p-STAT4), T-
bet (all from BD Pharmingen), and RORγt (R&D systems,
Inc.) following standard protocols as described previously (11).
Isotype Controls were used as negative control. Cells were
analyzed using flow cytometry as described above.

Western Blot
Naive CD4+ T cells were cultured with anti-CD3/CD28 and
TGF-β with/without IL-6 in the presence/absence of naringenin
for the time as indicated in the result section. Cells were
harvested at 3 × 106 cells/50 µl into RIPA cell lysis buffer
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FIGURE 1 | Effect of Naringenin on CD4+ and CD8+ T cell proliferation and cytokine production. Cell division and proliferation index of CD3+CD4+ (A) and

CD3+CD8+ T (B) cells was determined from anti-CD3/CD28-activated CFSE-labeled LN cells with different level of naringenin by flow cytometry. In addition, the

proportion of CD4+ T cell-secreting IFN-γ (C) and IL-4 (D), and CD8+ T cell-secreting IFN-γ (E) was determined from anti-CD3/CD28 LN cells using flow cytometry.

Histogram figures are representative results, and bar figures are mean ± SD of three independent experiments. Means without a common letter significantly differ at

least at P < 0.05. NAR, naringenin; Prol. Index, proliferation index.

containing 50mM Tris-HCl (pH 7.4), 150mM NaCl, 1%
NP40, 1 × protease inhibitor cocktail (Roche Applied Science,
Indianapolis, IN), and 1 × phosphatase inhibitor cocktail
(Sigma-Aldrich), and incubated on ice for 15min. Total cell
protein extract was resolved in 7.5% acrylamide gels and then
transferred to nitrocellulose membranes. The membrane was
blocked with 5% non-fat milk in Tris-buffered saline before
being incubated, respectively with specific primary antibodies

for the following proteins: STAT-3(1:1000), Smad2/3 (1:1000),
phosphorylated Smad2/3 (p-Smad2/3) (1:1000), Acetyl-STAT3
(Lys685, Ac-STAT3) (1:1000), phosphorylated STAT3 (p-STAT3)
(1:1000) (all from Cell Signaling Technologies, Danvers, MA),
and β-actin (1:5000, Sigma-Aldrich). The membranes were
next incubated with horseradish peroxides (HRP)-conjugated
secondary antibodies followed by exposure to enhanced
chemiluminescent reagents (Millipore, Burlington, MA).
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FIGURE 2 | Naringenin inhibits Th1 differentiation via affecting the corresponding regulation network. Naïve CD4+ T cells from C57BL/6 mice were activated with

anti-CD3/CD28 under Th1-polarizing condition with or without 80 µM naringenin. Intracellular level of IFN-γ (A), T-bet (B), p-STAT1 (C), and p-STAT4 (D) in

differentiated CD4+ T cells was evaluated by flow cytometry. Dot scatters and histogram figures is representative results, and bar figures are mean ± SD of three

independent experiments. *P < 0.05 and **P < 0.01 by Student’s t-test. NAR, naringenin.

Induction and Evaluation of EAE
Mice were fed a diet supplemented with 0.5% naringenin and
then immunized to induce EAE as described before (9). At day
42, mice were killed, and plasma was collected to measure soluble
IL-6Rα (sIL-6R) and soluble gp130 (sgp130) as described below.

Detection of mIL-6R, mgp130, sIL-6Rα and
sgp130
After differentiation, one set of cells was stained with
fluorochrome-conjugated anti-CD4, anti-CD126 (mIL-6R),
and anti-CD130 (mgp130) (all from eBioscience). Cells were
analyzed using flow cytometry as described above in “T cell
division.”

The concentrations of sIL-6Rα and sgp130 in the plasma
samples mentioned above or supernatants from differentiated
CD4+ T cells were quantified using the IL-6R and gp130 ELISA
kit (Sino Biological Inc., Beijing) following the manufacturer’s
instruction.

IL-6-Induced Phosphorylation and
Acetylation of STAT3
After naïve CD4+ T cells were incubated with/without 80 µM
naringenin for 2 h, recombinant IL-6 (20 ng/ml) was added to the
cultures and incubated at 37◦C in a water bath for 15min. Total
cell protein was extracted and the p-STAT3 and Ac-STAT3 levels
were determined as described above in “Western blot.”

Statistical Analysis
Results are expressed as means ± SD. Statistical analysis
was conducted using SYSTAT 12 statistical software.
Differences were determined using one-way ANOVA followed
by Tukey’s HSD post-hoc test for multiple comparisons,
or non-paired Student’s t-test. Significance was set at
P < 0.05.

RESULTS

Naringenin Impacts CD4+ T Cell Functions
We in a previous study found that naringenin inhibited T
cell proliferation in anti-CD3/CD28-activated lymphocytes
(10). However, it is still unclear how different types of T cell
populations (CD4+ and CD8+) may be affected by naringenin.
Thus, we first evaluated CD4+ and CD8+ T cell proliferation
from anti-CD3/CD28-activated lymphocytes treated by
naringenin. As shown in Figures 1A,B, naringenin dose-
dependently inhibited CD4+ T cell division and proliferation
index, but did not significantly affect CD8+ T cells. Furthermore,
naringenin inhibited CD4+ T cell production of IFN-γ (Th1
response) (Figure 1C), but not IL-4 (Th2 response) in a dose-
dependent manner (Figure 1D). While the high concentration
of naringenin (80µM) decreased IFN-γ production in CD8+

T cells stimulated by anti-CD3/CD28 (Figure 1E). These data
suggest that naringenin mainly affects CD4+ rather than CD8+

T cells; within CD4+ T cells, it appears that Th1 rather than Th2
response is affected by naringenin.
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FIGURE 3 | Effect of naringenin inhibits Th2 differentiation. Naïve CD4+ T cells from C57BL/6 mice were activated with anti-CD3/CD28 under Th2-polarizing

condition with or without 80 µM naringenin. Intracellular level of IL-4 (A, B), IL-13 (C), IL-10 (D), and IL-13+ IL-10+ (E) in differentiated CD4+ T cells was evaluated by

flow cytometry. Dot scatters is representative results, and bar figures are mean ± SD of three independent experiments. *P < 0.05 and **P < 0.01 by Student’s t-test.

NAR, naringenin.

Naringenin Inhibits Th1, but Not Th2
Differentiation
Our previous in vivo study showed that EAE mice receiving
naringenin had smaller Th1 cell population, but similar Th2
cell population compared to those fed control diet (9).
However, since the magnitude of a given cell population
in the body may be affected by multiple factors including
proliferation, differentiation, and shrinking, as well as interaction
among different cell population, we speculated but could not
convincingly conclude that naringenin directly affects CD4+ T
cell differentiation. Thus to seek direct answer to this issue, in
the current study we used an in vitro differentiation model,
in which naive CD4+ T cells cultured under standard Th1
or Th2 polarization condition and production of IFN-γ and
IL-4 was used as hallmark for Th1 and Th2, respectively.
We found that Th1 polarization was inhibited by naringenin

(80µM) compared to the control (21 vs. 40%) (Figure 2A); while
Th2 polarization was not significantly affected by naringenin
(Figures 3A,B). These results are in agreement with those in
the in vivo study. Additionally, we found that in Th2-polarized
CD4+ T cells, IL-13+ population was marginally decreased (P
= 0.05) (Figure 3C) and IL-10+ (Figure 3D) and IL-10+IL-
13+ (Figure 3E) populations were significantly decreased by
naringenin.

To further investigate how naringenin modulated regulation
mechanism upstream to Th1 differentiation, we determined
expression of T-bet, a transcriptional factor known to be the
master regulator in Th1 cell differentiation. Consistent with
naringenin’s inhibitory effect on Th1 differentiation, naringenin
was found to decrease T-bet expression in differentiating CD4+

T cells (Figure 2B). It has been shown that T cell differentiation
toward Th1 subset can be triggered by IL-12 and IFN-γ signaling
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FIGURE 4 | Naringenin inhibits Th17 differentiation via affecting the corresponding regulation network. Naïve CD4+ T cells from C57BL/6 mice were activated with

anti-CD3/CD28 under Th17-polarizing condition with or without 80 µM naringenin. Intracellular level of IL-17 (A), RORγt (B), and p-STAT3 (C) in differentiated CD4+ T

cells was evaluated by flow cytometry. Dot scatters and histogram figures is representative results, and bar figures are mean ± SD of three independent experiments.

*P < 0.05 and **P < 0.01 by Student’s t-test. NAR, naringenin.

via their transducers STAT4 and STAT1, respectively, which
induce T-bet expression and drive Th1 cell differentiation (12,
13). Thus, we next determined involvement of STAT activation.
Indeed, STAT1 and STAT4 activation (phosphorylation) in CD4+

T cells cultured under Th1 polarization condition was inhibited
by naringenin treatment (Figures 2C,D).

Naringenin Inhibits Th17 Cell
Differentiation
Th17 cells, which are commonly defined as IL-17-producing
CD4+ T cells, are present at low level in naïve T cells. In the
autoimmune disorders such as EAE, this population can be
greatly increased. Th17 cells are believed to play a critical role in
the development of autoimmunity. Under the in vitro polarizing
conditions, naïve CD4+ T cells can be driven to develop into
Th17 cells, usually by TCR stimulation in the presence of IL-
6 and TGF-β. In such an experimental setting, we found that
naringenin prohibited differentiation of naïve CD4+ T cells into
IL-17-producing Th17 cells (Figure 4A).

RORγt is a specific transcription factor driving Th17 cell
differentiation, and STAT3 is the key signal transducer which
mediates action of IL-6, IL-21, and IL-23 (3, 14). Consistent with
its effect on Th17 differentiation, nairngenin inhibited RORγt
expression (Figure 4B) as well as its upstream event, STAT3
phosphorylation (Figure 4C).

Naringenin Promotes iTreg Development
and Prevents IL-6-Induced Suppression of
Treg Development
Our in vivo study showed that dietary naringenin did not
affect Treg cells in EAE mice (9). Varied results have been
reported regarding how naringenin affects Treg development
(15, 16). It is noted that those results were generated with
use of different culture conditions, which often makes data
interpretation difficult. Thus, we next determined whether
naringenin affects iTreg development under standard iTreg-
polarized condition. Although naringenin promoted Treg cell
differentiation driven by TGF-β (Figure 5A), it only moderately
reduced activation of Smad2/3 (3.45 vs. 2.90), a transducer of
TGF-β-mediated Foxp3 induction (Figure 6A).

IL-6 has been shown to inhibit Treg cell generation induced
by TGF-β which has been demonstrated in this study and
our previous study (11). This IL-6-induced inhibition of Treg
development was prevented by naringenin (Figure 5A). This
is consistent with reported decrease in Th17 differentiation by
naringenin because the presence of IL-6 can switch TGF-β-
induced differentiation in favor of Th17, and there is reciprocal
modulation between Treg and Th17 differentiation. To further
confirm this, we also directly determined Th17 population in
the same cultures in which Treg were quantified and found that
naringenin caused a significant reduction of Th17 population
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FIGURE 5 | Naringenin promotes iTreg differentiation and prevented IL-6-induced suppression of iTreg differentiation. Naïve CD4+ T cells from C57BL/6 mice were

activated with anti-CD3/CD28 under iTreg-polarizing condition with or without IL-6 with or without 80 µM naringenin. Effect of naringenin on the Foxp3 expression

under iTreg-polarizing condition was determined by flow cytometry (A). Intracellular levels of RORγt and Foxp3 expression (B) and the IL-17A level (C) from cell-free

supernatants were determined under iTreg-polarizing condition with IL-6. Histogram figures and dot scatters are representative results, and bar figures are mean ± SD

of three independent experiments. Means without a common letter significantly differ at least at P < 0.05. *P < 0.01 by Student’s t-test. NAR, naringenin.

as manifested by decreased the level of both RORγt and IL-17
(Figures 5B,C). As a further support, it was also found that
naringenin decreased p-STAT3 and Ac-STAT3 expression under
TGF-β plus IL-6 co-cultured condition (Figure 6B).

Naringenin Interferes With IL-6/IL-6R
Signaling to Affect Treg Cell Development
It has been known that IL-6 conveys signals through STAT3 to
promote Th17 and inhibit Treg lineage commitment. Classical
IL-6R signaling and IL-6 trans-signaling have been involved
in inflammatory diseases (17, 18). Naïve T cells have high
mIL-6R expression and then are lost during an immune
response that becomes an important source of sIL-6R (19,
20). IL-6 or IL-6R cannot bind to gp130 alone. A complex

of IL-6-IL-6R is necessary for binding to gp130 to form a
high-affinity, signaling-competent hexamer that activates STAT3
induces RORγt expression but not Foxp3 expression induced
by TGF-β (21, 22). We thus hypothesized that naringenin may
influence Th17/Treg balance through modulating IL-6 signaling.
To address this, we first evaluated IL-6R expression under
Th17/Treg polarized conditions in the absence of neutralized
conditions. In accordance with our and other previous reports
(11, 20), naïve unstimulated CD4+ T cells had high mIL-6R
expression and sIL-6R was undetected in cultured medium alone
in the absence of anti-CD3/CD28 Abs. The mIL-6R expression
(Figure 7A) decreased and the levels of sIL-6R increased upon
activation (Figure 7B), both of which were partially prevented
by naringenin. We further showed that expression of another
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FIGURE 6 | Naringenin affects Smad2/3 and STAT3 activation under iTreg-polarizing condition with or without IL-6. Naïve CD4+ T cells from C57BL/6 mice were

activated with anti-CD3/CD28 under iTreg-polarizing condition with or without IL-6 with or without 80 µM naringenin. Effect of naringenin on phosphorylated Smad2/3

expression under iTreg-polarizing condition was determined by Western blot (A). Phosphorylation and acetylation of STAT3 expression were determined by Western

blot under iTreg-polarizing condition with IL-6 (B). The gel pictures are representatives of three independent experiments, which had similar results. The values below

band images are the ratios of p-Smad2/3, p-STAT3/STAT3, and Ac-STAT3/STAT3. NAR, naringenin.

IL-6R, mgp130, was not affected by naringenin treatment
(Figure 7C). Finally, we found that naringenin diminished IL-
6-induced STAT3 phosphorylation and acetylation, the indicator
downstream events in IL-6 signaling (Figure 7D). Together, these
data suggest that naringenin-induced alteration in IL-6 signaling
may be an important mechanism for its effect on Th17/Treg
balance.

Results From Dietary Supplementation
Study Support Naringenin’s Inhibitory
Effect on IL-6 Signaling
To test whether the in vitro study results were relevant to
the in vivo situation, we measured plasma sIL-6R and sgp130
concentrations utilizing the samples collected from naringenin-
fed mice in our previous study which showed the attenuated
EAE mice by naringenin. We found that sIL-6R was higher
and sgp130 was lower in plasma from EAE mice compared
to that from the naïve (unimmunized normal) mice, and
these changes were partially prevented by dietary naringenin
supplementation (Figure 8). These in vivo results validate
our in vitro results in terms of naringenin’s effect on IL-6
signaling.

DISCUSSION

A delicate balance between effector T cells with different
functions, in particular pro-inflammatory and pro-tolerance,
plays a crucial role for eliciting protective immune response to
pathogens without losing immune tolerance to self-antigens.
Failure to maintain this balance is an important mechanism
responsible for the development of many autoimmune diseases.
Therefore, exploring the new strategies targeting this factor
should have significant clinical potential in dealing with
autoimmune diseases. Targeted drug therapy has made
impressing progress; however, the efficacy vs. side effect is still
a major issue limiting unrestricted application. Nutritional

intervention through consuming bioactive food components
has become a desirable alternative and complementary strategy
for this purpose. Several major categories of dietary flavonoids
are known to have immune-modulating property, which
implies their potential application in preventing and/or
mitigating autoimmune diseases. We recently showed that
dietary supplementation with naringenin, a flavonoid compound
found abundant in citrus fruits, particularly in grapefruit,
attenuated EAE symptoms and pathology via favorably
modulating effector T cell functions involved in T cell-
mediated autoimmunity (9). In an in vitro study we further
demonstrated that naringenin could directly suppress effector
T cell functions including total T cell proliferation, and
production of cytokines (10). In this study, we demonstrated
that naringenin primarily affected functions of effector CD4+

cells, which is based on the following observations: (1) T
cell proliferation and IFN-γ production in CD4+ T cells
were inhibited by naringenin; (2) under Th1 differentiation
condition, naringenin not only diminished Th1differentiation,
but also decreased Th1-specific transcription factor T-bet and
transducer STAT4 (for IL-12) and STAT1 (for IFN-γ) activation;
(3) naringenin impaired Th17 differentiation which might
be mediated by the down-regulation of RORγt, p-STAT3,
and Ac-STAT3 under Th17 differentiation condition; (4)
naringenin promoted iTreg cells under iTreg polarization
condition via down-regulating Smad2/3 phosphorylation; (5)
under iTreg polarization condition in the presence of IL-6,
naringenin prevented IL-6-induced iTreg suppression through
suppressing IL-6/IL-6R signaling, and STAT3 phosphorylation
and acetylation. Together, these results suggest that naringenin
plays a crucial role in maintaining the balance between Treg
and pro-inflammatory T helper cells, which sheds light on
the mechanistic insight to its beneficial effect observed in our
previous study.

The immune system has evolved several mechanisms to
control activated T cell expansion and differentiation, including
anergy, death, and regulation (23). One level of control resides in

Frontiers in Immunology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 226715

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wang et al. Naringenin and CD4+ T Cell Differentiation

FIGURE 7 | Naringenin affects IL-6 receptor expression under iTreg-polarizing condition with IL-6 and inhibits IL-6 downstream signaling. (A–C), Naïve CD4+ T cells

from C57BL/6 mice were activated with anti-CD3/CD28 under iTreg-polarizing condition with IL-6 in the absence or presence of 80 µM naringenin. mIL-6R and

mgp130 expression was determined by flow cytometry and sIL-6R levels in the cultured medium were quantified by ELISA. Values are mean ± SD of three

independent experiments. Means without a common letter significantly differ at least at P < 0.05. *P < 0.05 compared with the corresponding control (without NAR)

by student’s t-test. D, After naïve CD4+ T cells were incubated with 80µM naringenin for 2 h, IL-6 was added to stimulate cells for 15min. Phosphorylation and

acetylation of STAT3 expression were determined by Western blot. The gel pictures are representatives of three independent experiments, which had similar results.

The values below band images are the ratios of Ac-STAT3/STAT3. NAR, naringenin.

the function of CD4+and CD8 + regulatory cells (24, 25). While
CD4+ T cells are primary cells in mediating adaptive immunity
to a variety of pathogens, they are also a key player implicated in
regulation of autoimmunity by their pro-inflammatory and pro-
tolerance functions (2). Likewise, CD8+ T cells are important
in effective vaccination and vial clearance as well as participant
in maintaining the immune-tolerance (26–28), On the flip side,
however, CD8+ T cells are the effector cells contributing to
the disease of autoimmunity (29–31). Therefore, altered control
of CD4+ and CD8+ T cells in their response to self-Ag
is expected to significantly impact outcomes of autoimmune
diseases. We recently reported that naringenin was an inhibitor
of effector function of T cells (10). In this study, we expanded
the research along this line by investigating how naringenin
affected T cell sub-populations because of their unique function
and implication in the development of autoimmune disease.
We showed, for the first time, that naringenin mainly affected

CD4+ T cell proliferation, among which naringenin inhibited
Th1 response, but had no effect on Th2 response. Although
CD8+ T cell proliferation was not significantly inhibited by
naringenin with the concentrations used, IFN-γ production from
CD8+ T cells appeared to be dose-dependently inhibited and this
effect was clearly significant at high level of naringenin (80µM).
Given this, whether naringenin-induced change in CD8+ T cell
functions has significant contribution to its beneficial effect in
autoimmunity remains to be further investigated.

Although CD8 + T cells have been shown to be involved in
the development of autoimmune diseases such as MS and EAE
(26, 31), it is generally accepted that over-activation of self-Ag
pathogenic CD4+ T cells is the direct cause of these diseases (3,
32). IFN-γ-secreting Th1 cells (33) and IL-17-secreting Th17 cells
(3) are first primed in the periphery, migrate into central nervous
system (CNS), and then cause demyelization and neurological
disability (34). Th1 and Th17 cells can also help recruit other
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FIGURE 8 | Figure 8 Naringenin reduces level of sIL-6R while increasing

sgp130 level in the plasma of EAE mice. C57BL/6 mice were fed a diet

containing 0.5% naringenin for 30 day before they were immunized to induce

EAE as previously described (10). On day 14 post-immunization, mice were

euthanized, and plasma was collected to determinesIL-6R (A) and sgp130

(B) in the plasma levels. Values are mean ± SD (12/group). Means without a

common letter significantly differ at least at P < 0.05. Con, control; NAR,

naringenin.

inflammatory cells into CNS to exacerbate the disease process
(3). Thus, the agents which target to pro-inflammatory Th1 and
Th17 cell populations should be taken as potential candidates
for preventing and/or treating autoimmune diseases like MS.
Our recent in vivo study demonstrated that dietary naringenin
reduced immune cell infiltration, and attenuated demyelination
in CNS, and these changes were associated with decreased
Th1 and Th17 cells, which were, in turn, associated with
down-regulation of their respective transcription factors, T-
bet and RORγt. However, anti-inflammatory Treg cells were
not found to be affected by naringenin (9). These results
suggest that naringenin may modulate CD4+ T cell subset
balance via directly impacting their differentiation processes.
Indeed, in the current study, we provided direct evidence
supporting this hypothesis as we found that naringenin decreased
differentiation of naive CD4+ T cells into Th1 and Th17 cells,
while increased Treg cell differentiation. In addition, naringenin-
induced alteration in CD4+ T cell subsets might be due in part
to its specific effect on the reduction in abundance or activity
of the corresponding regulators for each sunset. These findings
reinforce our understanding of beneficial effect of naringenin for
the management of autoimmune diseases, which contribute to
developing the effective preventive and/or therapeutic approach
to combat T-cell mediated autoimmune response.

Treg cells play an important role in maintaining immune
tolerance against self-tissues. Some compounds such as
TGF-β (7), retinoic acid (35), and estrogen (36) can drives
CD4+CD25− naïve T cells developing to CD4+CD25+ iTreg
cells. Naringenin has been shown to induce iTreg cells from
CD4+ T cells independent of TGF-β (37). In accordance
with this, current study demonstrated that naringenin

dose-dependently induced iTreg cells from anti-CD3/CD28
activated T cells (Supplemental Figure 1). In the presence of
TGF-β, naringenin could further potentiate naïve CD4+ T cell
conversion into iTreg cells. The mechanism of TGF-β-induced
generation of Foxp3 is partly due to Smad proteins, such
as Smad2 and Smad3 phosphorylation, activation, nuclear
translocation, and finally, binding to the Foxp3 locus and causing
Treg polarization (38, 39). Naringenin has been regarded as the
Smad3 specific inhibitor via suppressing TGF-β ligand-receptor
interaction (40, 41). Indeed, naringenin in vitro slightly inhibited
Smad2 and Smad3 phosphorylation which results in decreased
generation of Foxp3. However, naringenin promotes, rather
than inhibits, iTreg cell differentiation. These contradictory
observations remain to be further elucidated.

Notably, TGF-β enables naïve CD4+ T cells to become Th17
cells when co-cultured with pro-inflammatory cytokines, such
as IL-6 (3). Increased IL-6 could redirect TGF-β-induced Treg
differentiation toward Th17 cells and as such, tilts the Th17 and
Treg balance. Since we found that naringenin inhibited Th17
differentiation and also diminished IL-6-induced suppression in
iTreg development, we addressed whether naringenin exerted
these effects by affecting IL-6 signaling. IL-6 signaling is mediated
via binding to its two receptors: mIL-6R and sIL-6, which elicit
classical IL-6R signaling and IL-6 trans-signaling, respectively.
Naïve T cells have high mIL-6R expression that will be lost
during inflammation (19). Of note, naringenin partly prevented
the reduction of mIL-6R in activated T cells, followed a decrease
in sIL-6R levels in cultured mediums, which could be generated
by activated T cells through shedding of mIL-6R (20). These
studies justifies our results given that, after naïve T cells
were polarized under Th17 differentiated condition, naringenin
prevented a decrease in mIL-6R, while decreased sIL-6R in
cultured supernatants. Since we did not observe any difference in
mgp130 between naringenin and control, it may be suggested that
naringenin might inhibit IL-6 trans-signaling. This inhibited IL-
6 signaling by naringenin was further verified to be functionally
relevant as we showed that naringenin suppressed IL-6-induced
STAT3 phosphorylation. In addition to phosphorylation, STAT3
activation can be regulated by acetylation on lysine 685,
which promotes Th17 development (42). Our observation that
STAT3 acetylation was inhibited by naringenin further support
involvement of altered STAT activation in naringenin’s effect.

Elevated sIL-6R by auto-reactive CD4+ T cells contributes
to autoimmune disease development via conferring IL-6
responsiveness (20) as well as blocking Treg development (43).
Combination with the observed impact of naringenin on IL-
6 signaling in CD4+ T cell differentiation, we speculated that
naringenin’s benefits on EAE might be partly due to naringenin’s
effect on IL-6 signaling. To confirm this, we conducted relevant
analysis using the samples from our in vivo studies. Consistent
with our previous study, EAE mice had two-fold higher plasma
sIL-6R levels compared to the healthy control mice and this
increase in plasma sIL-6R was prevented by dietary naringenin,
which is in agreement with the findings in the current in vitro
study. Together with the observation in that in vivo study that
naringenin reduced plasma IL-6 levels in EAE mice, these results
suggest that the results from the current in vitro study are relevant
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to the in vivo situation and that naringenin may block IL-6 trans-
signaling, at least in part by reducing IL-6 and sIL-6R levels. Next
we further analyzed the plasma sgp130, a natural inhibitor of IL-6
trans-signaling, from naringenin-treated EAE mice. Naringenin
prevented the decrease in plasma sgp130 in EAE mice. This is
in agreement with the decreased plasma IL-6 and sIL-6R levels
in naringenin-treated EAE mice because reduced IL-6/sIL-6R
complex formation in the trans-signaling would be assumed to
spare some sgp130.

In addition, IL-2, a T cell growth factor, has been
demonstrated to inhibit Th17 development while promote Treg
development (44, 45). Our previous study has shown that
naringenin inhibited IL-2/IL-2R signaling pathway (10), which
indicates that naringenin might promote Th17 generation and
inhibit Treg development via modulating IL-2/IL-2R signaling
in differentiating CD4+ T cells. However, naringenin actually
inhibited Th17 generation while promoted iTreg development
in the current study. Furthermore, Blimp-1, a key regulator of
terminal differentiation in B cells and T cell linage, can repress
IL-2, IFN-γ, and IL-17 and maintain Treg cell function (46–
48). The underlying mechanisms are mediated by binding to
their regulatory factors such as ifnγ, tbx21, bcl6, stat3, stat5,
il17. However, whether these genes are involved in the effects
of naringenin on CD4+ T cell differentiation is still unclear.
Thus, we will plan a specific in depth study in the soon future to
determine the role of IL-2/IL-2R signaling and these regulatory
genes in naringenin’s effect on CD4+ T cell differentiation
involving altered Treg/Th17 balance and Th1 differentiation.

In summary, this study demonstrated that naringenin
inhibited Th1 and Th17 development; while naringenin did
not affect Th2 cells in IL-4 production, it decreased IL-
10 and IL-13 production. In addition, naringenin promoted
iTreg development and prevented IL-6-induced suppression
on iTreg development, which may be associated inhibition
of Th17 differentiation. To our knowledge, this is the first
comprehensive study reporting that naringenin modulates
functions of effector CD4+ T cell subsets via targeting their

respectively transcription and/or transducer factors. Especially,

inflammatory cytokine IL-6 signaling appears to be a key
factor through which naringenin favorably influences the
balance between Th17 and Treg cells, leading to an alleviated
autoimmunity. These novel observations allow us to gain
a better understanding for the mechanisms underlying the
naringenin’s beneficial effect in attenuating T-cell mediated
autoimmune disorders. We propose that these effects of
naringenin may have translational value in potential clinical
application to prevent/mitigate T cell-mediated autoimmune
diseases.
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Betaine is a critical nutrient for mammal health, and has been found to alleviate

inflammation by lowering interleukin (IL)-1β secretion; however, the underlying

mechanisms by which betaine inhibits IL-1β secretion remain to be uncovered. In this

review, we summarize the current understanding about the mechanisms of betaine

in IL-1β production and release. For IL-1β production, betaine affects canonical

and non-canonical inflammasome-mediated processing of IL-1β through signaling

pathways, such as NF-κB, NLRP3 and caspase-8/11. For IL-1β release, betaine

inhibits IL-1β release through blocking the exocytosis of IL-1β-containing secretory

lysosomes, reducing the shedding of IL-1β-containing plasma membrane microvesicles,

suppressing the exocytosis of IL-1β-containing exosomes, and attenuating the passive

efflux of IL-1β across hyperpermeable plasma membrane during pyroptotic cell death,

which are associated with ERK1/2/PLA2 and caspase-8/A-SMase signaling pathways.

Collectively, this review highlights the anti-inflammatory property of betaine by inhibiting

the production and release of IL-1β, and indicates the potential application of betaine

supplementation as an adjuvant therapy in various inflammatory diseases associating

with IL-1β secretion.

Keywords: betaine, caspase-8, IL-1β, inflammation, inflammasome

INTRODUCTION

Immune-cell-mediated inflammation is essential for host protection against infections and
injuries. The immune system will coordinate the unanimous reaction to eliminate pathogens
and restore tissue integrity in response to infections. Innate immune cells (e.g., macrophages)
form the first line of defense to identify initial infections and injuries, and then to
promote the recruitment of additional immune cells (e.g., T cells) by releasing cytokines
and chemokines. The interleukin (IL)-1 family cytokines [for the history of IL-1, refer
to the review (1)] are the central mediators of inflammation and play crucial roles
in aforementioned processes (2, 3). Notably, IL-1β is the best-characterized and most
extensively studied pro-inflammatory cytokine in IL-1 family, and plays a vital role in host
defense in response to infections and injuries (4, 5). IL-1β is mainly produced by the
activated-inflammatory cells (e.g., monocytes, microglia, and macrophages) with a multistep
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process involving synthesis of immature pro-IL-1β, proteolytic
cleavage to mature IL-1β, and finally release into the extracellular
environment (1, 6).

Betaine (trimethylglycine) is a stable and nontoxic
natural compound (7) and shows a wide distribution within
phylogenetically distant organisms from microorganisms to
animals (8). Betaine is the basic biochemical molecule of the
methionine/homocysteine cycle (9), and serves as a methyl
group donor in transmethylation [a process catalyzed by betaine-
homocysteine methyl transferase (BHMT)], and is essential
for choline-mediated one-carbon metabolism, cell membrane
integrity, signal transduction and neurotransmitter synthesis
(10, 11). Besides, betaine is an important osmoprotectant, which
modulates cell volume, and protects cells, proteins and enzymes
from osmotic/ionic stress (12, 13). Notably, betaine has been
proven to be effective against many inflammatory diseases (e.g.,
diabetes and NAFLD) with its anti-inflammatory functions
(14, 15). Interestingly, betaine participates in alleviation of
inflammation by lowering secretion of pro-inflammatory
cytokines (e.g., IL-1β, TNF-α, IL-6, and IL-23) (16). Increasing
studies have reported that betaine dampens activity of nuclear
factor kappa B (NF-κB) to block the expression of genes involved
in inflammation, such as IL-1β , COX-2, and iNOS (17, 18).
Additionally, betaine can restore normal energy metabolism
to relieve systemic low-grade inflammation (e.g., obesity and
diabetes) (15, 19–22); and for the main metabolic pathways and
crucial mediators modulated by betaine in chronic inflammation,
refer to the review (23). Since IL-1β is the central mediators of
inflammation, it is worthy of lowering IL-1β secretion to alleviate
inflammation. Although, betaine inhibits NOD-like receptor
(NLRP) 3 inflammasome activation, which highly shapes the
pro-IL-β maturation (24–26), the underlying mechanisms
by which betaine inhibits IL-1β secretion are still not fully
understood.

In this review, we discuss the potential mechanisms by which
betaine could inhibit the IL-1β production through canonical and
non-canonical inflammasome-mediated processing of IL-1β, and
inflammasome-independent sources of IL-1β. Then, we highlight
the evidence about the key roles of betaine in inhibition of IL-
1β release with special emphasis on the involved mechanisms,
including exocytosis of IL-1β-containing secretory lysosomes,
shedding of IL-1β-containing plasma membrane microvesicles,
exocytosis of IL-1β-containing exosomes, and passive efflux

Abbreviations: IL, interleukin; BHMT, betaine-homocysteine methyl transferase;

NF-κB, nuclear factor kappa B; NLR, NOD-like receptor; TLRs, toll-like receptors;

TNF, tumor necrosis factor; MAPKs, mitogen-activated protein kinases; NIK/IKK,

nuclear factor-including kinase/IκB kinase; JNK, c-Jun NH2-terminal kinase; p38,

protein 38; ERK, extracelluar signal-regulated kinase; HMGB1, high-mobility

group box 1; HDAC3, histone deacetylases 3; AIM2, absent in melanoma

2; ALR, AIM2-like receptor; PAMP, pathogen-associated molecular pattern;

DAMP, danger-associated molecular pattern; P2X7R, purinergic ligand-gated ion

channel 7 receptor; FOXO1, forkhead box O 1; TXNIP, thioredoxin interacting

protein; ROS; reactive oxygen species; IRS-1, insulin receptor substrate 1; ER,

endoplasmic reticulum; FADD, Fas-associated death domain; PKG, protein

kinase G; HO-1, heme oxygenase-1; PLC, phospholipase C; PLA2, phospholipase

A2; Src-K, src-protein tyrosine kinase; A-SMase, acidic sphingomyelinase; PS,

phosphatidylserine; MVBs, multivesicular bodies; APCs, antigen presenting cells.

of IL-1β across hyperpermeable plasma membrane during
pyroptotic cell death.

BETAINE INHIBITS IL-1β PRODUCTION

IL-1β production involves the synthesis of immature pro-IL-
1β (31 kD) by the recognition of toll-like receptors (TLRs)
(27), and proteolytic cleavage to mature IL-1β (17 kD) by
caspase-1 (28). In this section, we summarize the mechanisms
by which betaine inhibits IL-1β production, including
the canonical and non-canonical inflammasome-mediated
processing of IL-1β and inflammasome-independent sources of
IL-1β.

Betaine in Canonical
Inflammasome-Mediated Processing of
IL-1β

As we discussed in the previous part, unprovoked immune cells
(when they are under steady-state conditions), like monocytes
and macrophages, do not express or just express extremely low
level of IL-1β. However, the pro-inflammatory triggers [e.g.,
(tumor necrosis factor) TNF, IL-1α/6, and TLR-ligands] promote
the activation of NF-κB, and expression of IL-1β (29, 30).

Betaine suppresses NF-κB activity and its downstream genes
(e.g., IL-1β) expression via inhibiting mitogen-activated protein
kinases (MAPKs) and nuclear factor-including kinase/IκB kinase
(NIK/IKK) in the aged rats and rat endothelial YPEN-1 cells
(18, 31) (Figure 1A). MAPKs include c-Jun NH2-terminal
kinase (JNK), protein 38 (p38) and extracelluar signal-regulated
kinase (ERK1/2), and are responsible for the expressions of
pro-inflammatory cytokines (32); and NIK/IKK relieves the
inhibition of IκB, leading to the activation of NF-κB (33).
Moreover, betaine also inhibits TLRs which are involved in NF-
κB activation (Figure 1B). For instance, in LPS (a TLR4 ligand)-
stimulated RAW264.7 cells, betaine suppresses the activation of
NF-κB (34). Mechanistically, in high-fat-diet-induced NAFLD
rat models, betaine inhibits the mRNA and protein expression
of high-mobility group box 1(HMGB1) in liver tissues, which
regulates the activation of TLR4 (35) (Figure 1B). Additionally,
in fructose-fed rat astrocytes, it is supposed that betaine could
suppress the expression of histone deacetylases 3 (HDAC3),
which binds to IκBα to activate NF-κB (24) (Figure 1C).
Collectively, IL-1β is one of the most important downstream
genes of NF-κB; and increasing in vitro and in vivo studies have
demonstrated that betaine dampens NF-κB activation. Thus,
these findings indicate that betaine inhibits IL-1β production via
inhibition of NF-κB signaling pathway.

The activated caspase-1 in the canonical inflammasome
complex is the most extensively identified mechanism for IL-1β
processing. In details, the canonical inflammasomes contain
cytosolic sensor molecules [NOD-like receptor (NLR) and absent
in melanoma (AIM) 2-like receptor (ALR) families], caspase-1,
and adaptor molecule ASC (36, 37). Mechanistically, NLR-driven
ASC recruitment drives pro-caspase-1 activation resulting in pro-
caspase-1 cleavage and caspase-1 maturation. Then caspase-1
cleaves pro-IL-1β to produce the mature forms of IL-1β (38–40).
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FIGURE 1 | Canonical mechanisms whereby betaine inhibits IL-1β production. (A) MAPKs (JNK, p38, and ERK1/2) are responsible for the expressions of

pro-inflammatory cytokines; and NIK/IKK relieves the inhibition of IκB, resulting in the activation of NF-κB to promote the up-regulation of IL-1β. Betaine suppresses

NF-κB activity and IL-1β expression via inhibiting MAPKs and NIK/IKK. (B) Betaine inhibits the mRNA and protein expression of HMGB1 which regulates the activation

of TLR4, which are involved in NF-κB activation. (C) Betaine suppresses HDAC3 which binds to IκBα to activate NF-κB. (D) NLR-driven ASC recruitment drives

pro-caspase-1 activation leading to pro-caspase-1 cleavage and caspase-1 maturation, subsequently caspase-1 cleaves pro-IL-1β to produce the bioactive IL-1β.

Betaine enhances IRS-1 phosphorylation to activate PKB/Akt which results in FOXO1 inactivation leading to a FOXO1 inhibition of TXNIP, which functions as the

endogenous inhibitor of ROS-scavenging protein, thereby inhibiting the activation of NLRP3 inflammasome. (E) Moreover, the activation of NLRP3 inflammasome is

related to the K+ efflux caused by ATP-mediated P2X7R activation. Betaine suppresses NLRP3 activation through maintaining cytosolic normal K+ levels. JNK, c-Jun

NH2-terminal kinase; p38, protein 38; ERK1/2, extracelluar signal-regulated kinase; IL-1β, interleukin-1β; NF-κB, nuclear factor kappa B; MAPKs, mitogen-activated

protein kinases; NIK/IKK, nuclear factor-including kinase/IκB kinase; HMGB1, high-mobility group box 1; TLR, toll-like receptor; HDAC3, histone deacetylases 3;

IRS-1, insulin receptor substrate 1; FOXO1, forkhead box O 1; TXNIP, thioredoxin interacting protein; ROS, reactive oxygen species; P2X7R purinergic; ligand-gated

ion channel 7 receptor; NLRP3, NOD-like receptor.

NLRs include NLRP1, NLRP3 (the main platform for IL-1β
processing), NLRP6, NLRP7, NLRP12, and NLRC4, which are
all suggested to coordinate inflammasome signaling and induce
IL-1β production under specific conditions (41–44), though
there exist negative effects (45–48). Indeed, the recognition of
pathogen- and/or danger-associated molecular patterns (PAMPs
and/or DAMPs) (e.g., bacterial toxins, fungal products, ATP,
silica, ceramide, cholesterol crystals, and amyloid β) provokes
the inflammasome-mediated IL-1β production, especially via
NLRP3 activation (49–51). NLRP3 has a specific disulfide bond
between Cys-8 and Cys-108 that may involve in modulation of
NLRP3 activation by reactive oxygen species (ROS) based on a
high resolution structure analysis (52). Likewise, a study showed
that liposomes could induce NLRP3 inflammasome activation
by mtROS (53). Extensive studies reveal that the activation of
NLRP3 inflammasome is associated with the decreased cytosolic
K+ level (called K+ efflux) caused by ATP-mediated purinergic
ligand-gated ion channel 7 receptor (P2X7R) activation (39, 54–
56). K+ efflux also regulates NLRC4 and NLRP1b activation
(57, 58); however, how K+ concentration regulates the assembly
of NLRP3 into functional inflammation is unclear. Thus, it is

critical to impede IL-1β processing by suppressing the activation
of NLRP3 inflammasome.

Increasing studies prove that betaine blocks NLRP3
inflammasome activation in vivo (24–26, 59, 60). Betaine
suppresses NLRP3 inflammasome involving a forkhead box
O 1(FOXO1) inhibition of thioredoxin interacting protein
(TXNIP) which functions as the endogenous inhibitor of
ROS-scavenging protein, enhancing ROS to induce NLRP3
inflammasome assembly in macrophages from insulin-
resistant obese db/db mice (15, 61). Mechanistically, we
suggest that betaine enhances insulin receptor substrate 1
(IRS-1) phosphorylation to indirectly activate PKB/Akt, which
results in FOXO1 inactivation through phosphorylating the
activated FOXO1 to induce its transfer from the nucleus
into the cytoplasm, leading to the inhibition of NLRP3
inflammasome (19, 26) (Figure 1D). Additionally, emerging
evidences have demonstrated that betaine enhances/restores
Na+-K+-ATPase activity which maintains low Na+ and high
K+ cell homeostasis (62, 63), and similarly, reduces K+

efflux (64); therefore, we speculate that betaine suppresses
NLRP3 activation through maintaining cytosolic normal K+
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levels (Figure 1E). Hence, betaine inhibits IL-1β processing
via blocking NLRP3 inflammasome activation directly or
through IRS-1/PKB/Akt/FOXO1 signaling pathway to resist the
activation of NLRP3 indirectly.

Intriguingly, in macrophages, enhanced pro-IL-1β processing
is associated with caspase-1; however, caspase-1-independent
mechanism of IL-1β processing accounts for IL-1β secretion
in neutrophils (65). Mechanistically, in neutrophils, IKKβ-
driven NF-κB positively modulates pro-IL-1β mRNA and serine
protease inhibitor genes transcription whose products block the
proteinase (PR3) activity, which can process pro-IL-1β (65, 66).
Unfortunately, whether betaine affects serine protease inhibitor
genes remains largely unexplored. Other mechanisms that
beyond the core machinery of the inflammasome complex, are
also associated with inflammasome assembly, including NLRP3.
For example, double-stranded RNA-dependent protein kinase
(PKR) and guanylate binding protein (GBP) 5 both contribute
to the NLRP3 oligomerization and activation via physically
interacting with certain inflammasome components (67, 68).
However, whether betaine inhibits NLRP3 inflammasome
activation through influencing their physical interaction with
several components (e.g., ASC) still require comprehensive
investigation. Various cell types and stimuli determine the
activation of NLRP3 inflammasome. For example, the NLRP3
inflammasome can be spontaneously activated by primary
stimulation of human monocytes, during which PAMP and
DAMP provide ample signals to produce bioactive IL-1β (69).
M. tuberculosis still triggers the maturation and production of
IL-1β in human monocyte-derived macrophages (70), although
it inhibits inflammasome activation (71); however, murine
microglia primed with conditioned media from cultures of
macrophages infected with M. tuberculosis result in caspase-
1 activation and IL-1β production in a NLRP3- and ASC-
dependent manner (72). Besides, in unprimed bone marrow-
derived macrophages, C. pneumonia infection causes IL-1β
maturation and production through NLRP3/ASC/caspase-1
pathway (73); however, Orientia tsutsugamushi triggers IL-
1β production in macrophages merely via the activation of
ASC inflammasome instead of NLRP3 (74). Overall, these
mentioned findings indicate that different cell types and/or
stimuli make multitudinous patterns of NLRP3 activation and
IL-1β production. Therefore, it would be highly interesting
to conduct comparative studies on the effects of betaine
on canonical NLRP3 activation and IL-1β production of
innate immune cells of different origins (e.g., monocytes,
macrophages, and microglia) and/or under different conditions
(e.g., unprimed/primed, infection, and injuries).

Betaine in Non-canonical
Inflammasome-Mediated Processing of
IL-1β

Intriguingly, additional caspases and modulators (e.g., caspase-
8/11) have emerging roles in inflammasome-mediated IL-1β
maturation. Caspase-8, which regulates extrinsic apoptosis in
response to TNF receptor 1 (TNFR1) and Fas activation (75),
also modulates pro-IL-1β cleavage at exactly the same site as

caspase-1 (76–78). In myeloid cells, Fas engagement triggers
caspase-8-dependent IL-1β production through pathway that is
fully independent of caspase-1 (79). Although caspase-8 and
caspase-1 share the same cleavage site, the caspase-8-dependent
IL-1β production does not require caspase-1 participation. CrmA
(an inhibitor for caspase-8) inhibits the generation of IL-1β
induced by LPS, though the exact mechanism still need to
be unraveled (76). Furthermore, an in vitro study reported
that both canonical and non-canonical (caspase-11 dependent)
inflammasome activation and down-stream IL-1β processing
are extremely restrained in RIP3−/−× Caspase-8−/− cells (80).
Interestingly, in endoplasmic reticulum (ER) stress, caspase-8-
mediated IL-1β maturation does not need ASC expression (81).

Under healthy conditions, caspase-8 is usually present
in monomeric form as an inactive enzyme; however, the
binding of Fas-associated death domain (FADD) to death
receptors facilitates the recruitment of monomeric caspase-8
zymogens, which in turn causes caspase-8 homodimerization
and subsequent caspase-8 activation (75). Except for exerting its
classic function in apoptosis, caspase-8 also plays a vital role in
promoting NF-κB signaling in antigen-stimulated T and B cells
(75). Similarly, FADD and caspase-8 control the transcriptional
priming of the NLRP3 inflammasome via modulation of the
NLRP3 and pro-IL-1β expression. Multiple of reports have
been demonstrated that betaine significantly blocks caspase-
8 activation and/or reduces caspase-8 activity (59, 82, 83).
Thus, betaine may inhibit IL-1β production by preventing
the induction of caspase-8 activity/activation (Figure 2A). In
fungi- and/or mycobacteria-stimulated dendritic cells (DCs), the
triggering of dectin-1 can promote Syk-dependent formation
of the CARD9-Bcl-10-MALT1 scaffold that induces NF-κB
activation and IL-1β transcription; as well as the formation and
activation of aMALT1-caspase-8-ASC complex that mediates the
processing of pro-IL-1β (77, 84). As betaine blocks the activation
of caspase-8, therefore, we suggest that betaine reduces IL-1β
production through suppressing the formation and activation of
MALT1-caspase-8-ASC complex (Figure 2B), though there are
no current evidence on the effects of betaine on CARD9, Bcl-
10, and MALT1, respectively. Summarily, considering caspase-
8 controls human macrophage differentiation (85) and human
monocyte and microglia activation (86, 87), it is obvious that
caspase-8 participates in regulation of cytokines production by
these immune cells. Indeed, caspase-8-deficient macrophages
and/or DCs are hyperresponsive to TLR activation, and caspase-
8 is required for normal M1 macrophage polarization whose
markers include IL-1β [Ref. (88)]. Betaine appears to inhibit
IL-1β production by reducing caspase-8 activity; however, no
specific mechanisms (e.g., RIPK1/caspase-8/RIPK3/MLKL) by
which betaine prevents the induction of caspase-8 activation have
been found so far (85, 86).

Likewise, a study reported that the caspase-1−/− mice is also
deficient in caspase-11 (an executioner caspase which promotes
pyroptosis or cell death; human orthologues caspase-4/5)
expression (89–91). In caspase-1−/− and caspase-11−/− cells, it
turned out that caspase-11 is required for caspase-1 activation
and IL-1β maturation in response to exogenous stimulus, like
E. coli and toxin (89, 92, 93). Mechanistically, in mouse
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FIGURE 2 | Non-canonical mechanisms whereby betaine inhibits IL-1β production. (A) Caspase-8 plays a vital role in promoting NF-κB signaling, and also modulates

pro-IL-1β cleavage at exactly the same site as caspase-1. Actually, FADD and caspase-8 control the transcriptional priming of the NLRP3 inflammasome via

modulation of the NLRP3 and pro-IL-1β expression. Betaine inhibits IL-1β production by preventing the induction of caspase-8 activity/activation. (B) The triggering of

dectin-1 promotes Syk-dependent formation of the CARD9-Bcl-10-MALT1 scaffold that induces NF-κB activation and IL-1β transcription; as well as the formation and

activation of a MALT1-caspase-8-ASC complex that mediates the processing of pro-IL-1β. Betaine reduces IL-1β production through suppressing the formation and

activation of MALT1-caspase-8-ASC complex. (C) Caspase-11 is also essential for the NLRP3 inflammasome activation culminating with IL-1β production.

Mechanistically, LPS-activated caspase-11 induces plasma membrane channel pannexin-1 cleavage, leading to K+ efflux and ATP release that interacts with P2X7R

to promote the activation of NLRP3. Interestingly, betaine reduces IL-1β production by increasing HO-1 expression to activate cGMP-PKG signaling pathway, which

ameliorates the pannexin-1 channel activity. HO-1, heme oxygenase-1; PKG, protein kinase G.

macrophages and/or human myeloid cells, the direct interaction
between pro-caspase-11 or pro-caspase-4/5 and LPS by binding
of the CARD motif of pro-caspase-11 or pro-caspase-4/5 and
the lipid A tail of LPS results in non-canonical inflammasome
assembly (Figure not shown) (94–96).Moreover, a non-canonical
pathway involving caspase-11 is also essential for the NLRP3
inflammasome activation culminating with IL-1β production.
For instance, enterohemorrhagic E. coli (EHEC) infection
induces the activation of caspase-11 in NLRP3 inflammasome via
TRIF-dependent pathway in bone marrow-derived macrophages
(93). In LPS-primed bone marrow-derived macrophages, LPS-
activated caspase-11 (functions as a cytosolic LPS sensor) triggers
plasma membrane channel pannexin-1 cleavage, resulting in K+

efflux and ATP release that interacts with P2X7R to promote
the activation of NLRP3. Notablly, the caspase-11/pannexin-
1/NLRP3 is considered as an important mechanism for IL-1β
production (97). Indeed, pannexin-1 channel activity can be
attenuated by NO and heme oxygenase-1 (HO-1) via activating
cGMP-protein kinase G (PKG) signaling pathway (98–100).
Interestingly, betaine directly increases the expression levels of
HO-1, and this effect may inhibit the NLRP3 inflammasome
(101). Taken together, betaine may reduce IL-1β production by
increasing HO-1 expression to activate cGMP-PKG signaling
pathway, which ameliorates the pannexin-1 channel activity

(Figure 2C). Obviously, this potential mechanism needs to be
completely elucidated. The delivered intracellular LPS could
significantly trigger caspase-11 non-canonical inflammasome
activation and IL-1β production in a type I IFN signaling-
independent manner (102). Thus, it is interesting to investigate
whether betaine can influence gene expression induced by type
I IFNs which is responsible for cytoplasmic sensing of LPS by
caspase-11 in the future.

Betaine in Inflammasome-Independent
Sources of IL-1β

As described in aforementioned sections, inflammasome
formation associated with caspase-1 and/or caspase-11 is the
most importantmechanism for the processing of IL-1β. However,
inflammasome-independent ways also affect inflammation and
diseases from the observations (uncompleted abrogation of IL-1β
production) found in deletion of caspase-1/11 in inflammatory
disease models (e.g., osteomyelitis and arthtitis) (103–105).
Cathepsin C/G, elastase, chymase, and proteinase-3 are all
responsible for cleaving pro-IL-1β into activated IL-1β (106, 107).
Mechanistically, in previous mentioned inflammatory diseases,
cathepsin C uniquely modulates inflammasome-independent IL-
1β production and genetic deletion of cathepsin C significantly
lowers IL-1β levels (108). Pharmacological inhibition of elastase

Frontiers in Immunology | www.frontiersin.org 5 November 2018 | Volume 9 | Article 267024

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Xia et al. Betaine and IL-1β

FIGURE 3 | Mechanisms whereby betaine inhibits IL-1β release. (A) The activation of ATP-mediated P2X7R promotes IL-1β and caspase-1 localize to secretory

lysosomes together with the lysosomal enzymes secretion. Mechanistically, the above process is associated with the P2X7R-induced K+ efflux, which enhances the

activation of PLC, thus increasing intracellular Ca2+ concentration, enabling Ca2+-dependent PLA2 activation and promoting exocytosis of the IL-1β-containing

lysosomes. Actually, PLA2 activity has been showed to be regulated by phosphorylation by ERK1/2 and ROS. Betaine inhibits IL-1β release via suppressing

exocytosis of the IL-1β-containing lysosomes through reducing the activity of PLA2 by blocking the ERK1/2 signaling pathway and/or lowering the ROS level.

(B) ATP-induced P2X7R activation promotes the C-terminal domain interacts with Src-K, phosphorylating the subsequent p38 MAPK, inducing acidic A-SMase

delivers from the inner to the outer plasma membrane. Subsequently, A-SMase hydrolyzes sphingomyelin to generate ceramide, altering membrane fluidity, promoting

the formation of plasma membrane blebs and resulting in shedding of IL-1β-containing microvesicles. And microvesicle shedding is preceded by flip of PS to the outer

leaflet of the plasma membrane. Interestingly, A-SMase can be activated by proteolytic cleavage of pro-A-SMase by caspase-8 and caspase-7 or ROS. Betaine

inhibits IL-1β release via blunting the IL-1β-containing microvesicle shedding by blocking the activation of A-SMase through inhibiting caspase-7/8 activation.

(C) Betaine inhibits IL-1β release by restraining the IL-1β-containing microvesicle shedding by reducing ROS level. (D) IL-1β release is also involving exocytosis of

exosomes; besides, MVBs formation and IL-1β and caspase-1 accumulation can be tightly modulated by inflammasome complex. Betaine lowers the release of IL-1β

by inhibiting the formation of MVBs and exosomes via inhibiting the NLRP3 inflammasome activation. (E) Moreover, IL-1β is passively released alongside DAMPs

following plasma membrane rupture. Betaine blunts the passive efflux of IL-1β through its effects on protecting cell membrane from external membrane-perturbing

compounds-induced rupture. PLA2, phospholipase A2; ERK1/2, extracelluar signal-regulated kinase; A-SMase, acidic sphingomyelinase; ROS, reactive oxygen

species; MVBs, multivesicular bodies.

and chymase diminish IL-1β production (105). Also, genetic
and pharmacological inhibition of proteinase-3 has critical role
in mitigating IL-1β-mediated inflammation (107). However, no
lines of evidence (direct or indirect) present the effects of betaine
in inflammasome-independent sources of IL-1β currently.

BETAINE INHIBITS IL-1β RELEASE

Release of mature IL-1β into the extracellular environment is
essential for IL-1β to exert its host defense function in response

to infections and injuries. The mature IL-1β release depends on
the non-canonical pathways of export from the cytosol (109–
111). As lack of conventional signal peptide, IL-1β cannot target
to the conventional ER-Golgi secretory pathway as the same as
other cytokines resulting in the accumulation of IL-1β in cytosol
(109). In this section, we summarize the influences of betaine
in four main possible mechanisms for IL-1β release, including
exocytosis via secretory lysosomes, microvesicle shedding
from plasma membrane, release of exosomes, and passive
efflux across leaky plasma membrane during pyroptotic cell
death.
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FIGURE 4 | Graphical abstract of betaine in IL-1β secretion. Betaine inhibits IL-1β production and release through various pathways, respectively. And it indicates

betaine functions as a dietary adjuvant therapy in diverse inflammatory diseases involving IL-1β secretion.

Betaine in Exocytosis of IL-1β-Containing
Secretory Lysosomes
A study conducted in 1990 presented the evidence that in
activated human monocytes, inhibition of protein transport and
secretion through the ER-Golgi formation of endo-membrane
system has little effect on IL-1β release (109); however, the
IL-1β release is closely related to secretory lysosomes (109).
Indeed, the exocytic process can be stimulated by ATP (released
from dying cells, etc.), and the subsequent migration of exocytic
lysosomes to the plasmamembrane allow the content (e.g., IL-1β)
trapped in lysosomes, to secret into extracellular compartment
(112). Moreover, in human monocytes and mouse macrophages,
once ATP-mediated P2X7R activation, the IL-1β and caspase-1
localize to secretory lysosomes and secrete with the lysosomal

enzymes (113, 114). Mechanistically, the above process is related
to the P2X7R-induced K+ efflux, which leads to the activation of
phosphatidylcholine-specific phospholipase C (PLC) to increase
intracellular Ca2+ concentration, resulting in Ca2+-dependent
phospholipase A2 (PLA2) activation and exocytosis of the IL-
1β-containing lysosomes (115). The aforementioned processes
can be blocked by using the inhibitors of phosphatidylcholine-
specific PLC and/or PLA2. Indeed, in mousemacrophages and/or
rat astrocytes, PLA2 activity has been showed to be regulated
by phosphorylation by ERK1/2 and ROS (116, 117). Based
on previous discussed section, betaine reduces ROS level in
stressed cells; and the ERK1/2 signaling pathway could be shut
off by betaine in adipogenic-differentiated C2C12 cells (118).
Thus, we speculate that betaine may slow down IL-1β release
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via suppressing exocytosis of the IL-1β-containing lysosomes
through reducing the activity of PLA2 by blocking the ERK1/2
signaling pathway (Figure 3A) and/or lowering the ROS level
(Figure 3C). However, this needs experimental validation, and
the exact mechanisms by which betaine regulates the IL-1β
release through inhibiting lysosome exocytosis remain to be
revealed.

Betaine in Shedding of IL-1β-Containing
Plasma Membrane Microvesicles
The in vitro cell models (e.g., THP-1 monocyte, DCs, and
microglia) stimulated by P2X7R have demonstrated that
a mechanism for IL-1β release depends on shedding of
plasma membrane microvesicles (119–121). Mechanistically,
ATP-induced P2X7R activation enhances the C-terminal
domain interaction with src-protein tyrosine kinase (Src-
K) to phosphorylate the subsequent p38 MAP kinase (p38
MAPK), inducing acidic sphingomyelinase (A-SMase) delivery
from the inner to the outer plasma membrane. Subsequently,
A-SMase hydrolyzes sphingomyelin to generate ceramide,
altering membrane fluidity, promoting the formation of
plasma membrane blebs and resulting in shedding of IL-1β-
containing microvesicles (122). Shed microvesicles possess
many phospholipids and proteins [e.g., phosphatidylserine
(PS), P2X7R, pro-caspase-1, pro-IL-1β, and IL-1β]. Microvesicle
shedding is preceded by flip of PS to the outer leaflet of the plasma
membrane; however, the exact mechanism by which IL-1β
effluxes out of the microvesicles is still obscure. Interestingly,
betaine takes part in the above mentioned processes. A-SMase
can be activated by proteolytic cleavage of pro-A-SMase by
caspase-8 and caspase-7 (123) or ROS (124, 125). Based on the
above discussed section, betaine significantly blocks caspase-8
activation and/or reduces caspase-8 activity (59, 82, 83); and
attenuates caspase-7 activation (126), and lowers ROS level.
Therefore, betaine seems to inhibit IL-1β release via blunting
the IL-1β-containing microvesicle shedding by blocking the
activation of A-SMase through inhibiting caspase-7/8 activation
(Figure 3B) and/or reducing ROS level (Figure 3C). However,
these findings are mainly found in non-immune cells (e.g., PC12
cells) and the possible mechanisms whereby betaine targets
microvesicles shed from innate immune cells are not currently
available.

Betaine in Exocytosis of IL-1β-Containing
Exosomes
Exosomes is the fusion of multivesicular bodies (MVBs) with
the cell plasma membrane. A non-canonical pathway for IL-1β
release involving exocytosis of exosomes is also found in P2X7R-
stimulated macrophages, DCs and B-lymphocytes (127); and
pro-IL-1β, pro-caspase-1, bioactive caspase-1, IL-1β, MHCI,
and MHCII [a feature of exosomes originated from antigen
presenting cells (APCs)] do exist in the exosomes secreted from
these cells (127). Interestingly, a study reported that the release
of IL-1β and MHCII can be significantly blocked in ASC−/−

and NLRP3−/− mice (128). Thus, it seems that MVBs formation
and IL-1β and caspase-1 accumulation can be tightly modulated

by inflammasome complex. Notably, the aforementioned section
indicate that betaine inhibits NLRP3 inflammasome activation,
thus we suggest that betaine may lower the release of IL-1β by
inhibiting the formation of MVBs and exosomes, though the
specific mechanisms still remain to be identified (Figure 3D).

Betaine in Passive Efflux of IL-1β Across
Hyperpermeable Plasma Membrane During
Pyroptotic Cell Death
IL-1β release is closely related to a loss in membrane
integrity during pyroptotic cell death (129–132). Due to the
caspase-1/11 drives cell apoptosis and/or pyroptosis and IL-
1β cleavage, IL-1β is passively released alongside DAMPs
following plasma membrane rupture (133–135). Indeed, ATP-
mediated IL-1β release but not its processing can be absolutely
blocked by punicalagin which functions as an inhibitor
to limit plasma membrane damage induced by external
membrane-perturbing compounds (132). Likewise, betaine is
essential for maintaining cell membrane integrity and serves
as an osmolyte that regulates cell volume and protects cells
from environmental stresses (10, 12), and inhibits various
hyperosmotic-induced apoptosis-related proteins (e.g., caspase-
3/8/9) activity in MDCK cells (83). Therefore, betaine may blunt
the passive efflux of IL-1β through its effects on protecting cell
membrane from external membrane-perturbing compounds-
induced rupture, though the exact mechanism is still not clear
(Figure 3E).

CONCLUDING REMARKS

IL-1β plays overarching roles in stimulation of innate immune
system and inflammatory processes/diseases (136, 137).
Various nutrients have proven to be effective in modulation
of inflammation and inflammatory diseases by lowering IL-1β
secretion (138). Betaine is a stable and nontoxic natural nutrient
and has anti-inflammatory effects (16). Mechanistically, betaine
inhibits IL-1β production through various pathways, such as
NF-κB, canonical NLRP3, and caspase-8/11 (Figures 1, 2).
Betaine also inhibits IL-1β release via pathways including
ERK1/2/PLA2, caspase-8/A-SMase, MVBs and exosomes
(Figure 3). Therefore, it is meaningful to develop betaine as
a dietary adjuvant therapy in diverse inflammatory diseases
involving in IL-1β secretion (Figure 4). Inflammasome-
independent pathway also affects inflammatory process and
inflammatory diseases; thus, it is worthy of investigating the
effects of betaine in inflammasome-independent sources of
IL-1β. Additionally, the P2X7R is responsible for ATP-mediated
mature IL-1β release (139); however, whether betaine affects
IL-1β release by influencing P2X7R activity remains to be
revealed. A study showed that caspase-11 controls IL-1β release
through degradation of transient receptor potential channel
(TRPC) 1 (140); nevertheless, no current relation between
betaine and TRPC1 has been found. Given betaine alters
gene expression/function via epigenetic modifications [e.g.,
miRNAs and DNA methylation (141)], therefore, it is interesting
to further study the involvement of epigenetic modification
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in the effects of betaine in inhibiting IL-1β production
and release.
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Methionine presents a pivotal role in the regulation of many cellular events with crucial

impact on the immune system, such as in processes involved in the control of

inflammation and polyamines synthesis. Accordingly, the present study aimed to assess

the modulatory effects of dietary methionine on the European seabass (Dicentrarchus

labrax) immune status, inflammatory response and disease resistance to Photobacterium

damselae subsp. piscicida (Phdp). For this purpose, fish were randomly distributed

in three independent groups (three replicates per group) and each was fed the

corresponding diet: a control diet (CTRL) formulated to meet the established amino

acid requirements for the species; a diet supplemented with methionine at 0.5%

of feed weight relative to the CTRL diet (8.2% of methionine concentration above

CTRL); and one supplemented with methionine at 1% of feed weight to the CTRL

diet (11.8% of methionine concentration above CTRL). To evaluate the immune status

of fish fed with each of the diets before being submitted to bacterial infection fish

were sampled from each group at 2 and 4 weeks after the beginning of feeding.

Non-sampled fish were injected intraperitoneally with Phdp (5 × 103 cfu/fish) at 4 weeks

after initiation of feeding and the inflammatory response (at 4, 24, and 48 h post-infection)

and survival (lasting 21 days post-infection) evaluated. Fish hematological profile,

peripheral cell dynamics, plasma humoral immune parameters, leucocytemigration to the

inflammatory focus and head-kidney gene expression were evaluated. Results show that

methionine dietary supplementation improves seabass cellular immune status without

evidence of activation of pro-inflammatory mechanisms. Additionally, the observed

enhanced immune status provided by methionine supplementation translated into an

improved immune response to infection, as higher cellular differentiation/proliferation and

recruitment to the inflammatory focus, improved plasma humoral immune parameters

and modulation of key immune-related genes was observed. Lastly, after a bacterial

challenge, higher survival was observed in fish fed supplemented diets, ultimately

corroborating the positive effect of methionine administration for 4 weeks in the cellular

immune status.
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INTRODUCTION

A dependency of the immune system upon the availability
of amino acids (AA) has been associated to their role as
signaling molecules essential for cellular function as reviewed
in (1–4), but also as methyl group donors and precursors of
physiological important molecules, such as hormones, bioactive
amines, enzymes, neurotransmitters and nitric oxide. Several
studies have reported that AA deficiency reduces their plasma
concentration, ultimately compromising the immune system
repertoire (5, 6). In fact, AA requirementsmay increase as a direct
consequence of metabolic changes associated with inflammation
and infection (7). Methionine is an example of an indispensable
AA with a recognized role in the immune system and its dietary
supplementation proved to enhance mammalian host immunity
(8). By generating S-adenosylmethionine (SAM), methionine is
a methyl group donor that participates in the methylation of
DNA, ultimately influencing gene expression (8). Additionally,
methionine takes part on the polyamine (i.e., spermidine and
spermine) biosynthesis through the aminopropylation pathway,
where decarboxylated SAM successively adds aminopropane
to the forming polyamines, required for cell proliferation
(9). During the transsulfuration pathway, methionine is also
precursor of cysteine, one of the three glutathione (GSH)
elements, a molecule involved in scavenging free radicals, hence
protecting cells from oxidative stress during inflammation (1).
Methionine also plays a pivotal role in processes responsible
for the control of inflammation and apoptosis, such as
protein ubiquitination and autophagy (10). By inducing SAM-
mediated methylation, methionine has been shown to inhibit
autophagy and promote growth in yeast (11). In fact, methionine
and its downstream metabolite SAM are responsible for
autophagy modulation (12). As a result, and knowing that
the ideal inflammatory response is rapid, yet specific and
self-limiting (13), methionine presents an important potential
as immunomodulator during infection. Still, further in-depth
studies are needed to understand the immune mechanisms
that this particular AA is activating before and after infection
episodes.

Methionine dietary immunomodulation also adds a practical
perspective to modern animal production. For instance, the
importance of methionine as a nutraceutical supplement to
control enteric processes and oxidative stress in mammals has
been recently reviewed (14). Moreover, Bunchasak (15) and
Jankowski et al. (16) reviewed the many beneficial effects of
dietary methionine (and other sulfur-containig AA) on poultry
immune mechanisms and its use on poultry industry.

However, the role of methionine as an immunomodulatory
additive in aquafeeds still needs to be explored so to improve
sustainability and fish welfare in fish farming. Recent studies
showed that methionine supplementation increase European
seabass (Dicentrarchus labrax) cellular immune status as well
as immune response to an inflammatory insult with UV-
inactivated Photobacterium damselae subsp. piscicida (Phdp)
(17). An increased peripheral leucocytes concentration was
also observed in juvenile Jian carp (Cyprinus carpio var.
Jian) after being fed graded levels of methionine hydroxy

analog, a synthetic methionine source, resulting in increased
survival rate and stronger humoral and cellular response after
injection with Aeromonas hydrophila (18). Likewise, Tang and
co-workers (19) observed an increase in plasma lysozyme
activity, complement factors and IgM of Jian carp given dietary
methionine supplementation during 8 weeks. Therefore, dietary
methionine also seems to be an important nutritional additive
for fish health management. The main goal of the present
study was to gather evidence on the specific role of methionine
orchestrating the European seabass immune response before and
after a Phdp infection.

MATERIALS AND METHODS

Experimental Design
European seabass juveniles were acquired to a certificated
hatchery (MARESA, Spain) and maintained in quarantine for 2
weeks at the Instituto de Investigação e Inovação em Saúde (i3S;
University of Porto, Portugal) fish holding facilities under the
culture conditions described below. After this period, fish were
weighed (Table 4) and randomly distributed into 9 tanks (200 l;
3 groups with 3 replicates of 50 fish each) of a recirculation
seawater system in which O2 saturation (7.38 ± 0.01 mg/l),
salinity (35 ppt) and photoperiod (10 h dark: 14 h light) were
kept unchanged throughout the experiment (Figure 1). The
temperature was maintained at 20 ± 0.5◦C until the time the
bacterial infection was carried out (4 weeks after feeding with the
test diets), where it was increased to 24 ± 0.5◦C until de end of
the experiment so as to mimic the temperature increase which
typically triggers piscine outbreaks. Ammonium and nitrite levels
were kept below 0.025 and 0.3mg l−1, respectively.

After 1 week, during which fish were all fed with the
commercial diet with which they were being fed previously,
the experiment was started by feeding of each group with the
respective feed 3 times a day at an average ration of 2.5% biomass
per day (daily adjusted ± 0.5% based on the assessment of
the non-consumed feed): (i) one group was fed a control diet
(CTRL); (ii) another group was fed a diet supplemented with
0.5% methionine of feed weight to the CTRL diet (MET0.5); and
finally, (iii) another group was fed a diet supplemented with 1%
methionine of feed weight to the CTRL diet (MET1).

At 2 and 4 weeks after feeding the test diets, 36 fish from
each group (12 per replicate) were euthanized by an overdose
of anesthetic (2-phenoxyethanol; Merck, ref. 807291, Germany),
weighed, and collected blood and head kidney samples. Also at 4
weeks, fish that were not sampled (78 per group, 26 per replicate)
were infected intraperitoneally (i.p.) with 100 µl of a Phdp
suspension (5 × 104 cfu ml−1). Of these, 60 fish per group (20
per replicate) were placed back in their tanks, feed replenished
according to the previous regimen and mortality recorded for 3
weeks and the relative percentage survival (RPS) calculated. After
euthanasia of the moribund fish, the animals were weighed and
the presence of Phdp in the head-kidney checked by growing
on TSA-2 plates. The remaining infected fish (6 per group, 3
per replicate) were re-allocated in a similar recirculation system
(Temperature: 24 ± 0.5◦C; Salinity: 35 ppt; Photoperiod: 10 h
dark: 14 h light) according to dietary treatment and 6 fish per
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FIGURE 1 | Experimental design.

group were euthanized at 4, 24, and 48 h post-infection (time-
course) and blood, head-kidney and peritoneal exudates sampled
from each fish, to investigate the immunomodulatory effect of the
diets during the initial inflammatory response to Phdp.

The experiments were approved by the i3S Animal Welfare
Committee and carried out in a registered installation (license
number 0421/000/000/2018). Experiments were performed by
trained scientists in full compliance with national rules and
following the European Directive 2010/63/EU of the European
Parliament and the European Union Council on the protection
of animals used for scientific purposes.

Experimental Diets
The 3 diets (Table 1) were formulated and manufactured by
Sparos Lda (Olhão, Portugal). The CTRL diet was formulated
to include an indispensable AA profile meeting the ideal pattern
estimated for European seabass (20). According to results from
previsous works (17, 21) two other diets were formulated (MET
0.5 and MET 1, respectively) to be identical to the CTRL but
supplemented with DL-Methionine at 0.5 or 1% of feed weight, at
the expenses of wheat gluten and wheat meal. After AA analysis
the percentage of methionine in relation to the total AA amount
was of 2.6% for CTRL and 2.8 and 3.2% for MET 0.5 and
MET 1, respectively, presenting these diets 8.2 and 11.8% more
methionine than CTRL.

Main ingredients were ground (below 250µm) in a
micropulverizer hammer mill (SH1; Hosokawa Micron,
B.V., Doetinchem, The Netherlands). Powder ingredients and
oils were then mixed according to the target formulation in a
paddle mixer (RM90; Mainca, S.L., Granollers, Spain). All diets
were manufactured by temperature-controlled extrusion (pellet
sizes: 1.5mm) by means of a low-shear extruder (P55; Italplast,
S.r.l., Parma, Italy). Upon extrusion, all feed batches were dried

in a convection oven (OP 750-UF; LTE Scientifics, Oldham, UK)
for 4 h at 45◦C. Formulation of experimental diets is presented in
Table 1. Proximate composition analysis was conducted by the
following methods: dry matter, by drying at 105◦C for 24 h; ash,
by combustion at 550◦C for 12 h; crude protein (N × 6.25), by
a flash combustion technique followed by gas chromatographic
separation and thermal conductivity detection (LECO FP428);
fat, after petroleum ether extraction, by the Soxhlet method; total
phosphorus, according to the ISO/DIS 6491 method, using the
vanado-molybdate reagent; gross energy, in an adiabatic bomb
calorimeter (IKA).

Diets were analyzed for total AA content. Diet samples were
hydrolysed in 6M HCl at 116◦C for 2 h in nitrogen-flushed glass
vials. Samples were then pre-column derivatised with Waters
AccQ Fluor Reagent (6-aminoquinolyl-N-hydroxysuccinimidyl
carbamate) using the AccQ Tag method (Waters, USA). Analyses
were done by ultra-high performance liquid chromatography
(UPLC) in a Waters reversed-phase AA analysis system, using
norvaline as an internal standard. During acid hydrolysis
asparagine is converted to aspartate and glutamine to glutamate,
so the reported values for these AA represent the sum of the
respective amine and acid. Since it is partially destroyed by acid
hydrolysis, tryptophan was not determined. The resultant peaks
were analyzed with EMPOWER software (Waters, USA). The AA
profile of the experimental diets and the relative percentage of
methionine supplementation is presented in Table 2.

Collection of Blood, Head Kidney, and
Peritoneal Exudates
Blood Collection
Blood was collected from the caudal vein using heparinized
syringes one part being used for hematological analysis and the
remainder centrifuged at 10,000 × g 10min at 4◦C and the
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TABLE 1 | Ingredient and chemical composition of the experimental diets.

Ingredients CTRL MET 0.5 MET 1

%

Fishmeal LT70 (South

American)1
11.00 11.00 11.00

Fishmeal 602 17.00 17.00 17.00

Soy protein concentrate3 12.00 12.00 12.00

Wheat gluten4 8.00 7.70 7.40

Corn glúten5 4.00 4.00 4.00

Soybean meal 486 14.00 14.00 14.00

Rapeseed meal7 6.00 6.00 6.00

Wheat meal8 10.00 9.80 9.60

Fish oil9 8.50 8.50 8.50

Rapeseed oil10 5.00 5.00 5.00

Vitamin and mineral

premix11
1.00 1.00 1.00

Brewer’s yeast12 3.00 3.00 3.00

Soy lecithin13 0.50 0.50 0.50

DL-Methionine14 − 0.50 1.00

Total 100 100 100

Pellet size, mm 1.50 1.50 1.50

PROXIMATE ANALYSES (% DRY WEIGHT)

Dry matter (g/100 g) 5.20 5.54 5.09

Protein (g/100 g) 45.83 45.62 46.25

Fat (g/100 g) 18.80 19.00 18.10

Ash (g/100 g) 7.74 7.58 7.81

Energy (kJ/g) 22.48 22.70 22.55

1LT70 steam dried, 70.7% crude protein (CP), 8.1% crude fat (CF), Pesquera Diamante,

Peru.
2COFACO 60: 62.3% CP, 8.4% CF, COFACO, Portugal.
3Soycomil P: 63% CP, 0.8% CF, ADM, The Netherlands.
4VITAL: 83.7% CP, 1.6% CF, ROQUETTE Frères, France.
5Corn gluten meal: 61% CP, 6% CF, COPAM, Portugal.
6Dehulled solvent extracted soybean meal: 47% CP, 2.6% CF, CARGILL, Spain.
7Defatted rapeseed meal: 34% CP, 2% CF, Premix Lda, Portugal.
8Wheat meal: 10.2% CP; 1.2% CF, Casa Lanchinha, Portugal.
9SAVINOR UTS, Portugal.
10Henry Lamotte Oils GmbH, Germany.
1120 PREMIX Lda, Portugal: Vitamins (IU or mg/kg diet): DL-alpha tocopherol

acetate, 100mg; sodium menadione bisulphate, 25mg; retinyl acetate, 20,000 IU;

DL-cholecalciferol, 2,000 IU; thiamin, 30mg; riboflavin, 30mg; pyridoxine, 20mg;

cyanocobalamin, 0.1mg; nicotinic acid, 200mg; folic acid, 15mg; ascorbic acid, 500mg;

inositol, 500mg; biotin, 3mg; calcium panthotenate, 100mg; choline chloride, 1,000mg,

betaine, 500mg. Minerals (g or mg/kg diet): copper sulfate, 9mg; ferric sulfate, 6mg;

potassium iodide, 0.5mg; manganese oxide, 9.6mg; sodium selenite, 0.01mg; zinc

sulfate,7.5mg; sodium chloride, 400mg; excipient wheat middlings.
12 PREMIX Lda, Portugal.
13 Lecico P700IPM, LECICO GmbH, Germany.
14 DL-Methionine for Aquaculture: 99% Methionine, Evonik Nutrition & Care GmbH,

Germany.

plasma collected, frozen on dry ice and stored at −80◦C for
evaluating innate humoral immune response parameters. Of the
fish sampled at 2 (36 fish per group; 12 per replicate) and at 4 (36
fish per group; 12 per replicate) weeks, 9 fish from each group
(3 per replicate) were used per time point for the hematological
analysis. For the assessment of innate humoral immune response,

TABLE 2 | Amino acid composition of experimental diets.

