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Editorial on the Research Topic

Understanding the Importance of Temporal Coupling of Neural Activities in Information

Processing Underlying Action and Perception

INTRODUCTION

The aim of this study was to understand the role of the temporal coupling of neural events in
information processing underlying action and perception. Action and perception are optimized
for a successful interaction of an organism with its environment to carry out tasks needed for
its survival.

Information processing in the brain during an interaction with the external environment leads
to an increase in mutual information and surprisal information (Gupta and Bahmer, 2019). Mutual
information is a general measure of the strength of the association between two variables (Gupta
and Bahmer, 2019). Pairs of variables, underlying the changes in the mutual information in the
brain, may be represented by the spiking activities of pairs of nodes in a brain network, i.e.,
low-frequency vs. high-frequency neural oscillations during cross-frequency interaction or spiking
vs. local field potential (LFP). Task-induced association between these variables due to temporal
coupling can increase themutual information and reduce the surprisal information in the brain that
results from the sensory processing of stimuli, leading to a successful interaction with the external
environment. Previous experimental studies have also supported an important role of temporal
coupling in different perceptual tasks (Bahmer and Gupta, 2018). Moreover, the temporal coupling
of neural events during information processing underlying action and perception can be of different
degrees, from a less tight to a more tight degree (Gupta et al., 2020). Furthermore, binding between
two brain areas or a brain activity and an external stimulus feature can emerge from temporal
coupling (von der Malsburg, 1995).

Many studies in the Frontiers’ Research Topics shed light on the role of the temporal coupling
in information processing in the brain. Several lines of evidence presented in many contributions
indicate that there is temporal coupling and an increase in mutual information during information
processing in the central nervous system.

Furthermore, various parameters to study the association between neural activities, reflecting
mutual information, are reported by the contributing manuscripts, which include spike–gamma
LFP coherence, paired phase consistency (PPC), spike train distance, and bicoherence. In
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addition, many studies have highlighted the importance of
synchronization in information transfer from one region of the
brain to the other. Neural oscillations of slow frequency may
represent the synchronization of brain networks involved in
information transfer whereas high-frequency oscillations may
predominantly reflect local neuronal activities (Herrmann et al.,
2016). Information transfer would occur if the phase of the
excitability of neurons matches with the arrival of inputs (Fries,
2015). Note that evidence from experiments based on LFP (MEG,
EEG, fMRT) must be cautiously interpreted because synaptic
activity from the sender projecting to the receiver network can
result in false-positive coherence measures (Schneider et al.,
2020). Moreover, synchronous states increase the probability of
joint activity of pairs of neurons in networks, which contributes
to the increase in mutual information. The synchronous activity
of specific pairs of neurons, in neuron populations, modulated by
tasks also reduces the surprise associated with the sensory stimuli,
which contributes to a successful interaction of the brain with
the environment via optimal perception and action (Gupta and
Bahmer, 2019).

CONTRIBUTIONS

Interaction With the Environment
Wen et al. investigated how task goals modulate whole brain
functional connectivity when human subjects were asked to
classify either taxonomic type or behavior type of behaving
animals under naturalistic conditions shown in video clips. To
study whole brain functional connectivity, the authors used inter-
subject functional correlation. This method eliminates intrinsic
signals by calculating the inter-regional correlations between
different subjects performing the same task. Their findings show
that whole brain functional connectivity was modulated by
different task goals.

In a study of interpersonal interaction, a piano duet task
was designed with three types of performer roles in the
duet, namely, starting vs. joining, musical task similarity, and
performer animacy (human vs. computer) (Washburn et al.). The
authors noted that there are lasting effects of musical ensemble
performance on attentiveness, perceptual-motor coordination,
and empathy.

In a method article, Sihn and Kim studied a measure of
synchrony and temporal similarity between spike trains called
spike train distance. They used a method called Earth Mover’s
Distance (EMD) to compute spike train distance. EMD is
sensitive to the temporal pattern but robust to firing rate changes.
Since many of the cognitive functions are dependent on temporal
patterns (Bahmer and Gupta, 2018) rather than firing rate, EMD
may be used to study the effect of similarity or dissimilarity of
spike patterns of pairs of neurons on cognitive functions of the
brain. Smaller values of EMD in spiking of neurons suggest a
greater similarity. Using the actual data from recording in the
monkey motor cortex, the authors found that EMD increased
as the angle was becoming orthogonal to the preferred direction.
This finding underscores the importance of the temporal pattern
of neuron firing in coding directional sensitivity.

In a species of weakly electric fishes (Apteronotus
leptorhynchus), Metzen et al. investigated the coding of natural

electrocommunication signals, called chirps. A. leptorhynchus
are known to robustly give chirp echo responses when stimulated
with chirps, which is used for the study of perception in these
animals. Using the characteristics of chirp stimuli that are
common during the interaction between same-sex conspecifics,
the authors showed that synchrony in neuronal activities at all
levels increased transiently in a similar fashion in response to
these chirps. Furthermore, synchrony at the population level
was a much better detector of the chirp stimulus than the single
afferent activity. The increase in population synchrony, which
promotes information transfer, was invariant to chirp attributes,
namely, duration and amplitude (i.e., transient increase in
frequency). The behavioral response to chirps was studied by
chirp echo response rates, which was also invariant to variations
in chirp attributes. During natural interactions between same-sex
conspecifics, a simple behavior, giving a chirp echo response,
which excludes complex behaviors, such as mating and escape,
is sufficient. Thus, the invariance to chirp attributes in current
conditions will not be detrimental but would only enhance their
interactions with the same-sex conspecifics.

The interaction with the physical world depends on
various functions of the nervous system. These include
the proprioceptive performance and the discrimination of two
sensory stimuli and separate movements by the shortest intervals.
Odorfer et al. studied the confounds of aging and polyneuropathy
on these functions by studying somatosensory temporal
discrimination threshold (STDT), temporal discrimination
movement threshold (TDMT), and behavioral measures of
proprioception of upper and lower limbs. This study shows that
aging resulted in higher STDT and TDMT but had no influence
on proprioceptive performance. However, polyneuropathy
resulted in higher STDT and TDMT with poor proprioceptive
performance. These findings provide the objective basis for the
decline in cognitive functions in older individuals, requiring
interaction with their environment, such as sports activities.

Attentional Modulation
Earlier studies showed that the default mode network (DMN)
shows higher activity at rest compared with tasks involving
attention. However, recent studies have suggested that DMN
is also engaged during tasks involving attentional modulation.
Consistent with the recent trend, Zhou et al. showed that there
is a greater connectivity between two nodes of DMN, namely,
posterior cingulate cortex and left inferior parietal cortex/angular
gyrus in attentional tasks involving external focus in comparison
with internal focus. The task paradigm required maintaining
a pressure of 20 cm of water between the right index finger
and thumb. External focus recruited attentional process based
on the direct feedback about the pressure levels. Internal focus
involved attentional modulation based on tactile sensory input
and memory.

Capacity for sustained attention is important for the
interaction of the brain with the environment.Wang et al. studied
variability in reaction time and trial-by-trial frontal theta activity
in individuals performing sustained attention tasks to understand
the electrophysiological underpinnings of attention. Variability in
reaction time and trial-by-trial frontal theta activity were assessed
by SD and the amplitude of low-frequency fluctuation (ALFF).
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The authors reported that the ALFF of reaction time variability
has a significant correlation with the ALFF of the trial-by-trial
frontal theta activity in a frequency-dependent manner.

Temporal Coupling
In a study by Geoly and Greene, when two complementary
subsets of sparse dots are presented to represent a shape,
separated by an interval between 0 and 500ms, the probability
of a correct match with the target shape remained above
chance. When the complementary subsets of dots were presented
simultaneously, the probability of match recognition was the
highest. The probability of match recognition decreased with
increasing the interval between complementary subsets of dots.
These results suggest the importance of the temporal coupling
of information from two subsets of dot patterns, where data
from two subsets of dots are separated by the duration, ranging
from 0 to 500ms (Gupta et al., 2020). Another experiment
displayed the complementary subsets with 200ms of separation,
and the match recognition was disrupted when the random dot
mask was displayed midway between the two subsets. When the
random dot patternmask was presentedmidway between the two
subsets of complementary information, it affected both subsets
of information to the same extent by temporal coupling, which
resulted in a complete disruption of the match recognition.

Li et al. studied spike–gamma LFP coherence by placing
chronically implanted multielectrode arrays over V1 and V4
in two macaques performing a selective visual attention
task. The visual stimulus used was sinusoidal gratings with
orientation, between 0◦ and 360◦, presented in pseudorandom
order. The authors found that the spike–LFP synchronization
strength between V1 and V4 shows orientation selectivity to
drifting gratings. Li et al. further argued that synchronization
between different regions not only reflects the basic features
of visual stimulation but also describes the orientation tuning
characteristics of neurons. This is consistent with the argument
that the increase in mutual information, which results from
the synchronization between different regions of the brain, can
represent complex stimulus characteristics, such as orientation
(Gupta and Bahmer, 2019).

van der Velden, Vinck, Werkman et al. simultaneously
recorded spontaneous extracellular spikes from 10 to 30
dopamine neurons in acute slices from the lateral ventral
tegmental area (VTA) of the rat. The functional connectivity
between pairs of neurons was analyzed by PPC, which estimates
the square of phase-locking value. Manipulating excitability with
high extracellular potassium reduced the PPC, but the application
of glutamate did not have any effect on PPC. Since the application
of glutamate would affect excitability via synaptic connections,
the reduced PPC after the application of high K+ is partly due
to the uncorrelated activity of pairs of neurons that have no
synaptic connections.

It is currently known that during speech comprehension,
there is an alignment of the neuronal excitability phase of slow
oscillations in the auditory cortex with slow energy fluctuations
in the speech or the attributes of the speech envelope (Assaneo
et al.), which is referred to as speech tracking. This alignment,
indicating temporal coupling, was estimated by computing the
phase-locking value between the brain activity and the cochlear

envelope (Ding et al., 2017) of the perceived stream of syllables.
Assaneo et al. showed that the asymmetry of the auditory tracking
is reversed by the presence of semantic information even though
the acoustic properties of the stimuli are similar. Hence, their
findings reveal the importance of temporal binding between the
auditory stimulus and the brain activity in speech perception.

Khamechian and Daliri analyzed non-linear neuronal
synchronization in LFPs recorded from the middle temporal lobe
signals during a visuomotor task by employing the bicoherence
method to examine how non-linear neuronal synchronization
in the MT area is involved in the processing of visuomotor
information. Bicoherence, a study of two frequencies in a single
signal, gives a maximum value if there is a perfect phase-locking
and a minimum value if there is a random overlap between
the phases of two frequencies. Notably, information transfer
depends on phase-locking. Thus, the study of the characteristics
of non-linear neuronal synchronization would be important for
understanding the complex dynamics of information transfer in
cognitive tasks.

In a study employing midbrain slices, van der Velden,
Vinck and Wadman. combined the optogenetic stimulation of
dopaminergic neurons in the VTA with the recording of action
potentials. After stimulation with regular optogenetic pulses,
the authors found the highest resonance at 2.9Hz, which is
the intrinsic frequency of the VTA neurons. However, after
stimulation with stochastically distributed pulses, maximum
resonance was noted at a subharmonic frequency of 1.5Hz. As
authors have noted, wide-band stochastic inputs to dopaminergic
neurons can induce synchronous states. Also, it is noted that
the synchronous states promote information flow. This is
particularly interesting in the study of the response of the
VTA in unpredicted rewards (Morales and Margolis, 2017).
The stochastic inputs to dopaminergic neurons, resulting from
unexpected rewards, can also induce synchronous states for
information processing.

Information Processing in the Brain
Using a biologically plausible simulation study, Löffler and Gupta
showed that input patterns can be encoded by the coincidence
detection in dendrites. When 100Hz synchronized inputs, from
I-neuron (source of activity pattern to be encoded) and A-neuron
with 100Hz regular discharge rate, coincide with the peak of the
8.33Hz subthreshold membrane potential oscillations at one of
the dendritic branches, this results in a dendritic spike leading to
a somatic spike. In this model, a single dendritic spike increases
the synaptic weight by ∼37% at corresponding synapses. An
increase in the synaptic weight at specific synapses is responsible
for reproducing the same pattern of activity alone by a 100Hz
regular input even in the absence of I-neuron activity. Since
synaptic weights are increased at specific synapses, depending
on the temporal pattern of the input from I-neuron, this may
provide a biologically plausible basis for the temporal processing
of information.

In an fMRI study of dynamic functional network connectivity
in subjects performing auditory discrimination and working
memory tasks, the authors used the independent component
analysis to extract networks, which included the auditory, the
visual, the sensorimotor, the cerebellar, the frontoparietal, the
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default mode, and the salience networks (Zhang et al.). The
sliding window analysis, with each step of 30 s and a total of
178 steps, was used to identify four states, resulting from various
configurations of seven networks. The analysis of four states in
two tasks revealed distinct dynamic functional connectivity of the
networks. It should be noted that there are changes in mutual
and surprisal information, which are due to distinctive dynamic
connectivity in two tasks. This suggests that distinct dynamic
connectivity rather than quantitative changes in mutual and
surprisal information underlies the differences in the task goals.

A human behavioral study by Liang et al. found that the
memory load, i.e., remembering an increasing visually presented
list of alphanumerical items, reduces sweet and bitter taste
sensitivities, which are consistent with other studies of the effects
of memory load on perception.

Han and Dimitrijevic studied (1) the effect of amplitude
modulation (AM) depth on the detection of amplitude
modulated white noise and (2) the interaction between cortical
N1 responses, hearing performance, and AM changes (4, 40,
100, and 300Hz) in postlingually deafened subjects with bilateral
cochlear implants (CIs) for speech perception in CI users. They
showed that AM change stimuli can elicit robust N1 acoustic
change complex responses (4 and 40Hz) in CI users. The N1
latency to 40Hz (not 4Hz despite robustness) relates to speech
perception measures, and temporal modulation transfer function
relates well to speech perception in CI users.

In a dynamic three-node network model studied by Chen
and Padmanabhan, consisting of local excitatory mitral/tufted
cells and inhibitory granule cells in the olfactory bulb and
excitatory cells in the piriform cortex with feedback connections
to the granule cells, different computations are possible with
the changes in the weight of top-down connections to the
granule cells. Different computations produced by the changes
in the weight of top-down connections include (1) separating
two external (olfactory) stimuli based on rate coding and
(2) synchronizing the oscillatory activities of two separate
stimuli. The authors also suggested that weight changes can
be biologically initiated by neuromodulators. Notably, while

synchronization can increase the mutual information, the
pattern separation based on rate coding would increase the
surprisal information.

Tal et al. have reviewed the study supporting that neural
oscillation may occur as transient burst-like events in addition
to a sustained increase in power. Burst-like oscillations are
transient events, which are separated by temporal gaps. Due to
averaging over many trials to increase the signal-to-noise ratio,
it was difficult to detect burst-like oscillations previous studies.
However, the authors argued that the trial-by-trial changes
in oscillatory dynamics must be studied to understand their
role in perception and action. The authors also offered advice
about choosing suitable analyses to study neural rhythms in
single trials.

SUMMARY

A review of various contributions in the Frontiers’ Research
Topics suggests that synchronous activities can have the
following consequences: information flow, temporal coupling,
and an increase in mutual information. The synchronization
would also reduce the surprise by increasing the coactivation
of pairs of neurons. Notably, an initial increase in surprisal
information would result from information flow. Both the
increase in the mutual information and surprisal information
are the important underpinnings of action and perception,
subserving the interaction of the brain with the environment
(Gupta and Bahmer, 2019).
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Previous literature reports have demonstrated that taste perception would be influenced
by different internal brain status or external environment stimulation. Although there are
different hypotheses about the cross-modal interactive process, it still remains unclear
as of how the brain modulates and processes taste perception, particularly with different
memory load. Here in this study we address this question. To do so we assign the
participants different memory loads in the form of varying lengths of alphanumerical
items, before tasting different concentrations of sweet or bitter tastants. After tasting
they were asked to recall the alphanumerical items they were assigned. Our results show
that the memory load reduces sweet and bitter taste sensitivities, from sub-threshold
level to high concentration. Higher the memory load, less is the taste sensitivity. The
study has extended our previous results and supports our previous hypothesis that
the cognitive status, such as the general stress of memory load, influences sensory
perception.

Keywords: cross-modal, memory load, cognitive status, sweetness perception, bitterness perception

INTRODUCTION

In today’s fast paced society, on one side, many people have quick meals “on the go.” Their
cognitive brain is still busily processing something related with work while chewing and swallowing
meals. It has been suggested that cognitive load would distract the attention and reduce sensory
perception. Several studies have demonstrated that taste perception may be influenced by internal
brain state such as attention and awareness (Elder and Krishna, 2009). The literature has been
very mixed regarding the influence’s effect between attention and multi-sensory integration
(Odegaard et al., 2016). For instance, some investigations have found that attention has no effect on
multisensory integration (Bertelson et al., 2000; Shore and Simic, 2005), while other studies have
reported that selective attention can increase integration (Alsius et al., 2005), or reduce integration
(Mozolic et al., 2008; Talsma et al., 2010). Yantis (2000) has proposed the competition of limited
attention resources. When attention is distracted by other information resources like TVs, the
taste perception would get less sensitive and the hedonic rating of the food would be reduced.
Similarly, people experience tastants less intense when the environment has loud noise (Spence
and Shankar, 2010). Stafford et al. (2012, 2013) have demonstrated that music and distraction
may alter taste perception of alcohol. How the brain processes the sensory perception, particularly
involved with the neural network of higher level of cognition, remains unclear. Kahneman (2011)
has proposed two cognitive processes. Accordingly, the cognitive states are divided into “cognitive
ease” and “cognitive strain.” The cognitive ease means people feel effortless and comfortable.
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When the brain is at cognitive ease state, the response is
fast and intuitive. On the contrary, when the brain is at
cognitive strain state, people feel less comfortable or stressed.
It leads people to increase attention and to invest more effort
and the corresponding response is more critical. Our previous
studies have demonstrated that visual information affects taste
sensitivities (Liang et al., 2013, 2016). For instance, the visual
stimuli representing color, shapes, or symbols induce attentive
mechanisms, which are difficult to calibrate with respect to
the cognitive ease and load concept. And such components
might contribute differently to affecting the gustatory perception.
Motivated by Kahneman’s theory and the previous research, we
hypothesized that the cognitive status plays a key role in gustatory
perception. More specifically, we would like to focus this study on
cognitive strain and observe how taste perception thresholds are
affected by a simple memory load task.

Recently van der Wal and van Dillen (2013) have tested
whether task load influences the sweet, sour, and salty perception.
In their study they demonstrated that the task load reduces
not only aversive tastants, such as sourness of lemon juice,
but also pleasant tastants like grenadine syrup and salty butter.
However, in their study, the tastants are more complex, and the
tastants concentrations are relatively higher compared with taste
threshold level. It would be therefore important to observe how
the basic taste sensitivity changes at lower concentrations to avoid
the saturation of the taste receptors or central habituation. Hence,
our present paper is to study how the sweetness and bitterness
sensitivity is influenced with different degrees of memory load,
particularly, at low concentration level (around taste threshold).

To test if cognitive strain influences the perception thresholds,
we manipulated the degree of memory load by varying the length
of alphanumerical items. Two basic but hedonically opposite
tastes, i.e., sweetness and bitterness were applied and calibrated
against the memory load. The results confirm the hypothesis that
cognitive load reduces taste perception.

MATERIALS AND METHODS

Subjects
Twenty-six student volunteers (sixteen females and ten males)
from Changshu Institute of Technology (CIT), China were
chosen for the experiments. They were all self-reported right-
handed and had normal eyesight or at least were corrected to
normal by glasses. None of them was color blind and their ages
were between 21 and 30 years old (average 25 ± 3 years). They
did not have any taste- or smell-related disease before. All the
participants were well briefed about the details of the experiments
and of their performance. They all agreed and signed on the
written informed consent declaration to volunteer as subjects
in these experiments. The study was approved by the Ethics
Committee (IEC) of the No. 2 Peoples’ Hospital of Changshu
(license number 20151101), according to the Ethics Guidelines.

Tastants Preparation
We applied sucrose solution as sweet tastants. Sucrose was
dissolved in distilled water to prepare the sugar solution with

concentration of 0, 1.5, 3.1, 3.9, 4.7, and 5.5 g/L, respectively
(Liang et al., 2013). The phenylthiourea solution was prepared
with concentration of 0, 0.02, 0.04, 0.08, 0.16, and 0.24 mM/L,
respectively. All the sweet and bitter solutions were prepared
one night before and kept on the table at the room temperature
between 20 and 25◦C. During the experiments the solutions were
provided to the subjects in a series of half-filled odorless white
paper cups (25 ml).

Memory Load on Display
Before tasting experiments, the participants were visually exposed
to a list of alphanumerical items on the monitor for 2 s. They
were requested to remember and to repeat the information
given to them after each block of taste experiments (refer to
Figure 1 Experiment flow). The memory load task was modified
by changing the length of the list of alphanumerical items. For
example, “1C,” “L1G0,” “6C1A8Z,” “G4S3J1Z8” represent the four
groups of memory tasks with increasing cognitive load. The
number and alphabet are in a staggered random arrangement
without any possibility of association and remembrance by
the volunteers, during repetition of the experiments. The
information of memory task was displayed on 17-inch LCD
Monitor with 60 Hz refresh rate.

Experiment Training
The experiments are carried out at the sensory science laboratory,
Changshu Institute of Technology, Jiangsu, China. There are two
purpose of the experiment training: (1) to pre-test the sweet
and bitter taste threshold level and (2) to confirm that tastants
concentrations are suitable for the experiments. To measure
the sweetness or bitterness threshold, the subjects performed
the sweet or bitter taste series of six different concentrations
randomly without being exposed to visual stimuli. The sweetness
and bitterness thresholds were measured by the staircase method
and forced choice tracking procedures (refer to the Pepino and
Mennella, 2010). The participants were trained for 2–4 times to
perform the memory load task and taste experiments, till they
were confident and comfortable with the experiments. To avoid
the influence of hunger status of the subjects, the experimental
data of the subjects were collected at a fixed time of the day
(around 1 h after food intake) while repeating the experiments
on different days.

Procedures
During the tasting experiments, the subject sat in front
of the table. Six cups of sugar solution with different
concentrations were placed on the table next to the subject.
Before tasting experiments, the monitor would display the list
of alphanumerical items, i.e., randomly generated numbers and
alphabets, for 2 s. The tasting experiments followed. For the sugar
solution experiments, the subjects sipped the sugar solution from
the paper cup (around 12 ml) into the mouth and moved the
tip of the tongue slightly, keeping the solution in the mouth
for 5 s and spitted it out. During the following 50 s pause,
the subjects rinsed mouth twice with distilled water, answered
the questionnaire whether they detected sweet taste from the
corresponding solution. The bitter taste experiments were carried
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FIGURE 1 | The upper part represents the time schematics of experiment flow. “+”is displayed on the center of monitor for 0.5 s at the beginning of each trial. The
below left side describes the examples of lists of alphanumerical items, which consist of alphabets and numbers in random order and are displayed on the center of
the monitor in front of the subjects. Six cups represent the six different concentrations of sweet or bitter tastants. ISI means the 50 s rest for the subjects after tasting
each cup. In the end of the whole blocks, the subject has 2 s to recall the list of alphanumerical items. The below right side depicts the experiment setup.

out similarly. The subjects needed to finish all the different taste
concentrations in the sweet or bitter taste blocks. We used “1,”
“−1” and “0” to record the results of the taste experiment. When
the participant detected the sweetness from the solution, “1” is
recorded. When participant detected bitterness from the solution,
“−1” is recorded. If the participant did not detect any sweet nor
bitter taste, “0” is recorded. In the block experiment, the sweet
or bitter solutions of different concentrations were provided to
the subjects in random order, respectively. The participants were
requested to recall the visual information after each trial. The
recall feedbacks would not be reported to the participants. And
the next trial will restart after 2 s. The memory task with different
length of digital inputs for the subjects was generated randomly
in a complete block design. Every participant needed to perform
the whole set of the blocks and the trials were repeated ten
times. All the experiments were carried out at room temperature
20–25◦C.

Data Analysis
All the data were recorded and saved in the computer (Window
system 7) and were analyzed offline with MATLAB 7.9 (The
MathWorks, Natick, MA, United States). We calculated the
sweetness or bitterness detection ratio of each memory load for
each person. The taste detection ratio = the number of times when
sweet or bitter taste detected with each memory task/the number
of times of total experiments repeated with the corresponding
task. For each memory load, the taste detection ratio of each
tastants concentration is first analyzed per person. The average
detection ratio and the standard deviation across 26 persons are
calculated accordingly. For each concentration of sweet or bitter
taste, the within group one way repeated ANOVA was used to
test the significance of differences in the taste detection ratios
with different memory load. And the post hoc test Bonferroni
adjusted was used to perform the pairwise comparison within the
group.

RESULTS

With manipulation of different degrees of memory load (five
types), we tested the sweet and bitter taste detection of
participants with a series of different concentrations of sugar and
phenylthiourea (each taste includes six groups). The results show
that when the memory load increases, both the sweet and bitter
taste detection ratios decrease significantly (detail data refer to
Tables 1, 2). During the training phase, the threshold of sweetness
was found between 3.1 and 3.9 g/L, and bitterness threshold
between 0.04 and 0.08 mM of phenylthiourea solution. These
data were similar to our previous lab observations (Liang et al.,
2013). For the taste experiments with cognitive load, 2 (Tastants:
Sweet vs. bitter taste) × 6 (Groups: six different concentrations
for each tastants) × 5 (Types: five different lengths of memory
load tasks) within-group repeated ANOVAs were done separately
for the six groups of each tastants, and the levels compared
pairwise in post hoc tests. The averaged taste detection ratios
of different concentrations of both sweet and bitter taste are
illustrated in Figure 2, and supplemented by Tables 1, 2.

With the still water, as expected, almost no taste was
detected with whatever memory load (Figure 2A). At very
low concentration, the detection ratio decreases significantly
with increasing memory load (Figure 2B, gray line). Although
the averaged bitterness detection has similar tendency as the
sweetness detection line, no significant effect has been found
(Figure 2B, black line). Repeated ANOVA result shows that when
the bitter solution concentration is at 0.04 mM, the bitterness
detection ratio decreases significantly with increasing memory
load [Figure 2C, black line, F(4,105) = 17.070, p < 0.001]. When
bitter taste concentration got even higher (above the threshold
level), the decreasing trend of taste detection ratio became
more obvious [Figures 2D,E, black lines, D: F(4,105) = 33.041,
p < 0.001; E: F(4,105) = 11.498, p < 0.001]. Repeated ANOVA
results shows that when sweet solution is 3.1 g/L, the sweetness
detection ratio decreases significantly with increasing memory
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TABLE 1 | Sweetness detection ratios of different sugar concentration under variant memory load.

Solution concentration

Task load 0 g/L 1.5 g/L 3.1 g/L 3.9 g/L 4.7 g/L 5.5 g/L

0 0.01 ± 0.02 0.24 ± 0.10 0.58 ± 0.20 0.89 ± 0.10 0.95 ± 0.06 1.00 ± 0.01

2 0.00 ± 0.00 0.13 ± 0.14 0.49 ± 0.18 0.73 ± 0.12 0.88 ± 0.09 1.00 ± 0.00

4 0.00 ± 0.00 0.11 ± 0.09 0.44 ± 0.16 0.68 ± 0.14 0.84 ± 0.11 0.99 ± 0.03

6 0.00 ± 0.00 0.09 ± 0.08 0.33 ± 0.22 0.57 ± 0.21 0.83 ± 0.17 0.98 ± 0.04

8 0.00 ± 0.00 0.06 ± 0.08 0.27 ± 0.15 0.52 ± 0.16 0.69 ± 0.19 0.95 ± 0.08

Horizontal list labels represent the sugar concentration and the vertical list labels the length of alphanumerical memory load.

TABLE 2 | Bitterness detection ratios of different concentration under variant memory load.

Solution concentration

Task load 0 mM 0.02 mM 0.04 mM 0.08 mM 0.16 mM 0.24 mM

0 0.00 ± 0.00 0.18 ± 0.07 0.55 ± 0.11 0.93 ± 0.66 1.00 ± 0.00 1.00 ± 0.00

2 0.00 ± 0.00 0.26 ± 0.16 0.39 ± 0.16 0.70 ± 0.18 0.80 ± 0.12 0.96 ± 0.06

4 0.00 ± 0.00 0.16 ± 0.11 0.31 ± 0.12 0.68 ± 0.15 0.77 ± 0.22 0.92 ± 0.11

6 0.00 ± 0.00 0.13 ± 0.09 0.25 ± 0.13 0.46 ± 0.20 0.75 ± 0.15 0.84 ± 0.10

8 0.00 ± 0.00 0.09 ± 0.13 0.24 ± 0.17 0.43 ± 0.18 0.68 ± 0.21 0.79 ± 0.14

Horizontal list label represent the phenylthiourea concentration and the vertical labels the length of alphanumerical memory load.

FIGURE 2 | Both sweet and bitter taste detections decrease with memory load. (A–F) Present the sweetness detection with sucrose concentration of 0, 1.5, 3.1,
3.9, 4.7, and 5.5 g/L, and bitterness detection with phenylthiourea concentration of 0, 0.02, 0.04, 0.08, 0.16, and 0.24 mM, respectively. The gray circles and black
stars represent the sweet and bitter taste detection ratios averaged across all the subjects and the error bars denote the standard deviations across all the subjects.
Y-axis represents the sweetness and bitterness detection ratio, from 0 to 1, 1 represents 100 percent detection. X-axis represents the length of the lists of
alphanumerical items as the memory load during taste experiments, 0 represents the detection ratio without memory task.

load [Figure 2C, gray line, F(4,125) = 1.774, p < 0.001].
It is worth to note that Figure 2D represents the maximal
decrease of both sweetness and bitterness taste detection ratio
from around 90% (no memory load) to around 40% (maximal

memory load) [sweetness: F(4,125) = 22.058, p < 0.001]. At
highest taste concentration of our experiments (sugar 5.5 g/L),
the sweetness detection was all close to 100% [Figure 2F,
gray line, F(4,125) = 4.664, p < 0.01]. This may be explained
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by the sweetness response saturation. However, the bitterness
detection ratio still reduces when the memory load increases
[Figure 2F, black line, F(4,105) = 17.635, p < 0.001]. It should
be noted that the sweetness and bitterness concentrations are
differently prepared. We would expect that at very high bitterness
concentration, we might observe similar saturation effect as the
sweetness perception.

DISCUSSION

This study has systematically tested the changes of sweetness and
bitterness sensitivities with different degrees of memory load. The
sweetness and bitterness sensitivities both decrease significantly
when memory load increases. These results are consistent along
the lines of the hypothesis, that cognitive status influences the
taste perception. Our previous publications (Liang et al., 2013,
2016) have shown that the cognitive ease induced by visual
inputs such as circular shapes, familiar words may enhance the
sweetness sensitivity. The cognitive strain induced by angular
shapes, unfamiliar words may reduce the sweetness perception.
The cognitive ease or strain induced by the visual shapes or
words in the previous studies is mostly referred to affective or
hedonic cognition, i.e., cognitive positive and ease or cognitive
negative and strain. The stimuli were passive and unfocused for
the participants. Different from the previous paper, this study has
applied the phonological loop as memory task, which request
the participants to repetitively recall the visual alphanumerical
information. These task leads active and focused attention of
the participants and make them distracted from the taste itself,
and thus reduces the taste perception. Moreover, our observation
is consistent with other literature that the task load influences
the sweet, sour, and salty perception, where much complex and
higher concentration tastants have been studied (van der Wal
and van Dillen, 2013). All these studies are consistent with the
observation that task load, specifically negative or strain load,
reduces the taste perception.

Different from the common food in the market with usually
relatively high taste concentration, the low concentration of
tastants are not much studied. This study has extended the
previous literature finding and studied the sweet and bitter
taste from sub-threshold to beyond threshold level. When the
tastant concentration is extremely low (close to zero), there is no
significant effect of memory load on taste perception (Figure 2B).
When the tastants concentrations increase to around threshold
level, the effect of memory load becomes more prominent
(Figure 2C). As the tastant concentration increases and is more
beyond the threshold level, we still observe the significant effect of
memory load. Both sweetness and bitterness sensitivities decrease
with increasing memory load (Figures 2D,E). It is worth to
mention that the taste concentrations applied in our experiments
are far below the market food or drinks (Huang et al., 2018).
The reason is that we are focused to observe the taste perception
around the taste threshold level, which has been suggested in
our previous paper (Liang et al., 2013, 2016), the uncertain
zone in our brain perception around threshold level is easier
to be influenced by external stimuli. Marks and Wheeler (1998)

have found that the thresholds are lower for attended tastants
of sucrose and are critical than unattended ones. However,
the attention in their study is limited to the expectation by
giving subject the cue of tastants. In our study we extend the
investigation to the more general memory load, such as food
irrelevant memory load, and observe how are the sweet- and
bitter- taste sensitivities influenced by the memory load.

Regarding the internal brain status induced in our
experiments, the active and attentive process was generated
by memory task, which would lead the subjects to cognitive
strain. Under such cognitive state, the sensitivity of the subjects
toward taste detection has been observed to be reduced. Higher
the cognitive strain, lesser is the sensitivity toward the taste.
Recently van der Wal and van Dillen (2013) have demonstrated
similar observation that task load reduces sweet, salt, and sour
taste perception. In their experiments, the cognitive load was
to instruct the subjects to remember seven-digit number (high
load) or one-digit number (low load). Such induced brain load is
affective neutral and non-food related. Similarly, the task applied
in our study was also without affective bias, helped us to observe
the effect in a more general and systematic pattern.

Several previous studies have examined the effect of
distracting stimuli on food choice (Shiv and Nowlis, 2004; Nowlis
and Shiv, 2005). Earlier research shows due to cognitive load
the taste perception reduces, and thus people tend to have more
food to retain the same preferred taste levels in an attempt to
preserve the enjoyment level of the food as compared to relaxed
food intake conditions. On the other side, the cognitive status
induced by emotion (negative or positive) may influence the taste
perception as well. Noel and Dando (2015) found that sour taste
was enhanced with negative emotion. The brain mechanisms of
taste perception under different cognitive states remain unclear.
When the attention of the subject is focused on taste pleasantness,
the medial orbitofrontal and pregenual cingulate cortex are
greater active than when attention is instructed to taste intensity.
The taste detection in a tasteless solution involves insula and
overlying operculum (Veldhuizen et al., 2007). Such finding
might indirectly support our hypothesis that variant cognitive
status affects taste perception differently.

Moreover, our data in this study may be explained from
evolutionary biology (Wilson, 2014). We note that gustatory
perception of taste sensitivity as that of bitterness is related
to survival (Wooding, 2005) and has lower threshold (than
sweetness for instance). When cognitive load is applied, cognitive
processing takes precedence and gustatory perception sensitivity
may reduce, even with bitterness sensitivity which is related
to survival (Diamond, 1998). This might be explained by that
cognitive beings survived due to cognitive calculations and
cautionary steps taken rather than gustatory explorations. Hence
when under cognitive stress the gustatory sensory processing
manifest as bitterness taste sensitivity takes a backseat registering
a decrease in bitterness taste sensitivity. It further leads us to
another factor that influences gustatory perception, the affective
component. We relate cognitive ease status to this affective
component in the matter of gustatory perception. Previously, we
have shown that visual information from external environment
such as shapes influences taste sensitivities (Liang et al., 2013).
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These experiments explored the affective aspect of gustatory taste
perception. The circular shapes inducing cognitive ease (positive
emotion) were shown to enhance the sweetness sensitivity.
The sweetness detection in our previous experiment is more
associated with affective positive and cognitive ease stimuli.
The bitterness detection as described in this experiment is
more associated with cognitive strain stimuli (Kahneman, 2011).
The present experiment shows when under cognitive stress the
gustatory sensory processing manifest as bitterness/sweetness
taste sensitivity takes a backseat registering a decrease in
bitterness taste sensitivity. Hence it is reasonable to speculate
that the influence of cognitive over the affective in the context
of gustatory sensory processing would be a weighted average of
both affective and cognitive components. However, how affective
and attentive cognitive components associate with each other and
influence gustatory perception is not possible to shed light on
here; although this may be an interesting topic for future studies
with our calibrated model.

Here we infer that the different cognitive (for instance,
attentive) states might be the key factor, which contribute to
the modification of sweetness and bitterness perceptions. This
study show that the memory load influences both sweet and bitter
taste in a similar pattern (Figures 2B–E). Both taste detections
reduce dramatically when the memory load increases. In our
experiments, only the neutral cognitive load was applied, no
affective component was induced, thus, the sweet and bitter taste
sensitivities were influenced similarly. On the other hand, in our
previous experiments, the visual inputs have both affective and
cognitive components and where affective components were also
allowed to exercise their influence alone by the choice of the sweet
as the only tastants.

Although this study has extended the task stimuli from
our previous studies, still the phonological loop as memory
load here is a specific task, which involves silent repetition of
verbal information coded from visual information (the list of
items displayed on the monitor). The observation is limited to
support completely the hypothesis of the study. To reach a more
general cognitive load effect, it might be useful to design the
articulation suppression paradigm with this material, or to use

a non-verbal type of material in future. Moreover, regarding the
potential difference of sweetness and bitterness perception from
the evolutionary aspect, one should be aware that there may be
an evolutionary twist to the human sugar intake. Fructose may
be considered natural to us, and might be interesting to test the
effect of fructose in our future experiments.

CONCLUSION

To conclude, the current work has demonstrated that the
sweetness and bitterness detection ratios decrease with increasing
memory load, especially around threshold concentration.
At higher concentration, the both taste detection ratios
are unaffected by the memory load. It is consistent with
previous observation from other laboratories and extends our
understanding to a more systematic pattern. Higher the memory
load, lesser is the taste sensitivities. This study supports the
hypothesis that the cognitive states (positive-ease or negative-
strain) influences taste perception, and which of course still has a
long way to go before we understand it completely. On a lighter
note our work suggests that stress and enjoyment of food do not
gel well with each other, and the cognitive process induced by
different eating life style may modify the taste perception and
lead to the acquired taste.
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Humans selectively process external information according to their internal goals.

Previous studies have found that cortical activity and interactions between specific

cortical areas such as frontal-parietal regions are modulated by behavioral goals.

However, these results are largely based on simple stimuli and task rules in laboratory

settings. Here, we investigated how top-down goals modulate whole-brain functional

connectivity (FC) under naturalistic conditions. Analyses were conducted on a publicly

available functional magnetic resonance imaging (fMRI) dataset (OpenfMRI database,

accession number: ds000233) collected on twelve participants who made either

behavioral or taxonomic judgments of behaving animals containing in naturalistic video

clips. The task-evoked FC patterns of the participants were extracted using a novel inter-

subject functional correlation (ISFC) method that increases the signal-to-noise ratio for

detecting task-induced inter-regional correlation compared with standard FC analysis.

Using multivariate pattern analysis (MVPA) methods, we successfully predicted the task

goals of the participants with ISFC patterns but not with standard FC patterns, suggests

that the ISFC method may be an efficient tool for exploring subtle network differences

between brain states. We further examined the predictive power of several canonical

brain networks and found that many within-network and across-network ISFC measures

supported task goals classification. Our findings suggest that goal-directed processing of

naturalistic stimuli systematically modulates large-scale brain networks but is not limited

to the local neural activity or connectivity of specific regions.

Keywords: top-down goals, naturalistic condition, inter-subject functional correlation, multivariate pattern

analysis, large-scale brain networks

1. INTRODUCTION

Selective processing of information according to behavioral goals is crucial for our interaction with
the complex environment. However, the organizational basis underlying this goal-directed behavior
is unclear. Electrophysiological and functional imaging studies have suggested that task goals
modulate the neural representation of a stimulus (Mirabella et al., 2007; Ptak and Schnider, 2010;
Gilbert and Li, 2013). Recently, using powerful multivariate pattern analysis (MVPA) methods
(Norman et al., 2006; Haxby et al., 2014), many studies have found that top-down behavioral goals
can be decoded with distributed activities across frontoparietal and sensory regions (Chiu et al.,
2011; Waskom et al., 2014; Loose et al., 2017; Long and Kuhl, 2018).
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Despite numerous studies, most neural investigations of goal-
directed behavior have employed simple stimuli, such as moving
dots, static faces and object images, which are functionally well-
characterized (Nastase et al., 2017). However, many common
perceptual tasks require combining low-level features of stimuli
to represent abstract semantic information in our brains. With
the recent observation that less-controlled naturalistic stimuli
such as movies evoke reliable neural responses across individuals
(Hasson et al., 2004, 2010; Simony et al., 2016), a few studies
have used natural paradigms to investigate how task contexts
modulate the neural representation of high-level visual and
semantic information (Cukur et al., 2013; Nastase et al., 2017,
2018). These pioneering studies have found that goal-directed
processing of different objects or semantic features in natural
movies modulates distributed cortical areas. However, these
studies mainly focused on the modulation effects of behavioral
goals on neural activity in certain brain regions but ignored
the interaction between distributed cortical areas, which are
increasingly recognized as the biological basis for cognition and
behaviors (Fox et al., 2005; Sporns, 2014;Mišić and Sporns, 2016).

Evidence from electrophysiology studies indicates the
important role of neuronal synchronization in goal-directed
behavior (Von Stein and Sarnthein, 2000; Engel et al., 2001;
Womelsdorf et al., 2007). Similar findings have also been
reported in recent functional magnetic resonance imaging
(fMRI) studies (Spreng et al., 2010; Al-Aidroos et al., 2012).
For example, activity in V4 is correlated more strongly with
activity in the fusiform face area in a face attention task and
with activity in the parahippocampal place area in a scene
attention task (Al-Aidroos et al., 2012). Notably, most of these
studies used rudimentary visual stimuli and primarily focused
on connections between a limited number of brain regions
that were selected based on prior anatomical knowledge or on
activation patterns during tasks. These preselecting methods
may lead to some regions being ignored, given that goal-directed
processing of external information recruits a wide variety of
brain regions (Corbetta and Shulman, 2002; Petersen and Posner,
2012; Vaziripashkam and Xu, 2017). Accordingly, examining
whole-brain functional connectivity (FC) may provide new
insights into top-down goals representation.

A standard method to characterize whole-brain FC is to
calculate a Pearson correlation between the time series of all pairs
of regions within each subject (van den Heuvel and Hulshoff Pol,
2010; Zalesky et al., 2012). However, a potential limitation of
this method is that the calculated FC measures consist of task-
evoked correlations, within-subject intrinsic neural fluctuations,
and non-neuronal artifacts, and these types of signals cannot be
reliably separated (Hasson et al., 2004; Simony et al., 2016). Given
that the FC structure during task performance has been shown to
be highly correlated with the intrinsic FC structure (Cole et al.,
2014), it would be difficult to reliably detect differences in FC
patterns across task contexts. Recently, a novel method termed
inter-subject functional correlation (ISFC) has been proposed
(Simony et al., 2016). By calculating inter-regional correlations
between subjects that are performing the same task, the ISFC
method increases the signal-to-noise ratio (SNR) for detecting
task-evoked FC, making it an effective method for examining

subtle differences between cognitive states (Simony et al., 2016;
Rosenthal et al., 2017).

In the present study, we applied the ISFC method to a
publicly available dataset to investigate how behavioral goals
modulate whole-brain FC. Dynamic video clips of animals
behaving in natural environments were used as stimuli. During
the fMRI experiment, participants were required to made either
behavioral or taxonomic judgments when exposed to identical
naturalistic video clips. We used MVPA methods to explore task
modulation of whole-brain FC. We show that ISFC patterns
support successful task classification and that task goals modulate
connections between large-scale brain regions that can be
assigned to a variety of canonical functional networks.

2. MATERIALS AND METHODS

2.1. Subjects
A publicly available dataset was used in this study (Nastase et al.,
2017, 2018). This dataset was obtained from the OpenfMRI
database (http://www.openfmri.org), and the accession number
was ds000233. A total of 12 right-handed healthy adults
(7 females; mean age = 25.4 ± 2.6 SD years) provided informed
consent and participated in the main experiment. The study
was approved by the Institutional Review Board of Dartmouth
College.

2.2. Experimental Design
The experimental paradigm was described clearly in the original
paper of Nastase et al. (2017, 2018). We briefly describe the
most relevant aspects of the experimental design here for
completeness. A total of 80 naturalistic clips of behaving animals
(each lasting 2 s), collected from the Internet, were used in
the experiment. Semantically, these clips could be partitioned
into five groups based on taxonomic categories (primates,
ungulates, birds, reptiles, and insects) or four groups based on
behavioral categories (eating, fighting, running, and swimming).
Each participant completed 10 experimental runs (each lasting
392 s) while viewing these clips under two task contexts. In
half of the runs, participants were instructed to pay attention
to taxonomy types in the presented clips (taxonomy task runs),
and in the other half of the runs, participants were instructed
to pay attention to the behavioral types of the stimuli (behavior
task runs). These 5 taxonomic attention runs and 5 behavior
attention runs were presented in a counterbalanced order across
participants. Note that the appearance order of movie clips
in each experimental run of each subject was randomized.
Therefore, the appearance orders of clips in the two tasks were
irregular, it is unlikely that the following MVPA results were
contributed by differences of stimulus sequences between the two
tasks.

In the taxonomy task runs, participants were asked to press
a button if two sequential clips contained the same taxonomic
category. In the behavior task runs, participants were asked
to press a button if two sequential trials contained the same
behavioral category. There were 4 repetition trials in each run that
required a response. These tasks required participants to attend to
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the taxonomic or behavioral features of clips in a corresponding
task context.

2.3. Image Acquisition
Functional and structural images were acquired on a 3 T
Philips Intera Achieva MRI scanner with a 32-channel head coil.
Functional images were obtained using single-shot gradient-echo
echo-planar imaging with a SENSE reduction factor of 2 (TR/TE
= 2,000/35 ms, flip angle = 90◦, resolution = 3 mm isotropic,
matrix size = 80 × 80, FOV = 240 × 240 mm2, 42 transverse
slices in an interleaved fashion). Each participant completed
10 experimental runs in a scanning session, with an additional
structural scan obtained at the end of the session using a high-
resolution T1-weighted 3D turbofield echo sequence (TR/TE =
8.2/3.7 ms, flip angle = 8◦, resolution = 0.938× 0.938× 1.0mm3,
matrix size = 256× 256× 220, FOV = 240× 240× 220mm3).

2.4. Image Preprocessing
Imaging data were preprocessed using SPM12 (http://www.fil.
ion.ucl.ac.uk/spm) andDPARSF (Chao-Gan and Yu-Feng, 2010).
Functional data were slice-time adjusted, motion-corrected,
and normalized to the Montreal Neurological Institute (MNI)
space using a segmented high-resolution gray matter structural
image and a gray matter template. The resulting images were
detrended to abandon linear trends. The nuisance time series,
including motion, white matter, CSF and their derivatives, were
regressed out using linear regressions. Low-frequency signals
were removed using a high-pass filter (>0.08 Hz).We did not use
a low-pass filter, as in resting-state fMRI studies, as this allowed us
to retain potentially informative task signals at higher frequencies
(Shirer et al., 2012; Cole et al., 2013). Signals corresponding
to stimulus presentation were further removed using standard
general linear regression models of task events (Cao et al.,
2014; Cole et al., 2014). Specifically, task events were modeled
by convolving stimulus onsets with the standard hemodynamic
response function. These regressors were then regressed out from
voxel activities. The resultant residual time series were used for
the following functional network analyses.

2.5. Definition of Nodes
A 264-node brain atlas was used for FC analysis. This atlas was
derived from both resting and task FC meta-analyses (Power
et al., 2011) and has been widely used in network analyses
(Vatansever et al., 2015; Schultz and Cole, 2016). Each of
the 264 nodes was assigned to one of the 14 subnetworks in
the original publication (Cole et al., 2013). Among these 14
subnetworks, we focused on 10 well-established subnetworks,
including the frontoparietal, cingulo-opercular, salience, dorsal
attention, ventral attention, default mode, somatomotor (hand
and mouth), auditory, visual, and subcortical networks. The
other three networks, including the cerebellum network, the
memory retrieval network, and a network of uncertain function,
were also involved in our analyses, but they were treated as
a single subnetwork (the others network) for convenience.
Therefore, the 264 nodes were assigned to 11 subnetworks
in this study. The nodal-mean time series were extracted by
averaging the time series over all voxels in each of the 264

nodes, resulting in a neural signal matrix X, which has the
form of a P × N matrix containing time series from P nodes
over N time points. The neural signal matrix of each subject
and each experimental run was used for the following network
constructions.

2.6. Inter-subject Functional Correlation
We used the recently proposed ISFC to assess task-evoked FC
(Simony et al., 2016). The ISFC method effectively eliminates
intrinsic signals by calculating the inter-regional correlations
between different subjects who perform the same task. Assuming
we have a neural signal matrix Xk for each subject k, k = 1, ...,K
with each regional time series normalized to a zero mean and
unit variance. In contrast to the standard FC measure, which is
calculated within each neural signal matrix, the ISFC of subject k
is defined as the Pearson correlation between this subject and the
average of all other subjects:

Ĉk =
1

N
Xk[

1

K − 1

∑

q6=k

XT
q ] (1)

which is a P × P correlation matrix where each element (i, j)
represents a correlation between node i of subject k and the mean
series of node j of the other subjects. To increase the normality of
the distribution of correlation values, each correlation coefficient
was converted to a z-score using Fisher’s r-to-z transformation.
To further impose symmetry, the final ISFC matrix of subject k

was given by (Ĉk + Ĉk
T
)/2. The group-based ISFC matrix was

calculated by averaging the ISFC matrixes across subjects:

Ĉ =
1

K

∑

k

Ĉk (2)

2.7. Similarity Analysis
A key question of this study was whether goal-directed visual
processing modulates whole-brain FC. Conceptually, if the task
goal modulates ISFC, similarities between ISFC patterns from
the same task should be higher than those from different tasks.
To confirm this hypothesis, we performed a similarity analysis
as follows. First, the neural signal matrices of each subject were
averaged across the 5 behavioral task runs and the 5 taxonomic
task runs, resulting in two neural signal matrices (one for
the behavioral task and one for the taxonomic task) for ISFC
pattern estimations. Then, the 12 subjects were randomly split
into two independent groups of 6 subjects, and group-based
ISFC matrices were calculated for each group and each task
according to Equation (2). Next, we calculated the between-task
ISFC similarity and within-task ISFC similarity across the two
groups. Specifically, the between-task ISFC similarity was defined
as the spatial Pearson correlation between the ISFC matrices
from different groups and different tasks (e.g., group 1 task 1
vs. group 2 task 2). The within-task ISFC similarity was defined
as the spatial Pearson correlation between the ISFC matrices
from different groups and the same task (e.g., group 1 task
1 vs. group 2 task 1). We repeated this procedure 462 times
(all possible situations with the 12 subjects divided into two
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groups of 6 subjects) and compared the mean within-task ISFC
similarities and mean between-task ISFC similarities across all
situations.

2.8. ISFC Classification of Attention Task
We further used MVPA methods to examine whether the task
goals of subjects could be predicted using whole-brain ISFC
patterns. A leave-one-subject-out-cross-validation (LOSOCV)
procedure was employed to assess the classification performance.
In each iteration of the LOSOCV, we left out the data of one
subject as the test set and use the data of the other subjects as
the training set. A template-matching method was used for task
label predictions (Simony et al., 2016). Similar to the similarity
analysis, neural signal matrices were first averaged across tasks
for each subject within the training set. Then, the group-based
ISFC matrices were calculated according to Equation (2) for each
attention task based on the corresponding neural signal matrices.
Therefore, based on the training data, we obtained one ISFC
matrix, Cbeh, for the behavioral task and one ISFC matrix, Ctax,
for the taxonomic task. These two matrices were used as ISFC
templates for the two attention tasks. Note that the test data were
never used to derive the ISFC templates.

For each run r of the left-out subject, we attempted to predict
its task label by comparing its ISFC matrix with the two ISFC
templates. We calculated an ISFC matrix, Cbeh,r , between the
run r and the average neural signal matrix corresponding to the
behavior task from the training set. Similarly, we also obtained an
ISFC matrix, Ctax,r , for the taxonomic task. The predicted label
for this run was then given by the attention task m ∈ {beh, tax}
that maximized the Pearson correlation between Cm,r and the
templates Cm:

m̂r = argmin
m∈{beh,tax}

{Corr(Cm,r ,Cm)} (3)

This procedure was repeated for each subject and each run, and
the classification accuracy was then computed as the proportion
of times that an experimental run was assigned to the correct task
context.

2.9. FC Classification of Attention Task
For comparison, we also used standard FC to classify task goals.
This procedure was similar as the ISFC classification procedure
described above except the FC matrixes were calculated within
subjects. We obtained a correlation matrix for each subject and
each experimental run by calculating the Pearson correlation
coefficient between every pair of nodes. The correlation matrixes
of the same task were further averaged within each subject.
Averaging correlation matrixes of each task increased the signal-
to-noise ratio (SNR) of estimated FC templates. Previous MVPA
studies have suggested that this average step often improve
classification performance to some degree (Isik et al., 2013;
Hebart et al., 2018). For the employed template-matching
method in this study, the testing sample was assigned the label of
the FC template with which it is maximally correlated. Therefore,
we would expect a better classification performance by increasing
the SNR of estimated FC templates. Then, using training data,
we obtained two FC templates Cbeh and Ctax by averaging the

correlation matrixes of the behavioral tasks and taxonomic tasks
across subjects, respectively. For a run r of the test subject, we
obtained its within-subject FC matrix Cr , and the label of this
FC matrix was predicted as the task that maximized the Pearson
correlation between Cr and the templates Cm:

m̂r = argmin
m∈{beh,tax}

{Corr(Cr ,Cm)}. (4)

2.10. Identifying Discriminative
Connections
Connections contribute differently to classification. To determine
discriminative connections that contributed more to task
classification, we performed an edge-based analysis similar to a
previous study (Finn et al., 2015). Computationally, the Pearson
correlation of two normalized vectors (zero mean, unit variance)
was calculated as the sum of the element-wise products. Thus,
an element with a large positive product contributes more to
the correlation coefficient. In this classification procedure, we
calculated Pearson correlation coefficients between the ISFC
matrix derived from the test data and the templates derived from
the training data, and the task label was chosen as the one that
resulted in the largest correlation coefficient. Conceptually, the
product of a discriminative connection should be large when the
test data and the template are from the same task. In contrast,
the product should be small when the test data and the template
are from different tasks. Therefore, given a test ISFC matrix
Cm,r for run r and templates Cm,m ∈ {beh, tax}, we defined the
discriminative measure of edge e as:

φm,r(e) = Comp(Cm(e)∗Cm,r(e),Cu(e)∗Cm,r(e)) u ∈ {beh, tax}, u 6= m

(5)
where Comp(a, b) = 1 if a > b, otherwise Comp(a, b) = 0.
The first term of the function, Comp(), is the within-task edge-
wise product, and the second term is the between-task edge-wise
product. The discriminative measures were then averaged across
all iterations of the LOSOCV to obtain a single value, φ(e), for
each connection e. A connection with a large φ(e) is thought to
be discriminative.

2.11. Subnetwork-Based Classification
To further assess the classification ability of individual canonical
subnetworks, we conducted the same LOSOCV procedure as
described above. However, this time, only within-network
connections calculated between regions from a specific
subnetwork or across-network connections calculated between
regions from two different canonical subnetworks were used for
task classification.

2.12. Effects of Scan Length on
Classification
Since an experimental run consisted of a relatively long time
series (196 time points), we further explored whether task goals
could be predicted using fewer time points. We varied the
number of time points n that were used to calculate the ISFC
measures between 20 and 180 in increments of 10. Following
previous studies (Finn et al., 2015; Greene et al., 2018), for each
number of time points n, we randomly chose the start time
point, and then extracted n continues time points beginning

Frontiers in Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 100319

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wen et al. Task Goal Modulates Large-Scale Networks

with that starting point to calculate the ISFC measures for task
classification. We did not extract time points randomly from
the whole series, because this strategy may ignore the temporal
autocorrelation of fMRI time series (Woolrich et al., 2001)
and thus bias the estimation of functional connectivity. This
procedure was repeated 10 times, and the mean classification
accuracies for these times were obtained.

2.13. Effects of Atlas on Classification
To test whether the task classification accuracy based on
ISFC measures was sensitive to the specific choice of atlas
and network assignments, we conducted the aforementioned
classification analyses using an additional 268-node atlas
provided by Shen et al. (2010). This atlas functionally
divides the brain into 268 regions by maximizing the
similarities of the voxel-wise time series within each
node and assigns each region to one of the following
subnetworks: subcortical-cerebellum, frontoparietal, default
mode, medial frontal, motor, visual 1, visual 2, or visual
association.

2.14. Statistical Analysis
We used a non-parametric permutation test (Nichols and
Holmes, 2002) to assess whether the difference between
the mean within-task similarity and the mean between-task
similarity was significant. We first combined the 462 within-
task similarities and the 462 between-task similarities into
one group. Then, we randomly split the group into two
equal-size groups and calculated the difference between the
means of these two groups. We repeated this procedure 1,000
times and obtained a null distribution of the differences.
The p-value was then calculated as the number of null-
hypothesis differences that were equal to or greater than
the observed true difference divided by 1,000. With this
approach, the smallest p-value that can be reported is
1/1, 000 = 0.001.

A non-parametric permutation test was also used to assess
the statistical significance of the task classification accuracy. In
brief, we first shuffled the labels of all the experimental runs
and then performed the aforementioned LOSOCV procedure for
ISFC features to obtain a classification accuracy. We repeated
this procedure 1,000 times, resulting in a null distribution of
accuracies. The p-values were calculated as described above.

For subnetwork-based classifications, to control for the
presence of multiple comparisons (Nichols and Holmes,
2002), we obtained the maximum classification accuracy
across all subnetworks in each iteration of the permutation.
These maximum values were used to construct the null
distribution of accuracies. Similarly, for classifications based
on variations in scan length, the maximum accuracies for
each assessed time point were used to construct a null
distribution.

To determine the discriminative connections, we obtained
the maximum discriminative measure for all connections at
each iteration of the permutation. The null distribution was
constructed using these maximum discriminative measures.
Connections with true discriminative measures larger than the

95th percentile of the null distribution were considered to be
discriminative (i.e., p < 0.05).

3. RESULTS

3.1. Behavioral Results
As stated in the original publication of the dataset (Nastase et al.,
2017), participants performed very well in both the behavior
task (mean accuracy: 0.994, SD: 0.005) and the taxonomy task
(mean accuracy: 0.993, SD: 0.005). A paired t-test revealed no
significant task-related difference in detection accuracy [t(11) =

0.469, p = 0.91]. In addition, response times were also not
significantly different between the two conditions [paired t-
test: t(11) = 0.015, p = 0.99), though the small number of
response trials might hinder a robust estimation of response
times. Therefore, it is unlikely that the subsequent classification
analyses were influenced by differential behavioral responses.

3.2. Modulation of Whole-Brain FC
We used a similarity analysis to examine the top-down
modulation of whole-brain FC. As shown in Figure 1A, when
the ISFC method was used to extract task-evoked FC patterns,
the within-task similarities were larger than the between-task
similarities, with most of the data points falling below the
diagonal. This difference was significant, as indicated by a
permutation test (p = 0.001). This finding indicates that whole-
brain FC was modulated when humans processed the same
stimulus with different task goals. In contrast, the standard
FC method resulted in very similar values for within-task
similarity and between-task similarity (Figure 1B), with no
significant difference observed between the two types ofmeasures
(p = 0.19). This result is consistent with recent findings that
connections observed during different tasks are highly correlated
(Cole et al., 2014). The successful detection of attentional
modulation of FC using the ISFCmethodmay be attributed to the
effectiveness of the ISFC method in eliminating intrinsic signals
(Simony et al., 2016; Kim et al., 2017).

3.3. Classification of Task Contexts
Having confirmed that task contexts modulated whole-brain
FC, we further applied MVPA methods to investigate the
possibility of task goals prediction. We used the ISFC method
to extract task-evoked FC for each of the tasks and used a
template-matching method to predict the task label of each
experimental run of a left-out subject. The LOSOCV procedure
showed an accuracy of 90% (Figure 2), which was significantly
higher than chance (50%), as indicated by a permutation test
(p = 0.001). We also performed the same LOSOCV procedure
using standard FC patterns (Figure 2A). In this case, the
accuracy was much lower and did not reach significance
(54.17%, p = 0.13). Together with the similarity analyses, these
results suggest that the ISFC method is powerful in detecting
subtle differences between cognitive states. Since the classification
accuracy was much higher with ISFC patterns than with standard
FC patterns, we focused on ISFC patterns in the following
analyses.
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FIGURE 1 | Modulation of whole-brain FC under different tasks. (A) Scatter plot of within-task correlation values vs. between-task correlation values calculated using

ISFC patterns. The within-task correlation value was significantly higher than the between-task correlation value (p = 0.001, permutation test), indicating that ISFC

patterns are more similar when subjects perform the same task than when they perform different tasks. (B) Scatter plot of within-task correlation values vs.

between-task correlation values calculated using standard FC patterns. The two types of measures were highly correlated, with no significant differences observed

(p = 0.63), suggesting that standard FC patterns are less sensitive at detecting modulated connections. Each data point corresponds to a random partition of the

subjects.

FIGURE 2 | Accuracy in task classification. (A) Accuracy of each single subject and mean accuracy across the LOSOCV using ISFC and FC patterns. The horizontal

dashed line shows the chance level (50%). (B) Permutation test of accuracy when ISFC patterns were used for classification. The histogram shows the null distribution

of accuracy values when task labels were randomly permuted, and the solid red line indicates the accuracy obtained for the true task labels. The classification

accuracy (90%) was significantly higher than the chance level (p = 0.001).

3.4. Connections Contribution to
Classification
The discriminative connections that largely contributed to
the classification were determined using edge-wise analysis.
Specifically, for each edge, a mean discriminative measure was
calculated across the LOSOCV procedure and compared to a
null distribution constructed from 1,000 random permutations.
We then identified discriminative edges as those that possessed
discriminative measures larger than the 95th percentile of the
null distribution. We found 383 discriminative connections
among all 34980 possible connections. These discriminative
connections are displayed in a circle plot (Figure 3) and
projected to a surface rendering of a human brain (Figure 4)
using the BrainNet viewer (Xia et al., 2013). The majority of
the discriminative connections are within the visual network
and between the visual network and other networks, mainly
including the dorsal attention, somatomotor, and default mode
networks.

3.5. Subnetwork-Based Classification
We have shown that the top-down behavior goals could
be reliably classified using whole-brain ISFC patterns and
found that discriminative connections were distributed across
several networks. However, whether a specific subnetwork
(e.g., the dorsal attention network) supports task classification
was not clear. To explore this possibility, we performed
classification analyses using the within-network ISFC measures
from each of the 11 canonical networks separately. As shown
in Figure 5, the classification accuracies of the somatomotor
(74.16%, p = 0.001), cingulo-opercular (67.50%, p = 0.003), visual
(89.170%, p= 0.001), frontoparietal (68.33%, p = 0.001), salience
(70.83%, p= 0.001), dorsal attention (78.33%, p = 0.001) and the
others network (75.83%, p = 0.001) were significantly higher than
chance (50%).

We also tested whether the across-network ISFC measures
between two subnetworks (e.g., connections between the visual
and dorsal attention networks) would support the classification
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(Figure 5). This analysis revealed many discriminative across-
network measures, mainly related to the visual, dorsal attention,
frontoparietal, and somatomotor networks. To further assess
the classification ability of each specific network, we averaged
the accuracies obtained using across-network ISFC measures
between each network and every other network. As shown
in Figure 5, all across-network measures showed significant

FIGURE 3 | Distribution of discriminative connections identified by edge-wise

analysis. Brain regions are arranged and color-coded according to 11

canonical subnetworks: frontoparietal (FPN), cingulo-opercular (CON), salience

(SAN), dorsal attention (DAN), ventral attention (VAN), default mode (DMN),

somatomotor (SMN), auditory (Aud), visual (Vis), subcortical (Sub), and a

network with other regions (Others).

accuracies. These results suggest that the modulated connections
are distributed across the brain and not limited to specific
subnetworks.

3.6. Effects of Scan Length on
Classification
To explore how the number of time points used for ISFC
estimation influenced the classification accuracy, we performed
the classification with ISFC calculated using a varying number of
time points between 10 and 180. We observed accuracies ranging
from 57.94 to 88.33%, with higher accuracies obtained using
larger numbers of time points (Figure 6). Permutation testing
revealed that the accuracies were significantly higher than chance
with scan lengths as short as 20 time points (40 s), suggesting
that attentional modulation of ISFC can be reliably detected using
relatively short scan lengths.

3.7. Effects of Atlas on Classification
We repeated the classification analyses using ISFC measures
calculated from a 268-node atlas that divides the human brain
into 8 networks. As expected, the subnetwork-based analysis
revealed a large number of within-network and across-network
ISFC measures that were discriminative in task classification
(Figure 5B). In addition, the average classification accuracies
found using across-network ISFC measures between a certain
subnetwork and every other subnetwork were significantly higher
than chance. For classifications using shorter time courses, the
use of this 268-node atlas led to similar accuracies as the
264-node atlas, with accuracies ranging from 59.39 to 81.11%
(Figure 6). These results suggest that our main findings have
robust reproducibility.

FIGURE 4 | Discriminative connections shown in sagittal (left/right), axial (top/bottom), and coronal (front/back) views. Nodes indicate brain regions, and edges

represent connections between regions. Only regions that formed discriminative connections are shown.
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FIGURE 5 | Classification accuracy using ISFC patterns of subnetworks. (A) Left: matrix representing the classification accuracy based on ISFC measures within and

between canonical subnetworks. Rows and columns represent predefined subnetworks based on the 264-node atlas. Only accuracies significantly higher than the

chance level (50%) are shown in the matrices (p < 0.05, corrected). The abbreviations for each subnetwork are the same as in Figure 3. Right: average accuracy

based on across-network ISFC measures between a specific subnetwork on the x-axis and all the other subnetworks. The horizontal dashed line shows the chance

level. Each of the subnetworks reached significance (all p = 0.001, corrected). (B) Similar information as presented in A, but with a different 268-node atlas that

contained 8 subnetworks: medial frontal (SMN), frontoparietal (FPN), default mode (DMN), subcortical-cerebellum (SubC), motor (MT), visual 1 (V1), visual 2 (V2), and

visual association (VA).

3.8. Effects of Head Motion
Previous studies have suggested that head motion can influence
the estimation of FC (Power et al., 2012; Van Dijk et al., 2012).
However, motion artifacts are unlikely to have contributed to
the observed successful task context classification using ISFC,
given that the classification accuracy determined using classic
FC measures was much lower than that of the ISFC measures.
To remain conservative, however, we further examined the
motion estimates for the two attention tasks. Using the motion
parameters generated during the motion correction procedure
during preprocessing, we calculated the average frame-to-frame
motion for each experimental run and each subject (Power et al.,
2012). This process resulted in a total of 60 (12 subjects, each
performed 5 runs per attention task) values for each task. These
values were assessed using paired t-tests to compare the head
motion difference between the two attention tasks.We found that
the difference between the two attention tasks was not significant
(t(59) = 1.568, p = 0.12). Therefore, the successful classification
of task goals is unlikely to be based on motion artifacts.

4. DISCUSSION

In this study, we investigated how behavioral goals modulate
the whole-brain FC of subjects. In contrast to previous
goal representation studies that used rudimentary stimuli

designed for a laboratory setting, dynamic, complex naturalistic
stimuli that conveyed rich information were used in this
experiment. This naturalistic paradigm suitably mimicked goal-
directed behavior in a real-life context. Given that top-down
information processing recruits wide swaths of brain regions,
we examined large-scale FC across the whole brain. We
employed a novel ISFC method to isolate task-evoked FC
from intrinsic neural fluctuations and non-neuronal artifacts.
We first conducted a similarity analysis and showed that
ISFC patterns were more efficient in representing specific
task context than standard FC patterns. We then employed
MVPA methods to examine whether attention tasks could be
predicted from the corresponding ISFC patterns. We found that
ISFC reliably distinguished one attention task from another
with a high classification accuracy, even with relatively short
scan lengths. We further identified many within-network and
across-network ISFC measures that enabled task classification,
suggesting a global modulation of connectivity patterns by task
contexts.

Multivariate approaches ensure high sensitivity to fine-
grained discriminative patterns (Norman et al., 2006; Zeng
et al., 2012; Haxby et al., 2014), and recent MVPA research
investigating task representation has shown that distributed

patterns of activity in the parietal, medial and lateral prefrontal
cortex (PFC) represent top-down tasks (goals) (Chiu et al., 2011;
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FIGURE 6 | Classification accuracy using shorter time series. ISFC patterns

were calculated with shorter time series and processed through the same

classification procedure. Solid lines and shaded areas indicate the mean

accuracies and SEMs across the 10 randomizations, respectively. Two

different atlases were used for this analysis.

Waskom et al., 2014; Long and Kuhl, 2018). However, these
findings were largely based on simple stimuli and task rules
and overlooked the interactions between regions. Our results
extend these studies by showing that selective processing of
complex visual information conveyed by naturalistic stimuli
modulated large-scale brain networks and that this modulation
contained highly predictive information on the task contexts. We
employed a LOSOCV procedure to estimate task classification
performance. This across-subject MVPA can be challenging,
given high levels of interindividual variability (Finn et al., 2015).
For example, in a previous study with a LOSOCV setting,
standard FC patterns successfully predicted which task a subject
was performing, but the classification accuracies were relatively
low (Cole et al., 2013). In the present study, the accuracy
obtained using standard FC patterns was not significant, which is
consistent with the similarity analysis showing that the standard
FC patterns of the two tasks were highly correlated. This negative
result may be attributed to the complex information contained in
the naturalistic stimuli, which drives complex neural responses
and thus hinders the detection of subtle differences between
two tasks. On the other hand, the modulation of FC measures
was possibly overwhelmed by intrinsic FC patterns, as previous
studies have found that resting-state FC largely matches the FC
during task performance (Cole et al., 2014; Kim et al., 2017).
In contrast, we obtained a high level of accuracy when using
ISFC patterns for the classification, and the accuracies remained
significant even when very short time courses were used for ISFC
pattern estimation. By repeating the MVPA procedure using
another brain atlas, we have also shown that the performance
was not specific to the choice of atlas. Along with previous
ISFC studies (Simony et al., 2016; Kim et al., 2017; Rosenthal
et al., 2017), the current successful classification of attention tasks
shows promise for the utilization of the ISFC method in other

contexts to investigate subtle differences between task-evoked FC
patterns.

The edge-based analysis and subnetwork-based analysis found
that ISFC measures within the visual network and between this
network and many other networks largely contributed to task
classification, indicating that connections with visual regions
are extensively modulated by behavioral goals. The activity of
visual regions is modulated in a variety of attention tasks,
possibly reflects the differentiated representation of visual stimuli
under specific task context (Mirabella et al., 2007; Reynolds and
Heeger, 2009; Jehee et al., 2011). Recent MVPA studies have also
found that activity in the visual cortex provides discriminative
information on which visual dimension of a stimulus the subjects
are processing (Waskom et al., 2014). In addition to biased neural
activity, many neuroimaging studies have found that interactions
with visual regions are modulated by behavioral goals (Maunsell
and Treue, 2006; Al-Aidroos et al., 2012). Attention to different
visual categories modulates connections between the occipital
and ventral temporal cortexes (Al-Aidroos et al., 2012). And
interactions between primary visual regions and frontoparietal
regions were enhanced when visual stimuli were attended (Griffis
et al., 2015). We provide additional evidence that connections
within the visual network and across-network connections
between the visual network and many other networks, including
the dorsal attention, frontoparietal, and default mode networks,
support the reliable discrimination of tasks under naturalistic
conditions. Interactions between the frontoparietal and sensory
regions are widely thought to play crucial roles in the biased
processing of goal-relevant sensory information (Miller and
Cohen, 2003; Vossel et al., 2014). Furthermore, enhancements
in the connections between the dorsal attention network and
the visual network have been observed during natural movie
watching, with the possible function of controlling attention to
the display (Kim et al., 2017). Our findings are well aligned
with these studies. Although there is evidence that the biasing of
sensory areas emerges from the frontoparietal regions (Bressler
et al., 2008; Baldauf and Desimone, 2014), we cannot investigate
this causal relationship because of the use of Pearson correlations
to represent interactions between regions. Methods such as
dynamic causal modeling (Friston et al., 2003) or Granger
causality (Roebroeck et al., 2005) may be employed for future
explorations of the direction of influences between regions.

The employed MVPA methods also revealed many other
within- and across-network ISFC measures that were modulated
by top-down goals. Indeed, we found that almost every
canonical subnetwork formed discriminative connections with
other subnetworks. Within-network connections in the dorsal
attention network and across-network connections between the
dorsal attention network and other networks such as the default
mode, somatomotor, and frontoparietal networks resulted in
high classification accuracies. Recent human neuroimaging
experiments and studies in stroke patients have suggested that
the dorsal attention network is largely involved in mediating the
top-down guided voluntary allocation of attention to locations
or features (Ptak and Schnider, 2010; Vossel et al., 2014). Regions
from the dorsal attention and frontoparietal networks have also
been consistently highlighted in task context representations
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(Chiu et al., 2011; Waskom et al., 2014; Long and Kuhl, 2018).
Our MVPA results are consistent with these findings, suggesting
that functional connections with frontoparietal regions are
differentially modulated by behavioral goals. The successful task
classification based on across-network connections with the
somatomotor network may be due to the biased processing
of action information in the behavioral attention task, since
action observations activate the somatomotor regions (Buccino
et al., 2001) and engage a network of sensorimotor brain regions
called the action observation network (Gardner et al., 2015).
Natural vision has been shown to modulate large-scale network
interactions, and recent attention studies using naturalistic
paradigms have demonstrated that attention to complex semantic
information changes the neural activity of widely distributed
regions (Cukur et al., 2013; Nastase et al., 2017). Our current
findings of distinct changes in broadly distributed within-
network and across-network connectivity suggest that goal-
directed behavior under naturalistic conditions is reflected not
solely by local changes in specific activations or connectivity but
likely by systematic changes across large-scale brain networks.
One limitation of this study is that the sample size of the publicly
available dataset we used is relatively small (12 subjects). This
relatively small sample size may compromise the reliability of
experimental results to some degree. In the future, we should
collect more fMRI data by ourselves to enhance the experimental
results.

In summary, using the novel ISFC method, we show
that selective processing of complex visual information under
naturalistic conditions modulates large-scale FC and that this
modulation supports the reliable discrimination of top-down
task goals. We identified a large number of within-network
and across-network discriminative connections, suggesting that
goal-directed processing of naturalistic stimuli modulates the
coordination of wide swaths of brain regions that belong to

different canonical functional networks. This analysis based on
large-scale brain networks extends previous studies of goal-
directed behavior that focused on changes in local neural activity
by showing that the modulation of connectivity between brain
regions is broadly distributed. Our study may shed light on
the role of large-scale brain networks in goal-directed behavior
and suggests that the ISFC may provide an efficient method for
identifying task-evoked networks.
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Retinal and cortical mechanisms provide for persistence of visual information across
intervals of many hundreds of milliseconds, which supports the integration of partial
shape cues. The present experiments displayed unknown shapes in a match recognition
task, wherein a target shape was quickly followed by a comparison shape; the task
was to specify whether the comparison shape was the same or different from the
target. The target and comparison shapes were displayed as sparse dots that marked
boundary locations. The first experiment successively displayed the target shape as two
complementary subsets and found that the probability of correct match remained above
chance with up to 500 ms of subset separation. The second experiment demonstrated
masking of the target by a random pattern of dots when the target and mask were
displayed simultaneously, but with much less or no masking when the two were
separated by 100 ms. The third experiment displayed the target subsets with 200 ms
of separation and found that match recognition was disrupted when the random-dot
mask was displayed midway between the two subsets. Much less masking of an intact
target was produced with that amount of temporal separation, which suggests that
mechanisms for integration of shape cues have a special vulnerability to masking. The
third experiment also found very little impairment of match recognition when the mask
was displayed simultaneous with one of the subsets. We hypothesize that there is
embedding of the subset pattern within the mask pattern, but additional display of the
other subset effectively disembeds the buried partial shape cues.

Keywords: visual persistence, visual masking, working memory, shape perception, shape integration

INTRODUCTION

“[T]here is some support for the view that sensory persistence is produced by the activity of coding
mechanisms at the level of feature extraction in visual information processing”.

Vincent Di Lollo (1977).

A substantial amount of work has been done to evaluate early stages of shape encoding, with
masking and manipulation of neuronal persistence providing some of the most effective research
tools. It seems odd, therefore, that we have very little information about the effect of masking on
the persistence of stimulus information. Persistence across several 100 ms is thought to mediate
working memory, and masking has been used to manipulate the contents of working memory, so
it is a reasonable hope that the combined use of both methods would provide useful insights about
the nature of working memory.
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The research reported below differed from prior research
in fundamental ways. First, the targets to be identified were
unknown shapes, each seen only once using a match-recognition
protocol. A given source shape consisted of a sequence of dots
that marked an outer boundary, similar to an outlined figure (see
Figure 1). The experiments displayed reduced-density versions of
these shapes, meaning that a sparse subset of boundary markers
provided the target to be identified. Following display of a given
target, a sparsely marked comparison shape was displayed that
either matched the target or provided a non-matching shape.
Because each target shape was shown only once to a given
respondent, all identification was based on short-term memory.

Second, the display equipment avoids some of the problems
that have bedeviled the study of temporal integration of visual
cues, which can also be described as information persistence
(Coltheart, 1980). Much of the earlier work has used cathode
ray tubes with short-lived phosphors to display the stimuli, so
that any persistence could be correctly attributed to the visual
system rather than the display itself. A fast phosphor can fall to
about 1% residual emission within microseconds, but it can then
persist at that level for a second or more. Rayner and Pollatsek
(1983) demonstrated that observers could still perceive this weak
afterglow, providing a basis for combining successive displays
using persistence of the stimulus itself. Jonides et al. (1983)
failed to replicate earlier work done in their own lab when the
displays were presented with LEDs rather than with phosphor-
based images (see also Di Lollo et al., 1997, 2000). The present
work avoids these issues by using an LED array to display the
shape stimuli. Also, the equipment can display successive dot
patterns with microsecond control of timing for pulse duration
and interstimulus interval.

Initial experiments provided confirmation that classic
information persistence and masking effects would be found
with this match-recognition task. Then the influence of masking
on temporal integration was evaluated.

The target shape was divided into complementary subsets
that were successively displayed, which requires the integration
of shape information across an interstimulus interval spanning
hundreds of milliseconds. Then the ability of a mask to impair
the integration process was examined. The results suggest the
possibility of a motion-to-form encoding mechanism as part of
working memory, as will be discussed subsequently.

Visibility of a briefly displayed image can be reduced by
presentation of a different image, which we describe as visual
masking. Generally, one image provides the target, with the task
requiring discrimination or recognition, and the mask acts to
impair effective performance of the task. The relative timing
of target and mask can determine whether visibility is affected.
The experimental protocol is designated as forward masking if
the mask precedes the target, backward masking if it follows
the target, and concurrent (simultaneous) masking if the two are
presented at the same moment (Breitmeyer, 2007).

The earliest masking studies used large, spatially uniform
increments of luminance (Baxt, 1871; Crawford, 1947; Sperling,
1965). Subsequent work often has used masks that contained
image elements, such as shapes, lines, or dots (Rieger et al.,
2005). The term pattern masking serves as a general classification

of masks that provide these components (Enns and Di Lollo,
2000), irrespective of whether there is temporal separation,
i.e., backward, forward, or simultaneous display. Impaired
discrimination or recognition of the target has been attributed
to inhibitory interactions among neurons that register the image
elements (Weisstein et al., 1975; Breitmeyer and Ganz, 1976;
Macknik and Livingstone, 1998).

There are subcategories relating to the spatial attributes of
pattern masks. For instance, noise masks could be made up of
dots or boxes that have little in common with the target image
(Kinsbourne and Warrington, 1962). Alternatively, structure
masks would be those that bear a strong resemblance to the
target, or have lines with common orientations. For example, a
pattern composed of lines might be used to mask alphabetical
letters. Specific pattern masks can vary with respect to contrast,
luminance, or other physical parameters, limited only by the
creativity and discretion of the investigator.

Three different mechanisms for masking are often invoked,
one being the erasure of stimulus information, another calling
for integration (merging) of stimulus information, and the third
providing for interruption of perceptual processing. Each may
be acting within the retina or in cortex. Persistence of retinal
activity in integration masking can cause the target and mask
to be perceived as a unitary pattern that precludes recognition
or discrimination of the target itself (Eriksen, 1966; Turvey,
1973; Breitmeyer, 1984). This model seems most plausible when
one gets maximal disruption of performance with simultaneous
display of target and mask, and one perceives the combined image
of the target embedded in the mask pattern. It is common to see
the masking effect become nil with about 100 ms of target/mask
separation in either direction (Enns and Di Lollo, 2000).

Alternatively, pattern masking can occur with substantial
temporal separation of target and mask through interruption of
information processing (Bachmann and Allik, 1976). Because the
mask can act across an extended interval, most attribute the
masking to disruption of cortical mechanisms that are required
for recognition or discrimination. Alternatively, one might see
a U-shaped function wherein there is progressive impairment of
performance across an extended range of target/mask separation,
followed by recovery of target recognition or discrimination
(Bachmann and Allik, 1976; Michaels and Turvey, 1979).

Conditions that produce a delay of target masking have been
designated as metacontrast masking. Here the mask consists of
an annulus that surrounds the target image, and masking only
occurs within a narrow temporal range (Enns and Di Lollo,
2001). When the target and mask are simultaneously displayed,
or the interval between them is very short, the target is clearly
visible and is seen as lying within the interior of the mask.
With very long separations the mask is ineffective at impairing
shape processing, and both are visible. At intermediate intervals,
perception of the target is impaired, yielding a U-shaped function
of accuracy (hit rate) as a function of the separation interval
(Enns and Di Lollo, 2001). One explanation for the effect, which
can be described as a “two-channel” theory, proposes that image
information is transmitted by a fast burst of neuronal activity
followed by sustained (tonic) activity that conveys fine details
about the stimulus attributes. A metacontrast mask is thought to

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 17829

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00178 March 11, 2019 Time: 19:27 # 3

Geoly and Greene Masking Complementary Shape Cues

FIGURE 1 | Three examples of source shapes are shown in the upper panels, with the dots of the display board provided as background. The experiments
displayed low density patterns that were sampled from source shapes, providing either 12% sets or successive displays of complementary 6% subsets. For ease of
discourse, the term “shape” will also be used to describe these patterns. For better visibility, the background dots of the array are not shown in the three lower
panels, and dot size has been increased.

occur when the fast-acting signals from the mask’s onset interfere
with the sustained slower signals of the tonic channel, disrupting
the processing information about the earlier target.

The first experiment was a replication of a Greene and Hautus
(2018) experiment that examined temporal integration of shape
cues for unknown shapes in a match-recognition protocol. The
shape cues were provided by sparse dots that marked the outer
boundary of a given shape. This is a new experimental approach
to the study of shape recognition, so it is appropriate to show
that the integration of shape cues over a span of half a second
is a reliable finding. This is especially worthwhile given current
concerns about reproducibility of results.

The second experiment examined mask interference with the
integration of unknown shapes, wherein the mask consisted of
a random pattern of dots. The masking stimuli were random
dot patterns, which seems especially appropriate for either
overwriting the information from sparse markers, or interrupting
short-term memory of that information. The experimental results
provided evidence for classic disruption of shape recognition
when the target and mask were simultaneously displayed, but the
mask was relatively ineffective when it was separated from the
shape cues by about 100 ms.

The third experiment examined mask interference with
temporal integration of the shape cues. Based on findings from
Experiment 2, there was an expectation that simultaneous display
of the mask with a subset of the shape cues would greatly

impair match recognition. Further, there was an expectation
that there would be no interference with match recognition
where the temporal separation of mask from the shape cues
was 100 ms, as was found in Experiment 2. Neither expectation
was confirmed, i.e., the results were the opposite of expectation.
These findings suggest some new principles for how stimulus
information is integrated and stored in working memory, which
will be discussed once the experiments have been reported.

MATERIALS AND METHODS

Authorization and Consent of
Respondents
This study was carried out in accordance with the
recommendations and guidelines of the Psychology Department
Subject Pool. The protocol was approved by the USC Institutional
Review Board. All respondents gave written informed consent
in accordance with the Declaration of Helsinki. A total of 24
undergraduates volunteered and provided data, eight for each of
the three experiments reported below.

Source Shapes, Sets, and Subsets
An inventory of 480 unknown shapes provided the source
of stimulus patterns that were displayed in each of the three
experiments, so hereafter they will be described as “source
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shapes.” Each source shape consisted of a continuous string of
dot locations on a display board (detailed below), forming a shape
boundary akin to a silhouette. The number of dots in source
shapes ranged from 100 to 269, with the mean being 168 dots.
Distance from the centroid to dots ranged from 12.8 to 22.3 dots,
mean distance being 16.9 dots. The shapes were constructed to
avoid similarity with known shapes and objects, to avoid long-
term memory factors and to focus on early sensory encoding.
Examples of three of the source shapes are shown in the upper
panels of Figure 1.

The three experiments displayed low-density samples drawn
from source shapes, which can be designated as “sets” and
“subsets.” We can characterize these dot patterns as “shapes,”
with the understanding that they are providing various degrees
of effective cues relative to the original shapes from which
they were derived.

Shape sets were at 12% density and the subsets provided
complementary 6% densities. The dots for a given 12% set were
chosen by first randomly picking a starting point from among
the boundary dots of the source shape, and then proceeding
along the boundary, marking every eighth dot to be included
for display. The final dot that was chosen at the end of the
circuit would commonly leave a span that was shorter than the
others. The computer made these selections “on the fly,” meaning
that the dots displayed to a given respondent were chosen at
random on each trial.

For the experiments that displayed complementary 6%
subsets, the 12% set was further divided. Beginning at a randomly
chosen starting point, dots were successively numbered. The
odd numbered dots were designated as “subset 1” and the even
numbered dots were assigned to “subset 2.” The fact that the two
subsets can be combined to provide a 12% set is the basis for
describing them as being “complementary.”

Mask Stimuli
Experiments 2 and 3 included display of random-dot masks to
evaluate the conditions that would impair match recognition
of the targets. A 4% dot-density level was chosen to provide
approximately the same number of dots in the mask as the mean
number of dots among the shapes in the inventory. To be specific,
the mean number of dots in the inventory of shapes is 166 (100
at the minimum and 269 maximum), and a 4% random sample
from the full LED array provides 164 dots. For trials in which
a set or subset with displayed simultaneous with the mask, the
random selection of dot locations did not include the locations of
set or subset dots. A different random pattern was used on each
trial in which a mask was presented.

Figure 2 illustrates how the random-dot pattern is effective
at precluding perception of low-density shape samples. The left
panel shows a 12% set derived from Shape C of Figure 1. The
middle panel shows a 4% mask superimposed on the set. Here
the mask dots are shown in gray so that one can still pick out
the locations of dots in the 12% set. The right panel shows all the
dots in red, this being the stimulus that the respondent would
see with simultaneous display of the mask and shape set. It is
clear from inspection that the 12% set cannot be discriminated
in the presence of the random-dot pattern, which assures that the

mask would be effective in impairing match recognition. The 4%
random-dot pattern would also mask information from display of
complementary 6% subsets, which together would be equivalent
to the 12% set.

Stimulus Displays
Room illumination was dim (10 lux). Shape and mask patterns
were displayed as brief flashes on a 64 × 64 array of LEDs
mounted on a display board. All dots of a given pattern
were displayed as simultaneous ultra-brief flashes. Each flash
had a duration of 10 µs and an intensity of 1000 µW/sr.
At a viewing distance of 3.5 m, the visual angle of a
given dot of the display board was 4.92 arc◦, dot to dot
spacing was 9.23 arc◦, and the total span of the 64 × 64
array (horizontal and vertical) was 9.80 arc◦. The shape
patterns that were displayed would therefore have overall
dimensions that ranged from 2.0 to 3.5 arc◦, with the mean
being 2.6 arc◦.

Basic Task Conditions
The basic task can be described as requiring a match-to-sample
judgment, which for convenience can be described as match
recognition. When used with unknown shapes, one can assess
the encoding and persistence of shape information without
the confounding influence of long-term memory (Greene and
Hautus, 2017, 2018).

The present work calls for initial display of a “target” set (or
subsets), followed by display of a “comparison” set that might
or might not be the same shape as the target. On each trial,
target and comparison shapes were chosen at random from the
inventory. A given shape was shown only once as a target, or only
once as a non-matching comparison shape. On half the trials the
comparison shape was the same as the target shape, which was
designated as “matching,” and on half it was a different shape,
designated as “non-matching.” In other words, the task is asking
whether the cues provided by the target set or subset are sufficient
for recognition of the comparison set.

The order of treatments was chosen at random. The corner
in which the target was displayed was chosen at random on
each trial in each of the experiments. The comparison set was
then displayed in one of the other three corners, again chosen at
random. Positioning of a given pattern required placement of at
least one dot in the outside boundary of the top or bottom, and
one dot on a side edge of the array.

A fixation point consisting of four central dots was provided
prior to each trial, and respondents were instructed to keep their
eyes centered on this location. Following each display sequence,
the respondent voiced a decision of whether the comparison
shape was the “same” or “different” from the target shape, and this
information was entered by the experimenter into a computer
file. Neither the experimenter nor the respondent was informed
as to which treatment condition was presented on a given trial, or
whether the judgment was correct.

Experimental Treatments
Experiment 1 displayed complementary 6% subsets as targets,
with six levels of inter-stimulus interval, specifically: 0, 100, 200,
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FIGURE 2 | The left panel illustrates a low-density shape set, i.e., a 12% sample of dots from Shape C in Figure 1. The middle panel shows a 4% random-dot
pattern that could mask of the shape set. Here the mask dots are shown in gray so that one can still see the dots of the 12% set (in red). Dot sizes in the set have
been enlarged in both panels to provide for better discrimination of the shape set in relation to mask dots. The right panel has colored all dots red, with mask and
shape-set dots rendered as the same size. This illustrates the stimulus that would be seen with simultaneous display of the mask and the 12% shape set. One can
see that the mask precludes perception of shape boundary markers, and the same would be true for the 6% subsets, which provide only half the number of markers.

FIGURE 3 | On each trial of Experiment 1, a randomly sampled shape
provided the complementary subsets as a target. The frames show the
displayed subset as colored dots, and include open dots to show which
members of the 12% pattern would not be displayed, i.e., they remain dark at
that moment. Display of subset 1 was followed by subset 2 at an
inter-stimulus interval that varied from 0 to 500 ms. If the shape information
from the two displays were completely integrated by the visual system, the
resulting image would contain 12% of the boundary markers, as illustrated in
the frame shown with broken lines. This amount of shape information would
be expected to provide a moderately high level of shape identification.
A comparison shape was shown 250 ms after display of the second subset,
providing an opportunity for a shape-matching decision.

300, 400, and 500 ms. The comparison shape. either matching
or non-matching, was displayed after an additional interval of
250 ms. The display sequence is illustrated in Figure 3. Each
subject judged 25 trials for each of these treatment conditions for
a total of 300 trials.

Experiment 2 examined masking of target-shape information.
All targets were displayed with 12% density, this being to
demonstrate effectiveness of masking against integrated 6%
subsets (in Experiment 3, to follow). A 4% random-dot mask
was added to each target-comparison sequence, with display of
the mask coming either before, during, or after display of the
target set. The mask/target intervals were: −100, −50, 0, +50,
+100 ms – the negative values designating display of the mask
prior to the target and positive values designating display of the
mask after the target. At 0 ms the mask dots were displayed
at the same 10 µs moment, so the dots of both patterns were
superimposed, as illustrated in Figure 2. The inter-stimulus
interval between target shapes and comparison shapes was again
250 ms. Figure 4 illustrates the display timing. Each subject
judged 32 trials for each of the five treatment conditions for a
total of 320 trials.

Experiment 3 combined treatments that would require
integration of target cues as well as masking of those cues.
On each trial, the two 6% subsets were displayed with a
temporal separation of 200 ms. A 4% mask was inserted into
this sequence to provide the potential for disruption of the
integration process. For logging of data and statistical analysis,
mask timing was specified relative to the first subset display, i.e.,
at 0, 50, 100, 150, and 200 ms. However, the mask was expected
to produce disruption of performance when simultaneously
displayed with either of the subsets, and provide the least
influence of judgments at the midpoint between display of the
subsets. Therefore, we have re-designated the treatment levels as
0, 50, 100, 50, and 0, providing labels that reflect two symmetrical
limbs of mask influence. These display conditions are illustrated
in Figure 5.

Two additional control treatments that did not include a
mask stimulus were added to provide measures that aid in
interpreting effects. One control treatment displayed just the
two subsets, which provided evidence of performance from
simple integration of the two sources of shape information. The
other control treatment displayed only one of the subsets, this
to establish the level of performance if there was masking of
information from only one of the subsets. As in each of the earlier
experiments, the comparison shape was presented 250 ms after
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FIGURE 4 | On each trial a full 12% target shape was flashed, followed
250 ms later by the comparison shape. In addition, a 4% random-dot mask
was displayed at times that either preceded, followed, or was simultaneous
with the target display. The illustration shows the 4% mask twice to represent
the two ends of the range at which it could be displayed. The dashed frame
shows a target shape that was unaffected by the mask, though this would not
be expected if the mask erased the stimulus information, occluded it, or
otherwise interfered with shape processing.

display of second subset. Each of the five mask and two control
conditions were displayed to a given subject for 22 trials, for a
total of 308 trials.

Bias Correction of Judgments
Responses were evaluated with signal detection analysis that
derived an unbiased index of performance. Signal detection
theory provides a framework that corrects for response bias.
A method developed by Macmillan and Creelman (2005)
was adopted, which uses the bias-correcting formula d′ =
√

2(z(H)− z(F)). In this formula, H is the proportion of “same”
judgments to matching shapes, F is the proportion of “same”
judgments to non-matching shapes, and z(•) is the inverse-
normal transform (Green and Swets, 1966/1974) Values of F and
H were adjusted for values of 0 or 1 (which would otherwise lead
to d′ = ±∞) prior to calculation of d’. We adopted the log-linear
correction for this purpose (DeCarlo, 1998). Bias correction
requires the combination of response information from both
matching and non-matching shapes.

It is more intuitive to express performance as a proportion,
which can be done by converting d’ into p(c)max using
the formula:

p (c)max = 8
(
d′
/(

2
√

2
))

Here the function 8(•) is the cumulative distribution of the
normal distribution. The p(c)max index scales with 0.5 being
chance and 1.0 being decisions that are perfectly correct. For

FIGURE 5 | In Experiment 3 the two complementary subsets were displayed
200 ms apart, with the comparison shape being provided 250 ms after the
second subset was shown. A 4% random-dot mask was also provided, either
simultaneous with subset 1, simultaneous with subset 2, or at three intervals
in between the subset displays. We are designating the midpoint of this range
as 100, for this would display the mask 100 ms away from each subset. The
goal was to determine whether information from the two subsets would be
integrated or if the mask would impair this process. This illustration shows the
mask precluding effective integration, i.e., impaired match recognition, in that
the dashed frame does not contain a persistent image of the combined
subsets. Two additional control conditions were included in the experiment
(see text).

convenience, the present discourse will describe this index as
“probability of match recognition.”

Statistical Analysis
For each of the experiments, linear mixed-model regression was
used to test for omnibus treatment effects. Experiment 1 was a
replication of earlier work and there exists a substantial body of
literature on masking effects, so we had clear expectations about
the influence of treatments for each of the three experiments.
This justified the use of planned comparisons to test hypotheses
about specific treatment effects. For Experiments 1 the only test of
interest was whether the mean at the longest temporal separation
would be above chance. For Experiment 2 the question was
whether performance would be above chance where the mask and
shape subset were displayed simultaneously.

Experiment 3 provided results that were the opposite of what
was predicted, so post hoc tests of mean differences were done
instead of planned comparisons. Specifically, we tested whether
each mean that was observed with simultaneous display of
mask and shape subset differed from the control condition that
displayed the subsets with no mask being present. We also tested
whether masks presented midway between the two shape subsets,
i.e., at 100, differed from the one-subset control condition, and
whether it differed from chance.
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FIGURE 6 | The mean probability of match recognition for the respondents of
Experiment 1 are plotted for each of the six levels of temporal separation of
the two subsets. Judgments were well above the chance level of 0.5 with up
to 500 ms of separation.

