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Editorial on the Research Topic

Computational Methods for Microbiome Analysis

Microbes play critical roles in the lives of hosts (plants, animals, humans) and in almost any
environment one can think of. Gathering microbiome sequence data has become easier and
cheaper than ever before, leading to an exponential growth in the amount of such data available
for analysis. With this explosion has come a pressing need for sophisticated computational
tools that can help make sense of these datasets. Current challenges, such as the complexity of
microbiome-host-environment interactions and the large sizes of datasets, make for a fascinating
research field.

The goal of this Research Topic was to gather a collection of high-quality original papers on
the general theme of computational methods for microbiome analysis. We now present the results,
which consist of 13 papers.

Four papers consider amplicon analysis, a popular method for taxonomic classification of mixed
microbial samples based e.g., on 16S rRNA gene regions. The paper by Engelmann et al. describes
Cascabel, a software pipeline for automated processing and analyzing of massive amounts of
amplicon data. Cascabel wraps around existing and well-established tools in the field of amplicon
analysis, connecting them by means of a Snakemake workflow, thus allowing for an easy and
flexible execution of a common amplicon analysis pipeline. After a workflow is finished, reports
are generated also serving as a data provenance description.

Similar in flavor is NG-Tax 2.0, described in the paper by Poncheewin et al. which follows the
new amplicon sequencing variant (ASV) approach, where sequencing reads are grouped into ASV
clusters of very high similarity in order to sustain as much as possible the true biological variance
in the sample at hand. NG-Tax 2.0 performs several steps in a pipeline manner, which includes
demultiplexing, read cleaning, ASV clustering, and taxonomic classification.

In a somewhat theoretical study based on computer simulations, Pinna et al. try to answer the
question of whether non-contiguous V-regions with paired-end sequencing improve 16S rRNA
based taxonomic resolution of microbiomes. They explore the possibility of combining two regions
of the 16S rRNA gene for a better classification of the tags and to possibly iron out the weakness of
taxonomic resolution of one region by a higher resolved other region. And indeed, the combination
of two distant variable regions shows on average 10-20 percent higher accuracy in taxonomic
classification—a theoretical potential, however, that still needs to be explored in practice.

Still on the topic of taxonomic classification, Shah et al. present ATLAS, a novel strategy for
taxonomic annotation of 16S rRNA sequence data. It has been recognized that 16S amplicon data
does not in general allow reliable classification below the genus level. However, 16S sequence data
and the accumulated knowledge on the diversity of this marker gene (as present in various 16S
databases) may allow reliable classification at the “sub-genus level,” meaning classification that
would suggest possible species, to the exclusion of others, of the same genus. That is the main
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achievement of the ATLAS pipeline, which is therefore a
contribution for better use of the large amounts of 16S data
already available and yet to come.

Moving on to other subtopics, Dong and Strous present
MetaErg, a user-friendly platform to explore the information
in complex metagenomic datasets. It facilitates the annotation,
visualization, and interpretation of assembled and/or binned
shotgun metagenomes by using taxonomic and functional
annotation of genes identified in metagenomic contigs or
metagenome-assembled genomes, or MAGs. Homology searches
may be performed with DIAMOND-blast as well as a collection
of HMM-profiles. Moreover, MetaErg allows the incorporation
of additional -omics data such as metaproteomics to identify
gene expression. The HTML-based output pages allow users to
navigate through annotation tables, trees, and sunburst plots to
explore their data.

Accurate metagenome assembly and genome binning from
short-read data may be confounded by e.g., repeated regions
and mobile genetic elements. Chromosomal contact data from
meta3C or Hi-C experiments is a promising way to address these
challenges. Baudry et al. present MetaTOR, a binning pipeline
that uses contact frequencies to reconstruct MAGs from meta3C
metagenomic libraries. Application to murine gut metagenomes
enabled the recovery of MAGs corresponding to nearly a third
of the total assembly data of 20 meta3C libraries, underlining the
promise of chromosomal contact data for metagenome-binning
and the potential to describe microbial communities withMAGs.

Hester et al. present a new metric for evaluating functional
redundancy in metagenomes that they call metabolic overlap
(MO). The metric needs annotated MAGs of each environment
considered. They observed highest values of MO for aquatic
and low pH/high temperature environments, and lowest
values in communities associated with animal hosts, in one
built/engineered environment, and in soil. It is an excellent
example of an analysis method that seeks to unlock the rich
information contained in MAGs to help understand competition
and cooperation between species

Within the rapidly expanding field of microbiome science,
it is becoming difficult to stay up-to-date with the literature
on microbe-human interactions, as a lot of new information
is being published. Srivastava et al. present EviMass, a new
tool to gain information about microbial associations to
the human superorganism from literature. Evimass consists
of an interactive query system on top of a large database
derived from mined microbe-microbe and disease-microbe
associations from PubMed abstracts. Thus, by uploading their
own microbial interaction data, users can link these associations
to information from biomedical literature. Various output
formats and statistics are available, allowing researchers to place
their microbiome experiments among the wealth of information
in the literature.

Gene-targeted assembly is a useful approach to identify
and track specific genes in metagenomic datasets. Guo
et al. present a benchmark comparing the computational
efficiency, sensitivity, specificity, and chimera rate of six
existing gene-targeted assembly tools. The authors focused
on extracting the universal ribosomal protein rplB and two

nitrogen cycle genes, dinitrogenase reductase gene nifH, and
nitrite reductase gene nirK from testing datasets consisting
of known genomes, synthetic and mock communities, and a
large soil shotgun metagenome. They assessed assembly quality
as well as computational performance of the tools. Two tools
that employ probabilistic graph structures showed the best
overall performance.

Metagenomics is providing unprecedented insights into our
microbial world. Combined datasets generated by research
laboratories around the world are opening up new opportunities
to study the macroecological patterns on local-to-global scales.
Mascarenhas et al. contributed a valuable and extensive review
on the computational methods to investigate themacroecology of
microbiomes. They address fundamental aspects of biodiversity,
describe macroecological studies in the microbiology field, and
stress how spatial and temporal sampling scales should fit the
research question of each study. Next they describe methods
including taxonomic profiling and co-occurrence networks,
identifying keystones, and description of functional patterns.
An important part of their review is a discussion of different
approaches for predictive modeling which promise new insights
in a range of fields.

To investigate the transcriptional activity of the microbial
community, metatranscriptomics requires a specific subset
of analysis tools. Shakya et al. review computational tools
and recent advances in metatranscriptome analysis. Discussing
metatranscriptomics studies investigating diverse ecosystems,
they highlight the ability of metatranscriptomics to reveal
the transcriptional activity of microbial communities with
sometimes high resolution. The authors next discuss different
bioinformatics tools and workflows including preprocessing,
assembly, taxonomic and functional annotation, and differential
expression analysis. They envision that the described tools
will aid in the analysis of e.g., time series data to reveal the
response of microbial communities to perturbations, although
benchmarking is still needed.

Much emphasis has been given in the past to “snapshot”
analysis of microbial communities, i.e., analysis of a community
at a given point in time. However, for many environments,
time is a crucial variable for the understanding of its
microbial ecology. Hence, time-series sampling becomes
an important strategy. This approach requires specialized
techniques, which are nicely presented in the primer by
Coenen et al. The authors describe several modules (interactive
tutorials in R and Matlab) that address several topics in
time-series analysis.

Van den Bogert et al. discuss various challenges for
bioinformatics and data science in industrial microbiome
applications. They review current applications and products
in food, cosmetics and health industries. Some of the
challenges facing these applications are also mentioned.
Recent technological developments in the microbiome field are
discussed and suggestions are given for how these developments
could be leveraged to address certain challenges.

In sum, we believe the papers presented form a valuable
collection for students and researchers working on the exciting
and rapidly-growing field of microbiome analysis.
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Can Targeting Non-Contiguous 
V-Regions With Paired-End 
Sequencing Improve 16S rRNA-
Based Taxonomic Resolution 
of Microbiomes?: An In Silico 
Evaluation
Nishal Kumar Pinna †, Anirban Dutta *†, Mohammed Monzoorul Haque 
and Sharmila S. Mande*

Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, Maharashtra, India

Background: Next-generation sequencing (NGS) technologies have enabled probing 
of microbial diversity in different environmental niches with unprecedented sequencing 
depth. However, due to read-length limitations of popular NGS technologies, 16S 
amplicon sequencing-based microbiome studies rely on targeting short stretches of the 
16S rRNA gene encompassing a selection of variable (V) regions. In most cases, such 
a short stretch constitutes a single V-region or a couple of V-regions placed adjacent to 
each other on the 16S rRNA gene. Given that different V-regions have different resolving 
ability with respect to various taxonomic groups, selecting the optimal V-region (or a 
combination thereof) remains a challenge.

Methods: The accuracy of taxonomic profiles generated from sequences encompassing 
1) individual V-regions, 2) adjacent V-regions, and 3) pairs of non-contiguous V-regions 
were assessed and compared. Subsequently, the discriminating capability of different 
V-regions with respect to different taxonomic lineages was assessed. The possibility of 
using paired-end sequencing protocols to target combinations of non-adjacent V-regions 
was finally evaluated with respect to the utility of such an experimental design in providing 
improved taxonomic resolution.

Results: Extensive validation with simulated microbiome datasets mimicking different 
environmental and host-associated microbiome samples suggest that targeting certain 
combinations of non-contiguously placed V-regions might yield better taxonomic 
classification accuracy compared to conventional 16S amplicon sequencing targets. This 
work also puts forward a novel in silico combinatorial strategy that enables creation of 
consensus taxonomic profiles from experiments targeting multiple pair-wise combinations 
of V-regions to improve accuracy in taxonomic classification.

Conclusion: The study suggests that targeting non-contiguous V-regions with paired-
end sequencing can improve 16S rRNA–based taxonomic resolution of microbiomes. 
Furthermore, employing the novel in silico combinatorial strategy can improve taxonomic 
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INTRODUCTION

Sequencing of 16S rRNA genes is a standard protocol for 
taxonomic characterization of bacterial species (Schmalenberger 
et al., 2001; Clarridge, 2004; Munson et al., 2004; Petti et al., 2005). 
Sanger sequencing has been conventionally used for obtaining 
“full-length” 16S rRNA gene sequences of individual bacterium. 
Advent of next-generation sequencing (NGS) platforms has 
empowered the field of metagenomics and has enabled one to 
amplify and sequence (amplicon sequencing) specific portions 
of the 16S rRNA gene of community of bacteria (microbiome). 
Sequencing of such regions (encompassing one or more variable 
regions or V-regions) has been utilized in microbiome studies for 
obtaining taxonomic assignments for bacterial groups present in 
the studied environment. Although the accuracy and depth of 
taxonomic attribution obtained using such short reads are not 
at par as compared to that obtained using longer reads (Soergel 
et al., 2012; Martínez-Porchas et al., 2016), adoption of the 
former approach allows sequencing/sampling of large volumes of 
environmental DNA at significantly lower costs (Liu et al., 2012).

Depending on the sequencing platforms used, microbiome 
studies utilize either a single variable (V) region or a stretch of 
V-regions. For example, some of the Illumina platforms which 
generate very short reads (~150–250 base pairs in length) can 
be used to target only a single V-region using fragment library 
sequencing protocol (Bartram et al., 2011). On the other hand, 
technologies like Ion Torrent, Roche 454 etc., can generate longer 
reads (~400–500 bp) encompassing 2 or 3 contiguously placed 
V-regions (Loman et al., 2012; Salipante et al., 2014; D’Amore 
et  al., 2016; Panek et al., 2018). Similar longer reads may also 
be targeted using a paired-end sequencing protocol on Illumina 
platforms (Fadrosh et al., 2014). It may also be noted that paired-
end sequencing protocols, in principle, allows targeting and 
sequencing two sufficiently separated (non-contiguous) variable 
regions located on the same 16S rRNA gene (by choosing 
appropriate primers). Although paired-end sequencing has been 
in use for quite a while and have been used for whole-genome 
shotgun (WGS) sequencing-based metagenomics studies (Feng 
et al., 2015; Moustafa et al., 2018), to our knowledge, none of 
the 16S rRNA-based microbiome profiling studies have targeted 
or utilized a combination of “non-contiguous” V-regions for 
taxonomic characterization of bacterial communities. A few 
earlier studies have examined different aspects of short-read 
sequencing study designs with the goal of optimizing the choice 
of sequencing protocol (single-end vs. paired-end), target 
V-regions, as well as the taxonomic classification algorithm 
(Zhang et al., 2018; Yadav et al., 2019). A recent study has also 

attempted to combine taxonomic information from multiple 
V-regions (Fuks et al., 2018). Given the variable utility of different 
V-regions in resolving different bacterial taxonomic groups, it is 
also pertinent to ask whether the choice of V-regions should be 
restricted to a contiguous stretch, or be extended to a combination 
of V-regions placed “non-contiguously.” To probe this at depth, 
we have performed comparison of taxonomic classifications 
obtained using various V-regions and their combinations. We 
have also assessed the feasibility of using “non-contiguous” 
V-region combinations for obtaining an accurate (and relatively 
higher resolution) taxonomic profile of a microbiome. The 
accuracy of taxonomic classifications obtained (at various levels 
of taxonomic hierarchy) using such non-contiguous V-regions 
has been compared with those obtained using single V-regions 
as well as with conventionally used combinations of contiguous 
V-regions.

METHODS

The primary objective of the current study involves evaluating/
comparing the accuracy of taxonomic profiles generated from 
sequences encompassing (a) individual V-regions, (b) adjacent 
V-regions, and (c) pairs of non-contiguous V-regions and further 
assessing the discriminating capability of different V-regions 
with respect to different taxonomic lineages.

Full-length bacterial 16S rRNA gene sequences (along with 
their annotated lineages) present in the RDP database (release 
11.3) (Cole et al., 2014) were downloaded for different analyses 
(described later in this section) in view of the abovementioned 
objectives. The RDP hierarchy browser (https://rdp.cme.msu.
edu/hierarchy/hb_intro.jsp) was used for this purpose with the 
following filters—strain = “both”; source = “isolates”; size “> = 
1,200”; taxonomy = “NCBI”; quality = “good,” which resulted in 
a downloaded set of 232,163 sequences. Further, sequences not 
containing any of the nine V-regions (V1–V9) were filtered out 
from the set of sequences, leaving a total of 84,711 16S rRNA 
sequences belonging to 11,810 species, all of which contained all 
nine V-regions. Subsequently, both full-length as well as different 
portions of the 16S rRNA gene sequences were extracted in silico 
to represent outcomes of amplicon sequencing experiments and 
were provided as input to the Wang classifier (algorithm used in 
RDP classifier), as implemented in the software Mothur v.1.29.2 
(Schloss et al., 2009), for taxonomic classification. The current 
version of RDP classifier 16S training set (https://sourceforge.
net/projects/rdp-classifier/files/RDP_Classifier_TrainingData/
RDPClassifier_16S_trainsetNo16_rawtrainingdata.zip/

classification without any significant additional experimental costs and/or efforts. The 
empirical observations obtained can potentially serve as a guideline for future 16S 
microbiome studies, and facilitate researchers in choosing the optimal combination of 
V-regions for a specific experiment/sampled environment.

Keywords: metagenomics 16S, paired-end sequencing, taxonomic profiling, microbiome analysis, amplicon 
sequencing
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download) was used as the reference database for these taxonomic 
assignment steps, and the taxonomic hierarchy information of 
the reference sequences were appropriately used while training 
the Wang classifier in order to enable obtaining taxonomic 
classifications resolved up to species level. Only a subset (57,632 
sequences) of the originally downloaded full-length 16S rRNA 
gene sequences, which could be classified at species level with > = 
80% bootstrap confidence threshold, was later used as a pool for 
randomly drawing sequences during creation of mock/simulated 
microbiome datasets (as described later in this section).

While evaluating the discriminating ability of individual 
V-regions, the regions of interest were parsed out from 
corresponding full-length 16S rRNA gene sequences using an 
in-house modified version of the V-Xtractor program (Hartmann 
et al., 2010), and submitted as query sequences to the Wang 
classifier. It may be noted in this context that reads generated 
during amplicon sequencing may often encompass flanking 
“constant” regions in addition to the targeted V-region(s), 
depending on choice of primers and the maximum read-length 
attainable by the sequencing technology. Consequently, our 
evaluation exercise, pertaining to combination of V-regions, aimed 
at mimicking 250 bp × 2 paired-end sequencing, wherein the 
extracted regions (representing sequenced reads) also encompass 
such flanking regions. To achieve this, regions from the full length 
16S rRNA genes were extracted in such a way that either of the 
250 bp reads (constituting a read-pair) contained one of the target 
V-regions, flanked in both directions by certain portions (lengths) 
of the surrounding “constant” regions. HMMs corresponding to 
constant regions surrounding the V-regions, as provided by the 
V-Xtractor program, were used for this purpose. Each extracted 
read started from a selected HMM near the target V-region (akin 
to a sequencing primer) and was extended to up to 250 bp toward 
the direction of the target V-region, thereby creating a read which 
encompassed the V-region along with some flanking sequence 
portion. It may be noted here that actual primer design may not 
always allow retention of flanks on either side of the targeted 
V-regions, equivalent to what was obtained using the HMMs, 
and results from an actual sequencing experiment may therefore 
slightly vary from the in silico validation results presented in this 
work. In case two adjacent V-regions were targeted, there was 
a significant chance of finding an overlap between two reads 
constituting a pair. This overlap was utilized to join the pair of 
reads together (used the program PEAR v0.9.6 with default 
parameters) (Zhang et al., 2014) into a single sequence before 
submitting the same as a query to the Wang classifier. In contrast, 
on targeting two distantly separated non-contiguous V-regions, 
no overlap between the read pairs could be expected. Accordingly, 
the pair of reads in this case were concatenated using a string of 
eight consecutive “Ns,” while preserving their orientation, prior 
to processing with Wang classifier. Given that Wang classifier 
(or RDP classifier) utilizes 8-mer nucleotide frequencies during 
taxonomic assignment (Wang et al., 2007), joining two non-
overlapping sequenced fragments with 8 ambiguous nucleotides 
(N) ensures avoiding generation of spurious 8-mers consisting 
nucleotides from nonadjacent regions of the gene. The merging 
and concatenating of paired-end reads is depicted in a schematic 
diagram provided in Supplementary Figure S1. Taxonomic 

assignments generated by the Wang classifier at a predetermined 
taxonomic level with a confidence threshold score of > = 80% 
were used for all downstream comparative analyses. The different 
analyses performed and the underlying rationales are described in 
the following paragraphs.

First, the effectiveness of individual V-regions in resolving 
between different taxonomic groups was evaluated. For this 
purpose, different V-regions from all the 16S rRNA gene sequences, 
downloaded from the RDP database, were extracted. Subsequently, 
each of these individual V-regions were subjected to taxonomic 
classification with the Wang classifier (Wang et al., 2007), and the 
resultant assignments at the genus level were checked for accuracy 
and specificity against the taxonomic attributes provided by RDP 
for the corresponding full-length sequences.

The utility of all possible pair-wise combinations of 
V-regions, either arranged contiguously or non-contiguously, 
was also investigated in silico in terms of accuracy of taxonomic 
classifications provided by each such combination. As mentioned 
earlier, sequence fragments mimicking outcomes of 250 bp x 2 
paired-end sequencing, which target different contiguous/non-
contiguous combinations of V-regions, were derived from the 
downloaded 16S rRNA gene sequences. These fragments were 
subsequently subjected to taxonomic classification with the 
Wang classifier (Wang et al., 2007), and the assignments obtained 
at species level were checked for accuracy and specificity against 
the pre-annotated taxonomic attributes of their source (full-
length) 16S rRNA genes.

The specific combinations of V-regions, which provided 
comparatively higher accuracies of taxonomic classification 
with the RDP database sequences, were further evaluated 
in a taxonomic assignment exercise with mock microbiome 
datasets. Five mock 16S microbiome gene pools were created 
from randomly selected sets of 50 organisms (genera) listed in 
RDP database (Supplementary Table S1). To obtain reads for 
building the mock microbiome datasets corresponding to these 
pools, each time, 10,000 16S rRNA genes were drawn randomly 
(following a uniform distribution) from a gene pool, such that the 
proportion of 16S rRNA genes drawn from any of the organisms 
are also randomized. Five such datasets (with 10,000 reads each) 
corresponding to each of the five gene pools (a total of 25 mock 
datasets) were constructed for comparative evaluation. Different 
contiguous as well as non-contiguous combinations of V-regions 
were subsequently extracted from each of the 16S rRNA genes 
belonging to these mock datasets and subjected to taxonomic 
analysis using Wang classifier, following the classification 
methodology described above. Taxonomic abundance values 
(obtained using different combinations of V-regions) were 
averaged over five mock datasets pertaining to the same gene 
pool. The averaged abundance values for each of the mock gene 
pools were compared against each other and the pre-annotated 
taxonomic attributes of their source (full-length) 16S rRNA genes, 
to assess the utility of the chosen combinations of V-regions. Nine 
more simulated microbiomes mimicking different environmental 
and host associated niches—namely, gut, skin, vaginal, sub-
gingival (oral), sputum (oral), nematode gut, soil, and aquatic 
were also generated. Taxonomic abundance estimates for eight 
of these environmental microbiomes were derived from datasets 
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used in an earlier in silico study evaluating functional potential 
of diverse metagenomes (Nagpal et al., 2016). Taxonomic 
abundance estimates for the aquatic microbiome was derived 
from a recent study by Muscarella and co-workers (Muscarella 
et al., 2019). To populate these simulated microbiomes, sequences 
from RDP database were randomly drawn (exact distributions 
provided in Supplementary Table S2), while making sure 
that the proportions of 16S rRNA genes drawn from different 
genera were roughly similar to the proportions observed earlier 
for these environments (Cui et al., 2012; Griffen et al., 2012; 
Human Microbiome Project Consortium, 2012; Alekseyenko 
et al., 2013; Botero et al., 2014; Kato et al., 2014; Romero et al., 
2014; Xiao et al., 2014; Muscarella et al., 2019) (Supplementary 
Table S3). The taxonomic classification efficiency of the V-region 
combinations (at the species level) was also assessed on this set of 
simulated microbiomes.

In an ideal scenario, better taxonomic classification 
accuracy can be aimed for by using information from multiple 
V-regions. However, due to experimental limitations, this 
can be attained only if a long-read sequencing technology is 
used. To overcome this limitation, we propose a combinatorial 
strategy that extends the described paired-end sequencing 
workflow for targeting multiple pair-wise combinations of 
non-contiguous (or contiguous) V-regions in the following 
manner. The proposed strategy relies on obtaining taxonomic 
abundance profiles of a microbial community from two paired-
end sequencing experiments, each of which targets different 
pair-wise combinations of V-regions. The two taxonomic profiles 
are then combined based on the accuracies of the individual 
V-regions (targeted in the experiments) in resolving each of 
the taxonomic groups under consideration. Figure 1 and the 
following generic example illustrate the strategy in detail: A 

FIGURE 1 | Combinatorial strategy for targeting multiple pair-wise combinations of non-contiguous (or contiguous) V-regions. The strategy relies on obtaining 
taxonomic abundance profiles of a microbial community from two paired-end sequencing experiments, each of which targets different pair-wise combinations 
of V-regions. The two taxonomic profiles are then combined based on the pre-calculated accuracies of individual V-regions (targeted in the two experiments) in 
resolving each of the taxonomic groups under consideration.
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microbial community (M) is initially considered for taxonomic 
profiling by two paired-end sequencing experiments (Ex and 
Ey). Each of these experiments can target two distinct V-regions 
(either arranged contiguously or non-contiguously on the 16S 
rRNA gene), using appropriate forward and reverse primers, as 
described in the previous sections. Let us consider that in the 
current example, Ex targets the V-region combination Va+Vb, 
and Ey targets Vc+Vd. For example, combinations of V-regions 
selected in the two experiments could be V1+V4 and V2+V6 in 
one scenario. Based on the taxonomic resolution efficiencies of 
different (combinations of) V-regions, Ex and Ey will generate two 
different taxonomic abundance profiles Px and Py, respectively, 
each of which constitutes of estimated abundance values (Ti) for 
different taxonomic groups (i):

	 Px x x x
n
x≡ {T ,T ,T , ,T }1 2 3  	 Equation 1

	 Px y y y
n
y≡ {T ,T ,T , ,T }1 2 3  	 Equation 2

Subsequently, for each of the taxonomic groups (Ti), a refined 
estimate of its abundance (Ti

xy) can be arrived at by combining 
the observed abundances Ti

x and Ti
y, such that the refined 

abundance Ti
xy is relatively closer to the estimate obtained with 

the experiment (either of Ex or Ey) providing better classification 
accuracies for taxa ‘i.’ Calculation of the refined estimate therefore 
takes into consideration the taxonomic classification accuracies 
of the combination of V-regions that had been used for the initial 
set of experiments Ex and Ey using the following equation:

	
T W T W T

W Wi
xy i

x
i
x

i
y

i
y

i
x

i
y= +

+
∗ ∗      

 
	 Equation 3

wherein Wi
x and Wi

y are the relative accuracies in taxonomic 
classification for a particular taxonomic group ‘i,’ obtained using 
the specific combination of V-regions chosen for experiments 
Ex and Ey respectively. In case the refined taxonomic profiles 
are to be represented in terms of normalized abundance values, 
e.g., frequencies or percentage normalized abundances, the 
refined Ti

xy values from equation 3 needs to be appropriately 
modified (normalized) further. This weighted average approach 
has been adopted considering that different V-regions (or 
their combinations) have different efficiencies in resolving 
the same taxonomic group. A simple average therefore would 
not be appropriate for combining two taxonomic abundance 
estimates pertaining to a sample, which has been generated 
through separate experiments targeting different V-regions (or 
their combinations). Instead, the refined taxonomic abundance 
value for a given taxon should be weighted toward the results 
generated by the V-region (or a combination) which is more 
accurate in classifying the taxon in question. These accuracies 
can be calculated from the evaluation results obtained from 
Supplementary Table S4, as a ratio of the correct assignments 
obtained for particular taxa using a specific combination of 
V-regions, and the total number of correct assignments obtained 
using the same V-region combination. For example, considering 

that the combination of Va+Vb was used in experiment Ex, Wi
x 

can be calculated as

W
Correct assignments for taxon i V V

i
x a= +

 
   using bb

a bTotal correct assignments V Vusing   + 	 Equation 4

The denominator term representing “total correct assignments 
using Va+Vb” has been introduced to capture any additional 
specificity of the chosen Va+Vb region toward a particular taxon 
‘i’ in context of the overall taxonomic classification performance 
of Va+Vb. Other simple ways of calculating the “relative accuracy 
in taxonomic classification” or weight (Wi

x), e.g., in a case 
wherein the denominator term is omitted, would also work fine 
when V-region combinations with decent classification accuracy 
are chosen. It may be noted here that in the experiment(s) using 
paired-end sequencing to capture two different V-regions from 
the 16S rRNA gene, the correspondence between the pairs of 
V-regions originating from the same 16S rRNA gene is retained. 
This allows joining the different V-regions together into a single 
DNA string (separated appropriately by ambiguous nucleotide 
characters) and providing the same as an input to taxonomic 
classification tools, such as the RDP classifier. However, for 
V-regions targeted in separate sequencing experiments, cross-
experiment correspondence between the sequenced V-regions 
with respect to their origin 16S rRNA gene cannot be identified. 
This necessitates the indirect strategy of combining information 
obtained from different V-regions (or their combinations) for 
refining the taxonomic abundance estimates, as described above. 
To avoid variations arising from experimental workflows and 
sample handling/preparations, it would be ideal to perform a 
single PCR step for amplicon generation, using different sets of 
primers appropriate for the chosen combinations of V-regions 
(Va+Vb, and Vc+Vd in the given example). However, it also 
needs to be mentioned here that the designed primers may 
have different affinities for the targeted regions on 16S rRNA 
genes originating from different taxonomic groups. This may 
again result in unequal proportions of 16S rRNA sequence 
fragments amplified by the different sets of primers, which 
would subsequently be reflected in the sequencing outcome. In 
such a scenario, the combination strategy needs to factor in this 
difference in proportions, while arriving at a refined taxonomic 
abundance estimate. Alternately, the experiment may target 
a combination of 3 V-regions (e.g., Va+Vb and Va+Vc or, Va+Vc 
and Vb+Vc), such that either the forward primers or the reverse 
primers be common to the targeted combinations. This way, 
some equivalence in the proportions of fragments (targeting 
different taxonomic groups) can be maintained on account of the 
shared primer (for V-region) selected.

To asses the utility of the combinatorial strategy, the 
taxonomic abundance profile of the simulated microbiome 
sample pertaining to human gut (as described earlier) was 
re-evaluated, targeting the V-region combinations V1+V4 and 
V1+V5, both of which had decent classification accuracies. 5,000 
sequence fragments corresponding to each of the V-region 
combinations (i.e., a total of 10,000 fragments) were sampled 
from the simulated gut microbiome. The results obtained with 
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the combinatorial strategy was subsequently compared against 
the results obtained when each of the V-region combinations 
were used separately. To maintain equivalence in sequencing 
coverage, 10,000 fragments were sampled from the simulated 
gut microbiome, while targeting the V-region combinations 
separately.

RESULTS AND DISCUSSION

Individual V-Regions Have Differential 
Ability in Resolving Various Taxonomic 
Groups
The accuracies of different V-regions in resolving different 
taxonomic groups are depicted in Figure 2. The classification 
accuracies (at genus level) obtained with V-regions have been 
cumulated and depicted at the “phylum level” in the figure and 
placed in context with the classification accuracies which would 
have been obtained with full-length 16S rRNA gene sequences 
(details in Methods). Except for V1, V5, and V9, all other V-regions 
were observed to have certain utility in taxonomic classification, 
even when targeted individually. It was also evident from the plot 
that some V-regions provide comparatively higher accuracies 
of classification for specific taxonomic groups. For example, the 

V4 region has the highest accuracy while classifying sequences 
pertaining to the phylum Bacteroidetes (75.9%), whereas the 
V2 region classifies best with respect to the phylum Firmicutes 
(68.2%). However, it may be noted that a sequenced read 
generated in a real amplicon sequencing experiment will extend 
beyond the targeted V-regions and include some surrounding 
portions. The resultant taxonomic classification in such a case is 
expected to be better than the currently depicted results which 
were generated based on the exact V-regions. A detailed list of 
accuracies in taxonomic classification obtained with different 
V-regions at genus level is provided in Supplementary Table S5. 
Given these observations, it would seem logical for a microbiome 
study design to sequence two (or more) V-regions from a 16S 
rRNA gene fragment which have complementary abilities 
with respect to classification of different taxonomic groups. 
Furthermore, the choice of the combination of V-regions could 
also be guided by the environment from where the microbiome 
sample is being collected, given that diverse environments may 
be differentially enriched with different taxonomic groups.

A preferred combination of V-regions cannot always be 
expected to be situated in a contiguous stretch on the 16S rRNA 
gene. Given the read length limitations of NGS technologies, 
targeting an amplicon constituting the preferred regions becomes 
difficult in reality. The length distributions of V-regions and 
C-regions (constant/conserved regions flanking the V-regions) 
across different bacterial taxonomic groups are provided in 
Supplementary Figure S2. These distributions indicate that 
while individual V-regions and contiguous stretches like V2–V3 
(median length 297 bp) or V3–V4 (median length 254 bp) can 
easily be targeted with short-read sequencing techniques like 
Illumina HiSeq/MiSeq, sequencing longer contiguous stretches 
encompassing more than two V-regions, such as V2-V3-V4 
(median length 482 bp) and V4-V5-V6 (median length 453 bp), 
necessitates sequencing platforms that can generate longer read 
lengths (e.g., Roche 454). Capturing even more V-regions on a 
single read is beyond the scope of most current generation high-
throughput sequencing technologies. Consequently, targeting 
an optimal combination of V-regions, which may be present 
on the 16S rRNA gene in either contiguous or non-contiguous 
arrangement(s), remains a challenge.

Targeting Combinations of Non-
Contiguously Placed V-Regions Using 
Paired-End Sequencing Enables Improved 
Taxonomic Classification
Paired-end sequencing protocols available with some of the 
NGS platforms allow sequencing of a stretch of DNA from 
both its ends (Rodrigue et al., 2010; Dutta et al., 2014). For 
example, Illumina HiSeq sequencing platforms can be used for 
paired-end sequencing to generate up to 2x250bp reads. The 
current work proposes, and evaluates in silico, the utilization of 
paired-end sequencing protocols for sequencing various pair-
wise combinations of non-contiguous V-regions in a single 
sequencing run. To this end, appropriate primers need to be 
designed against a desired stretch of the 16S rRNA gene, such that 
the targeted V-regions (either contiguously or non-contiguously 

FIGURE 2 | Taxonomic classification accuracies at genus level for different 
variable regions. Plot depicting the percentage of 16S rRNA genes present 
in RDP database that could be correctly classified utilizing different variable 
(V) regions (see Methods). Correct classifications obtained using full-length 
16S sequences are also depicted for comparison. Taxonomic classification 
accuracy at genus level has been considered in this plot and has been 
cumulated and depicted at the phylum level (only for five most represented 
phyla in the downloaded RDP sequences).
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placed) reside within this stretch and are not far from either of 
its boundaries. Sequencing of the amplicons generated with these 
primers can then be performed with a paired-end sequencing 
protocol, whereby these (amplified) stretches of DNA are 
sequenced from both ends. Two reads sequenced from each such 
amplicon would cover the two targeted V-regions (one from 
each end). Since each of the sequenced reads from any given 
“pair” targets a single V-region (situated at one of the ends of the 
amplicon), read-length limitations do not restrict capturing the 
entirety of the individual V-regions. Consequently, it becomes 
possible to sequence almost all possible pair-wise combinations 
of V-regions, either arranged contiguously or non-contiguously.

The results pertaining to the in silico evaluation of the 
effectiveness of different combinations of V-regions (see 
Methods), in providing accurate taxonomic classifications (at 
the species level) for sequences listed in the RDP database, is 
depicted in Figure 3 (also see Supplementary Table S4).

Classification accuracies provided by several combinations 
of non-contiguously placed V-region pairs, namely, V1+V3 
(77.7%), V1+V4 (77.4%), V1+V8 (76.6%), V2+V5 (73.6%), etc., 
were sufficiently high and exceeded the classification accuracies 
provided by even the best of the combinations of adjacently 
placed V-regions (e.g., 68.6% by V1+V2, 70.9% by V2+V3) by 
a fair margin of 5–8%. It was also significant to note that many 
of the individual V-regions, which had very low taxonomic 
discriminating ability of their own (Figure 2, Supplementary 
Table S5), could provide significant classification accuracies 
when paired up with other V-regions. For example, while V1 
and V5 provided very low taxonomic classification accuracies 
when targeted alone, the combination of V1+V5 could provide 
a significantly high taxonomic classification accuracy of 73.4%. 
Furthermore, although the individual V-regions were observed 
to have differential abilities in classifying sequences originating 
from different phyla (Figure 2), their combinations were much 
more coherent in this regard and could classify sequences 
from all phyla with better efficiency (Figure 4) than single 

V-regions. Results indicate the potential utility of targeting pairs 
of non-contiguously placed V-regions to improve taxonomic 
classification accuracy. Additionally, the results also suggest that 
for exploring the taxonomic diversity of a particular environment, 
which may be expected to be enriched with particular groups of 
bacteria, an appropriate combination of V-regions sensitive to 
the same bacterial groups may be chosen.

To assess the utility of the proposed non-contiguous 
combination of V-regions on a microbiome dataset, while avoiding 
any bias arising out of the proportion of sequences pertaining 
to different bacterial groups currently catalogued in reference 
databases like RDP, taxonomic classification exercises were further 
performed with mock microbiome datasets. Each of the mock 
microbiome datasets were constructed using 10,000 randomly 
selected 16S rRNA gene sequences from one of the five randomized 
16S gene pools. Each of these gene pools consisted of sequences 
downloaded from the RDP database, wherein the proportion of 
sequences selected from different organisms were also randomized 
(see Methods). The results, in terms of classification accuracy at 
the species level, are depicted in Table 1. It was interesting to note 
that 18 out of the 20 combinations of V-regions, which could 
provide classification accuracy > = 60% on average, constituted of 
non-contiguous V-regions. The best performing combination of 
adjacent V-regions was V2–V3, which on average provided 69.1% 
classification accuracy. In comparison, the combination of the 
non-contiguously placed V-regions V1+V4 demonstrated a high 
average classification accuracy of 77.2%.

The efficiency of the proposed non-contiguous combination 
of V-regions was further tested on nine additional simulated 
microbiomes (see Methods) mimicking different environmental 
and host-associated niches (see Methods, Supplementary 
Tables S3, S2, and S6). Results pertaining to these simulated 
microbiomes—namely, gut, skin, vaginal, sub-gingival (oral), 
sputum (oral), nematode gut, soil, and aquatic are depicted in 
Figure 5. It was interesting to note that optimal classification of 
reads from the simulated microbiomes pertaining to different 

FIGURE 3 | Taxonomic classification accuracies at species level for different variable regions. Plot depicting the average taxonomic classification accuracies 
obtained at species level using different pair-wise combinations of V-regions (both contiguous as well as non-contiguous) drawn from the 16S rRNA genes. 16S 
rRNA genes used for the evaluation were retrieved from the RDP database (see Methods).
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niches could be obtained with different combinations of non-
contiguous V-regions.