Amino acids CTRL MET 0.5 MET 1

mg AA/g DW diet

Methionine 10.8 11.8 13.2

Arginine 39.5 39.6 39.3

Histidine 11.9 11.9 11.7

Lysine 27.9 27.8 28.4

Threonine 17.4 16.8 17.5

Isoleucine 15.9 16.1 15.8

Leucine 32.3 32.5 32.3

Valine 20.1 21.0 20.3

Phenylalanine 22.4 22.7 22.4

Cysteine 3.1 3.1 3.0

Tyrosine 16.0 16.0 15.9

Aspartic acid + Asparagine 32.2 32.6 32.5

Glutamic acid + Glutamine 70.6 71.0 70.3

Alanine 22.0 21.3 22.0

Glycine 23.0 22.4 23.4

Proline 26.7 27.4 26.4

Serine 17.8 17.3 16.9

Taurine 1.2 1.2 1.2

Tryptophan was not analyzed.

plasma from all sampled fish were used, although the plasma was
pooled from every 3 individuals (12 pools per treatment).

Of the fish sampled at 4, 24, and 48 h after bacterial infection (6
fish per group; 3 per replicate) the hematological analysis and the
evaluation of the innate humoral immune response parameters
were performed for each individual.

Head-Kidney Collection
Head-kidneys were also harvested from the 9 fish sampled at 2
and 4 weeks and used for blood collection and hematological
analysis. Likewise, the head-kidneys of all fish sampled at 4,
24, and 48 h after infection were collected. After harvesting, the
kidneys were immediately frozen on dry ice and stored at−80◦C
until processed for gene expression analysis.

Peritoneal Exudates Collection
Peritoneal cells were only collected from fish sampled at 4, 24, and
48 h post-infection (time-course), according to the procedure
described by Costas et al. (22). Briefly, following fish anesthesia
and bleeding by the caudal vessel, 5ml of cold Hank’s balanced
salt solution (HBSS) supplemented with 30 units heparin ml−1

was injected into the peritoneal cavity. The peritoneal area was
then slightly massaged in order to disperse peritoneal cells in
the injected HBSS. The i.p. injected HBSS containing suspended
cells were collected and total peritoneal leucocytes counts were
performed with a hemocytometer.

Analysis of Hematological Parameters
The hematological profile was conducted according to Machado
et al. (17) and comprised the total white (WBC) and
red (RBC) blood cells counts, as well as haematocrit (Ht)
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and hemoglobin (Hb; SPINREACT kit, ref. 1001230, Spain)
assessments. Afterwards, the mean corpuscular volume (MCV),
mean corpuscular hemoglobin (MCH) and mean corpuscular
hemoglobin concentration (MCHC) were also calculated (17). Ht
was not assessed in fish sampled at 4, 24, and 48 h post-infection.

Immediately after blood collection, blood smears were
performed from homogenized blood and air dried. After fixation
with formol-ethanol (10 of 37% formaldehyde in absolute
ethanol) detection of peroxidase was carried out as described
by Afonso et al. (23) in order to facilitate identification of
neutrophils. Blood smears were then stained with Wright’s stain
(Haemacolor; Merck) Slides were examined (1,000×), and at
least 200 leucocytes were counted and classified as thrombocytes,
lymphocytes, monocytes and neutrophils. Absolute value (×104

ml−1) of each cell type was calculated according to the total blood
WBC count.

Analysis of Innate Immune Response
Parameters
Lysozyme Activity
Lysozyme activity was measured using a turbidimetric assay
as described by Costas et al. (22). A solution of Micrococcus
lysodeikticus (0.5mg ml−1, 0.05M sodium phosphate buffer, pH
6.2) was prepared. In triplicates, 15 µl of plasma was added to a
microplate and 250 µl of the above suspension were pipetted to
give a final volume of 265µl. The reaction was carried out at 25◦C
and the absorbance (450 nm) was measured after 0.5 and 4.5min
in a Synergy HTmicroplate reader. Serial diluted, lyophilized hen
egg white lysozyme (Sigma) in sodium phosphate buffer (0.05M,
pH 6.2), was used to develop a standard curve. The amount of
lysozyme in the sample was calculated using the formula of the
standard curve.

Peroxidase Activity
Total peroxidase activity in plasma was measured following the
procedure described by Quade and Roth (24). In triplicates, 15
µl of plasma was diluted with 135 µl of HBSS without Ca+2

and Mg+2 in flat-bottomed 96-well plates. Then, 50 µl of 20mM
3,3′,5,5′-tetramethylbenzidine hydrochloride (TMB; Sigma) and
50 µl of 5mM H2O2 were added. After 2min, the color-change
reaction was stopped by adding 50 µl of 2M sulphuric acid
and the optical density was read at 450 nm in a Synergy HT
microplate reader. Wells without plasma were used as blanks.
The peroxidase activity (units ml−1 plasma) was determined
by defining one unit of peroxidase as that which produces an
absorbance change of 1 OD.

Bactericidal Activity
The bactericidal activity assay was performed using Phdp strain
PP3. Bacteria were cultured in tryptic soy broth (TSB) (Difco
Laboratories) supplemented with NaCl to a final concentration
of 2% (w/v) (TSB-2) and exponentially growing bacteria were
resuspended in sterile HBSS and adjusted to 1 × 106 cfu
ml−1. Plating serial dilutions of the suspensions onto TSA-2
plates and counting the number of cfu following incubation at
22◦C confirmed bacterial concentration of the inoculum. Plasma

bactericidal activity was then determined following the method
described by Graham and Secombes (25) withmodifications (17).

Briefly, 20 µl of plasma were added to duplicate wells of a
U-shaped 96-well plate. HBSS was added to some wells instead
of plasma and served as positive control. To each well, 20 µl of
Phdp (1× 106 cfu ml−1) were added and the plate was incubated
for 2.5 h at 25◦C. 25 µl of 3-(4, 5 dimethyl-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT, 1mg ml−1; Sigma) were then added
to each well and incubated for 10min at 25◦C to allow the
formation of formazan. Plates were then centrifuged at 2,000× g
for 10min and the precipitate was dissolved in 200µl of dimethyl
sulfoxide (Sigma). The absorbance of the dissolved formazan
resulting from the reduction of MTT in direct proportion to
the number of viable bacteria present, was measured at 560 nm.
Viable bacteria was expressed as percentage, calculated from the
difference between the dissolved formazan in samples and the
one formed in the positive controls (100%). The bactericidal
activity was calculated as the percentage of non-viable bacteria.

Alternative Complement Pathway Activity
Alternative complement pathway activity (ACH50) was
evaluated as described by Sunyer and Tort (26). Three buffers
were previously prepared: GVB (Isotonic veronal buffered
saline), pH 7.3, containing 0.1% gelatin; EDTA-GVB, as previous
one but containing 20mM EDTA; and Mg-EGTA-GVB, which
is GVB with 10mM Mg2+ and 10mM EGTA. Rabbit red
blood cells (RaRBC; Probiologica Lda., Portugal) were washed
four times in GVB and resuspended in the same buffer to a
concentration of 2.5 × 108 cells ml−1. Then, 10 µl of RaRBC
suspension were added to 40 µl of serially diluted plasma in
Mg-EGTA-GVB buffer in triplicates. Following an incubation
time of 100min at room temperature with continuous shaking,
the reaction was stopped by adding 150 µl of cold EDTA-GVB.
Samples were then centrifuged for 2.5min at 120 × g and the
extent of haemolysis was estimated by measuring the optical
density of the supernatant at 414 nm. The ACH50 units were
defined as the concentration of plasma inducing 50% haemolysis
of RaRBC.

Gene Expression Analysis
Total RNA isolation was conducted with NZY Total
RNA Isolation kit (NZYTech, Lisbon, Portugal) following
manufacturer’s specifications. First-strand cDNAwas synthesized
with NZY First-Strand cDNA Synthesis Kit (NZYTech, Lisbon,
Portugal). Quantitative PCR assays were performed with an
Eppendorf Mastercycle ep realplex, using 1 µl of diluted cDNA
(1:5 dilution) mixed with 10 µl of NZYSpeedy qPCR Master Mix
and 0.4 µl (10µM) of each specific primer in a final volume of
20 µl. cDNA amplification was carried out with specific primers
(Table S1) for genes that have been selected for their involvement
in immune responses and methionine metabolism (Table 3).
Primers were designed with NCBI Primer Blast Tool according to
known qPCR restrictions (amplicon size, Tm difference between
primers, GC content and self-dimer or cross-dimer formation).
Sequences encoding European seabass tlr2, stat 3, mtor, c3zeta,
ccr3, mcsf1r1, and cd8β were identified after carrying out a
search in the databases v1.0c seabass genome (27) and designed
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TABLE 3 | Immune-related genes analyzed by real-time PCR.

Gene Acronym Gene Acronym

40s Ribossomal protein

(House-Keeping)

40s Cluster of differentiation

8 beta

cd8β

Interleukin 1 β il1β Toll-like receptor 9 tlr9

Interleukin 8 il8 Toll-like receptor 2 tlr2

Interleukin 6 il6 Macrophage

colony-stimulating

factor 1 receptor 1

mcsf1r1

Transforming growth

factor-beta

tgfβ Matrix-

metalloproteinase

9

mmp9

Tumor necrosis

factor-alpha

tnfα Complement factor 3 c3

Cyclo-oxygenase 2 cox 2 Mechanistic target of

rapamycin

mtor

Interleukin 10 il10 Caspase 3 casp 3

C-C chemokine

receptor type 3

ccr3 Caspase 1 casp 1

Chemokine CXC

receptor 4

cxcr4 Signal transducers and

activators of

transcription

stat 3

Superoxide dismutase sod Melanocortin 2

receptor

mc2r

Gutathione peroxidase gpx Heat shock protein 70 hsp70

Hepcidin hep Heat shock protein 90 hsp90

Nitric oxide-inducible

gene protein

noxin Spermine/spermidine N

(1)-acetyltransferase

sat 1

Major histocompatibility

complex II antigen beta

chain

mhc II Adenosylmethionine

decarboxylase 1

amd 1

Cluster of differentiation

3 zeta chain

c3zeta

as previously described. S was used to analyse the efficiency of
the primer pairs by calculating the slope of the regression line of
the cycle thresholds (Ct) vs. the relative concentration of cDNA.

Accession number, efficiency values, annealing temperature,
product length, and primers sequences are presented in Table S1.
Melting curve analysis was also performed to verify that no
primer dimers were amplified. The standard cycling conditions
were 94◦C initial denaturation for 2min, followed by 40 cycles
of 94◦C denaturation for 30 s, primer annealing temperature
(Table S1) for 30 s and 72◦C extension for 30 s. All reactions were
carried out as technical duplicates. The expression of the target
genes was normalized using the expression of European seabass
ribosome 40s subunit (40s).

Analysis of the Peritoneal Leukocyte
Populations
Peritoneal cells were collected in fish from the time-course trial,
according to the procedure described in the Peritoneal Exudates
Collection section. The i.p. injected HBSS containing suspended
cells was collected and total peritoneal leucocytes counts were
performed with a haemocytometer. Cytospin preparations were
then made with a THARMAC Cellspin apparatus and stained
as indicated above for blood smears. Lymphocytes, macrophages

and neutrophils in the peritoneal exudates were differentially
counted, and the percentage of each cell type was established after
counting a minimum of 200 cells per slide. Concentration (×104

ml−1) of each leucocyte type was also calculated.

Bacterial Challenge
For the bacterial challenge, Phdp, strain PP3, isolated from
yellowtail (Seriola quinqueradiata; Japan) by Dr Andrew C.
Barnes (Marine Laboratory, Aberdeen, UK), was used. Bacteria
were routinely cultured at 22◦C in tryptic soy broth (TSB)
or tryptic soy agar (TSA) (both from Difco Laboratories)
supplemented with NaCl to a final concentration of 2% (w/v)
(TSB-2 and TSA-2, respectively) and stored at −80◦C in
TSB-2 supplemented with 15% (v/v) glycerol. To prepare the
inoculum for injection into the fish peritoneal cavities, 100 µL
of stocked bacteria were cultured overnight at 22◦C on TSA-2.
Exponentially growing bacteria were collected and re-suspended
in sterile TSB-2 and adjusted to a final concentration of 5 × 104

colony forming units (cfu) ml−1, as confirmed by plating the
resulting cultures on TSA-2 plates and counting of cfu, and each
fish inoculated intraperitoneally with 100µl (5× 103 cfu per fish)
of the bacterial suspension.

Data Analysis
All results are expressed as mean ± standard deviation (mean
± SD). Data was analyzed for normality and homogeneity
of variance and, when necessary, transformed before being
treated statistically. All data expressed as percentage were arcsine
transformed (28). Data was analyzed by two-way ANOVA,
with time and diet as factors and followed by Tukey post-hoc
test to identify differences in the experimental treatments. All
statistical analyses were performed using the computer package
STATISTICA 12 for WINDOWS. The level of significance used
was P ≤ 0.05 for all statistical tests. Sampling point 4 weeks
was used as time 0 h during time-course data analysis, as they
represent unstimulated animal prior to infection. The Chi-square
test was performed to identify differences on the cumulative
mortality among dietary treatment.

RESULTS

Immune Status
Fish Growth Performance
Thirty six fish per group (12/replicate) were sampled and
weighted at 2 and 4 weeks after feeding with the experimental
diets in order to evaluate the effect of the diets on the growth
performance (Table 4). Within each group, no differences were
found between replicate at any sampling point and between
experimental diets in any of the growth parameters evaluated.

Hematology and Peripheral Leucocyte Responses
The blood of 9 fish from each group (3 per replicate), sampled
at 2 and 4 weeks, was used for evaluation of hematological
parameters. The hematological profile showed few changes
throughout the 2–4 weeks period, with no alteration in the
haematocrit. An increase of red blood cells (RBC) numbers
from 2 to 4 weeks was observed within each dietary treatment,
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TABLE 4 | Data on the initial weight and growth performance of European seabass sampled at 2 and 4 weeks after being fed three different diets.

Dietary treatments

Parameters CTRL MET 0.5 MET 1

2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks

Initial weight (g) 8.75 ± 1.02 8.37 ± 0.46 8.35 ± 0.48

Final weight (g) 9.74 ± 0.58* 11.43 ± 0.33 9.48 ± 0.05* 11.37 ± 0.85 9.74 ± 0.29* 11.57 ± 0.42

Weight gain1 (%) 14.74 ± 11.32* 34.74 ± 11.68 15.67 ± 12.77* 38.42 ± 12.75 13.16 ± 5.92* 42.30 ± 10.52

RGR2 (% day−1) 0.95 ± 0.73 1.06 ± 0.32 0.90 ± 0.38 1.09 ± 0.43 1.11 ± 0.26 1.17 ± 0.11

Values are presented as means ± SD (n = 36). P-values from two-way ANOVA (p ≤ 0.05). If interaction was significant, Tukey post-hoc test was used to identify differences in the

experimental treatments.
1 Weight gain = (final weight × 100)/initial weight.
2 Relative Growth Rate = (e ((ln (final weight) – ln (initial weight))/days−1 ) – 1) × 100.

Asterisk stands for significant differences between times for the same diet.

TABLE 5 | Haematocrit, hemoglobin, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red

blood cells (RBC), and white blood cells (WBC) in European seabass fed dietary treatments during 2 and 4 weeks.

Parameters Dietary treatments

CTRL MET 0.5 MET 1

2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks

Haematocrit (%) 21.50 ± 2.60 22.63 ± 4.55 20.63 ± 3.12 22.50 ± 4.56 22.56 ± 2.17 20.43 ± 4.81

Hemoglobin (g dl) 1.09 ± 0.20 1.40 ± 0.68 1.11 ± 0.18 1.23 ± 0.40 1.16 ± 0.16 1.18 ± 0.49

MCV (µm3 ) 190.57 ± 67.55 122.44 ± 7.64 159.77 ± 16.44 126.48 ± 49.00 156.15 ± 19.13 106.09 ± 8.71

MCH (pg cell−1 ) 9.37 ± 2.34 8.64 ± 2.47 8.50 ± 1.36 6.72 ± 2.73 8.02 ± 0.98 6.21 ± 2.53

MCHC (g 100 ml−1) 5.33 ± 0.85 5.56 ± 1.94 5.49 ± 0.48 5.66 ± 1.74 5.15 ± 0.40 6.59 ± 2.44

RBC (×106 µl−1) 1.21 ± 0.29 1.83 ± 0.34 1.32 ± 0.19 1.92 ± 0.42 1.46 ± 0.14 1.95 ± 0.39

WBC (×104 µl−1) 7.83 ± 1.71 4.67 ± 0.80 9.09 ± 3.28 5.73 ± 0.65 9.66 ± 1.59 6.40 ± 1.45

Two-way ANOVA

Parameters Diet

Time Diet Time × Diet CTRL MET 0.5 MET 1

Haematocrit Ns ns ns – – –

Hemoglobin ns ns ns – – –

MCV <0.001 ns ns – – –

MCH 0.032 ns ns – – –

MCHC ns ns ns – – –

RBC <0.001 ns ns – – –

WBC <0.001 0.032 ns B AB A

Values are presented as means ± SD (n = 9). P-values from two-way ANOVA (p ≤ 0.05). If interaction was significant, Tukey post-hoc test was used to identify differences in the

experimental treatments. Different capital letters indicate differences among diets regardless time.

although the hemoglobin (Hb) levels have remained unaffected.
With the exception of the mean corpuscular hemoglobin
concentration (MCHC), which remain unchanged between 2
and 4 weeks, all other parameters analyzed (mean corpuscular
volume, MCV; mean corpuscular hemoglobin, MCH; white
blood cells, WBC) decreased from 2 to 4 weeks in each
diet.

Among the different diets, and despite decreasing from 2 to 4
weeks, the WBC number was increased in the diet supplemented
with 1% methionine when compared to the values observed at
equivalent times for the CTRL diet (Table 5), being this increase
due to a greater number of neutrophils (Table 6). In fact, with

respect to the concentration of each type of leukocyte analyzed
in the blood, the only difference detected between the diets was
a higher number of neutrophils in the blood of the fish fed with
the MET 1 diet compared to those fed with the diet CTRL and
MET 0.5, but no differences were observed between 2 and 4 weeks
within each group. However, for thrombocytes, lymphocytes and
monocytes, although they did not vary among the fish fed the
different diets, there was a decrease in their number from 2 to
4 weeks within each treatment, correlating with the decrease in
WBC from 2 to 4 weeks in each diet.

Thus, while the decrease in the number of WBC from 2 to
4 weeks observed in the fish fed with each of the diets was due
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TABLE 6 | Absolute values of peripheral blood leucocytes (thrombocytes, lymphocytes, monocytes, and neutrophils) of European seabass fed dietary treatments during 2

and 4 weeks.

Parameters Dietary treatments

CTRL MET 0.5 MET 1

2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks

Thrombocytes (×104 µl−1) 4.16 ± 1.05 2.93 ± 0.50 4.99 ± 2.19 2.71 ± 0.88 4.68 ± 1.03 2.96 ± 0.81

Lymphocytes (×104 µl−1 ) 3.63 ± 0.89 1.58 ± 0.40 4.88 ± 2.20 2.07 ± 0.52 4.40 ± 1.21 2.52 ± 0.91

Monocytes (×104 µl−1 ) 0.23 ± 0.08 0.12 ± 0.05 0.23 ± 0.14 0.15 ± 0.09 0.25 ± 0.10 0.20 ± 0.13

Neutrophils (×104 µl−1 ) 0.06 ± 0.07 0.03 ± 0.02 0.02 ± 0.02 0.08 ± 0.11 0.12 ± 0.04 0.17 ± 0.12

Two-way ANOVA

Parameters Diet

Time Diet Time × Diet CTRL MET 0.5 MET 1

Thrombocytes <0.001 ns ns – – –

Lymphocytes <0.001 ns ns – – –

Monocytes 0.018 ns ns – – –

Neutrophils ns 0.004 ns B B A

Values are presented as means ± SD (n = 9). P-values from two-way ANOVA (p ≤ 0.05) (n = 9). If interaction was significant, Tukey post-hoc test was used to identify differences in

the experimental treatments. Different capital letters indicate differences among diets regardless time.

TABLE 7 | Plasma lysozyme, peroxidase, ACH50, and bactericidal activities of European seabass fed dietary treatments during 2 and 4 weeks.

Parameters Dietary treatments

CTRL MET 0.5 MET 1

2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks

Lysozyme (µg mg ml−1) 3.51 ± 0.92a* 1.08 ± 0.91 1.62 ± 0.95b 0.89 ± 0.61 1.39 ± 0.84b 0.97 ± 0.41

Peroxidase (units ml−1) 124.45 ± 32.04 89.80 ± 17.36 126.56 ± 201.13 132.42 ± 38.96 129.04 ± 48.06 118.52 ± 40.32

Bactericidal activity (%) 30.39 ± 7.16 25.82 ± 10.81 30.13 ± 6.57 22.04 ± 11.65 41.15 ± 7.52 25.86 ± 4.23

ACH50 (units ml−1 ) 74.71 ± 24.46 197.32 ± 60.91 78.19 ± 21.27 120.47 ± 42.80 96.85 ± 28.88 119.00 ± 37.06

Two-way ANOVA

Parameters Diet

Time Diet Time × Diet CTRL MET 0.5 MET 1

Lysozyme <0.001 <0.001 <0.001 A A B

Peroxidase ns ns ns – – –

Bactericidal activity <0.001 0.002 ns AB B A

ACH50 0.007 ns ns – – –

Values are presented as means ± SD (n = 12). P-values from two-way ANOVA (p ≤ 0.05). If interaction was significant, Tukey post-hoc test was used to identify differences in the

experimental treatments. Different lowercase letters stand for significant differences among dietary treatments for the same time, while asterisk stands for significant differences between

times for the same diet. Different capital letters indicate differences among diets regardless time.

to the decrease in the number of thrombocytes, monocytes and
lymphocytes, the highest number of WBC observed in fish fed
with the diet supplemented with 1% methionine was exclusively
due to a higher number of neutrophils, suggesting the stimulation
of an inflammatory response by methionine supplementation.

Humoral Innate Immune Response
For the evaluation of the innate humoral response, 36 fish were
collected from each experimental group (12 per replicate) and,

for reasons of quantity limitation, the plasma from each 3 fish was
pooled. Humoral innate immune parameters assessed in plasma
are presented in Table 7.

Two weeks after the beginning of feeding of the experimental
diets, plasma of fish fed diets supplemented with methionine
(MET 0.5 and MET 1) presented lower lysozyme concentration
than that found in the plasma of fish fed with the control
diet. Furthermore, a decrease from 2 to 4 weeks was observed
in the lysozyme concentration for all diets, although only
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statistically significant for fish fed CTRL. Such decrease of
lysozyme concentration could explain the reduction of the total
bactericidal activity with time for all diets. Plasma bactericidal
activity was found to be higher in fish fed MET 1 relative to those
fed MET 0.5

Regarding the alternative complement pathway, there were no
differences in activity between the different treatments, although
its activity increased from 2 to 4 weeks in fish fed any of the diets.

Head-Kidney Gene Expression
To evaluate the expression of genes related to immune response
and methionine metabolism role in immune response (Table 3),
cDNA was isolated from head-kidneys collected from 9 fish from
each group (3 per replicate).

High variability in the expression of many of the analyzed
genes was observed, with statistically significant differences in
the expression of the genes coding for IL-1b, Noxin, CD8β,
Caspase-3, Melanocortin 2 receptor, and Spermine/spermidine N
(1)-acetyltransferase.

The normalized sat1 expression level showed a decrease
between both sampling times (Table S2). Moreover, il1β
(Figure 2A), noxin (Figure 2B), casp3 (Figure 2C), and sat1
(Figure 2D) mRNA expression level was lower in fish fed MET
1 than in fish fed CTRL, while fish fed MET 0.5 and MET 1
presented lower cd8β (Figure 2E) expression levels than fish
fed CTRL dietary treatment. Fish fed MET 0.5 and Met 1
presented decreased mc2r (Figure 2F) transcripts compared to
fish fed CTRL after 2 weeks of feeding. The data regarding gene
expression during the feeding trial is presented in Table S2 as
Supplementary Data.

Bacterial Challenge
To evaluate a possible protective effect of a diet supplemented
with methionine during a bacterial infection, 60 fish from
each group (20/replicate) were inoculated with Phdp and their
mortality followed for 3 weeks (Figure 3). Fish fed any of the diets
supplemented with methionine, MET0.5 and MET1, showed
lower mortality than fish fed the CTRL diet, with a relative
percentage survival (RPS) to fish fed the CTRL diet of 32 and 43%,
respectively.

Although no statistically significant differences were detected
between the RPS observed between the experimental groups, this
is most probably due to the fact that the number of fish per group
calculated (power analysis) assuming that the supplemented diets
would promote an RPS to to fish fed the CTRL diet higher than
60%.

Infection Response
To examine the influence that methionine supplementation
may have on the initial inflammatory response following Phdp
infection, samples of blood, head kidney, and peritoneal exudates
were collected at 4, 24, and 48 h post-infection from fish of each
experimental group (6 fish from each experimental diet by time-
point). Sampling point 4 weeks was used as time 0 h during time-
course data analysis, as they represent unstimulated animal prior
to infection. Thus, the collected samples were used to analyze
whether the diets supplemented with methionine, compared to

the control diet, caused hematological alterations, influenced the
innate immune response and the expression of genes in the head
kidney as well as induced changes in the intraperitoneal leukocyte
populations.

Hematology and Peripheral Leucocyte Responses
The concentration of RBC in the fish blood was higher at 4 h
after infection with Phdp regardless of the dietary treatment,
with no effect of methionine supplementation observed, since
no differences were observed between the experimental groups
(Table 8). Regarding the hemoglobin concentration and the
MCH index, no changes were observed over time within each
experimental group nor between fish fed the different diets.
Similarly to the RBCs, an increase in the number of WBCs in
fish blood was also observed 48 h after infection when compared
to the number of WBCs at earlier times. However, in a manner
different from that observed for the concentration of RBC, it
appears that methionine supplementation had an influence on
the number of WBC in the blood of the fish fed with the
supplemented diets, since their number is increased compared
to the number of WBC in the blood of fish fed the control diet
(Table 9). As already noted before infection, this increase in the
number of WBC in the blood of fish fed diets supplemented
with methionine seems to be due to the increase in circulating
neutrophils since the number of these cells not only increases
over time within any experimental group, as it is increased
relative to that observed in the blood of the fish that were fed
the control diet, while no differences between treatments were
detected relative to the number of other leukocytes. However,
within each treatment, and as observed for neutrophils, the
number of thrombocytes, lymphocytes and monocytes were
increased in fish blood after 48 h after infection compared to the
time immediately before infection (0 h), but: (i) in the case of
thrombocytes, the increase was observed at 4 h after infection,
remaining high and without variation until 48 h: (ii) in the case
of lymphocytes, there was a decrease in the initial times post-
infection (4 and 24 h) increasing their number at 48 h; and (iii)
in the case of monocytes, their number remained constant until
24 h, increasing at 48 h.

Analysis of the Peritoneal Leucocytes Responses
Total and differential peritoneal leucocytes counts were only
performed in infected fish with the aim to assess cell migration
dynamics to the inflammation site following bacterial injection,
and are presented in Table 10. Fish fed MET 1 displayed a
higher leucocyte population in the peritoneal cavity at 48 h
than fish fed CTRL and MET 0.5, matching with the larger
number of lymphocytes, macrophages and neutrophils at the
same time compared to those fed with the other diets, although,
due to the high variability observed in the macrophage count, no
statistically significant difference was detected in the number of
this type of cells. In fact, in general, an increase of all leukocyte
populations over time was observed in the peritoneal cavity
of fish fed the diet with higher methionine supplementation,
which supports the occurrence of a stronger local inflammatory
response after the intraperitoneal infection with Phdp in fish fed
with this diet.
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FIGURE 2 | Quantitative expression (A) interleukin 1 β, (B) nitric oxide-inducible gene protein, (C) caspase 3, (D) spermine/spermidine N (1)-acetyltransferase, (E)

cluster of differentiation 8 beta and (F) melanocortin 2 receptor genes in the head-kidney of European seabass fed dietary treatments during 2 and 4 weeks. Values

are presented as means ± SD (n = 9). P-values from two-way ANOVA (p ≤ 0.05). If interaction was significant, Tukey post-hoc test was used to identify differences in

the experimental treatments. Different lowercase letters stand for significant differences among dietary treatments for the same time. Different capital letters indicate

differences among diets regardless time.

Plasma Humoral Responses
Fish fed MET 1 showed higher lysozyme activity at 24 and
48 h whereas fish fed MET 0.5 presented an increased activity
at 48 h after infection compared to fish fed CTRL. Moreover,
fish fed the CTRL dietary treatment showed higher lysozyme
concentration at 48 h than at 0 and 4 h after infection, while
fish fed MET 0.5 and MET 1 presented higher values at 24 h
than at 4 or 0 and 4 h, respectively (Table 11). Peroxidase activity
decreased at 4 h compared to the other sampling points regardless
dietary treatment whereas fish fed MET 0.5 showed an increased
peroxidase activity compared to fish fed CTRL and MET 1 diets
regardless time (Table 11). Bactericidal activity was found to
increase after injection and a peak was found at 48 h. Lastly, MET

0.5 displayed higher ACH50 levels at 24 h in comparison to the
other dietary treatments.

Head-kidney Gene Expression
To evaluate the expression of genes related to immune response
and methionine metabolism role in the inflammatory response
(Table 3), cDNA was isolated from head-kidneys collected from
6 fish from each group (3 per replicate).

In response to infection with Phdp,mmp9 and cox2 expression
levels increased from 0 to 4 h. Improved expression, relative to
0 h was also observed at 24 h for il8, casp1, hep, and hsp70 and for
il10, m2cr, and noxin at 48 h. Il1β and mtor presented improved
expression at 4 and 24 h compared to 0 h, whereas both c3 and
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stat3 were up-regulated at 24 and 48 h relative to 0 h. At 0 and
4 h, tlr9 and hsp90 expression levels were lower than at 24 h,
while mhcII presented decreased values at 0 and 4 h relative
to 24 and 48 h (Table S3). Both tlr2 and il6 expression levels
were found higher at 24 h relative to 0 and 48 h and 0, 4, and
48 h, respectively. Finally, noxin, cox2 and cxcr4 increased at 24 h
compared to all other sampling times (Table S3).

A dietary effect was observed for casp3, as mRNA levels
decreased in fish fed MET 1 compared to fish fed CTRL
(Figure 4A). Moreover, mtor was found to be higher in fish fed
CTRL in relation to fish fed MET 1 (Figure 4B). Fish fed MET
1 showed higher tgfβ expression levels than fish fed CTRL and
MET 0.5 dietary treatments at 48 h, while an increase in time
was observed for the same dietary treatment with higher levels at
48 h than at 0 and 4 h after infection (Figure 4C). Sat1 expression
level was higher in fish fed MET 1 than those fed MET 0.5
(Figure 4D), while amd1 transcripts increased in fish fed MET 1
relatively to fish fed CTRL at 4 h. Also, fish fed MET 1 presented
an improved amd1 expression level at 4 h in comparison to
all remaining times, whereas fish fed MET 0.5 increased amd1
transcripts at 4 h relatively to 0 h(Figure 4E). Specifically for fish
fed MET 1, tnfα mRNA expression was higher at 24 h than at 0
and 4 h (Figure 4F), while ccr3 expression level augmented in fish
fed MET 1 relative to fish fed CTRL at 24 h and also compared
to the remaining times (Figure 4G). All data regarding gene
expression are presented in Table S3 as Supplementary Data.

DISCUSSION

The modulatory effect of dietary methionine supplementation
on the European seabass immune status was here evaluated
at two different levels and for two different feeding periods.
A leukopenia together with a thrombocytopenia, lymphopenia
and monocytopenia was observed between the two sampling
times. This cell decline was accompanied by a decrease
of plasma total bactericidal activity and a reduction of
spermine/spermidine N (1)–acetyltransferase (SAT1) mRNA
expression, a rate-limiting enzyme involved in the regulation
of the intracellular concentration of polyamines. Previous
works demonstrated that methionine was able to improve
the European seabass immune response in the absence of a
stimulus after a 15 days feeding period by presenting higher
peripheral leucocytes and neutrophils concentration, improved
plasma complement levels (17) and higher head-kidney c3
mRNA expression (21). In accordance, the present study showed
that methionine supplementation at the highest level led to
a significant increment of total circulating leucocytes and
neutrophils numbers, regardless of feeding time. Through the
aminopropylation route, decarboxylated SAM, derived from
methionine, is used as an aminopropyl donor to polyamine
production (9). This role of methionine in polyamine synthesis
may explain the enhanced leucocyte response, with a particular
emphasis in neutrophils proliferation, observed in the absence of
stimuli and without evidences of cell activation (e.g., neutrophils
degranulation). In fact, fish fed either MET 0.5 or MET 1 dietary
treatment presented a decrease in the concentration of plasmatic

lysozyme after 2 weeks of feeding. This hypothesis is further
supported by the down-regulation of genes encoding several pro-
inflammatory indicators, such as the pro-inflammatory cytokine
il1β , the induced gene protein of nitric oxide noxin, casp3 with
central role in cell apoptosis, as well as the transmembrane
glycoprotein cd8β that serves as a co-receptor for the T-cell
receptors. Additionally, the expression of sat1, known to be
highly regulated by polyamines, was reduced by methionine
supplementation which can be understood as a strategy to avoid
non-specific deleterious effects in host tissues, as a negative
feedback mechanism (29). Dietary methionine input is also
recognized as a key factor that can increase methylation of
specific genes, theoretically repressing them. DNA methylation
is catalyzed by DNA methyltransferases that transfer methyl
groups from SAM to cytosine in a specific cytosine-guanine
(CpG) and that might be enough to change gene expression.
Because DNA methyltranferases reaction is dependent on the
supply of SAM and the removal of S-adenosylhomocysteine
(SAH), the SAM:SAH ratio has been proposed as a “methylation
ratio” (8). Moreover, Zhang (30) reviewed that due to the
circular nature of methionine cycle and the complexity of the
methylation reactions, the mechanisms by which methionine
affects DNA methylation are poorly understood and likely to be
highly dependent of tissue, animal life stage and gene region.

Methionine also plays important roles in the control of
inflammatory processes, being involved in the reduction of
reactive oxygen species (ROS) and protecting cells from
oxidative stress through GSH metabolism (1). In the present
study, the enhanced leucocyte proliferation together with lower
gene expression of pro-inflammatory indicators observed at
the highest methionine supplementation level tested appear
to indicate that increasing methionine dietary content may
improve European seabass immune status without triggering
an inflammatory response. In poultry, methionine showed
clear evidences of immune-stimulatory capacities, improving
both humoral and cell immune responses (16, 31) while
supplementation of dietary methionine enhanced platelet and
leucocyte counts of male cotton rats (Sigmodon hispidus) (32).
Besides our previous work, in which methionine-supplemented
diets increased peripheral leucocytes abundance in the absence
of immune stimulation (17), few more studies have focused on
methionine as a health-promoting additive in aquafeeds. An
increase of leucocytes concentration was observed in juvenile Jian
carp fed graded levels of methionine hydroxyl analog, a synthetic
methionine source, which resulted in increased survival rate after
injection with Aeromonas hydrophila (18).

The enhanced immune status observed in the present study
translated in a clear trend for increased disease resistance against
Phdp despite the non-significant statistical result. The immune
response was indeed boosted upon infection, as observed by the
increased number of all peripheral leucocyte types and improved
macrophages recruitment to the inflammatory focus, regardless
of dietary treatment. These leucocytes migration dynamics were
supported by an up-regulation of numerous pro-inflammatory
genes, such as interleukins and chemokines, cell markers and
receptors, transcription factors and cell stress proteins. More
importantly, the enhanced immune defenses observed at the end
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FIGURE 3 | Cumulative mortality (%) of European seabass fed CTRL ( ), MET 0.5 ( ) and MET 1 ( ) dietary treatments for 4 weeks and subsequently infected with

Phdp (n = 60).

of the feeding trial in fish fed methionine-supplemented diets
were triggered by infection, as similar results were observed
by Machado et al. (17) for European seabass stimulated with
inactivated Phdp after a 15 days feeding period, and for Jian
carp (18) and juvenile yellow catfish (Pelteobagrus fulvidraco)
(33) injected with Aeromonas hydrophila and fed for 60 days
and 11 weeks, respectively. Similar outcomes have been reported
for poultry and mammals where methionine supplementation
improved chicken cellular and humoral immune mechanisms in
response to Newcastle disease virus (15) and partially alleviated
the depression in performance caused by aflatoxin B1 in pigs (34).

In the present study, the effect of dietary methionine
supplementation seems to work in a dose-response manner in
terms of cell recruitment. Indeed, fish fed MET 0.5 showed
higher mobilization of neutrophils to the peritoneal cavity
than fish fed CTRL dietary treatment at 24 h, while fish fed
MET 1 presented an increased concentration of leucocytes and
neutrophils at the inflammatory focus compared to the other
dietary groups at 24 and 48 h. This improved cell migration
dynamics is further supported by an increased number of
total peritoneal leucocytes, lymphocytes and macrophages over
time, which was not observed in fish fed CTRL or MET 0.5
dietary treatments. Moreover, plasma peroxidase, lysozyme and
ACH50 activities were enhanced in general by dietarymethionine
surplus, probably as a result of an improved activation of
phagocytic cells and better development of an inflammatory
response (35), a fact also observed in previous works (17, 18).
This improved cell-mediated response was also accompanied by
sat1 up-regulation, as well as higher expression of the chemokine
receptor ccr3 and the multifunctional cytokine tgfβ . ccr3 is a
receptor for multiple inflammatory/inducible CC chemokines
modulating monocytes migration and other cell types, such as
NK cells and dendritic cells (36). Differently, tgfβ is produced

by leucocytes and is responsible for inducing transcription of
different target genes related to cell differentiation, chemotaxis,
proliferation, and activation of many immune cells (37). Still, a
significant reduced expression of casp3, essential for processes
associated with the formation of apoptotic bodies, supports the
role of methionine on the control of inflammation and apoptotic
mechanisms (38). mtor, regulated by nutrients [e.g., methionine
(39)], energy levels, and growth factors (40, 41), encodes a kinase
that regulates key cellular functions linked to the promotion of
cell growth and metabolism. mtor mRNA levels were reduced
by methionine supplementation which can be understood as a
strategy to control the boosted inflammatory response described
above.

The broad range of pathways in which methionine
participates may have contributed to the results here
described, underpinning the proposed beneficial effect of
dietary methionine supplementation on seabass immune status
after a 4 weeks feeding period, while improving fish response
mechanisms to an infection insult. Several studies have already
demonstrated the ability of dietary supplementation of specific
AA in mammals (including humans) and birds to improve
immune status, stress response, reducing mortality and its
practical use in industry (5, 15). On the other hand, few works
have been focused on AA dietary supplementation and fish
immune mechanism (17–19, 21). Further studies on polyamine
and cytokine protein quantification should be considered to
support these hypotheses and more confidently characterize
methionine role during the inflammatory response. Nonetheless,
mortality results ultimately corroborate the positive effect of
methionine supplementation.

In conclusion, results from the present study clearly
indicate that methionine dietary supplementation could be
an important nutritional startegy for fish health management
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FIGURE 4 | Quantitative expression of: (A) caspase 3, (B) mechanistic target of rampamycin, (C) transforming growth factor-beta, (D) spermine/spermidine N

(1)-acetyltransferase, (E) adenosylmethionine decarboxylase 1, (F) tumor necrosis factor-alpha and (G) c-c chemokine receptor type 3 genes in the head-kidney of

European seabass fed dietary treatments at 4 weeks (0 h), 4, 24, and 48 h after peritoneal infection with Phdp. Values are presented as means ± SD (n = 6). P-values

from two-way ANOVA (p ≤ 0.05). If interaction was significant, Tukey post-hoc test was used to identify differences in the experimental treatments. Different lowercase

letters stand for significant differences among dietary treatments for the same time while different symbols stand for significant differences between times for the same

diet. Different capital letters indicate differences among times regardless diets and among diets regardless time.
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as it improved European seabass cellular immune status
without triggering pro-inflammatory indicators. Furthermore,
it was shown that this enhanced immune status translates
into an improved inflammatory response against Phdp, as
higher cellular differentiation/proliferation and recruitment to
the inflammatory focus was observed, as well as improved plasma
humoral immune parameters together with a modulation of
key immune-related genes. Lastly, this work strongly suggests
that dietary methionine supplementation for 4 weeks improves
disease resistance against Phdp in a dose-dependent manner.
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Dietary L-Tryptophan Modulates the
Hematological Immune and
Antibacterial Ability of the Chinese
Mitten Crab, Eriocheir sinensis,
Under Cheliped Autotomy Stress
Cong Zhang 1,2,3, Qian Zhang 1,2,3, Xiaozhe Song 1,2,3, Yangyang Pang 1,2,3, Yameng Song 1,2,3,

Yongxu Cheng 1,2,3* and Xiaozhen Yang 1,2,3*

1Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China, 2 Key

Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China,
3National Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China

In pond cultures of juvenile Eriocheir sinensis, limb autotomy stress seriously affects and

restricts the quality and economic benefits of aquaculture. This study was designed to

evaluate the effects of dietary supplementation of L-tryptophan on E. sinensis under the

cheliped autotomy stress. In the present study, 252 crabs were divided into four groups:

dietary L-trp supplementation with 0.28, 0.40, 0.53, and 0.70%, and their hematological

immunity, antioxidant capacity, anti-stress, and antibacterial ability were evaluated after

14 days of using biochemical analysis, flow cytometry, and molecular biology techniques.

First, we counted the mortality after 14 days of feeding and found that compared with

other treatments, dietary supplementation of 0.53 and 0.70% L-trp significantly lowered

the mortality of E. sinensis. Moreover, the total hemocyte count (THC), hemocyanin,

and glutathione (GSH) content, and glutathione peroxidase (GSH-Px) activity significantly

increased at 7 and 14 d with dietary supplementation of 0.53 and 0.70% L-trp, in contrast

with the significant decrease in malondialdehyde (MDA) content at 14 d in the same

dietary groups (P < 0.05). Next, the bacterial challenge test after 14 days of feeding

showed that the THC levels, phagocytic rate, and acid phosphatase (ACP) and alkaline

phosphatase (ALP) activity were significantly higher with dietary supplementation of 0.53

and 0.70% L-trp after 12 and 24 h of Aeromonas hydrophila injection, along with a

significant improvement in the antioxidant capacity (P < 0.05). Further, we measured

the expression of antibacterial-related protein genes (EslecB and HSP 90) and found

that they were significant up-regulated in the hepatopancreas, hemocytes, intestine, and

gill in the groups with dietary supplementation of 0.53% and 0.70% L-trp after 12 h or

24 h of A. hydrophila injection (P < 0.05). Taken together, the observations in this study

indicate that dietary supplementation of L-trp can enhance the antioxidant capacity and

improve the hematological immune status and antibacterial ability of E. sinensis under

the cheliped autotomy stress, thereby increasing the survival rate of E. sinensis under

cheliped autotomy stress.

Keywords: Eriocheir sinensis, autotomy cheliped, L-tryptophan, hematological immune, antioxidant capacity
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INTRODUCTION

The Chinese mitten crab, Eriocheir sinensis, occupies an
important position in China’s aquaculture industry, owing to its
rich nutritional value and wide market demand. However, in
pond cultures of E. sinensis, various factors, such as fighting,
defense, and foraging, can cause a high rate of limb autotomy,
(1–4). Limb autotomy has many adverse effects on the crabs,
including long-term loss of function and energy (5), as well as,
decreased feeding efficiency and survival rate (6, 7). Moreover,
limb autotomy reduces the ability of immune defense to resist
pathogens (8). Zhao et al. reported that coin-sized crabs have up
to 30% limb autotomy rate in earthen pond culture conditions of
E. sinensis (9). The problem of limb autotomy stress has seriously
affected and restricted the quality and aquaculture economic
benefits of E. sinensis, resulting in widespread concern (8, 10, 11).

Several studies have shown that nutritional adjustment can
regulate the immune system of aquatic animals and is one of
the effective means to enhance anti-stress ability (12, 13). As an
important part of animal diet, amino acids play an important role
in the growth and immune regulation of aquatic animals (12, 14).
Among them, tryptophan as an essential amino acid can improve
the inflammation response (15), which can be used as feed grade
at present. Studies have reported that dietary supplementation
with tryptophan can modulate intestinal immune response and
antioxidant status in Ctenopharyngodon Idella (16) and regulate
the non-specific immune response in Apostichopus japonicus
Selenka (17), which play an important role in immune regulation
and anti-stress responses in aquatic animals.

At present, agricultural activities have changed the natural
balance between pairs of original hosts and their pathogens,
which could lead to the emergence of diseases and other serious
problems for the aquaculture industry (15, 18). Pathogenic
Aeromonas hydrophila can cause serious diseases such as
“Tremble Disease” and “Edema Disease” in E. sinensis (19).
Therefore,A. hydrophila can be used as an experimental infection
bacterium to evaluate the antibacterial ability of E. sinensis.

Crustaceans lack acquired immune system and their immune
system mainly includes hematological and cellular immunity.
Hematological immunity further includes some humoral
immune factors present in the hemolymph, such as heat shock
proteins 90 (HSP 90) (20), C-type lectin (21), hemocyanin
(22), and some immune-related enzymes such as hydrolases
(23) and, antioxidant enzymes (24). Hemocyte immunity
mainly includes phagocytosis, package action, agglutination,
and melanization of hemocytes (25). In invertebrates, hemocyte
phagocytosis is widely used to assess their antibacterial ability
(26). When invertebrates are attacked by pathogens, oxygen
free radicals are released to enhance their antibacterial ability
(27). In addition, hemocytes can adhere to pathogens, trigger
phagocytosis, and produce highly toxic reactive oxygen species
(ROS) (28). Our previous studies have shown that melatonin
(N-acetyl-5-methoxytryptamine) can significantly improve the
serum antioxidant capacity of E. sinensis (29). As the precursor of
melatonin, tryptophan is an effective scavenger for free radicals
and can maintain the cellular redox balance by enhancing the
body’s antioxidant capacity (30). Moreover, many studies have

reported that hemocyanin, HSP 90, and C-type lectins EslecB
play important roles in the anti-stress response and immune
defense response against pathogen attacks (20–22).

Therefore, dietary supplementation of key amino acids is
an effective means of improving animal immunity, which is a
more cost-effective and safer solution than one involving adding
antibiotics (12). However, to date, there is no report on the
effects of dietary supplementation of L-trp on the anti-stress
and antibacterial ability of E. sinensis. Therefore, this study was
designed to evaluate the effects of dietary supplementation of
L-trp on hematological immunity, antioxidant capacity, andanti-
stress and antibacterial ability of E. sinensis, in order to provide
some scientific guidance for improving the anti-stress and disease
resistance of E. sinensis from a nutritional perspective.

MATERIALS AND METHODS

Diets
The composition and nutritional level of the basal diet is
presented in Table 1. The main protein sources of feed were
rapeseed meal, soybean meal and cotton meal, while the fat
sources were pork lard, fish oil, and phosphatide oil. Based on
studies on Scylla serrata and Astacus leptodactylus (31–33), the
L-trp contents in the four experimental diets in this study were
determined to be 0.28 % (Diet # A) (control), 0.40% (Diet #
B), 0.53% (Diet # C), and 0.70% (Diet # D), respectively. L-trp
(≥99.7%) was purchased from SinopharmChemical Reagent Co.,
Ltd (China). Ingredients were ground into fine powder through a
187.5µmmesh sieve. Then weigh accurately, using a step-by-step
expansionmethod to add trace L-tryptophan,mix evenly, and use
a double screw extruder to make pellet feed at 1.5mm diameter.
Then spread out and dried in an oven at 55◦C. After cooling
under natural conditions, it was stored in a ziplock bag and stored
in a refrigerator at−20◦C.The actual content of L-trp in different
diets was determined by reversed-phase high-performance liquid
chromatography (RP-HPLC). A C18 (µ–Bondapak Cl8 column,
diameter 25 cm× 4.6mm) columnwas selected, themobile phase
was composed of sodium acetate buffer+methanol= 95+ 5, the
flow rate was 1.5 mL/min, ultraviolet (UV) detection wavelength
was 280 nm, the injection volume was 15µL, and the column was
at room temperature.

Experimental Crabs
All experimental protocols were reviewed and approved by the
Animal Bioethics Committee, Shanghai OceanUniversity, China.
In May 2018, 350 hard-shelled crabs that had just finished
molting and limb-intact E. sinensis (Crustacea; Decapoda;
Grapsidae) juvenile crabs (16.89± 3.87 g), were collected from an
earth pond at the Chongming research base of Shanghai Ocean
University (Shanghai, China). Juvenile crabs were acclimated in
24-L ultra-clear glass tanks, each of which was supplied with
continuous aerated freshwater at 24–28◦C, pH 7.84 ± 0.08, DO
concentration 6.3 ± 0.4 mg/L, salinity 0.3%, total ammonia 0.36
± 0.03 mg/L, chloride level 136 ± 15 mg/L, and basal nitrite
<0.05 mg/L−1 and natural photoperiod conditioning for 1 week.
The crabs were fed once a day with a commercial crab diet
(Diet # A).
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TABLE 1 | Ingredients and proximate composition of the control diets (% dry

matter).

Ingredient Content

Soybean meal 15.50

Peanut meal 8.00

Rapeseed meal 18.00

Cotton meal 7.00

Fish meal 7.00

Wheat flour 28.30

Yeast meal 2.00

Squid powder 2.00

Phosphatide oil 2.00

Fish oil 1.50

Pork lard 1.50

Mineral mixa 0.30

Vitamin mixb 1.20

Ca(H2PO4)2 1.00

Choline chloride 0.40

Dishulin 0.10

Bentonite 4.00

Salt 0.20

Total 100.00

ANALYZED COMPOSITION

Moisture 11.45

Crude protein 34.56

Crude lipid 8.34

Ash 9.15

aVitamin premix (per kg diet): vitamin A, 62500 IU; vitamin D3, 15000 IU; vitamin E,

1.75 g; vitamin K3, 35.4mg; vitamin B1, 100mg; vitamin B2, 150mg; vitamin B6, 150mg;

vitamin B12, 0.2mg; biotin, 4mg; D-calcium pantothenate, 250mg; folic acid, 25mg;

nicotinamide, 300mg; vitamin C, 700mg.
bMineral premix (per kg diet): FeSO4·H2O, 200mg; CuSO4·5H2O, 96mg; ZnSO4·H2O,

360mg; MnSO4·H2O, 120mg; MgSO4·H2O, 240mg; KH2PO4, 4.2 g; NaH2PO4, 0.5 g;

KI, 5.4mg; CoCl2·6H2O, 2.1mg; Na2SeO3, 3mg.

Experimental Design
The experimental design and sampling procedures are shown
in Figure 1. A total of 252 limb-intact crabs were selected from
the above samples and subjected to induction for autotomy
of the left cheliped. For this, the researchers gently grasped
the limbs of the crabs using their fingers, and the crab would
spontaneously autotomize the corresponding limbs. Next, all the
autotomized crabs were randomly divided into four groups: Diet
# A, Diet # B, Diet # C, and Diet # D. Each diet group had
three replicates. The crabs were returned to the aerated water
in monoculture systems immediately afterwards, and maintained
under the environmental conditions described above.

Trial 1: Feeding Trial
A previous study had reported that 14 days of feeding on
diets supplemented with individual amino acids are enough to
modulate physiological and immune responses in aquatic animal
(34). The feeding trial in this study lasted for 2 weeks, with an
aim to evaluate the effects of short-term dietary supplementation
with L-trp on cellular and hematological immune status. The

mortality of all groups was calculated at the end of the
experiment. Hemolymph were collected at 1, 7, and 14 d,
respectively, since the start of the experiment. Hemolymph
was drawn using a sterile 1-ml syringe from the unsclerotized
membrane of the right third periopod and was diluted 1:1 with
steriled anticoagulation mixture (trisodium citrate 30mM, NaCl
338mM, glucose 115mM, EDTA 10mM). The mixture was
centrifugated at 42,000 × g for 5min to separate the serum and
the hemocytes, and then stored at −20◦C for evaluation of THC
levels, hemocyanin content and antioxidant capacity.

Trial 2: Bacterial Challenge Test
This experiment was designed to investigate the effect of
L-trp supplementation on the antibacterial ability and
immunomodulation after bacterial infection of E. sinensis.
At the end of the Trial 1 (after 14 days of feeding), the bacterial
challenge test was carried out. Frozen sample of Aeromonas
hydrophila was obtained from Shanghai Ocean University (8).
The cultured bacteria were resuspended in crustacean saline
(NaCl 0.21M, KCl 13.6mM, H3BO3 8.6mM, NaOH 4.75mM,
MgSO4 j 7H2O 20mM, pH 7.2), and the concentration of the
suspension was adjusted to 4× 105 CFU / mL (the Median lethal
concentration (LC50) obtained from pre-experimental analysis)
(8). Each crab was injected with 100 µL bacterial suspension.
Crabs were sampled for hepatopancreas, hemolymph, gill and
intestine collection at 12 and 24 h after A. hydrophila injection.
Hemolymph was collected and centrifuged as described above,
and the serum and hemocytes were then collected separately for
further experimental analysis.

Hemolymph Samples Analysis
Hemocyte Level of THC
The levels of THC were obtained with a drop of the anti-
coagulant hemolymph placed in a hemocytometer using a
Leica DMIL microscope (Leica Microsystems GmbH, Wetzlar,
Germany) and each crab count was repeated three times.

Immune-Related Parameters
Hemocyanin concentrations were determined by a UV-
Spectrophotometric (Beijing Purkinje General Instrument Co.,
Ltd) at 335 nm with 10 µL of serum diluted in 990 µL distilled
water in a quartz cuvette, manually calibrated with distilled
water. Hemocyanin concentrations (mmol/L) = 2.69 E (1%,
1 cm) mmol/L (35).

The acid phosphatase (ACP), alkaline phosphatase (ALP) were
measured by a UV-spectrophotometer (Beijing Purkinje General
Instrument Co., Ltd) at 520 nmwith corresponding detection kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China)
according to the manufacturer’s protocols.

Anti-oxidant Defense Systems Parameters
Commercial kits obtained for SOD, GSH, GSH-Px, and
MDA from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China) were used to measure their activities in
the hemolymph supernatant. They were measured using a
UV-spectrophotometer (Beijing Purkinje General Instrument
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Co., Ltd) at 520, 420, 412, and 532 nm as described by the
manufacturer’s protocols, respectively.

Hemocyte Phagocytosis
The hemocyte phagocytosis was analyzed by using a BD

Accuri
TM

C6 flow cytometer (BD Biosciences, USA). In trial 2,
the hemocyte collected after centrifugation were resuspended
in 0.1M PBS buffer (NaCl 136.89mM; KCl 2.67mM; Na2HPO4

8.10mM; KH2PO4 76mM; pH 7.2–7.4) (Sangon Biotech
Co., Ltd., Shanghai, China). Thirty microliter fluorescent
microspheres mother liquor (FluoSpheresTM Carboxylate-
Modified Microspheres, 1.0µm, red fluorescent, 580/605, F881,
Invitrogen) were added to 1.5ml of PBS buffer and mixed to
prepare a fluorescent microspheres suspension. Transfer 200
µl of blood cell suspension into 1.5ml EP tube, add 50 µl
of fluorescent microspheres suspension, mix well, and avoid
light reaction at 18◦C for 1 h. The reaction was stopped by the
addition of 250 µl of Baker’s formol fixative (4% formaldehyde,
2% NaCl) and then sequentially determined by flow cytometry.
Each sample analysis included a total of 2,00,00 events and
the flow speed was maintained at <300 s−1. Phagocytosis was
defined as the proportion of hemocytes that had ingested at least
three fluorescent beads. The data were analyzed by using the BD
CellQuestTM Pro software (BD Biosciences, USA).

Expression of the HSP 90 Gene Level:
Quantitative RT-PCR
Total RNA was extracted from the hemocyte, hepatopancreas
intestinal and gill tissues using RNAisoTM plus reagent
(RNA Extraction Kit, TaKaRa, Japan) according to the
manufacturer’s protocol. The concentration and quality of
the total RNA were estimated by micro-volume ultraviolet-
visible spectrophotometer (Quawell Q5000; Thmorgan, China)
and agarose-gel electrophoresis, respectively, and reverse
transcribed with the PrimeScriptTM RT reagent Kit (Perfect Real
Time, TaKaRa, Japan) according to the manufacturer’s protocol.
The obtained cDNA that was diluted to 1:2 with double-distilled
water was used as qRT-PCR template. Relative quantification
was performed using the ABI 7,500 Real-Time PCR System (Life
Technology, USA) with a ChamQTM Universal SYBR R© qPCR
Master Mix (Vazyme Biotech Co.,Ltd, Nanjing, China) kits using
the following program: 95◦C for 30 s; 40 cycles at 95◦C for 5 s,

60◦C for 34 s; followed by a melting curve at 95◦C for 15 s, 60◦C
for 1min, 95◦C for 15 s. The PCR primer sequences for HSP
90 is shown in Table 2 (Sangon Biotech Co., Ltd., Shanghai,
China). β-actin was used as the internal control and performed
in triplicate for every sample. Relative changes in gene expression
levels were determined by 2−11Ct method. Data were analyzed
and presented as average values ± standard deviation (SD), as
well as, the n-fold difference relative to the control data.

Statistical Analyses
Data are presented as the average values of six individuals
± standard deviation (SD) (n = 6), before the test, each
sample was an independent individual and no pooling was
carried out. The percentage values (dependent variable) were
arcsine transformed before analysis. The effects of treatment
were statistically analyzed using an analysis of variance (one-
way ANOVA, LSD and Duncan analysis), and a P < 0.05 was
considered significant. All statistical analyses were performed
using SPSS 20.0 software (Chicago, USA; Version 22.0).

RESULTS

Mortality and Hemolymph Analysis After
Dietary Supplementation of L-TRP For 14d
Mortality
At the end of the experiment at 14 d, we evaluated the mortality
of all groups as shown in Figure 2. The mortality of crabs in Diet
# C (12.70 ± 2.75%) and Diet # D (19.05 ± 4.76%) groups were
significantly lower than that in the control group (Diet # A group)
(33.33 ± 4.76 %) (P < 0.05). The mortality of Diet # C group
exhibited the lowest value among all other groups. The results

TABLE 2 | Primer information for quantitative real-time polymerase chain reaction.

Primers Sequences (5′-3′) Usage

EsLecB-F GACAGGCATCAACGAGAAGGA Real-time -PCR

EsLecB-R CACAGTTGTAAGTTATTGTATCCCG Real-time -PCR

HSP 90-F GAAGGTGATCCGCAAGAACC Real-time -PCR

HSP 90-R GTTGGTGGAGTCCTCATGGA Real-time -PCR

β-actin -F TCATCACCATCGGCAATGA Real-time -PCR

β-actin -R TTGTAAGTGGTCTCGTGGATG Real-time -PCR

FIGURE 1 | The experimental design and sampling procedures.
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FIGURE 2 | The mortality of E. sinensis for all groups after fed dietary

treatments at 14 d. The values are expressed as the means ± SD (n = 21).

Different letters placed above the column represent the significant differences

(P < 0.05).

showed that dietary supplementation of L-trp can significantly
reduce the mortality of E. sinensis.

THC Levels and Hemocyanin Content
There was no significant difference in the THC levels and
hemocyanin content among the four dietary groups at 1 d after
the start of the experiment (Figure 3). However, the THC levels
were significantly higher in the L-trp supplement groups than in
the Diet # A group (P < 0.05) at 7 and 14 d, whereas there the
THC levels was no significant difference among between the three
L-trp supplement groups (Figure 3A). The hemocyanin content
in Diet # C and Diet # D groups was significantly higher than that
in Diet # A group at 7 d and 14 d (P< 0.05), with the highest level
observed in Diet # C group (Figure 3B).

Antioxidant Capacity
There was no significant difference in SOD activity among the
four diet groups (Table 3). The GSH contents were significantly
higher in Diet # C group at 7 d and in Diet # D group at 14
d than in Diet # A group (P < 0.05) (Table 3). The GSH-Px
activity tended to gradually increase with the increased L-trp
supplementation in diet, and it was significantly higher in Diet
# D than in other groups at 7 d (P < 0.05) (Table 3). The
MDA content was significantly lower in Diet # C and Diet # D
groups than in Diet # A group at 14 d (P < 0.05) (Table 3). The
results showed that dietary supplementation of L-trp significantly
enhanced the serum antioxidant capacity of E. sinensis.

Bacterial Challenge Test
Hematological Immune Status
The THC levels in Diet # C and Diet # D group were significantly
higher than those in the control group after 12 and 24h of A.
hydrophila injection (P < 0.05) (Figure 4A).

Some representative images of hemocyte phagocytosis
obtained by flow cytometry are shown in Figures 5A–H. The
phagocytic rate of hemocyte in Diet # C and Diet # D group was
significantly higher than that in the control group after 12 and
24 h of A. hydrophila injection and a significant increased was

FIGURE 3 | The total hemocyte counts (THC) (A) and hemocyanin contents

(B) in E. sinensis with different treatment at 1, 7, and 14 d. The values are

expressed as the means ± SD (n = 6). Different letters placed above the

column represent the significant differences between different groups at the

same time (P < 0.05).

observed at 24 h compared with 12 h after A. hydrophila injection
in Diet # B, Diet # C and Diet # D group (P < 0.01) (Figure 5I).

The hemocyanin content in Diet # C group and Diet # D
group was significantly lower than that in the control group
after 12 and 24 h of A. hydrophila injection (P < 0.05) and it
was significant decreased at 24 h compared with 12 h after A.
hydrophila injection in Diet # B group (P < 0.05) (Figure 4B).

The ACP activity was significant higher in Diet # D group
than that in the other three diet groups (P < 0.05) at 12 h after
A. hydrophila injection and it was significant increased at 24 h
compared with 12 h after A. hydrophila injection in Diet # A (P
< 0.01), Diet # B (P < 0.05) and Diet # C (P < 0.05) groups
(Figure 4C).

The ALP activity was significantly higher in Diet # C and Diet
# D group at 12 h and it was significantly higher in Diet # B,
Diet # C and Diet # D at 24 h than in the control group after
A. hydrophila injection (P < 0.05) (Figure 4D). Moreover, the
ALP activity was significantly increased at 24 h compared with
12 h after A. hydrophila injection in all diet groups (P < 0.05,
P < 0.001, P < 0.01, P < 0.001, respectively) (Figure 4D). The
results showed that dietary supplementation of L-trp significantly
improved the hematological immune status with A. hydrophila
injection.

Serum Antioxidant Capacity
The SOD activity was significantly increased in Diet # C and Diet
# D group at 12 h, and significantly higher in Diet # B, Diet # C
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TABLE 3 | Effect of L-trp supplement on the serum antioxidant capacity in E. sinensis at 1, 7, and 14 d.

Item Sample time Diet # A Diet # B Diet # C Diet # D

SOD activity

(U/ml)

1 d 82.90 ± 7.08 79.54 ± 8.16 81.84 ± 6.03 77.24 ± 4.89

7 d 85.66 ± 6.55 86.78 ± 3.78 83.43 ± 7.58 84.54 ± 8.68

14 d 88.72 ± 4.77 95.79 ± 4.45 89.61 ± 10.98 97.20 ± 2.50

GSH content

(mg/L)

1 d 1.06 ± 0.27 1.20 ± 0.34 1.23 ± 0.37 1.25 ± 0.50

7 d 0.98 ± 0.28a 1.17 ± 0.38a 1.85 ± 0.41b 1.44 ± 0.42ab

14 d 1.28 ± 0.39a 1.47 ± 0.37ab 1.44 ± 0.27ab 1.87 ± 0.22b

GSH-Px activity

(µmol/L)

1 d 424.96 ± 24.63 414.52 ± 43.04 441.39 ± 28.15 411.91 ± 55.13

7 d 408.78 ± 65.04a 413.74 ± 47.67a 441.91 ± 28.97a 535.30 ± 26.00b

14 d 371.22 ± 12.99 387.91 ± 62.76 433.30 ± 35.83 387.39 ± 88.46

MDA content

(nmol/ml)

1 d 12.26 ± 2.26 12.64 ± 2.93 12.03 ± 2.64 11.31 ± 2.67

7 d 12.34 ± 2.47 11.46 ± 2.19 9.76 ± 1.21 11.05 ± 2.02

14 d 11.58 ± 2.69a 11.05 ± 2.18ab 7.98 ± 1.88b 7.34 ± 1.69b

The values are expressed as the means± SD (n= 6). SOD: superoxide dismutase; GSH, glutathione; GSH-Px, glutathione peroxidase; MDA, malondialdehyde. Different letters represent

the significant differences between different groups at the same time (P < 0.05).

FIGURE 4 | The hematological immune status of E. sinensis fed dietary treatments at 12 and 24h after A. hydrophila injection. (A) THC: total hemocyte counts;

(B) Hemocyanin content; (C) ACP: acid phosphatase; (D) ALP: alkaline phosphatase. The values are expressed as the means ± SD (n = 6). Different letters placed

above the column represent the significant differences between different groups at the same time (P < 0.05).

and Diet # D at 24 h than in the control group after A. hydrophila
injection (P < 0.05). Moreover, the maximum level was observed
in Diet # C group at 24 h after A. hydrophila injection (P < 0.05)
(Figure 6A).

The GSH content in Diet # B, Diet # C and Diet # D groups
was significantly higher than that in the control group after 12
and 24 h of A. hydrophila injection, and the maximum level was

observed in Diet # D group at 24 h afterA. hydrophila injection (P
< 0.05). Moreover, the GSH content was significantly increased
at 24 h compared with 12 h after A. hydrophila injection in Diet #
A and Diet # B groups (P < 0.01) (Figure 6B).

The GSH-Px activity was significantly increased in Diet #
C and Diet # D groups at 12 h and it was significant higher
in Diet # B at 24 h than that in the control group after
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FIGURE 5 | The hemocytes phagocytic rate of E. sinensis fed dietary treatments at 12 and 24 h after A. hydrophila injection. (A) 12 h- Diet # A; (B) 12 h- Diet # B;

(C) 12h- Diet # C; (D) 12 h- Diet # D; (E) 24 h- Diet # A; (F) 24 h- Diet # B; (G) 24 h- Diet # C; (H) 24 h- Diet # D; (I) phagocytic rate. The values are expressed as the

means ± SD (n = 6). Different letters placed above the column represent the significant differences between different groups at the same time (P < 0.05).

A. hydrophila injection (P < 0.05). Moreover, the GSH-Px
activity was significantly increased at 24 h compared with 12 h
after A. hydrophila injection in Diet # B group (P < 0.05)
(Figure 6C).

The MDA content was significantly lower in Diet # C group
than in the control group at 12 h after A. hydrophila injection
(P < 0.05), whereas no significant difference among the four
groups was observed at 24 h (Figure 6D). The results showed
that dietary supplementation of L-trp significantly enhanced the
serum antioxidant capacity of E. sinensis that had been injected
with A. hydrophila.

Antibacterial-Related Protein Genes Expressions
The expression of EslecB-mRNA in the hepatopancreas was
significantly higher in Diet # C and Diet # D group at 12 h,
whereas it was significantly lower in Diet # C and Diet # D
group at 24 h than in the other two groups after A. hydrophila
injection (P < 0.05) (Figure 7A). Moreover, the expression of
EslecB-mRNA was significantly increased at 24 h compared with
12 h after A. hydrophila injection in Diet # A (P < 0.001), Diet #
B (P < 0.01), and Diet # C (P < 0.05) groups (Figure 7A).

The expression of EslecB-mRNA in hemocytes showed no
significant difference among the four groups at 12 h, whereas
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FIGURE 6 | The serum antioxidant capacity of E. sinensis fed dietary treatments at 12 and 24 h after A. hydrophila injection. (A) SOD, superoxide dismutase;

(B) GSH, glutathione; (C) GSH-Px, glutathione peroxidase; (D) MDA, malondialdehyde. The values are expressed as the means ± SD (n = 6). Different letters placed

above the column represent the significant differences between different groups at the same time (P < 0.05). “*” represent significant differences between 12 and 24 h

at the same diet group (*P < 0.05, **P < 0.01).

it was significantly higher in Diet # C group at 24 h than
in the other three groups after A. hydrophila injection (P <

0.05) (Figure 7B). Moreover, the expression of EslecB-mRNA
was significantly decreased at 24 h compared with 12 h after A.
hydrophila injection in Diet # A (P < 0.001), Diet # B (P <

0.001), Diet # C (P < 0.001), and Diet # D (P < 0.001) groups
(Figure 7B).

The expression of EslecB-mRNA in intestine was significantly
higher in Diet # C and Diet # D groups at 12 h, whereas it was
significantly lower in Diet # C group at 24 h than in the control
group after A. hydrophila injection (P < 0.05). Moreover, the
expression of EslecB-mRNA was significantly increased at 24 h
compared with 12 h after A. hydrophila injection in Diet # A (P
< 0.01), Diet # B (P < 0.001), and Diet # C (P < 0.05) groups
(Figure 7C).

The expression of EslecB-mRNA in gill showed no significant
difference among the four groups at 12 and 24 h after A.
hydrophila injection. However, the expression of EslecB-mRNA
was significantly decreased at 24 h compared with 12 h after A.
hydrophila injection in Diet # C (P < 0.01) and Diet # D (P <

0.01) groups (Figure 7D).
The expression of HSP 90-mRNA in hepatopancreas showed

no significant difference among the four groups at 12 and 24 h
after A. hydrophila injection. However, the expression of HSP

90-mRNA was significantly decreased at 24 h compared with
12 h after A. hydrophila injection in Diet # A group (P < 0.05)
(Figure 8A).

The expression of HSP 90-mRNA in hemocytes was
significantly lower in Diet # C and Diet # D groups at 12 h (P
< 0.05), whereas there was no significant difference among the
four groups at 24 h after A. hydrophila injection (Figure 8B).
Moreover, the expression of HSP 90-mRNA was significantly
decreased in Diet # A (P < 0.05) and Diet # B (P < 0.01) groups
at 24 h compared with 12 h after A. hydrophila injection, whereas
it was significantly increased in Diet # C group at 24 h compared
with 12 h after A. hydrophila injection (P < 0.05) (Figure 8B).

The expression of HSP 90-mRNA in intestine was not
significantly different among the four groups at 12 h after A.
hydrophila injection (P < 0.05), whereas it was significantly
higher in Diet # C group than in the other three groups.
Moreover, the expression of HSP 90-mRNA was significantly
decreased in Diet # A (P < 0.01) and Diet # B (P < 0.05)
groups at 24 h compared with 12 h after A. hydrophila injection
(Figure 8C).

The expression ofHSP 90-mRNA in gill showed no significant
difference among the four groups at 12 h after A. hydrophila
injection, whereas it was significantly lower in Diet # D group
than in the control group (P < 0.05). Moreover, the expression
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FIGURE 7 | Expression level of EslecB gene normalized to β-actin in the hepatopancreas, hemocyte, intestinal and gill tissues of E. sinensis fed dietary treatments at

12 and 24 h after A. hydrophila injection. The values are expressed as the means ± SD (n = 4). Different letters placed above the column represent the significant

differences (P < 0.05) “*” represent significant differences between 12 and 24 h at the same diet group (*P < 0.05, **P < 0.01, ***P < 0.001). (A) The EslecB relative

expression in hepatopancreas; (B) The EslecB relative expression in hemocyte; (C) The EslecB relative expression in intestinal; (D) The EslecB relative expression in gill.

of HSP 90-mRNA was significantly increased in Diet # A (P
< 0.001) and Diet # C (P < 0.05) groups at 24 h compared
with 12 h after A. hydrophila injection (Figure 8D). The results
showed that dietary supplementation of L-trp significantly up-
regulated the antibacterial-related protein genes expression levels
of E. sinensis that were injected with A. hydrophila. Thus, the
antibacterial ability of E. sinensis was significantly improved with
dietary supplementation of L-trp.

DISCUSSION

The Effects of Dietary L-trp
Supplementation on Hematological
Immunity
Crustaceans lack an acquired immune system and only possess
an innate immune system, which includes hematological
and cellular immunity. Several studies on crustaceans have
demonstrated that hematological parameters are important
parameters for assessing their immune response ability, such
as THC, and hematological immune-related proteins and
enzymes (36–38). In this study, we determined the effects of
dietary L-trp supplementation on the hematological parameters
of left cheliped autotomized E. sinensis, as well as, the
effects on hematological immunity and disease resistance, THC

in crustaceans is a commonly used performance parameter

for assessing cellular immunity (39). Hemocyte immunity

mainly includes phagocytosis, package action, agglutination, and
melanization of hemocyte, and participate in the removal of

pathogens (25). Moreover, hemocyte phagocytosis is widely used

to assess the antibacterial ability in invertebrates (26). In the

present study, we found that dietary L-trp supplementation
significantly increased the THC levels in E. sinensis at 7

and 14 d. We speculated that the wound is susceptible to
pathogens after limb autotomy of E. sinensis, and the increase
in THC level can accelerate the removal of foreign bodies
and substance transport in the body. In trial 2, we found
that the THC levels in Diet # C and Diet # D group
were significantly higher than those in the control group
after 12 and 24 h of A. hydrophila injection. Moreover, the
phagocytic activity of hemocyte in Diet # C and Diet #
D groups was significantly higher than that in the control
group after 12 h and 24 h of A. hydrophila injection. It
indicates that supplementation of L-trp in diet can significantly
increase the THC levels and the ability of pathogens removal.
(17) reported that supplementation of 3% TRP in diet
significantly increased the hemocyte phagocytic activity of
Apostichopus japonicus Selenka, which was consistent with our
results.
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FIGURE 8 | Expression level of HSP 90 gene normalized to β-actin in the hepatopancreas, hemocyte, intestinal and gill tissues of E. sinensis fed dietary treatments at

12 and 24 h after A. hydrophila injection. The values are expressed as the means ± SD (n = 4). Different letters placed above the column represent the significant

differences (P < 0.05) “*” represent significant differences between 12 and 24 h at the same diet group (*P < 0.05, **P < 0.01, ***P < 0.001). (A) The HSP 90 relative

expression in hepatopancreas; (B) The HSP 90 relative expression in hemocyte; (C) The HSP 90 relative expression in intestinal; (D) The HSP 90 relative expression in

gill.

Hemocyanin is an important multifunctional protein in
crustaceans, that is found mainly in the hemolymph, and
accounts for more than 90% of serum total protein (40–42).
In addition to the function of carrying oxygen, transporting
metal ions, storing protein and regulating osmotic pressure,
hemocyanin exhibits antibacterial, antiviral, and phenoloxidase
activity under certain conditions, and is an important participant
of immune defense system (22, 43). The hemocyanin content
in the hemolymph acts as a good indication of the health
status of crustaceans (44). In trial 1, we observed a similar
trend in hemocyanin contents and THC levels, wherein the
hemocyanin content in Diet # C group was significantly higher
than that in other diet groups. The results showed that dietary
L-trp supplementation can improve the hematological immunity
and anti-stress ability of E. sinensis, similar to the results of
a study on Apostichopus japonicus Selenka (17). However, we
observed in the results of trial 2 that the hemocyanin content
was significantly lower in the L-trp supplement group than in
the control group after injection of A. hydrophila. Moreover,
the hemocyanin content of all the diet groups showed a trend
of reduction at 24 h compared with 12 h after A. hydrophila
injection. We speculate that the hemocyte phagocytic activity,
antibacterial ability and ability of foreign bodies body removal in

the L-trp supplementation groups were significantly enhanced,
resulting in a large consumption of hemocyanin not being timely
supplemented. Machado et al. found that the concentration
of hemoglobin was significantly lower in the tryptophan
supplement group than in the control group in Dicentrarchus
labrax after infection with Photobacterium damselae subsp.
piscicida (Phdp) (15). Qin et al. found a significant increase in
THC at 12 h after infection with A. hydrophila in E. sinensis (45),
similar to our results.

When a pathogen is phagocytosed by phagocytic cells, it
fuses with lysosomes and is eventually hydrolyzed by various
hydrolases. Hydrolases not only exist in cells, but are also widely
distributed in the serum by means of degranulation, to form a
hydrolase system, which plays an important role in the serum
immune defense. They are considered to be important non-
specific indicators of crustaceans, as ALP and ACP levels reflect
the health status of aquatic animals (23, 46). In the present study,
we observed that dietary supplementation with 0.70% L-trp
significantly increased the ACP activity at 12 h afterA. hydrophila
injection, and ACP activity was significantly higher at 24 h than
that at 12 h in the other three dietary group. ALP activity showed
a similar trend. Dietary supplementation of L-trp significantly
increased the activity of ACP and ALP in the serum, which was
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beneficial in accelerating the body metabolism and enhanced
the ability of crabs to remove pathogenic bacteria. Previous
study reported that dietary supplementation of tryptophan can
significantly increase ACP activity in the plasma ofDicentrarchus
labrax (15). Christophermarlowea et al. reported that the ALP
activity of Gadus morhua L. was increased after exposure to
a crowding stress during the latter part of the post-stress
period (47). In this study, dietary supplementation of L-trp
could improve the resistance to pathogens in crabs to some
extent.