A piece-wise linear regression was calculated to assess the
influence of temporal separation of the mask from each subset.
Based on the results of Experiment 2, there was an expectation
that the mask would block shape information when it was display
at the same moment as the subset, and would have little or no
effect when it was separated from the subset by 100 ms. Therefore,
the plan was to do a separate regression analysis for each leg of the
sequence, i.e., from 0 (mask+ subset 1) to 100, and then from 100
to 0 (mask + subset 2) – see Figures 5, 8. The regression itself
makes no prediction about the direction of effect, so this was still
the appropriate analysis even though the results were opposite of
what had been expected.

RESULTS

Experiment 1
As shown in Figure 6, the probability of correct matching
decisions was quite high (above 0.8) where the two subsets were
displayed simultaneously, i.e., with temporal separation of zero.
Performance dropped as the interval between the two subsets
was increased, which reflects a decline of persistence of shape
information from the first subset. Regression across the five
treatment levels confirmed that the decline was significant at
p < 0.0001 (slope =−0.0005/ms, t7 =−9.37).

The probability of match recognition was still well above
chance at the longest subset separation interval (500 ms).
A planned comparison established that the mean at the
500 ms treatment level was significantly different from chance
(t35 = 2.92, one sided p = 0.0031). That level of performance
was about the same that found in Experiment 3, where a
control condition provided display of a single subset (see below).
It is likely, therefore, that by 500 ms all shape information
from the first subset had completely evaporated, providing a

FIGURE 7 | The 4% mask was ineffective at blocking match recognition when
it preceded the 12% target by 100 ms and was only partially effective when it
led by 50 ms. Match recognition was at chance levels when the mask and
target were displayed at the same instant (designated as 0 ms). Judgments
were above chance when the mask followed the target by 50 ms or more.

level of match recognition that could be elicited by the second
subset, acting alone.

Experiment 2
The results of Experiment 2 are shown in Figure 7. Linear
regression confirmed a significant decline in forward masking
between −100 and 0 ms (slope = −0.0032/ms, t23 = −8.74,
p < 0.0001). Match recognition was well above chance when
the mask preceded the target by 50 ms, and no masking was
evident with a temporal separation of 100 ms. Trends were
similar when the mask followed the shape set (slope = 0.0020/ms,
t23 = 5.46, p < 0.0001), though masking was less complete at the
longest interval. These results suggest that greater proximity of
mask and target is needed for forward masking to be effective
than is required for backward masking. The mean at 0 ms
of mask/target separation was not significantly different from
chance (t28 = 0.49, unadjusted p = 0.6273). [Where the mean does
not differ significantly from chance, an unadjusted comparison is
the more conservative statistic].

Experiment 3
For Experiment 3, piece-wise linear regression found a significant
decline in match recognition as the mask was temporally
separated from each of the shape subsets (see Figure 8). The
decline with mask separation from subset 1 (from 0 to 100) was
significant at p = 0.0031 (slope = −0.0011/ms, t30 = −3.22), and
with separation from subset 2 (from 100 to 0) was significant
at p = 0.0205 (slope = 0.0008/ms, t30 = 2.45). Simultaneous
display of mask and shape subsets yielded means that were not
significantly different from the first control condition (green
broken line), wherein the two subsets were displayed without
any mask being provided (t42 = −0.52, unadjusted p = 0.6054
and t42 = −1.13, unadjusted p = 0.2632 for subset 1 and subset
2, respectively). The mask at treatment level 100 – midway
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FIGURE 8 | Mean probability of match recognition judgments are plotted for
the masking conditions of Experiment 3. The mask was ineffective at blocking
match recognition when it was displayed simultaneous with one of the
subsets, i.e., at either 0 position. At ±50 ms of separation from a subset the
mask was only partially effective. At 100 of separation, midway between the
two target subsets, match recognition was not greater than chance. The
green dashed line indicates the level of match recognition from successive
display of the two subsets, wherein there was no mask in the display
sequence. The red dashed line indicates the level of match recognition when
only a single (6%) subset was displayed.

between the shape subsets – did not differ significantly from
the second control condition (red broken line) that assessed
match recognition with display of a single subset (t42 = −1.11,
unadjusted p = 0.2750).

DISCUSSION

Visible persistence is the continued perception of a sensory
image, like an afterimage (Coltheart, 1980), and is thought to
reflect persistence of neuron activity within the retina. It is
quite sensitive to the physical parameters of a stimulus, given
that increasing the luminance of a stimulus will cause the
period of visible persistence to decline (Dick, 1974). Also, it is
quite vulnerable to simultaneous masking or backward masking
protocols that have short inter-stimulus intervals (Long, 1980).
A bright, spatially uniform flash can readily disrupt processing
of image content (Baxt, 1871; Crawford, 1947; Sperling, 1965).
It is generally thought that masking of visible persistence
occurs within a 100 ms window (Coltheart, 1980; Greene and
Visani, 2015), so the simultaneous display of the mask with the
12% target (Experiment 2) would have intruded upon visible
persistence of the boundary markers.

In Experiment 2 the 4% random-dot mask likely embedded
the 12% targets when the two were presented at the same
moment, so the shape could no longer be identified as the same
or different from the comparison shape that was subsequently
displayed. The random-dot mask was ineffective at blocking
match-recognition when it preceded the target shape by 100 ms,
and performed slightly better when it followed the target shape.

These results are consistent with previous findings (Schultz and
Eriksen, 1977).

If the stimulus is sufficiently salient, it can go out from
the retina very quickly (VanRullen and Thorpe, 2001). If the
separation of pattern and mask is 100 ms or longer, one can
be fairly sure the image information has been passed to cortex
and any masking disrupts retrieval of information from working
memory or long term memory (Kolers, 1962; Turvey, 1973; Enns
and Di Lollo, 2000; Vogel et al., 2006).

Information persistence is a longer duration process that
mediates encoding of stimulus information (Coltheart, 1980;
Greene, 2007). The duration of information persistence grows
longer as the duration of stimulus display is increased (Irwin
and Yeomans, 1986). Numerous laboratories have reported
persistence of visual information for many hundreds of
milliseconds (Sperling, 1960; Eriksen and Collins, 1968; Hogben
and Di Lollo, 1974; Coltheart, 1980; Chun and Potter, 1995;
Ward et al., 1997; Vogel et al., 2006). Some of the evidence was
based on what can be called the “temporal integration” paradigm,
where stimulus information is divided into complementary
subsets and the time required to integrate the information is
assessed. Greene and Visani (2015) displayed letters composed
of dots that were divided into complementary subsets, as
in the present work. There was substantial summation of
information from the two displays for 200 ms, after which
the hit rate remained above the one-subset level across the
treatment range (one second being the longest that was tested).
Greene (2016) found that complementary-dot subsets provided
for persistence of information for recognition of “thin” letters for
upward of 600 ms.

Letters are extremely overlearned and the number of potential
alternatives are relatively small, thus it should not be surprising
that the choices could remain correct on the basis of minimal
information, making it possible to observe an extended duration
of persistence. Earlier work had suggested that shape information
will decay much faster. Greene (2014) used a temporal integration
protocol where the task called for recognition of diverse real-
world shapes, e.g., animals, plants, vehicles, tools, furniture.
Here the boost provided by the temporal integration condition
declined to the one-subset level within 100 ms. For this task the
information to be retrieved was extremely open-ended, requiring
comparison of shape cues against an indeterminate store of shape
memories. Singer and Kreiman (2014) found similar results for
integration of image patches where the task called for specifying
the category of the objects being shown. Asking to identify the
outline of a real-world object may require substantially more
information, meaning that even modest decay of the information
could preclude effective recognition.

The present work used unknown shapes, each being displayed
only once, so decisions were not based on retrieval of information
from long-term memory. Match recognition declined as a
function of time, following a near-linear trajectory, but remaining
well above chance across the 500 ms range that was tested. A prior
report from this laboratory found similar results (Greene and
Hautus, 2018). We are confident that the temporal integration
protocol – the display of complementary subsets – calls for
integration of shape information in working memory, and this
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integration can be provided across intervals of several 100 ms.
This finding is critical in interpreting the findings in Experiment
3, which yielded very unexpected results.

Pattern masks, which would include the 4% random-dot mask
used here, can work by erasing, embedding, or overwriting
the shape information that might otherwise be discriminated
or recognized. In Experiment 3 the target pattern was divided
into two complementary subsets that were displayed with a
200 ms separation. Displaying the mask in the middle of
this interval, with a 100 ms of separation from either subset,
yielded performance that was statistically within the chance
range. In Experiment 2 the mask was completely ineffective
when it followed the 12% target by a 100 ms and was
substantially ineffective when it preceded the target by that
much. A follow-up experiment using a 6% target found that
recognition was at chance levels when the mask preceded the
target by 100 ms (unreported data). Therefore, there should have
been no impairment of performance in Experiment 3 where
the mask was separated from both subsets having 6% density
by 100 ms, designated as zero in Figure 8. Yet this condition
produced the greatest level of masking, with performance being
in the chance range.

Apparently, with 100 ms of separation the mask does not
greatly impair fully integrated shape information that is being
held in working memory (Experiment 2) but does impair the
processing of information that is being integrated, as was the
case for the temporal integration required in Experiment 3. We
infer that the integration of shape information is a special state

that is more vulnerable to masking. As a potentially related
matter, Greene and Hautus (2018) found the decline in match
recognition across a 500 ms interval was more rapid when
two subsets were being integrated than when the dots of the
target were displayed one at a time. Apparently having a higher
complement of boundary dots available at a given moment
can foreclose the integration process, and once completed, the
summary is less subject to decay or disruption. This result
might be attributed to object substitution masking (Enns and
Di Lollo, 1997), wherein the information from the first subset
is lost and hence no integration is possible between the first and
the second subsets.

Experiment 3 also displayed the mask simultaneously with
the 6% patterns of subset 1 or subset 2. This should have
completely precluded any use of shape information from the
masked subset, given that simultaneous masking of a 12%
target produced chance performance (Experiment 2). Instead,
masking of subset information was relatively weak, and match
recognition was well above chance. These results suggest that the
subset pattern becomes embedded in the random dot pattern
of the mask, and the other subset is able to disembed the
subset pattern from the mask. Apparently this can occur in
either direction. So where the mask was superimposed on
subset 1, the subsequent encounter with subset 2 accomplished
disembedding of the target information. And where subset 1 was
displayed alone, it persisted across the 200 ms and was able to
disembed the subset 2 pattern from the mask. Figure 9 illustrates
this hypothesis.

FIGURE 9 | This figure illustrates the disembedding concept where the mask is presented simultaneously with subset 1. The upper panels show the stimulus
configurations, providing subset dots as red and the mask dots as gray. The lower panels illustrate the perceptual states that are hypothesized. The first panel on the
left shows the first subset as being buried within the mask dots, which prevents the pattern from being perceived. The second panel shows a decreased salience of
mask dots due to decay of persistence, so the newly flashed dots of the second subset are conspicuous. The third panel illustrates the second subset
disembedding the dots of the first subset, making the full target set available for match recognition. A similar process is assumed for simultaneous presentation of
the mask with the second subset.
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We previously noted that a mask can impair recognition
through erasure, integration (embedding), or disruption of
process. We now have evidence that a partial target pattern that
is embedded in a noise mask can be disembedded by display of
the remaining target information. The process of disembedding a
subset from a background might be attributed to feature salience
of the subset pattern. But perhaps it is a product of form-based
motion processing, which would be consistent with much of the
current literature relating to dynamic object perception. Finding
that simultaneous masking of a subset did not greatly impair
match recognition is consistent with conclusions by McCarthy
et al. (2017) that simultaneous events should not be integrated
if they do not appear along the same contour. Consequently,
when the second subset is presented, it may be interpreted as
a rotational or translational continuation of the first subset —
irrespective of the mask — and vice versa.

It has been postulated that although an object’s identity is
maintained during occlusion, its specific features might not be.
The continuity seen across objects that disappear behind a source
of occlusion and then re-emerge may have more to do with
spatio-temporal continuity than spatial continuity (Erlikhman
and Caplovitz, 2017). A case can be made that a temporal
integration paradigm with an interleaved mask emulates this
same type of occlusion and re-emergence, which would explain
the results in terms of similar spatio-temporal continuity.

The disembedding concept that is illustrated is Figure 9
might relate to motion-form cueing. A real-life example might
be seen where a dog runs behind a white picket fence. The
dog’s features are broken up into subset components (in the
slits between the boards), none of which would be recognizable
as a dog. But on seeing the complements of each subset as a
sequence of cues, the viewer perceives a dog running behind the
fence. The processes of disembedding may be akin to this kind
of motion cueing.

Interestingly, some reports of brain mechanisms are consistent
with the current results. An interaction between the dorsal and
ventral visual pathways is thought to underlie form motion
interactions, in particular the updating of “no-longer-visible”
information (McCarthy et al., 2017). Processing form and motion
information calls for activity from a number of brain structures,

including V3A, V3B, Kinetic Occipital cortex (KO), Medial
Temporal cortex (MT), and the inferior parietal sulcus. This
system may provide mechanisms for deriving “structure from
motion” (Klaver et al., 2008) “biological motion” (Vaina et al.,
2001), processing of motion edges (Vinberg and Grill-Spector,
2008) and contour curvature during rotational motion (Caplovitz
and Tse, 2007). Moreover, in an experiment to investigate what
information is represented during dynamic occlusion, Erlikhman
and Caplovitz (2017) measured BOLD fMRI activity across both
early (V1–V3) and higher-level cortical areas while observers
viewed various shapes passing behind occluding quadrants. They
found that that the information represented in early visual cortex
during dynamic occlusion is not shape-specific. Rather, it may
correspond to the object’s position, its motion path, or the path
of attention. Further analysis found that shape identity could be
decoded in higher visual areas such as VO, LO, TO, LOC, PHC,
parahippocampal place area, and hMT. We hope our research
may aid in understanding the interaction between dorsal and
ventral stream pathways that have a role in dynamic form-object
processing. Those who do classical psychophysics studies might
aim to replicate our results and members of the neuroimaging
community might employ a similar masking paradigm to assess
fMRI activation.
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Micro Electrode Arrays were used to simultaneously record spontaneous extracellular

action potentials from 10 to 30 dopamine neurons in acute brain slices from the

lateral Ventral Tegmental Area (VTA) of the rat. The spike train of an individual neuron

was used to characterize the firing pattern: firing rate, firing irregularity and oscillation

frequency. Functional connectivity between a pair of neurons was quantified by the

Paired Phase Consistency (PPC), taking the oscillation frequency as reference. Under

baseline conditions the PPC was significantly different from zero and 42 of the 386 pairs

of VTA neurons showed significant coupling. Fifty percent of the recorded dopamine

neurons were part of the coupled VTA network. Raising extracellular potassium from 3.5

to 5 mM increased the mean firing rate of the dopamine neurons by 45%. The same

increase could be induced by bath application of 300µm glutamate. High potassium

reduced the PPC, but it did not change during the glutamate application. Our findings

imply that manipulating excitability has distinct and specific consequences for functional

connectivity in the VTA network that cannot be directly predicted from the changes

in neuronal firing rates. Functional connectivity reflects the spatial organization and

synchronization of the VTA output and thus represents a unique element of the message

that is sent to the mesolimbic projection area. It adds a dimension to pharmacological

manipulation of the VTA micro circuit that might help to understand the pharmacological

(side) effects of e.g., anti-psychotic drugs.

Keywords: dopamine, network, functional connectivity, glutamate, potassium, action potentials, multi-electrode

array

1. INTRODUCTION

The ventral tegmental area (VTA) is a midbrain nucleus alongside the substantia nigra. The
VTA plays a role in emotional processing, in the reward system and it is implicated in cognitive
functions such as associative learning and memory (Lisman and Grace, 2005; Fields et al., 2007;
Fujisawa and Buzsáki, 2011; Kim et al., 2012). The most abundant neuron type in the VTA is
the dopamine neuron (Nair-Roberts et al., 2008) which projects to mesolimbic and mesocortical
structures. Dopamine neurons form local synaptic connections with each other (Bayer and Pickel,
1990) but they are also interconnected with glutamatergic and GABAergic neurons (Omelchenko
and Sesack, 2009). Many details of this local microcircuit are still under intense investigation.
In vivo VTA dopamine neurons exhibit spontaneous activity and generate single action potentials
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(spikes) as well as bursts, with consequences for dopamine release
(Gonon, 1988; Paladini and Roeper, 2014). Most remarkably
they demonstrate a low quite regular firing rate (1–8Hz) and
this spontaneous activity even persists, at a somewhat lower
frequency, in the in vitro brain slice which is devoid of external
input (Grace and Onn, 1989; Bowery et al., 1994; Werkman et al.,
2001; Bayer et al., 2007). The firing pattern can theoretically be
explained by the composition of the ion conductances in the
membrane wherein calcium currents and/or persistent sodium
currents (Khaliq and Bean, 2010; Drion et al., 2011) play a
prominent role. The VTA network, and in particularly the
dopaminergic neurons, seem also sufficiently synchronized to
generate a low frequency oscillation in the local field potential
that could well be relevant for memory (Lisman and Grace,
2005; Fujisawa and Buzsáki, 2011) and noise correlations that
support reward processing (Kim et al., 2012; Moghaddam et al.,
2017). Model network studies show that the strength of the
local functional connectivity is a major factor in generating
such population oscillations (Traub et al., 1989). Anatomical and
physiological studies have indicated considerable heterogeneity
in cellular properties of DA neurons with consequences for
their firing pattern and potentially linked to distinct output
connectivity (Lammel et al., 2008). We have restricted our study
to the mesolimbic projecting neurons in the lateral part of
the VTA, where the classical slow firing, high DAT containing
neurons are located (Björklund and Dunnett, 2007; Lammel
et al., 2008). Most pharmacological studies in the VTA use the
firing rate of individual dopaminergic neurons as their output
parameter (Hand et al., 1987; Wang and French, 1993; Werkman
et al., 2001) and indeed binding of various antipsychotic drugs
to D2 receptors on these neurons leads to modulation in
their firing rate (Pucak and Grace, 1994, 1996). In Substantia
Nigra dual patch clamp recordings demonstrated that direct
dopaminergic chemical transmission (as well as electrical) results
in coupling (Vandecasteele et al., 2008). In previous work we
have shown that the VTA neurons are functionally connected
(van der Velden et al., 2017) and this connectivity is in part
organized by the volume transmission of dopamine. If they
are partially synchronized, drug manipulation at the receptor
level might affect the organization of the local VTA network.
This network effect of pharmacological manipulation can be
determined by simultaneous recording from a sufficiently large
sample of VTA dopamine neurons and analyzing their mutual
relations. Micro Electrode Arrays (MEA) (Taketani and Baudry,
2010), consisting of a grid of 60 electrodes, were used in this
study to simultaneously record the activity of at least 10–20
dopamine neurons within the acute VTA midbrain slice. The
in vitro preparation has limitations compared to the intact
complete brain. However, the fact that the neurons in the VTA
slice are completely devoid of external input has the great
advantage that it eliminates background interference from other
brain regions. Sufficient dopamine neurons were spontaneously
active in the VTA slice to estimate a population measure of
functional connectivity, based on the detailed spike timing
in the spike trains. The connectivity was quantified with a
proven statistical method: the Paired Phase Consistency (Vinck
et al., 2010). Two simple manipulations were used that increase

the mean firing rate of VTA dopamine neurons to almost
the same level: increasing extracellular potassium from 3.5 to
5 mM or bath application of 300µM glutamate. Although
these two manipulations result in a similar change in firing
rate, they surprisingly yield distinct modulations of the PPC,
confirming the role of functional connectivity as an emerging
network property with potential functional consequences for
more complex pharmacological manipulations.

2. METHODS

2.1. Slice Preparation
Male wistar rats (Harlan, Zeist, The Netherlands) between 75
and 100 g (age >P24) were decapitated. The midbrain was
dissected and kept in artificial cerebral spinal fluid (ACSF) at
4◦C, containing (in mM) NaHCO3 25, D-glucose 10, CaCl2
2.5, NaH2PO4 1.25, MgSO4 1.3, KCl 3.5, NaCl 120, which was
bubbled with carbogen (95% O2; 5% CO2), pH was 7.4. Coronal
slices were cut 300µm thick from caudal to rostral using a
vibratome (Leica VT1000S, Wetzlar Germany). The fading of
the substantia nigra during progressive slicing was a marker
for the caudal-medial part of the VTA. Two to three slices
containing the medial to caudal part of the VTA were used
for the experiments. Slices were incubated for 30 min at 32◦C
directly after slicing and were kept at room temperature until
the start of the experiment. All experiments and methods were
approved by the ethical committee for animal experimentation
of the University of Amsterdam.

2.2. Solutions
With exception of bicuculline (Tocris Bioscience, Abbington,
UK), all chemicals were obtained from Sigma-Aldrich
(Zwijndrecht, NL). Stock solutions of quinpirole-HCl (10mM),
glutamate monosodium salt (100mM) and bicuculline (20mM)
stock were made in H2O. All stock solutions were kept at −20◦

and diluted just before use.

2.3. Electrophysiology
During recording (MEA-1600,Multichannel Systems, Reutlingen
Germany) the slice was kept at 32◦C and continuously perfused
with ACSF bubbled with carbogen. The VTA was identified in
the midbrain slice and positioned on top of the 3DMEA (Qwane
Biosciences, Lausanne, Switzerland) containing 60 electrodes
(8*8 layout) of 30µm diameter and 100µm spacing in order
to record the spontaneous activity of multiple single-units
(Olivier et al., 2002). A 20 min acclimatization time preceded
the recordings.

2.4. Data Acquisition
The extracellular recordings with the 60-channel MEA showed
identifiable extracellular spikes of 30 to 130µV amplitude
superimposed on a background noise of about 15µV. The raw
signal was high pass filtered at 225Hz using a second order
Butterworth filter and sampled at 20 kHz. Voltage peaks (positive
and negative) were detected, with a relatively low threshold to
prevent detection failures. The signal around each peak (± 3ms)
was extracted and K-means clustering was used to cluster the
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largest two principle components and the maximum amplitudes
of the peak waveforms. The auto-correlation and inter-spike-
interval distribution of the peaks in the various clusters were
examined to identify clusters consisting of neuronal spikes. For
electrodes that containedmore than one neuron themost reliably
recorded neuron was selected, based on the cluster with the
largest peak amplitude.

2.5. Experimental Conditions
In baseline experiments VTA activity was recorded for 40min
under standard conditions. The selective dopamine D2 receptor
agonist quinpirole (1µM) was used to confirm the dopamine
sensitivity of the recorded units. It was administered in the last
3 min of the experiment in 40% of the recordings, containing
more than 50% of the reported units. Quinpirole induced an
unambiguous cessation of action potential firing in all tested
slices (n = 6) and neurons (n = 98). Twomanipulations were used
to systematically increase the mean firing rate of the DA neurons:
(1) in the high potassium experiment [K+]o was increased from
3.5mM (control) to 5mM and (2) in the glutamate experiments
300µMglutamate was added to the standard ACSF. Experiments
with high extracellular potassium or glutamate consisted of
three wash-in and wash-out (25 min each) sequences. The third
application was compared to its preceding baseline for the
analysis. To determine the potential role of GABA signaling in the
observed phenomena, we performed experiments where 20µM
of the GABA antagonist bicuculline was added to the standard
ACSF and administered for 20 min. Here the wash-in and wash-
out sequence was repeated two times and the second application
was compared to its preceding baseline in the analysis.

2.6. Data Analysis and Statistics
The firing properties of the VTA neurons were characterized
by classical measures: the spike waveform, the mean firing rate
(spike/s) and the inter-spike-interval (ISI) distribution. The spike
duration was computed by detecting a level crossing in both
the beginning and end of the spike waveform. The firing of
DA neurons is controlled by an underlying intrinsic rhythm
(Drion et al., 2011). The dominant oscillation frequency of this
rhythm was estimated from the auto-correlation function (with
a 50ms bin size to accommodate the firing rates in the 1–5 Hz
range, Figure 2A). The oscillation frequency was computed from
intervals between side-lobes in the auto-correlation function
(details are given in Figures 2A,B). The irregularity of neuronal
firing in the VTA was assessed using a measure of local variation,
which quantifies the similarity between consecutive ISIs. The
local variation (LV, Shinomoto et al., 2005, 2009) of a spike train
ranges from 0 (perfectly regular firing) to 1 (Poisson distributed
firing) and above 1 for burst-like firing and is given by:

LV =
3

n− 1

n−1∑

i=1

(
Ti − Ti+1

Ti + Ti+1
) (1)

where Ti is the i-th interval in the spike train that contains n
spikes. Two factors contribute to LV in our situation (1) the
local irregularity of the consecutive spikes (jitter) and (2) the
consequences of cycle skipping in the firing pattern. The fraction

of cycle skipping was calculated as the percentage of the ISIs
that were larger than 1.5 times the median ISI. Experimentally,
in vivo, the local VTA field potential is assumed to best reflect
the neuronal Population Output (Fujisawa and Buzsáki, 2011).
OurMEA recordings did not provide a field potential of sufficient
signal-to-noise ratio, thus we decided to emulate it per slice
from all recorded spikes. The Population Output signal of a
slice contained the spikes of each recorded neuron in that
slice, where a neuron’s contribution was normalized to its total
number of spikes. This signal was convoluted with a Gaussian
kernel (standard deviation 60ms) to convert it into a continuous
signal. The spectral properties of the Population Output signal
were computed using Welch’s method (Welch, 1967; Hunter,
2007). To determine the strength of the functional connectivity
between two neurons that produce a spike train, we used the
Paired Phase Consistency (PPC) as previously defined (Vinck
et al., 2010). The PPC calculates the similarity of the relative
phases of the two trains with respect to a chosen reference
frequency and estimates the square of the classic Phase Lock
Value (Lachaux et al., 1999). The PPC is an unbiased metric of
phase-synchronization that scales with the square rather than the
square root of the coherence and phase locking value (Vinck et al.,
2010). Thus, a value of 0.0023 corresponds to a coherence value
of about 0.048. The PPC indicates the consistency of the relative
phase between two spike trains across segments. Assuming
a unimodal distribution of relative phases, the probability of
having the preferred or most common relative phase for a given
segment will be a factor of approximately (1 + 2 ∗

√
PPC)/(1 −

2 ∗
√
PPC) larger than the probability of having the non-

preferred or least common relative phase (Ardid et al., 2015).
This equation follows from Taylor expansion of the circular von
Mises distribution around PPC = 0. Hence, with PPC values of
0.0023, the average peak-to-through modulation of the relative
phase distribution is approximately 21%. To compute the PPC,
spike trains were binned at 1 ms bins and a windowed (Hanning)
Fourier Transform was computed on a series of (at least 80) time
segments of the spike train. The length of the time segments was
set to contain a fixed number of cycles of the reference frequency
of interest (e.g., 5 cycles). The relative phase is defined as the
complex argument of the classic spectral coherence (Lachaux
et al., 1999; Vinck et al., 2010). From these relative phases the
PPC was computed:

PPC =
2

N(N − 1)

N−1∑

j=1

N∑

k=j+1

cos(θj − θk) (2)

where there are N time segments, segment j has relative spike
phase θj and segment k has relative spike phase θk, computed in
respect to a chosen reference frequency. The PPC was calculated
for each unique neuronal pair in the slice and evaluated at three
reference frequencies: the oscillation frequency of each neuron
in the pair and their mean oscillation frequency. The frequency
that yielded the highest PPC value was used for further analysis.
The strong auto-correlation of VTA neurons forms a potential
bias for the PPC; this was reduced by selecting time segments
that were at least 14 s apart. The size of the blind spot (14 s) was
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based on the time within which the auto-correlation functions
of all neurons decayed to less than 15% of its maximum value
(Figures 2A,B). The statistical significance of an observed PPC
value for a neuron pair was investigated by comparing it with the
calculation over the shuffled dataset. The bootstrapping for the
PPC value included 1,200 computations, where time segments
were temporally shuffled each time. The experimentally found
PPC value was tested against this shuffled distribution (one-sided,
α = 0.05). The relation between LV and PPC of the neurons
was investigated using mutual information analysis (MacKay,
2003). The mutual information was computed over all neuron
pairs in the baseline experiments (368 pairs) between the LV
values of the neurons in a pair (2-dimensional variable) vs. their
shared PPC value (one-dimensional variable). As the mutual
information can have a strong positive bias (Panzeri et al., 2007), a
shuffle correction was applied (Ince et al., 2009). Unless otherwise
mentioned, all values reported in this study are given asmean and
standard error of the mean (SE).

3. RESULTS

3.1. Baseline Activity
The activity of spontaneously active, mesolimbic projecting,
dopamine neurons in the lateral VTA was first recorded under
baseline conditions (68 neurons from 6 experiments, 8–14
neurons per slice, each from a different animal) using the 60
channel MEA. The dopamine neurons fire action potentials that
can extracellularly be recognized by their characteristic broad
tri-phasic waveforms and have a spike duration of 2.44 (SE
0.04) ms. Figure 1A illustrates the mean waveform of all 68
neurons superimposed and normalized to their first peak. The
classification of all recorded neurons as principal dopamine
neurons was confirmed by measuring the quinpirole sensitivity
(see methods). The identical waveform of all spikes allows an
easy transformation of the recording into a point process, which
has been done for all data that follows. The mean firing rate
of all observed neurons under baseline condition was 0.93
(SD 0.45) spikes/s (n = 68, Figure 1B). Figures 1C,D illustrate
two subclasses of firing types that were encountered: (1) quite
regularly firing neurons (examples 1–4) and irregularly firing
neurons (examples 5–8). For each neuron the irregularity of the
firing pattern was quantified by the local variance (Equation 1,
LV: mean 0.27 (SD 0.21), n = 68), indicating a large variability
over the neurons (compare Figures 1C,D). The LV distribution
(Figure 1E) did not deviate from a unimodal distribution
as tested with the Hartigan’s diptest. The firing irregularity
correlated negatively with the mean firing rate of the neurons
(Spearman’s ρ = −0.46, p = 6.7 ∗ 10−5, Figure 1F), indicating
that dopamine neurons with a higher baseline firing rate fired
more regularly.

Figures 1G,H illustrate the inter-spike-interval (ISI)
distribution for a regular firing neuron (LV = 0.15) and an
irregular firing one (LV = 0.34). At least two factors contribute
to the LV value: (1) the width of the dominant ISI peak,
which is much narrower for the neuron in Figure 1G than the
one in Figure 1H) and (2) the fraction of intervals that are
multiples of the median interval and reflect “cycle skipping”.

This was corroborated by the correlation found between
the LV and the percentage of ISIs exhibiting cycle skipping
(Spearman’s ρ = 0.82, p = 7.6 ∗ 10−18). These two factors can
also be distinguished in the return maps that were made from
the same neurons (Figures 1I,J). The intervals for the neuron in
Figures 1G–I were sharply clustered, while that for the neuron
in Figures 1H–J were more diffuse. The LV and mean firing
rate were not different across slices (ANOVA, α = 0.05, n = 6),
showing that the observed variation originated at the level of
individual neurons.

3.2. Neuronal Oscillation Frequency
Most VTA neurons demonstrated a sharp dominant peak in
their ISI distribution (e.g., Figures 1G,H) suggesting a preferred
spike interval (cycle time), associated with equidistant side lobes
in their auto-correlation function. As expected, the side lobes
were more prominent in regular firing neurons (Figure 2A, side
lobes indicated by dots) than the ones in irregular firing neurons
(Figure 2B). The oscillation frequency of the neuronal activity
was determined from the time intervals between the side-lobes
in the auto-correlation (see markers in Figures 2A,B). The mean
oscillation frequency of the recorded neurons was 1.53 (SD 0.47)
Hz (n = 68) and was either equal but often considerable higher
than the mean firing rate (Figure 2C). The difference between
the oscillation frequency and the mean firing rate was more
pronounced at low firing rates (Figure 2C). In contrast to the
mean firing rate, the oscillation frequency did not correlate with
the firing irregularity (LV) (Spearman rank regression, p = 0.33,
Figure 2D), which confirms that the oscillation frequency is less
sensitive to cycle skipping than the firing rate and therefore a
better and preferred estimator of the intrinsic rhythm of the
activity of the VTA dopamine neuron.

3.3. Population Output
In vivo, the local field potentials in the VTA contain slow
oscillations that are thought to reflect synchronized population
activity. Our MEA recordings are not able to provide the
equivalent of such a signal and therefore we decided to construct
and investigate an alternative Population Output signal based
on the joint spike output of all the neurons in the slice. This
Population Output signal should be able to indicate signs of
underlying neuronal synchrony. The experiment that contained,
under baseline conditions, the largest number of spiking VTA
neurons (n = 14) was analyzed and the power spectrum was
computed over a 300 s period. It exhibited a prominent peak
oscillation at 1.9 Hz (Figure 3, red line); this frequency was
only slightly higher than the mean of the oscillation frequencies
calculated for the contributing neurons (1.70 (SE 0.11) Hz).
The Population Output spectrum was statistically tested against
the spectrum calculated from the shuffled data (Figure 3, blue
line, gray band indicates the SD). The shuffling conserved
the auto-correlation of the individual neurons, but broke the
temporal relationship between the spike trains. The oscillation at
1.9Hz was the only frequency where the baseline spectrum was
significantly different from the shuffled spectrum. The sharply
peaked Population Output spectrum suggested an appreciable
degree of synchrony between the VTA dopamine neurons.
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FIGURE 1 | Electrophysiological properties of the recorded VTA dopamine neurons during baseline conditions. (A) Superimposed traces of the mean spike waveform

per neuron (normalized to the maximum amplitude and centered at the peak). All neurons exhibited the tri-phasic waveform typical of dopamine neurons. (B)

Distribution of the mean firing rate of all VTA neurons recorded during baseline (n = 68). Mean firing rate is computed over a 25–30min time period. (C) Typical firing

pattern of four highly regular firing neurons (rasterplot of point processes). (D) Typical firing patterns of four irregularly firing neurons (rasterplot of point processes).

(E) Distribution of LV (firing irregularity) for the same neurons as in (A), determined over the same period. The distribution was not different from unimodal

(Continued)
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FIGURE 1 | (Hartigan’s diptest). (F) The relation between firing irregularity (LV) and the mean firing rate showed a negative correlation, indicating that neurons with a

lower firing rate fired more irregularly. (G) Inter-Spike-Interval (ISI) distribution of a highly regular firing neuron, showing one main peak. (H) ISI distribution of a less

regular firing neuron (broader main peak), which shows cycle skipping and also includes longer periods of silence. (I) return map of a highly regular firing neuron, which

relates adjacent spike intervals. A relatively low number of spike cycle skipping (multiples of the preferred interval) was seen in combination with highly discrete point

clouds. (J) Return map of an irregular firing neuron, which relates adjacent spike intervals. The more diffuse point clouds indicate a less stable oscillation frequency.

FIGURE 2 | Determination and properties of the oscillation frequency. (A) Typical auto-correlation function of a highly regular firing neuron (LV = 0.008), where the

oscillation frequency (0.9Hz) was computed from the six side-lobes (indicated by black dots). (B) Typical auto-correlation function of a less regular firing neuron

(LV = 0.34), where the oscillation frequency (0.75Hz) was computed from three side-lobes (indicated by black dots). (C) The oscillation frequency in relation to the

mean firing rate for all 68 neurons (baseline condition). The oscillation frequency was either higher or equal to the mean firing rate. This difference was larger for

neurons with lower firing rates. (D) the firing irregularity (LV) did not correlate with the oscillation frequency.

3.4. Baseline Functional Connectivity
In the MEA data the potential interaction between the VTA
dopamine neurons was further quantified by the functional
connectivity between all neuron pairs. The strength of this
functional connectivity was measured by their phase coupling,
which is based on the relative timing of the spikes in their spike
trains. The Paired Phase Consistency (Vinck et al., 2010), was
calculated in respect to the oscillation frequencies of the neurons
in the pair and over a time period of 1,200-1,500 s. The PPC could
be computed for 368 unique pairs of neurons in the recorded
population. Figure 4A shows the distribution of the PPC values
for the neuron pairs in the baseline condition (Figure 4A, black
line). The mean value was larger than zero (2.3 (SE 0.2) *10−3;
t-test against 0, p = 7.2 ∗ 10−23). The same statistics were
also performed on the shuffled controls (see methods). The
PPC values of the shuffled pairs were tightly distributed around
zero (green line, Figure 4A), indicating that the measured phase
coupling originated from the combined temporal structure in the
spike trains.

The statistics of the PPC of an individual pair could also
be assessed through bootstrapping: 42 of the 368 (11%) of
neuron pairs (involving 32 of the 68 neurons, distributed over
all experiments) were significantly coupled (Figure 4A, filled
green bars), when directly tested against their shuffled control
trains. Figure 4B shows the PPC spectrum for an example neuron
pair exhibiting significant coupling. A discrete peak was seen at
the oscillation frequency of one of the two neurons (oscillation
frequencies indicated by black dots, Figure 4B), indicating that
the coupling was selective for the oscillation frequencies of
the neurons.

3.5. Network Activity Modulation
The measured PPC can be considered an emerging property
of the VTA network. We investigated the relation between
the PPC and increased mean neuronal firing rate, using two
different forms of excitability modulation. First, raising [K+]o
from a baseline level of 3.5 to 5 mM, increased the firing rate (4
experiments, 57 neurons under baseline condition). Second, bath
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FIGURE 3 | Oscillations in the baseline VTA population output. Power

spectrum of the population output of a recorded baseline VTA population (red

line, single experiment: 14 neurons). It was contrasted with the power

spectrum averaged over 1000 temporally shuffled populations (mean± SD,

resp. blue line and gray filling). The peak in the spectrum of the Population

Output at 1.9Hz was significantly different from the shuffled control and close

to the mean oscillation frequency of the VTA neuron population

[1.70(SE0.11)] Hz.

application of 300µMglutamate increases firing rate to about the
same level (5 experiments, 55 neurons under baseline condition).
The enhanced excitability induced by both procedures was
reversible, although some of the newly recruited neurons did
not silence at wash-out. The time course of the mean firing
rate of a VTA dopamine neuron population can be observed
during a high potassium (Figure 5A) and a glutamate application
(Figure 5B). Enhancing the potassium concentration to 5mM,
increased the mean firing rate of the VTA neurons by about
45% (Figure 6A) and the oscillation frequency by about 33%
(Figure 6C) (statistics: ANOVA, n = 57, firing rate: p = 3.4*10−6

oscillation frequency: p = 1 ∗ 10−6). Application of 300µM
glutamate induced similar changes in firing rate (Figure 6B) and
oscillation frequency (Figure 6D) (statistics: ANOVA, n = 55,
firing rate: p = 5.8 ∗ 10−5, oscillation frequency: p = 0.001).
In addition to increasing the neuronal activity, both treatments
recruited 22% (high potassium) and 16% (glutamate) additional
neurons, shown in Figures 6A,B as neurons with a baseline
firing rate set to zero. The neurons recruited by glutamate
had an oscillation frequency higher than baseline [Figure 6D;
ANOVA, p = 0.027, n = (55 baseline, 9 recruited)], whereas
those recruited by high potassium had an oscillation frequency
similar to baseline [Figure 6C, n = (57 baseline, 13 recruited)].
The increase in firing rate due to high potassium correlated with
a decrease in LV (Spearman’s ρ = −0.35, p = 0.0074, n = 57,
Figure 6E), but this relationship was not present for the increase
in firing rate induced by glutamate (Spearman’s ρ = −0.05, p =

0.71, n = 55, Figure 6F). The two correlation coefficients were
different (α = 0.05, Fisher transform). These results indicated
that, although the effect on the firing rate was quite similar

for high potassium and glutamate, the manipulations had a
differential effect on firing irregularity.

3.6. Population Output Modulation
The population output of the VTA neuronal population was
compared under the two excitatory conditions. The analysis was
performed on the slices with the largest number of neurons
(19 neurons for high [K+]o and 25 neurons for the 300µM
glutamate condition, active during the preceding baseline
condition). The normalized power spectra were computed from
the Population Output over a 20 min time period. Figure 7
illustrates that the dominant peak in the spectrum shifts to
a higher frequency for both the high potassium (Figure 7A)
and glutamate condition (Figure 7B). These shifts confirmed
the changes in mean oscillation frequency of the individual
neurons (Figures 6C,D). The normalized Population Output
spectra allowed to compare the shape of the dominant peak, but
in order to investigate the consequences of increased excitability
for the functional connectivity, we determined the pairwise
functional connectivity.

3.7. Connectivity Modulation
The modulation of functional connectivity in the VTA network
by high potassium or glutamate was analyzed by computing the
PPC values of all pairs of neurons within the VTA populations
for the conditions of increased excitability and their preceding
baseline. The PPC was calculated over 1,200–1,500 s windows for
the baseline as well as the excitatory condition. The cumulative
PPC distribution for all neuron pairs in the high potassium
condition compared to baseline, shows the shift to lower PPC
values during high potassium (baseline PPC: 3.0 (SE 0.2) ∗10−3,
442 pairs, 5mM [K+]o PPC: 2.3 (SE 0.2) ∗10−3, 652 pairs,
Kolmogorov-Smirnov, p = 5.3 ∗ 10−4, Figure 8A). Comparing
the PPC distribution before and during glutamate application
confirmed the absence of an effect on the PPC (baseline PPC:
2.4 (SE 0.2) ∗10−3, 367 pairs, with glutamate PPC: 2.3(SE0.2) ∗
10−3, 486 pairs, Kolmogorov-Smirnov, p = 0.24, Figure 8B).
To assess the differential effect of glutamate and potassium
on the PPC we performed multi-level analyses on neuron
pairs active before and after the treatment (Field et al., 2012).
First, we performed the analysis on the datasets of potassium
and glutamate separately. PPC values of the neuron pairs,
before and after treatment represented a repeated measure. The
test included a fixed effect for the treatment and a random
effect for the baseline PPC (across slices, potassium: 4 slices,
glutamate: 5 slices). The latter controls for potential differences
in baseline PPC values between slices. High potassium reduced
the PPC of neuron pairs (δPPC: − 1.2(SE0.3) ∗ 10−3, n =

415, p < 0.01). In contrast, glutamate treatment did not
significantly affect the PPC within neuron pairs (δPPC: −

0.26(SE0.3) ∗ 10−3, n = 349, p = 0.28). Adding a fixed effect
for the substance type (potassium and glutamate) allowed us
to determine the interaction between the type of substance
and treatment (repeated measure). The multi-level analysis
demonstrated a significant interaction (p = 0.037) between the
substance type and treatment (repeated measure), substantiating
the difference between potassium and glutamate. Similar results
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FIGURE 4 | Functional connectivity of the baseline VTA network. (A) The PPC values for all pairs within the baseline VTA networks (black line, 368 pairs from 6

experiments) had a mean PPC higher than zero, indicating significant functional coupling. The PPC values of the shuffled controls (green line) were centered at zero,

showing the dependency of the phase coupling on the temporal structure in the neuronal spike trains. The significantly bootstrapped pairs (filled green bars, 42 pairs,

11% of total pairs containing 32 out of 68 neurons). (B) PPC spectrum for a significantly coupled neuron pair, showing selective coupling (peak in the spectrum) at one

of the two oscillation frequencies of the neurons in the pair (black dots).

FIGURE 5 | Population firing rate of two VTA dopamine neuron populations. (A) Mean firing rate of a VTA dopamine neuron population during an administration of

5mM extra-cellular potassium [K+]o at 30 s time points (error bars indicate SE, baseline: n = 20; high potassium: n = 22). (B) Mean firing rate of a VTA dopamine

neuron population during an administration of 300µM glutamate at 30 s time points (error bars indicate SE, baseline: n = 10; glutamate: n = 12).

were obtained when we repeated the analysis controlling for
random effects of PPC baseline values of slices and pairs. Both
conditions recruited neurons due to their excitatory effect (high
[K+]o : 22% and glutamate: 16%). These recruited neurons
were engaged in new functional connections with each other
and with the neurons already active under baseline conditions.
Figures 8C,D contain bar plots of the PPC divided up for
the pairs of neurons that were present in both the baseline
and experimental conditions and the new pairs made with the
recruited neurons. This division showed that the lower PPC
value during high potassium was due to a reduction in PPC of
the baseline network and not due to newly recruited neurons
(ANOVA, p = 2.3 ∗ 10−5, n = 415, Figure 8C). The neurons
recruited by glutamate generated higher PPC values compared
to baseline (ANOVA, p = 0.01, n = 349, baseline, n = 137,
Figure 8D). High potassium decreased the LV of the neurons
active under baseline conditions (Figure 6E). Additionally, it

reduced the PPC between these neurons (Figure 8C). We
investigated the possible relation between the firing irregularity
and PPC through mutual information analysis. The mutual
information measured the strength of the association between
the LV values of the neurons in a pair and their PPC value. It
was computed for all neuron pairs during the baseline condition
(n = 368). The LV values predicted 2.8 out of the 8.4 bits of total
entropy in the PPC distribution after mutual information shuffle
correction (Panzeri et al., 2007).

3.8. GABA-A Modulation
Around 20–30% of the neurons in the VTA are known to be
GABAergic interneurons (Nair-Roberts et al., 2008). They could
play a role in explaining the difference between the potassium
and glutamate experiments. To assess their contribution to the
observed effects on the PPC we used the GABA-A antagonist
bicuculline. Bicuculline administration (20µM) did not affect
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FIGURE 6 | Dopamine neuron activity modulation by high potassium and glutamate. (A) Relation between the mean firing rate during 5 mM [K+]o and the mean firing

rate at baseline. Newly recruited neurons are depicted with a zero mean firing rate at baseline. High potassium induced a 45% increase of the mean firing rate.

(B) relation between the mean firing rate during 300µM glutamate and the mean firing rate at baseline. Newly recruited neurons are depicted with a zero mean firing

rate at baseline. Glutamate induced a 43% increase of the mean firing rate. (C) Comparison of the mean oscillation frequency of VTA neurons at baseline (white bar),

with that of the same neurons during 5mM [K+]o (black bar) and the newly recruited neurons by 5mM [K+]o (22% recruited, gray bar). The mean oscillation

frequency was increased during 5mM [K+]o for the neurons active during baseline. (D) Comparison of the mean oscillation frequency of VTA neurons at baseline

(white bar), with that of the same neurons during 300µM glutamate (black bar) and the newly recruited neurons by 300µM glutamate (16% recruited, gray bar).

Glutamate increased the mean oscillation frequency of the neurons present during baseline. In addition the recruited neurons also had an oscillation frequency higher

than baseline. (E) The change in firing irregularity (LV) as a function of the change in mean firing rate induced by 5mM [K+]o. An increase in mean firing rate correlated

with lower firing irregularity. (F) The difference (300µM glutamate minus baseline) in firing irregularity (LV) as a function of the difference in mean firing rate. A correlation

was not found. *p < 0.05, **p < 0.01.

the mean firing rates of the dopamine neurons, averaged
across four experiments (Figure 9A). The scatter plot confirms
the absence of systematic changes of the neuronal firing rate
(Figure 9B). Bicuculline (20µM) also did not affect the PPC,
when averaged over four experiments (Kolmogorov-Smirnov,
p = 0.72, Figure 9C).

4. DISCUSSION

In this study we quantify the PPC between pairs of neurons
and interpret it as a measure of functional connectivity; it
appears as an emerging property during excitability modulation
of dopaminergic neurons in acute brain slices of the VTA.
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FIGURE 7 | Modulation of the population output. (A) Power spectra of the population output for baseline conditions (black) and for high potassium (5mM [K+]o, blue).

The dominant peak was shifted to a higher frequency during the administration of 5mM [K+]o (baseline: n = 19, 5mM [K+]o : n = 25). (B) Power spectra of the

population output for baseline conditions (black) and for 300µM glutamate (blue). The dominant peak was shifted to a higher frequency during the administration of

glutamate (baseline: n = 22, glutamate: n = 26).

FIGURE 8 | Effects on functional connectivity induced by high potassium and glutamate. (A) The cumulative PPC for the high potassium (5mM [K+]o ) and baseline

conditions. The leftward shift of the distribution shows that the pairwise connectivity was weakened during the high potassium condition (baseline: 442 pairs, high

potassium: 652 pairs). (B) The cumulative PPC histograms for the baseline and 300µM glutamate conditions. The two distributions were identical, indicating that the

network strength was similar for both conditions (baseline: 367 pairs, glutamate: 486 pairs). (C) Comparison of the mean PPC for neuron pairs during baseline

conditions (black bar, n = 415), with the same pairs during 5mM [K+]o (blue bar, n = 415) and the connections made by neurons newly recruited by 5mM [K+]o (gray

bar, n = 237). The weakening of the functional connectivity by high potassium originated from the functional connections already present during baseline. (D)

Comparison of the mean PPC for neuron pairs during baseline conditions (black bar, n = 349), with the same pairs during 300µM glutamate administration (blue bar,

n = 349) and the connections made by neurons newly recruited by 300µM glutamate (gray bar, n = 137). The functional connections already present during baseline

were not affected by glutamate (black), however the connections made by the recruited neurons were stronger than baseline (gray). *p < 0.05, **p < 0.01.
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FIGURE 9 | Effect of Bicuculline on the dopamine neuron population activity and connectivity. (A) The mean firing rate was not affected by 20µM Bicuculline, when

averaging across four experiments (white vs. black bar). (B) Relation between the mean firing rate during 20µM Bicuculline and the mean firing rate at baseline for four

experiments (filled and non-filled dots). A systematic response to Bicuculline was not found. (C) The cumulative PPC histograms for the baseline and 20µM

bicuculline conditions. The two distributions were not different, indicating that bicuculline had no effect on the network strength when averaged over four experiments

(baseline: 305 pairs, bicuculline: 305 pairs).

Two manipulations that induced a similar increase of the mean
neuronal firing rate, had a differential effect on the PPC. This
could make the organization of network synchrony as captured
in the PPC a unique element of the population message that is
send to the projection areas.

VTA dopamine neurons possess a strong intrinsic rhythm
generator, illustrated by the spontaneous oscillating firing
patterns in the isolated slice. These rhythms even persist in
dissociated single neurons (Koyama et al., 2005). It has been
hypothesized that the VTA circuit could generate a low frequency
rhythm important for memory, which entrains the prefrontal
cortex and the hippocampus (Fujisawa and Buzsáki, 2011).
The functional connectivity local to the VTA that we find
can be an important factor in generating such a rhythm.
The mean firing rate of all dopaminergic neurons recorded
in our preparation (∼1Hz) is lower than the one reported
in vivo: 5 (SD 6) Hz (Fujisawa and Buzsáki, 2011). The
same holds for the mean oscillation frequency (∼2Hz in our
experiments) vs. the oscillations in the field potential reported
in vivo: 4Hz. We carefully restricted our recordings to the
“classical” lateral part of the VTA that contains an uniform class
of mesolimbic projection neurons (Lammel et al., 2008). All
recorded neurons were identified as principal neurons based on
their electrophysiological properties: characteristic broad spike
waveform and regular low frequency firing pattern. In addition
we could unambiguously link these properties to a positive
response to the D2-receptor agonist quinpirole in all tested
neurons. Although the accuracy of these markers has been
debated, our findings correspond to the abundance (∼60%) of
these neurons in the VTA (Margolis et al., 2006). The VTA
also contains glutamatergic and GABAergic neurons that can
make up 20 to 30% of the population (Nair-Roberts et al.,
2008). They are typically faster spiking (> 10 Hz) neurons
and we never picked up more than one such unit per slice;
too few to incorporate them in a statistical sound way into
this study. The acute brain slice is very suitable for work with
the Micro Electrode Array, but has limitations. In the slicing
process we may have lost quite a few connections and the
preparation is devoid of its normal background input. The

first aspect will lead to an underestimation of the functional
connectivity, while the second one brings a careful analysis within
reach. The MEA has only two dimensional electrodes with a
diameter of 30µM and spacing of 100µm, which inevitably
leads to sparse sampling of the population; nevertheless
we can simultaneously record ensembles of 10–30 spiking
dopamine neurons.

Most of our VTA dopaminergic neurons had a distinct
firing rate and LV, but these values varied considerably over
the population, even within the same slice. Our distribution of
firing rate and LV was, however, unimodal in contrast to the
observations made in acutely dissociated neurons, where two
distinct populations have been described (Koyama et al., 2005).
The assumption of an underlying oscillatory process that triggers
the action potentials, predicts that the auto-correlation of the
spike train is a better estimator of the oscillation frequency than
the firing rate, which we confirmed. The LV is determined by
local irregularity of consecutive spikes and by cycle skipping.
This is in accordance with the finding that a lower baseline
firing rate correlated with a higher firing irregularity, but that
this correlation did not exist between the oscillation frequency
and the irregularity. Rhythmic action potential firing in VTA
neurons originates from a balance between an inward sodium
current and a calcium-based slow oscillatory potential (SOP)
(Drion et al., 2011). There is evidence that sodium currents
form the dominant mechanism and generate quite regular
spike firing in the VTA (Khaliq and Bean, 2010; Drion et al.,
2011), while in dopamine neurons from the substantia nigra
spikes are generated predominantly by the less regular SOP
(Putzier et al., 2009; Drion et al., 2011).

We measured the strength of the synchrony between all
possible pairs of VTA neurons in the same slice with the
Paired Phase Consistency (PPC) (Lachaux et al., 1999; Vinck
et al., 2010). The mean value of the PPC of the baseline
VTA network was different from zero which indicates the
presence of significant functional coupling in the network.
When tested individually, 42 out of 382 all possible pairs
demonstrated significant coupling at their oscillation frequency
(∼2Hz). Of the 68 neurons sampled in all experiments,
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32 were part of a pair with significant coupling, which
shows that the VTA contains a collection of functionally
connected dopamine neurons that synchronizes at the time
scale of their preferred oscillation frequency. The details
of the underlying mechanism of this coupling cannot be
deduced from the current measurements alone. Direct synaptic
connectivity as demonstrated for dopaminergic neurons in
the Substantia Nigra (Vandecasteele et al., 2008) could be
involved as could be electrical coupling through gap junctions.
However in a previous study (van der Velden et al., 2017)
we concluded that probably the best explation of the apparent
synchrony in the VTA network is through a mechanism
that is called dopamine volume transmission (Zoli et al.,
1998). In volume transmission the collective and synchronized
release of dopamine in the extracellular space creates an
oscillating dopamine concentration, where the precize role of
each neuron depends on its cellular sensitivity for dopamine.
In the current paper we refer to our form of coupling as
functional connectivity in contrast to the more straigtforward
anatomical/synaptic connectivity.

Most pharmacological studies of the VTA have focused on
describing modulations of individual neuronal firing rates (Hand
et al., 1987; Wang and French, 1993; Werkman et al., 2001). The
MEA recordings allow us to incorporate functional connectivity
into this modulation. Here we used two well understood
manipulations of neuronal activity: increasing extracellular
potassium from 3.5mM to 5mMand bath-application of 300µM
glutamate, to study the relation between neuronal activity and
functional connectivity. The manipulations were chosen so that
their effect on mean firing rate and mean oscillation frequency
was similar. Interestingly, they had a differential effect on
firing irregularity (LV) as well as on functional connectivity as
measured with the PPC. The increase in firing rate induced by
high potassium correlated with a lower LV, while such correlation
was absent in the case of glutamate application. The increased
activity of individual neurons propagates through the population
level, as high potassium and glutamate both increased the
oscillation frequency of the population output. Calculating the
connectivity strength using the PPC demonstrated that the
functional connectivity was weakened by high potassium, while
it was unaffected by glutamate. The weakening of the functional
connectivity originated from neurons already present during
the baseline condition and not from connections made by
neurons recruited by high potassium. Depolarization of the
membrane potential by high potassium can strengthen the role
of the ‘persistent’ sodium current in the generation of spikes
(Khaliq and Bean, 2010) and this can explain the reduction in
firing irregularity (Drion et al., 2011). Glutamate depolarizes
the neuron through the activation of post-synaptic AMPA
and NMDA receptors (Wang and French, 1993). The strongly
increased synaptic activity enhances firing irregularity (Drion
et al., 2011) and could therefore explain the difference between
the effect of glutamate- and potassium-induced depolarization.
The strengthening of the intrinsic rhythm by larger sodium

currents could make the dopamine neurons less sensitive to
synchronizing inputs and thus show up as weaker neuronal
interactions, based on resonance principles (Hunter et al., 1998;
Coombes and Bressloff, 1999). Neurons recruited by glutamate
had a higher than baseline oscillation frequency and functional
connectivity, suggesting that recruitment through increased
synaptic input (glutamate) leads to more network participation
than recruitment through a direct increase of the membrane
potential (high potassium).

GABAergic transmission contributed on average very
little to the functional connectivity. Our activity modulation
demonstrates that physiological relevant stimuli (high potassium
and glutamate) can alter the functional connectivity of the
local VTA network. This effect seems independent from the
modulation of the neuronal firing rate. The difference between
the effects on the functional connectivity by high potassium
and glutamate, indicates that the specific mechanisms with
which these substances excite the individual dopamine neurons
(electro-chemical vs. synaptic) is of importance for the response
at the network level. Functional connectivity shows up as an
aspect of spatial synchronization that is present in the output of
the VTA and can thus form a unique element of the message that
is sent to the projection areas. Functional connectivity between
VTA dopamine neurons is involved in reward processing (Kim
et al., 2012; Moghaddam et al., 2017) and we analyze this
connectivity in detail. Functional connectivity adds a dimension
to pharmacological manipulation of the VTA micro circuit
and could lead to a better understanding of pharmacological
(side) effects of e.g., anti-psychotic drugs on the mesolimbic and
mesocortical projection areas.
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Orientation selectivity is a fundamental property of visual cortical neurons and plays a

crucial role in pattern perception. Although many studies have dedicated to explain how

the orientation selectivity emerged, the mechanism underlying orientation selectivity is

still not clear. In this work, we investigated the synchronization between spikes and

local field potentials (LFP) in gamma band, with the aim of providing a new avenue

to analyze the orientation selectivity. The experimental data were recorded by utilizing

two chronically implanted multi-electrode arrays, where each array consisted of 48

electrodes and was placed over V1 and V4, respectively, in two macaques performing

a selective visual attention task. An unbiased and robust measure for quantifying the

synchronization between spikes and LFP was employed in the analysis process, which

is termed as spike-triggered correlation matrix synchronization (SCMS) and performs

reliably for limited samples of data. We observed the spike-LFP synchronization in three

cases, i.e., spikes and LFP in V1, spikes and LFP in V4, spikes in V4 and LFP in V1.

From the orientation tuning curves based on the spike-LFP synchronization, it is found

that there is a strong correlation between the synchronization and grating orientation. The

neurons in both V1 and V4 exhibit orientation selectivity, but V1 is stronger. In addition, the

spike-LFP synchronization strength between V1 and V4 also shows orientation selectivity

to drifting gratings. It means that the synchronization not only reflects the basic features

of visual stimulation, but also describes the orientation tuning characteristics of neurons

in different regions. Our results suggest that the spike-LFP synchronization can be used

as an alternative and effective method to study the mechanism for generating orientation

selectivity of visual neurons.

Keywords: orientation selectivity, multi-electrode array, spike, local field potential, synchronization

INTRODUCTION

The orientation is a basic feature of natural images. The orientation selective response of visual
cortical neurons to the object boundary plays a key role in the shape perception and other
perception processes (Hubel and Wiesel, 1962; Mansfield, 1974; Girshick et al., 2011; Durant
et al., 2017). In the past decades, many studies have been devoted to explore the mechanism for
generating orientation selectivity. Generally, two important types of signal were employed in these
analyses, i.e., spikes (action potentials) and local field potentials (LFP), which were simultaneously
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recorded from the visual cortex by multiple electrode arrays
(Zhang and Li, 2013; Bharmauria et al., 2016). On the one hand,
the spikes are identified by high-pass filtering, detection and
sorting, indicating the firing activities of individual neurons. Its
firing rate has been widely used since the orientation selectivity
is discovered, e.g., some researchers found that the spike firing
rate has different response values under different orientation and
contrast stimuli (Hubel and Wiesel, 1962; Anderson et al., 2000;
McLaughlin et al., 2000; Manyakov and Van Hulle, 2010). It
indicates that the neuronal discharge activity is able to encode
the orientation information of visual images. On the other hand,
the LFP is obtained by low-pass filtering the original wideband
signal, representing the synaptic activities of local populations
of cortical neurons (Buzsaki et al., 2012; Gaucher et al., 2012).
Because the spike firing rate cannot reflect the synaptic activities
of multiple neurons in a local region, the LFP frequency or energy
is adopted in many studies. For example, the high frequency
oscillations of LFP in the striate cortex of awake monkeys showed
stronger orientation selectivity than low frequency oscillations
(Frien et al., 2000), and the energy variation of the LFP in gamma
band was able to effectively encode the stimuli (such as time,
frequency, orientation, etc.) in images (Siegel and Konig, 2003;
Henrie and Shapley, 2005; Ince et al., 2012).

In recent years, a large number of neurophysiological studies
have shown that there is a close relationship between spike
and LFP gamma band (Ray and Maunsell, 2011a,b; Li et al.,
2014). Combining these two signals to decode the behaviors
can provide more information than using one signal separately
(Mehring et al., 2003; Mollazadeh et al., 2009), which means
that, it is able to provide a comprehensive description about the
neural mechanism of signal processing. Moreover, it has been
shown that the spike and LFP both participate in the coding
of visual information (Quian Quiroga and Panzeri, 2009; Perge
et al., 2014). Thus, we think relating the spike-LFP correlation
and orientation is an effective tool to investigate the orientation
selectivity. Therefore, we used the SCMS method (Li et al., 2016)
to estimate the spike-LFP synchronization of the data which
was obtained by simultaneously implanting two multi-electrode
arrays in V1 and V4 of visual cortex, respectively.

MATERIALS AND METHODS

Experiment Procedure
The experimental data was recorded from two male rhesus
monkeys. All procedures were conducted in compliance with
the National Institutes of Health Guide for the Care and Use
of Laboratory Animals, and were approved by the Institutional
Animal Care and Use Committee of Beijing Normal University.
Under general anesthesia induced with ketamine (10 mg/kg)
and maintained with isoflurane (1.5–2.0%), a titanium post was
attached to the skull with bone screws for immobilizing the
animal’s head during behavioral training. After the monkeys had
been trained in a simple fixation task, two 6 × 8 multi-electrode
arrays (with interelectrode spacing of 0.4mm, electrode length of
0.5–0.6mm, and typical electrode impedances of a few hundred
kiloohms; Blackrock Microsystems) were implanted intoV1 and
V4, respectively. LFP and spike data were recorded at 10 kHz

FIGURE 1 | The experimental procedure. Each trial was performed for 2.4 s,

including three phases: fixation in the first 0.2 s, stimulus in the next 2 s, and a

blank interval in the final 0.2 s.

using a 128-channel Cerebus neural electrophysiological signal
recording system (Blackrock Microsystems).

Visual Stimulation
The visual stimulation in the experiment were generated by a
stimulus generator system ViSaGe and displayed on a 22-inch
CRT monitor at a viewing distance of 100 cm. The stimulus
patterns were drifting sinusoidal gratings of different orientations
which were displayed within a circular patch of 4◦ visual angle
in diameter, covering the visual field locations of all recording
sites. The orientation of the sinusoidal grating used in the
experiment was uniformly distributed between 0◦ and 360◦ in
steps of 22.5◦. Other stimulus settings were identical in the
whole experiment, including the contrast of 99%, the spatial
frequency of 2 cycle/degree and the temporal frequency of 4Hz.
The experimental procedure is shown in Figure 1.

On each trial, the grating with different orientations was
appeared on the screen in a pseudorandom order. Every stimulus
was presented for 2 s and repeated 30 times. A trial started when
a lever was pulled by the animal. Then, a fixation point (FP) of
0.1◦ was displayed in the CRT center. Within 600ms after FP
presentation, the animal was required to fixate within an invisible
circular window of 0.6◦ in radius around the FP. Before the
stimulus was displayed, the animal maintained its fixation on
the screen for 200ms. And after the stimulus, there was a blank
interval of 200ms. The FP was then slightly dimmed, and the
animal had to release the lever within 600ms for a drop of juice
as reward.

Signal Preprocessing
With increasing popularity of LFP analysis, oscillations in LFP
gamma band have been used to study orientation selectivity
(Berens et al., 2008; Xing et al., 2012). In order to obtain LFP
gamma band signal and preserve the phase relationship between
LFP and spikes, we used a two-way least-squares FIR filter in the
EEGLAB toolbox (Delorme and Makeig, 2004) to perform zero-
phase shift band-pass filtering of 30–80Hz on the original signals
recorded in the experiment.

To identify spikes fired by neurons, the recorded signals
were first filtered with a band-pass filter of 300–3,000Hz. Then,
the threshold detection method was used to determine the
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spiking time and extract the spike waveform. Finally, spikes
were classified by utilizing an unsupervised detection and sorting
method based on wavelets and superparamagnetic clustering
(Quiroga et al., 2004). An example of the raw data and the
corresponding procedure of signal preprocessing is illustrated in
Figure 2. During the implementation of spike sorting, the cluster
with most spikes was taken as the firing activity of a neuron
recorded by one electrode and the other spikes were discarded.
Thus, there were 48 neurons in V1 and V4, respectively. The
inter-spike interval (ISI) histogram metric was used to evaluate
the spike sorting accuracy. An example of the ISI is shown in
bottom of Figure 2. Considering the effect of refractory period, it
is an acceptable result of spike sorting for this electrode. The ISI
also exhibits similar distribution for other electrodes. The single-
unit activity and LFP recorded from the same electrodes were
used to calculate the spike-LFP synchronization in this paper.

Synchronization Analysis
The SCMS method was used to analyze the data recorded in
the macaques’ visual cortex V1 and V4. The main idea of this
method is to take the LFP segments centered on each spike as
multi-channel signals and measure the synchronization between
these LFP signal segments using the phase locking value. The
global synchronization is calculated by constructing a correlation
matrix to quantify the coupling strength of the spike and LFP. In
the data analysis, the influence of window length on the algorithm
is very small. However, it is possible that there are other spikes
immediately before or after a specific spike which may alter
the frequency and phase of the LFP (Zanos et al., 2011). On
the other hand, the algorithm uses the similarity of variation in
LFP phase as the mechanism for the calculation of spike-LFP
synchronization. Considering the impact of these two aspects, we
used a window of 20ms in this study. More details are as follows
and the calculation procedure is shown in Figure 3.

First, the instantaneous phase of the whole filtered LFP
signal is calculated by Hilbert transform. Then, construct the
correlation matrix C by calculating the phase locking value
between pairs of LFP segments, i.e.,

cmn =

∣∣∣∣∣
1

M

M∑

k=1

ei(φm(tk)−φn(tk))

∣∣∣∣∣ (1)

where φm(tk) and φn(tk) denotes the phase of mth and nth LFP
segments, respectively, tk is the sampling time and M denotes
the number of samples in the time window. All elements of
matrix C range from 0 to 1: when cmn= 1, there is a perfect
phase synchronization between the mth and nth LFP segments;
and when cmn= 0, there is no synchronization. Thus, C is a real
symmetric matrix of order N and all diagonal elements are equal
to 1, where N denotes the number of LFP segments. Moreover,
the eigenvalues of matrix C (λ1 ≥ λ2 ≥ · · · ≥ λN) are real
numbers and the sum of them is N. If all of the LFP segments
are totally non-synchronized with each other, C will become
an identity matrix and all of the eigenvalues will be equal to
1. Once all of the LFP segments are perfectly synchronized,
the maximum eigenvalue of C will be equal to N and other

eigenvalues zero. Above all, eigenvalues can provide information
about the synchronization between LFP segments.

Surrogate Data
Finally, in order to obtain a normalized value of spike-LFP
synchronization which is independent of the number of spikes,
this paper used the Rank-Shuffled Surrogate (RSS) method to
generate surrogate data (Junfeng et al., 2012). Assume that {g(n)}
denotes a Gaussian random sequence, and R[g(k)] denotes the
order in which g(k) is ranked in the time series {g(n)}. For
example, if g(k) is the 5th smallest sample point in {g(n)},
then R[g(k)] = 5. Then, use s̃(n) to represent the rank-shuffled
surrogate data of the original signals {s(n)}, where s̃(n) = s [k(n)],
and k(n) = R[g(n)]. That is to say, the surrogate data is generated
by randomizing the order of the original signals, destroying the
time structure, but retaining the amplitude distribution, mean
and variance.

By using such a method, all spike-triggered LFP segments
are randomized to calculate a surrogate correlation matrix R.
That is, the surrogate data is generated by randomizing the
order of the original signals. Similarly, the ordered eigenvalues
of surrogate correlation matrix R can be obtained, which are
denoted as λ1

s
≥ λ2

s
≥ · · · ≥ λN

s. This randomization process
is repeated and calculated 100 times, the mean and standard
deviation of the maximum eigenvalues are denoted as λ1

sand σ1,
respectively. Then, the normalized spike-LFP synchronization
value is calculated by the following equation:

η =

{ (
λ1−λ1

s

N−λ1
s

)
if λ1 >

(
λ1

s
+ K × σ1

)

0 otherwise
(2)

where K is a constant that determines the threshold, and K=3 is
selected for 99% confidence intervals (Li et al., 2007).

Circle Variance
The circle variance (CV) (Ringach et al., 2002) is an orientation
selectivity index obtained by the vector sum of neuron’s responses
to each orientation of the stimulus divided by the scalar sum
of the responses, which can effectively describe the degree of
orientation selectivity. Its definition is:

CV = 1−

∑
k

rk exp(i2θk)

∑
k

rk
(3)

RESULTS

In order to acquire more accurate and significant results, the
trials with very few spikes (<10) and distorted recordings with
very small amplitude are rejected, and then the mean spike-
LFP synchronization of the remaining trials is calculated. The
experimental data was analyzed using Matlab.

Orientation Selectivity of Neurons in V1 and V4
First, to examine the neuronal response in the two brain regions
V1 and V4 under the stimuli of sinusoidal grating with different
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FIGURE 2 | The raw data recorded by one electrode and the procedure of signal preprocessing.

FIGURE 3 | The calculation procedure of the algorithm for characterizing the strength of spike-LFP synchronization.
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FIGURE 4 | The mean spike-LFP synchronization values in V1 and V4 of the

two monkeys. Response of the V1 neurons is indicated by a red line, and

response of the V4 neurons is indicated by a black line.

orientations, we used the SCMS method to estimate the spike-
LFP synchronization of the experimental data recorded by each
electrode respectively. The mean spike-LFP synchronization
values of the 48 electrodes in V1 and V4 are plotted in the curve
of Figure 4.

The red curves show the response of neurons in V1 for the two
monkeys. It can be seen that themean spike-LFP synchronization
values exhibit obvious orientation selectivity. More concretely,
the neurons respond more strongly to the gratings around 22.5◦

or 202.5◦ than the other orientations, which means that the
synchronization values to the preference-oriented stimulus and
the non-preferential orientation stimulus are markedly different.
And the values distribute symmetrically. On the other hand,
the black curves show the response of neurons in V4. Clearly,
although the distribution of the mean spike-LFP synchronization
values is almost symmetric, the difference between them is not
as obvious as V1. Especially for monkey H, the neurons did not
respond well to the stimulus. There are two reasons may lead to
this phenomenon. One is that there are individual differences
in the two monkeys and they responded not consistently to
the drift gratings. Another, and more important, is that the V4
cortex itself has small patches that encode shape and orientation
(Roe et al., 2012). In the experiment, the electrodes in V4
of Monkey H were more likely located close to the color-
coded region.

Moreover, the synchronization value of the neurons in V1
is higher than the synchronization value of neurons in V4,
indicating that the neurons in V1 are more active and more
sensitive to the orientation of the drift grating. Considering
that the local field potential is the sum of the excitatory and
inhibitory postsynaptic potentials in the vicinity of the recording
electrode, it is the superposition of the neuron cluster firing
activity in a local area. Then, the synchronization relationship

FIGURE 5 | The orientation tuning of the spiking response. The values

represent the mean firing rates of neurons to sinusoidal grating with different

orientations.

between the spike train fired by a neuron and the local
field potential can be understood as the connection between
a single neuron and multiple neurons around it. Therefore,
it can be considered that the activity of a single neuron in
V1 is more affected by the network composed of peripheral
neurons, while the neurons in V4 are relatively less affected by
peripheral neurons.

At the same time, we also analyzed the orientation tuning of
the spiking response under different orientations toward grating
stimulation. It can be easily seen from Figures 4, 5 that in the
two brain regions V1 and V4 under the grating stimulation,
peaks appear in the orientation tuning curves based on both the
firing rate and the spike-LFP synchronization. This indicates that
both the spiking response and the spike-LFP synchronization
of neurons have a clear orientation selectivity. Meanwhile, it
can be found that the firing rate of neurons in the two brain
regions is different. The mean firing rate of neurons in V1 is
higher than that in V4, indicating that the neurons in V1 are
active and have more firing activity under grating stimulation.
Similar results were observed for the mean intensity of the
spike-LFP synchronization.

Second, we used the CV to measure the orientation selectivity
of neurons and compared the differences between different
brain regions. The CV values were calculated separately for the
orientation tuning curves obtained by the two methods of the
firing rate and the spike-LFP synchronization, and then the
neurons in the two brain regions V1 and V4 were statistically
analyzed. The result is shown in Figure 6.

It can be seen that the CV values obtained by the spike-
LFP synchronization are smaller than the CV values obtained
by the firing rate. All neurons have significant orientation
selectivity and most of the CV values range from 0.6 to
0.8. In addition, it can also be found that the CV values
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FIGURE 6 | Box plot of the CV values for the firing rate and the spike-LFP synchronization of neurons in different regions. Red indicates the V1 and black indicates the

V4. The smaller the CV values, the more significant the orientation selectivity of the neurons.

FIGURE 7 | The mean spike-LFP synchronization values between V1 and V4 and the histogram of CV values.

of the neurons in V1 is lower than that in V4. The F test
revealed a significant difference between these two regions (p
< 0.05). It further indicates that the neurons in V1 exhibit
stronger orientation selectivity than that in V4. This shows
that for sinusoidal grating with different orientations, the firing
activity of neurons will show a certain orientation selectivity.
However, this orientation selectivity is stronger when considering
the spike-LFP synchronization, that is, the synchronization

relationship is more sensitive to grating stimulation with
different orientations. Therefore, it can be considered that
studying the spike-LFP synchronization relationship provides a
more effective method for exploring the formation mechanism
of visual neurons toward orientation selectivity. It is able
to effectively describe the orientation tuning characteristics
of neurons and the difference of orientation selectivity in
different regions.
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Co-modulation Effect on Orientation in V1 and V4
As is known, the processing of visual information requires
mutual communication and cooperation among multiple brain
areas (Jensen and Mazaheri, 2010; Akam and Kullmann, 2014;
Fries, 2015). However, it is still elusive whether and how the
distant cortical areas cooperate in visual tasks (Tiesinga and Buia,
2009; Ter Wal and Tiesinga, 2017). For example, whether LFPs
coordinate spiking output timely between distant cortical areas
that have been traditionally associated with the sensory encoding
of visual information, and is the precision of coordination
between these areas related to changes in visual information?
To understand these questions, we used local field potential and
spike recorded in monkeys performing a visual task to study
neural interactions between visual area V1 and V4. The result is
shown in Figure 7.

As can be seen, the spike-LFP synchronization between
V1 and V4 is modulated by visual information content,
and its intensity also shows orientation selectivity to drifting
gratings during the stimulation. Moreover, all neurons have
significant orientation selectivity with CV values less than 0.8.
In addition, we also found that the spike-LFP synchronization
value between regions is higher than in a single region.
This suggests that the spike-LFP synchronization coordinates
potential communication between V1 and V4. Specifically, the
spike-LFP synchronization is enhanced during visual tasks in
both V1 and V4, and increased synchronization is accompanied
by the phase coding of visual stimulus.

Moreover, spiking activity in V4 was more strongly locked
to LFP in V1 and vice versa, i.e., V4 spiking seems to be
more sensitive to V1 gamma than V1 spiking to V4 gamma.
The asymmetry of spike-LFP synchronization between the
regions implies a possible directedness in the interaction and
communication pattern between the regions, the details of which
remain to be explored.

DISCUSSION

We combined spike and LFP signals to investigate the orientation
tuning characteristics of neurons in macaques’ V1 and V4 under
drifting sinusoidal gratings by calculating the synchronization
between spike and LFP gamma band. The results are
as follows:

First, we found a strong correlation between the spike-
LFP synchronization and the stimulus orientation, which
is modulated by the orientation and reflects the basic
feature information of the visual stimulation. Second, we
also investigated the modulation of orientation selectivity
through the spike-LFP synchronization of V1 and V4 neurons.
The results show that the spike-LFP synchronization not only
can effectively encode the stimulus information for different
orientations, but also can distinctly distinguish the orientation
tuning characteristics of neurons in different regions. Finally,
it was observed that there is a clear mutual modulation of
orientation between V1 and V4, suggesting that the neural
interaction based on the spike-LFP synchronization between
these two long-range cortical regions is related to the coding of
visual information.

Our findings are consistent with previous studies. For
instance, Frien et al. found that gamma-band LFP displays
sharper orientation tuning than slower components of the same
recordings in striate cortex of the awake monkey (Frien et al.,
2000). Lashgari et al. systematically compared the stimulus
selectivity of LFP and neighboring single-unit activity recorded
in V1 of awake rhesus monkeys. They demonstrated that LFP
and single-unit activity have similar stimulus preferences for
orientation, direction of motion, contrast and other features
(Lashgari et al., 2012). Womelsdorf et al. determined for each
spike its phase relative to the gamma cycle and used the pairwise
phase consistency to quantify the concentration of phases
around the mean gamma phase. They observed that orientation
selectivity is modulated by gamma phase and the spike firing rate
that occurred close to a neuron’s mean gamma phase is most
orientation selective (Womelsdorf et al., 2012). Although these
results are closely related to ours in this paper, there are two clear
distinctions between them. One is that we used an unbiased and
robust measure to quantify the spike-LFP synchronization, which
provided a reliable comparison between trials with different
spike numbers. Then, it is feasible to investigate the tuning
characteristics of spike-LFP synchronization under stimulus with
different orientations. Another is that we analyzed the spike-LFP
synchronization not limited to V1, but expanded it to V4. And
we also studied the mutual modulation between V1 and V4.

Taken together, our results illustrate that the connection
between spike-LFP synchronization and orientation not only
exists in an individual region (V1 or V4), but also between distant
cortical regions (V1 and V4). That is, the neural interaction based
on spike-LFP synchronization may be related to the maintenance
and communication of information during visual information
processing.We suggest that this method provides a new direction
to study the formation mechanism of orientation selectivity.
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The lateralization of neuronal processing underpinning hearing, speech, language,
and music is widely studied, vigorously debated, and still not understood in a
satisfactory manner. One set of hypotheses focuses on the temporal structure of
perceptual experience and links auditory cortex asymmetries to underlying differences
in neural populations with differential temporal sensitivity (e.g., ideas advanced by
Zatorre et al. (2002) and Poeppel (2003). The Asymmetric Sampling in Time theory
(AST) (Poeppel, 2003), builds on cytoarchitectonic differences between auditory cortices
and predicts that modulation frequencies within the range of, roughly, the syllable
rate, are more accurately tracked by the right hemisphere. To date, this conjecture is
reasonably well supported, since – while there is some heterogeneity in the reported
findings – the predicted asymmetrical entrainment has been observed in various
experimental protocols. Here, we show that under specific processing demands,
the rightward dominance disappears. We propose an enriched and modified version
of the asymmetric sampling hypothesis in the context of speech. Recent work
(Rimmele et al., 2018b) proposes two different mechanisms to underlie the auditory
tracking of the speech envelope: one derived from the intrinsic oscillatory properties
of auditory regions; the other induced by top-down signals coming from other non-
auditory regions of the brain. We propose that under non-speech listening conditions,
the intrinsic auditory mechanism dominates and thus, in line with AST, entrainment
is rightward lateralized, as is widely observed. However, (i) depending on individual
brain structural/functional differences, and/or (ii) in the context of specific speech
listening conditions, the relative weight of the top-down mechanism can increase. In
this scenario, the typically observed auditory sampling asymmetry (and its rightward
dominance) diminishes or vanishes.

Keywords: asymmetrical sampling, brain to stimulus synchronization, MEG (magnetoencephalography), speech
perception, speech envelope tracking
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INTRODUCTION

Considerable advances in our understanding of the neural basis
of speech processing have been made in the last decade. There
is emerging consensus about a functional dissociation of the
neuronal substrate underlying speech processing into ventral
and dorsal pathways (Hickok and Poeppel, 2007; Saur et al.,
2008; Rauschecker and Scott, 2009; Friederici, 2012) increasing
evidence suggests an important role of both hemispheres (albeit
contributions differ depending on the processing levels) (Binder
et al., 2000; Cogan et al., 2014; Sammler et al., 2015) and the
crucial role played by the sensorimotor circuitry during verbal
learning and speech comprehension processes (Lopez-Barroso
et al., 2011, 2013) is well-established. There are, to be sure, open
questions and unsolved puzzles. Here we address controversial
findings regarding hemispheric lateralization in the auditory
cortex during the processing of speech. We propose that the
differential contribution of both hemispheres to the processing
of the speech acoustics reflects intrinsic attributes of the neural
populations in the auditory cortex as well as modulation by top-
down influence from non-auditory cortical areas. We provide
new neurophysiological data supporting these claims.

Based on early foundational work (Giraud et al., 2000;
Ahissar et al., 2001; Rimmele et al., 2018a) followed by
a number of recent experiments (Luo and Poeppel, 2007;
Kubanek et al., 2013; Ding et al., 2014; Crosse et al., 2015;
Rimmele et al., 2015), it is now established that during speech
comprehension low-frequency neural activity is entrained by
connected speech, and in particular by attributes of the speech
envelope. Neuronal entrainment (or speech tracking) denotes the
alignment of the neuronal excitability phase of slow oscillations
in auditory cortex with slow energy fluctuations in the speech
acoustics. Crucially, entrainment to speech has been argued to
have causal force (Doelling et al., 2014; Ghitza, 2014) (rather
than being epiphenomenal), and, accordingly, the associated
neurophysiological mechanisms have received much attention.
However, there are controversial findings in this growing
literature that challenge existing explanations.

One hypothesized mechanism to account for the neuronal
entrainment to speech and its hemispheric lateralization is the
Asymmetric Sampling in Time model (AST) (Poeppel, 2003).
AST postulates that there are two different temporal integration
constants in non-primary auditory cortex that result from the
intrinsic properties of local neuronal ensembles. An asymmetric
sampling in time results from the right hemispheric auditory
cortical structures having a larger population of neural ensembles
with longer temporal integration windows [∼100 to 300 ms, i.e.,
roughly corresponding to the syllabic rate (Ding et al., 2017)]
compared to the left. These temporal windows, or specifically
their neural instantiation, is reflected in neuronal oscillatory
activity (longer window: theta; shorter window: low gamma)
that aligns with basic units of speech, viz. syllables (theta) and
phonetic or segmental information (gamma). In accordance
with this hypothesis, there exists a growing body of evidence
supporting a rightward preference for the processing of more
slowly modulated acoustic information (Boemio et al., 2005;
Giraud et al., 2007; Abrams et al., 2008; Telkemeyer et al., 2009;

Morillon et al., 2012) in this regard, the AST conjecture accords
well with related hypotheses about hemispheric asymmetries
in processing spectral versus temporal sound characteristics
(Zatorre and Belin, 2001). As the proposed temporal integration
constants relate closely to the intrinsic properties of the auditory
cortex in each hemisphere (Zatorre et al., 2002; Poeppel, 2003),
we refer to the neuronal oscillatory activity in auditory cortex as
an intrinsic mechanism.

In spite of this evidence, a closer inspection of previous
findings reveals that most of the studies that report a rightward
lateralization of the processing of slow acoustic modulations
rely on tasks with low language processing demands, typically
using auditory stimuli such as non-speech signals (Zatorre
and Belin, 2001; Boemio et al., 2005; Telkemeyer et al., 2009;
Vanvooren et al., 2014) (e.g., modulated noise or pure-tone
patterns), unattended speech (Abrams et al., 2008, 2009), streams
of monosyllables (Doelling et al., 2014), or a small number of
sentences repeated many times (Luo and Poeppel, 2007).

Furthermore, it has been shown that the strength of speech
entrainment in the left (Ahissar et al., 2001; Zoefel et al., 2018),
but not in the right (Peelle et al., 2013), auditory cortex covaries
with speech intelligibility. Accordingly, another influence on
auditory cortex entrainment to speech has been recently
described. A set of experiments showed that top-down signals,
coming from frontal areas, increase the synchronization between
the auditory cortex and the stimulus envelope, particularly in
the left hemisphere (Park et al., 2015, 2018; Morillon and
Baillet, 2017). In light of these findings, Rimmele et al. (2018b)
postulated that frontal areas modulate the intrinsic oscillatory
activity of the auditory cortex on the basis of predictive cues
in the speech signal, such as rate fluctuations, syntactic or
semantic information, or motor production-related predictions,
permitting a more flexible tracking of speech than that attained
with oscillatory entrainment alone.

A natural question derives from this elegant proposal: how
does the integration of these two mechanisms – i.e., intrinsic
auditory and externally driven – modulate the canonical
rightward lateralization of the slow frequency neuronal
entrainment in auditory cortex? To answer this question, we
built on the following observations: (i) most of the research that
shows rightward lateralization relies on tasks with low language
processing demands (Zatorre and Belin, 2001; Boemio et al.,
2005; Abrams et al., 2008, 2009; Telkemeyer et al., 2009; Doelling
et al., 2014; Vanvooren et al., 2014) (ii) the strength of speech
entrainment in the left (Ahissar et al., 2001; Zoefel et al., 2018),
but not in the right (Peelle et al., 2013) auditory cortex covaries
particularly with speech intelligibility; (iii) frontal top-down
signals can enhance the entrainment of the left auditory cortex to
the speech envelope (Park et al., 2015, 2018; Federmeier, 2007);
and (iv) a recent study demonstrates that speech tracking is
affected by neurophysiological and neuroanatomical individual
differences and that for a subset of the population – characterized
by strong audio-motor interaction – the auditory tracking is
balanced between hemispheres (i.e., the expected rightward
asymmetry disappears) (Assaneo et al., 2019). Connecting these
empirical observations, we propose that, while listening to
non-speech stimuli, auditory entrainment principally reflects
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the intrinsic auditory mechanism, thus exposing the rightward
hemispheric asymmetry. However, under specific speech-
listening conditions, or due to neuronal functional and structural
individual differences, the externally driven mechanism can
affect the neuronal activity, mostly in the left hemisphere,
equalizing the strength of entrainment across hemispheres. We
apply new analyses to three published magnetoencephalography
(MEG) datasets (Assaneo and Poeppel, 2018; Assaneo et al.,
2019; Rimmele et al., 2019) to present new evidence to
support these claims.

MATERIALS AND METHODS

The datasets used in this manuscript belong to three previously
published experiments. Materials and methods of each
experiment are briefly described below. For more detail see
Assaneo and Poeppel (2018) for Experiment A, Assaneo
et al. (2019) for Experiment B, and Rimmele et al. (2019)
for Experiment C.

Participants
All participants self-reported normal hearing and no neurological
deficits, and all had normal structural MRI scans. Participants
were paid for taking part in the different studies and provided
written informed consent.

Experiments A and B
The protocol was approved by the local Institutional Review
Board (New York University’s Committee on Activities Involving
Human Subjects).

Experiment C
The protocol was approved by the local ethics committee of the
University Hospital Frankfurt (Germany).

Experiment A
A cohort of 19 individuals participated in the study and two were
removed – one was not able to perform the task, for the other
one the MEG signal was too noisy. The analyzed sample consisted
of 17 participants (9 males; mean age 28, range 20–40; 15 native
speakers of American English and 2 native speakers of Spanish).

Experiment B
A group of 40 participants completed the experiment, the data
from three was not analyze, since the acquired MEG signal
was too noisy. The final database included 37 right handed
participants (18 males; mean age, 30; age range, 21 to 55).

Experiment C
Twenty-one individuals participated in this study. Two
participants were removed, because of outlier behavioral
performance (accuracy < mean − 2 × SD) and because
of technical issues (i.e., audio problems). The final sample
comprised 19 right-handed German native speakers (n = 19)
with no previous knowledge of Turkish (male: 9; mean age:
24.46 years; SD: 3.73 years).

Task
Experiments A and B
In both experiments, participants passively listened to a set
of syllable streams while their neural activity was recorded.
At the end of each trial, participants indicated, by pressing
a button, whether a given syllable had been presented. In
Experiment A participants also completed a motor and an
auditory localizer task.

Experiment C
During the MEG recording, participants were asked to listen
attentively to sequences of di-syllabic German words (Semantic
Condition) or Turkish pseudo-words (Non-Semantic Condition).
Overall, 15 blocks were presented, each consisting of 210 trials
(105 per condition). In total, each German and Turkish word
(note that the syllables of the Turkish words were randomized)
was repeated 15 times. Each block contained 29% trials with
a target stimulus (i.e., a syllable repetition) equally distributed
across conditions. After each trial, participants indicated the
presence of a target stimulus with a button press.

Stimuli
Experiment A
English syllables /ba/, /wa/, /ma/, and /va/ were synthesized using
an online text-to-speech software www.fromtexttospeech.com/.
The stimulus intensity was normalized based on the amplitude
root mean square and the signal was compressed to 120-ms
duration using Praat software (Boersma, 2001). Trials contained
3 s of silence (baseline) followed by 6 s of syllables. Two
syllables were randomly selected from out of the four syllables
for each trial. The syllables were sequentially presented with an
occurrence frequency of 0.7 for one and 0.3 for the other. Varying
the syllable rate generated six different conditions of trials: 2.5,
3.5, 4.5, 5.5, and 6.5 syllables per second.

Experiment B
Five sets of syllable streams were generated using the MBROLA
text-to-speech synthesizer (Bozkurt et al., 1996). All phonemes
were equal in pitch (200 Hz), pitch rise and fall (with the
maximum amplitude at 50% of the phoneme) and duration,
which was set to 111 ms to get a presentation rate of 4.5 syllables
per second. Each set lasted 2 min and consisted of 12 distinct
syllables (unique consonant-vowel combinations).

Experiment C
In total, 134 German disyllabic words were selected from the
CELEX lexical database (Baayen et al., 1995) and 134 Turkish
disyllabic words from the TELL database1 [for details see
Rimmele et al. (2019)]. German and Turkish syllables produced
by a female German/Turkish bilingual speaker were recorded.
The recordings were high-pass filtered at 60 Hz, compressed
in duration (250 ms), and normalized in peak-amplitude and
pitch contour (at 250 Hz). The two syllables of each word were
concatenated to generate the German word stimuli. Di-syllabic
pseudo-words were created by concatenating two syllables that

1http://linguistics.berkeley.edu/TELL/
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were quasi-randomly selected from all Turkish syllable stimuli
with equal probability of first/second syllable position. For each
sequence, randomly selected disyllabic stimuli were concatenated
(19 disyllabic stimuli per sequence). Overall, three different sets
of sequences were created.

Data Acquisition and Processing
Experiments A and B
Neural activity was recorded with a 157-channel whole-head axial
gradiometer system (KIT, Kanazawa Institute of Technology,
Japan) emplaced in a magnetically shielded room. The recordings
were acquired at 1000 Hz. An online bandpass filter between 1
and 200 Hz and a notch filter at 60 Hz were applied.

In order to monitor the subject’s head position, five
electromagnetic coils were attached and localized to the MEG
sensors at the beginning of the experiment. The position of the
coils with respect to three anatomical landmarks: nasion, and left
and right tragus were determined using a 3D digitizer software
(Source Signal Imaging, Inc.) and digitizing hardware (Polhemus,
Inc.). This measurement was used to coregister the MEG data
with the subjects’ anatomical magnetic resonance image (MRI).

Data processing and analyses were conducted using custom
MATLAB code and the FieldTrip toolbox (Oostenveld et al.,
2011). Noisy channels were visually rejected for each participant’s
dataset. The continuous MEG recordings were submitted to two
different procedures. First, a least squares projection was fitted to
the data from the 2 min of empty room recorded at the end of
each session. The corresponding component was removed from
the recordings (Adachi et al., 2001). Second, the environmental
magnetic field was measured with three reference sensors located
away from the participant’s head, and was regressed out from the
MEG signals using time-shifted PCA (de Cheveigné and Simon,
2007). The MEG signals were detrended and artifacts related
to eyeblinks and heartbeats were removed using independent
component analysis.

Experiment C
A 269-channel whole-head system (Omega 2000, CTF Systems
Inc.) situated in a magnetically shielded room was used for
the MEG recordings. A sampling rate of 1200 Hz, an online
low pass filter (cut-off: 300 Hz), and online denoising (higher-
order gradiometer balancing) were applied. The head position
relative to the MEG sensors was continuously tracked and head
displacement was corrected in the breaks using the fieldtrip
toolbox (Stolk et al., 2013). The data were band-pass filtered
off-line (1–160 Hz, Butterworth filter; filter order 4) and line-
noise was removed using bandstop filters (49.5–50.5; filter order
4). Muscle, jump and slow artifacts were removed in a semi-
automatic artifact detection procedure. Trials that contained
head movements that exceeded a threshold (5 mm) were
rejected. Sensors with high variance were rejected. Eye-blink, eye-
movement and heartbeat-related artifacts were removed, using
independent component analysis [infomax algorithm (Makeig
et al., 1996)]. The data was first reduced to 64 components
using principal component analysis. Trials with correct responses
were selected and the trial number was matched between the

conditions by randomly selecting trials of the condition with less
trials (overall trial number, mean = 68.68, SD = 10.27).

Structural MRI
Experiments A and B
High-resolution T1-weighted 3D volume MR data were acquired
using a Siemens Allegra 3T and a Siemens Prisma 3T scanner
for Experiment A and B, respectively. Each participant’s MRI
data were preprocessed following the FieldTrip pipeline. Cortical
reconstruction and volumetric segmentation were performed
with the FreeSurfer image analysis suite.

Experiment C
Individual T1-weighted MRI scans were acquired (for all
participants except for three). The standard Montreal
Neurological Institute (MNI) template brain was used, in
case an individual MRI was missing. MRIs were recorded on a
3 Tesla scanner (Siemens Magnetom Trio, Siemens, Erlangen,
Germany) and anatomical landmarks (nasion, left and right
pre-auricular points) were marked via Vitamin-E capsules. From
the individual MRIs of all participants, probabilistic tissue maps
(including cerebrospinal fluid white and gray matter) were
retrieved using the FieldtTrip toolbox.

Source Reconstruction
Different approaches were used to reconstruct the brain activity
across experiments: cortically constrained MNE (Dale et al.,
2000) in Experiment A, linearly constrained minimum variance
beamforming (Nolte, 2003) in Experiment B, and Dynamic
Imaging of Coherent Sources (Gross et al., 2001) (DICS)
in Experiment C.

Brain-to-Stimulus Synchronization
Experiments A and B
Synchronization was estimated by computing the phase locking
value (PLV) between the brain activity and the cochlear envelope
(Ding et al., 2017) of the perceived stream of syllables. Specifically,
the PLV was computed using the following formula:PLV =

1
T

∣∣∣∣∣ T∑
t=1

ei(θ1(t)−θ2(t))

∣∣∣∣∣, where t is the discretized time, T is the total

number of time points, and θ1 and θ2 represent the phase of the
brain activity and the cochlear envelope, respectively.

For Experiment A the PLV was computed within a frequency
band of ±0.5 Hz around the syllable rate using windows of 2-s
length and 1-s overlap. The percentage of change from baseline
was estimated as the difference between the PLV computed for
the stimulation window and the PLV computed for the baseline
window divided by the latter. For Experiment B the PLV was
computed within a frequency band from 3.5 to 5.5 Hz using
windows of 1-s length and 0.5-s overlap. In both cases the results
for all time windows were averaged separately for each condition
obtaining one PLV per voxel and per subject.

Auditory entrainment was estimated by averaging the PLVs
of all voxels within the auditory cortex. The method used to
define this region of interest (ROI) varied along experiments. In
Experiment A, it was functionally localized. In Experiment B,
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areas were anatomically defined as BA 41/41, TE 1.0 and TE 1.2
using the Brainnetome Atlas (Fan et al., 2016).

Experiment C
The speech envelope was computed for each acoustic trial by
using the following procedure (Smith et al., 2002): the waveforms
were filtered into 8 frequency bands, the Hilbert transform was
applied for each band, and the absolute magnitude of the 8
analytic signals was averaged. The obtained speech envelope was
downsampled to 500 Hz. The spectral complex coefficients at
4 Hz were computed trial-wise for the speech envelope and
the MEG data with a 0.1111 Hz resolution, and coherence was
computed between all sensors and the speech envelope. The data
were projected to source space using a common filter (DICS;
λ = 100%; 0.8 cm grid), and Fischer z-transformation was
applied. Voxels of the left and right Heschl’s Gyrus were selected
based on the automated anatomical labeling atlas (Tzourio-
Mazoyer et al., 2002) (AAL).