The combination of V1+V4 regions provided the maximum 
accuracy of classification for skin (60.2%) and one of the gut 
(86.0%) microbiomes (Gut2), whereas microbiomes pertaining 
to vaginal and sub-gingival niches were best resolved by the 
combination V1+V9 (with accuracies of 83.3% and 78.6%, 
respectively). Optimal classification of sputum microbiome 
samples (72.1%) could be obtained by another non-contiguous 
combination, viz. V1+V5 regions, which could also provide 
relatively more accurate classification for the Gut1 microbiome 
(82.5%). It was also interesting to note the high variability in 
classification accuracies of individual V-region combinations 
while classifying samples pertaining to different environments. 
For example, while the combination V2+V4 could classify 
one of the gut microbiomes (Gut2) with 85.93% accuracy, the 
classification results were not as high when the same combination 
was used to classify the aquatic microbiome (69.2%). On the other 
hand, the combination V2+V7 was observed to provide decent 

classification for the simulated aquatic microbiome (72.8%), 
while performing not so well for the simulated gut microbiome 
datasets (65.8% for Gut1 and 70.9% for Gut2). These results 
further reiterate the need of choosing an optimal combination 
of V-regions, preferably non-contiguous, for a specific sampled 
environment.

It may be noted here that the paired-end reads generated 
for in silico evaluation of the utility of different combinations 
of V-regions were based on HMMs pertaining to the flanking 
constant regions, as provided by the V-Xtractor program (see 
Methods). Actual primer design may not always allow generation 
of reads identical to the in silico experiment, and results from a 
sequencing experiment may slightly vary from the validation 
results presented. A comparison of the paired-end reads generated 
in the in silico experiments with respect to those which may be 
obtained by using different sets of primers currently available for 
16S rRNA amplicon sequencing is provided in Supplementary 
Figure S3, and Supplementary Tables S7 and S8. Supplementary 
Figure S3(A) and Supplementary Table S8 additionally depict 

FIGURE 4 | Taxonomic classification accuracies obtained using different pair-wise combinations of V-regions (contiguous as well as non-contiguous). Accuracy 
of taxonomic assignments has been evaluated at the species level and cumulated at phylum level for representation (only for five most represented phyla in the 
downloaded RDP sequences). Combinations of V-regions achieving a classification accuracy of > = 70% (averaged for the depicted phyla) are shown. Combinations 
of contiguously placed V-regions have been indicated with an asterisk (*).
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the specificity of different primer sets that may be used to target 
various combinations of V-regions with respect to the sequences 
present in the RDP database. It may be mentioned here that 
assessment of primer specificity on all sequences from RDP 
database (a total of 232,163 sequences having length > = 1,200 bp) 
revealed that the combinations/pairs (either contiguous or non 
contiguous) involving the V1-region could potentially amplify 
a lower fraction of sequences compared to other combinations. 
Apparently, the fraction of sequences that can be amplified by 
the said combinations is limited by the specificity/universality 
of the primer for V1-region. The presence of many incomplete/
truncated SSU rRNA sequences in RDP database, which might 
be missing the V1 primer binding sites may also contribute to 
this observation. The overall results, however, do not indicate 
any significant deviations in the specificity (fraction of bacterial 
sequences amplified) of primer pairs targeting non-contiguous 
V-regions, when compared to the primers targeting contiguously 
placed V-regions.

It may also be noted that this work did not compare and 
validate the efficacy of the proposed method in perspective of 
some recent taxonomic analysis methods which performs exact 
sequence variant (ESV) analyses (Amir et al., 2017; Callahan 
et al., 2016, 2). This was primarily because the currently available 
implementations of such methods expect a significant overlap 
between the paired-end reads and only work after the two reads 
are merged (or works with individual reads), thereby making 
it difficult to make a direct comparison with non-overlapping 
paired-end reads targeting non-contiguous V-regions. However, 
one would expect that the combination of V-regions that cannot 

provide good resolution at genus or species levels will also fail 
at deeper taxonomic levels like OTUs/sub-OTUs/ESVs, and 
vice versa.

Consensus of Multiple Combinations of 
V-Regions Enables Further Refinement of 
Taxonomic Profiles
Although better taxonomic classification accuracies can be 
obtained by using information from multiple V-regions, relatively 
higher costs and lower throughput serve as deterrents against 
adoption of long-read sequencing technologies for metagenomic 
studies. To overcome this bottleneck, we propose a combinatorial 
strategy (Figure 1) that extends the described paired-end 
sequencing workflow (achievable with a short read sequencing 
technology like Illumina) for targeting multiple pair-wise 
combinations of non-contiguous (or contiguous) V-regions (see 
Methods). The proposed strategy relies on obtaining taxonomic 
abundance profiles of a microbial community from two paired-
end sequencing experiments, each of which targets different 
pair-wise combinations of V-regions. The two taxonomic profiles 
are then combined based on (pre-estimated) accuracies of the 
individual V-regions (targeted in the experiments) in resolving 
each of the taxonomic groups under consideration.

Considering the fact that human gut is one of the most diverse 
and densely populated reservoir of microbes, the utility of the 
combinatorial strategy was assessed with one of the simulated 
human gut microbiome sample Gut1 (as described earlier). As 
can be seen from Figure 5, the V-region combinations V1+V4 

TABLE 1 | Taxonomic classification accuracies obtained using different pair-wise combinations of V-regions (both contiguous as well as non-contiguous) evaluated for 
mock microbiome datasets, each constituting of 10,000 randomly selected 16S rRNA genes from five different 16S gene pools.

Combination 
of V-region

Classification accuracy (%) at species level averaged over five mock datasets from each 16S gene pool

Mock datasets 
from 16S gene 

pool 1

Mock datasets 
from 16S gene 

pool 2

Mock datasets 
from 16S gene 

pool 3

Mock datasets 
from 16S gene 

pool 4

Mock datasets 
from 16S gene 

pool 5

Average accuracy

V1+V4 77.29 79.47 72.79 75.90 80.48 77.19
V1+V3 74.69 78.16 77.52 74.76 80.08 77.04
V1+V8 76.03 77.96 73.24 75.72 79.32 76.46
V1+V7 77.20 78.33 70.37 77.34 78.60 76.37
V1+V6 72.46 77.34 69.73 78.25 76.90 74.94
V1+V5 70.89 74.24 69.16 73.37 76.40 72.81
V1+V9 71.74 71.41 71.33 73.95 75.57 72.80
V2+V4 69.07 75.07 72.76 70.99 73.55 72.29
V2+V8 68.26 74.60 73.33 70.66 73.27 72.02
V2+V6 66.84 74.54 72.60 72.19 72.67 71.77
V2+V7 68.34 72.76 72.73 71.17 71.30 71.26
V2V3* 61.53 71.52 72.03 66.31 73.92 69.06
V2+V9 65.03 68.85 71.60 66.32 71.81 68.72
V1V2* 64.20 70.29 66.81 65.44 72.40 67.83
V3+V8 68.47 61.80 69.66 66.59 67.82 66.87
V3+V7 68.41 61.60 71.05 66.80 65.93 66.76
V2+V5 61.38 68.19 68.42 65.36 69.34 66.54
V3+V6 63.26 59.91 68.53 67.04 65.15 64.78
V3+V9 63.63 55.85 67.20 65.94 63.83 63.29
V3+V5 60.94 56.74 65.79 62.91 62.49 61.77

Accuracy of taxonomic assignments has been evaluated at the species level considering the assignments obtained with full-length 16S sequences to be correct. Top 20 
combinations in terms of average classification accuracy have been depicted. Combinations of contiguous V-regions have been marked with an asterisk (*).
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FIGURE 5 | Evaluation of taxonomic classification efficiency on simulated microbiomes. Taxonomic classification efficiency of different combinations of V-regions 
evaluated on nine simulated microbiome datasets mimicking different environmental niches. Taxonomic classification accuracy in terms of percentages of correct 
assignments at species level are indicated in the heatmap. The color scale (1–36) depicts the performance rank of different combinations of V-regions (total of 36 
combinations) in terms of taxonomic classification accuracy for each of the simulated microbiomes (presented in columns).
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TABLE 2 | Utility of proposed combinatorial approach in obtaining refined taxonomic profiles compared to taxonomic abundance estimates obtained with pair-wise 
combinations of V-regions.

Species Abundance (%) estimated 
with full-length 16S reads

Abundance (%) estimated 
with 10,000 V1+V4 paired-

end reads

Abundance (%) estimated 
with 10,000 V1+V5 paired-

end reads

Abundance (%) estimated 
with combinatorial 

approach using 5,000 V1+V4 
and 5,000 V1+V5 reads

Faecalibacterium prausnitzii 11.17 12.24 12.25 11.06
Bacteroides faecis 10.69 11.97 11.24 11.36
Prevotella amnii 6.73 0.00 6.72 7.28
Prevotella nigrescens 6.47 6.98 6.76 6.96
Megamonas hypermegale 5.35 6.06 3.53 4.71
Bacteroides pyogenes 4.23 4.44 4.33 4.55
Bacteroides finegoldii 3.98 4.03 4.13 4.00
Alistipes putredinis 3.45 3.73 3.71 3.51
Roseburia hominis 2.41 2.70 2.84 2.62
Bacteroides nordii 2.18 2.50 2.26 2.16
Bacteroides eggerthii 2.15 2.51 2.24 2.15
Bacteroides helcogenes 2.09 2.35 2.13 2.11
Bacteroides caccae 2.08 2.30 2.32 2.32
Bacteroides massiliensis 2.07 2.10 2.13 2.03
Bacteroides coprocola 2.04 2.43 2.27 2.21
Bacteroides salyersiae 2.04 2.26 2.01 2.12
Bacteroides stercoris 2.03 1.92 2.50 2.17
Bacteroides uniformis 2.02 2.03 2.04 1.93
Bacteroides acidifaciens 2.01 2.30 2.00 2.08
Proteiniphilum acetatigenes 2.01 2.21 2.18 2.07
Bacteroides cellulosilyticus 1.98 2.16 0.00 1.70
Bacteroides intestinalis 1.96 2.02 2.08 2.03
Roseburia faecis 1.74 1.94 1.91 1.69
Roseburia intestinalis 1.74 2.16 1.91 1.86
Parasutterella secunda 1.50 1.74 1.56 1.38
Roseburia inulinivorans 1.00 1.00 1.06 1.11
Phascolarctobacterium 
succinatutens YIT 12067

0.99 0.82 0.78 0.80

Parabacteroides distasonis 0.90 1.03 1.04 0.74
Parabacteroides merdae 0.89 1.07 0.87 0.92
Parasutterella excrementihominis 0.82 0.99 0.84 0.75
Dorea longicatena 0.78 0.32 0.51 0.32
Phascolarctobacterium faecium 0.74 0.81 0.83 0.69
Blautia producta 0.70 0.55 0.86 0.61
Escherichia/Shigella fergusonii 0.69 0.59 0.00 0.00
Escherichia/Shigella albertii 0.57 0.56 0.62 0.71
Escherichia/Shigella flexneri 0.56 0.00 0.00 0.00
Escherichia/Shigella dysenteriae 0.53 0.50 0.54 0.57
Dialister invisus 0.47 0.58 0.50 0.46
Megasphaera elsdenii 0.46 0.37 0.47 0.40
Blautiaglucerasea 0.45 0.41 0.48 0.61
Blautia hydrogenotrophica 0.43 0.44 0.46 0.51
Blautia schinkii 0.43 0.47 0.54 0.43
Mitsuokella jalaludinii 0.39 0.40 0.42 0.35
Collinsella aerofaciens 0.34 0.37 0.42 0.36
Bifidobacterium longum 0.32 0.40 0.37 0.38
Bifidobacterium animalis 0.32 0.25 0.32 0.29
Ruminococcus flavefaciens 0.30 0.21 0.25 0.17
Blautia hansenii 0.28 0.33 0.30 0.33
Megasphaera sp. NMBHI-10 0.28 0.22 0.19 0.17
Klebsiella pneumoniae 0.25 0.21 0.29 0.27
Cumulated percentage deviation 
from abundance estimated 
using full-length 16S sequences

– 17.40 11.47 6.85

Results in the table pertain to the simulated human gut microbiome dataset Gut1 (as depicted in Figure 5).
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and V1+V5 provided highest average classification accuracies 
for most of the host (human)-associated environmental niches. 
Consequently, these V-region combinations were targeted for 
evaluating this combinatorial strategy wherein 5,000 sequence 
fragments corresponding to each of the V-region combinations 
(i.e., a total of 10,000 fragments) were sampled from the simulated 
microbiome. The results obtained with the combinatorial 
strategy were compared against the results obtained when each 
of the V-region combinations were targeted separately (with a 
sequencing depth of 10,000 reads in each case).

Results in Table 2 indicate that although the V1+V4 and 
V1+V5 regions can classify the reads with commendable 
accuracy, the abundance values provided for individual genera 
deviates from the actual (RDP) lineage by a certain extent. 
The combinatorial approach was observed to moderate these 
deviations to a significant extent, and relative abundance of 
individual genera ascertained by the combinatorial approach 
exhibited better coherence with the actual lineage. In quantitative 
terms, while the average deviations (from actual lineage) in 
relative taxonomic abundance predictions for V1+V4 and 
V1+V5 combination–based approaches were 17.4% and 11.5%, 
respectively, the combinatorial approach exhibited a significantly 
lower average deviation (6.9%) from the actual lineage. Similar 
improvements were also observed when this approach was 
tested on microbiomes pertaining to other host-associated/
environmental niches (Supplementary Table S9). Given that the 
proposed combinatorial approach does not incur any significant 
additional sequencing cost and is a simple in silico extrapolation 
of the results obtained with standard pair-end sequencing, 
adoption of the same would be easy and would enable researchers 
to explore the taxonomic diversity of different environments with 
greater accuracy. While certain additional experimental costs for 
primers, multiplexing barcodes, additional PCR, and handling 
etc. are expected to be incurred to implement the proposed 
combinatorial strategy, the actual sequencing (reagents) cost, 
constituting the bulk of the total expenditure, remains the 
same. The additional pre-processing and handling efforts can at 
most be twice compared to the sample handling efforts needed 
for a single paired-end sequencing experiment. However, the 
potential benefits in terms of an improved taxonomic resolution 
are expected to outweigh any inhibitions arising due to the 
additional, but trivial, pre-processing and handling efforts.

CONCLUSION

The suggested protocol of targeting non-contiguously placed 
16S rRNA V-regions in microbiome studies can yield better 
taxonomic classification accuracies without any significant 
additional cost/effort. A simple in silico combinatorial strategy 
further allows building consensus taxonomic profiles from 
multiple pair-wise combinations of V-regions, while improving 
accuracy in taxonomic classification. The results of the current 
study can serve as a guideline for future 16S rRNA amplicon–
based microbiome studies and help researchers to choose the 
most optimal combination of V-regions for their experiment/
sampled environment.
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Advances in sequencing and computational biology have drastically increased our 
capability to explore the taxonomic and functional compositions of microbial communities 
that play crucial roles in industrial processes. Correspondingly, commercial interest has 
risen for applications where microbial communities make important contributions. These 
include food production, probiotics, cosmetics, and enzyme discovery. Other commercial 
applications include software that takes the user’s gut microbiome data as one of its 
inputs and outputs evidence-based, automated, and personalized diet recommendations 
for balanced blood sugar levels. These applications pose several bioinformatic and 
data science challenges that range from requiring strain-level resolution in community 
profiles to the integration of large datasets for predictive machine learning purposes. In 
this perspective, we provide our insights on such challenges by touching upon several 
industrial areas, and briefly discuss advances and future directions of bioinformatics and 
data science in microbiome research.

Keywords: DNA sequencing, microbiome, industrial biotechnology, probiotics, 16S rRNA gene profiling, 
metagenomics, bioinformatics, data science

INTRODUCTION

Microbial communities play important roles in industrial processes such as the production of 
food, beverages, probiotics, paper, and cleaning products (for a review, see Singh et al., 2016). It 
has become an industrial standard to study the taxonomic composition and functional capabilities 
of these microorganisms using marker gene (e.g. 16S rRNA) and shotgun metagenome sequencing 
for product development, optimization, and quality control (Costessi et al., 2018). In addition, data 
from other omics sources such as metatranscriptomics and metabolomics can be used in integrative 
studies to generate leads, for instance in enzyme discovery. Some of the questions asked in these 
microbiome studies are related to determining the efficacy of probiotics and require strain-level 
characterization of the community composition (McFarland et al., 2018). Other studies focus on 
assessing the capability of microbial communities to produce certain compounds and necessitate 
recovering bacterial genomes from complex (e.g. soil) microbiomes (Howe et al., 2014). Extending 
microbiome applications to the public for actionable results, for example, to control blood sugar 
levels, requires a combination of advanced computational methods from bioinformatics, data 
mining, and machine learning (Zeevi et al., 2015).

In this perspective, we give an overview of several industrial microbiome applications with 
their bioinformatic and data science challenges. In addition, we highlight some of the advances 
that have the potential to provide valuable insights into the challenges facing these applications. 
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We conclude with sharing our view on the future directions and 
requirements of industrial microbiome applications in terms of 
their computational components.

CURRENT APPLICATIONS AND 
PRODUCTS

Dairy Starter Cultures
Microbial populations (e.g. of lactic acid bacteria) are used in a 
variety of food and beverage production processes including the 
manufacture of cheese, yoghurt, meat, and wine. Specifically, their 
role in taste and structure formation is essential, for instance during 
cheese ripening. These processes are governed by the presence or 
absence of strain-specific enzymes (Escobar-Zepeda et al., 2016). 
Studying such enzymes through strain isolation is often costly and 
time-consuming since culturing strain representatives is difficult 
due to laborious or unknown growth conditions (Lagier et al., 
2016). Alternatively, these enzymes can be studied by metagenome 
sequencing, assembly, and annotation, for instance, in product 
optimization (De Filippis et al., 2017). In addition, metagenome 
assembly plays an important role in analyzing bacteriophage 
populations in cultures in terms of their abundance, diversity, and 
development (Muhammed et al., 2017), which is important not 
only in the prevention of phage infections that cause fermentation 
failures, but also for unlocking the potential of phages against 
food-borne pathogens (Fernández et al., 2017).

Probiotics
Probiotics are microbes that are intended to benefit the host health 
when consumed in adequate amounts. Identification of novel 
probiotics is a laborious process that starts with constructing a 
strain library using a culturomics approach (Lagier et al., 2016). 
This is followed by in vitro and computational research on the 
obtained strains to functionally characterize them, for instance 
for their bile resistance and potential to survive the passage of 
the stomach. Each of these steps reduces the list of high-potential 
candidates that as a final step must pass regulatory offices such as 
the European Food Safety Authority (EFSA, FEEDAP et al., 2018). 
We believe that the findings from comparative studies of the gut 
microbiome that highlight associations between phenotypic 
traits such as inflammation (Andoh et al., 2012) and obesity 
(Kasai et al., 2015) and specific bacterial populations, when 
integrated with other sources like metabolomic, demographic, 
dietary, and lifestyle datasets, may allow automated (e.g. machine 
learning-based) identification of candidate probiotic strains and 
reduce the time and financial cost of probiotics screening.

Small differences in the gene content of otherwise genetically 
identical bacterial strains can lead to different phenotypes (Zeevi 
et al., 2019), which in return may result in different outcomes 
in vivo. Therefore, well-conducted clinical trials are necessary 
to prove that the probiotic candidate itself confers the health 
effect. To make sure that the observed effects are not elicited 
by other (closely related) organisms and can be ascribed solely 
to the consumed probiotic, metagenomic, and bioinformatic 
methods that enable strain-level identification and tracking of the 

studied probiotic strain are required. For instance, in the genus 
Bifidobacterium, genetic differences between different strains of 
the same species underlie differences in carbohydrate utilization 
profiles (Arboleya et al., 2018). As these phenotypic traits are 
important in the development of probiotics for infant nutrition, 
applying shotgun metagenomics instead of amplicon sequencing 
for strain-level characterization may have substantial advantages.

Quality Control
Products like probiotics and dairy starter cultures contain live 
organisms that are either sold directly to consumers or used to 
manufacture consumer products. Next to the checks performed 
for raw materials, quality control of the end product is necessary to 
ensure the presence of correct strains and the absence of pathogens 
(Fenster et al., 2019). As mentioned above, microbial strains of 
the same species can have vastly different phenotypes, making 
strain-level identification in the quality control process crucial for 
recognizing possible contaminants (Huys et al., 2013). Traditional 
typing approaches such Random Amplification of Polymorphic 
DNA-PCR (RAPD-PCR) can be used for identifying single-strain 
probiotics contaminants, but require cultivation (Mohkam et al., 
2016), making them unsuitable for high-throughput screening 
of products with complex communities (e.g. probiotics and dairy 
products). Whole-metagenome sequencing and analysis has 
the potential not only to circumvent these lengthy processes in 
providing strain-level information, but also to enable screening 
of undesired traits such as (spore) heat-resistance based on the 
presence of associated genes (Berendsen et al., 2016).

Cosmetics
The cosmetics industry has a growing interest in studies that aim 
to explore the skin microbiome as a potential therapeutic target 
for disorders including acne, eczema, and Malassezia folliculitis 
(Wallen-Russell, 2019). Unfortunately, these studies are typically 
hampered by the low biomass of skin samples, where small 
contaminations (e.g. from adjacent skin or reagents) can easily 
lead to incorrect outcomes (Kong et al., 2017). Furthermore, the 
human skin microbiome is strongly subject-specific (Zeeuwen 
et al., 2012), making it difficult to determine the effect of skin 
products on the general population. While this opens a potential 
market for personalized skin products, it also raises the need 
for personal longitudinal studies, where statistical methods 
such as redundancy analysis and principle response curve (Van 
den Brink and Braak, 1999) help assess correlations between 
taxonomic or functional composition and sample characteristics 
(environmental variables). Furthermore, the data can be corrected 
for one of the variables, such as ‘subject’ so that the variance from 
that covariate is removed before the actual analysis is performed, 
which facilitates determining the effect of the treatment.

Enzyme Discovery
A wide range of industrial enzymes, such as those used in the 
production of cleaning agents, laundry detergents, paper, and textile, 
have the continuous demand to become cheaper, greener, and 
more efficient. Among others, marine, soil, and lake microbiomes, 
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with their extremely high and mainly uncharacterized biodiversity, 
constitute exciting functional mines not only in the search for new 
enzymes with such desired properties, but also for the discovery 
of novel enzymes that can catalyze challenging reactions (Popovic 
et al., 2015). A notable example of the latter is the recent discovery 
of two enzymes that enable the production of a renewable 
alternative to toluene, a petrochemical with a market of 29 million 
tons per year, from complex microbial communities that live in 
sewages and lakes (Beller et al., 2018).

Two main bioinformatic challenges in metagenomic enzyme 
discovery arise from the same fact that makes the chosen 
environment (e.g. soil) attractive in the first place: its high and 
uncharacterized biodiversity. The large number of different 
genomes in the environment and their highly skewed abundance 
distribution make it difficult to obtain contiguous and complete 
assemblies (Ayling et al., 2019), an outcome that negatively 
impacts gene prediction. The next challenge lies in functionally 
annotating the predicted genes, where commonly a high 
percentage of sequences are labeled as “hypothetical” or with 
unknown function.

Microbiome-Based Health and 
Personalized Nutrition
Companies and citizen science projects such as MyMicroZoo1, 
Biovis2, and American Gut3 offer affordable microbiome analysis 
services to general consumers. While operationally their analyses  
are the same as those used for research, they must pay far 
more attention to the clarity of the results to ensure correct 
interpretations by the end-users even if the results are stated not 
to be interpreted as diagnosis. In practice, this means that the 
end-user should be guided through the (actionable) results with 
the help of trained healthcare professionals [e.g. dieticians and 
general practitioners (GPs)], who should take the limitations of a 
given analysis into account to prevent overinterpretation.

While basing health-related advice on published research 
findings is a good practice, the fact that most studies focus on a 
defined cohort and report “averaged” population trends makes it 
questionable whether results can be translated back to individuals. 
Such translations to the individual may be less complicated 
with function-based approaches through metagenomics as the 
‘personalized’ effects are less pronounced in these datasets (Lloyd-
Price et al., 2017). Nonetheless, the predictive value of a person’s 
gut microbiome for health was demonstrated by an inspirational 
study by Zeevi and colleagues (2015), which integrated blood 
parameters, dietary habits, anthropometrics, physical activity, 
and the gut microbiome data into a machine learning algorithm 
that predicted the post meal glycemic responses of the subjects. 
Ultimately, 72 taxonomic or functional features of the microbiome 
were included in the predictive model. This approach, validated 
further with another independent cohort, is now offered to the 
public by DayTwo4, which is a good example of how extensive 
datasets from scientific studies and data science can be combined 

1mymicrozoo.com
2biovis-diagnostik.eu
3humanfoodproject.com/americangut/
4daytwo.com

in an industrial setting for providing customers with evidence-
based health-related recommendations.

CURRENT ADVANCES

Metagenome Assembly, Binning, and 
Annotation
Metagenome assembly enables gene prediction, annotation, and 
abundance profiling, and therefore is an important computational 
step when studying the functional composition and capacity 
of microbiomes. Many (de Bruijn graph-based) metagenome 
assembly methods that differ in terms of their ease of use, 
scalability, running time, and memory requirement exist, making 
it important to carefully choose the one that serves the research 
question at hand the best (Van der Walt et al., 2017). For instance, 
in comparative studies with large cohorts where the impact of 
probiotics on the abundances of gene groups and pathways is 
analyzed, tools that are computationally less intensive, such as 
MEGAHIT (Li et al., 2015), are preferred. In contrast, studies 
with a low number of samples, such as those in enzyme discovery 
applications, can make use of assembly tools like metaSPAdes 
(Nurk et al., 2017) that include optimizations such as error 
correction but with a subsequent runtime trade-off. When higher 
read depth for assembling low abundance members or recovering 
full genomes is needed, data from (not too) different samples 
(e.g. dairy starter cultures) can be combined using co-assembly 
methods like crass (Dutilh et al., 2012) which also facilitates 
metagenomic comparison between samples. Finally, binning 
methods such as MetaBAT (Kang et al., 2015), MaxBin (Wu et al., 
2014), and COCACOLA (Lu et al., 2017) facilitate extracting 
individual (draft) genomes from metagenome assemblies, which 
helps look at a specific organism in more detail e.g. in enzyme 
discovery applications where identifying the genome that encodes 
the target enzyme is important.

In a recent study of cow rumen microbiome, a valuable 
environment for biomass-degrading enzyme discovery, Stewart 
et al. (2018) showed that 90% of the proteins predicted to be 
involved in the studied mechanism (carbohydrate metabolism) 
did not have a good match in public databases. Such findings 
highlight the relatively large room for improvement in 
microbiome annotation.

Hypothesis-Driven Functional Analyses
Exhaustively analyzing all functional aspects and querying 
all potential longitudinal and cross-sectional aspects of a 
microbiome dataset is generally considered a hopeless task. Even 
when computationally feasible, multiple testing issues lead to 
a severe reduction of the analysis power. Although approaches 
like the removal of collinear variables and validation of potential 
correlations in independent datasets can in part address these 
issues (Falony et al., 2016), delineating the relevant functional 
aspects is a big step in overcoming these limitations. Using a 
specific database to answer a particular hypothesis, such as 
in the case with certain enzyme classes or a set of enzymatic 
pathways, is such an approach. Examples of such databases 
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and tools are Resfams (Gibson et al., 2015), dbCAN (Yin et al., 
2012), and antiSMASH (Blin et al., 2017), focusing on antibiotic 
resistance, carbohydrate utilization, and secondary metabolite 
synthesis, respectively. Methods developed for the elucidation 
of gene function, such as the guilt by association approaches 
implemented in STRING (Szklarczyk et al., 2014), can be used 
to identify genes that are not directly flagged by comparison to 
specific functional datasets such as the ones described above, 
but have distribution patterns similar enough to genes that 
are represented in the reference set. A drawback of functional 
analyses that require protein sequences is the need for assembly 
and gene prediction, which can be computationally intensive as 
described above. Tools like HUMAnN2 (Franzosa et al., 2018) 
work directly with short-read data without requiring an assembly 
for profiling protein family abundance.

Assembly-Independent Strain-Level 
Characterization
Probiotic members such as Bifidobacterium longum subsp. 
longum and Bifidobacterium longum subsp. infantis, which have 
two distinct phenotypes with relevant functional implications 
in infant nutrition (Underwood et al., 2015), differ only slightly 
in their16S rRNA gene sequences (Lawley et al., 2017). Such 
differences are lost in classical operational taxonomic unit 
(OTU) clustering-based taxonomic analyses. Novel methods 
like UNOISE2 (Edgar, 2016) and DADA2 (Callahan et al., 2016) 
circumvent clustering and apply sequence filtering steps, enabling 
distinguishing between sequences on a single-nucleotide level 
by grouping reads in amplicon sequence variants (ASVs). This 
has a great potential to improve the phylogenetic depth at which 

microbiome studies can be interpreted. Notable applications of 
these new algorithms provided new, sub-species level insights 
into oral (Mukherjee et al., 2018) and vaginal microbiomes 
(Callahan et al., 2017).

In cases where multiple strains of a species of interest have 
identical 16S rRNA sequences, algorithms such as StrainPhlAn 
(Truong et al., 2017) and PanPhlAn (Scholz et al., 2016) enable 
strain-level analyses from shotgun metagenome datasets without 
the need for metagenome assembly (Figure 1). These methods 
open the possibility for routine compositional analyses to verify 
the presence of desired strains or identify potential pathogens in 
end products.

Long-Read Sequencing and Other 
Advances
Although their use in microbiome studies is currently not 
common, long-read sequencing platforms Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT) offer 
exciting opportunities for several industrial applications 
mentioned above. For instance, circular consensus sequencing 
application by PacBio, which allows multiple reads generated 
from a circularized amplicon molecule to be bioinformatically 
combined into a high-quality, full-length (16S) sequence 
(Callahan et al., 2018), provides the necessary phylogenetic 
resolution for applications such as fermentation studies, 
which is unfeasible with short-read amplicon sequencing. The 
on-demand sequencing nature of ONT, on the other hand, 
seems suitable for quality control applications for detecting 
distinct pathogens, although the high error rate is limiting for 
accurate, strain-level detection.

FIGURE 1 | An overview of approaches to achieve taxonomic resolution at different levels.
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Even with high dataset coverage and advanced methods, 
assemblies from short-read datasets commonly remain very 
fragmented, especially in samples from complex communities 
like soil. Soon, we expect the integration of long-read sequencing 
to be more common in assembly-oriented studies for obtaining 
full, chromosome-level microbial genomes. Correspondingly, 
we see potential in adapting hybrid assembly methods such as 
hybridSPAdes (Antipov et al., 2015) to enable their use with 
long- and short-read metagenome datasets. Other promising 
developments revolve around using barcoded short reads that 
have long-range information, such as those provided by 10x 
Genomics (http://10xgenomics.com), in microbiome research. 
We see the emergence of tailored bioinformatic methods such as 
the Athena assembler (Bishara et al., 2018), which uses barcode 
information in short-reads and improves the contiguity of 
metagenome assemblies.

Machine Learning and Data Science
With decreasing sequencing costs, the size of datasets in 
microbiome studies and the depth of sequencing per sample 
have increased. This led to studies with higher statistical 
power, and consequently to the transition of OTU tables and 
functional profiles from end-goal deliverables into starting 
material for downstream analyses such as machine learning 
(ML) applications (Pasolli et al., 2016). Methods like random 
forests (RF) have been successfully used by many within 
a disease context, for instance, for accurately predicting 
irritable bowel syndrome (Saulnier et al., 2011) and bacterial 
vaginosis (Beck and Foster, 2014) based on taxonomic profiles 
(for a review, see LaPierre et al., 2019 and Qu et al., 2019). 
On the other hand, Sze and Schloss (2016) used 10 previously 
published obesity datasets and showed that RF ML models 
trained on one of the datasets and tested on the remaining 
nine had a median accuracy of only 56.68%, suggesting that 
i) the method may not be applicable for some diseases, or 
ii) the disease signal may be more apparent at the level of 
differentially expressed functions (gene transcripts) of the 
microbiome.

Industrial microbiome applications of ML include building 
classification models based on soil microbiome data for detecting 
oil sites (Miranda et al., 2019) and above-mentioned personalized 
health-related lifestyle (diet) recommendation services that are 
partly based on gut microbiome data. As mentioned in Probiotics, 
we expect dataset integration and ML to have an impact also on 
areas such as screening of novel probiotics. To meet the overall 
demand for user-friendly ML in microbiome research, software 
suites like QIIME 2 (Bokulich et al., 2018), MicrobiomeAnalyst 
(Dhariwal et al., 2017), and USEARCH (Edgar, 2010) started 
incorporating ML methods that can be used by researchers who 
aren’t necessarily trained as bioinformaticians.

CONCLUSIONS AND OUTLOOK

The vast number of experimental and computational methods 
available for microbiome research have led to a broad collection 

of choices. While creation of guidelines and standardization 
for increased comparability and reproducibility is essential, 
achieving a global consensus in methods used remains a 
challenge. What constrains researchers to their current 
practices is mainly the laborious nature of adopting other 
(new) protocols, which may have an ironically detrimental 
effect on comparability between different studies, or even 
within studies that run over prolonged periods. Like Knight 
et al. (2018), we think that a primary objective of microbiome 
studies should be to standardize the documentation of used 
methods, tools, data formats, and data processing parameters, 
and to publish these “logs” next to the final results and 
interpretations. While complete disclosure is scientifically 
ideal, it raises commercial concerns for microbiome analysis 
providers like BaseClear5, NIZO food research6, Clinical 
Microbiomics7, Vedanta Biosciences8, and COSMOSID9, as it 
would mean releasing a substantial part of their, sometimes 
unique, intellectual property.

With reducing costs, we soon expect long-read sequencing 
technologies to be commonly used in microbiome studies, which 
will benefit from enhanced taxonomic resolution with full-
length marker gene sequencing, as well as improved functional 
analyses thanks to more contiguous metagenome assemblies. 
Here, the focus in developments is likely to be on the translation 
of bioinformatic protocols already established for short reads 
to long-read versions, for instance in denoising and read 
classification approaches.

Other challenges relate to shotgun metagenome analyses 
in large studies, where expensive calculations used in de 
novo assembly and annotation may result in capacity issues. 
For companies that cannot afford large on-premise compute 
infrastructures, the cloud provides a flexible alternative, where 
know-how of cloud-computing becomes essential.

Finally, the rapid translation of microbiome research into 
important industrial applications in healthcare, energy, and food 
production will continue to stimulate collaborations between 
academic and industrial communities. We expect the role of 
bioinformatics and data science to become only more significant 
in this relationship.
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Pipeline to Recover High-Quality 
Metagenomic Bins From Mammalian 
Gut Proximity-Ligation (meta3C) 
Libraries
Lyam Baudry 1,2,3†, Théo Foutel-Rodier 1,2,3†, Agnès Thierry 1,2, Romain Koszul 1,2* 
and Martial Marbouty 1,2*
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Bioinformatics, Biostatistics and Integrative Biology (C3BI), Paris, France, 3 Sorbonne Université, Collège Doctoral, Paris, France

Characterizing the complete genomic structure of complex microbial communities 
would represent a key step toward the understanding of their diversity, dynamics, and 
evolution. Current metagenomics approaches aiming at this goal are typically done by 
analyzing millions of short DNA sequences directly extracted from the environment. 
New experimental and computational approaches are constantly sought for to improve 
the analysis and interpretation of such data. We developed MetaTOR, an open-source 
computational solution that bins DNA contigs into individual genomes according to their 
3D contact frequencies. Those contacts are quantified by chromosome conformation 
capture experiments (3C, Hi-C), also known as proximity-ligation approaches, applied to 
metagenomics samples (meta3C). MetaTOR was applied on 20 meta3C libraries of mice 
gut microbiota. We quantified the program ability to recover high-quality metagenome-
assembled genomes (MAGs) from metagenomic assemblies generated directly from the 
meta3C libraries. Whereas nine high-quality MAGs are identified in the 148-Mb assembly 
generated using a single meta3C library, MetaTOR identifies 82 high-quality MAGs in the 
763-Mb assembly generated from the merged 20 meta3C libraries, corresponding to 
nearly a third of the total assembly. Compared to the hybrid binning softwares MetaBAT 
or CONCOCT, MetaTOR recovered three times more high-quality MAGs. These results 
underline the potential of 3C-/Hi-C-based approaches in metagenomic projects.

Keywords: metagenomics Hi-C, gut microbiome, Hi-C, metagenomics binning, metagenomic analysis, binning 
algorithm, metagenome-assembled genomes

INTRODUCTION

Microbial communities hold important roles in ecosystems regulation (Philippot et al., 2013; Edbeib 
et al., 2016; Coutinho et al., 2018; Rosado et al., 2019), such as the human gut (Cho and Blaser, 
2012). Understanding the behaviors of these communities is a complex task, and one important 
step toward this objective relies on the characterization of the genomes of the different species 
within (Long et al., 2016). Indeed, the genome sequence allows to infer metabolic pathways and, 
by extension, provide indications about the species lifestyle in the environment. Supported by 
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high-throughput sequencing technologies dropping costs and 
backed by increasingly powerful computational resources, the 
field of metagenomics aims at exploring ecosystems through 
the analysis of DNA sequences extracted directly from the 
environment to gain insights on microbial population diversity 
and dynamics (Spang et al., 2015; Hug et al., 2016; Paez-Espino 
et al., 2016; Castelle and Banfield, 2018). Characterizing complete 
or near-complete genomes remains however difficult to achieve, 
depending to some extent to the popularity and complexity of 
the ecosystem studied (Olson et al., 2017; Quince et al., 2017; 
Sieber et al., 2018). An important aspect of metagenomics studies 
therefore consists in developing computation approaches to 
characterize genomes in metagenomics data (Albertsen et al., 
2013; Alneberg et al., 2014; Frank et al., 2016; Sieber et al., 2018).