The Effects of Dietary L-trp
Supplementation on Hemolymph
Antioxidant Capacity
When invertebrates are attacked by foreign pathogens, oxygen
is released to enhance resistance to prevent infection with
pathogens (27, 28). Therefore, the antioxidant system is an
important immune defense system for crustaceans. In addition,
hemocyte can adhere to pathogens, trigger phagocytosis, and
produce highly toxic reactive oxygen species (ROS) (48).
Various antioxidant enzymes, oxidases and hydrolases play
important roles before phagocytosis, during phagocytosis, and
after phagocytosis. In crustaceans, the production of ROS is an
important indicator of cell defense (27). ROS is indispensable for
normal cell functions (such as redox signals and anti-pathogens),
but excessive ROS can cause oxidative damage to tissues, such
as oxidative damage of DNA, cell membranes, proteins, and
enzymes (49). In order to prevent oxidative damage to the
organism by excessive ROS, the antioxidant defense system gets
activated and removes excess ROS. Superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), and glutathione (GSH) are
important members of the crustacean antioxidant defense system
(24). In the present study, although dietary supplementation of
L-trp had no significant effect on SOD activity, the GSH content
with dietary supplementation of 0.53% L-trp at 7 d 0.70% L-trp
at 14 d was significantly higher than that of the control group.
In the group with dietary supplementation 0.70% L-trp, GSH-
Px activity at 7 d was significantly higher than that in other
groups. Moreover, we observed that dietary supplementation
with L-trp significantly increased the serum antioxidant capacity
of E. sinensis at 12 and 24 h after infection with A. hydrophila.
Studies have reported that L-trp can increase the SOD activity
of Apostichopus japonicus Selenka (17). Mardones et al. reported
that dietary tryptophan significantly reduced cortisol levels in the
plasma of Salmo salar andOncorhynchus kisutch, enhancing their
anti-stress ability (50). In rats, a lack of Trp in the diet leads to
a decrease in GSH-Px activity in liver tissue. In rats, a lack of
tryptophan in the diet leads to a decrease in GSH-Px activity
in liver tissue (51). As the main decomposition product of lipid
peroxidation, MDA can reflect the degree of lipid peroxidation
in the body and the degree of oxidative damage in cells (52).
In this study, dietary supplementation with 0.53 and 0.70% L-
trp significantly reduced the serum MDA levels at 14 d. The
MDA levels in dietary supplementation groups of 0.53% L-trp
and 0.70% L-trp were significantly lower than those in control
group at 12 and 24 h after infection with A. hydrophila. This

result indicated that dietary supplementation of proper L-trp can
inhibit lipid peroxidation in E. sinensis. Niyogi et al. reported that
MDA levels were negatively correlated with antioxidant enzyme
activity (53). Previous studies have shown that tryptophan can
reduce MDA levels in rat liver (54). Wen et al. reported that
dietary supplementation of tryptophan significantly reduced
the MDA levels in the gut of Ctenopharyngodon idella, and
significantly increased the SOD and GSH-Px activity, as well as,
GSH content (16), which is consistent with our results.

The Effects of Dietary L-trp
Supplementation on Gene Expression of
Anti-bacterial-Related Protein
In invertebrates, C-type lectin can participate in pathogen
recognition and binding, agglutination, antibacterial, hemocyte
encapsulation, activation of prophenoloxidase (proPO)
activation system and other immune responses (55–59).
Many studies have reported that some C-type lectins in E.
sinensis, such as EsLecA, EslecG, EslecD, and EslecF, can promote
hemocyte encapsulation and antibacterial activity in antibacterial
reactions (60–62). In addition, it has been reported that C-type
lectin immulectin-2 has the effect of inducing phagocytosis in
Manduca sexta (59). As a congenital immune-related gene,
C-type lectin EslecB participates in immune defense responses
such as microbial binding, cell agglutination, and defense
against bacterial attack in E. sinensis (21). The hemocytes,
hepatopancreas, and gills are considered the important tissues
involved in immunity of crustaceans. Hemocytes are involved
in the recognition and phagocytosis of pathogenic bacteria.
Hepatopancreas is responsible for hematopoiesis, immunity,
detoxification, digestion, and other physiological functions.
As an important respiratory organ and excretory organ, gill
can isolate the body from the surrounding microorganisms,
effectively avoid infection, and resist the invasion of pathogenic
bacteria (25, 58, 63). As a complex micro-ecological system, the
intestines have the dual functions of digestion, absorption and
disease defense (64). Therefore, in this study, we used qRT-PCR
to detect the expression of antibacterial-related protein genes
EsLecB and HSP 90 in hepatopancreas, hemocytes, gill and
intestine of E. sinensis after injection of A. hydrophila. The results
showed that the expression of EsLecB gene in the hepatopancreas,
hemocytes, and gill was significantly up-regulated at 12 h after the
injection of A. hydrophila in the dietary supplementation group
with 0.53% L-trp. This indicates that dietary supplementation
with L-trp accelerated the antibacterial and immune defense
responses. Moreover, the expression of EsLecB gene in hemocytes
and intestine was significantly lower at 24 than at 12 h after the
injection of A. hydrophila, whereas the expression of EsLecB gene
in hepatopancreas and gill was significantly higher at 24 h than
at 12 h after the injection of A. hydrophila in all diet groups. The
results showed that, in order to resist the attack of A. hydrophila,
hemocytes and intestine are the primary agents of antibacterial
defense function in the early stage, which may be related
to the induction of hemocyte phagocytosis. Thereafter, the
hepatopancreas, and gill act together act as the main functional
unit to exert immune defense function.
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Heat shock protein HSP 90 is an important disease-resistant
and anti-inverse factor in animals. It is an important molecular
chaperone, and plays an important role in resisting the invasion
of pathogens, and regulating immune function and anti-aging
(20). Studies have found that when Charybdis japonica was
exposed to disrupting chemicals (EDCs), such as bisphenol A
(BPA) and 4-nonylphenol (NP), the expression of the HSP 90
gene in crab tissue was significantly increased in a short time
(65). In this study, we found that the HSP 90 gene expression
in the hepatopancreas, intestine, and gill was no significantly
difference among the four diet groups at 12 h after the injection
of A. hydrophila, whereas the HSP 90 gene expression in
the intestine was significantly up-regulated at 24 h after the
injection of A. hydrophila in Diet # C group compared with
the control group. However, the HSP 90 gene expression in
gill was significant down-regulated at 24 h after the injection
of A. hydrophila in Diet # D group compared with the control
group. After the infection of A. hydrophila in E. sinensis, the
expression of HSP 90 gene varied across different tissues, which
may be related to the divergent functions of different tissues
in the immune defense system. Our previous study found that
eyestalk ablation could lead to a significant up-regulation of HSP
90 gene expression in hemocytes to improve the body’s anti-stress
response (11). In the present study, the expression ofHSP 90 gene
in hemocytes was significantly lower in Diet # C and Diet # D
groups than in the control group at 12 h after the injection of
A. hydrophila, whereas there was no significant difference among
the four groups at 24 h after the injection of A. hydrophila. The
results showed that dietary supplementation of L-trp can enhance
the body’s anti-stress ability to a certain extent in a short period
of time.

CONCLUSION

In summary, dietary supplementation of L-trp can enhance the
antioxidant capacity, improve the hematological immune status,

and increase the survival rate of E. sinensis under cheliped
autotomy stress. Moreover, the bacterial challenge test results

showed that dietary supplementation of L-trp can enhance
the immune defense against bacterial attack by regulating
the hemocyte phagocytosis, hydrolase and antioxidant defense
systems, and expression of antibacterial-related protein genes.
This study evaluated the effects of dietary supplementation
of L-trp on the hematological immune, antioxidant capacity,
anti-stress, and antibacterial ability of E. sinensis, which can
provide scientific guidance for improving the anti-stress and
disease resistance of E. sinensis from the perspective of
nutrition.
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Arginine is a semiessential amino acid in healthy adult human, but is essential for

preterm, newborn or critically ill patients. Arginine can be supplied from our diet or

de novo synthesis from citrulline. In conditions of sepsis or endotoxemia, arginine

may be deficient and be accompanied with altered immune response. L-arginine

supplementation can ameliorate dysregulated immune condition and improve prognosis.

Many studies had tried L-arginine or L-citrulline supplementation to examine the effect

on immune response in the adult population. Few had studied on the young children. In

this study, we determined the effect of L-arginine and L-citrulline supplementation on the

immune response of infantile rats. Male infantile rats received normal saline, L-arginine

(200 mg/kg/day) or L-citrulline (200 mg/kg/day) intraperitoneally over postnatal day 8

to day 14. The infantile rats were then sacrificed. The blood was analyzed while the

spleen was indicated for immune analysis after stimulation with concanavalin A (Con A) or

lipopolysaccharide (LPS). We found L-arginine supplementation enhanced Th1 immune

response by increasing IFN-γ production. Both the L-arginine and L-citrulline therapy can

modulate regulatory T-cell (Treg) immune effects by increasing the IL-10 level. Only the

L-citrulline group showed a TGF-β1 increase. Both L-arginine and L-citrulline therapy

were also noted to decrease SMAD7 expression and enhance SIRT-1 abundance.

However, FOXP3 expression was only modulated by L-citrulline treatment. We then

concluded that L-arginine and L-citrulline supplementation can modulate the regulatory

T-cells function differently for infantile rats.

Keywords: L-arginine, L-citrulline, Treg, infant, rat

INTRODUCTION

Arginine is a semi-essential amino acid in human depending on the developmental stage or health
status of the individual. Arginine can be derived from dietary intake, from de novo synthesis
from citrulline and through protein breakdown. It is essential to preterm, newborn or critically
ill patients, as preterm/newborns are unable to synthesize arginine, while critical ill patients’
arginine are often depleted (1). Arginine has many important roles in several metabolic pathways.
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For immune system, its deficiency is associated with sepsis and
inflammatory conditions (2–5). Arginine deficiency is related
to decreased arginine uptake and impaired arginine de novo
synthesis from citrulline, in combination with an enhanced
arginine catabolism by the up-regulation of arginase and the
nitric oxide synthase (NOs) in the immune response (6).
Arginase and NOs can be induced by cytokines produced by
T helper cells. NOs is stimulated by Th1 cytokines such as
interferon-gamma (IFN)-γ and interleukin (IL)-1 which play
important roles in intracellular defense against microorganisms
while arginase is activated by Th2 related cytokines such as IL-
4, IL-5, and IL-13 which are responsible for allergic reactions
(7, 8). In contrast, the role of regulatory T cells (Treg) is to
suppress over-activated effector T cells and play a key role in the
regulation of Th1/Th2 immune responses (9–11). Treg secrets
regulatory cytokines such as transforming growth factor (TGF)-β
and IL-10 (12).

Over the years, many studies have tried to supply arginine
with or without other nutrition compounds as a therapeutic
strategy to restore the decreased arginine levels in septic and
critical ill patients but the results were inconsistent (13). Recent
studies examining L-arginine monotherapy in experimental
sepsis/endotoxemia of porcine model has shown beneficial effects
on the plasma arginine levels without side effects (14). L-
arginine supplementation can also enhance immune response,
increase protein turnover rate, and elevate NO synthesis (15, 16).
However, one study showed a higher mortality rate in severe
septic patients with arginine supplementation in the enteral diet
(17). With these inconsistent findings, the previous views of
L-arginine supplement need to be revisited.

Most of the current studies focus on the effect of L-arginine
supplementation for critical ill population in adults. However,
study on the neonatal population remains scarce. In our previous
study, we had found neonate has lower plasma L-arginine level
but more abundant arginase I in polymorphonuclear cells than
adult. Exogenous L-arginine could enhance neonate lymphocyte
proliferation through an IL-2 independent manner (18). For
newborn, whose more susceptible to arginine deficiency than
adult, more study about the modulatory effects of L-arginine
supplementation are needed.

Supplementation of citrulline as a source of arginine is
alternative therapeutic intervention being studied currently. L-
citrulline supplementation seems to be more effective than L-
arginine supplementation directly for improving arginine level
in sepsis. This is supported by studies showing that treatment
with L-citrulline in endotoxemic rats resulted in higher plasma
arginine concentration than treatment with L-arginine in certain
conditions (19, 20). Research on citrulline supplementation for
modulation of neonatal immunity is limited.

Arginine availability is essential for a normal immune
response, specifically T-cell proliferation and function (21).
When arginine is depleted, the result could lead to increased
susceptibility to infection (22). Neonatal plasma L-Arginine
level was previous shown to be lower than in adults and this
can partly explain why newborns more prone to infection
(18). Therefore, the importance of arginine and/or citrulline
to neonatal immunity cannot be underestimated. More study

is needed to explore the influence of exogenous amino acids
on neonatal immunity. The aim of this study is to investigate
the immune modulatory effects of L-arginine and L-citrulline
on infant using a rat model. We found L-arginine and L-
citrulline supplementation have different programming effect on
regulatory T-cells function of infant rats.

MATERIALS AND METHODS

Animals
This study was conducted in strict accordance with the
recommendations outlined in the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health. The
protocol was approved by the Institutional Animal Care and Use
Committee of the Kaohsiung Chang Gung Memorial Hospital
(No.2014102002). Virgin Sprague–Dawley (SD) rats (12–16
weeks old; BioLASCO Taiwan Co., Ltd., Taipei, Taiwan) were
housed and maintained in a facility accredited by the Association
for Assessment and Accreditation of Laboratory Animal Care
International as previously described (23). Virgin SD female rats
were mate with male rats for 24 h and then were separated
from the male rats and housed individually in a standard
plastic home cage. After birth, the male offspring pups were
randomly assigned to the L-arginine group (L-Arg), L-citrulline
group (L-Cit) or control group (C) at postnatal day 8. For
the L-Arg group, L-arginine was administered intraperitoneally
(200 mg/kg/day) from postnatal day 8 to postnatal day 14. L-
citrulline was administered intraperitoneally (200 mg/kg/day)
over postnatal day 8 to day 14 for the L-Cit group. The control
group was intraperitoneally injected with normal saline daily
over gestational postnatal days 8–14.

Experimental Procedures and Specimen
Collection
All rats of these three groups were sacrificed at postnatal day 15
to assess the immune modulatory effects of indicated amino acid
treatment. Body, thymus, and spleen weights were recorded after
sacrifice. The spleen tissues were used for further studies, and
blood specimens were collected for analysis.

Peripheral Blood Analysis and Plasma
Immunoglobulin Detection
Blood samples were collected in heparin tubes. Total blood
cell counts and white blood cell (WBC) differential counts
were obtained using Sysmex XT-1800i (Sysmex, Hyogo, Japan)
as previous described (24). For lymphocyte subset analysis,
leukocytes were stained with the following antibodies: PE-
conjugated anti-rat CD3, APC-conjugated anti-rat CD45RA, PE-
conjugated anti-rat CD4, and FITC-conjugated anti-rat CD8a.
All these antibodies were purchased from BD Biosciences. Data
were acquired using a FACSAria I cytometer (Becton Dickinson,
Franklin, NJ, USA) and analyzed using Flow Jo software. The
levels of plasma immunoglobulins (Ig), including IgG, IgA, and
IgM, were analyzed by ELISA (eBioscience, SanDiego, CA, USA).
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Splenocyte Culture and Drug Treatment
In this study, we choose Concanavalin A (ConA) to stimulate
whole splenocytes as study model. ConA, a plant mitogen, is
a selective T-cell stimulant that active T-cells through T-cell
receptor (25, 26). We use cytokines production to represent
Th immune response. Since immune response is composed of
interplay of various cells, whole splenocytes model was selected
to imitate the nature condition. Splenocytes were isolated from
the whole spleen as previously described (23, 24, 27). In brief,
the spleen was washed with phosphate-buffered saline (PBS) and
pressed with a syringe plunger through a 30-µm nylon mesh.
After erythrocytes were lysed, the remaining splenocytes were
washed with PBS again. All spleen cells were counted and 2× 106

cells/ml were plated in 24-well plates containing RPMI 1640
medium (Gibco) supplemented with 1% non-essential amino
acids, 1% pyruvate, 10% heat-inactivated fetal bovine serum,
and antibiotics. Cultured splenocytes were stimulated with or
without 5µg/ml of ConA (Sigma Chemical Co., St Louis, Mo.)
or 100 ng/ml of lipopolysaccharide (LPS; Sigma). The cell pellets
and culture supernatants were collected at the indicated time for
further studies.

5-Bromo-2′-Deoxyuridine (BrdU) Cell
Proliferation Assay
Proliferation of splenocytes was assessed by the BrdU assay
(Millipore), as described previously (23, 24). At first, splenocytes
(5 × 105 cells/ml) were suspended in a 96-well plate with
enriched RPMI-1640 medium. Then, the splenocytes were
stimulated with/without 5µg/ml of Con A or PBS. After 48 h
of stimulation, BrdU reagent was added to the proliferating
splenocytes and labeled for the following 24 h. Proliferation was
measured by the BrdU assay according to the manufacturer’s
instructions. The results were presented as the ratio of optical
density (OD) of Con A stimulation to OD of control for every
group.

Cytokine Analysis
The isolated splenocytes (2× 106 cells/ml) were plated in 24-well
plates containing enriched medium and treated with or without
100 ng/ml of LPS for 24 h or 5µg/ml of Con A for 24 or 72 h. The
cell culture supernatants were collected for cytokines detection
related to innate and adaptive immunity using the ELISA assay
(R & D Systems, Minneapolis, MN, USA).

Quantitative Reverse
Transcription-Polymerase Chain Reaction
(qRT-PCR)
RNAwas prepared from splenocytes or spleen tissue of rats. qRT-
PCR was performed as previously described. In brief, 5 µg of
extracted RNA sample was reversed transcribed with Moloney
murine leukemia virus reverse transcriptase. PCR was performed
in 20 µl of total reaction volume containing 2 µl of 1:10 diluted
cDNA obtained from reverse transcribed RNA, specific primers,
2.5mM MgCl, and Maxima SYBR Green/Fluorescein qPCR
Master Mix (2X) (#K0242, Thermo Scientific, CA, USA). The
cycling protocol comprised one cycle of 10min at 95◦C followed

by 45 cycles of denaturation for 10 s at 95◦C, annealing for 20 s
at 55◦C, and extension for 20 s at 72◦C. The primers were as
follows: Mothers against decapentaplegic homolog 7 (SMAD7):
5′- GGA GTC CTT TCC TCT CTC-3′ (sense) and 5′-GGC TCA
ATG AGC ATG CTC AC-3′ (antisense); Sirtuin 1 (SIRT-1): 5′-
TGT TTC CTG TGG GAT ACC TGA-3′ (sense) and 5′-TGA
AGA ATG GTC TTG GGT CTT T-3′ (antisense); forkhead box
P3 (FOXP3): 5′-CCC AGGAAAGACAGCAACCTT-3′ (sense)
and 5′- CTG CTT GGC AGT GCT TGA GAA-3′ (antisense);
peptidylprolyl isomerase B (PPIB): 5′-TCA TCG TGGGCTCCG
TTG-3′ (sense) and 5′-AGC CAA ATC CTT TCT CTC CTG
TAG C-3′ (antisense). Serial dilutions of the standard cDNA
were also used for parallel amplifications. The threshold cycles
(Ct) were calculated using the LightCycler software (ver. 1.5.0).
Standard curves were plotted with Ct-vs.-log cDNA quantities.
We employed the comparative Ct method to determine the
relative quantification of mRNA expression. The averaged Ct was
subtracted from the corresponding averaged PPIB value for each
sample, resulting in 1Ct. 11Ct was obtained by subtracting the
average control 1Ct value from the average experimental 1Ct
value. The fold increase was established by calculating 2-11Ct
for the experimental vs. control samples.

Western Blotting
Western blot was performed as previously described (23, 24).
Briefly, 50mg of spleen tissue was homogenized with protein
extraction solution (iNtRon biotechnology, Sungnam, Korea)
according to the manufacturer’s instructions. After determining
protein concentrations, 50 µg samples were boiled and subjected
to 12% SDS-PAGE for each lane. After transferring and blocking
to a polyvinylidene difluoride (PVDF) membrane, the membrane
was incubated with anti-SIRT1 (Abcam, Cambridge, MA, USA)
at 1:500 for over-night. After washing and incubation for 2 h with
peroxidase-labeled secondary antibody diluted 1:1,000 in T-BST,
the blot image was obtained using a Bio-Rad Molecular Imager
ChemiDocMP and quantified by Image Lab version 5.0 software
(Bio-Rad, Richmond, CA, USA).

Statistics
The data are expressed as mean ± standard error of the mean.
The one-way ANOVA test was used when two groups were
analyzed. Results with a p < 0.05 were considered statistically
significant. All statistical tests were performed using SPSS 19.0
for Windows XP (SPSS, Inc., Chicago, IL, USA).

RESULTS

Postnatal L-arginine or L-citrulline
Supplementation did Not Increase
Lymphoid Organ-to-BW Ratio and BW of
Infant Rats
At first, we sought to determine whether postnatal L-arginine
or L-citrulline supplement will affect the lymphoid organ size.
What we found was, after postnatal administration of L-arginine,
L-citrulline, or normal saline, the body weight at postnatal day
15 were similar among the three groups (Table 1). There was
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TABLE 1 | Lymphoid organ-to-body weight ratio and body weight of infant rats.

Group Control L-Arg L-Cit

BW (g) 28.31 ± 1.21 28.04 ± 0.63 28.92 ± 0.84

Spleen (g) 0.10 ± 0.01 0.11 ± 0.01 0.12 ± 0.01

Spleen/BW (g) 3.34 × 10−3 ± 0.00 3.75 × 10−3 ± 0.00 4.00 × 10−3 ± 0.00a

BW, body weight; L-Arg, L-arginine group; L-Cit, L-citrulline group. N = 9 to 11 for each

group. aControl group at p < 0.05.

no difference in the spleen weight or spleen weight-to-BW ratio
among the 3 groups.

Postnatal L-arginine or L-citrulline
Supplementation Modified Leukocyte
Subsets of Infant Rats
We then measured the blood cell counts and its differential
count. The white blood cell counts, red blood cell counts,
and platelet counts at postnatal day 15 showed no significant
difference (Table 2). Regarding the white blood cell differential
count, the L-Cit group had a lower percentage of neutrophil
to lymphocyte ratio than those of the control group and L-
Arg group, while both the L-Arg and L-Cit group had higher
percentage of monocyte than that of the control group (Table 2).
We further performed flow cytometry analysis of leukocytes
from offspring using antibodies directed against the indicated cell
surface markers (Table 2). Samples were analyzed and compared
for CD3, CD4, CD8a, and CD45RA (Ox-33 antibody). The L-
Arg and L-Cit groups had higher percentage of CD8a+ cells
than control group. In contrast, the percentage of CD4+ cells
in the L-Cit group was significantly lower than the other groups
(Table 2).

Postnatal L-arginine or L-citrulline
Supplementation did Not Change Plasma
IgA, IgE, IgG and IgM Levels During Infancy
Total plasma IgA, IgE, IgM, and IgG were measured by ELISA.
The IgG level was higher than other immunoglobulins in plasma
of infant rats (Figure 1). Overall, the IgA, IgE, IgM and IgG levels
showed no significant difference among these three groups.

Postnatal L-arginine Supplementation
During Infancy Enhance Th1 Related
Cytokines Production
To test the modulatory effects of L-arginine and L-citrulline
on the T cell proliferation and cytokine productions, we first
isolated the splenocytes from the whole spleen and maintained
in enriched RPMI-1640 medium. To assess the degree of T-cell
proliferation, Con A was added to stimulate splenocytes. IL-
2 was determined from culture supernatants after stimulation
for 24 hrs since IL-2 reach highest level in early stage of
proliferation (18, 23). For splenocytes proliferation, BrdU assay
was determined after Con A stimulation for 72 hrs. From the
BrdU result, we found there is no obvious difference in the
optic density regardless of L-arginine or L-citrulline supplement
(Figure 2A). However, a discordant result was noted when we

TABLE 2 | Blood cell counts and leukocyte subsets of infant rats.

Group Control L-Arg L-Cit

WBC (103/µl) 4.48 ± 1.15 2.90 ± 0.26 2.98 ± 0.23

RBC (106/µl) 3.79 ± 0.14 3.93 ± 0.09 3.90 ± 0.11

HGB (g/dl) 9.34 ± 0.45 9.14 ± 0.24 9.16 ± 0.22

HCT (%) 26.80 ± 0.98 28.20 ± 0.69 28.27 ± 0.70

MCV (fL) 70.67 ± 0.68 71.87 ± 0.99 66.17 ± 6.15

MCH (pg) 24.58 ± 0.51 23.29 ± 0.29a 23.53 ± 0.21a

WBC DIFFERENTIAL COUNT

Neutrophil# (103/µl) 0.77 ± 0.12 0.86 ± 0.13 0.62 ± 0.05

Lymphocyte# (103/µl) 2.52 ± 0.21 2.06 ± 0.13 2.24 ± 0.18

Monocyte# (103/µl) 0.04 ± 0.01 0.08 ± 0.02 0.09 ± 0.01a

Eosinophil# (103/µl) 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.00

Basophil# (103/µl) 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01

Neutrophil (%) 22.68 ± 2.43 27.52 ± 2.27 21.18 ± 1.46b

Lymphocyte (%) 75.36 ± 2.63 69.22 ± 2.44 74.85 ± 1.60

Monocyte (%) 1.06 ± 0.33 2.54 ± 0.55a 3.04 ± 0.35a

Eosinophil (%) 0.59 ± 0.35 0.21 ± 0.07 0.35 ± 0.10

Basophil (%) 0.31 ± 0.06 0.46 ± 0.32 0.57 ± 0.23

N/L ratio 0.31 ± 0.04 0.41 ± 0.05 0.29 ± 0.03b

LYMPHOCYTE SUBSET

CD3+ (%) 9.46 ± 0.87 8.17 ± 0.62 7.54 ± 0.59

CD45RA+ (%) 8.76 ± 0.75 10.32 ± 1.17 11.13 ± 1.27

CD3+CD4−CD8a− (%) 11.43 ± 1.38 13.80 ± 2.10 13.62 ± 1.75

CD3+CD4−CD8a+ (%) 18.48 ± 0.50 21.70 ± 0.77a 22.78 ± 1.46a

CD3+CD4+CD8a+ (%) 11.94 ± 1.19 10.71 ± 0.83 11.79 ± 0.81

CD3+CD4+CD8a− (%) 58.15 ± 1.40 53.79 ± 2.28 51.81 ± 1.67a

L-Arg, L-arginine group; L-Cit, L-citrulline group; WBC, white blood cells; RBC, red blood

cells; HGB, hemoglobulin; HCT, hematocrit; MCV, mean corpuscular volume; MCH, mean

corpuscular hemoglobin; N/L ratio, neutrophil to lymphocyte ratio. avs. Control group at

p < 0.05; bvs. L-Arg group at p < 0.05. N = 9 to 11 for each group.

tested the IL-2 level and it showed a significant increase only
in the L-Arg group (Figure 2B). In this study, we used RPMI
1640 as culture medium, it contains high level of L-arginine
(1,150µM) but without L-citrulline. In previous report, we have
shown neonatal T-cell proliferation is in an IL-2 independent
manner (18). Thus, the discordant result of IL-2 production and
splenocytes proliferation can be explained by the fact that our
culture medium contains high level of L-arginine and the unique
lymphocyte proliferation response of neonates.

Next, the splenocytes were stimulated with LPS for 24 hrs
or Con A for 72 hrs to induce innate and adaptive immune
cytokines, respectively. IL-6 and TNF-α were chosen to represent
innate immune response. There was no difference in IL-
6 production among these three groups (Figure 3A), while
TNF-α level was higher in the L-Arg group than the control
group (Figure 3B). For Th1 cytokine, IFN-γ was measured
and the level was highest in the L-Arg group (Figure 4A). L-
citrulline supplement did not enhance IFN-γ production as
compared with control group. We assigned IL-4 and IL-13 to
be Th2 cytokines. We found that there was no difference in
concentration regardless of L-arginine or L-citrulline supplement
(Figures 4B,C). The production of IL-17A also did not show a
significant difference (Figure 4F).
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FIGURE 1 | Plasma immunoglobulin (Ig) levels of 15-day-old rats. (A) IgA (B) IgM (C) IgE (D) IgG. C, control group; L-Arg, L-arginine group; L-Cit, L-citrulline group.

N = 9 to 11 for each group.

FIGURE 2 | The modulatory effects of L-arginine or L-citrulline supplementation for splenocytes proliferation and IL-2 production on infant rats. (A) splenocytes

proliferation determined by BrdU array in enriched RPMI-1640 medium. (B) IL-2 level in culture supernatants as splenocytes stimulated with 5µg/ml of Con A for 24 h.

C, control group; L-Arg, L-arginine group; L-Cit, L-citrulline group. *p < 0.05. N = 9 to 11 for each group.

Postnatal L-arginine and L-citrulline
Supplementation Showed Distinct Treg
Immune Modulatory Effects for Infant Rats
When stimulated with Con A, the increase in IL-10 was then
seen in both the L-Arg and L-Cit groups when compared to the

control group (Figure 4D). L-Cit group showed the highest IL-

10 production than other groups. For TGF-β1, when stimulated

with Con A, the increase in TGF-β1 level was most profound in

the L-Cit group when compared to the control and the L-Arg

groups (Figure 4E).
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FIGURE 3 | The modulatory effects of L-arginine or L-citrulline supplementation for innate immune cytokine productions on infant rats. (A) IL-6 and (B) TNF-α

productions were determined after splenocytes stimulated in enriched RPMI-1640 medium with LPS for 24 h. C, control group; L-Arg, L-arginine group; L-Cit,

L-citrulline group. *p < 0.05. N = 9 to 11 for each group.

FIGURE 4 | The modulatory effects of L-arginine or L-citrulline supplementation for adaptive immune cytokine productions on infant rats. Th1 related cytokine (A)

IFN-γ, Th2 related cytokines (B) IL-4, (C) IL-13, and Treg related cytokines (D) IL-10, (E) TGF-β were determined as splenocytes cultured with Con A for 72 h in in

enriched RPMI-1640 medium. (F) IL-17A was represent of Th17 related cytokine. C, control group; L-Arg, L-arginine group; L-Cit, L-citrulline group. *p < 0.05;

**p < 0.01; ***p < 0.001. N = 9 to 11 for each group.

Postnatal L-arginine and L-citrulline
Supplementation Demonstrated Different
Modulatory Effects on TGF-β Signaling
Cascade
FOXP3 is the key transcription factor for Treg immune. SMAD7

is a transcriptional regulating molecule found mostly in the

nucleus, functions as a signal inhibitor for TGF-β receptor

(28). To understand the mechanism in which L-arginine and

L-citrulline supplementation alter Treg response, qRT-PCR was
used to measure the relative expression of SMAD7 and FOXP3
mRNA. As shown in Figure 5A, the expressions of SMAD7 were
prominently lowered in both the L-Arg and the L-Cit groups
when compared to the control. Furthermore, a higher FOXP3
mRNA expression was seen in the L-Cit group (Figure 5B). We
only observed an increasing trend for FOXP3 expression in the
L-Arg group but the result not arrive at statistical significance.
SIRT-1 is a class III histone deacetylase that resides in the
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FIGURE 5 | Treg associated regulatory molecules expressions with L-arginine and L-citrulline supplementation. RT-PCR analysis of (A) SMAD7 (B) FOXP3, (C) SIRT-1

mRNA expressions of splenocytes cultured with Con A for 72 h in in enriched RPMI-1640 medium. N = 9 to 11 for each group. (C) Splenic tissue lysates from

15-day-old infant rats were analyzed by Western blotting with SIRT-1 antibody. C, control group; L-Arg, L-arginine group; L-Cit, L-citrulline group. *p < 0.05. N = 9 for

each group.

nucleus and can regulate many physiologic functions. SIRT-1
was also reported to regulate immune response through FOX3P
modulation recently. Thus, whether SIRT-1 is involved in L-
arginine/L-citrulline mediated Treg modulation was studied. L-
Cit group revealed a higher SIRT-1 mRNA expression than
control group (Figure 5C). Lastly, we measured the relative
abundance of SIRT-1 protein in spleen tissue by Western blot.
Both L-arginine and L-citrulline supplementation for infant rats
enhance the SIRT-1 protein abundance (Figure 5D). L-citrulline
treatment conducted to the most abundant SIRT-1 protein as
compared with other groups.

DISCUSSION

Arginine is an amino acid that plays a key role in the immune
system. Immune cells such as macrophage and lymphocytes,
contains arginase (type I and II) and inducible NO synthase
(iNO) that will utilize arginine (29). When arginine is catabolized
by arginase, the products are urea, ornithine, polyamines and
proline, and when degraded by iNO, the products are a large
amount of NO and citrulline (30). In the innate immune system,
the NO produced in macrophages and neutrophils is necessary
to kill invasive microorganisms (such as viruses, bacteria, and
fungi) and tumor cells (21). Markedly increased mononuclear
cell arginase activity and decreased plasma arginine/citrulline

levels were observed in certain conditions (31). With arginine
deficiency, both the innate and adaptive immune responses
are impaired and are associated with sepsis and inflammatory
conditions such as bacteremia and endotoxemia (2–5). When
arginine is deficient, NO production is then limited, thereby
increase host susceptibility to invading pathogens (32). In the
adaptive immune system, arginine regulates the maturation
and proliferation of T and B lymphocytes, the production
of cytokines and specific antibodies, the circulating levels of
anabolic hormones and the expression of T-cell receptors (CD3ζ)
in animals and human (21). Understandably, depletion in
arginine can result in the inhibition of T lymphocyte proliferation
and IFN-γ production, and the downregulation of CD3ζ, leading
to impaired adaptive immune responses in T-cells (33, 34).
Arginine depletion also inhibits the proliferation of nature killer
cells and their production of IL-12/IL-18 mediated IFN-γ (35).
However, with all these studies currently, the majority of them
focus on the adult population or the adult animals. Studies
that focus on the pathophysiology mechanism and intervention
with arginine or citrulline in the pediatric population remain
scarce. Recently we found that L-arginine could enhance neonatal
Treg related IL-10 production (36). We then tried to mimic
the pediatric population with our animal study design which
not only explored the effects in which both L-arginine and L-
citrulline therapy on innate and the adaptive immune, but also
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FIGURE 6 | L-arginine and L-citrulline supplementation modulate the Treg function distinctly for infants. (A) L-arginine therapy modulate regulatory T-cell (Treg)

immune effects by increasing IL-10 rather than TGF-β production. L-arginine treatment also enhance TGF-β signaling by decreasing SMAD7 expression and enhance

SIRT-1 abundance. (B) In contrast, L-citrulline treatment promote both IL-10 and TGF-β productions. L-citrulline treatment also enhance TGF-β signaling by

decreasing SMAD7 expression and enhance FOXP3/SIRT-1 molecule.

studied the regulatory mechanism of these immune responses.
We demonstrated that supplementation of L-arginine and L-
citrulline have distinct role in the immune modulation of T cells
via cytokines production and regulation in infant rats.

In this study, 200 mg/kg/day of L-arginine and L-citrulline
were used for infant rats. These amounts are within the range of
doses used in previous literatures (37, 38). Arginine itself is not
toxic and its use as a supplement to diets (<2.5% of dry matter)
is generally safe for animals (38). Another study suggested
short-term use of intravenous arginine at 500mg of arginine-
HCl/kg/day for infants did not result in any harmful effect (39).
Based on these findings, with a dietary supplementation with
arginine at the doses of 200 mg/kg/day, a 5-kg infant should
tolerate supplemental dose of 1 g arginine/d (38).

Citrulline is an amino acid which is a precursor and a
metabolite of arginine and its effects in the immune cells are
thus partly related to arginine. An impaired conversion of
citrulline to arginine by argininosuccinate synthase (ASS) results
in immune dysfunction, increased susceptibility to infections
and decreased NO production (40, 41). A study by Breuillard
et al. showed that citrulline treatment to diabetic fatty rats was
able to induce NO production of peritoneal macrophages and
modulate macrophage via increasing IL-6 and decreasing TNF-
α (42). Similar to the observed decreased arginine concentration
in sepsis and endotoxemia, a reduced citrulline production
and bioavailability is also noted in sepsis, endotoxemia and
inflammatory conditions (20, 43). Several studies had tried to
evaluate the supplementation of citrulline in models of sepsis and
had found citrulline to be a more productive arginine precursor
than arginine (44, 45). Early experimental studies have also
suggested its therapeutic potential to restore arginine metabolism
in critically ill patients with sepsis (3, 46).

From our study, there was no change in the production of
IL-6 while TNF-α showed an increase in production in the
L-Arg group. There was no change in the IL-6 and TNF-
α production after treatment with L-citrulline. These findings
seemed to be different to previous in vitro studies of type II DM
rats that showed a decrease in TNF-α after arginine treatment
(47) and an increased IL-6 production with a decrease TNF-
α after treatment with citrulline (42). Asgeirsson et al. showed
an opposite result in rats that oral citrulline supplementation
impacted the proinflammatory mediators response by decreasing
IL-6 in sepsis (48). These inconsistent results may due to different
species of rats as well as a different age group of the study subjects.
In cell culture study, we used an arginine-enriched medium, and
this may also contribute to different consequence.

When we assessed the effect of amino acid supplementation
on the adaptive immune response, we found that postnatal
L-arginine treatment enhanced Th1 immune response by
increasing IFN-γ production while IL-4 and IL-13, IL-17A were
not affected at all. There was no obvious effect on the Th1/Th2
cytokines in the L-Cit group. We then studied the effect of
amino acid treatment on Treg and we found that L-arginine
supplementation was able to increase the production of IL-10
but not TGF-β1. This finding was consistent with our previous
result showing exogenous L-arginine supplementation enhance
IL-10 rather than TGF-β production of cord blood CD4+ T-cells
(36). While L-citrulline therapy enhanced Treg of infant rats by
promoting both IL-10 and TGF-β1 production. Both L-arginine
and L-citrulline therapy were also noted to decrease SMAD7
expression, an inhibitor of TGF-β receptor signal pathway, and
enhance SIRT-1 abundance. However, FOXP3 expression was
only modulated by L-citrulline treatment. Thus, L-arginine and
L-citrulline supplementation have different modulatory effect for
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T-cells function of infants (Figure 6). To our knowledge, this is
the first experiment on the modulatory effect of L-citrulline on
Treg response in the literature.

More than different effects, it seems that L-citrulline
supplementation has a more potent effect than L-arginine
supplementation in the modulation of the immune response
for newborn. Once L-arginine is orally administered, it is
extensively catabolized by arginase in the gut and liver (45,
49). This may limit its bioavailability as a substrate for NOS
(45). Previous reports demonstrated that L-citrulline is an
potent precursor of L-arginine, thus contributing to sustained
L-arginine supply for nitrogen homeostasis (49). L-citrulline
supplementation was even observed to increase plasma L-
arginine levels in healthy human volunteers more effectively
than L-arginine itself in equivalent dose (45). In contrast to L-
arginine, previous researches have demonstrated that L-citrulline
suppresses arginase activity, acting as a strong allosteric inhibitor
(50). Collaborate with more abundant arginase in neonatal
leukocytes (18), these could explain the more potent effect of
L-citrulline than L-arginine in the modulation of the immune
response for newborn.

SMAD molecules involve the signaling pathway of TGF-β has
been well documented (28). The receptor-regulated SMADs (R-
SMADS, SMAD1,2,3,5,8) are involved in direct signaling from
the TGF- receptor (51). Common SMAD (Co-SMAD, SMAD4)
cooperate with R-SMADS to form SMAD complex and controls
expression of target gene with other transcription factors (52).
This signaling pathway negatively controlled by the inhibitor-
SMAD (I-SMAD, SMAD6, and 7). SMAD7 is the general
antagonist of TGF-β family signaling and exert its inhibitory
effects at the receptor level or transcription level (53). Previous
studies have shown that SMAD7 knockout mice exhibited an
augmented TGF-β induced signaling (54). In our study, we
found the expression of SMAD7 mRNA is decreased by both L-
arginine and L-citrulline treatment. Thus, both L-arginine and
L-citrulline supplementation may promote TGF-β down-stream
signal pathway even though only L-citrulline supplementation
enhanced the production of TGF-β.

FOXP3 is a major transcription factor for Treg and it activate
IL-10 and TGF-β1 production (55). SIRT-1 is a class III histone
deacetylase and its immune regulatory role has become more
prominent in recent years study. SIRT1 is well known to
involve extensively in many physiological as well as pathological
conditions such as aging, cancer, neurodegenerative diseases
and metabolic processes (56). The regulatory role of SIRT-1
in the immune system has been revealed recently. SIRT-1 was
reported to inhibit the differentiation and function of Treg
through deacetylating and destabilizing FOXP3, leading to the
decrease of TGF-β1 and Th1 promotion (56, 57). To our surprise,
we did not observe the expected decrease in SIRT-1, with its
reciprocal regulation of FOXP3, after L-arginine and L-citrulline
treatment. In contrast, we found a consistent increase for SIRT-
1 and Treg response with exogenous L-arginine and L-citrulline
supplementation. This is in agreement with another study which
also found genetic deletion of SIRT1 in DCs inhibited the
generation of T reg cells (58). Another report also revealed that
splenic myeloid-derived suppressor cells from SIRT-1 knock-
out mice produce lower IL-10 and TGF-β than wild type (59).

Thus, the role of SIRT-1 for Treg with L-arginine and L-citrulline
therapy need to be clarified in future studies.

NO plays an important role in many physio-pathological
conditions in brain, either as a signaling molecule or as a
cytotoxic host defense mechanism (60, 61). Adequate NO
generation is dependent on proper supply of L-arginine. Under
proin flammatory conditions, argininosuccinate synthetase
expression is increased in glioma cells and astroglial cultures,
a functional role in the recycling of L-citrulline to generate
L-arginine for the production of NO has been demonstrated
(62). However, when released in excess, iNOS-derived NO
can be harmful to the host. In neonatal hypoxia-ischemia
model, excessive NO combine with superoxide radicals to
produce oxidative stress and result in mitochondrial dysfunction
and neuronal toxicity has been demonstrated (63). Thus, the
effects of both L-arginine and L-citrulline on neonatal brain
and potential neuroinflammatory responses need to be further
studied.

Our study has several limitations. First, we administrated
the amino acids via intraperitoneal injection rather than oral
supplementation. This is because we wanted to study the
supplementary effects of indicated amino acids for infant
rats while they are still un-weaned. Thus, we do not know
whether the immune regulatory effect of indicated amino acid
supplementation via a different route will be similar or not.
Besides, we did not use arginine free culture medium for
cell culture and thus might mask or influence the possible
effects of the supplementation of arginine or citrulline on
the immune response. However, we have provided evidences
showing the sustained immune regulatory effects of L-arginine
and L-citrulline supplementations even when splenocytes are
later culture in amino acid enriched medium.

In conclusion, we have shown that with the addition
of L-arginine, Th1 immune response is activated through
increase of IFN-γ production. While supplement with L-arginine
and L-citrulline to infantile rats have distinct Treg immune
modulatory effects. The possible mechanism of modulation
in Treg is through FOXP3, SMAD7 and SIRT-1 regulation.
Exogenous supplementation of indicated amino acids has the
potential to be a strategy for infants in immune dysregulated
conditions.
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Curcumin is a botanical with anti-tumor and immunomodulatory properties. We

hypothesized that curcumin supplementation might influence inflammatory biomarker

levels in endometrial carcinoma (EC). In this open-label, non-randomized phase 2 study

(NCT02017353), seven EC patients consumed 2 g/day Curcumin Phytosome (CP)

orally for 2 weeks. Blood was taken at baseline, days 1, 7, 14, and 21. The following

analytes were measured: curcuminoids and metabolites, 56 inflammatory biomarkers,

COX-2, frequencies of myeloid-derived suppressor cells, dendritic cells and NK cells,

expression of MHC molecules on leukocytes and monocytes and activation/memory

status of T cells. Patients completed quality of life (QoL) questionnaires at baseline and

end of treatment. Curcumin metabolites were detectable in plasma upon CP intake. CP

downregulated MHC expression levels on leukocytes (P = 0.0313), the frequency of

monocytes (P = 0.0114) and ICOS expression by CD8+ T cells (P = 0.0002). However,

CP upregulated CD69 levels on CD16− NK cells (P = 0.0313). No differences were

observed regarding inflammatory biomarkers, frequencies of other immune cell types,

T cell activation and COX-2 expression. A non-significant trend to improved QoL was

observed. Overall, CP-induced immunomodulatory effects in EC were modest without

significant QoL changes. Given the small population and the observed variability in

inter-patient biomarker levels, more research is necessary to explore whether benefits of

CP can be obtained in EC by different supplementation regimens.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02017353; www.

clinicaltrialsregister.eu, identifier 2013-001737-40.

Keywords: curcumin, immunomodulation, endometrial cancer, inflammatory biomarkers, quality of life

INTRODUCTION

Curcumin is a polyphenol derived from the plant Curcuma longa (common name Turmeric).
It is used in traditional Ayurvedic medicine. Besides curcumin, turmeric also contains
demethoxycurcumin and bisdemethoxycurcumin, together forming the curcuminoids (1). Several
preclinical studies documented the anticancer effects of curcumin, by modulating molecules
implicated in cancer, such as NF-κB, COX-2, lipooxygenase, and protein kinase C (2, 3).
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Furthermore, curcumin has also been shown to potentiate the
anticancer effects of conventional anticancer therapies such as
chemotherapy or radiation by sensitizing cancer cells to their
cytocidal effects (4, 5).

Besides its direct effects on cancer cells, emerging data point
toward anti-inflammatory and immune-modulatory effects of
curcumin that could play a role in its anti-tumor effects (6).
Curcumin has been shown to inhibit the accumulation of
myeloid-derived suppressor cells (MDSC) and their interaction
with cancer cells and induces the differentiation/maturation of
MDSC (7). Curcumin reduced intratumoral IL-6 production
and metastasis formation in a breast cancer model and, when
combined with cryoablation, induced robust anti-tumor T cell
immunity and reduced tumor growth (8). In RAW 264.7
murine macrophages, a curcumin formulation significantly
decreased the LPS-induced pro-inflammatory mediators NO,
PGE2, and IL-6 by inhibiting activation of NF-κB (9). In IFNγ-
stimulated murine bone marrow-derived dendritic cells (DCs),
curcumin has shown to inhibit the expression and functionality
of indoleamine-2,3-dioxygenase, a major immunosuppressive
enzyme in tumor immunology (10). Through inhibition of COX-
2, curcumin also reduced PGE2 production, which exerts potent
immunosuppressive effects in the tumor microenvironment (1).
Recently, curcumin has shown to inhibit inflammation-mediated
PD-L1 expression, an immune checkpoint enabling tumors to
evade the immune response (11). In contrast, several features
that could be detrimental to anti-tumor immunity have also
been attributed to curcumin, such as induction of IL-10 (12),
inhibition of T cell responses (13), inhibition of dendritic cell
maturation (13), and induction of regulatory T cells (14).

A major obstacle hampering the implementation of curcumin
in the clinic is its poor bioavailability. Most preclinical studies
have investigated the effects of curcumin at dosages impossible
to obtain after oral intake of curcumin. Various approaches
have been developed to improve the bioavailability of curcumin.
A first approach is the use of the adjuvant piperine, which
increases curcumin bioavailability by inhibiting the enzymes
UDP-glucuronyltransferase (UGT) and sulfotransfereases
(SULT) that are responsible for transformation of curcumin into
curcumin glucuronide and curcumin sulfate (15–17). Second,
various formulations of curcumin delivery systems have been
developed to improve bioavailability. This comprises the use of
nanoparticles/nanoemulsions, complexes with phospholipids,
formulation with soluble dietary fibers, micronization,
micellization, and other agents (17–22). Finally, curcumin
derivatives and analogs have been synthesized to improve
the biological activity of curcumin. However, although many
curcumin analogs have shown improved biological activity
over curcumin, specific evaluations of structural analogs
and/or derivatives of curcumin to improved tissue and plasma
distribution are lacking (17). Although all these formulations
claim to improve curcumin bioavailability, plasma levels remain
quite low, due to rapid metabolism and possibly uptake into
tissues. Moreover, extensive variability in the studies makes it
difficult to directly compare and conclude which formulation is
better than the other. Curcumin Phytosome (CP) is a patented
formulation of turmeric extract with soy lecithin. These two

components form a non-covalent adduct in a 1:2 ratio, and
two parts of microcrystalline cellulose are added to improve
formulation, with an overall curcuminoid content of 20% (15).
This formulation improves the plasma levels of curcumin and
its metabolites (23) and is documented with preclinical and
clinical pharmacokinetic studies (23, 24), supported by GLP
preclinical safety studies (personal communication with Indena
S.p.A., Investigator’s Brochure) and has been used in a number
of clinical studies (25–28). Another drawback of curcumin is its
potential to interfere with several assays (pan-assay interference
compounds or PAINS), which might result in overestimation of
its biological activities (29).

Curcumin-containing dietary supplements have been used
in various clinical trials in cancer or other diseases without
major side effects and are generally regarded as safe (GRAS)
by the US Food and Drug Administration (FDA). In this phase
2 study, we evaluated the effects of a daily intake of 2 g CP
by EC patients during a 2-week, oncological treatment-free
interval. The objectives of the study included evaluation of the
immunomodulatory effects of CP, bioavailability and impact of
the treatment on patient’s quality of life.

MATERIALS AND METHODS

Patient Recruitment and Treatment
The trial was approved by the local ethics committee of the
University Hospital Leuven (S55201) and by the Federal Agency
for Medicines and Health Products (FAMHP; EudraCT: 2013-
001737-40). Patients with histologically confirmed EC and no
life-threatening metastases were recruited by the department of
gynecological oncology of UZ Leuven. Exclusion criteria were:
other active malignancy, documented autoimmune disease or
immune deficiency, ongoing immunosuppressive therapy and
current enrollment in other clinical trials. All patients were asked
to complete a questionnaire concerning the QoL before and after
CP supplementation. Each patient had to document their daily
consumption of certain foods or food supplements specified in
a dietary list. Written informed consent was obtained from each
patient before enrollment.

Curcumin Phytosome (Meriva R©, CP) was provided by Indena
SpA and manufactured into capsules (Curcuphyt R©) by nutrisan
nv. The capsules contained 500mg of CP, corresponding to
100mg of curcuminoids. Patients were supplemented for 2 weeks
with 2 g CP per day in a time period during which they did not
receive any oncological treatment.

Blood and Urine Collection
Blood samples were collected at baseline, on the first day of
curcumin intake, then once weekly during the supplementation
period, and finally 1 week after the end of supplementation. On
each day of blood collection, patients were requested to take
their noon intake of curcumin in the hospital and blood samples
were collected at different time points following curcumin intake
(15-30-60-120min). Blood was collected in one EDTA and one
heparin tube for themeasurement of hemoglobin, red blood cells,
white blood cells, thrombocytes, CA125 and CRP at the central
laboratory. In addition, blood was collected in 1 supplementary
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TABLE 2 | Patient characteristics.

Total number of patients enrolled 7

Number of evaluable patients 6

Median age (years) 77

TUMOR TYPE

Endometrioid 3

Serous 2

Clear cell 1

Mesonephric 1

FIGO STAGE

I 4

II 0

III 2

IV 1

HISTOLOGICAL GRADE

1 2

2 2

3 3

PRIOR TREATMENTS

Surgery 6

Chemotherapy 1

Radiotherapy 1

Hormonal therapy 2

EDTA tube and 4 supplementary heparin tubes and transferred to
the laboratory of gynecological oncology for separation of plasma
and cellular fraction. Indomethacin was added to the EDTA tube
before centrifugation. Plasma was aliquoted and stored at−80◦C.
On the first day of curcumin intake, patients were requested
to perform a 24-h urine collection. The collected urine was
centrifuged, aliquoted, and stored at−80◦C.

Measurement of Plasma Curcumin Levels
For extraction, 500 µL of acetone/0.25M formic acid (9:1,
v/v) was added to 250 µL of plasma sample. After vortexing,
the mixture was kept at −20◦C for 30min and subsequently
centrifuged at 16,100 × g for 20min at 4◦C. The supernatant
was evaporated to dryness overnight using a Savant DNA
speed vac DNA120 centrifugal evaporator. The dried residue
was resuspended in 50 µL of 0.1% acetic acid/acetonitrile
(0.1% acetic acid) (40:60, v/v), centrifuged at 16,100 × g for
3min and the volume injected on to the column was 20
µL in duplicate. Curcuminoids were separated and quantified
using a Waters Alliance 2695 separations module with a
100 µL injection loop and Waters 2487 UV detector, with
a HyPurity C18 (2.1 × 150mm, 3µm) column connected
to a HyPurity C18 (2.1 × 10mm, 3µm) guard cartridge
plus a KrudKatcher (5µm) disposable pre-column filter. The
samples were analyzed in negative electrospray ionization
(ESI) mode. The data was acquired using MassLynx software
v4.0. A single injection for each sample was performed. The
calibration lines were constructed using pure standards for
curcumin, curcumin glucuronide and curcumin sulfate by

injection of a 10 µL aliquot for each standard onto the liquid
chromatography/electrospray ionizationmass spectrometry (LC-
ESI-MS/MS). For desmethoxycurcumin, a standard was not
available and levels were estimated using the curcumin
calibration line.

Quality of Life Assessment
QoL scores were assessed using the EORTCQLQ-C30 version 3.0
and EQ-5D questionnaires. Patients were asked to complete the
questionnaires at baseline and at the last day of curcumin intake.
QoL scores are presented as means± standard deviations.

For the EORTC QLQ-C30 questionnaire, five functional
scores (emotional, role, cognitive, physical, and social) were
pooled and a summary score was calculated according to
Giesinger et al (30) using SPSS software. A higher score indicates
a better health for functioning and global health status, whereas
for the symptom scales a lower score indicates a lower level of
symptom burden.

The EQ-5D questionnaire consists of 2 parts—the EQ-5D
descriptive system and the EQ visual analog scale (EQ VAS).
The EQ-5D-3L descriptive system comprises the following 5
dimensions: mobility, self-care, usual activities, pain/discomfort,
and anxiety/depression. EQ-5D health states, defined by the EQ-
5D descriptive system, were converted into a single summary
index according to the EQ-5D user guide. The EQ VAS records
the respondent’s self-rated health on a vertical, analog scale where
the endpoints are labeled “Best imaginable health state” and
“Worst imaginable health state.” For both the EQ-5D index and
EQ VAS, a higher score indicates a better health status.

Peripheral Blood Mononuclear Cells
(PBMC) Isolation
Peripheral blood from 4 heparin tubes was diluted 1:2 in
PBS and PBMC were isolated using LymphoprepTM (AXIS-
SHIELD) density gradient centrifugation and counted with
Türck’s solution. PBMC were cryopreserved in 90% human AB
serum (Sera Laboratories International) with 10% DMSO at
5–10 × 106 cells per vial using CoolCell freezing containers
(BioCision), and stored in liquid nitrogen until further use.

Measurement of Soluble Analytes
PGE2 was measured from indomethacin-treated EDTA plasma
using the competitive BiotrakTM enzymeimmunoassay system
(GE Healthcare). Neopterin levels were measured from heparin
plasma using an enzyme-linked competitive immunosorbent
assay (Neopterin ELISA; Immuno Biological Laboratories).
Measurement of HMGB1 was performed using the HMGB1
ELISA kit from (IBL). Lactate was measured in heparin plasma
by use of the L-Lactate assay kit colorimetric (Abcam). A
deproteinization step was performed on the samples prior to the
assay by adding trichloroacetic acid. For all assays, optical density
was read at 450 nm using the Multiscan FC reader and ScanIt
software (Thermo Scientific).

Luminex assays were performed on heparin plasma samples:
custom ordered kit (EMD Millipore, HCCBP1MAG-58K)
to analyze CA15-3, CEA, Leptin, MIF and Prolactin and
Procartaplex Immunoassay Kit (Affymetrix-eBioscience)

Frontiers in Nutrition | www.frontiersin.org 4 January 2019 | Volume 5 | Article 13877

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Tuyaerts et al. Curcumin in Endometrial Cancer

FIGURE 1 | CONSORT flow diagram.

to analyze BDNF, Eotaxin/CCL11, EGF, FGF-2, GM-CSF,
GROα/CXCL1, HGF, NGFβ, LIF, IFNα, IFNγ, IL-1β, IL-1α,
IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8/CXCL8, IL-9, IL-10,
IL-12 p70, IL-13, IL-15, IL-17A, IL-18, IL-21, IL-22, IL-23, IL-27,
IL-31, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-
1β/CCL4, RANTES/CCL5, SDF-1α/CXCL12, TNFα, TNFβ/LTA,
PDGF-BB, PlGF, SCF, VEGF-A, VEGF-D. Plates were read on a
Luminex 200 system (Bio-Rad Laboratories). Data were analyzed
using Bio-Plex Manager software (Bio-Rad Laboratories).

Flow Cytometric Analyses
Cryopreserved PBMC from each time point of every patient were
thawed and counted using trypan blue (Sigma-Aldrich).

For analysis of COX-2 expression, 1.5 × 106 cells were plated
per 24-well (2 wells for each time point) of a low-adherence

24-well plate. One well was stimulated with 1µg/mL LPS
(K12, Invivogen) and the other was left untreated. Cells were
incubated at 37◦C and 5% CO2 for 5 h, after which they
were harvested. To exclude culture-induced effects, COX-2
expression was also analyzed on freshly thawed PBMC. Cells
were stained with a fixable viability dye (Fixable Viability
Dye eFluor 506, eBioscience) followed by Fc receptor blocking
with 10% normal goat serum (Sigma-Aldrich). Next, the
following antibodies were added: CD3-FITC (eBioscience), CD14
PerCP-Cy5.5 (BD Pharmingen), CD56-PE-Cy7 (BioLegend)
and CD19-eFluor450 (eBioscience) for 30min at 4◦C. After
washing, samples were fixed using fixation/permeabilization
buffer (BD Biosciences Cytofix Cytoperm kit) for 20min at
4◦C. Cells were subsequently incubated with either no antibody
(unstained control), mouse IgG1-PE isotype control antibody
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FIGURE 2 | Plasma curcumin levels. Plasma levels of curcuminoids (curcumin and demethoxycurcumin) and their main metabolites (curcumin glucuronide and

curcumin sulfate) were determined by LC-ESI-MS/MS. Concentrations are shown in fmol/mL. Results are depicted as mean + standard error of mean. Time points

are as follows: T0-baseline, T1-day 1 of treatment, T2-day 7 of treatment, T3-day 14 of treatment, T4, 1 week after last CP dose.

(BD Biosciences) or mouse anti-Human COX-2-PE antibody
(BD Biosciences).

For PBMC phenotyping, cell suspensions were stained
with a fixable viability dye, followed by Fc receptor blocking.
The antibody staining panels used to identify the different
cellular populations in this study are described in Table 1.
For Treg analysis, the samples were fixed and permeabilized
using the FoxP3 Staining Buffer Set (eBioscience) and stained
with FoxP3-APC (eBioscience). For CD247 staining, samples
were fixed with PBS/0.5% paraformaldehyde for 20min
at room temperature (RT) in the dark. After 2 washing
steps with PBS/Tween, 100 µL cold digitonin solution
(10µg/mL in PBS) was added, followed by either mouse
IgG1-PE isotype (FMO; BD Biosciences) or mouse anti-human
CD247 antibody (Beckman Coulter) for 30min at room
temperature.

MDSC analysis was performed on fresh whole blood
instead of cryopreserved PBMC. Blood was aliquoted at 350
µL per tube and 35 µL normal goat serum was added.
For MDSC enumeration, the following antibody cocktail was
added: CD45-FITC (BioLegend), CD11b-PE (BioLegend), CD14-
PerCP-Cy5.5 (BD Pharmingen), CD3-PE-Cy7 (BioLegend),
CD19-PE-Cy7 (BioLegend), CD56-PE-Cy7 (BioLegend), CD15-
APC (BioLegend), HLA-DR-APC-H7 (BD Pharmingen), and
CD33-V450 (BD Horizon). After 30min at 4◦C, red blood cell
lysis was performed by adding 1x Pharm Lyse (BD Biosciences).
After 15min incubation at room temperature in the dark and
washing, the cells were stained with viability dye. Analysis
of arginase-1 expression by MDSC was done by replacing
CD45-FITC with Arginase-1-fluorescein (R&D Systems) in the
abovementioned MDSC cocktail. For assessment of arginase-
1 expression, cells were first stained for membrane markers as
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TABLE 3 | Soluble inflammatory biomarkers.

Marker Mean ± SD at time point P-value

T0 T3

CA125 (kU/L) 27.29 ± 15.57 27.67 ± 17.35 0.8862

CRP (mg/L) 4.86 ± 5.178 4.55 ± 4.852 0.8548

Neopterin (nmol/L) 14.55 ± 7.552 11.25 ± 5.535 0.1563

Lactate (nmol/µl) 75.81 ± 29.04 101.2 ± 24.89 0.3125

HMGB1 (ng/ml) 1.437 ± 0.473 1.966 ± 0.7599 0.3125

PGE2 (pg/ml) 9367 ± 5982 6534 ± 4137 0.3125

CA15-3 (pg/ml) 29163 ± 12464 26622 ± 14116 0.5625

MIF (pg/ml) 233768 ± 569219 1495 ± 994.4 0.8438

Leptin (pg/ml) 35740 ± 20517 33229 ± 21924 0.2188

CEA (pg/ml) 10767 ± 10642 7655 ± 6203 0.3125

Prolactin (pg/ml) 13342 ± 4489 51089 ± 90081 1.0000

BDNF (pg/ml) 2611 ± 754.7 4506 ± 1914 0.0625

EGF (pg/ml) 57.44 ± 33.38 97.34 ± 58.7 0.2188

Eotaxin (CCL11)

(pg/ml)

127.9 ± 43.43 125.4 ± 45.2 0.6875

FGF-2 (FGF basic)

(pg/ml)

225.4 ± 311 275.2 ± 271.9 0.5625

GM-CSF (pg/ml) Undetectable Undetectable N/A

GROα (CXCL1) (pg/ml) 97.76 ± 121.3 96.44 ± 107.5 0.5625

HGF (pg/ml) 790.6 ± 348 862.6 ± 374.3 1.0000

IFNγ (pg/ml) 68.72 ± 33.59 56.03 ± 29.75 0.0625

IFNα (pg/ml) Undetectable Undetectable N/A

IL-1RA (pg/ml) Undetectable Undetectable N/A

IL-1β (pg/ml) 1.997 ± 1.534 2.244 ± 1.655 0.3125

IL-1α (pg/ml) Undetectable Undetectable N/A

IL-2 (pg/ml) Undetectable Undetectable N/A

IL-4 (pg/ml) Undetectable Undetectable N/A

IL-5 (pg/ml) Undetectable Undetectable N/A

IL-6 (pg/ml) 23.7 ± 13.81 31.2 ± 18.75 0.6466

IL-7 (pg/ml) Undetectable Undetectable N/A

IL-8/CXCL8 (pg/ml) Undetectable Undetectable N/A

IL-9 (pg/ml) Undetectable Undetectable N/A

IL-10 (pg/ml) Undetectable Undetectable N/A

IL-12p70 (pg/ml) 2.389 ± 0.4030 2.428 ± 0.4384 0.8438

IL-13 (pg/ml) 3.79 ± 2.26 4.375 ± 2.243 0.6250

IL-15 (pg/ml) Undetectable Undetectable N/A

IL-17A (pg/ml) Undetectable Undetectable N/A

IL-18 (pg/ml) 151.2 ± 123.1 134.9 ± 65.02 0.6875

IL-21 (pg/ml) Undetectable Undetectable N/A

IL-22 (pg/ml) Undetectable Undetectable N/A

IL-23 (pg/ml) Undetectable Undetectable N/A

IL-27 (pg/ml) 290.1 ± 474.4 206.4 ± 381 0.4606

IL-31 (pg/ml) Undetectable Undetectable N/A

IP-10 (CXCL10)

(pg/ml)

101.1 ± 24.93 94.2 ± 15.44 0.2188

LIF (pg/ml) 28.28 ± 55.95 28.16 ± 50.19 0.8438

MCP-1/CCL2 (pg/ml) 58.96 ± 28 81.36 ± 22.73 0.1563

MIP-1α/CCL3 (pg/ml) 61.12 ± 78.37 58.01 ± 67.72 1.0000

MIP-1β/CCL4 (pg/ml) 282.6 ± 179.7 273.4 ± 156.7 0.6875

βNGF (pg/ml) 93.28 ± 120 104.5 ± 100 0.3125

(Continued)

TABLE 3 | Continued

Marker Mean ± SD at time point P-value

T0 T3

PDGF-BB (pg/ml) 192.3 ± 102.9 243.9 ± 150.6 0.3125

PIGF-1 (pg/ml) 210.8 ± 195.5 272 ± 185.8 0.4375

RANTES/CCL5

(pg/ml)

240 ± 31.88 248.1 ± 72 0.8434

SCF (pg/ml) 19.19 ± 25.56 19.7 ± 23.24 0.5625

SDF1α/CXCL12

(pg/ml)

1372 ± 585.3 1349 ± 448.3 1.0000

TNFα (pg/ml) Undetectable Undetectable N/A

TNFβ/LTA (pg/ml) Undetectable Undetectable N/A

VEGF-A (pg/ml) 999.6 ± 1109 1129 ± 994.7 0.5625

VEGF-D (pg/ml) Undetectable Undetectable N/A

This table shows the plasma levels of inflammatory biomarkers as measured by ELISA or

luminex. Units are mentioned for each marker. Values are presented as mean ± standard

deviations. P-values were calculated using the nonparametric Wilcoxon matched-pairs

test with Prism software. Analytes were considered undetectable if values were below

detection limit in >50% of samples. T0 – baseline, T3 – day 14 of treatment.

described above, subsequently fixed and permeabilized using
the FoxP3 Staining Buffer Set (eBioscience) and stained with
arginase-1-fluorescein (R&D Systems).

Acquisition was performed with a FACSCantoTM II using BD
FACSDivaTM software. For all samples, between 2.5 × 104 and
1 × 105 cells were acquired in the live gate per sample. Data
analysis was done using BD FACSDivaTM software. MDSC were
gated as follows: first, we gated out dead cells and debris and
subsequently we gated onCD45+ Lin(CD3-CD19-CD56)− HLA-
DRlo cells. Within this gate, two major MDSC subtypes were
identified as CD11b+ CD14− granulocytic MDSC and CD11b+

CD14+ monocytic MDSC. For the granulocytic MDSC, we next
distinguished CD15+ and CD33+ subtypes, while monocytic
MDSC are CD15− and CD33+. Dendritic cell (DC) gating
strategy was: after dead cell exclusion, cells were gated upon
their CD45+ and CD14− characteristics. On this gate CD11c+

CD123− cells are identified as mDC and CD11c− CD123+ are
pDC. On these subsets, we assessed the expression of HLA-
ABC, HLA-DR and CD54. NK cells were identified as CD56+

CD16− or CD56+ CD16+ cells on which the expression of
CD161, CD69, and HLA-DR was evaluated. T cell subsets were
defined as CD3+, CD3+ CD4+ CD8−, CD3+ CD4− CD8+

or CD3+ CD4+ CD8−CD25+ FoxP3+ CD127lo. On CD4+

and CD8+ T cells, we subsequently determined expression of
CD69, CD137, HLA-DR, ICOS, CTLA-4, PD-1 and Tim-3. The
memory phenotype of CD4+ and CD8+ T cells was determined
as follows: Tnaïve (CD45RA

+ CD45RO CD62L+ CCR7+), TCM

(CD45RA− CD45RO+ CD62L+ CCR7+), TEM (CD45RA−

CD45RO+ CD62L− CCR7−) and TEMRA (CD45RA+ CD45RO−

CD62L− CCR7−). TCRζ expression was measured on CD3+,
CD4+, CD8+ T cells, as well as in CD56+ and CD16+ NK cells.

Statistical Analysis
For QoL scores and plasma curcumin levels, we used the
nonparametric Wilcoxon matched-pairs signed rank test because
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FIGURE 3 | Effect of curcumin supplementation on COX-2 expression. COX-2 expression in PBMC was determined by flow cytometry. The graphs show the

expression in the monocyte (CD14+) gate, either expressed as percentage of cells expressing COX-2 (A,C) or as MFI of COX-2 expression levels (B,D). (A,B) Show

the expression of COX-2 in PBMC directly after thawing, while (C,D) show COX-expression levels after a 5h-in vitro culture period in the presence of LPS. Each line

depicts one patient. Time points are as follows: T0-baseline, T1-day 1 of treatment, T2-day 7 of treatment, T3-day 14 of treatment, T4, 1 week after last CP dose.

of the small sample size. Concentrations of analytes were
presented as mean values ± SD. Data were analyzed and, when
appropriate, significance of the differences between mean values
at baseline in comparison with day 14 values was determined by
Wilcoxon matched-pairs test except for CA125 and CRP where
it was determined by Mann-Whitney U-test. Differences were
assumed to be significant at P < 0.05. One-way repeated measure
ANOVA was used to test the effect of curcumin in patients at
all time points. All experiments were performed in duplicates.
Prism 5 software (GraphPad Software Inc.) was used to perform
all statistical analyses and to generate graphs.

RESULTS AND DISCUSSION

Patient Characteristics
We enrolled 7 patients between September 2013 and August
2015, of which 6 completed treatment. Patient characteristics
are shown in Table 2 and Figure 1 shows the CONSORT
flow diagram to illustrate the progress of patients through the
trial. Supplementation was administered during an oncological
treatment-free interval to avoid immunomodulatory effects from
standard oncological treatments. All patients had recurrent
disease. In our study, we could not assess the clinical response of
the patients, since they received various oncological treatments
after the 2-week CP supplementation period.

All patients documented their daily consumption of certain
foods or food supplements described in a dietary list. The
most frequently consumed foods from the list were mushrooms,
berries, broccoli, sprouts, watercress, and horseradish. Only one
patient consumed a food supplement containing propolis on a
daily basis which could have immunological effects (31, 32).

Plasma Levels of Curcuminoids and
Soluble Inflammatory Mediators
No curcuminoids nor their metabolites, which have also
been reported to exert immunomodulatory effects (6, 33),
were detectable in plasma at baseline, i.e., before curcumin
intake. The two most abundant curcuminoids, curcumin, and
demethoxycurcumin in free form, remained undetectable in
plasma upon curcumin intake, except for a few outliers.
However, its conjugated metabolites, curcumin glucuronide and
curcumin sulfate, became detectable after supplementation, with
slightly increased levels after 1–2 h (Figure 2). This profile is
similar to previous studies and shows that CP uptake was
efficient (23, 24). Since curcumin has been shown previously to
exert anti-inflammatory effects (6), we performed an extensive
interrogation of a broad set of inflammatory mediators at
different time points during treatment (at baseline, on the first
day of curcumin intake, then once weekly during the 2-week
treatment period, and finally 1 week after the end of treatment).
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TABLE 4 | Effect of curcumin supplementation on total leukocytes.

Cell type Mean ± SD at time point P-value

T0 T3

% CD45+ cells 99.47 ± 0.3502 97.9 ± 3.659 0.4099

% HLA-ABC by CD45+ 99.97 ± 0.05164 99.92 ± 0.2041 1.000

% HLA-DR by CD45+ 47.22 ± 16.88 41.03 ± 15.74 0.0313

% HLA-E by CD45+ 4.85 ± 6.392 3.467 ± 5.411 0.625

% HLA-G by CD45+ 5.967 ± 4.978 4.9 ± 4.626 0.4375

MFI HLA-ABC by CD45+ 29719 ± 6539 25681 ± 4199 0.0313

MFI HLA-DR by CD45+ 6751 ± 2778 5759 ± 1745 0.0625

MFI HLA-E by CD45+ 8008 ± 754.3 7741 ± 635.4 0.4375

MFI HLA-G by CD45+ 5759 ± 3365 6658 ± 4823 0.4375

This table depicts the results of the flow cytometric analysis of total leukocytes (CD45+

cells) and their expression of HLA molecules (expressed both as percentage and MFI).

Data are expressed as mean ± standard deviations. P-values were calculated using the

nonparametric Wilcoxon matched-pairs test with Prism software. T0, baseline; T3, day

14 of treatment.

In Table 3, we summarize the levels measured at baseline and at
the last day of CP supplementation. For a substantial number of
analytes however, we noted that values were below the detection
limit in > 3 out of 6 patients, so we considered these analytes as
undetectable. Furthermore, we noted that absolute values often
varied considerably among patients, leading to high standard
deviations. No significant changes following CP for any of the
tested inflammatory mediators could be noted.

COX-2 Expression in Immune Cells
COX-2 is a well-known target of curcumin (34, 35). COX-
2 expression was examined by flow cytometry in monocytes,
B cells, NK cells, and T cells. Both the percentage and
mean fluorescence intensity (MFI) of COX-2 expression in
each cell type was measured, both on freshly thawed PBMC
as well as on PBMC cultured in vitro in the presence of
LPS. As expected, COX-2 expression in freshly thawed PBMC
was very low, with highest percentage in monocytes. After
LPS stimulation, COX-2 expression was increased, mainly in
monocytes. Figure 3, shows the percentage of COX-2 expressing
cells and the MFI in the monocyte population of freshly
thawed PBMC and LPS-stimulated PBMC. We were unable to
demonstrate significant changes in COX-2 expression upon CP
supplementation (Figure 3). The same analysis was performed
for COX-2 expression in B cells, NK cells and T cells, without
significant differences (data not shown).

Immune Cell Subsets
Evidence suggests the capability of curcumin to modulate the
frequency and cellular response of different cell types of the
immune system during cancer (36–38). In whole blood, we
verified the effect of curcumin on the Neutrophil-to-Lymphocyte
Ratio (NLR) and the frequency of Myeloid-Derived Suppressor
Cells (MDSC) and their expression level of Arginase-1. Three
MDSC subtypes were analyzed: CD15+ granulocytic, CD33+

granulocytic, and CD33+ monocytic MDSC. Finally, we assessed

the Arginase-1 expression level for these 3 different MDSC
subtypes. No significant differences were observed after CP
supplementation, neither for NLR nor for MDSC frequencies or
their Arginase-1 levels (data not shown).

We then isolated PBMC and investigated the total leukocyte
population and their expression of MHC molecules. As shown
in Table 4 and Figures 4A,B, despite a constant total percentage
of leukocytes, we observed a significant decline in the frequency
of HLA-DR expressing leukocytes and a significant reduction in
the expression level of HLA-ABC upon CP treatment (P < 0.05).
This effect was transient and levels were restored 1 week after
discontinuation of curcumin intake.

Next, we analyzed whether CP intake exerted effects on
the innate immune cell types (monocytes, dendritic cells, NK
cells). The percentage of CD14+ monocytes declined over
time upon CP treatment, but their expression levels of MHC
molecules remained unaltered (Figure 4C). Another important
innate immune cell type is the DC, consisting of two major
subsets, myeloid DC (mDC) and plasmacytoid DC (pDC).
We also assessed the expression of HLA-ABC, HLA-DR, and
CD54, as a measure of their functionality. However, we did
not find any changes in their frequency or expression of HLA-
ABC, HLA-DR, or CD54 (data not shown). Natural killer
(NK) cells constitute an important line of defense in the
immune system. CD16+ NK cells are considered as the cytotoxic
subset of NK cells, while CD16− NK cells are classified as
the cytokine-producing NK cell subset. On both cell types,
we assessed the expression of the activation markers CD161,
CD69, and HLA-DR. CP supplementation did not result in
significant changes in either NK cell population (data not
shown). However, the percentage of CD69 expressing CD16−

NK cells increased significantly upon treatment (Figure 4D, P <

0.05).
Finally, we assessed the effects of curcumin on the T

lymphocyte compartment. T lymphocytes play a prominent role
in tumor immunology, because of the capacity of cytotoxic CD8+

T cells to kill tumor cells or the ability of Treg to suppress
tumor-specific immunity. Neither on the general T cell subsets,
CD3+ T cells, CD4+ T cells or CD8+ T cells, nor on Treg
(CD3+ CD4+ CD8−CD25+ FoxP3+ CD127lo), could we observe
changes following CP supplementation (data not shown). Next,
we assessed the expression of the activation markers CD69,
CD137, HLA-DR, ICOS, CTLA-4, PD-1 and Tim-3 on CD4+

and CD8+ T cells and we observed a significant decline in
ICOS expression by CD8+ T cells after CP supplementation
(Figure 4E). For CD4+ T cells, this marker also declined but not
significantly. The other activation markers remained unaltered
(data not shown). We also investigated the effect of curcumin
on the composition of the memory T cell repertoire, but
found no significant differences. The T cell antigen receptor
(TCR) zeta (TCRζ) chain is an essential component of the TCR
complex. Loss of TCRζ is frequently observed in cancer and
indicates immunosuppression by MDSC (39). TCRζ expression
was measured as TCRζ MFI index (40) in CD3+, CD4+,
CD8+ T cells, as well as in CD56+ and CD16+ NK cells,
but we did not find changes upon CP treatment (data not
shown).
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FIGURE 4 | Effect of curcumin supplementation on immunological cell types. (A) Expression of HLA-DR by CD45+ leukocytes determined by flow cytometry,

expressed as percentage of HLA-DR expressing CD45+ leukocytes. (B) Expression of HLA-ABC by CD45+ leukocytes determined by flow cytometry, shown as

mean fluorescence intensity (MFI) of HLA-ABC expressed by CD45+ leukocytes. (C) Percentage of CD14+ monocytes in the total PBMC population determined by

flow cytometry. (D) Percentage of CD69-expressing cells within the CD56+ CD16− NK cell population measured by flow cytometry. (E) Percentage of

ICOS-expressing cells within the CD3+ CD4− CD8+ T cell population measured by flow cytometry. Each line depicts one patient. Time points are as follows: T0,

baseline, T1-day 1 of treatment, T2-day 7 of treatment, T3-day 14 of treatment, T4, 1 week after last CP dose. P values were determined using the Wilcoxon signed

rank test (A,B,D) or the one-way repeated measure analysis of variance (ANOVA) test (C,E) with Prism software. *P < 0.05.

Quality of Life Scores
Complete EORTC QLQ-C30 and EQ-5D scores from baseline
and the last day of curcumin intake were available for 5 out
of 7 patients. One patient did not complete the EORTC QLQ-
C30 questionnaire on the last day of curcumin intake and one
patient partially completed the EQ-5D questionnaire on the
last day of curcumin intake. Changes in QoL scores upon CP
supplementation are shown in Table 5. No significant changes in
QoL could be noted.