Connectivity Analysis
Experiment B
The connectivity between the left primary auditory cortex and
the 34 regions within the left frontal lobe was estimated using
the weighted phase lag index (wPLI). Regions were anatomically
defined using the Brainnetome Atlas (Fan et al., 2016), and
activity was averaged for all sources within the same region.
Primary auditory cortex was defined as BA 41/41, TE 1.0 and TE
1.2. In accordance with the Brainnetome Atlas, the frontal lobe
comprised 34 regions: medial BA 8, dorsolateral BA 8, lateral BA
9, medial BA 9, medial BA 6, dorsolateral BA 6, medial BA 10,
dorsal BA 9/46, Inferior Frontal Junction, BA 46, ventral BA 9/46,
ventrolateral BA8, ventrolateral BA 6, lateral BA 10, dorsal BA 44,
Inferior Frontal Sulcus, caudal BA 45, rostral BA 45, opercular BA
44, ventral BA 44, medial BA 14, orbital BA 12/47, lateral BA 11,
medial BA 11, BA 13, lateral 12/47, BA 4 head and face region,
BA 4 upper limb region, caudal dorsolateral BA 6, BA 4 trunk
region, BA 4 tongue and larynx region, caudal ventrolateral BA 6,
BA 1/2/3 lower limb region, BA 4 lower limb region.

The wPLI was computed between the left primary auditory
cortex activity and the signal originated in each region of the
left frontal lobe. First, the cross-spectrum between signals was
computed as X = Z_iFrontalZ_audLeft∗, where Z represents
the Morlet wavelet transform of the signal – centered at 4.5 Hz
and with the number of cycles of the wavelet set at 9 (Lachaux
et al., 2002). Next, the wPLI square estimator was computed as
(Vinck et al., 2011):

Y =
Im(X)

|X|

wPLI(f ) =
|
∑T

t=1 Y(f , t)|2 −
∑T

t=1 Y(f , t)

(
∑T

t=1 |Y(f , t)|)2 −
∑T

t=1 Y(f , t)2

where f is the frequency, t is the discretized time, and T is the
total number of time points.

Experiment C
Source space connectivity was computed by multiplying the
spectral complex coefficients of each trial (single taper frequency

transformation; 0.1111 Hz resolution) with a common filter
(DICS; across 2 and 4 Hz), computed across conditions separately
for each trial. The debiased weighted phase lag index (Vinck
et al., 2011) (dwPLI) was computed between all voxels. Fischer
z-transformation was applied to normalize the data prior to
further analysis. The connectivity between the STG and IFG
was computed by averaging the dwPLI values within each ROI.
The ROIs were selected based on the AAL (Tzourio-Mazoyer
et al., 2002) (Temporal_Sup_L and Frontal_Inf_Tri_L). The
connectivity of the ROI with itself was set to zero.

Data Exclusion Criteria
In all the analyses, data points exceeding two standard
deviations were removed. In Experiment C only correct
responses were analyzed.

RESULTS

Experiment A: Rightward Dominance
Disappears for Speech Rates Deviating
From Most Natural During a Syllable
Perception Task
Previous studies showing the rightward dominance for speech
envelope tracking focused on stimuli with a temporal modulation
close to the natural syllable rate (Ding et al., 2017) (i.e., 4.5
syllables per second (Ding et al., 2017)). Here, we explored
how the asymmetry is modified when the perceived syllable
rate departs from the natural range by testing speech tracking
at the typical rate and at the borders of the natural range.
The auditory trials consisted of streams of syllables at different
rates: 2.5, 3.5, 4.5, 5.5, and 6.5 syllables per second. We
estimated, by means of the PLV, the synchronization between
the activity in auditory cortex and the envelope of the perceived
speech (see Materials and Methods). The results show that
synchronization in the right auditory cortex, but not in the
left, is modulated by the syllable rate (Figure 1A). Furthermore,
we found that the auditory coupling asymmetry – defined
as 2

(
PLVright − PLVleft

)
/
(
PLVright + PLVleft

)
, positive values

indicating a rightward asymmetry – is significantly different
from zero only for the 4.5 and 5.5 syllables per second
conditions (see Figure 1B).

Experiment B: The Degree of Asymmetry
Correlates With the Strength of
Auditory-Frontal Connectivity During a
Syllable Perception Task
Assaneo et al. (2019) showed that, while participants listened to
a stream of syllables, the rightward dominance of the envelope
tracking is strongly diminished in a subset of the subject
population. When the data from the whole participant cohort
were pooled, the well-known asymmetry is evident (Figure 2A).
However, when the cohort was segregated into two groups,
subjects with high versus low performance on an audio-motor
speech synchronization task, the envelope tracking is no longer
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FIGURE 1 | Rightward dominance is affected by speech rate during a syllable perception task. (A) PLV between auditory cortices and speech envelope, increment
from resting state. Mean PLV around the syllable rate of each condition (syllable rate ± 0.5 Hz). Left auditory synchronization shows no change between conditions
(Kruskal-Wallis test: χ2(4) = 5.6, two-sided p = 0.23). However, the right auditory cortex does (Kruskal-Wallis test: χ2(4) = 12.45, two-sided p = 0.014) (Adapted from
Assaneo and Poeppel, 2018). (B) Auditory coupling asymmetry for the different syllable rate conditions: the degree of asymmetry is modulated by the syllable rate
(Kruskal-Wallis test: χ2(4) = 13.63, two-sided p = 0.008). The asymmetry is significantly above zero only for 4.5 and 5.5 syllables per second. ∗ Stands for two-sided
p < 0.05 (Wilcoxon Signed-Rank test, FDR corrected). Dots: individual participants, the scattering in the X-axis is for visualization purposes. Black lines: mean
across participants. Shaded region: SD. N = 17.

significantly different across hemispheres for high performance
participants (i.e., it is symmetrical; Figure 2B). Moreover, the
asymmetry index was different between groups (see Figure 2C).
We hypothesize that the asymmetry decreased due to stronger
auditory-frontal interactions, that is, due to top-down influences
from cortical regions external to the auditory cortex, especially
to the left auditory cortex. Thus, by means of the wPLI analysis,
we estimated the connectivity between the left auditory cortex
and frontal regions at 4.5 Hz (see Materials and Methods). We
found that left auditory to Brodmann area 45 (BA 45) and
left auditory to inferior frontal sulcus (IFS) wPLI significantly
correlated with the asymmetry index (Figures 2D–F). This
result demonstrates that a stronger functional connectivity
between left BA 45/IFS and left auditory cortex correlates
with a more balanced (i.e., symmetrical) envelope tracking
across hemispheres.

Experiment C: Word-Level Linguistic
Processing Reverses Rightward
Dominance for the Envelope Tracking
Previous research showed that speech intelligibility increases
envelope tracking, particularly in the left auditory cortex
(Peelle et al., 2013). Here we test how the asymmetry is
modified by the presence of semantic information in the
auditory stimulus. A cohort of German speakers performed an
auditory syllable repetition detection task under two different
conditions, defined by the type of stimuli: (i) Non-Semantic:
Turkish disyllabic pseudo-word streams are presented (no lexical
processing); and (ii) Semantic: German di-syllabic words streams
are presented. This protocol allows us to explore how lexical-
semantic processing modifies the asymmetry, independent of the
task being performed – note that the task remained the same
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FIGURE 2 | The degree of asymmetry correlates with the strength of auditory-frontal connectivity during a syllable perception task. Synchronization (PLV) between
auditory cortex activity and the perceived speech envelope in left and right hemispheres: (A) all subjects pooled and (B) low synchronizers in the upper (blue) panel
versus high synchronizers in the lower panel. (C) Auditory coupling asymmetry: comparison between groups. [B,C reanalyzed and replotted from Assaneo et al.
(2019)] (D) Connectivity at 4.5 Hz (wPLI) between early auditory cortex (BA 41/41, TE 1.0 and TE 1.2 in blue) and frontal regions (caudal BA 45 and IFS in red)
correlates with the degree of auditory-to-stimulus coupling asymmetry (Spearman correlation, two-sided p < 0.05, FDR-corrected). Scatter plots of the correlation
between auditory-to-stimulus asymmetry and the wPLI between left auditory cortex and areas highlighted in red: (E) inferior frontal sulcus (IFS; N = 37) and (F)
caudal BA 45 (N = 36). Orange/blue corresponds to high/low synchronizers, respectively. ∗∗ Stands for two-sided p < 0.005 (Wilcoxon signed-rank test), ∗ for
two-sided p < 0.05 (Mann-Whitney-Wilcoxon test). Dots: individual participants; in panels A–C the scattering in the X-axis is for visualization purposes. Black lines:
mean across participants. Shaded region in panels A–C: SD. Red line: linear regression.

across conditions. First, we quantified the coherence between
primary auditory cortex activity and the envelope of the perceived
auditory stimulus, in a frequency band around the syllable
rate (4 Hz). The results show that there was a significant
difference in the asymmetry index for the two conditions
of interest (Figure 3A). For the Non-Semantic condition, the
asymmetry exposed a trend for the classical rightward dominance
(right panel); for the Semantic condition the asymmetry was
reversed (Figure 3B). Finally, we examined if there was a
correlation between the auditory tracking and left fronto-
temporal connectivity. For the Non-Semantic condition, the data
showed the same trend as observed in Experiment B – the
stronger the connectivity with the left auditory cortex, the weaker
the rightward dominance (i.e., the more symmetrical the tracking
was; see Figure 3C, right panel). However, the fronto-temporal
connectivity did not seem to be directly related to the reversed
asymmetry in the Semantic condition (see Figure 3C, left panel).

DISCUSSION

The neural architecture that forms the basis of speech processing
is structurally and functionally complex, comprising a suite
of computations that perform necessary subroutines on input

and output processes. The tracking of the speech envelope
by the auditory cortex has been proposed to be one of the
basic mechanisms for the subsequent decoding of the signal.
A common assumption is that envelope tracking is stronger
in the right hemisphere than in the left – an effect that has
been theoretically proposed (Poeppel, 2003) and experimentally
demonstrated (Luo and Poeppel, 2007; Abrams et al., 2008;
Doelling et al., 2014). However, here we show three examples in
which the canonical rightward dominance is broken.

We hypothesize that in addition to the oscillatory activity
intrinsic to the auditory cortex, speech tracking depends on input
from other non-auditory brain regions, and we propose different
functional roles for these mechanisms – i.e., intrinsic auditory and
top down externally driven mechanisms. Lateralization depends
on the extent to what these mechanisms are engaged to support
a specific task.

Right Hemisphere Tracking Preference
Disappears for Non-natural Speech
Rates During Syllable Perception
The AST theory (Poeppel, 2003) – as well as similar theories
(Zatorre et al., 2002; Flinker et al., 2019) – builds on
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FIGURE 3 | Semantic access reverses the classical rightward dominance for
the envelope tracking. (A) Auditory coupling asymmetry index: comparison
between conditions (N = 17; two-sided p = 0.035, paired Wilcoxon
Signed-Rank test). (B) Coherence between Heschl’s gyrus (right and left
hemispheres) activity and the auditory stimulus envelope, in a frequency band
around 4 Hz. Left panel: Semantic Condition (N = 17; two-sided p = 0.010,
paired Wilcoxon Signed Rank test). Right panel: Non-Semantic Condition
(N = 17; two-sided p = 0.15, paired Wilcoxon Signed-Rank test).
(C) Scatterplot of the auditory coupling asymmetry as a function of the
connectivity between left STG- IFG, in a frequency band around 4 Hz. Left
panel: Semantic Condition (N = 16; Spearman correlation coefficient r = 0.4,
two-sided p = 0.12). Right panel: Non-Semantic Condition (N = 17; Spearman
correlation coefficient r = –0.46, two-sided p = 0.063). In all panels:
Pink/green correspond to Semantic/Non-Semantic (German words/Turkish
pseudo-words) respectively, and dots: individual participants. In panels A,B:
the shaded region represents SD, the black line the mean across participants
and the dots scattering in the X-axis is for visualization purposes. In panel C:
the black line represents the linear regression.

cytoarchitectonic differences between the (primary and non-
primary) auditory cortices of the left and right hemispheres
(Hutsler and Galuske, 2003). It proposes that those differences
grant specific oscillatory properties to each hemisphere.
Specifically, due to the biophysical properties of the neural
populations, neuronal activity within the right auditory cortex
shows characteristics of a neural oscillator with a natural
frequency between 3 and 6 Hz. The basic features defining an
oscillator are (Pikovsky et al., 2003): (i) it generates rhythmic
activity at its own natural frequency, which is defined by the
internal properties of the system; and (ii) it entrains to other
oscillators or, as relevant in the speech case, synchronizes to
external rhythmic stimuli, within a restricted range of frequencies
close enough to its natural one.

Previous work found slow rhythmic neuronal activity during
resting state within right auditory cortices (Giraud et al., 2007;
Morillon et al., 2012), suggesting a neuronal population behaving

as a low-frequency oscillator – consistent with criterion (i).
Here, in line with criterion (ii), we found a tuning curve for
the synchronization of the right auditory cortex (Figure 1A),
with enhanced values for stimulus rates between 4 and 6 Hz.
This was not found for the left auditory cortex, as presumably
its natural frequency range differs. We propose that the brain-
to-envelope coupling in the right hemisphere is driven by the
oscillatory features of the auditory cortex, which are tuned to
maximally resonate (in phase space) in response to frequencies
close to the natural syllable rate (Ding et al., 2017). Thus,
when the stimulation rate departs from the natural frequency
of this area, the right cortex is less responsive and the tracking
asymmetry disappears (Figure 1B). Furthermore, we hypothesize
that the tuning curve obtained here is not inflexible; we
believe that the range of entrainment could be extended under
different task demands. According to previous proposals, the
function of the right hemispheric speech tracking is related to
the decoding of phonetic/spectral features of the audio signal
(Zatorre and Belin, 2001; Poeppel, 2003). From a mathematical
point of view, the entrainment range of an oscillator can be
extended (Pikovsky et al., 2003) by increasing the strength of
the coupling between the oscillator and the external driving
force (in this case the auditory stimulus). Bringing those points
together, we speculate that by modifying the goal of the task
(e.g., a pitch perception or voice identity task, instead of the
syllable perception task with a working memory component
performed here) the right auditory-to-envelope coupling could
be strengthened and the asymmetry could be recovered even for
the less optimal modulation frequencies.

During Syllable Perception Hemispheric
Asymmetry Correlates With
Auditory-Frontal Connectivity
Different functional roles have been attributed to speech envelope
tracking: (i) segmentation of the input stream into temporal
units of the appropriate granularity for subsequent decoding
(Ghitza, 2014); (ii) extracting paralinguistic information; and (iii)
integration of smaller phoneme-like units into larger syllable-
like units for the subsequent phonological decoding. While (ii)
is preferentially conducted by the right hemisphere, (iii) is more
represented in the left (Giraud and Poeppel, 2012). We propose
that the right hemisphere envelope tracking mostly reflects
intrinsic auditory (bottom-up) oscillatory activity, while the left
tracking (at the syllabic rate) is preferentially driven by cortical
areas outside of auditory cortex (externally driven, top-down
mechanism). Table 1 summarizes these conjectures.

In Experiment B, on this view, the observed tracking reflects
both intrinsic auditory and externally driven influences. On
the one hand, since the temporal properties of the acoustic
signal (i.e., the syllable rate of 4.5 Hz) match the natural
frequency of the right auditory cortex, the right-lateralized
intrinsic oscillatory mechanism is activated. On the other hand,
the phonological processing required to complete the syllable
perception task activates the externally driven mechanism.
Thus, the envelope tracking lateralization is determined by
the interplay between the recruited mechanisms. Our findings
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TABLE 1 | Different origins for the observed auditory-to-envelope synchronization.

Function Dominant Hemisphere Nature

(i) Paralinguistic/Phonetic Right Intrinsic auditory

(ii) Phonological/Semantic Left Externally driven

Speech envelope tracking is generated by distinct mechanisms. Each mechanism
supports different functional roles and is asymmetrically represented across
hemispheres. We define as externally driven a process relying on an interplay
between the auditory cortex and other brain areas, while intrinsic refers to activity
that reflects the internal oscillatory features of the auditory cortices.

provide insight into how these influences interact and suggest
that individual differences also play a role in the contribution of
both mechanisms. Interestingly, while a part of the population
shows the classic rightward dominance for the speech tracking
(Figure 2A; note that when pooling together data from
all participants this effect is observed), a subgroup of the
population – with enhanced microstructural properties in the
white matter pathways connecting the left auditory cortex with
frontal regions (Assaneo et al., 2019)- displays no asymmetry
in tracking (Figure 2B). We suggest that for this group,
due to functional and structural differences, the influence of
the externally driven mechanism is enhanced, equilibrating
the tracking across hemispheres (Figure 2C). Moreover, the
correlation between speech envelope tracking asymmetry and
fronto-auditory connectivity (Figure 2D) supports the claim that
externally driven top-down influences from the left frontal cortex
to the left auditory one reverse the classical right hemispheric
dominance. The same trend is found in Experiment C for
the condition wherein a phonological task is performed on
random streams of syllables (Turkish pseudo-words condition;
note that this condition resembles the paradigm of Experiment
B, Figure 3C right panel).

Semantic Processing Reverses the Right
Hemisphere Dominance
In Experiment C, as in the previously discussed study, speech
tracking in both conditions presumably reflects both intrinsic
auditory and externally driven contributions: on the one hand,
the syllables are presented at a rate of 4 Hz – close to
the natural frequency of the right auditory cortex – and on
the other hand, the task requires phonological processing of
the signal. During the condition in which German words
were presented, additional lexical-semantic computations are
necessarily performed (Rimmele et al., 2019).

Here, we show that, even though the task remains the
same across conditions, and although the acoustic properties
of the stimuli are similar, the asymmetry of the auditory
tracking is reversed when semantic information is present (see
Figures 3A,B left panel). We propose that semantic processing
further enhances the envelope tracking performed by the left
hemisphere, and thus reduces the right hemispheric dominance.
This proposal aligns well with previous studies showing that the
auditory to speech synchronization increases with intelligibility,
specifically in the left hemisphere (Ahissar et al., 2001; Peelle et al.,
2013; Rimmele et al., 2015).

Note that in Experiment C (in the German words condition),
in spite of a reduced hemispheric asymmetry we found no
correlation between fronto-temporal connectivity and the
asymmetry index (as we do in Experiment B). Different
reasons can underpin the dissimilarity between results.
On one side, semantic access is a complex process – as
compared to syllable perception – relying on large-scale
brain networks (Hickok and Poeppel, 2000; Scott et al.,
2002; Binder et al., 2009; Rodd et al., 2015) then, the
asymmetry reduction can derive from the connectivity
between temporal areas and a different region of the brain.
On the other side, the task in Experiment B contains a
working memory component, while the task in Experiment
C does not load high on working memory. Further research
is required to clarify the complex connectivity patterns
between auditory cortex and other brain regions underpinning
the hemispheric asymmetry and to investigate whether
the correlation between the fronto-temporal connectivity
and the asymmetry index might be related to working
memory mechanisms.

It is worth noting that we employed distinct methods
in the current work – different experimental designs, phase
synchrony measurements and source reconstruction techniques.
The results presented here derived from three already published
studies. Thus, we chose to adopt for each analysis the approach
applied in the original work. We believe that the fact that
different experimental designs and methodological approaches
show converging results further strengthens the reliability
of our hypothesis.

To summarize, speech tracking (measured as auditory-
cortex-to-speech envelope synchronization) is a complex
process determined by an interplay between the intrinsic
properties of the auditory cortices (Zatorre et al., 2002;
Giraud et al., 2007) and top down influences from other
non-auditory cortical areas related to different factors such as
speech intelligibility, attention and/or acoustic properties of
the perceived signal (Zion Golumbic et al., 2013; Ding et al.,
2014; Zoefel and VanRullen, 2015; Bidelman and Howell,
2016). Moreover, individual differences in neural function
and structure can also strongly affect the symmetry of the
speech tracking between the hemispheres. Crucially, the
intrinsic auditory and externally driven influences differently
affect the hemispheric lateralization patterns of the speech
tracking in the auditory cortex. Our findings illustrate the
interaction between the different influences on speech tracking
and suggest that the observed hemispheric lateralization
patterns depend in subtle ways on task demands and the
properties of the auditory signal. However, understanding
the distinct origins of the assessed synchrony requires
further research.
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Sustained attention involves two distinct processes, i.e., external focus and internal
focus. Some recent neuroimaging studies employed the instruction of experimenters
or the self-report from participants to generate the two attentional processes, and
observed that the default mode network (DMN) was also responding to the external
focus. These observations challenged the general view that the DMN accounts for
the internally directed cognition, e.g., unfocused mind wandering, task independent-
thoughts and internally focused events. Notably, the instruction or self-report may not
effectively ensure the participants engage in the external focus/internal focus, and thus,
the functional significance of the DMN for the externally focused process remains to
be verified. In the present study, a new task paradigm, i.e., real/sham continuous
feedback of finger force, was employed to generate the attentional process of external
focus/internal focus, and the functional connectivity among the node regions of the
DMN was further investigated in the two processes respectively. We found that two
regions of the DMN, posterior cingulate cortex and left inferior parietal cortex/angular
gyrus showed stronger inter-regional connectivity in the externally focused process
than it in the internally focused process. Intriguingly, this functional connectivity was
closely related to the behavioral performance in the process of external focus. These
findings implicated that the functional significance of the DMN in sustained attention
was more than responding to the internally directed cognition, and the task paradigm
of continuous finger force feedback could benefit for the future studies on the externally
focused/internally focused process of sustained attention.

Keywords: sustained attention, external focus/internal focus, fMRI, continuous finger force feedback, functional
connectivity
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INTRODUCTION

Almost every task in the daily life requires human to maintain
the attentional focus. Sustaining attention over prolonged
periods of time is of great interest to cognitive psychologists.
This is recognized by the fact that the sustained attention is
critical for successful cognitive processing (Coull et al., 1996),
and a number of psychiatric disorders, e.g., attention deficit
hyperactivity disorder (Liu et al., 2015), schizophrenia (Burton
et al., 2018), depression (Ye et al., 2018), etc., always show
symptoms of deficits in sustained attention. The increasing
number of evidences indicate that sustained attention could
be dissociated into two attentional processes based on whether
the attentional focus is external or internal (Chun et al., 2011;
Fortenbaugh et al., 2017). The attentional process of external
focus refers to external information of tasks, e.g., locations
in space, the shape of targets, etc., while the process of
internal focus refers to the internal experience of tasks, such as
rules, decisions, responses, etc (Chun et al., 2011). Behavioral
investigations suggested that the externally focused process could
promote the performance in many sport items, e.g., volleyball,
dart throwing and so forth (Wulf et al., 2002; Shafizadeh
et al., 2013), and the internally focused process benefits the
performance when the context was related to specific movement
form rather than the performance outcomes (Poolton et al.,
2006; Schücker et al., 2014). Of note, these intriguing findings
came from investigations on quite different paradigms, such as
probe-detection paradigm (Mansell et al., 2003), thought-probe
paradigm (Scheibner et al., 2017) and so on. In these paradigms,
the attentional processes of external focus and internal focus
were mostly generated through the instruction of experimenters
or self-reports from participants (Wulf et al., 2002; Scheibner
et al., 2017). Actually, the instruction and self-report were
mostly subjective, and may not effectively ensure the participants
engage in the externally focused/internally focused process,
and thus, this uncertainty potentially confounds the previous
findings. Our research group has proposed a task paradigm, i.e.,
continuous finger force feedback (Dong et al., 2012). In this
paradigm, the attentional process of internal focus/external focus
could be generated through the real/sham feedback condition.
In the real feedback condition, visual feedback of the finger
force severed as the external focus for participants to maintain
the finger force, and in contrast, participants, in the sham
feedback condition, should maintain the finger force according
to their sensory feeling and memory. This allows generating
the externally focused and internally focused processes through
similar tasks, and behavioral data for each process could be
acquired respectively. With this paradigm, it was observed that
participants controlled the finger force at the same level no matter
they engage in the attentional process of external focus/internal
focus, but the internal focus induced greater behavioral variation
than the external focus (Dong et al., 2012). Nevertheless, the
brain mechanism underlying these behavioral findings remains
to be understood.

Functional magnetic resonance imagining (fMRI) studies
informed us with the brain activity underlying sustained
attention. The prominent role of a brain network, i.e., default

mode network (DMN) was intensively discussed in these studies
(Raichle et al., 2001; Damoiseaux et al., 2008; Uddin et al.,
2010). The DMN consistently shows higher activity at rest
compared to tasks requiring sustained attention (Whitfield-
gabrieli and Ford, 2012; Danckert and Merrifield, 2016). Higher
activity of the DMN was suggested to be related to mind
wandering (Andrews-Hanna, 2012; Mittner et al., 2016) and task-
independent thoughts (Mason et al., 2007; Korostil et al., 2016).
Increased activity of the DMN was linearly linked to intensity
of awareness of internal focus (Vanhaudenhuyse et al., 2011).
These evidences support the functional role of the DMN in
internally directed cognition. In contrast, recent studies showed
the DMN may also engage in the attentional process of external
focus (Bogler et al., 2017; Scheibner et al., 2017). Scheibner
et al. (2017) employed the instructions of experimenters and
the self-reports from participants to generate the external focus
(sound) and the internal focus (breathing), and they observed
that the meditation practice reduced the activity of the DMN
in the both tests of external focus and internal focus (Scheibner
et al., 2017). Bogler et al. (2017) found the activity in the
DMN was higher when subjects had a relatively short reaction
time in a vigilance task (Bogler et al., 2017). However, no
results in the report of Scheibner et al. (2017) showed the
relationship between the DMN activity and the behavioral
performance. Bogler et al. (2017) did not verify their findings
in the attentional process of internal focus. Therefore, whether
the DMN engaged in the externally focused process remains
to be further validated. It is worthy to note that the DMN
consists of several node regions including ventral and medial
prefrontal cortex (vmPFC), the posterior cingulate cortex (PCC)
and the left/right inferior parietal lobe/angular gyrus (LIPC/AG
and RIPC/AG) (Raichle et al., 2001; Broyd et al., 2009; Greicius
et al., 2009). In our previous studies, these regions showed
higher activity in the real feedback condition than it in the sham
feedback condition when we performed voxel-based analyses
with the measurements of amplitude of low frequency fluctuation
and regional homogeneity (Dong et al., 2012; Zhang et al.,
2015a). Since no correlation between behavioral performance
and regional activity were observed, these investigations offered
few evidences for understanding the functional role of the
DMN in sustained attention. Actually, regions constitute DMN
through the functional connectivity which was methodologically
defined as the correlation between the time course of a particular
brain region and other regions (Friston et al., 1993). This
functional connectivity could also be observed among different
brain networks (Wang et al., 2014; Breakspear, 2017). These
inter-regional and inter-network interactions were believed as
the fundamental support for many cognitive processes, e.g.,
emotional modulation, skill learning, etc. (Mahiko et al., 2015;
Nusslock et al., 2019). In our previous studies, we have explored
the inter-network interactions, and the connectivity among the
DMN, the executive network and the left frontal-parietal network
exhibited changes between the attentional processes of internal
attention and external focus (Zhang et al., 2015b). However
behavioral performance did not show any correlation with
the connectivity among these brain networks. Thus, the inter-
regional connectivity was further assessed here to clarify the
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functional role of DMN in the attentional process of external
focus/internal focus.

The present study examined the connectivity among the node
regions of DMN for verifying whether the DMN was also related
to the attentional process of external focus. We hypothesized
that if the DMN was related to the externally focused process,
stronger connectivity could be identified in the process of
external focus, and the connectivity among the node regions of
the DMN should exhibit significant correlation with behavioral
performance in this process. To test these hypotheses, fMRI data
from our previous study were re-analyzed (Dong et al., 2012).
The attentional processes of external focus and internal focus
were established through the paradigm of continuous finger force
feedback, and inter-regional connectivity within the DMN and
their relations to behavior performances were assessed in each
process separately.

MATERIALS AND METHODS

Participants
Forty-three right-handed college students participated in the
study (23 ± 3 years, range 19–25; 23 females). No participant
had history of brain injury, neurological illness or psychiatric
disorders. Five subjects were excluded for the malfunction of
experimental equipment (three subjects, leakage from the air tube
resulted in the negative value of finger force) or excessive head
motion (two subjects, head motion was >2 mm translation or
>2◦ rotation in any direction), and at last, data from 38 subjects
(mean age, 22 ± 2 years; 19 females) were involved in the further
analysis. All experiments conducted in this study were approved
by the Institutional Review Board of National Key Laboratory
of Cognitive Neuroscience, Beijing Normal University. All the
subjects gave written informed consent before the experiment.

Experimental Design
The current data were from our previous studies, and four
papers have been published based on the data (Dong et al.,
2012; Zhang et al., 2015a,b,c). Dong et al. (2012) proposed
the finger force feedback paradigm and reported the behavioral
data. Zhang et al. (2015a,c) were two methodological studies
and provided the methodological framework for the exploration
with this new paradigm. Zhang et al. (2015b) examined the
functional connectivity among several brain networks, and no
inter-regional functional connectivity within any one of the brain
networks was analyzed (Zhang et al., 2015b). Each participant
first underwent a scanning of resting state for adapting to the
fMRI environment. Then, two sessions of external focus/internal
focus were performed with the order counterbalanced across all
participants. Each session lasts for 8 min, and the participants
had a short practice period to get familiar with the related
procedure before each session. In the session of external focus,
the participants pinched a pressure sensor between the right
index finger and thumb. This sensor is one module of an MRI-
compatible physiological multi-channel analyzer (model MP150,
BIOPAC Systems, Inc., Goleta, CA, United States). The sampling
frequency was 250 Hz, and the pressure sensitivity was 0.01 cm

H2O. The pressure was recorded by a sensor via an airtight tube,
and the force of pressure was synchronously fed back to the
participant on a projector as the external focus. At the same
time, each participant was requested to continuously regulate
the finger force and try to maintain it at 20 cm H2O according
to the feedback. This target force was set in order to reduce
the possibility of muscular fatigue for all subjects (van Duinen
et al., 2007). In the session of internal focus, participants also
maintained the finger force at 20 cm H2O, and they should
maintain the finger force according to their sensory memory and
experience from the practice period but not from the feedback.
Participants also watched a sham feedback to keep the visual
inputs consistent across different sessions, and this feedback
was generated with the behavioral data of another participant
in external focus session. Because the sham feedback of finger
force could be easily detected, we have informed participants
of this fact in advance and requested them to keep their own
performance unaffected.

Data Acquisition
Scanning was performed at the MRI Center of the Beijing
Normal University using a 3.0-T Siemens whole-body
MRI scanner. A single-shot T2∗-weighted, gradient-echo,
EPI sequence was used for functional imaging acquisition
with the following parameters: repetition time (TR)/echo
time (TE) = 2000 ms/30 ms, flip angle = 90◦, acquisition
matrix = 64 × 64; field of view (FOV) = 200 mm × 200 mm and
slice thickness/gap = 3.5/0.7 mm. Thirty-three axial slices parallel
to the AC-PC line were obtained in an interleaved order to
cover the entire cerebrum and cerebellum. Then a T1-weighted
three-dimensional magnetization-prepared rapid gradient echo
(MPRAGE) sequence was acquired [128 sagittal slices, slice
thickness/gap = 1.33/0 mm, in-plane resolution = 256 × 192,
TR/TE/inversion time (TI) = 2530/3.39/1100 ms, flip angle = 7◦,
FOV = 256 mm × 256 mm].

Data Preprocessing
The preprocessing was carried out using the Data Processing
Assistant for Resting-State fMRI (DPARSF) (Yan and Zang,
2010), which is based on the Statistical Parametric Mapping
(SPM8)1 and Resting State fMRI Data Analysis Toolkit (REST)
(Song et al., 2011)2. The first 10 time points were removed for
signal stabilization and participant adaptation, and then, the
images were corrected for the difference in slice acquisition
timing and head motion, coregistered to the T1 structural image.
The head motion parameter measured by Friston-24 model and
signals from white matter (WM) and cerebrospinal fluid (CSF)
were further regressed out as nuisance covariates, and the linear
trends were removed from the time courses of the voxels in each
image. Then, images were spatially normalized into the standard
Montreal Neurological Institute (MNI) template (re-sampled
into 3 mm × 3 mm × 3 mm) and smoothed with an 8 × 8 × 8
full-width-at-half-maximum (FWHM) Gaussian kernel.

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.restfmri.net
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FIGURE 1 | The experiment procedure and DMN spatial map. (A) The experimental diagram of the attentional process of external focus/internal focus generated by
continuous finger force feedback task, and (B) DMN spatial map of external focus/internal focus process identified with ICA.

TABLE 1 | Regions significantly recruited within DMN spatial map during the attentional process of external focus/internal focus.

Involved brain regions for DMN L/R BA Peak MNI coordinates

x y z tmax

The attentional process of external focus

vmPFC R 10 6 57 15 6.46

PCC − 23 0 −51 33 8.28

LIPC/AG L 19 −42 −72 36 7.32

RIPC/AG R 39 45 −63 33 7.59

The attentional process of internal focus

vmPFC – 32 0 51 15 6.28

PCC L 23 −6 −60 24 8.30

LIPC/AG L 19 −39 −75 36 9.57

RIPC/AG R 39 42 −63 30 7.55

The statistical threshold was set at p < 0.001, GRF corrected.

FIGURE 2 | The inter-regional connectivity between each pair of the regions within the DMN during the attentional process of external focus/internal focus. (A) The
visualization of significant connectivity during the attentional process of external focus. (B) The visualization of significant connectivity during the attentional process
of internal focus. In (A,B), line width indicates the relative value of the connectivity. (C) The difference of the connectivity between the attentional processes of
external focus and internal focus, and the line width indicates the relative value of the connectivity difference between the two processes. ∗ Indicates the significant
difference, p < 0.05; ∗∗∗ indicates the significant difference, p < 0.001, FDR corrected (Sphere radius = 9 mm).
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TABLE 2 | The inter-regional connectivity within DMN of the attentional process of external focus/internal focus, and the comparison results of the inter-regional
connectivity between the processes of external focus and internal focus.

Conditions The attentional process of external focus The attentional process of internal focus External focus vs. internal focus

DMN connectivity Fisher’s Z-score, Mean ± SD Fisher’s Z-score, Mean ± SD t(37) p

vmPFC-PCC 0.97 ± 0.27 0.85 ± 0.23 2.69 0.01∗

vmPFC-LIPC/AG 0.60 ± 0.33 0.52 ± 0.26 1.41 0.17

PCC-LIPC/AG 1.03 ± 0.27 0.83 ± 0.27 3.97 0.0003∗∗∗

vmPFC-RIPC/AG 0.57 ± 0.31 0.46 ± 0.24 2.68 0.01∗

PCC-RIPC/AG 0.82 ± 0.30 0.64 ± 0.27 3.61 0.0009∗∗∗

LIPC/AG-RIPC/AG 0.96 ± 0.30 0.91 ± 0.25 1.17 0.25

∗ Indicates the significant difference, p < 0.05; ∗∗∗ indicates the significant difference, p < 0.001, FDR corrected (Sphere radius = 9 mm).

FIGURE 3 | The inter-regional connectivity between each pair of the regions within DMN during the attentional process of external focus/internal focus. (A) The
visualization of significant connectivity during the attentional process of external focus. (B) The visualization of significant connectivity during the attentional process
of internal focus. In (A,B), line width indicates the relative value of the connectivity. (C) The difference of the connectivity between the attentional processes of
external focus and internal focus, and the line width indicates the relative value of the connectivity difference between the two processes. ∗ Indicates the significant
difference, p < 0.05; ∗∗ indicates the significant difference, p < 0.005, FDR corrected. (Sphere radius = 6 mm).

TABLE 3 | The inter-regional connectivity within the DMN of the externally and internally focused processes, and the comparison results of the inter-regional connectivity
between the internally and externally focused processes.

Conditions The attentional process of external focus The attentional process of internal focus External focus vs. Internal focus

Connectivity Mean ± SD fisher’s Z-score Mean ± SD fisher’s Z-score t(37) p

vmPFC-PCC 0.94 ± 0.31 0.80 ± 0.23 2.55 0.02∗

vmPFC-LIPC/AG 0.57 ± 0.33 0.51 ± 0.27 1.02 0.31

PCC-LIPC/AG 1.00 ± 0.27 0.82 ± 0.28 3.31 0.002∗∗

vmPFC-RIPC/AG 0.54 ± 0.31 0.44 ± 0.25 2.41 0.02∗

PCC-RIPC/AG 0.79 ± 0.30 0.61 ± 0.28 3.34 0.002∗∗

LIPC/AG-RIPC/AG 0.94 ± 0.32 0.85 ± 0.26 1.84 0.07

∗ Indicates the significant difference, p < 0.05; ∗∗ indicates the significant difference, p < 0.005, FDR corrected (Sphere radius = 6 mm).

DMN Extraction With Independent
Components Analysis
The preprocessed data from the external focus and internal
focus sessions were combined into one single-group ICA analysis
using the GIFT software3, and the optimal component number
in the analysis was estimated to be 20 according to the
minimum description length (MDL) criteria (Calhoun et al.,

3http://icatb.sourceforge.net

2002). Two-step PCA was used to reduce the dimensionality of
data to 20. Next, the data were decomposed by ICA using the
informax algorithm (Bell and Sejnowski, 1995). To ensure the
stability of the decomposition, ICASSO (Himberg et al., 2004)
with 10 ICA runs were used (Ge et al., 2019), and the most stable
run was selected as the final result. Then, spatially independent
components (ICs) were back reconstructed for each subject,
and at last, 20 ICs and the related time courses of responses
for each subject were acquired. These ICs were converted
to z-maps, and one-sample t-test was further performed to
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FIGURE 4 | The correlations between the behavioral measurements, i.e., II_Mean, II_SD and II_CV and the functional connectivity of (A) vmPFC-PCC,
(B) PCC-LIPC/AG, (C) vmPFC-RIPC/AG, and (D) PCC-RIPC in the attentional process of external focus/internal focus. (Sphere radius = 9 mm).
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TABLE 4 | The relationship between the inter-regional connectivity within DMN and behavioral measurements for the attentional process of external focus/internal
focus respectively.

Behavior The attentional process of external focus The attentional process of internal focus

Connectivity II_Mean II_SD II_CV II_Mean II_SD II_CV

r p r p r p r p r p r p

DMN spatial map identified by ICA

vmPFC-PCC −0.10 0.56 −0.26 0.11 −0.26 0.11 −0.03 0.87 0.06 0.70 0.02 0.91

PCC-LIPC/AG −0.45 0.004∗∗
−0.01 0.95 −0.007 0.97 −0.28 0.09 0.19 0.26 0.31 0.06

vmPFC-RIPC/AG −0.38 0.02∗
−0.12 0.46 −0.12 0.47 −0.18 0.28 0.18 0.27 0.21 0.20

PCC-RIPC/AG −0.44 0.006∗
−0.12 0.47 −0.12 0.48 −0.06 0.71 0.01 0.94 0.05 0.79

DMN spatial template

PCC-LIPC/AG −0.50 0.001∗∗
−0.05 0.77 −0.05 0.79 −0.1 0.55 0.03 0.86 0.08 0.61

∗ Indicates the significant difference, p < 0.05; ∗∗ indicates the significant difference, p < 0.005 (Sphere radius = 9 mm).

determine the group spatial map of DMN for subjects in the
session of external focus/internal focus respectively (p < 0.001,
GRF correction).

Functional Connectivity Among Regions
of DMN
The functional connectivity was first analyzed based on the ICA
results. Regions of the spatial map of DMN, including vmPFC,
PCC, RIPC/AG and LIPC/AG were identified as the regions
of interest (ROIs). A sphere with a 9-mm radius centered at
the peak MNI coordinates of each ROI was defined as the
seed region (external focus session, vmPFC: x = 6, y = 57,
z = 15; PCC: x = 0, y = −51, z = 33; LIPC/AG: x = −42,
y = −72, z = 36; RIPC/AG: x = 45, y = −63, z = 33;
internal focus session, vmPFC: x = 0, y = 51, z = 15; PCC:
x = −6, y = −60, z = 24; LIPC/AG: x = −39, y = −75,
z = 36; RIPC/AG: x = 42, y = −63, z = 30). Then, the
preprocessed image data were filtered to 0.01–0.08 Hz, and
the mean time course of each seed region was extracted.
Functional connectivity between each pair of two seed regions
was calculated through Pearson correlation coefficient. The
Fisher z-transformed correlation coefficients identified as the
DMN connectivity were compared between the two sessions
using paired t-test, and all of the tested results underwent
the multiple comparison correction [false discovery rate (FDR)
correction q < 0.05].

These analyses were validated by using the ROIs with a
different radius (6 mm). According to the above statistical results,
the DMN connectivity showing significant difference between
the sessions of external focus and internal focus was identified,
and the identified functional connectivity was involved in the
further analysis.

Correlation Between Functional
Connectivity and Behavior
The behavioral data of the external focus and internal focus
sessions have been analyzed and illustrated in our previous
investigation (Dong et al., 2012). Three measurements
of intra-individual behavior were calculated, and the

measurements include intra-individual mean finger force
(II_Mean, the mean value of finger force across a whole
session), intra-individual standard deviation (II_SD, the
SD of the individual pinch force across a whole session)
and intra-individual variation coefficient (II_CV calculated
as SD/mean value of the individual pinch force across
a whole session). Then, the correlation between the
identified functional connectivity and each of the behavioral
measurements was calculated in the external focus/internal focus
session respectively.

All the results were further validated by reproducing the
functional connectivity analysis based on a public DMN spatial
template (Greicius et al., 2004). vmPFC, PCC, RIPC/AG,
and LIPC/AG in the template were defined as the seed
region. Then, the mean time course of each seed region was
extracted based on the filtered image data, and functional
connectivity between each pair of two seed regions was
calculated with Pearson correlation coefficient. The Fisher
z-transformed correlation coefficients were further compared
between the attentional processes of external focus and
internal focus using paired t-test, and all of the tested
results were further corrected for multiple comparison (FDR
correction, q < 0.05).

RESULTS

The DMN for the Attentional Processes
of Internal Focus and External Focus
The attentional process of external focus/internal focus was
generated with real/sham feedback condition (Figure 1A). The
DMN spatial maps, identified in the attentional processes of
external focus and internal focus were shown in Figure 1B.
In both processes, the DMN spatial map involves regions
of ventral and medial prefrontal cortex (vmPFC), posterior
cingulated cortex (PCC)/precuneus and left and right inferior
parietal cortex/angular gyrus (LIPC/AG and RIPC/AG) and
the peak MNI coordinates of each region was showed
in Table 1.
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FIGURE 5 | The correlations between the behavioral measurements, i.e., II_Mean, II_SD and II_CV and the functional connectivity of (A) vmPFC-PCC,
(B) PCC-LIPC/AG, (C) vmPFC-RIPC/AG, and (D) PCC-RIPC in the attentional process of external focus/internal focus (Sphere radius = 6 mm).

Frontiers in Psychology | www.frontiersin.org 8 September 2019 | Volume 10 | Article 219880

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02198 September 24, 2019 Time: 17:47 # 9

Zhou et al. DMN Connectivity for Sustained Attention

TABLE 5 | The relationship between the inter-regional connectivity within DMN and behavioral measurements for the attentional process of external focus/internal
focus respectively.

Behavior The attentional process of external focus The attentional process of internal focus

Connectivity II_Mean II_SD II_CV II_Mean II_SD II_CV

r p r p r p r p r p r p

DMN spatial map identified by ICA

vmPFC-PCC −0.03 0.85 −0.30 0.07 −0.29 0.07 −0.02 0.89 0.01 0.95 −0.03 0.87

PCC-LIPC/AG −0.39 0.02∗
−0.02 0.91 −0.02 0.92 −0.31 0.06 0.16 0.33 0.31 0.06

vmPFC-RIPC/AG −0.32 0.05∗
−0.15 0.35 −0.15 0.36 −0.19 0.27 0.16 0.33 0.19 0.26

PCC-RIPC/AG −0.40 0.01∗
−0.13 0.43 −0.13 0.45 −0.06 0.74 −0.009 0.96 0.02 0.90

∗ Indicates the significant difference, p < 0.05 (Sphere radius = 6 mm).

FIGURE 6 | The inter-regional connectivity between each pair of the regions within DMN during the attentional processes of external/internal focus. (A) The public
DMN spatial template. (B) The visualization of significant connectivity during the attentional process of external focus. (C) The visualization of significant connectivity
during the attentional process of internal focus. In (B,C), line width indicates the relative value of the connectivity. (D) The difference of the connectivity between the
attentional processes of external focus and internal focus and the line width indicates the relative value of the connectivity difference between the two processes.
∗ Indicates the significant difference, p < 0.05, FDR corrected.

Inter-Regional Connectivity Within the
DMN
The four critical regions of the DMN showed six pairs of inter-
regional connectivity with each other (Figures 2A,B), and the
inter-regional connectivity within the DMN was significant in
both external focus and internal focus processes (each t > 11.40,
p < 0.0001). Four pairs of the connectivity exhibited significant
differences between the attentional processes of external focus
and internal focus, including vmPFC-PCC, PCC-LIPC/AG,
vmPFC-RIPC/AG and PCC-RIPC/AG (see details in Figure 2C
and Table 2).

Since we have performed four studies based on the
same data, thus, we further performed the multiple
comparisons (taking into account previous correlations
that we have done). Twenty comparisons between the two
different attentional processes have been administrated.
Using Bonferroni correction across all comparisons, the

significant level for the comparisons in the current study
is p < 0.0025 (0.05/20). Thus, the stronger connectivity of
PCC-LIPC/AG and PCC-RIPC/AG for the externally focused
process could withstand this multiple comparison correction
(each p < 0.001).

Moreover, we further validated these results using the ROIs
with a different radius (6 mm). The significant differences
between the attentional processes of external focus and internal
focus were identified in the functional connectivity of vmPFC-
PCC, PCC-LIPC/AG, vmPFC-RIPC/AG and PCC-RIPC/AG
(Figure 3 and Table 3).

Correlation Between Inter-Regional
Connectivity Within the DMN and
Behavioral Measurements
Behavioral data from the external focus and internal focus
sessions have been analyzed and illustrated in our previous
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TABLE 6 | The inter-regional connectivity within DMN and the difference of the functional connectivity between the attentional processes of external focus
and internal focus.

Conditions The attentional process of external focus The attentional process of internal focus External focus vs. internal focus

DMN Connectivity Fisher’s Z-score, Mean ± SD Fisher’s Z-score, Mean ± SD t(37) p

vmPFC-PCC 1.14 ± 0.20 1.11 ± 0.17 0.92 0.37

vmPFC-LIPC/AG 0.89 ± 0.26 0.82 ± 0.23 1.26 0.22

PCC-LIPC/AG 1.03 ± 0.26 0.90 ± 0.29 2.52 0.01∗

vmPFC-RIPC/AG 0.80 ± 0.27 0.76 ± 0.28 0.95 0.35

PCC-RIPC/AG 0.98 ± 0.29 0.90 ± 0.31 2.01 0.05

LIPC/AG-RIPC/AG 1.01 ± 0.31 0.98 ± 0.26 0.97 0.34

∗ Indicates the significant difference, p < 0.05, FDR corrected.

FIGURE 7 | The correlations between the behavioral measurements i.e., II_Mean, II_SD and II_CV and the functional connectivity of PCC-LIPC/AG in the attentional
process of external focus/internal focus.

investigation (Dong et al., 2012). Paired t-tests showed that
there was no significant difference in the II_Mean between
the attentional processes of external focus and internal focus.
II_Mean across all subjects was 19.97 ± 0.05 cm H2O for
the external focus process and 19.72 ± 5.40 cm H2O for
the internal focus process (t = 0.29, p > 0.05). However,
the II_SD and II_CV in the internal focus process were
markedly higher than it in the external focus process.
II_SD across all subjects was 0.17 ± 0.07 cm H2O for
the external focus process and 2.85 ± 1.34 cm H2O for
the internal focus process (t = 12.46, p < 0.0001). II_CV
across all subjects was 0.01 ± 0.003 cm H2O for the real
feedback and 0.17 ± 0.11 cm H2O for the sham feedback
(t = 8.64, p < 0.0001).

The correlation between significant functional connectivity
within DMN spatial map and behavioral measurement was
showed in Figure 4. There was a significant correlation
between the functional connectivity of PCC-LIPC/AG
and the II-Mean of finger force in external focus process
not internal focus process, and there was no significant

difference between the functional connectivity of PCC-
LIPC/AG and the II_SD or II_CV of finger force (Table 4).
Moreover, these results were validated using the ROIs
with a different radius (6 mm) (see details in Figure 5
and Table 5).

Since we have performed four studies based on the same
data, thus, we further performed the multiple comparisons
(taking into account previous correlations that we have done).
Hundred and one correlations between the fMRI data and
behavioral data have been assessed. Using Bonferroni correction
across all correlations, no correlation results could withstand this
multiple comparison correction (Bonferroni correction across all
correlations, p < 0.0005).

These results were further validated with the DMN spatial
template (Figure 6A). The six pairs of functional connectivity for
the attentional processes of external focus and internal focus were
show in Figures 6B,C, and only the functional connectivity of
PCC-LIPC/AG reserved the significant differences between the
attentional processes of external focus and internal focus (see
details in Figure 6D and Table 6).
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The functional connectivity of PCC-LIPC/AG also showed
significant correlation with the behavioral measurement of II-
Mean in the attentional process of external focus (Figure 7
and Table 4).

DISCUSSION

The present study explored the functional significance of the
DMN in sustained attention. The two processes were generated
through a new paradigm, i.e., continuous feedback of finger
force, and the functional connectivity among the node regions
of the DMN was assessed in each process respectively. Two
intriguing results were obtained: (1) the functional connectivity
of PCC-LIPC/AG was significant stronger in the externally
focused process than it in internally focused process, and
this difference was reproduced in the validation analyses with
different ROI radius and the public DMN spatial template; (2)
the functional connectivity of PCC-LIPC was correlated with
the behavioral measurement, II_Mean in the externally focused
process. These findings potentially offer new insights into the
functional significance of the DMN in the attentional processes
of internal focus and external focus.

Since Chun et al. (2011) dissociated the sustained attention
into the two attentional processes of internal focus and
external focus (Chun et al., 2011), many studies attempt to
identify the difference of behavioral performance and brain
mechanism between the two attentional processes (Poolton
et al., 2006; Stawarczyk et al., 2011; Shafizadeh et al., 2013;
Schücker et al., 2014). Instructions and self-reports were
the strategies mostly employed in these investigations to
generate the attentional process of external focus/internal
focus (Wulf et al., 2002; Ruocco and Direkoglu, 2013;
Scheibner et al., 2017). However, these strategies could not
be assessed by the objective behavioral measurements, thus
it is difficulty to ensure subjects engage in these required
processes. The paradigm of continuous feedback of finger force
was employed in the present study, and controlling finger
force by feedback and controlling finger force by the sensory
memory were used to generate the external focus/internal focus.
The finger force as the behavioral performance was recorded,
and this paradigm potentially provide objective assessments
for future studies on the attentional process of internal
focus/external focus.

As hypothesized, we observed stronger functional
connectivity within DMN in the attentional process of
external focus. Previous studies suggested the involvement
of the DMN in the internally directed cognition, e.g., mind
wandering, task independent thoughts etc. (Jang et al., 2011;
Benedek et al., 2016; Mittner et al., 2016). Here, the external
focus increased the inter-regional connectivity of PCC-LIPC/AG
as compared with the internal focus, and this result was still
reserved in the validation analysis. Both PCC and LIPC were
suggested to be related to working memory and information
integrating (Ye and Zhou, 2009; Huang et al., 2018). In the
current study, the functional connectivity of PCC-LIPC showed
significant correlation with the behavioral measurement,

II_Mean in the externally focused process. This attentional
process requires processing and integrating the feedback
information. Thus, PCC-LIPC within DMN may directly engage
in the process of external focus, and probably regulated the
behavioral performance related to the external focus. The
dominant proposal argues that the DMN is mainly responsible
for mind wandering, task independent thoughts (Andrews-
Hanna, 2012; Seli et al., 2016; Scheibner et al., 2017; Bocharov
et al., 2018). Thus, the functional role of DMN in sustained
attention may be more than responding to the internally
directed cognition.

Several limitations exist in current study. First, we observed
that the stronger inter-regional connectivity of the DMN
exhibited correlations with the behavioral measurement,
II_Mean of the finger force in the externally focused process.
However, these correlation results could not withstand the
multiple comparison correction (each p < 0.01), if we
took our previous studies based on the same data into
account (Bonferroni correction across all correlations of
the previous studies, p < 0.0005), thus the relationship
between the inter-regional correlation and the behavioral
performance in the process of external focus should be further
verified. Second, The behavioral measurements, II_SD and
II_CV were more meaningful for the assessment of the
fluctuation of sustained attention (Liu et al., 2017). Whether
the fluctuation of sustained attention was associated with the
DMN remains to be understood. Third, for the internal focus,
the relationship between the brain activity and behavioral
performance in the internally focused process requires to be
established in future studies, and we believed this is a critical
issue for understanding of the brain mechanism underlying
sustained attention.

CONCLUSION

The present study explored the functional significance of
the DMN in the attentional processes of external focus
and internal focus. The external focus could increase the
inter-regional connectivity, PCC-LIPC/AG of the DMN,
and this connectivity within the DMN was possible the
reason of regulating the behavioral performance in the
externally focused process; These findings offered new
evidences to support the engagement of the DMN in the
attentional process of external focus. Thus, the functional
significance of the DMN was more than the internally directed
cognition, and the continuous feedback of finger force, as
an objective assessing paradigm for sustained attention with
external focus and internal focus deserves more concerns
in future studies.
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Recent work in interpersonal coordination has revealed that neural oscillations, occurring
spontaneously in the human brain, are modulated during the sensory, motor, and
cognitive processes involved in interpersonal interactions. In particular, alpha-band
(8–12 Hz) activity, linked to attention in general, is related to coordination dynamics
and empathy traits. Researchers have also identified an association between each
individual’s attentiveness to their co-actor and the relative similarity in the co-actors’
roles, influencing their behavioral synchronization patterns. We employed music
ensemble performance to evaluate patterns of behavioral and neural activity when
roles between co-performers are systematically varied with complete counterbalancing.
Specifically, we designed a piano duet task, with three types of co-actor dissimilarity,
or asymmetry: (1) musical role (starting vs. joining), (2) musical task similarity (similar vs.
dissimilar melodic parts), and (3) performer animacy (human-to-human vs. human-to-
non-adaptive computer). We examined how the experience of these asymmetries in four
initial musical phrases, alternatingly played by the co-performers, influenced the pianists’
performance of a subsequent unison phrase. Electroencephalography was recorded
simultaneously from both performers while playing keyboards. We evaluated note-onset
timing and alpha modulation around the unison phrase. We also investigated whether
each individual’s self-reported empathy was related to behavioral and neural activity. Our
findings revealed closer behavioral synchronization when pianists played with a human
vs. computer partner, likely because the computer was non-adaptive. When performers
played with a human partner, or a joining performer played with a computer partner,
having a similar vs. dissimilar musical part did not have a significant effect on their
alpha modulation immediately prior to unison. However, when starting performers played
with a computer partner with a dissimilar vs. similar part there was significantly greater
alpha synchronization. In other words, starting players attended less to the computer
partner playing a similar accompaniment, operating in a solo-like mode. Moreover, this
alpha difference based on melodic similarity was related to a difference in note-onset
adaptivity, which was in turn correlated with performer trait empathy. Collectively
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our results extend previous findings by showing that musical ensemble performance
gives rise to a socialized context whose lasting effects encompass attentiveness,
perceptual-motor coordination, and empathy.

Keywords: EEG, neural oscillation, alpha oscillations, perceptual-motor coordination, role asymmetries, social
neuroscience, interpersonal coordination, musical performance

INTRODUCTION

As humans, we face situations every day that demand
coordination of our actions with those of other individuals, often
in order to achieve a shared goal. Fast-paced and dynamically
adaptive sensorimotor interaction can be seen for example, in
someone rushing through a crowded airport to catch a flight or
a team of paramedics working together to respond to a medical
emergency. Here, individuals have to constantly perceive the
ongoing actions of others in order to efficiently organize and
perform their own actions.

Research investigating the behavioral dynamics that occur
between an individual’s actions and the environmental
events they perceive has provided valuable insight into how
behavioral coordination is achieved (Schmidt and O’Brien,
1997; Richardson et al., 2005; Schmidt et al., 2007). Specifically,
research on perceptual-motor coordination has demonstrated
that individuals often naturally synchronize and coordinate
their limb and body movements with periodic environmental
events via visual (e.g., Giese et al., 1996), haptic (e.g., Jeka et al.,
1998), or auditory (e.g., Repp and Penel, 2004; Repp, 2006)
information. A large number of studies have demonstrated
that actor-environment coordination is governed by dynamical
processes of entrainment, which generally involve close temporal
synchronization to an external rhythm (e.g., Kelso et al., 1990;
Wimmers et al., 1992; Schmidt and Turvey, 1994; Byblow
et al., 1995; Russell and Sternad, 2001; Wilson et al., 2005).
Coordinated human joint action contains many of the same
characteristics observed within actor-environment coordination.
However, the bi-directional coupling inherent to interpersonal
coordination commonly results in a mutual influence between
interacting individuals. As a result, the patterns of interaction
exhibited during interpersonal perceptual-motor coordination
are often dynamic.

As noted by Keller (2008), ensemble music performance
highlights the ability of humans to achieve temporally precise
interpersonal coordination while also being flexible. Keller
proposes that three fundamental skills support this kind of
interactive behavior: anticipation, the perception of self and
other behavior in relation to the joint goal, and adaptation. The
relative symmetries and asymmetries between co-actors appear
to be one of the primary factors that influence these processes
and ultimately shape musical interaction as well as interpersonal
interaction in general.

Relative asymmetries between co-acting individuals can arise
from a unidirectional informational coupling between co-actors
such that one actor receives information about the other’s
behavior but not vice versa (e.g., Goebl and Palmer, 2009;
Washburn et al., 2015). There can also be explicit asymmetries

in the intrinsic behavioral component dynamics (i.e., resonant
limb/movement frequencies, see Washburn et al., 2014). For
instance, pianists who exhibit similar preferred tempi during
solo performances achieve better temporal synchronization
and exhibit greater adaptation to each other during duet
performance than pianists who have more divergent preferred
solo performance rates (Loehr and Palmer, 2011; Zamm et al.,
2015). While these sources of informational and physical
asymmetry clearly play a role in shaping joint action, “functional
asymmetries,” contextually relevant differences in co-actor roles
that can emerge with or without explicit instruction or intention
(Richardson et al., 2016), are likely the most common type of
asymmetry in everyday interpersonal interaction.

For example, Demos et al. (2017) found that introducing
a confederate duet partner to participants as an experimenter
vs. a fellow participant introduced an asymmetry in social
status. Although this had a minimal effect on temporal
coordination during the duet task, participants perceived
their synchronization with the “experimenter” as much more
successful. The researchers suggest that this effect may have
occurred because participants believed that the experimenter’s
part was especially important and therefore paid more attention
to the confederate’s performance than participants who thought
the confederate was another participant.

People also typically conceive that the members of a string
quartet have distinct roles corresponding to their part/instrument
that are generally related in a hierarchical fashion (i.e., the
first violinist is the leader). Such explicitly prescribed functional
asymmetries may indeed guide behavior of the whole group.
By experimentally manipulating the leader-follower roles within
string quartets such that each instrumentalist had the opportunity
to act as the leader of the ensemble, Chang et al. (2017) were
able to examine the magnitude and direction of information flow
between assigned leaders and assigned followers. Their findings
indicated that for a given quartet performance the influence
of leader behavior on follower behavior was greater than the
influence of followers on the leader, as well as the influence of
followers on each other.

However, roles and relationships between group members are
often not as static as instrument-specific roles would suggest,
depending on how music is written, interpreted, and performed
at a moment-to-moment basis. For instance, sometimes someone
other than the first violinist will provide cues to the members of
the group, acting as a “leader.” At other times, the first violinist
might engage in repeated turn-taking with another group
member, resulting in periods of relative musical role symmetry
between the two performers in that their contributions are
balanced and equal. Thus, for ongoing interactions that involve
numerous opportunities for information exchange between
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co-actors asymmetries seem to vary dynamically and are likely to
be shaped by multiple factors. Wing et al. (2014) demonstrated
this by examining the emergence of functional asymmetries
between quartet members in two separate professional string
quartets. They found that when performing the same piece
of music, the members of the two separate quartets exhibited
unique patterns of symmetry and asymmetry at the beat-to-
beat timescale. It therefore appears that instrument-specific-role
is not the only functional asymmetry determining temporal
coordination on the beat-to-beat timescale. What remains
unclear are the ways in which different relational factors in
music and performers (e.g., instrument, rhythmic similarity,
melodic similarity, performer personality traits) might influence
the temporal asymmetry in co-performer activity, as well as how
these factors interact to shape this relationship.

Within the past decade researchers have conducted a large
number of empirical studies aimed at establishing how neural
activity supports the emergence and maintenance of coordinative
patterns in joint action. The use of electroencephalography
(EEG), and its magnetic-counterpart magnetoencephalography
(MEG), allow neuroscientists to observe neural activity with
high temporal resolution. In particular, the modulation of
spontaneously occurring neural oscillations is thought to
constitute one of the principal mechanisms for the dynamic
coordination of functions across the brain. Fronto-central alpha
rhythms (8–12 Hz) along with central beta-band oscillations
(∼20 Hz) are sometimes referred to as “mu rhythms” and
appear to play a large role in sensorimotor activities. Specifically,
their suppression, or event-related desynchronization (ERD),
is observed during voluntary movement (Pfurtscheller, 1992;
Salmelin et al., 1995; Babiloni et al., 1999; Taniguchi et al.,
2000; Jurkiewicz et al., 2006). Pfurtscheller et al. (1997) related
this desynchronization to movement initiation, noting that it
began prior to movement onset and was followed by event-
related synchronization (ERS), or a return to baseline activity, 2 s
following a movement onset.

Interestingly, ERD in central alpha rhythms is also exhibited
during imagined movements (Pfurtscheller et al., 2006). In fact,
alpha ERD was first detected in individuals watching films of
biological motion (Gastaut and Bert, 1954). This effect has
been replicated in several subsequent studies (Cochin et al.,
1998, 2001; Hari et al., 1998; Martineau and Cochin, 2003;
Holz et al., 2008; Arnstein et al., 2011). In their original study,
Gastaut and Bert (1954) also noticed that the magnitude of
alpha desynchronization increased in relation to how much an
individual identified with the actor in a film. Additional work has
shown that alpha desynchronization during action observation
is modulated by the observer’s action experience. For example,
individuals who are given the opportunity to interact with a
novel tool or object show greater alpha desynchronization than
participants who don’t have the same direct experience when they
observe someone else engage with the tool or object (Cannon
et al., 2014; Quandt and Marshall, 2014). Professional athletes also
display patterns of alpha desynchronization that are distinct from
non-athletes when observing videos of their area of expertise
(Orgs et al., 2008; Babiloni et al., 2009, 2010).

Given the notable associations between alpha rhythm
desynchronization and both voluntary movement and action

observation, it is not surprising that these oscillations are
also responsive to social, interactive behaviors. Recent
dual-EEG studies examining the oscillatory neural activity
of co-acting individuals have shown both within- and
between-brain coherence in frontal and central alpha
rhythms during cooperative, coordinative interaction (e.g.,
Cui et al., 2012; Sanger et al., 2013). This kind of dual-
EEG recording, or “hyperscanning,” has also allowed
researchers to identify many different factors associated
with alpha modulation in each of the co-actors involved in
an interaction. Tognoli et al. (2007), for example, observed
desynchronization of right centro-parietal alpha rhythms
when participants engaged in a simple finger-tapping
task in a social context, suggesting that this decrease in
oscillatory power may support somatosensory awareness of a
perceived co-actor.

Findings connecting alpha desynchronization to action,
action-observation and interactive behaviors have also linked
alpha desynchronization to the theoretical human mirror-neuron
system (MNS) (Iacoboni and Dapretto, 2006; Oberman et al.,
2007; Perry and Bentin, 2009; Frenkel-Toledo et al., 2014;
Hobson and Bishop, 2016). A number of studies that relate alpha
modulation to MNS activity have revealed desynchronization
in right centro-parietal areas during social interaction (e.g.,
Tognoli et al., 2007; Dumas et al., 2010, 2012; Naeem et al.,
2012a,b). However, alpha ERD has also been observed in a
variety of other regions during interactive behavior including left
centro-parietal, frontal, central, and central midline areas (Lachat
et al., 2012; Ménoret et al., 2014; Konvalinka et al., 2014; Ahn
et al., 2018). This emphasizes the importance of alpha’s role in
supporting social interactive behaviors through domain-general
regulatory functions rather than domain- and location-specific
sensorimotor processes. Of particular interest here regarding the
functional significance of alpha is its apparent role in regulating
the dynamic desynchronization and selection of cortical states
(e.g., Jin et al., 2006; Klimesch et al., 2007; Klimesch, 2012).
This links alpha closely to mental states of alertness, expectancy
and attention (e.g., Klimesch et al., 1998; Pfurtscheller, 2003;
Perry and Bentin, 2009), and to the temporal coordination of
intrapersonal and interpersonal behavior often supported by
these states in the context of interpersonal interaction. This
is consistent with Novembre et al. (2016) observation that
alpha desynchronization occurred during periods of strong
temporal entrainment between co-actors during piano duet
performance. Existing findings therefore indicate that alpha ERD
is likely to occur frequently in both individuals involved in a
joint action task.

Interestingly, the evolution of alpha desynchronization during
temporal coordination is related to asymmetries in co-actor roles
(Konvalinka et al., 2014). Specifically, for pairs engaged in a
synchronized finger-tapping task, the individual who exhibited
less adaptive, or more leader-like, behavior generally displayed
greater alpha desynchronization in frontal brain regions. This
demonstrates that the dynamics of alpha desynchronization are
sensitive to subtle, emergent asymmetries between interacting
individuals. Relatedly, Sanger et al. (2013) observed that the
coherence between frontal alpha oscillations in co-performing
guitarists was stronger for leader-to-follower coupling than for
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follower-to-leader coupling. In Sanger et al. (2013) study the roles
of leader and follower were explicitly assigned to co-performers
prior to duet performance.

Hari and Kujala (2009), among others, have pointed out the
apparent links between alpha ERD and the neural processes
that support action observation and ultimately interpersonal
interaction, including motor imitation, emotional contagion, and
empathy. Babiloni et al. (2012) were the first to empirically
investigate the relationship between alpha ERD and empathy
by having saxophonists observe their own previously recorded
ensemble performances. The findings from this study revealed
that the musician with the highest score on the self-report
empathy measure showed widespread alpha desynchronization
during performance observation. Perspective-taking also appears
to be related to perceptual accuracy in the context of action-
observation. Work by Engel and Keller (2011), for example,
has shown that for individuals viewing point light displays
(PLDs) of improvised or imitated musical performances, the
person’s accuracy for identifying the type of performance was
positively correlated with scores on a self-report measure
of perspective-taking. Relatedly, Pecenka and Keller (2011)
observed that individuals who reported higher levels of
perspective-taking behavior showed greater anticipation of
tempo-changing metronome sequences. Collectively, existing
work on empathy and social interaction reveals strong links
between trait empathy and both (1) alpha desynchronization, and
(2) behavioral coordination characteristics.

In the current study, we used the context of piano duet
performance to evaluate patterns of behavioral and neural
activity under conditions of asymmetry between co-performers.
To do this, we experimentally introduced three different task-
specific asymmetries: (1) musical role (starting vs. joining),
(2) task similarity (similar vs. dissimilar melodic parts), and
(3) performer animacy (human-to-human vs. human-to-non-
adaptive computer). The musical tasks used in the current
study were piano duets, played by two players face-to-face,
each with an electronic keyboard (see Figure 1). The piano
duet scores were composed by our research team, consisting
of simple short melodies designed so that each of the three
experimentally introduced asymmetries were experienced during
the initial portion each trial prior to the final unison period. In
this final unison period of four notes, co-performers always had
identical musical tasks.

We designed this experimental task to support a multi-
faceted study which allowed our team to perform two separate
investigations. In the investigation presented here, we evaluated
neural alpha and behavioral activity during the final unison
measure of the duets to determine how the asymmetries in
the preceding portion of the task served as a priming context
and shaped the interaction of subsequent unison performance.
The other investigation, described in Huberth et al. (2019), was
focused on performers’ neural responses to outcome expectation
violations when altered pitch feedback was experimentally
introduced within the first four measures of the turn-taking
duet performances. Specifically, the authors compared the
feedback-related negativity (FRN) and P3 complex within each
individual’s EEG data in response to altered pitches in one’s own

FIGURE 1 | General experimental set-up for the current study.

part vs. the co-performer’s part. Generally, performers exhibited
greater responses to alterations corresponding to their own part,
especially when their part was melodically similar to their co-
performer’s. Our current investigation is based on behavioral
and EEG data from only the fifth and final measure of the
duets where no altered pitch feedback was used and the notes
performers had to play stayed identical across the different
conditions experienced in the preceding part of the duet. Thus,
the task was designed to accommodate two investigations with
one round of data collection with each investigation ultimately
involving unique data analysis.

Based on the above literature, we had several hypotheses
about the reactivity of alpha activity and performers’ coordinative
behaviors in our task. First, however, it is important to note that
differences in starter and joiner movement onset immediately
before the unison prevented us from directly comparing the
effects of performing the starting vs. joining role on note-
onset synchronization or alpha desynchronization. Because
starting performers played three notes immediately prior to
the unison part, they would show more pronounced alpha
desynchronization during the unison. Second, we hypothesized
that performer animacy would have a significant effect on the
stability of note-onset synchronization. This expectation was
informed by Fairhurst et al.’s (2013) findings that the stability
of human tapping with a virtual partner was influenced by the
adaptability of the partner, with both low and high adaptability
leading to low synchronization stability. Based on work by Billeke
et al. (2014) we also expected that individuals might show greater
neural responsiveness in the alpha oscillations during interaction
with a human partner compared to a computer partner.

As for the task similarity, we are not aware of existing
studies illustrating the effects of any type of task similarity on
neural activity during joint action. On the one hand, the finding
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that action familiarity has an effect on neural measures during
action imagery and observation as well as interaction (Orgs
et al., 2008; Babiloni et al., 2009, 2010; Cannon et al., 2014;
Quandt and Marshall, 2014; Novembre et al., 2016) indicates
that greater melodic similarity between parts may engage more
neural resources in duet performing musicians. On the other
hand, Skewes et al. (2015) observed that task asymmetries for
a dyadic aim and click task had minimal effects on co-actor
synchronization, except in cases where the level of difficulty was
substantially different between co-actors. Thus, we expected that
the effect of having similar or dissimilar musical tasks might be
the most subtle of the three asymmetries we manipulated in the
current study. However, as shown in Babiloni et al. (2012), we
also saw this manipulation as highly relevant to trait empathy and
an important factor for understanding asymmetries in musical
interaction and social interaction in general and were interested
to see how it might shape coordinative activity in interaction with
the other two asymmetries we examined.

Lastly, we would like to note that our investigation on the
effects of task-specific asymmetries on temporal coordination
behaviors during an experimentally-controlled musical duet task
has implications for both musical and non-musical everyday
interactions. Our study design allowed us to unambiguously
examine how some of the asymmetries that are common to
ensemble music performance might interact to shape musical
interaction, which contains various relationships between
performers that emerge and change dynamically as music
unfolds. Notably, our study also has implications for interaction
dynamics beyond musical performance. Any time multiple
individuals coordinate to achieve a shared goal there will be
some discrepancies between individuals in their attentiveness and
adaptivity to one another as well as in their behavioral timing.
Asymmetries between individuals can lead to these kinds of
discrepancies, and the evolution of discrepancies over time will
shape the course of interaction. Returning to our example of the
paramedic team, one can imagine how the collective activity of
the team will be influenced by one member arriving before the
others, the need for team members to address an individual’s
multiple, similar or different injuries, and the need for each
team member to multi-task, limiting their ability to attend and
adapt quickly to team member actions. These interpersonal
asymmetries and others will have a significant impact on how
each member of the team experiences the actions of their team
members and acts to support team success. By gaining a greater
understanding of the effects of co-actor asymmetries we therefore
broaden our understanding of how individuals interact to achieve
collective goals.

MATERIALS AND METHODS

Participants
Twenty-four pianists (twelve pairs) were recruited from the
Stanford University community for participation in this study.
Nine pianists were removed from data analysis due to technical
failures (N = 3), high behavioral error rates (N = 4), and excessive
data artifacts (N = 2). Compared to the participant data analyzed

in Huberth et al. (2019), we removed three additional pianists
because of errors (N = 2) and artifacts (N = 1) that specifically
affected our analyses. The four pianists with the high error rates
comprised two pairs. Results reported here are therefore for
a sample of 15 pianists (M = 14.33; SD = 4.92 years musical
experience). These pianists ranged from 18 to 28 years of age.

Of the pairs recruited, two pairs knew each other and had
played duets together prior to the experiment. Only one of these
pairs’ data was included following the removal of participant data
prior to analysis as described above. The remaining pianists met
for the first time during participation in the study. All pianists
were right-handed except for one, who was not included in
the data for analysis. The study protocol was approved by the
Stanford University Institutional Review Board and participants
provided written informed consent. Pianists were paid $20/h for
their participation.

Apparatus
Two Yamaha Axiom-61 digital keyboards were arranged facing
each other on a table within a sound-shielded room in the
lab (see Figure 1). Two loudspeakers were used to provide
auditory feedback to the performers during the study, with
one placed at each end of the table. A custom module for
Max/MSP 7.0.1 run on a Macintosh computer (OSX 10.9.5)
was used to control all auditory feedback throughout the study.
The piano timbre used throughout and the drum timbre used
for introductory metronome clicks were built-in sounds from
the OSX MIDI sound synthesizer, AU DLS Synth. All auditory
feedback was played at a constant volume of approximately 75 dB
SPL throughout the study (i.e., pianists were not able to produce
changes in dynamics during performance).

The Max/MSP program was also used to generate trigger
codes associated with meaningful timepoints and experimental
conditions as they occurred in each task trial. This included
tracking pianist performance for note accuracy and inter-onset-
interval (IOI) in real time based on the current musical score.
These codes were sent through an Arduino Uno to the computer
used to record EEG data in order to achieve temporal mapping
between each EEG recording and the event time course of the
musical task being completed.

The component latencies produced by this apparatus were
evaluated by comparing the onset latency of (1) a piano key press,
(2) the resulting trigger code produced by Max/MSP, and (3) the
associated auditory feedback using simultaneous three-channel
audio recording of all three events (see Wright et al., 2004). The
average key press to trigger code onset was 27 ms (SD = 4.0 ms),
and the average delay between a trigger code and the associated
auditory feedback was 21 ms (SD = 3.3 ms).

Stimulus and Task
We composed four unique piano duets for the current study. All
duets had the same five measure structure (see Figure 2). This
included four initial measures in which only one pianist played
at a time and the partners alternated each measure. This meant
that the “starting” player for a given trial played in measures
one and three while the “joining” player played in measures
two and four. In two of the four duets the starting and joining
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FIGURE 2 | Examples of the similar (top) and dissimilar (bottom) musical
task duets composed for the current study. In each duet the starting and
joining performers alternated playing in the first four measures, and played the
last four notes of the fifth measure in unison. Melodic contour lines show that
in the “similar” task condition the starting and joining performers played similar
melodic patterns, while in the “dissimilar” task condition the patterns were
distinctly different. The final unison measure was the same across all duets. All
of the analyses we conducted in the current study were for neural activity and
note-onset behavior during this final measure.

parts had similar melodic contours in the first four measures,
while in the other two duets the contours were distinctly different
(within a given player’s part the two phrases they played alone
always had the same contour). Each duet also included a final
fifth measure, in which the starting player played the first half
alone and both pianists played the remainder together in unison.
The notes played in unison were identical for both the starting
and joining players and were the same across all four duets.
Duets were composed so that each part could be played with
the right hand alone and overall hand position could remain
the same throughout. Fingering numbers were provided in the
score to encourage consistency between participants and ensure
minimal movement.

During the study each pianist played the duets with both a
human co-performer and a computer partner (audio only). The
computer partner was non-adaptive and produced notes with a
constant IOI of 500 ms, or a tempo of 120 bpm for the eighth
note. Each experimental trial began with three isochronous
metronome clicks corresponding to the eighth note, with this
same IOI of 500 ms regardless of whether the trial was to be
performed by two pianists or one pianist and the computer
partner. Following these clicks the starting player began the
first measure. After the completion of a trial, the introductory
metronome clicks indicating the start of the next trial would
begin after a random interval of silence (1.5–2.5 s).

In the first four measures of each duet the auditory feedback
associated with key presses was sometimes altered. In other
words, even though a pianist had played the correct key based
on the musical score a different pitch would be presented
as auditory feedback. These manipulations were introduced
within both parts of each duet to evaluate the feedback-related
negativity (FRN) associated with altered feedback corresponding
to a pianist’s own part and their partner’s part as identified
using EEG. In each trial, one pitch alteration occurred in
each performer’s part. This occurred on either the 4th or 5th
note of one of the two phrases each performer played. All

alterations produced in-key pitches that were ± two scale notes
from the printed score note. Further information about these
manipulations and the associated analyses and findings are
presented in Huberth et al. (2019).

In the current study, our analysis focused solely on the fifth
measure of each duet, which did not contain any altered auditory
feedback. It is important to note that we fully counterbalanced
the altered note position, pitch direction, and frequency of
occurrence of the altered feedback such that these manipulations
did not influence the data presented here. The last possible
position for altered feedback (in the fourth measure, affecting the
joining performer’s part) occurred at least one second before the
onset of the data epoch used in the current study. For the present
study we established that there was no significant difference in
either starter or joiner behavior when there was an alteration in
the fourth measure compared to when there was not. Thus, we
have collapsed data across these conditions. Using this design we
were able to assess the influence of asymmetries in (1) musical
role (starting vs. joining), (2) task similarity (similar vs. dissimilar
melodic parts) and (3) partner animacy (human vs. computer)
experienced in the preceding part of the piano duet performance
on behavioral and neural activity during joint performance of
the same musical sequence within the fifth measure. All analyses
presented in the current paper are for the time period associated
with this final unison measure.

Procedure
One pianist from a pair was randomly selected to arrive at
the lab first, be prepared for EEG recording, and complete the
first half of the study with the computer partner. While this
individual was performing with the computer partner, the other
pianist arrived in the lab and was prepared for EEG recording.
When the initial pianist was finished playing with the computer
partner, both pianists played together and then the second pianist
completed the latter portion of the study with the computer
partner. At the end of each pianist’s recording session we asked
them to complete two questionnaires: the 40-question version of
the Cambridge Empathy Scale (Baron-Cohen and Wheelwright,
2004), and a custom 10-question measure designed to ascertain
each participant’s prior familiarity with their human partner and
their experience of the task difficulty.

Upon arrival in the lab each pianist was introduced to the four
duet scores composed for the current study. They were asked to
memorize the duets as quickly as possible, but were informed
that the printed scores would be placed next to their keyboard
throughout the study should they need to reference them. All
pianists were also asked to keep a fixed gaze at a comfortable
location during trials in order to avoid excessive eye movement
artifacts in the EEG recording. Before starting the first block of
trials each individual was informed that throughout the study the
auditory feedback associated with key presses would sometimes
be altered and were asked to continue playing even if they heard
an incorrect pitch (see previous section).

Each pianist played four blocks of trials with the computer
partner and four blocks of trials with their human partner for a
total of eight blocks. Partners played a single duet score within
each block, with the starting and joining roles fixed throughout
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the block. It is important to note that the difference in these
roles was communicated to participants only with respect to who
played first at the beginning of the trial, and was not characterized
as a “leader” vs. “follower” musical relationship. Partners played
the same duet score for two back-to-back blocks before switching
to another score. This allowed us to counterbalance musical role
so that each pianist played both the starting and joining role
for each duet they played (e.g., if a person played the starting
role for a duet in Block 1 the same person would play the
joining role for the same duet in Block 2). This organization
allowed all pianists involved in the current study to play each
of the eight unique musical parts. We also counterbalanced the
presentation of task similarity conditions such that each pianist
played one melodically “similar” and one melodically “dissimilar”
duet with both the human and computer partner. The order
of presentation of the specific duet scores was counterbalanced
across all participants as well.

The first two trials of every block were treated as practice
trials and contained no pitch alterations. These practice trials
proceeded directly into the 48 target trials for the block. As
noted above, the location, direction and magnitude of altered
pitch feedback within the first four measures of each trial was
counterbalanced within each block (see Huberth et al., 2019
for details). We used the Max/MSP program to control sound
and evaluate performance in each trial. A trial was counted as
incorrect if either partner (1) pressed an incorrect key based
on the score for that trial or (2) produced an IOI more than
125 ms shorter or longer than the expected IOI (500 ms).
When an error occurred, the auditory feedback was stopped
immediately to signal to pianists that they should prepare for the
next trial. A short period of silence was maintained before the
next trial began.

The length of this period was randomly selected from a
uniform distribution of values representing each possible integer
value in milliseconds between 1.5 and 2.5 s duration. Each trial
classified as incorrect was appended to the end of the current
block and had to be performed in order for the block to be
complete. A single block took approximately 15 min to complete.
Max/MSP recorded all note onset timing information from both
keyboards as well as the success/error status of all trials in log files,
which were later used for behavioral data analysis.

Electroencephalography data were collected either from a
single pianist during interaction with the computer partner, or
simultaneously from both pianists. All recording took place in
a sound-attenuated and electromagnetically-shielded chamber
within the lab. A member of the research team monitored
participant compliance with stated instructions via a window
from an adjacent room. Participants were encouraged to take
brief breaks between blocks when needed. An experimental
session for a single participant took between 3.5 and 4 h.

EEG Recording and Preprocessing
Electroencephalography data were collected using whole-head,
64-channel Neuroscan Quik-Caps (10–20 system), a SymAmpRT
amplifier, and Curry 7 acquisition software (Compumedics
Neuroscan Inc., El Paso, TX, United States). This included the
recording of vertical and horizontal electrooculograms (EOG).

Recordings were made at a 500 Hz sampling rate. Electrode
impedances were kept below 10 k� throughout recording. Scalp
electrodes on each cap were referenced to a midline electrode
between CPz and Cz for recording. Prior to analysis, the
raw recordings from each individual were re-referenced using
the common average reference for the cap. The SymAmpRT
amplifier allows for simultaneous recording from up to four caps,
precluding the need for a temporal synchronization mechanism
between the EEG recordings from duet partners. We processed
and analyzed EEG data in MATLAB (Mathworks Inc., Natick,
MA, United States) using custom scripts which incorporated
routines from the Brainstorm toolbox (Tadel et al., 2011).

We removed eye artifacts from the continuous EEG
data via Source Space Projection routines provided by the
Brainstorm toolbox. First stereotypical eye-artifact events (blinks
and movements) were detected using a single, continuous
representative raw file for each participant. Then using these
events a set of projectors for the participant was constructed
and applied to each of the participant’s trials in order to remove
blink and movement artifacts. This automatically removed
projectors that explained a substantial amount of variance in
the participant’s data (in our case more than 15% of the time).
In addition, we chose to remove any additional projectors
with a pattern of largely lateralized topography in order to
avoid any spurious effects on the comparison of right and left
electrode groupings.

We created epochs using a time window between −1.0 s before
and 4.0 s after the onset of the fifth measure (i.e., total epoch
duration was 5 s) from correctly-completed trials. This resulted
in 48 epochs per condition per participant. Within each epoch,
any channels exhibiting peak-to-peak amplitudes ±150 µV were
rejected. We employed this channel rejection threshold in the
current study so that we could conduct analyses on as many
EEG trials as possible, and avoid artifacts resulting from any
large amplitude changes. The evoked response for each condition
was calculated by averaging trial epochs for that condition across
participants, using a baseline period of 50 ms before the onset of
the measure.

Measures and Analyses
In this study we were interested in evaluating the effects of the
three co-performer asymmetries introduced experimentally on
behavioral and neural activity during musical unison. In order
to assess behavioral coordination we evaluated the Note-Onset
Asynchronies between two co-performers during musical unison.
To examine the neural activity exhibited by each individual
before and during unison we investigated the occurrence of
Alpha Desynchronization using EEG. We also measured each
individual’s trait Empathy so that we could investigate potential
associations between empathy, movement asynchrony, and
neural alpha desynchronization in our study’s performance task.

Note-Onset Asynchronies
For each experimental trial we calculated a Note-Onset
Asynchrony measure between players during the concluding
unison segment, which consisted of the final four notes in
each duet and was identical for both players and throughout
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all conditions. This analysis required data for both performers
within a duet. All behavioral analyses were therefore conducted
on the seven complete pairs within our data set (14 participants).
We first determined the note-onset time for each of the four notes
in the unison segment as executed by each player (i.e., starter and
joiner). We then found the asynchrony between players for each
note by subtracting the key press time for one player from the
corresponding key press time of the other player. We did this
separately from each player’s perspective so that we had two series
of asynchronies values for each trial, one for the starting player
and the other for the joining player. Specifically, for the starting
player series we subtracted joiner timing from starter timing and
vice versa for the joining player series. As a result, if the current
player played a note before the other player, this would result
in a negative asynchrony value for the current player and if the
current player played after the partner it would result in a positive
asynchrony value.

For each trial we used each player’s four-note asynchrony
series to calculate two measures: mean asynchrony and standard
deviation of asynchrony. We then averaged these single-trial
values across the trials corresponding to each musical role × task
similarity × partner animacy experimental condition to gain
measures of average asynchrony and asynchrony variability.
In order to account for possible deviations in tempo between
performers, we ultimately divided each performer’s average
asynchrony and asynchrony variability for each experimental
condition by their average IOI in that condition. We present these
measures as the percent asynchrony exhibited based on IOI.

Alpha Modulation
We computed normalized power within the alpha frequency
band for each combination of musical role × task
similarity × partner animacy conditions in three steps. This
analysis included all 15 of the participants retained in the current
study, coming from a total of eight different duet pairs.

(1) As noted above, single-measure epochs from each
participant for a given condition were averaged to produce
the associated evoked response for the condition. We
then subtracted this within-participant condition average
from each participant’s own trial epochs in order to
derive the induced response exhibited by each participant
in that condition.

(2) We used these resultant epochs to generate time-
frequency representations (TFRs) for each epoch using
Morlet wavelet decomposition with 32 logarithmically-
spaced bins from 1 to 60 Hz. Brainstorm routines were
employed to calculate the z-score normalized signal
power in each bin for a single epoch as the product of each
wavelet coefficient and its complex conjugate. We then
averaged TFRs across epochs to generate a characteristic
TFR for each experimental condition. During this process
we observed that for some average TFRs, normalized
power seemed to be spuriously concentrated a specific TF
region (i.e., very little relative power was observed for the
majority of the spectrum). For these averages we made a
close examination of each of the contributing epoch TFRs

in order to identify the source of the seemingly artifactual
relative power concentrations. Oftentimes these were the
result of extreme changes in single channel behavior
within a few single trials per condition or single trials
in which a number of channels simultaneously exhibited
noisy behavior. We removed such channels and trials.
This affected an average of 2.4 trials per condition, per
participant. A total of 97.78% of the original, correctly
performed trials are ultimately included in the data
presented here.

(3) Using the corrected TFRs we extracted the alpha-
band time course in each condition by averaging
normalized power across the four existing frequency bins
corresponding to the alpha-band (8.2, 9.3, 10.4, 11.7 Hz).
This allowed us to establish each participant’s average
alpha activity for a given experimental condition, which
we low-pass filtered at 8 Hz to remove transients. The
resultant time series was baselined using a period of 80 ms
before the onset of the measure. We then calculated the
average activity within each of three electrode groupings:
frontal-centro-medial (fcm: F1, Fz, F2, FC1, FCz, FC2,
C1, Cz, C2), parietal left (pl: C1, C3, TP7, CP5, CP3,
P7, P5, P3), and parietal right (pr: C2, C4, CP4, CP6,
TP8, P4, P6, P8).

Alpha ERD amplitude at the unison onset was the main feature
of interest for statistical analysis in the current study. To establish
our exact analysis time window we first generated the average
alpha ERD waveform associated with the fifth measure, including
each of our three electrode groups of interest across both starting
and joining roles. We then identified the latency of the negative
ERD peak (i.e., trough) closest to the expected unison onset time
(i.e., 1.5 s after the onset of the fifth measure).

We established the time window of interest around the time
point associated with the unison-related trough using the method
suggested by Keil et al. (2014) for selecting a window without bias.
The process for identifying this time window required that we
first locate the positive peaks on either side of the trough. For the
peak preceding and the peak succeeding the trough, we measured
the absolute value of the difference in trough-peak amplitude. We
then found the time point on the ERD grand average trajectory
associated with an amplitude 50% of the total corresponding
trough-peak amplitude. Through this process we obtained a time
window for evaluating unison onset-associated activity of 1.12 to
2.36 s after the onset of the fifth measure.

Empathy Quotient
We used the 40-question Cambridge Empathy Scale (Baron-
Cohen and Wheelwright, 2004) to establish each participant’s
trait empathy, or empathy quotient (EQ). A higher EQ is
indicative of greater empathy toward others.

RESULTS

Task Performance Evaluation
Throughout our study we maintained two criteria for successful
trials: (1) correct keypresses based on the score and (2) a
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consistent tempo, defined as every note IOI being between 375
and 625 ms (±25% from the correct IOI of 500 ms). Trials which
included violations of either criterion were classified as error
trials (see Procedure section for details). To examine whether
performer error rates were associated with increasing in fatigue
as the study progressed, we compared the number of errors
exhibited in the first vs. second half of each study block. This
revealed no differences, establishing that participants did not
commit significantly more errors later in the block.

In order to further examine the possible deviation of
performance tempo from the expected IOI, we also conducted
separate 2 (task similarity: similar, dissimilar) × 2 (partner
animacy: human, computer) × 7 pair (seven unique performer
pairs) mixed-model analyses of variance (ANOVAs) on the
average IOI during the analysis time window for each of the
starting and joining roles.

For performers assuming a starting role we found no
significant interactions between variables, but we did find a
significant main effect of partner, F(1,6) = 62.50, p < 0.001,
ηp

2 = 0.90. As can be seen in Table 1, IOIs were shorter when
participants played with a human partner.

For performers assuming a joining role, we found a similar
main effect for the partner condition, F(1,6) = 75.53, p < 0.001,
ηp

2 = 0.92. We also observed a significant main effect of pair
for this role, F(1,6) = 3.95, p = 0.047, ηp

2 = 0.77. Fisher’s LSD
post hoc comparisons revealed that two pairs generally exhibited
shorter IOIs than some of the other pairs during the human
partner conditions. Therefore, the subsequent analysis of note
onset asynchronies was normalized to each performer’s average
IOI value in a given condition.

Note-Onset Asynchronies
We assessed the effects of task similarity and partner animacy
in the current study separately for the starting and joining
conditions based on the distinct movement requirements
preceding unison.

We conducted separate 2 (task similarity) × 2 (partner
animacy) × 7 (pair) mixed-model ANOVAs on the average
note-onset asynchrony measure normalized by each performer’s
average condition IOI for each of the starting and joining roles.
For performers assuming a starting role, there was a significant
main effect of partner animacy, F(1,6) = 14.49, p = 0.007,
ηp

2 = 0.67, but no main effect of task similarity or pair or
interactions between variables. We observed a similar pattern

TABLE 1 | Performer IOIs during Unison across Experimental Conditions.

IOI (ms)

Starter Joiner

Partner Task Similarity M SD M SD

Human Similar 467.58 17.23 466.82 15.92

Dissimilar 471.27 14.83 470.82 14.07

Computer Similar 500.28 5.74 497.89 3.64

Dissimilar 487.792 3.65 496.71 2.94

of results for performers assuming a joining role, again with
a significant main effect of partner animacy, F(1,6) = 7.70,
p = 0.03, ηp

2 = 0.52, but no main effect of task similarity
or pair or interactions between variables. As can be seen in
Figure 3, performer note-onsets generally arrived ahead of the
computer partner but were much more closely synchronized to
the human partner.

We also conducted separate 2 × 2 × 7 ANOVAs on the
standard deviation of average note-onset asynchrony measure
for starting and joining performers. For starting performers we
found a significant main effect of partner animacy, F(1,6) = 29.96,
p = 0.001, ηp

2 = 0.81, but no main effect of task similarity or
pair or interactions between variables. For joining performers,
we also found a main effect of partner animacy, F(1,6) = 57.26,
p< 0.001, ηp

2 = 0.89, but no main effect of task similarity or pair
or interactions between variables. Figure 4 shows both starting
and joining performers exhibited greater variability in note-
onset asynchronies when playing with a human co-performer as
compared to the computer.

Alpha Desynchronization
We conducted separate 2 (task similarity) × 2 (partner
animacy) × 3 (electrode group: fcm, pl, pr) × 8 (pair) mixed-
model ANOVAs on alpha activity for each of the starting
and joining roles. As we have discussed in the “Measures and
Analyses” section, it was necessary for us to use just the seven
full pairs for the behavioral analyses, but we included all 15
participants in the alpha analyses resulting in eight-levels for
the pair factor. A time window of 1.12 to 2.36 s after the onset
of the fifth measure was used to capture activity related to the
unison onset which started on the fourth note of the measure,
at approximately 1.5 s. Figure 5 illustrates the time course of
normalized alpha power during this fifth measure.

As can be seen in Figure 5A, the alpha modulation range for
performers in a starting role during the unison measure was often
small because they were already moving during this time window.
When pianists played with a human partner these fluctuations
reflected the temporal regularity of the note-onset actions as well
as slightly larger desynchronizations prior to the unison onset
in some conditions, but did not reveal substantial differences
between having similar or dissimilar musical parts. In contrast,
for starting performers playing a similar part to their computer
co-performer there was a large alpha synchronization prior to the
unison onset, leading to a sustained difference in alpha activity
compared to performance of dissimilar musical parts across the
time window of interest. A 2 × 2 × 3 × 8 ANOVA conducted
on alpha modulation for performers playing the starting part
revealed a significant interaction of task similarity and partner
animacy, F(1,7) = 5.82, p = 0.047, ηp

2 = 0.45, but no other
interactions or main effects. To explore this interaction we
collapsed across the electrode groupings, released pair as a factor
and conducted a simple effects analysis evaluating the effect of
task similarity when interacting with (1) a human partner and
(2) the computer partner. We found a significant effect of task
similarity for individuals interacting with the computer partner,
F(1,14) = 5.20, p = 0.04, ηp

2 = 0.27, but not with a human partner.
Specifically, pianists performing with the computer partner
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FIGURE 3 | Normalized average asynchronies exhibited by participants in the role of (A) starting and (B) joining performer. Error bars show standard error.
∗p < 0.05, ∗∗p < 0.01.

FIGURE 4 | Normalized average standard deviation of asynchronies exhibited by participants in the role of (A) starting and (B) joining performer. Error bars show
standard error. ∗∗p < 0.01.

exhibited a moderate synchronization (e.g., alpha power increase)
in the “similar” task condition and a minor desynchronization
(e.g., alpha power decrease) in the “dissimilar” task condition.

Figure 5B illustrates that the time course of alpha modulation
in joining performers was different from that for starting
performers because the joining performers finished playing
measure four, rested for the first half of measure five, and

then began to play again from the unison onset which
occurred halfway through measure five. As a result, they often
show a characteristic rebound around 0.5 s, followed by a
desynchronization or return to baseline prior to beginning to
play at the unison onset. A 2 × 2 × 3 × 8 ANOVA on
alpha modulation in joining performers revealed no significant
interactions between variables or main effects.
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FIGURE 5 | Time course of grand average normalized alpha power around the final unison measure for participants in the role of (A) starting and (B) joining
performer, in the three electrode groups, fcm, pl, and pr. The onset of the measure is designated as time 0 and the starter played three notes before the joiner
started playing. The fourth note of the measure, and first note of unison, occurred around 1.5 s and is marked by a black dashed vertical line. The shaded purple
rectangle corresponds to the time window around unison used for statistical comparison between conditions (1.12 to 2.36 s). The topography associated with this
time window in each condition is also provided. Shading around the alpha power time course for each condition corresponds to the standard error.
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Associations Between EQ, Note-Onset
Asynchrony, and Alpha Modulation
We assessed possible associations between performer EQ, alpha
modulation, and note-onset asynchrony behavior based on the
aforementioned note-onset asynchrony and alpha modulation
results. Consistent with the note-onset asynchrony and alpha
modulation results presented, we analyzed data separately for
individuals assuming starting vs. joining roles. Notably, we
established that there was no significant difference in EQ between
performers who arrived first (performing with the computer
partner and then their human partner) and those who arrived
second (performing with their human partner and then the
computer partner).