Most computational approaches rely on the composition 
and/or co-abundance of sequences recovered from multiple 
samples to pool (bin) them together (Alneberg et al., 2014; Wu 
et al., 2014; Kang et al., 2015; Lu et al., 2017; Graham et al., 2017; 
Laczny et al., 2017). Composition-based method groups together 
sequences that display similar metrics, such as GC content and/
or tetra- and/or penta-nucleotide frequencies. Co-abundance-
based approaches trace the relative amount of sequences over 
multiple samples and group together those with similar coverage 
variation. Co-abundance is very effective when multiple samples 
of the same ecosystem are available under different conditions. 
Today, most metagenomics binning pipeline consists in hybrid 
approaches combining both strategies to improve the confidence 
of the resulting sequences bins (Alneberg et al., 2014; Wu et al., 
2014; Kang et al., 2015; Graham et al., 2017; Lu et al., 2017). 
However, caveats and limitations remain. First, grouping 
sequences based on their similarities imply a strong assumption 
regarding the homogeneity of the genomes’ composition. This 
hypothesis is therefore not valid when horizontal transfer or 
introgression of genetic material takes place between species 
with (highly) divergent sequence compositions. For instance, 
the GC content of prophages and of their bacterial genomes host 
can differ widely. Co-abundance-based methods require multiple 
samples and large amounts of data to be fully effective, which 
can be impractical and/or costly. In addition, if several multiple 
species share the same genetic elements, co-abundance-based 
methods will also fail to identify the association of these elements 
with the different species.

Novel technologies, such as single-cell (Ji et al., 2017), long 
reads (Frank et al., 2016) or proximity ligation/chromosome 
conformation capture (3C) (reviewed in Marbouty and Koszul, 
2015; Flot et al., 2015), hold the potential to address some of 
these limitations. The latter approach, dubbed meta3C from the 
original 3C approach (Dekker et al., 2002), aims at quantifying 
and exploiting collisions between DNA loci over a population of 
species to identify those that share the same cellular compartment. 
Sequences belonging to the same genome display enriched contact 
frequencies compared to those belonging to different genomes, 
as shown by applying meta3C on controlled mixes of species 
(Burton et al., 2014; Beitel et al., 2014; Marbouty et al., 2014). 
Besides controlled mixes, meta3C successfully reconstructed 
genomes from truly unknown and complex ecosystems as well 
(Marbouty et al., 2014; Marbouty et al., 2017; Stewart et al., 2018). 

Not only near-complete genomes from microorganisms can be 
recovered from a single experiment, but additional information 
about the genomic structure of these microbial populations can 
be recovered as well, including plasmids (Marbouty et al., 2014; 
Press et al., 2017; Stalder et al., 2019) and phage-host infection 
spectrum (Marbouty et al., 2017). These studies suggest that 
meta3C and similar approaches hold the potential to 1) accurately 
bin genomes and episomal DNA molecules and 2) assign 
episomal DNA molecules to their respective hosts. However, 
comprehensive, end-to-end computational pipelines to process 
raw meta3C datasets remain sparse (Marbouty et al., 2017; 
DeMaere and Darling, 2019). Most analyses so far have focused 
on single mock communities, and quantifiable metrics are lacking 
to see how meta3C-like approaches truly compare—and possibly 
complement—traditional binning methods, notably regarding 
the quality, completeness, and accuracy of retrieved bins.

To address this need, we developed MetaTOR (Metagenomic 
Tridimensional Organisation–based Reassembly), a lean and 
scalable tool to investigate single or multiple proximity-ligation 
(i.e., 3C or Hi-C libraries) metagenomic experiments, from raw 
3C reads and assembly to bins. MetaTOR was applied on 20 
meta3C libraries of mouse gut samples collected over time. This 
first dynamic meta3C study allowed us to reconstruct dozens of 
complete genome sequences, and to compare the genomic bins 
recovered using MetaTOR with bins generated by binning software 
MetaBAT (Kang et al., 2015) and CONCOCT (Alneberg et al., 
2014). MetaTOR compared favorably with respect to the number 
of high-quality genomes recovered (Bowers et al., 2017) and the 
amount of binned sequences. In addition, 3C-based binning was 
less dependent on the quality of the metagenome assembly (in 
terms of fragmentation—i.e., contigs’ mean size, N50). Overall, 
MetaTOR is a robust tool to process proximity-ligation sequencing 
data, regardless the number of samples processed.

MATERIALS AND METHODS

Feces Sampling and meta3C Library 
Generation
The feces of three groups of two mice were sampled over 20 days 
as follows: days 2, 5, and 9 for cage n°1; days 2, 4, 5, 6, 7, 9, 10, 12, 
and 16 for cage n°2; and days 2, 5, 6, 7, 9, 11, 12, and 16 for cage 
n°3 (Supplementary Figure 1). The samples were immediately 
cross-linked after sampling in 30  ml of 1X tris-EDTA buffer 
supplemented with 3% formaldehyde (final concentration), 
for 1 h at room temperature with agitation. Formaldehyde was 
quenched by adding 10  ml of 2.5 M glycine during 20  min at 
room temperature with moderate agitation. Samples were then 
recovered by centrifugation, and pellets were stored at −80°C 
until processing. The libraries were then prepared and sequenced 
using pair-end (PE) Illumina sequencing (2 × 75 bp NextSeq) as 
described (Marbouty et al., 2014; Foutel-Rodier et al., 2018).

Read Processing and Assembly
The first 10 bp of each read correspond to custom-made 
amplification primers allowing to remove PCR duplicates from 
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the read pool (Marbouty et al., 2015). Those 10 bp were removed 
afterwards, and the resulting 65-pb sequences were filtered and 
trimmed using cutadapt (Martin, 2011). Quality was controlled 
with FastQC, and a total of 813 million PE reads were kept in 
total (over the 20 samples). Reads from libraries sampled from 
1) cage 3 at day 2, 2) cage 3 with all samples, and 3) all cages 
with all samples were then used to perform three independent 
assemblies using MEGAHIT v1.1.1.2 (Li et al., 2015) with 
default parameters. Contigs under 500 bp were discarded from 
further analyses.

Assemblies Analysis
Contigs from the three assemblies were analyzed with the 
MG-RAST pipelines (Meyer et al., 2008). The metagenomics 
RAST server allows automated annotations of complete or draft 
microbial genomes and provides information on phylogenetic 
and functional classification of the contigs. It also provides an 
alpha diversity measurement of the assembly.

Alignment Step and Network Generation
Filtered reads were aligned independently in single-end mode 
using Bowtie2 v2.2.9 (option—very-sensitive-local) against 
one of the assemblies. For each sample, both alignment files 
were sorted and merged using the SAMtools and pysam 
libraries. Ambiguous alignments and alignments with mapping 
quality under 20 were discarded. All pairs of reads for which 
both reads aligned unambiguously on two different contigs 
were kept to generate the network. Contigs were considered 
as nodes, and the values of the edges (i.e., the weight) of the 
network were determined by counting the number of non-
ambiguous alignments bridging the corresponding two contigs. 
Normalization was computed by dividing the edge value by the 
geometric mean of the nodes’ coverage (i.e., contigs’ coverage). 
Contig coverage was calculated using MetaBAT 1 v0.32.5 script: 
jgi_summarize_bam_contig_depths with a contig size limit of 
500 bp for every set of reads.

Louvain Clustering
We showed before that the updated implementation of the 
Louvain community method provided in (Blondel et al., 2008) 
was a promising approach to identify subnetworks of contigs 
in the meta3C network that display enriched contacts between 
themselves (Marbouty et al., 2014). The Louvain algorithm was run 
400 times on each network, using the classical Newman-Girvan 
criterion. Nodes that systematically clustered together for each of 
the first 100 iterations were pooled together in core communities 
(CCs), as described previously (Marbouty et al., 2017).

CCs Validation/Evaluation and Taxonomic 
Annotation
CCs above 500 kb were evaluated for completeness and 
contamination using CheckM version 1.0.7 (Parks et al., 2015). 
A CC was validated as a bin if its contamination rate range under 
10%. CheckM was also used to assign taxa, at the class level, to 
validated bins using the lineage workflow.

MAGs Evaluation
Validated bins were further evaluated following the standards 
to classify MAGs as high quality, medium quality, or low 
quality (Bowers et al., 2017). tRNA were searched with 
tRNAscan-SE 2.0 (Lowe and Eddy, 1997) (option -B). 16S and 
23S rRNAs were searched using METAXA2 (Bengtsson-Palme 
et al., 2015)(options: -g SSU and -g LSU, respectively). We used 
RNAmmer-1.2 (Lagesen et al., 2007) (options: -S bacteria -m tsu) 
to look for 5S RNA. Bins were considered high-quality draft if 
they had 18 or more different tRNAs and at least one of each 
rRNA gene.

Recursive Louvain Clustering
Partially complete CCs (> 70% completion) with contamination 
levels upper than 10% were selected for recursive binning. Briefly, 
the partition step was re-run 10 times on these contaminated 
CCs (i.e., on their corresponding sub-network), yielding groups 
of smaller CC (i.e., sub-CCs) which were then re-processed in 
the binning step to assess for their quality.

Pipeline Comparison
CONCOCT v1.0.0 (Alneberg et al., 2014) and MetaBAT 1 v0.32.5 
(Kang et al., 2015) were run on the same set of reads and assemblies, 
using the different time samples for differential coverage. 
Resulting bins above 500 kb were retrieved and compared with 
MetaTOR’s for completeness and contamination using CheckM. 
CONCOCT was run with the following parameters –r 65 -s 100. 
MetaBAT 1 was run with default parameters.

RESULTS

Algorithmic Principles Underneath the 
MetaTOR Pipeline
MetaTOR (https://github.com/koszullab/metaTOR) aims at 
providing the most accurate overview of genome content of 
a population, starting from as little as one meta3C library, 
while taking full advantage of additional libraries if available. 
It’s structured around four main steps: alignment, partition, 
annotation, and binning (Figure 1). MetaTOR was purposely 
designed to maintain a high level of modularity and flexibility, so 
that users can supply their own intermediary inputs and tweak 
parameters to their liking at every step. This can save both time 
and resources. If starting from the raw data, all needed is the 
meta3C PE files and an assembly of the microbial community 
obtained either directly from the meta3C reads (as described in 
this work and in Marbouty et al., 2014; Marbouty et al., 2017) or 
from a DNA library generated independently (Figure 1A).

•	 [Align] (Figure 1B): First, meta3C reads are aligned 
independently along the contigs of the metagenome assembly 
using Bowtie2 (as aligners tend to leave out far-off alignments 
when run in PE mode). Contigs are then sorted, filtered for 
mapping quality, and merged into a global alignment file. The 
alignment is converted into a contact network stored in a plain 
text file [network.txt: column 1—node 1/column 2—node  
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FIGURE 1 | Continued
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2/column 3—weight] to facilitate further third-party analysis. 
In the network, each node represents one contig, and each edge 
(a.k.a. weight) represents the contact score found between 
two contigs. This step integrates variable parameters such as 
enforcing a lower size limits for contigs or a normalization step. 
Normalization of the network typically uses contig coverage, 
but other normalizations can be implemented as well.

•	 [Partition] (Figure 1C): An iterative Louvain procedure 
is applied on the network file to partition the network into 
groups of contigs that consistently cluster together, i.e., “see” 
each other’s in space more often than their neighbors’ (Blondel 
et al., 2008; Marbouty et al., 2014; Marbouty et al., 2017). 
These clusters or CC constitute the matrix of the metagenomic 
binning. The number of iterations is a free parameter of the 
pipeline and can be set by the user. However, we noted that the 
number of CC stabilizes after a while with small oscillations 
around a fixed value, and therefore recommend enough cycles 
to reach that threshold.

•	 [Binning] (Figure 1D) CCs are then extracted (FASTA 
files) and their gene content assessed for completeness and 
contamination using CheckM (Parks et al., 2015). In parallel, 
the pipeline extracts sub-networks for each CC (i.e., network 
between the corresponding contigs). Extraction of each sub-
network allows the user to perform, if needed, a recursive 
procedure at this step on the defined contig group (i.e., CCs) 
(see Figure 1—“recursive procedure”). Indeed, some CCs 
exhibit both a high completion rate and a high contamination 
levels suggesting that they contain more than one genome. 
By applying the partition step only on their corresponding 
sub-network, it becomes possible to sub-partition using the 
Louvain algorithm these CCs into smaller ones (i.e., sub-CCs). 
This step typically breaks down the most contaminated CCs 
into smaller, low-contaminated sub-CCs. The retrieved sub-
CCs can also be evaluated using CheckM and validated as bins.

•	 [Annotation] (Figure 1F): Gene prediction is performed 
using Prodigal (Hyatt et al., 2010), and genes of interest are 
detected using HMM models publicly available (Albertsen 
et al., 2013; Guglielmini et al., 2014; Grazziotin et al., 2017). 
However, this step is independent from the others, and any 
annotation tool can be applied instead.

MetaTOR generates a set of annotated metagenomics bins 
and their corresponding FASTA sequences (in addition to the 
contact network) (Figure 1E).

Construction of meta3C Libraries and 
Generation of Metagenome Assemblies
To validate and compare the pipeline to classical metagenomic 
binning algorithms, we investigated the gut microbiota of various 

mice using meta3C libraries. Feces were sampled from three 
groups of two mice from the Institut Pasteur animal facility, over 
20 days (Materials and Methods) (Supplementary Figure 1). 
Twenty meta3C libraries (three from cage n°1, nine from cage 
n°2, and eight from cage n°3) were then generated as described 
(Marbouty et al., 2017) (Materials and Methods) using HpaII as 
restriction enzyme. Libraries were sequenced using PE Illumina 
2x75 bp Kits (Table 1) (NCBI BioProject PRJNA542645). After 
trimming and quality filtering, between 25 and 100 million PE 
reads were recovered for each of the samples (~813 million PE 
reads total).

Meta3C sequences can be directly used to generate a de novo 
assembly without notable increase of false/chimeric contigs 
(Marbouty et al., 2014). Three assemblies (1, 2, and 3) using reads 
collected from cage 3/day 2, cage 3/all samples, and all cages/all 
samples, respectively, were generated using MEGAHIT (Li et al., 
2015) (Materials and Methods). After discarding contigs under 
500 bp, the three assemblies resulted in 61,600, 167,810, and 
237,868 contigs for a cumulated size of 146, 475, and 763 Mb, 
respectively (Table 2). These assemblies and their corresponding 
set of reads were used to test the binning pipelines MetaTOR, 
MetaBAT, and CONCOCT, and their output (Material and 
Methods). The number of species present in the total assembly 
(n°3) was estimated using MG Rast and the alpha diversity 
provided for the assembly (Meyer et al., 2008) (Material and 
Methods). In total, 268 bacterial genomes are predicted to be 
present in the global assembly.

FIGURE 1 | MetaTOR pipeline. Schematic representation of the MetaTOR pipeline. (A) MetaTOR is initialized with an assembly and a set of 3C/Hi-C PE reads. 
(B) [Align] will align, sort, and merge reads to deliver a network of contig interactions. (C) [Partition] will deconvolve the previously defined network using a Louvain 
iterative procedure and (D) [Binning] will retrieve CCs (FASTA file and corresponding sub-network) from selected partition to evaluate them using CheckM. At this 
step, it is possible to perform a recursive procedure on selected CCs to split them further into sub-CCs. (F) [Annotation] is an optional step that use HMM models to 
provide final annotations. (E) The final output of the pipeline is a set of annotated bins.

TABLE 1 | Meta3C libraries constructed and sequenced.

Sample Raw paired-end reads

Cage1-day1 79 868 626
Cage1-day2 38 728 350
Cage1-day3 33 173 429
Cage2-day1 40 380 356
Cage2-day2 62 424 123
Cage2-day3 31 436 086
Cage2-day4 34 124 320
Cage2-day5 48 472 570
Cage2-day6 36 129 310
Cage2-day7 32 608 370
Cage2-day8 43 473 731
Cage2-day9 67 768 796
Cage3-day1 108 114 353
Cage3-day2 39 719 377
Cage3-day3 37 792 067
Cage3-day4 36 805 550
Cage3-day5 34 529 306
Cage3-day6 59 092 136
Cage3-day7 28 833 461
Cage3-day8 30 521 091
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Binning of Metagenomes Using MetaTOR
Pairs of meta3C reads were aligned independently on their 
respective assembly to identify those for which both reads 
aligned on different contigs (parameters: MQT = 20; contig size 
limit = 500 bp). Normalized contact scores between contigs 
where computed by dividing the number of pairs bridging two 
contigs by the square root of the product of each contig coverage. 
For each assembly, this step generates a network of weighted 
connections between contigs (Table 3). Each network was 
subsequently partitioned into CCs through iterative Louvain 
partitioning. After ~100 cycles, the number of large CCs 
(>500 kb) reaches a plateau for the three networks (Figure 2A). 
Contacts between CCs appear low, suggesting that contigs 
interacting preferentially with each other’s were successfully 
pooled together (Figure 2B).

We analyzed, using CheckM (Parks et al., 2015), the gene 
content of the 17, 33, and 125 CCs > 500 kb from assemblies 
1, 2, and 3, respectively. Most CCs showed completion and 
contamination levels above 80% and under 10%, respectively 
(Figure 2C), suggesting that they contain near-complete 
bacterial genomes. Those CCs were annotated as valid bins or 
MAGs. However, a subset of CCs displayed high contamination 
rate, from 10% to more than 1,000% while showing high 
70/80% completion levels as well (4, 24, and 25 CCs for 
assemblies 1, 2, and 3, respectively) (Figure 2C). We suspected 
that these high contamination rates reflected the pooling of 
DNA contigs belonging to related species sharing conserved/
similar sequences. We therefore applied on these CCs an extra 
recursive procedure consisting of processing them with 10 
Louvain clustering steps. This generated sub-networks or sub-
CCs (Figure 2D) that often display high-quality signatures of 
bacterial genomes, showing that indeed the large, contaminated 
CCs correspond to mixes of near-complete bacterial genomes 
(Figure 2F). These sub-CCs also often belonged to the same 
taxonomic group, suggesting that indeed sequence homology 
between closely related species bridged these contigs together. 
A focus on assembly #3 shows that the computation generated 
1,001 bins > 10 kb corresponding to 724 Mb, among which 
686 Mb (95%), was included within 271 bins larger than 500 kb 
(Figure 2E). This number can be compared to the 268 genomes 

predicted to be present in the assembly (above; Materials and 
Methods). The average completion and contamination levels of 
these CCs are 65.8% and 2.4%, respectively (to compare with 
88.4% and 61.4% if the recursive procedure was not applied). 
MAG evaluation was performed (Bowers et al., 2017), resulting 
in 82 high-quality (< 5% contamination, > 90% completion 
and presence of the 23S, 16S, and 5S rRNA genes and at least  
18 tRNAs), 87 medium-quality (< 10% contamination 
and  > = 50% completion), and 96 low-quality MAGs (< 10% 
contamination and < 50% completion) (Table 4) (other MAGs 
display more than 10% of contamination; Supplementary Table 1).

Comparison With Hybrid Binning 
Algorithms
To evaluate how MetaTOR compares to existing binning 
approaches, we ran MetaBAT (v.1; Kang et al., 2015) and 
CONCOCT (Alneberg et al., 2014) on assemblies #1, #2, and 
#3 using the same filtered PE reads, allowing each pipeline to 
take advantage of the information from differential coverage 
across the independent experiments. The metric used to assess 
the efficiency of the three programs is their CheckM output 
(i.e., levels of completion and contamination) and the number 
of high-/medium-/low-quality MAGs (Figure 3 and Table 3). 
For the three assemblies, MetaTOR retrieved 9, 41, and 82 
high-quality MAGs, compared to 0, 3, and 22 with MetaBAT 
and 0, 11, and 12 with CONCOCT. MetaTOR also retrieved 
more bins exhibiting a high completion/low completion rate 
(90–10%) (Figure 3). The mean completion and contamination 
rates of bins characterized by MetaBAT using the 20 libraries 
were slightly better (respectively, 74% and 1.7%) than the 
ones obtained using MetaTOR (respectively, 65.8% and 2.4%) 
(Figure 3), but this could be due to the greater number of 
bins (>500 kb) obtained using MetaTOR (MetaBAT = 172; 
MetaTOR  = 271) (Table 4). To compare further the output 
of MetaTOR and MetaBAT and their ability to reconstruct 
genomes from different phyla, we analyzed the taxonomic 
annotations of assembly #3 with the taxonomy of all the bins 
above 500 Kb retrieved for this assembly (Supplementary 
Figure 2). The bins generated by both softwares were highly 

TABLE 2 | Assembly metrics. Only the metrics concerning assemblies filtered for the contigs above 500 bp are shown.

PE reads (filtered) Total size (contigs > 500 bp) Contigs > 500 bp N50 (contigs > 500 bp)

Assembly #1 (cage 3—day 2) 100,258,683 146,319,508 bp 61,666 6,176 bp
Assembly #2 (cage 3—samples x 8) 330,324,521 475,681,220 bp 167,810 7,578 bp
Assembly #3 (samples x 20) 813,376,239 763,455,888 bp 237,868 12,339 bp

TABLE 3 | Network features.

PE reads (filtered) Mapped PE reads Intercontig interactions Weighted interactions

Assembly #1 100,258,683 67,994,798 6,457,842 1,322,003
Assembly #2 330,324,521 215,768,714 30,206,795 8,505,609
Assembly #3 813,376,239 541,384,131 96,546,376 77,577,924
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consistent with the assembly annotation suggesting that they do 
not present particular taxonomic bias in their binning process. 
To evaluate MAGs, 16S and 23S rRNA were searched in 
assembly #3 using METAXA2 (Bengtsson-Palme et al., 2015). 
A total of 507 23S rNRA and 304 16S rRNA were found but 
only 213 and 143, respectively, were located on contigs longer 
than 1 kb. As CONCOCT and MetaBAT only use contigs upper 
1 kb, this severely decrease the amount of potential rRNA found 
in their bins and could explain why they were only able to bin 
very few high-quality drafts according to MiMAG standards 
(rRNA were very often the limiting factor to classify bins in that 
category) (Bowers et al., 2017). We then wonder if our method, 

which can bin contigs regardless of their size, shows better 
results concerning low-covered and/or highly fragmented 
genomes. We looked at the relation between completion for 
bins with a contamination rate lower than 10% and assembly 
statistics for those bins (Figure 4). Whereas we could not see 
clear differences between MetaBAT and MetaTOR when we 
look at the bins’ mean coverage (Figure 4B–D), it appears 
clearly that the contigs’ fragmentation is a limiting factor for 
MetaBAT as observed when we plotted the completion rate in 
function of the N50 (Figure 4A–C). These observations suggest 
that MetaTOR is able to accurately bin relatively fragmented 
genomes and correctly assign contigs smaller than 1 kb.

FIGURE 2 | MetaTOR partitioning of a complex microbial community. (A) Evolution of the number of CCs, ordered by size categories, during 400 Louvain 
iterations for assembly n°3 (20 samples). Color represents the amount of DNA in a given CC. Blue: 10 to 100 kb. Red: 100 to 500 kb. Green: > 500 kb.  
(B) Contact matrix encompassing the 224 largest CCs ordered by size, after 100 Louvain iterations (1 pixel = 200 kb). Y-axis: cumulated DNA size.  
(C) Completion (red) and contamination (blue) of the 129 CCs containing more than 500 kb after 100 Louvain iterations. Dashed lines: thresholds used to 
process CCs through a recursive procedure (completion threshold: upper 70%; contamination threshold: upper 10%). (D) Contact map of a highly contaminated 
CC (CC #3—100% complete—1,400% contaminated) before (left) and after (right) the recursive procedure (10 iterations; 1 pixel: 20 kb). Left map: contigs are 
ordered by size. Right map: sub-CCs are ordered by size. (E) Completion and contamination of the 269 CCs and sub-CCs bigger than 500 kb defined after the 
whole procedure. Red: completion. Blue: contamination. (F) Completion (red) and contamination (blue) levels of the sub-CCs retrieved from the original CC #3 
after recursive procedure (10 iterations).
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DISCUSSION

We previously showed that a blind analysis of meta3C/
proximity-ligation reads generated from controlled and 
unknown, complex mixes of species could be used to 
characterize efficiently their genomes (Marbouty et al., 2014; 
Marbouty et  al., 2017). In the present work, we extend our 
original approach by developing a scalable computational 
pipeline, MetaTOR, and applying it on multiple samples 
of meta3C gut microbiota libraries. Compared to binning 
programs MetaBAT and CONCOCT, MetaTOR was able to 
retrieve more high-quality MAGs from highly fragmented 
assemblies. This work shows that physical collisions between 
DNA sequences represent an objective, quantitative measure 
to cluster these molecules together. This approach could 
therefore nicely complement or replace popular approaches 
that exploit sequence composition correlations or abundance 
co-variation. This remains true even when 20 independent 
experiments were used, highlighting the interest to include 
room for some meta3C experiments in future metagenomics 
projects, regardless of the number of planed libraries. Meta3C-
like methods have only been applied to microbial rich samples 
so far (mice and human gut, cow rumen, sewage) (Marbouty 
et al., 2017; Stewart et al., 2018; Stalder et al., 2019) and still 
need to be improved in order to be applied to sample with 
low concentration of microorganisms. The time needed to 
generate a meta3C library is 3 days, and up to 16 libraries can 
be generated in parallel (Foutel-Rodier et al., 2018). It is also 
likely that commercial kits will be available relatively soon, 
which will boost the amenability of the approach. The cost of 
a single library is estimated to ~50€ (not including processing 
and sequencing of the library). Therefore, we believe this 
approach is well suited for a variety of metagenomics projects.

A limitation of the present work consists in the size of the 
reads sequences, 65 bp, whereas most metagenomics studies 

sequence longer reads (150 bp). This is probably a disadvantage 
for the two binning programs we tested as the assembly quality 
is technically lower than what it would have been if computed 
with longer reads. On the other hand, one could also argue that 
meta3C/MetaTOR can therefore be performed using cheaper, 
short-read sequencing approaches and still provide good 
results. However, more tests are needed to fully characterize the 
influence of assembly quality on the different programs in light 
of MetaTOR results.

To improve the assembly, regardless of the read length, it 
is also possible to apply the approach used in Marbouty et al. 
(2017), which consists in mapping back the total reads (including 
ambiguous ones originally discarded) back to contigs of one bin. 
These reads are then used to generate a new assembly for each 
individual bin. Although time consuming, we showed that this 
approach improved the assembly statistics of each bin (Marbouty 
et al., 2017).

The large networks derived from different meta3C libraries 
contain several highly connected sub-networks poorly connected 
to each other. Highly modular networks such as those are 
known to be well-suited for community detection algorithm like 
Louvain (Blondel et al., 2008). Moreover, the “iterative Louvain” 
procedure allows us to identify sets of sequences that contact 
each other. However, there are limits to the current iterative 
Louvain implementation. First, all modularity optimization 
algorithms tend to over-cluster nodes when the network reaches 
a certain size threshold, regardless of the underlying patterns. 
This well-documented property is known as the “resolution 
limit” (Fortunato and Barthélemy, 2007). However, it can be 
sidestepped by running the partitioning process recursively on 
the network corresponding to the studied sub-network. Since 
it should be comparatively small and under the scale at which 
the aforementioned limit becomes visible, the clusters found 
inside will separate again and yield bins as normal. The recursive 
procedure applied in the present work appears as highly effective 

TABLE 4 | Comparison of MetaTOR, CONCOCT, and MetaBAT results.

Assembly #1 (148 Mb) Assembly #2 (483 Mb) Assembly #3 (763 Mb)

Nb Size (bp) Nb Size (bp) Nb Size (bp)

Metator 10 kb < bins < 100 kb 284 7,537,821 807 21,139,528 617 15,175,457
100 kb < bins < 500 kb 43 11,319,827 144 30,749,287 106 22,963,515 
Bins > 500 kb 56 119,111,306 183 399,972,204 271 685,955,810
Low-quality MAGs 31 36,042,593 97 107,071,523 96 128,486,895
Medium-quality MAGs 16 47,397,754 39 131,055,387 87 285,670,443
High-quality MAGs 9 35,670,959 41 140,967,746 82 259,541,396

MetaBAT 10 kb < bins < 100 kb 0 0 0 0 0 0
100 kb < bins < 500 kb 18 5,703,905 55 17,583,986 65 24,087,225
Bins > 500 kb 36 82,290,484 126 284,973,235 172 420,081,339
Low-quality MAGs 14 12,478,196 44 52,797,176 95 36,277,628
Medium-quality MAGs 21 61,439,633 73 202,719,703 143 322,230,178
High-quality MAGs 0 0 3 5,488,345 22 58,276,800

CONCOCT 10 kb < bins < 100 kb 11 432,808 25 1,040,872 24 1,122,733
100 kb < bins < 500 kb 7 1,351,308 23 6,275,583 6 5,193,580
Bins > 500 kb 29 120,778,514 126 412,598,588 195 673,338,423
Low-quality MAGs 8 17,152,380 41 76,579,222 42 70,748,222
Medium-quality MAGs 11 25,303,368 49 134,612,509 114 358,231,099
High-quality MAGs 0 0 11 49,146,272 12 47,807,957
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with a clear increase in the number of high-quality MAGs 
retrieved.

A second limit comes from the stringent definition of CCs 
that consist of sequences that always, systematically cluster 
together. As a result, a single “jump” of a contig out of a cluster 
during one of the iterations will lead to its exclusion from the 
final CCs. While this allows contamination reduction, a number 
of meaningful sequences could still incidentally be excluded 
from the bin. Indeed, mobile or repeated elements (e.g., phage, 
prophages, or plasmids) shared by different species will likely 
be excluded from their corresponding CCs. This limitation can 
be overcome a posteriori as follows. First, annotation pipelines 
such as VirSorter (Roux et al., 2015) or PlasFlow (Krawczyk 
et al., 2018) allows to identify contigs carrying such sequences. 
Second, the bacterial hosts of these contigs can be inferred using 
the contact network as described in (Marbouty et al., 2017), 

and/or with the help of the Louvain clustering score (computed 
from the iterative procedure, and corresponding to the number 
of times two CCs are grouped together). A detailed analysis of 
overlapping communities would be very useful in the future 
to study such associations and bring a new tool in the study of 
interactions between genomic entities in microbial communities.

Our pipeline is flexible: although it was developed to take 
advantage of the Louvain algorithm, other clustering algorithms 
yielding nondeterministic community identifiers (e.g., a 
community detection algorithm with a different modularity) 
can be used instead with no side effects on the rest of the 
pipeline.

Proximity-ligation assays were originally developed 
to capture the 3D folding of microbial or mammalian 
chromosomes (Dekker et al., 2002; Lieberman-Aiden et 
al., 2009). Derivative applications of these techniques were 

FIGURE 3 | Comparison of MetaTOR, MetaBAT, and CONCOCT. CheckM output comparison for the three binning methods applied on the three assemblies tested 
in this work. (A) Assembly 1 (one meta3C library). (B) Assembly 2 (eight libraries). (C) Assembly 3 (20 libraries). Box plot for completion (left) and contamination 
(middle) and histogram of retrieved MAGs (right) are presented for the three binning methods. Only MAGs over 500 kb and harboring less than 10% of 
contamination are analyzed.
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developed and applied to solve or improve genomics techniques 
such as chromosome-level scaffolding (Kaplan and Dekker, 
2013; Burton et al., 2013; Marie-Nelly et al., 2014), haplotype 
reconstruction (Selvaraj et al., 2013), or centromere annotation 
(Marie-Nelly et al., 2014). Haplotype phasing is a particularly 
interesting development to combine with metagenomics data 
since strains from the same species remain challenging to 
characterize. This requires both an improvement in meta3C 
like capture yield to increase the resolution in coverage of the 
contigs, as well as the integration of computational haplotype 
phasing programs.
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distribution of bins’ N50 for the two software (C—p-value = 3.9 x 10-7).

37

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Recovering Bacterial Genomes Using metaTORBaudry et al.

11 August 2019  |  Volume 10  |  Article 753Frontiers in Genetics  |  www.frontiersin.org

AUTHOR CONTRIBUTIONS

MM and RK conceived the study. LB, TFR and MM wrote 
the pipeline MetaTOR. MM, TFR, and AT performed the 
experiments. LB, TFR, MM, and RK analyzed and interpreted 
the data. LB, TFR, MM, and RK wrote the manuscript.

FUNDING

LB is supported by an AMX fellowship from the French Ministry 
of Higher Education, Research and Innovation. TFR is supported 
by an ENS fellowship by the French Ministry of Higher Education, 
Research and Innovation. This research was supported by 
funding to RK from the European Research Council under the 
Horizon 2020 Program (ERC grant agreement 260822) and from 

the Agence Nationale pour la Recherche (JPI-EC-AMR STARCS 
ANR-16-JPEC-0003-05).

ACKNOWLEDGMENTS

We thank Corinne Fayolle and Xavier Montagutelli for their help 
in the sampling process. We thank our colleagues from the lab for 
discussions, feedback, and comments on MetaTOR.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00753/
full#supplementary-material

REFERENCES

Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K. L., Tyson, G. W., and 
Nielsen, P. H. (2013). Genome sequences of rare, uncultured bacteria obtained 
by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31 
(6), 533–538. doi: 10.1038/nbt.2579

Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., 
et al. (2014). Binning metagenomic contigs by coverage and composition. Nat. 
Methods 11 (11), 1144–1146. doi: 10.1038/nmeth.3103

Beitel, C. W., Froenicke, L., Lang, J. M., Korf, I. F., Michelmore, R. W., Eisen, J. A., 
et  al. (2014). Strain- and plasmid-level deconvolution of a synthetic 
metagenome by sequencing Proximity Ligation Products. PeerJ 2, e415. doi: 
10.7717/peerj.415

Bengtsson-Palme, J., Hartmann, M., Eriksson, K. M., Pal, C., Thorell, K., 
Larsson,  D. G. J., et al. (2015). METAXA2: improved identification and 
taxonomic classification of small and large subunit rRNA in metagenomic data. 
Mol. Ecol. Resour. 15 (6), 1403–1414. doi: 10.1111/1755-0998.12399

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast 
unfolding of communities in large networks. J. Stat. Mech. Theory E (10), 
P10008. doi: 10.1088/1742-5468/2008/10/P10008

Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., 
Reddy, T. B. K., et al., et al. (2017). Minimum information about a single 
amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) 
of bacteria and archaea. Nat. Biotechnol. 35 (8), 725–731. doi: 10.1038/nbt.3893

Burton, J. N., Adey, A., Patwardhan, R. P., Qiu, R., Kitzman, J. O., and Shendure, J. 
(2013). Chromosome-scale scaffolding of de novo genome assemblies based on 
chromatin interactions. Nat. Biotechnol. 31, 1119–1125.