DISCUSSION

In summary, although the CP formulation was taken up in the
blood of the patients, we only detected minor immunological
effects. We observed a downregulation of MHC expression by
leukocytes, a reduction in the frequency of monocytes and a
decreased ICOS expression by CD8+ T cells upon CP intake,
while the level of CD69 on CD16- NK cells was upregulated.
We did not find significant changes in inflammatory biomarker
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TABLE 5 | Quality of life scores.

Scale Baseline Treated P-value

EORTC QLQ-C30 Questionnaire

Summary score 80.67 ± 15.52 93.14 ± 4.179 0.1250

Physical functioning 82.22 ± 12.41 84 ± 15.35 >0.9999

Role functioning 83.33 ± 21.08 93.33 ± 14.91 >0.9999

Emotional functioning 61.11 ± 20.86 70 ± 24.01 >0.9999

Cognitive functioning 83.33 ± 21.08 90 ± 9.131 >0.9999

Social functioning 80.56 ± 16.38 93.33 ± 14.91 0.5000

Global QoL 62.5 ± 20.24 79.17 ± 8.33 0.2500

Fatigue 27.78 ± 18.26 13.33 ± 14.49 0.2500

Nausea and vomiting 19.44 ± 34.02 3.334 ± 7.455 >0.9999

Pain 16.67 ± 16.67 13.33 ± 13.94 0.5000

Dyspnoea 11.11 ± 17.21 6.666 ± 14.91 N/A

Insomnia 44.45 ± 40.37 26.67 ± 27.89 >0.9999

Appetite loss 27.78 ± 32.77 0 ± 0 >0.9999

Constipation 11.11 ± 17.21 0 ± 0 0.5000

Diarrhea 11.11 ± 17.21 6.666 ± 14.91 >0.9999

Financial 5.555 ± 13.61 6.666 ± 14.91 N/A

EQ-5D Questionnaire

EQ-index 0.7283 ± 0.1472 0.715 ± 0.2161 0.8750

EQ-VAS 69.17 ± 11.77 79.8 ± 6.419 0.1250

This table shows the QoL scores from the QLQ-C30 and the EQ-5D questionnaires

calculated with SPSS software. QoL scores are presented as means ± standard

deviations. P-values were calculated using the nonparametric Wilcoxon matched-pairs

signed rank test with Prism software.

levels, frequencies of other immune cell types, T cell activation
and COX-2 expression. A non-significant trend to improved QoL
was observed.

A major shortcoming of our study is the small population
size and a high inter-patient variability, which might mask small
effect sizes. Furthermore, the supplementation period was only 2
weeks, which might be too short to reveal small changes.

Several studies have observed changes in inflammatory
biomarkers upon curcumin intake. The absence of changes in
inflammatory biomarker levels seems contradictory to other
studies where CP treatment has shown to decrease the levels
of several inflammatory markers such as CRP (25), IL-1β (41),
IL-6 (8, 41, 42), IL-22 (43), sCD40L (41). However, in our
study, the levels of a substantial number of analytes were below
the detection limit, so further decreases cannot be detected.
Together with the above-mentioned small population size and
high variability, this might explain this discrepancy.

We were unable to demonstrate significant changes in COX-
2 expression upon CP supplementation, which is in contrast to
findings in pancreatic cancer (34). Despite the higher dosing
of the curcumin complex used by Dhillon et al., the plasma
concentrations of curcumin metabolites upon curcumin intake
were similar to the levels observed in our study. Moreover, COX-
2 reduction by Dhillon et al was measured after only 8 days
of supplementation, while we measured COX-2 expression on
the first day of intake, after 1 week and after 2 weeks and did
not observe a reduction at any of the time points. Both studies
however, use a different method to assess COX-2 expression,
which could have a different sensitivity. This might explain the

higher percentage of COX-2 positivity in PBMC observed by
Dhillon et al. compared to our results. However, basal COX-2
expression levels in PBMC reported previously in literature are
in general more comparable to the levels observed in this study
and it has been shown that LPS stimulation is needed to increase
COX-2 expression (44, 45).

We observed a significant decline in the frequency of HLA-
DR expressing leukocytes and a significant reduction in the
expression level of HLA-ABC upon CP treatment. It has been
described previously that curcumin can downregulate MHC
class II gene expression by inhibiting IFNγ signaling (46). This
might also be the explanation for our results, although we only
observed a trend toward decreased IFNγ content in patient
plasma upon curcumin intake when comparing the baseline with
the end of treatment value (P = 0.0625, Wilcoxon matched-
pairs test;Table 2). However, the repeatedmeasures ANOVA that
compares the effect of curcumin at all time points did indicate
a significant decrease of IFNγ concentration in plasma upon
curcumin intake (P = 0.0189, data not shown). Since we did not
have tumor tissue available in this study, we could not investigate
whether the downregulation ofHLAmolecules is alsomeasurable
in tumor cells.

Very little evidence about the effect of curcumin on
immunological cell types is available. Our data about the
absence of effect of curcumin on MDSC frequencies in blood
are in contrast with a report in the 4T1 mouse model where
curcumin showed a trend toward MDSC reduction in blood
(predominantly granulocytic MDSC), which became significant
when curcumin was combined with a listeria vaccine (42).
A significant decrease in the percentage of monocytes upon
curcumin treatment was also observed in an asthma model (47).
Our results on activation of NK cells are in agreement with
a recent report on the effects of a nanocurcumin formulation,
wherein increased NK cell activity was found (48). However,
curcumin has also been reported to increase the frequency of NK
cells in clinical studies and animal models (49), which we did not
observe. Previous data in the literature show that curcumin can
increase CD4+ and CD8+ T cells but also Treg, which we could
not observe (49). We did not observe changes in the memory T
cell repertoire upon CP intake, while another study showed that
curcumin could restore central memory T cell (TCM) and effector
memory T cell (TEM) populations in tumor-bearing mice, but
they compared untreated and curcumin-treated tumor-bearing
mice and did not assess the effect of curcumin treatment in the
same mouse (50).

We observed a significant decline in ICOS expression by
CD8+ T cells after CP supplementation (Figure 4E). ICOS is
a co-stimulatory molecule of the CD28-B7 superfamily and its
role in cancer is controversial. On the one hand, data support a
role of ICOS:ICOSL in facilitating the anti-tumor T cell response
because of observations that diminished ICOS levels in blood
associate with worse prognosis in colon cancer and that high
ICOS expression on tumor-infiltrating lymphocytes in metastatic
melanoma lesions was associated with better post-recurrence
survival. On the other hand, an inhibitory, pro-tumor role has
been attributed to ICOS signaling related to its function in
Treg homeostasis, thus facilitating tumor immune evasion (51).
Data also indicate that the ICOS:ICOSL pathway is required
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for optimal antitumor responses mediated by anti-CTLA-4
therapy (52). The available data about the effect of curcumin
on ICOS in literature are scarce and contradictory and mainly
come from in vitro systems using supra-physiological curcumin
concentrations (53, 54).

The absence of changes in QoL scores indicates the absence
of toxicities related to curcumin intake, which has also been
shown in other studies (1, 55). However, in a randomized
controlled trial, curcuminoid supplementation was associated
with a significant improvement in QoL compared to placebo
(56). We also observed a trend to increased QoL scores upon
CP supplementation with both questionnaires used, although
not significant. Since the CP dose was tolerable, increasing the
dosage of CP could also be considered in further studies. Lack of
significance might be explained by the small number of patients
in our study or by the short period of supplementation or by the
fact that in the paper of Panahi et al the pre-treatment QoL score
for the curcuminoid group was lower compared to the placebo
group while the post-treatment scores were equal, which might
indicate a randomization problem for the QoL parameter.

In conclusion, we observed only minor immunomodulatory
effects of curcumin supplementation in endometrial cancer
patients. The QoL scores confirmed the absence of toxic effects by
curcumin supplementation, but no improvement in QoL is seen.
It remains to be explored whether different supplementation
regimens or schemes could induce immunological benefit in
endometrial cancer.
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It is well-established that the nutritional deficiency or inadequacy can impair immune

functions. Growing evidence suggests that for certain nutrients increased intake above

currently recommended levels may help optimize immune functions including improving

defense function and thus resistance to infection, while maintaining tolerance. This

review will examine the data representing the research on prominent intervention agents

n-3 polyunsaturated fatty acids (PUFA), micronutrients (zinc, vitamins D and E), and

functional foods including probiotics and tea components for their immunological effects,

working mechanisms, and clinical relevance. Many of these nutritive and non-nutritive

food components are related in their functions to maintain or improve immune function

including inhibition of pro-inflammatory mediators, promotion of anti-inflammatory

functions, modulation of cell-mediated immunity, alteration of antigen-presenting cell

functions, and communication between the innate and adaptive immune systems.

Both animal and human studies present promising findings suggesting a clinical

benefit of vitamin D, n-3 PUFA, and green tea catechin EGCG in autoimmune and

inflammatory disorders, and vitamin D, vitamin E, zinc, and probiotics in reduction of

infection. However, many studies report divergent and discrepant results/conclusions

due to various factors. Chief among them, and thus call for attention, includes more

standardized trial designs, better characterized populations, greater consideration for

the intervention doses used, and more meaningful outcome measurements chosen.

Keywords: immune system, vitamin D, vitamin E, n-3 PUFA, probiotics, green EGCG, zinc

INTRODUCTION

The main functions of body’s immune system are to protect the host against infection from
pathological microorganisms, to clear damaged tissues, and to provide constant surveillance of
malignant cells that grow within the body. Additionally, the immune system develops appropriate
tolerance to avoid unwanted response to healthy tissues of self or harmless foreign substances.
There is considerable heterogeneity among individuals in the vigor of their immunological
function, largely owing to factors such as genetics, environment, lifestyle, nutrition, and the
interaction of these factors. Nutrition as amodifiable factor in impacting immune function has been
studied for several decades, and the research in this field has developed into a distinguished study
subject called nutritional immunology. As with other bodily systems, the immune system depends
on adequate nutrients to function properly. It is well-documented that nutritional status is closely
associated with immunity and host resistance to infection. There is little argument that deficiency
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in both macronutrients and micronutrients causes immune
function impairment, which can be reversed by nutrient
repletion. Nutritional deficiencies are still prevalent in less
developed regions and are a main contributor to a high incidence
of morbidity and mortality from infectious diseases. Even in
developed countries where general nutritional deficiencies are
rare, nutrition issues such as specific nutrient deficiencies, less
ideal diet composition, and excess calorie consumption are still
a challenging reality. This situation is particularly significant in
the elderly population due to a variety of factors more common
in this population including disability, disease, disease-associated
and medicine-induced anorexia, poor food selection, and lower
socio-economic status. In addition, the aged may have greater
requirements for certain dietary components to compensate for
the deficit in cellular functions and increased stress associated
with aging. While it is agreed that nutritional deficiency or
insufficiency needs to be corrected to ensure that the immune
system functions properly, mounting evidence suggests that for
certain nutrients, increased intake above currently recommended
levels may help optimize immune function including improving
defense function and thus resistance to infection, while
maintaining tolerance. Aside the known nutrients, there are
a wide variety of non-nutritive phytochemicals and functional
foods. They are not essential for maintaining normal cell
metabolism and function thus do not have recommended levels
of intake in dietary guidelines. Despite this, many phytochemicals
and functional foods have been shown to have beneficial
effects on immune function. This review will examine the data
representing the research on prominent intervention agents
(dietary lipids such as n-3 polyunsaturated fatty acids or PUFA),
micronutrients (zinc, vitamins D and E), and functional foods
(probiotics, tea components) for their immunological effect,
working mechanisms, and clinical relevance. The intention
of this review is to provide an updated overview on several
prominent immuno-modulating food components, including the
reported effects and modes of action, and current and potential
clinical application. While there are many other members
in each of above-mentioned categories that are also known
to affect immune function, we have included only a few as
representatives in the current reviewmainly based on the fact that
they are relatively more intensively studied and their immuno-
modulating properties are widely accepted although it is clearly
acknowledged that discrepancy is far from resolved for the nature
and magnitude of their actions, as well as in the efficacy and
translational value of their potential application.

MODULATION OF IMMUNE FUNCTION BY

NUTRIENTS AND FOOD COMPONENTS

In all the bodily systems and tissues, appropriate supply of
different types of nutrients is essential for maintaining cell
homeostasis and performing respective functions. While the
immune system is no exception, its specific defense functions
determine that immune cells may be particularly sensitive to
the status of certain nutrients and food components. A primary
task in nutritional immunology research is to identify such

dietary factors and to define their optimal intake in terms of
maintaining immunological balance and strengthening defense
against pathogens.

Vitamin D
Vitamin D is unique compared to other vitamins in that human
body can synthesize it in the skin from the precursor 7-
dehydrocholesterol when exposed to sunlight. Both sunlight-
induced and diet-derived vitamin D are first hydroxylated to
25(OH)Dmainly in liver, and further hydroxylated, under action
of 1-α-hydroxylase, to the active form 1,25(OH)2D mainly in
kidney. The classical function of vitamin D has long been
recognized to be the regulation of calcium homeostasis and
bone health. However, more extra-skeletal effects of vitamin
D have been revealed, and the diverse functions of vitamin D
are also supported by the discovery that vitamin D receptor
(VDR) and vitamin D-activating enzymes (hydroxylases) are
present in the tissues and cells not involved in mineral and bone
metabolism.

Immunologic Effect and Mechanism
The extra-skeletal effects of vitamin D are well exemplified in the
immune system. Most immune cells express VDR and some of
them can produce 1-α-hydroxylase; in this way, both systemic
and locally generated vitamin D in its active form can act on
VDR expressed by immune cells in endocrine, paracrine, and
autocrine manners. Indeed, vitamin D has been shown to broadly
impact functions of immune cells in both the innate and adaptive
immune system, as well as the antigen-presenting cells (APC)
that links the two arms of immunity.

While vitamin D has been shown to influence different innate
immune cells as well as the different functions of a given type
of cells in varied manners, the overall effect of vitamin D on
the innate immunity is stimulatory. Effects of vitamin D on
monocytes and macrophages are recognized the earliest and also
most intensively studied [reviewed in (1, 2)]. Human monocytes
can be stimulated to proliferate when incubated in the presence
of 1,25(OH) 2D3 at physiological concentrations (3). In addition,
1,25(OH) 2D3 promotes the chemotactic and phagocytic capacity
of macrophages (4). Furthermore, 1, 25(OH) 2D3 can induce
production of several endogenous antimicrobial peptides in
monocytes, neutrophils, and epithelial cells, such as cathelicidin
and defensins (5–7). Together, vitamin D by stimulating all these
innate antimicrobial immune responses can enhance elimination
of invading bacteria, viruses, and fungi.

Vitamin D can also significantly influence the adaptive
immune response. VDR and vitamin D-activating enzymes
are found in both T and B cells (8). Activation of T or B
cells, and their subsequent proliferation, can greatly elevate
expression of VDR from low basal levels at rest. In contrast
to its effect on the innate immunity, vitamin D is in general
inhibitory on both T and B cells (9). In T cells, vitamin D
inhibits T cell proliferation (10), and effector functions of both
CD4+ and CD8+ T cells (11, 12). In particular, vitamin D
inhibits production of IL-2 and IFN-γ, two key T cell cytokines
(13). This is believed to be mediated through 1,25(OH) 2D3-
VDR dimerization with the partner nuclear receptor retinoid X
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receptor to form a functional VDR DNA-binding domain, which
induces repression of several transcription factors regulating gene
activation of IL-2 (14) and IFN-γ (15). Vitamin D can also impact
T cell function by modulating CD4+ T cell differentiation into
subpopulations. Naïve CD4+ T cells (Th0) can differentiate into
different effector subsets, such as Th1, Th2, Th17, and regulatory
T (Treg) cells after TCR engagement and co-stimulation in the
presence of specific cytokines produced by the innate immune
system upon encountering particular pathogens. Th1 and Th17
cells are involved mainly in immunity against intracellular
pathogens, while Th2 cells are responsible for humoral immunity
and targeting extracellular pathogens. Treg cells assist in the
maintenance of self-tolerance and regulate immune responses to
prevent excessive and mis-directed actions. Th1 and Th17 are
thought to promote inflammation and autoimmunity, whereas
Th2 and Treg are believed to have the opposite role. Although
controversy exists, overall it appears that vitamin D restricts
CD4+ T cell polarization toward the pro-inflammatory Th1
and Th17 cells while favoring the regulatory Th2 and Treg cell
development (1, 12, 16).

Vitamin D has also been shown to affect APC function,
primarily dendritic cells (DC). DC play an important role
in controlling the development of adaptive immunity by
appropriately conveying Ag signals to T cells. It is believed that
some effects of vitamin D on adaptive immune response are
mediated through DC (17). Vitamin D inhibits not only DC
differentiation from their bone marrow andmonocytic precursor
cells, but also their maturation (18). A general consensus is
that vitamin D helps program DC for tolerance and this
feature affords vitamin D a therapeutic potential application
in the clinic to alleviate autoimmune and inflammatory
diseases.

Clinical Relevance
Given the effects of vitamin D on different aspects of
immune functions mentioned above, adequate intake of
vitamin D is anticipated to help maintain/strengthen the
body’s defense against infection by promoting the innate
immunity. Conversely, its regulatory effect on T cells and
DC suggest that vitamin D may help mitigate T cell-
mediated autoimmune inflammatory diseases. Although the
clinical studies have demonstrated some promising effects of
vitamin D supplementation on several infection outcomes
including tuberculosis, upper respiratory tract infection, hepatitis
C virus, and HIV, the presence of great discrepancy among
studies disallows for a definitive conclusion (19–21). Similarly,
the evidence for the protective effect of vitamin D on
autoimmune diseases does not seem to be consistent either.
Some animal studies have shown that vitaminD supplementation
is effective in preventing or alleviating inflammatory bowel
disease (IBD), multiple sclerosis (MA), rheumatoid arthritis
(RA), systemic lupus erythematosus, and Type 1 diabetes (T1D)
in animal models (22, 23). Yet in humans, while epidemiologic
studies have shown association between low vitamin D levels
and incidence/severity of certain autoimmune diseases, the
interventional trials have thus far generated inconsistent results
(24, 25).

Vitamin E
Vitamin E is a generic term for all tocopherols and tocotrienols
that exhibit the biological activity of α-tocopherol. Although α-
and γ-tocopherols, the main forms of vitamin E, are similarly
abundant in the diet, α-tocopherol is about 5 to 10-fold higher
than γ-tocopherol in blood due to the different preference in
bioavailability and metabolism. All the other forms of vitamin E
are very low or undetectable in the body tissues. Both synthetic
and natural forms of α-tocopherols are widely used in published
studies. Vitamin E is a chain-breaking, lipid-soluble antioxidant
present in the membrane of all cells, and immune cells contain
particularly high levels of vitamin E, which protects them from
oxidative damage related to high metabolic activity, as well as
high PUFA content in these cells (26, 27).

Immunologic Effect and Mechanism
Early studies using animal models have established a clear
link between vitamin E deficiency and impairment in immune
functions, e.g., depressed lymphocyte proliferation in rats (28),
dogs (29), lambs (30), pigs (31), and chickens (32), which can be
reversed by repletion of vitamin E.

There is growing evidence to suggest that vitamin E intake
meeting the current recommendation may not be optimal to the
different bodily systems, or individuals at different life stages,
for example, the immune system function in the elderly. Old
mice fed 500 mg/kg diet (supplementation) vs. 30 mg/kg diet
(adequate level as control) vitamin E for 6 wk had enhanced
T cell-mediated function including delayed-type hypersensitivity
(DTH) response, lymphocyte proliferation, and IL-2 production,
and decreased prostaglandin (PG)E2 production (33). Similarly,
rats fed 585mg vs. 50mg vitamin E/kg diet for 12 mo had
higher levels of lymphocyte proliferation and IL-2 production
(34). These animal study results are reproduced in several double
blind, placebo controlled clinical trials. In one study, healthy
individuals (≥60 y) receiving vitamin E (800 mg/d) for 1 mo
showed enhancement in DTH response, T cell proliferation, and
IL-2 production, and decrease in plasma lipid peroxide and PGE2
production (35). To examine the dose-response of vitamin E, the
same group gave the elderly subjects (≥65 y) 0, 60, 200, or 800
mg/d vitamin E for 4.5 mo and found an increased DTH response
from baseline in all three vitamin E groups (36). However, the 200
mg/d vitamin E group had the greatest increase compared to the
placebo group, and it was also this group that had increased Ab
titers to hepatitis B and tetanus vaccines (T cell-dependent Ag)
from the baseline. Increased DTH response was also reported in
the healthy elderly subjects (65–80 y) who had received 100 mg/d
of vitamin E for 6 mo (37).

The underlying mechanisms of the immunomodulatory
effects of vitamin E have been largely elucidated using animal
models combined with the cell-based approaches. It is proposed
that vitamin E can enhance T cell-mediated function by directly
promoting membrane integrity and positively modulating the
signaling events in T cells while also protecting T cell function
indirectly by reducing production of T cell-suppressing factors
such as PGE2 from macrophages as previously reviewed (38,
39). Vitamin E can reverse the age-associated reduction in
activation-induced T cell expansion and IL-2 production in naïve
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T cells (40), and these effects are possibly mediated through its
positive impact on the early events in T cell activation including
formation of effective immune synapses between APC and naïve
CD4+ T cells as well as redistribution of signaling molecules
(Zap70, LAT, Vav, and PLCγ) in these immune synapses (41, 42).
With regard to the indirect effects, vitamin E has been shown
to inhibit PGE2 production. PGE2 suppresses T cell response by
activating adenylyl cyclase, thus increasing cAMP levels (43, 44).
PGE2 has broad effects on different components in both the
innate and adaptive immune system (45–48), such as inhibiting
T cell proliferation, IL-2 production, and IL-2 receptor (IL-
2R) expression (46). The suppressive effect of PGE2 on T cells
concerns inhibition of several early signaling events that occur
after T cell activation (48), and for some events, the PGE2-
induced inhibition can be prevented by vitamin E. Although
how vitamin E inhibits PGE2 production is not completely
understood, it has been shown that vitamin E can inhibit
enzymatic activity of cyclooxygenases (COX) (49), which in turn
might be associated with reduced production of peroxynitrite
(50).

Clinical Relevance
Several studies have determined the protective effects of vitamin
E on influenza infection in animal models. Hayek et al. (51)
reported that vitamin E supplementation (500 mg/kg diet)
reduced viral titers in young and old mice infected with influenza
A/Port Chalmers/1/73 (H3N2) butmore significantly in oldmice.
Similarly, Han et al. (52) reported a reduction in viral titers and
symptoms after influenza infection in mice fed vitamin E, and
this protective effect was associated with improved Th1 response
as indicated by IFN-γ and IL-2 production. A recent study using a
bacterial infectionmodel showed that oldmice fed vitamin E (500
mg/kg diet) for 4 wk had reduced pulmonary bacterial burden,
lethal septicemia, and lung inflammation (neutrophil infiltration)
after infection with Streptococcus pneumoniae (53).

Few clinical trials have directly examined the effect of vitamin
E supplementation on infection in humans. In a retrospective
study (54), plasma vitamin E levels in healthy people (≥60
y) were found to be negatively related to the number of past
infections in these individuals; however, no correlation was
present between the vitamin status and the measurements of
immune function including T cell phenotype, mitogen-induced
lymphocyte proliferation, and DTH. Meydani et al. reported that
the healthy elderly receiving vitamin E (60, 200, or 800 mg/d for
235 d) had a non-significant (p < 0.09) 30% lower incidence of
self-reported infections compared to those receiving the placebo
(36). In a subsequent larger, double-blind, placebo-controlled
trial, this group found that the elderly nursing home residents
(>65 y) receiving vitamin E supplementation (200 mg/d) for
1 year had lower incidence of upper respiratory infection (RI)
and common cold compared to those receiving the placebo
(55). However, the controversy exists in this topic of research as
studies thus far have demonstrated mixed results. In contrast to
studies reviewed above, results from the Alpha-Tocopherol Beta-
Carotene Cancer Prevention (ATBC) study showed positive, no
effect, and even negative effect of vitamin E on pneumonia
and the common cold depending on the age, smoking history,

residence, and exercise, among other factors, of the subjects (56–
58). The inconsistent and controversial results for vitamin E’s
effect on infection may be due to the confounding factors such
as the difference in health conditions of participants and the
intervention protocols. For instance, the ATBC study used a small
dose (50mg/d) of vitamin E vs. 200mg/d in the study byMeydani
et al. Even using the same dose, as in a double-blind trial in
the Dutch elderly cohort living in the community, Graat et al.
found no effect of 200 mg/d of vitamin E on the incidence of all
RI, and even reported a worsening in the severity of infections
(59). However, obvious differences were noted between the two
studies, such as the fact that the study by Graat et al. was
conducted in free living participants, and the one by Meydani et
al. was conducted in managed nursing homes. It is hoped that
these discrepancies may be resolved in future studies with more
standardized design and better characterized populations.

Zn
The transition metal zinc is an essential micronutrient and
it is required for controlling key biological processes that
affect normal growth, development, repair, metabolism, and
maintenance of cell integrity and functionality (60). Its
importance to immune system has been intensively studied as
previously reviewed (61–63). Zinc deficiency and inadequacy are
estimated to affect 30% of the world’s population and contribute
to 800,000 death (64). Zinc deficiency is prevalent in developing
countries and it is the fifth leading risk factor for bacterial
diarrhea and pneumonia (65). Inadequate intake of zinc is also
present in the developed countries, in particular more common
in the elderly (66, 67), which may contribute to development of
immunosenescence.

Immunologic Effect and Mechanism
Zinc is a nutrient crucial for maintaining homeostasis of
immune system. Its deficiency negatively impacts immune
cell development and functions in both innate and adaptive
immunity, as manifested with thymus involution and reduced
number of Th1 cells, as well as impaired immune functions
including lymphocyte proliferation, IL-2 production, DTH
response, Ab response, natural killer (NK) cell activity,
macrophage phagocytic activity, and certain functions of
neutrophils [reviewed in (68–73)]. Conversely, correction of
zinc deficiency by supplementation can reverse impairment in
immune system (69), and reduce mortality from infectious
diseases (62, 74). In addition to boosting defense-related immune
functions, the importance of zinc in maintaining immune
tolerance is well-recognized. Zinc has been shown to induce
development of Treg cell population (75, 76), and dampen
pro-inflammatory Th17 and Th9 cell differentiation (77, 78).
In a related and consistent manner, zinc was shown to drive
bone marrow-derived DC to develop into tolerogenic phenotype
by inhibiting MHC-II expression and promoting expression
of the tolerogenic programmed death-ligands (PD-L)1 and 2,
tryptophan degradation, and kynurenine production leading to
skewed Treg-Th17 balance in favor of Treg (79).

Although it is clear that zinc deficiency impairs immune
function, proving the assumption that zinc supplementation
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would enhance immune response has been frustrating and
full of controversy, which is more so in human studies. In
animal models for zinc deficiency, zinc repletion has been
shown to reverse thymic involution as indicated by an increased
thymulin activity, thymus weight, absolute number of T cells in
thymocytes, and thymic output in both middle-aged (12 mo)
(80) and old mice (22 mo) (81, 82), as well as increase T cell
mitogen PHA- or Con A-stimulated lymphocyte proliferation
and NK cell activity in old mice (81). In a recent prospective
clinical trial, Iovino et al. reported that multiple myeloma
patients receiving a high-dose (150 mg/day) of zinc from
day 5 to day 100 had significant increase of CD4+ naïve
lymphocytes and T-cell receptor excision circle (TREC, an
indicator for thymic output) (83). However, the effects of zinc
supplementation on lymphocyte population are inconsistent.
For example, institutionalized healthy elderly who consumed 25
mg/d zinc sulfate for 3-mo had increased numbers of activated
(HLA-DR+) CD4+ and CD8+ T cells (84), whereas free-living
elderly receiving zinc 10 mg/d zinc aspartate for 7 wk showed a
reduction in activated (CD25+) CD4+ T cells (85).

Given that aging is associated with impaired immune function
and increased risk of infection, and the elderly is more likely to
have zinc deficiency, zinc supplementation has been identified as
a part of potential solution for the immunosenescence. Thymulin
is a zinc-containing thymic hormone that needs zinc to exert
its biological activity (86), and serum levels of thymulin decline
with aging in both mice and humans (87, 88). Similar to the
results in the animal studies mentioned above (80, 81), zinc
supplementation increased circulating levels of active thymulin
in the elderly (66, 89, 90). Serum zinc levels were strongly
correlated with the proportion of NK cells in healthy older
individuals (>90 y) (91), and zinc supplementation increased
NK cell cytotoxicity in both healthy elderly (90), and zinc-
deficient elderly (92). Based on an in vitro study showing
that thymulin administration improved the impaired NK cell
activity in old mice, the authors suggested that thymulin may
in part mediate this effect of zinc (93). Regarding the adaptive
immunity, the earlier studies revealed that zinc supplementation
was effective in improving DTH response (66, 94–96). More
recently, zinc supplementation was shown to increase peripheral
blood mononuclear cell (PBMC) mRNA expression of IL-2 and
IL-2R-α (a specific subunit of IL-2R) in the elderly (97). It is
suggested that zinc may influence CD4+ T cell polarization
in favor of Th1, which involves increasing IFN-γ production
through upregulation of IL-12 signaling and transcription factor
T-bet activity (98). Barnett et al. recently reported that zinc
supplementation (30 mg/d for 3 mo) increased serum zinc
concentrations, which was correlated with the number of
peripheral T cells. They also observed an increase in T cell
proliferation; however this may simply reflect the larger number
of T cells present in PBMC before stimulation rather than a
change in capacity of T cell expansion (99).

Clinical Relevance
Given the importance of zinc to the immune system, in particular
its boosting effect on defense-related immune responses, its
impact on infection has been studied. Zinc deficiency is prevalent

in children under 5 y of age in developing countries (100), and a
systemic review reported that preventive zinc supplementation
was associated with reduction in diarrhea and pneumonia
morbidity and mortality in children (3 mo to 5 y) of developing
countries (101). Guatemalan children (6–9 mo) treated with
10mg of zinc/d as sulfate for 7 mo had decreased diarrhea
by 22% but had no effect on RI incidence (102). Similarly, a
large controlled trial reported that zinc supplementation (70mg,
weekly) in children (<2 y, n = 706) had lower incidence of
pneumonia compared to the placebo group (n = 768) (103).
After administering 75mg of zinc/d for 3 mo to sickle-cell disease
patients, who are commonly zinc deficient, the investigators
found a reduction in total number of infections and upper RI,
together with an increased production of IL-2 and IFN-γ in these
patients (104).

Several controlled trials have investigated whether zinc
supplementation is protective against infection in the elderly
population. In one study supplementation with 20mg zinc and
100µg selenium for 2 y was associated with a significant decrease
in the event of RI in institutionalized elderly (>65 y, n = 81)
(105). Another study in an older cohort (55–87 y and 35% were
zinc-deficient) supplemented with 45mg zinc/d for 1 y showed
marginally reduced incidence of common colds (p = 0.067) and
fewer infections and fevers during the study (106). A later study
by Meydani et al. showed that 29% of nursing home residents
(>65 y) had low serum zinc levels (<70 µg/dL) even after
receiving multi-vitamins/minerals including 7mg zinc/d for 1
year, and compared to these individuals, those with serum zinc
>70 µg/dL had lower pneumonia incidence, less total antibiotic
use, and shorter duration of pneumonia and antibiotic use (107).

Since Zinc differentially affects CD4+ T cell populations,
i.e., promoting anti-inflammatory Treg and suppressing
pro-inflammatory Th17 and Th9, it is expected to mitigate
autoimmune inflammatory disorders. This speculation is
supported by some but not all studies. The supporting evidence
includes that low serum zinc levels are associated with several
prominent autoimmune diseases such as MS (108), RA (109),
and T1D (110). Viewed in a larger picture, authors of a recent
systematic review and meta-analysis investigated relationship
between zinc status and autoimmunity using data from 62
studies that met their inclusion criteria (111). They summed
up that zinc concentrations in serum (mean effect: −1.19,
confidence interval: −1.26 to −1.11) and plasma (mean effect:
−3.97, confidence interval: −4.08 to −3.87) of autoimmune
disease patients were significantly lower compared to the
controls. However, although in some cases zinc supplementation
was shown to help ameliorate the disease together with relevant
changes in immunological events, the causal relationship
between zinc deficiency and autoimmune disease is still a matter
in debate.

Inflammation is an essential response of a host to infection
which helps destroy invading pathogens. However, under certain
circumstance the inflammation becomes systemic so that it is
harmful and even fatal to the host. A typical example of this
type of systemic inflammatory response is sepsis, a syndrome
characterized by organ failure resulting from over-reactive host
response to infection. In human sepsis patients and in animal
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models, low zinc levels (probably due to internal redistribution of
zinc) are associated with increased sensitivity to sepsis and fatality
to infection (112), thus it is proposed that zinc supplementation
might be a treatment option to improve the outcomes of sepsis. In
some studies to address this issue, increasing blood zinc levels has
been shown to be protective in animal sepsis models (113, 114),
which is to certain degree echoed by a limited number of clinical
trials, mainly in neonates (115, 116). However, no consensus is
reached at present because the benefit of zinc supplementation in
sepsis cannot be confirmed in other studies (62, 117). A key factor
involved in this discrepancy is the fact that while immune cells on
the host defense side are sensitive to the zinc status, the invading
pathogens also require zinc for survival and propagation. As
such, while sequestering zinc is considered a protective response
to restrict pathogens, the resulting decline in serum zinc levels
may compromise the immune cell functions resulting in adverse
effect. The multiple physiological purposes of zinc level control
in the context of infection and sepsis are a topic to be further
characterized.

From the studies thus far, it is clear that children and elderly
are at high risk for zinc deficiency, which is associated with
the impaired immune function contributing to the increased
morbidity and mortality from infections in these populations.
Improving zinc status by supplementation may be helpful in
addressing this problem, particularly for those with low serum
zinc levels. However, given the fact that both zinc deficiency
and zinc overload impair immune functions leaving a relatively
narrow range for delivering benefit, plus the well-recognized
heterogeneous manner in response to zinc, further studies are
needed to determine the optimal zinc intake for individuals, and
these studies should take into account the variations in individual
genetic background as well as nutritional and health status.

Fish Oil and n-3 PUFA
In addition to being energy-providing macronutrients, many
dietary lipids, in particular PUFA, as well as their metabolic
products, are capable of regulating cell functions. Of these PUFA,
the marine animal-derived n-3 PUFA, composed of mainly
eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA),
have been intensively studied and they are known to greatly
impact immune cell functions. N-6 PUFA, however, are less
significant in this regard and in fact they are often used as the
control for n-3 PUFA in the studies. Several recent reviews have
provided comprehensive coverage for the role of n-3 PUFA in
modulating both innate and adaptive immunity (118–123), thus
only emerging novel research is emphasized in this review, with
a focus on immunomodulatory mechanisms.

Immunologic Effect and Mechanism
As summarized in the above-mentioned reviews, the potent anti-
inflammatory properties of n-3 PUFA is supported by their
ability to inhibit production of inflammatorymediators including
eicosanoids (PGE2, 4-series leukotrienes), pro-inflammatory
cytokines (IL-1β, TNF-α, IL-6), chemokines (IL-8, MCP-1),
adhesion molecules (ICAM-1, VCAM-1, selectins), platelet
activating factor, and reactive oxygen and nitrogen species.
In addition to inhibiting pro-inflammatory mediators, n-3

PUFA reciprocally increase the production of anti-inflammatory
cytokine such as IL-10. One of the underlying mechanisms for
the anti-inflammatory actions of n-3 PUFA is thought to concern
modulation of gene activation. Activation of genes for most of
the pro-inflammatory mediators is controlled by nuclear factor-
kappa B (NF-κB), a transcription factor ubiquitous in almost all
cell types. It has been demonstrated that n-3 PUFA inhibits NF-
κB signaling (124, 125), possibly through interfering with the toll-
like receptor 4 (TLR4) pathway and its receptor protein MyD88,
activating n-3 PUFA membrane receptor GPR120, and serving
as ligands to bind to and activate PPAR-γ, an anti-inflammatory
transcription factor that can trans-repress NF-κB activation.

The most significant breakthrough in n-3 PUFA research is
perhaps the discovery that n-3 PUFA are pro-resolution agents
by serving as the precursors for several families of pre-resolving
mediators, which at least include EPA-derived E-series resolvins,
DHA-derived D-series resolvins, and DHA-derived protectins
and maresins (126, 127). Several cell culture and animal studies
have demonstrated that resolvins and protectins act to reduce
neutrophil infiltration and the inflammatory response, regulate
the cytokine-chemokine axis and lower the production of reactive
oxygen species (127–129). Both resolvin E1 (130, 131) and
maresin 1 (132) have been shown to be protective in animal
models of experimental colitis, increasing survival, decreasing
disease score and levels of pro-inflammatory mediators. While
this suggests a potential clinical significance, there is very limited
data available in humans regarding the immunomodulatory and
anti-inflammatory actions of resolvins and maresins.

There is ample evidence indicating that n-3 PUFA can
modulate cellular and molecular events involved in immune cell
activation, particularly those related to cell-mediated immunity.
Fish oil or n-3 PUFA intake has been shown to inhibit
mitogen- or TCR activation-induced lymphocyte and CD4+

T cell proliferation, IL-2 production, and IL-2R expression,
and also specific antigen-driven CD4+ T cell expansion under
both ex vivo and in vivo conditions in animals (133–135), as
well as the DTH skin response in humans (136). These T
cell-inhibitory actions may be partly attributed to increased
lipid peroxidation, modulation of membrane phospholipid
composition, and cytoskeletal structure and disruption of lipid
rafts (137–139). Changes in membrane lipid order are associated
with alterations in T cell function (133, 140–142). Most recently,
n-3 PUFA have been demonstrated to modulate T cell plasma
membranes and oxidative phosphorylation and proliferation
(139). The effect of n-3 PUFA on T cell function was also
tested in fat-1 mice (137, 138), a transgenic mouse model
that can endogenously synthesize n-3 PUFA, and the authors
demonstrate that alteration in lipid raft formation was one
potential mechanism by which n-3 PUFA suppresses T cell
function. This conclusion largely concurs with the findings made
in studies using dietary fish oil supplementation (133, 143).

Interestingly, the T cell-suppressive effects of n-3 PUFA are
not universal to all T cells. It has been shown that n-3 PUFA
inhibit Th1 and Th17 differentiation, but have little effect on Th2
and Treg development (134, 140, 144–146), or even increase Th2
and Treg populations as seen in T1D model mice (NOD mice)
(147).
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In addition to the direct actions on T cells, studies have
suggested that n-3 PUFA may modulate the functions of
APC to indirectly affect T cell functions. N-3 PUFA have
been shown to inhibit APC function of spleen cells (148),
monocytes/macrophages (149, 150) and dendritic cells (151–
153), such as suppressing expression of MHC-II and co-
stimulation molecules, activation of cognate T cells, and
production of related cytokines. N-3 PUFA can also modulate B
cell functions including activation, antigen presentation, cytokine
production, and antibody generation (123). N-3 PUFAmay target
B cells to inhibit MHC-II accumulation at the immune synapse,
resulting in impaired activation of cognate T cells (154, 155). N-3
PUFA appears to promote B cell activation and their production
of cytokines and antibodies (156–158), which may involve Th2
cytokines, however the exact mechanism is largely elusive.

Clinical Relevance
Given the differential effects within the T cell population and
the potent anti-inflammatory functions of n-3 PUFA, protective
effects of n-3 PUFA have been reported in conditions of chronic
inflammation such as asthma, IBD, including Crohn’s disease
and ulcerative colitis, and autoimmune disorders such as RA
[reviewed in (118, 120, 159–162)].

For conditions of chronic inflammation, animal models
and human studies support a beneficial role of n-3 PUFA in
disease modulation. N-3 PUFA have been demonstrated to be
protective in animal studies of IBD, both transgenic models
(fat-1 mice) (163) and experimental models of colitis (130,
164), a chronic inflammatory condition in the gut. Yet, not
all pre-clinical models support a beneficial role of n-3 PUFA
on disease progression, with some animal studies indicating
that large n-3 PUFA doses may exacerbate the disease (165,
166). The inconstancies in findings from animal studies, likely
due to different doses of n-3 and experimental methods, need
to be considered when translating conclusions to humans. In
clinical trials in humans, dietary supplementation with n-3
PUFA appears to beneficially affect histological and clinical
parameters of IBD (167, 168). However, a Cochrane systematic
review (169) and meta-analysis (170) concluded that data
was insufficient to suggest n-3 PUFA as a primary treatment
for IBD suggesting that further research needs to be done
regarding the efficacy of n-3 PUFA on disease progression and
remission of IBD. Several randomized controlled clinical trials
have demonstrated an improvement in clinical outcomes of
asthma, a chronic inflammatory condition of the airways, with
n-3 PUFA supplementation (171–173). Yet not all findings are
consistent regarding the improvement of symptoms (174, 175),
which can be related to variance in n-3 PUFA dose, population
studied and study design (176). A meta-analysis and systematic
review concluded that fish oil supplementation was unlikely to
be beneficial in primary prevention of allergic diseases, including
asthma (177), which is consistent with the conclusion of an
United Sates government technical report (178).

It has also been suggested that n-3 PUFA may be clinically
relevant regarding autoimmune disorders. Results from a
systematic review (162) and two meta-analyses (179, 180) on
marine n-3 PUFA and RA suggest that clinical outcomes

related to immune function including joint swelling and pain,
disease activity, and use of non-steroid anti-inflammatory
drugs are consistently and modestly improved with n-3 PUFA
administration. The authors of the meta-analysis suggested that
EPA and DHA supplementation at a dose of >2.7 g/d for a
minimum of 3 months may maximize the clinical benefits, and
thus should be considered in future rials examining n-3 PUFA
and RA. T1D is another organ-specific autoimmune disease
involving pancreatic β cells attacked by autoreactive T cells. A
retrospective study reported that long-term dietary intake of n-
3 PUFA starting at 1 year of age was associated with reduced
risk of developing islet autoimmunity in children with familial
T1D (181). Similarly, Norwegian infants receiving cod liver oil
in the first year of life was associated with a significantly lower
risk of T1D, which was likely due to n-3 PUFA rather than
vitamin D because no difference was observed in those receiving
other vitamin D supplements (182). These results are supported
by animal studies using the appropriate disease models. For
example, long-term dietary intervention with n-3 PUFA in NOD
(T1D model) mice reduced T1D incidence and severity, together
with decreased pro-inflammatory T cell subsets (Th1, Th17) and
cytokines, and increased anti-inflammatory T cell subsets (Th2,
Treg) (147).

Probiotics
Probiotics are defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit
on the host” (183, 184). The primary genera of probiotic
microorganisms include Lactobacillus (L.), Bifidobacterium (B.),
and Streptococcus (S.). Lactobacillus and Bifidobacterium have a
long history of being safely used in the form of dairy products,
and they are also found to be a part of the gut microbiota.

Immunologic Effect and Mechanism
Dietary intake of probiotics allows their intimate interaction
with the gut mucosa and mucosal immune system which host
the largest part of body’s immune cells. Probiotics modulate
immune and inflammatory response in gut through their
interaction with intestinal epithelial cells (185, 186), M-cells
in Peyer’s patches (187, 188), and DC (189, 190). Effects of
probiotics on the mucosal system are not limited to gut,
with modulatory effects observed in the other locations of the
mucosal system such as upper respiratory tract (191). Increasing
evidence suggests that probiotics may also positively impact the
systemic immune system (189, 190, 192–194). Several studies
have indicated that probiotics could induce pro-inflammatory
cytokines to facilitate immune response against infection, and
they may also induce anti-inflammatory cytokines to mitigate
the excessive inflammatory reaction leading to a balanced
homeostasis [reviewed in (186, 195, 196)]. It is worth noting that
the effect of probiotics on cytokine production may be strain-
dependent given the mixed results showing that consuming
probiotics induces IFN-α [B. lactis HN019, (197)], reduces TNF-
α [L. rhamnosus GG, (198)] and IL-2 [B. animalis ssp. Lactis
Bb12, (198)], and has no effect on IFN-γ, IL-1β, and IL-2 [L. casei,
(199)].
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Probiotics can benefit innate immunity by impacting
intestinal epithelial cells, phagocytic APC (DC and
macrophages). Epithelial cells not only serve as physical
barrier but also emerge as active interphase between foreign
microorganisms or food components and the body, and in
doing so they participate in controlling the body’s immune
response (200). Some strains of probiotics can modulate mucosal
immunity by colonizing on epithelium and stimulating the
epithelial secretion of signaling molecules or directly acting
on immune cells in the mucosal immune system, in particular
DC, which protrude through epithelial junction. It is believed
that probiotics play a role in maintaining homeostasis in the
gut that is exposed to many foreign substances, including both
harmful and harmless, by balancing the pro-inflammatory
and anti-inflammatory/regulatory immune response (201). In
terms of defense function, probiotic lactobasilli are shown to
increase intestinal IgA secretion and improve the resistance to
infection (202, 203). Lactobasilli are also shown to modulate
innate immunity and DC function. Administration to mice with
two B. strains of lactobasilli isolated from healthy centenarians
enhancedNK cell activity and phagocytic activity of macrophages
(204), and coupled with probiotics L. fermentum strain PL9005
and L. plantarum strain PL9011 enhanced the phagocytic
capacity of peritoneal leukocytes (205). Mice receiving L.
paracasei NTU 101 (108 CFU/d) for 6 or 9 wk showed higher
expression of DC maturation markers (MHC-IIhi, CD80+, and
CD86+) and NK group-2D (NKG2D), as well as enhanced
lymphocyte proliferation in response to L. paracasei Ag (206),
which together suggest that probiotics may enhance specific
immunity by promoting APC function. Providing further
support, Vidal et al. showed that following vaccination with
keyhole limpet hemocyanin (KLH), old mice fed L. paracasei
NCC2461 (1 × 109 CFUs/d) for 44 d had an improved KLH-
specific CD4+ T cell response including anti-KLH IgG2a
production and DTH response (194).

Consistent with the results from animal studies, human
studies have reported that certain strains of probiotics could
impact the innate immunity. Healthy, older individuals receiving
B. lactis (3 × 1011 CFU/d) for 6 wk had increased phagocytic
and bactericidal activities of polymorphonuclear cells (PMN)
in response to Staphylococcus aureus challenge (197), and those
receiving L. rhamnosus HN001 (5 × 1010 CFU/d) or B. lactis
HN019 (5× 109 and 5× 1010 CFU/d) for 3 wk showed increased
peripheral blood proportion of NK cells and their tumoricidal
activity, as well as increased phagocytic activity of PBMC
and PMN cells (207). The immuno-enhancing effect has been
demonstrated with use of different strains of probiotics including
L. rhamnosus, 5 × 1010 CFU/d (208), L. casei DN114001 (209),
L. lactis, 3.4 × 1010 CFU/d (210), and L. GG, 2.6 × 108 CFU/d
(211).

Evidence for the beneficial effect of probiotics on adaptive
immune responses largely relates to their modulatory role in
promoting vigorous effector functions of both T and B cells
while maintaining the regulatory functions of immune system
(preventing autoimmune inflammatory response). While it is
difficult to characterize how probiotics affect T cell polarization
and their effector functions, including particular spectrum of

cytokine production, because their effects in this regard are
widely varied depending on the strains used, it appears that
they promote production of Th1 cytokines (IFN-γ, IL-2, IL-12,
TNF-α), Th17 cytokines (IL-17, IL-22), Treg cytokines (IL-10,
TGF-β), but inhibit Th2 cytokines (IL-4) (212, 213). In animal
studies, age-related decline in producing T cell cytokine IFN-
α and IFN-γ by mitogen-stimulated splenocytes was reversed
after administration of viable L. bulgaricus and S. thermophilus
(8 × 108 colony forming units (CFU)/d) for 7 d in mice (188).
Similarly, administration of B. bifidum (5 × 108 CFU/d) for 8
wk not only increased mitogen Con A-induced production of IL-
2 and IFN-γ in splenocytes but also decreased systemic (serum)
levels of IL-6 and TNF-α in old mice (214).

Clinical Relevance
Favorable effects of probiotics on both APC and cell-mediated
functions suggest a potential benefit for increasing vaccination
efficacy, which is particularly important in the older individuals
who have lower response to vaccines than the younger
individuals (215). Indeed, It has been reported that healthy
nursing home residents (>70 y) have improved Ab titer against
influenza vaccine and seroconversion after daily consumption
of a product containing L. casei DN114001 (2 × 1010 CFU/d)
and S. thermophilus and L. bulgaricus (2 × 1010 CFU/d) for
13 wk; however, no protective effect was found after a shorter
supplementation (7 wk) in this study (216). Similarly, a short
period (7 d) of L. GG or L. lactis supplementation had no effect
on humoral response induced by Salmonella typhi oral vaccine
in healthy adults (210). These results emphasize the importance
of identifying optimal periods and doses of supplementation for
probiotic intervention.

More relevant to clinical application, probiotics have been
shown to enhance the host’s resistance against infection.
For example, studies have reported that fermented milk
containing Lactobacillus reduced the duration of respiratory and
gastrointestinal infections (217–219), and reduced the risk of the
common cold (220). In a randomized, controlled trial in a free-
living elderly cohort (n = 360), the participants receiving milk
fermented with yogurt cultures and L. casei DN-114001 for 3 wk
had shorter duration of winter infections (gastrointestinal and
respiratory) compared to those in the control group (7 vs. 8.7 d, n
= 180 in each group) but no difference was found in the number
of illnesses (219). This beneficial effect was later confirmed in
a larger trial in which healthy free-living elderly (n = 1,072)
received milk fermented with yogurt cultures (L. bulgaricus &
S. thermophilus) and L. casei DN114001 (2 × 1010 CFU/d) for
3 mo (218). Since the probiotics used in these studies contained
both the strain (L. casei DN114001) and the yogurt cultures
which include L. bulgaricus and S. thermophiles, as well as their
fermented metabolites, it is difficult to distinguish the relative
contributions of these components as well as the likely synergistic
effects among them. There is increasing interest in investigating
the effect of probiotics apart from the general effects of yogurt.
Mane et al. reported that the institutionalized healthy older
persons who consumed a mixture of L. plantarum CECT7315
and 7316 (5 × 108-5 × 109 CFU/d) in skim milk for 12 wk
had significantly fewer incidences of infection and mortality
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due to pneumonia compared to those received skim milk only
(221). Interestingly, this study also found that participants in the
probiotic group had increased percentage of B cells, NK cells,
APC, CD4+CD25+, and CD8+CD25+ phenotypes in peripheral
blood cells, andmost of these changes lasted 12 wk after probiotic
discontinuation (221).

Beneficial effect of probiotics on the immunity and
defense function has been observed in some studies but the
reproducibility of this effect is still a widely recognized problem
in the field. In addition, for those positive effects observed,
the exact working mechanisms have not been well-elucidated.
A generally accepted notion is that these effects of probiotics
are related to their capability of reinforcing the intestinal
barrier and helping maintain normal permeability, competing
with pathogenic microorganisms in the gut for nutrients and
attachment to the gut epithelium, and regulating immune
cell functions to clear infection while preventing excessive
response and inflammation. Probiotics exert their protective
effects against infection through multiple mechanisms. A
unique character separating them from other nutrients and
non-nutrient phytochemicals is the fact that they are bacteria
themselves, and a prominent mechanism for their anti-infection
property is their direct impact on pathogens independent
of immune system. They compete with pathogens for
colonizing epithelium and also release antimicrobial substances
together leading to an unfavorable microenvironment for
pathogens.

From the experimental aspect, the in vitro studies can be used
to assess the direct effect of probiotics on different immune cells,
usually by co-culturing them and then measuring the change
in phenotype and functionality of the targeted cells. In the in
vivo setting, however, it is difficult to distinguish the direct effect
from indirect effect. A main reason is that administration of
particular probiotics not only changes their presence/abundance
in the gut, but it is also expected to impact the gut microbiota
community. Thus, study on probiotics should take into account
the gut microbiota large picture. It is increasingly recognized that
gut microbiota are in fact the constituents of our body and they
significantly impact a variety of physiological functions including
immunity.

Probiotics have also been tested in improving allergies. In a
small pilot study conducted in individuals with seasonal allergic
rhinitis (n = 10/group), Ivory et al. found that participants
receiving Lactobacillus casei Shirota drink for 5 mo had lower
antigen-induced production of IL-5, IL-6, and IFN-γ in PBMC, as
well as increased IgG and decreased IgE levels in serum compared
to the placebo group; however, no difference in clinical symptoms
was observed (222). In a later trial with similar design but larger
sample size and more comprehensive outcome measures, the
same group found difference between probiotics and control
groups in several immunologic parameters suggesting favorable
effect of probiotics on allergy, however, they once again failed
to detect difference in primary effect on clinical endpoints (223).
By viewing many other trials which demonstrated mixed results,
it is reasonable to conclude that evidence is lacking to support
the beneficial effect of probiotics on allergy at present. As with
their immuno-modulating and anti-infection effects, this may be

related to several factors that should be addressed in the future as
discussed in the followings.

Although promising, many claimed health benefits of
probiotics have not been substantiated by intervention studies.
Probiotics include a wide variety of species and they in turn
are composed of many strains, either naturally occurring or
intentionally modified, which have been used in different studies.
It is likely that the probiotics’ immune-modulating effect is
strain-specific. Thus, the positive or negative findings in certain
strains should not be generalized for drawing conclusions, and
likewise, beneficial effects observed on certain strains cannot
be extrapolated to other strains without direct experimental
evidence. Additionally, the interaction among probiotics adds
further challenge, which may be predicted by simply summing
up their respective effects when administered individually. On
the side of subjects being tested, their health status is a factor
known to significantly influence the magnitude or even direction
of response to a given probiotic intervention. For example,
several strains of Lactobacilli and Bifidobacteria have been shown
to differentially affect the Th1 and Th2 responses in PBMC
from healthy and allergy patients (224), and Lactobacillus GG
administration stimulated expression of phagocytosis receptors
in normal healthy individuals but suppressed induction of these
receptors in milk-hypersensitive individuals (211). It is also
worth pointing out that results from animal studies cannot
be directly extrapolated to humans before being validated by
clinical trials. The other thing should in mind given the well-
known fact that negative results tend to be not submitted
or get rejected after submission, it is conceivable that there
must be more studies than reported that have failed to prove
efficacy of probiotics in favorably impacting immune function
and related diseases. Nevertheless, the mechanisms underlying
the reported effects of probiotics have not been well-elucidated,
and obtaining such information would help identify effective
probiotics for developing preventive and therapeutic strategies
as well as nutritional support in targeted diseases. It is no doubt
that fulfilling this task requires tremendous effort which not
only involves screening individual probiotics, the combination of
various strains and doses, and the timing and supplementation
period needed, but also includes consideration of individual’s
health status and disease type.

Green Tea and Epigallocatechin-3-Gallate

(EGCG)
Green tea contains high content of catechins, accounting
for 10–15% of its dry weight, which include epicatechin
(EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC), and
epigallocatechin-3-gallate (EGCG). EGCG is the most abundant
and also most biologically active, which is believed to be a
primary factor responsible for green tea’s health benefit. Green
tea and EGCG have been shown to be effective in modulating
multiple aspects of innate and adaptive immunity (225).

Immunologic Effect and Mechanism
In the innate immune system, in vitro EGCG supplementation
dose-dependently reduces neutrophil migration induced by
chemokine IL-8 (226), and neutrophil chemotaxis toward
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cytokine-induced neutrophil chemoattractant-1 (227). The oral
administration of green tea extract or EGCG is shown to
inhibit neutrophil recruitment to the inflammation sites in
several animal studies such as mouse model of inflammatory
angiogenesis (226), and rat model of ovalbumin-induced allergy
(227), and to inhibit neutrophil proteolytic enzymes in a
rat smoking model (228). Similarly, EGCG is also shown
to inhibit monocyte migration by reducing secretion of the
chemokine monocyte chemotactic protein-1 (MCP-1) and its
receptor (CCR2) expression (229). Monocytes/macrophages
are the primary source for most of the prominent pro-
inflammatory mediators. EGCG’s anti-inflammatory property is
mainly drawn from its inhibitory effect on production of pro-
inflammatory molecules in a variety of monocytes/macrophages
cell types as previously reviewed (225). However, this is not
without controversy as some investigators have reported varying
results. For example, studies have shown that in vitro EGCG
supplementation may increase production of the inflammatory
mediator PGE2 and mRNA expression of COX-2 in RAW264.7
cells (230, 231), as well as production of IL-12p40/p70, TNF-
α, and IFN-γ in murine alveolar macrophage cell line MH-S
cells infected by Legionella pneumophila infection (232). Yet,
in vivo supplementation showed that mice fed 1% EGCG
diet produced more TNF-α, IL-6, IL-1β, and PGE2 in their
splenocytes and macrophages as well as an elevated proportion
of macrophages in spleen (233). The discrepancy in reported
EGCG effect may be related to the varied experimental settings
and procedural differences. Among other things, it is possible
that basal levels of inflammatory status may cause a host to
respond in different manner to EGCG administration and as
such, the nature and magnitude of EGCG effect may vary
depending on inflammation state under normal or disease
condition.

DC as APC are also affected by EGCG. It has been reported
that EGCG retards bone marrow-derived DC maturation and
inhibits their functions as indicated by reduced ability to capture
Ag (dextran), secrete IL-12, and express CD80, CD86, and
MHC class I and II, culminating in impaired APC function in
inducing Ag-specific T cell-mediated response (allogeneic T cell
proliferation and IL-2 production) (234). Similar effects were
reported in a study using human peripheral blood monocytes-
derived DC (235). A very limited number of studies have
examined how EGCG impacts other innate immune cells such
as NK cells, mast cells, and basophils; however, they are largely
cell-based studies and the results are insufficient for a meaningful
speculation.

The effect of green tea/EGCG on adaptive immune functions
has been relatively more intensively studied with research
focusing primarily on T cell-mediated functions, especially
those involving CD4+ T cells. Little is known regarding the
humoral immunity except that in vitro EGCG was shown
to inhibit B cell proliferation (236, 237). Wu et al. reported
that in vitro supplementation with physiologically relevant
levels of EGCG (2.5–10µM) dose-dependently inhibits Con
A-induced splenocyte proliferation, T cell division, and cell
cycle progression (238). In a later study using purified T
cells, the same group further showed that EGCG inhibited

anti-CD3/CD28-stimulated cell division in both CD4+ T cells
and CD8+ T cells but more so in the former. EGCG also
inhibited antigen-specific T cell proliferation by affecting both
T cells and APC while the direct effect on T cells appeared to
be predominant (239). The T cell-suppressive effect of EGCG
was confirmed in the in vivo study in which mice were fed
a diet containing 0.3% EGCG for 6 wk (239). In vitro EGCG
supplementation has been shown to decrease IL-2 production
in response to allogeneic stimulator cells (240), production
of IL-2, TNF-α, and IFN-γ in Staphylococcus enterotoxin B-
stimulated human PBMC (241), and IFN-γ production in
Con A-stimulated mouse splenocytes (238), or anti-CD3/CD28-
stimulated mouse CD4+ T cells (242). However, some other
studies reported different results which include EGCG-induced
upregulation in mRNA levels of Th1 cytokines (IL-2 and
IFN-γ) and Th2 cytokines (IL-5 and IL-13) in Jurkat cells
(243), and increased IL-2 production in response to PMA
and PHA in human PBMC (244). These discrepant findings
may be related to the different experimental conditions such
as cell type, EGCG concentration, and stimulation condition
used. In addition, sometimes altered cytokine levels may
not necessarily tell the situation in their synthesis. For
example, EGCG did not affect IL-2 levels in the culture of
T cells stimulated for 24 h or shorter, but caused a dose-
dependent elevation of IL-2 in 48 h cultures (239). Further tests
showed that EGCG did not affect IL-2 synthesis as confirmed
by intracellular staining and mRNA levels, but instead, it
reduced IL-2R expression, which together suggest that higher
levels of IL-2 might result from increased IL-2 accumulation
due to a reduction in IL-2R-mediated IL-2 internalization
and utilization (239). This hypothesis was supported by a
later study showing that EGCG-mediated inhibition of IL-
2R involves all three IL-2R subunits: IL-2Rα, IL-2Rβ (CD122,
shared with IL-15R), and γc (CD132, shared with IL-7R
and IL-15R), as well as their downstream signaling events
(245).

The mechanisms for EGCG-induced inhibition of cytokine
production and T cell proliferation are yet to be clearly
elucidated; however, some evidence from in vitro studies
suggests an involvement of EGCG-induced interference with
early signaling events in T cell activation. It has been reported
that in Jurkat T cells, EGCG inhibits the early stages of the
T cell signaling pathways including activation of Zap70, LAT,
phospholipase Cγ1, ERK, MAPK, and transcription factor AP-
1 (246); the cyclin dependent kinase inhibitor p27Kip1, a negative
regulator of cell cycle progression, was identified as a molecular
target of EGCG (247).

As mentioned above, EGCG has a strong potency in
inhibiting CD4+ T cell proliferation and appears to alter
T cell differentiation. Recent studies have revealed that
EGCG differentially impacts development of CD4+ T cell
subpopulations. By incubating naïve CD4+ T cells under
different Th differentiation conditions in the presence of 10µM
EGCG, Wang et al. found that EGCG suppressed CD4+ T
cells polarization toward Th1 and Th17 subsets, and also partly
prevented IL-6-induced suppression of Treg development, but
had no effect on Th2 differentiation (242).
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FIGURE 1 | Immune cell functions affected by vitamins D and E, zinc, n-3 PUFA, probiotics, and EGCG. D, vitamin D; E, vitamin E; Z, zinc; n-3, n-3 PUFA; PB,

probiotics; EG, EGCG; , increase; , decrease. Effects of probiotics cited here are for some strains; given the strain-specific nature for the effects of probiotics,

these results should not be generalized.

Clinical Relevance
From the reported effects of EGCG on immune cell functions,
particularly its anti-inflammatory, T cell-suppressing, and
differentiation-modulating effects on T cell subset development,
EGCG appears to have a potential benefit in clinical application
for preventing and mitigating T cell-mediated autoimmune
diseases. Indeed, administration of EGCG has been shown
to improve several autoimmune diseases in respective rodent
models including experimental autoimmune encephalomyelitis
(EAE, for human multiple sclerosis, or MS), collagen- or Ag-
induced arthritis (for RA), the chemically-induced colitis (for
IBD), and the non-obese diabetic mouse strains (for Sjogren’s
syndrome) [reviewed in (225, 248)]. In the earlier studies, the
beneficial effect of EGCG in these autoimmune diseases is largely
attributed to EGCG’s anti-inflammatory properties. Promoted by
the development of research on CD4+ T cell subpopulations as

well as the evolving theory for their involvement in autoimmune
pathogenesis, the more recent studies have generated new
evidence to suggest that desirable effect of EGCG on autoantigen-
induced T cell activation, differentiation, and effector functions
during the initiation and development of autoimmunity may
represent an important mechanism underlying the EGCG’s
beneficial effect in autoimmune disease. However, thus far almost
all the evidence is from animal studies, and the efficacy and safety
for EGCG’s clinical application in human diseases remain to be
established.

CONCLUSIONS

It is well-established that nutritional inadequacy greatly impairs
the functioning of the immune system. In addition, it
is increasingly recognized that nutrient intake, above what
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is currently recommended, may beneficially affect immune
function, modulate chronic inflammatory and autoimmune
conditions, and decrease infection risk. This includes both
macronutrients (lipids such as n-3 PUFA) and micronutrients
(zinc, vitamin D and vitamin E), in addition to phytochemicals
and functional foods (probiotics and green tea). Many of these
nutritive and non-nutritive food components are related in their
functions to maintain or improve immune function including
inhibition of pro-inflammatory mediators, promotion of anti-
inflammatory functions, modulation of cell-mediated immunity,
alteration of APC function, and communication between the
innate and adaptive immune systems. Figure 1 provides a
schematic summary of the immuno-modulating features for the
six types of food components discussed in this review. It should
be in mind that this simplified picture cannot cover complete
outcomes in the respective research, nor can it accurately
reflect the controversial issues present. It is particularly worth
mentioning that effects of probiotics cited in the figure are based
on the results for some strains. Considering the well-recognized
strain-specific feature of the biological effects of probiotics,
caution should be taken in data interpretation and extrapolation.

The properties of the nutrients, phytochemicals, and
functional foods inmodulating immune function have significant
implications for inflammation-mediated conditions. Both animal
and human studies have presented promising findings suggesting
a clinical benefit of vitamin D, n-3 PUFA and EGCG in chronic
inflammatory conditions, n-3 PUFA and EGCG in autoimmune
disorders, and vitamin D, vitamin E, zinc and probiotics in
protection against infection. However, the discrepancy in
results from many studies adds the challenge and complexity
of nutritional immunology research; as the result, there is no
clear consensus at this time regarding the clinical relevance
of these dietary components. In some cases, results in human

studies are not always consistent with pre-clinical animal
models, or the immunomodulatory effects have not yet been
examined in humans. Moreover, there is great variation among
human study designs, the doses used, and the populations of
study, demonstrating a need for more standardized clinical trial
designs, better characterized populations, more information for
determining the intervention dose used, and more meaningful
outcome measurements chosen. Particularly for zinc, vitamin
E, n-3 PUFA and probiotics, clearly there is need to establish
the optimal doses for maximum clinical benefits, which may
likely differ depending on the age, genetic background,
and nutritional and health status of the population of
study.
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Background: Immunosenescence contributes to reduced vaccine response in elderly

persons, and is worsened by deficiencies in nutrients such as Vitamin (Vit-D). The immune

system is a well-known target of Vit-D, which can both potentiate the innate immune

response and inhibit the adaptive system, and so modulate vaccination response.

Objective: This randomized placebo-controlled double-blind trial investigated whether

Vit-D supplementation in deficient elderly persons could improve influenza seroprotection

and immune response.

Design: Deficient volunteers (Vit-D serum <30 ng/mL) were assigned (V1) to receive

either 100,000 IU/15 days of cholecalciferol (D, n = 19), or a placebo (P, n = 19), over a

3 month period. Influenza vaccination was performed at the end of this period (V2), and

the vaccine response was evaluated 28 days later (V3). At each visit, serum cathelicidin,

immune response to vaccination, plasma cytokines, lymphocyte phenotyping, and

phagocyte ROS production were assessed.

Results: Levels of serum 25-(OH)D increased after supplementation (D group, V1 vs.

V2: 20.7 ± 5.7 vs. 44.3 ± 8.6 ng/mL, p < 0.001). No difference was observed for serum

cathelicidin levels, antibody titers, and ROS production in D vs. P groups at V3. Lower

plasma levels of TNFα (p = 0.040) and IL-6 (p = 0.046), and higher ones for TFGβ (p =

0.0028) were observed at V3. The Th1/Th2 ratio was lower in the D group at V2 (D: 0.12

± 0.05 vs. P: 0.18 ± 0.05, p = 0.039).

Conclusions: Vit-D supplementation promotes a higher TGFβ plasma level in response

to influenza vaccination without improving antibody production. This supplementation
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seems to direct the lymphocyte polarization toward a tolerogenic immune response. A

deeper characterization of metabolic and molecular pathways of these observations will

aid in the understanding of Vit-D’s effects on cell-mediated immunity in aging. This clinical

trial was registered at clinicaltrials.gov as NCT01893385.

Keywords: vitamin-D deficiency, influenza vaccination, aging, cathelicidin, cytokine, leukocyte phenotyping,

randomized trial

INTRODUCTION

Influenza infection occurs in people of all ages, but
complications are more frequent in elderly persons (1, 2).
This is partly due to immune dysfunctions caused by aging,
i.e., immunosenescence, which can be explained by increased
antigenic challenges and chronic inflammation, worsened by
deficiencies in nutrients such as Vitamin D (Vit-D) (3–5).
Vit-D deficiency, defined as 25-hydroxyvitamin D [25-(OH)D]
serum levels below 30 ng/mL, is seen in 50–80% of the French
population (6, 7). Vit-D deficiency occurs more frequently
in older adults than in young ones because of their lower
endogenous Vit-D synthesis, and because of their often reduced
dietary intake (8).

Recent studies have demonstrated an expression of the Vit-D
receptor (VDR) in almost all immune cells, suggesting that Vit-
D has anti-infectious and immunomodulatory effects (9). These
cells also express 1α-hydroxylase CYP27B1, which converts
25-(OH)D into bioactive 1,25-(OH)2D (10, 11). Among the
mechanisms contributing to the anti-infectious properties of Vit-
D, the production of antimicrobial peptides such as cathelicidin
(also called LL-37) has been reported (12). Cathelicidin,
an antimicrobial polypeptide produced by phagocyte cells,
provides protection against bacterial infection. Its expression in
respiratory epithelium is upregulated by active metabolites of
vitamin D (12, 13). Moreover, cathelicidin has direct antiviral
effects against influenza (14, 15). Tripathi et al. have partially
characterized the mechanism of this activity based on the
inhibition of viral replication at early stages of intracellular life
cycle of the virus (16, 17). Recent findings show that cathelicidin
is also able to exert immunomodulatory effects via interaction
with several receptors such as CXCR4 and induction of signaling
pathways (NFkB, MAPK) in immune cells (18). A further anti-
infectious property of Vit-D is a result of the activation of the
phagocyte NADPH oxidase (NOX), which induces an increase in
reactive oxygen species (ROS) production (19, 20).

Vit-D is known to shift the T-cell response from a T helper
1 (Th1) to a Th2-mediated cell response, and thereby reduce
inflammation and promote an immunosuppressive state (21–
23). Moreover, it promotes in vitro the regulatory T cells
(Treg) differentiation via an indoleamine 2,3-dioxygenase (IDO)-
dependent pathway (24, 25). Thus Vit-D may be an important
immune response regulator, notably in vaccine and infection
challenges (26, 27).

The public health strategy for influenza is to reduce severe
outcomes such as hospitalization and death by recommending
annual vaccinations, particularly for people over 65 years old
(28, 29). However, the vaccine efficacy is lower for older

persons (17–53%) than for young adults (70–90%) (30, 31).
This could be related to the Vit-D deficiency as reported in
previous clinical studies (32–34). To our knowledge, no Vit-D
supplementation trial has yet been conducted in Vit-D-deficient
elderly populations with the aim of improving vaccination
efficacy.

Considering these data, we assessed the impact of Vit-
D supplementation on the immune response to influenza
vaccination in Vit-D-deficient elderly volunteers by evaluating
(i) cathelicidin status, and (ii) antibody response to vaccine,
cytokine production, IDO activity, lymphocyte polarization and
ROS production.

MATERIALS AND METHODS

Volunteer Recruitment and Randomization
Eligible volunteers were over 65 years old and accepted Vit-D
or placebo supplementation and influenza vaccination. Exclusion
criteria included prior hypersensitivity to Vit-D (in the previous
year), ongoing Vit-D supplementation, previous side effects, and
complications after vaccination, hypercalcemia (>2.6 mmol/L),
dysparathyroidism, renal impairment, and long-term treatment
with bisphosphonates, corticosteroids, or fibrates.

Volunteers were randomly assigned to blocks of four by
sex and age using a computerized random-sequence-generation
program run by an independent researcher who was not
involved in the data collection, analysis, or reporting. For
the supplementation, placebo and Vit-D doses were identical
in appearance to maintain blinding, and all participants,
investigators, and outcome assessors remained blinded until after
all of the data was inputted.

Protocol Design
This randomized double-blind controlled trial was authorized by
the ethics committee (Comité de Protection des Personnes Sud-
Est 6, Clermont-Ferrand, France) and the French state authority
(Agence Nationale de Sécurité du Médicament). It was registered
on EudraCT under ref. 2012-005658-52 and on clinicaltrials.gov
as NCT01893385. At the inclusion visit the volunteers gave fully
informed written consent, and then blood samples were taken
to determine serum Vit-D levels and the biological parameters
required to validate eligibility criteria: blood cell count, and usual
plasma and urinary levels of calcium, phosphorus, creatinine,
liver enzymes (AST, ALT), glucose, and total proteins. Based on
serum Vit-D data, the volunteers were grouped as follows: (i)
persons with a serum Vit-D level greater than or equal to 30
ng/mL: these individuals were excluded, and advised to accept
an influenza vaccine in autumn; (ii) persons with a Vit-D level
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below 30 ng/mL: these individuals were randomly assigned to
one of two groups: (1) a supplemented group (D) receiving
six Vit-D doses (Uvedose R© 100,000 IU, 1 vial/15 days, Crinex
Lab.) over 3 months, followed by an influenza vaccination; (2)
a control group (P) receiving a placebo (1 vial/15 days, Crinex
Lab.) over 3 months, followed by an influenza vaccination. The
participants’ compliance was verified by restitution of all empty
vials at each visit.

Influenza vaccination was carried out using the IM
vaccine Vaxigrip R© (Sanofi Pasteur), which provides
seroprotection against all seasonal influenza strains, namely
A/California/7/2009 (H1N1, pdm09), A/Texas/50/2012 (H3N2),
and B/Massachusetts/2/2012 (Yamagata lineage). The volunteers
committed not to change their eating habits, and were assessed
at three different stages: at inclusion (V1), after 3 months of
supplementation (V2), and 1 month after vaccination (V3). A
survey of side effects and complications was performed at each
visit and by telephone interview. For the D group, serum Vit-D
concentration, calcemia, and calciuria were monitored after 2
months of supplementation. The biological parameters discussed
in the following paragraphs were measured at each visit (V1, V2,
and V3).

Serum Vit-D and Cathelicidin Assays
Serum 25-(OH)D was measured by chemiluminescence
immunoassay (Liaison XL analyzer, DiaSorin). Serum
cathelicidin (LL-37 protein) was quantified using a double-
sandwich ELISA, following the manufacturer’s guidelines
(Hycult Biotechnology—HK321).

Serum Antibody Quantification
Vaccine response was assessed at two points (V2 and V3) by
measuring hemagglutination inhibition (HAI) antibody (Ab)
titers against the influenza vaccine antigens. The HAI test was
performed in microplates by incubating serum with the 2013-
2014 influenza reference strains (H1N1, H3N2, and Yamagata),
following the WHO procedure. Inter assay quality control
was performed with reference antisera as positive controls.
Erythrocyte controls allowed adjustments in incubation time and
were performed on each plate. Each field isolate antigen and
the control antigens have been tested with a negative serum
control. The HAI Ab titer was defined as the highest dilution
of serum inhibiting the agglutination of guinea pig erythrocytes
(Charles River Lab.). In accordance with the European Agency
for the Evaluation of Medicinal Products’ guidelines (35), data
was expressed in 3 ways: geometric mean titer (GMT) with a 95%
confidence interval; seroconversion rate (percentage of subjects
achieving at least a 4-fold increase, or an increase from >10 to
40 in HAI Ab titer for seronegative subjects); and seroprotection
rate, i.e., percentage of subjects reaching an HAI Ab titer 40.

Plasma Cytokine Assays
The concentrations of plasma cytokines were quantified
using a multiplex assay (Milliplex, Millipore), following the
manufacturer’s instructions: IL-5, IL-6, IL-10, IL-13, IL-17A,
IFNγ, TNFα (Hcytomag-60K-7plex). For IL-23 and TGFβ, a
singleplex assay was used (Tgfbmag-64K-01-1plex).

Serum Tryptophan (Trp) and Kynurenine
(Kyn) Assays
IDO activity was determined for half of the volunteers (P group,
n= 10; D group, n= 9), and estimated by the ratio of Kyn to Trp
serum concentrations as described previously (36). Shortly after
deproteinization serum samples were analyzed using HPLC on
a reverse phase C18 column (Thermo Scientific). Kyn and Trp
concentrations (µmol/L) were calculated using the area under
the curve method.

Lymphocyte Phenotyping and ROS
Production
Fresh leukocytes were obtained from volunteers’ blood samples.
After hemolysis, leukocytes were separated on a discontinuous
Ficoll–Hypaque density gradient (Histopaque R© 1077 and 1119;
Sigma) as described previously (37). Lymphocyte population was
tested for purity (>95%) and viability (>95%) and phenotyped
by flow cytometry (LSRII, BD Biosciences) using antibody
panels: anti CD3-VioBlue (T-cell), anti CD4-APC (Th), anti
CD25-APC (activated T-cell), anti CD183 (CXCR3)-PE-Vio770
(Th1), anti CD294 (CRTh2)-PE (Th2), anti CD196 (CCR6)
PercP-Cy5.5 (Th17, Biolegend, San Diego), and anti CD127-
FITC (Treg, Myltenyi BioTec, Paris). FACS gating strategy was
illustrated in Figure 7A: compensations and controls used the
FMO (Fluorescence Minus One) procedure with corresponding
antibody isotypes.

ROS production of polymorphonuclear cells (PMN) was
quantified from hemolyzed blood by an intracellular fluorescent
probe [2′,7′-dichlorofluorescein (DCF) 1µM, Sigma-Aldrich]
using flow cytometry, as described previously (3).

Sample Size and Study Power
The primary outcome of the trial was the difference in serum
cathelicidin levels between the placebo and Vit-D study arms
after 3 months of supplementation. To detect this significant
difference, the calculation was based on the hypothesis that the
mean ± SD baseline serum cathelicidin concentration was 13.3
± 1.8 ng/ml and that the Vit-D supplementation would cause
a difference of 1.26 ± 2.1 ng/ml in cathelicidin between the 2
arms (80% power with α = 0.05). Taking these assumptions into
account, we calculated a group size of 42 participants per arm.

Statistical Analysis
Data are expressed as mean ± SEM. Statistical analysis
was performed using GraphPad Prism R© 5.03 for Windows
(GraphPad Software Inc., San Diego, CA, USA). Vit-D
supplementation and period effects were analyzed by two-
way ANOVA followed by a Bonferroni post hoc test. Differences
within groups were determined by a paired Student t-test or a
Wilcoxon matched-pairs signed-ranks test. Differences between
groups were tested by an independent Student t-test or a
Mann-Whitney U-test. Differences were considered statistically
significant at p < 0.05. The relationship between serum Vit-D
and cathelicidin data was assessed using a Pearson correlation
(significant threshold: p < 0.05).
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FIGURE 1 | CONSORT flow chart. The flow of participants through the trial is represented by a diagram, as suggested by the CONSORT group. P group, Placebo

supplementation; D group, Vit-D supplementation.