Starting Role
Our analysis of note-onset asynchronies for performers in a
starting role revealed a significant effect of performing with
a human vs. computer partner on both average asynchronies
and asynchrony variability. Namely, performers more frequently
played notes ahead of the computer partner but exhibited greater
variability of onset asynchronies with the human partner. Based
on these results we first established the participant-wise human
vs. computer condition difference (HvC difference), averaged
across the similar vs. dissimilar task conditions, for both (1)
average asynchronies and (2) asynchrony variability. We then
compared each of these variables to (1) the HvC difference in
alpha activity and (2) performer EQ. In comparing the note-
onset asynchrony variables to the HvC difference in alpha activity
we looked at associations with each of the individual electrode
groups, as well as activity averaged across electrode groups. None
of these correlations revealed significant associations between
note-onset asynchrony behavior and alpha activity or performer
EQ related to the difference in interaction with a human vs.
computer partner.

Our analysis of alpha activity indicated a significant difference
between the similar vs. dissimilar conditions for performers
playing the starting role during interaction with the computer
partner. We were interested in exploring this effect further by
evaluating any potential associations between this difference and
performer EQ as well as note-onset asynchrony behavior.

For each performer assuming the starting role and performing
with the computer partner we first identified the difference in
alpha activity between the similar vs. dissimilar conditions (SvD
difference), collapsing across our three electrode groups. We
also identified the SvD difference in the performer’s average
asynchrony, as well as the SvD difference in the standard
deviation of their asynchronies (i.e., the difference in asynchrony
variability). We then used three separate correlations to evaluate
the associations between the participant-wise SvD difference in
alpha activity between conditions and each of (1) performer
EQ, (2) the SvD difference in average asynchrony, and (3)
the SvD difference in asynchrony variability. We did not
observe significant associations between the participant-wise SvD
difference in alpha activity and (1) performer EQ or (2) the
SvD difference in average asynchrony. However, we did find a
moderate, although non-significant, negative correlation between

the SvD difference in alpha activity and the SvD difference in
asynchrony variability, r(12) = −0.45, p = 0.11. This association
indicates that the greater an individual’s alpha desynchronization
in the “dissimilar” task condition as compared to the “similar”
task condition, the greater the variability in their note-onset
asynchronies for the “dissimilar” vs. the “similar” condition.

Given the possible association between SvD alpha activity
and SvD asynchrony variability we also chose to evaluate the
correlation between the SvD difference in asynchrony variability
with the computer partner and performer EQ. This yielded a
significant negative correlation, r(12) = −0.59, p = 0.03. This
association indicates that individuals with a higher EQ showed
greater variability in note-onset asynchronies in the “dissimilar”
condition compared to the “similar” condition.

Joining Role
Our analysis of note-onset asynchrony behavior by joining
performers revealed a significant difference in average
asynchrony between playing with a human vs. computer
partner, as well as an interaction between partner animacy and
task similarity for asynchrony variability. Like we saw for starting
performers, joining performers anticipated the computer partner
more frequently than a human partner. They also exhibited
greater asynchrony variability with human partners, with this
difference being greater in the similar task condition compared to
the dissimilar task condition. We calculated the participant-wise
human vs. computer difference (HvC difference) in average
asynchrony and compared this to (1) the HvC difference in alpha
activity and (2) performer EQ. In examining the relationship
between average asynchrony and alpha activity we looked at
separate electrode groups, as well as activity averaged across
electrode groups. None of these correlations revealed significant
associations. We also calculated the participant-wise HvC
difference in asynchrony variability and compared this variables
to the (1) the HvC difference in alpha activity and (2) performer
EQ. Neither of these associations were significant.

Our alpha activity analysis for joining performers did not
reveal any significant interactions between variables or main
effects so we did not examine further correlations with this data.

DISCUSSION

The current study is the first to systematically investigate
how co-actor asymmetries act and interact to shape neural
and behavioral activity during interpersonal interaction. Our
findings indicate that asymmetries in musical role (starting
vs. joining), task similarity (similar vs. dissimilar melodic
parts), and performer animacy (human-to-human vs. human-
to-non-adaptive computer) act to define specific interactive
contexts within which performers experience characteristic
relationships with their co-actor’s behavior. These characteristic
relationships are reflected in the temporal dynamics of neural
alpha modulation and behavioral coordination that each actor
exhibits during a short period of musical unison.

Our observation of increased note-onset asynchrony during
performance with a computer partner indicates a general
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discrepancy between human and computer timing dynamics.
This is likely due to the lack of adaptability inherent to the
computer partner in our study (Repp and Keller, 2008) and the
natural human inclination to anticipate periodic stimuli (Mates
et al., 1994). As noted above, we did not statistically compare
neural or behavioral activity between the starting vs. joining
role due to the difference in movement onset during the final
unison phrase. However, a qualitative review of our findings as
presented in Figure 3 suggests that in the computer condition
both starters and joiners generally played ahead of the computer.
Again, this likely relates to a human inclination to play faster than
the set computer tempo.

In the human condition, joiners typically played just slightly
ahead of starters on average. This result is similar to Goebl
and Palmer’s (2009) observation that follower pianists tended
to temporally precede leader pianists in conditions where they
could hear the leader’s part of a duet as well as their own. This
anticipation was small when the leader also heard the follower,
and greater when the leader could only hear themselves. The
roles in our study were most similar to the full auditory feedback
condition in their study, with the exception that starters and
joiners in our study alternated playing prior to the final unison
phrase. As a result, the starter may have focused more on their
own part, creating some similarity between our starter vs. joiner
roles and the leader-follower condition in Goebl and Palmer’s
study in which the leader only received auditory feedback
corresponding to their own behavior. With this understanding of
the relationship between co-performers, the observed temporal
asynchrony is, in fact, consistent with the idea that joiners
exhibited a small negative mean asynchrony (NMA) with respect
to the starter after the starter played the first three notes of the
phrase final unison phrase.

Interestingly, we observed reduced variability of note-onset
asynchronies during interaction with the computer partner as
compared to the human partner. These results are somewhat
contrary to previous findings demonstrating that optimal
levels of mutual adaptivity during synchronization lead to
reduced variability (Fairhurst et al., 2012). We speculate that
this discrepancy is driven by the fact that we evaluated
coordination stability over only four key-presses, while the
previous work looked at much longer sequences of synchronized
taps. Given the dynamic nature of interpersonal interaction,
measures of coordination averaged over a long time-window
may be substantially different than coordinative patterns in
a local segment.

For performers in the joining role we observed a consistent
alpha synchronization followed by a desynchronization or return
to baseline in alpha-band activity immediately prior to the
unison. This finding could indicate that joining performers were
preparing to start playing the unison, with alpha ERD reflecting
movement preparation (Arroyo et al., 1993; Pfurtscheller et al.,
1997; de Jong et al., 2006; Gladwin et al., 2008; Yamanaka and
Yamamoto, 2010). At the same time, this may also reflect the
joiner attending to their partner’s (i.e., starter’s) musical activity
in order to achieve joint temporal coordination (Jin et al., 2006;
Klimesch et al., 2007; Klimesch, 2012; Novembre et al., 2016). The
time course of alpha modulation in joining performers was not

significantly affected by having a similar vs. dissimilar musical
task to one’s co-performer. Starting performers were already
playing throughout the unison measure and generally displayed
small alpha modulations around the unison onset. In some
conditions they also displayed distinct alpha desynchronization
prior to the unison onset, independent from alpha ERD that
would have been associated with the start of their playing at the
beginning of the measure.

As we saw for joining performers, for starting performers
playing with a human partner there was no effect of musical
task similarity on alpha modulation prior to unison. However, in
the condition where the co-performer was the computer partner
and their parts were musically similar we actually observed
ERS, constituting significantly different alpha activity from the
condition in which starters had a distinctly different musical
part from the computer partner. While this result is somewhat
consistent with previous work revealing that individuals exhibit
greater alpha ERD during interaction with a human partner
vs. a computer partner (Billeke et al., 2014), it also provides
a more nuanced view of the effects of role asymmetries on
neural processes related to perception and action. Specifically,
musical task similarity appeared to moderate the effect of playing
with a computer partner but only for performers assuming a
starting role in the duet. We speculate that the experience of
being a starting performer during interaction with a computer
partner playing a similar part is akin to that of performing a solo
with a karaoke accompaniment. Among all of the performance
conditions created in the current study this situation may invoke
the strongest solo mindset for a performer and therefore result
in the least attentiveness to co-performer behavior. This view
is supported by previous studies which have related ERS in
the alpha band to the inhibition of external stimuli or co-actor
activity during movement (Klimesch et al., 2007; Babiloni et al.,
2012; Klimesch, 2012).

Notably, there was no effect of electrode grouping on
starter or joiner alpha modulation, and no interaction between
electrode grouping, performer animacy, and task similarity.
The occurrence of consistent alpha modulation across left and
right parietal and frontal-centro-medial areas is in line with
the role of alpha as facilitating long-range communication for
domain-general attentional functions. Such attention processes
in turn would act to support the temporal coordination of social
interactive behaviors in our task. This pattern is in contrast to
the right centro-parietal alpha modulation specific to the subtle
timing difference between performers in a joint tapping task
(Tognoli et al., 2007). Also, the lack of lateralization in the centro-
parietal sites here speaks against the relation to movement-related
functions because our participants used only the right hand for
keyboard playing.

In the current study we did not directly compare starter vs.
joiner alpha activity because movement onsets differed between
the two conditions. Because Konvalinka et al. (2014) found
greater frontal alpha desynchronization in leaders compared
to followers, one might expect a similar pattern of difference
between our starting and joining conditions separate from the
difference due to distinct movement onsets. However, it is
important to note that our definition of starting and joining
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roles depended on the global music context rather than a
local measure of adaptability of own movement interval to the
partner’s previous interval, employed by Konvalinka et al. (2014),
which fluctuated from time to time. Indeed, a visual comparison
of our starter and joiner data did not reveal noticeable differences
in the magnitude of alpha suppression. Together these findings
indicate that the assignment to starter and joiner roles in our
study did not have the same effect on co-actor attention as the
emergent functional asymmetry at the beat-to-beat level between
leaders and followers in the previous work. In other words, it is
quite possible that the roles defined by musical turn-taking at the
phrase-structure level in our design engage the brain in a different
manner than asymmetrical roles identified at a local level. Also,
the musical task in our study is considerably more challenging
than synchronized finger-tapping and generally required greater
attention to co-actor behavior for both starters and joiners.

The effects of partner animacy that we saw on behavioral
patterns of note-onset asynchrony magnitude and variability
were not associated with any systematic difference in alpha
modulation. However, we did detect a moderate, non-significant
correlation relating alpha modulation to note-onset asynchrony
variability for the starting performer when interacting with the
computer partner. Namely, the difference in alpha ERD between
the similar and dissimilar musical task conditions was negatively
associated with the difference in note-onset asynchrony
between the two conditions. This association indicates that
individuals who exhibited greater alpha suppression in the
“dissimilar” task condition compared to the “similar” task
condition also displayed greater variability of note-onset
asynchronies in the “dissimilar” vs. “similar” condition. As
we have noted this effect was only approaching significance,
but it suggests that there may be some connection between
attention to co-actor behavior and increased variability,
possibly as the result of high levels of adaptation during
interpersonal coordination when task similarity between
co-actors plays a role.

Interestingly, we further identified a significant correlation
between the difference in asynchrony variability in the “similar”
and “dissimilar” conditions and performer EQ for starting
performers interacting with a computer partner. This association
established that individuals with a higher EQ exhibited greater
asynchrony variability in the “dissimilar” condition compared
to the “similar” condition. In both Pecenka and Keller’s (2011)
work and our own study, increased perspective-taking or
empathy therefore appears to be associated with a greater
influence of external stimulus or co-actor activity on an
individual’s temporal pattern of behavior. During tasks which
involve temporal coordination, individuals respond to this
influence by continuously acting to adapt their behavior to
the ongoing stimulus or co-actor activity. As a result, their
behavior becomes more variable than that of an individual
who doesn’t exhibit the same degree of adaptivity. Thus, EQ is
thought to correspond to the level of adaptivity an individual
exhibits during interaction, with higher EQ correlating with
greater adaptivity.

It is possible that we saw heightened variability specifically
within the “dissimilar” condition because performers saw

themselves as occupying a more distinct role than their co-
performer, thus making their contribution to the ensemble
somewhat more tangible. Our alpha ERD findings indicate that in
the “similar,” computer condition performers were less attentive
to the co-performer part, likely because they saw themselves as
occupying a solo role and did not need to adapt or be adapted
to in order to achieve a successful performance. However, once
performers experience their parts as distinct and complementary,
they may experience a greater need for adaptation between
performers to achieve the joint goal. People with high levels
of perspective-taking are more likely to respond to this context
with an increase in adaptivity to their co-performer, while those
with lower levels are more likely to maintain a more stable
pattern of behavior.

Although we did not replicate the direct association between
EQ and alpha ERD presented in previous work using a musical
performance observation task (Babiloni et al., 2012), our results
still suggest that there are strong connections between trait
empathy, alpha modulation, and behavioral coordination during
interpersonal interaction. Many existing studies have established
an association between social interaction and alpha modulation,
often suggesting that alpha modulation in MNS regions is
involved in sensorimotor processing during social interactions
(Babiloni et al., 2012; Sanger et al., 2013; Konvalinka et al.,
2014; Novembre et al., 2016). However, to our knowledge,
no existing work has illustrated how trait empathy might
be related to alpha modulation itself. Our findings suggest
that if a person has high trait empathy, perspective-taking
may occur more naturally. In turn, this may be associated
with more dynamic alpha modulation in response to the
individual’s current task demands, and, depending on these
conditions, more sensitivity in the action-perception of a co-
actor’s behavior. Our study is also the first to capture the effects
of multiple levels of co-performer asymmetries simultaneously
in a controlled musical performance task. By always having
participants perform an identical musical sequence in the
unison phrase based on their starter or joiner role we are
able to demonstrate that co-performer asymmetries in the
priming context have a measurable impact on subsequent alpha
modulation during the unison.

Future work can build on these findings to identify how
specific levels of engagement, as indicated by alpha ERD,
are dynamically linked to collective performance outcomes
which are influenced by certain asymmetries between co-
actors. This suggests that asymmetries between co-actors
could also be adjusted systematically during real world
interaction in order to achieve greater actor engagement.
For example, based on our own findings, when people have
to interact with computer-generated actors, the design of
the computer co-actor should include features of adaptation
to human co-actor’s behavior in order to support human
engagement during interaction, especially if the two actors
have similar task roles and the human initiates the task.
Alternatively, when people are engaged in situations where
certain asymmetries associated with lower engagement are
unavoidable, other adjustments and strategies could be employed
to increase engagement and improve performance. For
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instance, in the context of network ensemble music performance,
long audio and video delays may prevent one performer from
effectively adapting to their co-actor. The other individual might
then deal with this issue by re-structuring the environment
in order to remain engaged with their (apparently not so
successfully adaptive) co-performer at key points during the
interaction. In a musical context, such a solution might be as
simple as adding a written reminder to attend to another group
member’s behavior, or utilizing shared cues to overcome the
timing discrepancies at a specific point in music. At a broader
level, this could also involve training individuals to remain
engaged with co-actor behavior, even when engagement is less
likely to occur naturally, as enhancing an individual’s engagement
is likely to improve collective performance.

Our study includes several noteworthy limitations and also
illuminates areas for future work. First, our findings regarding
the effect of partner animacy are consistent with previous
work evaluating the effects of non-adaptivity during ensemble
performance (e.g., Demos et al., 2017). However, we are
somewhat limited in drawing conclusions about this effect given
that in our human partner condition both co-performers were
always able to see each other while in our computer partner
condition there was no physically or visually presented co-actor.
It is possible that the visual information about co-performer
behavior available in the human partner condition afforded
smaller average note-onset asynchronies and may have affected
alpha band activity as well. Interestingly, however, there is also
existing work showing that the absence of visual information
during piano duet performance is associated with a higher
degree of coupling between performers (Walton et al., 2015).
In this case the authors suggest that musicians become more
tightly coordinated in order to increase the likelihood of cohesive
performance. Future work should aim to establish a deeper
understanding of the independent effects of co-performer non-
adaptivity and visual information about co-performer behavior.
It is worth noting, however, that our key results were observed
within each partner condition. This means that even when
performers experienced the same visual environment they
experienced the duet performance differently depending on the
musical similarity between the two parts.

Second, while we demonstrated a relationship between EQ and
note-onset asynchrony variability within individual performers,
our study was not designed to evaluate the effect of asymmetries
between co-performers’ persistent, social personality traits or
behavioral characteristics. Extensions of our present work could
be used to identify associations between pairwise asymmetries
in characteristics like empathy and locus of control and (1)
co-actor differences in behavioral and neural activity or (2)
collective coordination outcomes. Recent work has revealed that
individuals with expertise in couple dancing (e.g., Tango, Salsa,
Swing) show enhanced neural activity when they perform the role
for which they are an expert (i.e., leader vs. follower) (Chauvigné
and Brown, 2018). These findings indicate that trait-level
asymmetries between co-actors significantly affect each actor’s
neural and behavioral processes during interpersonal interaction.

Our role asymmetries existed at the musical phrase level
context, which is notably shorter-term than the trait level

context. However, it is important to remember that asymmetries
existing at even shorter timescales are also likely to influence
the temporal dynamics of interpersonal coordination. In many
social interactions, musical and otherwise, co-actor asymmetries
are dynamically varied. As a result, shifts in attention and related
patterns of coordination are likely to fluctuate frequently. This
occurs in other creative social interactions like dance and acting,
especially those which allow for some degree of improvisation,
as well team or unit-based scenarios like sporting events and
military missions.

The continued, simultaneous use of neural and behavioral
measurement techniques will allow future researchers to further
investigate the ability of individuals to adapt to changing
asymmetries while maintaining coordinated activity. Notably,
our focus in this study was on the neural and behavioral
activity of two co-performers during interaction and did not
include consideration of a larger group of co-actors or the
experience of a listener or observer. It would, for example, be
valuable to determine whether the kind of causal influences on
respiration and heart rate variability Müller and Lindenberger
(2011) observed between a conductor and choir members are also
related to distinct conductor vs. choir member alpha modulation.
Additionally, future work exploring the association between co-
performer alpha modulation and listener or observer experience
will provide critical insight into how co-actor engagement is
facilitated by rapid modulations of neural activity and may shape
a third-party audience’s perception of collaborative performance.
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Both perceiving and processing external sound stimuli as well as actively maintaining
and updating relevant information (i.e., working memory) are critical for communication
and problem solving in everyday acoustic environments. The translation of sensory
information into perceptual decisions for goal-directed tasks hinges on dynamic
changes in neural activity. However, the underlying brain network dynamics involved
in this process are not well specified. In this study, we collected functional MRI
data of participants engaging in auditory discrimination and auditory working memory
tasks. Independent component analysis (ICA) was performed to extract the brain
networks involved and the sliding-window functional connectivity (FC) among networks
was calculated. Next, a temporal clustering technique was used to identify the
brain states underlying auditory processing. Our results identified seven networks
configured into four brain states. The number of brain state transitions was negatively
correlated with auditory discrimination performance, and the fractional dwell time of
State 2-which included connectivity among the triple high-order cognitive networks and
the auditory network (AN)-was positively correlated with working memory performance.
A comparison of the two tasks showed significant differences in the connectivity of the
frontoparietal, default mode, and sensorimotor networks (SMNs), which is consistent
with previous studies of the modulation of task load on brain network interaction. In
summary, the dynamic network analysis employed in this study allowed us to isolate
moment-to-moment fluctuations in inter-network synchrony, find network configuration
in each state, and identify the specific state that enables fast, effective performance
during auditory processing. This information is important for understanding the key
neural mechanisms underlying goal-directed auditory tasks.

Keywords: dynamic network interaction, functional MRI, goal-directed auditory tasks, independent component
analysis, brain state clustering

INTRODUCTION

Both perceiving and processing external sound stimuli as well as actively maintaining and updating
relevant information (i.e., working memory) are critical for communication and problem solving
in everyday acoustic environments (Huang et al., 2013). The translation of sensory information
into perceptual decisions for goal-directed tasks hinges on dynamic changes in neural activity
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(Kopell et al., 2014). However, the dynamic changes in brain
networks involved in this process are not well specified.

Functional connectivity (FC) is generally used to evaluate
interactions in the brain, and it usually refers to the degree of
co-variation between spatially distributed signals emanating
from the brain. Interactions include FC among different
brain regions that constitutes a local brain network and FC
among different brain networks that constitute the large-
scale brain network. Resting state fMRI measurements
have shown that a brain network of auditory modality-
specific areas in the temporal lobe participate in auditory
processing (Damoiseaux et al., 2006). Task fMRI studies
based on different cognitive loads have reported that distinct
cortical networks were activated by auditory attention and
working memory load (Huang et al., 2013), and FC between
the supratemporal plane (STP) and inferior parietal lobule
(IPL) in the auditory network (AN) was modulated when
discriminating and actively maintaining different pitch-varying
sounds (Hakkinen and Rinne, 2018). Another study on auditory
word processing based on FC analyses demonstrated that
auditory processing recruited the language network (LN),
the dorsal attention network (DAN), and the default mode
network (DMN). This study also found that intra-network
connectivity was stronger in one language than in another
(Jung et al., 2018).

Although previous studies have suggested that multiple
brain networks are involved in processing auditory goal-
directed tasks, it should be noted that these FC studies
are commonly conducted based on the hypothesis that FC
in the human brain is stable. Correspondingly, the network
dynamics during the auditory process are unclear. Recent
work has increasingly found that FC is dynamic and evolves
in biologically meaningful ways at temporal scales ranging
from years to seconds (Gonzalez-Castillo and Bandettini, 2018).
At shorter temporal scales, FC patterns computed over tens
of seconds contain sufficient information to determine the
tasks in which subjects are actively engaged (Shirer et al.,
2012; Gonzalez-Castillo et al., 2015). A study that used
magnetoencephalographic signals to assess human listeners
judging acoustic stimuli composed of carefully titrated clouds
of tone sweeps, suggested that global network communication
during perceptual decision-making was implemented in the
human brain by large-scale couplings between beta-band neural
oscillations (Alavash et al., 2017). However, how large-scale
functional network interactions change dynamically in the
temporal domain and how different cognitive loads modulate
dynamic functional network connectivity (FNC) in auditory
tasks is still unclear. Further investigation of these unsolved
questions is important to improve our understanding of how
these processes support goal-directed functioning in everyday
acoustic environments.

The recent development of time-resolved analyses of
functional neuroimaging data provide a unique opportunity
to examine time-varying reconfigurations in global network
structure (Shine et al., 2016). Many studies now use independent
component analysis (ICA) to extract brain networks and assess
dynamic changes in connectivity strength among networks

to explore the neural mechanisms underlying development
and brain disease (Faghiri et al., 2018). In this study, we used
this method to track the dynamic changes in FNC during
different auditory tasks. We also assessed the modulation
of task load on FNC and its correlation with cognitive
behaviors. We believe that this dynamic FNC analysis may
reveal detailed information regarding brain dynamics during
auditory goal-directed tasks.

MATERIALS AND METHODS

Participants
Twenty college students (mean age: 22.5 years, age range: 20–24,
10 female, right handed) participated in this study. They all had
normal hearing, with no history of neurological disorders.

Experiments
The whole experiment included one auditory discrimination run
and one auditory working memory run, with a total length
of 402s for each run. Both runs started with an 8-s fixation,
followed by eight 36-s sound blocks interleaved with eight 12-s
resting blocks. The eight task block included four sound-source
categories (two living categories of animal sounds and human
sounds and two non-living sound-source categories of traffic
sounds and tool sounds) intersected with two directions (left
and right) (Engel et al., 2009). In each sound block, 12 sound
samples (with same category and direction) were randomly
presented, and each lasted for 2.5 s with an inter-sample-interval
of 0.5 s. In the auditory discrimination task, participants were
asked to judge whether the current sound samples were same
as the first sound samples in that block (0-back). For the
sound blocks in the auditory working memory task, a 2-back
paradigm was used; here, participants were instructed to judge
whether a current sound sample was same as the one given
two samples before.

Data Collection
Imaging data were acquired using a 3.0-T SIEMENS MRI
scanner. An eight-channel head coil was used during scanning.
Foam pads and earplugs were used for all participants to reduce
head motion and scanner noise. To prevent visual input from
distracting participants from the auditory task, eyeshades were
worn by participants during testing. T2∗-weighted images were
acquired using a gradient echo-planar imaging (EPI) sequence
with the following parameters: repetition time (TR) = 2000 ms,
echo time (TE) = 30 ms, voxel size = 3.1 × 3.1 × 4.0 mm3,
matrix size = 64 × 64, slices = 33, slice thickness = 4 mm,
slice gap = 0.6 mm. T1-weighted anatomical images were
acquired using a three-dimensional magnetization-prepared
rapid acquisition gradient echo (3D MPRAGE) sequence with
the following parameters: TR = 1900 ms, TE = 2.52 ms, time
of inversion (TI) = 1100 ms, voxel size = 1 × 1 × 1 mm3,
matrix size = 256 × 256. Participants perceived auditory
stimuli through the earphones of the VisuaStim Digital MRI
Compatible fMRI system.
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Data Preprocessing
The DPABI toolbox1 was employed for data preprocessing. For
each run, the first four images were removed to minimize
magnetic saturation effect. Slice timing and head motion
correction were performed for the remaining functional images.
The translation and rotation parameters of head motion were
less than 2 mm and 2◦. We also calculated the framewise
displacements using a method reported in a previous study
(Jenkinson et al., 2002). The framewise displacements were
0.04 ± 0.01 and 0.04 ± 0.02 for the two runs, demonstrating the
head motion across frames was controlled well. Next, structural
T1-weighted images were co-registered to the mean functional
image, and then normalized to Montreal Neurological Institute
(MNI) space using a non-linear registration. EPI data were
spatially normalized to MNI space with warping parameters
estimated from coregistered, high-resolution T1 images, and
voxel size was re-sampled as 3 × 3 × 3 mm3. The normalized
data were then smoothed with a 6-mm full-width half-maximum
Gaussian kernel to improve the signal-to-noise ratio. After
that, experimental paradigm convolved with the canonical
hemodynamic response function was used as a regressor in a
general linear model to calculate the brain activation map in
each task. Six head motion parameters and their derivatives
was used as covariates. For the FC analysis, six head motion
parameters and their derivatives, as well as the experimental
paradigm convolved with the canonical hemodynamic response
function, were regressed out of the smoothed fMRI time series.
The residual was used for the task-state FC analysis to exclude
the artificial correlation between networks induced by shared
activations (Poldrack et al., 2011).

Functional Network Extraction
Functional brain network data were extracted using the group
ICA method implemented by the GIFT toolbox2. Spatially
independent component maps and their respective time series
were extracted from the data using the following steps. For each
subject, preprocessed data were first reduced to 27 components
using principle component analysis. Next, individual data were
appended along the time dimension and another principle
component analysis was performed for group level dimension
reduction, from which 18 components were retained. The number
of components was estimated based on the minimum description
length criterion. Once this had been performed, the infomax
algorithm was applied for ICA; here, the algorithm was run 10
times to reduce the effect of subject order. The results were
clustered via ICASSO3 and the most central solution was used to
ensure stability. For all components, the stability index of ICA
estimate-clusters was around 1, demonstrating that the result
was stable even though the subject order was adjusted. Using
the back-reconstruction approach, the spatial maps and time
courses for each subject were extracted. After visually checking
all components, those with a peak in white matter, ventricles,
brain stem, or cerebellum, or those with a spatial map and

1http://www.rfmri.org/dpabi
2http://mialab.mrn.org/software/gift
3http://research.ics.aalto.fi/ica/icasso/

time course dominated by high frequency fluctuations (likely
due to motion or physiological effects) were removed. Fourteen
components remained based on brain activation maps of the two
tasks (Figure 1) in which significant activations were observed in
auditory regions, visual regions, sensorimotor regions, cerebellar
regions, frontoparietal regions, DMN regions and frontoinsular
regions in salience network (SN; p < 0.001, corrected for
false discovery rate). Previous studies about the brain networks
involved into auditory cognitive tasks (Schneiders et al., 2012;
Huang et al., 2013; Kumar et al., 2016) were also referred to. Finally,
the 14 components were grouped into 7 functional brain networks.

Dynamic FNC Calculation
The whole data processing steps were illustrated in Figure 2. For
time series data of the 14 selected components, we first performed
linear detrending and low pass filtering (0.1 Hz). Next, a sliding-
window approach was used to calculate dynamic FNC. A window
size of 30s was selected according to previous studies, which
suggested that 30s–60s of data can effectively capture dynamic
information (Hutchison et al., 2013; Allen et al., 2014; Faghiri
et al., 2018). A tapered window was created by convolving a
Gaussian with a rectangular function. For each window, a full
correlation matrix was calculated. The sliding step was 1 sample,
resulting in a total of 178 dynamic FNC matrices.

Brain State Clustering and State Analysis
To examine the reoccurring FNC patterns in the temporal
process, we used k-means clustering on all sliding-window
FNC matrixes of all subjects by Manhattan distance because
L1 distance is more suitable for calculating similarity of high-
dimensional data (Charu et al., 2001). A maximum iteration
of 150 was used on the time-varying FNC matrices to cluster
brain states. Different number of clusters was calculated from
2 to 10. Through dividing within- by between-cluster distances,
four clusters was determined by the elbow criterion of the
cluster validity index.

After obtained the four brain states, state transition was
defined as the number of times a subject transitioned from one
state to another. The time proportion of each subject stayed in
each state within the whole task duration was defined as fractional
dwell time in that state. Due to the non-normality of the two
measures after Kolmogorov-Smirnov test (the number of state
transitions: p = 0.026, and the fractional dwell time in four states:
p = 0.034, 0.021, 0.117, and 0.200) with SPSS 22.0 software4,
the number of state transitions and the fractional dwell time of
each state were separately compared between the two tasks using
permutation test. The permutation test was performed as follows.
Mean inter-group difference of each measure was calculated
firstly, and then all the values of this measure were randomly
reassigned into the two groups for 10,000 times. If less than 5%
of mean values of randomized inter-group differences were equal
or larger than the mean value of original inter-group differences,
the result was seemed as significant (p < 0.05). In addition, the
spatial strength of each state was also compared between tasks
using paired t-tests (p < 0.05, corrected for false discovery rate).

4https://www.ibm.com/analytics/spss-statistics-software
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FIGURE 1 | The brain activation maps during auditory discrimination task (A) and auditory working memory task (B) calculated by general linear model.

Correlation Analysis of Brain State
Measure With Behavior
For the auditory discrimination and auditory working memory
tasks, dprime scores (Haatveit et al., 2010) were calculated
separately to evaluate behavioral performance. Pearson
correlations of dprime score with number of state transition
and fractional dwell times were conducted to examine whether
the dynamic brain network states were related to behavior. The
framewise displacement of each subject was used as a covariate
in the partial correlation analysis. The significance of the results
was tested using fisher t-test (p < 0.05).

RESULTS

Spatial Maps of Task-Related Functional
Brain Networks
After removing the components related to artifacts, we selected
14 task-related brain network components based on the
spatial maps and frequency distribution as mentioned in the
method section. The extracted 14 independent components were
distributed in 7 functional networks, including the AN, the visual
network (VN), the sensorimotor network (SMN), the cerebellar
network (CER), the frontoparietal network (FPN), the DMN,
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FIGURE 2 | The whole data processing steps.

and the SN (Figure 3). The spatial maps of functional networks
were displayed using a threshold of z-score > 2.0 and multiple
components within one functional network were displayed in
a composite plot.

Dynamic Functional Network
Connectivity Patterns
The dynamic interactions among the seven functional networks
were evaluated using a sliding-window correlation analysis
method on the corresponding time series. The 178 dynamic

FNC matrices were clustered into 4 brain states. For better
visualization, each state was represented by its centroid and is
shown in Figure 4 using a threshold of absolute correlation
value r > 0.5 (The original connectivity matrix is shown in
Supplementary Figure S1).

As shown in Figure 4, State 1 consisted of all seven brain
networks. In State2, strong connectivity was observed in three
higher cognitive networks (FPN, DMN, SN) and two primary
networks (AN and VN). In this state, we can see strong inter-
network interactions among the three higher cognitive networks
as well as between a higher cognitive network (FPN) and
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FIGURE 3 | The seven brain networks extracted by independent component analysis. (A–G) refer to AN (auditory network), VN (visual network), SMN (sensorimotor
network), CER (cerebellum network), FPN (frontoparietal network), DMN (default mode network), and SN (salience network), respectively. Number in color bar means
component number. Brain networks in panels (B,C,E,F) were composed by multiple independent components.

a primary network (AN). In contrast, strong FC in State 3
and State 4 involved two cognitive networks (DMN, FPN)
and two primary networks (SMN, VN or AN). In State 3,
we observed strong cross-network interactions between FPN
and SMN as well as between SMN and VN. With respect to
State 4, only one strong inter-network interaction was found
between FPN and AN.

Brain State Analysis Results
The average state transition times and fractional dwell time of
each state for the two tasks are listed in Table 1. The number
of state transitions were similar for both tasks (permutation test,
p = 0.17). For fractional dwell time, it can be seen that nearly
the same percentage of time was spent in the two tasks for
States 3 and 4, while the fractional dwell times of State 1 and
State 2 showed opposite trends in the auditory discrimination
and auditory 2-back tasks. When comparing the fractional dwell
times of each state between the two tasks, there was no significant
differences (permutation test, p = 0.33, 0.20, 0.98, and 0.96,
respectively for the four states).

The spatial pattern of each state was also compared between
the auditory discrimination task and the auditory working
memory task. Significant differences were observed for States
1, 3, and 4, but only differences in State 4 were retained
after correcting for multiple comparisons (see Figure 5). In
State 4, stronger negative connectivity between FPN and DMN
and stronger positive connectivity between DMN and SMN
were found for the working memory task, while stronger
positive connectivity within FPN was found for the auditory
discrimination task (p < 0.05, FDR corrected).

Correlation Results of Brain State
Measure With Behavior
Significant correlation of dprime score with the number of
state transition and with fractional dwell time in different states
for the two tasks were separately reported in Figure 6. It
can be seen clearly that a negative correlation (r = −0.590,
p = 0.004, Figure 6A) between dprime scores and the number
of state transitions in the auditory discrimination task. For the
auditory working memory task, there was a positive correlation
(r = 0.577, p = 0.005, Figure 6B) between dprime scores and the
fractional dwell time in State 2. No significant correlation was
observed between dprime scores and the fractional dwell time
in other States.

DISCUSSION

In this study, we used data-driven ICA method to extract
functional brain networks, and then a temporal clustering
analysis on the sliding-window FNC to reveal the time-variable
FNC pattern (i.e., brain state) during two goal-directed auditory
tasks. This approach allowed us to isolate moment-to-moment
fluctuations in inter-network synchrony, which were related
to behavioral variability during auditory discrimination and
working memory tasks. The findings in this study also reveal the
modulation of cognitive demands on the connectivity of time-
variable functional networks. Altogether, this study provides
a new perspective on time-sensitive shifts in brain network
interactions, and this may help us understand the key neural
mechanisms underlying goal-directed auditory tasks.
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FIGURE 4 | Four reoccurring brain states during auditory processing revealed by clustering analysis. Panels (A–D) refer to State 1, 2, 3, 4. Color bars refer to the
connectivity strength. AN: auditory network; VN: visual network; SMN: sensorimotor network; CER: cerebellum network; FPN: frontoparietal network; DMN: default
mode network; SN: salience network.

TABLE 1 | The average state transition times and fractional time in each state for the two tasks.

No. of state transition Fractional dwell time in each state

State 1 State 2 State 3 State 4

Auditory discrimination 10.15 ± 0.93 0.26 ± 0.05 0.15 ± 0.03 0.22 ± 0.05 0.37 ± 0.05

Auditory 2-back 11.7 ± 0.64 0.19 ± 0.04 0.21 ± 0.04 0.22 ± 0.03 0.37 ± 0.04

In this study, seven brain networks were found to be
configured into four states. State 1 included all networks. States
2, 3, and 4 mainly included strong connectivity in FPN, DMN,
AN, VN, and SMN, but the interaction patterns of these
networks differed in each state, demonstrating that these states
may contribute to different cognitive processing. The network
configuration is consistent with previous auditory cognitive
studies (Schneiders et al., 2012; Huang et al., 2013; Kumar et al.,
2016). For example, using auditory near perception threshold
(NT) paradigms, researchers observed that a stronger integration
of the auditory network with the frontoparietal and other

high-order cognitive networks was key for subsequent auditory
performance (Leske et al., 2015). In another study, researchers
investigated the brain system for actively maintaining sound
memory over short periods of time (Kumar et al., 2016). Their
results supported the hypothesis that a system maintained sound-
specific representations in the auditory cortex by projecting
from higher-order areas, including the hippocampus and frontal
cortex. Another recent study documented that the activation
of the auditory cortex and adjacent regions in the IPL were
strongly modulated during active listening and depended on
task requirements (Wikman and Rinne, 2018). In contrast
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to these studies, we investigated network interactions from
a dynamic perspective and found that brain States 2 and 4
mainly showed a strong interaction between FPN and AN,
suggesting that these two states may contribute to sound
maintenance and active listening. State 3 contained strong
interactions in both FPN-SMN and SMN-VN connectivity. The
involvement of SMN, which is important in motor output
(De Luca et al., 2005), implies that these interactions may
contribute to cognitive decision and button-press. Further

FIGURE 5 | Significant differences in spatial pattern of State 4 in the
comparison of auditory discrimination with auditory working memory tasks.
No significant differences were observed in other States. AN: auditory
network; VN: visual network; SMN: sensorimotor network; CER: cerebellum
network; FPN: frontoparietal network; DMN: default mode network; SN:
salience network.

studies with high temporal resolution technique are needed to
verify the inferences.

Moreover, a comparison between the auditory working
memory and discrimination task datasets showed significant
differences in State 4, demonstrating that State 4 is an indicator
of cognitive load. The load-related increases in connectivity
among cognitive (FPN and DMN) and SMNs are coincident
with the finding of increased task-driven connectivity between
the frontoparietal, dorsal attention, and sensory networks by
a previous study (Shine et al., 2016). Moreover, the increased
negative correlation of FPN-DMN connectivity in working
memory task is consistent with a previous finding (Schneiders
et al., 2012), and further reveal the cognitive resources demanded
for sound maintenance in this state. These results also suggest
that global integration may have facilitated communication
during the more challenging working memory task.

Interestingly, by using dynamic network analysis in this
study, shifts among brain networks can be measured and
the brain-behavior relationship showed that the number of
brain state transitions was negatively correlated with auditory
discrimination performance, meaning that fewer state transitions
contribute to better behavioral performance, but this is not
the case for the auditory working memory task. In this study,
we also found that the fractional dwell time in State 2 was
positively correlated with auditory working memory behavior.
In State 2, the triple networks (i.e., FPN, DMN, and SN) and
the typical FPN-DMN anticorrelation were most prominent.
The triple networks have been suggested as the most crucial
components of a unified network model and are thought to be
extensively involved in diverse cognitive functions (Menon, 2011;
Li et al., 2018). A strong competitive relationship between FPN
and DMN was previously reported to be significantly correlated
with working memory behavior (Hampson et al., 2010) and
may represent a cerebral mechanism that switches mental focus
between internal channels (supported by DMN) and external,
attention-demanding events (Hampson et al., 2010). Moreover,

FIGURE 6 | Correlation of dprime score with the number of state transition (A) and fractional dwell time in corresponding state 2 (B) in the two tasks. Only fractional
dwell time in State 2 showed significant correlation with dprime score of auditory 2-back task.
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the connectivity between the high-order cognitive network (FPN)
and the primary network (AN) was also found to be significant
in this state. Taken in the light of these previous studies,
our findings suggest that State 2 probably contributes to top-
down attention switching, cognitive processing, and behavioral
modulation processing (Zhang et al., 2015; Le Merre et al., 2018),
all of which are necessary for good performance. Therefore, more
time spent in this state should correspond to better auditory
memory performance.

CONCLUSION

The human brain network traverses segregated and integrated
states over time (Shine et al., 2016). The dynamic FNC analysis
used in this study can help identify network configurations of
each state, as well as the specific states that enable fast, effective
performance on goal-directed auditory tasks. Other approaches
are also used in investigating dynamic brain connectivity analysis
(Calhoun and Adali, 2016) and a dynamic approach can also
be found with a stable non-dynamic model. Future studies
can further explore the effectiveness of different methods. In
summary, building on the results of previous auditory cognitive
studies, the dynamic functional network analysis in this study
enrich our understanding of the neural mechanisms underlying
auditory discrimination and working memory.
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Temporal Discrimination Thresholds
and Proprioceptive Performance:
Impact of Age and Nerve Conduction
Thorsten M. Odorfer, Teresa Wind and Daniel Zeller*

Department of Neurology, University of Würzburg, Würzburg, Germany

Background: Increasing attention is payed to the contribution of somatosensory
processing in motor control. In particular, temporal somatosensory discrimination has
been found to be altered differentially in common movement disorders. To date,
there have only been speculations as to how impaired temporal discrimination and
clinical motor signs may relate to each other. Prior to disentangling this relationship,
potential confounders of temporal discrimination, in particular age and peripheral
nerve conduction, should be assessed, and a quantifiable measure of proprioceptive
performance should be established.

Objective: To assess the influence of age and polyneuropathy (PNP) on somatosensory
temporal discrimination threshold (STDT), temporal discrimination movement threshold
(TDMT), and behavioral measures of proprioception of upper and lower limbs.

Methods: STDT and TDMT were assessed in 79 subjects (54 healthy, 25 with
PNP; age 30–79 years). STDT was tested with surface electrodes over the thenar
or dorsal foot region. TDMT was probed with needle electrodes in flexor carpi
radialis (FCR) and tibialis anterior (TA) muscle. Goniometer-based devices were used
to assess limb proprioception during (i) active pointing to LED markers, (ii) active
movements in response to variable visual cues, and (iii) estimation of limb position
following passive movements. Pointing (or estimation) error was taken as a measure
of proprioceptive performance.

Results: In healthy subjects, higher age was associated with higher STDT and
TDMT at upper and lower extremities, while age did not correlate with proprioceptive
performance. Patients with PNP showed higher STDT and TDMT values and decreased
proprioceptive performance in active pointing tasks compared to matched healthy
subjects. As an additional finding, there was a significant correlation between
performance in active pointing tasks and temporal discrimination thresholds.
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Conclusion: Given their notable impact on measures of temporal discrimination, age
and peripheral nerve conduction need to be accounted for if STDT and TDMT are
applied in patients with movement disorders. As a side observation, the correlation
between measures of proprioception and temporal discrimination may prompt further
studies on the presumptive link between these two domains.

Keywords: pointing task, position estimation, aging, kinesthesia, somatosensory temporal discrimination, TDMT,
temporal discrimination threshold

BACKGROUND

Temporal aspects of somatosensory processing have drawn
increasing interest as potential markers in the differential
diagnostic workup of movement disorders. In particular, STDT
and TDMT have been shown to be differentially involved. STDT
is a neurophysiological paradigm testing the shortest ISI at which
a subject can perceive successive electrical stimuli applied to the
skin as separate. Higher STDTs have been consistently described
in several types of dystonia (Tinazzi et al., 1999, 2004; Bara-
Jimenez et al., 2000; Aglioti et al., 2003; Fiorio et al., 2003,
2008) as well as in PD (Artieda et al., 1992; Conte et al., 2010,
2016) and multiple system atrophy (Rocchi et al., 2013). TDMT
is defined as the shortest interval at which a subject perceives
two externally induced passive movements as separate (Tinazzi
et al., 2005). Compared to healthy controls, TDMT has been
shown to be increased in PD patients (Fiorio et al., 2007)
and patients with essential or functional tremor (Tinazzi et al.,
2013a, 2014), whereas it was found normal in patients with
writer’s cramp (Tinazzi et al., 2006) and dystonia with tremor
(Tinazzi et al., 2013a).

To date, there have only been speculations as to how an
impairment of temporal discrimination performance and clinical
motor signs in these movement disorders may relate to each other
(Riemann and Lephart, 2002a,b; Lee et al., 2016), warranting
the need for further research. However, prior to disentangling
this relationship on the CNS level, we consider it reasonable
to examine how temporal discrimination is influenced by age
and peripheral nerve conduction – factors which are likely to
confound analyses in groups of movement disorder patients with
high inter-group heterogeneity. Moreover, a quantifiable measure
of proprioceptive performance should be established in order
to assess potential associations between temporal discrimination
and kinesthesia later on.

To this end, we assessed STDT and TDMT of upper and lower
extremities in healthy subjects of different age and in patients
with PNP, combined with a set of three proprioception tasks of
the corresponding limbs. We hypothesized that higher age and
PNP are associated with (i) increased discrimination thresholds
and (ii) decreased proprioceptive performance.

Abbreviations: CNS, central nervous system; EMG, electromyography; FCR,
flexor carpi radialis muscle; fMRI, functional magnetic resonance imaging; GABA,
gamma-aminobutyric acid; ISI, interstimulus interval; LED, light-emitting diode;
PD, Parkinson’s disease; PNP, polyneuropathy; SSEP, somatosensory evoked
potential; STDT, somatosensory temporal discrimination threshold; TA, tibialis
anterior muscle; TDMT, temporal discrimination movement threshold.

MATERIALS AND METHODS

The study conformed to the principles of the Declaration of
Helsinki. It was approved by the Ethics committee of the Medical
Faculty at the University of Würzburg.

Subjects
A total of 54 volunteers without a history of neurological or
psychiatric disease and without clinical symptoms or signs of
such disease were included. Additional exclusion criteria were
a medical history of diabetes or coagulation disorders, and
ongoing medication with oral anticoagulant drugs. In addition,
25 patients with a diagnosis of chronic PNP were included.
Nerve conduction studies and SSEPs were collected in order
to characterize PNP patients, and to exclude impairment of
peripheral nerve or posterior column conduction in healthy
subjects older than 60 years. Conduction studies were performed
at our Clinical Neurophysiology Laboratory (Schwarzer Topas
EMG System, Natus Europe, Planegg, Germany) according to the
clinical standard.

All participants gave their written informed consent
for research.

STDT and TDMT
Somatosensory temporal discrimination threshold was tested
with surface electrodes (anode and cathode with 1 mm diameter
and 1.5 cm distance in between) placed over the thenar or
dorsal foot region. Pairs of square wave electric stimuli with
a duration of 0.2 ms were provided by a constant current
stimulator (Digitimer, Welwyn Garden City, United Kingdom).
Stimulation intensity was determined individually by providing
stimuli with stepwise increasing current until participants were
able to perceive stimuli clearly (i.e., 10 out of 10 attempts). ISIs
were presented in an ascending sequence, starting from 0 ms,
in steps of 5 ms. STDT was defined as the shortest ISI when
participants perceived two separated pulses in three successive
intervals (Tinazzi et al., 1999, 2013a). The mean value of three
runs was taken for further analysis.

TDMT was measured following the procedure described by
Tinazzi et al. (2005). An insulated tungsten needle microelectrode
was inserted at the motor point of the FCR or the TA muscle.
The motor point was determined as the cathode position
with maximum muscle contraction at stimulation by a surface
electrode. The anode was a surface electrode placed 3–4 cm
distally to the cathode. Pairs of subsequent electric stimuli (0.2 ms
duration, 1–2 mA intensity, below individual stimulus intensity
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of STDT testing in all cases) with increasing and decreasing
ISI (2 runs each) were provided. TDMT was defined as the
shortest ISI at which subjects were able to clearly (i.e., three
times in a row) identify two separate movements of wrist
flexion or foot dorsal extension. A movement consisted of a
distinct perceptible muscle contraction without feeling pain or
discomfort, along with an observable slight wrist flexion or foot
dorsal extension, respectively (Tinazzi et al., 2005). To minimize
possible distraction by external stimuli participants wore earplugs
and sleep masks.

The mean value of four runs was taken for further analysis.

Proprioceptive Testing
Proprioception of limbs was assessed by custom-made
goniometers without visual feedback of the respective extremity
throughout the testing procedure (Figure 1). The device for the
upper extremity was built to assess wrist flexion in a range of
0◦–75◦ (Figure 1A), the one for the lower extremity measured
foot dorsiflexion in a range of 0◦–60◦ (Figure 1B). Position 0◦

marks the starting point of motion in our experiment, which
corresponds to 15◦ hand extension and 30◦ plantar flexion
relating to neutral zero method. The goniometers allowed the
investigator to monitor the movements directly and to quantify
their extent on a scale placed outside the box, invisible for the
participant. The respective extremity was fixed with splints and
tapes in order to exclude other joint movements.

Subjects were instructed to perform three different
proprioceptive tasks as precisely as possible, and to initiate
limb movements only on explicit request by the investigator. The
first task (LED) comprised pointing to LED markers attached
to the outside of the device at 15◦, 30◦, 45◦, 60◦, and 75◦ for
the upper limbs (Figure 1A), and 15◦, 30◦, 45◦, and 60◦ for
the right foot (Figure 1B). The participants were instructed to
point to the one lighted LED (e.g., 45◦ in Figure 1A) by one
single and quick movement. The examiner documented the
reached position, and the subject was asked to return to the

FIGURE 1 | Custom-made goniometers to quantify pointing or estimation
errors of (A) the upper and (B) the lower limb. (C) ARROW task: example of a
computer screen instruction (left part) and the corresponding active
movement of the upper limb.

starting position. Thereafter, another LED was activated, and
the procedure started from its beginning. Each LED lighted up
three times during the experiment in a randomized order. In
the second task (ARROW), participants were asked to move
the respective limb in proportion to curved arrows of different
angular dimensions (15◦, 30◦, or 45◦), which were shown on a
computer screen (Figure 1C). Thereby, subjects were instructed
to imitate the range of movement symbolized by the arrow
length. Each length was presented three times in a randomized
order. The basic testing procedure was otherwise similar to LED
task. In the third task (PASSIVE), which was only performed by
the upper limbs, subjects were asked to estimate the position of
their limb after passive movements by the experimenter (right
side 9◦, 21◦, 31◦, 49◦, 63◦ and left side 13◦, 25◦, 43◦, 51◦, 65◦,
each angle presented twice, one after another). Only for this task,
an additional scale was installed at the front of the device so
that the participants were able to indicate the felt position of the
index finger by telling the corresponding number on the scale.
Pointing (LED, ARROW) or estimation (PASSIVE) errors (in
degree) were taken as a measure of proprioceptive performance.
Conduction of the entire assessment took an average of 30 min.

Statistical Analyses
SPSS software (IBM) was used for statistical analyses. We
tested for normality by using the Shapiro–Wilk test. As data
were not normally distributed, we applied the Mann–Whitney
U test for group comparisons and the Spearman test for
correlations. Statistical significance was set at a level of p < 0.05.
The Benjamini–Hochberg procedure was used to correct for
multiple comparisons.

RESULTS

Demographic and Clinical Data
A total of 54 healthy subjects (37 females) with a median age of 54
(range 30–76) years were included into this study. In addition, 25
patients (10 females) diagnosed with PNP with a median age of
61 (range 46–79) years were included. Demographic and clinical
data of PNP patients and a subgroup of age- and sex-matched
healthy controls are summarized in Supplementary Table 1.

STDT and TDMT: Association With Age
and PNP
The results of STDT and TDMT assessment are presented in the
upper part of Table 1.

In the group of healthy controls, higher age was associated
with higher discrimination threshold levels for STDT of the
upper extremities (r = 0.348; p < 0.001; Figure 2A) and the
foot (r = 0.581; p < 0.001; Figure 2B). Moreover, higher age
was associated with higher TDMT levels of the FCR (r = 0.267;
p = 0.005; Figure 3A) and the TA muscle (r = 0.465; p < 0.001;
Figure 3B; all significant after Benjamini–Hochberg adjustment).

Compared to matched controls, patients with PNP showed
elevated STDT and TDMT values, with higher thresholds for the
upper and lower limbs (Table 1).
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TABLE 1 | Results of proprioception and temporal discrimination tasks.

Condition Controls (entire cohort) Controls (age and sex matched) PNP patients Level of significance

Mann–Whitney U test

Mean SD Mean SD Mean SD p-value

STDT right hand (ms) 81.4 17.8 81.4 20.4 121.8 34.3 <0.001∗

STDT left hand (ms)§ 79.6 17.7

STDT right foot (ms) 109.5 20.3 114.9 20.2 157.8 39.6 0.001∗

TDMT right hand (ms) 81.3 16.6 83.3 17.1 126.3 33.4 <0.001∗

TDMT left hand (ms)§ 82.2 15.3

TDMT right foot (ms) 102.9 17.0 106.8 17.9 155.2 35.1 <0.001∗

LED right hand (◦) 3.2 1.9 3.0 1.8 5.9 2.8 <0.001∗

LED left hand (◦)§ 3.6 2.1

LED right foot (◦) 2.7 1.6 2.6 1.4 6.5 2.5 <0.001∗

ARROW right hand (◦) 3.2 2.7 2.9 2.9 5.8 2.7 <0.001∗

ARROW left hand (◦)§ 3.2 1.6

ARROW right foot (◦) 2.6 1.4 2.3 1.2 8.4 4.1 <0.001∗

PASSIVE right hand (◦) 2.2 1.1 2.5 1.3 2.2 1.6 0.132

PASSIVE left hand (◦)§ 1.7 1.0

§ Task not performed in PNP group. ∗Significant after Benjamini–Hochberg adjustment. STDT: somatosensory temporal discrimination threshold, TDMT: temporal motor
discrimination threshold, PNP: polyneuropathy, SD: standard deviation.

FIGURE 2 | Correlations of STDT of (A) upper extremities and (B) foot with
age in healthy controls.

FIGURE 3 | Correlations of TDMT of (A) FCR and (B) TA muscle with age in
healthy controls.
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FIGURE 4 | Correlations of STDT of (A) hand and (B) foot with ARROW task
performance in the total cohort (healthy subjects and PNP patients).

Kinesthesia: Association With Age and
PNP
The results of the proprioceptive testing procedures (LED,
ARROW, PASSIVE) are presented in the lower part of Table 1.

In the whole group of healthy controls there was no significant
correlation between age and higher pointing errors in all
performed tasks.

Compared to the group of matched healthy participants,
patients with PNP performed worse in the pointing tasks (LED,
ARROW), with higher pointing errors for the upper and lower
limbs. In the PASSIVE condition, performance was comparable
between patients and controls (Table 1).

STDT, TDMT, and Kinesthesia
Screening the entire data for a potential correlation between
the two domains, we found higher temporal discrimination
thresholds to be associated with higher pointing errors in the
ARROW task at upper (STDT right hand: r = 0.477; p < 0.001;
Figure 4A/TDMT right FCR muscle: r = 0.546; p < 0.001;
Figure 5A) and lower limbs (STDT right foot: r = 0.336;
p = 0.002; Figure 4B/TDMT right TA muscle: r = 0.523;

FIGURE 5 | Correlations of TDMT of (A) FCR and (B) TA muscle with ARROW
task performance in the total cohort (healthy subjects and PNP patients).

p < 0.001; Figure 5B). Comparable correlations were found
for the LED pointing task: STDT and TDMT correlated
significantly with pointing errors (STDT right hand: r = 0.369;
p = 0.001; Figure 6A/TDMT right FCR muscle: r = 0.435;
p < 0.001; Figure 7A/STDT right foot: r = 0.372; p = 0.001;
Figure 6B/TDMT right TA muscle: r = 0.460; p < 0.001;
Figure 7B). All these correlations were significant after
Benjamini–Hochberg procedure.

In contrast, there was no significant correlation of temporal
discrimination thresholds with performance in the PASSIVE
estimation task.

DISCUSSION

In the present study we assessed temporal discrimination
thresholds (STDT and TDMT) and proprioceptive performance
in a group of healthy controls and PNP patients. Our main
goal was to determine the influence of age and peripheral
nerve conduction on both measures as groundwork for their
use in patients with movement disorders. In line with our first
hypothesis, higher age and PNP were associated with increased
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FIGURE 6 | Correlations of STDT of (A) hand and (B) foot with LED task
performance in the total cohort (healthy subjects and PNP patients).

discrimination thresholds. Our second hypothesis, in contrast,
was only partially confirmed: PNP, but not age, was associated
with decreased proprioceptive performance.

Across healthy subjects of different age groups, we
found higher age to be correlated with increased temporal
discrimination values. In line with a previous study (Ramos
et al., 2016), we found positive correlations of age and STDT
for the upper limbs, and extended this finding to the lower
limbs. Beyond STDT, we found a significant association of
higher age with higher TDMT levels of the FCR and an even
stronger correlation with TDMT of the TA muscle. Indeed, to
the best of our knowledge, this is the first study to demonstrate
feasibility of the TDMT paradigm at lower limbs. Together,
our data strongly supports the hypothesis that both STDT
and TDMT performances decrease during aging. As PNP had
been excluded clinically and neurophysiologically in all elderly
controls, age-dependent decline in TDT and TDMT may most
likely be attributed to changes within central circuits, with
several potential reasons (Ramos et al., 2016): Beside a decrease
of GABA-ergic neurotransmission in aging (Mora et al., 2008;
Lehmann et al., 2012), a reduction of neuronal plasticity within

FIGURE 7 | Correlations of TDMT of (A) FCR and (B) TA muscle with LED
task performance in the total cohort (healthy subjects and PNP patients).

the somatosensory cortex is supposed to play a crucial role in this
process (Pellicciari et al., 2009). The latter may be supported by
recent findings of an STDT improvement after high frequency
repetitive sensory stimulation in healthy subjects which was
less prominent in older participants (Erro et al., 2016). The
contribution of (subclinical) neurocognitive deficits, which are
more frequent in higher age, in temporal perception remains
uncertain (Gibbon et al., 1984; Allman and Meck, 2012).

Our finding of significantly increased STDT and TDMT
at the upper and lower limbs in patients with PNP points
to a considerable impact of peripheral nerve conduction on
temporal discrimination. Indeed, blurred signal conduction due
to temporal dispersion within the peripheral nerve might well
explain our observation of poor temporal discrimination in
patients with PNP. As a consequence, peripheral conditions
with high general prevalence, like PNP, carpal tunnel syndrome,
or radicular compression, might inevitably limit the individual
validity of temporal discrimination thresholds in subjects with
movement disorders and additional peripheral conditions.

As a potential limitation, the group of PNP patients was rather
heterogenous with respect to type and severity of neuropathy.
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While an increase of STDT and TDMT in demyelinating
PNP might be more suggestive than in axonal PNP or small
fiber neuropathy, the respective impact of different types of
nerve damage remains speculative. Moreover, nerve conduction
studies predominantly reveal information about the distal part
of the nerve, whereas proximal demyelination may be missed
easily. Consequently, the attempt to disentangle the causal
relationship between a particular finding in nerve conduction
studies and temporal discrimination performance would be an
overinterpretation of our data. This is even more so since the CNS
would not remain unaffected by peripheral neuropathy – plastic
processes like cortical rearrangement following PNP-related
partial denervation might also affect temporal discrimination
on the CNS level.

Notably, we did not find a differential association of STDT and
TDMT with age or PNP: both parameters changed concordantly,
i.e., they were positively correlated with age, and both were
similarly increased in PNP patients as compared to healthy
subjects. Thus, physiological aging as well as PNP influence
STDT and TDMT similarly. This is in line with the observation
that specific patterns of altered temporal discrimination in
disorders like essential tremor or dystonia can be attributed
to specific changes at the level of the CNS. Several brain
areas have been suggested by fMRI to be involved in temporal
discrimination, first of all the basal ganglia (Pastor et al., 2004), in
particular the putamen (Kimmich et al., 2014), and the superior
colliculus (Hutchinson et al., 2014; Mc Govern et al., 2017). In
addition, involvement of the prefrontal cortex, anterior cingulate,
pre-supplementary motor area, precentral gyrus, sensorimotor
cortex, inferior parietal lobule, and cerebellum has been observed
(Pastor et al., 2004; Di Biasio et al., 2015; Rocchi et al., 2017;
Erro et al., 2018).

We did not find a significant correlation between age and
pointing or estimation errors, respectively. Earlier studies have
demonstrated an age-related decline of passive finger (Ko et al.,
2015; Zhang et al., 2015; Ingemanson et al., 2016; Rinderknecht
et al., 2017) and ankle (Ko et al., 2015) proprioception, while
age had no effect on the accuracy rate in a pointing task under
restricted visual feedback conditions (Zhang et al., 2015). In
the light of the different aspects of proprioception assessed
at different joints in these studies, our findings would be
compatible with an age-dependent decline in passive, but not
active proprioceptive performance, which might be restricted to
distal joints and therefore, not appear at the wrist. In general, it
is still under debate whether passive and active proprioception
are different neuronal concepts and potentially involve different
central circuits (Gritsenko et al., 2007; Capaday et al., 2013). In
addition, we cannot exclude the possibility that our PASSIVE
task at the wrist might have lacked the precision to detect very
small angular differences, for example due to the fact that the
movement was performed by the experimenter rather than an
electric device or to limited control for cues from the skin
touching the goniometer splint.

Patients with PNP showed an impaired kinesthetic
performance as evidenced by higher pointing errors compared
to controls. In the light of reduced peripheral afferent input
due to PNP, this finding is not surprising (Rothwell et al., 1982;

Sainburg et al., 1995). As for the PASSIVE task, we consider
it likely that the low sensitivity of an assessment at the wrist
(compared to finger joints) in addition to the methodological
limitations discussed above might explain the lack of significant
differences between PNP patients and matched controls. As
our foot goniometer did not allow movements with gravity
eliminated, the PASSIVE condition was only performed
at the upper extremities, where, from clinical experience,
proprioceptive dysfunction due to PNP is less prominent.

As an additional observation, we found correlations between
STDT and TDMT and the performance in two different active
pointing tasks: Higher temporal discrimination thresholds were
associated with higher pointing errors in the ARROW and LED
task in upper and lower extremities. Though postulated by earlier
studies, which had found differential alterations of STDT and
TDMT in patients with movement disorders (Artieda et al., 1992;
Bara-Jimenez et al., 2000; Tinazzi et al., 2006; Fiorio et al., 2007),
the association of both parameters with behavioral measures of
proprioception had never been systematically assessed.

Active pointing movements rely on permanent “on-line”
adjustments of their temporospatial properties in order to
achieve a high level of precision (Georgopoulos, 2002). Temporal
discrimination is supposed to involve a complex network
process within the CNS subserving conscious evaluation of
double stimuli, i.e., to answer the question whether a subject
feels a single or a double stimulus. It therefore, seems worth
speculating on whether temporal discrimination thresholds and
pointing precision may be considered different measures of one
and the same network. In this case, their correlation would
support the notion that kinesthesia is indeed the link between
impaired temporal discrimination and neurological conditions
in several movement disorders (Tinazzi et al., 2005, 2013b;
Fiorio et al., 2007).

As correlations do not allow directional or causal inference,
an alternative explanation might be that both temporal
discrimination and pointing performance are modulated
comparably by a common third parameter. This could either be
an unidentified parameter or simply peripheral nerve conduction
with PNP-related variability. In the latter case we would expect
a lack of correlation when PNP patients are excluded. However,
there remained to be a significant correlation between STDT and
TDMT and ARROW task in upper limbs in the group of healthy
subjects, which supports an association of the two parameters
above their common modulation by peripheral conduction.

Functional imaging studies on proprioception during
either vibration induced illusory motion or passive extremity
movements revealed involvement of a number of brain regions
partially overlapping with those discussed in the context of
temporal discrimination (Weiller et al., 1996; Gelnar et al., 1998;
Mima et al., 1999; Francis et al., 2000; Romaiguere et al., 2003;
Naito et al., 2007; Kavounoudias et al., 2008). It is beyond the
scope of our study to speculate about the neural underpinnings
of both phenomena in the CNS. However, future research should
specifically assess proprioceptive performance by means of a
“top-down based” task in the particular movement disorders
to probe for behavioral correlates of differential STDT and
TDMT changes. Functional imaging and non-invasive brain
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stimulation might complement such studies in order to identify
brain structures involved in both processes.

CONCLUSION

Age and PNP have significant impact on measures of temporal
discrimination and/or proprioceptive capacity. STDT and
TDMT increase with age, and PNP is associated with higher
STDT/TDMT values and reduced precision in pointing tasks. If
applied in studies on movement disorder, where STDT/TDMT
may be used in order to define corresponding endophenotypes,
it is important to account for these factors to increase validity
of the measurements. This is particularly important in view of
a significantly higher prevalence of PNP in patients with PD as
compared to controls (Conradt et al., 2018). As an additional
observation of high interest, higher error rates in pointing
tasks correlate with elevated discrimination thresholds. This may
prompt further studies on the presumptive link between these
two domains and their potential use as endophenotypic markers
in neurological conditions.
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Neural spike train analysis methods are mainly used for understanding the temporal
aspects of neural information processing. One approach is to measure the dissimilarity
between the spike trains of a pair of neurons, often referred to as the spike train
distance. The spike train distance has been often used to classify neuronal units with
similar temporal patterns. Several methods to compute spike train distance have been
developed so far. Intuitively, a desirable distance should be the shortest length between
two objects. The Earth Mover’s Distance (EMD) can compute spike train distance
by measuring the shortest length between two spike trains via shifting a fraction of
spikes from one spike train to another. The EMD could accurately measure spike timing
differences, temporal similarity, and spikes time synchrony. It is also robust to firing
rate changes. Victor and Purpura (1996) distance measures the minimum cost between
two spike trains. Although it also measures the shortest path between spike trains,
its output can vary with the time-scale parameter. In contrast, the EMD measures
distance in a unique way by calculating the genuine shortest length between spike trains.
The EMD also outperforms other existing spike train distance methods in measuring
various aspects of the temporal characteristics of spike trains and in robustness to
firing rate changes. The EMD can effectively measure the shortest length between spike
trains without being considerably affected by the overall firing rate difference between
them. Hence, it is suitable for pure temporal coding exclusively, which is a predominant
premise underlying the present study.

Keywords: neural spike train, spike train distance, Earth Mover’s Distance, temporal coding, synchrony

INTRODUCTION

A spike train is the sequence of neuronal firing timings, where a spike refers to the firing of
an action potential. The temporal pattern of a spike train encodes information in various ways.
Besides firing rates, the temporal pattern of spike timings also carries important information about
brain functions. For instance, it has been shown that temporal patterns encode the information
of auditory (Machens et al., 2001; Narayan et al., 2006; Wang et al., 2007; Fukushima et al., 2015;
Krause et al., 2017), gustatory (Di Lorenzo and Victor, 2003), motor (Vargas-Irwin et al., 2015),
olfactory (MacLeod et al., 1998), somatosensory (Harvey et al., 2013), vestibular (Jamali et al., 2016),
and visual (Mechler et al., 1998; Victor and Purpura, 1998; Reich et al., 2001; Carrillo-Reid et al.,
2015) systems, as well as behavioral adaptation (Logiaco et al., 2015) and sleep (Tabuchi et al., 2018).
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One of the many approaches for studying a temporal firing
pattern is to measure the dissimilarity between a pair of spike
trains, which is often represented by the spike train distance.
The measurement of spike train distances can be designed to
represent rate coding, temporal coding, or both. Several methods
to measure a spike train distance have been proposed. Victor
and Purpura introduced a cost-based distance that assigns a cost
to shifting, adding, or deleting a spike (Victor and Purpura,
1996). In this method, the spike train distance is defined as the
minimum of all possible sums of costs. The Victor and Purpura
distance depends on a time-scale parameter where the smaller
value of the time-scale parameter emphasizes temporal coding
while the larger value does rate coding. van Rossum (2001)
also developed a spike train distance that measures a difference
between spike trains convolved with exponential functions. Most
spike train distances are rate-sensitive, reflecting an overall rate
difference between spike trains to a certain extent even with an
extreme time-scale parameter (Satuvuori and Kreuz, 2018). Here,
the overall rate denotes the total number of spikes in a spike
train divided by the time length of the train. If one aims to
measure a distance between a pair of spike trains independent
of the overall rate difference, which we call as purely timing-
sensitive, the distance should reflect only a difference of spike
timing distributions, no matter how different the overall firing
rate is between trains.

A purely timing-sensitive spike train distance is important to
neuroscience studies on temporal coding, which assumes that
neurons code information in spike timing patterns (Tabuchi et al.,
2018). If a spike train distance is rate-sensitive, it would be
difficult to clarify whether a given result from a neural spike train
analysis is based only on the temporal information. It has been
suggested that precise spike timing plays a crucial role in neural
information processing (Butts et al., 2007; Gollisch and Meister,
2008; Johansson and Flanagan, 2009).

Kreuz et al. (2007) developed the rate-sensitive ISI-distance,
a spike train distance based on a ratio between the inter-spike
intervals of two spike trains. This was followed by the SPIKE-
distance, a complementary distance which is still sensitive to rates
but with a heightened sensitivity to spike timing (Kreuz et al.,
2013). Finally, by removing rate dependence from the SPIKE-
distance, Satuvuori et al. (2017) proposed the RI-SPIKE-distance
as a distance purely sensitive to timing. The spike train distances
developed so far have been used in a number of studies for the
analysis of neural firing patterns (MacLeod et al., 1998; Mechler
et al., 1998; Victor and Purpura, 1998; Machens et al., 2001; Reich
et al., 2001; Di Lorenzo and Victor, 2003; Narayan et al., 2006;
Wang et al., 2007; Harvey et al., 2013; Fukushima et al., 2015;
Logiaco et al., 2015; Vargas-Irwin et al., 2015; Jamali et al., 2016;
Krause et al., 2017).

Nevertheless, in an intuitive manner, one of the desirable
properties of distance would be a capability to measure the
shortest length between two objects. In this sense, the previous
methods to measure spike train distance have not clearly
represented the shortest length because they do not minimize
the distance value explicitly, except for the Victor and Purpura
distance, which explicitly measures the shortest length (Victor
and Purpura, 1996). Yet, although this distance represents the

minimum cost related to the shortest length, it suffers from the
fact that distance output is not unique because this approach
employs a parameter (i.e., q in their model) assigned to the
cost for spike time shift. Thus, distance output depends on how
q is determined. This property can be advantageous for some
spike train analyses, but not in other cases that need a unique
value (Chicharro et al., 2011). In the present study, therefore, we
adopt the Earth Mover’s Distance (EMD) to measure spike train
distance with a unique shortest length.

The EMD is also called the Wasserstein metric, which defines
the distance between a pair of probability distributions. Here, a
metric refers to a distance satisfying non-negativity, symmetry
and the triangle inequality. It measures the minimal cost based
on an underlying distance taken to transfer from a probability
distribution to another. It initially dealt with transportation
problems (Kantorovich, 1940) and later modified toward today’s
form (Vaserstein, 1969). The EMD also has been implemented as
an algorithm in the field of computer science for the comparison
between two images (Rubner et al., 2000). The main idea
underlying the EMD is that the shortest distance between two
objects is equal to the length of the shortest delivery path from
one object to the other. For neural spike data, delivery in a spike
train operates by moving a part of the spike train from one
location to another, with a goal to match one spike train with the
other. A delivery path length is then calculated by summing the
delivery distance between two locations multiplied by the amount
of a delivered part. If we deal with a spike train as a distribution
with a sum of 1, then the EMD measures a unique shortest
distance between a pair of spike trains in a non-parametric way.
A notable difference of the EMD from that of Victor and Purpura
(1996) is that delivery in the method of Victor and Purpura moves
an entire spike at once while delivery in the EMD can move a
part of a spike.

Spike train distance can be used for both rate coding and
temporal coding (Satuvuori and Kreuz, 2018). Rate coding
accounts for the firing rate profile of neuronal spike trains while
temporal coding relates to temporal patterns. In our development
of spike train distance, we focus on a particular aspect of the
firing rate profile, an overall firing rate difference between spike
trains, whereas we refer a temporal pattern of spike train to
the distribution of spike timings in time within a spike train.
Specifically, the temporal pattern focuses on the pattern of a
spike timing distribution as a function of time, not on how many
spikes occur in any particular time window. For example, a spike
train with spike timings at (0, 1, 10) has a similar temporal
pattern to another spike train (0, 0.1, 0.9, 1, 10, 10.1) while their
overall firing rates are different. In the case of temporal coding,
spike train distance is often used to measure the dissimilarity of
temporal patterns of neuronal spike trains, which may not be
explained by rate coding alone. For such a case, measurements of
spike train distance need to be independent of firing rate changes.
On the other hand, if a spike train distance is sensitive to firing
rate changes, it may be ambiguous whether the analysis results
reflect changes of mere temporal patterns or a mixed effect of
firing rates. Hence, robustness against firing rate changes should
be a desired property of spike train distances in pure temporal
coding studies. Previous methods for spike train distance have
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not focused much on this robustness except the one by RI-
SPIKE-distance (Satuvuori et al., 2017). As such, the EMD is
chosen here to ensure robustness to firing rate changes. The
EMD can measure spike distance robust to the overall firing rate
difference between spike trains because the EMD normalizes the
total amount of spikes in a spike train to 1, making the overall
firing rate of each spike train equal.

In this study, we employ the EMD as a spike train
distance for pure temporal coding research. Then, we compare
the EMD with several other spike train distances using
neural spike data generated from a set of simulations. The
simulations are designed to evaluate the performance of the
spike train distances with respect to essential aspects of
temporal patterns, including spike timing differences, temporal
similarity, and spike time synchrony, as well as the robustness
against firing rate changes in spike trains to deal with pure
temporal coding. In this study, we refer temporal coding to
a scheme to represent a spiking probability as a function
of time. It is different from a time-varying firing rate as
it does not reflect actual firing rates over time. In several
simulation tests, we evaluate how various spike train distance
methods, including the proposed one, represent pure temporal
coding using a spike generation probabilistic model, in which
a spiking probability varies with time independent of the
number of spikes. This includes the test of the robustness
of each method against firing rate changes by alternating the
total number of spikes while maintaining temporal coding
unchanged. The advantages of the EMD in pure temporal
coding research are demonstrated by the simulation results.
However, it should be noted that these advantages are not directly
transferable to rate coding.

MATERIALS AND METHODS

The Earth Mover’s Distance as a Spike
Train Distance
Two different spike trains may contain a different number of
spikes. However, the total number of spikes of each spike train
should be equalized to measure the distance between them based
only on shifting spikes in time. Victor and Purpura (1996) solved
this problem by assigning a cost to adding/deleting a spike and to
shifting a spike in time. However, this solution cannot produce a
unique distance because it varies with the ratio of two different
costs. To address this shortcoming, in the proposed method, we
first define a spike train in which each spike is assigned a fixed
quantity of 1. Then, we normalized individual spikes by the total
number of spikes, N, so that each spike’s quantity becomes 1/N
after normalization. For the normalization, we consider a spike
train as a function f of time t such that

f (x) =
{1
N , if a spike occurs at time t
0, otherwise

(1)

Where N is the number of spikes in the spike train. The overall
summation of f must be one except the case of N = 0. Hereafter,
a spike train will be expressed as functions f or g.

In our method, the EMD between f and g proposed
in Rubner et al. was adjusted for one-dimensional data
(i.e., a spike train) with a constraint that the sum of f
or g should be equal to 1 (Rubner et al., 2000). The
EMD is described as follows. We first rewrite the spike
trains, f = {(x1, 1/N) , (x2, 1/N) , . . . , (xN, 1/N)} and g ={(
y1, 1/M

)
,
(
y2, 1/M

)
, . . . ,

(
yM, 1/M

)}
from Eq. 1 where

xi and yj are a sequence of spike timings. Let d
(
xi, yj

)
be an

absolute difference between two spike timings xi and yj. Let ξij
be a flow (amount of delivery) from xi to yj and let4 =

[
ξij
]

be a
matrix of these flows (amount of deliveries) such that it transports
f to g satisfying the following conditions: (1) ξij is non-negative;

(2)
N∑

i=1
ξij ≤ 1/M,

M∑
j=1
ξij ≤ 1/N; and (3)

N∑
i=1

M∑
j=1
ξij = 1. Condition

1 fixes the direction of the delivery from i to j. Condition 2
indicates an effective delivery in the sense that it does not take
back what has been delivered. Condition 3 indicates that it
delivers the entire spike train. The transportation here means that
it makes f equal to g by moving parts of f. Then, the EMD between
f and g is given by

EMD
(
f , g

)
= min

{ N∑
i=1

M∑
j=1

d
(
xi, yj

)
ξij : 4

=
[
ξij
]

satisfies conditions above
}

(2)

This concept of spike train distance is illustrated in Figure 1.
When N = 0 (i.e., no spike in the train), the proposed method

cannot calculate the distance directly. However, it can deal with
such a case indirectly if we consider a spike train with no spike
similar to a spike train with spikes everywhere so that the distance
of it to any other trains becomes irrelevant to a certain spike
timing pattern. Let f0 be a spike train with no spike and let g
be another spike train to be compared. To calculate d

(
f0, g

)
,

let fn be a spike train with n spikes generated from a uniform
probability distribution defined on a certain bounded analysis
domain. The bounded analysis domain prevents the distance
from increasing to infinity, although the distance measurement
depends on how the analysis domain is determined. Then,
the EMD calculates d

(
f0, g

)
= lim

n→∞
E
(
d
(
fn, g

))
where E (·)

indicates an expected value. To deal with an empty spike
train in the EMD, we attended to an idea that there was also
no information about spike timing if spikes are everywhere,
uniformly distributed. It means that a spike train with one spike
at a specific location holds more information about spike timing
than a spike train with uniformly distributed spikes. In this
regard, an empty spike train would be more similar to a spike
train with uniformly distributed spikes at every location than a
spike train with one spike.

The EMD is a mathematical metric, that is, it satisfies the
three conditions: non-negativity, symmetry and the triangle
inequality (Rubner et al., 2000). This property shows that the
EMD conforms to our intuition about distance. Moreover, from
the fact that the EMD is calculated solely based on spike timing
data, it can be seen that the EMD is the shortest length based on
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FIGURE 1 | Illustration of the basic concept of the Earth Mover’s Distance
(EMD) to measure a distance between spike trains. The objective is to take
the smallest value among all possible delivery (flow, terminology in EMD) path
lengths between two objects (red and green). In this illustrative example, the
red object (e.g., spikes) is delivered to the green object in three possible
paths. Assuming the size of the red object is 1, the path length is calculated
by delivery distance (in time) multiplied by the amount of delivery (i.e., size of
the object). It is also possible to deliver only a fraction of the object, as shown
in the third case. If there are multiple deliveries toward the target object, the
final delivery path length is the sum of individual delivery path lengths.

spike timing between two spike trains. The EMD is calculated in
a non-parametric way so that it produces a unique value. Due to
its non-parametric approach, the EMD can avoid the dependency
of distance outcomes on parameters.

Moreover, there is an efficient way to calculate the restricted
version of the EMD as follows (Cohen, 1999). Let F and G be the
cumulative functions of f and g, respectively. Then, the EMD is
given by

EMD
(
f , g

)
=
∞

∫
−∞

|F (t)− G(t)| dt (3)

An example of the calculation procedure above is illustrated in
Figure 2.

Relationship With Other Measures
The Kullback–Leibler divergence is a distance between two
probability distribution functions. Therefore, the Kullback–
Leibler divergence computes the difference between two
functions at every point on the domain of a random variable,

FIGURE 2 | Illustration of the calculation procedure of the EMD described in
Cohen (1999). The distance between two spike trains, A and B, is calculated.
Initially, the non-negative values are assigned to every spike such that the sum
of the values in each train is equal to 1 (e.g., 1/2 for each spike in A or 1/3 for
each in B). The next step is to produce the cumulative functions (CF) for each
spike train (red bold line indicates the CF of spike train A and green dotted line
indicates the CF of spike train B). The next step is to integrate the absolute
difference between the two CFs (gray shading area). The final result of the
calculation procedure is 7/3.

similar to the EMD computation as shown in Eq. 3. However, a
difference between the Kullback–Leibler divergence and the EMD
is that the EMD depends not only on the difference between the
functional values but also on the distance between the points
on the domain while the Kullback–Leibler divergence does not.
In Eq. 3, the EMD is calculated by (the difference between
functions) × (the length to which the difference is maintained),
so that the EMD is based on spike timing difference unlike the
Kullback–Leibler divergence.

In the Victor-Purpura distance, spikes are shifted if the
distance between spikes is small or added/deleted if the distance
is large, depending on the time-scale parameter q. On the other
hand, in the EMD, no matter how large the distance is, the spikes
are always shifted. This indicates that the EMD can be viewed
as similar to the Victor-Purpura distance with an extremely
high cost of adding/deleting spikes. But, since the parameter
q of the Victor-Purpura distance controls the time shift cost
only, not adding/deleting explicitly, imposing a high cost on
adding/deleting spikes can be implemented by selecting a very
small value for q. Consequently, the Victor-Purpura distance with
a small time-scale parameter (q) becomes similar to the EMD,
with an emphasis on temporal coding.

If two spike trains have the same number of spikes, N, and
the Victor-Purpura distance does not take the option of the cost
for adding/deleting spikes, the Victor-Purpura distance and the
EMD are exactly the same with the time-scale parameter q = 1/N.
Hence under those conditions, the EMD can be considered as the
average displacement of the spikes.
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When two spike trains have different numbers of spikes, the
EMD still calculates the average displacement of the spikes to
some extent: the displacement of the part of a spike instead of
an entire spike. The displacement of the part of a spike only
reflects the temporal difference between spike trains. In contrast,
the Victor-Purpura distance works in a different way due to the
option of the cost for adding/deleting spikes. Since the cost for
adding/deleting spikes directly correlates with a difference in the
number of spikes between trains, the Victor-Purpura distance can
reflect the rate difference. Hence, it has been pointed out that the
Victor-Purpura distance is suitable for rate coding but not for
temporal coding if the number of spikes is quite different between
spike trains (Satuvuori and Kreuz, 2018).

When two spike trains, f and g, have the same number of
spikes, we can describe the Victor-Purpura distance without
the option of adding/deleting spikes with respect to the EMD
as follows: dEMD

(
f , g

)
= lim

q→0

(
1/q

)
dVP[q]

(
f , g

)
, where dEMD

indicates the EMD between f and g and dVP[q] indicates the
Victor-Purpura distance with the time-scale parameterq. Even if
f and g have a different number of spikes, the description above
holds if the Victor-Purpura distance is applied to the normalized
spike train as in the EMD.

Evaluation
Our new spike train distance was compared to four existing
spike train distances: (1) the Victor-Purpura distance (Victor
and Purpura, 1996) with parameter values, q = 0.1, 0.2, . . .,
12.8 s−1; (2) the van Rossum distance (van Rossum, 2001) with
parameter values, τ = 1, 2, . . ., 16 s. Note that an alternative
calculation method (Houghton and Kreuz, 2012) was used here
instead of the original one (van Rossum, 2001); (3) the SPIKE-
distance (Kreuz et al., 2013); and 4) the RI-SPIKE-distance
(Satuvuori et al., 2017).

The tested time-scale parameters of the Victor-Purpura
distance and the van Rossum distance were determined as
follows. For the Victor-Purpura distance parameter q, the time
range of a spike train in which we performed the analysis was
set to 0 - 10 s. Then we opted for values of q varying between
two opposite cases: q = 0.1 s−1 and q = 12.8 s−1. The smallest
q = 0.1 s−1 in the Victor-Purpura distance made the metric focus
on a “spike timing shift” by assigning a cost of 1 to add/delete
each spike, whereas it costed at most

(
q = 0.1 s−1)

× (10 s) = 1
for time-shifting a spike. Then, the value of q was increased by
a factor of two up to the largest q = 12.8 s−1, which turned the
algorithm to focus on “spike adding/deleting” by increasing the
cost for time-shifting such as

(
q = 12.8 s−1)

× (1 s) = 12.8 even
for shifting a spike by 1 s.

Similarly, for the van Rossum distance, the smallest value of τ

= 1 s makes the convolved range narrow by setting the width of
the exponential function to 1 s. Then, the value of τ was increased
by a factor of two up to the largest value of τ = 16 s, which makes
the convolved range cover the overall spike train by setting the
width of the exponential function to 16 s.

Taking spike counts into dissimilarity is a key difference
between the EMD and the Victor-Purpura distance or the van
Rossum distance. In fact, while the EMD is focused on temporal

coding, both the Victor-Purpura distance and the van Rossum
distance cover from a mixture of temporal coding and rate
coding to pure rate coding by varying the time scale parameter
q or τ, as they are so designed originally. We demonstrated
such differences between the EMD and the Victor-Purpura
distance or the van Rossum distance in the simulations (see
section “Results”).

A comparison of the five spike train distances was conducted
to assess how well each distance represented three aspects
of similarity between spike trains: spike timing difference,
temporal similarity, and spike time synchrony. Furthermore,
each distance’s robustness to changes in firing rates was examined
for temporal similarity and spike time synchrony.

To avoid potential errors while replicating the existing
distance calculation procedures, we directly utilized the
available source code for each distance. The code to
calculate the Victor-Purpura distance was obtained from
http://www-users.med.cornell.edu/~jdvicto/spkdm.html.
The code for the van Rossum distance was from http:
//wwwold.fi.isc.cnr.it/users/thomas.kreuz/images/vanRossum.m.
The codes for both the SPIKE-distance and the RI-SPIKE-
distance were from http://wwwold.fi.isc.cnr.it/users/thomas.
kreuz/Source-Code/cSPIKE.html.

For the calculation of the SPIKE-distance and the RI-
SPIKE-distance, we always set the time range of the
underlying dissimilarity profiles exactly equal to the spike
generation interval.

Spike Timing Difference
A pair of spike trains with three spikes each was synthesized to
test spike timing difference. The locations of the first and third
spikes were fixed and matched between the trains. The second
spike of the first train was fixed close to the first spike. Then,
the location of the second spike of the second train was moved
toward the third spike. This test paradigm was performed in
the previous study by Kreuz et al. (2011) to compare several
distances. We adopted it here with the inclusion of the van
Rossum distance, the RI-SPIKE-distance, and the EMD. In the
test, we located the first spike at 0 s and the third at 10 s in the
two trains. The second spike of the first train was fixed at 1 s.
Then, the second spike of the second train was moved from 1 s to
9 s in steps of 1 s (see Figure 3A). We measured the distance for
each shift of the second spike of the second train.

Temporal Similarity and Robustness to Firing Rate
Change
A simulation experiment was performed to test the robustness
of each distance against firing rate changes when measuring
temporal similarity between spike trains. Spike trains were
generated according to a simple probabilistic model. The
probabilistic model was built following a certain firing rate
profile. Temporal similarity would increase if a pair of spike
trains were generated from a probabilistic model sharing a similar
profile and decrease if the profiles become more dissimilar.
Note that temporal similarity describe here depends only upon
firing rate profiles, not firing rates themselves. The probabilistic
model used here consisted of two intervals where each interval
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FIGURE 3 | Spike train distance results for the measurement of spike timing differences. (A) Spike train A is fixed whereas spike train B is changed as the location of
a middle spike is shifted from left to right so that the spike timing difference between A and B increases linearly. (B) The spike train distance results of each of the five
distances: the Victor-Purpura distance, the van Rossum distance, the SPIKE-distance, the RI-SPIKE-distance, and the EMD. The horizontal axis represents the
amount of the shift of the middle spike in train B. The Victor-Purpura distance showed a linear increase in distance only for a certain parameter (e.g., q = 0.1 s). The
van Rossum distance showed an increase in distance non-linearly but monotonically. The SPIKE-distance and the RI-SPIKE-distance did not show monotone
increases. The EMD showed a linear increase as the spike timing difference increased. VP, Victor-Purpura distance; vR, van Rossum distance.

FIGURE 4 | Spike train distance results for the measurement of temporal similarity. (A) The probabilistic models of spike generation for spike trains A, B1, and B2 are
described. In the simulation, spike trains A and B1 share the same probabilistic model whereas spike trains A and B2 have different probabilistic models.
Accordingly, the temporal similarity is high between A and B1, but low between A and B2. (B) The spike train distance results of each of the five distances as the
ratio of firing rates between the spike trains varies from 2–2 to 22. The red lines represent distances between the spike trains A and B1 and green lines represent
those between A and B2. It is clearly shown that the variability of distances by changes in the ratio is larger than that by changes in the temporal similarity for the four
distances, including the Victor-Purpura, the van Rossum, the SPIKE- and the RI-SPIKE- distances. In contrast, the distances calculated by the EMD remain almost
unchanged as the ratio changes, being robust to the firing rate change. (C) Results of spike train distance for measuring temporal similarity. DL is a distance with a
low temporal similarity, and DH is a distance with a high temporal similarity. (D) Quantification of robustness as the firing rate changes. DL(i) is the distance with a low
temporal similarity when the firing rate ratio is i, and DH(i) is the distance with a high temporal similarity when the firing rate ratio is i. The results of the
RI-SPIKE-distance partly disappear because of negative values. VP, Victor-Purpura distance; vR, van Rossum distance.

had a non-zero probability of containing a spike. Spikes in the
intervals were randomly generated from a uniform distribution
centered at 0 s and 10 s with a halfwidth of 1 s. Then, we
built three spike trains denoted as spike trains A, B1, and B2.
In the probabilistic model of spike train A, the probability
of generating a spike in the first interval was twice as high

as that in the second interval. Spike train B1 had the same
probabilistic model as spike train A. On the other hand, it
was reversed in spike train B2 such that the probability of
generating a spike in the second interval was twice that in the
first interval (see Figure 4A). Hence, the distance between A
and B1 should be smaller than that between A and B2, because
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temporal patterns would be more similar between A and B1 than
between A and B2.

To test the robustness of the distances against firing rate
changes, we varied the number of spikes in the trains. We first
set the number of spikes in A to 23

× 3, where 23 spikes were
generated three times (twice in the first interval and once in the
second interval). Then, five levels of the number of spikes were
used to vary the firing rates in B1 or B2. The number of spikes
in B1 or B2 was varied as 21

× 3, 22
× 3, 23

× 3, 24
× 3, and

25
× 3, making the spike count ratios of A to B1 or B2 2−2,

2−1, 20, 21, and 22. If a spike train distance is robust to firing
rate changes, distance variability over all the ratios should be
negligible compared to the difference in distance between A to B1
and between A and B2. We calculated the difference in distances
between these two pairs (A and B1, A and B2) using each of the
five distances by varying the firing rates in B1 or B2.

Spike Time Synchrony and Robustness to Firing Rate
Change
Another simulation experiment was performed to test the
robustness of each distance against firing rate changes when
measuring spike time synchrony between spike trains. To this
end, a pair of spike trains, denoted as A and B were synthesized.
Spike train A was generated to contain eleven equally spaced
spikes discharged at 0 s, 1 s, . . ., 10 s. Spike train B was generated
according to a probabilistic model, consisting of eleven uniform
distributions centered at 0 s, 1 s, . . ., 10 s. Then, we varied
the halfwidth of these uniform distributions across ten levels to
manipulate the degrees of spike timing jitter; the halfwidth was
set as 0.05 s, 0.1 s, . . ., or 0.5 s (see Figure 5A). As the halfwidth
was increased, spike timing jitter increased, which was likely to
desynchronize spike timing more between A and B. It would then
result in an increase in the distance between A and B.

Similar to section “Temporal Similarity and Robustness to
Firing Rate Change,” we varied the number of spikes in B to
test the robustness of the distance to firing rate change. The
number of spikes in B varied across nine levels to reflect firing
rate changes. It varied as 1× 11, 2× 11, . . ., and 9× 11 (the first
number in the product indicates the number of spikes randomly
generated in each interval of B) so that the ratios of A to B
became 1, 2, . . ., and 9, respectively. We expected that if the
spike train distance was robust to firing rate changes, variability
in the distance across the ratios should be negligible compared
to variability in distance according to different degrees of spike
timing jitter. We calculated the distances between A and B for
each degree of spike timing jitter for each firing rate level in B.

Comparison With Victor and Purpura’s Distance
The spike train distance in the present study is closely related
to the Victor-Purpura distance. It is important to compare the
properties between the Victor-Purpura distance and the EMD.
Satuvuori and Kreuz (2018) already discussed the suitability of
the Victor-Purpura distance to rate and temporal coding. They
suggested that the Victor-Purpura distance is suitable to rate
coding in general, but suitable to temporal coding only for similar
firing rates, even with a wide range of time-scale parameter q.
To verify whether the EMD suffered from a similar issue to the

Victor-Purpura distance, we applied the analysis of Satuvuori and
Kreuz (2018) to the EMD. Three spike trains were generated in
the analysis. Spike train A was generated to contain one spike
discharged at 5 s. Spike train B was generated according to a
probabilistic model of a uniform distribution centered at 5 s with
the halfwidth of 1 s. Spike train C was also generated according
to a probabilistic model of a uniform distribution centered at
5 s with the halfwidth of 5 s. Spike train B had five levels of the
number of spikes; 20, 21, 22, 23, and 24. By comparison, spike train
C had only one spike as in spike train A (see Figure 6A). From the
point of view of temporal coding, it was expected that the distance
between A and B was smaller than the distance between A and C
and the distance between B and C, because spike trains A and
B had more similar temporal information compared to C. The
Victor-Purpura distance was examined for time-scale parameters
in the range from 0.01 to 1000.

RESULTS

Spike Timing Difference
The spike train distance measurements exhibited differences
among the five spike train distances tested in this study. The
Victor-Purpura distance linearly increased as the spike timing
difference increased with one parameter value (q = 0.1 s), but
was saturated with the other parameter values (q = 0.8, 12.8 s).
Similarly, the van Rossum distance monotonically increased as
the spike timing difference increased with one parameter (τ
= 16 s), but was saturated with another parameter (τ = 1, 4 s).
Both the SPIKE-distance and the RI-SPIKE-distance increased
first but later decreased as the spike timing difference increased.
The EMD linearly increased as the spike timing difference
increased (Figure 3B).

Also, we observed that the SPIKE-distance and the RI-SPIKE-
distance consider the spike trains to be more similar if a middle
spike is close to the edge spikes than if the middle spike is located
at an equal distance from both edge spikes. The reason is that
these methods focus on the local dissimilarity between spike
trains. Two spike trains are locally similar when the middle spike
is close to the edge spikes since then it becomes easier to see it
as part of a doublet that together is quite synchronous with the
single spike in the other spike train. In contrast, if the middle
spike is located at an equal distance from both edge spikes, then
the distance to the nearest spike in the other train is maximized,
increasing local dissimilarity. The van Rossum distance seems to
evaluate a similarity of two spike trains based on synchronization
of spike timings within a certain temporal range, where the
temporal range was determined by the time-scale parameter τ.
Then, if two spikes from each spike train occurred within the
temporal range, these spikes were deemed to be synchronized.
The Victor-Purpura distance with the parameter q = 0.1 s (i.e.,
emphasizing temporal differences) and the EMD linearly increase
as the difference of middle spikes is linearly increased, because
these methods focus on equalizing two spike trains. Hence, for
instance, if a difference in the latency of neural responses between
spike trains is of interest, the Victor-Purpura distance with a small
q and the EMD can provide an appropriate measure.
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FIGURE 5 | Spike train distance results for the measurement of spike time synchrony. (A) Spike train A is fixed to have equally spaced eleven spikes. Spike train B is
generated by a probabilistic model of spike generation with various spike timing jitter. The spike timing jitter is manipulated by increasing the halfwidth of eleven
uniform distributions each centered at the spike timing of train A. Spike time synchrony between A and B decreases as spike timing jitter increases. (B) The spike
train distance results of the five distances as the ratio of firing rates of B over A are equal to 1. All the distances exhibit approximately linear increases with increases
in spike timing jitter. (C) The spike train distance results of each of the five distances as ratios of firing rates of B over A increase from 1 to 9. The index of the vertical
axis corresponds to the index of the spike trains in panel (A), where increasing index number indicates increasing spike timing jitter. Distances proposed by
Victor-Purpura and van Rossum are significantly affected by the variation in the firing rate ratio, whereas those proposed by the SPIKE-distance, the
RI-SPIKE-distance and the EMD are not. (D) Results of spike train distance for measuring spike time synchrony. Dk(n) is the distance when the firing rate ratio of one
spike train to another was n, and k denotes the halfwidth of the uniform distribution in the spike train. VP, Victor-Purpura distance; vR, van Rossum distance.

The characteristics of distances for small spike timing
differences (for example, the middle spike is shifted by 0, 1, or 2
in Figure 3B) can provide information about temporal precision
of the spike timing. The Victor-Purpura distance (q = 0.1 s)
and the EMD are linearly decreasing when the spike timing
difference converges to zero. This linear property allows them
to have the information about temporal precision, but with no
conclusive answer to whether a timing difference between spike
trains is precise or not. On the other hand, the van Rossum
distance, the SPIKE-distance and the RI-SPIKE-distance are
rapidly decreasing when the spike timing difference is nearing

zero so that they can provide precise information whether timing
difference falls within some range or not.