Burton, J. N., Liachko, I., Dunham, M. J., and Shendure, J. (2014). Species-level 
deconvolution of metagenome assemblies with Hi-C–based contact probability 
maps. G3 (Bethesda) 4 (7), 1339–1346. doi: 10.1534/g3.114.011825

Castelle, C. J., and Banfield, J. F. (2018). Major new microbial groups expand 
diversity and alter our understanding of the tree of life. Cell 172 (6), 1181–1197. 
doi: 10.1016/j.cell.2018.02.016

Cho, I., and Blaser, M. J. (2012). The human microbiome: at the interface of health 
and disease. Nat. Rev. Genet. 13 (4), 260–270. doi: 10.1038/nrg3182

Coutinho, F. H., Gregoracci, G. B., Walter, J. M., Thompson, C. C., and Thompson, 
F. L. (2018). Metagenomics sheds light on the ecology of marine microbes and 
their viruses. Trends Microbiol. 26 (11), 955–965. doi: 10.1016/j.tim.2018.05.015

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome 
conformation. Science 295 (5558), 1306–1311. doi: 10.1126/science.1067799

DeMaere, M. Z., and Darling, A. E. (2019). Bin3C: exploiting Hi-C sequencing 
data to accurately resolve metagenome-assembled genomes. Genome Bio. 20 
(1), 46. doi: 10.1186/s13059-019-1643-1

Edbeib, M. F., Wahab, R. A., and Huyop, F. (2016). Halophiles: biology, adaptation, 
and their role in decontamination of hypersaline environments. World J. 
Microbiol. Biotechnol. 32 (8), 135. doi: 10.1007/s11274-016-2081-9

Flot, J.-F., Marie-Nelly, H., and Koszul, R. (2015). Contact genomics: scaffolding 
and phasing (meta)genomes using chromosome 3D physical signatures. 
FEBS Lett. 589 (20 Pt A), 2966–2974. doi: 10.1016/j.febslet.2015.04.034

Fortunato, S., and Barthélemy, M. (2007). Resolution limit in community 
detection. Proc. Natl. Acad. Sci. 104 (1), 36–41. doi: 10.1073/pnas.0605965104

Foutel-Rodier, T., Thierry, A., Koszul, R., and Marbouty, M. (2018). Generation of 
a metagenomics proximity ligation 3C library of a mammalian gut microbiota. 
Methods Enzymol. 612, 183–195. doi: 10.1016/bs.mie.2018.08.001

Frank, J. A., Pan, Y., Tooming-Klunderud, A., Eijsink, V. G. H., McHardy, A. 
C., Nederbragt, A. J., et al. (2016). Improved metagenome assemblies and 
taxonomic binning using long-read circular consensus sequence data. Sci. Rep. 
6, 25373. doi: 10.1038/srep25373

Graham, E. D., Heidelberg, J. F., and Tully, B. J. (2017). BinSanity: unsupervised 
clustering of environmental microbial assemblies using coverage and affinity 
propagation. PeerJ 5, e3035. doi: 10.7717/peerj.3035

Grazziotin, A. L., Koonin, E. V., and Kristensen, D. M. (2017). Prokaryotic 
virus orthologous groups (PVOGs): a resource for comparative genomics 
and protein family annotation. Nucleic Acids Res. 45 (D1), D491–DD98. doi: 
10.1093/nar/gkw975

Guglielmini, J., Néron, B., Abby, S. S., Garcillán-Barcia, M. P., de la Cruz, F., and 
Rocha, E. P. C. (2014). Key components of the eight classes of type IV secretion 
systems involved in bacterial conjugation or protein secretion. Nucleic Acids 
Res. 42 (9), 5715–5727. doi: 10.1093/nar/gku194

Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., 
et al. (2016). A new view of the tree of life. Nat. Microbiol. 1 (5), 16048. doi: 
10.1038/nmicrobiol.2016.48

Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. 
J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site 
identification. BMC Bioinformatics 11, 119. doi: 10.1186/1471-2105-11-119

Ji, P., Zhang, Y., Wang, J., and Zhao, F. (2017). MetaSort untangles metagenome 
assembly by reducing microbial community complexity. Nat. Commun. 8, 
14306. doi: 10.1038/ncomms14306

Kang, D. D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient 
tool for accurately reconstructing single genomes from complex microbial 
communities. PeerJ 3, e1165. doi: 10.7717/peerj.1165

Kaplan, N., and Dekker, J. (2013). High-Throughput Genome Scaffolding from 
in-Vivo DNA Interaction Frequency. Nat. Biotechnol. 31, (12) 1143–1147. doi. 
10.1038/nbt.2768

Krawczyk, P. S., Lipinski, L., and Dziembowski, A. (2018). PlasFlow: predicting 
plasmid sequences in metagenomic data using genome signatures. Nucleic 
Acids Res. 46, e35. doi: 10.1093/nar/gkx1321

Laczny, C. C., Kiefer, C., Galata, V., Fehlmann, T., Backes, C., and Keller, A. (2017). 
BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and 
annotation. Nucleic Acids Res. 45 (W1), W171–W179. doi: 10.1093/nar/gkx348

Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H. H., Rognes, T., and 
Ussery,  D.  W. (2007). RNAmmer: consistent and rapid annotation of 

38

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fgene.2019.00753/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00753/full#supplementary-material
https://doi.org/10.1038/nbt.2579
https://doi.org/10.1038/nmeth.3103
https://doi.org/10.7717/peerj.415
https://doi.org/10.1111/1755-0998.12399
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/nbt.3893
https://doi.org/10.1534/g3.114.011825
https://doi.org/10.1016/j.cell.2018.02.016
https://doi.org/10.1038/nrg3182
https://doi.org/10.1016/j.tim.2018.05.015
https://doi.org/10.1126/science.1067799
https://doi.org/10.1186/s13059-019-1643-1
https://doi.org/10.1007/s11274-016-2081-9
https://doi.org/10.1016/j.febslet.2015.04.034
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/bs.mie.2018.08.001
https://doi.org/10.1038/srep25373
https://doi.org/10.7717/peerj.3035
https://doi.org/10.1093/nar/gkw975
https://doi.org/10.1093/nar/gku194
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1038/ncomms14306
https://doi.org/10.7717/peerj.1165
https://doi.org/10.1038/nbt.2768
https://doi.org/10.1093/nar/gkx1321
https://doi.org/10.1093/nar/gkx348


Recovering Bacterial Genomes Using metaTORBaudry et al.

12 August 2019  |  Volume 10  |  Article 753Frontiers in Genetics  |  www.frontiersin.org

ribosomal RNA genes. Nucleic Acids Res. 35 (9), 3100–3108. doi: 10.1093/
nar/gkm160

Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: an 
ultra-fast single-node solution for large and complex metagenomics assembly 
via Succinct de Bruijn Graph. Bioinformatics 31 (10), 1674–1676. doi: 10.1093/
bioinformatics/btv033

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., 
Telling, A., et al. (2009). Comprehensive mapping of long-range interactions 
reveals folding principles of the human genome. Science 326 (5950), 289–293. 
doi: 10.1126/science.1181369

Long, P. E., Williams, K. H., Hubbard, S. S., and Banfield, J. F. (2016). Microbial 
metagenomics reveals climate-relevant subsurface biogeochemical processes. 
Trends Microbiol. 24 (8), 600–610. doi: 10.1016/j.tim.2016.04.006

Lowe, T. M., and Eddy, S. R. (1997). TRNAscan-SE: a program for improved 
detection of transfer rna genes in genomic sequence. Nucleic Acids Res. 25 (5), 
955–964. doi: 10.1093/nar/25.5.0955

Lu, Y. Y., Chen, T., Fuhrman, J. A., and Sun, F. (2017). COCACOLA: binning 
metagenomic contigs using sequence COmposition, Read CoverAge, 
CO-Alignment and Paired-End Read LinkAge. Bioinformatics 33 (6), 791–798. 
doi: 10.1093/bioinformatics/btw290

Marbouty, M., Baudry, L., Cournac, A., and Koszul, R. (2017). Scaffolding bacterial 
genomes and probing host-virus interactions in gut microbiome by proximity 
ligation (chromosome capture) assay. Sci. Adv. 3 (2). doi: 10.1126/sciadv.1602105

Marbouty, M., Cournac, A., Flot, J. F., Nelly, H. M., Mozziconacci, J., and Koszul, R. 
(2014). Metagenomic chromosome conformation capture (Meta3C) unveils 
the diversity of chromosome organization in microorganisms. ELife 3, e03318. 
doi: 10.7554/eLife.03318

Marbouty, M., and Koszul, R. (2015). Metagenome analysis exploiting high-
throughput chromosome conformation capture (3C) data. Trends Genet. 31 
(12), 673–682. doi: 10.1016/j.tig.2015.10.003

Marbouty, Ma., Le Gall, A., Cattoni, D. I., Cournac, A., Koh, A., Fiche, J. B., et al. 
(2015). Condensin- and replication-mediated bacterial chromosome folding 
and origin condensation revealed by Hi-C and super-resolution imaging. Mol. 
Cell 59 (4), 588–602. doi: 10.1016/j.molcel.2015.07.020

Marie-Nelly, H., Marbouty, M., Cournac, A., Liti, G., Fischer, G., Zimmer, C., et al. 
(2014). Filling annotation gaps in yeast genomes using genome-wide contact 
maps. Bioinformatics 30 (15), 2105–2113. doi: 10.1093/bioinformatics/btu162

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet.Journal 17 (1), 10–12. doi: 10.14806/ej.17.1.200

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., et al., 
(2008). The Metagenomics RAST Server—a public resource for the automatic 
phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 
386. doi: 10.1186/1471-2105-9-386

Olson, N. D., Treangen, T. J., Hill, C. M., Cepeda-Espinoza, V., Ghurye, J., 
Koren, S., et al. (2017). Metagenomic assembly through the lens of validation: 
recent advances in assessing and improving the quality of genomes assembled 
from metagenomes. Brief. Bioinformatics. doi: 10.1093/bib/bbx098

Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Thomas, A. D., 
Huntemann, M., Mikhailova, N., et al. (2016). Uncovering earth’s virome. 
Nature 536 (7617), 425–430. doi: 10.1038/nature19094

Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. 
(2015). CheckM: assessing the quality of microbial genomes recovered from 

isolates, single cells, and metagenomes. Genome Res. 25 (7), 1043–1055. doi: 
10.1101/gr.186072.114

Philippot, L., Raaijmakers, J. M., Lemanceau, P., and van der Putten, W. H. (2013). 
Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. 
Microbiol. 11 (11), 789–799. doi: 10.1038/nrmicro3109

Press, M. O., Wiser, A. H., Kronenberg, Z. N., Langford, K. W., Shakya, M., 
Lo, C.-C., et al. (2017). Hi-C deconvolution of a human gut microbiome yields 
high-quality draft genomes and reveals plasmid-genome interactions. BioRxiv, 
198713. doi: 10.1101/198713

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., and Segata, N. (2017). 
Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35 (9), 
833–844. doi: 10.1038/nbt.3935

Rosado, P. M., Leite, D. C. A., Duarte, G. A. S., Chaloub, R. M., Jospin, G., Nunes da 
Rocha, U., et al. (2019). Marine probiotics: increasing coral resistance to 
bleaching through microbiome manipulation. ISME J. 13 (4), 921. doi: 10.1038/
s41396-018-0323-6

Roux, S., Enault, F., Hurwitz, B. L., and Sullivan, M. B. (2015). VirSorter: 
mining viral signal from microbial genomic data. PeerJ 3, e985. doi: 10.7717/
peerj.985

Selvaraj, S., R Dixon, J., Bansal, V., and Ren, B. (2013). Whole-genome haplotype 
reconstruction using proximity-ligation and shotgun sequencing. Nat. 
Biotechnol. 31 (12), 1111–1118. doi: 10.1038/nbt.2728

Sieber, C. M. K., Probst, A. J., Sharrar, A., BThomas, C., Hess, M., Tringe, S. G., 
et al. (2018). Recovery of genomes from metagenomes via a dereplication, 
aggregation and scoring strategy. Nat. Microbiol. 3 (7), 836. doi: 10.1038/
s41564-018-0171-1

Spang, A., Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn,  J., 
Lind,  A. E., et al. (2015). Complex archaea that bridge the gap between 
prokaryotes and eukaryotes. Nature 521 (7551), 173–179. doi: 10.1038/
nature14447

Stalder, T., Press, M. O., Sullivan, S., Liachko, I., and Top, E. M. (2019). Linking 
the resistome and plasmidome to the microbiome. ISME J. 1–10. doi: 10.1038/
s41396-019-0446-4

Stewart, R. D., Auffret, M. D., Warr, A., Wiser, A. H., Press, M. O., Langford, K. W., et al. 
(2018). Assembly of 913 microbial genomes from metagenomic sequencing of 
the cow rumen. Nat. Commun. 9 (1), 870. doi: 10.1038/s41467-018-03317-6

Wu, Y. W., Tang, Y. H., Tringe, S. G., Simmons, B. A., and Singer, S. W. (2014). 
MaxBin: an automated binning method to recover individual genomes from 
metagenomes using an expectation-maximization algorithm. Microbiome 2 
(1), 26. doi: 10.1186/2049-2618-2-26

Conflict of Interest Statement: The authors declare that the research was 
conducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Copyright © 2019 Baudry, Foutel-Rodier, Thierry, Koszul and Marbouty. This is an 
open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

39

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/nar/gkm160
https://doi.org/10.1093/nar/gkm160
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1126/science.1181369
https://doi.org/10.1016/j.tim.2016.04.006
https://doi.org/10.1093/nar/25.5.0955
https://doi.org/10.1093/bioinformatics/btw290
https://doi.org/10.1126/sciadv.1602105
https://doi.org/10.7554/eLife.03318
https://doi.org/10.1016/j.tig.2015.10.003
https://doi.org/10.1016/j.molcel.2015.07.020
https://doi.org/10.1093/bioinformatics/btu162
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1186/1471-2105-9-386
https://doi.org/10.1093/bib/bbx098
https://doi.org/10.1038/nature19094
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1038/nrmicro3109
https://doi.org/10.1101/198713
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1038/s41396-018-0323-6
https://doi.org/10.1038/s41396-018-0323-6
https://doi.org/10.7717/peerj.985
https://doi.org/10.7717/peerj.985
https://doi.org/10.1038/nbt.2728
https://doi.org/10.1038/s41564-018-0171-1
https://doi.org/10.1038/s41564-018-0171-1
https://doi.org/10.1038/nature14447
https://doi.org/10.1038/nature14447
https://doi.org/10.1038/s41396-019-0446-4
https://doi.org/10.1038/s41396-019-0446-4
https://doi.org/10.1038/s41467-018-03317-6
https://doi.org/10.1186/2049-2618-2-26
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 September 2019  |  Volume 10  |  Article 849

TECHNOLOGY AND CODE

doi: 10.3389/fgene.2019.00849
published: 13 September 2019

Frontiers in Genetics  |  www.frontiersin.org

Edited by: 
Bas E. Dutilh, 

 Utrecht University, Netherlands

Reviewed by: 
Jia Qu, 

 China University of Mining and 
Technology, China 

Richard R. Rodrigues, 
 Oregon State University,  

United States 
Basten Snoek,  

Utrecht University, Netherlands

*Correspondence: 
Bhusan K. Kuntal 

kuntal.bhusan@tcs.com 
Sharmila S. Mande 

sharmila.mande@tcs.com

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to 

Bioinformatics and  
Computational Biology,  
a section of the journal  

Frontiers in Genetics

Received: 24 April 2019
Accepted: 14 August 2019

Published: 13 September 2019

Citation: 
Srivastava D, Baksi KD, Kuntal BK 

and Mande SS (2019) “EviMass”: A 
Literature Evidence-Based Miner for 

Human Microbial Associations.  
Front. Genet. 10:849.  

doi: 10.3389/fgene.2019.00849

“EviMass”: A Literature Evidence-
Based Miner for Human Microbial 
Associations
Divyanshu Srivastava 1†, Krishanu D. Baksi 1,2†, Bhusan K. Kuntal 1,3,4* and 
Sharmila S. Mande 1*

1 Bio-Sciences R&D Division, TCS Research, Tata Consultancy Services Ltd., Pune, India, 2 School of Information 
Technology, Indian Institute of Technology Delhi, Delhi, India, 3 Chemical Engineering and Process Development Division, 
CSIR-National Chemical Laboratory, Pune, India, 4 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

The importance of understanding microbe–microbe as well as microbe–disease 
associations is one of the key thrust areas in human microbiome research. High-
throughput metagenomic and transcriptomic projects have fueled discovery of a 
number of new microbial associations. Consequently, a plethora of information is 
being added routinely to biomedical literature, thereby contributing toward enhancing 
our knowledge on microbial associations. In this communication, we present a tool 
called “EviMass” (Evidence based mining of human Microbial Associations), which 
can assist biologists to validate their predicted hypotheses from new microbiome 
studies. Users can interactively query the processed back-end database for 
microbe–microbe and disease–microbe associations. The EviMass tool can also be 
used to upload microbial association networks generated from a human “disease–
control” microbiome study and validate the associations from biomedical literature. 
Additionally, a list of differentially abundant microbes for the corresponding disease 
can be queried in the tool for reported evidences. The results are presented as 
graphical plots, tabulated summary, and other evidence statistics. EviMass is a 
comprehensive platform and is expected to enable microbiome researchers not only 
in mining microbial associations, but also enriching a new research hypothesis. The 
tool is available free for academic use at https://web.rniapps.net/evimass.

Keywords: microbiome, literature mining, human disease, web server, microbial association

INTRODUCTION

The microbial groups residing in human body remain in complex association within themselves 
as well as with the host. These associations range from mutualism, amenalism, and commensalism 
to parasitism, predation, and competitions (Faust and Raes, 2012). However, with the onset of a 
disease, the human microbiome is often seen to display aberrations, which may be a cause or an 
effect (Eloe-Fadrosh and Rasko, 2013; Liang et al., 2018). Advances in the field of metagenomics 
have made it possible to successfully capture and report such microbial dysbiosis observed in the 
diseased state. Microbial abundance measurements for many samples can be simultaneously 
obtained using 16S rRNA (amplicon) sequencing in a short span of time (Goodrich et al., 2014). 
Recent developments in sequencing technology and the drastic reduction in the associated cost have 
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encouraged researchers to probe the microbial basis of various 
human diseases. Consequently, a plethora of information relating 
to microbes and their association with diseases are added to the 
growing biomedical literature (Cani, 2018). Although the obtained 
microbiome data can be used to calculate differentially abundant 
genera as well as their co-occurrence patterns (Kuntal et al., 2013; 
Kumar et al., 2014; Dhariwal et  al., 2017), their evidence from 
biomedical literature can help to strengthen a research hypothesis.

The Human Microbe Disease Association Database 
(HMDAD) was the first resource developed using literature 
mining to systematically gather experimental data to study 
microbe–disease associations (Ma et al., 2017b). Several 
tools have been developed thereafter to utilize the curated 
data from HMDAD and score human microbe associations 
using advanced mathematical approaches (Chen et al., 2017; 
Huang et al., 2017a; Huang et al., 2017b; Wang et al., 2017b; 
Peng et al., 2018; Zou et al., 2018; Qu et al., 2019). The above 
set of tools focuses on identifying associated genera across a 
set of selected diseases and is eventually used to find diseases 
having similar pattern of associated microbes. For example, 
KATZHMDA (Chen et al., 2017) computes the number of 
walks of connections between microbe and disease nodes, 
LRLSHMDA (Wang et al., 2017b) uses a semisupervised learning 
framework based on Laplacian regularized least squares, 
ABHMDA (Peng et al., 2018) uses an Adaptive Boosting 
model, PBHMDA (Huang et al., 2017b) calculates the Gaussian 
interaction profile kernel similarity, and very recently a new 
method called MDLPHMDA (Qu et al., 2019) based on Matrix 
Decomposition and Label Propagation has been introduced. 
While some of the above methods are limited to predict 
microbes associated with a fixed set of diseases, more recent 
methods like ABHMDA can predict microbes associated with 
a new disease (Peng et al., 2018). In addition, methods like 
MDLPHMDA also can now be used to predict novel microbe–
disease associations with minimum noise (Qu et al., 2019). 
Tools like Micro-pattern, on the other hand, can perform 
an enrichment analysis for a given set of microbes using a 
hypergeometric test (Ma et al., 2017a). This method relies on 
creation of pregenerated microbe sets using manual curation 
from selected diseases, making it advantageous for accurate 
predictions, but limits the applicability. Given the scenario, 
although the association of individual microbes with a disease 
can give informative predictions, the knowledge of microbial 
co-occurrence patterns can augment it further to provide 
improved insights. As microbes are known to work in mutual 
associations rather than single entities, it is also imperative 
to validate a known co-occurrence pattern observed in an 
experimental microbiome study. One such method called 
“Microbial Prior Lasso” (or MPLasso) uses literature evidence 
supplied as an input to quantify microbial associations and 
is available as an R package (Lo and Marculescu, 2017). 
However, the major limitation lies in gathering systematic 
information relating to intermicrobe association and their 
relation to human diseases.

In order to address the aforementioned limitation, we 
have developed a web-based GUI resource called “EviMass” 
(Evidence based mining of human Microbial Associations) 

available at https://web.rniapps.net/evimass that can be 
interactively used for not only querying microbe disease 
associations, but also inferring the intermicrobe association 
patterns mined from biomedical literature (Figure 1). The 
EviMass backend database has been developed using extensive 
data mining of the currently available PubMed abstracts. 
The front-end is designed with an interactive query system, 
which allows users to find all microbes associated with a user-
defined query microbe. In addition, the identified microbial 
associations can also be visualized for their occurrence 
statistics in various human diseases. Similarly, users can search 
for an individual microbe to view all diseases associated with 
it and vice versa. Additionally, users can upload a microbial 
association network generated from experimental microbiome 
data corresponding to a human disease and easily verify these 
associations using the evidence statistics. A list of differentially 
abundant genera obtained from a disease–control microbiome 
case study can also be validated using EviMass along with an 
option for enrichment analysis. All evidence inferred using 
the present tool is listed with corresponding PubMed IDs, 
which can be used for further reference. The utility of EviMass 
is demonstrated with case studies as well as using real-world 
microbiome data.

RESULTS

Global Overview of Disease–Microbe 
Associations Captured by EviMass
EviMass backend database was generated using a systematic 
literature mining approach (details in Material, Methods and 
Implementation) specific to microbiome and human diseases. 
We focused our analysis on 51 widely reported microbiome 
associated human diseases and their associations with various 
microbes (genera level). These diseases spanned six categories, 
namely, systemic diseases and those affecting gut, skin, lung, 
brain, and urogenital system (Table 1). The results of the 
literature mining as incorporated in EviMass yielded several 
interesting findings. For example, ulcer, diarrhea, HIV, urinary 
tract infection, and cystic fibrosis were found to be the most 
widely (top 5) reported diseases with microbial associations 
(Supplementary Figure 1). On the other hand, microbial 
genera, namely, Escherichia, Staphylococcus, Pseudomonas, 
Bacillus, and Streptococcus, were seen to occupy the top 5 
spots in terms of their reported all-microbiome articles in 
PubMed (irrespective of disease association) (Supplementary 
Figure 2). A closer look into the genera maximally associated 
with human diseases revealed Escherichia, Lactobacillus, 
Clostridium, Streptococcus, and Bacteroides to be the top 5 
players (Supplementary Figure 3). A deeper analysis revealed 
the following genera to be significantly (P < 0.05) associated 
with diseases (affecting various organs): Clostridium with gut, 
Staphylococcus with skin, Pseudomonas with lungs, Escherichia 
with brain as well as urogenital, and Helicobacter with the 
other systemic diseases (Figure 2).

In order to check which all genera are closely associated 
with each of the aforementioned top genera irrespective of 
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diseases, Module 1 of the EviMass tool was utilized. The results 
(Supplementary Figures 4–19) showed a wide range of association 
patterns between each of these genera shown as graphs. While 
the central node of the graph represented the query genera, the 
remaining nodes corresponded to the genera associated with it. 
The size of the nodes depended on the strength of the associations 
calculated as the sum total of publications where the two genera 
were identified to co-occur. It was interesting to observe that most 
of the association graphs were dominated by a selected group 
of genera like Escherichia, Staphylococcus, and Pseudomonas. 
In order to get a deeper insight into the microbe–disease 
associations, a summary of the associated microbial genera 
count corresponding to each disease and the number of articles 
reporting the disease was generated (Figure 3). The Module 2 
of EviMass was then used to explore each of these associations 
along with the literature evidences. Our analysis using EviMass 
for the top diseases across each category showed some amount of 
genera specificity (Supplementary Figures 20–24). For example, 
cystic fibrosis (Supplementary Figure 20) showed a very strong 
association with the genera Pseudomonas with 3,711 evidences 
(journal articles). Apart from being dominant in cystic fibrosis, 
Pseudomonas was also found to be associated with other diseases 
like HIV, diabetes, ulcer, and urinary tract infection although 
with lower evidences. Similar associations were also observed in 

other diseases (Supplementary Figures 20–24), which instigated 
an interest to look into the disease similarities based on their 
associated genera as explored in the next section.

Disease Similarity Based on Literature 
Evidence Using EviMass
Although earlier studies (Ma et al., 2017a) have shown an 
overall relation between various diseases based on their 
microbial associations, we focused on obtaining categorical 
insight based on our extended database (Figure 4). The top 
20 persistent microbes across the six categories (Table 1) were 
chosen and used to generate bidirectional clustered (UPGMA 
hierarchical clustering) heat map for each category. Euclidean 
distance was used as the measure of distance, and the values 
were normalized by rows (diseases). Diseases like colorectal 
carcinoma, colon cancer, inflammatory bowel disease, irritable 
bowel syndrome, colitis, and kidney stones were part of closely 
linked cluster in the gut category. These diseases were seen to 
be reported with an increased association with Lactobacillus, 
Bifidobacterium, and Clostridium. The skin, brain, and 
urogenital diseases did not show any distinct clustering, but 
Staphylococcus, Escherichia, and Lactobacillus were observed to 
be the dominant players in these diseases, respectively. Asthma 
and related diseases were seen to cluster away from cystic 

FIGURE 1 | Overview of the EviMass backend creation and utility of its various modules in understanding the intermicrobial and microbe–disease associations.
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fibrosis and chronic obstructive pulmonary disease in the lung 
category. The remaining category of systemic diseases showed 
a clear cluster of allergy, obesity, and type 2 diabetes dominated 
by Lactobacillus and Helicobacter. Periodontitis, one of the 
diseases in the last category, clustered away from other systemic 
diseases and was characterized by the increase in association 
of the genera Porphyromonas. The “word cloud” feature was 
used to understand the associations that distinctly showed the 
dominance of the word “gingivalis” (Supplementary Figure 
25) in the abstracts indicating the role of Porphyromonas 
gingivalis. A secondary search on the listed abstracts by using 
the keyword “inflammation” further yielded keywords like 
“cytokines,” “tnf,” “lps” (Supplementary Figure 25), which are 
indicators of some mechanisms of Porphyromonas gingivalis 
infection in periodontitis (Jiang et al., 2018; Kajiura et al., 2018; 
Zhou et al., 2018). However, these observations only provided 
a global picture, which can be enriched by augmenting with 
experimental data. In the next section, we investigated a 
specific disease along with reported experimental data to get 
more insights into microbial pathogenesis.

Case Study With Real World 
Microbiome Data
One of the featured utility of the EviMass tool pertains to 
Module 3, which allows users to validate their results from 
microbiome experiments based on the curated literature 
evidence. In order to demonstrate the utility, we first selected 
a publicly available data (Fazlollahi et al., 2018) where the 
authors studied 72 asthma subjects (using 16S ribosomal RNA 
sequencing on nasal swabs) and compared the same with those 
obtained from healthy controls. Four microbial genera reported 
to be significantly associated with asthma, namely, Prevotella, 
Dialister, Gardnerella, and Alkanindiges, were used as input 
for the EviMass Module 3 along with the disease keyword 
“asthma.” The result indicated Prevotella to be the most widely 
reported as well as statistically significant (P < 0.001) genera 
to be associated, among others, for asthma (Supplementary 
Figure 26). The node “Prevotella” can be clicked to populate 
the list of PubMed articles reporting the association, which in 
turn can be filtered based on search criteria. As most microbes 
are known to orchestrate an inflammatory disease by altering 
the immune response in the host, we searched for the keyword 
“immune” to filter the articles reporting the immunological 
role of Prevotella in asthma. The search result yielded three 
articles, of which one clearly reported the marked capacity of 
Prevotella in driving TH17 immune responses (Larsen, 2017).

In the next step, we used another dataset for analyzing 
a microbial association network for allergic asthma where 
the authors did not find any differentially abundant genera 
specific to the allergy samples (Hevia et al., 2016). We had 
used the same data in one of our earlier works (Kuntal et al., 
2019) to identify microbial “driver” genera (using “NetShift” 
methodology). While Granulicatella and Turicibacter 
were seen to be two potential pathogenic drivers, only 
Granulicatella was predicted to be the main driver (Kuntal 
et al., 2019). The same microbial network was used as an 
input for EviMass, and the associations of Granulicatella and 
Turicibacter were investigated with Module 3 (also provided 
as an autoload example in the web server). The evidence 
statistics for Granulicatella and its associated genera (which 
were mostly pathogens) Staphylococcus, Streptococcus, and 
Veillonella showed a tendency to co-occur irrespective of 
disease condition (Supplementary Figure 27). For example, 
evidence for association of Granulicatella and Staphylococcus 
was seen in 23 articles, Granulicatella and Streptococcus in 
80 articles, and Granulicatella and Veillonella in 35 articles. 
This observation provides evidence that co-occurrence of the 
genus Granulicatella with the above pathogens is indeed seen 
globally. On the other hand, the associations of Turicibacter 
(with Fusibacter and Alkaliphilus) did not show any literature 
evidence of co-occurrence (Supplementary Figure 28), 
thereby strengthening our earlier prediction of inability of 
Turicibacter to become a pathogenic driver. The primary 
intention of this case study was to demonstrate the ease with 
which scientific hypothesis in microbiome research can be 
enriched using the EviMass tool.

TABLE 1 | List of different microbe-related human diseases categorized by the 
organs they affect.

Organs affected Diseases No. of diseases

Gut End-stage renal disease (ESRD), 
kidney stones, diarrhea, liver 
cirrhosis, malnutrition, ileal 
Crohn disease (CD), necrotizing 
enterocolitis, colon cancer, infectious 
colitis, constipation, colitis, 
ulcerative colitis, Whipple disease, 
irritable bowel syndrome (IBS), 
gastroesophageal reflux, Crohn 
disease (CD), gastric and duodenal 
ulcer, inflammatory bowel disease 
(IBD), Clostridium difficile infection 
(CDI), colorectal carcinoma 

20

Skin Skin and mucosal infections, 
atopic dermatitis, psoriasis, guttate 
psoriasis, atopic sensitization, 
eczema, atopy 

7

Lungs Asthma, allergic asthma, recurrent 
wheeze, chronic obstructive 
pulmonary disease, cystic fibrosis 

5

Brain Multiple sclerosis, Parkinson’s 
disease, Schizophrenia, Autism, 
Depression 

5

Urogenital Urinary tract infection, bacterial 
vaginosis, polycystic ovary syndrome, 
preterm birth 

4

Systemic Type 1 diabetes, diabetes, type 2 
diabetes, HIV/AIDS, obesity, systemic 
inflammatory response syndrome, 
allergic sensitization, allergy, ulcer, 
periodontitis 

10

Total 51

43

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Evidence-﻿Based Human Microbial AssociationsSrivastava et al.

5 September 2019  |  Volume 10  |  Article 849Frontiers in Genetics  |  www.frontiersin.org

CONCLUSIONS AND FUTURE WORK

In this communication, we developed a resource for understanding 
the microbe–microbe and microbe–disease associations. The 
present version aims to provide a one-stop platform for validating 
data-driven hypothesis on microbiome studies. We aim to update 
our resource on a regular basis in order to incorporate the 
growing corpus of information. The current version of EviMass 
performs a text processing of the available PubMed abstracts 
to identify microbe association trends (increase or decrease). 
Additionally, it allows one to filter the results based on specific 
queries like genera/species name, journal information, or any 
generic keyword available in the abstracts. While interpreting 
the results, it should be noted that the association graphs are 
generated based on the cumulative evidence counts, which might 
be biased for a disease or microbe having a higher coverage. In 
such cases, the individual associations must be carefully assessed 
using the implemented hypergeometric tests before making any 
biological inference. The implementation of word cloud for the 
search output can highlight keywords in the abstracts that get 
repeatedly mentioned. Although this feature can be used as a 
tool to understand the mechanism of how the microbes affect 
various diseases, it is strongly advised to carefully crosscheck 
with the individual publications. In a future update, we plan to 
link the results with human genome-wide association studies and 
other related databases to help users automatically get improved 
insights. We also plan to augment an additional layer of natural 
language processing to help users automatically get insights on 
the nature of interaction in a future update. Additionally, we will 

introduce a “Contribute” feature to allow users pick a random 
abstract from an initial preselected set of abstracts and submit 
their annotation on the observed type of association (both 
microbe–microbe and microbe–disease). Every annotation 
will be cross validated by two other independent annotations 
to improve accuracy. We expect EviMass to serve as a valuable 
resource for microbiologist as well as other researchers working 
in the field of human microbiome and diseases.

MATERIAL, METHODS AND 
IMPLEMENTATION

Data Acquisition and Building the 
EviMass Backend
Generation of the EviMass backend involved two major steps, 
namely, information extraction and entity recognition. Articles 
with abstracts were downloaded directly from PubMed. A 
combination of keywords including “microbe,” “microbiome,” 
“microbial disease,” “metagenome,” and “bacteria” was used to 
query abstracts using the PubMed web interface. There were 
1,457,991 unique articles retrieved, which were parsed using 
in-house scripts to retain PubMed IDs, title, publication year, 
journal name, authors, and abstract text. These abstracts were 
further processed to extract bacteria names and the reported 
human diseases. The steps involved in backend processing are 
described below as well as summarized in Figure 5. Processed 
backend tables along with their description are provided in the 
Supplementary data.

FIGURE 2 | Top 10 prominent microbial genera associated with diseases affecting various organs. Statistically significant (P < 0.05) genera are marked with a black 
asterisk (with Bonferroni-corrected P < 0.05 highlighted in red).
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Bacteria Named Entity Recognition
The abstracts were passed through a named entity recognition 
(NER) engine implemented in the BacNER tool (Wang et al., 2017a). 
BacNER is a dedicated bacterial NER tool, which reports bacteria 
names, strains, and related entities from a given query text. It is based 
on a trained conditional random field, which processes text and tags 
bacterial entities in IOB (inside-outside-beginning) format. The title 
and the abstract for each article were passed to BacNER, and the 
entities reported in them were extracted. A total of 787,069 articles 
from our library were returned with at least one bacterial entity 
recognized. The results from BacNER required further processing in 
order to be used in our model. For instance, entities like Escherichia 
coli and E. coli needs to be clubbed together. Moreover, there were 
instances where specific species/strains of a bacterium were reported, 
which needed to be clustered together. The identified species were 
also kept as a separate map with the PubMed IDs to display them in 
the EviMass web tool. To resolve these ambiguities, a master list of 
2,178 genera was generated using the Ribosomal Database Project 
(Maidak et al., 1996) and Green Genes (DeSantis et  al., 2006) 
database. As the majority of microbiome 16S rRNA studies utilize 
one of these databases, it also aligns to our aim of validating the 
results from microbiome experimental data. Using an approximate 
string matching method based on Levenshtein distance (Miller et al., 
2009), each identified bacterial entity was matched and mapped to 

the master list. The mapping was then manually verified to modify 
inconsistent mappings. A total of 637,428 articles were finally 
selected having a mapped bacterial entity to the biomedical text. A 
detailed description of the steps involved is summarized in Figure 5.

Diseases Named Entity Recognition
In order to create a disease entity dictionary, the HMDAD’s 
most commonly occurring list of diseases (Ma et al., 2017a) 
was used along with some additions to finalize a set of 51 
diseases. The disease set is created in order to effectively cater 
to the wide variety of researches. For example, “diabetes” is 
deliberately kept as a different disorder and is not merged with 
“type 1” or “type 2 diabetes.” Another example of a similar 
case pertains to the disease “colorectal carcinoma” where we 
added a search query term for both “colorectal carcinoma” 
and “colorectal cancer” to encompass all the search results. 
These 51 diseases were further grouped into 6 categories 
broadly based on their target regions: gut, skin, lungs brain, 
urogenital, and other (systemic diseases) (Table 1). Disease 
names were recognized from abstracts identified earlier to 
have an associated bacterial entity using string matching.

The complete information extracted from more than a 
million scientific articles is stored and indexed for minimum 
memory consumption and fast access. All the genera as well 

FIGURE 3 | Summary of the associated microbial genera count corresponding to each disease and the number of articles reporting the disease. The diseases are 
ordered based on the categories as listed in Table 1. Each category of disease is sorted based on the number of genera associations.
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FIGURE 4 | Category-wise (organs affected by various diseases) bidirectionally clustered heat maps based on microbial associations. The top 20 persistent 
microbes across the six categories (Table 1) were chosen and used to generate bidirectionally clustered (UPGMA hierarchical clustering) heat map for each 
category. Euclidean distance was used as the measure of distance, and the values were normalized by rows (diseases).

FIGURE 5 | Flowchart describing the various steps involved in development of the EviMass backend.
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as the diseases reported for articles are stored in tables, where 
each record corresponds to a PubMed ID. Apart from this, 
all PubMed IDs that report each genus are also separately 
identified and stored. Similarly, a mapping of disease and 
PubMed IDs is also created for easy information retrieval. 
Abstracts are then processed to identify “increase” and 
“decrease” of the various microbial names identified to be 
present in them. These patterns are later displayed in the 
web application in the PMID result table under “taxa and 
trends” column with a “+” (increase), “−” (decrease), and 0 
(no trend detected) sign beside the identified taxa name in an 
abstract. For advanced analysis, EviMass holds all the parts-
of-speech (POS) tagged noun words corresponding to the 
articles, which can be used to get a deeper insight. These POS 
tags can be used to fine tune a search based on a particular 
term of interest as described in the next section (Figure 5). 
Microbial genera significantly associated with the diseases 
(P < 0.05) were identified using a Fisher exact test (Lo and 
Marculescu, 2017; Ma et al., 2017a), which is further applied 
for enrichment analysis in the web tool.

The EviMass Frontend
EviMass web server uses the generated backend to allow easy 
queries using simplistic searches and graphical outputs. Three 
workflows are implemented to systematically query for a 
microbe–microbe or disease–microbe association as described 
below (additional details in Supplementary material 2).

Module 1: Identify 
Intermicrobial Associations
Using this module, users can select a microbial genus and 
find all other microbial genera associated with it. The results 
of the workflow are presented as a network with the central 
node representing the queried genus and the peripheral nodes 
representing the associated genera. The sizes of the nodes 
represent the strengths of the associations and are calculated 
as the total number of publications where the two genera 
(corresponding to the central and the peripheral node) are 
identified to co-occur. EviMass displays the top 100 strongest 
associated pairs by default but also provide users an option to 
view all the associations. Along with the network, a dropdown/
text box with automatic suggestions for associated microbial 
genera names is rendered. Clicking on any node or selecting 
any microbial genera from the dropdown will display all the 
PMIDs in which the corresponding genera and the queried 
genera co-occur, along with the main keywords (POS tags) 
used in the abstract listed as a table. Additionally, a set of 
hypergeometric tests, namely, Fisher exact test and χ2 test, are 
performed (Camilli, 1995; Lo and Marculescu, 2017; Ma et al., 
2017a) to statistically assess the significance of the selected 
association, and the results are presented as a contingency table 
along with P values. Users have the option to search and filter 
the displayed table for any term/keyword and narrow down the 
number of abstracts containing the specified word using either 
the global search or a column-specific search. Also, to ease 
further analysis, a word cloud of entity names in the abstracts 

from the PMID resultant output table can be generated for a 
specific custom query. If a particular gene, protein, or clinical 
condition gets repeatedly mentioned in the abstract texts for 
the selected interaction, it will appear as a dominant word. 
The PMID output table can also be downloaded in a variety of 
commonly used formats. EviMass also allows users to identify 
inter microbial associations, which are present in a selected set 
of diseases using interactive options.