RESULTS

Volunteer Inclusion and Follow-Up
The volunteers were recruited over 2 years (2013 and 2014)

on a similar schedule: the first visit (V1) in June, the second

in October at the end of supplementation and for vaccination

(V2), and the third in November, 28 days after vaccination (V3).

Because of recruitment difficulties, the number of volunteers

selected (n = 47) was half the original intended sample size (n

= 84). An intermediary analysis was conducted, and showed

a discrepancy between the initial hypothesis and the results

obtained for cathelicidin. For these reasons, and because the
vaccine strains were set to change the following year (2015), we
decided to end recruitment.

Of the 47 eligible volunteers, 38 Vit-D-deficient individuals
were analyzed in the placebo (n = 19) and Vit-D (n =

19) groups; the causes of drop-out are indicated in the
flow chart (Figure 1). Volunteer characteristics at inclusion
showed no difference between the two groups (Table 1).
All plasma biochemical markers were within the normal
ranges.

A telephone follow-up after 6 weeks confirmed subjects’
clinical safety, and the absence of side effects from the
supplementation. Volunteer compliance for the Vit-D or
placebo supplementation, assessed by serum vitamin D
quantification, was satisfactory. A biological test after 2 months
of supplementation showed neither serum Vit-D >75 ng/mL nor
hypercalcemia nor hypercalciuria.
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TABLE 1 | Characteristics of healthy volunteers at inclusion1.

P group (n = 19) D group (n = 19) p2

ANTHROPOMETRIC PARAMETERS

Sex ratio, m/f 12/8 11/9 0.99

Age, y 70 ± 6 72 ± 5 0.99

Height, cm 166 ± 7 165 ± 8 0.99

Weight, kg 75 ± 12 72 ± 14 0.99

Body mass index, kg/m² 27.3 ± 3.9 26.3 ± 3.5 0.99

Abdominal perimeter, cm 99 ± 10 96 ± 12 0.99

BIOLOGICAL PARAMETERS

Sodium, mmol.L−1 140 ± 2 140 ± 2 0.99

Potassium, mmol.L−1 4 ± 0.4 4 ± 0.2 0.99

Chloride, mmol.L−1 106 ± 2 104 ± 2 0.99

Total proteins, g.L−1 76 ± 3 75 ± 4 0.99

Glucose, mmol.L−1 5.2 ± 0.9 5.0 ± 0.9 0.99

Calcium, mmol.L−1 2.2 ± 0.1 2.2 ± 0.1 0.99

Urea, mmol.L−1 6.3 ± 1.5 6.0 ± 1.1 0.99

Creatinine, µmol.L−1 72 ± 13 76 ± 14 0.99

Phosphorus, mmol.L−1 0.9 ± 0.1 0.9 ± 0.1 0.99

AST, UI.L−1 22 ± 7 22 ± 7 0.99

ALT, UI.L−1 27 ± 9 27 ± 9 0.99

25-OH vitamin D, ng.mL−1 19.7 ± 5.9 20.7 ± 5.7 0.99

P group, Placebo supplemented group; D group, Vit-D supplemented group.
1 Data are expressed as mean ± SD.
2 p-values were determined using a Mann-Whitney U-test.

Serum Vitamin D
At inclusion, no statistical difference in serum Vit-D level was
observed between the groups (P: 19.7 ± 5.9 ng/mL, D: 20.7 ±

5.7 ng/mL, Figure 2). For the P group, no variation was found
during the entire protocol (V1: 19.4 ± 6.24 ng/mL, V2: 19.1±
7.9 ng/mL, V3: 18.1 ± 6.7 ng/mL). For the D group, a significant
increase was observed after the supplementation period (V1: 20.7
± 5.7 to V2: 44.3± 8.6 ng/mL, p< 0.001), and for all subjects, 25-
(OH)D concentration was >30 ng/mL at V2. The highest serum
25-(OH)D level was 58 ng/mL with the 600,000 IU cumulative
Vit-D dose. This supplementation was demonstrated to be safe:
no variation in plasma or urinary calcium levels and no clinically
relevant adverse effects were observed. One month after the end
of the supplementation (V3), no significant decrease in serum
Vit-D level was observed in the D group (V3: 36.5 ± 6.3 vs. V2:
44.3± 8.6 ng/mL).

Serum Cathelicidin
At inclusion (V1), no statistical difference between groups was
observed in serum cathelicidin levels (P: 62.0 ± 5.5 ng/mL, D:
66.2 ± 6.9 ng/mL, Figure 3). The highest and lowest values were
similar (P: 24-121 ng/mL, D: 25-120 ng/mL), although there was
a greater dispersion of values in the P group than in the D
group. No variation was observed in any period (V2, V3) in
either group.

No correlation was found between serum Vit-D and
cathelicidin levels for volunteers at inclusion (r = –0.24, p =

0.14, Figure 4A). Moreover, considering the data before and after
supplementation for the D group, no significant relationship

FIGURE 2 | Vitamin D serum levels. V1, inclusion; V2, end of supplementation

and vaccination; V3, 28 days post-vaccination. Data are expressed as mean ±

SD. Statistical analysis was performed by two-way ANOVA for the

supplementation and time effect followed by Bonferroni post hoc test (p <

0.05); *Significantly different between groups at the same visit (p < 0.05); a,b

Significantly different between visits in the same group (p < 0.05).

FIGURE 3 | Cathelicidin serum levels. V1, inclusion; V2, end of

supplementation and vaccination; V3, 28 days post-vaccination. Data are

expressed as mean ± SD. No statistical difference was observed by two-way

ANOVA (p < 0.05).

between cathelicidin and 25-(OH)D serum levels was observed
(r = –0.10, p= 0.53, Figure 4B).

Antibody Response to Influenza
Vaccination
Ab titers to inactivated influenza virus strains are presented in
Table 2. The Ab titers increased significantly for the three strains
after vaccination in both P and D groups except for H1N1 in
D group, because of data dispersion (Table 2; p2, p3). For the
pre-vaccination Ab titers, there was no significant difference
between the groups for any strain (Table 2; p4). Nor was there
any significant difference for post-vaccination Ab titers, except
for the H3N2 strain which was significantly lower in the D
than the P group (Table 2; p5). No significant differences were
observed after vaccination between P and D groups in either
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FIGURE 4 | Correlation between 25-(OH)D and cathelicidin serum levels. The relationship between cathelicidin and 25-(OH)D serum levels was estimated using

Pearson correlation. (A) Correlation at inclusion (V1) for all volunteers (star P group, circle D group) (r = −0.24, p = 0.14). (B) Correlation before (V1: dark circle) and

after the supplementation period (V2: light circle) for D group (r = −0.10, p = 0.53).

TABLE 2 | Antibody response to inactivated influenza virus vaccine in all volunteers1.

Ab titers—P group (n = 19) Ab titers—D group (n = 19)

Vaccine strain Pre-vaccination Post-vaccination p2 Ratio post/pre Pre-vaccination Post-vaccination p3 Ratio post/pre p4 p5 p6

H1N1 9.0 (3.2–14.8) 20.7 (12.7–28.7) 0.003 2.3 ± 1.3 12.4 (4.6–20.2) 20.0 (11.0–29.0) 0.066 1.6 ± 0.6 0.310 0.905 0.291

H3N2 29.4 (12.9–45.9) 107 (86.5–127) 0.0005 3.5 ± 2.6 17.9 (6.0–29.8) 51.6 (36.5–66.7) 0.001 3.0 ± 1.2 0.225 0.046 0.397

Yamagata 8.0 (6.2–9.8) 12.4 (6.2–18.6) 0.022 1.5 ± 0.6 6.2 (5.8–6.6) 10.0 (3.8–16.2) 0.021 1.6 ± 0.8 0.345 0.651 0.714

P group, Placebo supplemented group; D group, Vit-D supplemented group.
1Ab titers are expressed as GMT (95% CI).
2,3Determined using a paired Wilcoxon test for intra-group differences between pre- and post-vaccination Ab titers in the P group (p2 ) and in the D group (p3).
4,5,6Determined using Mann-Whitney U-test for inter-group differences in pre-vaccination Ab titers (p4 ), in post-vaccination Ab titers (p5 ) and Ab titers ratio (p6 ) between P and D groups.

FIGURE 5 | Post-vaccination seroconversion and seroprotection rates. (A) Seroconversion rate: percentage of subjects achieving at least a 4-fold increase or an

increase from >10 to 40 in Ab titer for seronegative subjects; (B) Seroprotection rate: percentage of subjects reaching an Ab titer 40. *Significantly different between P

and D group using Mann-Whitney U-test (p < 0.05).

seroconversion (Figure 5A) or seroprotection (Figure 5B) rates,
except for Yamagata seroprotection (P: 26.3% vs. D: 10.5%, p <

0.05). This data needed to be stratified with regards to volunteers’
serologic status before vaccination.

For the seronegative volunteers, the Ab titer for each strain
increased significantly (p < 0.05) after vaccination in both P
and D groups, with a significantly lower level of H3N2 in

the D than in the P group (p < 0.05; Figures 6A–C). For
seropositive volunteers, the Ab titer of the three strains increased
significantly (p < 0.05) after vaccination in the P group, although
in the D group only the H3N2 strain increased significantly
(Figures 6A–C). Looking at the post-vaccination data as a
whole, the seronegative volunteers had fewer Ab titers than the
seropositive volunteers.
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FIGURE 6 | HAI antibody titer response to inactivated influenza virus vaccine in

seronegative and seropositive volunteers. HAI antibody titers stratified by pre-

and post-vaccination status. (A) Antibody titers for H1N1 pandemic influenza

A (A/California/7/2009, H1N1pdm09); (B) Antibody titers for H3N2 pandemic

influenza seasonal influenza A (A/Texas/50/2012, H3N2); (C) Antibody titers for

Yamagata seasonal influenza B (B/Massachusetts/2/2012, Yamagata lineage).

Results are expressed as GMT (95% IC); a,bSignificantly different between pre-

and post-vaccination titers in the same group using paired Wilcoxon test (p <

0.05); *Significantly different for a same period (pre- or post-vaccination)

between P group and D group using Mann-Whitney U-test (p < 0.05).

Cytokine Profile
The plasma cytokine levels were determined to evaluate the
T-cell response at each period (V1, V2, and V3): Th1 (IFNγ,
TNFα), Th2 (IL-5, IL-6, IL-10, IL-13), Th17 (IL-17A, IL-23),
and Treg (TGFβ) (Table 3). No data is available for IL-10

and IL-13 because sample concentrations were below the limit
of quantification.

The IFNγ and IL-5 plasma levels were similar irrespective of
group or period, with no variation in the IFNγ /IL-5 ratio (P-
V1: 7.16 ± 2.11, V2: 4.81 ± 1.60; D-V1: 7.48 ± 2.33, V2: 5.50
± 2.11). Significantly lower levels of TNFα (V2, p = 0.0478, U-
test) and IL-6 (p = 0.046, ANOVA) were observed in the D than
in the P group, with no significant variation in TNFα/IL-6 ratio
(P-V1: 3.06 ± 0.45, V2: 4.21 ± 1.14; D-V1: 3.22 ± 0.53, V2:
2.74± 0.45).

No change was observed in the Th17-cytokine response (IL-
17A and IL-23) either between groups or over different periods.
The level of TFGβ was significantly higher in the D than in the P
group after vaccination (V3, p = 0.0028, U-test) and in V2 than
V3 in the D group (p= 0.0084, Wilcoxon test).

Indoleamine-2,3-deoxygenase (IDO)
Activity
We evaluated serum IDO activity through the Kyn to Trp
concentrations ratio. No significant differences were observed in
IDO activity in any group or period (Table 4).

T Cell Phenotypes and PMN ROS
Production
Lymphocyte polarization phenotyping was based on co-
expression of CD3, CD4, and specific surface markers of Th1
(CXCR3), Th2 (CrTh2), Th17 (CCR6), and Treg (CD125+,
CD127−) (Figure 7B). Percentages of Th cells did not vary over
periods or between groups, except for a significant decrease in the
Th1 to Th2 ratio observed when comparing the D group to the P
group at the end of Vit-D supplementation (V2).

The PMN basal ROS production, expressed in fluorescence
arbitrary unit, did not vary over periods or between groups (P
- V1:29.0± 2.8; V2: 29.1± 2.9; V3: 36.8± 3.8; D - V1: 28.5± 2.4;
V2: 35.6± 3.6; V3: 41.3± 4.6).

DISCUSSION

By analyzing several immune biomarkers, this trial assessed the
effects of Vit-D supplementation on the response to influenza
vaccination in Vit-D-deficient elderly persons.

The study carries limitations that warrant consideration.
Firstly, the differences in volunteers’ vaccine status before
vaccination may have limited the ability to observe the effects
of Vit-D supplementation on influenza vaccination response.
Secondly, the small sample size, which could mean the study
was underpowered to detect changes in serum cathelicidin
levels despite volunteers’ well-defined Vit-D deficiency status
and the significant (2-fold) increase in Vit-D level in the
supplemented group. The lack of a reference analytical method
and physiological ranges for serum cathelicidin may further
compound this issue. Consequently, the study power calculated
on cathelicidin variations with Vit-D supplementation was
reduced from 80 to 47%.

At the end of Vit-D supplementation (100,000 UI × 6),
the mean change in serum Vit-D level ranged from +16.7 to
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TABLE 3 | Cytokine plasma levels1.

P group (n = 19) D group (n = 19) p2

V1 V2 V3 V1 V2 V3 Vit-D Visit Interaction

IFNγ (pg/mL) 3.76 ± 0.99 2.48 ± 0.74 3.16 ± 1.09 3.59 ± 1.13 2.99 ± 1.06 3.35 ± 1.15 0.067 0.384 0.685

TNFα (pg/mL) 3.89 ± 0.58 3.87 ± 0.953 3.87 ± 0.88 3.05 ± 0.44 2.49 ± 0.443 2.81 ± 0.57 0.040 0.905 0.919

Il-5 (pg/mL) 1.00 ± 0.53 0.87 ± 0.37 0.72 ± 0.18 0.88 ± 0.29 0.66 ± 0.14 0.91 ± 0.22 0.868 0.847 0.800

Il-6 (pg/mL) 1.49 ± 0.32 1.11 ± 0.18 1.13 ± 0.20 1.09 ± 0.16 0.90 ± 0.01 0.86 ± 0.03 0.046 0.179 0.866

IL-17A (pg/mL) 0.71 ± 0.23 0.57 ± 0.04 0.90 ± 0.29 1.07 ± 0.33 0.81 ± 0.15 1.03 ± 0.19 0.511 0.384 0.474

IL-23 (pg/mL) 303 ± 101 250 ± 114 295 ± 194 337 ± 103 322 ± 99.8 236 ± 95.0 0.870 0.902 0.856

TGFβ (ng/mL) 9.88 ± 2.23 14.2 ± 3.87 11.5 ± 3.704 13.6 ± 2.55 11.4 ± 2.27 20.8 ± 3.374,5 0.175 0.321 0.145

P group, Placebo supplemented group; D group, Vit-D supplemented group; V1, inclusion; V2, end of supplementation and vaccination; V3, 28 days post-vaccination.
1Results are expressed as mean ± SEM.
2Statistical analysis was performed using a two-way ANOVA to discriminate between the supplementation effect (Vit-D) and the period-related effect (Visit) (p < 0.05). When the ANOVA

indicated significant interactions, the Bonferroni post hoc test was used.
3Significant difference between P and D groups at V2 using Mann-Whitney U-test (p < 0.05).
4Significant difference between P and D groups at V3 using Mann-Whitney U-test (p < 0.05).
5Significant difference for D group between V2 and V3 using paired Wilcoxon test (p < 0.05).

TABLE 4 | Indoleamine-2,3-deoxygenase serum activity1.

P group (n = 10) D group (n = 9) p 2

V1 V2 V3 V1 V2 V3 Vit-D Visit Interaction

Kyn (µmol/L) 2.4 ± 0.2 2.1 ± 0.6 2.6 ± 0.4 2.4 ± 0.1 2.0 ± 0.2 2.2 ± 0.2 0.192 0.363 0.882

Trp (µmol/L) 47.0 ± 2.5 42.1 ± 2.3 46.9 ± 3.5 46.9 ± 2.8 43.8 ± 2.8 44.5 ± 3.8 0.309 0.918 0.811

Kyn/Trp ratio (x100) 5.2 ± 0.5 5.0 ± 0.3 5.3 ± 0.3 5.1 ± 0.6 4.5 ± 0.5 5.2 ± 0.8 0.533 0.564 0.888

P group, Placebo supplemented group; D group, Vit-D supplemented group; V1, inclusion; V2, end of supplementation and vaccination; V3: 28 days post-vaccination.
1 IDO activity was estimated by Kyn/Trp ratio. Data are expressed as mean ± SEM.
2Statistical analysis was performed using a two-way ANOVA to discriminate between the supplementation effect (Vit-D) and the period-related effect (Visit) (p < 0.05).

+37.1 ng/mL, corresponding to 0.23–0.52 ng/mL for 100 IU. This
is in line with data from Schleck et al. (38), who reported an
increase of 0.30–0.46 ng/mL for 100 IU after a 12-week treatment.
The serum Vit-D level quickly decreased after supplementation
ended (by approximately 18% in 4 weeks), suggesting a short-
lived efficacy. In our conditions, the Vit-D supplementation
induced no adverse events, and others have demonstrated that
doses larger than those used here are safe (39).

The antimicrobial properties of Vit-D have been extensively
studied with respect to tuberculosis, where Vit-D enhances
cathelicidin production and autophagy (40). These effects
have also been described in viral infections such as HIV
and respiratory diseases (40). At inclusion in our trial,
volunteers showed a wide range of cathelicidinemia (from
29 to 121 ng/mL).In healthy elderly Chinese persons, Yang
et al. reported, using the same ELISA method, lower levels
of cathelicidin (20.7 ± 5.8 ng/mL) associated with Vit-D
concentrations (18.1 ± 9.4 ng/mL) similar to those observed
in our study (41). Using another ELISA method in a healthy
population, Bhan et al. (42), and Dixon et al. (43) established
a positive correlation between serum cathelicidin and Vit-D
levels when 25-(OH)D concentration was lower than 32 ng/mL.
However, we did not find this correlation, despite subjects’ 25-
(OH)D concentrations being under 32 ng/ml. Similarly, several

authors reported no change in circulating cathelicidin (44, 45),
although Vit-D supplementation resulted in leukocyte increased
cathelicidin mRNA expression (46). There could be a Vit-D-
independent regulation of cathelicidin expression, or of cleaving
activity of serine proteinase 3, or of cathelicidin proteolysis (12).
Also, owing to its polycationic structure, blood free cathelicidin
is rapidly bound to negatively-charged compounds, and so is
unavailable for quantification. These various factors may explain
why it is so difficult to demonstrate a Vit-D-induced increase in
serum cathelicidin concentration.

The effect of 25-(OH)D supplementation on the humoral
immune response to influenza vaccination was evaluated. It
showed no effect on Ab production in either seroprotection or
seroconversion. This finding is consistent with two randomized
controlled trials of Vit-D supplementation in influenza-
vaccinated healthy adults (34) and adolescents (47). These
trials did not characterize the Vit-D status prior to the
supplementation, unlike our study.

The volunteers’ seroprotection (11–84%) and seroconversion
rates (10–42%) were in line with data from the CDC, suggesting
a clinical efficacy of 17–53% in elderly persons (30). The
pre-vaccination Ab status must be taken into account when
considering the effect of Vit-D supplementation on vaccine
response. Since almost all of the volunteers had been vaccinated
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FIGURE 7 | Phenotyping of peripheral blood CD3+CD4+ T cells. (A) Gating strategy of a representative sample used to identify T helper cells (Th. CD3+CD4+), Th1

cells (CD4+, CD 183+), Th2 cells (CD4+,CD294+), Th17 cells (CD4+, CD196+), and Treg cells (CD25+, CD127−); (B) Proportion from the different T helper and

Treg cells in D group compared to controls. V1, inclusion; V2, end of supplementation and vaccination; V3, 28 days post-vaccination; Data are expressed as mean ±

SD. No statistical difference was observed by two-way ANOVA (p < 0.05); *Determined using Mann-Whitney U-test between P and D groups (p < 0.05).

in the previous year, high levels of pre-vaccination Ab titer were
expected. The pre-vaccination Ab titers for type A strains in
both P and D groups were lower than those in previous reports
(48). Hirota et al. (48) showed a significant inverse association
of pre-vaccination serologic status with both titer fold rise and
response rate in the serum Ab. In our study, a subgroup analysis

of pre-vaccination Ab titers showed that the seroconversion
rate was not affected by Vit-D-supplementation, but was lower
for seronegative subjects than for seropositive ones. McElhaney
reported that elderly persons who had been vaccinated every year
were better protected than those who were vaccinated for the first
time, suggesting that the absolute post-vaccination Ab titer is a
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better marker of protection than the Ab mean fold increase (49).
In our study, the “intact” Ab response to the vaccine, defined by
Hara et al. (50) as one showing post-vaccination HAI titer ≥ 40
for at least one strain, was similar in both groups (84%).

Considering the innate immune response, Vit-D
supplementation induced a shift to a Th2- cytokine response
as previously described (increased levels of IL-4, IL-5, IL-10,
and reduced levels of IL-2, IFNγ, and TNFα) (21, 22). In our
study, we confirmed that Vit-D supplementation significantly
reduced the plasma level of TNFα and IL-6. Limited data from
observational studies lends support to an anti-inflammatory
role of vitamin D. In an observational study conducted with
957 adults (>60 y), Laird et al. (51) showed a significant
association between low vitamin D status (25-(OH)D <25
nmol/L) and inflammation markers including IL-6, TNFα, IL-10,
and CRP.

After Vit-D supplementation we noted a significant decrease
in the Th1/Th2 ratio in link with TNFα and IL-6 reduced levels.
This is in accordance with Penna’s data (52) showing that 1,25-
(OH)2D can inhibit Th1 differentiation (via expression of IFNγ)
and increase the Th2 response by stimulating IL-5 production.
The IFN-γ/IL-5 ratio is of interest when evaluating the Th1/Th2
balance (53, 54).

Interestingly, the Vit-D supplementation was associated with
an increase in TGFβ plasma levels after influenza vaccination,
while no change in the Treg cell sub-population was observed.
Likewise, previous studies showed that neuraminidase from
influenza vaccine strains directly activates TGFβ production
(55), which contributes to the tolerogenic effect of Vit-D
on cell-mediated immunity (44). Increased IDO activity has
been associated with tolerogenic immune responses (56, 57).
In our study, IDO activity was not changed after Vit-D
supplementation, which is consistent with an unchanged Treg
sub-population.

Previous results (58) demonstrate that 1,25-(OH)2D strongly
up-regulates the cathelicidin gene and protein expression NOX2-
dependently, and induces antibacterial activity by NADPH
oxidase pathway in phagocytes (19). In our conditions, we did
not observe any effect on PMN ROS production after Vit-
D supplementation. These conflicting findings highlight the
need to characterize the role of the NOX2-dependent ROS
signaling pathway in Vit-D-induced cathelicidin’s anti-infectious
effects.

CONCLUSION

Our data demonstrate for the first time that Vit-D
supplementation in deficient elderly persons promotes a higher
TGFβ plasma level in response to influenza vaccination without
improving antibody production. The Vit-D supplementation
seems to direct the lymphocyte polarization toward a tolerogenic
immune response as suggested by the lower Th1/Th2 ratio
compared to controls. Taken together, our results suggest that
vitamin D supplementation in deficient elderly persons is not
an effective way to improve their antibody response to influenza
vaccine. A deeper characterization of metabolic and molecular
pathways of these observations will aid in the understanding
of vitamin D’s effects on cell-mediated immunity in deficient
elderly persons.
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Aims: Obesity is characterized as a chronic state of low-grade inflammation with

progressive immune cell infiltration into adipose tissue. Adipose tissue macrophages

play a critical role in the establishment of chronic inflammatory states and

metabolic dysfunctions. Inonotus (I.) sanghuang and its extract polyphenols exhibit

anti-carcinogenesis, anti-inflammatory, and anti-oxidant activities. However, the action of

I. sanghuang polyphenols in obesity-related inflammation has not been reported. The aim

of this study was to explore the anti-inflammatory action of polyphenols from I. sanghuang

extract (ISE) in macrophages and the interaction between macrophages and adipocytes.

Materials and Methods: RAW264.7 macrophages were stimulated with LPS

or conditioned medium of hypertrophied 3T3-L1 adipocytes or cocultured with

differentiated adipocytes in the presence of different doses of ISE. The inflammatory

cytokines were evaluated by ELISA, the MAPK, NF-κB, and IL-6/STAT3 signals

were determined by immunoblotting, and the migrated function of macrophages was

determined by migration assay.

Results: ISE suppressed the inflammatory mediators including NO, TNF-α, IL-6, and

MCP-1 induced by either LPS or conditioned medium derived from 3T3-L1 adipocytes.

ISE also decreased the production of these inflammatory mediators in cocultures of

3T3-L1 adipocytes and RAW264.7 macrophages. Furthermore, ISE blocked RAW264.7

macrophages migration toward 3T3-L1 adipocytes in cocultures. Finally, this effect of ISE

might be mediated via inhibiting ERK, p38, and STAT3 activation.

Conclusions: Our findings indicate the possibility that ISE suppresses the interaction

between macrophages and adipocytes, attenuates chronic inflammation in adipose

tissue and improves obesity-related insulin resistance and complication, suggesting that

ISE might be a valuable medicinal food effective in improving insulin resistance and

metabolic syndrome.

Keywords: Inonotus sanghuang, polyphenols, inflammation, obesity, NF-κB signaling, MAPK signaling
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INTRODUCTION

Obesity is a medical condition in which excess body fat has
accumulated to the extent that it may have a negative effect
on health. Obesity prevalence has doubled since 1980 and been
continuously increasing. In 2015, high BMI accounted for 4.0
million deaths globally, nearly 40% of which occurred among
non-obese people (1).

Obesity is a chronic disease, and studies (2) have shown that
obesity is not only related to the occurrence of a variety of
chronic diseases, but also a risk factor for these chronic non-
communicable diseases such as type 2 diabetes mellitus (T2DM),
hypertension, coronary heart disease, and strokes (3). Not only
does obesity affect health, but also the complications it causes
have become some of the main disease burdens worldwide.
However, the metabolic response to obesity is diverse; a growing
amount of evidence suggests that there is a considerable
proportion of obese individuals that lack obesity-associated
diseases and are metabolically healthy (4). Inflammation is
one of the causes that distinguish metabolically healthy from
metabolically unhealthy obesity. Obesity-related inflammation
is mainly caused by cytokines secreted from adipose tissue
macrophages (ATMs) (5). Inflammation that ATMs drive links
obesity to insulin resistance, which is a central mechanism
in obesity-associated diseases such as T2DM and metabolic
syndrome (6). With progressive obesity, ATMs are crucial
mediators of meta-inflammation, insulin resistance, metabolic
dysfunction, and have other bad influences on adipocyte
function (7).

ATMs are distributed between adipocytes and along
vascular structures in adipose tissue, and they secrete anti-
inflammatory mediators such as IL-10 and catecholamine which
regulate adipocyte lipid metabolism. Resident macrophages
in tissue show prodigious heterogeneity in their activities and
functions, primarily reflecting their local metabolic and immune
microenvironment (8). There is substantial evidence that
ATMs exhibit the phenotypic change from M2 or “alternatively
activated” (anti-inflammatory) macrophages toM1 or “classically
activated” (pro-inflammatory) macrophages polarization during
the course of obesity, thereby accelerating adipose tissue
inflammation (9). M1 macrophages secrete pro-inflammatory
cytokines including TNF-α, IL-6, and IL-1β, that act as main
effectors of impaired adipocyte function and inflammatory
signals. On the one hand, the pro-inflammatory factors derived
from M1 macrophages like TNF-α act on the receptors in
hypertrophied adipocytes, thereby inducing pro-inflammatory
cytokine production such as monocyte chemotactic protein-1
(MCP-1) and adipocyte lipolysis through nuclear factor-κB
(NF-κB)-dependent and -independent [possibly members
of mitogen-activated protein kinases (MAPK)-dependent]
mechanisms, respectively (10). A series of processes described
above promote the decomposition of adipocytes and the
continuous production of free fatty acids (FFA). Dysregulation
of adipocytokines and overproduction of FFA will result in
ectopic lipid accumulation and lipotoxicity such as endothelial
dysfunction (atherosclerosis), insulin resistance (diabetes),
and non-alcoholic steatohepatitis (11). On the other hand,

saturated fatty acids emerged from adipocytes activate Toll-like
receptor 4 (TLR4) signaling in macrophages and promote the
release of inflammatory factors (12). A deficiency of TLR4
could protect against obesity-induced M1 polarization and
adipose tissue inflammation (12). This finding indicates that the
vicious cycle established among adipocytes and ATMs augments
chronic inflammatory changes (13) and the inhibition of chronic
inflammation is a significant target in the treatment of insulin
resistance and metabolic syndrome.

Mushrooms are widely grown in nature, and many of
them have been traditionally used as medicinal foods in Asian
countries (14, 15). Mushroom Phellinus linteus (“Sanghuang”
in Chinese) is a popular medicinal polypore used throughout
China, Japan, and Korea (16) and plays a physiological function
in resistive effects of oxidize, germ, and tumor, as well as reducing
the blood sugar and lipemia and improving immunity (17–19).
More importantly, no apparent adversities after its consumption
have been reported. While 15 sanghuang mushroom species
have been found in the world, only some of them were found
to display anti-inflammatory, antioxidant and anti-carcinogenic
activities (16, 19, 20). Inonotus sanghuang (I. sanghuang) is one
species of sanghuang mushroom and a white-rot fungus in the
family of hymenochaetaceae. Ethanol extract of I. sanghuang
mycelia produced from liquid fermentation scavenged DPPH
and hydroxyl radicals has been shown to have anti-oxidant
activity due to the existing phytochemicals (polyphenolics), such
as rutin, eriodictyol, naringenin, and sakuranetin (21). Our
recent in vitro study has shown that the anti-oxidant, anti-
proliferative, and anti-microbial activities have been found in
I. Sanghuang extract (polyphenols) from another Sanghuang
species, wild I. Sanghuang from the Aershan Region of Inner
Mongolia (Inner Mongolia, China) (22). However, there are no
studies exploring the anti-inflammatory and immunomodulating
properties of wild I. Sanghuang from the Aershan Region of
Inner Mongolia and its use for the prevention/treatment of
inflammation-related diseases.

In the present study, we investigated the anti-inflammatory
property of I. sanghuang extract (ISE) on RAW264.7
macrophages and then explored the effect of ISE on the crosstalk
between RAW264.7 macrophages and 3T3-L1 adipocytes using
in vitro cell coculture models.

MATERIALS AND METHODS

Chemicals
I. sanghuang was collected from the Aershan Region of Inner
Mongolia (Inner Mongolia, China) and I. sanghuang extract
(ISE) was prepared as described previously (22). ISE polyphenols
from ethyl acetate fraction of I. sanghuang powder was prepared
and have been characterized as described previously to identify
6 compounds, namely, rutin, quercetin, quercitrin, icarisid II,
isorhamnetin and chlorogenic acid, which have been suggested
to have potent anti-oxidant, anti-proliferative and anti-microbial
activities (22). Thus, we use ethyl acetate fraction (EAF) as I.
sanghuang extract (ISE) for this study. Concentrated ISE was
stored at −20◦C until further use. A stock solution of ISE

Frontiers in Immunology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 286120

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Inonotus sanghuang Polyphenols and Inflammation

dissolved inDMSO at 10mg/mLwas stored at−80◦C and diluted
with culture medium to the appropriate working concentrations
immediately prior to use.

Cell Cultures
The RAW264.7 macrophage cell line was provided by J. Jin
(Zhejiang University, Hangzhou, China) and maintained in
DMEM supplemented with penicillin (100 U/mL)-streptomycin
(100µg/mL) and 10% heat-inactivated fetal bovine serum in a
humidified 5% CO2 atmosphere at 37◦C. The method of 3T3-L1
adipocyte differentiation was performed as described previously
(23). Briefly, 3T3-L1 preadipocytes (Saierbio Inc., Tianjin, China)
were cultured in 24-well plates (2.5 × 105 cells/well) in DMEM
with 10% calf serum, 100 U/mL penicillin, and 100µg/mL
streptomycin at 37◦C under a humidified 5% CO2 atmosphere.
Two days after the preadipocytes post confluency, use 3-Isobutyl-
1-Methylxanthine (IBMX, 0.5mM), dexamethasone (1.0µM)
and insulin (10µg/mL) in 10% FBS/DMEM to stimulate the cells.
Twelve to twenty days later, a large amount of red lipid droplets
were observed by oil red O staining and the cells were used
as hypertrophied 3T3-L1 adipocytes (Supplemental Figure 1).
Adipocytes andmacrophages were cocultured in a contact system
as previously described (23). Briefly, RAW264.7 macrophages
(2.5 × 105 cells/well) were plated into dishes with serum-
starved and hypertrophied 3T3-L1 adipocytes. The coculture
was incubated in serum-free DMEM for 24 h. RAW264.7
macrophages and 3T3-L1 adipocytes were cultured separately
under the same conditions for contrast. Different concentrations
of ISE were administrated meanwhile as that of coculture. The
supernatants were collected and stored at −20◦C until further
measurements. At the same time, RAW264.7 macrophages were
seeded in 24-well plates (2.5 × 105 cells/well) and treated with
either 1µg/mL LPS or 3T3-L1 adipocyte conditioned medium
(L1CM) for 30min or 24 h with different concentrations of ISE.
The hypertrophied 3T3-L1 adipocytes were cultured in serum-
free medium for 12 h, and then collected the supernatants and
designated as the L1CM and stored at −20◦C until use. As for
the effect of ISE on the viability of RAW264.7 macrophages,
RAW264.7 were transferred into 96-well plates at 1 × 104

cells/well and incubated with ISE (final concentrations: 0.5, 1.0,
2.0, and 4.0µg/mL) for 24 h. The wells were incubated in the
absence of ISE as the control group and CCK-8 (Dojindo,
Kumamoto, Japan) was added to each well for cell staining for
another 4 h according to the manufacturer’s instruction. The
cell viability was calculated as a percentage of control, which
was considered as 100%, according to the formula: (A sample-A

blank)/(A control-A blank) × 100. Plates were read at OD450 in a
microplate reader (BIO-TEK Instruments, Winooski, VT, USA).

Measurement of MCP-1, TNF-α, IL-6, and
NO
Cell-free supernatants were collected to determine the MCP-
1 (Biolegend, San Jose, CA), TNF-α, and IL-6 (both from
eBioscience, San Diego, CA) using ELISA kit assay. In addition,
nitrite as the end-point of NO generation from activated
macrophages was measured by determining NO2-concentration
in the culture supernatant. Briefly, add 100 µL of Griess reagent

(1% sulfanilamide and 0.1% N-[1-naphthyl]-ethylenediamine
dihydrochloride in 5% phosphoric acid) into 100 µL samples
of medium. The concentration of NO2 was calculated by
extrapolating a NaNO2 standard curve.

Immunoblotting
After being pretreated with ISE, RAW264.7 macrophages
were stimulated with LPS or L1CM for 30min, and then
harvested in RIPA lysis buffer containing 50mM Tris-HCl
(pH 7.4), 150mM NaCl, 1% NP40, 1 × protease inhibitor
cocktail (Roche Applied Science, Indianapolis, IN), and 1 ×

phosphatase inhibitor cocktail (Sigma-Aldrich). Proteins were
resolved in 7.5% acrylamide gels and then transferred to
nitrocellulose membranes. The membrane was blocked with 5%
non-fat milk in Tris-buffered saline before being incubated,
respectively with specific primary antibodies for the following
proteins: IκB-α (1:1000), phosphor-p44/p42 (Thr202/Tyr204) (p-
ERK) (1:1000), phosphor-p38 (Thr202/Tyr204) (p-p38) (1:1000),
and Phospho-SAPK/JNK (Thr183/Tyr185) (p-JNK) (1:1000),
phosphor-STAT3 (p-STAT3) (1:1000), ERK (1:1000), JNK
(1:1000), p38 (1:1000), STAT3 (1:1000) (all from Cell Signaling
Technologies, Danvers, MA), and β-actin (1:5000, Sigma-
Aldrich). The membranes were next incubated with horseradish
peroxides (HRP)-conjugated secondary antibodies followed by
exposure to enhanced chemiluminescent reagents (Millipore,
Burlington, MA).

Macrophage Migration Assay
Migration assays were performed using Transwell inserts with
a 5µm membrane pore size (Corning, NY). The L1CM from
fully differentiated 3T3-L1 adipocytes was transferred to 24
well plates containing inserts. The RAW264.7 macrophages
were pre-incubated with or without ISE for 1 h. Then, the
RAW264.7 macrophages were seeded onto the inserts at 5
× 104 cells/well. After migrating for 4 h at 37◦C, any non-
migrated cells were wiped off with a cotton swab, and the
cells adhering to the underside of the membrane were fixed
with 4% paraformaldehyde for 20min. The membranes were
then washed with PBS. The number of migrated cells in
twelve random microscopy fields per membrane was counted at
400×magnification.

Statistical Analysis
All data were presented as the means ± SD. The statistical
significance of any difference in each parameter among treatment
was evaluated by one-way analysis of variance (ANOVA)
followed by Tukey’s test using Prism 6.0 software. Significance
level was set at P < 0.05.

RESULTS

ISE Inhibited the Production of
Inflammation Mediators Released by
LPS-Activated RAW264.7 Macrophages
To investigate whether ISE affects the production of pro-
inflammatory mediators from macrophages in obesity-related
environments, RAW264.7 cells were treated with different doses
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of ISE in the presence or absence of LPS. We first determined the
effect of ISE at different doses on cell viability. ISE at 4.0µg/mL,
not 0.5, 1.0 and 2.0µg/mL, used according to the anti-oxidant
activity of ISE as previously described (22), had the toxicity on
cell viability (Figure 1). Thus, we used ISE concentrations at 0.5,
1.0, and 2.0µg/mL in the subsequent experiments to determine
the working mechanisms of ISE.

Next we determined the effect of ISE on inflammation
mediators produced by LPS-activated RAW264.7 macrophages,
which are M1macrophages induced by LPS or pro-inflammatory
mediators and produce significant amounts of pro-inflammatory
cytokines, such as TNF-α, IL-6, and NO (24, 25). ISE
administration decreased NO production in a dose-dependent
manner (IC50 = 0.52µg/mL) (Figure 2A). In addition,
the secretion of TNF-α (IC50 = 2.22µg/mL) (Figure 2B),
and IL-6 (IC50 = 0.43µg/mL) (Figure 2C) were inhibited
dose-dependently by ISE administration in LPS-activated
macrophages. However, ISE only reduced the MCP-1 secretion
(IC50 = 2.24µg/mL) at 2.0µg/mL (Figure 2D).

ISE Reduced the Level of Inflammation
Mediators Released by RAW264.7
Macrophage Stimulated by 3T3-L1
Adipocyte Conditioned Medium
To investigate whether ISE affected the secretion of pro-
inflammatory cytokines from macrophages in obesity-related
environments, RAW264.7 macrophages were co-treated with
ISE and L1CM to induce an obesity-related inflammatory
reaction. Pro-inflammatory mediators NO (Figure 3A), TNF-
α (Figure 3B), IL-6 (Figure 3C), and MCP-1 (Figure 3D)
production apparently increased in L1CM-activated models
(IC50 = 0.84, 0.82, and 1.40µg/mL, respectively). In the model
with L1CM, the suppressive property of ISE was observed as NO,

FIGURE 1 | Cell viability of RAW264.7 macrophages pretreated with different

concentrations of ISE. RAW264.7 macrophages were incubated with ISE in

the indicated concentrations for 24 h and cell viability was determined using

CCK-8 kit as described in “Materials and Methods” section. The values are

means ± SD, n = 6, *P < 0.01.

TNF-α, and IL-6 in a dose-dependent manner. In accordance
with MCP-1 released by LPS-activated macrophages, only ISE at
2.0µg/mL decreased MCP-1 production (IC50 = 1.62µg/mL).

ISE Administration Decreased the
Pro-Inflammatory Cytokine Level in
Cocultures of 3T3-L1 Adipocytes and
RAW264.7 Macrophages
We next examined whether ISE treatment could suppress
inflammatory changes in a coculture system composed of
3T3-L1 adipocytes and RAW264.7 macrophages. In this
model, 3T3-L1 adipocytes or RAW264.7 macrophages
were cultured separately and treated with ISE by the same
method that we used in the coculture system. As shown in
Figure 4, ISE treatment dose-dependently suppressed the
production of NO (IC50 = 1.55µg/mL) (Figure 4A), TNF-
α (IC50 = 0.80µg/mL) (Figure 4B) and IL-6 (Figure 4C)
(IC50 = 2.30µg/mL), but did not affect MCP-1 (Figure 4D) in
the coculture system. These data indicate that ISE treatment has
the ability to block the release of inflammatory mediators in the
coculture system.

The Anti-inflammatory Effects of ISE Were
Caused by Inhibition of MAPK and STAT
Activity
TLR4 is the main pathway for stimulating inflammatory
responses. To investigate the molecular mechanism of the
anti-inflammatory effects of ISE, we examined TLR4 signaling
pathway in RAW264.7 macrophages.

TLR4 signaling stimulated by LPS or L1CM results in
the activation of NF-κB and MAPK family including ERK,
JNK, and p38 MAPK, which drive the upregulation of pro-
inflammatory genes (26, 27). To characterize the mechanism
underlying the suppression of pro-inflammatory mediators by
ISE, we used Western blotting to measure the phosphorylation
of ERK, JNK, p38, and the degradation of I-κB-α. Stimulation
with LPS or L1CM increased the phosphorylation of ERK
(Figures 5A, 6A), JNK (Figures 5B, 6B), p38 (Figures 5C, 6C),
and enhanced the degradation of I-κB-α (Figures 5D, 6D).While
ERK and p38 activation were significantly suppressed by ISE,
the phosphorylation of JNK was not impacted by ISE in LPS-
or L1CM- activated macrophages. Furthermore, ISE treatment
could not prevent the degradation of I-κB-α, which suggests that
NF-κB signals may not be involved in the inhibitory effects of ISE
on pro-inflammatory mediator release.

STAT signals are also important transcriptional activators that
regulate cytokine transcription (28). Inflammatory cytokine IL-6
is one of the active mediators of STAT3, which transmits signals
through its receptor IL-6 and activates Janus kinase, which in turn
activates the STAT family, including the phosphorylation and
activation of STAT3 (29). To further explore the effect of ISE on
the decrease of pro-inflammatory mediators through JAK/STAT3
signaling pathway in the obesity-related environment, we
measured the protein expression level of p-STAT3 and STAT3
in LPS (Figure 7A) and L1CM (Figure 7B), respectively. Data
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FIGURE 2 | Effects of ISE on RAW264.7 macrophage activation by LPS. RAW264.7 macrophages were pretreated with different concentrations of ISE for 1 h and

then were incubated with LPS at 1.0µg/mL for 24 h. Cell-free supernatants were collected to determine the concentrations of NO (A), TNF-α (B), IL-6 (C), and

MCP-1 (D) as described in “Materials and Methods” section. The values are means ± SD of 6 samples. Statistical comparisons were made with each vehicle control.

*P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 3 | Effects of ISE on inflammation in RAW264.7 macrophages activated by conditioned medium of hypertrophied 3T3-L1 adipocytes. RAW264.7

macrophages were pretreated with different concentrations of ISE for 1 h and then were incubated with conditioned medium of hypertrophied 3T3-L1 adipocytes

(L1CM) for 24 h. Cell-free supernatants were collected to determine the concentrations of NO (A), TNF-α (B), IL-6 (C), and MCP-1 (D) as described in “Materials and

Methods” section. The values are means ± SD of 6 samples. Statistical comparisons were made with each vehicle control. *P < 0.05, **P < 0.01.
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FIGURE 4 | Effects of ISE on inflammation in RAW264.7 macrophages cocultured with differentiated 3T3-L1 adipocytes. RAW264.7 macrophages were pretreated

with different concentrations of ISE for 1 h and then were incubated with differentiated 3T3-L1 adipocytes for 24 h. Cell-free supernatants were collected to determine

the concentrations of NO (A), TNF-α (B), IL-6 (C), and MCP-1 (D) as described in “Materials and Methods” section. The values are means ± SD of 6 samples.

Statistical comparisons were made with each vehicle control. *P < 0.05, **P < 0.01.

showed that the phosphorylation of STAT3 was markedly
suppressed by ISE in LPS- and L1CM- activated models.

ISE Blocked the LICM-Stimulated
Migration of RAW264.7 Macrophages
To examine the potential of ISE to limit the motility of
macrophages, RAW264.7 macrophages were preincubated with
different concentrations of ISE ahead of L1CM incubation and
compared with cells incubated with L1CM alone. As shown in
Figure 8, L1CM induced an obvious migration of macrophages.
While this process was suppressed by ISE.

DISCUSSION

I. sanghuang, as a popular medicinal polypore used throughout
Southeast Asia, was reported diffusely for its effects of anti-
oxidant, anti-tumor, anti-microbial, lipid-lowering effect (30).
Evidence has shown that various ingredients of I. sanghuang,
such as polysaccharides (18, 31), had anti-inflammatory activity.
However, the anti-inflammatory activity of polyphenols extracted
from I. sanghuang has not been reported. The present study
showed that ISE polyphenols directly inhibits pro-inflammatory
cytokines NO, TNF-α, and IL-6 released by RAW264.7
macrophages activated by LPS, L1CM, and cocultured with
differentiated 3T3-L1 adipocytes. These effects might be
mediated via suppressing p-ERK- and p-p38- MAPK and
STAT3 signaling pathways (Figure 9). These data indicate that
ISE polyphenols have the ability to interfere the crosstalk

between macrophages and adipocytes and inhibit obesity-
induced adipose inflammation.

It’s beyond dispute that obesity-induced adipose inflammation
by paracrine interactions between adipocytes and adipose-
infiltrating macrophages plays a causative role in insulin
resistance and metabolic dysfunction in obesity and is
characterized by abnormal secretion of pro-inflammatory
cytokines in white adipose tissue (32). On the one hand, adipose
tissue promotes macrophages to secrete inflammatory mediators
by releasing FFA and to accumulate with chemotaxis in adipose
tissue by releasing MCP-1. On the other hand, inflammatory
cytokines from ATMs could accelerate the secretion of FFA from
adipose tissue. In other words, macrophages markedly infiltrate
into obese adipose tissue and establish an inflammatory paracrine
loop with adipocytes. From what has been discussed above, it’s
expected to reduce the chronic low-grade inflammatory
response in obesity by cutting off the interaction between
macrophages and adipocytes mediated by reducing the secretion
of pro-inflammatory mediators.

In vitro, coculture of highly differentiated 3T3-L1 adipocytes
and RAW264.7 macrophages has been used as the model of
adipose inflammation in which pro-inflammatory cytokine genes
and proteins such as MCP-1, IL-6, and TNF-α are significantly
upregulated (33). Several polyphenols have been reported to be
able to reduce secretion of pro-inflammatory indicators in the
coculture model (34, 35). However, ISE polyphenols have not
been tested. Additionally, TLR4, the receptor of LPS, which could
activate the NF-κB andMAPK signaling pathways, is expressed in
various cells, including adipocytes and macrophages (36, 37). It
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FIGURE 5 | Effects of ISE on LPS-induced MAPK and NF-κB signals. RAW264.7 macrophages were pretreated with different concentrations of ISE for 1 h and then

stimulated by 1.0µg/mL LPS for 30min. Total cell lysates were extracted, and then western blotting using specific antibodies was used for the detection of

phosphorylated and total forms of three MAPK molecules, ERK (A), JNK (B), p38 (C), and I-κB-α (D). The value of a control was set at 100%, and the relative value

was presented as fold induction to that of the control, which was normalized to total MAPK or β-actin. The values are means ± SD, n = 3. Statistical comparisons

were made with each vehicle. *P < 0.01, **P < 0.001.

can be activated by LPS or endogenous saturated FFA and initiate
potent downstream inflammatory responses in obese adipose
tissue (12). Furthermore, this is supported by a study showing
that TLR4 deficiency can prevent insulin resistance in lipid-
infused male mice (37). Thus, inhibition of TLR4 signaling has
been shown as an attractive therapeutic strategy for treatment
of obesity-induced insulin resistance and adipocytes mediated
chronic inflammation.

In this study, ISE suppressed production of pro-inflammatory
mediators in LPS- or L1CM-activated RAW264.7 macrophages
and a coculture system with 3T3-L1 adipocytes and RAW264.7
macrophages. We found that ISE dose-dependently may
directly suppress production of NO, TNF-α, IL-6, and MCP-
1 (IC50 = 0.52, 2.22, 0.43, and 2.24µg/mL, respectively) in
the single culture of RAW264.7 macrophages activated by
LPS. LPS from gram-negative intestinal microbiota is an early
factor recruiting a signals through TLR4 to induce secretion

of pro-inflammatory cytokines and then triggering metabolic
diseases induced by a high-fat diet (38, 39). Our and these
data suggest that ISE may have beneficial effects on obesity-
related diseases. Current data supported that the production
of pro-inflammatory mediators NO, TNF-α, IL-6, and MCP-1
(IC50 = 0.84, 0.82, 1.40, and 1.62µg/mL, respectively) could be
significantly suppressed by ISE in L1CM-activated RAW264.7
macrophages in a dose-dependent manner. It has been reported
that FFA secreted from the L1CM which is derived from
hypertrophied adipocytes is the key factor to enhance the
expression of TNF-α in ATMs (40). Thus, these data indicate that
3T3-L1CM could activate RAW264.7 macrophages to induce
inflammatory response possibly via adipocytes secreting FFA and
other cytokines. Moreover, our data suggest that ISE might be
able to reduce pro-inflammatory mediators NO, TNF-α, and IL-
6 (IC50 = 1.55, 0.80, and 2.30µg/mL, respectively) and then
promote inflammatory changes in obese adipose tissue. However,

Frontiers in Immunology | www.frontiersin.org 7 February 2019 | Volume 10 | Article 286125

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Inonotus sanghuang Polyphenols and Inflammation

FIGURE 6 | Effects of ISE on 3T3L1 CM-induced MAP kinase and NF-κB signals. RAW264.7 macrophages were pretreated with different concentrations of ISE for

1 h and then stimulated by 3T3-L1CM (L1CM) for 30min. Total cell lysates were extracted to detect the levels of phosphorylated ERK (A), JNK (B), p38 (C), and

I-κB-α (D). The value of a control was set at 100%, and the relative value was presented as fold induction to that of the control, which was normalized to total ERK,

JNK, p38 or β-actin. The values are means ± SD, n = 3. Statistical comparisons were made with each vehicle controls. *P < 0.05, **P < 0.01, ***P < 0.001.

whether it is true needs to be investigated. In addition, ISE
treatment failed to promote changes in MCP-1 in the coculture
system. It’s well known that MCP-1 plays an important role in
both potently recruiting macrophages into adipose tissue and
determining a more inflammatory M1 macrophage phenotype
(41), suggesting that MCP-1 is secreted by 3T3-L1 adipocytes
from the most part rather than by RAW264.7 macrophages.
Thus, we speculate that anti-inflammatory effects of ISE might
havemore impact on the activatedmacrophages in adipose tissue.
Finally, we noted that among different activated macrophages,
the mean IC50 values of ISE toward inflammatory mediators
NO, TNF-α and IL-6 was at least 2.0µg/mL less than the other
mediator MCP-1, suggesting that the inhibitory effects of ISE
on the interaction between adipocytes and macrophages might
mainly be caused by suppressing pro-inflammatory mediators.

Previous studies have shown that some species of sanghuang
exert anti-inflammatory effects through inhibiting the signals of
NF-κB and MAPKs (e.g., ERK and p38) (42–44). In addition,

polyphenols have been demonstrated to suppress inflammatory
responses by blocking the ERK and NF-κB pathways in microglia
and inhibit production of pro-inflammatory cytokines TNF-
α, IL-1β, and IL-6 (45). Current study found that ISE could
down-regulate MAPKs, not NF-κB signaling triggered by L1CM-
activated macrophages. Notably, activation of ERK and p38, not
JNK, was inhibited by ISE, and these two are considered to
be the major mechanism that accounts for the suppression of
pro-inflammatory mediator secretion by ISE.

Polyphenols are the secondary metabolites of mushrooms
in the genus Inonotus. In the current study, 6 polyphenols
such as quercetin, rutin, quercitrin, icarisid II, isorhamnetin
and chlorogenic acid are contained in ISE which could exert
anti-oxidant, anti-proliferative, and anti-microbial activities in
vitro (22). Quercetin has been shown to be able to inhibit the
MAPK signals in adipocytes, macrophages, lipid accumulation
and obesity-induced inflammation in the animal models (46).
Although rutin has been reported to have no effect on lipid
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FIGURE 7 | Effects of ISE on STAT3 signal. RAW264.7 macrophages were pretreated with different concentrations of ISE for 1 h and then stimulated by 1.0µg/mL

LPS or 3T3-L1CM for 30min. Total cell lysates were extracted, and then western blotting using specific antibodies was used to determine the expression of p-STAT3

and STAT3 in LPS (A) and 3T3-L1CM (L1CM) stimulation (B), respectively. The value of a control was set at 100%, and the relative value was presented as fold

induction to that of the control, which was normalized to total STAT3. Statistical comparisons were made with each vehicle controls. The values are means ± SD,

n = 3. *P < 0.05, **P < 0.01.

FIGURE 8 | Effects of ISE on macrophage motility. (Left) Procedures of the macrophage migration experiments. RAW 264.7 macrophages were treated with vehicle or

ISE (0.5, 1.0, 2.0µg/mL) for 1 h and the detached cells were used for migration assay in the presence of DMEM or L1CM. (Right) Migrated RAW264.7 macrophages

were quantified as described in “Materials and Methods” section. The values are means ± SD, n = 12. *P < 0.05, **P < 0.01. Mϕ, RAW264.7 macrophages.

accumulation in 3T3-L1 adipocytes, it can attenuate obesity
through activating brown fat and then increasing energy
expenditure (47). Furthermore, quercitrin (48), Icaritin II (49),
isorhamnetin (50), and chlorogenic acid (51) have also been
reported to have anti-inflammatory activities in macrophages or
animal models. These reports and current data indicate that the
attenuation of ISE on inflammatory response in macrophages
or crosstalk between macrophages and adipocytes be mediated,
at least in part by I. sanghuang polyphenols. However, which
compound is involved in this effect needs to be investigated.

In this study, we also demonstrated that ISE inhibited STAT3
phosphorylation, as one of the pathways to suppress production
of pro-inflammatory mediators in activated macrophages.
Polyphenols could reduce production of inflammatory factors via
suppressing IL-6/STAT3 signaling pathway (52, 53). In addition,
polyphenols treatment could prevent the pro-inflammatory effect
on macrophages by potentially inhibiting STAT3 activation (54).
Since ISE treatment could inhibit IL-6 released by macrophages
activated by LPS or L1CM, we speculate that ISE might have the
ability to affect IL-6/STAT3 signals. As expected, the activation
of STAT3 was markedly inhibited by ISE. Therefore, our data

suggest that the anti-inflammatory effect of ISE may be mediated,
not only by inhibiting Erk and p38 MAPK signaling, but also
by affecting the reduction of IL-6 and inhibiting IL-6/STAT3
signaling pathway. In addition, whether ISE administration
has benefits in obesity-related diseases and the underlying
mechanism need to be investigated.

As described above, activated macrophages infiltrating
into adipose tissue are critical source of pro-inflammatory
mediators, which subsequently cause systemic insulin resistance
and obesity-related complications. Therefore, preventing the
infiltration of macrophages into adipose tissue could ameliorate
obesity-related inflammation and provide a therapeutic target
for obesity-related complications. However, the mechanisms that
initiate macrophages recruitment to adipose tissue remain not
fully elucidated, but it presumably involves increased secretion
of chemotactic factors, in particular chemokine MCP-1 secreted
from adipocytes (55). This study gives rise to the question of how
ISE prevents macrophages migration, while we couldn’t supply
an immediate answer to this important question at present.
Our data showed that ISE didn’t inhibit secretion of MCP-
1 from cocultures; in other words, ISE presumably inhibits
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FIGURE 9 | Schematic models of molecular targets affected by ISE to attenuate inflammatory signaling pathways. On the one hand, LPS- and free fatty acid

(FFA)-induced inflammatory responses are regulated by both NF-κB and MAPK signaling pathways. In activated macrophages, ISE decreases pro-inflammatory

cytokine production via inhibiting the ERK and p38 MAPK pathways, not NF-κB signals. On the other hand, ISE markedly suppresses the phosphorylation of STAT3 to

reduce cytokines transcription. Subsequently, the lipolysis of adipocytes is suppressed and proinflammatory M1 macrophages are less recruited via the MCP-1-CCR2

pathway. And the decrease of inflammatory cytokine IL-6 further restrains the IL-6/STAT3 activation and the inflammatory mediator production. In a word, treatment

with ISE reduces the levels of these pro-inflammatory mediators, thereby disrupting the crosstalk between macrophages and adipocytes in a coculture. ISE apparently

exerted anti-inflammatory ability, possibly diminishing the obesity-induced inflammatory diseases.

macrophage migration by acting on macrophages rather than
adipocytes. Previous studies have demonstrated that MCP-1
induces macrophage migration largely via MAPKs signaling (56).
In addition, LPS increases macrophage motility (57), suggesting
the possibility that ISE could impair the ability of macrophages
to migrate in response to MCP-1 by inhibiting TLR4 activity.
Researchers have also found that polyphenols from tea could
significantly suppress proliferation, migration, and invasion in
melanoma by TLR4 inhibition (58). Moreover, macrophages
treated with butein (a polyphenol of vegetal origin) exhibited a
reduced ability to migrate toward 3T3-L1CM (59). According to
the above, this study implies that ISE at higher concentrations has
the potential to block ATMs recruitment in the adipose tissue by
TLR4 or any other signaling pathways inhibition, which needs to
be clarified further.

In conclusion, we demonstrated that ISE has the ability
to inhibit the crosstalk between adipocytes and macrophages,
mediated by attenuating inflammatory responses produced
by macrophages (Figure 9). Our results suggest that ISE
polyphenols may be valuable as a functional medicinal food
in terms of ameliorating chronic inflammation in obese
adipose tissue and improving obesity-related insulin resistance
and complications.
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Nicole K. Campbell, Hannah K. Fitzgerald, Jean M. Fletcher and Aisling Dunne*

School of Biochemistry and Immunology and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin,

The University of Dublin, Dublin, Ireland

Polyphenols are important immunonutrients which have been investigated in the context

of inflammatory and autoimmune disease due to their significant immunosuppressive

properties. However, themechanism of action of many polyphenols is unclear, particularly

in human immune cells. The emerging field of immunometabolism has highlighted the

significance of metabolic function in the regulation of immune cell activity, yet the

effects of polyphenols on immune cell metabolic signaling and function has not been

explored. We have investigated the effects of two plant-derived polyphenols, carnosol

and curcumin, on the metabolism of primary human dendritic cells (DC). We report that

human DC display an increase in glycolysis and spare respiratory capacity in response to

LPS stimulation, which was attenuated by both carnosol and curcumin treatment. The

regulation of DC metabolism by these polyphenols appeared to be mediated by their

activation of the cellular energy sensor, AMP-activated Protein Kinase (AMPK), which

resulted in the inhibition of mTOR signaling in LPS-stimulated DC. Previously we have

reported that both carnosol and curcumin can regulate the maturation and function of

human DC through upregulation of the immunomodulatory enzyme, Heme Oxygenase-1

(HO-1). Here we also demonstrate that the induction of HO-1 by polyphenols in human

DC is dependent on their activation of AMPK. Moreover, pharmacological inhibition of

AMPK was found to reverse the observed reduction of DC maturation by carnosol

and curcumin. This study therefore describes a novel relationship between metabolic

signaling via AMPK and HO-1 induction by carnosol and curcumin in human DC, and

characterizes the effects of these polyphenols on DC immunometabolism for the first

time. These results expand our understanding of the mechanism of action of carnosol

and curcumin in human immune cells, and suggest that polyphenol supplementation

may be useful to regulate the metabolism and function of immune cells in inflammatory

and metabolic disease.

Keywords: polyphenols, immunometabolism, dendritic cells, AMPK, HO-1 (heme oxygenase-1)
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INTRODUCTION

The emerging field of immunometabolism has highlighted
the significance of metabolic function in the regulation of
immune cell activity. Under certain conditions, anabolic and
catabolic metabolism have become associated with pro- and
anti-inflammatory immune responses, respectively (1). Thus,
modulation of specific metabolic pathways in immune cells
may represent a novel strategy to downregulate inflammation
and promote the generation of anti-inflammatory immune

responses. Polyphenols are a class of compound comprised of
multiple phenol rings which naturally occur in plants, including
fruits, vegetables, herbs and spices. Many polyphenols have
been reported to exhibit significant anti-inflammatory activity
and hold potential as immunonutrient supplements to treat
inflammatory and autoimmune disease (2–8). However, the
mechanism by which polyphenols regulate the immune response

is unclear, and the relationship between immunonutrients and
metabolism has been under-explored.

Dendritic cells (DC) play a central role in the generation
of both innate and adaptive immune responses and it is now
recognized that coordination of both immunological and
metabolic signaling pathways is required for DC maturation.
Murine bone marrow derived DC (BMDC) have been described
to undergo a switch to Warburg metabolism upon activation,

which is characterized by a strong upregulation of aerobic
glycolysis via activation of the master growth/metabolic
regulator, mammalian target of rapamycin (mTOR), and
is accompanied by significant downregulation of oxidative
phosphorylation (9–12). Conversely, this metabolic program
is suppressed in immature BMDC by high activity of the
cellular energy sensor, AMP-activated protein kinase (AMPK),
which inhibits mTOR activation (10, 13). The downregulation
of oxidative phosphorylation in BMDC during the switch

to Warburg metabolism has been reported to result from
suppression of mitochondrial activity by inducible nitric oxide
synthase (iNOS)-derived NO (14). However, human DC and
macrophages do not generally express iNOS (15–17), therefore,
it is unclear whether they engage Warburg metabolism like
their murine counterparts. A recent study by Malinarich et al.
found that while mature human DC are more glycolytic than
immature DC, they do not entirely downregulate oxidative
phosphorylation, and instead display a more “balanced” switch
to glycolysis (18). As the data available on the metabolic function
of human DC is limited, it remains unclear to what extent human
DC metabolism reflects that of murine DC.

Previous work from our laboratory has investigated the
anti-inflammatory activity of the plant-derived polyphenols,
carnosol and curcumin, in human DC. We reported that both
of these polyphenols are capable of inhibiting DC maturation
and maintain DC in a tolerogenic state through upregulation of
the stress-response enzyme, heme oxygenase-1 (HO-1) (19). HO-
1 is an important anti-inflammatory and antioxidant enzyme
involved in heme/iron and redox metabolism, and its expression
is strongly associated with the maturation status of DC (20–
23). Despite its significant immunomodulatory effects in DC and
established role in cellular metabolism, the relationship between

HO-1 and DC immunometabolism has not yet been investigated.
Furthermore, although certain polyphenols have been reported to
activate AMPK in non-immune cells (24), it is unknown whether
the anti-inflammatory effects of polyphenols, such as carnosol
and curcumin, results from regulation of metabolic signaling.

In this study, we aimed to characterize the metabolic profile
of human DC in response to LPS stimulation and to explore
the effects of the polyphenols, carnosol and curcumin, on DC
metabolism and downstream immune modulatory function. We
report that, unlike BMDC, human DC stimulated with LPS
upregulate both glycolysis and oxidative phosphorylation within
hours of activation, however, the upregulation of glycolytic
metabolism and spare respiratory capacity in maturing DC is
inhibited by both carnosol and curcumin. We also demonstrate
that both polyphenols strongly activate AMPK in human DC
and effectively inhibit mTOR activation in response to LPS
stimulation in an AMPK-dependent manner. Finally, we report
that the upregulation of HO-1 by carnosol and curcumin, and
consequential modulation of DC immune function, is dependent
on their ability to activate AMPK. These findings enhance our
understanding of DC immunometabolism and describe a novel
relationship between AMPK, HO-1, and DC function which
further underpins the anti-inflammatory activity of these plant-
derived polyphenols.

MATERIALS AND METHODS

Reagents
Carnosol (from Rosemarinus officinalis) and curcumin (from
Curcuma longa) were purchased from Sigma-Aldrich and
dissolved in DMSO. Ultrapure lipopolysaccharide (LPS) from
E. coli serotype O111:B4 was purchased from Enzo Life
Sciences. The AMPK inhibitor compound C (also known
as dorsomorphin) was purchased from Sigma-Aldrich and
dissolved in DMSO. The AMPK agonist 5-Aminoimidazole-
4-carboxamide ribonucleotide (AICAR) was purchased from
Sigma-Aldrich and dissolved in water.

Human Blood Samples
This study was approved by the research ethics committee of
the School of Biochemistry and Immunology, Trinity College
Dublin and was conducted in accordance with the Declaration
of Helsinki. Leukocyte-enriched buffy coats from anonymous
healthy donors were obtained with permission from the Irish
Blood Transfusion Service (IBTS), St. James’s Hospital, Dublin.
Donors provided informed written consent to the IBTS for their
blood to be used for research purposes. PBMC were isolated by
density gradient centrifugation (Lymphoprep; Axis-Shield poC).
Cells were cultured in RPMI medium supplemented with 10%
FCS, 2mM L-glutamine, 100 U/ml penicillin and 100µg/ml
streptomycin (all Sigma Aldrich) and maintained in humidified
incubators at 37◦C with 5% CO2.

Dendritic Cell Culture
CD14+ monocytes were positively selected from PBMC by
magnetic sorting using a MagniSort Human CD14 Positive
Selection kit (eBioscience) according to the manufacturer’s
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protocol. Monocyte-derived DC were produced by culturing
purified CD14+ monocytes at 1× 106 cells/ml in complete RPMI
supplemented with GM-CSF (50 ng/ml) and IL-4 (40 ng/ml; both
Miltenyi Biotec). On the third day of culture half the media
was removed and replaced with fresh media supplemented with
cytokines. After 6 days non-adherent and loosely adherent cells
were gently removed. The purity of CD14loDC-SIGN+ DC was
assessed by flow cytometry and was routinely >98%.

Western Blotting
For detection of AMPK expression, DC were cultured at
1× 106 cells/ml in the presence of AICAR (1mM), carnosol
(10µM), curcumin (10µM) or a vehicle control (DMSO), for
1 h. For detection of HO-1 expression, DC were cultured at
1 × 106 cells/ml with AICAR (125–1,000µM) for 24 h, or
with compound C (5µM) for 1 h prior to incubation with
carnosol (10µM), curcumin (10µM) or DMSO for 24 h. For
detection of pS6 expression, DC were cultured at 1 × 106

cells/ml with compound C (5µM) for 1 h prior to incubation
with carnosol (10µM), curcumin (10µM) or DMSO for 1 h,
followed by stimulation with LPS (100 ng/ml) for 1 h. Cell lysates
were prepared by washing cells in PBS prior to lysis in RIPA
buffer (Tris 50mM; NaCl 150mM; SDS 0.1%; Na.Deoxycholate
0.5%; Triton X 100) containing phosphatase inhibitor cocktail set
(Sigma-Aldrich). Samples were electrophoresed and transferred
to PVDF prior to incubation with monoclonal antibodies
specific for HO-1 (Enzo Life Sciences), ribosomal protein S6
phosphorylated at Ser235 and Ser236, AMPK phosphorylated at
Thr172, and total AMPK (all Cell Signaling), overnight at 4◦C.
Membranes were then washed in TBS-Tween and incubated with
anti-rabbit streptavidin-conjugated secondary antibody (Sigma
Aldrich) for 2 h at room temperature, prior to development with
enhanced chemiluminescent substrate (Merck Millipore) using a
BioRad ChemiDoc MP system. Subsequently, membranes were
re-probed with HRP-conjugated monoclonal antibodies specific
for β-actin (Sigma-Aldrich) as a loading control. Full length blots
are presented in Supplementary Figures 1, 2.

Flow Cytometry
DC were cultured at 1 × 106 cells/ml in the presence of
compound C (5µM) for 1 h, followed by incubation with
carnosol (10µM), curcumin (10µM) or DMSO for 6 h prior to
stimulation with LPS (100 ng/ml). After 24 h, DC were removed
for analysis by flow cytometry. DC were collected, washed in
PBS and stained extracellularly with amine-binding markers for
dead cells (Fixable Viability Dye; eBioscience) and fluorochrome-
conjugated antibodies for CD40 (Invitrogen), CD80, CD83, and
CD86 (all Biolegend). For phagocytosis assays, DC were cultured
with complete RPMI containing DQ-Ovalbumin (500 ng/ml;
Invitrogen) for 20min at 37◦C, followed by incubation for 10min
at 4◦C. DC were then washed in PBS and immediately acquired.
Acquisition was performed on either a BD FACS Canto II or
LSR Fortessa, and analysis was performed with FlowJo v.10
software (Tree Star Inc.). Gating strategies are presented in
Supplementary Figure 3.

Seahorse Analyser
Due to limitations in cell numbers, the glycolytic and respiratory
profiles of DC were measured simultaneously using a combined
glycolysis/mitochondrial stress test, as previously described (25).
This includes the addition of pyruvate in the cell culture media
in order to determine the basal respiratory rate of the cells.
While this approach can artificially result in increased glycolysis
measurements, as the same media was used for all treatment
groups this artifact does not alter the internal validity of the
obtained results.

DC were cultured at 2 × 105 cells/well in a Seahorse 24-
well microplate. The Seahorse cartridge plate was hydrated prior
to use by the addition of 1ml XF calibrant fluid per well and
incubated in a non-CO2 incubator at 37◦C for a minimum of
8 h prior to use. To measure DC metabolism in response to
LPS stimulation, DC were stimulated with LPS (100 ng/ml) for
1, 3, 6 or 24 h prior to analysis using a Seahorse XF24 analyser.
To determine the effect of polyphenols on DC metabolism, DC
were incubated with carnosol (10µM), curcumin (10µM), or
DMSO for 6 h, followed by stimulation with LPS (100 ng/ml)
for 6 h, prior to analysis using a Seahorse XFe24 analyser.
Between 30 and 60min prior to placement into the XF/XFe
analyser, cell culture medium was replaced with complete XF
assay medium (Seahorse Biosciences; supplemented with 10mM
glucose, 1mM sodium pyruvate, 2mM L-glutamine, and pH
adjusted to 7.4) and incubated in a non-CO2 incubator at 37

◦C.
Blank wells (XF assay medium only) were prepared without cells
for subtracting the background oxygen consumption rate (OCR)
and extracellular acidification rate (ECAR) during analysis.
Oligomycin (1µg/ml; Cayman Chemicals), carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) (450 nM; Santa Cruz
biotechnology), rotenone (500 nM), antimycin A (2.5µM), and
2-deoxy-D-glucose (2-DG) (25mM; all Sigma-Aldrich) were
prepared in XF assay medium and loaded into the appropriate
injection ports on the cartridge plate (75 µl/port) and incubated
for 10min in a non-CO2 incubator at 37◦C. The cartridge was
then placed into the XF/XFe analyser and the machine was
calibrated. Following calibration the cell plate was added to the
XF/XFe analyser and the OCR and ECAR were measured over
time with sequential injections of (A) oligomycin, (B) FCCP, (C)
rotenone and antimycin A, and (D) 2-DG. Upon completion of
the assay the XF assay medium was removed and RIPA buffer
was added to each well. Protein concentration was determined by
the Pierce BCA assay (ThermoFisher) to ensure protein content
was similar between all treatment wells. Analysis of results
was performed using Wave software (Agilent Technologies).
The rates of basal glycolysis, max glycolysis, glycolytic reserve,
basal respiration, max respiration and respiratory reserve were
calculated as detailed in Table 1.

Statistical Analysis
Statistical analysis was performed using Prism 6 software
(GraphPad Software Inc.). Analysis of 3 or more data sets was
performed by repeated measures one-way ANOVA with either
Tukey’s, Dunnett’s or Sidak’s post hoc test as appropriate; p-
values < 0.05 were considered significant and are denoted with
asterisks in the figures.
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TABLE 1 | Seahorse calculations.

Rate Calculation

Non–glycolytic ECAR Average ECAR values after 2–DG treatment.

Basal glycolysis Average ECAR values prior to oligomycin

treatment–non–glycolytic ECAR

Max glycolysis Average ECAR values after oligomycin & before

FCCP treatment

Glycolytic reserve Max glycolysis–basal glycolysis

Basal respiration Average OCR values prior to oligomycin

treatment–non–mitochondrial OCR

Max respiration Average OCR values after FCCP & before

rotenone/antimycin A treatment

Respiratory reserve Max respiration–basal respiration

RESULTS

Human DC Temporally Upregulate

Glycolysis and Oxidative Phosphorylation

After LPS Stimulation
The current understanding of DC metabolism is largely
based on murine studies, which have demonstrated that
BMDC strongly upregulate aerobic glycolysis and downregulate
oxidative phosphorylation upon TLR stimulation (10–12).
However, this engagement of Warburg metabolism has been
reported to be dependent on NO produced by iNOS in BMDC
(14). Human monocyte-derived DC do not typically express
iNOS, and therefore it is likely that their metabolic function
may differ from that of BMDC (17). A recent study investigating
the metabolism of tolerogenic vs. immunogenic human DC
confirmed that LPS-matured DC do not undergo a switch to
Warburg metabolism (18). However, the metabolism of human
DC was only assessed 24 h after stimulation. As the metabolic
changes of BMDC have been observed to occur rapidly after
TLR stimulation (12), it was of interest in the present study
to first characterize the metabolic changes of LPS-stimulated
human DC over time. Human DC were seeded into a Seahorse
microplate and stimulated with LPS for 0, 1, 3, 6, or 24 h
prior to placement into a Seahorse XF24 analyser. The rate of
glycolysis and oxidative phosphorylation were determined by
the measured ECAR and OCR, respectively, after addition of
oligomycin (an inhibitor of mitochondrial complex V), FCCP (a
mitochondrial uncoupler), rotenone and antimycin A (inhibitors
of the mitochondrial complexes I & III, respectively), and 2-DG
(an inhibitor of glycolysis).

The ECAR of LPS-stimulated DC was highest at 3 and
6 h post-LPS treatment, while the ECAR of DC 24 h post-LPS
treatment was observed to be similar to that of unstimulated
DC (Figure 1A). The glycolytic profile of unstimulated vs.
LPS-stimulated DC was assessed, and it was observed that
the basal rate of glycolysis was increased in LPS-treated DC
at all timepoints (Figure 1B). However, the maximum rate
of glycolysis increased in LPS-stimulated DC after 1 h, and
peaked at 3–6 h before returning to the unstimulated-DC
baseline by 24 h post-LPS (Figure 1C). This was reflected in

the calculated glycolytic reserve of LPS-stimulated DC, which
was greatest in DC 3–6 h post-LPS, whereas at 24 h post-
LPS stimulation, DC displayed a glycolytic reserve similar to
unstimulated DC (Figure 1D). Therefore, while stimulation of
human DC with LPS results in a small but mostly sustained
increase in the basal glycolytic rate, the increased glycolytic
potential of LPS-stimulated DC appears to be transient, peaking
at 3–6 h post-activation. Furthermore, the respiratory profiles
of DC appeared to mirror their observed glycolytic activity;
DC stimulated with LPS for 6 h displayed the highest OCR,
while smaller increases in the OCR of DC 1, 3, and 24 h
post-LPS were seen compared to unstimulated DC (Figure 1E).
The basal respiratory rate of LPS-stimulated DC was higher
than that of unstimulated DC at all timepoints, and was
significantly increased in DC 6 h post-LPS treatment (Figure 1F).
Interestingly, the maximal respiratory rate (Figure 1G) and
respiratory reserve (Figure 1H) were significantly increased
in DC stimulated with LPS for 6 h compared to both
unstimulated DC and DC treated with LPS for 1 or 24 h.
Taken together, these data indicate that, unlike murine
DC, human DC upregulate both glycolytic metabolism and
oxidative phosphorylation upon LPS-stimulation. However, this
observed increase in DC metabolism peaks approximately
6 h post-activation.

The Plant-Derived Polyphenols, Carnosol

and Curcumin, Inhibit the Metabolic

Reprogramming of Human DC in Response

to LPS Stimulation
Human DC were observed to undergo significant metabolic
reprogramming during LPS stimulation, characterized by an
increased basal rate of glycolysis and oxidative phosphorylation,
and a temporary increase in glycolytic and respiratory capacity.
We have previously reported that the plant-derived polyphenols,
carnosol and curcumin, inhibit the maturation and immune
function of human DC (19). Given that upregulation of
cellular metabolism has been reported to be essential for
BMDC maturation (10–12), it was of interest to investigate
whether treatment with carnosol and curcumin might alter
the metabolic reprogramming observed in human DC upon
stimulation with LPS. As the greatest upregulation of glycolysis
and oxidative phosphorylation was seen at 6 h post LPS
stimulation, this timepoint was chosen to assess the action
of carnosol and curcumin on DC metabolism. Human DC
were seeded into a Seahorse microplate and treated with
carnosol or curcumin for 6 h prior to stimulation with LPS
for a further 6 h. DC were then placed into a Seahorse XFe24
analyser and their metabolic activity was determined by the
measured ECAR & OCR in response to metabolic inhibitors, as
described before.