Temporal Similarity and Robustness to
Firing Rate Change
We evaluated distance measurements between a pair of spike
trains with a high or low temporal similarity when the ratio of the
firing rates between the trains varied. Let DL be a distance with
a low temporal similarity (i.e., between A and B2) and DH be a
distance with a high temporal similarity (i.e., between A and B1)
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FIGURE 6 | Comparison with the Victor-Purpura distance in terms of suitability for temporal coding with different firing rates. (A) Spike train A has only one spike with
fixed timing. Spike train B has five levels of spikes with narrow range spike timing jitters. Spike train C has only on spike with a broad range spike timing jitter. The
desirable expected results are that the distance between spike trains A and B is smaller than the distance between A and C and the distance between B and C.
(B) The Victor-Purpura distance with various values of the time-scale parameter q. The Victor-Purpura distance did not show the desirable result with increases in
firing rate ratio. (C) The EMD showed desirable results overall with increases in firing rate ratio, having a nearly constant scale. (D) The EMD between a uniform spike
trains with different firing rate ratios. It shows that the EMD is not completely insensitive to firing rate differences.

(see section “Temporal Similarity and Robustness to Firing Rate
Change”). First, we calculated the ratios of DL to DH from each
distance for the case when the firing rates of two spike trains were
equal, and the result is summarized in Figure 4C. The Victor-
Purpura distance (q = 0.1, 0.8 s), the van Rossum distance (τ = 4,
16 s), and the EMD clearly resulted in a smaller distance with
a high temporal similarity than with a low temporal similarity
(Figure 4B). These low and high temporal similarities reflect

the global difference between two spike trains in Figure 4A, not
the local difference. The spike trains B1 and B2 in Figure 4A
are globally different, but locally similar (near 0 s and 10 s).
Since both the SPIKE-distance and the RI-SPIKE-distance focus
on the local difference, these distances show less sensitivities for
the discrimination between low and high temporal similarity in
a global sense. In contrast, the EMD is a global measurement,
showing an ability to discriminate global temporal similarity.
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Although the RI-SPIKE-distance is robust to firing rate changes
just as the EMD is, this point indicates a key difference between
the RI-SPIKE-distance and the EMD (see section “Discussion”).

Next, to assess the robustness to firing rate changes when
unequal firing rates exist between the spike trains, we calculated
the ratio [DL(i) − DH(i)]/| DH(1) − DH(i)|, where i denotes the
firing rate ratio of spike train B1 (or B2) to that of spike train A
for i = 1/4, 1/2, 2, 4 [e.g., DH(1/2) refers to distance measurements
when the firing rate ratio is 1/2]. The distance results for each
value of i are given in Figure 4D. As for the robustness to firing
rate changes, the Victor-Purpura distance and the van Rossum
distance increased as the ratio of the firing rates deviated from 1,
which indicates that variability in the distance across the firing
rate ratios was larger than the difference in distances between
high and low temporal similarities, revealing that the distances
were not robust to firing rate changes. This was not the case
for the SPIKE-distance and the RI-SPIKE-distance, where the
distances remained at similar levels across the ratios of firing
rates although variability in the distance across the ratios was
larger than the difference in distances between high and low
temporal similarities, showing that they were also not robust to
firing rate changes. On the other hand, the EMD showed that
variability in the distance across the ratios was much smaller
than the difference in distances between high and low temporal
similarities, demonstrating its robustness to firing rate changes
(Figure 4B). The SPIKE-distance, the RI-SPIKE-distance, and the
EMD showed the robustness to firing rate changes relative to the
Victor-Purpura distance and the van Rossum distance. It implies
that those three distances are more suitable for temporal coding.

Spike Time Synchrony and Robustness
to Firing Rate Change
Spike train distances with various synchrony levels were
measured using each of the five distances and their robustness
to firing rate changes was tested. Every distance clearly showed
a similar pattern when the ratio of firing rates was 1 such
that the spike train distance increased as the degree of spike
timing jitter increased (Figure 5B). To assess the robustness to
firing rate changes, we quantified the effect of the firing rate
ratio on the spike train. Here, let Dk(n) be the distance when
the firing rate ratio of spike train B to spike train A was n,
where k denotes the halfwidth of the uniform distribution in B
(see section “Spike Time Synchrony and Robustness to Firing
Rate Change”). We first calculated the ratio D0.05(9)/D0.05(1)
using each distance and obtained the results as summarized
in the left figure of Figure 5D. Next, we calculated the ratio
[D0.5(9)−D0.05(9)]/[D0.5(1) – D0.05(1)] using each distance and
obtained results, which are listed in the right figure of Figure 5D.
A comparison of these two ratios showed that when the firing rate
ratio increased, the Victor-Purpura distance and the van Rossum
distance increased rapidly, whereas other distances were almost
unchanged. In other words, by using the Victor-Purpura distance
and the van Rossum distance, variability in distance across the
firing rate ratios was larger than variability in distance due to
different degrees of spike timing jitter, showing that the distances
were not robust to firing rate changes. The SPIKE-distance, the

RI-SPIKE-distance, and the EMD revealed that variability in
distance across the ratios was smaller than that among different
levels of synchrony, demonstrating that they were robust to
firing rate changes. Moreover, the RI-SPIKE-distance and the
EMD appeared to be most robust (Figure 5C). These results
indicate that the Victor-Purpura distance and the van Rossum
distance are suitable to measure the dissimilarity due to both
rate difference and temporal synchrony. The SPIKE-distance is
also suitable to measure the dissimilarity in both rate difference
and temporal synchrony although it seems to be less sensitive
to rate difference than the Victor-Purpura distance and the van
Rossum distance. On the other hand, the RI-SPIKE-distance and
the EMD are suitable to measure temporal synchrony, insensitive
to rate differences.

Comparison With Victor and Purpura’s
Distance
The simulation result for the Victor-Purpura distance in the
present study was similar to that in the study by Satuvuori and
Kreuz (2018). The expected result was that the distance between
the spike trains A and B was smaller than those between A and
C and between B and C, because the temporal coding between A
and B is more similar than that between other pairs (Figure 6A).
When the firing rate ratio of B to A or C was 20 (i.e., the same
firing rates), the Victor-Purpura distance showed the expected
result for a wide range of time-scale parameters q (Figure 6B,
top). It indicates that the Victor-Purpura distance is suitable for
temporal coding if the firing rate ratio is 1. However, as the firing
rate ratio of B to A or C increased, the Victor-Purpura distance
started to show unexpected results. The distances between A and
B and between B and C were increasing for every time-scale
parameter q, reflecting the increased rate difference (Figure 6B).
It indicates that the Victor-Purpura distance is not suitable for
temporal coding if the firing rate ratio deviates from 1. The
smaller value of the time-scale parameter q emphasizes the
temporal coding. However, the result showed that the Victor-
Purpura distance is still rate-sensitive even for a very small value
of q. Therefore, the value of q apparently changes sensitivity from
pure rate coding to combined rate and temporal coding, not to
pure temporal coding (Satuvuori and Kreuz, 2018).

On the other hand, the EMD showed the expected results for
all tested firing rate ratios. Furthermore, the distances between
every pair of spike train remained nearly constant even as the
firing rate ratio changed (Figure 6C). It indicates that the EMD is
suitable for temporal coding even though the firing rates differ
between the spike trains, showing that it does not reflect rate
coding. That is, the EMD is sensitive to pure temporal coding in
contrast to the Victor-Purpura distance.

Although the EMD is relatively insensitive to firing rate
difference than the Victor-Purpura distance, it is uncertain
whether the EMD is completely insensitive. In order to test the
effect of different rate ratios on the EMD, we calculated the EMD
between two Poisson spike trains that were generated uniformly
over [0, 1] s with different rates. The spike trains were generated
with firing rates of 1, 2, 4, 8, and 16 Hz. Then, the spike trains with
4 Hz were compared to those with other firing rates (including
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the identical 4 Hz) so that the firing rate ratios varied over 2−2,
2−1, 20, 21, and 22. The resulting EMD values are provided in
Figure 6D. The EMD between trains with the same temporal
pattern varied across different firing rate ratios although the EMD
variation was much smaller than the firing rate ratios variation.

Application to Neural Data
We demonstrated the measurement of a temporal similarity
between real neuronal spike trains using the EMD. The
neural data is publicly available from Flint et al. (2012), and
can be downloaded from https://crcns.org/data-sets/movements/
dream. The example of neural spike trains was obtained from the
primary motor cortex of a behaving non-human primate (Flint
et al., 2012). An example of various levels of temporal similarity
measured by the EMD is shown in Figure 7, in which the
spike trains observed under the different experimental conditions
(i.e., different movement directions of the subject’s arm) showed
mutually different temporal similarity with the base condition at
the arm movement direction of 45◦ (at which the example neuron
fired the most).

A neuron in the primary motor cortex (M1) modulates
its firing rates with arm movement directions (Georgopoulos
et al., 1982). Arm movements induce a certain temporal
pattern such that a spike train of a M1 neuron contains more
spikes around movement onset and less spikes before and
after movement offset. Also, the firing rate of the neuron is
maximal at the preferred direction (PD) of arm movement
and decreases gradually when the movement direction deviates
farther from the PD (Georgopoulos et al., 1982; Schwartz
et al., 1988; Kalaska et al., 1989; Caminiti et al., 1990). Hence,
the temporal patterns of spike trains between the PD and
other directions are expected to be more dissimilar when the
movement direction becomes more different from the PD. We
found that the EMD could describe various levels of temporal
similarity to the base condition for various directions and
specifically showed that distance increased as the angle became
orthogonal to the PD. In addition, the EMD on the true
data (red lines in the inlet graph of Figure 7A) revealed a
clearer difference between the PD and orthogonal angles than
that on the surrogate data with randomized spike timings
(gray lines of the inlet graph of Figure 7A). Specifically,
corresponding to each true spike train, we generated a random
spike train by generating spike timings from the uniform
distribution while maintaining the number of spikes unchanged.
So, if the difference between directions is mainly represented
in the number of spikes, the difference between directions
should also be maintained in the surrogate data. However, the
result demonstrated that the EMD difference between spike
trains of different directions was not merely due to the firing
rate difference.

A spike train distance shall yield small values between
spike trains obtained under similar experimental conditions
and large values between spike trains obtained under different
conditions. We demonstrated that the EMD satisfied such
a criterion using the real neuronal spike data of a non-
human primate in Figure 7. In Figure 7, the EMD showed

FIGURE 7 | Application of the spike train distance to real neuronal data in the
primary motor cortex in a non-human primate (Flint et al., 2012). During the
data recordings, the subject moved its arm from the central position toward
one of the eight target positions and repeated this movement multiple times
for each direction. Multiple spike trains of a single neuron for each of the eight
target positions are described at each peripheral location, indicated by a
directional angle as 0◦, 45◦, . . ., and 315◦. Each spike train is obtained for 1 s
after the onset of a movement cue. The spike trains exhibit different temporal
patterns for different directions. (A) The direction at 45◦ is set as the seed
direction, where the firing rate is maximum. Then, the spike train distance is
calculated between the seed direction and each of other seven directions. The
mean spike train distance between each pair is described using red circles in
the center. The spike train distance within the seed direction is also calculated
for comparison (no calculation between the same spike trains). The EMD from
actual data (red line of the inner graph) has a clearer difference between the
base and orthogonal angles than the EMD from data of randomly shifted spike
timing (gray line of the inner graph), which does not exhibit a temporal pattern,
showing the EMD difference is not merely due to the firing rate differences.
(B) Comparison between the EMD and other spike train distances for the data
in panel (A). Each spike distance was normalized such that D_new = (D −
D_min)/(D_max − D_min) so that the distance values are filled between 0 and
1, because each spike distance has different magnitude scale. Throughout
our spike distance analyses, we have set up a time-scale of spike trains for
the Victor-Purpura distance and the van Rossum distance as [0, 10] s, which
makes these distances applicable to both rate coding and temporal coding.
To be consistent with such parameter settings of all the analyses done in
the study, we also maintained the same time-scale range for the analysis of real

(Continued)
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FIGURE 7 | Continued
neuronal spike data in panel (A). Since the spike trains of the real neurons we
analyzed lasted for 1 s after a task onset, we extended spike trains by
multiplying 10 to spike timings, changing the spike train range from [0, 1] s to
[0, 10] s and used the same parameter settings as other simulation-based
analyses for the Victor-Purpura and the van Rossum distances. This extension
of the spike train range does not alter the SPIKE-distance, RI-SPIKE-distance
and the EMD because they produce time-scale independent distance
outcomes. VP, Victor-Purpura distance; vR, van Rossum distance.

small values when the subject moved the arm in a direction
similar to the preferred direction (i.e., similar experimental
condition) and large values when the subject moved the
arm in a direction dissimilar to the preferred direction (i.e.,
dissimilar experimental condition) (see red lines in the inlet
graph of Figure 7A). In particular, the EMD calculated this
result based on the temporal pattern rather than on the firing
rate difference.

We compared EMD and other spike train distances in
terms of an ability to distinguish primary motor cortical spike
trains with spiking timing information according to the arm
movement directions of a non-human primate. There were
eight equally divided arm movement directions in this 2D
center-out arm reaching task. As each spike train distance
covered a different magnitude scale, each spike train distance
was normalized by D_new = (D − D_min)/(D_max −
D_min) so that the distance values ranged between 0 and
1. We selected one of the eight directions as an anchor
(e.g., 45◦) and measured average pairwise distance using
each spike distance measure between a set of spike trains
corresponding to the anchor direction and each set of spike
trains corresponding to other directions. We found that the EMD
well represented differences between spike trains according to
movement directions such that the distance is 0 at the PD, 1
at the opposite of the PD, and the intermediate values at other
directions (Figure 7B).

We evaluated how the EMD could be used to discriminate
the neural spiking patterns of different upper limb movement
directions represented in the primary motor cortex (M1) of
a non-human primate (Flint et al., 2012). The non-human
primate moved the upper limb in eight different directions
while spiking timings of the population of M1 neurons
were recorded. There were multiple trials of this task in
each direction. As the duration of movements varied across
trials, we selected a 1-s epoch after the onset of a go cue.
Before spike train distance computation using various methods
including the EMD, we normalized the overall spike count
of every spike train in order to assess each method’s ability
to extract movement-related information only from spiking
timing patterns. This normalization was performed based on
resampling – i.e., randomly selecting a certain number of
spikes from the original spike train. In this manner, every
resampled spike train could have the same number of spikes
for every direction while retaining the temporal pattern of the
original spike trains.

For resampling, we first selected 113 out of 196 M1 neurons,
which fired spikes enough to produce spike trains suitable for

our distance analysis (a neuron was selected if it fired ≥50
spikes within the 1-s epoch on average for each direction). For
each selected neuron, we randomly chose R spikes from the
original spike train, repeating this resampling for every spike
train of every direction for that neuron. The number of spikes
in a resampled spike train, R, was stochastically determined by
generating a random number from the Poisson distribution with
the mean rate of 10. The mean rate of 10 was chosen such that
the largest number generated from the Poisson distribution with
this mean rate was unlikely to exceed the half of 50 (i.e., 25),
in order to make resampled spike trains vary over trials. This
ensured that the expected number of spikes in every resampled
train in every direction was identical, while allowing trial-to-trial
variability. Once the resampled spike train was generated, we
multiplied 10 to its spike timings to change the spike train range
from [0, 1] s to [0, 10] s, in order to adjust the range adequate for
pre-defined time-scale parameters of the Victor-Purpura distance
and the van Rossum distance. Also, as the SPIKE-distance and
the RI-SPIKE-distance calculate the distance in a range from the
first spike to the last spike, we added two auxiliary spikes at 0 and
10 s (Figure 8A).

For the assessment of each spike train distance method, we
randomly selected a single resampled spike train in the k-th
direction and calculated distance between it and every other
resampled spike trains using a given spike train distance. Those
calculated distances were averaged for each direction, yielding
the average distances di (i = 1,. . .,8) for each of the eight
directions. The averaged distances were then normalized over
direction such that di =

(
di − dmin

)
/(dmax − dmin) as above.

The shorter normalized distance toward the correct direction,
dk, represented better discrimination of the spiking patterns
for the correct direction from other directions. The EMD,
as well as the Victor-Purpura distance and the van Rossum
distance with specific parameter settings, resulted in shorter
distances than others (Figure 8B). Therefore, it demonstrated
that the EMD could decode the directional information of
upper limb movements in M1 neurons based on spiking
timing patterns.

We applied a clustering analysis [Houghton and Victor (2010)
and Victor and Purpura (1996)] to the data shown in Figure 8A
in order to compare the effect of each distance metrics on
decoding the information of movement directions from spike
trains. For decoding such directional information based on the
shortest distance to the training samples of spike trains, we
used the k-nearest neighbor algorithm (Fix and Hodges, 1951).
The decoding performance were measured by the normalized
transmitted information proposed in the study by Houghton and
Victor (2010), which ranges from 0 to 1 where a higher value
indicates more accurate decoding. The result demonstrated that
the EMD produced the best decoding output (with the number of
neighbors, k = 3) (Figure 8C).

We also applied the same clustering analysis to the data
shown in Figure 7A without removing firing rate differences,
in order to examine the effect of directionally tuned firing
rates on the spike train distances. We observed that the Victor-
Purpura distance and the van Rossum distance produced larger
normalized transmitted information than the SPIKE-distance,
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FIGURE 8 | (A) Resampled spike trains of the neuron in Figure 7. The spikes
in the resampled spike train are randomly chosen from the pool of spike
timings in each direction. The spiking patterns in the original spike train is
preserved while the number of spikes is controlled. The range of spike trains
extended from [0, 1] s to [0, 10] s. (B) The directional decoding results using
spiking patterns in resampled spike trains. The distance indicates the average
distance for each direction. The distance for the direction is normalized by
other directions. The small value of the normalized distance toward the correct
direction indicates a high magnitude of discrimination of the spiking patterns
for the direction from the other directions. (C) Decoding directional information
from the spike trains in panel (A) is performed using the k-nearest neighbor
algorithm (k = 3 in our analysis) and evaluated by the normalized transmitted
information (see the text). Higher normalized transmitted information indicates
better decoding performance. VP, Victor-Purpura distance; vR, van Rossum
distance.

the RI-SPIKE-distance, and the EMD regardless of the setting of
time-scale parameters. It demonstrates that the first two distances
are more suitable for rate coding than last three distances, as
also shown in sections “Temporal Similarity and Robustness to
Firing Rate Change” and “Spike Time Synchrony and Robustness
to Firing Rate Change.”

DISCUSSION

In the present study, we applied the EMD to neuroscience as
a spike train distance to measure the shortest delivery path
length between spike trains. In this distance, a spike train
was considered as a function that assigned a non-negative
value at spiking time such that the sum of all non-negative
values was equal to one. For any two functions in this metric
space, one function could be transformed into another function
through the iteration of delivering a quantity at a point in the
domain of a function to another point. Each delivery created
a path whose length could be quantified by the product of
the amount of the moving quantity (i.e., a fraction of a spike)
and the delivery time. The sum of all delivery paths was
then defined as the delivery path length. Among all possible
delivery paths, the shortest path was sought, and its length
was used as the spike train distance. We demonstrated that
our distance sufficiently expressed temporal similarity based
on the temporal profile of spiking probabilities and spiking
time synchrony between a pair of spike trains, and that
it was more robust to differences in absolute firing rates
with a common temporal profile of spike probabilities than
previous distances.

The metric EMD is induced by the metric based on the
temporal events. It means that a distance between two spike
trains is entirely measured from distances between spikes
within those spike trains. Owing to this property, the EMD
can vary linearly in response to linear changes in spike
timing (Figure 3). This linear property may strengthen the
reliability of the EMD for capturing spike timing differences
between spike trains and allow one to easily determine
how the distance would vary with spike timing variation.
On the other hand, the EMD can provide information
about temporal precision, but not conclusive information
whether spike timing difference is in some range or not, due
to this linearity.

The EMD measures a difference between two normalized
spike trains, in contrast to other distances that use spike trains
per se without normalization. This normalization allows the EMD
to compare the actual temporal patterns of a pair of spike trains
with negligible influences from firing rates. This property makes
the EMD more robust to firing rate changes than other distances
(Figures 4, 5). It is expected that temporal coding research may
take advantage of this property.

Of course, not every spike train distance should be robust
against firing rate change. If a distance between spike trains
with similar firing rates is smaller than between spike trains
with different firing rates, it is suitable for representing rate
coding. Yet, if certain cases require information merely from
temporal coding, the robustness against firing rate change would
be necessary for distance measures. Since the EMD does not
reflect rate coding as discussed above, the spike counts would be
supplementary to the EMD.

The EMD as a spike train distance is based only on spike
timing differences, which allows the EMD to be adequate for
temporal coding. The EMD measures the minimum length
of spike timing shifts to make two spike trains identical.
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To calculate the length, the amount of spikes in two
spike trains should be the same and the normalization step
making the amount of spikes in each train equal to one
is necessary. The normalization step plays a crucial role in
the robustness to firing rate changes. Thus, existing methods
other than the EMD can be applied to normalized spike
trains, which would preserve the robustness to firing rate
changes. However, other methods may not be as adequate
as the EMD for temporal coding. For example, the Jensen–
Shannon divergence, which measures dissimilarity between two
probability distributions, can be applied to the normalized spike
trains because the normalized spike trains can be considered
as a probability distribution. But, since it is not concerned
with spike timing differences, it may not provide measurements
useful for temporal coding. Also, the Victor-Purpura distance
can be applied to the normalized spike trains. However, since
the Victor-Purpura distance has the adding/deleting spikes
option, it cannot guarantee that the dissimilarity is calculated
based only on spike timing differences. Hence, we suggest
that the EMD can be advantageous over other methods to
provide spike train distance based solely on timing differences
between a given pair of spikes and therefore useful for
temporal coding schemes.

Precise spike timing is a key element in temporal coding
(Butts et al., 2007; Gollisch and Meister, 2008; Johansson and
Flanagan, 2009). There are largely two different approaches to
measure how much the spike timings of a pair of spike trains
match with each other. One way is to measure a global difference
between the trains of spike timings, and the other way is to
measure local matches between the trains of spike timings. For
example, in the global measurement, a spike train (2,3,4,5) can
be matched with a spike train (1,2,3,4) by shifting all spike
timings by +1, and a spike train (1,2,3,5) can be matched
with the spike train (1,2,3,4) by shifting its last spike timing
by −1. Therefore, the distance between (1,2,3,4) and (2,3,4,5)
is larger than the distance between (1,2,3,4) and (1,2,3,5). The
Victor-Purpura distance with a short time-scale parameter and
the EMD measure spike distances in this way: 0.4 vs. 0.1 in
the Victor-Purpura distance with q = 0.1, and 1 vs. 1/4 in the
EMD. In the local measurement, the spike train (1,2,3,4) and
the spike train (2,3,4,5) are locally matched at three different
timings ({2, 3, 4}), and the spike train (1,2,3,4) and the spike
train (1,2,3,5) are also locally matched at three different timings
({1, 2, 3}). As such, the distance between (1,2,3,4) and (2,3,4,5)
is the same as the distance between (1,2,3,4) and (1,2,3,5). The
van Rossum distance, the SPIKE-distance, and the RI-SPIKE-
distance measure spike distances in this way. Hence, we can
select the global spike train distance measurement if we intend
to measure how similar the distributions of spike timings in two
spike trains are, or the local spike train distance measurement
if we intend to focus on local spike timing matching. In this
study, we propose a new method for the global spike train
distance measurement.

Although the EMD is less affected by firing rate changes
compared to other distances, it is not completely invariant to
firing rate changes. For instance, in our simulations, when two
spike trains were generated from uniform distributions in an

interval from 0 to 1 s with a firing rate of 1 Hz, the EMD between
two spike trains was 0.33 ± 0.24 s. However, when two spike
trains were generated in the same interval with a firing rate
of 10 Hz, the distance decreased to 0.14 ± 0.06 s. Therefore,
there was a tendency for the EMD to decrease as the firing rate
increased. Also, these results were confirmed with Poisson spike
trains in Figure 6D. The results showed that the EMD values
varied with different firing rate ratios although the variation
was very smaller than firing rate ratios. Therefore, meticulous
care is required when using the EMD for temporal coding
research without considering rate coding completely. However,
in cases where two spike trains exhibit certain temporal patterns
and those two temporal patterns are different, the EMD would
quantify dissimilarity well between two temporal patterns even if
they have fairly different firing rates.

The present study mainly addressed the sensitivities of spike
train distances to rate and temporal coding. However, in addition
to sensitivities, each distance offers a unique feature. The SPIKE-
distance and the RI-SPIKE-distance have fine time resolutions
and thus can measure differences in local spike patterns.

The EMD also has a definite advantage such that it can
be extended to stochastic spike trains as follows. Many noise
sources perturb the generation of spikes, inducing a variability
of spiking events (Faisal et al., 2008). Due to this variability, we
can consider a spike train as a stochastic process. For examples,
the peristimulus time histogram based on the average of trials
or the probabilistic reconstruction of a spike train (Kass and
Ventura, 2001) takes stochastic spike trains into account. In this
sense, a spike train distance that can deal with continuous data is
needed to compare two stochastic spike trains. Moreover, such a
spike train distance should be based on distance metrics defined
with deterministic spike trains, as a stochastic spike train can
be viewed as a natural variant of a deterministic spike train
(Haslinger et al., 2009). The proposed distance, EMD, bases itself
in a metric space for deterministic spike trains and can also
be applied to stochastic spike trains in the form of normalized
continuous data.
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Neural Synchrony Gives Rise to
Amplitude- and Duration-Invariant
Encoding Consistent With Perception
of Natural Communication Stimuli
Michael G. Metzen, Volker Hofmann and Maurice J. Chacron*

Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada

When confronted with a highly variable environment, it remains poorly understood how
neural populations encode and classify natural stimuli to give rise to appropriate and
consistent behavioral responses. Here we investigated population coding of natural
communication signals with different attributes (i.e., amplitude and duration) in the
electrosensory system of the weakly electric fish Apteronotus leptorhynchus. Our results
show that, while single peripheral neurons encode the detailed timecourse of different
stimulus waveforms, measures of population synchrony are effectively unchanged
because of coordinated increases and decreases in activity. A phenomenological
mathematical model reproduced this invariance and shows that this can be explained
by considering homogeneous populations whose responses are solely determined by
single neuron firing properties. Moreover, recordings from downstream central neurons
reveal that synchronous afferent activity is actually decoded and thus most likely
transmitted to higher brain areas. Finally, we demonstrate that the associated behavioral
responses at the organism level are invariant. Our results provide a mechanism by
which amplitude- and duration-invariant coding of behaviorally relevant sensory input
emerges across successive brain areas thereby presumably giving rise to invariant
behavioral responses. Such mechanisms are likely to be found in other systems that
share anatomical and functional features with the electrosensory system (e.g., auditory,
visual, vestibular).

Keywords: invariance, weakly electric fish, identity-preserving transformations, neural coding, synchrony

INTRODUCTION

It is now widely accepted that behavioral responses of vertebrates to natural stimuli are determined
by integrating the activities of large neuronal populations (Cohen and Kohn, 2011). However, how
such integration is achieved remains poorly understood in general. This is in part because natural
stimuli display complex spatiotemporal characteristics (Attias and Schreiner, 1997; Mante et al.,
2005; Theunissen and Elie, 2014), as well as the fact that neuronal activities are not independent of
one another (Averbeck et al., 2006). Of particular interest is the fact that neurons often fire action
potentials synchronously, which is thought to enable neuronal ensembles to better encode specific
stimulus features (Gray and Singer, 1989; Dan et al., 1998; Nunez and Malmierca, 2007; Uhlhaas
et al., 2009; Brette, 2012; Harris and Gordon, 2015). Increased response selectivity in higher brain
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areas (i.e., “sparse coding”) has been observed ubiquitously
(Vinje and Gallant, 2000; Laurent, 2002; Olshausen and Field,
2004; Vonderschen and Chacron, 2011; Theunissen and Elie,
2014; Sproule et al., 2015) but must be balanced by the fact
that neuronal representations also become more invariant to
a given sensory input encountered under different contexts
(e.g., the same object under different levels of illumination)
(Dicarlo and Johnson, 1999; Quiroga et al., 2005; Billimoria
et al., 2008; Rust and Dicarlo, 2010; Barbour, 2011; Rust and
Dicarlo, 2012; Schneider and Woolley, 2013; Sharpee et al.,
2013). The mechanisms that mediate the emergence of invariant
representations and the tradeoff with sparse coding remain
poorly understood to this day.

Weakly electric fish generate an electric field through their
electric organ discharge (EOD) and can sense perturbations
through an array of electroreceptor afferents embedded in their
skin (Turner et al., 1999). These afferents synapse onto pyramidal
cells within the electrosensory lateral line lobe (ELL) which then
project to higher brain centers that mediate behavioral responses
(Rose, 2004). Natural electrosensory stimuli comprise those
caused by objects such as prey (Nelson and Maciver, 1999) as
well as those caused by conspecifics (Zakon et al., 2002; Metzen,
2019). In the latter case, natural electrocommunication stimuli
(i.e., “chirps”) consist of transient increases in EOD frequency
that occur on top of the underlying sinusoidal background
beat (Zupanc and Maler, 1993; Engler et al., 2000; Bastian
et al., 2001; see Zupanc, 2002 for review; Kolodziejski et al.,
2005). The responses of electroreceptors and pyramidal cells
to natural electrocommunication stimuli have been extensively
characterized (Benda et al., 2005, 2006; Marsat et al., 2009;
Marsat and Maler, 2010; Vonderschen and Chacron, 2011;
Walz et al., 2014; Metzen et al., 2016; Metzen and Chacron,
2017; Allen and Marsat, 2018, 2019). In particular, for single
electroreceptor afferents (EAs), it has been shown that their
time-dependent firing rates will vary differentially in time when
chirps with different attributes (e.g., characterized by different
EOD frequency increases and/or durations) are presented on
top of beats with different frequencies (Benda et al., 2005, 2006;
Walz et al., 2014). At the population level, it has been shown
previously that the presentation of natural electrocommunication
stimuli gives rise to synchrony in the responses of EAs which
is primarily seen for low beat frequencies (Benda et al., 2006;
Walz et al., 2014). It is important to note that Walz et al. (2014)
did not systematically vary chirp duration or the EOD frequency
increase in their study. For ELL pyramidal cells (PCells), it has
been previously shown that they will respond differentially to
chirps with different attributes through burst firing caused in
part by feedback, thus enabling better signal detection (Marsat
et al., 2009; Marsat and Maler, 2010, 2012, Vonderschen and
Chacron, 2011). Our previous studies have considered the coding
of chirps occurring on different phases of the beat and revealed
the emergence of invariant neural representations based on
synchronous activity at the level of EAs (Aumentado-Armstrong
et al., 2015; Metzen et al., 2016; Metzen and Chacron, 2017).
However, how EAs encode chirps with different durations and
amplitudes (i.e., different EOD frequency increases) has not been
systematically investigated to date at either the single neuron or

at the population level. Further, how this information is decoded
by downstream pyramidal cells to give rise to perception and
behavior has not been studied to date.

Here we used a combination of electrophysiological
recordings, mathematical modeling, and behavioral assays
to investigate how chirps with different amplitudes and durations
are represented by peripheral electroreceptor afferent neural
populations. Furthermore, we analyzed how this representation
is decoded by downstream central ELL pyramidal neurons
that represent a bottleneck in the electrosensory pathway and
whose responses are further processed by downstream brain
areas to generate electrosensory perception and behavior. Our
results demonstrate that synchronous activity at the afferent
population level gives rise to a representation of natural
electrocommunication stimuli that is invariant to variations
in stimulus attributes such as duration and amplitude. This
representation is decoded by ELL PCells and these responses
are further processed by downstream brain areas to generate
invariant behavioral responses. Because of anatomical and
functional similarities between the electrosensory and other
systems (Clarke et al., 2015), the uncovered mechanism
for generating invariant neuronal responses is likely to be
generally applicable.

MATERIALS AND METHODS

Ethics Statement
The animal study was reviewed and approved by McGill
University’s animal care committee under protocol number 5285.

Animals
We used a total of N = 20 Apteronotus leptorhynchus specimens
of either sex in this study. Animals were acquired from tropical
fish suppliers and acclimated to laboratory conditions according
to published guidelines (Hitschfeld et al., 2009).

Surgery and Recordings
Surgical procedures have been described in detail previously
(Toporikova and Chacron, 2009; Vonderschen and Chacron,
2011; McGillivray et al., 2012; Deemyad et al., 2013; Metzen
et al., 2016). Briefly, animals (N = 12) were injected with
tubocurarine chloride hydrate (0.1 – 0.5 mg) for immobilization
before being transferred to an experimental tank and respirated
with a constant flow of water over their gills (∼10 ml/min). To
expose the hindbrain for recording, a portion of the animal’s
head was kept out of water and anesthetized locally with
lidocaine ointment (5%). A small craniotomy (∼5 mm2) was
made above the hindbrain for afferent and ELL PCell recordings.
We used 3M KCl-filled glass micropipettes (30 M� resistance)
to record from electroreceptor afferent axons (N = 60) as
they enter the ELL (Savard et al., 2011; Metzen and Chacron,
2015; Metzen et al., 2015). We recorded from single EAs in
response to stimulation and then recombined the activities. This
is because previous studies have shown that, as EAs do not
display noise correlations, similar results were obtained when
considering either simultaneous or non-simultaneous recordings
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(Chacron et al., 2005a; Metzen et al., 2015, 2016). Extracellular
recordings from ELL PCells within the lateral segment (N = 40)
were performed with metal-filled micropipettes (Frank and
Becker, 1964; Chacron et al., 2009; Chacron and Fortune, 2010;
Metzen et al., 2016). The sample sizes are similar to those used
in previous studies. Baseline (i.e., in the absence of stimulation)
firing rates for EAs and PCells were 368± 113 Hz, and 12± 8 Hz,
respectively, and were similar to previously reported values
(Chacron et al., 2005b; Gussin et al., 2007; Metzen et al., 2015).
We only recorded from neurons that responded to at least one
chirp stimulus waveform. Recordings were digitized at 10 kHz
(CED Power 1401 & Spike 2 software, Cambridge Electronic
Design) and stored on a computer for subsequent analysis.

Stimulation
The neurogenic electric organ of A. leptorhynchus is not affected
by injection of curare-like drugs. Stimuli consisted of amplitude
modulations of the animal’s own EOD and were produced by first
generating a sinusoidal waveform train with frequency slightly
greater (20 – 30 Hz) than the EOD frequency that was triggered
by the EOD zero crossings. This train is synchronized to the
animal’s EOD and will either increase or decrease the EOD
amplitude based on polarity and intensity. This train is then
multiplied (MT3 multiplier, Tucker Davis Technologies) with an
amplitude modulated waveform (i.e., the stimulus). The resultant
signal is then isolated from ground (A395 linear stimulus isolator,
World Precision Instruments) and delivered to the experimental
tank via two chloridized silver wire electrodes located∼ 15 cm on
each side of the animal (Bastian et al., 2002). To elicit neural and
neuronal responses, we generated chirps with different attributes
by systematically varying both chirp duration (8, 11, 14, 17,
and 20 ms) and amplitude (10, 35, 60, 85, and 110 Hz). These
ranges were chosen to contain those observed in the current
study as well as those observed in previous studies (Zupanc and
Maler, 1993; Engler and Zupanc, 2001; Zupanc et al., 2006). It is
important to note that the chirp amplitude is not equivalent to the
actual spectral frequency content of the resulting AM stimulus
which is 50–100 Hz (Zupanc and Maler, 1993). Moreover, we
considered chirps occurring at either phase 90◦ or 270◦ of the
beat cycle, on top of a sinusoidal beat with frequency fbeat = 4 Hz
as done previously (Vonderschen and Chacron, 2011; Metzen
et al., 2016). We chose a 4 Hz beat because this was the
frequency used in a previous study (Metzen et al., 2016) and
is characteristic of the low frequency beat stimuli encountered
during interactions of two same-sex conspecifics, during which
electrocommunication stimuli like those considered here occur.
We chose two beat phases because our previous study has
shown that EA synchrony but not single EA firing rate is
invariant to different chirp waveforms with given attributes (i.e.,
duration and amplitude) occurring at eight different beat phases,
which presumably led to invariant behavioral responses (Metzen
et al., 2016). Further, we showed that ELL PCells were “locally”
invariant in that they responded similarly to chirps occurring
near the beat through (i.e., “+chirps”) and similarly (but in
opposite fashion to “+chirps”) to chirps occurring near the beat
peak (i.e., “−chirps”) (Metzen et al., 2016). The two phases
chosen here correspond to representative examples of “+chirps”

and “−chirps” that will effectively capture variations in neural
responses due to chirps occurring at different beat phases. To
measure the stimulus intensity, a small dipole was placed close
to the animal’s skin. Stimulus intensity was adjusted to produce
changes in EOD amplitude that were ∼20% of the baseline level,
as done previously (Metzen et al., 2016; Metzen and Chacron,
2017). Finally, each chirp stimulus (i.e., a chirp with given
duration and amplitude) was presented at least 20 times (i.e., 20
trials) in order to average the variability of neural responses.

Modeling
We used the leaky integrate and fire model with dynamic
threshold (LIFdt) (Chacron et al., 2000, 2001) that is an extension
of the Nelson model using the following set of differential
equations to account for various filtering mechanisms (Bastian,
1981; Nelson et al., 1997):

Ṡa = −
Sa
τa
+

Ga

τa
A (t) , (1)

Ṡb = −
Sb
τb
+

Gb

τb
A (t) , (2)

S (t) = −Sa − Sb + (Ga + Gb + Gc)A (t) , (3)

where A(t) is the stimulus, and S(t) is the filtered stimulus.
The G values are gains in units of spikes per second per
millivolt (Ga = 18300 spikes × s−1

× mV−1; Gb = 850
spikes × s−1

× mV−1; Gc = 670 spikes × s−1
× mV−1), and

the τ values are time constants in units of seconds (τa = 0.002 s;
τb = 0.25 s). The total dimensionless synaptic current arriving at
the spike initiation zone is given by:

Isyn = S (t)+ γA0 + ξ (t) , (4)

where Isyn is the synaptic current, S(t) is the filtered stimulus
according to equations (1–3), γ and A0 are constants. ξ (t) is
Gaussian white noise with zero mean and variance of one. In
the time window after the absolute refractory period and up to
the next action potential, the voltage V and the threshold θ are
given by:

V̇ = −
V
τν

+
Isyn
τν

, (5)

θ̇ =
(θ0 − θ)

τθ

, (6)

where V is the membrane potential, τν is the voltage decay
constant of the membrane, θ is the spike threshold, and τθ is
the threshold decay constant. Whenever V = θ, a spike occurs,
and V is reset to zero and maintained there for the duration of
the refractory period (Tr). The threshold θ is also increased by
a fixed amount 1θ and otherwise decays with time constant τθ

between action potentials. Parameter values used were τν = 1 ms;
τθ = 7.75 ms; θ0 = 0.08; 1θ = 0.001; Tr = 1 ms. Parameter
values were chosen based on previous studies (Chacron et al.,
2000, 2001; Savard et al., 2011) and were adjusted such that the
mean firing rate of our model (392.71 ± 0.02 Hz) was within
the experimentally observed range. As such, our model neurons
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were homogeneous and the spiking activities of the model neuron
stimulated in the same way as our experimental data (i.e., same
number of trials and trial length) were used to compute all
measures at the single neuron level. The spiking activities of two
model neurons with independent realizations of the noise ξ (t)
were used to compute all measures at the population level.

Analysis
All analyses were performed using custom-built routines in
Matlab (The MathWorks Inc., Natick, MA, United States), these
routines are freely available online at http://dx.doi.org/10.6084/
m9.figshare.8041136.

Electrophysiology
We used a total of N = 12 animals of either sex for
electrophysiological recordings (EAs: N = 5; PCells: N = 7). ELL
PCells were recorded within the lateral segment (LS) of the ELL
where cells are most sensitive to high frequency communication
signals (Marsat et al., 2009). This segment contains about 900
PCells, each receiving convergent input from about 1000 EAs
on average (Maler, 2009). Action potential times were defined
as the times at which the signal crossed a suitably chosen
threshold value. From the spike time sequence, we created a
binary sequence R(t) with binwidth 1t = 0.1 ms and set the
content of each bin to equal the number of spikes which fell
within that bin. The time-dependent firing rates were obtained
by averaging the neural or neuronal responses across repeated
presentations of a given stimulus with binwidth 0.1 ms and
were smoothed with a 6 ms long boxcar filter. We note
that similar results were obtained when systematically varying
the size of the boxcar filter between 6.25 ms and 250 ms
(Figures 3, 4F, 7, 8G).

Synchrony Between the Spiking
Activities of Electrosensory Afferents
To quantify neural synchrony, we computed the cross-
correlation coefficient between the spiking responses Ri(t) and
Rj(t) of neurons i and j as was done previously (Shea-
Brown et al., 2008; Metzen et al., 2015, 2016; Metzen
and Chacron, 2017). As mentioned before, we randomly
combined electrosensory afferents to compute synchrony, as
these do not display noise correlations (Chacron et al., 2005a;
Metzen et al., 2015). The time varying spiking synchrony
was computed as the correlation coefficient between spike
count sequences Si obtained from the binary sequences
for non-overlapping 5 ms bins during a time window of
31.25 ms that was translated in steps of 0.25 ms using:

ρ =
Cov(S1, S2)

√
Var (S1)Var(S2)

(7)

Here, Cov(. . .) is the covariance while Var(. . .) denotes the
variance, and S1, S2 are the spike count sequences from
neurons 1 and 2, respectively. The time-dependent synchrony
measures were then averaged across trials. We note that
similar results were obtained when systematically varying the
time window length between 6.25 ms and ∼60 ms but

that synchrony values decreased for longer lengths up to
250 ms (Figures 5G, 6G).

Quantifying Neural Response Invariance
The invariance score for either parameter (i.e., duration or
amplitude) was defined as (Metzen et al., 2016; Metzen and
Chacron, 2017):

Invariance = 1−

∑
i6=j

[
D(FRi(t),FRj(t))
D(Si(t),Sj(t))

]
Nchirps

(
Nchirps − 1

) , (8)

where Nchirps = 10 and the sum runs over indices i and j
representing different values of the parameter (i.e., duration
or amplitude) for all possible combinations of i 6= j. D(x,y)
is a distance metric between x and y that was computed as
(Aumentado-Armstrong et al., 2015; Metzen et al., 2016; Metzen
and Chacron, 2017):

D(x, y) =
√
〈(x− 〈x〉 − y+ 〈y〉)2〉

max
[

max(x)−min(x)
√

2
,

max(y)−min(y)
√

2

] , (9)

where < . . . > denotes an average over an evaluation window
of 30 ms after chirp onset that is shown as a gray band in
the figures, FRi(t) is the peri-stimulus time histogram (PSTH)
response of a given cell to chirp stimulus waveform Si(t),
and max(. . .), min(. . .) denote the maximum and minimum
values, respectively. All responses were normalized prior to
computing the distance metric. We note that, according to
equation (8), the distance between responses to two different
stimulus waveforms is normalized by the distance between the
stimulus waveforms themselves. A value of one indicates perfect
invariance, whereas a value of zero indicates that a neuron
whose response faithfully encodes the detailed timecourse of the
different stimulus waveforms will not be considered invariant
according to our definition. It is important to note that, unlike the
detectability measure described below, our invariance measure
is based on the timecourse of the actual neural responses and
not solely on their minimum and maximum values. Thus, in
order to obtain a high invariance score, it is not sufficient for
different neural responses to merely have the same minimum and
maximum values, they actually have to have a similar timecourse.
It is furthermore important to note that the invariance score
was computed from the PSTH responses which are averaged
over trials to reduce variability. It is thus unlikely that the
invariance scores reported in the current study are due to large
response variability. Invariance scores were computed for each
individual cell and subsequently averaged across the respective
populations. We computed duration and amplitude invariance
for synchronous activity as described above except that we used
the timecourse of the varying correlation coefficient instead of
spike counts as an input.

Detectability
To determine the detectability of a stimulus waveform resulting
from a chirp with a specific amplitude or duration within
the ongoing beat, we computed the distance D(x,y) [equation
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(9)] between the chirp waveform and the corresponding beat
waveform (i.e., the beat waveform when no chirp occurred) as
done previously (Aumentado-Armstrong et al., 2015; Metzen and
Chacron, 2017). A value of one indicates perfect detectability,
whereas a value of zero indicates that the chirp waveform is
identical to the beat waveform. The neuronal detectability of a
chirp (using either single unit firing rate or synchronous activity)
was computed using:

Detectabilityneuronal = abs

(
Rchirp − Rbeat
Rchirp + Rbeat

)
, (10)

where Rchirp = Rmax – Rmin (i.e., the difference between the
maximum and minimum values of the response). Rchirp was
computed over a time window of 15 ms for EA firing rate and
of 60 ms for EA synchrony and PCell firing to account for
differences in the timecourse of responses as done previously
(Metzen and Chacron, 2017). Rbeat = Rmax – Rmin is the difference
between the maximum and minimum values of the response (i.e.,
either of EA firing rate, EA synchrony, or PCell firing rate) to
the undisturbed beat during one beat cycle, respectively. We note
that this measure is similar to the chirp selectivity index used in
previous studies (Vonderschen and Chacron, 2011; Aumentado-
Armstrong et al., 2015).

Behavior
Apteronotus leptorhynchus has been shown to robustly give chirp
echo responses when stimulated with chirps (Hupé and Lewis,
2008; Gama Salgado and Zupanc, 2011). Measuring this chirp
echo response has been effectively used before to infer the
perceptual abilities of these animals under different stimulus
conditions (Metzen et al., 2016; Metzen and Chacron, 2017).
Moreover, chirping behavior was shown to be identical in freely
moving and restrained fish (Hitschfeld et al., 2009). We therefore
measured the chirp echo behavioral response by restraining fish
(N = 8) in a “chirp chamber” as described previously (Metzen
and Chacron, 2014; Metzen et al., 2016). Stimuli were delivered
by two electrodes spaced 10 cm from each other located on
the right side of the animal (Figure 9A, S1 and S2). The
EOD was measured between electrodes placed near the head
and tail, amplified (Axoclamp 2B, Molecular Devices), digitized
at 10 kHz sampling rate using CED 1401plus hardware and
Spike2 software (Cambridge Electronic Design), and stored on
a computer hard disk for offline analysis. Previous studies have
shown that stimulation with low frequency (<10 Hz) beats
will induce chirping behavior but that this habituates over time
(Bastian et al., 2001). As such, we initially habituated the animal
to a 4 Hz beat stimulus lasting 60 s in order to minimize the
probability of chirp responses being elicited due the beat alone.
Computing the baseline chirp rate during the first (control)
and last (habituated) 30 s of the habituation period showed a
significant drop in chirp rate down to 0 (control: 0.5919 ± 1.137
chirps × s−1; habituated: 0 ± 0 chirps × s−1; paired t-test;
p = 1.28 × 10−5), indicating that the animals were habituated
to the beat signal. It is therefore highly unlikely that any echo
response observed after stimulus chirp onset was due to the
underlying beat as the chirp rate immediately before stimulus

chirp onset was null. We then randomly interspersed chirp
stimuli at variable intervals (15 s ± 3 s) and the recording was
started 200 ms before chirp onset. To analyze the chirp echo
response, we first extracted the time varying EOD frequency of
each fish tested. Echo response chirps after stimulus chirp onset
were identified as increases in the animal’s own EOD frequency
that exceeded 30 Hz (Bastian et al., 2001). The time of occurrence
of echo response chirps was defined as the time at which the EOD
frequency excursion was maximal. The echo response chirp rate
was computed as the number of echo response chirps during
a time window of 1 s following the stimulus chirp onset since
previous studies have shown that the majority of responses occur
during this time window (Zupanc et al., 2006). Invariance scores
for behavior were computed as described above for neural and
neuronal responses except that we used the behavioral PSTHs
computed from the echo responses using a 1 s boxcar filter as
responses (Metzen et al., 2016). We note that we randomly varied
the beat phase at which the chirp occurred between 0◦ and 315◦
in increments of 45◦ for either of the two chirp parameters (i.e.,
duration and amplitude) to avoid habituation.

Chirp Statistics
In order to quantify the distribution of chirp attributes duration
and amplitude in naturally occurring electrocommunication
signals, we analyzed the chirps elicited by our fish population
(N = 8) during the habituation period to a 4 Hz beat stimulus
of 60 s duration. To do so, we extracted the time-varying EOD
frequency by computing the inverse of the timing difference
between successive zero crossings as done previously (Metzen
et al., 2016). Chirp amplitude was computed as the difference
between the baseline EOD amplitude and the maximal EOD
frequency during a chirp event. The chirp duration was defined
as the full width at half-maximum of the EOD frequency
excursion. The time of occurrence of the chirp was defined as
the time at which the EOD frequency is maximal (Aumentado-
Armstrong et al., 2015). As mentioned above, previous studies
have shown that, in response to stimulation with low frequency
(<10 Hz) beats, animals will emit chirps. However, these studies
have also shown that the characteristics of the emitted chirps
(e.g., duration and amplitude) will depend on the stimulation
protocol such as the beat frequency as well as stimulus intensity
(Zupanc and Maler, 1993; Bastian et al., 2001; Gama Salgado
and Zupanc, 2011). In contrast, our measurements of chirp
statistics were made under the same conditions (i.e., same
beat contrast and frequency) than those used to investigate
neural and echo responses to these, thereby making them more
directly comparable.

Statistics
Statistical significance was assessed through a paired t-test or
a one-way analysis of variance (ANOVA) with the Bonferroni
method of correcting for multiple comparisons at the p = 0.05
level. Values are reported as boxplots unless otherwise stated.
Errorbars indicate mean ± SD. On each box, the central mark
indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. Outliers are

Frontiers in Neuroscience | www.frontiersin.org 5 February 2020 | Volume 14 | Article 79142

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00079 February 3, 2020 Time: 13:42 # 6

Metzen et al. Neural Synchrony and Invariance

FIGURE 1 | Schematic of the experimental setup. (A) Schematic showing successive brain areas involved in the processing of electrosensory stimuli.
(B) Experimental setup: the animal’s electric field (i.e., the behavior, purple) is monitored by a pair of electrodes located in front and behind the animal (E1 and E2)
while neural and neuronal activity is recorded. The stimulus (black) is delivered using a separate set of electrodes positioned on each side (spheres). The shaded gray
rectangle in the lower right inset shows the timewindow used for analysis. (C) During a chirp, the emitter fish’s EOD frequency (top orange trace) is transiently
increased by a maximum of amplitude for a brief duration (dashed box) while the receiver fish’s EOD frequency (red trace) remains constant. This can be
characterized by the duration and amplitude of the frequency excursion. The chirp results in a phase reset of the beat (bottom black trace).

plotted individually using the ” symbol. 95% confidence intervals
were estimated using the t-distribution.

RESULTS

We investigated how natural electrocommunication signals (i.e.,
“chirps”) with different attributes are encoded by peripheral
electroreceptor afferents (EAs) and their downstream target
pyramidal cells (PCells) within the ELL to give rise to behavior
(Figure 1A). To do so, we used an immobilized preparation
in which neural, neuronal and behavioral responses can be
recorded simultaneously (Figure 1B). Under natural conditions,
chirps occur during social interactions in which the emitter
fish sends the signal to the receiver fish. This signal consists
of a transient increase in the emitter’s fish’s EOD frequency
with given time duration and amplitude (i.e., the amount by
which the EOD frequency increases; Figure 1C, top panel).
Interactions between the two fish’s EOD frequencies gives rise to
a sinusoidal background beat (Figure 1C, bottom panel, black).
The chirp signal perturbs the underlying beat amplitude when
considering the stimulus sensed by the receiver fish (Figure 1C,
bottom panel, black).

We first investigated how chirp amplitude and duration
were distributed in emitted chirps of our fish population used
for behavior (N = 8). To do so, fish were stimulated with
a background beat of 4 Hz, which is characteristic of the
low frequency stimuli encountered during natural interactions
between same-sex conspecifics, and the resulting chirps were
detected and analyzed (see section “Materials and Methods”).
While previous studies have shown that fish will emit chirps
when stimulated by beats alone (Zupanc and Maler, 1993;

Bastian et al., 2001; Gama Salgado and Zupanc, 2011), these
have shown that the attributes of the emitted chirps (e.g., their
duration and amplitude) can vary based on beat attributes such
as frequency (Bastian et al., 2001). Thus, in order to ensure
that our results can be directly comparable, we measured the
characteristics of emitted chirps (i.e., amplitude, duration) using
the same beat stimulus (i.e., same frequency and amplitude) that
was used to stimulate neurons and behavioral echo responses as
described below.

We found that, for both duration (Figure 2A) and amplitude
(Figure 2B), the distributions were relatively narrow (duration:
mean: 11.45 ms, SD: 0.75 ms; amplitude: mean: 39.1 Hz,
SD: 8.0 Hz). These results are consistent with previous ones
(Bastian et al., 2001). We further found that the different
stimulus waveforms resulting from chirps with different duration
and amplitude became progressively more different from the
background beat itself (Figures 2C,D), consistent with previous
findings (Benda et al., 2005; Walz et al., 2014). We quantified
these differences by computing stimulus detectability and found
larger values for higher values of either duration (Figure 2E)
or amplitude (Figure 2F). To better understand experimental
results, we used a phenomenological mathematical model of EA
activity that closely reproduces experimental results (see section
Materials and Methods). The model consists of a leaky integrate
and fire formalism with dynamic threshold (LIFdt) for spike
generation to which input in the form of the filtered stimulus
based on single neuron properties found experimentally (Xu
et al., 1996), noise, and a constant bias are given (Figure 2G).
The model afferents were simulated using independent sources
of noise (see section Materials and Methods), which assumes that
there are no noise correlations and is consistent with available
experimental data (Chacron et al., 2005a; Metzen et al., 2016).
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FIGURE 2 | Chirps with different durations and amplitudes give rise to heterogeneous waveforms. (A) Probability density for chirp duration measured from chirps
that were emitted by animals when stimulated with a 4 Hz beat stimulus. (B) Same as (A), but for chirp amplitude. (C) Chirp waveforms for different durations, but a
fixed amplitude (shaded gray). Also shown is the stimulus waveform of the beat without a chirp (red). Values are plotted as mean ± SE. (D) Same as (C), but for
chirp amplitude. (E) Chirp stimulus detectability as a function of duration. Values are plotted as mean ± SE. (F) Same as (E), but for amplitude. (G) Schematic of the
leaky integrate and fire model with dynamic threshold (LIFdt) where a stimulus is passed to a filter with and a white noise term as well as a current bias is added. The
voltage (black curve) and threshold (brown curve) trace obtained with the LIFdt model showing the firing rule. When voltage becomes greater than the threshold θ, a
spike is said to have occurred, and the voltage is reset to zero, whereas threshold is incremented by a constant 1θ. The threshold is kept constant to simulate the
absolute refractory period Tr (equal to one EOD cycle) and then decays exponentially with time constant τθ to its equilibrium value θ0. Parameter values used are
given in the section “Materials and Methods.”

Single Peripheral Afferents Respond
Differentially to Natural
Electrocommunication Stimuli With
Different Durations and Amplitudes
We first investigated how chirps with different durations were
encoded by single EAs (Figure 3). We found that responses
to these consisted of patterns of increases and decreases in
firing activity that faithfully encoded the stimulus waveform
(Figures 3A,B; green dots showing raster plots and green
curves showing the trial-averaged firing rate), consistent with
previous results (Benda et al., 2005, 2006; Walz et al., 2014).

EA firing activity increased when the chirp waveform (Figure 3A,
black) occurred near the beat trough (Figure 3A, green) but
instead decreased when the chirp waveform occurred near
the beat peak (Figure 3B, green). Superimposing the different
responses emphasized differences (Figure 3C, top green).
Simulations of our LIFdt model’s response to the different
waveforms were in good qualitative agreement with experimental
data (Figures 3A–D, cyan). Overall, stimulus detectability
computed from single EA responses increased with increasing
duration (Figure 3D, green, ANOVA with Bonferroni correction,
p = 3.311 × 10−173, df = 295, n = 60) but were much lower than
those computed from the stimulus (Figure 3D, black), which
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FIGURE 3 | Single peripheral electroreceptor afferents respond differentially to chirps with different durations. (A) Example stimulus waveforms (top, black) for chirps
with different durations (left: 8 ms; middle: 14 ms; right: 20 ms) occurring at the same phase of a 4 Hz beat, raster plots of an example afferent (middle top, green)
and model neuron (middle bottom, cyan) showing responses to 5 out of 20 randomly chosen presentations (i.e., trials) of each stimulus and the corresponding firing
rates of both neurons averaged over all 20 trials (bottom). The horizontal bars (shaded gray) represent the chirp window used for evaluation. The gray band shows
the evaluation time window used to compute invariance (see below). (B) Same as (A), but when the chirp occurred at a different phase of the beat.
(C) Superimposed trial-averaged firing rate responses of an example afferent (green) and our model (cyan) to chirps of different durations. (D) Population-averaged
detectability values computed from firing rate responses of the afferents (green) and the model (cyan) as a function of duration. Also shown is the stimulus
detectability (black) as a function of duration. (E) Invariance as a function of the baseline (i.e., in the absence of stimulation but in the presence of the animal’s
unmodulated EOD) firing rate for our afferent dataset. No significant correlation was observed (Pearson’s correlation coefficient, r = –0.0483; p = 0.7139).
(F) Population-averaged invariance as a function of the boxcar low-pass filter size used to obtain the time dependent firing rate from spiking activity.

is due to the fact that EA responses to chirps with different
durations differed from one another rather than due to variability
between individual responses to a given chirp. This is because
the invariance measure is computed using the trial-averaged time
dependent firing rates (i.e., firing rates averaged over repeated
presentations of the stimulus waveform associated with a chirp
with given duration and amplitude) rather than single-trial
responses which are more variable (see Section Materials and
Methods). Detectability computed from our model’s responses
closely matched values from experimental data (Figure 3D,

compare green and cyan). Afferent heterogeneities as quantified
by the baseline firing rate (i.e., in the absence of stimulation) did
not affect invariance as no significant correlation was observed
(Figure 3E, Pearson’s correlation coefficient, r = −0.0811;
p = 0.3238). Finally, our invariance results were robust to changes
in filter settings used to obtain the trial-averaged time-dependent
firing rate from spiking activity (Figure 3F).

Qualitatively similar results were obtained when we varied
chirp stimulus amplitude (Figure 4). Responses consisted of
patterns of increases and decreases in firing activity that
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FIGURE 4 | Single peripheral electroreceptor afferents respond differentially to chirps with different amplitudes. (A) Example stimulus waveforms (top, black) for
chirps with different amplitudes (left: 35 Hz; middle: 60 Hz; right: 110 Hz) occurring at the same phase of a 4 Hz beat, raster plots of an example afferent (middle top,
green) and model neuron (middle bottom, cyan) showing responses to 5 out of 20 randomly chosen presentations (i.e., trials) of each stimulus and the
corresponding firing rates of both neurons averaged over all 20 trials (bottom). The horizontal bars (shaded gray) represent the chirp window used for evaluation. The
gray band shows the evaluation time window used to compute invariance (see below). (B) Same as (A), but when the chirp occurred at a different phase of the beat.
(C) Superimposed trial-averaged firing rate responses of an example afferent (green) and our model (cyan) to chirps of different amplitudes. (D) Population-averaged
detectability values computed from firing rate responses of the afferents (green) and the model (cyan) as a function of amplitude. Also shown is the stimulus
detectability (black) as a function of amplitude. (E) Invariance as a function of the baseline (i.e., in the absence of stimulation but in the presence of the animal’s
unmodulated EOD) firing rate for our afferent dataset. No significant correlation was observed (Pearson’s correlation coefficient, r = 0.0386; p = 0.7694).
(F) Population-averaged invariance as a function of the boxcar size used to obtain the time dependent firing rate from spiking activity.

faithfully encoded the stimulus waveform (Figures 4A,B;
green). Superimposing the different responses again emphasized
differences (Figure 4C, top, green). Detectability also increased
with increasing amplitude (Figure 4D, green curve; ANOVA with
Bonferroni correction, p = 9.61 × 10−133, df = 295, n = 60).
Results obtained from numerical simulations of our model were
in good qualitative agreement with experimental data overall
(Figures 4A–D, cyan). Afferent heterogeneities as quantified
by the baseline (i.e., in the absence of stimulation) firing rate

also did not affect invariance as no significant correlation was
observed (Figure 4E, Pearson’s correlation coefficient, r = 0.0386;
p = 0.7694). Finally, our invariance results were robust to
changes in filter settings used to obtain the trial-averaged
time-dependent firing rate from spiking activity (Figure 4F).
Thus, we conclude that single peripheral afferents respond
differentially to the different stimulus waveforms associated
with changes in both duration and amplitude for natural
electrocommunication stimuli.
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FIGURE 5 | Synchrony provides an invariant representation of chirps with different durations. (A) Example stimulus waveforms (top) for chirps with different durations
(left: 8 ms; middle: 14 ms; right: 20 ms) occurring at the same phase of the 4 Hz beat, raster plots of two example afferents (middle top, green) and model neurons
(middle bottom, cyan) showing responses to 5 out of 20 randomly chosen presentations (i.e., trials) of each stimulus and the time varying synchrony averaged over all
20 trials (bottom) from the shown example afferent (green) and model (cyan) pairs. The horizontal bars (shaded gray) represent the chirp window used for evaluation.
The gray band shows the evaluation time window used to compute invariance (see below). (B) Same as (A), but when the chirp occurred at a different phase of the
beat. (C) Superimposed trial-averaged synchrony responses from the same example pair of afferents for experimental data (green) and from a pair of model afferents
(cyan) for chirps of different durations. (D) Population-averaged neuronal detectability values computed from the spiking synchrony from the afferents (green) and the
model (cyan) as a function of duration. (E) Population-averaged invariance values computed for the single afferents (green) and for the model (cyan) from single
afferent activity (left) and from synchrony (right) for chirp duration. “∗” indicates statistical significance at the p = 0.05 level using a paired t-test. (F) Invariance as a
function of the geometric mean of the afferent baseline firing rates for our dataset. No significant correlation was observed (Pearson’s correlation coefficient;
r = 0.1924; p = 0.2343). (G) Invariance as a function of time window length. Invariance was more or less independent of time window length for values up to ∼60 ms.

Afferent Populations Respond With
Similar Increases in Synchrony to Stimuli
With Different Durations and Amplitudes
and Thus Provide an Invariant
Representation of Both Stimulus
Attributes
We next investigated how afferent populations encode natural
electrocommunication stimuli with varying duration (Figure 5).

Our results show that the spiking activities of afferent pairs
were more synchronized in response to all stimulus waveforms
(Figures 5A,B, green). We thus quantified the time-varying
synchrony from pair-wise correlations between afferent activities
which ranges between -1 (perfect anti-synchrony) and 1 (perfect
synchrony) with 0 indicating lack of synchrony (see section
Materials and Methods). It is important to note that the
synchrony measure was averaged over trials (i.e., repeated
presentations of the stimulus waveform associated with a chirp
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with given duration and amplitude, see section Materials and
Methods) in order to ensure that changes are not due to
trial-to-trial variability in the neural responses. We found
that synchronous activity was much higher when a chirp had
occurred than during the background beat. Synchrony transiently
increases in a similar fashion in response to all chirps of different
durations and irrespective of whether the stimulus occurred at
the beat peak or trough (Figures 5A,B, bottom panels, 5C, top
green). Overall, synchrony at the population level was a much
better detector of the stimulus than the single afferent activity,
as quantified by higher detectability values especially for lower
durations (compare Figure 5D and Figure 3D, green; ANOVA
with Bonferroni correction, p = 0.002, df = 295, n = 60). We
quantified invariance (see section Materials and Methods) using
both the single afferent activity as well as the synchrony measure
and found significantly higher values for the latter (single neuron:
mean: 0.08 ± 0.02 SD; max: 0.13; min: 0.04; synchrony: mean:
0.49 ± 0.06 SD; max: 0.58; min: 0.32; p = 7.791 × 10−42, t-test;
Figure 5E). Similar results were observed when systematically
varying the time scale at which synchrony was computed up to
∼60 ms (Figure 5G). Results obtained from simulations of our
model at the population level were in good qualitative agreement
with experimental data (Figures 5A–E, compare green and cyan
throughout). Our model shows that the experimentally observed
invariance of synchrony at the population level can be explained
by the temporal filtering properties observed in electroreceptor
afferents and further suggests that EA heterogeneities are not
necessary to observe synchrony in EA pairs. Confirming this
prediction, afferent heterogeneities as quantified by the geometric
mean of the baseline firing rates of each pair did not affect
invariance as no significant correlation was observed (Figure 5F,
Pearson’ correlation coefficient, r = 0.1924; p = 0.2343). We
conclude that synchronous activity at short timescales in receptor
afferents displays invariance to variations in chirp duration.

Qualitatively similar results were obtained when investigating
changes in chirp stimulus amplitude (Figure 6). The spiking
activities of afferents were always more synchronized following
the stimulus presentation (Figures 6A,B, green) thereby giving
rise to similar increases in the synchrony measure (Figures 6A,B,
bottom panels, green, 6C, top green). Stimulus detectability
was also higher when considering synchrony than single
neuron activity (Figure 6D, ANOVA with Bonferroni correction,
p = 7.435 × 10−9, df = 295, n = 60). As chirps with
different amplitude all gave rise to increases in synchrony with
similar a timecourse (Figure 6C, top green), invariance was
larger than when considering single neuron activity (Figure 6E,
synchrony: mean: 0.49 ± 0.06 SD; max: 0.58; min: 0.32;
amplitude: mean: 0.37 ± 0.07 SD; max: 0.54; min: 0.21;
single neuron: mean: 0.06 ± 0.02 SD; max: 0.09; min: 0.04;
p = 6.672 × 10−30, t-test). Similar results were observed when
systematically varying the time scale at which synchrony was
computed up to ∼60 ms (Figure 6G). Finally, results from
modeling were in good qualitative agreement with experimental
data (Figures 6A–E compare green and cyan throughout).
Our model further confirms that the experimentally observed
invariance of synchrony at the population level can be explained
by the temporal filtering properties observed in electroreceptor

afferents and further suggests that EA heterogeneities are not
necessary to observe synchrony in EA pairs. Indeed, afferent
heterogeneities as quantified by the geometric mean of the
baseline firing rates of each pair did not affect invariance as
no significant correlation was observed (Figure 6F, Pearson’s
correlation coefficient, r = −0.2148; p = 0.1832). We conclude
that synchronous activity at short timescales in receptor afferents
displays invariance to variations in chirp amplitude.

Single ELL Pyramidal Neuron Responses
Decode Synchronous Afferent Activity as
Their Responses Are More Invariant to
Duration and Amplitude Than Those of
Single Afferents
So far, our results have shown that, while single afferents
respond differentially to natural electrocommunication stimuli
with different durations and amplitudes, this is not the case when
looking at the population level. This is because their activities are
more synchronized irrespective of duration or amplitude, which
leads to an invariant representation of electrocommunication
stimuli. Information transmitted by neural activity is of course
only useful if it is actually decoded by downstream neurons.
As such, we next investigated the responses of ELL PCells that
receive input from afferents to natural electrocommunication
stimuli with different durations and amplitudes. PCells can be
classified as either ON or OFF-type based on whether they
respond to increased stimulation with increases or decreases in
firing rate, respectively (Saunders and Bastian, 1984).

When varying chirp duration (Figure 7), we found that single
ELL PCells responded similarly to stimuli occurring at a given
background beat phase (Figures 7A,B). Specifically, ON-type
cells responded with increases in firing rate that were largely
independent of chirp duration when the stimulus occurred at
the beat trough (Figure 7A, magenta). In contrast, OFF-type
cells responded with decreases in firing rate that were largely
independent of duration for these stimuli (Figure 7A, blue).
When the chirp stimulus instead occurred at the beat peak,
the situation was reversed as ON-type cells responded with
decreases in firing rate (Figure 7B, magenta) while OFF-type cells
responded instead with increases in firing rate (Figure 7B, blue)
that were in both cases largely independent of chirp duration.
This is best seen by superimposing the different responses
(Figure 7C). Stimulus detectability computed from ELL PCell
activity was qualitatively similar for ON- and OFF-type cells
(Figure 7D). This detectability was furthermore similar to that
computed from afferent synchrony and thus significantly higher
than that computed from single afferent activity (ON-type:
p = 5.456 × 10−17; OFF-type: p = 2.046 × 10−13; ANOVA
with Bonferroni correction). As such, invariance values among
ON- and OFF-type ELL PCells were similar (Figure 7E, left;
p = 0.525, t-test) but larger than those for single afferents
(compare with Figure 5E; ON-type: p = 5.456 × 10−17; OFF-
type: p = 2.046 × 10−13; ANOVA with Bonferroni correction). It
should be noted that invariance values computed from single ELL
PCells were lower owing to the fact that each cell type responded
differentially when the stimulus occurred on different beat
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FIGURE 6 | Synchrony provides an invariant representation of chirps with different amplitudes. (A) Example stimulus waveforms (top, black) for chirps with different
amplitudes (left: 35 Hz; middle: 60 Hz; right: 110 Hz) occurring at the same phase of the 4 Hz beat, raster plots of two example afferents (middle top, green) and
model neurons (middle bottom, cyan) showing responses to 5 out of 20 randomly chosen presentations (i.e., trials) of each stimulus and the time varying synchrony
averaged over all 20 trials (bottom) from the shown example afferent (green) and model (cyan) pairs. The horizontal bars (shaded gray) represent the chirp window
used for evaluation. The gray band shows the evaluation time window used to compute invariance (see below). (B) Same as (A), but when the chirp occurred at a
different phase of the beat. (C) Trial-averaged synchrony responses from the same example pair of afferents for experimental data (green) and from a pair of model
afferents (cyan) for chirps of different amplitudes. (D) Population-averaged neuronal detectability values computed from the spiking synchrony from the afferents
(green) and the model (cyan) as a function of amplitude. (E) Population-averaged invariance values computed for the afferents (green) and for the model (cyan) from
single afferent activity (left) and from synchrony (right) for chirp amplitude. “∗” indicates statistical significance at the p = 0.05 level using a paired t-test. (F) Invariance
as a function of the geometric mean of the afferent baseline firing rates for our dataset. No significant correlation was observed (Pearson’s correlation coefficient,
r = –0.2148; p = 0.1832). (G) Invariance as a function of time window length. Invariance was more or less independent of time window length for values up to
∼60 ms.

phases (compare Figures 7A–C). Invariance scores computed
for a given phase were significantly higher (Figure 7E, right;
p = 8.380 × 10−8; paired t-tests), which further confirms that
single ELL PCell responses are more invariant than those of
single afferents. It is important to note that the higher invariance
scores seen for ELL PCells to chirps with different durations

as compared to afferents is thus primarily due to the fact that
trial-averaged firing rate responses were more similar to one
another rather than variability. This is because the invariance
measure is computed using the trial-averaged time dependent
firing rates (i.e., firing rates averaged over repeated presentations
of the stimulus waveform associated with a chirp with given
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FIGURE 7 | Central electrosensory neurons display more invariant representation of chirps with varying duration than peripheral electroreceptor afferents.
(A) Example stimulus waveforms (top, black) for chirps with different durations (left: 8 ms; middle: 14 ms; right: 20 ms) occurring at the same phase of the 4 Hz beat,
raster plots of an example ON-PCell (middle top, magenta) and OFF-PCell (middle bottom, blue) showing responses to 5 out of 20 randomly chosen presentations
(i.e., trials) of each stimulus and corresponding firing rates of the same PCells averaged over all 20 trials (bottom). The gray band shows the evaluation time window
used to compute invariance (see below). (B) Same as (A), but when the chirp occurred at a different phase of the beat. (C) Superimposed trial-averaged firing rate
responses of the same example ON (top panel) and OFF-type (bottom panel) PCells to chirps with different durations. (D) Averaged detectability values computed
from firing rate responses for our ON-type PCell population (magenta) and our OFF-type PCell population (blue) as a function of duration. (E) Left:
Population-averaged invariance values computed from ON (magenta) and OFF-type (blue) PCells for duration. Right: Invariance computed for all chirp phases used
(left) and when only the phase that elicited excitatory responses in our PCell population was used (right) for varying chirp duration values. “∗” indicates statistical
significance at the p = 0.05 level using a paired t-test. (F) Invariance as a function of baseline firing rate. No significant correlation was observed (Pearson’s
correlation coefficient, r = 0.1505; p = 0.3539). (G) Population-averaged invariance as a function of the boxcar size used to obtain the time dependent firing rate
from spiking activity.

duration and amplitude) rather than single-trial responses which
are more variable (see section Materials and Methods). Pyramidal
cell heterogeneities as quantified by the baseline firing rate
did not affect invariance as no significant correlation was
observed (Figure 7F; Pearson’s correlation coefficient, r = 0.1505;
p = 0.3539). Invariance scores were furthermore robust to
changes in the filter settings used to obtain the time-dependent
firing rate from spiking activity (Figure 7G). Further, we note that
previous studies have shown that some midbrain neurons receive

balanced input from ON- and OFF-type ELL PCells (McGillivray
et al., 2012; Aumentado-Armstrong et al., 2015) whose responses
would then be expected to be more invariant as seen previously
for other chirp attributes (Metzen et al., 2016).

Qualitatively similar results were obtained when varying chirp
amplitude. Overall, responses of ON- and OFF-type were largely
independent of chirp amplitude when the stimulus occurred
at a given background beat phase (Figures 8A–C, magenta
and blue). Stimulus detectability was higher than that of single

Frontiers in Neuroscience | www.frontiersin.org 13 February 2020 | Volume 14 | Article 79150

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00079 February 3, 2020 Time: 13:42 # 14

Metzen et al. Neural Synchrony and Invariance

FIGURE 8 | Central electrosensory neurons display more invariant representation of chirps with varying amplitude than peripheral electroreceptor afferents.
(A) Example stimulus waveforms (top) for chirps with different amplitude (left: 35 Hz; middle: 60 Hz; right: 110 Hz) occurring at the same phase of the 4 Hz beat,
raster plots of an example ON-PCell (middle top, magenta) and OFF-PCell (middle bottom, blue) showing responses to 5 out of 20 randomly chosen presentations
(i.e., trials) of each stimulus and corresponding firing rates the same PCells averaged over all 20 trials (bottom). The gray band shows the evaluation time window
used to compute invariance (see below). (B) Same as (A), but when the chirp occurred at a different phase of the beat. (C) Superimposed trial-averaged firing rate
responses of the same example ON (top panel) and OFF-type (bottom panel) PCells to chirps with different amplitudes. (D) Population-averaged detectability values
computed from firing rate responses for our ON-type PCell population (magenta) and our OFF-type PCell population (blue) as a function of amplitude. (E) Left:
Population-averaged invariance values computed from ON (magenta) and OFF-type (blue) PCells for amplitude. Right: Invariance computed for all chirp phases used
(left) and when only the phase that elicited excitatory responses in our PCell population was used (right) for varying chirp amplitude values. “∗” indicates statistical
significance at the p = 0.05 level using a paired t-test. (F) Invariance as a function of baseline firing rate. No significant correlation was observed (Pearson’s
correlation coefficient, r = 0.2619; p = 0.1026). (G) Population-averaged invariance as a function of the boxcar size used to obtain the time dependent firing rate
from spiking activity.

afferents (Figure 8D, ON-type: p = 2.686 × 10−20; OFF-type:
p = 1.28 × 10−20; ANOVA with Bonferroni correction). As
such, invariance values, although similar for ON- and OFF-
type cells (Figure 8D, left; p = 0.954, t-test), were significantly
higher than those obtained for single afferents (compare with
Figure 6E; ON-type: p = 2.686 × 10−20; EAs vs. OFF-
type: p = 1.28 × 10−20; ANOVA with Bonferroni correction).
Invariance scores were lower owing to the fact that each cell
type responded differentially when the stimulus occurred on
different beat phases. Invariance scores computed for a given

phase were significantly higher than those computed across
phases (Figure 8E, right; p = 8.380× 10−8; paired t-tests), owing
to the fact that ON- and OFF-type cells responded differentially
when stimuli occurred at different phases of the background
beat (compare Figures 8A–C). Pyramidal cell heterogeneities as
quantified by the baseline firing rate did not affect invariance
as no significant correlation was observed (Figure 8F, Pearson’s
correlation coefficient, r = 0.2619; p = 0.1026). Invariance scores
were robust to changes in the filter settings used to obtain the
time-dependent firing rate from spiking activity (Figure 8G).
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Overall, our results strongly suggest that single ELL PCells
decode synchronous afferent activity elicited by natural
electrocommunication stimuli with different durations and
amplitudes. This is because their response detectability and
invariance are more consistent with those obtained from afferent
synchrony than those obtained from single afferent activity.

Weakly Electric Fish Display Behavioral
Responses That Are Invariant to Natural
Electrocommunication Stimuli With
Varying Duration and Amplitude
Finally, we investigated behavioral responses to chirps with
different amplitudes and duration (Figure 9). To do so, we
took advantage of the fact that A. leptorhynchus display “chirp
echo responses” when stimulated with chirps (Hupé and Lewis,
2008) (Figure 9A; see Materials and Methods). Our results
show that the behavioral responses elicited by chirp stimuli
with different durations (Figure 9B) or amplitudes (Figure 9C)
were similar to one another and that echo response rates
were similar across different chirp durations (Figure 9D) as
well as different chirp amplitudes (Figure 9E). Consequently,
invariance values computed from behavioral responses were
significantly higher than those obtained for either single afferents
or PCells (Figure 9F; duration: EAs: p = 1.739 × 10−15; PCells:
p = 0.033; Figure 9G; amplitude: EAs: p = 1.028 × 10−15;
PCells: p = 5.125 × 10−5; ANOVA with Bonferroni correction).
It is important to note that the behavioral responses (i.e., echo
response rates) were most likely elicited by the chirp stimuli
rather than the beat (see section Materials and Methods). It
should furthermore be noted that differences in the timecourse of
echo response rates that were most likely due to estimation error
and/or fluctuations actually limited behavioral invariance values
obtained here. These should thus be seen as lower bounds as is
further discussed below. Our results thus show that behavioral
responses were invariant to both chirp duration and amplitude,
consistent with the hypothesis that changes in synchronous
afferent activity, rather than changes in the single afferent firing
rate, are decoded by ELL PCells. Our results have thus revealed
that neural synchrony can be used to generate a neuronal
representation that is invariant to stimuli with different attributes
and how this representation is further processed downstream to
presumably give rise to behavior. Moreover, the duration and
amplitude of the echo response chirps elicited by the fish did not
significantly change for different chirp parameters (Figure 9H;
KS tests, p ≥ 0.1161 in all cases).

DISCUSSION

Summary of Results
Here we investigated how electrosensory neural populations
encoded natural electrocommunication stimuli with varying
attributes (i.e., duration and amplitude) in order to mediate
behavior. Despite the fact that both attributes were narrowly
distributed under natural conditions, recordings from peripheral
afferents revealed that, while single neurons encoded the different

stimulus waveforms associated with different durations or
amplitudes, all waveforms gave rise to increased synchrony
either through excitation or inhibition at the population
level. A phenomenological mathematical model reproduced
experimental data showing that afferent responses at both the
single neuron and population levels could be accounted for by
single neuron filtering and spiking properties. Recordings from
downstream central electrosensory neurons (i.e., ELL PCells)
revealed that they decode information carried by synchronous
activities of afferents as their responses were more invariant
than those of single afferents. Specifically, ON-type cells were
excited when afferents are excited synchronously while OFF-
type cells were instead excited when afferents are inhibited
synchronously. It is likely that ELL PCell responses are further
processed by downstream brain areas to give rise to the observed
invariant behavioral responses to natural electrocommunication
stimuli. Our results thus reveal that neural synchrony can
be used to generate an invariant representation to natural
electrocommunication stimuli with different attributes as well
as the mechanisms by which this representation is decoded by
downstream neurons to presumably lead to behavioral responses
at the organismal level.

Feature Invariant Representations of
Natural Electrocommunication Stimuli:
Functional Consequences for Coding
and Perception
The results of the current study have shown that electrosensory
pathway encodes natural electrocommunication stimuli with
different attributes. These are unlike those considered previously
in which a natural electrocommunication stimulus with given
attributes (i.e., the same amplitude and duration) occurred at
different phases of the underlying background signal (Metzen
et al., 2016; Metzen and Chacron, 2017), as seen under natural
conditions (Walz et al., 2013; Aumentado-Armstrong et al.,
2015). While single afferents encoded the resulting different
stimulus waveforms differentially, synchrony between afferents
at the population level provided an invariant representation
that is decoded by downstream neurons to give rise to
behavior (Metzen et al., 2016). Such invariant responses
are desirable from a functional point of view because the
probability at which natural electrocommunication signals occur
is independent of the phase of the background signal at the
time of emission (Walz et al., 2013; Aumentado-Armstrong
et al., 2015). As such, these responses enable the organism to
correctly perceive that different waveforms are actually generated
due to the same electrocommunication signal (i.e., with given
duration and amplitude).

As such, our result showing that natural electrocommuni-
cation stimuli with different amplitudes and durations are
encoded in an invariant fashion by the electrosensory pathway
is surprising. This is because, unlike the background beat phase
considered above, both chirp amplitude and duration are instead
narrowly distributed under natural conditions. Indeed, previous
studies have shown that the natural electrocommunication
signals differ in terms of duration and amplitude across different

Frontiers in Neuroscience | www.frontiersin.org 15 February 2020 | Volume 14 | Article 79152

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00079 February 3, 2020 Time: 13:42 # 16

Metzen et al. Neural Synchrony and Invariance

FIGURE 9 | Weakly electric fish display invariant behavioral responses to chirps with varying duration and amplitude. (A) Experimental setup. Each fish (N = 8) was
placed in an enclosure within a tank (chirp chamber). Stimuli were applied via two electrodes (S1 and S2) perpendicular to the fish’s rostro-caudal axis. The fish’s
EOD frequency was recorded by a pair of electrodes positioned at the head and tail of the animal (E1 and E2). Behavioral responses consisted of communication
stimuli characterized by transient increases in EOD frequency in response to the presented stimulus. (B,C) Population-averaged time dependent echo response
rates for chirps of different durations (B) and amplitudes (C). The shaded gray bands represent the 95% confidence intervals. (D,E) Population-averaged behavioral
echo response rate (purple) for different durations (D) and amplitudes (E). (F,G) Population-averaged invariance scores computed from behavioral responses (purple)
in comparison to the neuronal invariance scores using single afferents (green) and PCells (black) obtained for different durations (F) and amplitudes (G). “∗” indicates
statistical significance at the p = 0.05 level using a one-way ANOVA with Bonferroni correction. (H) Top: Probability distributions of echo response duration for
stimulus chirps of different durations (left) and amplitudes (right). Bottom: Probability distributions of echo response amplitude for stimulus chirps of different
durations (left) and amplitudes (right). In all four cases, the probability distributions were not significantly different from one another (KS tests, p ≥ 0.1161 in all cases).

Apteronotid species and could thus be used in theory to
distinguish between con- and hetero-specifics (Petzold et al.,
2016). This is even more surprising because we considered
chirps with attributes that were well outside of the range
observed for chirps emitted by fish (see Figure 2). However,
our results show that such “un-natural” chirps gave rise to
neural (in terms of EA synchrony) and behavioral responses
that closely resembled those observed for more “natural” chirps.
Our results thus provide evidence against (but do not disprove,
see below) the hypothesis that differences in chirp duration
and amplitude are encoded by the electrosensory system and
can be perceived by the organism. Specifically, they suggest
that despite large differences in their attributes, such stimuli
are all ultimately perceived similarly. If correct, then this
hypothesis greatly complicates the problem of distinguishing
between conspecific and heterospecific individuals based on
chirp characteristics. Our results support the proposal that the
functional role of chirps is to temporarily suppress electrosensory
neuronal responses to other stimuli (i.e., temporarily “blind” the
opponent) (Hupé and Lewis, 2008). This is because peripheral
afferent activities will then be synchronized irrespective of
stimulus attributes. Further evidence for this hypothesis comes
from previous electrophysiological studies showing that both ELL
(Marsat et al., 2009; Vonderschen and Chacron, 2011) and TS
(Vonderschen and Chacron, 2011) neurons are best at detecting
the presence of natural electrocommunication stimuli rather than
at discriminating between differences in stimulus attributes.

That said, it is important to note that our results do not imply
that weakly electric fish cannot distinguish between chirps with
different attributes. Specifically, our results do not rule out the
possibility that the animals can actually perceive differences in
chirp amplitude and duration but simply do not report them
behaviorally. Indeed, it is possible that ELL pyramidal cells
other than the ones considered here (i.e., in other segments)
could actually decode information about stimulus attributes
carried by single peripheral afferents. This possibility is however
unlikely because previous studies have shown that the ELL
pyramidal cells within the lateral segment considered here give
the strongest responses to natural electrocommunication stimuli
(Marsat et al., 2009). It is furthermore important to note
that previous studies have shown that the invariant neuronal
responses due to synchrony and the invariant behavioral
responses with given attributes occurring at different phases of
the underlying background both deteriorate when higher beat
frequencies are considered (Metzen and Chacron, 2017). This
is because EA synchrony during the chirp is much weaker
for higher beat frequencies and thus more commensurate with
that seen during the beat (Walz et al., 2014). Importantly,
our previous results showing that both neural and behavioral
invariance deteriorate for higher beat frequencies provides a
strong link between changes in invariance due to EA synchrony
and changes in behavioral invariance (Metzen and Chacron,
2017). Under natural conditions, the beat frequency can reach
much higher values (e.g., 400 Hz) than the one considered
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in the current study and we predict that, as seen for phase-
invariance, both the duration and amplitude-invariant neural
and behavioral responses seen here would deteriorate when
higher beat frequencies are used. Future studies should thus
investigate how increasing the beat frequency affects invariant
coding and perception of electrocommunication stimuli with
different durations and amplitudes.

We further hypothesize that the invariant neuronal and
behavioral responses to natural electrocommunication stimuli
considered here would break down when the stimulus contrast
is increased beyond that explored in this study which is
experienced when fish are located ∼13 cm from one another
(Yu et al., 2019). Indeed, higher contrasts are experienced
when two conspecifics move closer (i.e., within 5 cm) to one
another (Yu et al., 2012, 2019), or when the beat frequency is
increased. This is because we predict that peripheral afferents
will then display stronger phase locking (i.e., only fire during
specifics phases) to the background signal, which will increase
their synchrony. In the case of increasing beat frequency,
this is due to their known high-pass tuning characteristics
(Xu et al., 1996; Metzen and Chacron, 2017). As such, we
propose that weakly electric fish will be able to discriminate
between natural electrocommunication stimuli with different
attributes whenever these are produced when both animals are
when in close proximity to another or during high frequency
beats. Further studies are needed to test this hypothesis. If
true, our hypothesis would provide an explanation as to
recent field results showing that natural electrocommunication
signals are sometimes produced when both animals are
located close to one another or during high frequency beats
(Henninger et al., 2018).

Our results have shown that invariant responses of EA
synchrony to chirps with varying amplitude and duration are
likely decoded by ELL PCells to presumable lead to behavior.
However, it should be noted that our study only considered
synchrony between EA pairs whereas the PCells within the
lateral segment considered here receive input from ∼1000 EAs
(Maler, 2009). Previous studies have shown that PCells display
ion channels such as persistent sodium which would favor
detection of coincident EA activity (Noonan et al., 2003). Further,
modeling studies have suggested that the tuning properties
of PCells within the lateral segment emerge because they
actually detect coincident EA input (Middleton et al., 2009).
However, integration of EA input by PCells within the lateral
segment has not been systematically studied experimentally.
For example, the so-called “synchrony receptive fields” (Brette,
2012) (e.g., the fraction of EA firing synchronously needed
to elicit PCell firing, or the time window during which EA
activity can be considered synchronous) remain unknown
to date. While previous results (Marsat et al., 2009; Marsat
and Maler, 2010; Metzen et al., 2016; Metzen and Chacron,
2017) and the results of the current study are consistent with
the hypothesis that PCells within the lateral segment detect
coincident EA activity, further studies are needed to fully test
this hypothesis.

Further, we note that our behavioral invariance values
were actually lower than those obtained for EA synchrony.

As mentioned above, this is likely due to the fact that the former
were limited by fluctuations and we predict that behavioral
invariance values are actually higher. Further studies are however
needed to understand how the activities of PCell population are
integrated downstream. Previous studies have shown that some
midbrain electrosensory neurons display invariant responses to
beat phase (i.e., a neural correlated of the observed behavioral
invariance to beat phase) by integrating input from ON- and
OFF-type cells (Metzen et al., 2016). We hypothesize that this
mechanism will give rise to responses in midbrain neurons
that are fully invariant to chirps of different amplitudes or
durations irrespective of the beat phase at which they occur.
While there is anecdotal evidence that such neurons exist
(see Figures 2C, 8A of Vonderschen and Chacron, 2011),
the responses of midbrain neurons to stimulation protocols
similar to the ones used in the current study have not been
systematically investigated to date and should be the focus
of future studies.

It is important to note here that both EAs and ELL
PCells display significant heterogeneities in terms of baseline
activity as well as responses to stimuli (Bastian, 1981; Bastian
and Nguyenkim, 2001; Bastian et al., 2002, 2004; Gussin
et al., 2007; Savard et al., 2011). While it is clear that
heterogeneous populations are advantageous for coding (Stocks,
2000; Padmanabhan and Urban, 2010; Brette, 2012; Mejias and
Longtin, 2012), our modeling and experimental data suggest
that heterogeneities are not necessary to observe the phenomena
described in the current study. Specifically, our modeling, which
was based on a homogeneous neural population, reproduced
our experimental data both at the single neuron and population
levels for EAs. Moreover, we found no significant correlation
between invariance and the baseline firing rate, which is
strongly correlated with morphological differences in ELL
PCells (Bastian and Nguyenkim, 2001; Bastian et al., 2004).
Further studies are needed in order to investigate the effects
of neural heterogeneities on invariance coding at both the EA
and ELL PCell level. For the former, these should investigate
how EA heterogeneities influence the so-called “synchrony
receptive fields” of ELL PCells mentioned above. For the
latter, the effects of PCell heterogeneities should also be more
systematically investigated. This is particularly important as
previous studies have shown that a strong factor contributing
to PCell heterogeneities is the amount of descending input
(i.e., feedback) that is received from higher brain centers. The
effect of such feedback has been mostly studied at the single
neuron level (Bastian, 1986; Chacron et al., 2005b; Marsat
and Maler, 2012; Huang et al., 2018, 2019; Metzen et al.,
2018) and further studies are needed to understand whether
and, if so, how such feedback can facilitate detection of EA
synchrony by ELL PCells.

Finally, we note that the electrocommunication stimuli
considered in the present study primarily occur during agonistic
encounters and, as such, correspond to the “type II chirps”
described previously. It is important to note that A. leptorhynchus
emit other types of natural communication stimuli that are
not considered here (Zakon et al., 2002). In particular, they
tend to emit another type of communication signal termed
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“type I chirps” during mating behavior. Electrophysiological
studies have shown that neuronal responses to these are
fundamentally different (Marsat and Maler, 2010; Vonderschen
and Chacron, 2011; Allen and Marsat, 2018). Future studies are
needed to investigate how electrosensory neuronal populations
encode other natural electrocommunication signals not
considered here. In particular, it will be important to consider
the fact that ELL PCell trial-to-trial variabilities to repeated
stimulus presentations are correlated (Chacron and Bastian,
2008; Simmonds and Chacron, 2015; Hofmann and Chacron,
2018), which has been ignored by previous studies (Marsat et al.,
2009; Marsat and Maler, 2010; Allen and Marsat, 2018). Such
“noise” correlations can have profound influence on coding by
neuronal populations (Averbeck et al., 2006; Cohen and Kohn,
2011; Doiron et al., 2016; Franke et al., 2016; Zylberberg et al.,
2016) and are likely to be found in all ELL PCells as they are
due to shared input from peripheral afferents (Hofmann and
Chacron, 2017, 2018).

Implications for Other Systems
Here we have provided the first experimental evidence that
synchrony can enable the emergence of a neuronal representation
that is invariant to stimuli with different attributes such as
amplitude and duration. Such invariant representations are also
seen in other systems (auditory: Bendor and Wang, 2005; visual:
Zoccolan et al., 2007; olfactory: Martelli et al., 2013). In all cases,
tolerance to variations in identity-preserving transformations
such as size, contrast, or viewpoint progressively increases in
neurons at higher processing stages (Dicarlo and Cox, 2007).
The mechanisms leading to such an increase in invariance are
not fully understood to date. Our results showing how neural
synchrony, which is observed ubiquitously in the central nervous
system (Uhlhaas et al., 2009; Harris and Gordon, 2015), gives
rise to a neuronal representation that is invariant to both
amplitude and duration is thus likely to be shared by other
systems/species. This is because invariance to stimulus amplitude
has been observed in the visual (Anderson et al., 2000), auditory

(Billimoria et al., 2008; Barbour, 2011), somatosensory (Pei et al.,
2010), and olfactory (Storace and Cohen, 2017) systems. The
fact that the electrosensory system studied here displays both
anatomical and functional similarities with other systems (Clarke
et al., 2015) suggests that neural synchrony also plays a role in
mediating the emergence and refinement of such representations
in other systems. Further studies are however needed to test
this prediction.
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Objectives: The ability to understand speech is highly variable in people with cochlear
implants (CIs) and to date, there are no objective measures that identify the root of
this discrepancy. However, behavioral measures of temporal processing such as the
temporal modulation transfer function (TMTF) has previously found to be related to
vowel and consonant identification in CI users. The acoustic change complex (ACC)
is a cortical auditory-evoked potential response that can be elicited by a “change” in an
ongoing stimulus. In this study, the ACC elicited by amplitude modulation (AM) change
was related to measures of speech perception as well as the amplitude detection
threshold in CI users.

Methods: Ten CI users (mean age: 50 years old) participated in this study. All subjects
participated in behavioral tests that included both speech and amplitude modulation
detection to obtain a TMTF. CI users were categorized as “good” (n = 6) or “poor” (n = 4)
based on their speech-in noise score (<50%). 64-channel electroencephalographic
recordings were conducted while CI users passively listened to AM change sounds
that were presented in a free field setting. The AM change stimulus was white noise with
four different AM rates (4, 40, 100, and 300 Hz).

Results: Behavioral results show that AM detection thresholds in CI users were higher
compared to the normal-hearing (NH) group for all AM rates. The electrophysiological
data suggest that N1 responses were significantly decreased in amplitude and their
latencies were increased in CI users compared to NH controls. In addition, the N1
latencies for the poor CI performers were delayed compared to the good CI performers.
The N1 latency for 40 Hz AM was correlated with various speech perception measures.

Conclusion: Our data suggest that the ACC to AM change provides an objective index
of speech perception abilities that can be used to explain some of the variation in speech
perception observed among CI users.

Keywords: acoustic change complex, amplitude modulation, temporal modulation transfer function, cochlear
implants, N1
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INTRODUCTION

Cochlear implants (CIs) provide electrical stimulation to the
auditory nerve that can, in turn, be interpreted by the brain
as sound including speech. However, the behavioral benefits
gained from CIs vary significantly among recipients; after
cochlear implantation, some users achieve highly improved
speech perception even in challenging listening situations such
as in background noise while others gain very little or no
improvement. Nonetheless, the source of the variability in CI
performance is still unknown. In general, factors explaining
this variation in individual speech perception ability include
the bottom-up processing of the auditory periphery to acoustic
features (including spectral and temporal information) and top-
down cognitive processing at the cortex level (Moberly et al.,
2016). However, demographic factors such as age at implantation
and duration of deafness merely explain 20% of the variability in
CI outcomes (Lazard et al., 2012).

At present, there are no reliable clinically available biomarkers
for measuring CI outcomes to help us understand the source
of outcome variability. Since the age at implantation can
be as low as 1 year of age, developing objective markers
is important for assessing pediatric CI users and candidates
who have unreliable behavioral responses. Currently used
objective measures such as the stapedius reflex, electrically
evoked compound action potentials, and electrically evoked
auditory brainstem responses have shown poor correlation with
speech perception (Abbas and Brown, 1991; Hirschfelder et al.,
2012; Lundin et al., 2015). Unlike these peripheral measures,
cortical activity measured at the sensory and source levels has
nevertheless shown some reliable relationships with behavioral
performance in adult CI users in research settings (Han et al.,
2016; Gransier et al., 2019).