Module 2a: Identify All Microbial Genera 
Associated With a Disease
This module can be used to find all genera that are reported to 
be associated with a selected disease. The results of this module 
can be viewed either as a network (with the central node being 
the disease and the peripheral nodes being the associated 
microbial genera) or as a bar chart with the top 30 associated 
genera sorted by their strength of associations. Microbes 
identified to be significantly (P < 0.05) associated with the 
selected diseases are highlighted in pink (nodes/bars). In 
addition, a dropdown/text box with automatic suggestions for 
associated microbial genera names is provided for convenience. 
Clicking on any peripheral node (in case of the network view) 
or bar (in case of bar chart) or selecting any microbial genus 
from the dropdown displays the PMIDs in which the disease 
and the corresponding genus co-occur along with the keywords 
in the abstract in a sortable, searchable, and downloadable 
table. Similar to Module 1, results for assessing significance of 
the association are also generated. In addition, a genus node 
can be interactively queried (using left mouse click) to inquire 
its other known disease associations as a separate bar plot.

Module 2b: Identify All Diseases 
Associated With a Microbial Genera
The diseases associated with a particular genus can be evaluated 
using this module. A genus can be queried to find its associations 
with the diseases depicted in form of a bar chart, arranged in 
order of the strength of their associations along with their 
statistical significance. As in the previous modules, clicking on 
any bar or selecting any associated disease from the dropdown 
will load the PMIDs where the corresponding disease and the 
queried microbe co-occur along with the keywords in a sortable, 
searchable, and downloadable table. The “word cloud” for the 
PMID resultant table can be used to understand the mechanism of 
how the microbe affects the disease (Supplementary Figure 25).

Module 3a: View Literature Evidence for a 
Disease-Specific Microbial Network
Often, biological systems are analyzed as a network/graph, which are 
mostly obtained using computational techniques on microbiome 
abundance data. However, such data-driven approaches often lead 
to spurious connections among noninteracting microbes, due to 
either measurement or statistical errors. Therefore, a quick and 
easy method to correlate such associations with literature mined 
results is likely to help in getting an improved understanding. 
This module offers users the possibility to upload a microbial 
association network as an edge list along with the pertinent disease. 
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The uploaded edge list is depicted as a network with a searchable 
dropdown containing all the edges. For user convenience, the edge 
widths are automatically mapped to their association frequencies. 
Clicking on any edge or selecting any edge from the dropdown 
shows the PMIDs and keywords where the pair co-occurs along 
with a list of evidence statistics. The evidence statistics reports the 
occurrence count of the selected genera independently as well 
as together in the given disease, any diseases, and globally in the 
EviMass backend. The utility of this feature has been demonstrated 
as a case study in the Results section.

Module 3b: View Literature Evidence 
for Genera Identified to Be Differentially 
Abundant in a Disease and Perform 
Enrichment Analysis
Analyzing differentially abundant microbial genera in disease–
healthy microbiome studies is often used to identify potential 
microbial biomarkers. This module enables one to view literature 
reported evidences for associations of a given set of differentially 
abundant microbial genera (identified from an experimental 
study) with a specific disease. The results of the module can 
be viewed either as a network, with the central node depicting 
the disease and the peripheral nodes representing the queried 
microbial genera, or as a bar chart with the queried genera sorted 
by their strength of associations. In addition, a dropdown/text 
box with automatic suggestions for associated microbial genera 
names is rendered. Clicking on any peripheral node (in case of 
the network view) or bar (in case of bar chart) or selecting any 
microbial genus from the dropdown displays the PMIDs in 
which the disease and the corresponding genus co-occur along 
with the keywords in the abstract in a sortable, searchable, and 
downloadable table. All the other disease associations of the genus 
corresponding to the selected node/bar are reported as a separate 
bar chart. An enrichment analysis of the uploaded set of microbial 

genera is performed with respect to the selected disease similar 
to the implementation in Micro-pattern (Ma et al., 2017a). For 
this implementation, the microbes identified to be significantly 
associated with the 51 diseases are used as “disease sets” in EviMass.
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Advances and Challenges in 
Metatranscriptomic Analysis
Migun Shakya *, Chien-Chi Lo and Patrick S. G. Chain *

Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States

Sequencing-based analyses of microbiomes have traditionally focused on addressing the 
question of community membership and profiling taxonomic abundance through amplicon 
sequencing of 16 rRNA genes. More recently, shotgun metagenomics, which involves the 
random sequencing of all genomic content of a microbiome, has dominated this arena 
due to advancements in sequencing technology throughput and capability to profile genes 
as well as microbiome membership. While these methods have revealed a great number 
of insights into a wide variety of microbiomes, both of these approaches only describe 
the presence of organisms or genes, and not whether they are active members of the 
microbiome. To obtain deeper insights into how a microbial community responds over 
time to their changing environmental conditions, microbiome scientists are beginning to 
employ large-scale metatranscriptomics approaches. Here, we present a comprehensive 
review on computational metatranscriptomics approaches to study microbial community 
transcriptomes. We review the major advancements in this burgeoning field, compare 
strengths and weaknesses to other microbiome analysis methods, list available tools and 
workflows, and describe use cases and limitations of this method. We envision that this 
field will continue to grow exponentially, as will the scope of projects (e.g. longitudinal 
studies of community transcriptional responses to perturbations over time) and the 
resulting data. This review will provide a list of options for computational analysis of these 
data and will highlight areas in need of development.

Keywords: RNASeq, microbiome, workflows, gene expression, omics

INTRODUCTION

The past few decades have seen significant advancements in sequencing technologies that have 
transformed how we conduct biological experiments, particularly when it comes to the study of 
complex microbiomes. However, most of the high throughput sequencing has focused on DNA 
sequencing of entire communities using either targeted approaches like PCR-amplicon sequencing 
of 16S rRNA genes (or other marker genes) or shotgun sequencing of all available DNA from the 
sample (metagenomics).

These methods have contributed to many discoveries in the past decade, helping to better 
characterize microbiomes from environments ranging from the human gut (Qin et al., 2010) to soil 
(Rondon et al., 2000) to oceans (Venter et al., 2004). Although 16S studies only directly characterize 
the taxonomic profile of a microbiome, it is a cost-effective option to exhaustively capture 
biodiversity (measuring the maximal dynamic range of relative abundance) of many samples using 
minimal sequencing. However, more and more studies are now using shotgun metagenomics as the 
advancements in sequencing technologies allow the comprehensive capture of most microbiome 
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members while at the same time elucidating potential genes and 
functional pathways. One of the main limitations of shotgun 
metagenomics is that it does not distinguish the active from 
inactive members of a microbiome, and thus cannot help 
discriminate those that are contributing to observed ecosystem 
behavior from those that are merely present, presumably awaiting 
more favorable conditions.

Using RNA sequencing (RNASeq) to record expressed 
transcripts within a microbiome at a given point in time under 
a set of environmental conditions provides a closer look at 
active members. Recent advancements in mass spectrometry 
methods applied towards proteomics is also able to provide 
insight into actively expressed proteins, but is best paired 
with known reference genomes or a reference metagenome 
from which expected peptide masses can be matched. With 
RNASeq, relatively lowly expressed genes including the entire 
metatranscriptome that include non-coding RNAs can be 
detected, annotated, and mapped to metabolic pathways.

Biologists have long measured RNAs using targeted approaches 
like qPCR to quantify expression of known genes of interest. Before 
the advent of high throughput sequencing, microarray technologies 
were also widely used to measure the expression levels of known 
transcripts from organisms or even communities (Parro et al., 
2007). With the application of next-generation sequencing (NGS) 
technologies to RNA, it is now possible to not only measure known 
transcript targets but also discover previously unknown transcripts 
and transcript variants directly from the sequence data.

In the short time since it was first introduced in the 
early 2000s, the number of metatranscriptomics projects, or 
the sequencing of RNAs from microbial communities has 
increased significantly (Figure 1). In terms of applications, 
the technique has been used to characterize active microbes 
in a community (Bashiardes et al., 2016), discover novel 
microbial interactions (Bikel et al., 2015), detect regulatory 

antisense RNA (Bao et al., 2015), and track expression of 
genes and determine the relationship between viruses and 
their host (Moniruzzaman et al., 2017). This revolutionary 
method is not a complete panacea however, and comes with 
its own set of drawbacks. As with most transcriptomic methods, 
experimental design is critical, sample collection is destructive and 
sufficient material for sequencing (or coupled experiments) 
is required. In addition, metatranscriptomics is not always 
able to capture the entire metatranscriptome due in part to the 
complexity (high diversity and relative ratios of members) 
of some microbial communities, the large dynamic range of 
transcript expression, the short half-life of RNA, and a number 
of technology-specific limitations.

In this review, we report the state of metatranscriptomics 
by discussing several microbiome studies from different 
ecosystems. We will discuss both novel findings made possible 
by this methodology as well as some of the shortcomings. We 
also list several of the available tools and workflows that have 
been adopted for or have been specifically designed to analyze 
metatranscriptomic datasets.

APPLICATION OF METATRANSCRIPTOMICS 
ACROSS ECOSYSTEMS

Metatranscriptomics has been applied to a number of different 
types of samples, from the study of human (and other animal) 
microbiomes, to those found in or on plants, within soils, and in 
aquatic environments. In this section we provide some examples of 
the impact metatranscriptomics has had in different fields of study.

Aquatic Environments
One of the first metatranscriptomic studies was conducted on 
freshwater bacterioplankton communities (Poretsky et al., 2005), 
which described a total of 400 environmental transcripts from 
two sites. At the time, the scale of the study was dictated by the 
available sequencing technologies that limited the sensitivity 
of the method to only a few hundred genes. With the advent 
in the high throughput sequencing technologies, other studies 
on marine systems produced hundreds of thousands of reads 
per sample (Frias-Lopez et al., 2008; Gilbert et al., 2008) and 
made it possible to use metatranscriptomics to characterize the 
dynamics of cyanobacterial blooms in the Baltic sea (Berg et al., 
2018), the detection of small RNAs in the open ocean (Shi et al., 
2009), and resolve viral-host relationships of marine eukaryotes 
(Moniruzzaman et al., 2017).

Terrestrial Environments
Soils are some of the most diverse ecosystems in the world. 
They typically harbor incredible numbers and a broad diversity 
of eukaryotes, archaea, bacteria, and viruses. These complex 
microbiomes are frequently characterized using metagenomic 
sequencing, but only a few of studies have performed 
metatranscriptomics to decipher active microbes from more 
sedentary soil residents. For example, in a recent study to identify 

FIGURE 1 | Growth of metatranscriptomics projects in public repositories, 
together with associated metadata, over time. Bars plots represent number 
of metatranscriptomic datasets (i.e. ”runs”) deposited in the NCBI Sequence 
Read Archive (SRA) on a per annual basis. The pie chart and the stacked 
bars are colored based on the source/environment (isolation_source) the 
sample has been isolated from. The lowest bar in grey represents the number 
of samples in SRA without this pertinent metadata.
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functionally active organisms in soil microbial communities, 
metatranscriptomes revealed that Verrucomicrobia, which are 
regularly found in high abundance in soils, were not as highly 
active as their abundance would otherwise suggest (White et al., 
2016). Upon further analyses, authors showed that the high 
abundance of Verrucomicrobia at DNA level was partly due to 
presence of metabolically inactive organisms. Since it is possible 
to sequester eukaryotic mRNA during sample preparation (e.g. 
using polyA tail hybridization), metatranscriptomics allows 
the targeting of just eukaryotic mRNA. Using this approach, a 
survey of forest soils helped characterize the taxonomic diversity 
and also discovered genes that code for novel eukaryotic 
Carbohydrate-Active enzymes (Damon et al., 2012). Likewise, 
the large diversity of active protists in mineral and organic soils 
were identified using the approach (Geisen et al., 2015). Going 
forward, metatranscriptomics will be pivotal in characterizing 
diversity of active soil organisms and functions.

Human Microbiomes
In the past decade, our understanding of the human microbiome 
has rapidly expanded thanks to sequencing technologies that made 
possible the description of human gut microbial diversity across 
large human cohorts (Arumugam et al., 2011; Human Microbiome 
Project, 2012). Although past studies have primarily focused on 
describing the taxonomic composition of microbial communities 
and their functional potential, many studies are now also using 
metatranscriptomics to better understand the interactions among 
microbes and their host (Pérez-Losada et  al., 2015), to identify 
active pathways of importance (Franzosa et al., 2014), and how 
expressed functions may impact disease progression (Nowicki 
et al., 2018) and severity (Schirmer et  al., 2018). A longitudinal 
study of Inflammatory Bowel Disease (IBD) showed that two 
organisms Alistipes putredinis and Bacteroides vulgatus were the 
sole contributors to the expression of methylerythritol phosphate 
pathway at different time points. Interestingly, expression by 
specific organisms correlated with disease severity as A. putredinis 
showed negative and B. vulgatus showed a positive correlation 
(Schirmer et al., 2018). With further advancements in sequencing 
technologies, laboratory protocols and chemistry, and tailored 
bioinformatic analysis methods, metatranscriptomics promises to  
become an integral tool to investigate microbiomes in humans.

Additional Animal-Microbe Interactions
Metatranscriptomic approaches have also been adapted to better 
understand the microbiomes of other animals, such as cattles 
(Mann et al., 2018; Sollinger et al., 2018; Li et al., 2019), squirrels 
(Hatton et al., 2017), and birds (Marcelino et al., 2019). Many studies 
in cattle microbiomes are focused on understanding the rumen 
microbiota to mitigate the release of potent greenhouse gas methane 
from livestock and increase feed efficiency. Through the use of 
metatranscriptomics, studies have linked microbes in the rumen to 
pertinent activities such as methane emission and the degradation of 
complex plant polysaccharides. For example, Sollinger et al. (2018) 
found Prevotella of Bacteroidetes and multiple members of Firmicutes 
were actively involved in the degradation of complex saccharides.

Plant-Microbe Interactions
Metatranscriptomics has been applied to many plant-microbe 
interactions studies as it is able to characterize members of 
a microbiome that are responsible for specific functions and 
elucidate genes that drive the relationship of the microbiome 
with its host. Metatranscriptomic sequencing of all community 
members from roots of the willow plant Salix purpurea cv. Fish“ 
Creek” grown in soil contaminated with petroleum hydrocarbons 
revealed that the bacterial symbiont Enterobacteriaceae was 
responsible for the degradation of hydrocarbons from among 
a wide range of active microbes (Gonzalez et al., 2018). The 
approach is also well suited to detect changes in the microbial 
community that would have been missed by traditional PCR 
methods as shown in a study where an increase in diversity 
of non-fungal eukaryotes was detected in sad1 mutant of oat 
plants when compared to its wild type (Turner et al., 2013). The 
methodology also helped to identify genes that are responsible 
for the mutualistic relationship of the Seagrass plant with its 
microbiome members (Crump et al., 2018) and to describe 
the active microbial communities and pathways in mature 
ripe fruits (Saminathan et al., 2018). Another example of an 
attempt to understand mechanisms behind the suppressive and 
non-suppressive Rhizoctonia solani fungal infection in wheat 
plants revealed a set of genes associated with suppression and 
non-suppression phenotypes, providing molecular targets for 
improved agricultural productivity (Hayden et al., 2018).

BIOINFORMATIC ANALYSIS OF 
METATRANSCRIPTOMIC SEQUENCING 
DATA

Because of microbiome complexity, high throughput sequencing 
in the form of short read data usually generated from Illumina 
sequencing technology has been most often applied for 
metatranscriptome studies, particularly when multiple samples 
and deep coverage are required, such as in differential gene 
expression studies. Since most information about samples are 
unknown a priori, such as its microbial composition, relative 
abundance of community membership, genome sizes, and relative 
expression within and among genomes, it is not trivial to find 
right experimental parameters such as depth of sequencing for 
metatranscriptomics. While long read sequencing can produce 
full or near full-length mRNAs which can help discriminate 
among different isoforms (Pollard et al., 2018), and provide longer 
stretches of sequence for similarity searches, the various long read 
technologies currently only play a supporting role and are not 
actively being used alone for metatranscriptome studies. Here, 
we focus on available tools and workflows for metatranscriptome 
data processing and analysis, which focus on short read data.

Preprocessing
Similar to other NGS datasets, one of the first steps in processing 
RNASeq data is to do Quality Control (QC) and remove or trim 
spurious/erroneous reads to minimize errors. One of the many 
dozens of available QC tools, such as FastQC (Andrews, 2010), 
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FaQCs (Lo and Chain, 2014), fastp (Chen et al., 2018), and 
Trimmomatic (Bolger et al., 2014), can be used for short reads 
derived from Illumina sequencers.

One of the important steps that should be taken into 
consideration is physical removal or depletion of the highly 
abundant ribosomal RNA (rRNA) transcripts from the samples, 
as they often constitute upward of 90% of all data if not removed 
and do not contribute towards most downstream analyses, such as 
finding differentially expressed genes or pathway characterization. 
These rRNAs are often removed using molecular approaches 
prior to sequencing but their dominance in samples results in 
some amount of rRNA still being sequenced. Post sequencing, 
rRNAs can be identified for removal from downstream analyses 
using tools like SortMeRNA (Kopylova et al., 2012) and barrnap 
(Seemann, 2014).

There are also cases where one would want to remove a 
target organism from analysis, such as human reads from 
human microbiome samples. These reads can be removed using 
traditional read mapping methods that tags and removes reads 
that map to human genome (Li et al., 2017), or using faster 
alignment free methods such as Best Match Tagger (BMTagger) 
(Rotmistrovsky and Agarwala, 2011) that search for human-
specific k-mers in reads.

De Novo Assembly
Preprocessed, high-quality reads can now be assembled into 
putative transcripts using de novo assemblers. Given that most 
microbiomes are not adequately characterized with reference 
genomes, de novo assemblers provide a reference scaffold 
representing longer, expressed genome segments that can 
provide a reference set of genes. This provides users the ability 
to find homologs in a more straightforward fashion, establish 
taxonomic origin, and serve as a reference for mapping against 
for expression analysis. Metagenomic assemblers such as 
MEGAHIT (Li et al., 2015), IDBA-UD (Peng et al., 2012) and 
metaSPAdes (Nurk et al., 2017) have been designed to tackle 
complex metagenomes that may share some sequence similarity 
in highly conserved regions but may vary greatly in terms of 
relative abundance within the microbiome, and may also harbor 
population (strain-level) variation. However, the effectiveness 
of these assemblers in reconstructing transcripts that have their 
own peculiarities such as introns/exons, different isoforms, and 
shorter non-coding RNAs (ncRNA), have been seldomly tested, 
so, it is with caution that one should use metagenomic assemblers 
on metatranscriptome datasets.

Assemblers such as Trans-ABySS (Robertson et al., 2010), 
Trinity (Grabherr et al., 2011), BinPacker (Liu et al., 
2016), Oases (Schulz et al., 2012), SOAPdenovo-Trans (Xie 
et  al., 2014), IDBA-Tran (Peng et al., 2013), and rnaSPAdes 
(Bushmanova et al., 2019) attempt to account for the issues 
in transcriptome sequencing, but were originally designed 
to assemble transcripts from a single organism. Despite their 
design towards transcriptomic and not metatranscriptomic 
datasets, comparisons among some assemblers showed that 
in general, the tested assemblers Oases, Trinity, Metavelvet, 
all improved the number of annotated genes from the 

resulting contigs, with the Trinity assembler outperforming 
the others (Celaj et al., 2014).

IDBA-MT (Leung et al., 2013), IDBA-MTP (Leung et al., 
2014), and Transcript Assembly Graph (TAG) (Ye and Tang, 
2016) are de novo assemblers that are designed specifically for 
metatranscriptomes and take into account the unique features of 
both transcripts and the complex nature of microbial communities. 
IDBA-MT is built upon IDBA-UD and uses multiple k values 
in a de Bruijn graph while accounting for features associated 
with mRNAs like uneven sequencing depth and common repeat 
patterns across different mRNAs, thereby lowering the rate of mis 
assemblies. Likewise, IDBA-MTP was derived from IDBA-MT 
to be able to assemble lowly expressed mRNAs. It uses the 
information of known protein sequences to guide the assembly 
by starting with smaller k-values to construct mRNA sequences 
which are then included based on their similarity with a known set 
of proteins. TAG is a comparatively recent assembler that also uses 
a de Bruijn graph, but to assemble the corresponding metagenome, 
which is then used as a reference to map the transcriptome reads 
and reconstruct mRNA sequences by traversing the metagenome 
assembly graph with mapped transcriptome reads. Since it assumes 
genes are contiguous (without splicing), this particular tool is 
ineffective to use in microbiomes that also contain eukaryotes. 
Furthermore, there is an implicit assumption that the metagenome 
represents sufficient breadth of the community that all expressed 
genes can be mapped to the metagenome.

The current state of de novo assembly for metatranscriptomic 
datasets is still in its very early stages. Only a handful of tools have 
been specifically developed for metatranscriptomics, but their 
efficacy on diverse datasets has not been tested and their hardware, 
or memory requirements across an array of community complexities 
and data volume, have also not been rigorously established.

Transcript Taxonomy
Similar to the taxonomic profiling that is frequently performed 
with shotgun metagenomic data, one can use the same suite of 
tools to perform read- or contig-based taxonomic assignments 
in order to understand what organisms are actively expressing 
RNA. A separate and distinct method is to focus solely on rRNAs 
to assess active members of a community, though as mentioned 
above, these are frequently removed (both in the wet-lab 
protocols as well as in preprocessing of the raw data).

Read-based taxonomy classification tools such as Kraken (Wood 
and Salzberg, 2014), GOTTCHA (Freitas et al., 2015), MetaPhlan2 
(Truong et al., 2015), etc. can be used for metatranscriptomes 
(Neves et al., 2017). Because these tools work on short reads and 
are based on nucleotide matches, their effective use is limited to 
microbiomes whose members have close neighbors in existing 
sequence databases. Reads that have been assembled into longer 
contigs and possibly full-length transcripts can be used by a 
number of tools, such as centrifuge (Kim et al., 2016a) and Kraken 
2 (Wood and Salzberg, 2014), to potentially identify a greater 
proportion of the sequenced community members.

Taxonomic assignments using reads or predicted coding 
regions have a large number of limitations, including the 
algorithms necessary to process large volumes of data or 

54

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Review of Metatranscriptomics’ Present and FutureShakya et al.

5 September 2019  |  Volume 10  |  Article 904Frontiers in Genetics  |  www.frontiersin.org

accommodate short sequences, and the paucity of references in 
the reference databases. Compounding such issues, is the fact 
that most bioinformatics tools only utilize a subset of available 
genomes or focus on certain organisms. For example, many tools 
do not have eukaryotes as part of their databases. There have been 
some recent efforts with new tools and improvements in existing 
tools, to include eukaryotic genomes within their databases, such 
as MetaPhlan2 (Truong et al., 2015) and kaiju (Menzel et  al., 
2016), but their efficacy in classifying eukaryotes is unknown. 
Furthermore, it is often difficult to discern low abundance 
hits from false positive hits, which is an innate problem with 
microbiome studies. Our general lack of knowledge on overall 
microbial diversity and in any biological system under study can 
also limit the utility of taxonomy classification tools.

Functional Annotation
One of the main goals of metatranscriptomics is to assess 
the functional activity of a microbiome. Since the expressed 
transcripts represent a proxy to the actual phenotype, 
characterizing the function of transcripts is a fundamental task 
for metatranscriptomics. Functional annotation can be conducted 
using either reads or assembled contigs. Read based functional 
profilers such as MetaCLADE (Ugarte et al., 2018), HMM-
GRASPx (Zhong et al., 2016), and UProC (Meinicke, 2015) use 
tool-specific databases and require predicted open reading frames 
as input, from other tools like FragGeneScan (Rho et al., 2010). 
MetaCLADE is one of the latest tools and uses a database that 
consists of 2 million probabilistic models derived from 15,000 
Pfam domains, thus hundreds of models representing any single 
domain, to encompass the diversity of each domain across the tree 
of life. A search against this database results in large numbers of hits 
per read which are then filtered based on redundancy, probability 
and bit-scores (Ugarte et al., 2018).

Alternatively, annotation of genes can be performed from 
assembled contigs. Annotation of assembled transcripts proceeds 
similar to the annotation of genomes and metagenomes. Gene 
finding using programs like Prodigal (Hyatt et al., 2010) and 
FragGeneScan (Rho et al., 2010) is followed by functional 
assignment based on similarity searches using tools such as 
DIAMOND (Buchfink et al., 2015) to search against functional 
databases like KEGG (Kanehisa and Goto, 2000), NCBI RefSeq 
(O’leary et al., 2016), UniProt (Uniprot, 2019) etc. Other tools, 
pipelines and platforms encompass an array of bioinformatics 
utilities (including gene finding and annotation), such as Prokka 
(Seemann, 2014), EDGE Bioinformatics (Li et al., 2017), and 
MG-RAST (Wilke et al., 2016), which combine a number of 
similarity searches against various databases, or can even couple 
assembly, gene calling, and annotation via similarity searches. 
Once annotations are performed, enzymatic functions may 
also be mapped to known metabolic pathways, using tools like 
MinPath (Ye and Doak, 2009) or iPath (Yamada et al., 2011).

Differential Expression Analyses
Beyond the simple description of who are the active members and 
what genes are being expressed at a single time point, are studies 
of differential gene expression, where metatranscriptomics can 

be used to compare differing conditions and environmental 
parameters and their effect on community function or to 
observe community dynamics over time. There are many tools 
originally developed for use with single genomes that can be 
leveraged for metatranscriptomic differential gene expression 
studies. These tools require as input abundance data per gene 
(or transcript) and per sample (representing expression under a 
specific condition or a specific time point). Abundance can be 
attained in a number of ways, but typically involves some form 
of read alignment/mapping to a reference genome, a reference 
assembly or a reference gene set. EdgeR (Robinson et al., 2010), 
DeSeq2 (Love et al., 2014), and limma (Ritchie et  al., 2015) 
are R packages that are frequently used, together with the 
abundance information, to identify genes that are statistically 
significantly differentially expressed among a number of samples 
(i.e., conditions/timepoints). Likewise, tools such as Generally 
Applicable Gene-Set/Pathway Analysis (GAGE) can be used to 
identify pathways enriched in one condition over another (Luo 
et al., 2009). Since, replicating metatranscriptomics samples 
are not trivial compared to transcriptomic studies with isolate 
organisms, non-parametric methods as the implementation in 
NOISeq (Tarazona et al., 2015) should also be considered.

There are peculiarities in metatranscriptomic analyses that 
makes differential expression analyses rather challenging, mainly 
as a result of sequencing a large diversity of transcripts (from 
a wide array of organisms). Problems such as shared genes 
among closely related organisms and variation in the taxonomic 
composition of transcripts can result in incorrect assessment 
of gene expression profiles. A normalization method has been 
recently proposed that can minimize the influence of taxonomic 
diversity in the sample by normalizing count data based on 
taxonomic composition across different samples, but this 
method is also biased by representation in taxonomic databases 
(Klingenberg and Meinicke, 2017).

AVAILABLE WORKFLOWS FOR 
METATRANSCRIPTOMIC ANALYSIS

As alluded to above, the analysis of a metatranscriptome 
dataset is laden with choices of bioinformatic steps with 
many options for tools for any given step. Which steps and 
tools should be selected are often dictated by the goals of 
the experiment, the details of which can grow in complexity 
based on the specifics of the study. However, there do exist 
bioinformatic workflows that aim to streamline some of this 
complexity by connecting multiple individual tools into a 
workflow that can take raw sequencing reads, and process 
them providing data files that represent the outputs results 
characterizing taxonomic identities, functional genes, and/or 
differentially expressed transcripts. Here we summarize eight 
of the available workflows, namely MetaTrans (Martinez et al., 
2016), COMAN (Ni et al., 2016), FMAP (Kim et al., 2016b), 
SAMSA2 (Westreich et al., 2018), HUMAnN2 (Franzosa et al., 
2018), SqueezeMeta (Tamames and Puente-Sánchez, 2018), 
IMP (Narayanasamy et al., 2016), and MOSCA (Sequeira et al., 
2019). We compare the types of analyses these workflows are 
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capable of performing, which dictates what types of biological 
questions may be addressed using them. Details of these eight 
workflows, their capabilities (e.g. QC, assembly, differential 
gene expression analysis), and the specific bioinformatics tools 
that they use, can be found as a summary in Table 1 and in 
detail in Supplementary Table 1.

Almost all eight workflows include a form of preprocessing 
or quality control of raw data, with the exception of HUMAnN2. 
All the other workflows, aside from FMAP, include as part of this 
process the removal of reads matching rRNA prior to other analyses. 
However, FMAP and IMP allows for the targeted removal of host 
sequences. After the preprocessing step, all workflows essentially 
take one of two different approaches, either directly using the reads 
to perform further analyses, or first performing an assembly and 
annotation, and then using the annotated genes from that assembly 
for further analyses (Supplementary Table 1). MetaTrans, COMAN, 
FMAP, SAMSA2, HUMAnN2 all use a read-based approach, while 
SqueezeMeta, IMP, and MOSCA assemble reads into transcripts 
before further analyses are performed.

Among all read based workflows, MetaTrans is the only one 
that first detects putative genes prior to further analyses. All other 
workflows directly use the filtered reads for similarity searches 
against taxonomic and functional databases. MetaTrans is also 
unique in that it utilizes the rRNA sequences that were sequestered 
in previous step for taxonomic profile analysis. FMAP does 
not perform taxonomy profiling; and all other workflows use 
the processed reads to query against a reference database. For 
these workflows, there are however major differences in how 
each workflow determines the taxonomy profile. COMAN and 
SAMSA2 perform their read-based searches in a protein space 
using DIAMOND, albeit using different reference databases, 
while HUMANn2 uses MetaPhlan2, which performs searches 
in nucleotide space. While amino acid based searches allow the 

detection of organisms distantly related to those in the reference 
database, they are prone to false discovery. In contrast, nucleotide 
searches are more specific but are unable to identify sequences 
insufficiently conserved.

For functional characterization using reads, all five 
read-based workflows use different algorithms to search 
for functional similarity using different databases. Only 
MetaTrans performs these searches in nucleotide space, while 
all other workflows use read-based predicted peptides as 
queries. All of the available workflows, aside from SAMSA2, 
also map predicted proteins onto known pathway maps. 
Analyses of functional profiles of metatranscriptomes using 
one of these workflows should be carefully interpreted based 
on how functions are assigned. For example, functional 
assignments using searches in nucleotide space, especially for 
proteins coding genes are likely to be less effective if no near 
neighbors exist in the reference databases.

In comparison to read-based analyses, assembly-based 
workflows harbor an extra analytical step, where all the reads 
are first assembled into larger contigs, which can help reduce 
the size of the data that needs to be processed for further 
analyses and increases the contiguous length of the expressed 
transcripts allowing for more accurate searches. All three of 
the assembly-based workflows provide multiple assembly tools 
to choose from, however, IMP has an input requirement, a 
metagenome dataset that corresponds to the same (or similar) 
sample as the metatranscriptome. The metagenomic data is 
used together with the metatranscriptome data for co-assembly. 
The value of combining metagenome and metatranscriptome 
dataset is that the assembly becomes more representative of 
the actual community. IMP uses a corresponding metagenome 
dataset to create better references through iterative assembly 
of metagenomes and metatranscriptomes. Both SqueezeMeta 

TABLE 1 | A list of metatranscriptomics pipelines and their capabilities.

Read based Assembly based

MetaTrans COMAN FMAP SAMSA2 HUMAnN2 SqueezeMeta IMP MOSCA

Preprocessing QC ✓ ✓ ✓ ✓ × ✓ ✓ ✓
Removes host 
reads

× × ✓ × × × ✓ ×

Removes rRNA ✓ ✓ × ✓ × ✓ ✓ ✓
de novo Assembly × × × × × ✓ ✓ ✓
Binning × × × × × ✓ ✓ ×
Taxonomic 
Profiling

Reads ✓ ✓ × ✓ ✓ × × ×
Contigs × × × × × ✓ ✓ ✓

Functional 
Annotation

Reads ✓ ✓ ✓ ✓ ✓ × × ×
Contigs × × × × × ✓ ✓ ✓

Pathway Analysis ✓ ✓ ✓ × ✓ ✓ ✓ ×
Requires Metagenomes × × × × × × ✓ ×
Summary Report × × × × × × ✓ ×
Web Interface × ✓ × × × × × ×
Multiple Sample Comparisons ✓ ✓ ✓ ✓ ✓ ✓ × ✓
Differential Expression ✓ ✓ ✓ ✓ × × × ✓
Docker × × × × ✓ × ✓ ✓
Conda × × × × ✓ × ✓ ×
Long Read Support × × × × × ✓ × ×
Public Code Repository ✓ × ✓ ✓ ✓ ✓ ✓ ✓
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and IMP can, in addition, perform post-assembly contig-
binning to help group together contigs (i.e. transcripts) into 
bins representing the same taxon (i.e. genes expressed from the 
same genome/species). In all three assembly-based workflows, 
the final contigs are processed to find genes, to perform 
taxonomy classification with those genes, and to assign them 
a function.

While all workflows use the identified genes as a query 
against a reference protein database for taxonomic classification 
purposes, each workflow uses a different strategy. The reference 
databases used are different (e.g. Uniprot vs NR), and each 
workflow assigns taxonomy using different algorithms and 
scoring thresholds (i.e. last common ancestor vs best hit). The 
SqueezeMeta workflow also uses the rRNA reads that were 
extracted during the preprocessing step to provide an additional 
community profile. One major drawback that is common among 
several workflows is the implementation of an unorthodox 
approach of assigning taxonomy by searching against databases 
that are designed for functional characterization.

For functional annotation, the IMP workflow simply uses 
the output of the Prokka pipeline that was used for gene 
identification and annotation. The MOSCA workflow uses the 
output of the taxonomic search against Uniprot and assigns 
functional annotation based on best hit, while SqueezeMeta 
performs additional Hidden Markov Model searches against 
several protein family databases. The SqueezeMeta and 
IMP workflows also provide pathway analysis based on the 
annotated functions.

Because one of the primary goals of metatranscriptome 
analyses is to obtain a relative quantification of gene expression, 
all read-based and assembly-based workflows provide some form 
of per gene coverage and/or abundance metric (e.g. raw count per 
gene, or number of reads per kb per million reads sequenced). 
These abundance values can be used with additional tools to 
compare relative gene expression between growth conditions or 
during time-course experiments, the purpose of which is often to 
help understand what genes and pathways may be important for 
a particular phenotype under study. For these types of studies, 
replicate experiments are often required to obtain statistically 
significant results, thus the relative gene abundance comparisons 
is often a comparison among many different samples that include 
several biological replicates. MetaTrans, FMAP, COMAN, and 
MOSCA innately provide such a comparative capability within 
their workflows, can process several datasets and generate a list of 
genes that are found to be statistically significantly differentially 
expressed between different conditions (or time points). SAMSA2 
also allows differential gene expression analysis but requires 
individual sample processing followed by the use of an additional 
command line utility provided as part of the package.

All workflows, with the exception of COMAN, provide a 
code repository and is invoked using Command Line Interface. 
COMAN provides a web server interface. The availability of 
multiple workflows enables users to choose the one that is the 
most appropriate for analyzing their metatranscriptome. While 
users should ideally select workflows based on capability/
functionality and quality of the algorithms/tools used, additional 
considerations may include the computational resource 

requirements, which vary among workflows, and the frequency 
of maintenance or active development of the source code, 
which can undergo frequent modifications as new advances, 
tools, or methods continue to be developed. Both Table 1 and 
Supplementary Table 1 are compilations of these available 
workflows and can be used as a potential guide to choose a 
workflow based on factors that are important to address any 
researcher’s question(s). For example, if differential expression 
analysis is the goal of a study, the list of workflows to choose from 
is limited to five.

METATRANSCRIPTOMICS—A FUTURE 
FULL OF PROMISES AND CHALLENGES

As alluded to above, it is clear that the next generation 
sequencing revolution that has taken place in the study of 
genomes and metagenomes has been successfully adapted 
to the study of gene expression with ”RNAseq,” and further, 
to the study of complex biological system dynamics with 
metatranscriptomics. This new field has seen a rapid increase 
in the number of metatranscriptomic projects, most of which 
represent differential gene expression studies whose goals 
include obtaining insight into the active members, genes, and 
pathways within a microbiome. That goal, however, is plagued 
by the lack of adequate reference genomes, which can result 
in a suboptimal fraction of reads from any dataset from being 
functionally or taxonomically characterized. It is for this 
reason that efforts remain to assemble metatranscriptomic 
data (together with metagenomic data from the same, or 
similar sample, if available).