As previously observed, the ECAR of LPS-stimulated DC was
higher than that of unstimulated DC, whereas LPS-stimulated
DC previously treated with either carnosol or curcumin displayed
an ECAR similar to unstimulated DC (Figure 2A). This was
reflected in the basal rate of glycolysis, which was significantly
reduced in curcumin-treated DC compared to control DC,
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FIGURE 1 | Determination of the changes in glycolytic metabolism and oxidative phosphorylation over time in LPS-stimulated human DC. Primary human DC (n = 3)

were stimulated with LPS (100 ng/ml) for 1, 3, 6, or 24 h prior to placement in a Seahorse XF24 analyser. The extracellular acidification rate (ECAR) and oxygen

consumption rate (OCR) were measured before and after the addition of oligomycin (1µg/ml), FCCP (450 nM), antimycin A (2.5µM), and rotenone (500 nM), and

2-DG (25mM). (A) ECAR measurements over time for each LPS stimulation time-point. Data depicts one representative experiment. Pooled data (n = 3) depicts the

calculated mean (± SEM) (B) basal glycolytic rate, (C) max glycolytic rate, and (D) glycolytic reserve for each LPS stimulation time-point. (E) OCR measurements over

time for each LPS stimulation time-point. Data depicts one representative experiment. Pooled data (n = 3) depicts the calculated mean (± SEM) (F) basal respiratory

rate, (G) max respiratory rate, and (H) respiratory reserve for each LPS stimulation time-point. Statistical significance was determined by repeated measures one-way

ANOVA with Tukey’s multiple comparisons post hoc test to compare the means of all treatment groups (*p < 0.05).

and a trend toward reduced basal glycolysis was also seen in
carnosol-treated DC (Figure 2B). The observed inhibition of
glycolysis in carnosol- and curcumin-treated DC was more
pronounced in the maximal rate of glycolysis (Figure 2C)
and glycolytic reserve (Figure 2D), which were significantly
reduced with both polyphenols compared to control DC.
The OCR of LPS-stimulated DC was also observed to be
greater than that of unstimulated DC, and of carnosol- and

curcumin-treated DC (Figure 2E). A slight reduction in the
basal respiratory rate was observed in carnosol and curcumin
treated DC compared to control DC, but this was not significant
(Figure 2F). Conversely, a trend toward an increased maximal
respiratory rate (Figure 2G) and respiratory reserve (Figure 2H)
was observed in LPS-stimulated DC compared to unstimulated
DC, which was reduced in DC previously treated with carnosol
or curcumin.
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FIGURE 2 | Carnosol and curcumin reduce the upregulation of glycolysis and spare respiratory capacity of LPS-stimulated DC. Primary human DC were either left

unstimulated (US), or treated with carnosol (10µM), curcumin (10µM) or a vehicle control for 6 h, then stimulated with LPS (100 ng/ml) for 6 h prior to placement in a

Seahorse XFe24 analyser. The extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) were measured before and after the addition of

oligomycin (1µg/ml), FCCP (450 nM), antimycin A (2.5µM), and rotenone (500 nM), and 2-DG (25mM). (A) ECAR measurements over time for each treatment group.

Data depicts one representative experiment. Pooled data (n = 8) depicts the calculated mean (± SEM) (B) basal glycolytic rate, (C) max glycolytic rate and (D)

glycolytic reserve for each treatment group. (E) OCR measurements over time for each treatment group. Data depicts one representative experiment. Pooled data (n

= 6) depicts the calculated mean (± SEM) (F) basal respiratory rate, (G) max respiratory rate, and (H) respiratory reserve for each treatment group. Statistical

significance was determined by repeated measures one-way ANOVA with Dunnett’s multiple comparisons post hoc test to compare treatment groups against the

control group (***p < 0.001, **p < 0.01, *p < 0.05).
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Carnosol and Curcumin Inhibit mTOR

Activity and Upregulate HO-1 Expression in

Human DC via Activation of AMPK
Previous work from our laboratory has demonstrated that
carnosol and curcumin exert extensive immunomodulatory and
anti-inflammatory effects in human DC as a result of their
upregulation of HO-1 expression (19). The cellular energy
sensor and master regulator of catabolic metabolism, AMPK,
has been described to suppress glycolytic metabolism and pro-
inflammatory responses in BMDC (10, 13). Furthermore, AMPK
has been implicated in the induction of HO-1 expression in
other cell types (26–28). Thus, it was hypothesized that signaling
via AMPK may regulate the inhibition of DC metabolism and
induction of HO-1 by the polyphenols carnosol and curcumin.
To determine whether carnosol or curcumin treatment results
in activation of AMPK in human DC, DC were treated
with carnosol, curcumin, or AICAR, an AMPK agonist, for
1 h. Phosphorylation, and therefore activation, of AMPK was
detected by Western blot. Treatment with AICAR, carnosol and
curcumin were all found to increase the activation of AMPK
compared to control DC (Figures 3A,B).

One of the primary mechanisms by which AMPK regulates
cellular metabolism is through inhibition of mTOR, the major
promoter of anabolic metabolism which is highly activated
in response to LPS stimulation (29–31). Having confirmed
that carnosol and curcumin can activate AMPK, it was next
investigated whether they might inhibit mTOR activity in LPS-
stimulated DC. The ribosomal protein S6 is phosphorylated
downstream of mTOR activation and serves as a readout
of mTOR activity. DC were treated with compound C, a
pharmacological inhibitor of AMPK, for 1 h prior to incubation
with carnosol or curcumin for 1 h, followed by stimulation
with LPS for 1 h. The expression of phospho-S6 was detected
by Western blot. As expected, stimulation of human DC with
LPS resulted in a strong increase in phospho-S6 expression,
which was attenuated in DC treated with either carnosol or
curcumin. However, the reduction of phospho-S6 expression
by carnosol and curcumin was reversed with the addition of
compound C (Figure 3C).

Although AMPK signaling has been reported to regulate HO-
1 expression in other cell types, there have been no reports
of AMPK-dependent upregulation of HO-1 in DC. Therefore,
to determine whether AMPK activation can upregulate HO-
1 expression in human DC, DC were treated with increasing
concentrations of AICAR for 24 h, after which the expression
of HO-1 was detected by Western blot. A dose-dependent
increase of HO-1 expression was observed in AICAR-treated
DC, with the greatest upregulation observed at 0.5mM and
1mM (Figure 3D). Following this, the contribution of AMPK
to the upregulation of HO-1 by carnosol and curcumin was
investigated. DC were treated with compound C for 1 h prior to
treatment with carnosol or curcumin. After 24 h, the expression
of HO-1 was detected by Western blot. As previously observed
(19), carnosol and curcumin increased the expression of HO-1
by DC, however, this increase was diminished in the presence of
compound C (Figure 3E).

Inhibition of AMPK Attenuates the

Reduction of DC Maturation by Carnosol

and Curcumin
HO-1 is a known promoter of tolerogenic DC, as it is highly
expressed in immature DC and limits their maturation in
response to pro-inflammatory stimuli (21–23). Upregulation of
HO-1 by carnosol and curcumin was previously observed to
limit the maturation of human DC stimulated with LPS (19).
As inhibition of AMPK via compound C was found to attenuate
the induction of HO-1 by both carnosol and curcumin, it was
next investigated whether AMPK inhibition could also reverse
the effects of these polyphenols on DC maturation. Human
DC were treated with compound C for 1 h before addition
of either carnosol or curcumin for a further 6 h (to allow
for the upregulation of HO-1 gene transcription and protein
translation) prior to stimulation with LPS. After 24 h, expression
of the maturation markers CD40 and CD83, and co-stimulatory
molecules CD80 and CD86 was measured by flow cytometry.
Consistent with previous observations (19), carnosol treatment
significantly reduced expression of CD83 and CD86 by LPS-
stimulated DC, with a trend toward reduced CD40 also observed.
However, this effect was attenuated in the presence of compound
C (Figures 4A,C). Similarly, curcumin treatment significantly
reduced the expression of CD40 and CD86 in LPS stimulated
DC, with a trend toward reduced CD83 also observed. Again,
this inhibition of surface marker expression by curcumin was
reversed with the addition of compound C (Figures 4B,D).
Treatment of LPS-stimulated DC with compound C alone did
not increase the expression of DC surface markers.

In addition to increased expression of maturation and
co-stimulatory markers, DC lose their capacity to take
up/phagocytose antigens upon maturation as their role switches
from tissue surveillance to antigen presentation (32). We have
previously reported that treatment of human DC with carnosol
or curcumin can maintain the capacity of DC to take up and
process antigens after stimulation with LPS (19). Following the
observation that inhibition of AMPK signaling via compound C
reversed the effects of carnosol and curcumin on the phenotypic
maturation of DC, it was next determined whether their effects
on functional DC maturation would also be attenuated. DC were
treated with compound C, carnosol or curcumin, and stimulated
with LPS as before. After 24 h, DCwere incubated with the model
antigen DQ-Ovalbumin (DQ-Ova) for 20min, and analyzed
for antigen uptake by flow cytometry. As expected, stimulation
of DC with LPS dramatically reduced their capacity to uptake
antigen compared to immature DC. Furthermore, both carnosol
and curcumin treatment maintained the phagocytic capacity of
LPS-stimulated DC similar to that of immature DC (Figure 5A),
as was observed previously (19). However, addition of compound
C to carnosol- and curcumin-treated DC significantly abrogated
this effect (Figures 5B,C). Treatment of DC with compound C
alone did not significantly alter their antigen uptake capacity
following LPS stimulation. Taken together, these results confirm
that the immunomodulatory effects of carnosol and curcumin on
both phenotypic and functional DC maturation are dependent
on their activation of AMPK.

Frontiers in Immunology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 345137

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Campbell et al. Polyphenols Regulate Dendritic Cell Metabolism

FIGURE 3 | Carnosol and curcumin inhibit mTOR activity and upregulate HO-1 expression in human DC via activation of AMPK. (A) Primary human DC were

incubated with AICAR (1mM), carnosol (10µM), curcumin (10µM), or a vehicle control for 1 h. Activation of AMPK was measured by Western blot. (B) Pooled data

(n = 7) depicting densitometric analysis of phospho-AMPK expression relative to the loading control. (C) Primary human DC were incubated with compound C (5µM)

for 1 h prior to treatment with carnosol (10µM) or curcumin (10µM) for 1 h, followed by stimulation with LPS (100 ng/ml) for 1 h. Expression of phospho-S6 was

determined by Western blot. (D) Primary human DC were incubated with AICAR (125–1,000µM) for 24 h. Expression of HO-1 was detected by Western blot.

(E) Primary human DC were incubated with compound C (5µM) for 1 h prior to treatment with carnosol (10µM) or curcumin (10µM), or a vehicle control for 24 h.

Expression of HO-1 was detected by Western blot. All blots depict an individual donor and are representative of 3–7 independent experiments. Blots shown are

derived from the same gel(s); membranes were first probed for the protein of interest and then re-probed for β-actin as a loading control. Full-length blots are

presented in Supplementary Figures 1, 2. Statistical significance was determined by one-way ANOVA with Dunnett’s multiple comparisons post hoc test to

compare treatment groups against the control group (*p < 0.05).

DISCUSSION

Supplementation with immunonutrients such as polyphenols
represents a novel strategy to modulate the immune response
through dietary intervention. However, although there are a

number of candidate immunonutrients/polyphenols with anti-
inflammatory potential, their therapeutic use is hindered by a

lack of understanding of their mechanism of action, particularly
in primary human immune cells. Cellular metabolism has
emerged as a major modulator of immune cell function, yet

there has been limited study into the effects of polyphenols
on immunometabolism. Here, we have investigated the activity
of two plant-derived polyphenols, carnosol and curcumin, on
the metabolism and downstream immune function of primary
human DC. We demonstrate that the metabolic reprogramming
which occurs in human DC upon LPS stimulation can be
modulated by both carnosol and curcumin. We also demonstrate
that these polyphenols regulate metabolic signaling through

activation of AMPK and an associated inhibition of mTOR
activity. Furthermore, we describe a novel relationship between
AMPK signaling and induction of the immunomodulatory
enzyme HO-1 by carnosol and curcumin. Together, this data
demonstrates that regulation of metabolic signaling and function
by naturally-derived polyphenols mediates their ability to
promote tolerogenic DC.

While a number of studies have investigated metabolic
reprogramming in activated murine DC, studies assessing
humanDCmetabolism are comparatively scarce. LPS-stimulated
BMDC have previously been observed to strongly upregulate
aerobic glycolysis, and simultaneously downregulate oxidative
phosphorylation via the action of iNOS-derived NO (10–12,
14). The results presented here demonstrate that human DC
stimulated with LPS upregulate both glycolysis and oxidative
phosphorylation within hours of activation. Furthermore, a
transient increase in the glycolytic reserve and spare respiratory
capacity (SRC) of human DC was observed within 6 h post-LPS
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FIGURE 4 | Inhibition of AMPK attenuates reduction of DC maturation markers by carnosol and curcumin. Primary human DC (n = 7) were incubated with or without

compound C (5µM) for 1 h prior to treatment with carnosol (10µM), curcumin (10µM), or a vehicle control for 6 h. DC were then stimulated with LPS (100 ng/ml) and

expression of maturation markers CD40, CD80, CD83, and CD86 was determined after 24 h by flow cytometry. Histograms depict expression of maturation markers

in DC treated with (A) carnosol or (B) curcumin, with or without compound C, compared to controls from one representative experiment. Pooled data (n = 7) depicts

expression of CD40, CD80, CD83, and CD86 in DC treated with (C) carnosol or (D) curcumin, with or without compound C. Results shown are mean (± SEM) of the

measured Mean Fluorescence Intensities (MFI), expressed as percentages of the vehicle control. Statistical significance was determined by repeated measures

one-way ANOVA, with Sidak’s multiple comparisons post hoc test to compare pre-selected group pairs (***p < 0.001, *p < 0.05).

stimulation, which was absent at 24 h post-LPS. Therefore, it
can be ascertained that while human DC also display increased
glycolytic metabolism after activation, unlike BMDC, they also
upregulate oxidative phosphorylation. This disparity between
murine and human DC is likely a result of their differing
expression of iNOS, as human monocyte-derived DC do not
readily express iNOS; however, some evidence suggests that
certain human DC subsets can express iNOS in vivo, therefore
the metabolic profile of these DC may differ from what is
observed in vitro (17). Interestingly, a recent study by Basit et al.
described differing metabolic programs employed by human DC
subsets in response to stimulation with pRNA; plasmacytoid
DC displayed an increase in oxidative phosphorylation whereas
CD1c+ myeloid DC downregulated oxidative phosphorylation
(33). Thus, it is important to consider that differences in the
metabolism of DC may exist in vivo vs. in vitro, between
DC subsets, or due to the type of stimulus employed.
Further study of human DC under different conditions
is required to delineate the impact of these variables on
DC immunometabolism.

Consistent with the results presented here, Malinarich et al.
have reported that monocyte-derived human DC matured
with LPS are more glycolytic than immature DC, and do
not downregulate oxidative phosphorylation (18). However,

they also observed a reduced glycolytic reserve and SRC
in mature compared to immature DC; a finding which, in
fact, agrees with these results, as the metabolism of DC
was assessed 24 h after maturation with LPS, by which time
the increased glycolytic reserve and SRC observed in this
study was absent. Interestingly, Everts et al. also observed
an increase in the SRC of BMDC stimulated with LPS for
1 h, which was mediated by enhanced glycolytic flux into
the Kreb’s cycle (12). This increased flow of pyruvate into
the Kreb’s cycle was found to produce citrate necessary for
de novo fatty acid synthesis in the maturing DC, providing
lipids required to expand the endoplasmic reticulum and Golgi
membranes in anticipation of increased protein production
(12). Therefore, the transient increase in the glycolytic reserve
and SRC of LPS-stimulated DC observed in this study may
represent an early adaption of maturing DC to their new
immunogenic functions, which is downregulated once adequate
cellular remodeling has taken place. Meanwhile, the mature DC
continues to display higher basal rates of glycolysis and oxidative
phosphorylation to meet its increased energy demands. Thus,
this study expands the current understanding of human DC
metabolism, and also underscores the importance of accounting
for temporal changes when analyzing the metabolism of
immune cells.
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FIGURE 5 | Inhibition of AMPK attenuates the increased phagocytic capacity of LPS-stimulated DC treated with carnosol or curcumin. Primary human DC (n = 7)

were incubated with or without compound C (5µM) for 1 h, then treated with carnosol (10µM), curcumin (10µM) or a vehicle control for 6 h prior to stimulation with

LPS (100 ng/ml) for 24 h. DC were then incubated with DQ-Ovalbumin (DQ-Ova; 500 ng/ml) for 20min prior to analysis by flow cytometry. (A) Representative dot plots

depicting DQ-Ova uptake by DC treated with carnosol, curcumin, and compound C from one representative experiment. Pooled data (n = 7) depicts percentage

DQ-Ova uptake of DC treated with (B) carnosol or (C) curcumin, with or without compound C. Results shown are mean (± SEM) percentages of DQ-Ova uptake in

control-, carnosol- and curcumin-treated DC, with or without compound C. Statistical significance was determined by repeated measures one-way ANOVA, with

Tukey’s multiple comparisons post hoc test to compare means of all groups (**p < 0.01, *p < 0.05).

The results of this study also further support our previous
work which described the anti-inflammatory properties of the
polyphenols, carnosol and curcumin, in human DC (19). The
upregulation of glycolysis by BMDC in response to LPS has been
demonstrated to promote their maturation, cytokine production
and activation of T cells (10–12). Interestingly, DC treated with
carnosol or curcumin displayed a reduced basal rate of glycolysis,
and failed to upregulate their glycolytic reserve after 6 h of LPS
stimulation. This reduced glycolytic flux was also manifest in
the mitochondrial activity of carnosol- and curcumin-treated
DC, as both polyphenols inhibited the increased SRC seen in
response to LPS. Tolerogenic human DC have been reported
to possess a greater capacity for oxidative phosphorylation and
fatty acid oxidation, and are less glycolytic than mature DC (18).
Therefore, it is possible that the anti-inflammatory effects of
carnosol and curcumin in human DC are at least partly mediated
by their inhibition of glycolysis, resulting in a diminished
glycolytic reserve and SRC and failure to meet the bio-energetic
requirements of maturation.

Both carnosol and curcumin have previously been reported
to activate AMPK in skeletal muscle and cancer cell lines
(34–37). In this study, carnosol and curcumin were found
to activate AMPK in human DC. Furthermore, polyphenol-
induced activation of AMPK resulted in the inhibition of
mTOR activation in LPS-stimulated DC. We also demonstrate
that AMPK activation by carnosol and curcumin is required
to mediate their immunomodulatory effects in human DC
given that pharmacological inhibition of AMPK can reverse the
observed reduction of DC maturation by these polyphenols.
In line with our study, Krawczyk et al. previously reported
that AMPK signaling antagonizes the maturation of BMDC
and inhibits their upregulation of glycolysis in response to LPS
(10), while Carroll et al. found that AMPK-deficient BMDC
display enhanced maturation and pro-inflammatory functions
(13). Therefore, the activation of AMPK/inhibition of mTOR
by carnosol and curcumin likely explains their regulation of
DC metabolism and immune cell function observed in this
study. Signaling via AMPK has previously been implicated in
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FIGURE 6 | Proposed model of AMPK-dependent modulation of human DC

metabolism and immune function by carnosol and curcumin. Carnosol and

curcumin are polyphenols which have been shown to inhibit components of

the ETC, resulting in reduced ATP production and elevated AMP levels. AMP

activates AMPK, which results in downstream activation of Nrf2. Nrf2

translocates to the nucleus and induces transcription of HO-1. HO-1 and its

products can then act as antioxidants to neutralize ROS produced by

mitochondrial metabolism, and downregulate DC maturation and

pro-inflammatory functions. Additionally, AMPK or HO-1 may mediate the

reduced rate of glycolysis and SRC observed in carnosol- and

curcumin-treated DC (red dashed arrows).

the upregulation of HO-1 by certain drugs (26, 27, 38), but
there have been no such reports in human immune cells. Here,
AMPK activation was found to upregulate expression of HO-1 in
human DC, while inhibition of AMPK attenuated the induction
of HO-1 by carnosol and curcumin. This study is therefore the
first to report an association between AMPK signaling and HO-
1 expression in human DC, and that the upregulation of HO-
1 by carnosol and curcumin is at least partially dependent on
their ability to activate AMPK. Indeed, a number of studies
have identified cross-talk between AMPK and Nrf2, the major
transcription factor in control of HO-1 expression (26, 38–
40), hence it will be of interest to further explore the AMPK-
Nrf2-HO-1 axis in the context of polyphenol-mediated immune
modulation. Interestingly, a number of xenobiotics, including
various polyphenols, have been reported to activate AMPK via
an increase in the AMP:ATP ratio; this is achieved by inhibition
of the mitochondrial electron transport chain complexes (41).
Curcumin, in particular, has been shown to inhibit ATP synthase
in mitochondrial preparations, thereby limiting ATP production
and increasing the ratio of AMP to ATP (42). Given that a
number of polyphenols also appear to inhibit ATP synthase or
complex I (24, 43), it is likely that carnosol acts in a similar
fashion. Therefore, elevation of AMP levels represents a probable

mechanism by which carnosol and curcumin activate AMPK in
human DC, however, further research is required to confirm this.

In conclusion, our data describes the metabolic changes
arising from the activation of human DC, and characterizes
a hitherto-unidentified role for the HO-1 system in
immunometabolism. The data presented here supports a model
whereby activation of AMPK by carnosol and curcumin leads
to the upregulation of HO-1, which mediates the downstream
immunomodulatory activity of these polyphenols in human
DC (Figure 6). These results are also suggestive that the anti-
inflammatory phenotype characteristic of immune cells with
higher catabolic metabolism and AMPK signaling may arise
from increased expression of HO-1, however future studies in
HO-1 deficient cells are required to fully validate this hypothesis.
Although our study supports the use of the polyphenols carnosol
and curcumin as potential immunonutrient supplements,
translation of these results to a clinical setting requires careful
consideration regarding drug formulation and administration.
One of the caveats associated with these polyphenols is their
poor solubility in aqueous solutions, which may limit their

bioavailability by certain routes of administration. Additionally,
polyphenols have been described to undergo metabolic
alterations during digestion via the intestinal microbiota, which
could alter their metabolic and immunological properties
as described here (44–46). Efforts made to improve the oral
bioavailability of polyphenols such as curcumin, or to utilize
alternative routes of administration, have been met with success
in pre-clinical studies and clinical trials (47–50). It is hoped that
future research can determine whether these polyphenols display
similar effects on DC immunometabolism and function in an in
vivo setting. Research into the use of polyphenols as clinically
relevant immunonutrient supplements has expanded greatly
over the last number of years and our data highlighting specific
effects on key cells relevant to inflammatory and autoimmune
disease provides further evidence attesting to their use as
potential immune modulating compounds.
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The intestine is the largest immune organ in the body, provides the first line of defense

against pathogens, and prevents excessive immune reactions to harmless or beneficial

non-self-materials, such as food and intestinal bacteria. Allergic and inflammatory

diseases in the intestine occur as a result of dysregulation of immunological homeostasis

mediated by intestinal immunity. Several lines of evidence suggest that gut environmental

factors, including nutrition and intestinal bacteria, play important roles in controlling

host immune responses and maintaining homeostasis. Among nutritional factors, ω3

and ω6 essential polyunsaturated fatty acids (PUFAs) profoundly influence the host

immune system. Recent advances in lipidomics technology have led to the identification

of lipid mediators derived from ω3- and ω6-PUFAs. In particular, lipid metabolites

from ω3-PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid) have recently

been shown to exert anti-allergic and anti-inflammatory responses; these metabolites

include resolvins, protectins, and maresins. Furthermore, a new class of anti-allergic

and anti-inflammatory lipid metabolites of 17,18-epoxyeicosatetraenoic acid has recently

been identified in the control of allergic and inflammatory diseases in the gut and skin.

Although these lipid metabolites were found to be endogenously generated in the

host, accumulating evidence indicates that intestinal bacteria also participate in lipid

metabolism and thus generate bioactive unique lipid mediators. In this review, we discuss

the production machinery of lipid metabolites in the host and intestinal bacteria and the

roles of these metabolites in the regulation of host immunity.

Keywords: lipid metabolites, dietary oil, intestinal immunity, inflammation, allergy, intestinal bacteria

INTRODUCTION

Lipid composition in organisms differs among species, in accordance with the expression levels of
metabolic enzymes and dietary habits.Marine phytoplankton and seaweeds produce a large amount
of the ω3-polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) (1). Although fish do not generate EPA and DHA per se, they accumulate EPA
and DHA by eating phytoplankton (1). In plants, linseed and perilla contain large amounts of
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α-linolenic acid, a precursor of EPA and DHA. In contrast,
soybean oil and sesame oil contain copious quantities of the ω6-
PUFA linoleic acid. The difference in the fatty acid composition
of plants depends on the expression levels and activities of
metabolic enzymes such as 112-desaturase and 115-desaturase,
which are involved in the generation of linoleic acid and α-
linolenic acid, respectively (2, 3). Because mammals do not
have either 112 or 115-desaturase, ω3- and ω6-PUFAs are
categorized as essential fatty acids that must be obtained from the
diet (3). Therefore, the balance of ω3 and ω6 lipids in the body
largely depends on the quality of the dietary lipid consumed.

The beneficial effect of dietary ω3-PUFAs on human health
was first reported in an epidemiological study in 1978 in which
Greenland Eskimos, who consume high ω3-PUFA diets that
include fish, were found to have a lower mortality from coronary
heart disease than Danes and Americans, who eat much less ω3-
PUFAs (4). Since then, accumulating evidence indicates that EPA
and DHA have beneficial effects on the inhibition of various types
of inflammatory and allergic diseases, including cardiovascular
disease, Alzheimer’s disease, rheumatoid arthritis, inflammatory
bowel disease, atopic dermatitis, asthma, and food allergy
(5–13). Recent developments in analytical technology, including
liquid chromatography (LC) and mass spectrometry (MS), have
enabled us to identify EPA- and DHA-derived pro-resolving
lipid mediators (SPMs), including resolvins (Rvs), protectins
(PDs), maresins (MaRs), and 17,18-epoxyeicosatetraenoic acid
(17,18-EpETE) for inhibition of inflammatory and allergic
diseases (7, 14).

Dietary lipids are metabolized not only by mammalian
enzymes but also by bacterial enzymes. Microorganisms can
generate unique lipid metabolites such as conjugated linoleic
acids, hydroxy fatty acids, and oxo fatty acids. These bacteria-
produced lipid metabolites show biological activity in the context
of host health and diseases (15, 16). Here, we review our current
understanding of ω3- and ω6-PUFA-derived lipid mediators in
the control of inflammatory and allergic diseases.

ω6 FATTY ACID METABOLITES HAVE
OPPOSING ROLES IN
PRO-AND ANTI-INFLAMMATION

Dietary lipids are metabolized in the body to lipid mediators,
which regulate host immune systems. Arachidonic acid (AA) is

Abbreviations: 12-HHT, 12-hydroxy-heptadecatrienoic acid; 14,15-EpETE,

14,15-epoxyeicosatetraenoic acid; 17,18-EpETE, 17,18-epoxyeicosatetraenoic

acid; 17,18-diHETE, 17,18-dihydroxy-eicosatetraenoic acid; AA, arachidonic

acid; CHS, contact hypersensitivity; CLA, conjugated linoleic acid; COX,

cyclooxygenase; CRTH2, chemoattractant receptor-homologous molecule

expressed on Th2 cells; CYP, cytochrome P450; DC, dendritic cell; DHA,

docosahexaenoic acid; DSS, dextran sodium sulfate; EPA, eicosapentaenoic acid;

GPR, G-protein-coupled receptor; HYA, 10-hydroxy-cis-12-octadecenoic acid;

HYB, 10-hydroxy-octadecanoic acid; HYC, 10-hydroxy-trans-11-octadecenoic

acid; IL, interleukin; KetoA, 10-oxo-cis-12-octadecenoic acid; KetoB, 10-

oxo-octadecanoic acid; KetoC, 10-oxo-trans-11-octadecenoic acid; LC, liquid

chromatography; LOX, lipoxygenase; LT, leukotriene; MaR, maresin; MCRA,

myosin cross-reactive antigen; MS, mass spectrometry; NF, nuclear factor; OVA,

ovalbumin; PD, protectin; PG, prostaglandin; PPAR, peroxisome proliferator-

activated receptor; PUFA, polyunsaturated fatty acid; Rv, resolvin; SPM, specialized

pro-resolving lipid mediator; TNF, tumor necrosis factor; TX, thromboxane.

a metabolite of linoleic acid, and functions as a direct precursor
of bioactive lipid mediators, which are known as eicosanoids.
In addition to its biosynthesis in the body from linoleic acid,
AA can be obtained from dietary sources, such as meat and
eggs. AA is metabolized by cyclooxygenase (COX), lipoxygenase
(LOX), and cytochrome P450 (CYP), and then converted into
lipid mediators, including prostaglandins (PGs), leukotrienes
(LTs), thromboxanes (TXs), and lipoxins (LXs) (Figure 1) (17).
These AA-derived lipid meditators have both pro- and anti-
inflammatory effects in the intestine.

AA is converted into LTB4 by LOX activity. The LTB4-
BLT1 axis plays a key role in the development of inflammatory
diseases including inflammatory bowel disease by stimulating
the recruitment of inflammatory cells and the production
of pro-inflammatory cytokines (18–20). LTB4 also activates
another receptor BLT2 which is a high affinity receptor for
12-hydroxy-heptadecatrienoic acid (12-HHT). In contrast to
pro-inflammatory role of BLT1, BLT2-deficient mice show
transepidermal water loss, suggesting its anti-inflammatory role
in the skin (21). Indeed, BLT2-mediated pathway induced
the expression of claudin-4 for enhancement of epithelial
barrier (21).

AA is converted into PGs by COX activity, which generate
PGD2 and PGE2 as the representative lipid mediators. The
PGD2-chemoattractant receptor-homologous molecule
expressed on Th2 cells (CRTH2) pathway induces dextran
sodium sulfate (DSS)- and trinitrobenzene sulfonic acid (TNBS)-
induced colitis (22, 23). Eosinophil infiltration into colon is
inhibited by CRTH2 antagonist treatment in TNBS-induced
colitis (23). In contrast to pro-inflammatory properties, the
PGD2-DP axis reduces granulocyte infiltration into the colonic
mucosa in the mouse model of TNBS-induced colitis and
colitis-associated colorectal cancer (24, 25) These opposing roles
of CRTH2 and DP in chemotaxis are explained by different
usage of G proteins. CRTH2 is coupled with Gαi while DP is
coupled with Gαs, which induces decreased and increased in
cAMP levels, respectively (26). Consistent with these findings
when PGD2 acted on neutrophils CRTH2 pathway, it induced
neutrophil migration to the intestinal lamina propria in the
DSS-induced colitis model (22).

PGE2 stimulates four distinct types of receptors EP1 to
EP4. The PGE2-EP2 axis in neutrophils and tumor-associated
fibroblasts promotes colon tumorigenesis by inducing expression
of inflammation- and growth-related genes, including tumor
necrosis factor (TNF)-α, interleukin (IL)-6, and Wnt5A (27).
In contrast to EP2-mediated carcinogenic effects, EP3-mediated
signals show anti-carcinogenic effects, which are consistent with
different types of G protein pathways; EP2 activates Gαs, while
EP3 activates Gαi (27).

Therefore, it is suggested that the opposing roles in pro-
and anti-inflammation of ω6-PUFAs derived lipid mediators are
determined by target cell types and receptor types.

In addition to these factors, cellular source of PGD2 affects
in its activity in pro- and anti-inflammation in croton oil-
induced skin inflammation model (28). In the initial phase of
the dermatitis when few inflammatory cells exist in the skin,
endothelial cells show highest COX-2 activity and produce
PGD2, which leads to DP activation on endothelial cells,

Frontiers in Nutrition | www.frontiersin.org 2 April 2019 | Volume 6 | Article 36145

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Saika et al. Dietary Lipid Metabolites in Health and Diseases

FIGURE 1 | Lipid mediators derived from AA, EPA, and DHA. Various kinds of lipid mediators are produced from ω6- and ω3-PUFAs. AA, EPA, and DHA are

converted to bioactive lipid mediators by the enzymatic activities of COX, LOX, and CYP. Lipid mediators exert their biological effects through binding to

G-protein-coupled receptors. AA-derived lipid mediators have pro- and anti-inflammatory activities, whereas EPA- and DHA-derived lipid mediators exert

anti-inflammatory or pro-resolution activities or both.

and inhibits vascular leakage. On the other hand, in the
late phase of the dermatitis, many types of hematopoietic
inflammatory cells produce PGD2, which stimulate CRTH2 on
inflammatory cells for infiltration to the inflamed skin, and
exacerbates skin inflammation (28, 29). These findings suggest
that stage of inflammatory process is a determinant of the
effects of AA-derived metabolites through distinct site of the
mediator production.

DIETARY ω3-PUFAS INHIBIT THE
DEVELOPMENT OF ALLERGIC DISEASE

We and others have shown the anti-inflammatory and anti-
allergic effects of dietary ω3-PUFAs (4, 7, 8, 12, 13, 30–34).

Fish oil is a representative ω3-PUFA-rich dietary oil which
contains plenty amount of EPA and DHA. Dietary fish oil
ameliorated asthma by decreasing eosinophil infiltration, mucus
production, and peribronchiolar fibrosis, which was associated
with inhibition of cytokine production by downregulation of

nuclear factor (NF)-κB and GATA-3 (30). These anti-allergic
effects may be caused by decreased amount of ω6-PUFA-derived
lipid mediators such as PGD2, LTB4, and LTE4 which exacerbate
airway inflammation and increasing ω3-PUFA-derived lipid
mediators, for example, RvD1 is reported to decrease allergic
airway responses (6, 35, 36). Further, fish oil-fed mice reduced
acute allergic skin response in food allergy model sensitized by
peanut and whey by reducing mucosal mast cell protease-1 and
antigen specific IgE in serum (31).

Linseed oil contains large amount of α-linolenic acid which

is converted into EPA and DHA in the body. One study

reported that linseed oil-fed mice alleviated pollen-induced

allergic conjunctivitis by decreasing the production of ω6-

PUFA-derived pro-inflammatory lipid mediators, and reducing
eosinophil infiltration into the conjunctiva (13). We also found

that linseed oil-fed mice reduced allergic diarrhea in ovalbumin
(OVA)-induced food allergy model (7). In this model, allergic
diarrhea occurs as a consequence of a dominant Th2-type
environment and the presence of allergen-specific serum IgE,
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which induces mast cell degranulation in the gut. We found
that in linseed oil-fed mice, the Th1–Th2 balance, allergen-
specific IgE level, and mast cell numbers in the gut did not
change compared with those in soybean oil-fed mice in the
OVA-induced food allergy model. However, we found that mast
cell degranulation was profoundly inhibited in linseed oil-fed
mice (7).

We also assessed fatty acid composition in intestinal tissues
and found that the amounts of α-linolenic acid and its
metabolites of EPA and DHA were increased in linseed oil-fed
mice when compared with those in soybean oil-fed mice (7).
In contrast, linoleic acid and AA levels were higher in soybean
oil-fed mice than linseed oil-fed mice (7). Imaging MS analysis
revealed that increased amounts of α-linolenic acid EPA and
DHA were found in the lamina propria compartment where
large numbers of immune cells such as T cells, plasma cells,
and dendritic cells are present (7). These findings collectively
demonstrated that the composition of essential fatty acids in
dietary oils directly reflect the lipid composition in the gut, which,
in turn, may influence the host immune system.

ω3 FATTY ACID METABOLITES HAVE
ROLES IN ANTI-INFLAMMATION
AND PRO-RESOLUTION

EPA and DHA are representative ω3-PUFAs, which compete
with AA in the AA cascade. Therefore, it has long been
considered that the beneficial effects of dietary ω3-PUFAs
against inflammatory diseases stem from decreased amounts
of AA-derived eicosanoids. In addition, recent technology
developments in LC and MS have led to the identification of

trace and novel lipid mediators, including Rvs, PDs, and MaRs,
which are produced from EPA and DHA in the body (37). These
metabolites have anti-inflammatory or pro-resolution properties
(or both) and are known as SPMs (Figure 1) (37). Although the
receptors for SPMs have not been fully elucidated, some SPMs
have been shown to interact with specific receptors. For example,
Rvs derived from EPA and DHA use distinct types of receptors.
RvE1 interacts with BLT1 and ChemR23, while RvD1 interacts
with G-protein-coupled receptor (GPR) 32 and ALX (38, 39).

Examples of how SPMs affect intestinal inflammation include
their involvement in the RvE1–ChemR23 axis, which actively
inhibits colonic inflammation in the DSS-induced colitis model
by suppressing the TNF-α-induced nuclear translocation of NF-
κB and the expression of inflammatory cytokines, including
TNF-α and IL-12p40, from macrophages (40). Furthermore,
RvE1 and PD1 enhance the resolution of inflammation by
stimulating macrophage phagocytosis of apoptotic cells in
zymosan-induced peritonitis (41, 42). MaR1 is reported to
attenuate both DSS- and TNBS-induced colitis by inhibiting NF-
κB activation and inflammatory cytokine production (43). Thus,
multiple types of SPMs exert their anti-inflammatory properties
by using different mechanisms for the regulation of colitis.

17,18-EPOXYEICOSATETRAENOIC ACID IS
A NEW CLASS OF ANTI-ALLERGY
LIPID MEDIATOR

As mentioned above, dietary linseed oil inhibited the
development of food allergy with increased amounts of α-
linolenic acid, EPA and DHA in the intestine (7), which

FIGURE 2 | 17,18-EpETE is a new class of anti-allergy and anti-inflammatory lipid mediator. 17,18-EpETE is produced by CYP from EPA. 17,18-EpETE suppresses

contact hypersensitivity by reducing neutrophil infiltration into the skin by inhibiting Rac activation and migration through GPR40 signaling. 17,18-EpETE also indirectly

inhibits the development of food allergy by inhibiting mast cell degranulation. Given that mast cells do not express GPR40, the detailed mechanisms responsible for

this inhibition of mast cell degranulation remain unclear.
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prompted us to investigate mediator profiles by using LC-
MS/MS analysis. We found that 17,18-EpETE was the metabolite
whose levels increased the most in the gut of linseed oil-fed
mice (7). When 17,18-EpETE was intraperitoneally injected
into soybean oil-fed mice, development of allergic diarrhea
and degranulation of mast cells were inhibited, which was
similar to observation in linseed oil-fed mice (Figure 2) (7).
Consistent with its action at the late stage of the allergic response,
17,18-EpETE was effective as a prophylactic and a therapeutic
treatment for food allergy (7).

17,18-EPETE AMELIORATES CONTACT
HYPERSENSITIVITY THROUGH
GPR40-MEDIATED INHIBITION OF
NEUTROPHIL MIGRATION

To evaluate the biological role of 17,18-EpETE in the regulation
of other types of allergic inflammatory disease, we examined
the effect of 17,18-EpETE on the regulation of contact
hypersensitivity (CHS) in the hapten-induced CHS model.
We found that 17,18-EpETE showed both prophylactic and
therapeutic anti-inflammatory effects on CHS in mice and
cynomolgus macaques (44). 17,18-EpETE did not affect T
cell or dendritic cell functions, including inducible skin-
associated lymphoid tissue formation, but it did selectively
inhibit neutrophil infiltration into the skin (44). Indeed, 17,18-
EpETE reduced neutrophil mobility by inhibiting Rac-activation
and pseudopod formation in a GPR40-dependent fashion (44).
Consistent with this selective influence on neutrophils, GPR40
was highly expressed by neutrophils, but not T cells or other
leukocytes in the skin. It is worth noting that mast cells do
not express GPR40; so, given that mast cell degranulation was
inhibited by 17,18-EpETE treatment in the food allergy model
(7, 44), this finding suggests that 17,18-EpETE inhibits mast cell
degranulation indirectly (Figure 2). Of note, the activation of
GPR40 in intestinal epithelial cells has been reported to improve
intestinal barrier function by enhancing occludin expression
(45). Therefore, it is likely that the improvement in intestinal
barrier function induced by 17,18-EpETE via GPR40 in epithelial
cells led to decreased allergen penetration, which, in turn,
resulted in decreased mast cell degranulation and inhibited food
allergy development.

STRUCTURE-ACTIVITY RELATIONSHIPS
AMONG THE GPR40-DEPENDENT
ANTI-ALLERGIC AND
ANTI-INFLAMMATION EFFECTS
OF 17,18-EPETE

17,18-EpETE is further metabolized by soluble epoxide hydrolase
to 17,18-dihydroxy-eicosatetraenoic acid (17,18-diHETE).
However, 17,18-diHETE has little effect on the development
of food allergy, and 14,15-epoxyeicosatetraenoic acid (14,15-
EpETE), which has an epoxy structure at the ω6 position,
also lacks the ability to inhibit food allergy (7). In addition,

17,18-diHETE has little effect on the development of CHS
(44). Although 17,18-EpETE activates GPR40, 17,18-diHETE
does not activate GPR40, which is consistent with its lack of
anti-allergic and anti-inflammatory properties (7, 44). These
findings therefore suggest that the 17,18-epoxy ring structure
at the ω3 position in EPA is important for GPR40-mediated
anti-allergic and anti-inflammatory activity.

17,18-EpETE is synthesized from EPA through the enzymatic
activity of CYP and has two isomers, 17(S),18(R)-EpETE
and 17(R),18(S)-EpETE. Among the CYP subfamilies in
mice, five CYP isoforms (Cyp1a2, 2c50, 4a12a, 4a12b, and
4f18) are known to convert EPA into 17,18-EpETE (46).
Cyp1a2 displays high stereoselectivity for producing 17(R),18(S)-
EpETE, whereas Cyp4f18 displays stereoselectivity for producing
17(S),18(R)-EpETE (46). In contrast, Cyp2c50, Cyp4a12a, and
Cyp4a12b display less stereoselectivity and produce a mixture
of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE (46). 17(R),18(S)-
EpETE, but not 17(S),18(R)-EpETE, is a potent vasodilator
(47). Indeed, 17(R),18(S)-EpETE activates calcium-activated
potassium channels, which lead to relaxation of rat cerebral artery
vascular smooth muscle cells (47). Whether stereoselectivity
of 17,18-EpETE contributes to the anti-allergy and anti-
inflammatory effects of 17,18-EpETE have not been evaluated
in food allergy and CHS, because we used racemic compounds
in our studies (7, 44). The CYP isoform and polymorphisms
determine the metabolic properties of CYP and stereoselectivity.
Therefore, the anti-allergic and anti-inflammatory health benefits
derived from ω3-PUFA intake may be influenced by the
expression levels of the various types of CYP in the body.

CYP is also found in microorganisms. For example, it
has been reported that bacterial CYP (e.g., BM-3 derived
from Bacillus megateirum) metabolizes PUFAs and produces
hydroxy and epoxy fatty acids (48). Bacillus, Streptomyces,
Pseudomonas, andMycobacterium also have CYP (49–53). These
findings suggest that many types of microorganisms are involved
in lipid metabolism. In addition, other metabolic enzymes,
such as COX and LOX, are thought to be expressed by
some bacteria, including Pseudomonas aeruginosa, Shewanella
woodyi, Mytococcus fulrus, and Burkholderia thailandensis
(54, 55). Some microorganisms described above are present
in environment, suggesting that in addition to mammalian
expression of metabolic enzymes, various microorganisms may
be a determinant of the efficacy of ω3-PUFA in the context of the
regulation of inflammation.

BACTERIAL-CONJUGATED LINOLEIC
ACID HAS A ROLE
IN ANTI-INFLAMMATION

Intestinal bacteria have been shown to express unique
unsaturated fatty acid-metabolic enzymes and to produce
bioactive lipid mediators that are not generated by mammalian
cells (Figure 3). Ruminal bacteria including Butyrivibrio,
Lactobacillus, and Megasphaera can produce conjugated
linoleic acid (CLA), which is an isomer of linoleic acid that
has conjugated double bounds (56–58). It is known that CLA
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FIGURE 3 | Physiological functions of CLA and HYA. CLA and HYA are produced from linoleic acid by intestinal bacteria. c9,t11-CLA ameliorates insulin sensitivity

and prevents atherosclerosis, t10,c12-CLA deteriorates insulin sensitivity and promotes atherosclerosis, and t9,t11-CLA prevents atherosclerosis. HYA enhances

intestinal barrier function by increasing occludin expression and inhibiting intestinal inflammation in a GPR40-dependent manner. HYA inhibits atopic dermatitis by

increasing claudin-1 expression and enhancing skin barrier function. HYA also inhibits gastric Helicobacter infections by blocking the bacterial futalosine pathways.

has some isomers such as cis-9-trans-11-octadecenoic acid
(c9,t11-CLA), trans-10-cis-12-octadecenoic acid (t10,c12-
CLA) and trans-9-trans-11-octadecenoic acid (t9,t11-CLA).
These isomers have different activities for insulin sensitivity
and atherosclerosis.

For example, c9,t11-CLA shows beneficial effects on
insulin sensitivity by enhancing glucose uptake and
adipokine production such as leptin and adiponectin, and
on atherosclerosis by suppressing macrophage infiltration
and activation, and reducing plaque development through an
increase in expression of PPARγ, while t10,c12-CLA shows
adverse effects through a decrease in expression of PPARγ

(59–63). In addition, t10,c12-CLA reduces expression of
liver X receptor α (LXRα) which induces expression of ATP-
binding cassette (ABC) transporter A1, ABCG1, and sterol
regulatory element binding protein 1c which involved in reverse
cholesterol transport (64, 65). Therefore, t10,c12-CLA shows
pro-atherosclerosis effects (66–68). On the other hand, t9,t11-

CLA is effective for the treatment of atherosclerosis by activation

of LXRα (69). These results indicate that each isomers exert
different bioactivities through distinct transcriptional regulation

and activation of PPARγ and LXRα for the control of insulin

sensitivity and atherosclerosis.
Compared with chemical production, microbial fermentation

offers better ways to produce isomer-specific CLAs. The
CLA isomers are produced at different ratios, depending
on the type of bacteria. Lactobacillus strains (L. acidophilus,
L. plantarum, L. casei, L. reuteri, L. rhamnosus, and L.

pentosus), Bifidobacterium strains (B. dentium, B. breve, and
B. lactis), and Propionibacterium freudenreichii can convert
linoleic acid to c9,t11-CLA and t10,c12-CLA, and these
bacteria produce higher levels of c9,t11-CLA than of t10,c12-
CLA (15, 57, 70–72). Some Lactobacillus and Bifidobacterium
strains also produce t9,t11-CLA with c9,t11-CLA and/or
t10,c12-CLA (57). L. paracasei and B. bifidum produce
c9,t11-CLA stereoselectively, whereas Megasphaera eldsenii
produces t10,c12-CLA stereoselectively (71, 73). Given that
these CLAs have different biological activities which depend
on their 3D-structure, it is important to select appropriate
bacteria as a probiotics or producer for obtaining required
beneficial effects.

BACTERIAL PRODUCTION OF UNIQUE
HYDROXY AND OXO FATTY ACIDS AND
THEIR MULTIPLE BIOLOGICAL ACTIVITIES

L. plantarum, an intestinal bacteria, produces hydroxy fatty acids
(i.e., 10-hydroxy-cis-12-octadecenoic acid [HYA], 10-hydroxy-
trans-11-octadecenoic acid [HYC], 10-hydroxy-octadecanoic
acid [HYB]) and oxo fatty acids (10-oxo-cis-12-octadecenoic
acid [KetoA], 10-oxo-trans-11-octadecenoic acid [KetoC], 10-
oxo-octadecanoic acid [KetoB]) as intermediate products of
CLA production (16). Recently, these metabolic intermediates
have been shown to contribute to the regulation of host
health and diseases. HYA is the first metabolite produced
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from linoleic acid by L. plantarum, and it enhances intestinal
barrier function and suppresses the development of DSS-
induced colitis in mice in a GPR40-dependent manner (45).
Furthermore, HYA prevents Helicobacter infections by blocking
their futalosine pathways, which is an alternative menaquinone
biosynthetic pathway and an essential metabolic pathway
for the growth of Helicobacter. Moreover, HYA treatment
suppresses the formation of lymphoid follicles in the gastric
mucus layer after H. suis infection, and therefore HYA
treatment protects mice against the formation of gastric mucosa-
associated lymphoid tissue lymphoma induced by infection
with Helicobacter (74). HYA also ameliorates the pathological
scores of atopic dermatitis in NC/Nga mice by decreasing
plasma IgE levels and reducing mast cell infiltration into
the skin (75, 76). KetoA enhances adiponectin production
and glucose uptake in a proliferator-activated receptor γ

(PPARγ)-dependent manner, and is effective for the prevention
and amelioration of metabolic abnormalities associated with
obesity (77).

The production of these hydroxy and oxo fatty acids depends
on the unique bacterial enzymes CLA-HY (unsaturated fatty acid
hydratase), CLA-DH (hydroxy fatty acid dehydrogenase), CLA-
DC (isomerase), and CLA-ER (enone reductase) in L. plantarum
AKU1009a (16, 78). The hydroxy activity is found not only
in Lactobacillus but also in a broad spectrum of bacteria.
Oleate hydratase belongs to the FAD-dependent myosin cross-
reactive antigen (MCRA) protein family, which is found in gram-
positive and -negative bacteria; it catalyzes the conversion of
linoleic acid to HYA. For example, Lactobacillus, Bifidobacterium,
Streptococcus, and Stenotrophomonas bacteria are reported to
have MCRA, and indeed they have the ability to produce
HYA (79–82).

Together, these findings indicate that intestinal bacteria
metabolize dietary lipids and produce lipid metabolites
that can regulate host immune systems. Therefore, to
obtain beneficial lipid metabolites and regulate intestinal
inflammation, we need to consider not only host enzymes but
also enzymes produced by intestinal bacteria. In addition, we
must consider how dietary lipid intake causes changes in the
intestinal microbiota.

CONCLUSION

Recent technological developments in lipidomics research
initiated a new era of lipid biology by helping researchers
to identify novel lipid metabolites from ω3- and ω6-PUFAs,
which actively regulate the host immune system and play
important roles in the control of health and diseases.
Given that the production of lipid metabolites is influenced
by complex factors, including diet, intestinal bacteria,
and enzyme expression, combined studies on nutrition,
metabolomics, and the metagenomics of the microbiota,
as well as informatics, may provide powerful insights to
further our understanding of the lipid network in the host
immune system.
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Atherosclerosis is a chronic low-grade inflammatory disease that affects large and

medium-sized arteries and is considered to be amajor underlying cause of cardiovascular

disease (CVD). The high risk of mortality by atherosclerosis has led to the development

of new strategies for disease prevention and management, including immunonutrition.

Plant-based dietary patterns, functional foods, dietary supplements, and bioactive

compounds such as the Mediterranean Diet, berries, polyunsaturated fatty acids, ω-3

and ω-6, vitamins E, A, C, and D, coenzyme Q10, as well as phytochemicals including

isoflavones, stilbenes, and sterols have been associated with improvement in atheroma

plaque at an inflammatory level. However, many of these correlations have been obtained

in vitro and in experimental animals’ models. On one hand, the present review focuses

on the evidence obtained from epidemiological, dietary intervention and supplementation

studies in humans supporting the role of immunonutrient supplementation and its effect

on anti-inflammatory response in atherosclerotic disease. On the other hand, this review

also analyzes the possible molecular mechanisms underlying the protective action of

these supplements, which may lead a novel therapeutic approach to prevent or attenuate

diet-related disease, such as atherosclerosis.

Keywords: immunonutrition, atherosclerosis, cardiovascular disease, Mediterranean diet, functional foods,

dietary supplements, inflammation, bioactive compounds

INTRODUCTION

Globally, cardiovascular diseases (CVD) represent the most frequent cause of death worldwide.
It has been estimated that in 2013 17.3 million people died from this disease (1), representing
31.5% of the total deaths worldwide (2). Key factors related to maintaining cardiovascular health
are to not smoke, to perform physical activity, maintain a healthy body weight with a healthy diet,
and control blood lipid, blood pressure (BP) and glycemia levels to within normal values (3, 4).
In fact, adherence to these factors is correlated with lower cardiovascular mortality [relative risk
(RR), 0.25; 95% confidence interval (CI) 0.10–0.63] (3). In this respect, diet plays a key role. Good
cardiovascular health status is related to a balanced energy intake including whole-grain foods,
legumes, seafood and fish, and high content in fruits and vegetables and low intake of processed
food and red meat, sugar added foods or beverages and refined grains (4, 5).

Most CVDs are associated with the development of atherosclerosis (3), which is a chronic
systemic inflammatory disease that affects artery walls due to altered inflammatory response.
Cholesterol-rich lipoproteins with apolipoprotein B are susceptible to absorption and binding
to the arterial subendothelial matrix. In this matrix, lipoproteins are altered by oxidation,
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enzymatic and non-enzymatic cleavage, and aggregation,
producing pro-inflammatory particles and activating the
overlying endothelium. Thereafter, the recruitment of monocyte-
derived cells to the subendothelium activates immune response.
These cells transform into mononuclear phagocytes that engulf
normal and altered lipoproteins and transform into cholesterol
foam cells which remain in the plaque, take up lipids, and
engorge and stimulate disease progression by developing chronic
inflammatory response (6, 7).

Lifestyle modifications and medical treatment are the most
frequent approaches to prevent clinical manifestations of
cardiovascular diseases such as myocardial infarction, stroke
or renal failure (3). In this sense, plant-based dietary patterns,
functional foods, dietary supplements, and bioactive compounds
have been associated with improvement in atheroma plaque
development at an inflammatory level. However, many of these
correlations have been obtained in vitro and in experimental
animal models. Therefore, the present review focuses on the
evidence obtained from epidemiological, dietary intervention
and supplementation studies in humans supporting the role
of immunonutrient supplementation in atherosclerotic disease.
This review also analyzes the possible molecular mechanisms
underlying the protective action of these supplements, which
may lead to the development of novel therapeutic approaches to
prevent or attenuate diet-related disease such as atherosclerosis
(Figure 1). Relevant studies, systematic reviews and meta-
analysis were searched to obtain the reference lists. The
Medical Subject Headings search terms included: inflammation,
oxidative stress, inflammatory markers, IL-1, CRP, TNF-
α, IL-6, atherosclerosis, flavonols, stilbenes, coenzyme Q10,
vitamins, carotenoids, omega-3 fatty acids, omega-6 fatty
acids, resveratrol, catechins, epigallocatechin gallate, flavonoids,
flavonols, and phytosterols. We performed a search of the
MEDLINE, PUBMED, and Cochrane Library databases, and
reviewed the English language literature of humans with no
time restriction.

OMEGA-3

Among polyunsaturated fatty acids (PUFAs), the most important
classes are the omega-3 (ω-3) and omega-6 (ω-6) fatty acids
(FA). PUFAs present two or more double bonds between carbons
within the fatty acid chain. It is possible to distinguish several
different ω-3 FA: α-linolenic acid (ALA), eicosapentaenoic acid
(EPA), and docosahexaenoic acid (DHA) (8). The major ω-6 FA
are linoleic and arachidonic acid (AA).

Essential FA, ALA and linoleic acid, are obtained from the diet
(flaxseed, soybean, and canola oils) (9, 10). In the liver ALA is
converted into EPA and then DHA (10). Both EPA and DHA
can be directly obtained through diet (fish, fish oils, and krill
oils) or dietary supplements and are also found in ω-3 fortified
foods such as eggs, dairy products, pastas, cereals, breads and oils,
among others (11).

Many chronic diseases such as CVD and cancer seem to be
correlated with the ω-6/ω-3 ratio, although the optimal ratio has
yet to be defined (12, 13).

There is currently a large amount of scientific evidence
demonstrating the utility of marine-derived ω-3 FA supplements
in the prevention of CVD. However, large studies on ω-3
FA have shown confounding results, probably because of the
heterogeneous study designs (14, 15), the inclusion of mixed
populations with or without coronary artery disease (CAD)
(16, 17) and insufficient doses (<1,000mg) and duration (18)
of supplementation. Indeed, a recent meta-analysis of 10 studies
including 77,917 high-risk individuals (61.4% men with a mean
age of 64 years) with a mean follow-up of 4.4 years did not find
any significant association betweenω-3 FA (226–1,800mg of EPA
acid/day) and a reduction in any major vascular events or fatal
or nonfatal coronary heart disease (CHD) (19). The same results
were observed in another meta-analysis performed by Rizos et al.
(20). Still another meta-analysis provided insufficient evidence
about the effect of ω-3 FA supplements (EPA and DHA) on the
secondary prevention of CVD. The number of deaths by CVD
was small (0.91; 95% confidence interval [95% CI] 0.84–0.99),
and ω-3 FA did not reduce the risk of overall cardiovascular
events (0.99; 95% CI 0.89–1.09) (15). On the other hand, a
recent meta-analysis of 51 randomized controlled trials (RCTs)
including 3,000 participants, showed a strong reduction in
heart rate with ω-3 FA (DHA+EPA) supplementation. However,
changes in heart rate were only observed after administering
DHA alone but not after EPA alone (21).

In the last years, a great number of mechanisms have
been related to the anti-inflammatory actions of ω-3 FA in
atherosclerosis. Different mechanisms have been proposed in
an attempt to explain the cardioprotective effects of ω-3 FA.
On one hand, ω-3 FA may improve the lipid and lipoprotein
profile, BP and endothelial function, and down-regulate the
expression of leukocyte cells and the concentrations of various
pro-inflammatory biomarkers related to the development of
atherosclerosis such as chemokines, cytokines or soluble
adhesion molecules as well as markers related to plaque
stability such as metalloproteinases (MMP). On the other hand,
mechanisms improving oxidation, thrombosis or aggregation
platelet have been proposed (22–26). Thus, a recentmeta-analysis
including 45 RCTs and 2,674 individuals with type 2 diabetes
mellitus (T2DM) linked ω-3 FA supplementation (ranging from
0.40 to 18.00 g, with duration of supplementation of 2 to 104
weeks) with a significant reduction in plasma levels of tumor
necrosis factor-α (TNF-α, P = 0.045) and interleukin-6 (IL-
6, P = 0.026) as well as low-density lipoprotein cholesterol
(LDL-C), very low-density lipoprotein (VLDL), triglycerides
(TG), and glycated hemoglobin concentrations (HbA1c)(P ≤

0.044; all) (27). In addition, in another meta-analysis of 16
RCTs including 901 participants, endothelial function, measured
by flow-mediated dilation (FMD), significantly improved after
administering 0.45–4.5 g of ω-3 FA during 56 days (+2.30%,
P = 0.001) (28). A systematic review of 26 RCTs (29) on
ω-3 FA and inflammatory biomarkers in both healthy and
ill individuals (CVD and other chronic and acute diseases)
showed lower levels of inflammation [C-reactive protein (CRP),
IL-6, plasminogen activator inhibitor type 1 (PAI-1), TNF-α,
N-terminal pro b-type natriuretic peptide (NT-proBNP) and
endothelial activation (both in healthy subjects and in those
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FIGURE 1 | Potential protective effects of the different supplements on immune factors. CAT, catalase; CRP, C-reactive protein; d- ROMs, diacron-reactive oxygen

metabolites; FGF21, Fibroblast growth factor 21; Foxp3, forkhead box protein-3; GPx, glutathione peroxidase; 8-OHDG, hydroxydeoxyguanosine; IFN-γ , Interferon

gamma; IL-, interleukin; KTR, kynurenine-to-tryptophan ratio; LXA4, lipoxin A4; MDA, malondialdehyde; MCP-1, monocyte chemoattractant protein-1; MMP,

metalloproteinases; NF-κβ, nuclear transcription factor signaling; NT-pro-BNP, N-terminal pro b-type natriuretic peptide; oxLDL, oxidized low-density lipoprotein;

PAI-1, plasminogen activator inhibitor type 1; RORc, retinoid-related orphan receptor-c; sICAM-1, soluble intercellular adhesion molecule 1; SOD, superoxide

dismutase; sVCAM-1, soluble vascular cell adhesion molecule-1; TAC, total antioxidant capacity; T-bet, T helper 1 cell lineage commitment; TGF-β, transforming

growth factor-beta; TNF-α, tumor necrosis factor-alpha; WBC, white blood cell count.

with chronic and acute diseases). Among all the ω-3 FA studied
(different types and dosages), DHA showed the highest reduction
in cytokine-induced endothelial leukocyte adhesion molecules
(soluble intercellular adhesionmolecule 1 (sICAM-1) and soluble
vascular cell adhesion molecule-1 (sVCAM-1). In addition, a
meta-analysis of 18 RCTs reported that ω-3 FA supplementation
(0.272 to 6.6 g/d) may reduce plasma concentrations of sICAM-
1 in healthy subjects (−8.87; 95% CI: −15.20, −2.53; P = 0.006)
as well as in subjects with dyslipidemia (−15.31; 95% CI:−26.82,
−3.81; P= 0.009) (30).

Observational studies have shown that ω-3 FA
supplementation is associated with reduced markers of
atherothrombotic risk. The Multi-Analyte, Thrombogenic, and
Genetic Markers of Atherosclerosis study included 600 men
with CVD (aged 64.4 ± 10.1 year) (31). The authors compared
the use of fish oil supplementation in several subgroups: non
lipid-lowering therapy vs. lipid-lowering therapy. The results
showed that volunteers not receiving lipid-lowering therapy
had a lower VLDL, intermediate-density lipoprotein cholesterol

(IDLs), remnant lipoproteins, TG, LDL-C, oxidized low-density
lipoprotein (LDL)-β2 glycoprotein complex (AtherOx) levels,
collagen-induced platelet aggregation, thrombin-induced
platelet-fibrin clot strength, and shear elasticity (P < 0.03; all).

Several mechanisms have been proposed to explain the anti-
atherogenic effects of ω-3 FA on inhibiting atheroma plaque
development (Table 1). In an interventional study of 275 healthy
European subjects between 20 and 40 years of age, Paulo et al.
(32) randomized the participants into one of four dietary groups:
fish oil group (1,418mg of ω-3 FA /day), lean fish (272mg of ω-
3 FA/day) or fatty fish (3,003mg of ω-3 FA/day), and a control
group (sunflower oil capsules). After 8-weeks of intervention
sICAM-1 concentrations reduced by 5% in the lean fish group
in contrast to the fatty fish and fish oil diets, in which these
concentrations did not significantly change after intervention,
although the latter two groups both showed a significant increase
of 16.1% and 21.9%, respectively for sVCAM-1. In a randomized
study (33) a significant decrease was found in sP-selectin after
supplementation with 6.6 g of ω-3 FA, especially in men, while a
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significant reduction in sICAM-1 concentrations and an increase
in sVCAM-1 concentrations were observed in women after
administering 2.0 g and 6.6 g of ω-3 FA, respectively. Yusof
et al. (34) also observed a slight decrease in plasma sICAM-1
concentrations after administering 1.8 g of EPA plus 0.3 g DHA
daily for 8 weeks in 10 healthy middle-aged men.

On the other hand, there is a large amount of evidence
showing that ω-3 FA can reduce the concentrations of several
inflammatory markers related to atheroma development and
plaque stability. Tousoulis et al. (35) performed a randomized,
placebo-controlled, double-blind, cross-over study in 29 subjects
with metabolic syndrome (MetS) in which the participants were
supplemented with 2 g/ day of ω-3 FA for 12-weeks. The results
showed a significant reduction in the plasma concentrations
of IL-6 and a significant increase in PAI-1 levels after ω-3 FA
treatment. A large number of studies have also reported an
improvement in FMD as a measure of endothelial function after
ω-3 FA supplementation (121–124). In contrast, in a population
of 36 very high-risk participants with established atherosclerotic
cardiovascular disease (ASCVD) and T2DM, Siniarski et al. (36)
did not observe any significant changes in endothelial function
indices (FMD and nitroglycerin-mediated dilation, NMD) after
administering 2 g of ω-3 FA (1,000mg of DHA + 1,000mg of
EPA) during 3 months. Cawood et al. (37) showed that a higher
EPA content is associated with less inflammation, greater stability
plaque and less T cell infiltration, as well as a smaller number of
foam cells. Similar results were described by Thies et al. (38) in a
randomized controlled trial including patients awaiting carotid
endarterectomy. The participants were randomized to receive
fish oil (ω-3), sunflower oil (ω-6) or placebo capsules during a
median of 42 days before surgery. Those in the fish oil group
showed higher plaque stability with the presence of thinner
fibrous caps and fewer signs of inflammation, less lymphocyte
infiltration, and greater inhibition of macrophages compared
with the control and sunflower oil groups. In another study
Nozue et al. (125) showed that progression of atherosclerosis
was directly linked with an increase in the ω-6/ω-3 ratio. Thus,
Zhao et al. (39) investigated the effect of ω-3 FA on circulating
pro-inflammatory markers and NT-proBNP in volunteers with
heart failure. They found that after 3 months with ω-3 FA
treatment, plasma levels of TNF-α, IL-6, sICAM-1, and NT-
proBNP significantly decreased in the participants allocated to
the ω-3 FA intervention. Finally, Allaire et al. (40) compared,
the effects of EPA vs. DHA supplementation on inflammatory
markers and blood lipids in a population at high risk of CVD.
They concluded that compared to EPA, DHA has a greater
modulating effect, producing a larger reduction of CRP, IL-6,
TNF-α, and TG levels, with a higher increase of adiponectin
and high-density lipoprotein cholesterol (HDL-C) levels. In
other double-blind trial (41), 111 healthy elderly subjects were
randomly allocated to one of three dietary interventions: (1, 2)
daily consumption of EPA+DHA at different doses (1.8 or 0.4 g),
or (3) daily consumption of 4 g of high–oleic acid sunflower
oil. A high consumption of EPA + DHA led to a change in
the expression of 1,040 genes. In addition, the group receiving
1.8 g of EPA + DHA showed a significant reduction in the
expression of peripheral bloodmononuclear cells (PBMCs) genes

involved in inflammatory- and atherogenic-related pathways,
including eicosanoid synthesis, nuclear transcription factor
signaling (NF-κβ), scavenger receptor activity, adipogenesis, and
hypoxia signaling.

The heterogeneity of the results could be explained by various
factors such as insufficient dose (<1,000 mg/d), origin (lean fish,
fish oil, fatty fish, etc.), the type of supplementation (EPA, ω-
3 FA, DHA, EPA + DHA, etc.), whether ω-3 FA were given
alone or in combination with other bioactive compounds, and
thus, synergistic effects might explain some of effects observed.
In addition, the target population (healthy, MetS, ASCVD, CAD,
T2DM, etc.), sample size, the long follow-up period and high
adherence to study supplementation differs among the trials.
Therefore, ω-3 FA supplementation may be effective at an
earlier stage of atherosclerosis disease, while in a very high-risk
population with advanced atherosclerotic disease its effectiveness
may be limited. Taking this into account, the additional benefits
of ω-3 FA on endothelial function might have been reduced
by optimal treatment such as concomitant cardioprotective
therapies which the patients had already received.

OMEGA-6

There is evidence suggesting that a higher intake of ω-6 fats,
together with a lower intake of saturated fat may reduce
the incidence of CHD. On the other hand, a large body of
literature has suggested that a higher intake of ω-6 may promote
inflammation and contribute to the pathogenesis of many
diseases, including CVD, because AA promotes the synthesis of
a variety of pro-inflammatory eicosanoids (126). Therefore, a
reduction of tissue AA content (reducing linoleic intake) should
lead to a lower risk of CHD reduction since the production of
inflammatory molecules would also be reduced (127). However,
since dihomo-γ-linolenic acid (DGLA) can be metabolized into
prostaglandin E1 (PGE1), a potent anti-atherogenic compound,
it confers anti-atherogenic properties to ω-6 FA (128).

To date, there is not enough evidence related to the harm
or the benefit of ω-6 on CVD, and more concretely, on
atherosclerosis. In a recent systematic review (129) on the
effects of ω-6 FA on cardiovascular health, mortality, lipids, and
adiposity (19 RCTs including 6,461 participants followed for 1–8
years) found no evidence of effects of dose-response or duration
for any primary outcome (all-cause mortality, CVD mortality,
CHD events, CHD events, stroke or major adverse cardiac, and
cerebrovascular events). However, the authors observed that
participants with lower ω-6 FA intake at baseline seemed to
have greater protection, and an increased intake of ω-6 FA
may reduce the risk of myocardial infarction (MI) (RR 0.88,
95%CI 0.76 to 1.02). In addition, a meta-analysis (130) of 11
RCTs including 420 subjects showed that conjugated linoleic
acid (CLA) supplementation increased blood levels of CRP by
0.89 mg/L (95% CI: 0.11, 1.68; P = 0.025) and TNF-α levels
by 0.39 pg/mL (95% CI: 0.23, 0.55; P < 0.0001). Nonetheless,
another meta-analysis (131) concluded that CLA supplements
had a proinflammatory effect after observing an increase
in plasma CRP concentrations and significant reductions in
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serum adiponectin concentrations independently of the dosage
of CLA supplementation (0.63 mg/dL, 95% CI: 0.13, 1.13,
heterogeneity P = 0.026; I2 = 52.3%). In contrast, after
analyzing 15 RCTs, Johnson et al. (132) concluded that there
is insufficient evidence to show that a diet supplemented with
linoleic acid increases the concentrations of pro-inflammatory
markers [adiponectin, complement, CRP, E-selectins, fibrinogen,
interleukins, lipoprotein-associated phospholipase A2, lipoxins,
monocyte chemoattractant protein-1 (MCP-1), PAI-1, platelet-
derived growth factor-A, serum amyloid A protein (SAA), soluble
CD-40 ligand, soluble IL-6 receptors, ICAM-1, soluble TNF
receptor-1, soluble TNF receptor-2, sVCAM-1, thromboxane A2
(TXA2), thromboxane B2 (TXB2), transforming growth factor-β
(TFG-β), TNF-α, among others].

Although ex-vivo studies (133) have shown that ω-6 FA-
enriched diets seem to be linked to the formation of oxidized
low-density lipoproteins (oxLDL), there is growing evidence that
ω-6 FA could exert an anti-inflammatory effect, reducing the
development of atherosclerosis (128).

Interventional studies with AA supplementation (840 mg/d
for 4 weeks) showed no effect on any metabolic parameter or
platelet function (42). Neither have studies on supplementation
with linoleic acid found any effect related to the reduction of
atherosclerosis or cardiovascular risk factors (43). Sluijs et al.
(43) performed a RCT in 401 overweight subjects who were
randomly assigned to receive 4 g of cis-9, trans-11 (c9,t11) CLA
or placebo supplements for 6 months. They reported that c9, t11
CLA supplementation did not produce any effect on BP, body
composition, lipid or glucose metabolism, insulin resistance or
CRP levels. However, Hassan Eftekhari et al. (44) found that a diet
supplemented with both CLA and ω-3 FA could have a beneficial
effect on inflammatory markers of high sensitivity C-reactive
protein (hs-CRP) and oxidative stress [malondialdehyde (MDA),
and glutathione peroxidase, (GPx)] in atherosclerotic patients.

Again, the heterogeneity of the RCTs, the relatively short
duration of some of these studies, the great variability in
the concentration of ALA supplementation, as well as limited
statistical power because of the small number of subjects included
and a considerable intra- and inter-individual variability among
the inflammatory markers studied might not allow the detection
of subtle changes. In addition to diet, several authors have
reported that genetics might influence circulating/tissue AA (134,
135). Indeed, most African Americans carry a genetic variant of
the FA desaturase gene that enhances the ability to convert LA
to AA, which is associated with greater circulating CRP and a
higher risk of CVD. Overall, these different studies highlight the
need for further human trials evaluating the role of ω-6 FA in the
prevention of CVD.

COENZYME Q10

Coenzyme Q (CoQ) or ubiquinone is an effective natural
antioxidant that is produced de novo in animals. Many food
sources such as meat, fish, nuts, and some oils are CoQ-
enriched, but this antioxidant is most frequently found in
dairy products, vegetables, fruits, and cereals (136). Ubiquinone

plays a key role in the electron transport chain within the
mitochondria (137). CoQ10 and the cholesterol biosynthesis
pathway share intermediate products such as mevalonate, which
is key in the synthesis of cholesterol. Individuals receiving statin
treatment may present by a reduction in CoQ10 levels (126, 137).
Deficiencies in CoQ10 have been associated with CVD, and
therefore, CoQ10 supplementation may be an effective tool in the
primary prevention of CVD (138, 139).

Taking into account the difficulty in establishing a usual safe
upper level of intake (UL), several studies have used the observed
safe level (OSL) risk assessment method and reported strong
evidence of safety at intakes up to 1,200 mg/day. Nevertheless,
higher levels of CoQ10 (3,000 mg/day) have been tested without
adverse effects and may be safe (137).

Several meta-analyses and systematic reviews have reported
the benefits of CoQ10 on health. In a meta-analysis including
15 studies involving 765 individuals, Zhang et al. (140) reported
an improvement in glycemic control, and TG and HDL-C levels
in patients with T2DM supplemented with CoQ10. Jorat et al.
(141) observed a reduction in total-cholesterol (standardized
mean difference (SMD) −1.07; 95% CI, −1.94, −0.21, P = 0.01)
and an increase in HDL-C levels (SMD 1.30; 95% CI, 0.20,
2.41, P = 0.02) in patients receiving CoQ10 supplementation,
while no changes were observed in LDL-C, lipoprotein a [Lp(a)]
or TG levels. On the other hand, in a meta-analysis including
6 RCTs and 218 participants at high risk of CVD, Flowers
et al. (142) only observed significant reductions in systolic BP
but no improvement in other risk factors such as diastolic BP,
total-cholesterol, LDL-C, HDL-C or TG. In addition, Gao et al.
(143) reported that CoQ10 supplementation was associated with
a significant improvement in endothelial function assessed by
FMD (SMD 1.70, 95% CI: 1.00, 2.4, P < 0.0001). In another
meta-analysis (144) including 17 RCTs and 412 subjects allocated
to a CoQ10 group and 399 subjects to a control group, a diet
supplemented with CoQ10 (60 to 500 mg/day for 1–4 weeks
of intervention) led to a decrease in CRP levels [weighted
mean difference (WMD): −0.35 mg/L, 95% CI: −0.64 to −0.05,
P = 0.022), IL-6 (WMD: −1.61 pg/mL, 95% CI: −2.64 to −0.58,
P = 0.002) and TNF-α (WMD: −0.49 pg/mL, 95% CI: −0.93
to −0.06, P = 0.027). Finally, the meta-analysis performed by
Zhai et al. (145) also showed that CoQ10 supplementation may
partly improve inflammatory status. They found that CoQ10
supplementation improved CoQ10 plasma levels by 1.17µg/mL
and decreased TNF-α levels (−0.45 pg/mL). However, no
changes were observed for CRP or IL-6. Finally, in patients with
CVD with baseline serum hs-CRP levels > 3 mg/L, these levels
improved after receiving CoQ10 supplementation for more than
12 weeks (146).

On the other hand, several interventional studies have
provided large scientific body evidence on the possible benefits
of CoQ10 supplementation. On one hand, Mohseni et al. (45)
performed a randomized double-blinded controlled clinical trial
to investigate if CoQ10 supplementation can improve BP and
serum lipoprotein concentrations in Iranian individuals with
hyperlipidemia andMI after 12 weeks of intervention. The group
receiving CoQ10-supplementation showed significant reductions
of total-cholesterol, LDL-C and fibrinogen concentrations, as
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well as an increase in HDL-C concentrations (P <0.001). A
significant increase in plasma HDL-C (1.44 ± 0.18 vs. 1.14
± 0.18 mmol/L) levels and systolic BP and diastolic BP was
also observed in the two groups. More recently, Pérez-Sánchez
et al. (46) reported that CoQ10 supplementation (200 mg/d
for 1 month) improved endothelial function and mitochondrial
activity in patients with antiphospholipid syndrome. In addition,
Lee et al. (47) investigated the effects of CoQ10 supplementation
on inflammatorymarkers such as hs-CRP, IL-6 and homocysteine
and oxidative stress markers including MDA and superoxide
dismutase (SOD) in 51 patients with CAD. The participants were
randomized into three groups: (1) placebo or control group,
(2) Q10–60 group, which received 60 mg/d of CoQ10, and
(3) Q10–150 group which received 150 mg/d of CoQ10 for 12
weeks. Significant reductions of IL-6 (−14%, P = 0.03) were
observed after the Q10–150 group intervention. Nevertheless,
CoQ10 supplementation (200 mg/d) in 51 obese subjects with a
body mass index (BMI)≥ 25 kg/m2 did not significantly improve
the lipid profile, arterial stiffness, oxidative or inflammatory
markers as Lp(a), serum levels of oxLDL, white blood cell
count or CRP after 12 weeks of intervention (48). In 65
intermediate risk firefighters, the FAITH randomized clinical
trial (49, 50) evaluated the combined effect of CoQ10 with
aged garlic extract (AGE) on pro-inflammatory markers and
progression of atherosclerotic disease. The authors reported a
significant reduction in serum CRP levels and an improvement
in both endothelium function and pulse wave velocity after 1 year
of intervention.

Although the results of several meta-analyses and intervention
studies have suggested that CoQ10 may significantly reduce CRP,
IL-6, and TNF-α levels and improve oxidative stress markers,
lipid profiles and BP, these results should be interpreted with
caution because of their heterogeneity, the short intervention
period in some of them, the different doses for intervention, the
small number of subjects enrolled in the RCTs and the limited
number of studies performed. All these factors might contribute
to the null effect observed by CoQ10 on proinflammatory
biomarkers. Therefore, at present, the lack of consistent studies
demonstrating the potential benefit of CoQ10 supplementation
in the prevention of atherosclerosis, limit the use of CoQ10
as a nutraceutical. Nevertheless, there is sufficient scientific
evidence demonstrating that statin therapy combined with
CoQ10 supplementation might be useful to further reduce the
atherosclerotic process.