Psychoacoustic studies have shown that speech perception
through a CI relies predominantly on temporal cues because
spectral information cannot be effectively delivered due to a
limited number of spectral channels and channel interactions
(Shannon et al., 1995; Nie et al., 2006). A CI processes the
incoming sound, including speech, by applying a series of filter
banks to extract the temporal envelope. This envelope then
modulates the amplitude of a pulse train that stimulates the
auditory nerve. Speech inherently has amplitude modulation
(AM) at multiple rates with syllables in the 1–4 Hz range,
phonemic information in the 15–50 Hz range and fine structure
at higher rates (Rosen, 1992). Therefore, encoding AM is
an important feature needed for successful speech perception
(Fu, 2002; Edwards and Chang, 2013). Temporal processing is
assessed behaviorally by estimating the minimum AM depth
needed to detect modulation at various AM rates. The resulting
behavioral AM threshold as a function of rate is referred to as the
temporal modulation transfer function (TMTF). The shape of the
TMTF resembles a low-pass filter with a cut-off frequency near
50–100 Hz (Viemeister, 1979). Compared with normal-hearing
(NH) individuals, the TMTF of CI users has a higher overall AM
threshold that is more pronounced at higher frequencies resulting
in a lower frequency TMTF filter cutoff and subsequently this
property is associated with reduced speech perception ability

(Won et al., 2011). The ability to detect high-frequency AM (50–
300 Hz) is correlated to speech perception in CI users including
tone (Luo et al., 2008), consonants (Cazals et al., 1994), and word
recognition (Won et al., 2011) and phonemes (De Ruiter et al.,
2015). Recently, low frequency AM rate discrimination at 4 Hz
shortly after CI activation time was shown to be a predictor of
speech perception at 6 months post-activation (Erb et al., 2019).

Previously, we showed that in NH listeners, the N1 cortical
evoked potential to AM changes resembles a low-pass filter
shape, and the “N1 TMTF” is similar in shape to the behavioral
TMTF (Han and Dimitrijevic, 2015). In that study, the N1
acoustic change complex (ACC) to AM changes were smaller at
high versus low AM rates. In the present study, we wanted to
determine if N1 ACC responses to AM could be elicited in CI
users. We hypothesized that the N1 ACC to AM would be related
to speech perception ability in CI users.

MATERIALS AND METHODS

Subjects
Ten adult CI users (five females, all self-reported right-handed)
were recruited through Cincinnati Children’s Hospital Medical
Center according to an Institutional Review Board (IRB)-
approved protocol. Their ages ranged from 21 to 84 years (mean
age: 50 years). All CI subjects were native speakers of American
English based on self-report and had been using his/her CI for
at least 1 year prior to enrolling in the study. All CI subjects
were postlingually deafened and had severe to profound bilateral
hearing loss prior to implantation. They were all bilateral CI
users. Table 1 shows the demographic information of the CI
users. A composite score based on the average percent scores over
a number of speech perception tasks in background noise was the
basis for classifying “good” and “poor” performers. There were six
good performers with composite speech perception scores ≥50%
and four poor users with scores <50%. For the control group
(data from a previous study, Han and Dimitrijevic, 2015) 10
healthy NH individuals (six females, mean age = 25.5 years) were
recruited. All of them were right-handed and had an audiometric
hearing threshold of ≤20 dB HL (hearing level) at octave test
frequencies from 250 to 8000 Hz. Participants were compensated
for their participation, and informed consent was obtained from
all of them prior to participation in the study.

Behavioral Testing
The TigerSpeech software (House Ear Institute)1 was used for
the behavioral testing. Consonant and vowel perceptions were
measured using a forced-choice paradigm based on a previous
report (Fu, 2002). Each of 16 consonants was presented five
times (“a/Consonant/a” format, male voice), giving a total of 80
tokens. Similarly, each of 60 vowels was presented five times
(“h/Vowel/d” format, male voice), giving a total of 60 vowels.
Participants were instructed to indicate which consonant or
vowel was heard by choosing the appropriately labeled button
on the computer screen, and the performances on the vowel and

1http://www.tigerspeech.com/
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TABLE 1 | Clinical features of the 10 cochlear implant participants.

CI user Age
(years)

Gender Stimulated
ear

Duration of
deafness (year)

CI use
(year)

Device/Processor Processing
strategy

Etiology of
hearing loss

Composite
score

Study group

01 21 M Left 10 9 Nucleus/CI24RE ACE Unknown 78 Good

02 32 F Left 20 9 Nucleus/CI24RE ACE Congenital 26 Poor

03 34 F Right 33 12 Nucleus/Esprint 22 SPEAK Hereditary 24 Poor

04 37 F Right 37 11 Nucleus/CI24RE ACE Congenital 16 Poor

05 45 F Right 37 4 Nucleus/CI512 ACE Unknown 48 Poor

06 54 M Left 15 4 Med EI/Opus 2 FSP Meniere’s
Disease

59 Good

07 59 M Right 11 1 Nucleus/CI24RE ACE Noise induced 55 Good

08 63 F Right 35 3 Nucleus/CI512 ACE Genetic 55 Good

09 69 M Left 22 2 Med EI/Opus 2 FSP Genetic 51 Good

10 84 M Left 12 10 Nucleus/CI24RE ACE Unknown 56 Good

consonant perception tasks were quantified as percent correct.
Sentence and word perceptions were measured using the SPIN
(Speech-in-Noise) test (Kalikow et al., 1977). A total of 50
sentences were presented and participants were instructed to
repeat each word in the sentence. The number of keywords
(the terminal word in a sentence) correctly identified out of
50 was expressed as a percentage. We chose to proceed with
electrophysiological testing on the CI side with the higher speech
composite score.

The behavioral threshold for AM detection at 4, 40, 100, and
300 Hz was performed in a separate task using a three-interval
forced choice with trial-by-trial feedback (Levitt, 1971). The
task consisted of presenting three consecutive noise stimuli (1 s
duration) one of which was amplitude modulated. The subjected
needed to identify which interval had the AM stimulus. The AM
depth was varied adaptively. The AM threshold refers to the
minimum depth that the subject could detect the AM stimulus
(average of the last nine reversals). The process was repeated
for all four modulation rates. The depth of AM was defined as
the percent ratio between maximum and minimum amplitudes
such that 0% had no modulation, 100% was fully modulated
(Picton et al., 2003).

Stimuli
Stimuli were constructed in Matlab using continuous white
noise with occasional changes consisting of AM of 1-s duration
occurring every 2.2 s on average (the random inter-stimulus
interval varied from 1.8 to 2.6 s) and lasting for 1.0 s. Each
stimulus with a change in AM as well as the baseline segment
was generated from completely novel randomized noise in
Matlab. The AM was changed at rates of 4, 40, 100, and
300 Hz. To avoid differences in the overall level that can occur
when AM is introduced, the AM portion was multiplied by a
factor that equated the root-mean-square of the preceding 1 s
(no modulation).

Stimuli were presented in free field through a single speaker
at 0◦ azimuth 1.5 m away from the subject. All stimuli were
presented at the most comfortable level for each subject. To
estimate the loudness of the stimuli for CI users, an intensity
corresponding to loudness level of “7” on an 11-point scale (a

0 to 10: inaudible to too-loud linear scale) was applied (Hoppe
et al., 2001). The stimuli were presented to the NH listeners at
70 dB SPL, while the intensity level was variable (70 to 85 dB
SPL) for the CI users. The stimuli were calibrated using a Brüel
and Kjaer (Investigator 2260) sound level meter set on both A
and slow-time weighting with a half-inch free-field microphone.

Recordings
The electrophysiological data were collected using a 64-channel
actiCHamp Brain Products recording system (Brain Products
GmbH, Inc., Munich, Germany). Although our CI users were
bilaterally implanted, the electrophysiological testing was carried
out using one of the CIs while the other was turned off. The side
with the higher speech composite score was used for all testing,
yielded a total of five on each side. An electrode cap was placed
on the scalp with electrodes placed at equidistant locations, the
infracerebral cap covering a larger area than is typical in a 10–20
system (Hine and Debener, 2007; Han and Dimitrijevic, 2015).
The reference channel was located at the vertex (Cz) while the
ground electrode was located on the midline 50% of the distance
to the nasion. Continuous data were digitized at 1000 Hz and
stored for offline analysis.

Data Processing
Electrophysiological data were analyzed using Brain Vision
Analyzer ver. 2.0 (Brain Products GmbH, Inc., Munich,
Germany). Data were high-pass filtered (0.01 Hz) to remove
baseline drift and down-sampled to 512 Hz. Visual inspection
of the data included the removal of extreme stereotypical
artifacts related to subject movement (exceeding 500 mV).
Independent component analysis (Delorme and Makeig, 2004)
implemented in Brain Vision Analyzer (with an identical
algorithm to EEGLAB; Delorme and Makeig, 2004) was applied
to reduce ocular and cardiac as well as CI artifacts. This
approach decomposed the electroencephalographic (EEG) signal
into maximally temporally independent components (ICs).
Afterward, when an IC was deemed to be an artifact, its
corresponding IC weight was set to zero, thereby minimizing
its contribution to the data. In this study, ICs related to the
CI were removed when the IC waveform morphology had an
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abrupt peak within ∼10 ms of the onset/offset of the sound
and resembled the AM envelope. The topography of the ICs
showed an activation centroid near the location of the CI.
Another indication of CI artifact was component energy at the
AM modulation frequency. This was performed by computing
the frequency spectrum of the IC. The IC with highest energy
at the AM rate was removed. This procedure was helpful for
CI artifact identification especially at the higher modulation
rates (100 and 300 Hz). On average, five ICs or less were
removed per CI subject.

After IC artifact reduction, the channel data for the electrodes
near the CI were interpolated, the data referenced to average
reference, and segmented into epochs −200 to 1500 ms with
the AM change stimulus occurring at 0 ms and averaged. The
auditory N1 responses, observed by pooling three electrodes
in the frontal-central (FC) regions. Manual peak identification
occurred over latencies in the 100–200 ms range. Peaks were
verified by examining topography and polarity inversions at
the mastoid. If no N1 peak was apparent, then this data was
considered missing and was not analyzed further.

Procedures
During the EEG recording, participants were seated in a sound-
attenuated booth, asked to watch a silent, closed-captioned
movie of their choice, and instructed to ignore the background
sounds. A total of 400 trials for each of the four AM change
stimulus frequencies were conducted across eight blocks. The
total recording time was approximately 1.5 h, and subjects were
encouraged to take breaks between blocks.

Statistical Analysis
Repeated-measures analysis of variance (ANOVA) was used
to assess statistical significance for both the psychoacoustics
and EEG recordings. Details of the repeated-measures ANOVA
factors are given with the results. The non-parametric Mann-
Whitney U test was conducted to compare differences between
the good and poor CI groups, along with post hoc analysis using
Tukey’s honest significant difference test. Spearman’s rank-order
correlation was computed to examine relationships between the
speech test scores and the N1 amplitude/latency measures.

RESULTS

Psychoacoustics
The minimum AM depth needed for detection of modulation
for 4, 40, 100, and 300 Hz was, on average, 44, 37, 49,
and 77%, respectively (Figure 1) where greater values indicate
poorer performance requiring higher modulation depth for
detection. The repeated-measures ANOVA revealed a main
effect for AM rate [F(3,27) = 37.7, p = 0.0001], while the
post hoc analysis showed that the AM threshold for 300 Hz
was significantly higher than those for 4 Hz (p = 0.0002),
40 Hz (p = 0.0002), and 100 Hz (p = 0.0002). No significant
difference in AM threshold was found between 4, 40, and 100 Hz
(p > 0.05).

FIGURE 1 | Behavioral AM detection thresholds as a function of AM rate in CI
and normal-hearing groups. Shown are the mean detection thresholds across
10 CI and 10 NH participants. Note that the AM detection thresholds were
measured at 4, 40, 100, and 300 Hz for CI users, while the thresholds at
100 Hz were not measured for NH participants. The AM detection thresholds
in CI users were higher than NH for all AM rates. NH data redrawn from Han
and Dimitrijevic (2015).

Cortical Potentials
AM Change: CI vs. NH
Grand mean data are shown in Figure 2A illustrating the
cortical potentials at FC electrodes for the AM changes at
4, 40, 100, and 300 Hz with a schematic of the stimulus
overlaid. The N1 responses to AM change were robust in
some cases, although not all CI participants had a measurable
response. The N1 responses from CI users for AM changes
at the four frequencies were as follows: all of them at 4 Hz,
nine at 40 Hz, eight at 100 Hz, and five at 300 Hz. The
N1 responses occurred close to 150 ms after the AM change
but its peak latency was prolonged with an increase in AM
rate. The NH data (redrawn from Han and Dimitrijevic,
2015) shows an “off” response to the change (i.e., 100% AM
change back to 0% AM) change at about 1.2 s. This was not
observed in the CI data.

In general, N1 responses in the CI group decreased in
amplitude and their latency was increased compared to the NH
group (Figure 2B shows the N1 amplitudes and latencies as
a function of AM rate for the NH and CI groups). In NH
listeners, the N1 amplitude was the greatest at 40 Hz whereas
the amplitudes decreased from 4 Hz to 40 Hz for CI users. In
addition, the N1 latencies in the CI users were modulated as
a function of AM rate, while no latency differences revealed
for NH listeners.

Repeated-measures ANOVA was used to examine the effect
of AM rate (4, 40, and 300 Hz) and group (CI vs. NH) for N1
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FIGURE 2 | Grand mean waveforms to the AM change stimulus (A) and mean N1 amplitudes and latencies (B) are shown for NH controls and CI users. (A) shows
responses recorded at frontal-central electrodes to the 4 (red), 40 (yellow), 100 (Green, only for CI users), and 300 Hz (blue). (B) shows the mean averaged N1
amplitude and latency as a function of AM rate across 10, NH and 10 CI subjects. Error bars: standard error of the mean. Overall, AM amplitudes in CI users are
smaller and delayed compared to NH for all AM rates.

amplitude and latency. For N1 amplitude, there was a significant
main effect for AM rate [F(2,36) = 46.4; p < 0.0001] as well
as group [F(1,18) = 42.5; p < 0.0001]. Meanwhile, the post hoc
analysis showed that for the CI group, the N1 amplitude at
4 Hz was significantly larger than at 40 Hz (p = 0.007), 100 Hz
(p = 0.007), and 300 Hz (p = 0.0003). Regarding the group

effect, the post hoc testing revealed that the N1 amplitudes in
the NH group were larger than the CI group (p = 0.0002), and
for N1 latency, a significant effect of AM rate [F(2,36) = 23.4;
p < 0.0001] was found such that the N1 latencies increased as
the AM rate increased. The post hoc analysis also revealed that
the N1 latency at 4 Hz was shorter than at 100 Hz (p = 0.001)
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and 300 Hz (p = 0.0001), while the N1 latency at 40 Hz was
shorter than at 300 Hz (p = 0.003). No significant differences
were found between 4 and 40 Hz, 40 and 100 Hz, and 100 and
300 Hz (p > 0.05). A significant group effect was also found for
N1 latency [F(2,36) = 31.3; p< 0.0001], with the analysis showing
that the N1 latencies for the CI group were delayed compared to
the NH group (p = 0.0002).

AM Change: Good vs. Poor CI Performers
Statistical analysis for a comparison between the good and poor
CI groups was conducted for the 4 and 40 Hz AM rates only
because the N1 responses at 100 and 300 Hz were not measurable
in the majority of the CI subjects. For the N1 latency at 40 Hz, a
significant group difference was observed such that the latencies
for the good CI group were shorter than those for the poor CI
group (U = 2.00; p = 0.04). Figure 3 shows the latencies for the
good (n = 6) and poor (n = 4) CI performers for AM at 4 and
40 Hz. No other differences between the good and poor CI groups
were found (p > 0.05).

N1-Behavior Relationship
Figure 4 shows significant negative Spearman correlations
between N1 latency for the 40 Hz AM rate and various speech
perception measures including vowel (r = −0.75; p < 0.05),
consonant (r = −0.82; p < 0.05), word (r = −0.74; p < 0.05), and
sentence (r = −0.71; p < 0.05) perception in quiet conditions,
as well as vowel (r = −0.84; p < 0.05) and word (r = −0.72;
p < 0.05) perception in noise. The results indicate that shorter
N1 latencies for AM at 40 Hz were associated with higher
speech perception in the CI users. No significant relationships
were observed for the N1 responses at different AM rates and
behavioral thresholds in AM change detection (although 40 Hz
AM detection threshold versus 40 Hz N1 amplitude approached
significance (r = 0.59; p = 0.09).

FIGURE 3 | A comparison of N1 latencies between good and poor CI
performers. Good performers (n = 6) had composite speech perception
scores above 50% and poor users (n = 4) had scores below 50%. Note the
N1 latency in poor CI performers were delayed than good CI performers for 4
and 40 Hz AM. Note that the N1 latency for 100 and 300 Hz AM were not
shown since not all subject had responses for the AM rates. Errors bars:
standard error of the mean.

Correlation analysis was also performed between N1
amplitudes/latencies and demographic variables such
as subject age and duration of deafness, no significant
relationships were observed.

DISCUSSION

The present study examined the N1 ACC-to-AM change in CI
users and revealed four findings. First, although the overall N1
amplitudes were smaller for the CI group, the N1 responses
to AM change were robust for low AM frequencies but less
so for high ones; this pattern of N1 activity is similar to the
psychoacoustic TMTFs in that the AM thresholds are low at slow
AM rates and high at fast AM rates. The N1 TMTF pattern in
the NH group resembled a low-pass filter shape whereas for CI
users this shape was not observed. Second, N1 latency increased
with an increase in AM rate. Third, for the AM rates at 4 and
40 Hz, the N1 latencies were longer for the poor CI performers
compared to the good performers. Finally, there was significant
correlation between the N1 latency for the AM rate at 40 Hz and
speech perception.

AM Change as a Paradigm to Assess
Cortical Temporal Processing in CI Users
Previously, we developed a novel paradigm to quantify how
the central auditory system encodes the detection of AM (Han
and Dimitrijevic, 2015). The selected AM rates were based on
timescales relevant for speech: syllables occur at slow rates near
4 Hz, formant transitions at 40–100 Hz, and fine structure near
300 Hz (Rosen, 1992). The TMTF quantifies temporal processing
by measuring the ability to detect small temporal modulations
in a sound as a function of AM rate. In CI users, a larger
decay of the AM rate in behavioral AM thresholds has been
previously observed compared to the NH control (Cazals et al.,
1994; Won et al., 2011). For a direct comparison, we normalized
the N1 and behavioral TMTFs in CI users using a similar
approach to our previous report (Han and Dimitrijevic, 2015)
and plotted the results in Figure 5. The CI behavioral TMTF
resembles a low-pass filter shape similar to our previous NH data
(Figure 10; Han and Dimitrijevic, 2015). However, in contrast
to our previous findings in NH, the CI N1 did not have low-
pass filter shape rather it continued to decrease in amplitude with
increasing AM rate. The reasons for this discrepancy between the
behavioral and N1 TMTF are not clear. One possibility is that
they are measured differently. Behavioral TMTFs quantify the
minimum AM depth needed for detection of modulation whereas
the N1 response we recorded was a suprathreshold, 100% AM
depth stimulus. Perhaps using AM depths closer to behavioral
threshold may reveal N1 TMTF functions resembling those of
behavioral TMTFs. The driving factor for the N1 TMTF low-
pass filter shape in NH is that the response to 40 Hz is large
and similar in magnitude to the 4 Hz response. In CI users, the
40 Hz AM change response was smaller than the 4 Hz response
thus yielding a linear function. This pattern is in contrast to
electrically evoked ASSRs (EASSRs) in CI users where 40 Hz
responses are larger than 4 Hz (Luke et al., 2015) and represents a
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FIGURE 4 | Significant Spearman correlations between N1 latency to 40 Hz AM and various speech perception measures in CI users. Note that the N1 latency to
40 Hz AM decreased as speech perception performances were better.

FIGURE 5 | A comparison between an N1-based TMTF and a behavioral-based TMTF in CI users. For the behavioral normalization, the smallest AM detection
threshold (across the four AM rates) for each subject was used as a “reference” and all other AM depth thresholds were calculated as a ratio difference from the
reference. Individual normalized behavioral AM detection thresholds are shown in gray while the mean across subjects is shown in blue. A similar process was
performed for N1 amplitude except that the maximum amplitude was used a reference and all other responses (at the other AM rates) were normalized as a
proportion difference from the max. The middle plot shows single subjects (gray) and mean across subjects (red). The right plot compares the mean behavioral and
N1 TMTFs. Note the N1 TMTF pattern in the NH resembled a low-pass filter shape whereas in CI users, the sensitivity decreased with increasing AM rate.
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temporal processing difference between ASSRs and cortical N1s.
The 40 Hz N1 change response, nonetheless, by itself indexes
temporal sensitivity and is related to speech perception outcomes.
Another potential source of the discrepancy between the shapes
of the TMTF is individual variability of 40 Hz N1 response.
Inspection of the normalized N1 TMTF (Figure 5) suggests
that 3 CI users had a low pass filter function shape while the
others had decreasing functions. However, this does not relate
to individual performance (i.e., two of the three low pass filter
functions came from poor performers), nor does this explain why
all of the behavioral TMTFs are low-pass filter shaped. Another
possibility for the behavioral-N1 TMTF discrepancy is subject
state sensitivity. The behavioral TMTF requires focused attention
to the stimulus whereas the N1 TMTF was recorded in a passive
listening paradigm. The N1 response is known to increase with
attention (Hillyard et al., 1973; Picton and Hillyard, 1974) and
different N1 TMTF profiles are likely to occur with attention in CI
users. This interpretation would suggest that effects of attention
are differentially modulated in NH versus CI users which in itself
deserves further attention.

As a subtype of temporal processing, temporal resolution
includes various auditory tasks such as temporal order judgment
(Tallal, 1980), gap detection (Fitzgibbons and Wightman, 2005),
detection of AM (Viemeister, 1979). It is well-known that the
information extracted from the temporal envelope (a slow-rate
temporal component among the temporal features) is necessary
for speech understanding (Rosen, 1992; Drullman et al., 1994).
The temporal envelope is even more important for CI users
because the CI cannot extract adequate spectral information
due to a limited number of frequency channels (Shannon et al.,
1995; Fu, 2002), whereas low frequency temporal information
is relatively well delivered through the CI. Since behavioral
studies have shown that the ability to detect temporal variations
has a strong correlation with speech perception (Won et al.,
2011; De Ruiter et al., 2015), there has been an effort to
measure how the brain processes temporal variations using
auditory-evoked responses such as the ASSR and the mismatch
negativity response. Using EASSRs to AM pulse trains of 4 and
40 Hz, Luke et al. (2015) found that the EASSR amplitudes at
40 Hz were related to the AM detection thresholds in five CI
users and suggested the clinical significance of EASSR as an
objective measure of site-specific temporal sensitivity for CIs.
Very recently, Gransier et al. (2019) found that 40-Hz EASSR
variability across CI electrodes was highly correlated to speech
perception in CI users. In addition, Waechter et al. (2018) found
that the morphology-weighted mismatch waveform evoked
by a stimulus with 8-Hz modulation is positively correlated
with the AM detection threshold. Their results also suggest
that cortical responses strongly follow a low-rate AM. These
neurophysiological results indicate that speech perception by CI
users is largely dependent on temporal information and that the
auditory-evoked responses elicited by AM reflect the neuronal
modulation for temporal acoustic variations. In contrast to
the ASSRs, in this study, we chose to study brain responses
underlying detection of AM using the N1 AM-change response.

We found that the N1 responses of the CI users decreased
in amplitude as the AM rate increased to a greater degree than

occurred in the NH control. In addition, the N1 latency in the CI
users was almost linearly modulated as a function of AM rate,
a phenomenon that was not observed in the NH group. The
effect of temporal variation on N1 responses has been assessed in
previous studies using various temporal features, including voice
onset time (Roman et al., 2004; Dimitrijevic et al., 2013; Han et al.,
2016), musical/pitch matching (Timm et al., 2012; Tan, 2017),
and the temporal gap (He et al., 2018). The common finding of
these studies was that the N1 response was delayed according
to the delay in the onset of a sound (e.g., a long duration of
voice onset time). For example, using different musical onset
durations, Timm et al. (2012) found that N1 latency was longer
when the onset time of a musical tone was shorter; the authors
suggest that N1 latency is more sensitive to temporal change than
to N1 amplitude. A recent study (Han and Dimitrijevic, 2017)
examined cortical responses to varied voice onset time during
passive listening also showed the linear modulation of N1 latency
as a function of voice onset time. Interestingly, the more linear
and consistent the N1 change with increases in voice onset time,
the greater the speech perception score. This suggests that in
CI users, greater sensitivity to acoustic temporal fluctuation was
associated with better the speech perception outcome.

In the current study, the N1 amplitudes of the NH group were
larger than those of the CI group, regardless of the AM rate.
Smaller and delayed peaks are distinct characteristics of cortical
responses in CI users (Beynon et al., 2005; Sandmann et al.,
2009), and a decreased N1 amplitude is related to the reduced
neuronal population recruited to process sounds synchronously
or to how the timing and frequencies are coded at the cortex
(Guiraud et al., 2007; Tremblay and Ross, 2007). However, a
weak response is not always the case for CI users. Previous
studies on CI use have suggested that the magnitude of cortical
responses is closely related to CI speech outcomes: good CI
performers revealed greater cortical responses while poor CI
users attained smaller or absent peaks (Groenen et al., 1996;
Kelly et al., 2005). Similarly, significant N1 latency differences
between good and poor CI performers were revealed in the
present study. Brain plasticity associated with hearing loss has
been suggested to underlie the cortical activation pattern with
hearing loss and/or with CI use (Pantev et al., 2006; Stropahl
et al., 2017). However, the degree of brain plasticity can be
different among CI users depending on demographic factors and
environmental influences, including rehabilitation.

Although we hypothesized that the N1 TMTF would resemble
the behavioral TMTF in CI users, this does not appear to be
the case. The N1 response decreased with increasing AM rate
suggesting neural encoding progressively decreases with faster
temporal modulations. More research on the reasons for the
discrepancy between behavioral and neural TMTF is warranted.
This could include using AM depths closer to behavioral
threshold or attentive listening paradigms.

Cortical Responses to AM Change and
Behavioral Performance in CI Users
We found that N1 latency for AM at 40 Hz was increased in
the poor performing CI users compared to the good performing
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ones and was correlated with various speech perception measures
in the CI users. Previously, it has been shown that the N1
response to simple onset sounds such as a tone burst or click
is poorly related to speech perception in CI users (Firszt et al.,
2002; Kelly et al., 2005). One possible explanation for this
is that the N1 response is related to the detection of sound
rather than its discrimination. Because speech understanding
needs both detection and discrimination of sounds, many
studies have focused on the cortical measures for discrimination,
including mismatch negativity, P300, and ACC. Among these,
ACC is evoked by changes in various stimuli such as speech
(Tremblay et al., 2003; Dimitrijevic et al., 2011; Small and
Werker, 2012), tone (Dimitrijevic et al., 2008, 2009), and noise
(Martin et al., 1999; Han and Dimitrijevic, 2015). The ACC
can be modulated as a function of frequency change and is
related to the behavioral threshold for frequency discrimination
(Dimitrijevic et al., 2008). In CI users, the ACC can be elicited
by speech (Friesen and Tremblay, 2006; Han et al., 2016),
an intensity change in the CI electrodes (Kim et al., 2009),
as well as a frequency change in magnetoencephalography
(Pantev et al., 2006). Moreover, the cortical responses have
been successfully applied to evaluate the optimization of CI
fitting in single-sided deafness (Távora-Vieira et al., 2018). These
results indicate that the ACC can be reliably recorded in CI
users and that the magnitude of cortical response increases
with an improvement in behavioral performance. In our study,
we applied the AM change paradigm to evoke the N1 ACC
and attempted to correlate it with behavioral measures. The
results are not surprising given that AM detection thresholds
have previously shown strong correlations with various speech
measures such as vowel and consonant perception (Cazals
et al., 1994; Fu, 2002), phoneme perception (Xu and Zheng,
2007), and word perception (Won et al., 2011). Thus, the
ACC in response to AM change can effectively reflect how
the central auditory system encodes a change in AM rate,
which is critical for speech understanding. This is supported
by the notion that poor time-locking to the detection of the
temporal envelope could be related to poor discrimination
of temporal variation (Joris et al., 2004). Surprisingly, in
contrast to N1 responses to frequency change (Dimitrijevic
et al., 2008), no significant relationships were observed between
AM behavioral thresholds and N1 latency or amplitude.
Further work on AM-change-related N1/ACC responses using
varying degrees of AM depth may reveal stronger relationships

with behavior compared to the 100% AM depth used in
the current study.

Clinical Applications
In the present study, we showed that AM change stimuli can elicit
robust cortical ACC responses (4 and 40 Hz) in CI users and the
N1 latency to 40 Hz is related to speech perception measures.
A larger sample of CI users is needed to determine if these
findings generalize to more diverse CI populations. Interestingly
only the 40 Hz N1 response showed a significant relationship with
behavior while the other rates did not, even though the 4 Hz N1
response was robust. Given that behavioral TMTFs relate well to
speech perception understanding in CI users, further research N1
TMTFs is warranted.
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Neurons in many brain regions exhibit spontaneous, intrinsic rhythmic firing activity. This

rhythmic firing activity may determine the way in which these neurons respond to extrinsic

synaptic inputs. We hypothesized that neurons should be most responsive to inputs

at the frequency of the intrinsic oscillation frequency. We addressed this question in

the ventral tegmental area (VTA), a dopaminergic nucleus in the midbrain. VTA neurons

have a unique propensity to exhibit spontaneous intrinsic rhythmic activity in the 1–5

Hz frequency range, which persists in the in-vitro brain slice, and form a network of

weakly coupled oscillators. Here, we combine in-vitro simultaneous recording of action

potentials from a 60 channel multi-electrode-array with cell-type-specific optogenetic

stimulation of the VTA dopamine neurons. We investigated how VTA neurons respond to

wide-band stochastic (Poisson input) as well as regular laser pulses. Strong synchrony

was induced between the laser input and the spike timing of the neurons, both for

regular pulse trains and Poisson pulse trains. For rhythmically pulsed input, the neurons

demonstrated resonant behavior with the strongest phase locking at their intrinsic

oscillation frequency, but also at half and double the intrinsic oscillation frequency.

Stochastic Poisson pulse stimulation provided a more effective stimulation of the entire

population, yet we observed resonance at lower frequencies (approximately half the

oscillation frequency) than the neurons’ intrinsic oscillation frequency. The non-linear

filter characteristics of dopamine neurons could allow the VTA to predict precisely timed

future rewards based on past sensory inputs, a crucial component of reward prediction

error signaling. In addition, these filter characteristics could contribute to a pacemaker

role for the VTA in synchronizing activity with other regions like the prefrontal cortex

and the hippocampus.

Keywords: dopamine, network, optogenetics, self-organization, rhythm, resonance, action potentials,

multi-electrode array
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1. INTRODUCTION

The ventral tegmental area (VTA) is a dopamine nucleus in the
midbrain, alongside the substantia nigra and the red nucleus.
VTA dopamine neurons exhibit spontaneous low-frequency
rhythmic spike activity (Werkman et al., 2001; Bayer et al.,
2007). The rhythm is intrinsic and is even retained in acute
slices and in isolated VTA dopamine neurons (Koyama et al.,
2005). Experimental research and modeling studies point to
at least two distinct mechanisms that underlie this oscillatory
activity (Khaliq and Bean, 2010; Drion et al., 2011): it is either
based on sub-threshold calcium oscillations or on the presence
of the persistent sodium current. VTA dopamine neurons have
direct synaptic connections between each other but they also
connect through a local interneuron network (Bayer and Pickel,
1990; Omelchenko and Sesack, 2009). In addition they are
likely to interact through dopamine volume transmission (Cragg
et al., 2001). This phenomenon implies that the firing neurons
create an oscillating extracellular dopamine concentration that
results in auto inhibition of the population and helps to
synchronize all neurons (van der Velden et al., 2017). The VTA
network can therefore be considered as a network of weakly
coupled oscillators.

Oscillatory rhythms in the brain create the context for
encoding information, specifically in the detailed timing of their
firing (Buzsaki, 2009). The VTA is implicated in a low frequency
local field oscillation (with spectral energy focused in the 1–
5Hz band) which synchronizes it with the prefrontal cortex
and the hippocampus during memory processing (Battaglia and
McNaughton, 2011; Fujisawa and Buzsáki, 2011). An additional
hypothesis states that VTA pacemaker activity entrains the
prefrontal cortex and the hippocampus (Fujisawa and Buzsáki,
2011). The timing information in its output plays an important
role in stimulus-reward processing (Schultz, 1997) especially
where activities need to be related at relatively long time scales.

Elucidating the population dynamics of the VTA dopamine
neurons requires simultaneous recording of the spiking activity
of as many neurons as possible, which can be accomplished
in acute brain slices positioned on a multi-electrode-array
(MEA). The slice is void of external input, which restricts the
preparation, but also prevents complications from uncontrolled
external input and thus simplifies the interpretation (Berretta
et al., 2010; van der Velden et al., 2017). Specific activation
of neurons at a very fast time scale (ms) can be accomplished
with optogenetics. Crossing the floxed ChR2-EYFP mouse
(Madisen et al., 2012) with the Pitx3 Cre driver mouse (Smidt
et al., 2012) expresses light sensitive excitatory channelrhodopsin
specifically in dopamine neurons. We can then use pulsed laser
driven activation for precise manipulation of spike timing in
individual neurons as well as at the level of the entire population
(Deisseroth, 2010; Fenno et al., 2011) during long-term
recordings without noticeable photo-toxicity (Cardin, 2012).

This study focuses on the lateral VTA, which mainly

contains mesolimbic projecting dopamine neurons with a classic

dopamine neuron phenotype (Lammel et al., 2008). The auto-
oscillatory VTA dopamine neurons (van der Velden et al., 2017)
and in particular their response to rhythmic and stochastic input

were recorded. Their resonance characteristics were probed at
the population level using regular (fixed frequency) as well as
Poisson distributed (noisy) pulsed input. Driving populations
of weakly coupled oscillators with such stimulation regimes
has theoretically been worked out and reveals interesting
dynamics (Hata et al., 2010). Experimental and modeling
research showed that populations of oscillators can encode
common input into their oscillatory output, even when the
input is noisy (Ermentrout et al., 2008). We demonstrate here
that the resonance characteristics of the VTA dopamine neuron
population in response to temporally patterned stimulation
reveal emergent properties at the network level.

2. METHODS

2.1. Experimental Animals
Adult male and female mice between 6 and 11 weeks old were
used in the experiments. They were housed in a 12/12 light dark
cycle and received water and food ad libitum. All procedures
and methods were approved by the ethical committee for animal
experimentation of the University of Amsterdam.

2.2. Optogenetic Expression
The Pitx3 Cre-driver mouse (Smidt et al., 2012) was crossed
with the LoxP-ChR2-EYFP mouse (Madisen et al., 2012) to
express channelrhodopsin-2 (ChR2) in the midbrain dopamine
neurons. Both mice had a black-6 genetic background and
were homozygous for their respective allele of interest. First
generation offspring, heterozygous for both alleles (male and
female), were used in the experiments. The Cre expression in
the Pitx3-Cre mouse completely overlapped with the tyrosine
hydroxylase expressing dopamine neurons in the lateral VTA
(Smidt et al., 2012; Luk et al., 2013). In our F1 offspring we
checked the presence of the two proteins in the lateral VTA
dopamine neurons using fluorescent immuno-staining with GFP
and Pitx3 anti-bodies, employing confocal and wide field imaging
(see below).

2.3. Immunocytochemistry
Free floating acute brain slices (100 µm), were fixed for 1 h
at room temperature with 4% paraformaldehyde in phosphate
buffered saline (PBS) pH 7.4. Subsequently washed with PBS
and blocked for 4 h with 10% normal goat serum plus 0.25%
Triton X-100 in PBS at room temperature. The slices were
incubated overnight with the primary antibodies GFP (1:750;
Abcam; ab13970) and Pitx3 [1:1000; Smidt et al. (2000)] diluted
in 3% normal goat serum plus 0.25% Triton X-100 in PBS at 4◦C.
The following day, the slices were washedwith PBS and incubated
for 4 h with the secondary antibodies Goat anti-Rabbit Alexa
Fluor 555 (1:1000; Molecular Probes; A-21428) and Goat anti-
Chicken Alexa Fluor 488 (1:1000; Molecular Probes; A-11039)
diluted in 1% normal goat serum plus 0.025% Triton in PBS
at room temperature. Sections were washed with PBS and cover
slipped with Vectashield including DAPI (Vector Laboratories,
Burlingame, CA, USA). Both ChR2-EYFP and Pitx3 were
expressed within dopamine nuclei in our midbrain preparation
(Figure 1A). Confocal images showed Pitx3 expression within
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FIGURE 1 | Expression of the excitatory channelrhodpsin-2 channel in VTA

dopaminergic neurons. (A) Representative wide-field micrograph showing the

expression pattern of both EYFP (green) and Pitx3 (red) throughout the

midbrain. One lateral side of a coronal midbrain slice is shown (lateral VTA).

The midline is to the left side of the figure. The white scale bar corresponds to

100µm and the green bar indicates the outer size of the square MEA recording

device that was optimally placed over the indicated VTA region (thin yellow

contourline). The laser illumination spot fell well inside the MEA recording area

as could be easily judged from the photo-electric artifact that it induced into

the MEA leads. (B) Representative orthogonal projected confocal micrograph

showing a EYFP+/Pitx3+ neuron located in the lateral VTA. Co-localization of

Pitx3 expression (red) and ChR2-EYFP (green) is seen as a yellow coloring of

the neuronal membrane. The orthogonal side views further illustrate the

membrane expression of ChR2-EYFP. The scale bar corresponds to 10 µm.

the soma (red) combined with ChR2-EYFP expression (green)
on the membrane, which lead to yellow coloring (Figure 1B).
To characterize the co-expression, Z-stack images were acquired
using a Zeiss LSM510 confocal laser scanning microscope fitted
with a 63x objective. The orthogonal views enhanced the view of
the co-localized expression (Figure 1B).

2.4. Slice Preparation and
Electrophysiology
Mice were decapitated, the midbrain was dissected and kept
at 4◦C in artificial cerebral spinal fluid (ACSF) containing (in
mM) NaCl 120, KCl 3.5, CaCl2 2.5, NaH2PO4 1.25, MgSO4 1.3,
NaHCO3 25, D-glucose 10 which was bubbled with carbogen
(95% O2; 5 % CO2) to set pH at 7.4. Coronal slices were cut
300 µm thick from caudal to rostral using a VT1000S vibratome
(Leica, Wetzlar, Germany). The fading of the substantia nigra
during progressive slicing was a marker for the caudal-medial
part of the VTA. One or two slices containing the caudal
and medial part of the VTA were used for the experiments.
Slices were incubated for 30 min at 32◦C directly after slicing
and were kept at room temperature until the start of the
experiment. During recording in a MEA-1600 multi-electrode
system (MultiChannel Systems, Reutlingen, Germany) the slice
was kept at 32◦C and continuously perfused with ACSF bubbled
with carbogen. The VTA was identified in the mid-brain slice
and positioned on top of the 3D MEA (Qwane Biosciences,
Lausanne, Switzerland) containing 60 protruding electrodes
(8*8 square layout) of 30 µm diameter and 100 µm spacing in
order to record the spontaneous activity of multiple single-
units (Olivier et al., 2002; van der Velden et al., 2017, 2019).
All chemicals were obtained from Sigma-Aldrich (Zwijndrecht,
the Netherlands).

2.5. Data Acquisition
The MEA recordings showed identifiable spikes, the extracellular
representation of local action potentials, of 30–130 µV amplitude
superimposed on a background noise of ∼15 µV (Figure 2A).
The raw signal was high pass filtered at 225Hz using a second
order Butterworth filter and then sampled at 20 kHz (Figure 2B).
Positive voltage peaks were detected, with a relatively low
threshold in order not to miss spikes. Negative polarity spikes
were rarely recorded and less suitable for analysis due to
the negative polarity photoelectric artifact of the laser pulse
stimulation on the MEA electrode leads (Figure 2A, green
trace at the top indicates laser activation). Patches of signal
containing the peak waveforms 3ms around the peak were
collected. K-means clustering was used to define the largest two
principle components and the peak amplitudes of the waveforms.
The auto-correlation and inter-spike-interval distribution of the
peaks in the clusters were examined to identify clusters consisting
of neuronal spikes. For electrodes that contained more than one
neuron the most reliably recorded neuron was selected, most
often based on peak amplitude (van der Velden et al., 2017).

2.6. Laser Stimulation Protocols
A 532 nm GL532T3 laser (Shanghai Laser & Optics Century
Co., Shanghai, China), with an output of 320mW, was coupled
to a glass fiber, with 100 µm core radius and 0.22 NA, via a
HPUC-23AF optic coupler (OZ optics, Ontario, Canada). Laser
pulse stimulation to the superfused brain slice was applied
from above. The fiber made contact with the perfusion liquid,
but did not touch the slice. The distance between the MEA
and the laser was ∼3mm. The light intensity at the recording
sites in this configuration had a lower bound of 5mW/mm2

(Deisseroth, Stanford). The calculation is based on light traveling
through brain tissue only, but we also had travel distance through
water. With this light intensity we do not expect to highly
excite the neurons, but it is within the range reported in the
literature (Madisen et al., 2012). The laser light induced a negative
photoelectric artifact on the MEA electrodes so that visual
inspection of the decay of this effect allowed us to ensure that the
effective laser light spot was limited to the recording area of the
MEA and covered the majority of the relevant electrode contacts.
A Raspberry-Pi micro-controller (Raspberry-Pi foundation, UK)
was programmed in Python to digitally control the timing of
the laser stimuli (pulse duration always 10ms) with a time
resolution of around 20 µs. Two fundamentally differently timed
stimulation protocols were used: The first one consisted of
six segments of 240 s periods of laser stimulation (total 1440 s
stimulation) interleaved with six segments of 240 s of no laser
stimulation. In the on-period the laser either fired at a fixed 2Hz
rate or it produced a Poisson distributed stimulus train (exp(-
λt)). The expectation density of the Poisson stimulation was 5
events/s and had its dominant power was distributed over the 1–
5Hz frequency range. The second protocol consisted of six 30 s
periods of laser stimuli for each frequency (180 s per frequency).
The laser stimulation frequency took fixed values between 0.5 and
5.5Hz in 0.5Hz steps. These protocols were applied in random
order (repeated six times each).
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FIGURE 2 | Extracellular MEA recordings and optogenetic stimulation of VTA dopamine neuron activity. (A) Laser stimulation and unit recording illustrated in a 1s

excerpt from a 720 s recording. Raw extracellular recording from one of the 60 MEA electrodes showing positive spikes that were clearly exceeding the noise level,

and the negative photo-electrical artifacts initiated by the laser pulses. Schematic green line at the top depicts the timing of laser pulse stimuli (Poisson process).

(B) Result of high-pass (>225 Hz) filtering of the signal in (A) which emphasizes the neuronal spikes and suppresses the photo-electrical artifact. (C) Superimposed

spike-waveforms (cutout), which were averaged and normalized to the peak amplitude for each recorded VTA dopamine neuron (n = 73). Waveforms show the classic

tri-phasic waveform of midbrain dopamine neurons.

2.7. Spike Train Analysis
The instantaneous firing rate (with 2.5ms resolution) around
the laser stimulus (at t = 0) was calculated from the Peri-
Stimulus-Time-Histogram (PSTH) averaged over all recorded
neurons (Figure 3E). Spike rate is expressed in spikes/s or Hz.
The same graph was constructed for each neuron and we defined
the efficacy of the laser stimulation for that neuron by the induced
increase in firing rate above baseline level.

Rhythmic firing of VTA dopamine neurons can also be
demonstrated as peaks in their auto-correlation function
(Figure 3C). The oscillation frequency quantifies the preferred
intrinsic rhythm of the neuron and was calculated as the mean
interval between the side-lobes in the auto-correlation function,
including the interval between the zero-lag peak and the first
side lobe.

The irregularity of neuronal firing in the VTA was assessed
using a measure of local variation, which quantifies the similarity
between consecutive inter-spike-intervals (ISI), as in van der
Velden et al. (2019). The local variation (LV, Shinomoto et al.,
2005, 2009) of a spike train ranges from 0 (perfectly regular firing)
to 1 (Poisson distributed firing) and above 1 for burst-like firing
and is given by:

LV =
3

n− 1

n−1∑

i = 1

(
Ti − Ti+1

Ti + Ti+1
) (1)

where Ti is the i-th interval in the spike train that contains
n spikes.

The Phase-Response-Curve (PRC) measures the laser-pulse-
induced perturbation of a neurons’ spike cycle. The phase of
the spike cycle was normalized between zero and one, taking

the oscillation frequency as a reference. A laser pulse could
either delay the time to the next spike (negative phase shift)
or advance it (positive phase shift). Averaging the PRC across
neurons was done by binning the stimulus phase. The strength of
the synchrony between a neuron’s spike train and the laser pulses
was quantified with the Pairwise-Phase-Consistency (PPC), as
previously defined (Vinck et al., 2010) and validated (van der
Velden et al., 2019). The PPC estimates the similarity of the
relative phases of the point processes with respect to a chosen
reference frequency and estimates the square of the classic Phase-
Lock-Value (Lachaux et al., 1999). The PPC is an unbiased metric
of phase-synchronization that scales with the square rather than
the square root of the coherence and phase locking value (Vinck
et al., 2010). To compute the PPC, spike and stimulation pulse
trains were binned at 1ms bins and a (Hanning) windowed
Fourier Transform was computed on a series of time segments
of the spike train. The length of the time segments was set
to contain a fixed number of cycles of the reference frequency
of interest (e.g., 5 cycles). The relative phase is defined as the
complex argument of the classic spectral coherence (Lachaux
et al., 1999; Vinck et al., 2010). From these relative phases the
PPC was computed:

PPC =
2

N(N − 1)

N−1∑

j = 1

N∑

k = j+1

cos(θj − θk) (2)

where there are N time segments, segment j has relative spike
phase θj and segment k has relative spike phase θk, computed
in respect to a chosen reference frequency. For the interleaved
2Hz and the Poisson protocol we computed the PPC at selected
frequencies independent of the laser pulse frequency. In the
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FIGURE 3 | Spontaneous activity and modulation by laser stimuli. (A) Raster plot of simultaneously recorded spike activity of a sample of seven VTA dopamine

neurons in the same slice, before and during laser stimulation (onset at t = 0, vertical red line). Laser stimuli were delivered at a frequency of (2Hz), and are depicted by

the green arrows above the top panel. (B) Same as (A) but now with laser pulses with a Poisson interval distribution (having an expectation value of 5 events/s). (C)

Auto-correlation of the spontaneous activity of an example VTA dopamine neuron. The oscillation frequency was derived from the side-lobes in the auto-correlation.

(D) Distribution of oscillation frequencies of all recorded VTA dopamine neurons (n = 73) from 7 experiments (=slices/animals). (E) Instantaneous firing rate around the

laser stimulus, calculated from the Peri-Stimulus-Time-Histogram (2.5ms bin size) accumulated from all neurons (n = 73) for the 2Hz regular stimulation protocol. A

sharp peak is followed by a trough in the spike rate during and after the laser stimulus given at (t = 0, transparent green) with stimulus duration of 10ms). (F) The

maximum increase in instantaneous firing rate (peak minus baseline value) of the curve in (E) for all neurons is aggregated into a histogram to show the distribution of

laser stimulation efficacy (n = 73). Results shown for both regular (gray) and Poisson stimulation (black).

stepped frequency protocol we computed the PPC only at
the frequencies of the laser stimuli. The PPC was also used
to assess the synchrony between spike trains simultaneously
recorded from pairs of neurons. To disentangle the synchrony
between neurons driven by common laser input and the part
due to direct interactions between the neurons, we computed
the partial coherence (Rosenberg et al., 1989, 1998; Brett et al.,
2009) as defined in Sun et al. (2004), Brett et al. (2009).
The spectral estimation for the coherence computation was
performed usingWelch’s algorithm with overlapping windows of
5 s (Welch, 1967; Brett et al., 2009).

2.8. Experimental Design and Statistical
Analysis
Independent experiments were performed on 7 slices during
which in total 73 neurons were recorded, each slice was obtained

from a different animal. Differences between experiments
(=slices/animals) were tested with an ANOVA on two indicator
parameters: the neuronal oscillation frequency and the laser
induced spike probability. Detailed statistics were performed
across all recorded neurons with n= 73 degrees of freedom. Exact
p-values are given in the results section. The main statistical test
used across neurons is the Spearman’s rank correlation between
the parameter of interest and the oscillation frequency of the
neurons. Unless otherwise mentioned, all values reported in this
study are given as mean and standard error of the mean (mean±

sem). In graphs the shaded area around a line indicates ± sem.
Unless otherwise mentioned, direct comparison of two means
was performed with Student’s t-test, after checking for normality.
Comparison ofmultiple groups was performedwith ANOVA and
post-hoc testing. The variance of the PPC for individual neurons
was estimated with a jackknife method for each frequency.
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The variable n indicates the number of observations, usually
the number of neurons n = 73; p < 0.05 is assumed
to reject the null hypothesis. Numpy/Scipy (Oliphant, 2007),
Pandas (McKinney, 2010) and NIPY (Brett et al., 2009) packages
for the Python programming language were used to perform
the analysis. Data visualization was performed with Matplotlib
(Hunter, 2007).

3. RESULTS

3.1. Spontaneous Activity Modulation
VTA dopamine neurons spontaneously fire rhythmic
action potentials. A raw (Figure 2A) and filtered (Figure 2B)
trace recorded from a single MEA electrode illustrate the
activity of a neuron and the laser-pulse induced artifacts
(photoelectric effect observed in the MEA leads). In the high
pass filtered signal the neuronal spikes are easily detected above
the (high-frequency) noise and the artifacts can be suppressed.
Neuronal firing activity is also present in the absence of the
laser stimulation, as reported previously (van der Velden et al.,
2017, 2019). We calculated the amplitude-normalized averaged
spike-waveform for each individual neuron and superimposed
them in Figure 2C to demonstrate the highly characteristic
classic tri-phasic waveform of midbrain dopamine neurons
(Werkman et al., 2001; van der Velden et al., 2017, 2019). All
neurons displayed the classic tri-phasic waveform of midbrain
dopamine neurons (Werkman et al., 2001; van der Velden et al.,
2017, 2019). The intrinsic oscillation frequency in the spike
activity was computed from the time interval between peaks in
the auto-correlations of the individual neurons as in van der
Velden et al. (2019) (example in Figure 3C). Figure 3D shows
the distribution of the intrinsic oscillation frequencies of all the
neurons (mean ± standard deviation: 2.9 ± 0.9. The oscillation
frequencies varied between 1 and 5Hz, which matches well
with the Local Field Potential power spectra of the VTA in
vivo Fujisawa and Buzsáki (2011). This variation in oscillation
frequency was observed between the neurons in the same slice
and did not differ between experiments (=slices) (ANOVA,
n = 7, p = 0.56). In previous work we have shown that the
spontaneous activity of the lateral dopamine neurons is highly
rhythmical and variation in regularity did not lead to separable
neuronal populations (van der Velden et al., 2019). The raster
plots in Figures 3A,B show 8 s spike trains (excerpts out of the
six recording periods of 240 s) simultaneously recorded from
seven VTA dopamine neurons in the same slice under regular
2Hz laser stimulation (Figure 3A) and Poisson distributed laser
stimulation (λ = 5, Figure 3B). The average PSTH of all neurons
(n = 73) during 2Hz regular stimulation (Figure 3E) showed
a strong increase in spike rate after the onset of the laser pulse,
immediately followed by a trough. Nonetheless, modulation by
the laser stimulation was not equally effective for all neurons and
showed considerable variation (Figure 3F). This shows that the
optogenetic stimulation was, as expected from the expression
patterns of ChR2 (Figure 1), strongly enhancing neuronal firing
rates directly after the laser pulse onset.

FIGURE 4 | Phase shift induced by laser stimulation. (A) Poisson stimulation

protocol (λ = 5) during a stimulus off to on transition at t = 0. In the off

condition we recorded baseline neuronal activity and for our analysis we

emulated surrogate laser pulses (black arrows) with exactly the same time

pattern but zero intensity. This allows us to perform identical assessment of

the phase shift during laser on and off (control). (B) Mean instantaneous firing

rate (spike/s) around the laser pulse (details as in Figure 3E) for all neurons in

response to Poisson stimulation with a sharp peak during laser stimulation

(green overlay) followed by a trough. (C) Phase-Response-Curve (PRC) (mean

± sem) for all neurons in response to Poisson stimulation. The PRC for the

surrogate laser stimulation was subtracted to correct for potential bias.The

x-axis represents the cycle duration, which is proportional to the neurons’

intrinsic oscillation frequency. Spike phase advance (positive values) was

largest around halfway the spikes (phase ∼ 0.5). (D) Mean instantaneous firing

rate (spike/s) around the laser pulse (details as in Figure 3E) for neurons with a

relatively low optogenetic efficacy (relative amplitude of peak above baseline <

8 spike/s). A sharp peak is followed by a trough, similar to the population result

in (B). (E) PRC [similar to (C)] of neurons with low optogenetic efficacy (relative

amplitude of peak above baseline < 8 spike/s). The phase advance due to

laser stimulation is largest halfway the spikes (phase ∼ 0.5). (F) Mean

instantaneous firing rate (spike/s) around the laser pulse (details as in

Figure 3E) for neurons with high optogenetic efficacy (relative amplitude of

peak above baseline ≥ 8 spike/s). A sharp peak is seen followed by a trough,

similar to the population result in (B). (G) PRC [similar to (C)] of neurons with

strong optogenetic efficacy (PSTH peak ≥ 8 spike/s).
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3.2. Phase Response and Optogenetic
Stimulation Strength
The spike time modulation by the optogenetic pulses was
first studied during Poisson laser stimulation (λ = 5)
with Phase-Response-Curves (PRCs). Phase was normalized to
values between 0 and 1 using the neuron’s intrinsic oscillation
frequency. The phase-shift of the next spike induced by the
laser stimulus was determined as a function of the phase of
the stimulus (Figure 4). To control for possible random bias in
our procedure we ran an identical PRC analysis on emulated
laser pulses (i.e., on a surrogate laser pulse train with exactly
the same timing, but no laser activation) during interleaved
baseline recordings (black arrows in Figure 4A). The PRC for
the surrogate train was then subtracted from the PRC of the
actual laser train. The PRC, averaged over all neurons, showed
an∼8% phase advance due to laser stimulation (Figure 4C). The
maximal phase perturbation was observed halfway the spike cycle
(phase 0.5), but this peak was not very pronounced. The mean
instantaneous spike rate of this group of neurons around the
stimulus is illustrated in Figure 4B and in essence hardly different
from the one in Figure 3E for regular stimulation.

The shape of the PRC could well be related to the efficacy
of the laser stimulation as measured in Figure 4B. Therefore we
split the recorded neuron population based on their stimulation
efficacy around the mean (8 spikes/s, Figure 3F) and obtained
two groups (efficacy < 8Hz, n = 43, efficacy ≥ 8Hz, n =

30). Figures 4D,F show the instantaneous spike rate around the
laser pulse averaged for each group of neurons. The shape of
the curves is similar with a sharp peak during laser stimulation
(green overlay) followed by a trough in spike rate. The PRCs,
mean over all neurons in the group, are given in Figures 4E,G

and both show phase-advancing induced by the laser reaching
its maximal value at a stimulation phase halfway the spike cycle
(around phase 0.5). The phase advance induced by the laser is
slightly larger in the high efficacy group but the two PRCs did not
show qualitative differences in the timing response to optogenetic
pulse stimulation. These findings indicate that laser stimulation
directly after a neuron has fired (start of the cycle) or directly
before a neuron is expected to fire (end of the intrinsic oscillation
cycle) have a relatively small effect on the timing of the next spike,
but laser stimulation in the middle of the cycle can induce up
to 10% phase advance in the timing of the next spike. Similar
results were obtained with regular 2Hz stimulation (not shown),
but Poisson stimulation sampled the phase relations between
neuronal spikes and laser pulses more effectively, without the
incidental risk of very strong phase locking.

3.3. Resonance to Pulse Stimulation Under
Two Stimulus Regimes
The influence on the spike timing quantified by the PRCs
in Figure 4 is quite moderate, but these effects can have a
cumulative effect on the synchrony between neuronal spikes
and laser pulses. We used the Pairwise-Phase-Consistency (PPC,
Vinck et al., 2010) to quantify this synchrony between spiking
and laser (spike-laser PPC) and studied resonance at various
frequencies. Two experimental laser stimulation protocols were

FIGURE 5 | Resonance of the VTA dopamine neuron population. (A) Step

frequency protocol with frequency transition between two 30s recording

periods transitioning from 2Hz to 5Hz stimulation. In addition to the actual

protocol a control analysis was performed on an emulated (surrogate)

stimulation protocol applied to baseline recordings of the neurons. (B) Laser

stimulation as a Poisson process with 5 events/s (λ = 5) with laser-off and

laser-on periods interleaved. (C) Pairwise phase consistency (PPC) spectra

averaged across all neurons (n = 73) during stimulation [regular (green) and

Poisson (blue), (mean± sem)] measuring the phase synchronization between

neuronal spikes and laser pulses. During regular stimulation a peak in

resonance between neurons and laser was seen around 2Hz, whereas the

highest resonance was observed around 1Hz during Poisson stimulation. The

controls (dashed lines in the same color scheme) show that the correlation

was not due to biasing factors such as incidental synchrony between laser and

neuron. (D) PPC spectra averaged across all neurons (n = 73) during

stimulation [regular (green) and Poisson (blue), (mean± sem)]. Before

averaging, the frequency values (x-axis) were normalized by dividing by the

oscillation frequency for each individual neuron. During regular stimulation, we

observed speaks in resonance around the oscillation frequency (corresponding

to frequency value of 1.0) and its harmonics. Poisson stimulation led to

resonance at relatively lower frequencies as compared to stimulation with

regular pulse trains. (E) Same as (D) but now at a higher resolution, only for

regular stimulation. (F) Bar plots of the peak spike-laser PPC frequency. The

peak resonance-frequency is higher during step frequency (i.e., regular)

stimulation as compared to Poisson stimulation. By contrast, the oscillation

frequency (not shown) did not change between protocols.

used. The step frequency protocol sampled regular stimulation
frequencies between 0.5 and 5.5Hz with 0.5Hz resolution
(Figure 5A). Each frequency was applied six times for 30 s and for
each neuron the spike-laser PPC was computed between neuron
and laser at these frequencies. The Poisson protocol consistent
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of randomly timed pulses during 6 periods of 240 s interleaved
with as many periods of baseline recordings. As controls for both
protocols, identical spike-laser PPC analyses were performed
between emulated laser pulses (i.e., a surrogate laser stimulation
train) and baseline firing activity.

Spike-laser PPC spectra were obtained for all recorded
neurons during both protocols and averaged across neurons
(Poisson: blue and regular: green, Figure 5C). Strong resonance
between the neurons and laser was found for both protocols,
but interestingly at different dominant frequencies, namely at
around 2Hz for the step frequency stimulation and around
1Hz for Poisson stimulation. By contrast, the surrogate laser
controls for both protocols showed PPC values very close or
indistinguishable from zero at all frequencies. The relation
between these spike-laser synchrony curves and the intrinsic
oscillation frequency (mean ± sd: 2.9 ± 0.9, Figure 3D) was
further studied. To this end, the spike-laser PPC spectrum
frequency axis of each neuron was divided by its oscillation
frequency, before averaging the PPC spectra across neurons
(Figures 5D,E; D at lower resolution than E). For regular
stimulation we observed peaks at the oscillation frequency (1.0)
and peaks at integer fractions or multiples of the intrinsic
oscillation frequency at 0.5 and 2.0 times (Figures 5D,E).
Poisson stimulation shows a different pattern where resonance
between laser and neuron decreases above the even sub-
harmonic of the oscillation frequency (0.5) (Figures 5D,E).
The oscillation frequencies did not differ between the baseline
measurements of both protocols (delta osc. freq.: − 0.013 ±

0.08, t-test: p = 0.87, n = 73), while the peak
spike-laser PPC frequency increased from Poisson to step
frequency (delta PPC peak freq.: 1.3 ± 0.18, t-test: p < 0.001,
n = 73) (Figure 5F).
Example PPC spectra for three neurons are shown in

Figure 6. The intrinsic oscillation frequencies are plotted as
circles for the two protocols (Poisson blue and regular 2Hz
green). The PPC spectra for the controls (averaged over 100

randomized runs of surrogate laser runs) are shown as dashed
lines in the same color scheme. The three neurons show
different resonance behaviors; Figure 6A shows resonance to low
frequencies during Poisson stimulation; Figure 6B shows high
resonance at and above its oscillation frequency during regular
stimulation and Figure 6C shows resonance for both protocols
below its oscillation frequency. The oscillation frequency of the
neuron shown in Figure 6B coincides with the laser stimulation
frequency (1:1), which leads to strong phase locking. The other
two neurons could contain other modi and beat tones (based on
the difference between the laser pulse and oscillation frequency),
which leads to these more elaborate spectra.

To further quantify the difference in resonance between the
two protocols, we measured the strongest resonance frequency
as the frequency with the highest spike-laser PPC value between
neuronal spikes and laser pulses (peak PPC frequency) for
each neuron. The oscillation frequency of the neuron correlated
with the peak spike-laser PPC frequency (spearman ρ =

0.5, p < 0.001, Figure 7A) for the Poisson protocol, with
maximum spike-laser PPC values around 50% of the intrinsic
oscillation frequency. For the regular stimulation protocol, we
computed correlations between intrinsic oscillation frequency
for three different ranges separately, because neurons showed
three resonant peaks at 0.5, 1, and 2 times the oscillation
frequency (Figure 5E). These ranges were 0–0.75 the intrinsic
oscillation frequency, 0.75–1.5 the intrinsic oscillation frequency,
and 1.5–2.75 times the intrinsic oscillation frequency. We
found that in these three ranges, there was a very strong
correlation between the intrinsic oscillation frequency and the
peak frequency of spike-LFP PPC. In the 0–0.75 range (times
the oscillation frequency), we observed that neurons showed
maximum spike-laser PPC values around 0.5 the oscillation
frequency, and that neurons with a higher intrinsic oscillation
frequency also had a higher peak spike-laser PPC frequency
(R = 0.64, p < 0.001) (Figure 7B). In the 0.75–1.5 range
(times the oscillation frequency), we observed that neurons

FIGURE 6 | Three example neurons and their resonance spectra illustrate non-linear, band-pass filtering by the VTA dopamine neurons: The response to all

frequencies (Poisson stimulation) is not a simple sum of the response to specific frequencies (regular stimulation). (A) PPC spectra for a neuron oscillating at around

2.3Hz (green and blue overlapping circles), during regular (green, 2Hz) and Poisson stimulation [blue, λ = 5, (mean± sem)]. The average of the 100 emulated

(surrogate) controls showed PPC values very close to zero. Regular stimulation showed some structure around 2Hz, but synchrony between neuron and laser was

stronger for the Poisson stimulation. A visible harmonic structure is related to the neurons’ oscillation frequency (2.3Hz) and the laser frequency (2Hz). (B) As in (A) for

a neuron oscillating at 2Hz. During regular stimulation (green) strong synchrony was seen at 2Hz and its even harmonics (4, 6Hz), which were absent during Poisson

stimulation. (C) As in (A) for a neuron oscillating around 3.5–4Hz (green and blue circles). During both protocols resonance was seen at 2Hz).
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FIGURE 7 | Resonance at different ratios of the intrinsic oscillation frequency

for Poisson and regular stimulation. (A) Intrinsic oscillation frequency (x-axis)

vs. the peak frequency of spike-laser coupling (PPC) for Poisson stimulation.

(B) Intrinsic oscillation frequency (x-axis) vs. the peak frequency of spike-laser

coupling (PPC) for regular stimulation, computed in the frequency range of

0-0.75x the intrinsic oscillation frequency. The dashed line shows the 1:2

equality line, and the solid line the regression fit (R value computed with

Pearson). (C) Same as (B) but now computed for the 0.75–1.5x the intrinsic

oscillation frequency range. (D) Same as (B,C) but now computed for

1.5–2.75x the intrinsic oscillation frequency range. Note that for neurons with a

high intrinsic oscillation frequency range, we likely underestimated the peak

frequency of spike-laser coupling because of the range of laser stimulation. (E)

Local Variance (LV) vs. peak PPC during Poisson stimulation. Highly regular

firing neurons resonated stronger to the laser pulses as seen by a higher peak

PPC. (F) LV vs. peak PPC during step frequency stimulation. High resonance

to the laser stimulation (high peak PPC) was not correlated to the intrinsic firing

regularity of the neurons.

showed maximum spike-laser PPC values around 1 times the
oscillation frequency, with again a strong positive relationship
between intrinsic oscillation frequency and peak spike-laser PPC
frequency (R = 0.89, p < 0.001) (Figure 7C). In the 1.5–2.75
range (times the oscillation frequency), we observed that neurons
showed maximum spike-laser PPC values around 2 times the
oscillation frequency, with again a strong positive relationship
between intrinsic oscillation frequency and peak spike-laser PPC
frequency (R = 0.89, p < 0.001) (Figure 7D). Note that because
we stimulated with regular laser pulses only up to 4.5 Hz, we
likely underestimated the peak spike-laser PPC frequency for
neurons with the highest intrinsic oscillation frequency, which
causes a departure from the 1:2 trend for neurons with the highest
oscillation frequency.

FIGURE 8 | Noise induced synchrony during Poisson stimulation. (A) Baseline

PPC spectrum (stimulation off) of pairwise neuron-neuron interactions (neuron

pairs = 347) within the 7 recorded populations (mean ± sem). (B) Same

calculation as in (A) during laser stimulation (mean ± sem). The peak around

1Hz indicates synchrony among pairs of VTA dopamine neurons (neuron pairs

= 347). (C) Coherence spectrum of neuron-neuron interactions during

stimulation on (mean ± sem, neuron pairs = 347), confirming the results in (B).

(D) Partial coherence spectrum (mind the y-axis, mean ± sem, neuron pairs =

347). Around 10% of the coherence in (C) is not directly related to the

common drive, as it is taken into account during the coherence computation.

We further wondered how the electrophysiological properties
of neurons during baseline (i.e., outside laser stimulation periods)
correlated with entrainment by the laser. We found that during
Poisson stimulation, the most highly regular firing neurons
(low LV, as measured during baseline) showed the strongest
resonance (high peak PPC, Figure 7E). This relation was not
seen for stepped frequency stimulation; high PPC values did
not correlate with high regularity (Figure 7F). To conclude, we
found that VTA dopamine neurons show resonant filtering of
extrinsic inputs around 0.5, 1, and 2x their intrinsic oscillation
frequency when these extrinsic (laser) inputs where regular,
but responded more strongly to a 0.5x sub harmonic of their
oscillation frequency when the extrinsic (laser) inputs were noisy
(wide-band; Poisson). Furthermore, firing regularity determined
the strength of the resonance with noisy extrinsic inputs, but not
for regular inputs. These findings (difference Poisson vs. regular,
and multiple resonant modes) suggest that the filtering exhibited
by VTA dopamine neurons is not merely linear, but exhibits a
non-linearity.

3.4. Neuron-Neuron Interactions Induced
by Poisson Stimulation
The dopamine neurons in the VTA population were able to
respond collectively to Poisson stimulation, due to the latter’s
broadband frequency content (Figure 5C). Can such common
noise stimulation induce a structured network state? To this
end, the PPC was computed between all pairs of neurons within
the population during stimulation off as well as stimulation
on periods. The mean PPC spectrum during stimulation off
(Figure 8A) showed no prominent PPC peak in the baseline
pairwise neuron interactions, the values were never different
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from zero [Note that during baseline, only about 10–20% of
neurons showed significant spike-spike synchronization, and
only when the oscillation frequencies of the neurons match,
van der Velden et al. (2019)]. During stimulation, the PPC
spectrum has a large peak around 1Hz (Figure 8B), which
suggests neuron-neuron synchrony driven by the Poisson
stimulation at selective frequencies.

The results on noise-induced-synchrony can be further
refined because we have full knowledge of the timing of
the Poisson laser pulses and thus can factor out its driving
influence on the neuron-neuron synchrony. The component
of the neuronal interactions due to common drive by the
laser pulses was separated by computing the coherence and
the partial coherence (see methods) (Rosenberg et al., 1989,
1998; Sun et al., 2004; Brett et al., 2009). The coherence
(Figure 8C) corroborated the results of the PPC for neuron-
neuron synchrony (Figure 8B). The partial coherence showed
that about one-tenth of the coherence between pairs of neurons
was not a direct result of the common drive by the laser pulses
(Figure 8D, note the different scale of the y-axis). Thus the wide-
band Poisson regime was capable of inducing a synchronous
state across the VTA network, mainly due to common drive
of the neurons (noise-induced-synchrony Galán et al., 2006;
Ermentrout et al., 2008). Interestingly, part of the neuron-
neuron interactions was not directly attributable to common
drive, which points to emergent network properties during
noise stimulation.

4. DISCUSSION

VTA dopamine neuron exhibited spontaneous rhythmic firing
with oscillation frequencies between 1 and 5Hz in agreement
with our earlier reports (van der Velden et al., 2017, 2019).
Optogenetic stimulation using laser pulses affected the timing
of the spikes. This spike timing modulation induced synchrony
between the spikes and the laser pulses, which was used to
study input resonance properties of the dopamine neurons
and their network. VTA dopamine neurons resonated to the
laser pulses in both the regular and the Poisson stimulation
regime. The resonance spectra showed varying strength of
phase locking between neuronal spikes and laser pulses related
to the intrinsic oscillation frequency of the neurons. The
VTA dopamine neurons had a different resonance response
to Poisson than to regular input. The dominant resonance
frequency to regular stimulation was almost 100% higher than
the one to Poisson stimulation. During regular stimulation the
resonance frequencies were similar to the intrinsic oscillation
frequency, as well as 0.5 and 2x this intrinsic oscillation
frequency. For Poisson stimulation the peak resonance (at
1.5Hz) scaled with the sub harmonic of the oscillation frequency
(at 2.9Hz). Additionally, for Poisson stimulation, the strength
of the resonance also correlated with the intrinsic regularity of
the auto oscillator. The separation of the resonance behavior
into two frequency domains for regular vs. noise stimulation
could mediate selective information exchange with different
brain areas. Information could be processed independently

between regular direct drive and noisy background signals,
representing respectively local and long range communications.
In all, this dynamic resonance behavior means that lateral VTA
dopamine neurons behave as non-linear filters; at the same input
frequencies they respond differently to narrow (regular) and
broad-band (Poisson) input, through altered filter characteristics
based on spike timing synchrony.

The broad-band nature of Poisson stimulation allowed
us to drive simultaneously recorded neurons effectively, as
each neuron can resonate to its preferred frequency. This
common drive induced neuron-neuron synchrony (pairwise
PPC), which was below the intrinsic oscillation frequency.
Such noise-induced-synchrony has rarely been recorded in a
neuronal system and is a recent addition to our understanding
of the brains’ function in the presence of noise (Galán
et al., 2006; Ermentrout et al., 2008; Hata et al., 2010).
Our study suggests that the lateral VTA with its weakly-
coupled intrinsic oscillators and resonance characteristics is
a suitable system for studying emergent network properties
beyond the noise-induced-synchrony that is indicated by
our results.

Fujisawa and Buzsáki (2011) hypothesized that the VTA is the
pacemaker of low frequency local field rhythm (their data shows
it between 1 and 5Hz with a peak around 3Hz), which entrains
the prefrontal cortex and the hippocampus (Lisman and Grace,
2005; Fujisawa and Buzsáki, 2011; Kim et al., 2012). In our study
the intrinsic oscillation frequencies of VTA dopamine neurons
were between 1 and 5Hz in vitro. The intrinsic oscillation
frequency can be increased with extracellular glutamate (van der
Velden et al., 2019). Under regular stimulation dopamine
neurons resonate most strongly around 2.8Hz, but also showed
resonance at 2x the intrinsic oscillation frequency. Poisson
stimulation induced noise-induced-synchrony among VTA
dopamine neurons at 1.5Hz. These results provide mechanisms
underlying a pacemaker role for the VTA. Additionally, our
data show that the lateral VTA has self organizing properties,
as it exhibits neuron-neuron synchrony at selective frequencies
while being driven by broad-band noise. The selective frequency
during noisy stimulation is a 0.5x sub harmonic of its mean
oscillation frequency. VTA dopamine neurons that fire with
higher intrinsic regularity are able to resonate stronger at this sub
harmonic. The VTA’s self-organizing frequency-selective output
during noise-like input thus represents a mechanism for low-
frequency pacemaker activity.

We did not study the cellular mechanisms behind the sub
oscillation frequency resonance to Poisson pulses, which likely
involves sub-threshold oscillations (Lampl and Yarom, 1997) as
described in several models of the dopamine neuron (Wilson and
Callaway, 2000; Medvedev et al., 2003; Kuznetsov et al., 2006).
We hypothesize that the observed resonance can be understood
as the stochastic drive of a non-linear oscillator, which has a
preferred stimulus phase within the spike cycle (i.e., halfway the
spike cycle) (Tiesinga, 2002; Hata et al., 2010). Following this,
Poisson stimuli are less likely to fall within the right time window
each spike cycle, than every other cycle, every third or fourth cycle
and thus will prefer to push the neuron with sub-harmonics of its
intrinsic oscillation frequency.
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Our findings have broad functional implications. TheVTAhas
long been implicated in stimulus-reward coupling, with reward
prediction based on an internal time code. However, the neural
substrate of such a time code in the range of seconds is as
yet unknown (Schultz, 1997; Lak et al., 2016). VTA dopamine
neurons’ phasic activity is proposed to act as a reward prediction
signal, which is then modulated by GABAergic VTA neurons
that receive external input (Cohen et al., 2012). Moghaddam
et al. (2017) indeed showed that VTA network properties are
critical to understanding the encoding of information about
serial behavior. An underlying timing structure of the reward
prediction is needed for such encoding and behavior. Our results
suggest that the lateral VTA acts like a filter bank, whose neuron
sub-populations resonate to different frequencies in the laser
driven input. The neurons in these sub-populations are organized
by having a similar or harmonically related intrinsic oscillation
frequency. The output of these oscillating sub-populations
encode the timing information in the input and could be used as
a time code by down-stream target areas of the lateral VTA and
as a reward prediction error code in general.

Clinically the VTA has been discovered as a target for deep
brain stimulation (DBS) in the treatment of pharmacoresistant
cluster headache (Akram et al., 2016, 2017). The frequency used
for electrical stimulation of the VTA in this form of DBS therapy
is 180Hz, but no optimization has as yet been undertaken. This
frequency is so high in comparison to the intrinsic VTA firing
rates that if might best be considered as noisy stimulation. DBS is
also a therapy of last resort in pharmacoresistant epilepsy, mostly
at frequencies around 120Hz, but here it could be demonstrated
in an animal model that Poisson distributed stimulation was
more effective than fixed frequency stimulation with the same
energy (Wyckhuys et al., 2010).

Our research indicates that the VTA network is a non-linear
filter bank when responding to external input, which can decode

timing information related to stimulus-reward processing. These
network states are self-organizing as they impose structure on
noisy input and could underlie a pacemaker role of the VTA,
linked to entrainment of the hippocampus and the prefrontal
cortex during cognitive tasks.
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The idea that a flexible behavior relies on synchronous neural activity within intra- and
inter-associated cortical areas has been a matter of intense research in human and
animal neuroscience. The neurophysiological mechanisms underlying this behavioral
correlate of the synchronous activity are still unknown. It has been suggested that the
strength of neural synchrony at the level of population is an important neural code to
guide an efficient transformation of the sensory input into the behavioral action. In this
study, we have examined the non-linear synchronization between neural ensembles
in area MT of the macaque visual cortex by employing a non-linear cross-frequency
coupling technique, namely bicoherence. We trained a macaque monkey to detect
a brief change in the cued stimulus during a visuomotor detection task. The results
show that the non-linear phase synchronization in the high-gamma frequency band
(100–250 Hz) predicts the animal’s reaction time. The strength of non-linear phase
synchronization is selective to the target stimulus location. In addition, the non-linearity
characteristics of neural synchronization are selectively modulated when the monkey
covertly attends to the stimulus inside the neuron’s receptive field. This additional
evidence indicates that non-linear neuronal synchronization may be affected by a
cognitive function like spatial attention. Our neural and behavioral observations reflect
that two crucial processes may be involved in processing of visuomotor information in
area MT: (I) a non-linear cortical process (measured by the bicoherence) and (II) a linear
process (measured by the spectral power).

Keywords: bicoherence, quadratic phase coupling, non-linear phase synchronization, visual area MT,
spatial attention

INTRODUCTION

Neural oscillations are frequently observed in cortical activities. Notably, it has been widely
asserted that neural oscillations are involved in many cortical computations, including sensory
coding (Siegel et al., 2007; Belitski et al., 2008; Schroeder and Lakatos, 2009) and information
transmission (Hipp et al., 2011; van Kerkoerle et al., 2014; Rohenkohl et al., 2018). Brain
networks can communicate through frequency-specific oscillations. These oscillatory activities
can play a functional role in brain networks to flexibly integrate, process, and transmit neural
information among cortical circuitries (Moore and Armstrong, 2003; Buschman and Miller, 2007;
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Saalmann et al., 2007; Siegel et al., 2008; Hipp et al., 2011).
However, recent studies have suggested that brain oscillations
could interdependently interact, forming so-called cross-
frequency coupling (CFC) (Buzsáki, 2006; Jensen and Colgin,
2007). This form of interactive computation has been observed
in several brain areas of different species (Canolty et al., 2010;
Igarashi et al., 2014; Esghaei et al., 2015). The CFC has an
important role in many cortical functions, including sensory
processing (Saleh et al., 2010), learning (Tort et al., 2009; Igarashi
et al., 2014), memory (Axmacher et al., 2010), and attention
(Esghaei et al., 2015; Spyropoulos et al., 2018). It is believed
that CFC can functionally facilitate information coordination
between neurons, simultaneously in time and space (Aru
et al., 2015). Furthermore, recent studies in human and non-
human primates have shown that CFC may serve as a potential
physiological mechanism underlying intra-areal communication
in the brain (Darvas et al., 2009; Canolty and Knight, 2010;
Holz et al., 2010; Fiebelkorn et al., 2018). For example, a study
on the visuospatial working memory in human indicated that
CFC between oscillatory phases of theta (4–8 Hz) and gamma
(50–70Hz) activities can regulate an effective communication
between occipital and parietal brain regions (Holz et al., 2010).
Another investigation in macaque monkey suggested that
coupling between the phase of theta oscillations (3–8 Hz) and
the power of high frequencies (9–45 Hz) during spatial attention
potentially facilitates an interregional communication between
the frontal eye field (FEF) area, lateral intraparietal area (LIP),
and visual cortex (Fiebelkorn et al., 2018).

Contemporary investigations into visual areas have shown
that oscillatory components of local field potential (LFP) (Liu
and Newsome, 2006; Womelsdorf et al., 2006; Smith et al.,
2015; Khamechian et al., 2019) and neural spiking activity
(Liu and Newsome, 2005; Smith et al., 2015; Parto Dezfouli
et al., 2018) could provide useful information about how neural
activities are linked to visuomotor behavior. These studies have
reported a trial-by-trial correlation between the power of beta
(10–30 Hz) (Smith et al., 2015), gamma, and high-gamma
(50–200 Hz) (Liu and Newsome, 2006) LFPs and behavioral
output. Moreover, they have shown that the strength of gamma
(Womelsdorf et al., 2006) and high-gamma synchronization
(Khamechian et al., 2019) between sensory neurons in the
dorsal and ventral visual pathway, respectively, predict the speed
of behavioral responses. Despite these promising observations
on neural-behavior correlation in the sensory visual areas,
the contributive role of non-linear neuronal synchronization
in guiding visuomotor behavior has not been studied in
the visual cortex.

Bicoherence is an advanced signal processing technique
capable of tracking the neuronal non-linearity and non-Gaussian
signals underlying brain functions (Bullock et al., 1997; Darvas
et al., 2009; Li et al., 2009, 2013). Many studies has shown that this
technique can quantify the strength of non-linear phase-phase
CFC [i.e., quadratic phase coupling (QPC)] between frequency
components of the LFP signal (von Stein et al., 2000; Wang
et al., 2007; Darvas et al., 2009; Sheremet et al., 2019). The
neural generators of QPC have been reported for object coding
in single neuron, in which different features of an object (e.g.,

size and angular speed) are encoded by a multiplicative process
(Gabbiani et al., 2002). QPC has also been found in neuronal
control circuits underlying sensorimotor control (Ahissar and
Kleinfeld, 2003). Furthermore, QPC can effectively facilitate
transmission of selective information between cortical networks
(Darvas et al., 2009; Akam and Kullmann, 2014). On the other
hand, it has been shown that the QPC plays a key role in
multiplexing neural signals, which improves neural transmission
(Akam and Kullmann, 2014).

Here, we have studied LFP signals by employing the
bicoherence method to examine how non-linear neuronal
synchronization in the MT area is involved in the processing of
visuomotor information. For this purpose, we trained a macaque
monkey to perform a visuomotor detection task. The animal
had to detect a brief change in the target stimulus. Results have
indicated that the strength of non-linear phase synchronization
among MT neurons predicts the animal’s reaction time on
a trial-by-trial basis. Importantly, we observed that the non-
linear phase synchronization mostly occurs in the high-gamma
frequency band (100–250 Hz) of LFPs, in line with a recent study
(Khamechian et al., 2019). Moreover, the result demonstrated
that non-linear characteristics of neuronal synchronization are
modulated when the monkey covertly attends to the stimulus
inside the neuron’s receptive field. Furthermore, we observed
that the non-linear and the linear neuronal synchronizations
potentially play a functional role in processing visuomotor
information in the MT area of the visual cortex.

MATERIALS AND METHODS

Animal Welfare
All animal procedures in this study were performed at
the German Primate Center in Göttingen, Germany, and
were approved by the responsible regional government office
[Niedersaechsisches Landesamt fuer Verbraucherschutz und
Lebensmittelsicherheit (LAVES)], under the permit numbers
33.42502/08-07.02 and 33.14.42502-04-064/07. For more details
on the non-human primate facilities, training facilities, and
surgical techniques in this laboratory, please see Roelfsema
and Treue (2014), Calapai et al. (2017), Berger et al. (2018),
Pfefferle et al. (2018).

Experimental Task and Recording
A male macaque monkey was trained to fixate on a central
fixation point and covertly attend to one of two coherently
moving random dot patterns (RDP). Each trial was initiated
by pressing a lever while maintaining the gaze on a central
fixation point for 130 ms (Figure 1). Next, a static RDP appeared
for 455 ms to cue the upcoming target’s location. Following a
short blank period (325 ms), two moving RDPs were shown
inside and outside the receptive field (RF) of the recorded
neurons for a random period of 680–4250 ms. The monkey
had to release the lever immediately after the target underwent
a brief change in direction of motion. The RDP’s direction
for target and non-target (distractor) stimuli were the same,
chosen randomly from eight possible directions (0–360◦ with
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steps of 45◦). The monkey was rewarded if he correctly released
the lever within 150–650 ms after the target change occurred.
Trials were terminated without a reward when the monkey
(i) broke the maintenance of his gaze on the fixation spot,
(ii) released the lever in response to a distractor change, or
(iii) responded too late after the target change. The monkey
correctly detected the target changes in 86% of the trials
without fixation breaks. He incorrectly terminated 3 and 11%
of trials by responding to a non-target change (false alarm)
and ended the trial without performing any response (miss
trial), respectively.

Single-unit neural activities (SUAs) and local field potentials
(LFPs) were recorded extracellularly from MT neurons using
a multi-channel recording system (Mini-Matrix, Thomas
Recording, and Plexon data acquisition system, Plexon Inc.).
The signals were split into SUA and LFP by hardware filters.
Moreover, the LFPs and the SUAs were amplified and digitized
at 1 and 40 kHz, respectively. The 50 Hz noise of the power
line was eliminated from the LFPs using a non-causal 4th-order
Butterworth notch filter. Action potentials of recorded units
were sorted online using a Plexon MAP data acquisition system
(Plexon, Dallas, TX, United States). Single units were isolated
online using a window discrimination procedure. The data
were collected from 111 sites with five parallel electrodes,
advanced separately into brain tissue to isolate direction-tuned
MT neurons with overlapping RF. These electrodes were not
implanted chronically but were inserted simultaneously in
each experimental session. MT sites were identified by their
anatomical location in cortex (using structural MRI imaging)
and by the physiological properties of recorded neurons: neurons
were direction-selective and the average diameter of the neuron’s
RF was almost equal to the RF eccentricity. The RF centers of
MT neurons at different locations were predictable along the
superior temporal sulcus in cortex. For more details on the
experimental procedure, behavioral task, and recording details
see Esghaei and Daliri (2014).

Data Analysis Procedure
In the following sections, the analyses and quantitative procedure
are discussed. All analyses were implemented using MATLAB
software (R2017b; MathWorks, Natick, MA, United States).

Trial Selection Procedure
We only analyzed the hit trials in which the monkey correctly
detected the target change. The hit trials were sorted based
on reaction times (RTs) and sub-divided into four quartiles.
An equal number of these trials were selected from the
first and the last quartiles and labeled as the fast and the
slow trials, respectively. Through this process, there were
725 trials at each fast and slow group. We used single-unit
spiking activity and the LFP of chosen trials to predict the
animal’s reaction time (RT). All analyses were carried out for
stimulus presentation period, for a time window of 1500 ms
before the target change occurred (see “Analysis window” in
Figure 1). We chose the trials in which the target stimulus
was changed 3000 ms after the trial onset. The rationale for
this selection was to be ensured that the analysis window was

far enough from the stimulus-evoked activities induced by the
stimulus onset. We employed a built-in MATLAB function
to perform digital filtering with zero-phase distortion (the
filtfilt function).

Analysis of Bicoherence
General harmonic wavelet transform (GHWT)-based wavelet
bicoherence (WBIC) (Li et al., 2009, 2011) was used to measure
the quadratic phase coupling (QPC) in LFP signals. A segment-
averaging approach (Hagihira et al., 2001; Li et al., 2009) was
employed for calculating WBIC in order to obtain a reliable
estimate of bicoherence. We used a time window of 500 ms with
a 375 ms overlap to divide the LFP signal into eight time epochs.
For each epoch, the GHWT-based WBIC algorithm was run to
calculate bicoherence in all frequency pairs from 1 to 250 Hz,
with a step of 1 Hz and bandwidth of 2 Hz. The implementation
of this algorithm is briefly explained in the following (for more
details on the GHWT-based WBIC algorithm, see Li et al. (2009,
2011). First, we conducted the GWHT for each epoch of a trial’s
LFP (Xk (t), where k denotes the kth epoch of a given LFP
signal) to calculate the wavelet coefficient ak(f , t) in a frequency
component f. This frequency component varied from 1 to 250 Hz
(as mentioned previously). Next, the normalized squared WBIC
was calculated for each possible pair of frequency component as
given in eq. 1:

bk(f1, f2) =

∣∣Bk(f1, f2)
∣∣2∑N

t=1
∣∣ak(f1, t)ak(f2, t)

∣∣2 ∑N
t=1

∣∣ak(f1 + f2, t)
∣∣2 ,

1 ≤ f1, f2 ≤ 250 Hz (1)

where N represents the time length of the epoch, (f1, f2) indicates
a frequency pair (bifrequency), and Bk denotes the phase-
randomized wavelet bicoherence, which is calculated as indicated
in eq. 2:

Bk(f1, f2) =
N∑

t=1

ak(f1, t)ak(f2, t)a∗k(f1 + f2, t) eiRϕk(f1,f2,t) (2)

where R ∈ [−π,π] is a random variable and ϕk(f1, f2, t) denotes
instantaneous biphase, which is calculated using the function
provided in eq. 3:

ϕk(f1, f2, t) = ϕk(f1, t)+ ϕk(f2, t)− ϕk(f1 + f2, t) (3)

Next, we made use of a surrogate method to eliminate
all spurious QPCs and obtained a reliable estimate for the
wavelet bicoherence (Li et al., 2009, 2011). To this end, the
biphase function ϕk(f1, f2, t) was replaced with a new biphase
ϕ
′

k
(
f1, f2, t

)
= ϕk

(
f1, f2, t

)
+ θ in Eq. 2 in order to calculate a

surrogated bicoherence for a given bifrequency
(
f1, f2

)
. θ is a

random variable chosen from (−π, π]. We generated a hundred
samples of surrogated bicoherence for the bifrequency

(
f1, f2

)
and computed their mean (µ) and standard deviation (σ). The
original bicoherence was preserved if it exceeded µ+ 1.6 σ of
the surrogate bicoherence (as a 95% statistical threshold value);
otherwise, it was set to zero. The GHWT-based WBIC method

Frontiers in Neuroscience | www.frontiersin.org 3 April 2020 | Volume 14 | Article 230184

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00230 April 2, 2020 Time: 21:21 # 4

Khamechian and Daliri Non-linear-Synchronous Neuronal Activity in MT Cortex

FIGURE 1 | Behavioral paradigm. The monkey had to press a lever while maintaining his gaze on a fixation spot for 130 ms. Then, a static random dot pattern (RDP)
appeared for 455 ms to indicate the upcoming target location on the screen. The screen was blanked for the next 325 ms. Next, two RDPs were presented inside
and outside the receptive field (marked by a dashed circle here) for a random period of 680 to 4250 ms. The monkey received a drop of juice if it correctly detected a
short change in the direction of the target RDP and released the lever within a short time window (150–650 ms). The analysis window was 1500 ms preceding the
direction change in the target stimulus (delineated as a green area in the figure).

provided a two-dimensional bicoherence matrix with 250 × 250
bifrequency components for each trial’s LFP signal.

Quantitative Analysis of the Bicoherence
Matrix Using Bicoherence Indices
We calculated four indices using the bicoherence matrix obtained
for each trial. These indices were computed in WBIC studies to
quantify the bicoherence matrix (Li et al., 2009, 2011, 2013; Wang
et al., 2017). They were computed for each trial’s bicoherence
matrix as follows:

(i) Total amount of the wavelet bicoherence across all
bifrequency pairs of

(
f1, f2

)
;

Total Bic =
∑∑

b (f1, f2) (4)

where 1 ≤ f1, f2 ≤ 250 Hz and b is the bicoherence matrix.
(ii - iii) Eigen-decomposition for b; since bicoherence matrix

is a symmetric matrix with respect to the main diagonal (f1 = f2),
Eigen-decomposition can be conducted as follows:

b νi = λiνi, λi ∈ {λ1 ≤ λ2 ≤ . . . ≤ λM, M = 250} (5)

where λi, υi are the eigenvalue and eigenvector, respectively. M
denotes the number of frequency components (f ). The maximum
eigenvalue (Li et al., 2009) and Shannon entropy of the eigenvalue
distribution (Cui et al., 2010; Dauwels et al., 2010; Li et al., 2011)

were considered as the next bicoherence indices. The Shannon
entropy of the eigenvalue distribution is computed with the
following function:

Entropy of eigenvalues = −

∑M
i=1 λ′i log(λ′i)

log(M)
(6)

where λ
′

i = |λi | /
M∑

i=1
|λi | is the normalized absolute eigenvalue.

(iv) Average diagonal elements of the bicoherence matrix
(f1 = f2):

Diagonal Bic =
∑

b(f1 = f2, f2 = f1)
M

(7)

We computed the bicoherence indices for the fast and the slow
trials in both target position conditions (target-in and target-
out, see Figure 2). To ensure that the bicoherence indices were
independent of the spectral power, a subset of the fast and the
slow trials with no significant differences in their spectral power
in a wide frequency band (0–500 Hz) were selected. We calculated
the LFP band-power for each fast and slow trial in a wide
frequency band (0–500 Hz). Consequently, the same number of
trials were sub-selected from individual histogram bins of the fast
and the slow band-power. This procedure provided two subsets
of the fast and the slow trials that had no significant differences in
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FIGURE 2 | The bicoherence indices for the fast and the slow trials at each target location condition (Target-In\Target-Out). Stars show a significant difference
between the bicoherence indexes calculated for the fast (blue) and the slow (red) trials (two-sided Wilcoxon rank-sum test, P-values have been reported on top of
the bars). Error bars indicate SEM.

power spectrums (p > 0.98, for both target stimulus conditions,
using a two-sided Wilcoxon rank-sum test).

Selection of the Bifrequency
Components by Using a
Feature-Ranking Method
We compared the bifrequency components of the bicoherence
matrix between the fast and the slow trials using a two-
sided Wilcoxon rank-sum test. We then chose the bifrequency
components with significance levels of p < 0.01. With this,
965 and 610 bifrequency components were sub-selected from
250 × 250 components in the bicoherence matrix for the target-
in and the target-out conditions, respectively. The bicoherence
at each bifrequency component was z-score-normalized across
trials. We further employed a feature-ranking method to exclude
bifrequency components yielding low performance in decoding
the fast and slow trials. Firstly, a repeated holdout method was
conducted for 100 independent repetitions to segregate trials into
training and test subsets. At each repetition, 70% of trials (1015
trials) were randomly selected for training, and the remaining
trials (435 trials) were used for the test. Then, the sub-selected
bifrequency components were sorted based on their performance
in decoding the fast and the slow trials in descending order.
We utilized a built-in MATLAB function (rankfeatures, using
receiver-operator-characteristic (ROC) criteria) to sort the
bifrequency components. A k-Nearest Neighbor classifier (k = 1)
was employed to evaluate the sorting process. This classifier
assigned a query sample to the class of the single sample in
the training subset that was nearest to it. We used the metric
of Euclidean distance (Ed) to measure the dissimilarity between
samples. The classifier was trained several times, equal to the
number of bifrequency components sub-selected for each target
position condition. We used the first F bifrequency components
(features) for training the classifier, which had the top ranks
in the sorting analysis. F was varied from 1 (the best feature)
to the number of sub-selected bifrequency components (see
Figures 3A,C x-axis). The accuracy of the classifier was assessed
using the test trials. We repeated the feature-ranking method

100 times to measure the average accuracy of each F value. To
extract the features that had better decoding performance, we
set F based on a trade-off of maximizing two factors; (1) the
ratio between the number of selected features to the total number
of features (which are shown by the x-axes in Figures 3A,C)
and (2) the decoding performance of the classifier. We extracted
features for which the rank numbers were lower than F = 140 at
each repetition. Considering this procedure, we ensured that we
selected the features that provided classification accuracy above
90% in decoding the fast and the slow trials (see Figures 3B,D).
Since the rank of a feature that had a moderate F was not
consistent across different repetitions, we adopted a selection
routine. This routine extracted the feature that was repeated
between F = [1−140] across all algorithm repetitions. We applied
the feature-ranking method for each target position condition
(target-in\target-out, see Figure 3) and obtained 85 and 89
features (bifrequency components) for the target-in and the
target-out conditions, respectively.

Analysis of Spectral Power
We implemented a power spectrum analysis using a built-in
MATLAB function (pwelch function). Briefly, the trial’s LFP was
sub-divided into eight segments using a 500 ms time window with
a 375 ms overlap. Individual segments were windowed with a
Hamming window. Then, spectral density was calculated for each
segment using discrete Fourier transform. The power spectrum
was calculated by the average squared magnitude of spectral
densities across all segments. We calculated normalized power for
each trial’s LFP using the following equation:

Power =

∑fh
fl

PSD (f )∑
0≤f≤250 PSD (f )

(8)

where fl, fh denote the lower and upper frequency bounds of
the power spectral density (PSD), respectively. This equation
calculates the normalized power by dividing PSD in the narrow
frequency band by the total PSD. We computed PSD for
frequency bands ranging between 2 and 250 Hz, with a step of
2 Hz and bandwidth of 4 Hz. This provided 124 components of
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FIGURE 3 | Distributions of the bifrequency components provided high classification performance in decoding the fast and the slow trials. (A,C) The bifrequency
components (features) in the Target-In and the Target-Out conditions, respectively, which were sorted based on the decoding performance in descending order.
(B,D) Distributions of the bifrequency components in panels (A,C), respectively, which provided performance of over 90% in decoding the fast and the slow trials.
(B,D) show 85 and 89 bifrequency components for the Target-In and the Target-Out conditions, respectively. We did not analyze the upper bound of the X = Y-axis
in panels (B,D) because of the symmetric property of the bicoherence. X-Y axes indicate the center bound of frequency bands in panels (B,D).

normalized power for each trial’s LFP. We applied this analysis
on individual trials, including all the target position conditions
(target-in\ target-out).