While metatranscriptomic data deposited into public 
repositories enable future big data analytics and global meta-
analyses for discovery of important genes, pathways, and 
organisms, a prerequisite is the concomitant availability of sample 
and experimental metadata that help define the context of these 
complex datasets. While over time, a larger fraction of available 
metatranscriptomes has been deposited with some metadata 
(Figure 1), to realize the full potential of metatranscriptomic 
meta-analyses, or for any form of metatranscriptome reanalysis, 
the deposition of adequate sample metadata should become an 
important focus of future efforts, together with standardization 
of vocabulary for metadata descriptors. Several grass-roots 
efforts among the larger scientific community such as Minimum 
Information about any Sequence or MIxS (Yilmaz et al., 
2011) will be needed if we hope to set a series of standards for 
inclusion of sufficiently detailed metadata when depositing 
metatranscriptomic (or any omics) datasets that would allow 
such all-inclusive analyses.

Because of the broad dynamic range of both microbiome 
membership relative abundance and of gene expression within 
any given organism, metatranscriptomics requires a very large 
number of data points (i.e. reads). Therefore, high throughput 
short read technologies dominate this area, however the rise of 
long read technologies holds great promise when throughput 
(per dollar) improves. Longer reads will be able to help with 
all aspects of analysis (assembly, taxonomy determination, 
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functional analysis), and will additionally provide better 
resolution of transcript isoforms, polycistronic operons, and 
different genes with high similarity.

While today’s studies are primarily performed with a single 
short read technology (i.e. Illumina), there exist a large number 
of analytical tools to aid in all aspects of data analysis. In this 
review, we highlight some of the major methods of analyzing 
metatranscriptomics data, some of the specific bioinformatics 
tools used to accomplish these analyses, and some more complex 
metatranscriptomic workflows that combine a number of these tools 
to address several biological questions with minimal input or effort 
from the users. Each of the workflows uses either a read-based or 
an assembly-based approach towards taxonomic and/or functional 
analysis of organisms and genes expressed within a community, 
and their relative abundances. Some of the workflows can even 
proceed all the way to performing differential gene expression 
analysis among various input samples. While the workflows share 
a number of similarities, the tools used differ, and it is not clear 
which workflow, or bioinformatics tool, may be best under any 
given scenario. Thus, one additional area that beckons for more 
research is the benchmarking of the performance and accuracy 
of bioinformatics tools and pipelines with metatranscriptomic 
data. The complexity of real microbiomes and our incomplete 
knowledge of the organisms (or genome sequences) present 
within them have been great challenges in trying to perform such 
benchmarking experiments. While we have yet to create tools that 
are truly able to mimic real sequencing datasets, methods that 
generate simulated sequencing data from known genomes may be 
used to create a range of simulated metatranscriptome datasets that 
can in turn be used to test the behavior of bioinformatics tools and 
parameter settings. Past efforts have focused on ad hoc metrics to 
evaluate performance using real samples and sequencing data. To 
make matters more complex, further advancements in sequencing 
technologies will continue to push the development of new tools 
and workflows. An accepted framework for benchmarking new 
tools would help the field progress, and possibly coalesce towards 

accurate and appropriate workflows. Despite some of the issues 
with metatranscriptomics as a method, the continued development 
of new tools and algorithms for analyzing metatranscriptomic 
data coupled with our increasing understanding of the challenges 
presented by such datasets, it is clear that the next generation of 
metatranscriptomics tools hold great promise in facilitating our 
understanding of the biologically active fraction of microbiomes, 
and the relevant pathways involved.
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An Integrated Pipeline for Annotation 
and Visualization of Metagenomic 
Contigs
Xiaoli Dong * and Marc Strous

Department of Geoscience, University of Calgary, Calgary, AB, Canada 

Here, we describe MetaErg, a standalone and fully automated metagenome and 
metaproteome annotation pipeline. Annotation of metagenomes is challenging. First, 
metagenomes contain sequence data of many organisms from all domains of life. Second, 
many of these are from understudied lineages, encoding genes with low similarity to 
experimentally validated reference genes. Third, assembly and binning are not perfect, 
sometimes resulting in artifactual hybrid contigs or genomes. To address these challenges, 
MetaErg provides graphical summaries of annotation outcomes, both for the complete 
metagenome and for individual metagenome-assembled genomes (MAGs). It performs 
a comprehensive annotation of each gene, including taxonomic classification, enabling 
functional inferences despite low similarity to reference genes, as well as detection of 
potential assembly or binning artifacts. When provided with metaproteome information, it 
visualizes gene and pathway activity using sequencing coverage and proteomic spectral 
counts, respectively. For visualization, MetaErg provides an HTML interface, bringing all 
annotation results together, and producing sortable and searchable tables, collapsible 
trees, and other graphic representations enabling intuitive navigation of complex data. 
MetaErg, implemented in Perl, HTML, and JavaScript, is a fully open source application, 
distributed under Academic Free License at https://github.com/xiaoli-dong/metaerg. 
MetaErg is also available as a docker image at https://hub.docker.com/r/xiaolidong/
docker-metaerg.

Keywords: metagenomics, metaproteomics, bioinformatics, gene prediction, functional annotation, taxonomic 
classification, pathway prediction, visualization

INTRODUCTION

Genome annotation is, literally, the annotation of features on assembled DNA molecules. Such 
features are, in the first place, genes, including those encoding proteins [“open reading frames” 
(ORFs)] and those encoding ribosomal or transfer RNA molecules. Annotation consists of the 
identification of such features and providing each feature with a meaningful list of hints about its 
possible biological function. Annotation is usually the final step of the automated computational 
processing of genomic or metagenomic data and the beginning of biology.

Depending on their background and research question, biologists will have different annotation 
needs. For example, when the research targets a single microbe, detailed gene-by-gene annotation of 
its genome would be desired. On the other hand, when the research targets a complete ecosystem, a 
high level summary of the functional potential of the associated metagenome might be the aim. These 

Edited by: 
Bas E. Dutilh,  

Utrecht University,  
Netherlands

Reviewed by: 
Cuncong Zhong,  

University of Kansas,  
United States 

João Marcelo Pereira Alves, 
University of São Paulo,  

Brazil 
Julien Tremblay,  

National Research Council Canada 
(NRC-CNRC), Canada

*Correspondence: 
Xiaoli Dong 

xdong@ucalgary.ca

Specialty section: 
This article was submitted to 

Bioinformatics and Computational 
Biology,  

a section of the journal  
Frontiers in Genetics

Received: 08 April 2019
Accepted: 20 September 2019

Published: 15 October 2019

Citation: 
Dong X and Strous M (2019) An 

Integrated Pipeline for 
 Annotation and Visualization of  

Metagenomic Contigs.  
Front. Genet. 10:999.  

doi: 10.3389/fgene.2019.00999

61

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00999
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00999&domain=pdf&date_stamp=2019-10-15
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/article/10.3389/fgene.2019.00999/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00999/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00999/full
https://loop.frontiersin.org/people/294586
https://loop.frontiersin.org/people/18013
https://github.com/xiaoli-dong/metaerg
https://hub.docker.com/r/xiaolidong/docker-metaerg
https://hub.docker.com/r/xiaolidong/docker-metaerg
https://creativecommons.org/licenses/by/4.0/
mailto:xdong@ucalgary.ca
https://doi.org/10.3389/fgene.2019.00999


Metagenomic Contig Annotation With MetaErgDong and Strous

2 October 2019  |  Volume 10  |  Article 999Frontiers in Genetics  |  www.frontiersin.org

examples also display a different starting point for annotation. In 
the first case, it may consist of a single, near-perfect whole genome 
sequence. In the second case, it may consist of many MAGs of 
varying quality, unbinned metagenomic contigs, or even billions of 
unassembled reads.

What sets annotation apart from other computational steps 
in processing metagenomic data is that no benchmarks for 
annotation tools exist. That means that ranking these tools 
and objectively declaring a winner is not straightforward. The 
choice of the best annotation pipeline will depend on the data, 
the research question, the computational resources available, and 
the background of the researcher who needs to make sense of the 
annotation software’s hints and the way they are presented.

In practice, options for genome annotation come in two flavors: 
online platforms and standalone pipelines. Examples of online 
platforms are IMG (Chen et al., 2017), MG-RAST (Keegan et al., 
2016), MicroScope (Vallenet et al., 2017), Mgnify (Mitchell et al., 
2018), and Edge (Li et al., 2017). When opting for a platform, you 
avoid the need for local computational infrastructure or tedious 
installation and updating of tools and databases, while benefiting 
from online collaboration abilities. The platform may provide 
accession numbers for sharing data after publication, as these 
platforms may also be data repositories.

However, a platform might not offer the type of annotation 
needed for a specific research question or might be slower in 
the uptake of the latest selection of tools and databases. If such 
factors are important, opting for a standalone pipeline might be 
the way to go. Scientists who are fluent in scripting languages, 
such as Python or Perl, might even create their own pipeline from 
scratch. Examples of available standalone pipelines for annotation 
of assembled contigs, scaffolds, or whole genome sequences are 
Prokka (Seemann, 2014), DFAST-core (Tanizawa et al., 2018), 
and PGAP (Tatusova et al., 2016). Prokka is a very fast genome 
annotation pipeline. Its core concept is that some databases or 
tools provide better or more information than others. Once a 
gene is annotated with a positive “hit” to a good database, there 
is no need to perform additional searches. DFAST adds to this 
approach by using a faster similarity search tool (ghostx). It 
infers orthology assignments based on reciprocal-best-blast-
hits between the query genome and a larger set of reference 
genomes, potentially including user-added custom reference 
genomes. It is thus especially useful to transfer annotations from 
a well-annotated reference genome. PGAP is used by the NCBI 
to annotate submitted whole genome sequences. It combines 
sophisticated gene prediction algorithms with gene assignments 
to its set of prokaryotic protein clusters (Klimke et al., 2009). 
As an institutional “gold standard” annotation, it emphasizes 
annotation standards and conventions, quality control, and due 
diligence during execution.

Here, we present MetaErg, an extendable standalone 
annotation pipeline developed for metagenome-assembled 
genomes (MAGs). Genome-centric metagenome data provides 
three major challenges. The first is that assembly quality can 
be relatively poor, and some contamination of MAGs with 
“foreign” genes can be expected. This challenge is addressed 
by performing fast similarity searches against a much larger 
database than would be needed to simply infer functions, to 

classify each gene taxonomically. This enables detection of 
potentially artefactual, hybrid bins or contigs. The second is 
that the user will likely need to make sense of many annotated 
genomes simultaneously. This challenge is addressed by 
visualizing and summarizing data, to enable quick inferences 
about encoded biological functions and pathways. The third 
is that, for many environmental microorganisms, meaningful/
close reference genomes are not yet available. This challenge 
is addressed by always providing comprehensive information 
about each gene, derived from different tools and databases, to 
assign functions as well as practically possible for genes with low 
similarity to reference genes.

MATERIALS AND METHODS

Program Implementation Overview
MetaErg is an integrated and fully automated pipeline for 
annotating metagenome-assembled contigs. It integrates a 
number of open-source tools and its modular design allows 
for flexible workflows, addition of new functions, and easy 
refactoring. MetaErg’s implementation consists of five main 
modules (Figure 1), including a command-line interface, an 
input data preprocessing module for filtering and formatting 
input DNA sequences, a structural annotation module for 
predicting biological features and elements, a function annotation 
module for inferring gene functions and classifying rRNA genes 
and ORFs to taxonomic lineages, and a presentation module for 
presenting annotation results in various summary reports and 
for visualization using HTML and JavaScript.

Command Line Interface
MetaErg is a command line program, designed to run on a 
Linux server or cluster. It accepts a preassembled FASTA format 
DNA sequence file as the minimum required input. The default 
values for the optional parameters in the pipeline are optimized 
for metagenome analysis. Through a command-line interface, 
experienced users can interact with the program to customize 
the gene prediction and database searching parameters, enable or 
disable certain tools and functions, setup data filtering thresholds, 
and specify an output directory.

Sequence Data Preprocessing
Every input DNA sequence is inspected, validated, and 
reformatted before annotation. The sequence identifiers in 
the input file must be unique; otherwise, the input file will be 
rejected, and the annotation process will be terminated. Any 
ambiguous nucleotides in the input sequence file are replaced by 
N. Gaps (-) and pads (*) are removed. Sequences shorter than a 
user defined minimum length are removed.

Structural Annotation
MetaErg begins biological feature and element prediction by 
identifying CRISPR elements and noncoding RNA genes (tRNA, 
rRNA genes). Next, to avoid identification of artefactual protein 
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coding genes overlapping with detected noncoding features, 
MetaErg masks these features by replacing them with Ns. Next, 
protein encoding genes are predicted. Figure 1 shows the 
MetaErg workflow.

The identification of CRISPR elements is achieved using 
MinCED (Skennerton, 2016) with default parameters. tRNA 
genes are predicted with the ARAGORN program (Laslett and 
Canback, 2004).

Ribosomal RNA genes (5S, 5.8S, 16S, 18S, 23S, 28S) are 
identified and classified using rRNAFinder, an in-house tool 
package, which is included in the MetaErg release. rRNAFinder 
uses nhmmer (Wheeler and Eddy, 2013) to query locally built 
rRNA HMM profiles against the input contig sequences for 
detecting rRNA genes on the contigs. To build the rRNA 
HMM profiles, the “rfam.seed.gz” file was downloaded from 
the Rfam database (Kalvari et al., 2018). The FASTA-formatted 
rRNA gene alignments were extracted and written to separate 
files for each of the three domains of life (Bacteria, Archaea, 
Eukaryota), respectively. The alignment files for each domain 
were then used by the hmmbuild program in HMMER (Eddy, 
2011) to create an rRNA gene HMM profile for the domain. 
Because a metagenome may contain rRNA sequences from 
all domains of life, in “metagenome” mode, rRNAFinder uses 
HMM models from all three domains of life. When multiple 
models yield hits to the same region, rRNAFinder outputs 
only the result of the model with the lowest E-value. When 
the E-value is the same for multiple hits, all best scoring 
predictions are kept. rRNAFinder uses blastn (Altschul et al., 
1990) for classification of detected rRNA genes using the full-
length SILVA SSU and LSU database (Quast et al., 2012). The 
standalone rRNAFinder tool is also freely available at https://
github.com/xiaoli-dong/rRNAFinder.

Protein coding genes (ORFs) are predicted using Prodigal 
(Hyatt et al., 2010). ORFs shorter than 180 nucleotides are 
excluded from further analysis by default.

Functional and Taxonomic Annotation
Metagenome functional annotation is very similar to genomic 
annotation and relies on comparisons of predicted genes with 
existing, previously annotated sequences. The goal is to propagate 
accurate annotations to correctly identified orthologs (Kunin 
et al., 2008).

Firstly, predicted ORFs are run through motif prediction tools. 
SignalP 5.0 (Armenteros et al., 2019) is run on all ORFs to predict 
the presence and absence of signal peptides and the location of their 
cleavage sites within an ORF. TMHMM (Krogh et al., 2001) is run 
on all ORFs to detect the transmembrane helices.

MetaErg uses profile HMMs and blast-based searches to detect 
similarity. All ORFs are searched against different databases. 
All search results are combined to associate query genes with 
functional categories, protein domains, KEGG Orthology (KO) 
terms, Gene Ontology (GO) terms, Enzyme Commission (EC) 
numbers, and metabolic potentials and traits. In brief, ORFs are 
searched with HMMs from Pfam-A (Finn et al., 2014), TIGRFAM 
(Haft et al., 2013), FOAM (Prestat et al., 2014), Metabolic-hmm 
(Anantharaman et al., 2016), and casgenes.hmm (Burstein et al., 
2016) using the hmmsearch tool. ORFs are also searched against 
the SwissProt (BBairoch and Apweiler, 2000) database using 
DIAMOND (Buchfink et al., 2014). ORFs without any search 
outcomes are annotated as “hypothetical protein”.

MinPath (Minimal set of Pathways) was used to reconstruct 
metabolic pathways. MinPath minimizes parsimony and yields 
a conservative estimate of the biological pathways present in 
a query dataset (Ye and Doak, 2009). MetaErg uses MinPath 

FIGURE 1 | MetaErg annotation workflow. The input file to MetaErg is a FASTA file that contains the assembled contigs.
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to predict KEGG (Kanehisa and Goto, 2000) and MetaCyc 
(Karp et al., 2002) pathways. For predicting the minimal set of 
KEGG pathways that still explains the presence of the detected 
functional genes, an ORF-identifier-to-KO-number-mapping-
file is provided as the input to MinPath. For inferring the list of 
MetaCyc pathways, an ORF-identifier-to-EC-number-mapping-
file is provided as the input to MinPath. The mapping files are 
derived from the blast searches of the ORFs against the Swiss-
Prot databases, as well as HMM searches against the FOAM and 
the TIGRFAMs database.

MetaErg classifies all ORFs based on best DIAMOND hits 
against a custom database, GenomeDB. To build GenomeDB, 
the Genome Taxonomy Database (GTDB) gtdbtk_r89_data.
tar.gz (Parks et al., 2018) was downloaded from https://data.
ace.uq.edu.au/public/gtdb/data/releases/release89/89.0/. Each 
genome included in GTDB was checked for presence in the 
NCBI RefSeq database. If present, the FASTA-formatted protein 
files were downloaded. Otherwise, the ORFs for the genome 
were predicted using Prodigal. The downloaded and locally 
predicted ORFs inherited their taxonomy from GTDB. To the 
GTDB data, only associated with Bacteria and Archaea, we 
added Eukaryota and viral data, by downloading the available 
NCBI RefSeq protein sequences of unicellular protozoa, fungi, 
plants (excluding Embryophyta), and viruses. The taxonomy 
of those proteins in GenomeDB was inherited from the NCBI 
records. For that, we inspected the assembly_summary.txt file, 
present in each NCBI RefSeq subdirectory (ftp://ftp.ncbi.nlm.
nih.gov/genomes/refseq/), which associates each assembled 
genome with a “ftp_path” and a “species_taxid”. We retrieved the 
protein sequences of each available Eukaryote or viral genome 
by following “ftp_path”. The taxonomy of the protein sequences 
was obtained via “species_taxid”. This process was automated in a 
Perl script, enabling periodical updating of the database.

With a user-supplied coverage file generated by mapping 
reads from each sample to the assembled contig sequences, 
MetaErg quantifies the relative abundance of organisms, 
functions, metabolic processes, and pathways in each sample 
by tracking the number of reads that map to each gene family 
or orthologous group. The coverage file, generated using “jgi_
summarize_bam_contig_depths” from MetaBat (Kang et al., 
2015), is a tab delimited text file and the example coverage 
file is available at https://github.com/xiaoli-dong/metaerg/
blob/master/example/demo.depth.txt. With a user-supplied 
metaproteomics spectral count file, MetaErg quantifies the 
abundance (in the proteome) of each taxon, function, metabolic 
process, and pathway based on expressed genes included in 
the spectral counts file for each sample. The spectral count file 
is a tab-delimited text file. The first column of the file is the 
gene id and all the columns after are the normalized protein 
expression level. The example metaproteomics spectral count 
file is available at https://github.com/xiaoli-dong/metaerg/
blob/master/example/demo.plevel.txt.

Output and Visualization
MetaErg reports annotations at the individual gene, single 
genome, and community level. For each gene, it reports the 

taxonomic classification and functional annotations, GO terms, 
EC numbers, KO terms, and its association with a metabolic 
pathway. At the community or genome level, MetaErg 
presents the taxonomic composition, protein function profiles, 
metabolic process profiles, and metabolic pathway profiles. A 
MetaErg output demo page is available at https://xiaoli-dong.
github.io/metaerg/

To facilitate the exploration of complex metagenome 
annotation results and make sense of the data, MetaErg’s 
annotation reports are presented in various formats. The HTML 
result page (Figure 2) visually brings together text summaries, 
output data files, and accompanying visualizations. The 
interactive sortable and searchable gene, function, and profile 
tables, collapsible trees, sunburst hierarchical views of taxonomy 
and functional ontology, and other graphical representations, 
enable the effective interactive exploration, analysis, filtering, and 
intuitive navigation of complex metagenomic data (Figure 3).

The intermediate results, including those from feature 
predictions and similarity searches, are stored as files, which 
could be used to dig deeper into the data and validate the results 
later on. With the intermediate files in place, MetaErg will skip 
the steps used to generate them when the program is restarted 
with the same input parameters. This can greatly reduce the 
computational time when redoing the analysis.

Generation of the Test Dataset
The paired-end Illunima raw reads of three biological replicates 
of a mock community sample (Kleiner et al., 2017, NCBI 
SRA accession numbers ERR1877474, ERR1877474, and 
ERR1877476) were filtered using BBDuk from the BBTools suite 
(Bushnell, 2014). Briefly, each read was screened by reference 
and by kmer for Illumina adapters (options: tbo tpe k = 23 
mink = 11 hdist = 1 ktrim = r) and for Phix (options: k = 31 
hdist = 1) and quality trimmed and filtered (options: qtrim  = 
rl trimq = 15 minlength = 30 entropy = 0.5). After cleaning, 
the remaining reads were merged using BBMerge with default 
settings. The resulting merged single-end reads and unmerged 
paired-end reads from three samples were co-assembled together 
using metaSpades (Nurk et al., 2017) with default settings. After 
assembling, contigs shorter than 500 bp were excluded from 
further analysis.

Mapping of the quality-controlled reads from all three libraries 
back to the assembled contigs was preformed using BBMap with 
default settings. The depth coverage file “depth.txt” was generated 
using “jgi_summarize_bam_contig_depths” from MetaBat.

RESULTS

To test MetaErg and determine the computational footprint, 
a MetaErg job was submitted to a Linux cluster node (56 
threads, 256 GB RAM) with the assembled contigs from a mock 
community as the input. The mock community consisted of 
25 species of Bacteria, 1 Archaeon, 1 Eukaryote, and 5 phages 
(Kleiner et al., 2017). Assembly with MetaSpades resulted in 
4,576 contigs (N50 126,358 base pairs, 85,113,339 base pairs 
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FIGURE 2 | MetaErg HTML result page visually links extensive analysis text summaries, result data files, and accompanying visualizations together.
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total). The MetaErg job took 2.12 h to complete. The total CPU 
time needed was 50.5 h. When prediction of signal peptides 
and transmembrane helixes was included (with options “–sp –
tm”), the run time and CPU time increased to 3.7 and 56.2 h, 

respectively. The average memory usage was 3 GB with peaks up 
to 9.5 GB. The total disk space used for the analysis including the 
intermediate files was 6.1 GB and the total disk space used for the 
final results was 482 MB.

FIGURE 3 | A screenshot montage of MetaErg output showing an example of the interactive Pfam annotation profile table, a hierarchical metabolic process 
sunburst view, a taxonomic summary tree view, and a KEGG pathway map. In the KEGG pathway map, the KOs presented in the analyzed dataset 
were highlighted.
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The overall metagenome annotation predicted 20 CRISPR 
arrays, 878 tRNA genes, 70 rRNA genes (16S, 18S, 23S, 28S, 5S, 
5.8S rRNA genes), and 80,407 ORFs. Of these, 48,723, 68,578, 
22,001, 25,184, 475, and 437 ORFs were annotated with SwissProt, 
Pfam, TIGRFAM, FOAM, metabolic hmm, and casgene.hmm 
databases, respectively. Signal peptides were predicted for 1,480 
ORFs and transmembrane helices were predicted for 18,766 
ORFs. The relative abundances of taxa, functions, and pathways 
were nearly identical across all three biological replicates of the 
mock community.

MetaBat binning of the contigs with default parameters 
produced 14 useful MAGs (>70% completeness, <5% 

contamination). MetaBat binned relatively few MAGs for this 
dataset, because the three available read sets were from replicate 
samples and were not useful for differential coverage based 
binning. The annotations for each MAG were extracted directly 
from the overall annotations using MetaErg’s utility scripts. The 
phylogenetic affiliations of MAGs were estimated according to 
the taxon assignments of ORFs and rRNA genes in the MAGs 
and visualized in the interactive HTML trees and sunburst 
hierarchical views. The HTML visualizations can help users 
visually validate the binning outcomes and identify chimeric 
MAGs or contamination with genes from other community 
members (Figure 4). Each gene from each MAG was assigned 

FIGURE 4 | Taxonomy in hierarchical sunburst view. Each taxonomic rank is represented by one ring with the innermost circle representing the kingdom. From the 
inner to outer rings, the rings represent kingdom, phylum, class, order, family, genus, and species. The segmented areas on the ring are proportional to the relative 
abundance of the taxon. (A) Overall taxonomic distribution profile from all ORFs, which provides insight into the community taxonomic distribution as a whole;  
(B) An example of chimeric MAG, displaying contamination, and this MAG was 99.42% complete and 97.14% contaminated, as assessed by CheckM. The taxon 
classification profile was based on ORF taxonomic assignment from the MAG; (C) and (D) Examples of uncontaminated MAGs.
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comprehensive information derived from different resources 
with different tools (Table 1).

DISCUSSION

With MetaErg, we provide a standalone and fully automated 
metagenome and metaproteome annotation pipeline. Compared 
to other standalone annotation pipelines, such as Prokka 
(Seemann, 2014) and DFAST-core (Tanizawa et al., 2018), 
MetaErg requires much more time to run and requires more 
computational resources. However, these extra resources result 
in more comprehensive annotation and visualization. Taxonomic 
classification of each gene, provided by MetaErg, enables detection 
of potential assembly or binning artifacts, as shown in Figure 4. 
More comprehensive annotation enables better inferences about 
gene function for genes that are more dissimilar to validated 
reference genes. High level visualization of pathways, and 
integration of expression data, enables more effective navigation 

of the full complexity of a metagenome. Thus, MetaErg provides 
solutions to challenges specific to metagenomes, which come at 
a computational cost.

Annotations are generated and visualized for the complete 
metagenome, as well as for each individual MAG. Depending 
on the research question, users can opt to only annotate a few 
selected MAGs. Alternatively, they could annotate the entire 
metagenome first and then use one of MetaErg’s utility scripts 
to extract annotations for each individual MAG. While the 
annotation of the complete metagenome provides insight into a 
community’s taxonomic composition and metabolic potential, 
analysis of an individual MAG presents this information for a 
single organism or population.

Because of the size and density of information in metagenome 
analysis, exploration of the data presents an overwhelming task 
that often takes many years to complete (Devlin et al., 2018). To 
address that challenge, MetaErg produces annotation summary 
results in various formats. The interactive HTML interface brings 
all annotation results together in sortable and searchable tables, 
collapsible trees, and other graphic representations, enabling 
intuitive navigation of complex data.

With typically massive metagenomic data, similarity-based 
functional analysis approaches usually suffer from excessive 
computation time. To address that, DIAMOND is used instead 
of BLASTP. Diamond is 500 to 20,000 times faster than Blast 
search tools with a similar degree of sensitivity. To overcome 
the computational bottleneck and to speed up the functional 
annotation process, the most time-consuming steps such as 
database searching in MetaErg are parallelized. Therefore, they 
run effectively on multicore processors.

Due to the high diversity and large proportion of 
uncharacterized microbial taxa in most environmental habitats, 
many microorganisms from environmental samples have no 
close reference genomes available. While a blast-like tool can 
quickly identify very similar genes, more distantly related genes 
can be missed. A profile HMM-based strategy is better at finding 
more divergent matches and gains sensitivity by incorporating 
position-specific information into the alignment process and 
by quantifying variation at each sequence position (Skewes-
Cox et al., 2014). MetaErg relies on both Blast and HMM 
databases (PFAM, TIGRAMs, Metabolic-hmm, casgenes.hmm, 
and FOAM). FOAM is a manually curated HMM database for 
identifying functional genes in environmental metagenomes and 
transcriptomes. Because FOAM was last updated in 2014, we 
are implementing the addition of UniRef as an alternative, for 
the next release of MetaErg. Gene annotations such as the EC 
number and KO number, currently provided by FOAM, could be 
retrieved from UniRef instead.

SignalP and TMHMM are established signal peptide and 
transmembrane helix prediction tools. Phobius (Kall et al., 
2004) is a combined transmembrane topology and signal 
peptide predictor. Phobius runs faster on the same dataset than 
SignalP and TMHMM. However, running Phobius on a 64-bit 
Linux system requires manually changing its source code before 
running, due to problems with the included decodeanhmm 
program. For that reason, we did not select Phobius as a 
dependency for MetaErg.

TABLE 1 | An example showing information associated with each protein coding 
gene after MetaErg analysis.

TAG Value

ID mockEvenCell|17112
contigid NODE_27_length_371703_cov_24.485093
allec_ids 7.1.1.-; 1.8.4.8
allko_ids K00390;	 K00338;
allko_ontology L1:18_Sulfur compounds metabolism;L2:Sulfur 

compounds cycle;L3:Sulfate reduction (assimilatory);L4:;
depth 82.0316;
foam_ecs 1.8.4.8;
foam_kos K00390;
foam_target db:FOAM-hmm_rel1a.hmm|HMMsoil748 63 117 

evalue:2.5e-13 qcov:30.55 identity:40.00 score:41.9 
seqT:47.9 name:KO:K00390_1.8.4.8;

genomedb_oc d__Bacteria;p__Proteobacteria;c__
Gammaproteobacteria;o__Betaproteobacteriales;f__
Burkholderiaceae;g__Cupriavidus;

genomedb_target db:genomedb|GCA_900185755.1|FYAX01000037.1_317 
1 163 evalue:1.4e-89 qcov:100.00 identity:100.00;

pfam_desc 4Fe-4S binding domain;
pfam_id Fer4;
pfam_target db:Pfam-A.hmm|PF00037.27 61 80 evalue:2e-07 

qcov:12.22 identity:55.00 score:24.1 seqT:53.6 
name:Fer4;	db:Pfam-A.hmm|PF00037.27 97 118 
evalue:5.5e-11 qcov:13.44 identity:63.64 score:35.4 
seqT:53.6 name:Fer4;

sport_desc NADH-quinone oxidoreductase subunit I;
sprot_ec 7.1.1.-;
sport_go GO:0005886;GO:0051539;GO:0005506;GO:0050136

;GO:0048038;
sport_kos K00338;
sport_target db:uniprot_sprot|sp|Q1LPV5|NUOI_CUPMC 1 163 

evalue:4.1e-65 qcov:100.00 identity:100.00;
tigrfam_go GO:0050136;GO:0055114;
tigrfam_desc NADH-quinone oxidoreductase, chain I;
tigrfam_id NuoI;
tigrfam_mainrole Energy metabolism;
tigrfam_sub1role Electron transport;
tigrfam_target db:TIGRFAMs.hmm|TIGR01971 20 141 evalue:2.1e-48 

qcov:73.93 identity:52.46 score:152.8 seqT:153.0 
name:TIGR01971;
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Taxonomic classification of genes by similarity searches can 
be misleading because of the uneven representation of taxa 
in databases. This can lead to a bias towards highly sampled 
taxa (Kunin et al., 2008). In addition, with the growing size of 
the databases, searching all available sequence information 
becomes computationally challenging. To partially overcome 
this challenge and improve the classification of uncultured 
organisms, MetaErg classification databases were built based on 
GTDB, which provides a more even sampling across Bacteria and 
Archaea. Because microbial communities usually also comprise 
Eukaryotes and viruses, we have also added protein sequences 
of unicellular protozoa, fungi, plants (excluding Embryophyta), 
and viruses. Because MetaErg currently uses Prodigal for gene 
prediction, it is unable to correctly predict protein sequences 
of Eukaryotes. We are currently working on implementing 
workflows for better predictions of eukaryotic coding sequences, 
which will become part of the next version of MetaErg. Likewise, 
effective identification and analysis of viral contigs is currently 
still lacking and will become part of the next version.

Although advances in metagenomics have enabled a better 
understanding of microbial phylogenetic and functional gene 
compositions in microbiomes, it is also desirable to know which 
genes are actually expressed. This could be visualized based 
on transcriptomics or proteomics data (White et al., 2016). 
Currently, MetaErg enables visualization of expression based on 
proteomics data only. Visualization of transcriptomics data is 
planned for a future release.

In conclusion, MetaErg is an easy to use and robust metagenome 
analysis pipeline. It produces comprehensive analysis reports in 
various formats. The interactive visualizations help to ease the 
challenge in interpreting complex analysis results. MetaErg 
is fully open source and portable, available as a docker image, 
designed to run on moderately sized computational clusters. Its 

modular architecture enables addition of new functions. In the 
future, MetaErg will be expanded by adding new functionality 
focusing on identification and annotation of eukaryotic and 
viral MAGs, annotation and discovery of gene clusters encoding 
production of secondary metabolites, and visualization of 
transcriptomic data.
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Shotgun metagenomics has greatly advanced our understanding of microbial communities 
over the last decade. Metagenomic analyses often include assembly and genome binning, 
computationally daunting tasks especially for big data from complex environments such 
as soil and sediments. In many studies, however, only a subset of genes and pathways 
involved in specific functions are of interest; thus, it is not necessary to attempt global 
assembly. In addition, methods that target genes can be computationally more efficient 
and produce more accurate assembly by leveraging rich databases, especially for 
those genes that are of broad interest such as those involved in biogeochemical cycles, 
biodegradation, and antibiotic resistance or used as phylogenetic markers. Here, we review 
six gene-targeted assemblers with unique algorithms for extracting and/or assembling 
targeted genes: Xander, MegaGTA, SAT-Assembler, HMM-GRASPx, GenSeed-HMM, 
and MEGAN. We tested these tools using two datasets with known genomes, a synthetic 
community of artificial reads derived from the genomes of 17 bacteria, shotgun sequence 
data from a mock community with 48 bacteria and 16 archaea genomes, and a large soil 
shotgun metagenomic dataset. We compared assemblies of a universal single copy gene 
(rplB) and two N cycle genes (nifH and nirK). We measured their computational efficiency, 
sensitivity, specificity, and chimera rate and found Xander and MegaGTA, which both use 
a probabilistic graph structure to model the genes, have the best overall performance 
with all three datasets, although MEGAN, a reference matching assembler, had better 
sensitivity with synthetic and mock community members chosen from its reference 
collection. Also, Xander and MegaGTA are the only tools that include post-assembly 
scripts tuned for common molecular ecology and diversity analyses. Additionally, we 
provide a mathematical model for estimating the probability of assembling targeted genes 
in a metagenome for estimating required sequencing depth.

Keywords: gene-targeted assembly, microbial ecology, gene-centric assembly, Xander, MegaGTA

Abbreviations: pHMM, protein profile hidden Markov model; DBG, de Bruijn graph; kmer, subsequence of length k; OTU, 
operation taxonomic units; Gbp, 1 billion base pairs; GB, 1 billion bytes; rplB, the gene encoding 50S ribosomal large subunit 
L2; rpsC, the gene encoding 30S ribosomal small subunit protein S3; nifH, the gene encoding nitrogenase reductase; nirK, the 
gene encoding nitrite reductase.
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INTRODUCTION

Metagenomics, involving the shotgun sequencing of DNA 
extracted from environmental samples, has transformed our 
understanding of microbial ecology in many environments (Qin 
et al., 2010; Howe et al., 2014; Sunagawa et al., 2015). This method 
produces reads from random DNA fragments from genomes in 
the community (National Research Council, 2007). Thus, it has 
the potential to both overcome the primer bias issue of amplicon-
based methods and to provide a broader functional picture of 
the sampled microbiome (Frank et al., 2008; Klindworth et al., 
2013; Guo et al., 2016). To accomplish this, the reads need to be 
assembled and/or binned in a meaningful way.

Global assembly and local (targeted) assembly are two 
common strategies for assembling shotgun reads. Global assembly 
attempts to recover most if not all genomes in metagenomes and 
has become a common step for shotgun metagenomic analyses. 
Many assemblers have been developed for this task including 
MetaVelvet, IDBA-UD, MEGAHIT, and metaSPAdes (Namiki 
et al., 2012; Peng et al., 2012; Li et al., 2015; Nurk et al., 2017). 
While major improvements have been made in recent years, global 
assembly still faces challenges including repeats, sequencing 
errors, uneven coverage, and the sheer size of data sets, especially 
for complex environments such as soil (Li et al., 2015; Nurk et al., 
2017; Sczyrba et al., 2017). Many studies, however, only focus on 
genes involved in certain pathways such as the biogeochemical 
cycles or other genes that are directly responsible for important 
ecological functions. In these cases, it is not necessary to assemble 
all of the shotgun metagenomic data, and local assemblers that 
target these genes of interest may be more advantageous because 
they focus computational efforts only on assembly of alleles 
of a specified gene. In parallel with global assembly, significant 
progress with local assembly has been made in the last 5 years 
(Zhang et al., 2014; Wang et al., 2015; Alves et al., 2016; Gregor 
et al., 2016; Zhong et al., 2016; Huson et al., 2017; Li et al., 2017). 
This has enabled microbial ecologists to recover full-length (or 
nearly so) marker genes of phylogenetic or functional interest 
from complex environmental samples without relying on PCR 
primers that often amplify only partial gene sequences and have 
well-known biases (Frank et al., 2008; Klindworth et al., 2013; 
Guo et al., 2016) resulting in more reliable taxonomic assignments 
and microbial community diversity analyses. Although the target 
of local assembly can be any genomic segments including genes, 
gene cassettes, plasmids, or even whole genomes, we focus on 
protein-coding gene-targeted assemblers in this review.