VITAMINS

There is a large body of scientific evidence showing that vitamin
intake may be beneficial in the prevention of cardiovascular
events (147, 148). Among the possible mechanisms proposed,
vitamins can reduce endothelial cell (EC) damage, modulate
immune system response, retain vascular smooth muscle cell
(VSMC) proliferation and migration, improve nitric oxide (NO)
production, and inhibit oxLDL formation (147–150). In fact,
vitamin A, C, E, and K deficiency are associated with a higher
risk of CVD (151–156). It should be taken into account that

vitamin A, C, and E supplementation has shown to be effective in
the prevention of atherosclerosis in experimental animal models,
but this remains to be demonstrated in clinical trials in humans.
These studies were mainly performed in young/adult animal
models based on early stages of atherosclerosis or in vitro studies,
while clinical trials would involve older participants in advanced
stage atherosclerosis (157). In addition, several studies have
reported that low dietary consumption of antioxidant vitamins
are linked to greater progression of atherosclerosis (158).

Vitamin B Group
A large number of epidemiological studies have reported
that high intake or circulatory concentrations of specific
micronutrients such as vitamin B group (folate, vitamin B-6, and
vitamin B-12, and homocysteine) may also be associated with
reduced progression of carotid intima-media thickness (IMT)
(158, 159).

To date, observational studies, RCTs and meta-analyses
have failed to demonstrate that vitamin B supplementation
can reduce cardiovascular risk factors or the morbidity and
mortality associated with stroke, CHD and peripheral artery
disease (160–163).

In the 2003–2004 NHANES study, consumption of vitamin
B6 via diet or supplementation was inversely related to CRP
levels after analyzing 2,686 eligible participants (164). Numerous
interventional studies have investigated the role of vitamin B
supplementation in the prevention of atherosclerosis. The results
of the Women’s Antioxidant and Folic Acid Cardiovascular
Study (51) showed that the consumption of the combination
of folic acid (2.5mg), vitamin B6 (50mg), vitamin B12
(1mg) daily for 7.3 years led to a significant reduction of
homocysteine concentrations without altering the concentrations
of biomarkers of vascular inflammation (CRP, IL-6, ICAM-1,
and fibrinogen). Peeters et al. (52) investigated the effects of
8 weeks of multivitamin supplementation (vitamin B6, B12,
and folic acid) on plasma homocysteine concentrations and IL-
6, IL-8, hs-CRP, and MCP-1. They only found a significant
reduction in homocysteine concentration but not in the pro-
inflammatory biomarkers. Similar results were found in another
interventional study performed in 522 elderly patients with
hyperhomocysteinemia, who were treated with vitamin B12 (500
µg) and folic acid (400 µg) or placebo daily for 2 years (53). In
this case, the study failed to show improvement in endothelial
function [sICAM-1, sVCAM-1, and vascular endothelial growth
factor (VEGF)] or low-grade systemic inflammation (SAA and
CRP) after the multivitamin treatment. On the other hand,
supplementation with folic acid (0.8 mg/d) for 1 year led to
a significant 28% reduction in homocysteine concentrations
compared to the placebo group, but no changes were observed in
the plasma concentrations of the inflammatory markers (54). In
another study, patients with stable CAD were randomized into
3 groups: (A) folic acid plus vitamin B12 and B6, (B) folic acid
plus vitamin B12, and (C) vitamin B6 alone, and it was found that
vitamin B did not affect the levels of pro-inflammatory markers
(soluble CD40 ligand, sCD40L, IL-6, CRP, and neopterin) related
to atherosclerosis (55). Finally, according to the results of a
study in which patients received pyridoxine treatment (40mg)
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for 28 days, Ulvik et al. (56) suggested that pyridoxine preserved
or increased the association between plasma vitamin B6 and
inflammatory markers [CRP, white blood cell count (WBC),
kynurenine-to-tryptophan ratio (KTR), and neopterin].

Although observational studies have shown a positive
association between homocysteine concentrations and
cardiovascular events, the findings of RCTs have currently
shown no clear evidence of a protective effect of antioxidant B
vitamin supplementation on the progression of atherosclerosis.
The discordance among the different studies may be the result
of different timing of B-vitamin supplementation according to
the stage (early vs. advanced) of atherosclerosis. Nonetheless, the
positive effect of vitamin B supplementation on the progression
of atherosclerosis has only been studied in a few small and highly
heterogeneous studies. Therefore, vitamin B supplementation
should not as yet be used for the prevention of CVD until future
research can demonstrate the real role of supplementation in the
prevention of chronic disease.

Vitamin A
Vitamin A is a fat-soluble vitamin, constituted by 3 active forms
(retinoids): retinol, retinal, and retinoic acid, the most important
being beta-carotene (β-carotene) because of its high antioxidant
effect (165). The cardioprotective effects of carotenoids in
humans have been related, among others, to an improvement
in BP, glucose metabolism and the lipid profile, the harmful
effects of smoking and every step of atherosclerotic progression
including endothelial dysfunction, LDL oxidation, leukocyte, and
smooth muscle cell activity (166).

However, to date, the results of many clinical trials on vitamin
A supplementation against CVD are contradictory. In fact,
several meta-analyses do not support the benefits of antioxidant
vitamins such as vitamin A or β-carotene supplementation in
the prevention of CVD (158, 167–171). One meta-analysis which
analyzed different antioxidants such as vitamins A, C, E, or
selenium as well as folate, vitamin B6 or vitamin B12 separately to
evaluate the progression of atherosclerosis disease using B-mode
ultrasound, intravascular ultrasound, or angiography, found no
evidence of a protective effect of antioxidants or B vitamin
supplements on atherosclerotic disease (158). Neither could
another meta-analysis including 179 RCTs demonstrate any
benefit of the intake of dietary supplements on CVD outcomes
and all-cause mortality (171).

Few interventional studies have been performed on vitamin
A supplementation. However, one interventional study including
31 atherosclerotic patients and 15 healthy controls (57) found
that 4 months of vitamin A supplementation reduced the
production of inflammatory cytokine IL-17 and the gene
expression of the main transcriptor factor that controls T-
helper 17 (Th17) cell differentiation, and retinoid-related orphan
receptor-c (RORc). In another study, Sezavar et al. (59) evaluated
the efficacy of vitamin A supplementation (25,000 IU of retinyl
palmitate/day) in reducing the gene expression of interferon γ

(IFN-γ) and T helper 1 cell lineage commitment (T-bet) in 16
atherosclerotic patients and 15 healthy controls who received
supplemental of vitamin A daily for 4 months. They found that
vitamin A supplementation was able to suppress Th1 cell activity

in both the atherosclerotic and healthy participants. Finally,
Mottaghi et al. (58) analyzed the role of vitamin A (25,000 IU
retinyl palmitate per day, for 4 months) in forkhead box protein-
3 (Foxp3) and TGF-β gene expression 31 atherosclerotic patients.
They found a significant increase in the gene expression of TGF-
β and concluded that vitamin A supplementation may delay the
progression of atherosclerosis.

The apparent discrepancy between the results of observational
and interventional studies may depend on several factors.
Inadequate doses or treatment duration (usually short study
periods) in addition, to the nature of the different populations
studied (e.g., atherosclerotic or healthy participants), age or the
sample size might explain the null findings. Studies on the
administration of β -carotene in apparently healthy participants
showed no evidence of benefits or harm in patients with
CVD. However, the results of the administration of β -carotene
to subjects with atherosclerosis or CAD suggest that β -
carotene might provide significant benefits in CVD, because of a
reduction of pro-inflammatory markers related to atherosclerosis
disease. Nevertheless, depending on the concentrations, vitamin
A can work as either an antioxidant or pro-oxidant [at a
dose ≥ 25,000 IU/Kg of body weight (172)] and lead to
cases of hypervitaminosis and even to intoxication, while
supplementation with provitamin A, (i.e., β-carotene) has shown
to be safer (173). Nonetheless, the results of some interventional
studies seem to be encouraging and justify further long-term
studies to assess the clinical effects of vitamin A supplementation
in a larger cohort of patients.

Vitamin C
The daily diet should include a high content of foods rich
in vitamin C or ascorbic acid such as fruits (especially citrus
fruits such as oranges or lemons) and vegetables such as green
and red peppers, tomatoes, as well as broccoli or blackcurrants,
among others. Cardiovascular risk can be reduced by vitamin
C through different mechanisms such as inhibition of LDL
oxidation, thereby reducing the development or progression
of atherosclerosis. Additionally, vitamin C has been shown to
reduce monocyte adhesion to the vascular endothelium (62, 174),
which is an early step in the development of atheroma plaque.
Furthermore, vitamin C is associated with an improvement
in NO production, increasing vasodilation and lowering the
BP (175, 176). Moreover, vitamin C seems to contribute to
maintaining the stability of atheroma plaque (177, 178).

Many epidemiologic studies have investigated the role of
vitamin C in CVD and have shown that increased vitamin C
intake is linked to a lower prevalence of CHD (179–183) and
cardiovascular risk factors (184, 185). Nevertheless, a recent
meta-analysis suggested that vitamin C supplementation did not
reduce major cardiovascular events [hazard ratio (HR) 0.99,
95% CI 0.89–1.10] (186). Neither have any major long-term
clinical trials been able to demonstrate the positive benefits of
vitamin C in heart disease (187–189) or related risk factors
(61, 190). In relation to endothelial function, Ashor et al. (191)
concluded that vitamin C supplementation improved endothelial
function and this improvement was higher in individuals at
higher cardiovascular risk such as those with atherosclerosis
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(SMD: 0.84, 95% CI: 0.41–1.26, P < 0.001), diabetics (SMD: 0.52,
95%CI: 0.21–0.82, P< 0.001) and patients with heart failure (HF)
(SMD: 0.48, 95% CI: 0.08–0.88, P < 0.02).

In a 3-year observational study of 573 healthy individuals
(50% women) from 40 to 60 years of age, Agarwal et al.
(192) reported that contrary to vitamin C contained in
natural food, vitamin C supplementation was linked with early
accelerated progression of atherosclerosis measured by carotid
IMT. Thus, subjects in the highest quartile showed a 3-fold higher
progression than those in lowest quartile [20.3± 2.6 vs. 7.6± 1.8
µm/year (mean ± SD); P < 0.001]. Furthermore, carotid IMT
progression increased according to the dose in individuals taking
vitamin C supplements (P-trend = 0.0009). The consumption of
dietary vitamin C and vitamin C supplementation was measured
by different 24-h recalls.

Interventional studies have also shown mixed results. On
one hand, the Antioxidant Supplementation in Atherosclerosis
Prevention (ASAP) study (193) described a significant delay in
the progression of atherosclerosis measured by a mean common
carotid artery IMT of 74% (95% CI 36–89%, P = 0.003) in
520 hypercholesterolemic smoking and nonsmoking men after
twice daily consumption of a combined supplementation of d-
α-tocopherol (136 IU) and 250mg of vitamin C during 3 years.
These findings were later reproduced by Salonen et al. (60)
who confirmed that combined supplementation of vitamin E
and C delays atherosclerotic progression in hypercholesterolemic
individuals. A RCT also reported significant improvement in
serum levels of hs-CRP, IL-6, fasting blood glucose, and TG
after 8 weeks of treatment with 500mg vitamin C twice a
day in hypertensive and/or diabetic obese patients (61). In
addition, Woollard et al. (62) studied the effect of vitamin C
supplementation on monocyte adhesion to ECs in healthy non-
smokers. All individuals, with normal or below average (BA)
plasma vitamin C concentrations at baseline received 250mg
of vitamin C daily during 6 weeks. The BA group showed
greater monocyte adhesion to ECs (30%). After vitamin C
supplementation, the BA group showed a great reduction in
monocyte adhesion to ECs (−37%, P < 0.02), which were
reduced to normal baseline levels. Despite numerous findings
of the benefits of vitamin C supplementation, many other
interventional studies have reported inconsistent results. The
long-term results obtained by Bruunsgaard et al. (63) in the 3-
year ASAP study did not show any anti-inflammatory effect in
healthy men with slight hypercholesterolemia after combined
daily intake of vitamin C (250mg) and E (136 IU). After
assessing different inflammatory markers, the authors did not
observe any change in the circulating levels of TNF-α, IL-
6, or CRP. In addition, Mullan et al. (64) found no short-
term evidence (4 weeks) that consumption of a beverage with
a high polyphenol content and supplementation with vitamin
C provided any benefits in traditional or novel risk factors in
overweight or obese subjects. Moreover, in a crossover study,
Gutierrez et al. (65) did not find significant changes in the
lipid profile, markers of oxidative stress (oxLDL, non-esterified
fatty acids, NEFAs) inflammation (CRP, adiponectin, IL-6) or
hypercoagulability (PAI-1 and fibrinogen) after treatment with
different doses of vitamin C for 2-weeks. Finally, similar results

were found in another interventional study performed by Dewell
et al. (66) in which after 8-weeks of intervention with (1) usual
diet with placebo; (2) usual diet and antioxidant supplements
or (3) antioxidant-rich foods, there were no significant within-
group changes or among-group differences in the inflammatory
marker concentrations studied (IL-6, MCP-1, sICAM-1) (66).

Many studies (cohort and RCT) have suggested an inverse
relationship between vitamin C intake and the risk of heart
disease, while others have reported slight increases in the risk
or have failed to show any effects. Although several studies have
reported similar absorption of vitamin C supplementation and
food sources, at present, the underlying mechanisms involved in
the absorption of vitamin C from supplements remain unclear,
and thus, more studies are needed. In addition, it should be noted
that most of the evidence about the potential benefits of vitamin
C supplementation is based on animal and observational studies.
Nonetheless, continued investigation into the role of vitamin C
in atherosclerosis progression and its relationship with anti- or-
pro-inflammatory biomarkers related to disease is needed.

Vitamin D
Despite encouraging results from observational studies, RCTs
on vitamin D supplementation have shown mixed results (194–
198). A meta-analysis of 51 trials by Elamin et al. (199) analyzed
the possible benefits of vitamin D supplementation on CVD.
Dietary vitamin D supplementation (400 IU/d−500,000 IU/year)
did not improve glucose levels, the lipid profile or BP. Neither
was greater protection against MI or stroke observed. On the
other hand, it is known that vitamin D deficiency is associated
with a pro-inflammatory profile (IL-1, IL-2, IL-6, or TNF-α)
which is modulated by calcitriol (200). A recent meta-analysis
of 20 RCTs including 1,270 participants (201) reported that
vitamin D supplementation (200 IU/d to a single bolus dose
of 300,000 IU) may reduce chronic low-grade inflammation in
patients with T2DM. The data showed reduced levels of CRP
(SMD −0.23; 95% CI, −0.37 to −0.09; P = 0.002) and TNF-α
(SMD −0.49; 95%CI, −0.84 to −0.15; P = 0.005), as well as a
diminished erythrocyte sedimentation rate (SMD −0.47; 95%CI,
−0.89 to −0.05; P = 0.03). In addition, the group receiving
vitamin D supplementation showed higher leptin concentrations
(SMD: 0.42; 95% CI, 0.04–0.81; P = 0.03) compared with control
group. More modest results were obtained in another meta-
analysis (202) that included 17 RCTs and 1,012 patients with
HF receiving daily doses ranging from 1,000 to 2,000 IU. In
this case, the data analyzed only showed significant reductions
of TNF-α concentrations (P = 0.04). No changes were observed
in the concentrations of CRP, IL-6 or IL-10. Another meta-
analysis including 13 RCTs and 1,955 obese and overweight
participants suggested that there were no changes in the levels
of inflammatory markers such as CRP, TNF-α, and IL-6 (203)
after supplementation with vitamin D (700 IU/d to 200,000
IU/d). Finally, Beveridge et al. (204) reported that vitamin D
supplementation (ranging from 900 to 5,000 IU; for was 4 weeks
to 12 months) had no significant effect on the markers of vascular
function studied [brachial artery FMD; reactive hyperemia index
measured using finger plethysmography; pulse wave velocity
(PWV) and pulse wave analysis; central aortic BP derived from
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peripheral artery tonometry; microvascular function measured
using acetylcholine iontophoresis; and laser Doppler perfusion
imaging] after 4 weeks of intervention.

Several observational studies have reported that lower levels of
vitamin D are associated with pro-inflammatory status in healthy
individuals (205–207) and those with inflammatory diseases such
as T2DM, arteriosclerosis and inflammatory polyarthritis (208).
Vitamin D levels are also inversely correlated with leptin (209,
210) and positively with adiponectin (210, 211).

Interventional studies have also reported mixed results. One
study performed by Beilfuss et al. (67) investigated the possible
relationship between vitamin D status and pro-inflammatory
biomarkers (IL-6, TNF-α, and hs-CRP) in 332 overweight and
obese individuals. The participants were randomized into one
of three groups: (1) 40,000 IU vitamin D (cholecalciferol) per
week; (2) 20,000 IU vitamin D per week, or (3) placebo. After
1 year of intervention, supplementation with vitamin D led to
significant reductions of IL-6 levels and a significant increase
of hs-CRP concentrations. In 118 diabetics with vitamin D
deficiency, Tabesh et al. (68) examined the effect of vitamin D-
calcium co-supplementation on pro-inflammatory markers (IL-
6, TNF-α, hs-CRP) and adipocytokines (leptin and adiponectin).
The participants were randomized in one of four intervention
groups: (1) vitamin D + calcium placebo; (2) calcium + vitamin
D placebo; (3) vitamin D+ calcium; and (4) vitamin D placebo+
calcium placebo. The results showed significant reductions of
leptin (−75, −56, and −92 ng/mL, respectively), TNF-α (−3.1,
−3.1, −3.4 pg/mL) and IL-6 (−2, −4, −4 pg/mL, respectively)
concentrations for calcium and vitamin D alone, and combined
calcium-vitamin D supplementation (P < 0.05; all). Only the
group receiving vitamin D-calcium supplementation showed
a reduction in hs-CRP levels (−1.14 ± 0.25 vs. 0.02 ±

0.24 ng/mL, P= 0.09) compared to the control group. In another
study, Schleithoff et al. (69) reported significant reductions of
serum TNF-α concentrations as well as an increase in IL-10
concentrations after daily treatment with 2,000 IU in patients
with HF. In an interventional study, Mousa et al. (70) found no
effect of vitamin D supplementation on inflammatory markers
(TNF-α, MCP-1, IFN-α and IFN- γ, and IL-1β, IL-6, IL-8, IL-10,
IL-12, IL-17A, IL-18, IL-23, and IL-33) or in vivo NF-κβ activity
in humans. Similar results were described by Waterhouse et al.
(71) who found no significant changes in any of the cytokines (IL-
6, IL-10, and CRP) or adipokines (leptin, adiponectin) studied,
except for IL-6 which showed levels 2.8 pg/mL higher in the 1,500
µg group compared to the placebo group (75th percentiles: 11.0
vs. 8.2 pg/mL).

The biological or sociological differences between population
subgroups might explain the effects observed, or lack thereof on
proinflammatory biomarkers related to atherosclerosis disease.
Several RCTs included a small sample (<100 participants)
and only a few described factors that might influence their
results such as smoking status, season or sunlight exposure,
physical activity or dietary vitamin D consumption. The type
of vitamin D used (cholecalciferol or ergocalciferol) and the
dosing protocols may introduce some confounding variables in
the results reported. Furthermore, the absorption of vitamin
D differs according to the ethnicity, age or healthy status of

the individual. At least 4,000 IU of vitamin D daily, during
2–3 months, are required to obtain optimal levels of this
vitamin (212). Vitamin D supplementation seems to improve
inflammatory marker concentrations in subjects with chronic
disease such as heart failure (213), systemic lupus erythematosus
(214), inflammatory bowel disease (215), and chronic obstructive
pulmonary disease (216). Nevertheless, the lack of a biological
effect of vitamin D on these markers could be explained by the
health status of the study population (higher or lower grade of
inflammation). In addition, many RCTs have used low doses
(700–2,000 IU daily), which could be insufficient to observe
any positive effect on inflammatory markers. Although vitamin
D supplementation could be an effective treatment to improve
inflammation or atherosclerosis, further, well-designed large-
scale, long-term studies are needed.

Vitamin E
Although several animal studies have reported that vitamin E (α-
tocopherol) supplementation is associated with an improvement
in immune response in older animals following infection (217–
219), previous interventional studies have yielded mixed results
(75, 220, 221). Vitamin E is considered a potent antioxidant
with anti-inflammatory properties against CVD. Supplemental
vitamin E in animals models and human individuals exerts its
benefits through several mechanisms that include a decrease in
lipid peroxidation, and superoxide (O2-) production, as well as
a reduction in the expression of scavenger receptors (SR-A and
CD36), both of which are important in foam cell formation (222).
High doses of vitamin E supplementation have been associated
with a lower release of pro-inflammatory molecules such as IL-8,
PAI-1, CRP, as well as a significant decrease in the adhesion of
leukocytes to the endothelium (222).

Although many clinical trials in humans (223–225) have
reported possible positive benefits of vitamin E intake in
CVD, meta-analyses have not found any evidence of the
atheroprotective effects of vitamin E (168, 226). Furthermore,
some meta-analyses have suggested that high doses of vitamin E
may increase all-cause mortality (227, 228).

A cross-sectional study examined association between the
intake of vitamin E and other antioxidants such as vitamin C,
carotenoids, Se, and Zn and hs-CRP levels in 2,924 participants
from the region of Augsburg (Germany). Information regarding
the intake of dietary supplements and medication in the last 7
days was collected in personal interviews. The authors reported
that participants in the upper quartile (78mg vitamin E/day)
had 22% lower hs-CRP levels, when vitamin E was taken
in combination with other antioxidants, compared with those
without any vitamin E supplementation (229).

In a crossover study, Plantinga et al. (72) investigated the
combined effect of vitamin C and E on endothelial function,
arterial stiffness, and oxidative stress in 30 males with essential
hypertension in the short term (8 weeks). After vitamin
supplementation, FMD was significantly improved (P < 0.001)
compared to placebo group, while arterial stiffness measured as
central PWV was reduced (P < 0.01) and the augmentation
index (AIx), measured as the ratio between augmented pressure
(AP) and pulse pressure (PP), tended to decrease. In addition,
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serum vitamin concentrations and antioxidant capacity were
significantly increased and levels of oxidative stress decreased.
In a 4-year clinical study of 409 smokers, Magliano et al. (73)
randomized the participants into one of two groups: those
who received 500 IU per day of vitamin E or placebo. The
results showed that vitamin E supplementation did not delay
the advance of atherosclerotic disease measured by carotid
IMT. However, vitamin E significantly reduced LDL oxidative
susceptibility. Another RCT in 90 patients with CAD reported
that high intake of α-tocopherol (1,200 IU of /d) for 2 years led
to significant reductions of plasma biomarkers of inflammation
and oxidative stress (74). Another study demonstrated the ability
of tocopherols to reduce systemic oxidative stress, but not
inflammatory markers such as hs-CRP, IL-6, TNF-α, or MCP-
1 in patients with T2DM after a daily intake of 500 mg/day
of α-tocopherol or mixed tocopherols rich in γ-tocopherol for
6 weeks (75). In addition, Gutiérrez et al. (76) attempted to
clarify the effects of different doses of vitamin E [low-dose
(200 IU/d), medium-dose (400 IU/d), and high-dose vitamins
(800 IU/d)] combined with vitamin C for two weeks on the
prevention of atherosclerosis in 11 diabetics. The primary
outcomes studied were markers of oxidative stress including
oxLDL and glutathione, inflammation (adiponectin and hs-CRP)
and hypercoagulation (PAI-1 and fibrinogen). It was found
that only low-dose vitamin intake reduced oxLDL production
compared to the other study arms (P= 0.002).

It has been postulated that the mechanism by which vitamin
E exerts its anti-inflammatory effects might be related to protein
kinase C (PKC) dephosphorylation. In vitro studies have shown
that the administration of RRR-α-tocopherol or d-α-tocopherol
(natural) leads to a significant reduction of PKC activity and
platelet aggregation compared to some types of rac-α-tocopherol
(synthetic) (230). Some studies do not distinguish between the
sources of the α-tocopherol, natural or synthetic, and this can
induce important bias. The dose of vitamin E administered is also
important. Previous studies have reported that supplementation
with vitamin E at doses ≤ 400 IU/day does not lead to a
decrease in inflammatory biomarkers (231). On the other hand,
vitamin E doses between 600 and 1,200 IU/day can significantly
reduce concentrations of IL-6 or TNF-α (232). It should be noted
that doses of vitamin E > 400 IU/day are directly related to a
significant increase in all-cause mortality (228).

In summary, studies should specify which isomers (α- or γ-
tocopherol) are tested since different vitamin E isomers can have
different biological effects on atherosclerosis. However, studies
on isoforms other than α-tocopherol are limited. On the other
hand, high doses of vitamin E might be linked to potential
pro-oxidant effects and thus, consumption should be cautioned.
Although α-tocopherol may have antiatherosclerotic effects in in
vitro and animal studies, supplementation in humans continues
to be controversial.

Vitamin K
Vitamin K is a fat soluble which can be found in two
natural forms: phylloquinone (vitamin K1) and menaquinones
(collectively known as vitamin K2). Phylloquinone is mainly
found in dark green leafy vegetables and vegetable oils (olive

oil and soybean oil), while fermented dairy products such as
cheese and fermented soy beans (natto) and animal products
(chicken, butter, egg yolks) contain menaquinones. These two
natural forms differ in side-chain length and degree of saturation.
Vitamin K2 is the most biologically active form (233, 234).
Vitamin K as well as vitamin D have been implicated in CVD
and the activity of proinflammatory cytokines. Thus, several in
vitro and animal studies have reported that vitamin K seems to
suppress the production of these cytokines. However, the role of
this vitamin in humans remains unclear (235, 236).

There is a large body scientific evidence showing that high
intake of vitamin K2 is associated with a lower risk of CHD
such as coronary vascular disease and vascular calcification
(234, 237–242). The case-control Multi-Ethnic Study of
Atherosclerosis (MESA) showed that lower serum vitamin K1
concentrations were associated with greater progression of
coronary artery calcification (CAC) in participants receiving
anti-hypertensive medication [OR (95% CI): 2.37 (1.38,
4.09)] (243).

A recent meta-analysis (244) evaluated the possible effects
of vitamin K on cardiometabolic risk factors. The authors
concluded that there was insufficient evidence about any
beneficial effect of vitamin K supplements on cardiometabolic
risk factors because vitamin K showed no significant effect
on the lipid profile, BP, or glucose metabolism. Vitamin K
supplementation only led to an improvement in CRP levels
(P = 0.01) and the insulin sensitivity index (P < 0.001). Neither
did Suksomboon et al. (245) (8 RCTs and 1,077 participants) find
any effect of vitamin K supplementation on insulin sensitivity
after observing no changes in the parameters analyzed such as
insulin resistance, fasting plasma glucose, fasting plasma insulin,
CRP, adiponectin, leptin, or IL-6 levels. Similar results were
described in themeta-analysis by Shahdadian et al. (246) in which
vitamin K supplementation had no significant effect on glycemic
control in healthy subjects.

Very few intervention trials on vitamin K supplementation
have been carried out. One intervention trial by Knapen et al.
(77) investigated if menaquinone supplementation (180 µg/
day) had any effect on arterial stiffness in 120 healthy post-
menopausal women in the long term (3-years). They authors
reported a significant reduction in the beta stiffness index as a
measure of mechanical arterial properties in the group receiving
vitamin K compared to the placebo group. Nevertheless, no
changes were observed in the concentrations of markers related
to endothelial dysfunction [VCAM, E-selectin, and advanced
glycation endproducts (AGEs)] or inflammation (hs-CRP, IL-
6, and TNF-α). Kristensen et al. (78) did not observe any
improvement in any of the risk markers analyzed (sICAM-
1, sVCAM-1, PAI-1, fibrinogen, and plasma factor VII c).
Finally, another interventional study evaluated the effect of
vitamin K supplementation on CAC progression in 388 healthy
older men and women. Two hundred individuals received
multivitamin supplementation with 500 µg of phylloquinone,
and the control group received a multivitamin alone daily for 3
years. Compared to the control group, the participants receiving
phylloquinone supplements showed less CAC progression (−6%,
P = 0.04) (79).
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Animal and in vitro studies have reported the role of vitamin
K in vascular calcification, while the evidence in humans is
less clear. The discrepancies between the results obtained may
be explained by the heterogenic populations studied. Indeed,
the populations studied usually include postmenopausal women
without established CVD and therefore, the lack of effect of
vitamin K supplementation on carotid IMT might only be
manifested in individuals with well-established atherosclerosis.
Furthermore, in order to observe substantial changes on IMT
longer intervention periodsmay be necessary. On the other hand,
observational (241, 247), in vitro (248) and animals studies (249)
have shown an inverse association between vitamin K status
and inflammatory biomarker (IL-6 and CRP) concentrations.
The inclusion of healthy individuals free of chronic diseases
or elderly subjects at high cardiovascular risk may explain
why inflammatory cytokine values remained unchanged. Specific
studies are needed to obtain more in depth understanding of the
use of vitamin K supplementation on atherosclerosis progression.

CAROTENOIDS

Carotenoids are a wide family of natural pigments that can
be classified as carotenes (α-carotene, β-carotene, lycopene) or
xanthophylls (lutein, fucoxanthin, canthaxanthin, zeaxanthin,
β-criptoxanthin, capsorubin, and astaxanthin) depending on
their chemical structure. Although there are more than 500
carotenoids, humans can only absorb 20 (250). The main dietary
source of carotenoids are fruits and vegetables (251). These
compounds have been related to positive effects on health mainly
due to their antioxidant proprieties but also because of their role
in intracellular communication and the immune system (252,
253). In addition, carotenoids are associated with a slowdown of
atherosclerosis progression (250, 254).

Cheng et al. (255) analyzed 21 clinical trials and observed
that supplementation with tomatoes, a carotenoid-rich food,
was related to significant improvement in LDL-C levels [−0.22
mmol/L (95% CI −0.37, −0.06), a reduction in IL-6 (−0.25,
95% CI −0.49, −0.02) and a 2.53% increase in FMD. On
analysis of lycopene carotenoid supplementation trials, they
observed a relevant reduction in systolic BP (−5.66 mmHg:
P< 0.002). Nevertheless, no relevant changes were found in other
inflammation markers such as oxLDL, CRP, IL-6, or ICAM-1 (P
> 0.05; all) (255).

On the other hand, a meta-analysis of observational studies
concluded that higher dietary lutein intake was correlated
with cardiovascular health, probably in relation to an effect
on atherosclerosis and inflammatory markers (256). Another
observational meta-analysis reported that circulating lycopene
levels were inversely associated with the risk of stroke (RR: 0.693,
95% CI 0.503, 0.954) (257). These results coincide with those of
Song et al. (258) RR: 0.83 (95% CI 0.69, 0.96) who also described
a lower risk of CHD with lycopene intake (RR: 0.87; 95%CI
0.76, 0.98).

A recent interventional study conducted by Colmán-Martínez
et al. (80) showed that supplementation with tomato juice, which
is rich in lycopene, significantly reduced ICAM-1 and VCAM-1

levels (P < 0.001, both). These reductions were mainly associated
with the presence of trans-lycopene (r=− 0.625 and r=−0.697;
P < 0.001, respectively). By contrast, 8 weeks of supplementation
with palm carotene was not associated with similar observations
(81). ICAM-1 and VCAM-1 concentrations remained unaltered
(P > 0.05, both) along with other physiological, circulatory
and inflammatory markers of vascular function. In a longer
clinical trial in renal transplant recipients receiving astaxanthin
supplementation, Coombes et al. (82) did not observe changes
in physiological markers of vascular function (PWV, FMD, and
carotid artery IMT; P > 0.05, all). Nevertheless, Zou et al.
(83) found a reduction in carotid artery IMT after a 12-
month intervention with a lutein supplement (0.035mm, P
= 0.042) or lutein plus lycopene supplementation (0.073mm;
P < 0.001). Moreover, modifications in carotid artery IMT were
negatively associated with serum lycopene levels, and therefore,
this response seems to be more related to this carotenoid.

The lack of effectiveness of carotenoids on inflammatory
biomarkers and the atherosclerostic process might be explained
by their low bioavailability (∼10–40%) and low plasma
concentrations [∼2 µmol/L (259)]. Furthermore, interindividual
differences related to carotenoid absorption, degradation,
metabolism, and excretion, in addition to the type of carotenoid
studied (lutein, lycopene or β-carotene) as well as dose, and
health status of the study population could partly explain
the differences observed among the studies carried out. The
scientific evidence currently available on the role of carotenoids
in atherosclerosis remains unclear, making further randomized
controlled clinical trials necessary.

PHYTOSTEROLS

Although there are few differences in the chemical structure of
phytosterol, phytostanol, and cholesterol, these differences have
a distinct functionality (260). The human organism is not able
to synthetize these bioactive compounds, and therefore, they
can only be incorporated from vegetal dietary sources (261).
Composition analysis has shown that the largest amounts of these
compounds can be found in vegetables oils, followed by tubers,
legumes, and nuts and the lowest amounts are found in cereals,
vegetables and fruits (262). However, nuts have the highest free
phytosterol content (262), which aremore bioavailable (263). The
average daily phytosterol intake in the Western diet is estimated
to be 296mg (264), with the main plant sterols in the human diet
being campesterol, β-sitosterol, and stigmasterol (265, 266).

Phytosterol intake is associated with a dose-dependent
decrease in total cholesterol and LDL-C (267), and the
consumption of 2 g of phytosterols per day is related to significant
changes in cholesterol absorption and LDL-C plasma levels of 8–
10% (267). However, results regarding the ability of phytosterols
to diminish low-grade inflammation are controversial.

A meta-analysis of 20 RCTs including mainly overweight
and obese adults from 44.5 to 66 years of age with
hypercholesterolemia found that after an intake mean of
2.24 g/day (1.4–4 g/day) of phytosterol-rich foods, the absolute
changes in plasma CRP concentrations were not significant
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(−0.10 mg/dL: 95% CI −0.26, 0.05). Neither were HDL-C
plasma levels significantly modified (0.5 mg/dL −0.2; 1.2).
However, plasma LDL-C and total-cholesterol levels were
significantly reduced [−14.3 mg/dL; 95%CI −17.3; −11.3 and
−16.4mL;95% CI −20.1; −12.8, respectively (268)], coinciding
with the results of previous meta-analyses (269–271). Plasma
TG levels showed a significant decrease (−7.9 mg/dL: 95% CI
−12.7;−3.1).

Although there are no further meta-analyses regarding
phytosterol intake and cholesterol levels, several intervention
studies have been carried out. In 32 overweight or obese subjects,
Lambert et al. (84) investigated the effect of the intake of milk
supplemented with phytosterols (1.6 g of plant sterols/250mL
of milk) vs. milk supplemented with ω-3 in a 4-week crossover
trial. At a proteomic level, determination of the lipoprotein-
depleted-plasma (LPDP) fraction showed a decrease of pro-
inflammatory serum amyloid P component (SAP) levels. A
significant reduction of MCP-1 gene expression (P = 0.026) was
also observed after phytosterol-milk intake as well as a trend to
an increase in interleukin 10 receptor (IL-10R) expression levels
(P = 0.06) (84). These results suggest a relationship between
phytosterols and activation of anti-inflammatory response.
Another study including 18 healthy participants (85) undergoing
a milk supplemented with plant sterols intervention (2.0 g free
phytosterols) during 4 weeks found results following a similar
trend. Hs-CRP serum levels significantly diminished after the
intervention −0.32 mg/L (P< 0.05), and plasma lipoxin A4
(LXA4) concentrations increased (0.12 nmol/L, P < 0.05) as
did nitrite and nitrate levels (P< 0.05, both). However, no
relevant changes were observed in TNF-α plasma levels or
markers of oxidative damage after a 4-week intervention with
phytosterol-enriched milk (85). Daily phytosterol intake of 3.0 g
of phytosterol-supplemented margarine during 18 weeks showed
no changes in inflammatory biomarkers (CRP, SAA, IL-6, IL-8,
TNF-α, and soluble intercellular adhesion molecule-1) compared
to placebo in patients with hypercholesterolemia (88). The z-
scores for low-grade inflammation (−0.04; CI 95% −0.16; 0.07)
and endothelial dysfunction (−0.2, CI95% −0.15, 0.11) were
not significant (88). Likewise, Heggen et al. (87) performed a
study including two phytosterol-enriched margarines to evaluate
endothelial marker function and inflammation. E-selectin serum
levels reduced−8.5% (P= 0.012) with rapeseed-sterol margarine
vs. controls. The other inflammatory markers analyzed (VCAM-
1, TNF-α, total PAI-1, and activated PAI-1) showed no significant
changes after the intervention (87).

At present, the data available on effects of the use of plant
sterols alone or combined with statins to reduce cardiovascular
risk is limited. On the other hand, while in vitro and experimental
animal studies have reported anti-inflammatory effects derived
from sterols, the current knowledge on the anti-inflammatory
and anti-atherogenic effects of phytosterols/stanols derived
from RCTs is scarce and inconsistent. It should be noted
that when phytosterols are incorporated into high-fat spreads,
their absorption produces higher reductions of cholesterol
concentrations than those absorbed as free phytosterols (272).
In addition, in order to avoid possible bias, it is important
to consider the type of sterols administered (phytosterols or

phytostanols), the study sample size, the ethnicity or health status
of the individuals included in the study, follow-up duration, as
well as the optimal dosage of phytosterol supplementation. Thus,
although phytosterol supplementation has been consistently
related to a reduction in blood lipid levels, especially total-
cholesterol and LDL-C, there is currently insufficient evidence to
identify any solid modulation in inflammation markers, making
further studies necessary.

STILBENES

Stilbenes are a polyphenol group characterized by a 1,2-
diphenylethylene nucleus (273), which can be obtained in
the diet mainly from red wine, grapes, peanuts and berries
(274). The anti-inflammatory and anti-oxidative effects of these
compounds, especially resveratrol, have frequently been related
to health benefits, including in atherosclerosis (275). Numerous
in vitro and animal studies have been carried out with promising
results, but these must be corroborated by clinical trials.

The results of one recently published meta-analysis show that
high doses of resveratrol supplementation (≥150 mg/day) were
associated with a significant reduction of systolic BP by −11.90
mmHg (95% CI−20.99,−2.81) (276). Similar results were found
by Hausenbas et al. (277) and Harm et al. (278). The latter
evaluated 9 intervention trials with resveratrol-enriched grape
extract supplementation and found that systolic BP was reduced
by−1.54 mmHg (P = 0.02), and the heart rate also diminished
(−1.42 bpm, P = 0.01). Nevertheless, diastolic BP, blood lipid,
and CRP levels were not modified (278), coinciding in part with
the report by Sahebkar et al. (279). The results of the analysis of
10 RCTs showed that supplementation with resveratrol did not
significantly modify plasma CRP levels [−0.144 mg/dL (95% CI
−0.968, 0.680)], diastolic BP and systolic BP, or total-cholesterol,
LDL-C, TG and glycemia, (P ≥ 0.05, all). Nonetheless, HDL-
C showed a negative response with a significant reduction in
these levels [−4.18 mg/dL; 95% CI−6.54;−1.82) (279)]. An large
meta-analysis by Haghighatdoost and Hariri (280) studied the
response of blood lipid levels to resveratrol supplementation.
These authors analyzed 21 randomized clinical trials in which no
significant reduction was observed in total cholesterol or LDL-C
levels (−0.08 mmol/L; 95%CI: −0.23; 0.08 and −0.04 mmol/L;
95% CI: −0.21; 0.12, respectively), and HDL concentration
were not modified (P = 0.269). Only TG showed a significant
reduction after the intervention, but these were not robust (280).

Adipokine levels have also been related to atherosclerosis
and cardiovascular risk, mainly in the leptin and adiponectin
ratio (281). Several studies have also associated resveratrol with
changes in these cytokines. In a recent meta-analysis of 9 RCTs,
Mohammadi-Sartang et al. (282) observed that a high intake of
a resveratrol supplement (≥100 mg/day) was associated with a
significant increase of adiponectin levels [1.11µg/mL (95% CI
0.88, 1.34)]. However, plasma leptin levels were not significantly
modulated by resveratrol supplementation, independently of the
dose (282).

In the last years, numerous RCTs have been carried out to
study the effects of stilbene supplementation (mainly resveratrol).
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However, the supplementation doses and intervention periods
ranged from 40 to 1,500 mg/day and from hours up to 3
months. Moreover, the responses observed varied among the
different studies.

In a study including healthy adults, Macedo et al. (90)
observed the effect of 100mg trans-resveratrol supplementation
daily over 3 months, but they found no significant changes
in the metabolic parameters and inflammatory and oxidative
markers analyzed vs. controls. Only GPx activity, a biomarker
of oxidative stress, was significantly reduced compared with
placebo (P < 0.05), but the meaning of this change was not
clear. After a physical fitness test, GPx activity and TNF-α
concentration were also reduced, while plasma glucose levels
increased. The authors thereby concluded that the physical
fitness test applied may have been insufficient to determine
whether resveratrol had any relevant effect on the antioxidant
systems of the participants. On the other hand, one small
study (N = 9) with a higher resveratrol dose (1 g/day) and
longer intervention period conducted by Espinoza et al. (91)
found a significant, albeit small, reduction in TNF-α and MCP-
1 (P < 0.05) after 4 weeks of intervention; however, these
changes did not continue over time. Contrary to Macedo et al.
(90) they found an increase in the total antioxidant capacity
(91). Response to resveratrol supplementation has also been
studied by Van der Made et al. (92, 93) in overweight and obese
subjects (28.3 ± 3.2 kg/m2). As in healthy adults, no relevant
significantmetabolic changes were found in inflammatory and/or
endothelial function markers after 4 weeks of 150mg of trans-
resveratrol supplementation and only diastolic BP and heart
rate increased (P < 0.05). The results of subgroup analysis by
gender or body mass index (≥ or < 30 kg/m2) did not differ
(92, 93). Similar findings were obtained when Kitada et al. (94)
used piceatannol (hydroxylated analog of resveratrol), instead of
resveratrol, as a supplement. Only insulin sensitivity improved
after the intervention in overweight men: plasma insulin levels
were reduced by −18.8 ± 11.2% (P = 0.02) and HOMA-IR by
−17.2 ± 11.5% (P = 0.02) (94). Neither have studies carried out
in T2DM patients found changes in this regard (96–98). Bo et al.
(96, 97) analyzed the effects of resveratrol (500 and 40 mg/day) in
T2DM patients over 6 months, but failed to identify significant
differences at a metabolic or inflammatory level. They did,
however, observe that pentraxin 3, an acute phase protein related
to the CRP in humans, increased 4.7–26.3% (P < 0.05) and
the total antioxidant status also increased (28.5–44.8; P < 0.05).
In addition, in participants receiving high doses of resveratrol
supplementation total-cholesterol levels significantly increased
(11.94 mg/dL; 95% CI 2.55; 21.33) (96, 97). This coincides with
the results of Kjær et al. (95), who also observed an increase in
total cholesterol, LDL-C and fructosamine levels in patients with
MetS after supplementation with 1 g/day of resveratrol during
16 weeks. With respect to antioxidant capacity, the results of
a study by Bo et al. (96) were in concordance with those of
Seyyedebrahimi et al. (98) who observed an antioxidant effect
in PBMCs and an increase in the expression of Nrf2 and SOD
(P = 0.047 and P = 0.005, respectively) in patients with T2DM
after resveratrol supplementation. These results also agree with
those of Imamura et al. (99), who identified a reduction in

oxidative stress and arterial stiffness (P < 0.01) in patients with
T2DM supplemented with resveratrol during 12 weeks (99).
At an inflammatory level, resveratrol supplementation (300–500
mg/day) showed a reduction in TNF-α vs. placebo (100, 102), but
an intervention with 1.5 g/day did not show the same pattern in
this inflammatory biomarker (101).

One reason for the lack of impact of resveratrol on
inflammatory biomarkers may be the significant heterogeneity
among the trials (size sample, type of sample, inflammatory
status, dose of resveratrol, length of treatment, etc.), which can
potentially lead to bias. A relatively small number of participants
might not provide sufficient statistical power to estimate the
effects of resveratrol on proinflammatory markers. In addition,
plasma resveratrol levels which are too low might explain
the lack of impact of resveratrol on atherosclerotic markers.
Moreover, the different sources of resveratrol (trans-resveratrol
or extracts containing resveratrol) with different compositions
may be another limitation and may also induce bias. Therefore,
larger studies and studies focusing on pro-inflammatory
markers or improvement of BP or lipid profile are needed to
evaluate the different anti-inflammatory effects of resveratrol
in humans. Moreover, prospective studies including higher
doses of resveratrol and longer duration of supplementation are
necessary to determine the effect of resveratrol supplementation
on biomarkers of inflammation and oxidative stress.

FLAVONOIDS

Flavonoids are a wide family of compounds characterized by
a diphenylpropane skeleton (C6-C3-C6). These compounds are
obtained from plant foods (283), and numerous studies have
related flavonoids to healthy effects (284), and a reduction in the
risk of mortality (285–287). However, the results of several meta-
analyses have not clarified whether there is a linear dose-response
relationship (285, 286). Regarding CVD, a meta-analysis of 4
prospective cohort studies by Grosso et al. (285), Kim and Je
(286), Liu et al. (287), and Wang et al. (288) has shown that high
flavonoid intake is associated with a reduction in cardiovascular
mortality. In addition, a meta-analysis of other prospective
studies found a significant reduction in the risk of mortality by
CHD (287, 289), and a significant reduction in the risk of stroke
(290). These evidences support the recommendation of plant-
based diets. Future studies should be aimed at analyzing the
main subgroups of flavonoids and evaluating the latest studies on
flavonoid supplementation and its effect on health.

Isoflavones
Isoflavones, an estrogen-like compound structurally similar to
17β-estradiol (104), are basically made up of daidzein, genistein,
and glycitein. They are mainly found in soy, in which the
most notable types of phyto-estrogen present are genistein and
daidzein (291). Although the main source of isoflavones is soy
bean, other products such as soy dairy substitutes, soy meat
substitutes, soy paste and soy traditional foods are also a good
source of isoflavones (291).

During the last years, many studies have reported that
isoflavones, or one of their compounds, may have an important
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role in our health. In particular, studies have been aimed at
determining whether isoflavones have a direct or indirect effect
on protecting against atherosclerosis by improving the levels
of some inflammatory molecules as well as improving body
weight and the lipid profile. For example, the meta-analysis
by Zhang et al. (292) studied the effects of soy isoflavone
supplementation in non-Asian postmenopausal women. They
found significant reductions in body weight (WMD: −0.515;
95% CI: −0.895 to −0.134; P = 0.008), glucose levels (WMD,
−0.189; 95% CI: −0.344 to −0.033), and fasting insulin levels
(WMD, −0.940; 95% CI: −1.721 to −0.159) with soy isoflavone
supplementation. Thus, soy isoflavone supplementation could
be beneficial for reducing body weight, and plasma glucose,
and controlling insulin levels (293). However, the recent meta-
analysis by Simental-Mendía et al. (294) did not find any
significant alteration in circulating Lp(a) (SMD: 0.08, 95% CI:
−0.05, 0.20, P = 0.228) plasma concentrations on investigating
the impact of supplementation with soy isoflavones on plasma
Lp(a) levels (294). This finding is in contrast with the findings
of previous meta-analyses reporting that soy reduced total
cholesterol and LDL-C and increased HDL-C; however, it
must be highlighted that previous meta-analyses were not
specifically performed on placebo-controlled trials that may
have reduced their robustness (294). On the other hand,
interventional studies have also investigated the relationship
between soy supplementation and its benefits on human
health. Sathyapalan et al. (103) recently evaluated the possible
influence of soy isoflavone supplementation on cardiovascular
risk markers. The study involved 200 women (mean age 55
y) with early menopause. At the end of the intervention, it
was found that soy isoflavone supplementation significantly
reduced metabolic parameters and systolic BP (P < 0.01),
thereby significantly improving cardiovascular risk markers and
calculated cardiovascular risk during early menopause compared
to soy protein without isoflavones (103). Byun et al. (105)
described the effect of Chungkookjang supplementation, a
Korean fermented soybean food with approximately 50 mg/g
of isoflavones, on body composition, dyslipemia, and risk
factors for atherosclerosis in overweight/obese subjects. After
the intervention, apolipoprotein A1 (Apo A1) was significantly
increased in the male Chungkookjang group (P < 0.05) alone.
In contrast, the women in Chungkookjang group showed a
significant decrease in the percentage of body fat (PBF), and
the lean body mass (LBM) was significantly increased (P <

0.05). Apo A1 was also significantly increased in both the
placebo and the Chungkookjang group, whereas apolipoprotein
B (Apo B) was significantly decreased in the Chungkookjang
group (P < 0.05). In addition, in the Chungkookjang group, hs-
CRP showed a tendency to decreasing and significantly differed
between the two groups (P < 0.05) (105). These results suggest
that supplementation with Chungkookjang may improve body
composition and risk factors for CVD in overweight and obese
adults. Additionally, in a similar study with Chungkookjang,
Back et al. obtained results suggesting that with this fermented
soybean food had potential anti-atherosclerotic effects that might
be more pronounced when combined with a modification
in lifestyle (106). Apart from the beneficial effects on the

improvement of CRP concentrations (104, 291) and a reduction
in subclinical atherosclerosis reported by Hodis et al. (104)
isoflavones have also been described as an anti-inflammatory
and immunomodulatory compound. Moreover, these authors
reported an average reduction of 16% (P = 0.36) in carotid
artery IMT progression in American postmenopausal women
of 45–92 years of age who were given daily doses of 25 g
soy protein containing 911mg aglycon isoflavone equivalents
or placebo for 2.7 years. On average, this group also showed
a 68% lower carotid IMT progression rate than the placebo
group (P = 0.05) (104). On the other hand, while prevention
of the onset of the disease, known as primary prevention,
is important for health, secondary prevention is also very
valuable. Indeed, Chan et al. (107) investigated the effect of an
oral isoflavone supplement on vascular endothelial function in
patients with established CVD. They performed a randomized,
double-blinded, placebo-controlled trial to determine the effects
of isoflavone supplementation vs. placebo for 12 weeks on
brachial FMD in patients with prior ischemic stroke. Isoflavone
treatment resulted in a significant decrease in serum hs-CRP
levels (treatment effect −1.7 mg/L, 95% CI −3.3 to −0.1,
P = 0.033) and a significant increase of FMD (treatment
effect 1.0%, 95% CI 0.1–2.0, P = 0.035). In addition, it was
suggested that the vasoprotective effect of isoflavones was
more pronounced in patients with more severe endothelial
dysfunction. In conclusion, this study demonstrated that 12
weeks of isoflavone treatment reduced serum hs-CRP and
improved brachial FMD in patients with clinically manifest
atherosclerosis, thereby reversing their endothelial dysfunction
status. These findings may have important implications for the
use of isoflavones in secondary prevention in patients with CVD,
in addition to conventional interventions (107).

It should also be highlighted that another important
compound related to isoflavones is considered to have anti-
atherogenic effects which seems to improve arterial stiffness
and may also prevent CHD. This compound is S-equol, a
metabolite that comes from the dietary soy isoflavone daidzein,
and it has been suggested that the production of equol from
daidzein by intestinal bacteria may produce the benefits obtained
with isoflavones (103, 295). Nonetheless, the metabolism of
daidzein differs depending on the study population. For example,
in Western countries, only 30–50% of individuals are equol
producers (103). Törmälä et al. (108) studied the effects of equol
production and soy supplementation on vascular function in
postmenopausal women under long-term use of tibolone. This
synthetic steroid is an alternative treatment for postmenopausal
symptoms, which induces a different estrogenic milieu than
estrogen and may affect vascular health. What these authors
found was that in postmenopausal tibolone users, the capacity
to produce endogenous equol was associated with favorable
vascular function. Thus, women who produce equol have
better arterial compliance and endothelial function compared to
women who do not produce equol (108).

Moreover, during the last years, many biomarkers associated
with isoflavone intake have been identified by proteome analysis.
Fuchs et al. (109) identified in vivo markers that responded
to an 8-week dietary intervention with isoflavone-enriched soy
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extract in postmenopausal women who consumed 50mg of
isoflavones/day. After the intervention, the subjects showed a
selected set of proteins responding to treatment that could be
closely linked to the genesis and progression of atherosclerotic
processes. The nature of the proteins identified suggests that soy
isoflavones may increase anti-inflammatory response in blood
mononuclear cells that might contribute to the atherosclerosis-
preventive activities of a soy-rich diet. In addition, the changes
observed in the marker proteins suggest that soy extract may
protect the fibrinolytic system (109).

Several studies including animals, cell cultures, and clinical
trials have addressed the anti-inflammatory properties of
isoflavones. Nevertheless, the mechanisms by which isoflavones
exert their potential anti-inflammatory effects still remain
unclear. A large number of meta-analyses and interventional
studies indicate that isoflavones or soy protein have no impact on
plasma lipids or proinflammatory biomarkers. On one hand, it
has been highlighted that most of these studies were not placebo-
controlled trials, thereby reducing their robustness. In addition,
the isoflavone content, the type of soy product used (soy protein),
race, genetic background, environment, lifestyle, number of
cases studied, and menopausal status are other confounding
factors that might explain the discrepancies observed in the
efficacy of isoflavones on the lipid profile or anti-inflammatory
markers. Studies in postmenopausal women have reported a
weaker effect of isoflavones because of the inability of healthy
late postmenopausal women to produce equol, which is an
active metabolite of the soy isoflavone with higher biological and
pharmacological effects than isoflavones own (296). Equol is able
to bind to estrogen receptors, lowering lipid concentrations, and
reducing atherosclerosis (297). Therefore, although isoflavones
may be used in a range of inflammatory diseases in addition
to atherosclerosis, more extensive studies are still warranted
to determine the underlying mechanisms and the potential
adverse effects of isoflavone consumption (carcinogenic and
immunosuppressive effects).

Flavonols
Several groups have reviewed the scientific evidence available
on total flavonol intake and the risk of mortality by CVD. In
2014 ameta-analysis of 13 prospective studies published byWang
et al. (288) observed a significant inverse relationship (RR= 0.89,
95% CI 0.84; 0.94), and dose-response analysis concluded that an
increment of 10mg of flavonol intake daily was associated with
a 5% reduction in CVD risk (288). This agrees with the recently
publishedmeta-analysis by Grosso et al. (285) (RR= 0.87, 95%CI
0.76, 0.99) who also found a reduction in CVD risk with flavonol
supplementation. These results, however, were not consistent
with those of the meta-analysis by Kim et al. (286) who did not
find any significant associations. On the other hand, a meta-
analysis of 18 RCTs found relevant changes in cardiovascular
biomarkers after flavonol supplementation: total-cholesterol,
LDL-C and TG were reduced, HDL-C was increased, and
fasting plasma glucose and blood pressure were also significantly
reduced (P < 0.05, all). Moreover, these modifications seemed to
be especially relevant in participants with blood lipid alterations
and studies in Asian populations (298).

Quercetin is an ubiquitous dietary flavonol (299), which
has been linked to numerous effects on health [antioxidant,
antidiabetic, anti-obesity, anticarcinogenic, anti-atherosclerotic,
antithrombotic, anti-allergic, and immune, inflammation, and
cell signaling modulating activities (300)], thereby making
it one of the most promising bioactive compounds for
atherosclerosis therapy.

Meta-analyses of RCTs involving quercetin supplementation
have shown a significant reduction of systolic and diastolic
BP (300). Moreover, a reduction in circulating CRP levels of
−0.33 m/L (95% CI −0.50, −0.15) was found in a meta-
analysis of 7 RCT published by Mohammadi-Sartang et al.
(301). These authors related significant effects to quercetin doses
> 500 mg/day in subjects with normal levels of CRP (<3
mg/L) (301). However, other meta-analyses did not observe any
significant effects of quercetin supplementation on IL-6 or TNF-α
concentrations (302) and plasma lipids (total-cholesterol, LDL-C,
HDL-C, TG) (303).

In the last years, different RCTs have been carried out of
quercetin supplementation and its possible effects on health.
Brüll et al. (110) analyzed how supplementation with 162mg of
quercetin daily affects inflammatory biomarkers in patients with
a high BMI and pre-hypertension, but they did not find any
significant changes in CRP, TNFα, leptin or adiponectin levels.
These authors also tested the acute effect 54mg of quercetin
supplementation on endothelial function and blood pressure
after 4 h and again did not observe any significant changes in
these values (304). Neither did Dower et al. (111) observe any
significant changes in vascular function biomarkers, such as
endothelin-1 and FMD. Pfeuffer et al. (112) investigated whether
the effects of quercetin supplementation on atherosclerosis
risk factors, inflammation biomarkers and oxidative stress
depend on the apolipoprotein E (APOE) genotype. They
found no association between the genotype and the effects
of quercetin but did observe a significant reduction in waist
circumference and an increase of HDL-C and TNF-α levels after
supplementation compared to placebo, P < 0.05 (112). Another
flavonol, dihydromyricetin, showed effects on glucose and lipid
metabolism in patients with non-alcoholic fatty liver disease.

On one hand, flavonols might exert their cardioprotective
effects by lowering BP, circulating LDL concentrations and
reducing intracellular reactive oxidative species (ROS), as well
as inhibiting the endothelial expression of adhesion molecules,
the expression of which is related to the inhibition of NF-
κβ and Activator protein 1 (AP-1) activation. The differences
observed among the different studies may be attributed to the
small number of participants and lack of effect of quercetin
on endothelial function (antioxidant activity). All factors are
key in the development of atherosclerosis. In addition, in vitro
and animal studies have demonstrated the anti-inflammatory
effects of quercetin at high plasma quercetin concentrations
(>1µM) (305), although some studies probably used quercetin
concentrations which were insufficient to improve biomarkers of
inflammation. Another limitation is the profile of the subjects
studied. Although the study subjects were overweight-to-obese
and had hypertension or MetS, they were metabolically healthy
(excluding T2DM), limiting a further reduction of parameters
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such as glucose, hs-CRP, and hs-TNFα which were already low
at baseline. Another possible limitation is the supplementation
period (<3 weeks), which may be insufficient to observe
changes in markers of systemic inflammation and adiposity, both
associated with inflammation. The collection of blood 8–12 h
after quercentin intake may exert an acute effect at different sites
of action and at a cellular level, might being able to twek and
may have influenced its real effect on proinflammatory markers.
Quercetin might not exert any effect on endothelial function
because of a lack of antioxidant activity and oxidative stress.
Finally, the different physiology of the species studied (humans
and animals), as well as the different levels of inflammatory
status might explain the different results obtained in the studies
carried out. In addition, many RCTs use an enriched mixture of
flavonols and a possible interaction with other phytochemicals
and nutrients may explain the effects observed. Nonetheless,
potential interactions with other phytochemicals and nutrients
might be resolved using pure flavonols. Therefore, more RCTs
are necessary to know the role of quercetin in atherosclerosis, and
more specifically, its effects on inflammatory biomarkers.

Other Flavonoids
The main dietary sources of flavan-3-ols (flavanols) are green
tea, cocoa and berries. Flavan-3-ols have been associated with
a reduction in the risk of all-cause mortality (285) and a
lower mortality by CVD (285, 286, 288). A recently published
Cochrane meta-analysis reported an association between flavan-
3-ols from chocolate or cocoa products and a slight reduction
in BP of 2 mmHg in healthy adults (-systolic BP: −1.76
mmHg, 95% CI: −3.09, −0.43 and diastolic BP: −1.76 mmHg,
95% CI: −2.57, −0.94). However, the authors highlighted the
relevance of baseline BP, since pre-hypertensive participants
seemed to present a higher response to cocoa flavan-3-ols than
normotensive subjects (306). Another meta-analysis of 19 RCTs
on cocoa flavan-3-ols found significant effects on inflammation
and oxidative stress biomarkers: CRP (WMD: −0.83 mg/dL,
95% CI: −0.88, −0.77), VCAM-1 (WMD: 85.6 mg/mL, 95% CI:
16.0, 155), lipid metabolism (TG, HDL-C), and insulin resistance
modulation (fasting insulin, HOMA-IR, QUICKI, quantitative
insulin sensitivity check index, and the insulin sensitivity index,
ISI) (307). A previous meta-analysis also found a modulation in
HOMA-IR, and moreover, reported an improvement in FMD
(1.43%; 95% CI: 1.00%, 1.68%) (308).

Catechins are the main flavan-3-ol present in green tea.
A meta-analysis published by Khalesi et al. (309) found that
green tea catechin intake was significantly associated with a
reduction in BP (systolic BP −2.05 mmHg, 95% CI −3.06,
−1.05 and diastolic BP −1.71 mmHg, 95% CI −2.86, −0.56)
and plasma lipid modulation (total-cholesterol −0.15 mmol/L,
95 % CI −0.27, −0.02, LDL-C −0.16 mmol/L, 95 % CI −0.2,
−0.09). Moreover, analysis by subgroups indicated that higher
BP reductions were associated with green tea catechin intake
<500 mg/day.

On the other hand, a recent RCT published by Huang et al.
(113) found that supplementation of 856.8mg of epigallocatechin
gallate (EGCG) to daily green tea extract intake over 6 weeks
was associated with a significant increase of leptin levels of

+25.7% (P < 0.048) and with decrease of LDL-C levels
of 4.8% (113). Venkatakrishnan et al. (114) also observed
significant reductions in LDL-C after 12 weeks of daily intake
of catechin-enriched green tea or catechin-enriched oolong tea
in mildly hypercholesterolemic subjects. Along with a reduction
in total-cholesterol and TG, improvements were observed in
antioxidant capacity [increased LDL oxidation lag time, SOD,
GPx and catalase activity (CAT)] and oxidative indices (trolox
equivalent antioxidant capacity, TEAC, glutathione, GSH and
lipid peroxidation products reduction) as well as a significant
reduction in weight, BMI and body fat (P < 0.05, all). In
contrast, Saarenhovi et al. (115) did not observe significant
changes in FMD, NMD, biochemical parameters (plasma fasting
glucose and plasma lipids) or inflammatory biomarkers, adhesion
molecules or coagulationmarkers [asymmetric dimethylarginine,
ADMA, CRP, sE-selectin, von Willebrand factor (vWf), sICAM-
1, sVCAM-1, PAI-1, CRP] after 4-weeks of supplementation
with an apple polyphenol extract rich in epicatechin and flavan-
3-ol oligomers. However, in a 1-year intervention RCT with
green tea extract supplementation (including 843mg of EGCG),
Samavat et al. (116) observed that serum lipids were significantly
modified in postmenopausal women: total-cholesterol decreased
2.1%, LDL-C 4.1% and non-HDL cholesterol 3.1% (P < 0.05,
all). Nonetheless, HDL-C did not change after supplementation
and TG concentrations increased (P = 0.046). Moreover, sub-
analysis of the data found that the reduction in total cholesterol
was especially relevant in women with high baseline total
cholesterol levels (P-interaction= 0.01) (116), and fasting insulin
concentrations also showed the same pattern, with the levels
being significantly reduced in supplemented women with high
baseline fasting glucose concentrations (117).

Flavanone intake has also been inversely related to a lower
risk of all-cause mortality and to mortality by CVD (285, 288).
One of the most relevant flavonones is hesperidin, an antioxidant
compound that can be obtained from citrus fruit such as oranges
or lemons. It has been related to effects over inflammatory
biomarkers and blood pressure.

Recently, Homayouni et al. (118) observed that 500 mg/day
of hesperidin supplementation in T2DM patients was related
to anti-inflammatory effects in the short term (IL-6, TNF-
α, hs-CRP reductions, P < 0.05) as well as a significant
increase in the total antioxidant capacity in serum (13.4%
± 19.2) and a reduction in mean arterial BP of 2.5% ±

4.6. These authors also found a reduction in froctosamine
(−10.10% ± 16.84), a constant biomarker of glucose level, and
in hydroxydeoxyguanosine (8-OHDG) levels, a biomarker of
DNA damage (P < 0.05, both). However, another similar study
evaluating the effect of hesperidin supplementation (450 mg/day
for 6-weeks) in volunteers with overweight or obesity found
no significant improvement at an endothelial level. Only the
adhesion molecules, VCAM-1 and sICAM-1, showed a tendency
to diminish (P = 0.052 and P = 0.056, respectively). Moreover,
no significant changes were observed in BP, plasma lipids,
glucose parameters or FMD (120). However, it was observed
that participants with FMD ≥ 3% showed better response to
hesperidin supplementation with a reduction in VCAM-1 and
sICAM-1 levels (P < 0.05) (120).
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The lack of a significant effect of other flavonoids on
atherosclerosis progression is unclear. Pharmacokinetic studies
on different types of flavonoids are necessary to evaluate their
possible acute biological effects and to obtain information on the
best timing of FMD measurements after the administration of
flavonoids. In addition, the discrepancies observed might be due
to the different doses or composition of the flavonoids studied.
New studies are needed to determine themost adequate dose, and
studies on acute and long-term effects are also of interest. Other
parameters such as age, sex, possible associated pathologies or
grade of absorption of these flavonoids should also be considered
in futures studies.

CONCLUSIONS

The prevention of CVD is currently one of the greatest medical
challenges at a global level. These diseases are associated with
important morbidity and mortality, and thus, tools to aid in
the prevention of CVD are key for the future. In this sense,
there is growing evidence that a wide range of supplemental
compounds have been related to the prevention of atherosclerosis
or a slowing of further deterioration. Some of these compounds
have been widely studied, such as vitamins, while others are
new potential candidates which need to be investigated. Their
mechanisms of action are diverse, producing effects at different
levels, modulating inflammatory response, controlling oxidative
stress, and stimulating or repressing key gene expression, among
others. Nevertheless, to the date, several of these compounds
lack scientific evidence to support their possible benefits in
cardiovascular health (vitamin C, CoQ10, omega 6, stilbenes,
flavonoids, among others).

Food supplements may be a good alternative for the
prevention and treatment of atherosclerosis. Nevertheless, the
lack of conclusive results about effectiveness of supplements on
CVD, make more research in this field necessary.

One of the major challenges of immunonutrient
supplementation is to identify the possible cardioprotective
effects associated with the intake of a specific supplement
with determined properties or in combination with
other phytochemicals, or even in combination with other
pharmaceutical therapies, in order to study the possible
additional or synergistic benefits incurred and potential
greater effectiveness. Therefore, robust, well-designed RCTs
are needed to achieve greater evidence and to evaluate the
effectiveness of supplementation and avoid bias, since the studies
available have several limitations. Several strategies should be
followed. On one hand, the study population should be well
defined, focusing on the prevention of atherosclerosis and

the participants should be individuals at high risk, albeit free,
of CVD or should be diagnosed with previously established
atherosclerosis in order to study secondary prevention. In
both cases, the search for new biomarkers able to predict
atherosclerosis linked to atherosclerosis regression or the use
of new imaging techniques could be key in the design of these
clinical trials. In addition, other parameters which should be
controlled include the identification of more accurate oxidative
biomarkers, and interindividual variation in the response to
antioxidants (smoking, obesity, hypercholesterolemia, diabetes,
elderly individuals, etc.) should be considered.

On the other hand, in many clinical trials the dose of the
supplements studied is a clear limitation. The supplements
administered often show no beneficial effect because the dose
used is insufficient to observe any effect, and therefore, the dose
administered should be physiologically relevant to humans (very
high doses). In addition, it is essential that the composition
and dose of the supplement studied as well as the length
of supplementation, and interference or competition between
phytochemicals be consistent to reduce the significant level
of discrepancies among studies. More in depth knowledge
of the absorption and bioavailability process, pharmacokinetic
activity and the mechanisms underlying supplement absorption
is required.

Further long-term RCTs are needed to fully evaluate the
role of immunonutrient supplementation and its effect on anti-
inflammatory response in atherosclerotic disease and determine
the possible molecular mechanisms involved in the protective
action of these supplements to develop new therapeutic
approaches in the prevention of atherosclerosis.
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Neuronal dysfunction initiates several intracellular signaling cascades to release different

proinflammatory cytokines and chemokines, as well as various reactive oxygen

species. In addition to neurons, microglia, and astrocytes are also affected by this

signaling cascade. This release can either be helpful, neutral or detrimental for cell

survival. Toll-like receptors (TLRs) activate and signal their downstream pathway to

activate NF-κB and pro-IL-1β, both of which are responsible for neuroinflammation

and linked to the pathogenesis of different age-related neurological conditions.

However, herein, recent aspects of polyphenols in the treatment of neurodegenerative

diseases are assessed, with a focus on TLR regulation by polyphenols. Different

polyphenol classes, including flavonoids, phenolic acids, phenolic alcohols, stilbenes,

and lignans can potentially target TLR signaling in a distinct pathway. Further,

some polyphenols can suppress overexpression of inflammatory mediators through

TLR4/NF-κB/STAT signaling intervention, while others can reduce neuronal apoptosis

via modulating the TLR4/MyD88/NF-κB-pathway in microglia/macrophages. Indeed,

neurodegeneration etiology is complex and yet to be completely understood, it may be

that targeting TLRs could reveal a number of molecular and pharmacological aspects

related to neurodegenerative diseases. Thus, activating TLR signaling modulation

via natural resources could provide new therapeutic potentiality in the treatment

of neurodegeneration.

Keywords: polyphenols, MyD88, Toll-like receptor, NF-κB, neurodegenerative disease, inflammasome

INTRODUCTION

Polyphenols are secondary metabolites of plants and serve to protect against a variety of pathogens,
as well as ultraviolet damage. This phytochemical class of compounds also has a potential role
in different oxidative stress-induced complications, such as cardiovascular disease, cancer and
neurodegenerative diseases (1). Thus, a regular diet comprising frequent intake of polyphenol
derivatives has been found to lower the risk of deposition of low-density lipoprotein (LDL),
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preventing endothelial coagulation and hindering atherosclerosis
(2–5). Polyphenols are available in different kinds of fruits,
vegetables or herbs and act as micronutrients. Approximately
8,000 or more members of this phytochemical group have
been identified, and they originate from either phenylalanine or
shikimic acid with a common phenolic group in their structural
ring (6). Primarily, their classification includes phenolic acid,
flavonoids, stilbenes and lignans (6).

However, aging and age-linked neurological complications
are frequently observed and reaching epidemic levels due to
day-by-day environmental or lifestyle modifications. At >60
years of age, different regions of the brain progressively
and slowly lose cells due to the overexpression of cytokines,
chemokines and neurotoxicity. This pathologic condition is
featured by neurodegenerative diseases, such as Alzheimer’s
diseases (AD), Parkinson’s disease (PD), multiple sclerosis (MS),
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS) (7, 8). Several etiologies of such neurodegeneration are
commonly associated with oxidative stress, neuroinflammation,
mitochondrial dysfunction, protein aggregations and apoptotic
factor activations (7). As such, researchers have attempted
to understand the associated pathogenesis in this regard and
to develop treatments; however, current approaches are not
particularly promising and only symptomatic because in most
neurodegenerative diseases, symptoms appear later. Thus, early
preventive measures can interfere with disease progression and
decrease suffering. One promising preventive attempt may be the
inclusion of polyphenols in the regular diet, an approach that
can reduce oxidative stress. The phenolic group of polyphenols
interrupt the incessant oxidation in the cell by accepting an
electron and forming a stable phenoxyl structure that breaks the
formation of reactive oxygen species (ROS) (9). Thus, this group
increases plasma antioxidant capacity, consequently reducing
lymphocytic DNA damage, protecting cell components from
degeneration (6, 10) and reducing the risk of oxidative stress-
induced degenerative disorders.Moreover, polyphenols stimulate
the Nrf2/ARE signaling pathway to enhance endogenous
antioxidant component synthesis. This class of compounds also
has the potential to modulate NF-κB-promoted neuroprotective
activity (11).

Microglial cells and astrocytes are the primary sources
of ROS. Microglial activation triggers neurodegeneration by

Abbreviations: ND, neurodegenerative diseases; AD, Alzheimer disease; PD,

Parkinson disease; MS, multiple sclerosis; HD, Huntington disease; ALS,

amyotrophic lateral sclerosis; CD40L, cluster of differentiation 40 ligand;

SIRT1, silent mating type information regulation 2 homolog 1; SN, substantia

nigra; JTF, c-Jun transcription factors; GPx, glutathione peroxidase; GSK-3β,

glycogen synthase kinase 3β; CREB, cAMP response element binding proteins;

TSG, 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside; Nrf2, nuclear factor-2;

HMGB1, high mobility group box 1 protein; PAMPs, pathogen-associated

molecular patterns; DAMPs, damage-associated molecular patterns; PRRs, pattern

recognition receptors; MyD88, myeloid differentiation factor 88; IRF3, interferon

regulatory factor 3; TRIF, TIR-domain-containing adaptor-inducing interferon-γ;

TRAM, TRIF-related adaptor molecule; IFN, type-I interferon; IKKs, IκB kinase;

NPC, neural precursor cells; EGCG, epigallocatechin gallate; IRAK4, interleukin-

1 receptor-associated kinase-4; TRAF6, TNF receptor-associated factor-6; MKK4,

mitogen-activated protein kinase; kinase-4 IKKα/β, IκK kinase α/β; JNK, c-Jun

N-terminal kinase; IRF3/7, interferon regulatory factor-3/7.

activating and hypersecreting excitotoxic neurotransmitters
that reduce ATP and growth factors in injured neurons (12).
In that case, a potential anti-oxidant, such as polyphenols, may
provide neuroprotection by inhibiting ROS generation and
reducing auto-inflammatory responses. Therefore, polyphenols
can act as both anti- and pro-oxidants, depending on their
highly specific structure and cellular redox context, which may
include either increased oxidant scavenging proteins or reduced
oxidized proteins. For example, EGCG (Epigallocatechin
gallate) improves mitochondrial function via antioxidative
action (13). Besides polyphenols’ ROS-scavenging ability,
metal chelation and enzyme regulation also forms part of
the mechanism of antioxidative action (14). Additionally,
polyphenols can modulate the important pathogenesis of ND
with its pleiotropic activity, including antioxidant properties.
For example, polyphenols can modulate the NF-κB-mediated
pathway to provide neuroprotection. In addition, polyphenols
attenuate cognitive impairment, Aβ-aggregation and pro-
inflammatory cytokines (15). While the actions of cytokines are
well-known, including their inhibition exerting neuroprotection,
in some cases, inhibition may exacerbate neuronal damage
(16–18). Cytokine response in the CNS requires activation
through a specific motion, while TLRs, as a part of the
innate immune system, also regulate cytokine responses in
the CNS. Therefore, this review aims to provide insight into
natural compound-based TLR signaling intervention toward
inflammatory cytokine overexpression, a process that may
impact future neurodegeneration therapy.

Polyphenols: Overview on Bioavailability
and Permeability Through BBB
Naturally occurring polyphenols include four major classes:
flavonoids, phenolic acid, stilbenes and lignans, with each
member being further divided into different subgroups.
Among these compounds, the flavonoids are the most
comprehensive group, with a structural backbone of C6-
C3-C6 and that contain an oxygenated heterocycle (19).
Flavonoids are further sub-divided into 14 groups, including
flavones, dihydroflavones, isoflavones and anthocyanidines (20).
However, the pharmacological activity of different polyphenols
depends on their affinity toward a complex formation with
other groups, such as alcohols, acids or sugar, as well as their
bioavailability (21).

The bioavailability of polyphenols widely differs from person
to person due to the glycosylation pattern and degree of
polymerisation. Because natural polyphenols often exist as esters,
polymers or glycosylated forms, they need to go through
hydrolyzation for absorption. In that case, gut microflora would
help by the deglycosylation, dehydroxylation, and demethylation
of polyphenols (22). For example, flavonoids are the most poorly
absorbed glycosides that require deglycosylation in the small
intestine by β-glucosidases enzymes to convert into aglycones
and then be absorbed. The availability of aglycones in the
circulation also differs due to the Phase I and II metabolism of
oxidized and conjugated flavonoids (22, 23).
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Absorption and bioavailability of polyphenols is also affected
by biotransformation. For example, curcumin, after ingestion by
mice, was detected in plasma within 15min as dihydrocurcumin.
However, at 1 h, it peaks as tetrahydrocurcumin and at 6 h,
curcumin decreases as monoglucuronide (24). Another study
detected trace amounts of curcumin and its metabolites in
the circulation and organs of healthy humans, which showed
a low impact on the modulation of chemotherapy-induced
apoptosis (25). On the other hand, resveratrol transformed into
glucuronoids and sulfates within 15min of oral consumption and
circulated for more than 9 h with a bioavailability of 1% following
metabolism (26). Further, other dietary components, such as
carbohydrate, protein, fats, and alcohols also affect absorption
and the bioavailability of polyphenols. Fats in the diet enhance
polyphenol absorption, while serum albumin potentiates cellular
uptake and delays elimination.

Due to poor absorptivity, rapid metabolism and elimination,
polyphenols have highly selective permeability across the blood-
brain barrier (BBB) that limits their bioavailability in the CNS
as well as their therapeutic efficacy. Although polyphenols can
alter brain function through improving cerebral blood flow
(27), changing multidrug-resistant protein-dependent influx and
efflux mechanisms (28, 29) and direct modification of neuronal
and glial activities, to exert these activities, they must also move
inside the CNS and at an effective concentration. The BBB,
in that case, is the critical regulator, which controls the entry
and retention of nutraceuticals in the brain. There are several
transport systems at the BBB, and some are particularly specific
to allow nutrients, such as amino acids, glucose, vitamins and
iron, for both influx and efflux into the brain. The same principle
also applies for polyphenols to enter into the brain. However,
due to their variability in stereochemistry and interaction affinity
with efflux transporters, such as P-glycoprotein (PGP) at the BBB,
their availability in the brain also differs (30). One flavonoid—
naringin—has been detected at an effective concentration in the
rat brain when co-administered with PGP inhibitors, but on
peripheral administration it was undetected (31).

Permeability through the BBB may also vary due to the
degree of lipophilicity. In that case, less polar polyphenols or
their metabolites have increased permeability into the brain
compared to more polar ones (32). For instance, quercetin-
3-O-glucuronide, a red wine metabolite, was detected at
substantial levels in the Tg2576 AD mice brain after chronic
oral administration. That resulted in a significant decrease in Aβ

generation and toxicity, consequently improving hippocampus-
associated synaptic deficits (33).