Analysis of Feature Extraction
We extracted three types of features from each trial’s LFP, namely:
(1) the bifrequency components that were sub-selected from
the bicoherence matrix, (2) the bicoherence indices, and (3)
the normalized power. We used the feature-ranking method to
extract the best features provided a high decoding performance
for classifying the fast and the slow trials, but here, we only
extracted the 60 first features (by setting F = 60) instead of
the 140 features (F = 140) extracted in the original algorithm.
Furthermore, we selected features that repeated across 90% of
algorithm repetitions within the first 60 features (the algorithm
was repeated 100 times). The classifier could reach an accuracy
of over 95% in decoding the fast and the slow trials. However,
despite choosing different F values for the analyses shown in

Figures 3, 4, the number of selected features in both analyses were
comparable. In more detail, about 15–30% of the total number of
features were sub-selected in each analysis.

Categorization of the Bifrequency
Components
We categorized the bifrequency components sub-selected from
a trial’s feature vector into the Bicfast or Bicslow group based on
the average bicoherence in the fast and the slow trials. To this
end, a bifrequency component was labeled as Bicfast or Bicslow
if the average bicoherence for that bifrequency component was
larger in the fast than the slow trials or vice versa, respectively
(Figure 5). We further calculated the median and the median
absolute deviation (MAD) for each Bicfast and Bicslow group. The
MAD is calculated using the following equation:

MAD = median
∣∣X −median (X)

∣∣ (9)
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FIGURE 4 | Type of features providing high classification performance in decoding the fast and the slow trials. (A,C) Three types of features (shown on the x-axis of
panels B,D) in the Target-In and the Target-Out conditions, respectively, which were sorted based on the decoding performance in descending order. (B,D) Types of
features in panels (A,C), respectively, which provided classification performance of over 95% in decoding the fast and the slow trials. The selected bicoherence in
panels (B,D) lies on the high-gamma frequency band (150–250 Hz, see Figure 5). The selected powers in panel (D) lie between 190 and 200 Hz.

Where X is a vector of the bifrequency components at each
Bicfast or Bicslow group. We conducted a permutation test to
analyze significant difference between bifrequency distributions
of Bicfast and Bicslow groups. The Ed was calculated between
the bifrequency components and the corresponding median at
the Bicfast and Bicslow groups. Then, the Eds of Bicfast and Bicslow
were randomly shuffled between these groups 100,000 times. For
each repetition, we calculated an absolute difference between
the average Ed in the Pseudo-Bicfast and Pseudo-Bicslow group.
Then, the proportion of repetitions with absolute differences
larger than the original absolute difference was calculated.

The proportion showed a significant difference between the
bifrequency distribution of the Bicfast and Bicslowgroup if it was
smaller than 0.05.

Analysis of QPC Temporal Dynamic for
the Fast and the Slow Trials
We employed a time window of 150 ms with a 125 ms overlap to
calculate the temporal dynamic of the quadratic phase coupling
(QPC) in the same analysis time window used for the original
bicoherence analyses (Figure 7). We ensured that the analysis
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FIGURE 5 | The characteristic bifrequency of QPC in fast and slow trials for each target position condition (Target-In\Target-Out). The blue (Bicfast ) and the red
(Bicslow ) circles show the bifrequency components in which the average bicoherence was larger in fast rather than slow trials, and vice versa, respectively. Blue and
red squares represent medians of Bicfast and Bicslow groups, respectively. Error-bars demonstrate the median absolute deviation (MAD) calculated for each
frequency axis. Distributions of the bifrequency component in Bicfast and Bicslow groups are significantly different in the Target-Out condition (p < 0.046; using a
permutation test). This is not the case for the Target-In condition (p > 0.3, using a permutation test).

time window was at least 590 ms after the stimulus onset. Firstly,
we filtered the trial’s LFP with the GWHT to calculate wavelet
coefficients a (f1, t) and a (f2, t) in a given frequency pair at the
Bicfast or Bicslow group. Second, we took advantage of the GHWT-
based WBIC algorithm (Eq. 1) to compute the bicoherence in
each frequency pair for each time epoch. Next, the bicoherences
were averaged across frequency pairs in each Bicfast and Bicslow
group. Eventually, we averaged the bicoherence at each time
epoch for the fast and the slow trials. The following equation
computes the bicoherence for each time epoch in the analysis
window:

Bic(ti) =
1

NF × NTr

NTr∑
j=1

Nf∑
l=1

bj
i(f l

1, f l
2) i = 1 , 2 , . . . , Nep

(10)
where bj

i(·) indicates the WBIC of the ith time epoch in the jth

trial, (f l
1, f l

2) shows the lth frequency component in the Bicfast
and Bicslow group, NTr denotes the total number of trials, Nf
represents the total number of bifrequency components at each
Bicfast and Bicslow group, and Nep = 55 is the total number of
time epochs in the analysis window. The Bic(·) lies between [0–
1] in which zero indicates no QPC and 1 reflects perfect QPC,
respectively. We used a permutation test analysis to characterize
the time epochs with a significant difference between the QPC of
the fast and the slow trials. The QPC of trials at each time epoch
were randomly shuffled between the fast and the slow groups
1000 times. For each repetition, we calculated the difference
between average QPCs in the shuffled fast and the shuffled slow
trials. Then, the proportion of repetitions with larger absolute
differences compared to the original absolute difference was

calculated. The time epochs that had a proportion smaller than
0.05 were considered the time epoch with a significant difference
between QPCs in the fast and the slow trials. We next used false
discovery rate (FDR) for multiple comparisons.

Analysis of Correlation Between
Single-Unit Spiking Activity and
Bicoherence
We pooled the fast and the slow trials, regardless of their
behavioral outcomes. First, we calculated the bicoherence at
each bifrequency component in the Bicfast and Bicslow group
to measure correlation between single-unit spiking activity
and bicoherence. Second, the bicoherence at each bifrequency
component was z-score-normalized across trials. Third, the trial’s
bicoherence was averaged across all bifrequency components at
each Bicfast and Bicslow group. Fourth, we calculated the trial’s
spike-rate using single-unit spiking activity. The analysis of
spike-rate was conducted for the same time window used in
the bicoherence analyses. Fifth, the Spearman’s correlation was
employed to calculate the correlation between the trial’s spike-
rate and the trial’s bicoherence at each Bicfast and Bicslow group
(see Figures 6, 8).

RESULTS

To study the functional interaction of neural circuits underlying
behavior, we trained a monkey to perform a change detection
task. In brief, the monkey had to covertly attend to one (target)
of two coherently random dot patterns (RDP). The monkey
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was rewarded with a drop of juice if it correctly detected
a short direction change in the target RDP (Figure 1, see
also section “Materials and Methods”). The monkey correctly
reported the target change in 86% of trials without breaking
its eye fixation. We recorded the local field potentials (LFP)
and the single-unit spiking activity from the MT area while
the monkey performed the task. To study the neural process
underlying behavior, we analyzed the hit trials in which the
monkey correctly detected the target change. The hit trials
were subdivided into fast and slow trials based on the animal’s
reaction time (see section “Materials and Methods”). Next, we
calculated the bicoherence for LFPs to investigate how the non-
linear neuronal synchronization likely leads to fast or slow
behavior. We employed general harmonic wavelet transform
(GHWT)-based wavelet bicoherence (WBIC) (Li et al., 2009,
2011) to measure the strength of QPC in LFP signals. We applied
GHWT-based WBIC for a time window of 1500 ms before the
target change occurred. Our analyses indicated that the QPC,
especially in high-gamma frequencies (150–250 Hz), can reliably
decode the animal’s reaction time. Moreover, we observed that
the characteristic frequency pair of QPC are selective to the
target position condition (target-in\target-out) and the speed of
visuomotor behavior (fast\ slow).

QPC Influences Behavior Systematically
Analysis of QPC allows us to measure the phase synchrony
between three signals with different frequencies. We applied
the GHWT-based WBIC method on LFPs to calculate the
bicoherence for each trial. We calculated the bicoherence for
all frequency pairs [e.g., (f1, f2)] between 1 and 250 Hz, with
a step of 1 Hz and bandwidth of 2 Hz. This provided a
two-dimensional matrix (bicoherence matrix) with 250 × 250
components for each trial. Each element in the bicoherence
matrix represents the strength of QPC in a pair of frequency
components (bifrequency) in the LFP spectrum. To analyze the
bicoherence matrix, we calculated four indices (Li et al., 2009,
2011, 2013; Wang et al., 2017), namely (I) total bicoherence
(Total Bic), (II) average diagonal elements (Diagonal Bic),
(III) maximum eigenvalue, and (IV) Shannon entropy of the
eigenvalue distribution (see section “Materials and Methods”).
Figure 2 shows the bicoherence indices in the fast and the
slow trials (blue and red, respectively) for the target-in and
target-out condition. The result clearly demonstrates that the
strength of QPC in fast trials is significantly larger than in
slow trials for the three bicoherence indices and both target
position conditions (p < 0.03, using two-sided Wilcoxon rank-
sum test, excluding the significance level in the Shannon entropy
of eigenvalues). In addition, these differences in bicoherence
indices are not due to the difference between the length of
stimulus presentation in the fast and the slow trials (see
Supplementary Figure S1). Moreover, it is visually evident that
the strength of bicoherence indices is clearly enhanced in the
target-in condition compared with the target-out condition,
irrespective of the animal’s reaction time. This observation
suggests that a cognitive process like selective attention probably
modulates the QPCs in the target-in condition. However, the
QPC enhancement in fast trials among both target position

conditions reflects that the QPC is potentially not a cortical
function that is preferably processing only that stimulus placed
inside the neuron’s RF.

QPC in High-Gamma Frequencies Plays
a Crucial Role in Guiding Behavior
We next examined how neuronal oscillatory activities at
different frequencies can individually or interactively contribute
to the processing of visuomotor information in MT cortex.
For this purpose, we analyzed the bicoherence matrix to
find the bifrequency component that provided maximum
discrimination between the fast and the slow trials. Firstly,
we extracted the bifrequency components that showed a
significant difference between the fast and the slow trials
(p < 0.01using two-sided Wilcoxon rank-sum test). Then, a
feature ranking method was employed for sub-selecting the
bifrequency components provided the classification performance
above 90% in decoding the fast and the slow trials (see section
“Materials and Methods” for more details). Figures 3A,C show
the bifrequency components (features) sorted based on their
decoding performances in descending order in the target-in and
the target-out condition, respectively. Figures 3B,D demonstrate
the distributions of the bifrequency components for the features
in Figures 3A,C, respectively, showing a decoding performance
above 90%. There are 85 and 89 bifrequency components in
Figures 3B,D, respectively. It is visually evident that the selected
bifrequency components are distributed in a broadband high-
gamma frequency range for each target position condition (100–
250 Hz). In addition, the result clearly indicates that the selected
bifrequency components in the target-out condition are more
widely distributed than the target-in condition in the high-
gamma frequency range.

We next examined the contributive role of the spectral
power to the bicoherence in decoding the animal’s RT. The
idea is that the power spectrum does not retain the phase
information of the signal but captures the statistical property
of the signal’s Gaussianity. In contrast, the bicoherence can
extract information relevant to the signal’s non-Gaussianity
and signal phase spectrum (Nikias and Mendel, 1993). We
computed LFP power in narrow frequency bands between 2
to 250 Hz, with a step of 2 Hz and bandwidth of 4 Hz.
Then, the LFP powers were normalized to the total power
in 2–250 Hz (see materials and methods). Next, we defined a
feature vector for each trial including three types of features: (I)
the selected bifrequency components shown in Figures 3B,D,
(II) the normalized spectral powers, and (III) the bicoherence
indices (see section “Materials and Methods”). We employed
the same selection routine used for Figures 3B,D to select the
best feature from the feature vector. In brief, we sorted the
features based on decoding performances in descending order.
We then extracted features yielding classification performance of
over 95% in decoding the fast and the slow trials (see section
“Materials and Methods” for more details). Figures 4A,C show
the sorted features in the target-in and the target-out conditions,
respectively. Figures 4B,D demonstrate the types of selected
features extracted from Figures 4A,C, respectively. The result
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FIGURE 6 | The performance of LFP power in the high-gamma frequency
band (190–210 Hz) in decoding the fast and the slow trials. The LFP power in
the high-gamma frequency band was calculated for the fast and the slow
trials using the Welch method (see Materials and methods). The bounds of
high-gamma frequencies (i.e., 190 to 210 Hz) were defined based on the
frequency ranges in Figure 5 with a high concentration of bifrequency
components. We normalized the high-gamma power to the average
high-gamma power at each site. The performance of the high-gamma power
for decoding the fast and the slow trials was calculated by employing a
k-Nearest Neighbor classifier. We used a repeated holdout method (100
times) to subdivide the trials into the training and the test subsets. In each
repetition, we used 70% of the trials for training and the remaining trials for the
test. The chance level was calculated for each target position condition by
repeatedly (100 times) shuffling the trials between the fast and the slow
groups. The result clearly indicates that the decoding performance of
high-gamma power is not significantly different between the original and the
shuffled high-gamma power in each target position condition (permutation
test, p > 0.05). The p-values have been shown on top of the bars.

is clearly evident that bicoherence is the most frequent type of
feature that was selected for each target position condition. This
observation suggests that QPC in the high-gamma frequency
band functionally plays a key role in guiding the fast and the slow
behavioral responses.

Switching Toward the Neuron’s RF
Modulates the Characteristic
Bifrequency of the Fast and the Slow
Trials
To further investigate how the selected bifrequency components
in Figures 4B,D are distributed across the bifrequency
map, we subdivided the bifrequency component into
Bicfast and Bicfast groups based on average bicoherence in
the fast and the slow trials. In more detail, a bifrequency
component was labeled as Bicfast or Bicslow if the its average
bicoherence was larger in the fast compared to the slow trials or
vice versa, respectively. We further calculated the median and the
median absolute distance (MAD) for the bifrequency component
of the Bicfast and Bicfast group per target position condition (see
section “Materials and Methods”). Figures 5 and Supplementary
Figure S2 show the distribution of bifrequency components

in Bicfast and Bicslow groups for each position condition. The
result indicates that the QPC in a narrower band of high-
gamma frequencies (i.e., 150–250 Hz, instead of 100–250 Hz
in Figures 3B,D) is more implicated in guiding visuomotor
behavior. In addition, the high-gamma QPC is disassociated
from potential differences between high-gamma powers in the
fast and the slow trials (see Figure 6). The result demonstrates
that distributions of the bifrequency in Bicfast and Bicslow groups
are not significantly different for the target-in condition (p > 0.3,
using a permutation test, see section “Materials and Methods”)
and show a significant difference for the target-out condition
(p < 0.046, using a permutation test, see section “Materials and
Methods”). Given that Bicfast and Bicslow potentially represent the
characteristic bifrequency of QPC in the fast and the slow trials,
respectively, the result visually indicates that the distributions
of characteristic bifrequencies in the fast and the slow trials are
clearly different across target position conditions. In more detail,
we observe that the medians of characteristic bifrequency in
Bicfast and Bicslow groups increases for (7 Hz, 7 Hz) and (6 Hz,
38 Hz) for each (f1, f2) dimension, respectively, when the monkey
performed the target-in condition. In addition, the result clearly
illustrates that the median of characteristic bifrequency in slow
trials is strongly modulated by switching toward the neuron’s
RF (i.e., target-in condition). But this is not the case for the fast
trials. Despite this observation, the increase of medians in the
target-in condition suggests that the frequency of non-linear
coupling increases when the monkey attends to the stimulus
inside the neuron’s RF. Despite the different distributions of
the characteristic bifrequencies in fast and slow trials across
target position conditions, the decoding performance of QPC
is similar across the target-in and the target-out conditions (see
Figures 3B,D; see section “Materials and Methods”).

QPC of Characteristic Bifrequencies in
the Fast and the Slow Trials Follow
Different Temporal Dynamics Among
Target Position Conditions
Our analyses highlighted that the QPC in the high-gamma
frequency band plays a crucial role in processing visuomotor
information. In addition, we observed that the fast and the slow
trials are discriminated by the distinct characteristic bifrequency
of QPC in the MT area. To study the time dynamics of QPC
in the fast and the slow trials, we used a time window of
150 ms with a 125 ms overlap. We calculated the bicoherence
at each characteristic bifrequency of Bicfast and Bicslow for a
given time window. Then, the bicoherence was averaged across
all characteristic bifrequencies and trials for each time window
(see section “Materials and Methods” for more details). Figure 7
shows the temporal dynamics of QPC in the fast and the
slow trials using characteristic bifrequncies of Bicfast and Bicslow
groups in each target position condition. We observed that the
QPC in the fast and the slow trials follows a distinct temporal
pattern at each target position condition using characteristic
bifrequencies of Bicfast and Bicslow groups. In addition, it is
visually evident that the magnitude of the significant QPC
difference between the fast and the slow trials in Figure 7C is
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FIGURE 7 | Temporal dynamics of QPC in the fast and the slow trials for the time window before the target change. The blue and red curves show the temporal
dynamics of QPC for the fast and the slow trials, respectively. The curves show the average bicoherence for the bifrequency component of the Bicfast (right column)
and Bicslow (left column) groups shown in Figure 5. The black lines on top of the traces mark the times that the QPC of the fast and the slow trials are significantly
different (p < 0.05, permutation test, FDR corrected for multiple comparisons).

somewhat enhanced in Figure 7A (comparing the times showing
a significant difference between red and blue curves in Figure 7A
with the corresponding times in Figure 7C). In other words,
the significant QPC difference between fast and slow trials in
characteristic bifrequencies of Bicslow is modulated when the
monkey attends to the stimulus inside the neuron’s RF. In
contrast, we observe that the magnitude of the significant QPC
difference between the fast and the slow trials in Figure 7D
strongly decreases in Figure 7B (comparing the times showing
a significant difference between the red and blue curves in
Figure 7D with the corresponding times in Figure 7B). In other
words, the significant QPC difference between fast and slow trials
in the characteristic bifrequencies of Bicfast strongly decreases
when the animal attends to the stimulus inside the neuron’s
RF. We hypothesize that these contrary observations in the

characteristic bifrequency of the fast and the slow behavior (i.e.,
Bicfast and Bicslow, respectively) along target position conditions
are potentially due to the influence of a cognitive function like
attention. Our hypothesis is in line with previous studies that
have shown that attention could decouple sensory neurons and
thereby enhance the neural representation of relevant stimuli to
effectively guide a fast behavioral reaction (Esghaei et al., 2015,
2018; Spyropoulos et al., 2018).

QPC Is Anti-correlated With the Neuronal
Spike Rate Exclusively for the Target-in
Condition
We calculated the correlation between the QPC and the single-
unit spiking activities to study how neuronal non-linear coupling
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FIGURE 8 | Correlation between the single-unit spike rate and the QPC of
characteristic bifrequencies in Bicfast and Bicslow groups for the Target-In and
the Target-Out condition. Y-axis represents the strength of correlation
between the QPC and the spike rate using Spearman’s correlation method.
The star shows a significant correlation in Bicslow groups at the Target-In
condition (p < 0.002, Spearman correlation).

potentially influences the neuronal output (see section “Materials
and Methods”). We computed the single-unit spike rate as well
as the average normalized QPC for each trial using characteristic
bifrequencies of Bicfast and Bicslow groups (shown in Figure 5).
Figure 8 shows the Spearman correlation between spike rates
and QPCs in each target position condition. The result indicates
that the QPC and the spike rate are strongly anti-correlated
in the target-in condition. Notably, we observe that the spike
rates and the QPC of the Bicslow group are significantly anti-
correlated in the target-in condition (p < 0.002, using Spearman
correlation). In contrast, there is a negligible non-significant
positive correlation between QPCs and the spike-rates for the
target-out condition.

DISCUSSION

Many studies have highlighted that oscillatory activity plays a
mediating role in the neuronal coupling underlying cognitive
functions (Lisman and Jensen, 2013; Khodagholy et al., 2017;
Rohenkohl et al., 2018). However, the relationship between
this neuronal coupling and behavior has not been studied in
the visual cortex.

In this study, we recorded the LFP and the single-unit spiking
activity from the visual area MT of a behaving monkey. The
animal had to covertly attend to one of two RDPs placed inside or
outside the RF of recorded neurons and detect a short direction
change in the target stimulus. We examined how linear and
non-linear neural synchronization could influence the animal’s

RT. For this purpose, the spectral representation of the second-
order statistics (i.e., the power spectrum) and the third-order
statistics (i.e., bicoherence) were calculated for LFPs on a trial-
by-trial basis.

We measured the strength of non-linear coupling between
all frequency pairs in the LFP spectrum (1–250 Hz) using
four bicoherence indices. The bicoherence indices were: (i)
total Bic, which reflects the strength of QPC between different
low-frequency oscillations and one of the high-frequency
oscillations, which is useful for investigating the strength
of rhythmic synchronization between neuronal populations
oscillating at different frequencies (Li and Li, 2016), (ii)
maximum eigenvalue, (iii) Shannon entropy of eigenvalues,
which measures information on the synchronization between
oscillatory activities in the neuronal population (Li and Li,
2016), and (iv) diagonal Bic, which reveals the presence
of self-frequency and self-phase coupling in neural circuits
(Muthuswamy et al., 1999). We selected the trials which had
no significant difference between average spectral powers to
prevent dependence of our analyses to the different levels
of 1/f noise (Bédard et al., 2006; Lombardi et al., 2017).
With this approach, we ensured that the signal-to-noise ratio
(SNR) was not significantly different between the chosen
fast and slow trials (see section “Materials and Methods”).
In addition, we ensured that the change in the bicoherence
indices was potentially due to the change in underlying
neuronal non-linear coupling (Pesaran et al., 2018). Our
analysis revealed that the strength of the non-linear coupling
between the oscillatory activities of MT neurons is strongly
increased in the fast rather than the slow trials (see Figure 2).
Furthermore, we observed that switching toward the neuron’s
RF increases the strength of non-linear coupling between
neural oscillations. We speculate that this finding is possibly
due to the influence of a cognitive function like attention
that enhances the non-linear synchronization between local
neurons. Our hypothesis is in line with previous studies that
have shown that spatial attention selectively increases the
strength of synchronization between neurons processing the
target stimulus (Womelsdorf et al., 2006; Zareian et al., 2018;
Khamechian et al., 2019).

To further study the non-linear neuronal synchronization
underlying behavior, we implemented a machine learning
approach to extract the bifrequency component that accurately
discriminates the fast and the slow trials (see section “Materials
and Methods”). The result showed that oscillatory activities in
the high-gamma frequency band (100–250 Hz) are quadratically
phase-coupled in the fast and the slow trials (Figures 3B,D).
This observation is in line with a recent study showing that the
strength of neural synchronization in the high-gamma frequency
band (180 to 220 Hz) predicts the animal’s RT (Khamechian
et al., 2019). In addition, this study also showed that the
difference between high-gamma synchronizations in the fast and
the slow trials cannot be attributed to the difference between
the magnitude of the spike leakage onto LFPs (Khamechian
et al., 2019). Many studies have suggested that interneurons
contribute to the generation of high-gamma oscillations in the
LFPs (Brunel and Wang, 2003; Buzsáki and Draguhn, 2004;
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Henrie and Shapley, 2005; Gieselmann and Thiele, 2008; Stark
et al., 2014; Suffczynski et al., 2014).

We next examined the contributive role of cortical Gaussian
and non-Gaussian processes (activities) in guiding visuomotor
behavior. We computed the power spectrum (as a measure
of Gaussianity) and the bicoherence (as a measure of non-
Gaussianity) for the fast and slow the trials. We then
adopted a machine learning method (see section “Materials
and Methods”) to examine the potential role of these processes
in predicting the animal’s behavior. The results illustrated
that the neural non-Gaussian process (in addition to the
Gaussian process) plays a key role in coding behavioral RTs
in the macaque area MT (see Figures 4B,D). The result is
consistent with a recent study indicating that bicoherence
is a biomarker candidate for identifying neurodevelopmental-
behavioral disorders like attention deficit hyperactivity disorder
(ADHD) (Chen et al., 2019).

We further examined the QPC to understand which specific
bifrequency of the bicoherence at the broadband high-gamma
frequency range (100–250 Hz, see Figure 3) might orchestrate
the fast and the slow behaviors. The result indicated that the
distribution of the characteristic bifrequency is significantly
different between the fast and the slow trials, particularly for
the target-out condition (see Figure 5). In addition, we observed
that switching toward the neuron’s RF enhances the characteristic
bifrequency of the QPC explicitly in the slow trials. We speculate
that a top-down cognitive function like attention probably
modulates the characteristic bifrequency of the QPC in slow
trials in the target-in condition. In addition, our observations
suggest that this modulatory effect mostly occurs between the MT
neurons that selectively process the target stimulus. Moreover,
we observed that the characteristic bifrequency of the fast trials
has similar distribution medians in the target-in and the target-
out conditions. The result suggests that entire neurons in the MT
area can be synchronized in the high-gamma band to efficiently
process the behavioral information and facilitate a fast behavioral
action. Given that spatial attention can effectively shorten RT
(Posner, 1980; Womelsdorf et al., 2006) and modulate neuronal
synchronization (Womelsdorf et al., 2006; Hoogenboom et al.,
2010; Khamechian et al., 2019), we hypothesize that such
synchronization in the fast trial can also be attributed to top-
down attention. In addition, our hypothesis is in line with
previous studies that suggested that attention could improve
neuronal communication and thereby route the most relevant
information into associative areas in the brain (Gregoriou et al.,
2009; Morishima et al., 2009; Briggs et al., 2013).

We next examined the temporal dynamics of QPC in
the fast and the slow trials based on the characteristic
bifrequency obtained for each target position condition. The
result demonstrated that switching to the neuron’s RF enhances
the QPC difference between the fast and the slow trials using
the characteristic bifrequency of the slow behavior (i.e., Bicslow ).
In contrast, we observed that the QPC difference between the
fast and the slow trials strongly decreases in the characteristic
bifrequency of the fast behavior (i.e., Bicfast ) when the monkey
covertly attends to the stimulus inside the neuron’s RF. We
hypothesize that this contrary observation for the QPC difference

in the characteristic bifrequency of the fast and the slow behavior
is due to a cognitive function like attention. Our speculation is
based on previous studies suggesting that attention can suppress
the strength of coupling between oscillatory activities in the visual
cortex (Esghaei et al., 2015; Spyropoulos et al., 2018).

Some physiological models have shown that decisions are
formed based on accumulating sensory evidence over time to
a bound (Gold and Shadlen, 2001; Palmer et al., 2005; Ratcliff
and McKoon, 2008). In addition, they have indicated that these
computations could shape the RT distribution and the speed
of behavior. The accumulation of evidence has been observed
in several electrophysiological studies at different cortical areas
of monkeys (Roitman and Shadlen, 2002; Purcell et al., 2012;
de Lafuente et al., 2015), rodents (Hanks et al., 2015), and
humans (Kelly and O’Connell, 2013; Twomey et al., 2016).
For example, some of these studies reported that oscillatory
activities underlying the accumulation process follow different
accumulation-to-bound dynamics that predict the behavioral RTs
(Kelly and O’Connell, 2013; Twomey et al., 2016). However,
it is unclear how these oscillatory activities transmit sensory
information from upstream to downstream cortical areas to
shape the accumulation process. Previous investigations have
shown that neural oscillatory activities can interact via CFC to
facilitate communication of information between brain regions
(Darvas et al., 2009; Canolty and Knight, 2010; Holz et al., 2010;
Fiebelkorn et al., 2018). Based on these studies, we speculate
that the QPC (as a non-linear form of CFC measured by the
bicoherence) could play a functional role in the transmission
of the relevant information between associative neurons in the
intra- or inter-areal of the cortex.

In summary, we employed bicoherence and spectral power
to examine non-linear and linear neuronal coupling underlying
visuomotor behavior. Our results show that: (I) the non-linear
phase coupling between oscillatory activities of sensory neurons
is a good candidate for predicting the speed of the animal’s
behavior, (II) the non-linear neuronal coupling is expressed
in a broad band of high-gamma frequencies (100–250 Hz) in
area MT of the macaque visual cortex, (III) the non-Gaussian
cortical process (measured by the bicoherence) and the Gaussian
process (measured by the spectral power) are both involved in
the processing of visuomotor information, and (IV) the non-
linear characteristic of neuronal synchronization among MT
neurons is probably controlled by a cognitive function like
selective attention.
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A Model of Memory Linking Time to
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The storage of temporally precise spike patterns can be realized by a single neuron.

A spiking neural network (SNN) model is utilized to demonstrate the ability to precisely

recall a spike pattern after presenting a single input. We show by using a simulation study

that the temporal properties of input patterns can be transformed into spatial patterns of

local dendritic spikes. The localization of time-points of spikes is facilitated by phase-shift

of the subthreshold membrane potential oscillations (SMO) in the dendritic branches,

which modifies their excitability. In reference to the points in time of the arriving input,

the dendritic spikes are triggered in different branches. To store spatially distributed

patterns, two unsupervised learning mechanisms are utilized. Either synaptic weights

to the branches, spatial representation of the temporal input pattern, are enhanced by

spike-timing-dependent plasticity (STDP) or the oscillation power of SMOs in spiking

branches is increased by dendritic spikes. For retrieval, spike bursts activate stored

spatiotemporal patterns in dendritic branches, which reactivate the original somatic

spike patterns. The simulation of the prototypical model demonstrates the principle, how

linking time to space enables the storage of temporal features of an input. Plausibility,

advantages, and some variations of the proposed model are also discussed.

Keywords: neural memory, temporally precise spike trains, subthreshold membrane potential oscillations, phase

coding, gamma-theta code, working memory, spiking neural networks

INTRODUCTION

In daily life, we can distinguish between temporal and spatial properties of our world. In the brain,
the temporal as well as spatial properties of the world is largely represented by spatiotemporal
patterns of neural spikes. However, an important question currently facing scientists is: How the
temporal dimension of the physical world is represented in the brain? The representation of time-
dimension is required for a successful interaction of the brain with the four-dimensional physical
world (Gupta and Merchant, 2017).

All hitherto presented ideas use spatial properties related to temporal ones even if their
relationship is not directly addressed. Larson et al. (2010) explicitly spread time components into
spatial components of an input as they investigated the question how sensory systems recognize
time varying stimuli by spiking activity. Their model consisted of a succession of end-to-end
excitatory neurons (neuronal chain) in combination with STDP to preserve the temporal features of
spike patterns via their spatial distribution. In the neuronal chainmodel, the sensory input activates
the first neuron in a chain of neurons, following which the neighboring neurons were activated
sequentially with a delay of 2 ms.

Several past studies of spatiotemporal patterns are based on the processing the temporal features
of an input. Many of these studies address the association between a precise input spike train
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and a desired output spike train in a temporally specific manner
(Gütig and Sompolinsky, 2006; Ponulak and Kasinski, 2010;
Florian, 2012;Mohemmed et al., 2012; Sporea andGrüning, 2013;
Memmesheimer et al., 2014; Albers et al., 2015; Guo et al., 2015).
These studies (known as ReSuMe—remote supervised method)
assume that the temporal features of the input come from distinct
neurons. The localization of the input time-points at different
neurons is a precondition.

Data from several recent publications (Düzel et al., 2010;
Lisman and Jensen, 2013; Bosman et al., 2014; Axmacher, 2016;
Häusser et al., 2016) have provided some empirical evidence
that memory for sequences of events is supported by the
precise timing of item-related gamma activity with respect to
underlying theta oscillations of membrane or field potentials.
This neural interaction, referred as “cross-frequency coupling,”
between lower (e.g., in the theta range) and higher (e.g., in the
gamma range) frequency oscillations is also involved in sensory,
motor and cognitive brain processes (e.g., Masquelier et al.,
2008; Lisman and Jensen, 2013; Gupta and Chen, 2016; Maris
and Fries, 2016). Furthermore, Remme et al. (2009) showed
that dendritic potential oscillations enable dendritic inputs to be
globally integrated on spatiotemporal scale, which can help to
control somatic spike (action potential). Empirical data have also
shown that oscillations and their combinations play an important
role in neural memory of temporal events (Düzel et al., 2010;
Headley and Paré, 2017). Thus, it is noteworthy that a dominant
network pattern in the hippocampus is a slow oscillation in
theta-alpha frequency band (Buzsáki, 2002).

There is deepening interest in the temporal processing of
information in auditory system involving interaction between
slow and fast oscillations. Different oscillation frequencies,
corresponding to different pitches of auditory inputs, generate
different spatial patterns in the auditory brain stem chopper
neurons (Schreiner and Langer, 1988; Bahmer and Langner,
2006; Bahmer and Gupta, 2018). Modeling studies further
suggest that chopper neurons are involved in the transformation
of a temporal pitch code into a place code (Wiegrebe and
Meddis, 2004). The topographic organization of temporal
response characteristics in the auditory system suggests that the
transformation of temporal properties, namely frequencies, into
spatial patterns is beneficial in implementing neural code of pitch
and harmony (Langer, 2015).

On the basis of the above research, the question arises how
oscillations enable the transformation of temporal features into
spatial ones.

Especially the interaction between two frequencies of
oscillations enables a localization process, resulting in time-
points according to phase-shifts. Phase coding refers to the
process of encoding spike timing in relation to the oscillation
phase of SMOs and has been empirically established (Nadasdy,
2009, 2010; Lundqvist et al., 2011; Hasselmo and Stern, 2014;
Maris and Fries, 2016).

In fact, there is growing evidence for phase-shifted oscillations
in neuronal units or ensembles. Sinha andNarayanan (2015) have
shown that the differences in spike phase, due to modulation
in either ionic channels or the synaptic conductance within
the same neuron may be significant and vary by much as by

100◦. In this study, the phases varied considerably as a function
of radial distance from the soma, enabling spatial localization.
In another study, Stiefel et al. (2010) reported that inhibitory
postsynaptic potentials in cortical neurons can considerably
shift the oscillatory phase. Cholinergic modulations change the
power of oscillation as well as the magnitude of phase shifts.
At least two distinct types of models of network activity have
been proposed: intrinsic resonance property-based models and
circuit-based models (Lee et al., 2018). The modulations can be
caused by intrinsic SMOs or [e.g., by a rhythmic inhibition Fries,
2005, 2009, 2015]. Theoretical work, by simulating dendritic
oscillations as weakly coupled oscillators with cable, shows that
stable phase differences can be maintained between SMOs at
different dendritic branches (Remme et al., 2009).

Based on phase differences between SMOs in different
dendritic branches, in the following section a model is described
linking time to space by encoding the temporal pattern of a
spike train from an input neuron into a spatial pattern of a
memory neuron, where it is stored by STDP, thus allowing
recall and retransformation from spatial into temporal pattern,
everything happening in a single neuron following a single
input train.

In the next chapter the structure of the model is described,
illustrating the mechanisms of encoding, learning and
recall, also showing the main equations, which underlie
the simulations. The Results section presents detailed
simulation data with particular focus on the alterations of
dendritic and somatic processes, again during encoding,
learning, and recall. The biological plausibility of the model
and diverse specific points will be discussed, followed by
a conclusion.

MATERIALS AND METHODS

The prototypical model—as outlined below—consists of an
input and an output-level (Figure 1, inserts—green and orange).
The input level comprises two neurons, the input neuron I
and the attention neuron A. The activity of neuron A is
considered a correlate of “attention” serving storage and recall.
The output level consists of a single neuron, the extension
neuron which comprises several dendritic branches with the
particular feature that they all exhibit subthreshold membrane
potential oscillations of the same oscillation period but of
different phases.

Spike activities of I and A (Figure 1, left) are assumed to be
synchronized by LFPs in the gamma band range (Rodriguez et al.,
1999). Neuron I fires randomly but temporally precisely aligned
to the spikes of the regular firing neuron A. Here their common
basic rhythm is 100Hz. The dendritic SMOs are in the theta band
range (here 8.33Hz, see inset of Figure 1, right, bottom). These
values are in a biologically plausible range. Gamma frequency in
our model can vary between 100 and 30Hz and theta frequency
can vary between 10 and 5Hz without affecting the principle
simulation outcomes. Only the number of storable time-points
(12 in the example of Figure 1 simulations) depends on the
relationship of theta to gamma frequencies. Low theta oscillations
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FIGURE 1 | Encoding: Structure of the model with examples of spike trains (Left) aligned to a basic rhythm of 100Hz (indicated on the right) including an example of

a dendritic SMO of 8.33Hz (Right, Bottom). Here only three dendritic branches are shown while the simulations are run with 12 branches, each exhibiting

subthreshold oscillations of the same frequency but different phases (which are equally distributed across the oscillation period). Neuron A and I are synaptically

connected (filled circles) to all 12 dendrites.

combined with high gamma oscillations allow most spikes to
be stored.

Encoding
The core of the presented memory model is the time to space
extension process during encoding (Figure 2). It takes place
in neuron E. Dendritic branches of E represent the spatial
dimension. The transformation of input times into a dendritic
location depends on the coupling of the gamma input-frequency
with the theta SMO-frequency in the branches of neuron E. The
dendritic branches serve as the coincidence detectors. Axons of
neuron I and A connect to all branches of E and propagate spikes
to them. Only a specific combination of synchronized inputs
from I and A generates dendritic spikes in E. Additionally, a
third component is necessary for a dendritic spike generation.
The intrinsic sinusoidal SMO of a branch must be near the peak
so that it is sufficiently excitable. Only the coincident inputs from
A and I at the peak of dendritic membrane excitability at a branch
lead to a dendritic spike.

Finally, the soma of neuron E accumulates the scaled
potentials of dendritic spikes with scaled potentials of arriving
inputs from I and A. All three membrane potential changes
sum together to produce a somatic spike in neuron E. It
is believed that the impact of dendritic oscillations on the
soma is balanced out because of the distribution of phases
between branches. Therefore, the effect of dendritic oscillations
on somatic membrane potential are excluded.

Learning
For the storage of inputs, a learningmechanism is required. In the
proposed model, we consider two “unsupervised” mechanisms
for learning, occurring whenever a dendritic spike in E is
generated due to the coincidence of spikes from neurons I and
A with a depolarization maximum of SMOs in the dendrites
of extension neuron E. Gamma-range coincidence detection
corresponds to the findings of Das et al. (2017), Das and
Narayanan (2017) in hippocampal CA1 neurons, enabling to
decode synchronous gamma-frequency inputs. Storage and recall
can be achieved either by STDP and also by activity dependent
alterations of the amplitude of the SMOs. For simplicity, the
different dendrites of neuron E, are considered as functionally
independent units not interfering with each other and not being
affected by somatic spikes although each spike in any one of the
dendrites generates a spike in the neuron’s soma.

Learning by Spike Timing Dependent Plasticity

(STDP)
The first strategy to store the spike pattern from input neuron I is
based on the enhancement of synaptic weights. The choice of the
initial synaptic weight is arbitrary, but it is interrelated to other
neuronal parameters.

The synaptic weights between input neuron I and the
dendrites of neuron E, set to W(IE) = 0.15, are kept constant,
unaffected by the learning process. The relevant changes have to
take place at the synapses from neuron A to neuron E because
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FIGURE 2 | The “Time to Space Extension Process” A continuous spike train of the attention neuron A together with randomly appearing, although precisely aligned

spikes of the input neuron I, coincide with maximum values of subthreshold dendritic oscillations of the extension neuron E at different dendrites (same color as the

oscillations) leading to enhanced oscillations or increased synaptic efficacy (STDP).

recall will be initiated via this pathway when the input neuron
will be silent. Hence, the EPSP amplitudes from neuron A have to
be sufficiently increased to compensate for the lack of the EPSPs
from input neuron I.

The synaptic weights from neuron A to all branches of
neuron E initially amount to W(AE)ini = 0.40. In this model
a single spike increases the synaptic weight to W(AE)max =

0.55, (i.e., by about 37% of its initial value). This will increase
further EPSP amplitudes which shall be sufficient to store the
information of the timing of a spike input from neuron I
in the corresponding dendrite of neuron E for later recall by
neuron A. Such a potentiation seems biologically plausible.
Remy and Spruston (2007) used a single burst of only five
spikes at 100Hz as stimulation and showed that hippocampal
synapses potentiated robustly under this condition. LTP was
triggered whenever there were dendritic spikes. Amplitudes
of EPSPs could be robustly potentiated by 66% (from ∼7 to
∼12 mV).

Single somatic spikes do not significantly change the synaptic
weights at dendrites. Since the proposed model is a single trial,
involving a single spike burst, the propagation of somatic action
potential will have a negligible effect on LTP.

Learning by SMO Amplification
In an alternative learning mechanism, the encoding occurs
due to the enhancement of the amplitude of the SMO after
dendritic spikes. This is consistent with the enhancement of
amplitude of theta oscillations from cortical EEG recording
in a working memory task in humans (Raghavachari et al.,

2001) as well as with the findings that neuronal activities
in the hippocampus change with individual theta phase
in monkeys (Skaggs et al., 1996). Moreover, significant
enhancement of oscillatory power observed during encoding
has predicted subsequent recall. This effect has been found
predominantly in the 4–8Hz (theta) and 28–64Hz (gamma)
frequency bands (Sederberg et al., 2003). Ness et al. (2016)
showed that local field potentials could indeed be utilized
to characterize the properties and cellular distributions of
active conductance.

In our model the SMO amplitudes are initially set to 6.0mV.
In those branches of neuron E in which a dendritic spike is
generated and these values are enhanced by 50% to 9.0mVwhich,
again, is sufficient to store the information of spike times arriving
from neuron I in spatially distributed branches of neuron E for
later recall by neuron A.

Recall
Both learning mechanisms allow the encoding and recall of
the input spike train. Two out of three neurons, A and E,
play a role in the recall process. Recall is triggered by a
continuous spike train from A to E, synchronized at the
same gamma frequency (100Hz) as used during the encoding.
During this recall, the input neuron is silent. The impact of
the input neuron during encoding is substituted by enhanced
synaptic weights from neuron A. Furthermore, during recall,
the dendritic branches fire at time-points corresponding to
the input spike train that was initially encoded. Persistence
of phase-shifted SMOs in the dendritic branches together
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with enhanced synaptic weights would then result in the
recall spikes at dendritic branches. Dendritic spikes generate
somatic spikes in E matching the output during the encoding
process. It should be noted that the recalled spike train evokes
the somatic spike train, generated by the input spike train,
not the input spike train itself. The input spike train is
recalled only, if it reproduces an equivalent somatic spike train
during encoding.

Simulation
A major goal of this study is to show that a single neuron
would be able to store temporal properties of an input by
the spatial pattern of dendritic branch activation. The current
simulation study uses simple mechanisms, such as theta-gamma-
oscillations combined with LTP, which is implemented in a
small SNN.

Gamma oscillations are represented in the rhythm of spike
inputs. Theta oscillations are explicitly modeled by phase-shifted
sine functions f(OP):

f ′(OP) = h∗sin (0.002∗π∗fq∗(t − j∗ph)) (1)

where h = 6.0mV is the oscillation amplitude, fq = 8.33 is the
oscillation frequency, t is the time in ms and ph = 10ms is the
steps size of phases, multiplied by j=−2 to 10.

Referring to the model of Legenstein and Maas (2011), each
spike input to the dendrites of the extension neurons causes an
EPSP modeled in the form of an alpha function:

f (EPSP) = k∗W∗δt∗g−
δt
τ (2)

where k = 39, g = 2.0, and τ = 1 are constants and W is the
synaptic weight (either from I to E or from A to E: the initial
W(IE)ini = 0.15 and initial W(AE)ini = 0.40. δt is the time
difference to the EPSP onset.

SMOs and EPSPs sum up, which generates a dendritic
spike whenever a threshold ϕ

dend
= −48.7mV is reached. The

branch spike potential (BsP) is again modeled in form of an
alpha function:

f (BsP) = k∗δt∗g−
δt
τ (3)

where k= 40, g = 2.0, and τ = 1 are constants with δt as the time
difference to the dendritic spike onset.

The total branch potentials are summed up by the SMO
potentials, the local EPSPs and spike potentials.

EPSPs and spikes propagate to the soma, scaled by
different weighting factors, assuming active conduction
of dendritic spikes without attenuation (uB = 1.0) and
passive, electrotonic propagation of EPSPs with decay
to upass = 0.08.

Alterations of somatic membrane potential MP introduced by
an individual dendritic branch are calculated by:

MP = EPSP∗upass + BsP∗uB (4)

Time delays and different distances of the different branches
to the soma are not considered. Dendritic SMOs potentials are
without any effects on the soma.

Somatic spikes emerge if the somatic potential exceeds the
somatic spike threshold S and are represented as abrupt increase
to +30mV for 1ms followed by a transient hyperpolarization
with exponential reduction. Input spikes, dendritic and somatic
spikes are represented by bars as shown in the summarizing
Figure 3.

The simulations are calculated with time resolution of 1 ms.
The simulation program was written by the author (HL)

in Python 3.7 (Supplementary Materials - Datasheet 1 and
Table S2).

Parameters for somatic, dendritic, synaptic and oscillation
properties are shown in Table S1.

RESULTS

The model has been tested with input trains of random numbers
of input spikes at randomized times, however, adjusted to the
100Hz gamma rhythm of the spiking of the attention neuron.
Test runs have been made with spike inputs and recall during a
full cycle period of the dendritic SMOs (120ms). In this period
the attention neuron fires a continuous sequence of 12 spikes.

For encoding and learning, additionally a randomly chosen
number of up to 11 spikes from the input neuron arrive at
the dendrites of the extension neuron. These input spikes are
synchronized with the spike times of the attention neuron but
appear at random positions. In any case, due to the above
described mechanisms, (i.e., superposition of EPSPs from the
input neuron and the attention neuron in correct phase with
the SMOs at the dendrites), (i.e., in their maximum, the input
patterns also appears at the extension neuron).

Recall is initialized by the application of a spike burst from
the attention neuron A while the input neuron I is silent. Due
to the learning mechanism, (i.e., increased EPSPs by STDP or
enhanced SMO amplitudes, the same pattern as during the input
phase reappears at the extension neuron).

This was confirmed by numerous (100) trials with randomized
input patterns each showing an exact reproduction of the initial
input pattern in the extension neuron after learning and recall.
An example is shown in Figure 3.

Details of functionally relevant alterations of dendritic
and somatic mechanisms during encoding and learning and
how these are enabling correct recall are shown in the
following sections.

Encoding
Dendritic processes: The net membrane potential of the branch
E2 is the sum of the intrinsic potentials of SMO and EPSPs from
local synaptic activation by neuron I and neuron A, eventually
superimposed by a dendritic spike. The time course of all these
potentials is shown in Figure 4A with an example from the
synaptic branch E2 in which a dendritic spike is generated. This
happens only in the maximum of the SMO where the sum of
EPSP is strong enough to reach the threshold ϕ

dend
=−48.7mV

for spike generation.
In other branches, dendritic spikes will not be generated

at this time, even when the EPSPs are the same. The reason
is that potential of the phase shifted oscillations is too low.
Spikes in other branches will be generated when their oscillations

Frontiers in Computational Neuroscience | www.frontiersin.org 5 July 2020 | Volume 14 | Article 60202

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Löffler and Gupta Memory Linking Time to Space

FIGURE 3 | Encoding and recall of a randomized spike pattern. From Top to Bottom: A: Continuous spike sequences of the attention neuron, which are the same

during encoding and recall. I: randomized spike pattern of the input neuron, shown here with six spikes aligned to the spikes of the attention neuron. Single dendritic

spikes at different synaptic branches (E1 to E12), appearing during encoding and also on recall, in both cases, summing up to produce a spike train in the soma of the

extension neuron E, which is the same as in the input neuron. Short time delays (2ms) are introduced between onset of the input spike and of the action potential in E.

FIGURE 4 | Time course of membrane potentials during encoding of the spike pattern IP1: dendritic in branch E2 (A) and somatic (B). R: Resting membrane potential

(-65 mV, black dashed line), ϕ
dend: Threshold for dendritic spikes (-48,7 mV, black dashed line). Green dashed line: SMO (phase: -10 ms). Red dashed line: EPSPs

from neuron A. Red solid line: EPSPs from neuron I. Blue solid line: Dendritic spike potential appearing once at t = 21 ms. Thin black line: Course of the net branch

membrane potential.

are in their maxima, provided that there is again spike input
from both neurons at the input level, (i.e., when in addition to
the attention neuron the input neuron is also firing). In this
example, already shown in Figure 3, this happens six times,
always in the maximum of the oscillations. In different braches
spikes are generated at different time-points due to their phase
shifted oscillations.

Somatic processes: The dendritic spikes propagate to the soma
together with EPSPs from all branches. However, as it needs the
combination of both to exceed the threshold of spike generation
the same spike pattern will appear at the extension neuron as
received from the input neuron (Figure 4B).

Learning
Learning is implemented at the extension neuron either
by enhanced EPSPs from the attention neuron or by
increased oscillation amplitudes of the dendritic branches
(Figure 5). These alterations, however, only appear at
those dendrites in which a dendritic spike has been
generated during encoding by synchronized input from
A and I at the maxima of the dendritic SMO. In this
way, the information about the temporal pattern of the
previous spike input is stored, spatially distributed, in
dendritic branches with accordingly altered properties to
allow recall.
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FIGURE 5 | Time expanded cutouts of Figure 4A (from t = 18 to t = 28ms) also illustrating two different learning mechanisms. Left: STDP by enhanced EPSPs on

spike input from the attention neuron. EPSPs from the input neuron (two red lines) change to the enhanced EPSP from attention neuron (magenta dashed line). Right:

increased SMO amplitude, from 6.0 to 9.0mV, shown by the green line in comparison to the green line in the left figure.

Recall
The previous spike pattern from the input neuron can be
recalled by a burst of spikes from the attention neuron while
the input neuron is silent. The attention neuron thereby has
to fire at the same gamma rhythm as during encoding and
the spike burst should have in minimum a duration of the
length of the theta cycle over which the maxima of the SMOs
are distributed. This guarantees that each dendrite will receive
a spike input from the attention neuron when its SMO is
close its maximum. In this case, a single spike from the
attention neuron can elicit again a dendritic spike, however,
only in those branches in which the learning mechanism, as
described before, have either increased the oscillation amplitude
or enhanced the synaptic efficacy due to enhanced EPSPs.
The one like the other is sufficient to compensate for the
lack of spikes from the input neuron. Dendritic branches
without these learning effects will remain subthreshold even
when a spike from the attention neuron input hits the
oscillation maxima.

Figure 6A shows how a dendritic spike is generated only
by an EPSP from the attention neuron, in this example due
to enhanced synaptic efficacy. This example is again drawn for
branch E2 in which learning mechanisms have been introduced
as illustrated in Figure 5. The same happens at all other branches
with enhanced EPSPs or increased oscillation amplitudes but
not in those branches without learning effects. The spikes will
be generated in the same sequence as the learning mechanisms
have been introduced in the different braches by spikes from the
input neuron.

Nothing has changed with spike generation at the soma due
to the propagation of dendritic EPSPs and spikes. Propagation of
dendritic EPSPs alone cannot generate somatic spikes. This needs
the contribution of dendritic spikes. Hence, dendritic spikes,
together with dendritic EPSPwill propagate to the neuron’s soma,
there generating a sequence of spikes which exactly reflects the

previous input pattern (Figure 6B), just recalled by a gamma
spike burst from the attention neuron.

DISCUSSION

The simulation of the current model demonstrates how
temporally precise spike trains can be stored by the spatial pattern
of dendritic branches even in a single neuron. This mechanism
can precisely store temporal information about onetime
presented single spikes via the interaction of neural oscillations.
The spike trains can be just recalled by a continuous spike burst.
The key feature of this model is the spatial localization of spike-
timing, which is established by phase-shifted theta oscillations of
excitability in dendritic branches in combination with gamma-
aligned input patterns. This mechanism links the temporal
order of spikes of the input to different dendritic branches,
allowing the transformation of temporal properties into the
spatial pattern of dendritic activation. The spatial localization of
the timing information enables the storage of temporal properties
by learning mechanisms.

Other Approaches to Realize Linking Time

to Space
Our prototypical model illustrates within a single neuron the
general mechanism of transformation of time into spatial
dimensions using cross frequency coupling of neuronal
oscillations. The same approach can be adapted to ensembles
of neurons. Analogous to the dendrites of a single neuron,
an ensemble of neurons can work together as canonical
microcircuits based on same principles. However, instead of
the SMOs of dendrites, the somatic SMOs of ensembles vary in
phases. The somatic spikes of single neurons correspond to the
dendritic spikes in our prototypical model. The somatic outputs
of the ensemble neurons have to be propagated to an additional
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FIGURE 6 | Time course of membrane potentials during recall of the spike pattern IP1: dendritic in branch E2 (A) and somatic (B). R: Resting membrane potential

(-65 mV, black dashed line), ϕ
dend: Threshold for dendritic spikes (-48,7 mV, black dashed line). Green dashed line: SMO (phase: -10 ms). Red dashed line: EPSPs

from neuron A. Blue solid line: Dendritic spike potential appearing once at t = 21 ms. Thin black line: Course of the net branch membrane potential.

output neuron, corresponding to the somatic output of the single
neuron. A simulation trial of this alternative model-version has
produced identical results. A bursting input by neuron A to the
ensemble neurons reproduced an equal temporal pattern in the
output neuron as was produced during the encoding process.
Future simulation studies could reveal the effect of randomness
in the spike trains or various oscillation parameters in neuronal
ensembles on the spatiotemporal patterns.

Some further assumptions of our model can be changed
without destroying its functionality. For example, the regular
distribution of phases of SMOwithin spatial units can be replaced
by random phases, if the number of dendritic branches was
enhanced from 13 to 48. Preliminary simulations led to 96% right
recalled spikes and 85% completely right recalled spike trains,
using 1,000 random input patterns.

Moreover, oscillation-based conversion from temporal to
spatiotemporal neural patterns can be also useful in the
reverse direction. Since a temporally precise spike train can be
represented by a more complex spatiotemporal neural pattern,
a spatiotemporal pattern can be propagated to neuronal areas
far apart from the origin by the corresponding simpler temporal
code. The spatial part of the information can be rebuilt by
synchronized oscillations between the area of origin and a
target area. In summary, via oscillations spatial information
can be propagated by temporal sequences, and these temporal
sequences can be efficiently stored by transformation into neural
spatial patterns.

Dendrites in Information Processing in

Perception
The assumption of dendritic branches acting as independent
subunits to process the memory of spike trains appears to be
feasible (Golding et al., 2002; Behabady and Mel, 2013; Bono
and Clopath, 2017). The independence of dendritic processing
allows dendritic spikes to play an important part in information
processing since they significantly increase the probability of

somatic spikes (Oesch et al., 2005; Polsky et al., 2009). According
to the current prototypical model, a coincidence detector,
comprising of A neuron along with I neuron (providing inputs
from hierarchical sensory areas) and the phase of the SMO
when it peaks, is responsible for dendritic spike, which then
leads to the learning by STDP. This learning mechanism is
responsible for encoding. Furthermore, coincidence detection
will occur only at those dendritic branches, where the magnitude
of phase shift with respect to the first or a reference dendritic
branch is quantitatively equal to an integermultiple of periodicity
of continuous input from neuron A. This integer multiple of
periodicity of continuous input, called the integration period
(Bahmer and Gupta, 2018), encodes the information about
the individual spikes in the spike train during the learning
stage. STDP, which increases synaptic weights on spatially
distributed synapses is responsible for the recall. Continuous
spike train, synchronized by the same frequency, which was
used during encoding, is responsible for the recall of the initial
input from neuron I in this model. Moreover, the learning
during the encoding stage will increase the certainty in neural
circuits given the knowledge about the source of input that is
neuron I.

As discussed previously by Gupta and Bahmer (2019),
perception is contributed by both increase in surprisal as well
as increase in certainty given the knowledge about sensory
object. In the present prototypical model, surprisal would be
due to the presence of inhibitory synaptic input at individual
dendritic branches. The inhibitory inputs would suppress some
of the dendritic spikes, preventing a complete recall. Thus,
some of the spikes during the encoding process could be
subjected to suppression by inhibitory synapses via a random
process given the certainty about sensory object. Since sensory
inputs may control the activity of inhibitory neurons in the
cortex, the addition of inhibitory synapses could endow the
prototypical model the ability to process sensory information
for more complex, cognitive functions. Moreover, it is therefore
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FIGURE 7 | (A) Shows the arrival inputs at dendritic branches, after being processed in parallel circuits with varying number of synapses. The parallel processing

allows a single spike to arrive after various delays at the dendritic branches. A synaptic delay (t) can vary from 0.5 to few ms. (B) Shows a spike coinciding with the

peak of a SMO, indicated with an asterix.

noteworthy that inhibitory synapses are shown to play key roles
in cortical information processing.

During information processing in perception, spike trains can
be produced by a single spike processed in parallel, which would
arrive at multiple synapses between neurons I and E after various
delays. Thus, the results of parallel processing can be encoded
and recalled as a pattern of activation of dendritic branches. One
such plausible mechanism is illustrated in Figure 7, wherein a
single spike, processed in parallel, arrives at multiple synapses
after various delays, which coincides with the peak of SMOs
in a specific set of branches of dendrites, resulting in a spatial
pattern. Processing of a single input in parallel circuits, as shown
in Figure 7B, will result in multiple outputs, which will arrive
at different dendritic branches after various delays, caused by
synaptic transmission delay. Also note that a synaptic delay can
vary between 0.5 and 5ms. A spike is encoded as a spatial pattern,
constructed by STDP induced at different synapses in a particular
set of dendritic branches. During a recall, the same specific
input as a result of parallel processing, coinciding with the SMO
of dendritic branches, would be responsible for reproducing
specific dendritic spikes. Thus, this proposed mechanism within
the framework of current prototypical model can explain how
a complex information about a simple stimulus (a single spike)
can be temporarily stored in specific areas of the brain, where a
specific parallel circuit configuration may be available.

Duration of Storable Spike Trains
Short spike trains lasting up to 120ms as used by our simulation
may include the reaction time and reaction intensity of a new
input without an adaption process. A memory of this initial part
of information is relevant for the further information processing.
However, the length of spike trains that can be stored by the
proposed model is not limited on the length of a single theta
oscillation cycle. This restriction pertains only if one uses a single
neuron as bursting input during encoding (in our model by

neuron A). Nevertheless, the additional part of a longer lasting
input spike train can be stored by a second bursting neuron
via its connections to the same (or a new) extension neuron. A
temporal driven sequence of bursting neurons [e.g., by time cells
(Eichenbaum, 2014) can encode and recall any long input spike
train]. Moreover, using lower SMO- frequencies (e.g., delta) the
duration of storable spike trains increases. If, for instance, the
theta SMOs of our model are replaced by low delta (1Hz) SMOs
and the gamma aligned spike trains are replaced by low beta
aligned (12Hz) trains of about 10 spikes within one second can
be exactly stored. Such delta-beta frequency coupling underlying
sleep spindles is often associated with memory consolidation.

Working Memory
The mechanisms of the model enable a single trial encoding
of temporally precise spike trains by single neurons and their
fast and simple retrieval via a non-specific input of spike
bursts. These are requirements holding for a working memory,
too. However, the working memory has been believed to be
established by sustained neuronal spiking, triggered by external
events. Yet, there is no necessity for sustained spiking activity
of an input, if the contents of working memory can be
reactivated immediately, which is possible with the proposed
prototypical model. Indeed Stokes (2015) suggests, that a delay
in mnemonic activity in the prefrontal cortex is not always
critical for maintaining the continuity of working memory. It
can be re-established when attention is directed to the task-
relevant content. Furthermore, Lundqvist et al. (2016) and
Fiebig and Lansner (2017) point out that without sustained
spiking, energy would be conserved during inactive states
and information is not lost when activity is disrupted, and
attractors can hold multiple items in working memory. They
extended an attractor network model for memory encoding
and recall by oscillations. Experimentally, the authors observed
gamma bursts for activation and reactivation of inputs. Similarly,
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our model proposes gamma bursts of the attention neuron
accompanying the input for encoding and gamma bursts again
during the recall. Gamma bursting is a general form of the
activation patterns of neurons in the central nervous system
(Cooper, 2002).

Because in our model the recall is generated by a bursting
input from the same neuron (A), which was active throughout the
encoding process, a further interesting option presents itself: The
continuity of bursting yields original output of the input spike
train, even if the input train itself is finished. Thus, the output of
the terminated input is replicated as long as the bursting lasts.
Even a complex input pattern within a group of neurons can
repeat oneself as long as the burst continues. In addition, using
SMO-learning instead of LTP, a properly tuned bursting input
from any neuronal source can recall the stored input patterns and
realize the working memory.

CONCLUSION

Authors suggest that the realization of neuronal memory
for temporal events is restricted to distributing temporal
properties of events over spatially different units. The ubiquitous
brain oscillations combined with the synchronization of
neural activities can store temporal information as spatial
patterns. Frequency, phase and amplitude—the three main
characteristics of oscillations—can work together for this
purpose. Significantly, the simulations presented in this study
show that neural oscillations can allow time-dimension to
be linked with the spatial dimensions in the brain circuits,
which is important for the cognitive functions in interacting

with the four-dimensional physical world. Moreover, simple
spike bursts frequency aligned to the input events can serve
as the trigger for retrieval as well as correlate for attention.
The utility of the proposed memory mechanism for various
brain functions, such as working memory is also evident.
Preliminarily, our model is for now a theoretical hypothesis
supported by computational simulations using physiologically
plausible range of parameters. As a prototype model, it
will be further enhanced by additional biological findings.
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Growing evidence shows that top-down projections from excitatory neurons in piriform

cortex selectively synapse onto local inhibitory granule cells in the main olfactory bulb,

effectively gating their own inputs by controlling inhibition. An open question in olfaction

is the role this feedback plays in shaping the dynamics of local circuits, and the

resultant computational benefits it provides. Using rate models of neuronal firing in

a network consisting of excitatory mitral and tufted cells, inhibitory granule cells and

top-down piriform cortical neurons, we found that changes in the weight of feedback to

inhibitory neurons generated diverse network dynamics and complex transitions between

these dynamics. Changes in the weight of top-down feedback supported a number of

computations, including both pattern separation and oscillatory synchrony. Additionally,

the network could generate gamma oscillations though a mechanism we termed

Top-down control of Inhibitory Neuron Gamma (TING). Collectively, these functions

arose from a codimension-2 bifurcation in the dynamical system. Our results highlight

a key role for this top-down feedback, gating inhibition to facilitate often diametrically

different computations.

Keywords: dynamical system, olfactory bulb, oscillations, pattern separation, synchrony, bifurcation, feedback,

top-down

INTRODUCTION

Growing evidence suggests that top-down centrifugal feedback from higher cortical areas
specifically target inhibitory interneurons in primary sensory regions. In the olfactory system, axons
from excitatory neurons in the piriform cortex (PCx) synapse onto the inhibitory granule cells in
olfactory bulb (OB), whereby they can modulate the function of the mitral/tufted cells (M/T), the
principal relays of olfactory information from the bulb to the brain (Shipley and Adamek, 1984;
Boyd et al., 2012; Markopoulos et al., 2012; Oswald and Urban, 2012b; Padmanabhan et al., 2016,
2019). This circuit motif results in piriform cortical neurons receiving input from only excitatory
M/T cells but exerting influence on the local circuit dynamics in the OB via inhibitory populations.
Consequently, the information relayed to piriform cortical neurons comes from M/T cells, but
feedback intervenes in network dynamics through the local inhibitory granule cells. Although this
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network motif constitutes major feature of the olfactory system,
the computational role of this top-down control of inhibition
remains largely unknown.

A number of studies have previously explored the dynamics
of M/T cells and granule cells in OB as a two-population
network of excitatory (E) and inhibitory (I) neurons (Cleland
and Linster, 2005; Brea et al., 2009; Kay et al., 2009; Li and
Cleland, 2017) in parallel with a broader literature on excitatory-
inhibitory (E-I) networks (Wilson and Cowan, 1972; Ermentrout
and Kopell, 1990; Tsodyks et al., 1997; Tiesinga and Sejnowski,
2009; Ledoux and Brunel, 2011; Franci et al., 2018). The studies in
olfaction have revealed not only the mechanisms by which these
dynamics emerge, but also how changes in the oscillatory power
(Nusser et al., 2001) result in alterations in behavior, including
in odor discrimination tasks (Abraham et al., 2010). The recent
evidence that cortical feedback directly synapses onto inhibitory
interneurons (Boyd et al., 2012; Markopoulos et al., 2012)
suggests that the local dynamics of excitatory and inhibitory
neurons in OB can be gated by centrifugal projections from
olfactory cortex. How the local E-I network’s activity in the bulb
is changed by centrifugal input, what these changes mean more
broadly for neural dynamics in the early olfactory system, and
the role of these dynamics play in neural computation remains an
open question.

To address this, we built a three-node network model
consisting of an excitatory population of mitral/tufted cells
(M), an inhibitory population of granule cells (G) and a
top-down population of pyramidal/semilunar cells (P) in
PCx, and studied how firing rate dynamics were influenced
by top-down weights onto inhibition. Changing the weight
of the top-down connections to local inhibitory neurons
reshaped the dynamics of the local E-I circuit in a way that
enhanced sensory discrimination as well as generated oscillatory
synchrony including entraining gamma oscillations in the
local circuit [Top-down control of Inhibitory Neuron Gamma,
(TING)]. Finally, the mechanism underlying the dynamics,
as well as the functional roles played by top-down control
of inhibition occurred via a codimension-2 bifurcation in
the dynamical system. By gating the weight of connections
from piriform cortex to the inhibitory neurons in the bulb,
a number of seemingly disparate computations could be
supported by a single circuit, providing an additional framework
for the diversity of inhibitory interneuron function in the
olfactory bulb.

MATERIALS AND METHODS

Network Model
The network model was composed of three nodes, the local
excitatory population, corresponding to mitral and tufted cells
(M) and inhibitory population corresponding to granule cells
(G) which were reciprocally coupled, and a top-down population
corresponding to the principal neurons in piriform cortex (P)
that received input from the local M population and projected
back to the inhibitory G population (Figure 1A). In the model,
ri (t) , i = 1, 2, 3 represented the firing rates of the three neuron

populations, respectively, whose dynamics were determined by
Wilson-Cowan equations (Wilson and Cowan, 1972) as follows:






τ1ṙ1 = −r1 + S (w11r1 + w12r2 + µ)

τ2ṙ2 = −r2 + S (w21r1 + w22r2 + w23r3)
τ3ṙ3 = −r3 + tanh (w31r1 + w33r3)

(1)

where S is the sigmoid function:

S (x) =
1

1+ e−x
(2)

which described the non-linear relationship between the mean
synaptic input and average firing rate (normalized to a range
between 0 and 1). The parameter τi, i = 1, 2, 3 was the time
constant for each population, characterizing how quickly the
dynamics of each population evolved. The mitral/tufted cell
population (M) received an external stimulus µ, that represented
the only external input to the system. The connection weight
from population j to population iwas denoted bywij, i, j = 1, 2, 3,
among which w11,w21,w31,w23,w33 > 0 and w12,w22 < 0.
The connection weight wij, i, j = 1, 2, 3 represented the average
synaptic input received by the neuron population i from the
population j. Throughout this paper, we set the parameters
as follows: w11 = 8.7, w12 = −10, w21 = 7.0, w22 =

−13,w31 = 1.5, w33 = 0.5. The parameters in the model
were chosen based on previous studies of Wilson-Cowan rate
model (Ermentrout and Kopell, 1990; Ledoux and Brunel, 2011;
Veltz and Sejnowski, 2015), and their relative values were
adjusted according to experimentally recorded excitatory and
inhibitory postsynaptic inputs of M/T and granule cells in OB
(Urban and Sakmann, 2002; Egger et al., 2005; Kapoor and
Urban, 2006). For instance, the value of recurrent excitation
(w11) was determined by mapping recorded excitatory post-
synaptic potentials (EPSP) in M/T cells and the weight of
inhibition from granule cells (w12) was determined using similar
mappings of whole cell recordings of inhibitory post-synaptic
potentials (IPSP) in M/T cells (Urban and Sakmann, 2002). The
weights between populations were determined by integrating
synaptic potentials with known connectivity densities using
trans-synaptic viral tracers that allowed for estimates of the
number of pre-synaptic cells for each population (Willhite et al.,
2006; Miyamichi et al., 2011; Padmanabhan et al., 2016) to yield
the relative weights for instance, |w12| > |w21|. Estimates of
synaptic weights for the projections to piriform cortex and the
feedback connections were estimated from Franks and Isaacson
(2006), Suzuki and Bekkers (2011), and Boyd et al. (2012). Time
constants, for example the time constant τ2 for granule cells,
were derived from data using both calcium imaging and whole
cell recordings across the types of neurons that constituted the
populations in our model (Franks and Isaacson, 2006; Kapoor
and Urban, 2006; Suzuki and Bekkers, 2011). As there was no
inhibitory synaptic input into the piriform pyramidal/semilunar
cell population (P), the combination w31r1 + w33r3 was non-
negative due to w31 > 0 and w33 > 0. Sigmoid function
(2) for the third equation of system (1) would mean that the
lowest r3 value that an equilibrium could reach would be 0.5.
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C D
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FIGURE 1 | Reduced network model exhibiting complex dynamics. (A) A schematic diagram illustrating the topology of the reduced network model. Each node

denotes a neuron population and the connection weights are defined by wij (excitatory: arrows; inhibitory: circles). (B) Network responses [color-coded firing rates

match population nodes in (A)] to different levels of stimulus strength (left: µlow = 0.1, middle: µmed = 1.5, right: µhigh = 3.0) with the other parameters fixed. (C) A

distribution of all possible steady states r3 over a wide range of parameter choices: µ ∈ [0, 5] , w31 ∈ [0, 5] , w23 ∈ [0, 30] shows the diversity of responses the

network can generate. (D) Trajectories of the firing rate responses plotted in (B) are visualized in the phase space spanned by (r1, r2, r3). The color bar indicates

stimulus strengths for three representative levels as in (B).

In this framework, even without an input, at least half of the
pyramidal/semilunar cells would keep firing. Thus, we used
the hyperbolic tangent function tanh (x) in order ensure that
piriform cortical cell firing rates were low in the absence of
odors (Stettler and Axel, 2009; Davison and Ehlers, 2011), and
to exploit the entire range [0, 1] of r3 (Figure 1C). However, it
should be noted that such choice of non-linearity did not affect
our findings since all bifurcations supporting the computations
of the network we identified were found in the system using the
sigmoid function (2).

Definition of Period of a Limit Cycle
From the perspective of dynamical system, a limit cycle in the
phase space corresponds to the oscillation of firing rates in
the temporal space. Since the time constants in our model had
units of millisecond, the frequency of oscillations was defined as
1,000/T, with T denoting the period of limit cycles, which was

defined as follows: if ri (t) , i = 1, 2, 3 denote the firing rate
of neural population in the model, then a limit cycle satisfies
the periodicity:

ri (t) = ri (t + T) , i = 1, 2, 3 (3)

for some T > 0 and all t∈ R. Theminimal T for which the above
equality holds is the period of the limit cycle.

Metric Definition
As representations of the network (ω-limit sets) could take on
different forms, an equilibrium or a limit cycle, we defined two
quantitative metrics: dE (�1,�2) and dS

(
r3 |�1 , r3 |�2

)
which

served to measure the distance between different types of ω-
limit sets in responses to any given stimulus pair (µ1,µ2) where
µ2 = µ1 + 1. dE (�1,�2) denoted the average Euclidean
distance between �1 and �2 in the three-dimensional (3D)
phase space of firing rates (r1, r2, r3), and the spectrum distance
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FIGURE 2 | Network dynamics are controlled by top-down modulation. (A) Top: changing top-down input w23 reshapes network activity to the same stimulus (color

bar indicates values of w23); bottom: firing rates at three representative values of w23 while the stimulus is held constant (µ = 1.5). (B) Trajectories in the phase space

for the same w23 as in (A); left: oscillations occur around w23 = 5.5 for µ = 1.5 (same as A); right: oscillations occur around w23 = 10.5 for a different stimulus

µ = 0.6, revealing that the dynamics are diverse across different combinations of stimuli and top-down input. (C) Modulation of oscillation frequency by top-down

input (for µ = 1.5). (C1) Dependence of frequency on top-down input w23. Inset: time series of r3 (t) for two example values of w23 (squares). (C2) Frequency

modulation by top-down input occurred over a range of feedforward drive w31. (C3) A distribution of oscillation frequencies that can be generated by the network for

all possible combinations of w23 ∈ [0, 30]and µ ∈ [0, 5]. (D) Similar to (C) but for oscillation amplitudes.
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A

C

B

D

FIGURE 3 | Pattern separation via top-down control. (A) A schematic diagram illustrating the separation maximization between the response patterns to a pair of

stimuli (µ1 and µ2) by changing top-down input w23 (color bar indicates values of w23). (B) Time series of r3 (t) in response to µ1 = 1.0 and µ2 = 1.1 at three

representative values of w23 with the spectrum distance dS indicated. The two responses r3 (t) are close at some top-down inputs (left: w23 = 3; right: w23 = 10), but

pushed apart at other top-down input (middle: w23 = 3.8). (C) Phase trajectories and network representations of two stimuli from which the Euclidean distance dE is

calculated. From left to right the top-down input w23 correspond to those in (B) for the same stimulus pair (µ1 = 1.0 and µ2 = 1.1). (D) Non-monotonic dependence

of both dE and dS on top-down input w23, with maximum achieved at w23 = 3.8. The squares are color coded as in (B,C).

dS
(
r3 |�1 , r3 |�2

)
was a sum of the squared differences between

both direct components (DC) and alternating components (AC)
in the amplitude-frequency domain of the Fourier transforms to
the signals r3 (t) associated with the two stimuli.

The Euclidean distance was defined as follows: supposing that
�1 and �2 are two ω-limit sets composed of N1 and N2 discrete
points in three-dimensional phase space (r1, r2, r3) , respectively,
denoted as

{
α1, α2, . . . ,αN1

}
and

{
β1, β2, . . . ,βN2

}
where αi

and β j are three-dimensional vectors, then

dE =

〈
d

(
αi, β j

)〉
, i = 1, . . . , N1, j = 1, . . . , N2 (4)

Where 〈·〉 denotes the average and d
(
x, y

)
=

√(
x− y

)T (
x− y

)

which is the standard distance between any two points in the
three-dimensional Euclidean space. Note that in the case of
equilibria, the number of discrete points in the ω-limit set
was one: N = 1, and in the case of a limit cycle, we set
N = T/dt, where T was the period and dt was time bin for
numerical integration.

The Euclidean distance dE worked well in measuring the
distance between two equilibria in the phase space, but when
one ω-limit set was a limit cycle, the averaging operation in

the definition made it only a coarse and lagged estimate of
the separation for equilibrium vs. limit cycle and limit cycle
vs. limit cycle. In particular, the activity of the P population
should be decodable with respect to the stimulus information,
something that was problematic for when using dE. Therefore,
we defined the spectrum distance dS to address the question of
distances between representations that were sensitive to those
representations being oscillations. To calculate the spectrum
distance dS between two ω-limit sets �1 and �2, only the
sequence of their r3 component was decomposed by Fourier
transform which converted the firing rate signal in the temporal
domain into a representation in the frequency domain.

The single-sided amplitude spectrum for the Fourier
transform of the firing rate signal r3 (t), was used to obtain peaks
around frequency values. For an equilibrium corresponding to
constant firing rate r3 = A, there existed only one peak around
zero frequency with its amplitude proportional to A, since the
Fourier transform of a constant function is a delta-function.
We referred this component as the direct component (DC)
of the signal. For the case of a limit cycle, in addition to one
peak around zero frequency, there existed another peak around
frequency 1,000/T where T denoted the period of the limit
cycle. We referred this additional peak of a limit cycle as the
alternating component (AC). Thus, the spectrum distance dS
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FIGURE 4 | Optimal top-down input for pattern separation. (A) Landscapes of the Euclidean distance dE over all stimulus pairs at three representative values of

top-down input. (B) Landscapes of the spectrum distance dS unfolds as in (A). (C) The matrix wmax
23 which maximizes d between network representations in response

to all combinations of stimuli (µ1 and µ2) presented to the network. Inset: the same matrix of wmax
23 organized by one stimulus µ1 vs. stimulus difference 1µ. (D)

Dependence of the stationary firing rate of inhibitory population r2 on feedback w23 at different levels of input strength (indicated by color bar). (E) The correlation

between wmax
23 obtained from (C) for all pairs of stimuli µ1 and µ2 and the wmid

23 corresponding to the mid-point of the two inhibitory firing rate maxima associated with

the same pair of stimuli (upper left inset) reveals that top-down input optimizes pattern separation by gating the G-M inhibition as well as recurrent G inhibition. The

gray line denotes the utility line. Lower right inset shows the correlation coefficient and the slope of the linear regression.

was a sum of the differences between both direct components
(DC) of two limit sets and alternating components (AC) of two
limit sets, which was formalized as follows: supposing that D1

and D2 were the amplitudes of the peaks at zero frequency for
two ω-limit sets �1 and �2, and ai =

(
fi,Ai

)
, i = 1, 2 denoted

the corresponding alternating components of �i, where fi was

the non-zero frequency and Ai was the amplitude of the peak
around fi, then we have

dS = |D1 − D2| + d (a1, a2) (5)
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FIGURE 5 | Oscillation synchrony via top-down control. (A) Oscillatory responses to two example stimuli µ1 = 1.15 and µ2 = 0.6 become synchronized promptly

after changing the top-down input w23. (A1) Time series of r3 (t) before and after changing the top-down input. (A2) Limit cycles corresponding to the oscillatory

responses in (A1) are plotted in phase space (transitions not shown). (B) Changing w23 can make both the frequency and amplitude of two oscillations closer to each

other. (B1) Frequency and amplitude components of the two oscillations shown in (A). (B2) Changing top-down input reduces the frequency differences of responses

to two distinct stimuli, effectively using frequency to synchronize the representations in the phase space. (C) The matrix wmin
23 which minimizes the distance d between

oscillatory responses to all combinations of stimuli µ1 and µ2. (D) Schematic diagram illustrating that the same value of w23 which minimizes the distance between

oscillations responding to stimuli µ1 and µ2 can maximize the distance between responses to stimuli µ1 and µ3. (E) Scatter plot in µ1- µ2- µ3 space where each

sphere denotes a top-down input w23 as illustrated in (D) and is coded by color and size. (F) Correlation between the differences of those stimuli of which the

response distances are simultaneously minimized and maximized. Inset: correlation coefficient and the slope of linear regression.

Note that we set ai = (0, 0) if the ω-limit sets �i was an
equilibrium. Thus, when the two limit sets were both equilibria,
dS only contained the first termmeasuring the difference between
the direct components. In this case, dS was only a linear
projection (up to a constant factor) of the Euclidean distance dE.

When both �1 and �2 were equilibria, the spectrum distance
dS was a projection of the Euclidean distance dE onto the
r3 axis. The spectrum distance was however more sensitive
to bifurcations when one of the two ω-limit sets �1 and �2

transitioned into a limit cycle as the frequency of the limit
cycle started from non-zero values at the onset of a bifurcation
(Figure 2C1), causing discontinuous jumps in the spectrum

distance. However, for the purpose of pattern separation, the two
metrics did not give qualitatively different results when assessing
the distances due to changes the feedback weight w23 (Figure 4).
Additionally, we found that the non-monotonic dependence
of distance in both dE and dS on the feedback weight (wmax

23 )
persisted, and that an optimal value for any given pair of stimuli
could be found (Figure 3D).

Bifurcation Analysis
We denoted the dynamical system of Equation (1) as a
parameterized form
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B1 B2

C2C1

A

FIGURE 6 | Pattern separation and oscillation synchrony for sniff-modulated oscillatory stimulus. (A) Schematic diagram illustrating that varying the top-down weight

of the network model (middle) can accomplish both pattern separation and oscillation synchrony (bottom) for a pair of oscillatory stimuli µ1 and µ2 modulated by sniffs

(top). (B) Pattern separation for two oscillatory stimuli with closely related amplitudes: µ1 = 1.4 and µ2 = 1.5. (B1) Firing rate of the piriform population r3 (t) before

and after changing the top-down weight: before, w23 = 26; after, w23 = 21. (B2) The limit cycles in the phase space corresponding to the firing rate in (B1). (C)

Oscillation synchrony for two oscillatory stimuli with distinct amplitudes: µ1 = 1.15 and µ2 = 0.6. (C1) Changing the top-down weight from w23 = 6.1 to w23 = 9.2

synchronizes the intrinsic oscillations of the firing rate of the piriform population r3 (t). (C2) Frequency and amplitude components of the two intrinsic oscillations

shown in (C1).

ṙ = f (r, 2) (6)

where r ∈ R
3 was the vector of firing rates and 2∈ R

p

was the vector of parameters. The vector field f =
(
f1, f2, f3

)T

was a smooth function on some open set of R
3
×R

p. The
dimensionality of 2 could be up to eight dimensions maximally
to include all connection weights wij and the external stimulus µ.
However, since we were only interested in the top-down control,
2 was restricted to be two dimensions (p = 2) including the
top-down weight w23 and the external stimulus µ. All the other
parameters were fixed as constants determined based on previous
experimental work (Whittington et al., 2000). As the system
Equation (6) had an equilibrium at (r, 2)= (r0, 20), i.e.,

f (r0, 20) = 0 (7)

the stability of this equilibrium could be determined from the
linearized vector field of Equation (6) given by

ξ̇ = Drf (r0, 20) ξ , ξ ∈ R
3 (8)

where Drf,
∂f
∂r was the Jacobian matrix of the vector field f.

If none of the eigenvalues ofDrf (r0, 20) lied on the imaginary
axis (i.e., the equilibrium was hyperbolic), the local stability of

(r0, 20) in the non-linear system (6) could be determined by the
linear system (8). The equilibrium was stable if all eigenvalues of
Drf (r0, 20) had negative real parts. In the case of a hyperbolic
equilibrium, varying slightly the parameter 2 would not change
the stability as taking Equation (7) and the invertibility of
Drf (r0, 20), there existed a unique smooth function h : R

p
→R

3

such that

h (20) = r0 and f (h (2) ,2) = 0 (9)

for 2 sufficiently close to 20. By continuity of the eigenvalues
with respect to parameters, Drf (h (2) ,2) had no eigenvalue on
the imaginary axis for 2 sufficiently close to 20. Therefore, the
hyperbolicity of the equilibrium persisted and its stability type
remained unchanged for in close vicinity of 20. By contrast,
when some of the eigenvalues of Drf (r0, 20) lied on the
imaginary axis, for example, a zero eigenvalue or a pair of purely
imaginary eigenvalues, new topologically different dynamical
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FIGURE 7 | Global phase structure changes with the top-down input. (A–C) Global phase structures showing the nullclines (yellow thick curves), nullplanes

(transparent surfaces with the same color code as M, G, P population) and several representative trajectories (black thin curves) for the same stimulus µ = 1.5 and

three different values of w23. A, w23 = 4; B, w23 = 6; C, w23 = 15. Varying the top-down input tilts the nullplanes, thus changing the position of the equilibrium as well

as its stability. (D) An example phase structure where three equilibria were present simultaneously (two stable and one unstable), corresponding one of the blue

regions of the manifold in Figure 8A.

behaviors occurred by a small change in 2. Equilibria could be
created or annihilated, and periodic dynamics could emerge.

The parameterized system (6) thus underwent a bifurcation
at (r0, 20) if the Jacobian matrix Drf (r0, 20) has an eigenvalue
of zero real part. In our model, a saddle-node bifurcation
(SN) occurred when Drf (r0, 20) had a single zero eigenvalue
(in addition to some non-degenerate conditions), and a Hopf
bifurcation (H) occurred when Drf (r0, 20) had a pair of
purely imaginary eigenvalues. The bifurcation point was found
numerically by XPPAUT or the Matlab toolbox MATCONT.

The number of parameters that must be varied simultaneously
to evoke a bifurcation is defined as the codimension of this
bifurcation (Guckenheimer andHolmes, 2013; Kuznetsov, 2013).

Considering the infinite-dimensional space H of all vector fields
defined on the n-dimensional Euclidean space R

n, a vector field
f0 undergoing a bifurcation, for example, a Hopf bifurcation,
corresponds to a point in the space H. All nearby vector fields
with the same singularity as f0 (i.e., vector fields that are orbitally
topologically equivalent to f0) form a submanifold L of co-
dimension k, which is an equivalence class of the singular
vector field f0. Therefore, within the space H it requires another
submanifold L̃ of at least k dimensions to intersect transversely
with L at point f0, such that the singularity of f0 persists under
small perturbations of the vector field. The submanifold L̃ was
obtained through a parametrized family of vector fields involving
at least k parameters. The least number k is then defined as
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A1
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B

FIGURE 8 | Bifurcation mechanism of top-down control to support both pattern separation and oscillation synchrony. (A) Illustration of the bifurcation mechanism and

the transition boundary of dynamics in phase space and parameter space. (A1) Pattern separation. Left: the equilibrium manifold in the firing rate phase space divided

by the separatrix emitting from multiple codimension-2 bifurcation points: BT (Bogdanov–Takens bifurcation) into several regions. Region-LC: each equilibrium was

unstable and had exactly one corresponding stable limit cycle (dot dashed cycle) arising from a Hopf bifurcation. Region-SE: each equilibrium was stable all

trajectories spiraled into it. Region-EE: each equilibrium was stable all trajectories approached it exponentially. Blue regions: regions where multiple equilibria

coexisted. For two example stimuli µ1 = 2.0 and µ2 = 3.0 given in the middle of (A1), two paths of equilibria were induced on the equilibrium manifold and traversed

across different regions as changing top-down input w23. Middle: different regions on the equilibrium manifold corresponded to different regimes in the parameter

space of µ and w23 in the same color scheme [parameters for blue regions in Left were largely beyond the range thus not shown]. The transition boundary ŴH

specified the pair (µ,w23) at which the network underwent a Hopf bifurcation and corresponded to the separatrix enclosing the region-LC in Left. Two given stimuli

were denoted by two vertical lines and three example values of w23 corresponded to three horizontal dashed lines, giving rise to a pair of junctions for each. These

junctions were also plotted as squares in the left of (A1) denoting the corresponding ω-limit sets in the same color (solid square: stable equilibrium; empty square:

unstable equilibrium). Right: the distance between the ω-limit sets to represent the two given stimuli. The maximal distance was achieved when the two junctions were

on opposite sides of ŴH. (A2) Same as (A1) but for oscillation synchrony occurring when the two junctions were both inside ŴH. (B) Comparisons between the

translated transition boundary Ŵ1 (dashed curve) depending on µ (left: 1µ = 0.1, middle: 1µ = 0.5) and the sliced section of the wmax
23 at the same Ŵµ (solid curve).

Right: a series of translated Ŵ1 for three representative values of Ŵµ.

the codimension of f0. The parametrized vector field f (r, 2)

in Equation (6) can be thought of as one realization of the
submanifold L̃ which passes through the vector field f0 ,

f (r0, 20) undergoing a bifurcation with the two parameters
corresponding to the top-down weight w23 and the external
stimulus µ.
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Simulating Sniffing With a Periodically
Driven Non-autonomous System
Olfactory sensation is an active process, with sensory stimuli
being sampled by sniffing on the time scale of 215Hz in animal
models (Carey and Wachowiak, 2011; Wachowiak, 2011). To
simulate sniffing, a vector field for the dynamical system that
depended explicitly on time and was also periodic with fixed
period T = 2π/ω > 0, i.e.,

ṙ = f (r, t) and f (r, t + T)=f (r, t) (10)

could be rewritten in the form of an autonomous system by
defining the function

ϕ (t) = ωt, mod 2π (11)

such that using Equation (11), Equation (10) became

ṙ = f (r, ϕ)

ϕ̇ = ω
(r, ϕ) ∈ R

3
× S1 (12)

where S1 denoted a circle. To construct the Poincaré map, we
defined a cross-section of Equation (12) by

6
ϕ
0 =

{
(r, ϕ) ∈ R

3
× S1 |ϕ = ϕ0 ∈ (0, 2π]

}
(13)

such that a fixed point of the Poincaré map Pϕ0
: 6ϕ0 → 6ϕ0

corresponded to a limit cycle of the extended system Equation
(12), and a limit cycle of Pϕ0

corresponded to a two-dimensional
(2D) torus of Equation (12).

Topological changes in the ω-limit sets of the extended
system Equation (12) could thus be understood via bifurcations
of the discrete map Pϕ0

. Specifically, the bifurcation analysis
we performed for autonomous system (6) also applied to the
Poincaré map Pϕ0

. Hopf bifurcations undergone in autonomous
system (6) which gave rise to limit cycles in 3D phase space
corresponded to Neimark-Sacker bifurcations of Pϕ0

which gave
birth to a 2D torus in the extended space. The torus oscillation
thus had two periodic components: one (the toroidal direction)
driven extrinsically by the frequency of sniffs and the other
(the poloidal direction) governed by the intrinsic network
dynamics. Therefore, the Neimark-Sacker bifurcations provided
an analogous bifurcation mechanism for non-autonomous
system (10) as the Hopf bifurcations did for autonomous
system (6).

RESULTS

Reduced Network Model Generates
Complex Dynamics
To understand the functional role of top-down projections
onto inhibitory neurons, we built a three-node network model
(Figure 1A, see Methods) that recapitulated a circuit architecture
identified both structurally (Padmanabhan et al., 2019) and
functionally (Boyd et al., 2012; Markopoulos et al., 2012) across
a number of brain areas. For different stimuli µ, the network
exhibited a variety of dynamics (Figure 1B). For instance, when

the stimulus was small, the firing rates ri, i = 1, 2, 3 had a
fast-transient increase followed by damping oscillations that
converged to a stationary state (Figure 1B, left). A sufficiently
large stimulus µ elevated the firing rates to near saturation,
where they then remained at the upper bound of the non-
linear sigmoid function throughout the duration of the stimulus
(Figure 1B, right). For small or large stimuli, the network
responses converged to a constant firing rate after transient
dynamics. By contrast, for medium values of µ, more complex
firing rate dynamics emerged, including oscillations (Figure 1B,
middle). To visualize the collective behaviors of M, G, and P
populations to these different stimuli, we turned to a three
dimensional dynamical system representation of the model
where the time evolution of the firing rates (i.e., state variables)
was a trajectory (or an orbit) in the phase space (r1, r2, r3) and
the tangent vector defining the velocity of each point along

a trajectory was given by the vector field f=
(
f1, f2, f3

)T
(see

Methods) of Equation (1). The firing rates over time in Figure 1B
thus corresponded to trajectories in Figure 1D starting from the
origin O (where all three populations were silent). For small
stimuli, the trajectory made an excursion before spiraling into
an equilibrium indicated by the solid dot (Figure 1D, orange).
Similarly, when the stimulus µ was large, the trajectory again
settled into an equilibrium, but one that was translated within
the phase space to the top-right corner (Figure 1D, black).
Finally, for medium stimuli, the time-varying oscillation of
firing rates manifested as a periodic orbit (or a limit cycle)
in the 3D phase space (Figure 1D, brown). By convention,
we defined the steady-state dynamics as the ω-limit set of
the system.

Top-Down Weight Reshapes Network
Dynamics and Modulates Neural
Oscillations
Next, to explore how top-down down projections onto the
inhibitory granule cell population (G) shaped the dynamics of
the network, we studied the effects of changes in the connection
weight w23 on firing rate dynamics. First, we varied the top-
down weight w23 (Figure 2A, top) from the piriform population
(P) to the inhibitory granule cell population (G) and studied
the effect of these changes on the firing rate dynamics of the
network. For a fixed stimulus (µ = 1.5) the dynamics of
the firing rates ri (t) , i = 1, 2, 3 were sensitive to different
values of w23 (Figure 2A, bottom). When the top down weight
was small (w23 = 4), firing rates approached the equilibrium
exponentially (Figure 2A, bottom and Figure 2B, left, black
traces). Conversely, when the top-down weight was large (w23 =

10.5), the firing rate of excitatory cells (r1) increased initially,
but was suppressed as inhibition reduced the activity, until the
firing rates ultimately settled to an equilibrium (Figure 2A, top
and Figure 2B, left, light magenta traces). When the magnitude
of top-down weight was changed to an intermediate value
(w23 = 5.5), the same stimulus generated oscillatory activity
in the network, with the steady-state dynamics transitioning to
a periodic orbit (a limit cycle). Changing the weight of top-
down projections onto the local inhibitory population for a single
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stimulus produced the same diversity of firing rate dynamics
that occurred from changes in the stimulus. Furthermore, for
a given top-down weight (w23), the effects on the network
dynamics stimulus was unique to that stimulus (Figure 2B, right
vs. left).

In regimes where specific weights of top-down weight
generated sustained oscillatory activity for a given stimulus µ, we
characterized the frequency and amplitude of these oscillations
(Figure 2B, left w23 = 5.5, right w23 = 10.5) as changes in
both have been tied to circuit function and behavior (Buzsaki
and Draguhn, 2004; Kay et al., 2009). For a given stimulus,
oscillations emerged between two values of w23, with the
frequency of the oscillation varying monotonically (Figure 2C1).
By contrast, while the amplitudes of the oscillations started
from zero at the two critical values of w23, they reached a
maximum in between (Figure 2D1). The control of both the
frequency and amplitude via changes in w23 occurred across
an array of weights (w31) associated with the feedforward drive
from the mitral/tufted population (M) to the piriform population
(P) (Figures 2C2,D2). Furthermore, the magnitude of synaptic
weights from mitral/tufted cells to piriform cortical neurons
established the dynamic range within which changes in top-
down weights (w23) influenced the frequencies (Figure 2C3,
0 − 45Hz) and amplitudes (Figure 2D3, 0 − 1 A.U.) of
network oscillations, spanning frequencies in the alpha, beta and
gamma bands.

Top-Down Weight Contributes to Pattern
Separation
As changing the top-down weight onto inhibitory neurons
could generate complex activity patterns we next asked what
computations could be performed by this control. For example,
both behavioral and neurophysiological measures show that as
the representations of two stimuli by neuronal circuits become
different, distinguishing between them becomes easier (Friedrich
and Laurent, 2001; Leutgeb et al., 2007; Yassa and Stark, 2011)
Control of inhibition, via top-down centrifugal projections, may
be one way that such stimulus discrimination is implemented by
the circuit.

To test this hypothesis, we presented our network with
a pair of stimuli, denoted by µ1 and µ2 (corresponding to
stimuli arranged along a one-dimensional axis) and studied
how control of inhibition altered the representations of the two
stimuli (Figure 3A). Conceptually, these two stimuli could be two
different concentrations of an odor or two odors that share a
similar physiochemical feature (two odors with different carbon
chain lengths). For a set of stimuli µi, i = 1, 2, we defined
the steady-state representation of network activity as the ω-limit
set �i, i = 1, 2. The distance between the two stimuli µ1 and
µ2 in the stimulus space was defined as 1µ, and the resultant
distance in the firing rate phase space between the two ω-limit
sets (�1 and �2) we defined as a metric d (see Methods). The
smaller the 1µ, the more similar the two stimuli were. We
hypothesized that changes in the weight of feedback onto the
inhibitory neuron population (w23) could increase the value of

d, making the representations of those stimuli more distinct
(Figure 3A).

In a representative example where µ1 = 1.0 and µ2 =

1.1, when the top-down weight was low (w23 = 3), the
representations of the two stimuli were close (Figures 3B,C,
left). As w23 was increased, the representations of the two
stimuli were pushed apart making them more separable
(w23 = 3.8, Figures 3B,C). Interestingly, as w23 was increased
further (w23 = 10), the representations of the two stimuli
became close to one another again (Figures 3B,C, right).
As representations could be either oscillations in the state
space, or equilibria, we compared how the distances of
these representations changed across different measures (see
methods). Interestingly, although the absolute values given
by the Euclidean distance dE (Figure 3C) and the spectrum
distance dS (Figure 3B) were different, they both occurred
at the same feedback weight (Figure 3D). We visualized the
distance landscapes defined by dE and dS over all combinations
of µ1 and 1µ as a function of a change in the weight
of the top-down weight (Figures 4A,B). Irrespective of which
distance definition was exploited for measurement, we found
an optimal value of wmax

23 that maximized the distance
between the two resultant representations for any given pair
of stimuli.