There are potential problems with all assembly-based 
methods. First, the assembled contigs may be chimeric. While 
some of these can be detected and removed using paired-end 
information, there is no method to verify all in silico (Edgar, 
2016). Second, sequence variations from closely related strains 
are collapsed in the assembly process (Awad et al., 2017; Nurk 
et al., 2017; Brown et al., 2018). Thus, the assembled contigs are 
not suitable for SNP (single-nucleotide polymorphism), primer 
design, or diversity analyses that involve fine taxonomic (species 
or strain) level discrimination. Third, rare members do not 
have enough coverage to assemble. All of the above are more 
problematic in complex metagenomes from environments that 

have high diversity with many closely related strains and many 
strains with low coverage (Howe et al., 2014).

Gene-targeted assemblers have potential advantages over global 
assemblers that may minimize such problems: (1) assembly guided 
by reference can reduce chimera formation and assembly errors 
arising from sequencing errors; (2) better efficiency from reduced 
graph and/or search space enables gene-targeted assemblers to 
use more sophisticated algorithms to explore micro-heterogeneity 
of closely related strains (Wang et al., 2015; Huson et al., 2017); 
and (3) the most common current genome binning approach, 
which relies on the results from global assembly, misses even 
more low coverage members than targeted assembly since only 
bins with high completeness and low contamination are usually 
selected for downstream analyses (Brown et al., 2018). While 
many gene-targeted assemblers reviewed here demonstrated 
better performance than global assembly in their original studies 
(Zhang et al., 2014; Wang et al., 2015; Huson et al., 2017; Li et al., 
2017), continual improvements in global as well as gene-targeted 
assemblers may result in different performances which may also 
depend on data size, quality, and gene characteristics. Here, we 
focus on comparing gene-targeted assemblers rather than gene-
targeted assemblers versus global assemblers.

While assembly outputs are linear sequences, assembly 
processes require more sophisticated graph data structures. The 
two most common data structures are de Bruijn graph (DBG) 
and overlap graph (Myers, 2016). The DBG method first chops 
reads into even smaller kmers and then builds a graph connecting 
kmers that share k − 1 bases. The overlap graph method first finds 
overlaps (larger than a length cutoff) among all reads and then 
connects reads based on the overlapping information (Peltola 
et al., 1984; Simpson and Durbin, 2012). Earlier methods for 
constructing the overlap graph required all-against-all pairwise 
read comparisons and thus were computationally expensive. 
Recently, efficient overlap detection methods using advanced 
data structures such as FM-index and Burrows and Wheeler 
Transform (Lippert et al., 2005; Simpson and Durbin, 2012) have 
been developed and make overlap detection highly efficient. The 
DBG is anti-intuitive by breaking down the reads first, but it 
achieves faster CPU time by avoiding the expensive all-against 
all pairwise comparisons since the connections among the kmers 
are implicit (there are only eight possible neighboring kmers for 
each kmer by extending A, T, C, or G on both ends). DBG is very 
sensitive to sequencing errors because each sequencing error can 
cause k spurious kmers and greatly increase the complexity of 
the graph. Overall, for global metagenomic assembly the overlap 
graph works well with long reads by preserving the integrity of 
the reads, whereas the DBG fits well with the massive amounts 
of short reads that second-generation sequencing platforms 
produce (Simpson and Pop, 2015; Myers, 2016).

Protein-Coding Gene-Targeted 
Assemblers
Here, we review and compare the efficiencies and assembly 
quality of several gene-targeted assembly tools: Xander, 
MegaGTA, SAT-Assembler, HMM-GRASPx, GenSeed-HMM, 
and MEGAN’s gene-centric assembler (Zhang et al., 2014; 
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Wang et al., 2015; Alves et al., 2016; Huson et al., 2016; Zhong 
et al., 2016; Huson et al., 2017; Li et al., 2017). Our goal is to 
give biologists an easy-to-understand review on the gene-
targeted assembly algorithms. This is not a complete list of all 
gene-targeted assemblers. Rather, our selection criteria were 
(1) unique innovations in assembly algorithms and (2) scalability 
with large shotgun metagenomic data.

The tools reviewed here use a wide range of algorithms and 
can be divided into two main categories (Table S1): (1) read 
filtering, potentially iteratively, using sequences or pHMMs as 
search queries, and (2) assembly by alignment, where pHMMs 
are used for guiding graph traversal in assembly. Among the 
tools reviewed, pHMM-GRASPx, GenSeed-HMM, and SAT-
Assembler belong to first category. HMM-GRASPx and GenSeed-
HMM use iterative read-filtering steps to potentially elongate 
nascent contigs and then apply third party tools for assembly, 
while SAT-Assembler has a novel assembly algorithm. MEGAN’s 
gene-centric assembly function is similar to the first category 
except that it first aligns all reads against NCBI-nr and subsets 
reads that align to target genes. Further, Xander and MegaGTA 
belong to the second category and share a novel pHMM-guided 
graph traversal algorithm.

1) Xander
Xander combines a DBG with a protein profile Hidden 
Markov Model (pHMM) built from a reference set of target 
gene sequences. The probabilities from the pHMM guide gene 
assembly (Wang et al., 2015). The DBG is encoded as a lossy 
(approximate) data structure which compresses the sequence 
data (Pell et al., 2012). The memory needed for this data structure 
is dependent on the data complexity, not total data size. Xander 
requires the user to specify the amount of memory before 
compression. If too little memory is specified for an accurate 
compression, the user will need to re-run the time-consuming 
compression. Xander searches start at all nucleotide kmers with 
sequences that potentially encode short protein sequences found 
in one or more target gene reference sequences. These starting 
kmers are extended in both 5’ and 3’ directions using the encoded 
pHMM probabilities to find high-probability paths in the graph 
structure, analogous to the way a pHMM is used to find high-
probability alignments in a (linear) DNA sequence. The traversal 
advances three graph nodes (three kmers) at a time (one codon) 
to select a single reading frame for the pHMM. Xander uses the 
“A*” algorithm (Hart et al., 1968) to find the path with the highest 
probability and can also find multiple paths from one start, which 
is important when studying allelic diversity, using the modified 
Yen’s K shortest path algorithm (Yen, 1971; Lawler, 1972), which 
is further modified to require each additional path to contain at 
least one unique kmer. Therefore, pHMM-guided graph traversal 
not only reduces the search space compared to global assembly 
but also provides a probability measure analogous to the familiar 
BLAST bits score for how likely a contig would have matched the 
pHMM by chance and thus reduces assembly error.

To assemble sequences, Xander requires forward and reverse 
pHMMs built from a relatively small set of protein sequences 
(e.g., 117 for rplB) that capture the diversity of the target gene, 
and a larger set of aligned protein sequences (1,743 for rplB but 

can be several thousands) for finding starting kmers. The current 
Xander package includes models for the single copy ribosomal 
protein gene rplB and a few N cycle genes (AOA, AOB, nifH, nirK, 
nirS, norB_cNor, norB_qNor, nosZ_cladeI, and nosZ_cladeII). 
A tutorial is provided for preparing the required pHMMs and 
references for additional genes (https://github.com/rdpstaff/
Xander_assembler#per-gene-preparation-requires-biological-
insight).

Another unique aspect of Xander is that it is designed for 
microbial diversity analyses and thus includes post-assembly 
utilities such as chimera checking, de novo OTU clustering, 
taxonomic classification (the nearest neighbor in the reference 
database with percent identity), and quantification. After 
assembly, the contigs are clustered at 99% to remove redundancy, 
and the chimeras are removed by UCHIME (Edgar et al., 2011). 
For these post-assembly tasks, Xander requires a large set of 
protein sequences with taxonomy information in the descriptions 
(usually the same as those used for finding starting kmers) and a 
comparable set of nucleotide sequences.

2) MegaGTA
MegaGTA is designed based on Xander’s analysis framework 
and claims several improvements: (1) MegaGTA uses a different 
space-efficient variant of DBG, the succinct de Bruijn graph 
(sDBG) that was first implemented in the popular global 
assembly tool MEGAHIT (Li et al., 2015). The sDBG is highly 
parallelizable and can also be used to build an iterative DBG 
(Peng et al., 2010), which is difficult to achieve with the bloom 
filter employed by Xander. The iterative DBG allows the use 
of multiple kmer sizes, increasing sensitivity and specificity. 
(2) Xander is designed to remove erroneous kmers caused by 
sequencing errors by filtering out kmers with low abundance but 
then keeps single-copy “mercy-kmer” (Li et al., 2015) if they are 
the only kmers connecting two abundant kmers in a read for the 
purpose of retaining low abundance species in metagenomes. 
These are common in complex environments, but this could 
potentially reintroduce kmers that are sequencing errors. 
Although pHMM-guided graph traversal should reduce the 
chance of erroneous kmers entering assemblies, MegaGTA does 
penalize kmers with low coverage in the guided assembly step. 
This reduces assembly error from sequencing errors but might 
also introduce bias against low abundant members. Overall, 
MegaGTA achieves better sensitivity and specificity, although 
its memory requirement can still be a hindrance for large and 
complex metagenomes.

3) SAT-Assembler
Similar to Xander and MegaGTA, SAT-Assembler also uses 
pHMM, but it is a string graph–based assembler that includes 
two main steps. The first step searches for target gene fragments 
in reads using pHMM with HMMER3 with a permissive cutoff 
(e-value cutoff of 1,000), which greatly reduces the input data size 
for the next step without losing sensitivity. The second step builds 
a string graph for each targeted gene and assembles contigs. The 
read alignment location information against the model from the 
first step is used to guide the overlap calculation among reads. 
Multiple types of information such as paired ends, overlap 
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connection, and coverage are used to guide graph traversal and 
avoid chimeras. Contigs are merged into scaffolds using paired-
end information as the final step. To run SAT-Assembler, a file 
containing pHMMs of targeted genes is required. The pHMM for 
a specific gene can be built from aligned protein sequences of the 
gene using the hmmbuild command in HMMER3 (Eddy, 2009). 
Additionally, SAT-Assembler is also designed to work with 
pHMMs in the Pfam database, which has ~ 18,000 pHMMs in 
version 32.0 and covers ~ 80% of protein sequences in UniProtKB 
(Finn et al., 2016; Schaeffer et al., 2017).

As mentioned briefly above, Xander/MegaGTA and SAT-
Assembler use pHMMs in very different ways. In Xander/
MegaGTA, pHMMs are used to guide graph’s traversal in DBG. 
Although the graph traversal space is reduced to those paths 
related to the target gene, it is still computationally expensive 
(CPU time and memory) to load all reads into the graph and 
identify all starting kmers in a large graph. In contrast, SAT-
Assembler uses pHMMs to filter reads belonging to target genes 
as a data reduction step and then uses the reduced dataset to 
build the assembly graph, thus greatly reducing the memory and 
CPU cost of graph building. SAT-Assembler further uses read 
pHMM alignment information to speed up overlap computation 
among reads for building string graphs. It, however, does not 
apply pHMM to guide graph traversal on the resulting string 
graph, which could potentially improve the assembly.

4) HMM-GRASPx
HMM-GRASPx is also pHMM-based, but it integrates 
many tools including gene callers (MetaGeneAnnotator/
FragGeneScan) (Noguchi et al., 2008; Rho et al., 2010), 
HMMER3 (Eddy, 2009), nucleotide sequence assembler 
(SPAdes) (Nurk et al., 2017), and protein sequence assembler 
(SFA-SPA) (Yang et al., 2015). Its core algorithm, iterative search 
and assembly, is based on an overlap graph in protein space and 
hence can increase the sensitivity of gene identification. Short 
reads are not ideal for gene identification because they may not 
have enough information to be recognized as the target gene. 
HMM-GRASPx tackles this problem by iterative search and 
assembly. Intuitively, homologous protein sequences translated 
from reads with low sequence identity could be identified by 
being assembled first with other high identity reads into longer 
contigs. More specifically, (1) overlaps among reads are firstly 
computed, (2)  reads with high pHMM alignment scores are 
identified and used as starting contigs, (3) contigs are extended 
using overlapping reads, and (4) the extended contigs are 
aligned with pHMM to decide whether to continue extending. 
If the alignment score is below a certain threshold or there are 
no more overlapping reads, then the extension stops; (5) the 
resulting contigs are assembled again based on their overlap; and 
(6) finally, reads from the target gene are retrieved by mapping 
them to the assembled gene contigs. This core algorithm 
functions both as a finder and assembler. HMM-GRASPx’s 
authors suggest that, for quantitative results, the identified 
contigs be assembled with another program, i.e., SPAdes for 
nucleotide and SFA-SPA for protein reads. This is because the 
algorithm outputs all possible contigs to increase sensitivity and 
thus can produce redundant assemblies. However, it should be 

possible to simply remove the redundant contigs, which would 
improve the overall computational efficiency.

5) GenSeed-HMM
GenSeed-HMM applies an iterative assembly and extension 
strategy similar to that used by HMM-GRASPx. The key 
difference is GenSeed-HMM can extend beyond the gene 
boundaries, while HMM-GRASPx will automatically stop 
extending when the pHMM alignment score drops. GenSeed-
HMM has the advantage of being able to use nucleotide, protein 
sequences, or pHMMs as references, which gives the users 
more flexibility. Internally, it applies BLASTn with nucleotide 
references and TBLASTN for protein references to search against 
the (nucleotide) reads, and hmmsearch for pHMM search of the 
translated reads. At the assembly step, it uses third party assembly 
tools such as SOAPdenovo, ABySS, and CAP3 (Huang and 
Madan, 1999; Simpson et al., 2009; Li et al., 2010; Luo et al., 2012), 
and the choice of third party assembly tools might have an impact 
on its overall computational efficiency and assembly quality. For 
contig extension iterations, contig ends are extracted and used 
as new references for the next search iteration. If no contigs 
are extended, it will trim the extended part from the previous 
iteration and try new extension up to three iterations. Once a 
contig reaches or exceeds the maximum length set, it will not be 
included in subsequent iterations. GenSeed-HMM is not a typical 
gene-targeted assembler since its contigs may extend beyond 
gene boundaries. This makes it useful to study the nearby genes 
(genomic context) of the target gene. For marker gene–based 
microbial diversity studies, however, the parts beyond the gene 
boundaries would have to be trimmed before further analyses.

6) MEGAN-Assembler
MEGAN assembler is part of MEGAN version 6 (Huson et al., 2016; 
Huson et al., 2017), and its key algorithm is protein alignment-
guided assembly, an overlap graph–based method. It requires 
an all against all pairwise alignment of query metagenomes and 
reference database such as NCBI-nr using BLAST or DIAMOND 
(Altschul et al., 1997; Buchfink et al., 2015) as the first step, the 
same as all other analyses in MEGAN. MEGAN utilizes the above 
alignment information to find the overlap among reads based 
on their alignment to the same target references and further 
constructs overlap graphs based on 100% sequence match in 
the overlapped portion of the alignment. In this way, MEGAN 
avoids the expensive computation of all against all comparisons 
among query reads for constructing overlap graphs (similar to 
SAT-Assembler). Further, MEGAN weights overlap graph edges 
(connection between reads) by overlap sizes and then traverses 
the graph by finding an acyclic path with a maximum weight. It 
reports contigs with a minimal length, removes the reads used for 
the assembled contigs in overlap graphs, and iterates the above 
process until no more paths remain. Contigs are further extended 
if two contigs have overlap and an overlap identity larger than 
a certain thresholds (by default 20 bp and 98%, respectively). 
Although inducing the read overlap from alignment against 
references is a good strategy to improve computational efficiency, 
the first step of all vs. all comparison of query to NCBI-nr is still a 
daunting task for large metagenomes.
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METHODS

Data
We evaluated the performance of these gene-targeted assemblers 
using three data sets. The synthetic data consisted of 150-bp single 
reads without errors generated from the 17 genomes in Table S2 
using Grinder (Angly et al., 2012) with the parameters “-rd 150 
-cf 10” to give 10X coverage of each genome. The seven species 
of Pseudomonas were selected as a challenge for assemblers 
regarding their production of chimeric contigs. The mock 
community data, generated from a mixture of known amounts 
of gDNA from 16 archaeal and 48 bacterial strains (Shakya et al., 
2013), consisted of 100-bp paired Illumina reads downloaded 
from NCBI as run SRR606249. These reads were trimmed using 
fastq-mcf (version 1.04.662) (http://code.google.com/p/ea-utils) 
with the parameters “-q 30 -l 50 -w 4 -x 10 -max-ns 0 -X.” The 
soil metagenome sample was sample C1 that was included in the 
original Xander paper (Wang et al., 2015) and is available from 
NCBI as run SRR3989263. Fifty million reads sampled from C1 
were trimmed with fastq-mcf with the same parameters above 
and converted to FASTA format to give 33.7 million paired reads 
designated C1-50M.

Programs
Xander is included in RDPTools, which is available as source 
on GitHub (https://github.com/rdpstaff/RDPTools). It requires 
Python 2.7+, Java 1.6+, HMMER 3.1 (http://hmmer.janelia.org), 
and UCHIME (http://drive5.com/usearch/manual/uchime_algo.
html). All of these dependencies may be met by instead installing 
the Bioconda package from https://bioconda.github.io/recipes/
rdptools/README.html. Instructions for Xander are available 
at https://github.com/rdpstaff/Xander_assembler and https://
john-quensen.com/workshops/workshop-2/xander. We installed 
RDPTools from source. All required reference files for rplB, nifH, 
and nirK are included in the installation.

Two of Xander’s parameters depend on the input file size. 
We set FILTER_SIZE to 32, 36, and 38, and MAX_JVM_HEAP 
to 4G, 12G, and 64G for the synthetic, mock, and C1-50M 
data, respectively. We set MIN-COUNT to 1 and left all other 
parameters at their default values for all cases. Resulting false-
positive error rates were always less than 3.20E−05.

MegaGTA is a re-write in C++ of the first two portions of 
Xander: build and find. It may be installed from source from 
https://github.com/HKU-BAL/megagta or as a Bioconda package 
from https://bioconda.github.io/recipes/megagta/README.
html. MegaGTA requires RDPTools. If installed from source, 
RDPTools is included. If installed from Bioconda, RDPTools 
must be installed separately. We installed the Bioconda package.

We limited the available memory for MegaGTA to 19.2G for 
the synthetic data and left all other parameters at their default 
values, including memory, for the other data sets. Memory 
is set as a fraction (0.8 by default) of available memory. The 
gene_list.txt configuration file used pointed to the for_enone.
hmm, rev_enone.hmm, and ref_aligned.fasta files for each gene 
(rplB, nifH, and nirK) in the RDPTools/Xander_assembler/
gene_resource directory.

We installed SAT-Assembler from the forked version 
on GitHub at https://github.com/jiarong/SAT-Assembler, 
following the instructions on that web page. Older versions of 
SAT-Assembler on SorceForge.net and at https://github.com/
zhangy72/SAT-Assembler no longer work because of updates 
to some of the modules the program requires. For this program, 
HMM-GRASPx and GenSeed-HMM, we used pHMMs 
downloaded from the FunGene web page (http://fungene.cme.
msu.edu/).

We installed HMM-GRASPx from https://sourceforge.net/
projects/hmm-graspx/ and followed the directions under the 
Files tab on that page. To generate input files for HMM-GRASPx, 
we ran FragGeneScan with parameters “-complete 0 -train 
illumine_5 –thread 4.” For HMM-GRASPx, we left all parameters 
at their default values.

We installed the Linux version of MEGAN and its auxiliary 
mapping files from http://ab.inf.uni-tuebingen.de/data/software/
megan6/download/welcome.html. Use of MEGAN for gene-
centric assembly from metagenomic data requires that all 
sequences are first aligned against NCBI’s non-redundant 
protein database (NCBI-nr). We used DIAMOND (Buchfink 
et al., 2015) (https://github.com/bbuchfink/diamond) because 
of its speed and output format 100 since the resulting daa 
(DIAMOND alignment archive) files are more rapidly imported 
into MEGAN. We “meganized” the data files using the protein 
accession to InterPro mapping file acc2interpro-June2018X.bin 
downloaded from the MEGAN site and the command line tool 
daa-meganizer. For both DIAMOND and MEGAN assembler, 
we used the default values for all parameters.

GenSeed-HMM is a Perl script available at https://sourceforge.
net/projects/genseedhmm/. It operates by making calls to a 
variety of third-party tools including BLAST+, hmmsearch, 
EMBOSS, bowtie, and at least one assembler. We used the 
ABySS assembler for all of our tests with this program. We used 
Conda to create an environment containing these programs and 
their dependencies and ran GenSeed-HMM from within this 
environment. An YML file for creating the same environment is 
available at https://github.com/jfq3/Virtual-Environments.

Assembly Quality
We evaluated two aspects of assembly quality: (1) contigs 
should capture all target gene sequences known to be in 
the data (sensitivity), and (2) contigs should not include 
irrelevant sequences (specificity). Both aspects were evaluated 
by conducting a BLAST search of contigs against target gene 
sequences extracted from the genomes, or in the case of the 
soil sample C1-50M against NCBI-nr. Sequence similarity 
was defined as “alignment length” * identity/“length of shorter 
sequence.” Some contigs were too different from the target 
sequences to appear in the BLAST results. The relationships of 
such contigs to the target genes were investigated by searching 
against NCBI-nr and/or against the genomes themselves and 
viewing the alignment in NCBI’s genome browser. Potentially 
chimeric sequences assembled from the synthetic and mock 
data were also flagged by UCHIME using target gene sequences 
extracted from the genomes as the reference.
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To make these tests comparable among assemblers, we 
compared comparable contigs. For Xander and MegaGTA, we used 
the intermediate file “_prot_merged_rmdup.fasta.” Post-assembly 
per se, Xander and MegaGTA outputs are normally processed 
through a pipeline that removes potential chimeras and short 
sequences and clusters the remaining sequences at a user-defined 
distance, thus decreasing sequence variation in their final outputs. 
The file “_prot_merged_rmdup.fasta” has not been subjected 
to these processes and contains all unique contigs assembled. 
To investigate chimeras produced by Xander and MegaGTA, 
corresponding nucleotide sequences were selected from the 
“nucl_merged.fasta” files; these files are all nucleotide contigs 
assembled. As well as testing SAT-Assembler and GenSeed-HMM 
output directly, we also removed duplicate sequences and filtered 
to a minimum length of 450 bp (using RDPTool’s rm-dupseq 
command) to produce results more comparable to Xander’s and 
MegaGTA’s “_prot_merged_rmdup.fasta” files. We also compared 
MEGAN results filtered to the same minimum length.

Sequencing Depth Estimation
In genome sequencing, the relation between sequencing 
depth and genome coverage is already a well-studied problem. 
Lander–Waterman statistics (Lander and Waterman, 1988) 
show that with “L” as read length, “N” as number of reads, 
and “G” as genome length (much larger than read length), the 
average coverage of genome (“a”) is “LN/G,” and the probability 
of each base not being covered (“p”) is “e−a.” In the context of 
metagenomics, however, a targeted species is only “R” (relative 
abundance) of the total community, so “a” (the average coverage 
of genome) should be redefined as “LNR/G” (we assume that all 
species have the same genome size, “G,” to simplify the problem). 
We can further deduce that the probability (“P”) of at least “M” 
continuous positions (a contig with at least “M” bp) in a target 
gene with a size of “S” bp being covered is:

	 P S i p pS i i

i M

S
= − + −−

=∑ ( ) ( )1 1 	

Further, the above only considers whether a position is 
covered but not the read overlaps that are needed for assembly. In 

DBG graph with kmer size of “k,” the minimal overlap required 
for two reads to connect is “k − 1.” To account for the “k − 1” 
overlap in either DBG or overlap graph, we can simply define the 
effective read to be the first “L−(k − 1)” position of each read, so 
when one shortened read follows right after where a preceding 
one ended, they effectively have an overlap of “k − 1.” Therefore, 
“p” can be redefined as the probability of a position not being 
covered by reads of effective length (“L − k + 1”) with the value:

	 p e L k NR G= − − +( ) /1 	

To evaluate the effect of sequencing depth on gene-targeted 
assembly, we first evenly divided our soil metagenome (C1) into 
2, 4, 8, 16, and 32 subsamples. For each sample, we ran Xander to 
assemble rplB with the same parameters mentioned above. The 
coverage information was retrieved from mean kmer coverage in 
“_rplB_45_coverage.txt” output file. We also included rpsC as a 
confirmation of rplB results. The reference files of rpsC for Xander 
can be downloaded from http://doi.org/10.5281/zenodo.1410823 
(Guo, 2018).

RESULTS

Time and Memory Requirements
Comparisons of computer time and memory resources required 
are complicated by the programs having different prerequisites 
and end points. Overall, SAT-Assembler was the most efficient 
requiring less than 6-min wall time and only 78 MB of memory 
to process the synthetic data for rplB (Table 1). SAT-Assembler 
stops short of providing quantitative results allowing sample 
comparisons as Xander does; such further processing would be 
close to that for MegaGTA’s post-processing step. Xander’s three 
steps took only slightly longer (7 min 31s) to provide quantitative 
results but required approximately 1.5 GB of memory. 
Xander’s build step is considered a bottleneck because it is not 
multithreaded, and MegaGTA is advertised as advancement over 
Xander in part because of greater speed. This is true only for 
wall time and if enough threads are used; the actual CPU time 
(78 min) was much greater than Xander’s but did require slightly 

TABLE 1 | Time and memory requirements for processing the synthetic data for rplB. Except for MEGAN BLAST/DIAMOND performed on MSU’s cluster, all times are 
for running on an HP ProBook 450 G5 with Intel i7-8550U CPU and 32 Gb RAM running Ubuntu 18.04 LTS.

Program Stage Threads Wall timehh:mm:ss CPU timehh:mm:ss Peak memory (KB)

Xander Build 1 00:03:52 00:03:57 736,860
Find 4 00:00:57 00:04:48 1,512,728

Search 4 00:02:42 00:04:28 867,776
MegaGTA Main 8 00:10:06 01:15:02 1,133,248

Post-processing 4 00:00:47 00:02:16 729,624
FragGeneScan 4 00:24:20 01:29:15 65,356
HMM-GRASPx 4 00:05:28 00:05:28 8,159,504
SAT-Assembler NA 00:05:55 00:06:38 77,620
MEGAN Diamond 8 14:38:57 95:11:48 19,810,188

Meganize NA 00:05:46 00:15:57 21,659,968
Assembly NA 00:00:03 NA NA

GenSeed-HMM 4 00:07:46 00:16:57 1,425,368
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less memory. The memory requirement for GenSeed-HMM 
was comparable to that of Xander, but the processing time was 
approximately twice as long without including any of the post-
processing steps required for making sample comparisons.

The pre-processing required by HMM-GRASPx and MEGAN 
made them much less efficient to implement. HMM-GRASPx 
requires that all fragments first be translated into peptide reads 
by FragGeneScan or MetaGeneAnnotator. Furthermore, to 
obtain accurate quantitative results, the authors recommend 
that the contigs be re-assembled by another program; time 
and memory requirements for that process are not included in 
Table 1. MEGAN is by far the least efficient, requiring that all 
fragments first be aligned against NCBI’s non-redundant protein 
database. For this task, DIAMOND is preferred over BLAST due 
to its much greater speed (still required over 95-h CPU time), 
but the speed comes with a higher memory requirement (20 GB).

Assembly Quality Tested With Synthetic Data
GenSeed-HMM was the most successful at capturing exact 
matches to the rplB genes in the synthetic data, matching all 17 
with 100% identity (Table 2). HMM-GRASPx, MEGAN, and 
SAT-Assembler did nearly as well, matching 16 of the sequences 
at 100% identity. HMM-GRASPx missed Pseudomonas putida 
while MEGAN missed Lacunisphaera limnophila even at a lower 
97% identity threshold. Many of the exact matches produced 
by HMM-GRASPx, MEGAN, and GenSeed-HMM were short; 
however, they captured only about half of the target genes if 
comparisons were restricted to contigs of at least 450 nucleotides. 
Xander and MegaGTA were the worst at producing exact 
matches, capturing only 12 of the 17 genes at 100% identity.

These same two assemblers were the best, however, at 
excluding irrelevant sequences; all 28 contigs were at least 96% 
identical to rplB gene sequences, and all 17 taxa were captured 
at a 97% identity threshold. HMM-GRASPx also did well, with 
only 5% of its assemblies having BLAST matches to rplB of 
less than 97% identity. MEGAN, on the other hand, assembled 
32 contigs (58% of the total) that were perfect matches to 
portions of the reference genomes but entirely unrelated to 
rplB, and 58 to 60% of the SAT-Assembler assemblies had 

less than 97% identity to rplB genes in the synthetic data. 
GenSeed-HMM also assembled some sequences unrelated to 
the target sequences.

Except for SAT-Assembler, all tools assembled contigs 
matching all six nifH (nitrogenase reductase) sequences present 
in the synthetic data with at least 97% identity (Table S3). SAT-
Assembler did not match any of the reads to nifH and so did 
not assemble any contigs for the gene. MEGAN and GenSeed-
HMM also produced high proportions of contigs (11 of 20 
and 71 of 127, respectively) unrelated to nifH sequences in the 
synthetic data.

HMM-GRASPx, MEGAN, SAT-Assembler, and GenSeed-
HMM all assembled contigs with 100% identity to all four 
nirK (nitrite reductase) sequences present in the synthetic data 
(Table S4). Xander and MegaGTA performed identically, each 
producing contigs which matched only two of the nirK sequences 
present in the synthetic data, but with 100% identity. MEGAN, 
SAT-Assembler, and GenSeed-HMM again produced non-
relevant contigs.

Assembly Quality Tested With Mock Data
Overall, MegaGTA was the most successful at assembling rplB 
contigs from the mock data, producing 86 unique contigs 
of more than 450 bp with at least 97% identity to 46 of the 
48 bacterial rplB sequences present (Table 3). While SAT-
Assembler using an overlap length of 40 produced more (1,318) 
contigs with 100% identities to 47 of the 48 rplB sequences 
present, most of the contigs were very short. There were only 61 
unique contigs of at least 450 bp, and only 13 of these matched 
expected rplB sequences with 100% identity. Xander did nearly 
as well as MegaGTA, while for MEGAN’s contigs, over 450 bp 
matched only 33 of the rplB sequences with at least 97% identity 
and GenSeed-HMM’s matched 28 with 100% identity. All the 
assemblers produced “missing” contigs, i.e., ones that did not 
appear in the BLAST tables due to very low sequence similarity to 
reference sequences. By BLAST to NCBI-nr, all of these produced 
by Xander, MegaGTA, and SAT-Assembler matched known rplB 
sequences at more than 99% identity. Only one, however, of the 
45 produced by MEGAN was related to rplB.

TABLE 2 | BLAST summary for rplB assembled from the synthetic data. There were 17 rplB sequences in the synthetic data. Entries in the % ID columns give the 
number of taxa matched over the number of contigs that match rplB by BLAST identity at the specified percentage. 

Method Contigs Length Non-target <97% 97% 98% 99% 100%

Xander 28 807–828 0 1 17/27 15/23 12/16 12/12
MegaGTA 28 807–828 0 1 17/27 15/23 12/16 12/12
HMM-GRASPx 63 102–261 0 3 16/60 16/60 16/59 16/59
HMM-GRASPx 0 > =450 – – – – – –
MEGAN1 55 204–3,822 32 0 16/23 16/23 16/23 16/23
MEGAN2 20 453–3,822 11 0 9/9 9/9 9/9 9/9
SAT-Assembler3 176 150–997 49 60 17/67 17/50 16/28 16/23
SAT-Assembler4 106 465–997 0 58 16/48 15/33 13/14 11/11
GenSeed-HMM5 97 32–1,340 4 0 17/93 17/93 17/93 17/93
GenSeed-HMM6 9 724–1,340 1 0 8/8 8/8 8/8 8/8

MEGAN1: all contigs assembled. MEGAN2: contigs filtered to a minimum length of 450 bp. SAT-Assembler3: all contigs assembled with an overlap length of 40 bp. SAT-Assembler4: 
contigs were de-replicated, duplicates removed, and filtered to a minimum length of 450 bp. GenSeed-HMM5: all contigs assembled; GenSeed-HMM6: contigs were filtered to a 
minimum length of 450 bp.
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GenSeed-HMM and MEGAN did slightly better than Xander 
and MegaGTA in capturing nifH sequences in the mock data 
(Table S5), but both again produced high proportions of unrelated 
contigs and many of GenSeed-HMM’s were very short. As with 
the synthetic data, SAT-Assembler did not match any of the reads 
to nifH and so did not assemble any contigs for the gene.

SAT-Assembler did assemble nirK contigs, matching all five 
sequences present in the data at 100% identity (Table S6), but 
again, most contigs were short. Only two were over 450 bp, and 
these matched only one of the five nirK sequences in the mock 
data. GenSeed-HMM did better, producing contigs matching all 
five target genes with 100% identity even after they were filtered 
for length, but also a high proportion of contigs unrelated to the 
nirK sequences in the data. MEGAN contigs matched four of 
the five at 100% identity but also produced a high proportion of 
unrelated sequences. MegaGTA and Xander produced three and 
two contigs, respectively, matching two of the target sequences.

Assembly Quality Tested With Soil 
Metagenome
For the C1-50M shotgun data, GenSeed-HMM produced the 
most contigs and matched the highest number of rplB sequences 
in NCBI-nr (Table 4). But most of the contigs were very short 
such that over 70% did not match rplB with an e-value of less 
than 10. Only two were over 450 bp. Considering only contigs 

over 450 bp, MegaGTA produced the most (316), all of which 
matched rplB sequences in NCBI-nr, and Xander was a close 
second. MEGAN produced far fewer contigs (30), only 3 of 
which were over 450 bp, and 11 of which were not rplB.

Chimera
The synthetic data set was meant to be challenging with regard to 
chimera formation, especially for rplB. Xander, MegaGTA, and 
SAT-Assembler all produced high proportions of rplB chimeras 
from this data set (Table S7). For the first two, chimeras were 
almost exclusively (10 of 11, over 90%) between species of 
Pseudomonas. For SAT-Assembler, however, approximately one 
fourth of the chimeras were between different genera, and the 
proportion of chimeras increased with contig length. None of 
MEGAN’s or GenSeed-HMM’s contigs were flagged as chimeras.

The same trend held for the mock data (Table S8). Xander and 
MegaGTA produced fewer rplB chimeras than SAT-Assembler, 
and when they occurred, they were exclusively between species 
of the same genus. In contrast, approximately 30 to 40% of the 
chimeras (depending on length) produced by SAT-Assembler 
were between different genera. As with the synthetic data, none 
of MEGAN’s rplB contigs were flagged as chimeras, and only 1 of 
408 produced by GenSeed-HMM was a chimera.

Xander and MegaGTA also produced a high percentage of 
nifH chimeras from the synthetic data (Table S9), but exclusively 

TABLE 3 | BLAST summary for rplB contigs assembled from the mock data. There were 48 bacterial rplB sequences in the mock data set. Entries in the % ID columns 
give the number of taxa matched over the number of contigs that match rplB by BLAST identity at the specified percentage. 

Method Contigs Length Non-target <97% 97% 98% 99% 100%

Xander 95 459–849 2 5 44/88 43/85 40/80 30/30
MegaGTA 94 453–849 2 6 46/86 44/83 42/80 32/32
MEGAN1 93 201–1,611 45 1 39/47 39/47 38/46 35/39
MEGAN2 50 450–1,611 16 1 33/33 33/33 32/32 28/28
SAT-Assembler3 2,765 50–750 751 107 48/1,907 48/1,865 48/1,689 47/1,318
SAT-Assembler4 61 458–750 1 18 29/42 27/37 25/31 13/13
GenSeed-HMM5 408 31–1,360 60 7/9 47/339 47/330 46/187 43/183
GenSeed-HMM6 44 450–1,360 11 1/1 28/32 28/32 27/31 23/27

1Data for all MEGAN contigs assembled from reads mapping to IPR005880 using default parameters. 2Data for MEGAN contigs filtered to a minimum length of 450 bp. 3All SAT-
Assembler rplB contigs assembled from the mock data with an overlap length of 40 bp. Notice that the minimum length is one-half of the read length. 4SAT-Assembler contigs were 
assembled with an overlap length of 40 bp, de-replicated, duplicates removed, and filtered to a minimum length of 450 bp. HMM-GRASPx failed to complete with this data set. 
GenSeed-HMM5: all contigs assembled; GenSeed-HMM6: contigs were filtered to a minimum length of 450 bp.

TABLE 4 | BLAST summary for bacterial rplB contigs assembled from C1-50M aligned against NCBI-nr. Entries in the % ID columns give the number of taxa matched 
over the number of contigs that match rplB by BLAST identity at the specified percentage. 

Method Contigs Length Non-target <97% 97% 98% 99% 100%

Xander 269 453–825 0 56/250 11/19 8/16 4/8 3/3
MegaGTA 316 450–825 0 82/290 13/26 12/19 8/11 4/4
MEGAN1 30 207–705 11 2/2 14/17 11/14 9/12 9/12
MEGAN2 3 462–705 1 2/2 2/2 2/2 2/2 2/2
SAT-Assembler3 705 51–436 9 125/207 179/469 154/381 132/316 131/312
SAT-Assembler4 0 – – – – – – –
GenSeed-HMM5 4340 31–1,058 3109 334/596 311/635 284/562 277/535 273/535
GenSeed-HMM6 4 458–1,058 0 2/2 2/2 2/2 1/1 1/1

MEGAN1: all contigs assembled. MEGAN2: contigs filtered to a minimum length of 450 bp. SAT-Assembler3: contigs assembled with an overlap length of 40 bp and de-replicated. 
SAT-Assembler4: contigs assembled with an overlap length of 40 bp were de-replicated and filtered to a minimum length of 450 bp. GenSeed-HMM5: all contigs assembled; 
GenSeed-HMM6: contigs were filtered to a minimum length of 450 bp.
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between sequences from the same genus. In fact, for Xander, two of 
the five and for MegaGTA three of the five chimeras were between 
nifH copies within the same species. There were only two other 
instances of chimera formation. Xander formed a nifH chimera 
with the mock data between strains S2 and C5 of Methanococcus 
maripaludis, and MEGAN formed a nifH chimera between 
Azotobacter vinelandii and A. chroococcum. There were no nirK 
chimeras from either data set by any of the assemblers.