The form of administration is also crucial to improve
polyphenol bioavailability. Co-administration of α-tocopherol
with EGCG, quercetin and rutin in the diet synergizes quercetin
transport through the BBB but not the EGCG. Curcumin may
provide a particularly suitable example for understanding the
limitations to achieve therapeutic potential in vivo because
its bioavailability is insufficient; thus, several delivery systems,
such as nanoparticles, liposomes and micelles failed to improve
its bioavailability (34). Hence, co-administration with piperine
increased curcumin concentrations in the brain at 48 h compared
to the kidney (5.87 vs. 1.16mg) (35). On the other hand,

oxyresveratrol improved protection against 6-OHDA better than
resveratrol because it is BBB permeable and water soluble
(36). Similarly, bioavailability of EGCG has been improved
by using it in a pro-drug form [fully acetylated EGCG
(pEGCG)], as well as when tested on 6-OHDA induced SH-SY5Y
neuroblastoma cells. The results demonstrated an improved
protection by pEGCG more than EGCG, most likely due to the
activation of the Akt pathway and reduced caspase-3 activity
(37). As such, improvisation in administration strategy would
improve the pharmacotherapeutic potentiality of polyphenols
for neurodegeneration.

Polyphenols: Signaling Interference
for Neuroprotection
The most common pathological feature of AD progression is Aβ-
aggregation. Several reports suggest that different polyphenols
are involved in the amelioration of AD by reducing Aβ-plaques.
For example, some in vivo studies report that tea polyphenol can
inhibit acetylcholinesterase as well as Aβ-aggregation (38, 39).
Similarly, polyphenols extracted from grape seeds significantly
attenuated oligomerized Aβ-peptide and neutralized tau protein
folding to recover from cognitive dysfunction, both in vitro
and in vivo (40–45). In a transgenic mouse model, tannic
acid reduced Aβ-deposition via lowering β-carboxyl terminal
amyloid precursor protein cleavage and controlling neuronal
inflammation (46), while 7, 8-dihydroxyflavone activates TR-
KB (tyrosine receptor kinase B) and reduces β-secretase enzyme
during Aβ-synthesis (47), thus demonstrating recover memory
in an AD model. However, a study of rutin on SH-SY5Y
neuroblastoma cells revealed a substantial decline in oxidative
stress, glutathione disulfide formation and cytokines, such as
TNF-α and IL-1β (48). Luteolin also showed a similar effect
by attenuating microglial activation in an LPS-induced primary
neuron-glia study (Table 1) (51).

In a study using SH-SY5Y cells, oxyresveratrol (36) enhanced
the SIRT1 (silent mating type information regulation 2 homolog
1) gene and downregulated caspase-3, JNK and JTF (c-Jun
transcription factors) to reduce neuronal damage. Similar
neuroprotective action was demonstrated using ferulic acid
via JNK pathway downregulation in an ischemia/reperfusion-
induced mice model (62). In contrast, quercetin protects
neurons by stimulating glutathione peroxidase (GPx), superoxide
dismutase (SOD), Na (+), and K (+) -ATPase (62) and
suppresses apoptosis in an in vitro PD model. Furthermore, it
also reduced dopaminergic cell loss in rat striatum (Table 1)
(54). Other polyphenols, such as baicalein, kaempferol, caffeic
acid, and EGCG (52, 63–65) also revealed neuroprotective
action in PD, both in vitro and in an animal model
study. For example, mulberry fruit extracts modulated Bcl-2,
caspase-3 and Bax, and showed an anti-apoptotic effect in an
experiment on SH-SY5Y cells (66). Resveratrol was reported
to have significant therapeutic value to activate SIRT1 in
brown adipose tissue in a study on an N171-82Q transgenic
mouse model for HD (63). Also, using an encephalomyelitis
mouse model, resveratrol was found to inhibit neural loss
without inducing immunosuppression (67). Juglanin, a flavonol
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TABLE 1 | Effect of different polyphenols in various neurodegenerative models (49).

Different type and

dose of polyphenols

Dose and mode of

administration

Model used Results obtained References

Apigenin 10µM and 20 mg/kg; oral

gavage

BV-2 microglial cell and ischemic

mice

Suppressing p38 mitogen-activated protein kinase

(MAPK), c-Jun N-terminal kinase (JNK) phosphorylation

(50)

Luteolin 5µM LPS-induced primary neuron-glia Attenuated microglial activation and overproduction of

TNF-α, NO and superoxide

(51)

Kaemferol 30µM Rotenone-induced SH-SY5Y cell

and primary neuron

Enhanced mitochondrial output by autophagy (52)

Myricetin 10−9 mol/L MPP+-treated MES23.5 cells Attenuate cell loss, intracellular ROS, and

phosphorylation of MAPK kinase 4 and JNK

(53)

Quercetin 25–75 mg/kg; i.p Rotenone-induced rats Reducing dopaminergic cell loss in striatum (54)

Catechin 10–30 mg/kg; i.p 6-OHDA-lesioned rats Improved locomotor activity and rotational behavior, and

increased dopamine content

(55)

Naringenin 80µM and 70 mg/kg; oral

gavage

6-OHDA-induced SH-SY5Y cell

and mice

Increased Nrf2 protein and protect nigrostriatal

dopaminergic neuron in neurodegeneration

(56)

Theaflavin 10 mg/kg; oral gavage MPTP-induced mice Reducing oxidative stress and improving motor function

and dopaminergic expression in striatum and substantia

nigra

(57)

Silymarin 1–10 µg/kg; i.v. CI/Required-induced rat, stroke

model

Ameliorate oxidative and nitrosative stresses and

inflammation-mediated tissue injury impeding activation

of proinflammatory transcription factors NF-κB and

STAT-1

(58)

Juglanin 10–30 mg/kg; i.p. LPS-induced C57B/L6 PD mice Betterment of neuroinflammation-related memory

impairment via interfering with TLR4/NF-κB signaling

(59)

Rutin 2–20µM AD model using SH-SY5Y

neuroblastoma cells

Modulates production of proinflammatory cytokines by

decreasing TNF-α and IL-1β

(48)

7, 8-dihydroxyflavone 5 mg/kg; i.p. 5XFAD mice of AD model TrkB activation and improved AD-associated memory

deficits; reductions in BACE1 expression and

Aβ-aggregation

(47)

Xanthohumol 0.2 and 0.4 mg/kg; i.p. MCAO-induced ischemic rats Inhibits inflammatory responses via HIF-1α, iNOS

expression reduction, and reduced apoptosis through

impeding TNF-α, active caspase-3

(60)

Fisetin 50 mg/kg; i.p. MCAO-induced ischemic mice Protected brain tissue against ischemic reperfusion

injury; inhibited infiltration of macrophages and dendritic

cells into ischemic hemisphere; suppressed TNFα

production

(61)

CI/R, cerebral ischemic/reperfusion; MCAO, middle cerebral artery occlusion.

derivative, in LPS-induced C57B/L6 mice potentially modulated
IL-1β and TNF-α, and ameliorated neuroinflammation-related
memory impairment, and neurodegeneration through impeding
TLR4/NF-κB (59).

Dietary polyphenols modulate the NF-κB inflammatory
pathway and attenuate Aβ-toxicity. Different flavonoids, such
as quercetin, apigenin, and luteolin have been reported to
suppress the NF-κB-pathway and result in inhibition of
Aβ (68). Moreover, the isoflavone extracted from soybean
reduced memory impairment in a neurodegenerative rat model
via blocking NF-κB expression (69), while resveratrol and
baicalin attenuated Aβ-induced neuronal inflammation through
downregulating NF-κB signaling (70, 71). Thus, NF-κB is
important not only in inflammation, but also for cell death events
in cerebral ischemic injury. Silymarin, a flavonoid derivative, has
been shown to protect against cerebral ischemia by inhibitingNF-
κB and STAT-1 (signal transducer and activating transcription-
1) activation in cerebral ischemic/reperfusion-induced rats,

in a dose-dependent manner (1–10 µg/kg, i.v.) (58, 72).
Apigenin also provided a significant neuroprotective effect in an
ischemic mice model via suppressing JNK phosphorylation (50),
whereas 20 mg/kg of apigenin reduced cerebral infarct volume
significantly (Table 1).

Similarly, 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside
(TSG) of Polygonum multiflorum provides neuroprotection in
cerebral ischemia by inhibiting NF-κB-signaling and activating
SIRT1 (41, 73). Quercetin also inhibits NF-κB to protect the
brain from oxidative stress or hypoxic damage (74), and a
similar effect was demonstrated by catechin hydrate, baicalin,
and fisetin (Table 1). Moreover, these phytochemicals were
also found to inhibit IL-1β and TNF-α proinflammatory
cytokine expression (61, 75, 76). Catechin also improved
locomotion and increased dopamine in a 6-OHDA-lesioned
rat (55). Continual investigation of polyphenols confirms their
role as immunomodulatory agents because they can control
inflammatory stimuli via downregulating NF-κB expression (46).

Frontiers in Immunology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 1000195

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Azam et al. Polyphenols Intervening Toll-Like Receptor Signaling

However, resveratrol demonstrated increasing Nrf2 (nuclear
factor-2) expression. The Nrf2-pathway is involved in p53
gene expression, which leads to antioxidant protein encoding
(46, 77). Further, resveratrol increases HO-1 (heme oxygenase-
1) expression and downregulates the caspase-3 apoptotic
enzyme (78). Similarly, protective action was also revealed
by epicatechin in stroke and oxidative stress via upregulating
Nrf2 (79). Additionally, a prenylated chalcone, xanthohumol,
inhibits theHIF-1 (hypoxia-inducible factors-1) pathway, leading
to neuroprotection (Table 1) (60). In a 6-OHDA-induced
SH-SY5Y cell study, naringenin increased Nrf2 to protect
dopaminergic neurons, while also providing the same effect in
a neurodegenerative mice model as well (56).

Toll-Like Receptors: Signaling and
Expression in CNS
Toll-like receptors (TLRs) were first identified in the protein
content in Drosophila. Later, their importance in providing
innate immunity against microbial infection was recognized (80),
and within the family, TLR4 is the first identified mammalian
homolog. Unlike adaptive immunity, innate immunity is the first
line of defense against anonymous pathogenic invasion, relying
on molecular determinant sensing of, for example, pathogen-
associated molecular patterns (PAMPs) (81–84). TLRs are a
member of the pattern recognition receptor (PRR) group, a large
group that includes both intracellular and extracellular receptor
families, and sense PAMPs or DAMPs (damage-associated
molecular patterns). TLR members are mostly expressed in
microglia rather than astrocytes and neurons. However, in certain
conditions, some members are expressed in astrocytes and a
few in neurons, such as viral- or LPS-induced N9 microglia
expressing TLR2 and differentiating astrocytes expressing TLR7
(85). Likewise, TLR4, although expressed in microglia often, are
also produced in astrocytes and neurons in response to bacterial
LPS (Table 2) (87, 88).

A recent study suggests that increased TLR expression in the
neuron can be or is probably linked with different physiological
and pathological conditions. Analysis of a teratoma-forming cell
line NT-2 (Human NTera2) found mRNA expression for TLR1,
2, 3, and 4; mRNA expression of TLR1-9 and protein expression

TABLE 2 | Expression of different Toll-like receptors in the nervous system.

Toll-like receptors Microglia Astrocyte Neuron

TLR1 + – –

TLR2 + + –

TLR3 + – +

TLR4 + + +

TLR5 + – –

TLR6 + – –

TLR7 + – +

TLR8 + – +

TLR9 + + +

“+,” expressed; “–,” expression not detected (86).

for 2-4 from rat primary neuronal cells was also evident (89–91).
Additionally, an in vivo study on murine mice showed mRNA
expression of TLR1-8 (92) and the neuronal expression of TLR2
and 6, as well as in pathogenic conditions, such as parasitic
infection, TLR2, 4 and 6–8 were expressed (92). Some researchers
have found that both human and rat inflammatory neurons co-
express TLR4 and CD14, a result which may be due to LPS action
through TLR4/CD14 complex formation (93). However, TLR3
can be expressed in both central and peripheral neurons (94).

TLR signaling is complex and depends on other protein and
co-receptor pathway activation. Most members depend on the
MyD88 (myeloid differentiation factor 88) pathway, except for
TLR3 and TLR4. Both of them are unique in their functionality
to activate IRF3 (interferon regulatory factor 3). For example,
TLR4 activation through the MyD88-independent pathway also
activates and recruits TRIF (TIR-domain-containing adaptor-
inducing interferon-γ) and TRAM (TRIF-related adaptor
molecule). Further, the signal cascade activates NF-κB and IRF3,
and initiates IFN (type-I interferon) production. TLR3 activates
through a TRIF-dependent pathway that recruits IKKs (IκB
kinase), TBK1, and IKKε to begin activation of IRF3, and releases
type-I IFN into vesicles (Figure 1) (91, 95). This pathway also
activates IRF2 via phosphatidylinositol 3-kinase and AKT (91,
96). Other members, such as TLR7, 8 and 9, can also activate
type-I IFN through a MyD88-dependent pathway (Figure 1).

Different descriptions in the above figure indicate that TLR2
and 4 affect neuronal differentiation and both are expressed in
adult neural stem cells (97). Indeed, TLR4’s absence enhances
proliferation and neuronal differentiation, while the lack of
TLR2 damages hippocampal neurogenesis (98). Both TLR2 and
4 modulate the cell fate of neuronal progenitors (91) via MyD88
and NF-κB signaling (Figure 1). However, NF-κB-dependent
TLR signaling in neuronal cells is highly specific and their
signaling in differentiated neurons has yet to be determined.

Furthermore, with respect to TLRs along with NOD-like
receptor (NLRs) signals for inflammasome activation, both are
almost identical in their structure and have similarities in
the component and signaling pathways. However, following
inflammasome activation, caspase-1 signaling cascade also
becomes involved and mature IL-1β is released into extracellular
vesicles. TLR activation by various ligands also leads to the
recruitment of downstream pathway signaling via the MyD88
adaptor and activates NF-κB, which expresses the 31-kDa inactive
precursor pro-IL-1β, in the cytosol. Meanwhile, inflammasome
activates caspase-1 as an inactive 45-kDa zymogen, which is later
catalyzed and activates. Thus, this compound comprises p20 and
p10 subunits, both of which are assembled into a heterotetramer.
The active caspase-1 cleaves pro-IL-1β and transforms into a 17-
kDa biologically active IL-1β. Similarly, caspase-1 also cleaves
pro-IL18, which unlike pro-IL-1β, is constitutively expressed
(99, 100).

TLRs: Intricate Role in
Neurodegenerative Diseases
A number of studies on inflammatory markers have
demonstrated the involvement of TLRs in aging-related
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FIGURE 1 | Cell surface and endosomal signaling pathway of TLRs. TLR4, TLR5, and heterodimers TLR1/2 and TLR2/6 sense bacterial invasion and initiate

intracellular TLR-signaling pathway. Following the activation, each of them recruits several adaptors in the cytoplasm and activate MyD88-downstream. That means

the activation of IRAK4 and phosphoryl IRAK1 that then bind to TRAF6 (not shown). TRAF6 then recruit MKK4 and IKKα/β pathway, where MKK4 initiate JNK and

activate c-FOS and JUN, and push into the nucleus. While IKKα/β activates NFκB and its pro-inflammatory subunits and moves into the nucleus, similarly, endosomal

TLRs (TLR3, 7–9) triggers the NFκB and MAPK pathways via involving MyD88 and IRAK4. Additionally, TLR3, MyD88 independently, recruit TRIF-pathway leading to

the phosphorylation and dimerization of IRF7. Both, surface and endosomal pathway ultimately result in a production of type I interferon and release of

proinflammatory cytokines. MyD88, myeloid Differentiation primary response 88; IRAK4, interleukin-1 receptor-associated kinase-4; TRAF6, TNF receptor-associated

factor-6; MKK4, mitogen-activated protein kinase kinase-4; IKKα/β, IκK kinase; JNK, c-Jun N-terminal kinase; TIRF, TIR-domain-containing adapter-inducing

interferon-β; IRF3/7, interferon regulatory factor-3/7.

neurodegenerative disorders, such as AD, ischemic strokes
and multiple sclerosis. With age, the brain’s pro-inflammatory
gene transcription upregulates; therefore, TLR transcription
levels change and participate in age-linked neurodegeneration.
Moreover, they are also involved in brain trauma following
injury, where glial cells activate and express different cytokines
and chemokines near the injury area. In a mouse model of
brain injury, TLR2 was found upregulated by microglia in the
hippocampus zone. In contrast, TLR2 deficits reduce microglial
activation, cytokine and chemokine expression (101, 102).

TLR4 is also profoundly involved in the glial cell expression
and activation of NF-κB, as well as initiation of inflammatory
cytokines, such as TNF-α, IL-1β, and IL-6 production in
the brain in different injured animal models (103–106).
Both TLR2 and 4 signaling are involved in the activation
of glial cells and other inflammatory cytokines and are

responsible for inflammation in the injured brain (107).
However, in glioma—a glial cell tumor—TLR9 is expressed
significantly and was found to be beneficial in a clinical study
(Figure 2) (109–111).

TLR Involvement in AD

The most common pathophysiology of AD, an age-related
neurodegenerative disorder, is the deposition of Aβ-plaques in
the hippocampal region of the brain. Several AD model studies
have also discussed the involvement of TLRs. For example,
a survey showed significant TLR4 expression in glial cells
surrounded by Aβ-plaques (112–114), with TLR4 polymorphism
being proposed to have a protective role in AD (113, 115).
Although the effects of TLR4-knockout on behavior or disease
progression are yet to be documented, microglia-mediated TLR4
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FIGURE 2 | TLRs-signaling in microglial cells in different neurodegenerative disease progression. Abnormal amyloid deposition in different neurodegenerative diseases

may activate microglial cells through TLRs. Microglial activation may lead to further neuronal damage through secretion of proinflammatory cytokines (red), such as

IL-6 and TNF-α, or neuroprotection by secretion of anti-inflammatory cytokines (green), such as IL-10, which may prevent further neuronal death. Furthermore, recent

reports suggest TLRs 2, 4, and 9 signaling may modulate the phagocytosis (blue) and clear the neurotoxic amyloid deposition (108). Aβ stimulation, mononuclear cells

of normal subjects up-regulate the transcription of β-1,4-mannosyl-glycoprotein 4-β-Nacetylglucosaminyltransferase (MGAT3).

may be less efficient in a TLR4-knockout model to clear Aβ-
plaques, leading to the overproduction or aggregation of Aβ (116,
117). It is evident that mouse microglia aggregate Aβ via TLR4
and cause neuronal death (115); thus, microglia require TLR4 for
LPS-induced Aβ uptake (112, 117). As well, neurons, with the
help of TLR4, respond to Aβ and AD-linked peroxidation and
result in apoptosis (115).

TLR2 deficiency, however, aggravates cognitive impairments
in an AD mouse model. This effect may be reversed by
TLR2-expressing bone marrow-derived cells that can stimulate
microglial clearance of Aβ from the brain (118, 119). Therefore,
TLR2 may respond as bone-marrow-derived immune cells to
protect from Aβ-aggregation. Furthermore, TLR2, TLR4, or
TLR9 activating ligands have been reported to increase the uptake
of Aβ by a microglial cell line (117). Another in vivo study reports
that TLR2 and 4 are also required to activate microglia-mediated
Aβ-plaques (120). Additionally, exposure of microglia to the
TLR9 ligand, CpG DNA, protects neurons against Aβ toxicity
and reduces Aβ aggregation-mediated memory impairment in
mice (119, 121). Collectively, data on multiple TLRs suggest their
activation in the AD brain cells and the well-known role that
they have. For example, microglial TLR2, 4 and 9 may counteract
the disease process by enhancing Aβ clearance, while activation
of TLR4 in neurons can aggravate the condition with initiating

oxidative stress and Aβ toxicity. Due to increased knowledge
gathered with respect to the role of neuronal TLR4 in AD, it is
important to explore this receptor function further in the AD-
induced animal model or human tissue/cell line. As such, we
can differentiate glial-mediated TLR4 responses from neuronal
responses, as well as its role in the association of disease-specific
protein aggregation and neuroinflammation or apoptosis.

TLR Involvement in PD

The various views regarding etiology of PD suggest that
misfolded α-synuclein activates microglial cells, leading to
inflammation, oxidative stress and finally, neurodegeneration.
The misfolded α-synuclein is released from neural cells or
oligodendrocytes, also known as PAMPs or DAMPs, by
microglial TLR2 that ultimately activates the downstream
pathway of MyD88 and NF-κB, triggers TNF-α, IL-1β and
increases selective TLR expression (122–124). In one study,
TLR4 has been found to interact with α-synuclein along with
its uptake, proinflammatory cytokine release and enhancing
oxidative stress (125). An MPTP-induced PD mouse model
analysis interpreted neuroprotection due to the genetic absence
of TLR4, supporting the significant role of TLR4 in the generation
and progression of PD (126). Interestingly, TLR4 absence
protected from dopamine downregulation with an increase
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in dopamine transport activity and significantly reduced α-
synuclein-positive neurons in an MPTP-induced PD model. In
that study, the absence of TLR4 alsomodulated NF-κB, AP-1, and
NLRP3 inflammasome pathways, thus reducing the development
of PD-associated neuroinflammation (127). However, the role of
TLR2 and 4 during the progress of PD is particularly convincing,
although complicated. Their activation of microglia can trigger
neurotoxicity, while in other cases, they might be necessary to
clearmisfolded α-synuclein and act as a neuroprotector (Figure 2
and Table 3) (115). Therefore, both of them could be a potential
therapeutic target for PD.

TLRs Involved in Cerebral Ischemia/Stroke

The involvement and pathway of innate immunity in the
generation of ischemic tissue has gained significant attention
among neuro-researchers in various fields in recent years.
According to them, microglial activation is the main reason
behind inflammation following cerebral ischemia, and TLR
members control this activation to a significant degree (131).
Furthermore, TLR2 and TLR4 are the most common in
this regard, as they are thought to liberate pro-inflammatory
cytokines with respect to immune response; thus, exacerbate
ischemic injury and subsequent neuronal damage result.

During a stroke, blood flow is eventually reduced and
generates several conditions, such as ionic imbalance, acidosis
and excitotoxicity (132) due to lack of oxygen and glucose.
Sequentially, the damage of cellular constituents and release of
DAMPS that activate specific TLRs occurs (133). In experimental
animals as well as in stroke patients, it has been shown that
HMGB1, a DAMP protein and also a ligand of TLR2 and
TLR4, is increased in serum (134–136). Also, anti-HMGB1
antibody demonstrates a significant reduction in the aggravation
of ischemic damage via attenuating cytoplasmic MCAO (middle
cerebral artery occlusion) (134, 137, 138). However, following
cell death, Prx (peroxiredoxin protein) is released into the
extracellular compartment and acts as a DAMP. Moreover, it

activates TLR2 and TLR4, leading to inflammation through
cytokine overproduction. Likewise, administration of the Prx
antibody just after experimentally induced stroke significantly
reduces infarct volume, indicating that Prx also activates TLR
signaling to intensify cerebral ischemic injury (139, 140). The
majority of TLR-focused research has used either a rat or mouse
model, and most of them target TLR2 and TLR4. One study
demonstrated that TLR2 was markedly upregulated in the mouse
cortex and TLR2 knockoutmice showed increased infarct volume
andmortality compared to wild-typemice (139). In amore recent
study, deficiency of TLR2 was found to reduce ischemic volume
at an early stage; however, the volume later increased significantly
in comparison to wild-type mice, indicating that TLR2 deficiency
in the brain can delay ischemic lesions (141).

Similarly, another study involving TLR4-deficient mice
reported reduced damage compared to controls following
ischemia (142), or permanent occlusion of the middle cerebral
artery (143). Meanwhile, several clinical studies also noted
the critical role of TLRs in a stroke patient, particularly
the involvement of TLR4 polymorphism in terms of stroke
prevalence (130, 144). Some research also found a significant rise
in TLR2 and TLR4 on peripheral monocyte after stroke (145–
147). Together, these studies indicate that TLR2 and TLR4 play a
critical role in cerebral ischemia/reperfusion injury and that their
activation leads to the exacerbation of brain damage. Along with
TLR2 and TLR4, increased TLR7 and TLR8 also has been noticed
in blood samples of deteriorating stroke patients, but no role has
been reported for TLR3 or TLR9 in ischemic injury (148, 149).

TLRs Involved in Multiple Sclerosis (MS)

TLRs are always decisive for their involvement in different
neurological diseases, and several pieces of evidence suggest
their critical role in the pathogenesis of MS. TLRs have been
found to be expressed in the glial cells of CNS of patients
suffering from MS (150, 151). Moreover, TLR2 expression is
upregulated in peripheral blood mononuclear cells (PBMCs)

TABLE 3 | TLR expression in different neurodegenerative disorders and their documented role.

Disease TLRs expression Animal model Human model References

Alzheimer’s disease TLR2 ↑ Both beneficial and deleterious Beneficial (115, 120, 128)

TLR4 ↑ Both beneficial and deleterious N/A

TLR7 ↑ TLR7 knockout improved spatial learning N/A

TLR9 ↑ Reduced Aβ-aggregation N/A

Parkinson’s disease TLR2 ↑ Deleterious Deleterious (115, 128)

TLR4 ↑ Deleterious Deleterious

TLR5 ↓ Cognitive impairment N/A

TLR9 ↑ Dopaminergic neuronal loss N/A

Amyotrophic lateral sclerosis TLR2 ↑ Degeneration of motor neuron N/A (128, 129)

TLR4 ↑ Deficiency improves motor function N/A

TLR9 ↑ Deleterious N/A

Stroke TLR2 ↑ Both beneficial and deleterious N/A (91, 130)

TLR4 ↑ Deleterious Deleterious

“↑,” increased; “↓,” decreased; “N/A,” not available.
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fromMS patients, with PBMCs from RRMS (relapsing-remitting
MS) being hypersensitive to TLR4 activation (152). Furthermore,
different studies using MS knockout models have outlined
the crucial role played by TLRs and their signaling proteins.
For example, TLR2 (153), TLR9 (154), MyD88 (154–156)
and IRF-3 (157) deficiency resulted in protective effects in
neuroinflammatory models, while TLR4 (156), TLR2 (118), and
TRIF (158) deficiency presented aggravating disease, indicating
the complex role of TLRs in inflammatory development in MS.
Recent data from an experiment by Mellanby et al. demonstrate
that TLR4-induced activation of DC (dendritic cells) promotes
the function of pathogenic T cells in EAE (experimental
autoimmune encephalomyelitis) (159), a result that supports the
complicated role of TLRs in EAE development.

TLRs Involved in ALS

Amyotrophic lateral sclerosis (ALS) is a devastating and chronic
neurodegenerative disease, characterized by the selective upper
and lower motor neuron loss, while about 20–25% of ALS cases
are due to different mutations in the SOD1 gene (160). The
aberrant oligomerisation of mutant SOD1 (mSOD1) proteins
in beta-sheet form may be responsible for the pathogenesis
and progression of ALS; it has also been demonstrated that
mice lacking this gene do not develop the disease (160,
161). As well, mSOD1 has also been demonstrated in mice
for an elevation of TLR1, 2, 7, and 9, and mSOD1 in
microglia released more superoxide, nitrate and nitrite, resulting
in severe neuronal death (Figure 2 and Table 3) (128). One
study demonstrated that mSOD1 activates in microglia via a
MyD88-dependent pathway, with some analyses documenting
the significant effect of MyD88 in an ALS model (162). Although
no significant difference is visible in the life-span of MyD88
knockout and normalmice,MyD88 knockoutmice had increased
activated microglia and motor neuron loss, indicative of a
link between MyD88 deficiency and neurotoxicity (162). In
contrast, a recent study demonstrated blocking TLR2 and 4
signaling, inhibiting microglial activation following extracellular
mSOD1 administration (163). However, the chronic systemic
administration of LPS aggravates disease progression and motor
neuron degeneration with the elevation of TLR2 expression,
suggesting a correlation between TLR2 expression and motor
neuron degeneration (164). Thus, targeting TLR may attenuate
neurotoxicity in ALS and potentially impact therapy; however,
there is no clear evidence for a specific TLR that may mediate this
effect. Therefore, the potential link between TLR signaling and
neurotrophic factor secretion increment from glial cells could be
a therapeutic approach in ALS.

Polyphenol-Based TLR-Signaling Pathway
Targeting: A Neurodegeneration
Therapeutic Approach
Polyphenols are natural resources, potentially contributing to
different therapeutic conditions with their anti-inflammatory
and anti-oxidant properties, as well as interrupting the TLR4-
signaling pathway. For example, green tea polyphenols have
been examined to understand their effect on human periodontal
inflammation induced by LPS at the pathogenic dose, with

reported reduced TLR4 secretion and expression at both the
mRNA and protein levels. That same extract was also reported
to restore (150) standard hydrogen peroxide and hypochlorous
acid, as well as to reduce the mRNA expression of TLR4 and IκK
(165). Thus, polyphenols can decrease inflammation via TLR4
signaling pathway modulation (Figure 3 and Table 4).

Neuroinflammation leads to the progress of
neurodegeneration. In this aspect, TLRs play an essential role in
several CNS disorders, and different studies have reported that
TLR4, among other TLRs, are a frequent contributor to neuronal
death, blood-brain barrier damage, oedema and ischemic brain
injury (143, 176). Thus, the TLR4/NF-κB-signaling pathway
plays a vital role in the activation of a different inflammatory
gene expressing cytokines, chemokines such as COX-2 and
MMP-9, and causes cerebral inflammation, as well as leading to
secondary brain injury following traumatic brain injury (176–
179). This upregulation of different cytokines or chemokines
could also activate microglia; consequently, inflammatory cells
infiltrate into the brain and may cause neuronal loss (180, 181).
Recently, TLR4 was found to play a role in ethanol-induced
inflammatory signaling. The study demonstrated that a TLR4
knockdown model abolished both MAPK and NF-κB-pathways
and inflammatory mediators produced by astrocytes (182, 183).
Also, use of quercetin, loaded into nanoparticles, improved their
passage through the BBB and prevented AD progression via
attenuating the TLR4-involved pathway (184). It also reduced
inflammatory cytokine production by inhibiting TLR2 and 4
expression (168). Therefore, targeting TLR4may be a particularly
useful and novel strategy to treat neurodegenerative disorders.

Resveratrol, as earlier mentioned, is a potential
neuroprotective and anti-inflammatory polyphenol, and
under observation for the treatment of AD, inhibits murine
RAW 264.7 macrophages and microglial BV-2 cells targeted
by TLR4 ligand. Additionally, resveratrol inhibits downstream
phosphorylation of STAT1 and STAT3 stimulated by LPS (71).
Park and Yoon reported that isoliquiritigenin, a flavonoid
derivative, inhibits LPS-induced TLR4 dimerization in RAW
264.7 macrophage lines. Therefore, it inhibits NF-κB and
IRF3 activation, as well as COX-2 and inducible NO synthase
expression (173). Similarly, luteolin suppressed activation of
IRF3 and NF-κB induced by TLR3 and TLR4 agonists via the
TRIF-dependent pathway, resulting in decreased expression of
TNF-α and IL-6 in macrophages (174). These results indicate
that polyphenols have the ability to modulate the TLR-pathway
through TRIF-dependent signaling and result in potential
attenuation of inflammatory cytokines. In a recent study, it
was reported that silymarin pre-treatment significantly reduced
overexpression of TLR4 in SNc induced by 6-OHDA in a PD rat
model (171).

Cur (Curcumin) is a polyphenolic compound that has been
used as a cooking ingredient for centuries. It has been noted
for its potential in terms of anti-viral, antioxidant, antidiabetic
and anti-inflammatory roles (185–187), and also with respect
to its potent suppression of the TLR4-MAPK/NF-κB pathway
(Figure 3). In an in vitro study, Cur was found to suppress
NF-κB-mediated pro-inflammatory stimulation (188) and
also inhibited LPS-induced IRF3 activation via MyD88 and
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FIGURE 3 | Polyphenols modulating upstream (TLR activation) and downstream (different kinase and transcription factors) pathway of surface and endogenous TLR

to reduce or demolish pro-inflammatory cytokines and type I interferon generation.

TRIF-dependent pathways. However, another study with
TLR4 targeted mice showed that 100 mg/kg treatment of Cur
significantly reduced TLR4-positive microglia/macrophages and
other inflammatory mediators’ release, which are responsible
for neuronal apoptosis. These results indicate that post-
injury administration of Cur decreases acute activation of
microglia/macrophages and neuronal apoptosis through
intervening in the TLR4/MyD88/NF-κB-signaling pathway
(Table 4) (170, 187). Cur can cross the BBB and thus, provide
pharmacological activity efficiently, as demonstrated by Yang
et al. (189). A recent study showed that Cur attenuates
homodimerization of TLR4, which is necessary to trigger
downstream cascade pathways (190). Thus, Cur can reduce

inflammatory damage through TLR4 pathway modulation,
which has since been confirmed in experimental models of brain
injury (191–193).

However, uponmicrobial invasion,MAPK signaling pathways
are activated to produce inflammatory mediators via TLR
response, in turn activating down-regulation of p38 and NF-
κB. In a study conducted by Yilma et al. naringenin was
shown to inhibit TLR2 and 4 signaling (169), resulting in
attenuation of pathogen-induced neuroinflammation. Moreover,
EGCG and epicatechin also inhibit MAPK and NF-κB activation
by attenuating TLR4 signaling, whereas catechin TLR2 signaling
downregulates MAPK and NF-κB activation (166, 172, 175).
Therefore, it reduces pro-inflammatory mediator activation

Frontiers in Immunology | www.frontiersin.org 10 May 2019 | Volume 10 | Article 1000201

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Azam et al. Polyphenols Intervening Toll-Like Receptor Signaling

TABLE 4 | Different active polyphenols and their pharmacological attribution through TLR-signaling intervention.

Active

polyphenols

Polyphenols

class

TLR intervention Downstream signaling

intervention

Response References

EGCG Catechin type;

belongs to the

flavanols

TLR4 expression

through 67LR

Inhibits MAPK and NF-κB Inhibits LPS induced activation of

downstream signaling and

consequent inflammatory responses

(166)

Resveratrol Stilbenes TLR4 ligand Inhibit downstream phosphorylation

of STAT1 and 3

Reduced macrophages and microglial

activation

(71)

Kaempferol-3-O-

sophoroside

Flavonoids Cell surface TLR2

and 4

Inhibit HMGB1 induced

proinflammatory responses

Inhibits HMGB1-mediated

proinflammatory cytokine production

(167)

Quercetin Flavonols

(Flavonoids)

TLR/NF-κB

signaling pathway

Reduced IL-6 production and

NF-κBp65 nuclear translocation

Downregulates inflammatory enzyme

production

(168)

Naringenin Flavanones

(Flavonoids)

TLR2 and 4 MAPK pathway Downregulation of TNF-α, IL-1β, IL-6

and other co-related inflammatory

cytokines

(169)

Curcumin Curcuminoids TLR4 MyD88 and NF-κB downstream

signaling

Reduce activation of

microglia/macrophages and neuronal

apoptosis

(170)

Silymarin Flavonoids TLR4 Inhibit TNF-α, IL-6 and IL-1β

production

Attenuate deterioration of the nigral

degeneration during PD

(171)

Epicatechine Flavanols TLR4 Inhibits MAPK and NF-κB Reduce neuronal apoptosis (172)

Isoliquiritigenin Isoflavonoids

(Flavonoids)

TLR4 Inhibits IRF3 activation Decrease inflammatory gene

expression

(173)

Soybean

Isoflavones

Isoflavones TLR4 Inhibits NF-κB p65 expression in the

brain tissue

Reduced Aβ (1–42), as well as

cytokine cascade and inflammatory

response and improved learning and

memory

(69)

Luteolin Flavones

(Flavonoids)

TLR3 and 4 TBK1 kinase and IRF3

phosphorylation

Modulated TRIF-dependent

inflammatory responses

(174)

Catechin Flavanols

(Flavonoids)

TLR2 Downregulates p38MAPK and NF-κB

p65

Reduced pro-inflammatory mediators

and phosphorylation of their signal

transduction

(175)

Fisetin Flavonoids TLR4 Suppress NF-κB activation and

JNK/JUN phosphorylation

Neuroprotection in cerebral ischemia (61)

Baicalin Flavonoids TLR2 and 4 Reduce the expression of NF-κB and

serum content of TNF-α and IL-1β

Neuroprotection in cerebral ischemia (75)

and phosphorylation, as well as consequent neurodegeneration.
A recent study reports that epigallocatechin gallate (EGCG)
treatment prevents neurological pain via suppressing TLR4
cascades in a neuropathic rat model (194). Moreover, EGCG
is one of the potent flavonoids found in green tea and is
reputed for its ability to provide neuroprotection (195, 196). In
an LPS-induced neuroinflammation mouse model, neurogenesis
significantly decreased neuronal stem cell differentiation and
proliferation. Additionally, microglial cells accumulated to
initiate the LR4/NF-κB-signaling pathway in the hippocampus of
mice. EGCG treatment showed an overall beneficial effect in this
study with neurogenesis by inhibiting the TLR4/NF-κB-signaling
pathway (197).

TLRs are critical elements of the innate immune system,
and recent studies demonstrated their involvement in different
brain injury-derived neurodegeneration processes. However,
neuroinflammation plays an important role and leads to
the development of neurodegenerative diseases, such as AD,
PD, or MS. Indeed, several inflammatory markers, such as
chemokines, cytokines or proteins in acute phase are upregulated
and lead to inflammation, and these markers also prevail

in neurodegenerative diseases, including AD (198–200).
Additionally, TLR4 signaling pathways are involved and control
these markers’ upregulation. Thus, targeting TLR4may represent
an important therapeutic strategy to prevent neurodegenerative
disorders mediated by different inflammatory markers
(18, 182).

CONCLUDING REMARKS AND FUTURE
ASPECTS

Neurodegeneration is a pathological condition that includes
the activation of different neuronal inflammatory cytokines and
chemokines cascade, release of endotoxin and autoimmune
disturbances and the overproduction of mitochondrial ROS.
Here, a separate context was discussed to correlate the
significance of NF-κB in the CNS and its regulation through
TLR members. Further, recent approaches using polyphenols in
the treatment of neurodegeneration were also discussed. Several
polyphenolic compounds have been found to show promise
for attenuating neurodegenerative disorders via involving
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interrelatedmechanisms. However, theymore likely target TLR4-
linked pathway modulation to reduce inflammatory progression.
There is growing evidence for the involvement of TLR4 in
the etiology of different neuropsychiatric diseases; however,
the source of TLR4 activation is yet to be determined. There
appears to be two major pathways involved in TLR4 activation:
either Gram-negative gut Enterobacter translocation or excessive
production and release of ROS due to anonymous infection. In
contrast, there are insufficient data regarding TLR4 dependent
or independent cytokine effects and polyphenols’ role on them
in the progression of neurodegenerative diseases, while abundant
investigation has beenmade regarding the role of cytokines in the
pathogenesis of the same disorders.

Although neurodegeneration is a growing threat, there are
only a few clinically relevant therapeutics for ND available, and
they are for symptomatic treatment only. In this position with
pathological concern and limited treatments, alternative and
preventive therapeutics are rational to control the occurrence
and progression of NDs. Some of them are under clinical
investigation for therapeutic efficacy in neuropathological
conditions; however, many more are expected to be tested
in clinical trials for their in vitro and in vivo roles. Indeed,
neurodegenerative diseases are complicated cases and involve
several signaling cascades, but the role of Aβ-plaque aggregation
and production of inflammatory cytokines and chemokines is
also essential. In this case, several polyphenols have been shown
to significantly attenuate Aβ-plaques and inflammatory cytokine
and chemokine production via intervening different signaling

pathways, explicitly targeting the TLR4/NF-κB-signaling
pathway in AD, PD, MS, or stroke. Engagement of TLR along
with another innate immune member, the NLR family, is also an
important factor to release cytokines and to form a multiprotein
inflammatory complex, the inflammasome. This emerging view
is also important with respect to host response to pathogenic
stimuli, and mature IL-1β release is a suitable example of this
process, which aggravates the neurodegeneration. Therefore,
future work should also focus on this area to determine precise

signaling pathways and mechanisms, leading to comprehension
of disease phenotypes and searches for effective therapeutics.

Based on a number of recent investigations, it is clear
that polyphenols are promising, and their approaches
involve TLR4 modulation to control NDs. Polyphenols
have been found to reduce mRNA expression of TLR4 and
IκK, while enhancing the MyD88-dependent TLR4/NF-
κB-signaling pathway. However, this article attempted to
describe the involvement of TLR4 in neurodegeneration
and the role played by polyphenols via intervening in this
pathway. Indeed, while polyphenols’ action against innate
immunity may be beneficial, the innate immune response
is necessary under different CNS pathological conditions,
where TLR4 activation can be neuroprotective. Although
TLR4 removes Aβ-plaques by microglia via controlling
phagocytes, TLR4 cytotoxicity has also been found to be
significant in several studies. Therefore, it is necessary to
elucidate TLR4s’ complex signaling in the brain to gain control
over inflammation-induced NDs. Targeting TLR4 would
provide a highly suitable treatment approach, with significant
implications in the designing of novel therapeutics for these
particular diseases.
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5-lipoxygenase (5-LOX) is a non-heme iron-containing dioxygenase expressed in

immune cells that catalyzes the two initial steps in the biosynthesis of leukotrienes.

It is well known that 5-LOX activation in innate immunity cells is related to different

iron-associated pro-inflammatory disorders, including cancer, neurodegenerative

diseases, and atherosclerosis. However, the molecular and cellular mechanism(s)

underlying the interplay between iron and 5-LOX activation are largely unexplored. In

this study, we investigated whether iron (in the form of Fe3+ and hemin) might modulate

5-LOX influencing its membrane binding, subcellular distribution, and functional activity.

We proved by fluorescence resonance energy transfer approach that metal removal from

the recombinant human 5-LOX, not only altered the catalytic activity of the enzyme,

but also impaired its membrane-binding. To ascertain whether iron can modulate the

subcellular distribution of 5-LOX in immune cells, we exposed THP-1 macrophages and

human primary macrophages to exogenous iron. Cells exposed to increasing amounts

of Fe3+ showed a redistribution (ranging from ∼45 to 75%) of the cytosolic 5-LOX to

the nuclear fraction. Accordingly, confocal microscopy revealed that acute exposure to

extracellular Fe3+, as well as hemin, caused an overt increase in the nuclear fluorescence

of 5-LOX, accompanied by a co-localization with the 5-LOX activating protein (FLAP)

both in THP-1 macrophages and human macrophages. The functional relevance of iron

overloading was demonstrated by a marked induction of the expression of interleukin-6

in iron-treated macrophages. Importantly, pre-treatment of cells with the iron-chelating

agent deferoxamine completely abolished the hemin-dependent translocation of 5-LOX

to the nuclear fraction, and significantly reverted its effect on interleukin-6 overexpression.

These results suggest that exogenous iron modulates the biological activity of 5-LOX in

macrophages by increasing its ability to bind to nuclear membranes, further supporting

a role for iron in inflammation-based diseases where its homeostasis is altered and

suggesting further evidence of risks related to iron overload.
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INTRODUCTION

Lipoxygenases (LOXs) catalyze the regio- and stereo-
specific insertion of molecular oxygen into polyunsaturated
fatty acids (1). In humans, 5-LOX, 12-LOX, and 15-LOX1
constitute the most studied enzymes with specific distribution
in hematopoietic cells (2). Among them, 5-LOX is of major
patho-physiological relevance, since it has been implicated
in the biosynthesis of important inflammatory bioactive lipid
mediators (3). In particular, arachidonic acid (AA) released upon
hydrolysis catalyzed by phospholipase A2 (cPLA2), serves as the
5-LOX substrate for leukotrienes (LTs) and lipoxins biosynthesis.
These bioactive lipids act as hormone-like factors in biological
processes and display diverse functions in the immune system
serving as important molecules for effective regulatory functions
in macrophages, acting in both innate immunity and adaptive
response (4).

The subcellular localization of 5-LOX in unstimulated cells
differs within cell types (5, 6). In peripheral blood neutrophils (7),
differentiated HL-60 cells (8), and peritoneal macrophages (9), 5-
LOX is mainly localized in the cytosol, whereas in resting alveolar
macrophages (10), rat basophilic leukemia cells (11), bone
marrow–derived mast cells (12), and Langerhans cells of human
skin (13), the same enzyme is either partly or predominantly
present in the soluble compartment of the nucleus. Upon
stimulation, both cytosolic and nuclear 5-LOXs translocate to
the nuclear envelope, leading to interaction with the 5-LOX
activating protein (FLAP), a small protein localized in internal
cell membranes that is essential in the functional processing of
endogenous AA (3, 14). In particular, the translocation from
the cytosol to the nuclear membrane of 5-LOX and its co-
localization with FLAP is clearly emerging as an early and rate-
limiting mechanism of activation that triggers different signaling
pathways leading to the synthesis of different classes of pro-
inflammatory LTs (LTA4 and LTC4) (14, 15).

In this context, the available crystal structures of LOXs
indicate single polypeptide chain proteins adopting a two-
domain folding: the N-terminal “C2-like” domain (∼120 amino
acids), which confers Ca2+-dependent membrane binding ability
to 5-LOX, and is crucial for bringing the enzyme in proximity
to its AA substrate within the nuclear membranes (16) and
the larger catalytic C-terminal domain, that is primarily α-
helical and harbors the non-heme catalytic iron (17). In
a site-directed mutagenesis study aimed at investigating the
intracellular distribution of 5-LOX, mutations known to abolish
enzyme activity, and affecting the binding to iron in the active
site, induced a graded distribution of 5-LOX in the nucleus
and cytosol, depending on the iron content (12). Trypsin
cleavage of soybean-LOX1 at Lys 277 yields a “mini-LOX” that
roughly represents the catalytic subunit, with enhanced catalytic
efficiency and higher membrane binding ability compared to

Abbreviations: LOXs, lipoxygenases; FLAP, 5-LOX activating protein; LT,

leukotrienes; PMA, phorbol-12-myristate-13-acetate; AA, arachidonic acid;

NDGA, nordihydroguaiaretic acid; DFO, deferoxamine; FBS, fetal calf serum;

FRET, fluorescence resonance energy transfer; cPLA2, cytosolic phospholipase A2;

ROS, reactive oxygen species; Hb, hemoglobin.

the full-length native enzyme (18, 19). Extraction, reconstitution
and substitution of iron revealed a non-catalytic role for it in
modulating the membrane-binding ability of mini-LOX (20). In
particular, it was shown that the correct coordination geometry
of iron in the active site stabilizes an enzyme conformation that
becomes more competent for the selective targeting and binding
to the membrane surface, thus allowing more effective substrate
recognition (20).

More recently, we have analyzed by molecular dynamics
simulations the conformational changes induced by iron removal
in 5-LOX indicating that the degree of enzyme flexibility is related
to the presence of iron into the active site (21). These data provide
further evidence on the functional role of iron in the activation of
LOX, but little is known about 5-LOX activity and intracellular
localization after iron exposure in innate immunity cells.

In this study we firstly studied by FRET the effect of iron
removal in modulating the activity and membrane binding of
human recombinant 5-LOX to synthetic membranes. Then we
assessed in vitro the effects on membrane binding, nuclear
translocation, and activity of 5-LOX of acute exposure of
exogenous iron or hemin (ferriprotoporphyrin IX chloride) in
THP-1 macrophages and human macrophages. We found that in
vitro iron removal decreases membrane binding of 5-LOX and,
that acute iron treatment of macrophages yields a substantial
increase of 5-LOX activity and its association along with FLAP
with the nuclear envelope.

MATERIALS AND METHODS

RPMI 1640 medium was from Gibco BRL (Life Technologies,
Rockville, MD); fetal bovine serum (FBS), adenosine
triphosphate (ATP), arachidonic acid (AA), ferric chloride
(FeCl3), hemin, phorbol-12-myristate-13-acetate (PMA),
protease inhibitor cocktail, and phenylmethylsulfonyl fluoride
(PMSF) were purchased from Sigma (St. Louis, MO, USA).
For immunological studies we used the following antibodies:
anti-5-LOX (Becton Dickinson, Franklin Lakes, NJ, USA), anti-
β-actin (Millipore, Billerica, MA, USA), anti-lamin (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), and anti-FLAP (Abcam,
Cambridge, UK). Goat Alexa Fluor-conjugated secondary
antibodies and Prolong Gold anti-fade kit were purchased from
Molecular Probes (Eugene, OR, USA). Macrophage colony-
stimulating factor (M-CSF) and human serum were purchased
from Miltenyi Biotec (Bergisch Gladbach, Germany). All other
chemicals were from Sigma Chemical Co. (St. Louis, MO, USA),
unless otherwise indicated.

Enzyme Preparations and Enzymatic Assay
Recombinant human 5-LOX was expressed in E. coli from
the plasmid pT3-5-LOX and purified (purity was >95%,
see Supplementary Figure 1) on ATP-agarose (Sigma A2767)
followed by anion exchange chromatography, as previously
reported (22). Apo-5-LOX enzyme was obtained by metal
removal using the iron chelator deferoxamine (DFO). To this
aim enzyme solutions were dialyzed overnight against 50mM
Tris/HCl pH 7.5 buffer using a 5-LOX:DFO stoichiometry of 1:5,
followed by dialysis against the same buffer containing 2mM
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EDTA for 48 h. All experiments were performed using iron-free
water, dialysis bags, and plastics. 5-LOX activity was assayed
spectrophotometrically at 25◦C in 50mMTris/HCl pH 7.5 buffer
by recording the formation of conjugated hydroperoxides from
AA at 234 nm.

Liposomes Preparations and FRET Studies
Large unilamellar vesicles mimicking the biophysical properties
of nuclearmembranes were prepared using 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) as described previously
(23). Fluorescence spectra were recorded at 25◦C using a
PerkinElmer LSB50 fluorimeter and 10 × 2mm path length
quartz fluorescence microcuvettes (Hellma, Concord, ON). The
pyrene bound liposomes used in FRET studies contained 5%
(w/w) Py-PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
N-1–pyrenesulfonyl) purchased from Molecular Probes. 5-LOX
was used at a final concentration of 0.2µM,whereas the liposome
concentration varied between 10 and 600µM in a final volume
of 100 µL. The membrane binding measurements of both apo-
and holo-5-LOX were carried out in Ca2+ free solutions after an
incubation of the enzyme at different liposome concentrations for
5 min.

THP-1 Macrophages
The human THP-1 cells were maintained in RPMI 1640
medium containing glutamine and supplemented with 10% FBS,
100 mg/mL streptomycin, 100 U/mL penicillin, 1mM sodium
pyruvate. For monocyte to macrophage differentiation, THP-1
cells were seeded at a density of 2–3 × 105 cells/mL and treated
with 100 ng/mL PMA for 2 days (24).

Human Primary Macrophages
To obtain human macrophages, peripheral blood mononuclear
cells, isolated after venous puncture from healthy donors,
were cultured in 1640 RPMI medium supplemented with 10%
FBS, 5% human serum, 100 U/mL penicillin/streptomycin, and
differentiated with 25 ng/mL M-CSF for 6–7 days at 37◦C in a
humidified 5% CO2 atmosphere.

Real-Time PCR Analysis
Messenger RNA was extracted from macrophages using
Qiagen minikits (Qiagen, Mississauga, ON, Canada),
as per manufacturer’s instructions, and was quantitated
spectrophotometrically. One µg of total mRNA was reverse
transcribed to cDNA, using iScriptTM cDNA synthesis kit
(Bio-Rad, Hercules, CA, USA). cDNA (50 ng) was taken for
real-time PCR using iTaqTM Fast SYBR R© Green supermix with
ROX (Bio-Rad, Hercules, CA, USA) on an DNA Engine Opticon
2 Continuous Fluorescence Detection System (MJ Research,
Waltham, MA, USA). Intron-spanning primers to amplify
∼200 bp were designed using Primer Express v.2.0 Software
(Applied Biosystems, Foster City, CA, USA). Primer sequences
were: 5-LOX forward 5′-TGCCAAATGCCACAAGGATT-3′

and reverse 5′-TGCATGAAGCGGTTGATGAA-3′; p12-
LOX forward 5′-TGGTCATCCAGATTCAGCCTC-3′ and
reverse 5′-TGGATCTCGTGCAGTTGGAA-3′; 15-LOX1
forward 5′-TGTGAAAGACGACCCAGAGCT-3′ and reverse

5′-TGACAAAGTGGCAAACCTGGT-3′; GADPH forward
5′-GTGAAGGTCGGAGTCAACGGA-3′ and reverse 5′-
GAGGGATCTCGCTCCTGGAAGA-3′. Dissociation curve
analysis following each amplification reaction was carried
out to confirm the amplification of primer-specific products.
All data were normalized to the endogenous reference gene
glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Differences in threshold cycle (Ct) number were used to
quantify the relative amount of PCR targets contained in
each tube. Relative amounts of different gene transcripts were
calculated by the 11Ct method, and were converted to relative
transcription ratio (2−11Ct) for statistical analysis (25).

LOX Activity in THP-1 Macrophages
The 5-LOX activity was assayed partially modifying the already
described procedure (26). For assays of cells, THP-1 monocytes
were seeded for 48 h in 96-well microtiter plates at 1 × 105

cells/mL (100 µL/well) and differentiated into macrophages
as described above. LOX inhibitors dissolved in DMSO (final
concentration, 0.1%, v/v) were added at different concentrations
to each well along with H2DCFDA (10µM) and incubated for
30min in the dark at 37◦C in a CO2 incubator (5% CO2/95%
air). Similarly, vehicle (DMSO) was added for control samples.
The cell-permeant 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA) was freshly prepared in ethanol for each assay.
After careful removal of the loading medium, the cells were
washed briefly with GIBCO Hanks’ buffered salt solution
(HBSS) (Invitrogen, CA, USA) before adding a reaction buffer
containing 2.5mM CaCl2, 2mM ATP and AA (70µM), the
substrate for lipoxygenase in HBSS. After adding reaction buffer,
the fluorescence product of H2DCFDA was analyzed using a
microplate reader (Thermo Scientific, USA) for 30min at 37◦

at excitation and emission wavelengths of 485 and 528 nm,
respectively. The increase in fluorescence per well was calculated
by the formula F30-F0, where F30 = fluorescence at time 30min
and F0 = fluorescence at time 0min (taken immediately after
adding substrate). This method avoids background fluorescence
and the need to include blank wells in experiments. The
percentage activity was calculated by considering fluorescence
of control cells as 100% activity. All the experiments were
performed at least in triplicates.

Cell Treatments and Subcellular
Fractionation by Detergent Lysis
THP-1 macrophages (1 × 107 cells) were treated in the presence
or absence of Fe3+ or hemin at indicated concentrations, at 37◦C
in a cell incubator (5% CO2/95% air). After a 5min incubation
period, the monolayers of cells were chilled on ice and briefly
washed with HBSS before adding 1mL of ice-cold NP-40-lysis
buffer (10mM Tris-HCl, pH 7.4, 10mM NaCl, 3mM MgCl2,
1mM EDTA, 0.1% NP-40, 1mM PMSF, 60 mg/mL soybean
trypsin inhibitor, and 10 mg/mL leupeptin), kept on ice for
10min, and gently scraped and centrifuged (800 g, 10min, at
4◦C). Supernatants (non-nuclear fractions) were transferred to a
new tube, and pellets (nuclear fractions) were resuspended in 200
µL ice-cold relaxation buffer (50mM Tris-HCl, pH 7.4, 250mM
sucrose, 25mM KCl, 5mM MgCl2, 1mM EDTA, 1mM PMSF,
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60 mg/mL soybean trypsin inhibitor, 10 mg/mL leupeptin).
Both nuclear and non-nuclear fractions were centrifuged again
(800 g, 10min, at 4◦C) for further purification. Lysis of cells
and integrity of nuclei were confirmed by light microscopy
with trypan blue exclusion. Nuclei in relaxation buffer were
disrupted by sonication (3 × 5 s). Aliquots of nuclear and
non-nuclear fractions were immediately mixed with the same
volume of Laemli sample buffer, heated for 5min at 95◦C,
and analyzed for 5-LOX protein content by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) followed
by immunoblotting. Lamin, a ubiquitous protein exclusively
present in the nuclear membrane, was used as a marker of the
nuclear fraction.

Immunoblot Analysis of Subcellular
Fractions
Aliquots (25 µL) of pair-wise subcellular fractions (cytosol and
nucleus), corresponding to equal amounts of cells, were mixed
with 4mL glycerol/ 0.1% bromphenol blue (1:1, V/V) and
analyzed by SDS-PAGE using a Mini Protean III system (Bio-
Rad, Hercules, CA, USA) on a 4 to 15% linear gradient gel. After
electroblotting to PVDF membrane (GE-Healthcare, Pollards
Woods, UK), proteins were blocked with 5% non-fat dry milk in
Tris-buffered saline in the presence of 0.1% Tween (TBS-T) for
1 h at room temperature. Membranes were washed and incubated
with primary antibodies overnight at 4◦C. Then, membranes
were washed with TBS-T and incubated with 1:1,000 dilution
of HRP–conjugated secondary antibodies (Sigma, St. Louis, MO,
USA) for 1 h at room temperature. After washing with TBS-
T, 5-LOX protein was visualized using the HRP substrate ECL
Prime (GE-Healthcare, Pollards Woods, UK). Densitometry was

performed with a Gel Doc 1000 instrument and the Molecular
Analyst software (Bio-Rad, Hercules, CA, USA).

Confocal Analysis
For assess the subcellular distribution of FLAP and 5-LOX
and their co-localization, THP-1 macrophages, and human
primary macrophages were plated on glass coverslips in 12-
well plates. Cells were left untreated (Ctrl) or treated with
10µM hemin or 10µM FeCl3 for 5min, fixed with ice-cold
acetone for 5min and then double stained with rabbit anti-FLAP
(1:100; Abcam, Cambridge, UK) and mouse anti-5-LOX primary
antibodies (1:100; Becton Dickinson). As positive control, cells
were treated for 5min with 5µM A23187, a Ca2+ ionophore
that is successfully used to stimulate the translocation of 5-
LOX to the nuclear envelop. After incubation with the cocktail
of primary antibodies for 24 h, samples were incubated for
1 h at room temperature in a mixture of secondary antibodies
including Alexa Fluor 488-conjugated goat anti-rabbit IgG
(1:200; Molecular Probes) and Alexa Fluor 568-conjugated goat
anti-mouse IgG (1:200; Molecular Probes). Cells were then
DAPI (Sigma) counterstained, air-dried and coverslipped with
Prolong Gold anti-fade. Images were acquired with an Ultraview
Vox Spinning Disk (PerkinElmer, Milan, Italy) equipped with
a 63 × 1.4-NA Plan-Apochromat oil immersion objective and
an EMCCD C9100-50 camera. FLAP and 5-LOX fluorescence
intensities were calculated through the NIH ImageJ software
on 20 cells in different fields of two independent experiments.
Overlap coefficient was measured by using JACOP plugin
of ImageJ software. Apparent co-localization due to random
staining, or very high intensity, in one window will have values
of overlap coefficient near to zero, while if the two signal

FIGURE 1 | Iron removal impairs activity and reduces membrane binding of 5-LOX. (A) Generation of apo-5-LOX by iron chelation leads to a significant reduction

(∼90%) of its enzymatic activity (100% of holo-5-LOX form specific activity corresponding to 225.15 ± 6.18 µmol/min per mg of protein). (B) The binding isotherm

analyzed as tryptophan FRET quenching at different concentrations of POPC liposomes demonstrated a significant decrease of the membrane affinity of apo- (filled

circles) with respect to holo-5-LOX (empty squares). (***p < 0.001 vs. 5-LOX wt).
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intensities are interdependent (co-localized) these values will be
positive with a maximum of 1. We restricted the co-localization
analysis to strip-like (curvilinear) regions-of-interest, which were
1.7µm in width and had contour lengths from 10 to 70µm,
circumscribing part or all of the nuclear envelope. Thresholds
were not set by the operator, but automatically calculated by
the software to avoid biased data. All microscope quantifications
shown in the article were performed by a blind approach.
For presentation purposes, pictures were exported in TIFF
format and processed with Adobe Photoshop CS5 (Adobe), for
adjustments of brightness and contrast.

Functional Analysis of THP-1 Macrophages
by ELISA Assay
THP-1-derived macrophages were treated in the presence or
absence of 10µM Fe3+ for 5min, 10µM hemin for 5min,
and 20µM DFO for 2 h, before 10µM hemin exposure. After
treatments the medium were replaced, and the supernatants
collected after 24 h. The concentration of interleukin-6 (IL-6) in
the cellular supernatants were determined using the Human IL-6
Uncoated Invitrogen ELISA Kit assay (ThermoFisher, San Diego,
USA) applying the manufacturer’s directions. The plates were
read at 450 nm and the sensitivity of the used ELISA assay was
in the range 2–200 pg/mL.

Statistical Analysis
Data reported in this paper are the mean ± SE of at least
three independent experiments, each performed in triplicate.
For each experimental setting, data are expressed as percentage
of the control value of that specific experiment. A treatment
was significant when p was <0.05 by analysis of variance,
and subsequently by Student’s unpaired two-tailed t-test in the
Prism 5 program (GraphPAD Software for Science, San Diego,
CA, USA).

FIGURE 2 | Quantitative real-time PCR analysis of 5-LOX, p12-LOX, and

15-LOX1 mRNAs in human THP-1 macrophages. The gene of 5-LOX was the

most expressed in PMA-differentiated macrophages. GAPDH was used as an

endogenous control, and the expression of LOX isoforms was represented

using 5-LOX as calibrator. Each bar represents the mean ± SE of three

independent experiments (***p < 0.001 vs. 5-LOX).

RESULTS

Membrane Binding Properties of Holo- and
Apo-5-LOX
We recently reported an unprecedented role for iron in
modulating catalytic activity, structural stability, and membrane
binding properties of soybean LOX-1 (20), supporting the notion
that iron is not only essential for maintaining a proper structural
integrity of the enzyme activity but also for its membrane
association. To assess whether these effects can be also extended
to the human LOXs, and to gain insight into the mechanism(s)
by which iron may modulate 5-LOX membrane binding, we
investigated by FRET the membrane binding properties of apo-
5-LOX and holo-5-LOX. As expected, the apo-5-LOX obtained
by iron removal led to an almost complete loss of its enzymatic
activity (∼95% decrease) (Figure 1A). More interestingly, we
found that iron removal induced a significant decrease (∼2-
fold over the holo-5-LOX) in the affinity of the apo-form of the
enzyme for POPC membranes, as indicated by an increase in
[L]1/2 (49.4 ± 2.8µM) of the apo-enzyme with respect to the
value calculated for holo-5-LOX (Figure 1B).

LOX Activity in THP-1 Macrophages
Increases After Acute Fe3+ Exposure in a
Concentration-Dependent Manner
Real-time PCR analysis of 5-LOX, 12-LOX, and 15-LOX revealed
that 5-LOX was the most expressed gene in THP-1 macrophages
(Figure 2). In particular 1Ct values, normalized to GAPDH
levels, were as follows: 5-LOX 7.15 ± 0.18; 12-LOX 19.75
± 1.85; 15-LOX 13.73 ± 1.66. LOX activity was assayed in
THP-1 macrophages with different AA concentrations (from
25 to 100µM). Seventy µM was found to be the optimal
concentration for the cellular assay (data not shown). Cells
exposed to increasing concentrations of Fe3+ for 5min, and then
stimulated with 70µMAA, showed a dose-dependent increase of
LOX activity. Fe3+ at concentrations from 10 to 100µM led to a
significant 1.5- to 2-fold increase of enzyme activity (Figure 3A).
Pre-incubation withNDGA (0.5µM) orMK-886 (1µM), a FLAP
inhibitor, completely reversed the effect of Fe3+ (Figure 3B).

Acute Fe3+ Exposure Induces 5-LOX
Nuclear Translocation in THP-1
Macrophages
To ascertain whether Fe3+ canmodulate the 5-LOX translocation
from cytosol to nuclear envelope, we assessed the localization
of 5-LOX by means of subcellular fractionation, using a lysis
buffer containing the NP-40 detergent (0.1%) and 5-LOX
immunoblotting. This technique yields a nuclear fraction with
intact nuclei, and a non-nuclear fraction containing cytosol,
plasma membrane, endoplasmic reticulum, Golgi apparatus, and
cytoskeletal proteins (11). In untreated THP-1 macrophages, 5-
LOX protein was found both in the cytoplasm and nucleus
fractions (Figures 4A,B). Acute exposure of cells with exogenous
Fe3+ (10–100µM) for 5min led to a significant redistribution
(from∼45 to 75%; p< 0.05) of the cytosolic 5-LOX to the nuclear
envelope, as determined by densitometric analysis (Figure 4B).
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FIGURE 3 | Iron increase 5-LOX activity. (A) Effect of exogenous iron (FeCl3) on 5-LOX activity tested by a cell-based fluorescence assay. To determine the effect of

Fe3+ on 5-LOX activity different concentrations of FeCl3 were added to each well and incubated for 5min in the dark at 37◦ in a CO2 incubator (5% CO2/95% air).

Enzyme assays were started by the addition of 2.5mM CaCl2, 2mM ATP, and 70µM AA (*P < 0.05 vs. control). (B) Pharmacological blockade of 5-LOX activation

prevented induction of 5-LOX activity by FeCl3. THP-1 macrophages were incubated with 0.5µM NDGA or 1µM MK-886 for 30min and then treated with 1mM

FeCl3 or vehicle. The results represent the means of RFU ± SE of three independent experiments. relative to the control activity (no FeCl3) assumed as 100%

(***p < 0.001 vs. control; §§§p < 0.001 vs. control; while ###p < 0.001 vs. control with FeCl3).

By contrast, the expression and cellular localization of FLAP were
not altered by Fe3+ treatment (Figure 4C).

Acute Hemin Exposure Recapitulates the
Effects of Fe3+ on 5-LOX Translocation in
THP-1 Macrophages
To investigate whether Fe3+ arising from heme degradation
can modulate 5-LOX intracellular localization, we exposed
THP-1 macrophages to free hemin. As shown in Figure 5A

hemin treatment induce an increase of LOX-activity (∼100%).
Western blot analysis of subcellular fractions revealed that
hemin, much alike Fe3+, produced a nuclear translocation of 5-
LOX (Figures 5B,C). To test whether this effect was mediated
by Fe3+ itself, we treated THP-1 macrophages with the Fe3+-
chelating agent DFO, at 20µM, for 2 h before hemin exposure.
As shown in Figure 5D, DFO completely abolished the hemin-
dependent translocation of 5-LOX to the nuclear fraction,
underlying the pivotal role of Fe3+ in mediating 5-LOX activity
and intracellular redistribution.

Acute Exposure With Fe3+ or Hemin
Regulates 5-LOX Translocation on Nuclear
Envelope to Co-localize With FLAP in
THP-1 Macrophages and Primary Human
Macrophages
The effect of Fe3+ and hemin on the subcellular localization of
5-LOX and FLAP in THP-1 macrophages and primary human
macrophages was also investigated by confocal microscopy.
Fluorescence micrographs of untreated cells confirmed the
presence of 5-LOX in both cytosol and nucleus, with a
prevalence of the cytosolic localization, while FLAP displayed a
prominent distribution in the nuclear envelope (Figures 6A,B).
The Ca2+ ionophore A23187 was used as positive control to

stimulate the translocation of 5-LOX to the nuclear envelop.
Furthermore, in both cell lines exposure to Fe3+ or hemin
induced a translocation of 5-LOX to co-localize with FLAP on
nuclear envelope, the protein necessary for the enzyme activation
(Figure 6 and Table 1).

Acute Exposure With Fe3+ and Hemin
Induces Functional Activation of THP-1
Macrophages
To test whether Fe3+ and hemin can affect the functional
activation of THP-1-derived macrophages, an ELISA assay was
performed to determine the expression of IL-6, a soluble cytokine
that is synthesized by activated macrophages (27). The control
medium from THP-1-derived macrophages presented an IL-
6 concentration of 11.1 ± 0.9 pg/mL. The acute exposure of
cells to Fe3+ and hemin significantly increased the levels of
IL-6 in the supernatants showing values of 120.2 ± 6.6 and
129.9 ± 4.3 pg/mL, respectively (Figure 7). Furthermore, pre-
treatment THP-1-derived macrophages with DFO leads to a
significant reduction of hemin-induced IL-6 levels to 74.8 ± 6.0
pg/mL (Figure 7).

DISCUSSION

Increasing evidence demonstrates that iron homeostasis must
be tightly regulated to maintain erythropoietic functions, redox
reactions and cellular immune responses and that excessive iron
levels could act as primary pro-oxidant leading to cellular damage
and death (28–30). In addition, the effect of inflammation
on the regulation of iron metabolism is widely recognized
(31), and a dysregulated iron homeostasis or iron overload
are a cornerstone of acute and chronic inflammatory processes
involving cell-mediated immunity (32). According to this,
macrophages play key roles in iron metabolism, in particular
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FIGURE 4 | Western blot analysis of 5-LOX in subcellular fractions from THP-1

macrophages. (A) 5-LOX protein was found predominantly in the nuclear

fraction of resting THP-1 macrophages. However, priming cells with

exogenous Fe3+ (10–100µM) for 5min led to a redistribution of the cytosolic

5-LOX to the nuclear compartment. (B) The relative intensities of the same

bands shown in (A) were determined by densitometry (arbitrary units, AU).

Similar results were obtained in two additional experiments (not shown). The

results are given as mean ± SE of three independent experiments (*p < 0.05

vs. control). (C) The expression and cellular localization of FLAP were not

altered by iron treatment. β-actin and lamin were used as housekeeping

proteins for data normalization.

by recycling and storing heme iron from phagocytosed red
blood cells (33, 34). Heme iron has several proinflammatory
activities, including production of cytokines and acute-phase
proteins, and is endowed with the ability to induce neutrophil
migration and activation (35, 36). Noteworthy, it was previously
reported a heme-induced biosynthesis of LTB4 in the nuclear
membrane by the combined action of 5-LOX and LTA4 hydrolase
(37). Moreover, it is to underline that iron-associated pro-
inflammatory conditions with 5-LOX macrophage activation is
intimately related to different diseases, from atherosclerosis (38),

FIGURE 5 | Effects of hemin administration on activity and subcellular

localization of 5-LOX in THP-1 macrophages. Treatment with hemin (10µM)

for 5min caused an overt increase in 5-LOX activity (A), paralleled by a nuclear

translocation of the enzyme (B,C). Pre-incubation with deferoxamine (DFO,

20µM) completely abolished the localization of 5-LOX in the nuclear fraction

(D). Results are given as mean ± SE of 3 independent experiments (*p < 0.05

vs. control). Lamin was used as a housekeeping protein for data normalization.

to Alzheimer’s disease (39, 40), multiple sclerosis (41), and cancer
(42, 43). However, the precise mechanism(s) underlying the
relationship between iron and 5-LOX are as yet unclear.

In this work, combining molecular approaches with cellular
and biochemical analyses, we provide clear evidence that: (i)
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FIGURE 6 | Effect of hemin or FeCl3 on 5-LOX subcellular distribution and its co-localization with FLAP in THP-1 cells (A) and human macrophages (B). Cells were

left untreated (Ctrl) or treated with A23187 (A23), hemin or FeCl3, then double stained with anti-5-LOX (red, panels on the left) and anti-FLAP (green, panels in the

center). Details are given under Materials and Methods, and parameter values are summarized in Table 1. Merged images, along with specific 2X magnified regions,

are shown in the panels on the right. For quantification of the overlap coefficient, the co-localization analysis of the two stainings was restricted to the region of interest

which delimitates the nuclear envelop (yellow dotted lines). Images are representative of two independent experiments, for a total of 20 cells. Scale bars, 10µm.

TABLE 1 | Effect of treatment with hemin and FeCl3 on co-localization of FLAP/5-LOX.

Cells Overlap coefficient

Treatment

Ctrl A23 Hemin FeCl3

THP-1 0.07 ± 0.05 0.41 ± 0.11*** 0.49 ± 0.19*** 0.34 ± 0.09***

Primary macrophages 0.12 ± 0.08 0.75 ± 0.21*** 0.41 ± 0.16*** 0.42 ± 0.15***

A23, A23187. Data are means S.E. values (n = 20). Significance was calculated using an one-way ANOVA with Dunnett’s multiple comparisons test. ***p < 0.001 vs. relative Ctrl.

the apo-form of 5-LOX obtained removing Fe3+ with chelators
is completely inactive and shows a lower membrane binding
affinity with respect to the holo-5-LOX; (ii) the presence of
iron in the active site stabilizes an active conformation of
5-LOX more suitable for the association with membranes;
(iii) acute treatment of macrophages with both Fe3+ and
hemin induces a rapid translocation of 5-LOX from cytosol
to nucleus leading to a specific interaction with FLAP;
(iv) chelation of Fe3+ is able to revert the subcellular
localization of 5-LOX; (v) Fe3+ and hemin induces a functional
activation of THP-1 derived macrophages increasing levels
of IL-6 and chelation of Fe3+ is able to significantly revert
this effect.

Here we focused on the evaluation of the spontaneous
membrane binding properties of 5-LOX in the presence and

in the absence of iron within the active site (without other
known effectors, such as Ca2+) and on the 5-LOX nuclear
translocation only due to an acute iron (or hemin) treatment
in macrophage cells. The membrane binding data reported
in this study are in line with previous results obtained
with LOX-1 from soybean seeds (20) and confirm a crucial
general role for Fe3+ in preserving the structural stability
and membrane binding ability of LOXs. In this context, the
already reported presence of an apo-form of the enzyme in
several mammalian cells (44, 45), strongly suggest a general
mechanism of LOX cellular activation where excess of iron
induces an enzyme translocation to the nuclear membrane
and a functional interaction with FLAP, that in the case of 5-
LOX is a necessary prerequisite for the pro-inflammatory LTs
biosynthesis (15, 16). Indeed, we demonstrated that Fe3+ and
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hemin promote the co-localization of 5-LOX and FLAP in the
nuclear envelope of both THP-1 and human macrophages that
is accompanied with an overexpression of IL-6 in THP-1 derived
macrophages (Figure 7).

In general, the regulatory mechanisms that facilitate the
transient activation of enzymes like 5-LOX may include
modulation of their transcription and/or translation, targeted
degradation of the protein, phosphorylation, and/or allosteric
control of their catalytic activity (15, 16, 46). On the basis
of the present data, we can speculate the presence of a
fraction of 5-LOX in the apo-form in human macrophages.
Thus, being the biosynthesis and maintenance of a catalytically
inactive apo-5-LOX an event energetically unfavorable for a
cell, our results suggest that this apo-forms may function as
“stand by” inactive forms able to readily incorporate Fe3+

in the active site, and thus to rapidly respond to specific
physiological or pathological cellular stimuli. In this way, 5-
LOX activity could be readily increased post-translationally
without waiting for (slower) transcriptional and/or translational
processes. To our knowledge, as yet only one apo-enzyme
has been reported to be activated by an immediate post-
translational mechanism, namely human Cu, Zn-superoxide
dismutase (47).

As above discussed, our study clearly evidenced an iron-
induced mechanism of 5-LOX activation that could have a
physiological relevance but it could be also related to an
iron overload condition occurring with iron supplementation
or excess of bioavailable iron in the diet. Indeed, from a
clinical point of view, our results suggest a more careful
evaluation of the already evidenced risks related to iron
overloading and supplementation reported by different iron
intake recommendations (e.g., US Food and Nutrition Board,
FAO/WHO, and the EU Scientific Committee). In line
with this, our study underlines the importance of using
different clinical biomarkers (e.g., the ferritin plasma levels, the
apo- and holo-transferrin ratio, the apo-heme concentration
in erythrocytes, the mean corpuscular volume, etc.) for a
proper assessment of iron deficiency—and thus anemia—before
administering a therapy of iron supplementation that here we
are speculating that could be associated to a chronic activation
of macrophages, possibly explaining the already described
risks of iron overload (48) and linked to inflammatory-related
diseases (38–43, 49).

As a final note, Fe3+ chelators, such as the FDA-
approved drugs deferiprone or DFO, have been shown to
inhibit the progression and the proliferation of cancer cells
through a variety of mechanisms such as the inhibition of
iron-dependent activation of translational and enzymatic
processes (50–53). Moreover, it has been shown that the iron
content of macrophages affects the associated infiltration
capacity; the high-Fe3+ macrophages are the most able to
infiltrate the tumor compared to the general macrophage
populations found in the tumor (54). In fact, recruitment of
tumor-associated macrophages (TAMs) -usually associated
with advanced tumor progression and metastasis- is one
of the key events in tumor and a correlation between

FIGURE 7 | Iron, hemin, and DFO effects on IL-6 concentrations in

supernatants of THP-1-derived macrophages. Effect of FeCl3 (10µM for

5min) and hemin (10µM for 5min) on IL-6 levels in THP-1 macrophages

evaluated by ELISA. To determine the effect of exogenous iron and hemin on

functional activation of macrophages, the IL-6 levels in supernatants were

analyzed after 24 h by ELISA (n = 6). Pre-incubation with DFO (20µM for 2 h)

reduced IL-6 levels induced by hemin treatment. The results represent the

means of RFU ± SE of three independent experiments (***p < 0.0001).

5-LOX and FLAP levels and the density of TAMs has
been found in ovarian cancer (55, 56). The functional
effects that we here reported using DFO suggest that the
therapeutic potential of iron chelators could be due, at least
in part, by modulating the cellular distribution and activity
of 5-LOX.

CONCLUSIONS

Taken together, these results indicate that iron modulates
5-LOX intracellular localization by increasing the ability of
the enzyme to bind to nuclear membranes thus activating
the 5-LOX-mediated inflammatory processes. Our data also
identify a potentially important mechanism regarding the role
of 5-LOX in the functional activation of macrophages, and
may advance our understanding of the risks associated to
iron overloading.
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