A landscape of the optimal wmax
23 across all pairs of stimuli

(µ1,µ2) was shown in Figure 4C. Thus, changing the weight
of top-down projections onto the inhibitory neuron population
could be used to facilitate stimulus separation dynamically.
To understand why, we examined the effect that varying the
top-down weight had on the firing rate responses of both
local excitatory mitral/tufted cell and inhibitory granule cell
populations (r1 and r2). For a given stimulus, an increase in
w23 led to a monotonic decrease in r1, suggesting persistent
suppression onto the local M population. By contrast, the
response of the local G population r2 was elevated first with
increasing w23 until reaching the maximum rmax

2 , after which
r2 dropped significantly (Figure 4D). Across different stimuli µ,
the shape of the firing rate r2 as a function of w23 remained
the same but shifted vertically. To determine if these differences
in the firing rate of inhibitory neurons (r2) were related to
the values of top-down weights that maximally separated the
distance between two stimulus representations, we plotted the
wmax
23 (abscissa) obtained from the landscape in Figure 4C vs. the

midpoint wmid
23 (ordinate) between the rmax

2 of the same stimulus
pair (inset of Figure 4E). The response r2 to one stimulus on
the left of the midpoint dropped significantly, while the response
to a similar stimulus on the right still had a high inhibitory
firing rate. The optimal wmax

23 was correlated to wmid
23 (R2 = 0.98),

the value at which inhibitory neuron activity from one stimulus
was suppressed while activity from the other similar stimulus
remained persistently high. Consequently, stimulus separation
arose from the differential sensitivity of inhibitory neurons to
the balance between top-down feedback and recurrent inhibition;
an imbalance occurred between the top-down feedback and the
recurrent inhibition for one stimulus while that balance was
preserved for the second stimulus.
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Top-Down Weight Contributes to
Oscillation Synchrony
Stimulus-evoked oscillations also appeared in our model, and
were modulated by the top-down weights (Figure 2) covering
a wide range of frequency and amplitude. This suggested that
oscillatory responses to different stimuli could be synchronized
by tuning w23. To explore this, we first examined the oscillations
in the firing rate generated by two different stimuli µ1 and
µ2. At a given value of top-down weight (w23 = 12.0), one
stimulus (µ1 = 1.15) generated oscillations (f1 = 33.5 Hz,
Figure 5A1, before) in the piriform population’s firing rate
that were different in both frequency and amplitude from the
oscillations (f2 = 37.Hz, Figure 5A1, before) in response to a
second stimulus (µ2 = 0.6). However, a change in the top-
down weight (w23 = 8), resulted in firing rate oscillations
becoming more similar for the same two stimuli (Figure 5A1,
after, f1 = 30.4 Hz, f2 = 30.8 Hz). This increase in the
firing rate synchrony was also apparent when visualized in
the 3D phase space (Figure 5A2). To quantify the synchrony
between the oscillations responses to µ1 and µ2, we calculated
the spectrum distance dS (see Methods) between the network
representations for the two stimuli before and after changes
in top-down weight (Figure 5B1). Changes in the feedback to
inhibitory neurons w23 synchronized activity in the network
stimuli (Figure 5B2), and while the effect was greatest when
stimuli were similar, we found examples for stimuli that were
initially as far apart as 20Hz. As with stimulus discrimination,
a systematic relationship emerged corresponding to the optimal
top-down weight wmin

23 across combinations of stimuli (µ1

vs. µ2) that was most effective at generating synchronous
oscillations (Figure 5C).

Although we have thus far treated stimulus discrimination
and synchrony separately, neural circuits perform both
operations simultaneously, bringing the network representation
of one stimulus closer to another, while simultaneously pushing
the representation of that stimulus farther from a third. We
therefore tested if a single change in the top-down weight w23

accomplish both of these operations; minimize the distance
between the responses to one pair of stimuli (µ1 vs. µ2) while
also maximize the response distance to another other pair
of stimuli (µ1 vs. µ3, Figure 5D). To do this, we generated
a 3D scatter plot of values of w23 that were optimal for
synchrony between oscillations generated by stimulus µ1 and µ2

(Figure 5C) and also produced a maximum separation between
the representations of stimulus µ1 and µ3 (Figure 5E). The
values of top-down weight w23 for each point that fulfilled these
diametrically distinct functions were coded by color and size
(Figure 5E). We found that the top-down weight corresponding
to both operations scaled with the stimuli, such that when µ1,µ2

and µ3 were small, the top-down weight was also small, but as
the three stimuli increased in magnitude, the top-down weight
needed to synchronize one pair and separate the other pair
also increased. Finally, we found a strong correlation between
the values of stimulus differences: |µ1 − µ2| and |µ1 − µ3|

(Figure 5F) at which an w23 weight was optimal for stimulus
separation and oscillatory synchrony.

Generalization to Oscillatory Stimulus
Driven by Sniffs
Although we used a constant stimulus µ to represent the average
input tomitral/tufted cells, inmammals sniffing brings odors into
the nasal epithelium in a periodic fashion (Wachowiak, 2011).
Sniff cycles carry different amounts of information about odor
identity and concentration (Miura et al., 2012) and a single sniff
cycle is sufficient for animals to discriminate accurately between
two odors (Uchida and Mainen, 2003; Wesson et al., 2008). To
explore how changing top-down weights can reshape network
responses to oscillatory stimuli, we modeled our stimulus µ

as a sinusoidal function µ̃ (t) = µ cos (ωst + ϕ0), where the
different odors had different amplitudes µ, the sniffing frequency
ωs was set to ∼4Hz and ϕ0 characterized the initial phase of
sniffing (Carey and Wachowiak, 2011; Shusterman et al., 2011)
(Figure 6A).

For a pair of oscillatory stimuli µ̃ (t) with two similar
amplitudes µ1 and µ2, the firing rate responses were also similar
for the piriform population (P) (Figure 6B1, before top-down
change) and the entire network in the phase space (Figure 6B2,
left). If we changed the top-down weight w23, as we had done for
a fixed stimulus, both the piriform population firing (Figure 6B1,
after top-down change) and the network representations became
more distinct (Figure 6B2, right). The conch-shaped limit cycle
in Figure 6B2 (right) arose from oscillations occurring at two
different time scales (see methods): a slower oscillation on
the time scale of sniff cycles and a faster oscillation governed
by the intrinsic dynamics of the network. As a consequence,
the same pattern separation achieved by changing top-down
weight for constant stimuli could also be accomplished for
oscillatory stimuli.

To explore if network representations of oscillatory stimuli
could be made synchronous by changing top-down weights,
we presented two stimuli with distinct amplitudes (µ1,µ2) to
the network (Figure 6A). Following a change in the top-down
weight w23, the network representations became synchronous
(Figure 6C1), with the oscillations of firing rates occurring
at the same frequency (Figure 6C2, right). Importantly, these
high frequency oscillations occurred at the gamma band,
and rode on top of the slower oscillations corresponding to
sniff cycles, further revealing the computational decoupling of
sniffing and inhibitory dynamics across two different time scales.
Taken together, the mechanisms giving rise to both pattern
separation and oscillatory synchrony were general to constant
and oscillatory inputs.

Bifurcation Mechanism for Top-Down
Control of Inhibition
Finally, to understand mathematically how such operations
emerged from changes in the top-down weight to inhibition,
we studied the structure of the transitions in network firing
rates dynamics (Figure 2A). These transitions were associated
with qualitative or topological changes in the ω-limit sets of the
system, indicative of the occurrence of bifurcations in the system.

To explore this further, we first examined the how the ω-
limit sets of the system receiving constant stimuli changed with
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different top-down weights. An equilibrium corresponding to
constant firing rates in the network arose from the intersection of
three nullclines (Figure 7, yellow thick lines), each resulting from
pairwise intersections of three “nullplanes” that characterized
the geometric surface on which the firing rate derivatives of
one node equaled to zero (Figure 7, transparent surfaces).
Global phase structures for two representative values of top-
down weights (Figure 7A: ω23 = 4, Figure 7C: ω23 = 15)
illustrated how these equilibria varied within the firing rate phase
space. In these two examples, both equilibria were stable and
attractive, with all nearby trajectories (Figures 7A,C, black thin
lines) moving toward them. This was, however, not true for all
values of w23. At some critical values of w23, the equilibrium
lost stability, and a small-amplitude limit cycle branched from
that unstable equilibrium, resulting in the oscillations observed
in the dynamics (Figure 7B). This transition signified a Hopf
bifurcation of the system (see Methods), which arose when the
top-down weight w23 was within a specific regime. Therefore,
across all combinations of external stimuli µ and top-down
weight w23, we obtained a smooth manifold in the phase
space (Figure 8A, left), corresponding to a family of ω-limit
sets on which the network dynamics settled from any set of
initial conditions. Sustained oscillations corresponded to the red
region-LC (LC: limit cycle) where each equilibrium (unstable)
was paired with exactly one limit cycle born simultaneously via
a Hopf bifurcation (the purple empty square vs. the dot-dashed
curve). Constant firing rates corresponded to the gray region-EE
(EE: exponential equilibrium) and green region-SE (SE: spiraling
equilibrium), where the equilibria were stable, approached either
exponentially (region-EE) or via damping-oscillations (region-
SE). Finally, the two blue regions on the manifold were bounded
by saddle-node bifurcations near Bogdanov–Takens (BT), an
example global phase structure of which was shown in Figure 7D.
The equilibrium manifold thus defined the entire family of
network representations for all possible combinations of stimuli
µ and top-down weigh tw23.

Within the manifold of the stimulus µ and top-down weight
w23, we identified a transition boundary ŴH (black solid curves,
Figure 8A, middle) corresponding to the separatrix enclosing the
region-LC. ŴH specified the parameter pairs (µ,w23) at which
a Hopf bifurcation occurred, thereby dividing the parameter
space into regimes with different dynamics (same color coded
as Figure 8A1, left). For a given pair of stimuli (for example,
µ1 = 2.0, µ2 = 3.0), changing w23 corresponded to shifting
the horizontal dashed line vertically (three representatives were
shown in Figure 8A1, middle), thereby shifting the junctions
with the two stimuli (vertical solid lines, Figure 8A1, middle)
across different regimes in the parameter space. In the firing
rate phase space (Figure 8A, left), these changes in w23 for one
stimulus moved the equilibrium through different regions of the
manifold: EE-LC-SE, while for another stimulus, a parallel curve
on the manifold could also be traced. When the two junctions
in Figure 8A1 (middle) were on different sides of the transition
boundary, with one equilibrium in region-LC and the other in
region-SE (Figure 8A1, left), the two network representations
became topologically different from each other; the former a limit
cycle, and the latter an equilibrium point. Thus for a combination

of stimulus pairs, the optimal w23
max for pattern separation was

then achieved when the ω-limit sets were on different sides of
transition boundary (Figure 8A1, right).

Furthermore, when the junction of feedback weight and
stimulus pair were both inside the transition boundary
(Figure 8A2, middle) two limit cycles emerged (one for each
stimulus, for example, µ1 = 3.45, µ2 = 3.95, Figure 8A2)
synchronize the network representations. Changes in top-down
weight moved the junctions for pairs of stimuli within the
parameter space, revealing a shared mechanism supported both
stimulus separation and oscillation synchrony, depending on
the relative positions of the junctions with respect to the
transition boundary.

Finally we determined if the transition boundary identified
via analysis of the dynamical system corresponded to the wmax

23
matrix found in Figure 4Ci. To do this, we considered a set
of initial stimuli µ1, and a set of distances to a second set of
stimuli 1µ, wherein each value was an array that defined a
set of stimulus pairs {(µ1,µ1 + 1µ) | µ1 ∈ [0, 4]}. For a given
1µ > 0, distinguishing the pair (µ1,µ1 + 1µ) was the same as
distinguishing (µ1 + µ,1µ1) in terms of pattern separation. In
this framework two different distances, for instance, 1µ = 0.1
or µ = 0.5 (Figure 8B, left and middle), the set of stimulus
pairs had a unique transition boundary Ŵ1 (Figure 8B, right).
The section of the wmax

23 matrix in Figure 4 Ci for the set of
stimulus pairs

{
(µ1,µ1 + 1µ) | µ1 ∈ [0, 4] , 1µ is given

}
was

correlated with the transition boundary Ŵ1 of the same value
µ (Figure 8B). For small 1µ = 0.1, the slice of the wmax

23
followed closely with the transition boundary Ŵ1 (Figure 8B,
left). As the stimulus difference increased (Figure 8B, middle),
wmax
23 deviated from the boundary Ŵ1. Larger 1µ’s increased

the bifurcation lag between two stimuli such that the stimulus
that caused a bifurcation first had more parameter space to
develop before the bifurcation of the other stimulus. Conversely,
stimulus discrimination was harder as µ decreased because
the range of top-down weights w23 that separate two stimuli
shrank significantly around a close vicinity of the transition
boundary. Thus, subtle adjustments of top-down weight around
the transition boundary were required to separate similar stimuli
from each other. The same analysis could also be performed for
the non-autonomous system receiving oscillatory stimuli µ̃ (t)
by investigating bifurcations of fixed points of the constructed
Poincaré map on a given cross section (see Methods) with
the same computational mechanism arising via the discrete
version of Hopf bifurcation, i.e., a Neimark-Sacker bifurcation
(Kuznetsov, 2013). Taken together, these results provide a bridge
linking the mechanisms that give rise to the dynamics of the
neural circuit with the computations performed by the circuit.

DISCUSSION

Using a three-node model, which included top-down projections
from piriform cortical cells onto inhibitory granule cells in
the main olfactory bulb, we identified a network capable of
complex dynamic behaviors, ranging from an attractor to stable
oscillations across a range of frequencies and amplitudes. By
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changing the weight of these top-down projections, the network
could either facilitate pattern separation between two similar
stimuli, or synchronize the oscillatory activity produced by
two different stimuli. A bifurcation analysis of the dynamical
system revealed that both mechanisms emerged from the
transition boundary of Hopf bifurcations which branched from
co-dimensional two bifurcation points (i.e., the Bogdanov-
Takens bifurcation). Furthermore, these computations could be
accomplished even when the stimuli were periodic, fluctuating
at the frequency of sniffing (Neimark-Sacker bifurcation),
suggesting that these findings are a general feature of this
network. Our results provide both a mathematical framework
for how top-down control of inhibition shapes the dynamics
of a network, and a link between such dynamics and the
computations that neural circuits can perform.

An important point to consider is how changes in top-down
weights may be instantiated biologically? This point depends
on the timescale of weight changes. On short time scales,
changes in inhibitory drive to granule cells can facilitate olfactory
discrimination (Abraham et al., 2010; Nunes and Kuner, 2015)
and generate synchronous oscillatory activity among mitral cells
in the bulb (Galan et al., 2006). Neuromodulators such as
serotonin (Petzold et al., 2009; Kapoor et al., 2016) can act on fast
sub second time scales to support both oscillatory synchrony and
stimulus discrimination, providing one biological mechanism by
which weights can be changed dynamically. By contrast, long-
term changes in the bulb may be instantiated by classis synaptic
plasticity mechanisms such as LTP (Cauthron and Stripling,
2014), or via the remodeling of synaptic connectivity (Arenkiel
et al., 2011; Deshpande et al., 2013), for instance due to adult
neurogenesis (Lledo et al., 2006). In these examples, the changes
in feedback weight likely reflect slow alterations in network
structure that result in stable changes in neural representations,
possibly corresponding to learning.

While the biological mechanisms by which the top-down
synaptic weights change onto inhibitory neurons may be diverse
depending on timescale, we find that such alterations give
rise to functionally equivalent changes supporting an array of
computations. For instance, changes in the top-down weight
would render two stimuli more distinct at the level of firing rates
in the population, a process referred to as pattern separation
(Cayco-Gajic and Silver, 2019) or decorrelation (Friedrich and
Laurent, 2001). Our model predicts that pattern separation arises
from the non-monotonic change in firing in granule cells (at the
balance between op-down excitation and recurrent inhibition).
The top-down weight onto inhibitory neurons sets a gate,
allowing some stimuli to cross a threshold of recurrent inhibition,
while others do not.

In parallel, changing top-down weights onto inhibitory
neurons can increase the synchrony between two stimuli
that were initially asynchronous. A number of experimental
and theoretical studies have explored the privileged role that
inhibitory interneurons play in generating gamma oscillations
(Whittington et al., 1995; Hasenstaub et al., 2005; Cardin
et al., 2009; Sohal et al., 2009; Tiesinga and Sejnowski, 2009).
Among these, the two most common models are when gamma
arises from reciprocal coupling between pyramidal cells and

inhibitory interneurons (PING), and recurrent connections
among inhibitory interneurons (ING) (Whittington et al., 2000;
Tiesinga and Sejnowski, 2009). In both, oscillatory activity
arises from the structure of local connectivity. In our work, we
identified another motif by which gamma oscillations can arise—
Top-down control of Inhibitory Neuron Gamma (TING). Local
excitatory mitral and tufted cells broadcast activity patterns to a
pyramidal/semilunar cell population in piriform cortex, that then
synapses back onto inhibitory granule cells.

Studies on dynamics of local excitatory and inhibitory neurons
in the olfactory system both experimentally and mathematically
are extensive (Wilson and Cowan, 1972; Ermentrout and Kopell,
1990; Kay et al., 2009; Li and Cleland, 2017). To these models
we add a description of how an external (in this case, top-down
input from piriform cortex) source controlling the inhibitory
neuron population can influence dynamics. In studying the
dynamical system defined by this network, we found that
the bifurcations largely result from the singularity (linearized
Jacobian matrix is non-hyperbolic) inherently embedded in the
system itself. Thus, although the exact parameter values (defined
by the weights of connections) influence when the dynamics of
the network undergoes a bifurcation, the types of bifurcations
that arise are determined by the normal form of the system
(Guckenheimer and Holmes, 2013; Kuznetsov, 2013); revealing
that the behaviors observed in this three node population are
a fundamental feature of the network architecture. For Wilson-
Cowan equations we used, the Bogdanov–Takens bifurcation is
the inherent codimension-2 singularity (Cowan et al., 2016),
meaning that the diversity of dynamics exists for a broad range of
parameter settings, and that the unfolding of these dynamics can
be implemented bymodulating the top-down connection weight.
Our model address this in the context of olfaction (Oswald and
Urban, 2012a), but it may be applicable to a number of other
sensory systems that share a similar architecture. For instance,
the axonal projections from the cingulate of frontal cortex to
GABAergic inhibitory neurons in V1 of the mouse visual system
are organized (Zhang et al., 2014), and may therefore serve
an analogous function as piriform projections to granule cells.
Consequently, we identified a generalized principle by which
control of inhibition via top-down weights can support a number
of computations essential for neural circuit function.

Finally, we found that the firing rate representations of
mitral/tufted cells, granule cells, and piriform neurons resided
within distinct domains on a manifold defined by the stimulus
and the weight of feedback. These domains corresponded to
transitions in the dynamics of the system. Changes in the top-
down weights moved a transition boundary that delineating
these domains across different stimuli. When two stimuli were
on opposites sides of this transition boundary, their dynamics
operated under two different regimes, and their representations
were pushed further apart. By contrast, when the stimuli were
both on the same side of the transition boundary, within regimes
corresponding to similar dynamics, their activity became more
synchronous; effectively binding those stimuli together. Changes
in top-down weight were therefore changes in the location of the
transition boundary that could eithermarshal the representations
of two stimuli together or push them apart. In conclusion, we
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identified a model that links the dynamics of neural systems with
the computations they are hypothesized to perform and may be
used as a generalized framework to study the diverse effects of
feedback onto inhibitory populations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

KP conceived and supervised the project. ZC
performed all the experiments and analysis. ZC and

KP made the figures and wrote the manuscript. All
authors contributed to the article and approved the
submitted version.

FUNDING

This study was supported by funding from the National Institutes
of Health (NIH) and the National Science Foundation (NSF). KP
was funded by NIH R01 MH113924, NSF CAREER 1749772, the
Cystinosis Research Foundation, and the Kilian J. and Caroline
F. Schmitt Foundation. This manuscript has been released as
a pre-print at https://www.biorxiv.org/content/10.1101/2020.02.
25.964965v1 (Chen and Padmanabhan, 2020).

REFERENCES

Abraham, N. M., Egger, V., Shimshek, D. R., Renden, R., Fukunaga, I., Sprengel,

R., et al. (2010). Synaptic inhibition in the olfactory bulb accelerates odor

discrimination in mice. Neuron 65, 399–411. doi: 10.1016/j.neuron.2010.

01.009

Arenkiel, B. R., Hasegawa, H., Yi, J. J., Larsen, R. S., Wallace, M. L.,

Philpot, B. D., et al. (2011). Activity-induced remodeling of olfactory

bulb microcircuits revealed by monosynaptic tracing. PLoS ONE 6:e29423.

doi: 10.1371/journal.pone.0029423

Boyd, A. M., Sturgill, J. F., Poo, C., and Isaacson, J. S. (2012). Cortical

feedback control of olfactory bulb circuits. Neuron 76, 1161–1174.

doi: 10.1016/j.neuron.2012.10.020

Brea, J. N., Kay, L. M., and Kopell, N. J. (2009). Biophysical model

for gamma rhythms in the olfactory bulb via subthreshold oscillations.

Proc. Natl. Acad. Sci. U.S.A. 106, 21954–21959. doi: 10.1073/pnas.0910

964106

Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.

Science 304, 1926–1929. doi: 10.1126/science.1099745

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al.

(2009). Driving fast-spiking cells induces gamma rhythm and controls sensory

responses. Nature 459, 663–667. doi: 10.1038/nature08002

Carey, R. M., and Wachowiak, M. (2011). Effect of sniffing on the temporal

structure of mitral/tufted cell output from the olfactory bulb. J. Neurosci. 31,

10615–10626. doi: 10.1523/JNEUROSCI.1805-11.2011

Cauthron, J. L., and Stripling, J. S. (2014). Long-term plasticity in the

regulation of olfactory bulb activity by centrifugal fibers from piriform

cortex. J. Neurosci. 34, 9677–9687. doi: 10.1523/JNEUROSCI.1314-1

4.2014

Cayco-Gajic, N. A., and Silver, R. A. (2019). Re-evaluating circuit

mechanisms underlying pattern separation. Neuron 101, 584–602.

doi: 10.1016/j.neuron.2019.01.044

Chen, Z., and Padmanabhan, K. (2020). Top-down control of inhibition reshapes

neural dynamics giving rise to a diversity of computations. bioRxiv [Preprint].

doi: 10.1101/2020.02.25.964965

Cleland, T. A., and Linster, C. (2005). Computation in the olfactory system. Chem.

Sens. 30, 801–813. doi: 10.1093/chemse/bji072

Cowan, J. D., Neuman, J., and van Drongelen, W. (2016). Wilson–

cowan equations for neocortical dynamics. J. Math. Neurosci. 6, 1–24.

doi: 10.1186/s13408-015-0034-5

Davison, I. G., and Ehlers, M. D. (2011). Neural circuit mechanisms for pattern

detection and feature combination in olfactory cortex. Neuron 70, 82–94.

doi: 10.1016/j.neuron.2011.02.047

Deshpande, A., Bergami, M., Ghanem, A., Conzelmann, K.-K., Lepier, A., Götz,

M., et al. (2013). Retrograde monosynaptic tracing reveals the temporal

evolution of inputs onto new neurons in the adult dentate gyrus and olfactory

bulb. Proc. Natl. Acad. Sci. U.S.A. 110, E1152–E1161. doi: 10.1073/pnas.12189

91110

Egger, V., Svoboda, K., and Mainen, Z. F. (2005). Dendrodendritic synaptic signals

in olfactory bulb granule cells: local spine boost and global low-threshold spike.

J. Neurosci. 25, 3521–3530. doi: 10.1523/JNEUROSCI.4746-04.2005

Ermentrout, G. B., and Kopell, N. (1990). Oscillator death in systems of coupled

neural oscillators. SIAM J. Appl. Math. 50, 125–146. doi: 10.1137/0150009

Franci, A., Herrera-Valdez, M. A., Lara-Aparicio, M., and Padilla-Longoria, P.

(2018). Synchronization, oscillator death, and frequency modulation in a

class of biologically inspired coupled oscillators. Front. Appl. Math. Stat. 4:51.

doi: 10.3389/fams.2018.00051

Franks, K. M., and Isaacson, J. S. (2006). Strong single-fiber sensory inputs

to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363.

doi: 10.1016/j.neuron.2005.12.026

Friedrich, R. W., and Laurent, G. (2001). Dynamic optimization of odor

representations by slow temporal patterning of mitral cell activity. Science 291,

889–894. doi: 10.1126/science.291.5505.889

Galan, R. F., Fourcaud-Trocme, N., Ermentrout, G. B., and Urban, N. N. (2006).

Correlation-induced synchronization of oscillations in olfactory bulb neurons.

J. Neurosci. 26, 3646–3655. doi: 10.1523/JNEUROSCI.4605-05.2006

Guckenheimer, J., and Holmes, P. (2013). Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields. New York, NY: Springer Science &

Business Media.

Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., and McCormick,

D. A. (2005). Inhibitory postsynaptic potentials carry synchronized

frequency information in active cortical networks. Neuron 47, 423–435.

doi: 10.1016/j.neuron.2005.06.016

Kapoor, V., Provost, A. C., Agarwal, P., and Murthy, V. N. (2016). Activation of

raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output

channels. Nat. Neurosci. 19, 271–282. doi: 10.1038/nn.4219

Kapoor, V., and Urban, N. N. (2006). Glomerulus-specific, long-latency activity

in the olfactory bulb granule cell network. J. Neurosci. 26, 11709–11719.

doi: 10.1523/JNEUROSCI.3371-06.2006

Kay, L. M., Beshel, J., Brea, J., Martin, C., Rojas-Libano, D., and Kopell, N.

(2009). Olfactory oscillations: the what, how and what for. Trends Neurosci. 32,

207–214. doi: 10.1016/j.tins.2008.11.008

Kuznetsov, Y. A. (2013). Elements of Applied Bifurcation Theory. New York, NY:

Springer Science & Business Media.

Ledoux, E., and Brunel, N. (2011). Dynamics of networks of excitatory and

inhibitory neurons in response to time-dependent inputs. Front. Comput.

Neurosci. 5:25. doi: 10.3389/fncom.2011.00025

Leutgeb, J. K., Leutgeb, S., Moser, M.-B., andMoser, E. I. (2007). Pattern separation

in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966.

doi: 10.1126/science.1135801

Li, G., and Cleland, T. A. (2017). A coupled-oscillator model of

olfactory bulb gamma oscillations. PLoS Comput. Biol. 13:e1005760.

doi: 10.1371/journal.pcbi.1005760

Lledo, P.-M., Alonso, M., and Grubb, M. S. (2006). Adult neurogenesis and

functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193.

doi: 10.1038/nrn1867

Frontiers in Computational Neuroscience | www.frontiersin.org 16 July 2020 | Volume 14 | Article 59224

https://www.biorxiv.org/content/10.1101/2020.02.25.964965v1
https://www.biorxiv.org/content/10.1101/2020.02.25.964965v1
https://doi.org/10.1016/j.neuron.2010.01.009
https://doi.org/10.1371/journal.pone.0029423
https://doi.org/10.1016/j.neuron.2012.10.020
https://doi.org/10.1073/pnas.0910964106
https://doi.org/10.1126/science.1099745
https://doi.org/10.1038/nature08002
https://doi.org/10.1523/JNEUROSCI.1805-11.2011
https://doi.org/10.1523/JNEUROSCI.1314-14.2014
https://doi.org/10.1016/j.neuron.2019.01.044
https://doi.org/10.1101/2020.02.25.964965
https://doi.org/10.1093/chemse/bji072
https://doi.org/10.1186/s13408-015-0034-5
https://doi.org/10.1016/j.neuron.2011.02.047
https://doi.org/10.1073/pnas.1218991110
https://doi.org/10.1523/JNEUROSCI.4746-04.2005
https://doi.org/10.1137/0150009
https://doi.org/10.3389/fams.2018.00051
https://doi.org/10.1016/j.neuron.2005.12.026
https://doi.org/10.1126/science.291.5505.889
https://doi.org/10.1523/JNEUROSCI.4605-05.2006
https://doi.org/10.1016/j.neuron.2005.06.016
https://doi.org/10.1038/nn.4219
https://doi.org/10.1523/JNEUROSCI.3371-06.2006
https://doi.org/10.1016/j.tins.2008.11.008
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.1126/science.1135801
https://doi.org/10.1371/journal.pcbi.1005760
https://doi.org/10.1038/nrn1867
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Chen and Padmanabhan Top-Down Control Reshapes Dynamics

Markopoulos, F., Rokni, D., Gire, D. H., and Murthy, V. N. (2012). Functional

properties of cortical feedback projections to the olfactory bulb. Neuron 76,

1175–1188. doi: 10.1016/j.neuron.2012.10.028

Miura, K., Mainen, Z. F., and Uchida, N. (2012). Odor representations in olfactory

cortex: distributed rate coding and decorrelated population activity.Neuron 74,

1087–1098. doi: 10.1016/j.neuron.2012.04.021

Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N. R., et al.

(2011). Cortical representations of olfactory input by trans-synaptic tracing.

Nature 472, 191–196. doi: 10.1038/nature09714

Nunes, D., and Kuner, T. (2015). Disinhibition of olfactory bulb granule

cells accelerates odour discrimination in mice. Nat. Commun. 6:8950.

doi: 10.1038/ncomms9950

Nusser, Z., Kay, L. M., Laurent, G., Homanics, G. E., and Mody, I. (2001).

Disruption of GABAA receptors on GABAergic interneurons leads to increased

oscillatory power in the olfactory bulb network. J. Neurophysiol. 86, 2823–2833.

doi: 10.1152/jn.2001.86.6.2823

Oswald, A. M., and Urban, N. N. (2012a). There and back again: the corticobulbar

loop. Neuron 76, 1045–1047. doi: 10.1016/j.neuron.2012.12.006

Oswald, A. M. M., and Urban, N. N. (2012b). Interactions between behaviorally

relevant rhythms and synaptic plasticity alter coding in the piriform cortex. J.

Neurosci. 32, 6092–6104. doi: 10.1523/JNEUROSCI.6285-11.2012

Padmanabhan, K., Osakada, F., Tarabrina, A., Kizer, E., Callaway, E.

M., Gage, F. H., et al. (2016). Diverse representations of olfactory

information in centrifugal feedback projections. J. Neurosci. 36, 7535–7545.

doi: 10.1523/JNEUROSCI.3358-15.2016

Padmanabhan, K., Osakada, F., Tarabrina, A., Kizer, E., Callaway, E. M.,

Gage, F. H., et al. (2019). Centrifugal inputs to the main olfactory bulb

revealed through whole brain circuit-mapping. Front. Neuroanat. 12:115.

doi: 10.3389/fnana.2018.00115

Petzold, G. C., Hagiwara, A., and Murthy, V. N. (2009). Serotonergic modulation

of odor input to the mammalian olfactory bulb. Nat. Neurosci. 12, 784–791.

doi: 10.1038/nn.2335

Shipley, M. T., and Adamek, G. D. (1984). The connections of the mouse

olfactory bulb: a study using orthograde and retrograde transport of wheat

germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 12,

669–688. doi: 10.1016/0361-9230(84)90148-5

Shusterman, R., Smear, M. C., Koulakov, A. A., and Rinberg, D. (2011).

Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 14:1039.

doi: 10.1038/nn.2877

Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin

neurons and gamma rhythms enhance cortical circuit performance.Nature 459,

698–702. doi: 10.1038/nature07991

Stettler, D. D., and Axel, R. (2009). Representations of odor in the piriform cortex.

Neuron 63, 854–864. doi: 10.1016/j.neuron.2009.09.005

Suzuki, N., and Bekkers, J. M. (2011). Two layers of synaptic processing

by principal neurons in piriform cortex. J. Neurosci. 31, 2156–2166.

doi: 10.1523/JNEUROSCI.5430-10.2011

Tiesinga, P., and Sejnowski, T. J. (2009). Cortical enlightenment: are attentional

gamma oscillations driven by ING or PING? Neuron 63, 727–732.

doi: 10.1016/j.neuron.2009.09.009

Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., and McNaughton, B. L. (1997).

Paradoxical effects of external modulation of inhibitory interneurons. J.

Neurosci. 17, 4382–4388. doi: 10.1523/JNEUROSCI.17-11-04382.1997

Uchida, N., and Mainen, Z. F. (2003). Speed and accuracy of olfactory

discrimination in the rat. Nat. Neurosci. 6, 1224–1229. doi: 10.1038/nn1142

Urban, N. N., and Sakmann, B. (2002). Reciprocal intraglomerular excitation

and intra- and interglomerular lateral inhibition between mouse olfactory

bulb mitral cells. J. Physiol. 542, 355–367. doi: 10.1113/jphysiol.2001.

013491

Veltz, R., and Sejnowski, T. J. (2015). Periodic forcing of inhibition-stabilized

networks: nonlinear resonances and phase-amplitude coupling. Neural.

Comput. 27, 2477–2509. doi: 10.1162/NECO_a_00786

Wachowiak, M. (2011). All in a sniff: olfaction as a model for

active sensing. Neuron 71, 962–973. doi: 10.1016/j.neuron.2011.

08.030

Wesson, D. W., Carey, R. M., Verhagen, J. V., and Wachowiak, M. (2008).

Rapid encoding and perception of novel odors in the rat. PLoS Biol. 6:82.

doi: 10.1371/journal.pbio.0060082

Whittington, M. A., Traub, R., Kopell, N., Ermentrout, B., and Buhl,

E. (2000). Inhibition-based rhythms: experimental and mathematical

observations on network dynamics. Int. J. Psychophysiol. 38, 315–336.

doi: 10.1016/S0167-8760(00)00173-2

Whittington, M. A., Traub, R. D., and Jefferys, J. G. (1995). Synchronized

oscillations in interneuron networks driven by metabotropic glutamate

receptor activation. Nature 373, 612–615. doi: 10.1038/373612a0

Willhite, D. C., Nguyen, K. T., Masurkar, A. V., Greer, C. A., Shepherd, G. M., and

Chen, W. R. (2006). Viral tracing identifies distributed columnar organization

in the olfactory bulb. Proc. Natl Acad. Sci. U.S.A. 103, 12592–12597.

doi: 10.1073/pnas.0602032103

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions

in localized populations of model neurons. Biophys. J. 12, 1–24.

doi: 10.1016/S0006-3495(72)86068-5

Yassa, M. A., and Stark, C. E. (2011). Pattern separation in the

hippocampus. Trends Neurosci. 34, 515–525. doi: 10.1016/j.tins.2011.

06.006

Zhang, S., Xu, M., Kamigaki, T., Do, J. P. H., Chang, W.-C., Jenvay, S.,

et al. (2014). Long-range and local circuits for top-down modulation

of visual cortex processing. Science 345, 660–665. doi: 10.1126/science.12

54126

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Chen and Padmanabhan. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 July 2020 | Volume 14 | Article 59225

https://doi.org/10.1016/j.neuron.2012.10.028
https://doi.org/10.1016/j.neuron.2012.04.021
https://doi.org/10.1038/nature09714
https://doi.org/10.1038/ncomms9950
https://doi.org/10.1152/jn.2001.86.6.2823
https://doi.org/10.1016/j.neuron.2012.12.006
https://doi.org/10.1523/JNEUROSCI.6285-11.2012
https://doi.org/10.1523/JNEUROSCI.3358-15.2016
https://doi.org/10.3389/fnana.2018.00115
https://doi.org/10.1038/nn.2335
https://doi.org/10.1016/0361-9230(84)90148-5
https://doi.org/10.1038/nn.2877
https://doi.org/10.1038/nature07991
https://doi.org/10.1016/j.neuron.2009.09.005
https://doi.org/10.1523/JNEUROSCI.5430-10.2011
https://doi.org/10.1016/j.neuron.2009.09.009
https://doi.org/10.1523/JNEUROSCI.17-11-04382.1997
https://doi.org/10.1038/nn1142
https://doi.org/10.1113/jphysiol.2001.013491
https://doi.org/10.1162/NECO_a_00786
https://doi.org/10.1016/j.neuron.2011.08.030
https://doi.org/10.1371/journal.pbio.0060082
https://doi.org/10.1016/S0167-8760(00)00173-2
https://doi.org/10.1038/373612a0
https://doi.org/10.1073/pnas.0602032103
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/j.tins.2011.06.006
https://doi.org/10.1126/science.1254126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


fpsyg-11-01555 July 11, 2020 Time: 15:30 # 1

ORIGINAL RESEARCH
published: 14 July 2020

doi: 10.3389/fpsyg.2020.01555

Edited by:
Daya Shankar Gupta,

Camden County College,
United States

Reviewed by:
Pietro Aricò,

Sapienza University of Rome, Italy
Ariel Telpaz,

General Motors, United States

*Correspondence:
Hang Zhang

kevinhangbnu@foxmail.com

Specialty section:
This article was submitted to

Cognitive Science,
a section of the journal
Frontiers in Psychology

Received: 22 February 2020
Accepted: 10 June 2020
Published: 14 July 2020

Citation:
Wang Y-Y, Sun L, Liu Y-W,

Pan J-H, Zheng Y-M, Wang Y-F,
Zang Y-F and Zhang H (2020) The

Low-Frequency Fluctuation
of Trial-by-Trial Frontal Theta Activity

and Its Correlation With
Reaction-Time Variability in Sustained

Attention. Front. Psychol. 11:1555.
doi: 10.3389/fpsyg.2020.01555

The Low-Frequency Fluctuation of
Trial-by-Trial Frontal Theta Activity
and Its Correlation With
Reaction-Time Variability in
Sustained Attention
Yao-Yao Wang1,2,3, Li Sun4, Yi-Wei Liu1,2,3, Jia-Hui Pan1,2,3, Yu-Ming Zheng1,2,3,
Yu-Feng Wang4, Yu-Feng Zang1,2,3 and Hang Zhang1,2,3*

1 Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, China, 2 Center for
Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China, 3 Zhejiang Key
Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China, 4 Institute of Mental Health, The Sixth
Hospital, Peking University, Beijing, China

Reaction-time variability is a critical index of sustained attention. However, researchers
still lack effective measures to establish the association between neurophysiological
activity and this behavioral variability. Here, the present study recorded reaction time (RT)
and cortical electroencephalogram (EEG) in healthy subjects when they continuously
performed an alternative responding task. The frontal theta activity and reaction-time
variability were examined trial by trial using the measures of standard deviation (SD)
in the time domain and amplitude of low-frequency fluctuation (ALFF) in the frequency
domain. Our results showed that the SD of reaction-time variability did not have any
correlation with the SD of trial-by-trial frontal theta activity, and the ALFF of reaction-
time variability has a significant correlation with the ALFF of trial-by-trial frontal theta
activity in 0.01–0.027 Hz. These results suggested the methodological significance of
ALFF in establishing the association between neurophysiological activity and reaction-
time variability. Furthermore, these findings also support the low-frequency fluctuation
as a potential feature of sustained attention.

Keywords: sustained attention, EEG, frontal theta activity, reaction-time variability, trial-by-trial fluctuation,
frequency-dependent fluctuation

INTRODUCTION

The capacity of sustained attention is of great importance. It refers to focusing on a certain task
for a long period of time (Posner et al., 2014). Many occupations in our daily lives require a high
level of sustained attention, e.g., driving vehicles, industrial control, and air traffic control (Aricò
et al., 2016; Reinerman-Jones et al., 2016; Sebastiani et al., 2020). Declined sustained attention was
documented in studies of several physiological states, e.g., alcoholism (Coles et al., 2002), sleep
deprivation (Gunzelmann et al., 2009), and fatigue (Gunzelmann et al., 2011). Moreover, the deficit
of sustained attention is usually identified as symptoms of various neuropsychiatric disorders,
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e.g., attention-deficit hyperactivity disorder (ADHD) (Barkley,
1997), and autism spectrum disorders (ASD) (Christakou
et al., 2013). The practical importance of sustained attention,
therefore, attracted interests from the research community, and
numerous studies have been devoted to the behavioral and
neurophysiological explorations of sustained attention.

Behavioral studies on sustained attention always employ
examine stimulus-response tasks, e.g., alternative responding
task (Helps et al., 2010), Go/NoGo task (Kirmizi-Alsan et al.,
2006), and Eriksen flanker task (Castellanos et al., 2005). Subjects
performing these tasks were requested to continuously detect
stimulus, and their behavioral data of response and reaction
time (RT) were recorded simultaneously. Several measures of
the behavioral data were used to assess the level of sustained
attention, e.g., error rate and intraindividual variability of RT.
The error rate did not exhibit good test–retest reliability, and it
was suggested to be more related with the response strategy (Liu
et al., 2017; Steinborn et al., 2018). Therefore, the measure of
intraindividual variability of RT was employed more extensively.
For the individual, RT variability could be assessed by calculating
the standard deviation of the reaction time (RT-SD) (Castellanos
et al., 2005; Flehmig et al., 2007), and this measure in some
studies was also standardized with the mean value of reaction
time (RT-Mean) (Epstein et al., 2011; Tamm et al., 2012).
RT-SD has good test–retest reliability (Liu et al., 2017), and
their functional significance has been demonstrated by many
clinical investigations. Observation from these investigations
confirmed the linking between increased RT variability and the
symptoms of sustained attention deficit, e.g., ADHD (Di Martino
et al., 2008; Epstein et al., 2011), bipolar disorder (Brotman
et al., 2009), and traumatic brain injury (TBI) (Burton et al.,
2002). This functional significance of RT variability not only
attracted increasing number of clinical trials (Rosch et al., 2013;
James et al., 2016; Salum et al., 2019) but also promoted the
neurophysiological explorations.

Cortical electroencephalogram (EEG) explorations have
contributed many insightful evidences for the neurophysiological
underpinning of sustained attention. Studies examining EEG
identified several rhythmic activities, e.g., theta (4–8 Hz), alpha
(8–14 Hz), and beta (14–30 Hz) (Buzsaki, 2006; Clayton et al.,
2015), and some experimental evidences suggested that these
EEG rhythmic activities were in response to distinct cognitive
processes of sustained attention. Alpha was mainly in response
to the inhibition of task-irrelevant processes (Klimesch et al.,
2007; Uusberg et al., 2013), and beta could affect the attentional
engagement to stimulus (Oswal et al., 2012; Coelli et al., 2015; Li
et al., 2017; Shapiro et al., 2017). Theta was suggested to play a
role in attentional control (Cohen and Donner, 2013; Cavanagh
and Frank, 2014) and action monitoring process (Cavanagh
et al., 2012; Pandey et al., 2016). Furthermore, studies attempt
to establish the association between EEG rhythmic activity and
behavior, and theta has been proven to be an important target
(Helfrich et al., 2018; Fiebelkorn and Kastner, 2019). Increased
theta activity, specifically the theta activity of the frontal brain
regions, was identified in the conditions requiring higher level
of sustained attention (Jensen and Tesche, 2002; Mitchell et al.,
2008; Sauseng et al., 2010). More importantly, several studies

reported that frontal theta activity successfully predicted the
behavior during attention-demanding tasks and was related to
prolonged task performance (Clayton et al., 2015; Helfrich et al.,
2018). It was observed that increased frontal theta activity was
in response of greater error rates and prolonged RTs (Boksem
et al., 2005; Cavanagh and Shackman, 2015; Cooper et al.,
2019); nevertheless, these results were not consistent across
studies (Loo et al., 2004; van Driel et al., 2012; Wascher et al.,
2014). Similar to RT variability, continuous recording of EEG
activity typically exhibited a pattern of waxing and waning
across trials of tests (Ratcliff et al., 2009; VanRullen et al.,
2011). Inspired by this, recent studies explored the trial-by-trial
fluctuation of EEG activity (Truccolo et al., 2002; Fox et al.,
2006; McLoughlin et al., 2014; Adamo et al., 2015). Studies
used the measure of SD to assess the frontal theta activity
across different trials and directly examined the correlation
between the SD of trial-by-trial frontal theta activity and RT-
SD; however, they did not identify any significant results
(McLoughlin et al., 2014).

It was worthy to note that an increasing number of studies
documented the periodical variability of RT in sustained
attention (Castellanos et al., 2005; Di Martino et al., 2008;
Helps et al., 2011). This observation was firstly reported by
Castellanos et al. (2005). They employed frequency-dependent
analyses to examine RT fluctuation of children with ADHD when
they perform a continuous stimulus–response test. It was found
that the RT variability of the children with ADHD had peak
amplitude around 0.05 Hz (about 20 s a cycle), and this peak
amplitude of RT could be eliminated by using the medications
of methylphenidate. These results, for the first time, revealed
the periodical variability of RT for sustained attention. Since
this periodical fluctuation was observed in the relatively low-
frequency band (<0.2 Hz, >5 s/cycle), some studies employed
the term amplitude of low-frequency fluctuation to depict this
measure of reaction time (RT-ALFF). RT-ALFF as a measure
of the frequency domain exhibited good test–retest reliability
(ICC = 0.69) (Liu et al., 2017), and it has been repeatedly
employed as a validity measure in examining the subjects with
sustained attention deficits (Johnson et al., 2007; Vaurio et al.,
2009; Karalunas et al., 2013). Studies usually investigated RT-
ALFF in several frequency bands, including <0.01, 0.01–0.027,
0.027–0.073, and 0.073–0.167 Hz (Di Martino et al., 2008;
Adamo et al., 2014, 2015). These frequency bands are defined by
Penttonen and Buzsáki (2003) based on specific properties and
physiological function. It has been found that RT-ALFF in three
specific frequency bands (0.01–0.027 Hz; 0.027–0.073 Hz; 0.073–
0.20 Hz) was strongly related to the ratings of ADHD symptoms
(Mairena et al., 2012). These behavioral findings suggested that
low-frequency fluctuation may be a feature of sustained attention,
which encouraged us to investigate the ALFF of trial-by-trial
frontal theta activity. We expected that the ALFF of trial-by-
trial frontal theta activity could exhibit association with the ALFF
of RT variability.

To verify this view, we performed an exploratory investigation.
Data of RT and EEG activity were recorded simultaneously
when subjects performing a sustained attention test. Trial-by-
trial fluctuation of frontal theta activity and RT variability were
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examined with the measures of SD and ALFF (in the frequency
bands of 0.01–0.027, 0.027–0.073, and 0.073–0.167 Hz). Then,
EEG-behavior correlations were further assessed in each
frequency band, respectively.

MATERIALS AND METHODS

Participants
Seventy healthy participants (37 females; 21 ± 2 years old)
were recruited in this study. All of the participants were right-
handed, and no individual reported any history of brain injury
or mental disorders. The RT data and EEG recording were
collected from all participants during a continuously performed
test, i.e., alternative responding task. According to the inclusion
criteria of previous studies (Geurts et al., 2008; Liu et al., 2017),
4 participants (3 females) showing extreme mean RT values
(longer than 3 SDs beyond the mean RT for all the participants)
were excluded from subsequent analyses. At last, data from 66
participants (34 females; 21 ± 2 years old) were included in this
study. All participants gave written informed consent prior to
their participation. The study was approved by the Center for
Cognition and Brain Disorders (CCBD) Ethics Committee of
Hangzhou Normal University.

Experimental Paradigm
The whole experiment involves two sessions of test, i.e., resting
session and sustained attention task session, and the order of the
two sessions was counterbalanced across all participants. Since
the present study focused on trial-by-trial fluctuation, data from
the resting session were not involved in the analysis. In the
sustained attention task session, all participants performed the
alternative responding task for 8 min (Helps et al., 2010). In
the task, two kinds of stimuli, i.e., “>” and “<,” were pseudo-
randomly presented for 500 ms interleaved with a fixation cross,
and the inter-trial-interval (ITI) was 3000 ms. Each participant
was instructed to determine the direction (left or right) of the
arrow and to press “F” or “J” on the computer keyboard with
the index finger. Before this session, a practice involving six trials
was employed to ensure each participant was familiar with the
procedure of the task.

Electrophysiological Recording and
Preprocessing
The EEG data were recorded using a 32-channel (Brain
Products, Germany) extended 10–20 system montage. The
original recording reference was positioned at FCz. A sampling
rate of 500 Hz was used. The filter bandwidth at recording
was 0.016–250 Hz. All impedances were kept below 5 k�. The
EEG data from the task session was preprocessed using Vision
Analyzer software (Brain Products, Germany). Specifically, the
channel signals were firstly re-referenced to average reference.
After applying a notch filter (50 Hz) and band pass filtering (0.1–
70 Hz), eye movement artifacts were corrected using independent
component analysis (ICA, Jung et al., 2000). Moreover, the
stimulus-locked segments ranged from 0 to 3000 ms according

to the ITI of the task. If the amplitude of the EEG data
exceeded ± 100 mV at any electrode, a segment of 3 s around
this artifact was excluded from further analyses; lastly, an average
number of 158 (range from 137 to 160) artifact-free trials out of a
total of 160 trials were available.

Data Analysis
Behavioral Data Analyses
Behavioral measures, including several conventional measures
and RT-ALFF, were calculated. The conventional measures
including RT-Mean, RT-SD, and error rate (including
commission error and omission error) were firstly acquired
from each participant. Then, RT-ALFF was assessed through
the following steps: (1) Missing and anticipatory responses
(RT < 100 ms) were interpolated by linear interpolation to
reconstruct an integrated time series. (2) The RT time series
(divided by RT-Mean) were transformed from the time domain
to the frequency domain through fast Fourier transformation
(FFT), and the amplitude at each frequency point was obtained.
(3) RT-ALFF was calculated as the mean amplitude in a fixed
frequency band. The examinable frequency band was 0.002–
0.167 Hz according to Nyquist’s sampling theorem (sampling rate
is 0.33 Hz corresponding to the ITI of the task). RT-ALFF was
calculated in three sub-frequency bands including 0.01–0.027,
0.027–0.073, and 0.073–0.167 Hz, which were widely explored in
previous studies (Di Martino et al., 2008; Adamo et al., 2015).

Electrophysiological Data Analyses
Electroencephalogram recording of the whole testing was
analyzed through FFT, and the theta activity (4–8 Hz) mainly
located in the frontal area was acquired at the electrodes of
F3, FZ, and F4, respectively (Figures 1A,B). In the same way,
trial-by-trial theta activity of each electrode was acquired based
on the EEG recording of each single trial (each trial lasting
3000 ms) (Figure 1C).

Trial-by-trial theta activity (F3, FZ, and F4) was examined
through two measures, Theta-SD and Theta-ALFF. For each
frontal electrode, Theta-SD was calculated as the SD value of theta
activity across all available trials. Theta-ALFF for each frontal
electrode was assessed using the same analysis procedure of RT-
ALFF (see details in Figure 2). Concretely, the theta activity of
missing trials was replaced using linear interpolation between
the theta activity of adjacent trials. Then, the time series of
theta activity were divided by the mean value and were further
transformed from the time domain to the frequency domain
through FFT. At last, the average amplitude for a fixed frequency
band was calculated as Theta-ALFF. Here, Theta-ALFF was
examined in three frequency bands, i.e., 0.01–0.027, 0.027–0.073,
and 0.073–0.167 Hz, corresponding to the analysis procedure
of RT-ALFF. All of the analyses were implemented through our
own MATLAB code.

Behavior-EEG Correlation Analyses
The correlations between behavioral measures and EEG measures
were examined using Kendall rank-correlation analysis, since
the data is not normally distributed (Shapiro–Wilk test,
p-values < 0.045). The extreme values (longer than 3 SDs
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FIGURE 1 | The procedure of EEG data analyses. (A) EEG topographic map showing the theta activity mainly located in the frontal area during the sustained
attention task. (B) Frontal theta EEG activity was analyzed from 4 to 8 Hz at F3, FZ, and F4. (C) The procedure of the trial-by-trial analysis of EEG activity.
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FIGURE 2 | The procedure of the frequency-dependent analysis of reaction time and trial-by-trial theta activity.

beyond the mean value of measure for all the participants) of
RT data and EEG data were not involved in the analyses. The
correlations between RT-SD and Theta-SD were first investigated,
and then the correlations between RT-ALFF and Theta-ALFF
were assessed in the frequency bands (0.01–0.027, 0.027–0.073,
and 0.073–0.167 Hz). Moreover, we also examined the correlation
between theta activity of whole testing and the above RT
measures. All of these correlation analyses were performed using
IBM SPSS Statistics (Version 20.0).

RESULTS

Behavioral Results
Descriptive statistics of conventional behavioral measures were
depicted in Table 1, including RT-Mean, RT-SD, commission
error rate, and omission error rate, and the measures of RT-ALFF
in all frequency bands are shown in Table 2.

Correlations Between RT-SD and
Theta-SD
The time series of RT are manifested in Figure 3D, and
Figures 3A–C exhibited the time series of trial-by-trial theta
activity at F3, FZ, and F4. The values of Theta-SD are shown
in Table 3. The correlations between RT-SD and Theta-SD were
assessed, and no significant correlation between RT-SD and
Theta-SD was identified (each r < 0.01, p > 0.87) (Table 3).
Moreover, no significant correlation between the theta activity of
whole testing and RT-SD was identified (each r < 0.05, p > 0.56).

TABLE 1 | Conventional behavioral measures for the task performance.

Behavioral measures Mean ± SD (N = 66)

RT-Mean (ms) 401.07 ± 39.88

RT-SD (ms) 63.87 ± 17.09

Commission error rate (%) 1.78 ± 1.75

Omission error rate (%) 0.42 ± 0.81
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TABLE 2 | RT-ALFF in each frequency band for the task performance.

Frequency bands RT-ALFF

Mean ± SD (N = 66)

0.01–0.027 Hz 1.86 ± 0.61

0.027–0.073 Hz 1.69 ± 0.38

0.073–0.167 Hz 1.71 ± 0.37

Correlations Between RT-ALFF and
Theta-ALFF
The frequency-dependent amplitude of reaction-time fluctuation
is shown in Figure 4D, and Figures 4A–C exhibited the
frequency-dependent amplitude of trial-by-trial theta activity at
F3, FZ, and F4. Moreover, the values of Theta-ALFF in each
frequency band are shown in Table 4.

As shown in Figure 5, a significant correlation was observed
in 0.01–0.027 Hz, and RT-ALFF was negatively correlated with
Theta-ALFF at F3 (r = −0.26, p = 0.003, p< 0.05 after Bonferroni
correction for three bands across three electrodes), not at F4 and
FZ (Figure 5A). Then, the frequency band of 0.01–0.027 Hz was
divided into two sub-frequency bands, i.e., 0.01–0.019 and 0.020–
0.027 Hz. Correlations between RT-ALFF and Theta-ALFF could
be reserved in the two bands (0.01–0.019 Hz, r = −0.22, p = 0.009
and 0.020–0.027 Hz, r = −0.22, p = 0.01).

TABLE 3 | Theta-SD and its correlations (Kendall rank correlation) with RT-SD.

Electrodes Theta-SD Correlations with RT-SD

Mean ± SD (N = 66) r p

F3 123.58 ± 56.95 0.01 0.87

FZ 140.04 ± 61.93 0.01 0.90

F4 120.05 ± 50.90 −0.003 0.97

No other significant correlations were found between RT-
ALFF and Theta-ALFF in the frequency bands of 0.027–0.073
and 0.073–0.167 Hz (each r < 0.11, p > 0.18) (Figures 5B,C).
Moreover, no significant correlation between the theta activity
of whole testing and RT-ALFF in any frequency bands was
identified (each r < 0.06, p > 0.46). In addition, the trial-by-
trial ALFF of delta (1–4 Hz), alpha (8–14 Hz), beta (14–30 Hz),
and gamma (30–50 Hz) and its correlation with RT-ALFF in
each frequency band was examined separately, and no significant
correlation was observed (each r < 0.13, p > 0.12) (see details in
Supplementary Table S2).

DISCUSSION

The present study explored the association between trial-by-trial
fluctuation of frontal theta activity and RT variability. Measures

FIGURE 3 | The time series of trial-by-trial theta activity and reaction time (RT). The time series of trial-by-trial theta activity at F3 (A), FZ (B), and F4 (C) and the time
series of RT (D).
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FIGURE 4 | The frequency-dependent amplitude of trial-by-trial theta activity and reaction time (RT). The amplitude of trial-by-trial theta activity at F3 (A), FZ (B), and
F4 (C) and the amplitude of RT fluctuation (D) in the sampled frequencies (0.01–0.167 Hz).

of SD and ALFF were used to establish this association in
the time domain and frequency domain, respectively. It was
observed that RT variability did not show any relationship
with the trial-by-trial frontal theta activity when we used SD
as the measure. In contrast, a frequency-dependent correlation
between RT variability and trial-by-trial frontal theta activity
was revealed by the measure of ALFF. These results provided
a methodological insight for future studies on the neural
underpinning of sustained attention.

Reaction-time variability was considered as a critical index of
the level of sustained attention (Betts et al., 2006; Flehmig et al.,
2007). Albeit intensive investigation, measures for establishing
the association between the RT variability and neurophysiological
activity was lacking (Rabbi et al., 2009; Clayton et al., 2015;
Fortenbaugh et al., 2017; O’Halloran et al., 2018). It is always

TABLE 4 | Theta-ALFF in each frequency band.

Frequency bands Theta-ALFF

Mean ± SD Mean ± SD Mean ± SD
(F3, N = 66) (FZ, N = 66) (F4, N = 66)

0.01–0.027 Hz 2.57 ± 0.98 2.73 ± 1.09 2.54 ± 0.93

0.027–0.073 Hz 2.35 ± 0.64 2.35 ± 0.64 2.32 ± 0.66

0.073–0.167 Hz 2.17 ± 0.60 2.17 ± 0.47 2.15 ± 0.58

failed to identify significant results when the researcher directly
examined the correlation between EEG activity, e.g., beta, theta,
and RT variability (Buyck and Wiersema, 2015). Similarly, the
present study also did not find any significant association between
theta activity at each electrode and RT variability. Experimental
observations indicated that the EEG activity always fluctuates
across trials in a similar way as RT variability (Ratcliff et al.,
2009; VanRullen et al., 2011). Thus, recent EEG explorations
highlighted the trial-by-trial fluctuation of EEG activity (Fox
et al., 2006; McLoughlin et al., 2014; Adamo et al., 2015). These
studies mostly focused on the frontal theta activity because
experimental evidences indicated the functional role of frontal
theta activity in attentional control (Cohen and Donner, 2013;
Cavanagh and Frank, 2014; McLoughlin et al., 2014). Consistent
with their finding, the present study did not identify any
significant correlation results when using SD to assess the RT
variability and trial-by-trial fluctuation of frontal theta activity
(McLoughlin et al., 2014). Methodically, SD is a measure of time
domain reflecting the overall fluctuation of the testing data. It
is worthy to note, however, that RT variability for sustained
attention may occur periodically (Castellanos et al., 2005; Di
Martino et al., 2008; Helps et al., 2011). Overall fluctuation
potentially masked the periodical variability. This is a possible
explanation for the findings on SD, and it further encouraged
us to examine the trial-by-trial frontal theta activity and RT
variability in frequency domain.
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FIGURE 5 | Correlations between RT-ALFF and Theta-ALFF in each frequency band. The correlation (Kendall rank correlation) between RT-ALFF and Theta-ALFF (at
the electrodes of F3, FZ, and F4) is shown in 0.01–0.027 Hz (A), 0.027–0.073 Hz (B), and 0.073–0.167 Hz (C). The amplitude of reaction time fluctuation and
trial-by-trial theta activity (at the electrodes of F3, FZ, and F4) were also depicted in the frequencies of 0.01–0.027 Hz (A), 0.027–0.073 Hz (B), and
0.073–0.167 Hz (C).

Frontiers in Psychology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 1555233

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01555 July 11, 2020 Time: 15:30 # 9

Wang et al. Frequency-Dependent Trial-by-Trial Frontal Theta Activity

Clinical investigations indicated that children with ADHD
could show increased RT variability in the low-frequency band
(<0.2 Hz) (Castellanos et al., 2005; Karalunas et al., 2013).
This observation was confirmed by many studies (Johnson
et al., 2007; Di Martino et al., 2008; Vaurio et al., 2009;
Helps et al., 2011), and these evidences indicated that the
low-frequency fluctuation was a potential feature of sustained
attention. Thus, the association between trial-by-trial frontal
theta activity and RT variability may be frequency-dependent.
This idea was confirmed by our findings of the ALFF analyses.
RT-ALFF exhibited a significant correlation with the Theta-
ALFF in 0.01–0.027 Hz. Behaviorally, frequency-dependent RT
variability has been linked with the attention lapse (Castellanos
et al., 2005; Johnson et al., 2007; Adamo et al., 2014). It
has been reported that RT-ALFF in 0.01–0.027 Hz could be
used as a predictor to explain scale ratings of inattention
of ADHD (Mairena et al., 2012). Here, our results may
provide some preliminary evidences for understanding the neural
underpinning of these behavioral observations. Nevertheless, the
functional significance of the frequency-dependent fluctuation of
frontal theta activity required to be further clarified. Notably,
the frequency-dependent correlation in the present study had
spatial specificity, and the correlation was only identified at
the left frontal electrode (F3). The importance of frontal theta
activity in sustained attention has been discussed (Missonnier
et al., 2006; Gongora et al., 2015); however, the functional
differences between the theta activity of the left and right frontal
areas were less addressed in these EEG studies. It was reported
that theta activity in the frontal brain areas may function in
attention maintenance (Cavanagh and Frank, 2014; Wascher
et al., 2014). Here, we found that the greater Theta-ALFF at
the left electrode (F3) was negatively correlated with lower RT-
ALFF. This finding reinforced the role of frontal theta activity
in attention maintenance. Source location analysis further linked
these findings with previous neuroimaging studies. The origin
of the theta activity was implicated in the ventral medial frontal
gyrus (vmPFC) (see details in the Supplementary Material),
and this region serving as a role of state monitoring has
been intensively reported by the functional magnetic resonance
imaging (fMRI) studies on sustained attention (Ridderinkhof
et al., 2004; Hasenkamp et al., 2012; Sepede et al., 2012; Clayton
et al., 2015). Nevertheless, the EEG data, collected from 32
electrodes, could not provide robust localization results (Michel
et al., 2004). Therefore, the linking between theta activity,
vmPFC, and behavior variability should be examined with more
experiments in the future. Moreover, significant correlation only
appears on the left frontal electrode (F3). This spatial specificity
suggested the functional differences between the theta activity
of left and right areas, which should be taken into account by
further explorations.

The present study sheds light on the low-frequency fluctuation
of trial-by-trial EEG activity. Actually, the low-frequency
fluctuation of brain activity has been documented in many
previous studies. However, most of these explorations focused on
fMRI but not on EEG activity (Sonuga-Barke and Castellanos,
2007; Zang et al., 2007). The findings of the present study
supported the feature of low-frequency fluctuation of sustained

attention, and thus, ALFF as a measure of frequency domain
will subserve the establishment of the association between RT
variability and EEG activity. Notably, the present study focused
on EEG rhythmic activity, and we believe that it is also an
interesting issue whether low-frequency fluctuation could be
identified in other EEG components, e.g., event-related potential
(ERP). Adamo et al. (2015) have attempted to explore this
issue, and they reported that the trial-by-trial variability of P3
and RT variability coupled at 0.073–0.167 Hz when subjects
performed the Go/NoGo tasks (Adamo et al., 2015). However,
their findings may be confounded by many experimental factors.
For example, the restriction of the signal-to-noise ratio makes it
challengeable to extract robust ERP from data of a single trial.
ERP is usually acquired from tasks with jitter in ITI, and the
jitter results in more frequency complexity. So, this issue still
needs to be examined with well-designed experiments in future
studies. Moreover, the low-frequency fluctuation of trial-by-trial
EEG activity, in the present study, is derived from the specific
task, i.e., alternative responding task. This task has obvious
advantages for frequency-dependent analysis. It has continuous
response, and the time series does not need to be reconstructed
statistically as is required by many non-responding trials in
more complex tasks. Behavioral evidences suggested that the
task complexity could induce the variation in the frequency
band of fluctuation for sustained attention (Johnson et al., 2007;
Di Martino et al., 2008; Helps et al., 2011; Karalunas et al.,
2013; Salum et al., 2019). Therefore, further experimentation
with different tasks is required to verify the band specificity
of our findings.

Several limitations existed in the present study. First, the
subjects were all healthy college students; further studies on
the subjects with attention deficits were required to examine
whether the trial-by-trial fluctuation of frontal theta activity
has clinical significance. Second, the ITI of the task paradigm
for the current study was 3000 ms, and thus, the frequencies
that we could analyze only ranged from 0.002 to 0.167 Hz,
according to the Nyquist sampling theorem. The explorations
on higher frequencies (>0.167 Hz) are necessary, and tasks with
fast behavior recording may be helpful for this issue. Third,
our finding has spatial specificity in F3, and this electrode is
spatially close to the original reference, FCz. This reference
during data collection is a fixed setting for the EEG device.
Therefore, it remains to be investigated whether this setting
affects our findings in F3.

CONCLUSION

The present study is an exploratory investigation and, for
the first time, reported that the correlation between RT
variability and trial-by-trial frontal-theta activity was frequency-
dependent. ALFF as a measure of the frequency domain exhibited
methodological significance in establishing the association
between RT variability and EEG activity. These findings
supported the low-frequency fluctuation as a feature of sustained
attention. Further explorations on this feature may facilitate the
understanding of the neuro underpinning of sustained attention.
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Even the simplest cognitive processes involve interactions between cortical regions.

To study these processes, we usually rely on averaging across several repetitions of a

task or across long segments of data to reach a statistically valid conclusion. Neuronal

oscillations reflect synchronized excitability fluctuations in ensembles of neurons and

can be observed in electrophysiological recordings in the presence or absence of an

external stimulus. Oscillatory brain activity has been viewed as sustained increase in

power at specific frequency bands. However, this perspective has been challenged in

recent years by the notion that oscillations may occur as transient burst-like events that

occur in individual trials and may only appear as sustained activity when multiple trials

are averaged together. In this review, we examine the idea that oscillatory activity can

manifest as a transient burst as well as a sustained increase in power. We discuss the

technical challenges involved in the detection and characterization of transient events

at the single trial level, the mechanisms that might generate them and the features

that can be extracted from these events to study single-trial dynamics of neuronal

ensemble activity.

Keywords: oscillations, transients, bursts, timing, single trial, methods

INTRODUCTION

At a most basic level, neuronal oscillations reflect synchronous and rhythmic shifting of neuronal
ensembles between high and low excitability states (Buzsaki, 2006; Schroeder and Lakatos, 2009).
An obvious consequence is that most neurons in an ensemble are more likely to fire action
potentials at a particular (high excitability) oscillatory phase. Neuronal oscillations have been
proposed to underlie many critical brain operations including attentional selection of sensory
input (Schroeder and Lakatos, 2009), parsing/chunking of complex input streams (Poeppel et al.,
2008; Ding and Simon, 2014), generation of motor output (Baker et al., 1999; Parkkonen et al.,
2015), memory encoding and retrieval (Jensen et al., 2007), ordering of information carried by
spike trains through spike-phase coding (Kayser et al., 2009) and temporal coupling of distant
ensembles to enhance information transfer (Varela et al., 2001; Fries, 2015; Singer, 2018). Key
to their mechanistic role in these operations is the idea that neuronal oscillations in a particular
frequency synchronize dynamically to couple a group of neurons into a cell assembly for a specific
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brain task (Buzsáki, 2010), and then just as dynamically
desynchronize so that neurons can regroup for the next
brain task.

While oscillatory activity is often viewed as sustained, this
perspective has been challenged in recent years by the notion
that oscillations may occur as transient bursts of activity that
may only appear as sustained activity when averaging across
multiple trials (Lakatos et al., 2004; Jones, 2016; Sherman
et al., 2016), in contrast to the idea that averaging in the time
domain can diminish or obliterate oscillations when they are
not phase-aligned across trials. Since some brain tasks last a few
milliseconds (e.g., reacting to an alerting stimulus), while others
require many seconds or even longer (solving a mathematical
equation), both scenarios are likely to co-exist.

In this review, we will first contrast the ideas of oscillations
as transient bursts vs. sustained events, and outline the technical
challenges involved in the detection and characterization of
transient events at the single trial level. After that we will discuss
the circumstances andmechanisms that likely determine whether
an oscillation will emerge as a transient or a more sustained
brain event.

OSCILLATORY EVENTS

Methods to Identify Transient Oscillatory

Bursts
One of the main challenges in single trial analysis is dealing
with low signal-to-noise ratio (SNR). The idea behind averaging
across trials is that the signals related to some event are enhanced
compared to neural activity unrelated to the event, and other
non-neural sources of noise, thus providing a representative
signal for a “clean” neural response to the stimulus. Obviously,
however, the brain has to operate on a single trial basis when
performing a cognitive task. If indeed transient oscillatory bursts
are involved in information processing, the first step would
be to reliably detect such transients at the single trial level.
However, as evident from the methods described below, reliable
detection of power increases at the single trial level is not
trivial. Due to the typically low SNR of single trial responses,
frequency decomposition can yield a “bursty” time-frequency
profile even in the simple case of constant-amplitude sustained
oscillations (see Figure 1). This effect is particularly likely to
occur when there is cross-frequency phase amplitude coupling
(Lakatos et al., 2005; Schroeder and Lakatos, 2009) and an
oscillation is obscured by noise in the non-ideal phase of the
lower-frequency oscillation.

Due to the technical challenge presented by the low single-
trial SNR, several methods for transient detection have been
proposed. Most detection algorithms rely on filtering the data
into frequency bands (with a wavelet convolution or a Hilbert
transform) and detecting whether a power fluctuation exceeds
an amplitude threshold on a trial-by-trial basis. This is known
as the p-episode method and may also be combined with a
duration threshold (Caplan et al., 2001). Variations of this
method have been used to study single trial oscillations in
recent years. Sherman et al. (2016) detected beta transients by

finding the maxima in the single trial wavelet transformed data.
The authors chose the highest beta event in each trial, sorted
the events from low to high power and analyzed the top 50
highest power events. This procedure revealed a stereotypical
time domain waveform that spans <150ms of a beta burst
(roughly three cycles). Lundqvist et al. (2016) used a similar
approach to detect an increase in gamma power of two standard
deviations above the mean spectral power in that band, but
also added a duration constraint of an increase lasting at least
three cycles. Neymotin et al. (2020a) demonstrates that below
three cycles, any “length measure” becomes unreliable, in that
it overestimates the number of cycles. Hughes et al. (2012)
used an oscillation detection method to extract both sustained
and transient rhythms from rat hippocampal recordings termed
Better Oscillation Detection Method [BOSC; first described by
Caplan et al. (2001)]. The BOSCmethod is applied to continuous
signals to detect the incidence of oscillatory components that
exceed amplitude and duration thresholds while ignoring the
transient voltage fluctuations that may accompany artifacts or
evoked potentials. The power threshold is set as the 95th
percentile of the theoretical χ2 distribution of wavelet power
values and the duration threshold was set to three cycles
(again, similar to previous methods). An extension to the BOSC
method was recently suggested (eBOSC; Kosciessa et al., 2019)
in which rhythmic and non-rhythmic episodes are automatically
separated. An additional measure of “rhythmicity” termed
lagged-coherence uses the present phase of a signal to predict
future phases (Fransen et al., 2015). They show rhythmicity peaks
detected in ongoing sensorimotor signals that are not visible
using conventional power analysis, suggesting that rhythmicity
measures are more suitable for identifying neuronal oscillations.
Another approach to the detection and characterization of
neuronal rhythms uses Hidden Markov Models (HMMs) to
overcome some of the limitations of the amplitude-threshold
approaches by avoiding a direct amplitude envelope threshold
(Quinn et al., 2019). The HMM represents the signals as a
system that moves through a set of discrete states, with each
state having a probability of being “on” at each time point.
Thus, the thresholding procedure is applied to the probabilities
rather than the signals themselves. In addition, using temporal
regularization, HMM can avoid state transitions due to small
changes in the envelope close to the threshold [see Figure 2 in
Quinn et al. (2019)]. One of the downsides of this method is that
a fixed number of states must be defined in advance. In cases
where the distribution of power values (or probabilities) is bi-
modal, it is easy to define two states, but in many cases it is harder
to define and interpret several states, specifically when studying
wide-band phenomenon.

Single trial analysis and power-change detection can be
computationally costly and might not be feasible for real-time
closed-loop brain stimulation experiments or brain-machine
interfaces. Karvat et al. (2019) suggested a method for the
detection of transient oscillatory activity specifically designed
for real-time data analysis and demonstrated its usefulness for
analyzing volitional increase of beta-band burst-rate in the motor
cortex of rats. The authors suggest defining a burst as a power
peak in time and frequency, exceeding a threshold defined as a
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FIGURE 1 | Noise influence on time-frequency profiles. The top panel shows a

trace of a pure sinusoid at 110Hz with a constant amplitude lasting for a

duration of ∼400ms. The bottom panels show the time-frequency

representation of the signal (top insets) and the time-domain trace (bottom

insets) after adding different levels of white Gaussian noise. As the noise level

(Continued)

FIGURE 1 | increases (lower SNR), the time-frequency profile contains more

gaps and becomes more “bursty” in appearance. In cases of low SNR, such

as the ones that might be observed in single trial or ongoing data, sustained

oscillations might be broken down into isolated peaks and thus might be

considered as transient bursts that might even slightly vary in frequency as a

result of the noise structure.

percentile to assure a statistically sound significance definition
under non-normal distributions. The method is based on 32 real-
time narrow bandpass FIR filters followed by peak and trough
detection in the filtered signals that exceed the threshold set as
the 98th percentile of power.

In addition to the spectrotemporal properties of oscillations,
waveform shapes appear to matter as well. Robust differences
in the waveform shapes of the oscillations mentioned above can
be assumed to represent differences in the properties of their
underlying generators (for review see Cole and Voytek, 2017).
Due to the rich and possibly variant waveform across different
cortical locations and cognitive tasks, detection techniques
should combine power threshold, duration threshold and
waveform specificity for each frequency band and recording
location. An example of such an approach is to detect
increases in the single trial time-domain or time-frequency data,
then calculate the principal components of the time-domain
waveforms and use the first principal component as a template
for the detection of additional events in the time domain using
a template matching scheme (see Abeles, 2014; Tal and Abeles,
2016, 2018). In brief, a segment of data is projected onto the
template. The length of the projection is treated as the signal and
the residual is treated as the noise. The threshold is then based on
the signal-to-noise ratio. Such methods may lead to the creation
of a “dictionary” of waveforms (similar to EEG atlases; Stern,
2005) that exhibit different oscillatory properties. Generating
such a dictionary of oscillatory signatures may allow us to
further test interactions between different neuronal populations
under the assumption that a specific signature is generated by a
specific cell population or a specific process (Siegel et al., 2012;
Womelsdorf et al., 2014).

Some of themethodsmentioned abovemight reduce concerns

regarding low SNR. Occasionally, we may observe oscillatory

bursts of sufficient amplitude that the SNR is less of a concern

(see e.g., below). There is no trivial way to define a duration

value that can serve as a boundary between transient and
sustained oscillations. Thus, we can only say that with most
commonly used analysis approaches, particularly due to the
practice of averaging multiple trials prior to quantification,
oscillatory activity might appear longer than they actually
are. Clearly, both the nature of the task performed by the
subject and the recording technique (e.g., invasiveness, electrode
location) would influence the amplitude, duration and frequency
of the recorded oscillations and thus also the SNR. Thus,
there might be substantial variability in the characteristics
of these oscillations across different studies, when they are
studied at the single-trial level. Typically, invasive recording
techniques provide higher SNR than non-invasive techniques.
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Three independent examples of such invasive recordings in
humans (sEEG) and non-human primates (laminar probe) are
shown in Figure 2where oscillations are visible by eye in ongoing
recordings. Some of these oscillations tend to be more sustained,
specifically at lower frequency (e.g., 8–12Hz; Figure 2A, middle
panel) while higher frequencies reveal a “bursty” profile in this
example (13–30Hz; Figure 2A, bottom panel). We estimated
the duration and number of cycles at a descriptive level for a
few minutes of recording from these example (Figure 2B; see
figure caption for more details). Even though these are merely
selected examples and should not be considered as evidence
for the specific durations of oscillatory activity, such recordings
give us confidence that the basic phenomenon of a bursty
oscillation exists. Recently, Neymotin et al. (2020a) quantified
oscillation event features in resting-state invasive recordings
from auditory cortex of humans and non-human primates. To
our knowledge, this was the first attempt to characterize ongoing
(single trial) oscillatory activity across different frequencies and
species. They found that oscillations at all commonly studied
frequency bands (i.e., delta—high gamma) exhibit multiple cycles
(average of four cycles across all frequency bands; range: 1–
44 cycles) with fluctuating frequency and amplitude. They also
found that ∼90% of the time, oscillation events of at least
one frequency band are occurring, suggesting that multicycle
neuronal oscillations across a wide range of frequencies dominate
auditory cortex dynamics. Interestingly, temporal predictability
across bursts differed significantly from Poisson distribution
assumption which indicates inter-burst quasi-rhythmicity.

However, none of the methods described above (including
the ones that do not require a pre-defined threshold) can negate
the possibility that a transient time-frequency profile results
simply from low SNR (see Figure 1). Thus, the most convincing
evidence suggesting that transient oscillatory activity exists and
is meaningful come from studies relating features of single-trial
oscillatory activity with behavioral or perceptual phenomenon
and show that such signals add information on top of the
traditional (e.g., averaged; sustained) view of neural oscillations.

Oscillatory Activity as Transient Bursts
Classic evidence for sustained oscillatory activity were based
on averaging neural signals across many trials to form a
representation of the neural activity with higher SNR. However,
moment to moment perceptual representations in the real-world
do not operate in such a way. To understand the neural basis of
perception and action, and the involvement of oscillatory activity
in these processes, one must explore trial-by-trial changes in
oscillatory dynamics. In the following section, we will review
evidence for transient or “bursty” oscillatory activity in both
resting state (ongoing) and task-related activity, as well as their
relationship with behavior.

Transient EEG events were first described by Berger (1930)
during sleep and were later termed sleep spindles (Loomis et al.,
1935). These 12–14Hz bursts of oscillatory activity have been
found in all mammals and the thalamocortical mechanisms
generating them have been well-established (Dijk et al., 1993;
Steriade et al., 1993). Yet, their function remains unclear (see De
Gennaro and Ferrara, 2003 for a review). The first observations

of oscillatory activity as transient bursts in awake subjects dates
to 1966 when Jaffe and Weiss reported unilateral alpha bursts
that are different from the alpha rhythm in several aspects
(Jaffe and Weiss, 1966). These “alpha-range bursts” appear
mainly in temporal EEG electrodes and correlate with clinical
evidence of brain disease. They last for 3–4 s and increase during
hyperventilation or drowsiness. The authors report that activity
of this type has been occasionally observed in their lab and listed
as an unusual finding of unknown significance. Alpha bursts of
∼3 s in duration were also found during periods of REM sleep
(Cantero and Atienza, 2000). These bursts are different from
sustained alpha in that they are not accompanied by an increase
in EMG activity and thus might be indexing different functional
role from REM background alpha. The authors hypothesize that
such alpha bursts may work as a micro-arousal in human REM
sleep to facilitate a connection between the dreaming brain
and the external world. Transient oscillatory activity was also
observed at lower frequency bands in humans. For example,
Hebert and Lehmann (1977) found the emergence of theta bursts
in healthy subjects practicing transcendental meditation. These
bursts appeared every 2min on average, had a duration of about
1.8 s and were preceded and followed by alpha rhythm. Since
the subjects reported pleasant states during the theta bursts, the
authors hypothesize that theta bursts may be the manifestation
of a state adjustment mechanism that comes into play during
prolonged low arousal states and related to relaxation. While
these findings were reported for ongoing activity at different
mental states, transient oscillatory activity at low frequencies
was also observed in intracranial recordings in human epilepsy
patients during a virtual reality environment navigation task
(Bush et al., 2017). They reported that human theta oscillations
appear in transient bursts that typically last several cycles around
movement onset and throughout the movement, in contrast to
the continuous rhythm in the rodent hippocampus (Watrous
et al., 2013). Although it is not clear whether these sporadic
oscillations could encode continuous self-motion information,
it is possible that location estimates are updated intermittently
during theta bursts, in accordance with the outcome of planned
movements, rather than tracked continually throughout the
movement by an ongoing theta oscillation.

In recent years, there has been a renewed interest in the
bursty qualities of oscillatory activity, particularly in higher
frequency bands. By analyzing the amplitude and frequency
of gamma bursts above the auditory cortical regions of cats,
Lakatos et al. (2004) found that while attention mostly affects
amplitude, arousal affects the frequency of gamma oscillatory
bursts. Sherman et al. (2016) found that spontaneous neocortical
beta (15–29Hz) from somatosensory and frontal cortex emerged
as non-continuous beta events typically lasting <150ms with a
stereotypical waveform. These “beta events” occur with varying
levels of alpha activity (that seemed more sustained) and their
waveform seemed to be consistent across species (mice, monkeys,
and humans). The authors determined that beta events do not
necessarily depend on rhythmic inputs but on the relative timing
and strength of synchronous proximal (i.e., proximal to the soma
and basal dendrites) and distal (i.e., to apical dendrites in L2/3)
drives. Beta bursts were also observed in local field potential
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FIGURE 2 | Examples of ongoing oscillatory activity. (A) Top and middle panels show a trace of invasive recordings from sEEG electrodes showing low-frequency

oscillations (0.5–4Hz, top; 8–12Hz, middle). (Bottom) Laminar probe recording from a non-human primate showing bursts of oscillatory activity at a frequency of

13–30Hz. Gray rectangles indicate the detection of transient oscillatory bursts. (B) Descriptive analysis of the duration of oscillatory activity at each frequency band.

The duration of oscillations (top) was estimated as the period of time in which the power at that frequency band exceeded the 95th percentile of the theoretical

χ
2 distribution of wavelet power values. The number of cycles (bottom) were calculated by multiplying the duration (in seconds) by the peak frequency of the

oscillation (in Hz). Lower frequency oscillations (i.e., 0.5–4 and 8–12Hz) tend to show longer durations compared with the higher frequency oscillations (13–30Hz) in

which most oscillatory bursts consisted of ∼3.5 cycles. The inset shows a zoomed version to visualize the differences between 0.5–4 and 13–30Hz. Error bars

indicate standard error of the mean.

(LFP) signals recorded from the striatum and motor–premotor
cortex ofmacaquemonkeys performing a reaching task (Feingold
et al., 2015). Using single trial analysis, they showed that beta
bursts typically lasted 90–115ms, and that extended periods of
beta band synchronization reflected a modulation in the density
of these short bursts. Burst probabilities were region and task-
time specific such that in motor cortex they peak following
the movement, while in striatum they peaked after reward and
continued through the post-performance period. Lundqvist et al.
(2016) used a trial-by-trial analysis and found that brief bursts
of gamma-band activity (45–100Hz) accompanied encoding and
re-activation of sensory information in recording sites associated
with spiking that reflected “to be remembered” items. Neuronal
activity reflecting encoding or decoding correlated with changes
in gamma burst rate. Additionally, they showed that gamma—
alpha (8–10Hz) coupling was not related to the periodicity of the
gamma bursts but rather to the consistency in the duration of the
gamma bursts, indicating that lower frequencies might modulate
gamma-burst duration. Beta band oscillations (20–35Hz) also
appeared as transients in the Lundqvist et al. findings and
were interpreted as reflecting a default (holding) state because
it was interrupted by encoding and decoding. The authors
concluded that working memory is not associated with sustained
activity but rather discrete oscillatory dynamics and spiking. Beta

range oscillations were also suggested to serve to clear memory
states by resonantly driving transient bouts of spike synchrony
which destabilize the network activity (Schmidt et al., 2018).
Interestingly, the most effective oscillatory activity for allowing
flexible switching between network states was burst-like with a
sharp onset rather than a pure sinusoid. In addition, the authors
demonstrate that such oscillatory bursts arise spontaneously in
networks of excitatory and inhibitory neurons.

Transient oscillatory events may also provide an additional
coding space for neuronal processes by utilizing the rate or
timing of the transient events with regard to the stimulus or even
with regard to other transient events. Shin et al. (2017) showed
that differences in the rate of beta events predicted detection
of stimuli at perceptual threshold and that non-detectable trials
were more likely to have a beta event within ∼200ms prior
to the stimulus. Using MEG, Little et al. (2018) found that
motor cortical beta in individual trials appears as high amplitude,
transient infrequent bursts. Beta burst timing was a stronger
predictor of single trial behavior than beta burst rate or single
trial beta amplitude, with later bursts corresponding to delayed
response times. The relative timing of transient events was
studied in the context of sensorimotor synchronization using
MEG to show that decoding of behavioral conditions using
time-differences between transient events across brain regions is
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significantlymore accurate than other characteristics of the signal
(Tal and Abeles, 2016, 2018; Felsenstein et al., 2019). Moreover,
such transient events (treated as a point-process) might form
more complex repeating sequences of activation with millisecond
precision (Tal and Abeles, 2016, 2018; Felsenstein et al., 2019).
These results suggest that relevant information might be encoded
by subtle time differences or cascades of transient events across
the brain. Although the study of oscillatory activity as transient
events is still at an early stage, several features of these bursts
(e.g., rate, duration, timing) have been linked back to behavior
suggesting that the dynamics of such transient activity may be
involved in cognitive processes.

The current review focuses on oscillatory events, however,
there are also transient events that are not oscillatory in nature.
A clear example of such event is an evoked potential generated
in response to a stimulus. The nature of harmonic analyses
techniques, such as wavelets and Fourier transform identifies
these signals as oscillations. The BOSC method (Caplan et al.,
2001; Hughes et al., 2012) attempts to avoid the detection
of transient, non-oscillatory events by identifying oscillatory
episodes at each frequency using both power and duration
thresholds. Another approach to avoid bias due to externally-
driven events removed the average evoked-responses waveforms
from each cortical layer (Neymotin et al., 2020a), though if this
removal uses simple subtraction of the trial-averaged response
from each single trial, it runs the risk of creating artifacts (Knuth
et al., 2006). Tal and Abeles (2016) used an algorithm that
may detect both oscillatory and non-oscillatory transient events
using a template matching scheme. They show that most of
their detected events were not associated with clear periodic
oscillations. They demonstrate that both oscillatory and non-
oscillatory events showed similar increases in population activity
around the times of these events (Tal and Abeles, 2018) and
suggested them as markers of sudden increase in population
activity that might indicate the recruitment of a new cell assembly
within the cortical patch. It is not yet clear whether event-
related-potentials trigger the same mechanisms in terms of the
canonical circuits activated by internally generated oscillations.
Sherman et al. (2016) argued that such brief sharp events are
due to brief, strong excitation of the superficial cortical layers
riding on the broader but weaker excitation of deep cortical
layers. Laminar biophysical models of the thalamocortical system
that accurately simulate recorded signals, such as local field
potentials, can be used to predict the types of waveforms that are
recorded in vivo after sensory stimulation, and offer mechanistic
explanations for their features. For example, providing brief,
strong thalamocortical activation to a hypothetical neocortical
model would trigger production of a transient ERP-like event
in the circuit, with a characteristic waveform (Neymotin et al.,
2020b). Although running a wavelet filter on such a waveform
will produce high power at a frequency inverse to the duration
of the ERP, since it was produced by a punctate event, this type
of waveform should not be considered an oscillation (Neymotin
et al., 2020a). In contrast, specific synaptic connectivity and
input patterns provided to a circuit model lead to production
of sustained multi-cycle oscillations. Some of these circuit
mechanisms and their implications in detecting oscillatory

bursts from electrophysiology data in vivo are described in the
next section.

Mechanisms of Transient Oscillatory

Activity
The studies discussed above suggest that neocortical oscillations
tend to be short-lived and bursty, however, some neurological
disorders, such as Parkinson’s disease, are clearly associated
with prolonged rhythms (Tinkhauser et al., 2017a,b). In general,
stronger activation of a particular circuit component that
generates a specific oscillation (such as gamma), would produce
a more sustained form of that oscillation. Weaker activation,
either through reduction of the frequency and strength of
AMPA/NMDA synaptic inputs to that component or from
stronger suppressive inhibition, can result in gaps between
oscillatory bursts (Lee and Jones, 2013; Neymotin et al.,
2020b). Figure 3 demonstrates the results of a neocortical
column simulation of bursty Pyramidal-interneuron network
gamma (PING) oscillations using the Human Neocortical
Neurosolver (HNN) software (https://hnn.brown.edu). As shown
in Figure 3, in PING, gamma is generated through a sequence
of activations: (1) stochastic synaptic inputs drive spiking of
pyramidal neurons, causing collateral activation of fast spiking
(basket type) interneurons, (2) activation of the fast-spiking
interneurons then causes feedback inhibition lasting a gamma
cycle (∼20ms for 50Hz gamma), determined by the duration
of the rise and fall of the GABAa synaptic conductance, and
(3) after GABAa inhibition runs its course, pyramidal neurons
are again able to spike and the cycle repeats. Synchronization
of inhibitory interneurons, which is responsible for generation
of gamma rhythms, is seen in the raster plot of Figure 3A,
with the nearly vertical lines that recur at a gamma period
(white and blue). In general, sustained gamma is produced
when there is continued strong activation of pyramidal neurons,
which causes continuing periodic activation of the interneurons,
resulting in large amplitude/persistent gamma. Lowering the
frequency or strength of excitatory synaptic inputs driving the
pyramidal neurons, causes weaker, intermittent activation of the
interneurons, and temporal gaps between interneuron-generated
gamma bursts, as shown in Figure 3A. Note that in the raster
plot, not all interneurons are activated at each gamma bout.
Additionally, different subsets of the interneurons are activated.
This firing pattern is a hallmark of weak PING, considered weak
because the gamma amplitude occasionally waxes and wanes
depending on the level of interneuron activation. In this example,
pyramidal neurons (green, red dots) fire even less frequently, but
are still synchronized by the interneurons (note the periodic gaps
between the sparse pyramidal neuron firing). Figure 3B shows
a single trial of the current dipole signal generated by HNN’s
biophysical cortical circuit model (top) and its associated time-
frequency representation, using the Morlet wavelet spectrogram
(bottom). As shown, the current dipole signal’s gamma oscillation
has a peak between 40 and 60Hz, and has power waxing and
waning. A close look at the spectrogram reveals that the gamma
oscillation is only present at discrete times. However, when
taking the average wavelet spectrogram from multiple trials of
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FIGURE 3 | Neocortical circuit model used to simulate bursty gamma oscillation events through a weak PING mechanism. (A) Raster spiking plot of neuronal firing

times from single trial of weak PING simulation. Top panel shows histogram of low-frequency, noisy Poisson inputs used to drive pyramidal neurons and interneurons

in the model. Bottom panel shows population color-coded firing times of individual neurons. (B) Single trial current dipole signal (top) and Morlet wavelet spectrogram

from dipole signal (bottom) from weak PING model. (C) Simulation of one hundred trials of weak PING model produces one hundred current dipole signals (top).

Although gamma oscillation events occur at different times in each trial, averaging the wavelet spectrogram across trials (bottom) produces an appearance of a

sustained gamma oscillation [adapted with permission from Figure 10 of Neymotin et al. (2020b) under the license: https://creativecommons.org/licenses/by/4.0/].

this simulation (Figure 3C), the gamma oscillation appears to
be more continuous. This is because the wavelet spectrogram
always has positive values, and adding the gamma events which
occur at different times across trials, produces the appearance
of continuity. This is one mechanism for the bursty gamma
observed in experimental data and highlights the importance of
careful analysis of single trial data.

A related theme in cortical dynamics is the presence of
multiple interacting oscillations caused by different time scales
of inhibition provided by different classes of interneurons (for
reviews see Whittington et al., 2000; Skinner, 2012; Kopell
et al., 2014). For example, Neymotin et al. (2011) used a
model with intermediate complexity to replicate normal and
pathological hippocampal dynamics. In their model, oriens-
lacunosum moleculare (OLM) interneurons produce theta
through relatively long-lasting inhibition. OLM inhibition of
fast-spiking basket and pyramidal neurons then modulated
the faster gamma rhythm, which was produced through the
standard PING mechanism. This interaction between OLM
and basket interneurons caused gamma rhythms to increase
and decrease based on the phase of the slower theta rhythm.
This cross-frequency coupling mechanism could be used to
model gamma bursts too, since a few strong cycles of gamma
appear in between strong periods of OLM inhibition at the
theta rhythm. As evidenced by a multitude of non-human
(Lakatos et al., 2005; Buzsaki, 2006; Schroeder and Lakatos,
2009) and human (Canolty et al., 2006; Canolty and Knight,
2010) studies demonstrating phase-amplitude coupling, similar
mechanisms should operate in the neocortex in vivo, which
has an intricate circuitry with a multitude of interneuron types
(Dienel and Lewis, 2019).

Another circuit model of neocortex aimed at determining
the origin of beta oscillation events (Sherman et al., 2016). This
biophysical model simulated current dipole signals produced
by the circuit, allowing explicit comparison to source-localized
current dipole signals from MEG/EEG studies. The neocortical
model consisted of simplifiedmodels of pyramidal and inhibitory

interneurons arranged in superficial and deep cortical layers and
interconnected using AMPA and GABA synapses. Pyramidal
neuron dendrites spanned the cortical layers. Synaptic inputs
were provided to the pyramidal neurons to initiate network
activity. These synaptic inputs were applied at proximal and distal
locations on pyramidal neuron dendrites to model inputs from
thalamic core (proximal) and thalamic matrix and corticocortical
feedback (distal). Each of these types of synaptic input pushed
current flow within the pyramidal neuron apical dendrites
in opposite directions. The model was able to produce beta
oscillation events through a series of ∼10Hz stochastic synaptic
inputs provided to proximal and distal pyramidal neuron
dendrites. Beta oscillation events were produced when ∼100ms
duration proximal synaptic inputs (pushed current flow toward
superficial layers) were truncated by a more synchronous 50ms
distal inputs (sharply pushed current flow toward deep layers),
which produced a 50ms current dipole waveform, matching the
waveforms seen from source-localized humanMEG experiments.
Since the synaptic inputs were stochastic, the production of beta
events was also stochastic, producing bursty oscillation events.
Additionally, when the proximal and distal synaptic inputs
arrived out of phase, instead of beta, alpha events were produced.
This occurred because each set of synaptic inputs was provided
to the model at the alpha period (100ms interval). Invasive
laminar electrophysiology recordings from non-human primate
somatosensory cortex were used to confirm the model’s accuracy.

CONCLUDING REMARKS

We reviewed several studies suggesting that brain rhythms
tend to appear as short-lived bursts of oscillatory activity. The
importance of these observations lies in our interpretation
of the functional role of neural oscillations, the mechanisms
generating them, the potential information they may carry, and
the way we must analyze them. One of the major points raised
here is that sustained oscillations can appear “bursty” in the
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presence of noise and conversely, “bursty” oscillations can appear
sustained when averaged across trials. Many cognitive studies
report an increase in oscillatory activity that only lasts for a
brief duration (e.g., a few tens of milliseconds). This might
represent the main response to the stimulus but at the same
time, might fail to explain the trial by trial variance in burst
timing, frequency, and amplitude. In addition, the averaging
approach might also miss other important responses that are
either “smeared” in the averaged response or appear at different
times across trials and are obscured by averaging. While the
averaging approach has its advantages, specifically in increasing
the SNR of the phase-locked response to a stimulus, single-
trial analysis of oscillatory events should be performed to better
understand the mechanisms of oscillatory activity by exploring
the variability in different features of oscillatory activity across
trials and, whenever possible, their relationship with behavioral
and perceptual phenomenon. Estimating the characteristics of
single-trial (or ongoing) oscillations is not trivial, and thus
several methods for detecting transient events were suggested.
Most of these methods depend on amplitude and duration
thresholds or a probabilistic threshold. Due to the differences
in the goals of each study, the design of the experiments,
the recording techniques, and the frequency and time-windows
studied, variability in the estimation of the characteristics of
single-trial oscillations is to be expected and it is difficult to
provide a single recommendation on the algorithm that should
be used to study neuronal rhythms at the single trial. The
simplest approaches (such as p-episodes) can be useful in cases
where lower computational time is essential (such as in closed-
loop experiments), while more computationally demanding
approaches can achieve more fine-tuned results offline. When
possible, we recommend applyingmore sophisticated algorithms,
such as HMM or amplitude and duration thresholds combined
with template-matching that carry less risk of false detection
due to artifacts or noise. We identify five features of short-lived
oscillations that may provide information-coding space for the
brain: (1) Amplitude—indicates the size and synchronicity of the
underlying neuronal population. (2) Temporal span (duration)—
how long the synchrony within a population is maintained. (3)
Frequency span—might index the participant neuron circuits

and critically, the inherent conductances of their specific
neuronal constituents. When studied at the single-trial level,
these features may explain variability in behavioral performance
across trials that cannot be observed in the averaged waveforms.
(4) Inter-burst and stimulus-burst interaction–measures, such
as the burst-rate, burst-timing, inter-burst interval, coefficient
of variation, fano-factor and more complex spatio-temporal
sequences comprised by transient bursts might be used to
explore the single trial dynamics of oscillatory activity and non-
oscillatory transient events. The general idea is to treat the
timing of these transient events as a parallel point-process to
study their temporal relationship with other events and with the
stimulus. For example, determine the rhythmicity across events
from a given oscillation frequency band (e.g., whether oscillatory
events are rhythmic and predictable, or Poisson distributed).
(5) Time-domain waveforms—might index different biophysical
generators. We note that this feature is more abstract and
challenging to measure but should be further studied to extract
the meaningful features within the waveforms and test for
repeating waveforms in the data. Time-domain waveforms may
also reveal differences between oscillatory and non-oscillatory
events that might differ in both their mechanisms and their role
in information processing. Such features are necessary to study
brain rhythms at the single trial level and take advantage of the
temporal dynamics of neural oscillations to better understand
their role in information transmission, processing, and coding.
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