Sequencing Depth
With the derived model, we estimated that ~ 40 Gbp of sequences 
is needed to assemble a contig (>450 bp) from a gene with a length 
of 800 bp in a species that is 0.1% of the metagenome (assuming all 
genome sizes are 5 Mbp) (Figure 1). Additionally, when we evaluated 
the effect of sequencing depth on assembly by subsampling, we 
found the number of genes assembled decreased much faster than 
sequencing depth for both rplB and rpsC (Figure 2).

DISCUSSION

Computer time and memory requirements can be limiting 
factors in deciding a method to process metagenomic data. 
SAT-Assembler required the least time and memory because 
it first selects a limited number of reads related to the target 
gene to assemble. HMM-GRASPx employs a similar strategy 
to reduce time and memory requirements, but by relying on 
FragGeneScan as a pre-step, it requires far more total time. 
Furthermore, its pHMM alignment at each contig extension is 
also computationally expensive and slows down the simultaneous 
search and assembly step. Similarly, GenSeed-HMM bogs down 
trying to extend both ends of the numerous sequences it finds 
in a first pass through complex data, and MEGAN’s reliance on 
conducting a BLAST search of all sequences against NCBI-nr 

makes it computationally very expensive to implement. We 
were only able to compare assembler performance with an 
environmental sample by reducing the C1 sample to 50 million 
reads. The full sample is five times as large, and neither GenSeed-
HMM nor DIAMOND BLASTX finished processing the full C1 
sample within the 7-day limit on our cluster. By contrast, Xander 
processing of the full C1 data set, including all post-assembly 
processing, for all three genes considered here took only 18 h 13 
min of wall time (40 h 30 min of CPU time).

SAT-Assembler’s savings in resource cost comes at great 
expense in performance, notably in the production of mostly 
short contigs. The similarity search step may have missed remote 
homologs of the references in pHMM despite the loose cutoff 
used in hmmsearch. Thus, by selecting relatively few reads 
to assemble, there are not enough left to fill gaps in the gene 
sequence, i.e., to join the shorter contigs. The same problem is 
seen with HMM-GRASPx. Since it utilizes all reads (in protein 
space) in its simultaneous search and assembly algorithm, short 
contigs might be caused by different factors in its pipeline such 
as the re-calibration step where locally extended contigs are 
merged. Xander, MegaGTA, and MEGAN, on the other hand, are 
able to assemble longer contigs because they work from all reads 
in the sample (at the cost of much larger memory usage and CPU 
time to load all data) and might also have more robust algorithms 
to maximize contig lengths.

Sensitivity is also of paramount importance. Considering the 
number of target genes matched with 100% identity, GenSeed-
HMM scored highest, matching all target sequences in the 
synthetic and mock data. SAT-Assembler scored nearly as well, not 
considering nifH. It matched all nirK genes in both the synthetic 
and mock data, all rplB genes in the synthetic data, and all but one 
of the 48 bacterial rplB genes in the mock data. HMM-GRASPx 
did as well for the synthetic data and additionally assembled 
contigs that matched all nifH genes in the synthetic data, which is 

FIGURE 1 | Relation between the probability of having a target gene from a species assembled and the relative abundance of the species at different sequencing 
depth. X axis is at log10 scale, the target gene length is set to 800 bp, and the minimum contig length is set to 550 bp.
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something SAT-Assembler failed to do. MEGAN did just as well 
with the synthetic data but matched only 35 rplB genes in the mock 
data and only four of the five nirK genes in the mock data. It did 
the best at matching 16 of the 18 nifH genes in the mock data at 
100% identity. It is easy to understand MEGAN’s performance at 
providing 100% matches to the target genes. Because of the way it 
works, the contigs it produces are essentially genes in NCBI-nr. As 
long as a gene in NCBI-nr is well represented in the sample, it is 
what you get back as the contig. This also means that MEGAN is 
less likely to capture novel gene diversity in environmental samples. 
Thus, with different datasets, different genes, and identity cutoff, it 
is difficult to find the tool with highest sensitivity. It is, however, 
also important to take assembly length into consideration since the 
sequence length is critical for target gene-based molecular ecology 
and diversity analyses. After filtering assemblies with length cutoff 
of 450 bp, Xander and MegaGTA provided the best sensitivity with 
all three datasets for rplB and nifH.

Another aspect of assembly quality is the production of non-
target sequences, i.e., false positives. All assemblers produced 
some, but Xander and MegaGTA by far produced the fewest while 
GenSeed-HMM, MEGAN, and SAT-Assembler produced the most. 
Some produced by MEGAN were exceedingly long and matched 
portions of a genome in the synthetic or mock community with 
100% identity. MEGAN assembler works by assembling all reads 
mapped to a GO (in our case) or KEGG category (Huson et  al., 
2017). We suspect that the production of non-target contigs has 
to do with how reads are mapped, and possibly with errors in the 
mapping file that maps NCBI IDs to functional categories in GO.

In most cases, chimeras are to be expected among close relatives 
from assembly of shotgun data whether gene-targeted or whole 
genome. MEGAN is the exception here because, as mentioned 
above, contigs are usually essentially genes or genome segments of 
what is in NCBI-nr. Our results are therefore somewhat surprising 
and encouraging. With the exception of SAT-Assembler, nearly all 
chimeras detected were between the most closely related sequences 
suggesting accurate taxonomic classification to the genus level.

“How much sequencing do I need” is often the first question 
asked when designing a metagenomics project. The answer 
depends on the target species (usually with specific functions) 
of interest, since it is difficult to estimate the true diversity 
(Rodriguez and Konstantinidis, 2014; Rodriguez-R et al., 2018) 
and also costly to sequence deep enough to cover most species 
in complex environments (Locey and Lennon, 2016). Therefore, 
sequencing depth estimates based on a target species or function 
is critical for experiment planning. With our derived model, 
the relation between the amount of sequencing data and the 
probability of assembling a contig with at least “M” bp of the target 
gene with a size of “S” bp from taxa with a relative abundance of 
“R” can be determined (Figure 1). The relative abundance (“R”) 
can be estimated using common 16s rRNA gene amplicon or 
qPCR methods. This estimate is a lower bound, since sequencing 
error, repeats, and micro-heterogeneity among closely related 
strains could complicate assembly of the target gene.

Because it is difficult to have enough sequencing depth to 
cover most species in a high diversity sample, follow-up questions 
are “how many rare members are not assembled” and “how 
does sequencing depth change the assembled read ratio?” Even 

though each rare member is only a small percentage of the total 
community, their sum could be a significant part of the community 
and thus have a significant role in community function. Missing 
rare members is an unavoidable problem for all assembly-based 
methods because there is simply not enough coverage (Guo 
et al., 2018). There are two cases of rare members: (1) those that 
are too rare to yield any read coverage and (2) those that have 
some coverage but not enough to assemble the target gene with 
minimum length. Here, we focus on the latter. In our soil sample 
(C1), the number of rplB assembled decreased much faster than 
linear decrease with sequencing depth (Figure 2), suggesting that 
sequencing depth has a strong impact on gene-targeted assembly 
in diverse communities and thus careful planning on sequencing 
depth is critical. As an upper bound, the quantity of a targeted 
gene can be assessed from the number of short reads annotated 
as the targeted gene without assembly. While this minimizes 
missing low coverage members, it often includes false positives 
(low specificity) when there are conserved motifs among protein 
families. There have been efforts to tackle this problem such as 
finder function in HMM-GRASPx and ROCKer (Orellana et al., 
2017). Also, ROCKer builds gene specific models that set specific 
sequence similarity score thresholds for different regions of a gene. 
These kinds of tools can not only improve gene quantification but 
also could be used as a preprocess step for all above gene-targeted 
tools, e.g., ROCKer has been shown to improve the accuracy of 
Xander (Orellana et al., 2017).

All tools reviewed here except MEGAN make use of pHMMs 
built from reference sequences. The use of pHMMs has clear 
advantages. It is a faster and more effective way to search gene 
fragments compared to pairwise alignment as implemented 
by BLAST or DIAMOND. Additionally, pHMM-based profile 
search can improve the sensitivity for remotely related protein 
identification (Eddy, 2009; Zhang et al., 2014; Reyes et al., 2017). 
The performance of pHMM-based tools, however, is dependent 
on the quality of the pHMMs used, which in turn is dependent 
on  the appropriateness of the reference sequences used to build 
them. Ideally, the pHMMs will selectively capture all diversity in 
the gene family.

The availability of reliable pHMMs may influence the 
choice of tools used. MEGAN does not require them, and SAT-
Assembler is designed to work with pHMMs downloaded from 
Pfam. Xander (and hence MegaGTA), however, come with a 
limited set of pHMMs and required reference sequences for 
finding starting kmers. Instructions are provided for adding 
capability for additional genes to Xander. The FunGene (Fish 
et al., 2013) website is provided to help with this task, but 
knowledge of the gene’s diversity is required. Profile HMMs are 
built to capture conserved regions (domains) of a gene family, 
and there is usually enough variation to divide the gene family 
into sub-groups. If the sequences used to build the pHMM do 
not include all subgroups of the gene, then not all gene diversity 
will be captured from metagenomic data. In some cases, as 
was shown for nosZ (Sanford et al., 2012), there is too much 
diversity to be captured by a single pHMM; hence, multiple 
models are necessary. Based on our experience, if there is large 
sequence variation in a gene (<50% identity), then it should be 
split, and subgroups can be defined based their segregation on 
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a phylogenetic tree. Thus, results are strongly dependent on the 
care with which the models are built.

Microbial ecologists are interested in comparing microbiomes 
among environments or treatments with respect to diversity and 
function. Metagenomic analyses can answer these questions, 
but the tools used must accurately assemble and quantify target 
genes in a manner that allows comparisons among samples. Of 
the tools reviewed here, only Xander and MegaGTA offer this 
capability directly (Table S9). Their search script includes steps 
for removing chimeras, clustering reads based on a user-defined 
distance, providing coverage adjusted counts, and taxonomically 
matching representative sequences to sequences in a database. 
An additional script is provided to combine this information 
from multiple samples to create files that may be imported into 
phyloseq (McMurdie and Holmes, 2013) as a coverage adjusted 
OTU table, representative sequences, and, with a function in 
RDPutils (Quensen, 2018), a corresponding taxonomy table. This 
gives great flexibility for subsequent analyses. MEGAN can also 
generate OTU tables and ordinate samples based on taxonomy 
from all reads, but not in a way that the results are based on a 
particular set of (pathway related) genes. Additionally, the high 
proportion of false positives we observed with MEGAN makes 
using its results for comparative analyses of functional genes 
questionable. Using SAT-Assembler or GenSeed-HMM results 
to make like comparisons would require writing additional 
custom scripts. HMM-GRASPx failed to assemble sequences 
from complex data, and its authors caution that its results are not 
quantitative. Most tools except Xander and MegaGTA do not have 
post-assembly diversity analyses across samples, but they can 
be improved by applying the post-assembly processing method 
in Xander. Further improvements can be made on Xander and 
MegaGTA too. Currently, their post-assembly processing method 

is designed for assembling each sample individually, but not for 
pooled assembly, which is common practice applied to increase 
coverage of rare species. Moreover, they do not directly provide 
a BIOM table that integrates both OTU table and taxonomy 
information (McDonald et al., 2012) and can be imported into 
other commonly used microbial diversity analysis tools such as 
Mothur (Schloss et al., 2009) and QIIME (Caporaso et al., 2010).

We tested the tools under comparable conditions by using 
default parameters, which by no means are the optimal parameters; 
especially kmer or overlap size can strongly impact contig length 
and number and chimera number. We did not try to find the 
optimal set of parameters for each tool and only adjusted them 
when a tool performed significantly more poorly than others, i.e., 
SAT-Assembler produced too many short and chimeric contigs, 
and we improved its results by increasing the overlap length.

SUMMARY AND OUTLOOK

Gene-targeted assembly offers advantages for metagenome analysis 
over whole genome assembly and binning because of (1) higher 
quality assembly (fewer chimera), (2) more extensive recovery of 
genes of interest (more sensitivity), and (3) faster and less costly 
analysis of complex communities which also makes these analyses 
available to a larger set of researchers. It does, however, give up 
information on gene context and host taxa that come from genome 
binning. Long-read sequencing, now available but in its infancy, 
has the potential to make assembly obsolete, but the present high 
error rates and low capacity make its reliable and routine use 
some years away. In the meantime, further improvements of gene-
targeted tools, some of which are noted above, will help speed the 
analysis of the now huge metagenomic data in public databases 
plus the data from even larger sequencing efforts underway.

FIGURE 2 | The effect of sequencing depth on the fold coverage of rplB or rpsC assembled. X axis is the number of subsamples C1 is evenly divided into. Y axis 
is rplB or rpsC fold coverage of a subsample divided by expected folded coverage as if it decreases linearly with sequencing depth (the fold coverage of original 
sample divided by number of even subsamples).
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The advent of high throughput sequencing has enabled in-depth characterization of 
human and environmental microbiomes. Determining the taxonomic origin of microbial 
sequences is one of the first, and frequently only, analysis performed on microbiome 
samples. Substantial research has focused on the development of methods for taxonomic 
annotation, often making trade-offs in computational efficiency and classification accuracy. 
A side-effect of these efforts has been a reexamination of the bacterial taxonomy itself. 
Taxonomies developed prior to the genomic revolution captured complex relationships 
between organisms that went beyond uniform taxonomic levels such as species, genus, 
and family. Driven in part by the need to simplify computational workflows, the bacterial 
taxonomies used most commonly today have been regularized to fit within a standard seven 
taxonomic levels. Consequently, modern analyses of microbial communities are relatively 
coarse-grained. Few methods make classifications below the genus level, impacting our 
ability to capture biologically relevant signals. Here, we present ATLAS, a novel strategy 
for taxonomic annotation that uses significant outliers within database search results to 
group sequences in the database into partitions. These partitions capture the extent of 
taxonomic ambiguity within the classification of a sample. The ATLAS pipeline can be 
found on GitHub [https://github.com/shahnidhi/outlier_in_BLAST_hits]. We demonstrate 
that ATLAS provides similar annotations to phylogenetic placement methods, but with 
higher computational efficiency. When applied to human microbiome data, ATLAS is 
able to identify previously characterized taxonomic groupings, such as those in the class 
Clostridia and the genus Bacillus. Furthermore, the majority of partitions identified by 
ATLAS are at the subgenus level, replacing higher-level annotations with specific groups 
of species. These more precise partitions improve our detection power in determining 
differential abundance in microbiome association studies.
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INTRODUCTION

The microbiome plays an important role in human and ecological 
health. One of the first steps in microbial characterization is 
taxonomic classification. Modern taxonomy was founded in 
the 1750s by Swedish botanist Carl Linnaeus, who worked to 
establish a hierarchical classification of organisms based on shared 
characteristics that were consistent and universally accepted. While 
the initial taxonomy was able to capture the complex relationships 
between organisms, maintaining and expanding this taxonomy 
remain a challenge (Godfray, 2002). In particular, the microbial 
taxonomy has significantly evolved since the time of Linnaeus, most 
notably with the advent of next-generation sequencing technologies 
that enable us to examine microbiota with greater resolution.

Many microbiome studies involve extracting DNA from a 
microbial community and amplifying and sequencing the 16S 
rRNA gene, a gene encoding part of the ribosomal complex. 
This gene is highly conserved across prokaryotes and can be 
amplified even from previously unknown organisms. Originally, 
phylogenetic approaches (Yang and Rannala, 2012) were used 
to build trees to relate organisms based on how they evolved 
from each other. These trees were independent of taxonomic 
annotation and were instead generated directly from sequencing 
data via neighbor-joining (Zhang and Sun, 2008), maximum 
parsimony (Fitch, 1971; Tamura et al., 2011), maximum 
likelihood (Stamatakis, 2006), or other methods. Because 
building a phylogenetic tree is computationally expensive, we 
often perform taxonomic annotation by searching against a 
reference database of “known” sequences instead.

There are several limitations to nonphylogenetic approaches. 
First, it is often impossible to obtain confident species- or even 
genus-level classifications within samples due to the lack of 
discriminative power of the sequenced marker gene (Barb 
et  al., 2016). The 16S rRNA gene contains nine taxonomically 
discriminating hypervariable regions, however, there is no single 
hypervariable region of the gene that can distinguish between 
all species. Additionally, reference databases are not always 
representative of a sample and are dominated by a small subset 
of easy to isolate organisms found at higher abundances (Walker 
et  al., 2014). Sequencing data in reference databases is largely 
biased toward pathogenic microbes and organisms commonly 
found in developed countries. The organisms found in many 
studies (e.g., in environmental communities or in developing 
countries) have no near neighbors in reference databases, making 
it difficult to assign to them accurate taxonomic labels.

Another problem with modern analysis of microbial 
communities is the relatively coarse-grained resolution obtained, 
which limits our ability to capture biologically relevant signals. This 
stems from the need to simplify computational workflows. Most 
classification algorithms utilize just seven taxonomic levels and 
often ignore intermediate taxonomic ranks. This problem is further 
compounded by errors and missing information in databases, 
as well as inherent ambiguities in the taxonomic assignment of 
some sequences. Some taxonomic ambiguity may also arise by 
taxonomic mislabeling of some entries in the database. Current 
software tools frequently rely on “most recent common ancestor” 
(MRCA) strategies to provide an annotation at the most general 

taxonomic level that encompasses all of the possible annotations 
of a sequence. As a result, few methods ever make classifications 
below the genus level, and, frequently, sequences are only classified 
at the family, class, or even phylum level.

As the number and size of sequencing datasets continues 
to grow, taxonomic classification methods often make trade-
offs between speed and accuracy. Different tools have been 
developed for taxonomic annotation, using either composition-
based, sequence-similarity, or phylogenetic-placement methods 
(Altschul et al., 1990; Liu et al., 2011; Nguyen et al., 2014; Wood 
and Salzberg, 2014; Ounit et al., 2015). Composition based and 
sequence-similarity based approaches are fast and require less 
computational power, but only work well when the microorganisms 
in the sample have near neighbors in the database. On the other 
hand, phylogenetic-placement based methods statistically model 
the evolutionary processes that generate the query sequences and 
are computationally expensive, but allow classification even if 
only distant neighbors are found in databases.

Here, we propose a novel strategy for taxonomic annotation 
that adequately captures and represents the complexity of the 
bacterial world, providing more specific and more interpretable 
characterizations of the composition of microbial communities 
while also capturing the inherent ambiguity in the classification 
of sequences. Our strategy is sequence-similarity based and 
builds upon our recent work on detecting significant “outliers” 
within database search results (Shah et al., 2018), allowing us to 
characterize, in a sample-specific manner, the extent of taxonomic 
ambiguity within the classification. In this work, detecting 
“outliers” refers to separating the phylogenetically most closely 
related BLAST matches from matches to sequences from more 
distantly related organisms. This approach allows us to make 
assignments at the species level, and even when such assignment 
is not possible, we may be able to identify the few species within 
a genus that are the most likely origin of the fragment being 
analyzed. Such information is particularly relevant in clinical 
applications, allowing us to distinguish between the pathogenic 
and nonpathogenic members of the same genus even if the 
specific species cannot be uniquely identified. It is also important 
to stress that, by design, our method is conservative - it only 
provides a classification, even at an intermediate taxonomic 
level, only when it has high confidence that such a classification is 
supported by the data. In some cases, particularly for genes such 
as the16S rRNA, which have poor discriminatory power within 
certain taxonomic group, this will result in sequences being left 
unclassified, or only classified at high taxonomic levels.

Our method, called “ATLAS-Ambiguous Taxonomy 
eLucidation by Apportionment of Sequences,” is implemented 
in Python and released under the open-source MIT license 
on GitHub [https://github.com/shahnidhi/outlier_in_
BLAST_hits]. ATLAS supplements sequence-similarity based 
approaches with a graph-based approach to identify and 
group sequences with ambiguous database assignments. We 
demonstrate that ATLAS yields similar results to phylogenetic 
methods, but with reduced computational requirements. We 
use ATLAS to reexamine over 2000 samples from the Human 
Microbiome Project (HMP) (The Human Microbiome Project 
Consortium, 2012) and interrogate almost one-thousand stool 
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samples from the Global Enteric Multicenter Study (GEMS) 
of young children in low-income countries with moderate-to-
severe diarrhea (Pop et al., 2014). The HMP dataset provides 
a large sample size of short-read sequencing data, and the 
GEMS data is from a population that is underrepresented in 
our current genomic databases and contains a large proportion 
of uncharacterized organisms. In these datasets, we identify 
partitions matching previously defined groupings of organisms 
within the Bacillus genus and the Clostridia class. We also 
demonstrate that the partitions identified by ATLAS increase 
the power of differential abundance analyses. Although our 
results specifically focus on data from 16S rRNA gene surveys, 
ATLAS can be used with any marker gene sequencing data 
to characterize the taxonomic composition of a microbial 
community and to determine microbiome associations with 
human and ecological health.

MATERIALS AND METHODS

ATLAS Algorithm Overview
ATLAS groups sequences into biologically meaningful 
taxonomic partitions by querying them against a reference 

database and identifying and clustering significant database 
hits. ATLAS has two phases (see Figure 1): (i) identifying 
significant database hits for query sequences and (ii) 
generating database partitions (clusters) that capture the 
ambiguity in the assignment process.

Aligning Query Sequences and Identifying 
Significant Database Hits
ATLAS uses BLAST (Altschul et al., 1990) to align each 
sequence in an input set of uncharacterized query sequences 
to sequences in a reference set (using parameters -outfmt 
“6 qseqid sseqid pident length mismatch gapopen qstart 
qend sstart send evalue bitscore qseq sseq”). The previously 
published “BLAST outlier detection” algorithm is used to 
identify significant top BLAST hits for each query sequence 
(Shah et al., 2018). We refer to these BLAST hits as outliers. 
In brief, the “BLAST outlier detection” algorithm constructs 
a multiple sequence alignment of the query sequence and 
the top BLAST hits from the BLAST-generated pairwise 
alignments. It then uses the Bayesian integral log odds (BILD) 
score (Brown et al., 1993; Altschul et al., 2010) to determine 
whether the multiple alignment can be split into two groups 

FIGURE 1 | Schematic diagram of the ATLAS pipeline. ATLAS takes in query sequences from a marker gene and searches them against a reference database to 
identify outlier sequences. It then constructs a graph of database sequences and clusters those that are commonly identified together into partitions.
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that model the data better than a single group. This process 
identifies which BLAST hits are significantly associated with 
the query sequence, without resorting to ad hoc cut-offs on 
percent identity, bit-score, and/or E-value.

Generating Database Partitions That 
Capture the Ambiguity in the  
Assignment Process
Ambiguity in the taxonomic assignment process occurs for 
two main reasons. First, the query sequence may not have any 
near-neighbors in the database, resulting in multiple equally-
good hits (neighbors) (Figure 2). Second, the query sequence 
may align to a genomic region that is conserved across distantly 
related organisms. Our method characterizes this ambiguity 
in a sample-specific manner, identifying database sequences 
that are equivalent with respect to their similarity to the set of 
query sequences.

From all query sequences and their set of related database 
sequences (outlier set), we construct a confusion graph. The 
nodes in the graph represent sequences in the database, whereas 
the edges link nodes that are present together in the outlier 

set for at least one query sequence. The edges are weighted by 
the number of query sequences that shares the same nodes 
(reference database sequences) within the outlier set. Tightly-
knit subcommunities in the confusion graph indicate database 
sequences that are equivalent based on similarity to the set of 
query sequences, and hence, should be clustered together. To 
identify these subcommunities, we remove all the low-weight 
edges (below mean – 2 * std.dev of all edge weights) and identify 
strong communities in the network using the Louvain community 
detection algorithm, which optimizes the modularity of the 
network (Blondel et al., 2008). These subcommunities become 
the final database partitions (clusters). ATLAS partitions can be 
singletons (consist of one reference database sequence).

Assigning Query Sequences to  
the Partitions
A query sequence is assigned to a database partition if a 
certain percentage (user-defined, default 50%) of the database 
sequences in the outlier set belong to the partition. ATLAS does 
not classify the query sequence if no BLAST outliers can be 
detected, or the query sequence does not meet these thresholds. 

FIGURE 2 | Schematic detailing when ATLAS will provide the greatest improvement to taxonomic annotation. Shown is a simple example of a phylogenetic tree with 
taxonomic information of reference sequences, where the leaves are actual sequences in the database. When a query sequence (yellow stars) has near neighbors in 
the reference, such as Q1, most algorithms will be able to correctly classify the sequence. However, if a sequence, such as Q2, does not have many near neighbors 
in the database, computationally expensive phylogenetic methods are required for accurate placement (blue arrows) and annotation. ATLAS captures groups (or 
partitions) of database sequences (red nodes) that are commonly confused during the annotation process and assigns them to the query sequence (square node 
for Q1 and diamond nodes for Q2). Black triangles show collapsed portion of the tree. While this schematic is overly simplified and real phylogenies are much more 
complex, this is illustrating that ATLAS will provide additional information when query sequences do not have near neighbors in the database. This represents ideal 
cases, where 16S rRNA phylogeny and taxonomic annotations are congruent.
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The goal of ATLAS is only to classify sequences when it has 
enough confidence in the taxonomic assignment. Sequences that 
remain unclassified by ATLAS should be further examined with 
more sophisticated approaches, such as phylogenetic placement 
methods. For each query sequence, ATLAS provides a species 
list based on the reference database sequences included within 
the assigned partition. To provide a high-level summary of the 
data and simplify the comparison to other annotation methods, 
ATLAS also assigns to query sequences the MRCA of all 
sequences belonging to a partition. These partitions of database 
sequences attempt to capture the most accurate granularity 
of taxonomic assignment without relying solely on the main 
taxonomic levels.

Comparison to Other Taxonomic 
Assignment Methods
To benchmark ATLAS with other widely used taxonomic 
annotation methods, we downloaded TAXXI test and train datasets 
(sp_ten_16s_v35) from a recent study that benchmarked taxonomic 
methods for microbiome studies (Edgar, 2018). We compared 
ATLAS with RDP classifier (Wang et al., 2007), mothur (Schloss 
et al., 2009), UCLUST (Edgar, 2010), SortMeRNA (Kopylova et al., 
2012), and the top BLAST hit. RDP classifier, mothur, and UCLUST 
were run with 80% confidence threshold. All methods except 
ATLAS were run via QIIME v. 1.9.1 (Caporaso et al., 2010), using 
the script assign_taxonomy.py. Metrics for method comparison 
were calculated as previously published (Edgar, 2018).

We also compared ATLAS to the phylogenetic placement 
method, TIPP. We ran TIPP with the 16S rRNA reference package 
(rdp_bacteria.refpkg) provided by the authors (https://github.
com/tandyw/tipp-reference/releases/download/v2.0.0/tipp.zip). 
We used the alignment subset size of 100 and the placement 
subset size of 1,000, and the default values for alignment and 
placement thresholds.

Analysis of Samples From the Human 
Microbiome Project (HMP)
The OTU table and representative sequence FASTA files for the 
V1-V3 hypervariable region of the 16S rRNA gene sequenced as 
part of the Human Microbiome Project (The Human Microbiome 
Project Consortium, 2012) were downloaded from https://
www.hmpdacc.org/HMQCP/. We used the 16S rRNA reference 
package from TIPP for ATLAS and ran it with default settings. 
The OTU table was filtered to retain OTUs with at least 20 reads 
and samples containing at least 1,000 reads.

Analysis of Samples From the GEMS 
Study of Diarrheal Disease
A total of 992 samples were analyzed from a previously published 
study of diarrheal disease in children in low-income countries 
that sequenced the V1-V2 region of the 16S rRNA gene (Pop 
et al., 2014). In this study, moderate-to-severe diarrhea cases were 
compared to age- and gender-matched healthy controls. Data 
was downloaded via Bioconductor, using the msd16s package. 
We used the 16S rRNA reference package from TIPP for ATLAS 

and ran it with default settings. The dataset was filtered to retain 
only OTUs with at least 20 reads total and found in at least 10% 
of case or 10% of control samples.

Significantly differentially abundant OTUs were identified 
between cases and controls using the R package metagenomeSeq 
(Paulson et al., 2013), accounting for age in months, country, and 
sample read counts as potential confounding factors. OTUs were 
also aggregated separately by genus and by partition. Significant 
findings were reported for features that had fold change or odds 
ratio exceeding 2 in either cases or controls and a significant 
statistical association (P < 0.05) after Benjamini-Hochberg 
correction for multiple testing.

Analysis of Samples From Bangladeshi 
Children With Acute Diarrhea
A total of 142 samples were analyzed from a previously published 
study of acute diarrhea in Bangladeshi children that sequenced 
the V3-V4 region of the 16S rRNA gene (Kieser et al., 2018). 
Fastq files were downloaded from BioProject SRP119744, using 
the SRA toolkit v. 2.8.2 and processed in QIIME v. 1.9.1. We used 
the 16S rRNA reference package from TIPP for ATLAS and ran it 
with default settings, identifying 77 partitions.

RESULTS

ATLAS Captures Similar Information as 
Phylogenetic Placement Algorithms
We compared the taxonomic assignments generated by ATLAS 
for the HMP and GEMS datasets to the labels generated by TIPP 
(Nguyen et al., 2014). Because TIPP relies on a phylogenetic 
approach for taxonomic annotation, it accounts for evolutionary 
divergence and, therefore, can more effectively analyze sequences 
without near neighbors in the database than non-phylogenetic 
methods. We assume here that the classifications provided by 
TIPP are most accurate because the ground-truth is not available 
for real datasets. The taxonomic assignments made by ATLAS and 
TIPP showed 97% and 98% agreement with TIPP assignments at 
the genus level for GEMS and HMP datasets, respectively (Figures 
3A, B). Importantly, when TIPP could confidently assign a species 
level classification label to a query sequence, but ATLAS could 
not, the partition assigned by ATLAS for the majority of query 
sequences contained the species assigned by TIPP (Table 1). The 
algorithm used by TIPP identifies multiple putative placements of 
a sequence within the backbone tree representing the reference 
database. In the vast majority of cases, the partitions identified 
by ATLAS contained the database sequences selected by TIPP 
(Supplemental Figure  1). Compared to TIPP, ATLAS had a 
lower run time and only added a small overhead to the run time 
of BLAST (Figure 3C).

We also compared ATLAS to nonphylogenetic approaches 
(Supplemental Figure 2) on the sp_ten_16s_v35 TAXXI 
benchmarking dataset where the ground truth is known (Edgar, 
2018). Compared to other methods, ATLAS has similar or better 
overclassification and misclassification rates at all taxonomic 
levels. However, ATLAS often has a higher underclassification 

88

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/tandyw/tipp-reference/releases/download/v2.0.0/tipp.zip
https://github.com/tandyw/tipp-reference/releases/download/v2.0.0/tipp.zip
https://www.hmpdacc.org/HMQCP/
https://www.hmpdacc.org/HMQCP/


Characterizing Taxonomic AmbiguityShah et al.

6 October 2019  |  Volume 10  |  Article 1022Frontiers in Genetics  |  www.frontiersin.org

rate, particularly at lower taxonomic ranks. This behavior is 
intentional as ATLAS is meant to serve as a first-level analysis, 
followed by more sophisticated approaches (such as phylogenetic 
placement) for the sequences that cannot be confidently classified 
through sequence similarity searches.

Relationship Between ATLAS Partitions 
and Standard Taxonomic Levels
ATLAS grouped OTU representative sequences into 185 and 
109 non-singleton partitions in the HMP and GEMS datasets, 
respectively (Table 2). A large number of these partitions each have 
an MRCA at the genus level, suggesting that they are capturing 
sub-genus information (Figure 4). Often, there is not enough 
information encoded in the short 16S rRNA gene sequence to 
offer species-level resolution. However, ATLAS is able to group 
similar species within a genus, providing resolution that is more 
specific than the genus level. For instance, in the HMP data, 
ATLAS identified seven partitions belonging to the genus Bacillus 

TABLE 1 | Comparison between our approach (ATLAS) and a phylogenetic 
method (TIPP) examining species level assignments. For most query sequences 
ATLAS assigned partition contains group of species, as it is often impossible to 
get species-level resolution. Here, we compare how ATLAS performs when TIPP 
provides species-level classification. 

GEMS HMP

A. Number of query sequences classified by TIPP at 
the species level 

13,050 10,086

Number of query sequences assigned to a 
partition that contained TIPP’s species

12,847 8,999

B. Number of query sequences classified at species 
level by ATLAS that match TIPP’s labeling

29 128

Number of query sequences classified at species 
level by ATLAS that did not match TIPP’s labeling

0 85

Number of query sequences classified at species 
level by ATLAS but not by TIPP

18 36

(A) For query sequences where ATLAS partitions do not have a species-level MRCA, 
the assigned partition contains reference sequences that match TIPP’s assigned 
species. (B) For query sequences where ATLAS partitions do have a species-level 
MRCA, many of the assigned partitions match TIPP’s classification.

FIGURE 3 | ATLAS generates classifications similar to phylogenetic placement methods at an improved speed. Taxonomic labels assigned by TIPP and ATLAS 
agree at all taxonomic levels for both (A) GEMS and (B) HMP datasets. (C) The ATLAS pipeline adds minimal post-processing time (in seconds) to standard BLAST 
analyses, but significantly outperforms TIPP.

TABLE 2 | Number of OTUs and partitions in the HMP and GEMS datasets pre and postfiltering. 

HMP GEMS

OTU Partition OTU Genus Partition

Sequencing 
Technology

Illumina V1-V3 454 V1-V2

Number of Samples 
Post Filtering

2,711
180 gut, 1,553 oral,
719 skin, 259 vagina

992
508 Cases, 484 

Controls
Number of Features 
Pre-Filtering

43,140 OTUs 307 partitions and
22,578 non-partitioned 

OTUs

26,044 OTUs 172 genera 122 partitions and
1,819 non-partitioned 
OTUs

Number of Features 
Post-Filtering

36,560 OTUs 257 partitions and
17,819 non-partitioned 

OTUs

10,774 OTUs 149 genera 112 partitions and
924 non-partitioned OTUs

Samples with >1,000 reads were retained for analysis. In the HMP data, features were retained if they had at least 20 total reads or were found in at least 5 samples. In the GEMS 
data, features were retained if they had at least 20 total reads or were found in at least 10% of case or control samples.
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(Supplemental Figure 3). Importantly, reference sequences in 
partition 156 capture members of the Bacillus cereus species 
group, including B. cereus, B. thuringiensis, B. mycoides, and B. 
weihenstephanensis (Liu et al., 2015). These species have very high 
sequence similarity and have been shown to play significant roles 
in human and environmental health (Rasko et al., 2005). ATLAS 
partition 121 corresponds to the Bacillus subtilis group, including 
species such as B. subtilis, B. licheniformis, and B. amyloliquefaciens 
(Bhandari et al., 2013). Given the diverse function and pathogenic 
potential of species within this genus, the distinction of these two 
groups provides additional benefit to microbiome analyses.

It is important to note that ATLAS partitions are derived purely 
from sequence similarity; they do not take into consideration any 
taxonomic or phylogenetic information. Given our incomplete 
knowledge of microbial diversity and the inherent limitations of 
16S rRNA sequences for taxonomic classification, these sub-genus 
partitions should be further examined and validated.

The percentage of query sequences assigned to partitions 
spanning multiple genera was 8% for the HMP data and 
39% for the GEMS data. Some of these higher-level partition 
groupings reflect limitations in the hypervariable region of 
the 16S rRNA gene sequenced. For instance, in both the HMP 
and GEMS data, ATLAS identified a single partition spanning 
the Enterobacteriaceae family. While it would be beneficial to 
distinguish between Escherichia and Shigella species in the 
GEMS dataset, the V1-V2 and V1-V3 hypervariable regions of 

the 16S rRNA marker gene are insufficient for discrimination 
(Chakravorty et al., 2007).

Other partitions with higher-level MRCA capture established 
phylogenetic groupings that span multiple genera. ATLAS 
was able to capture well-known phylogenetic groupings in 
the class Clostridia (Collins et al., 1994; Johnson and Francis, 
1975). In the GEMS data, ATLAS identified 15 partitions 
comprising sequences from the Clostridia class. Of particular 
note, partition 84 contains Acetobacterium species in Clostridial 
group XV, partition 81 contains members of Clostridial group 
XI, and Clostridial group I is represented in partitions 5 and 6 
(Supplemental Figure 4). Clostridial groups encompassed by 
partitions 0, 81, and 84 contained multiple genera, highlighting 
the utility of using partitions based on information from the 
sequences themselves rather than solely relying on modern 
taxonomic groupings. Interestingly, eight of these partitions were 
significantly differentially enriched in healthy control samples, 
supporting the role of Clostridia in the maintenance of gut 
homeostasis (Lopetuso et al., 2013).

ATLAS Partitions Improve the Power of 
Microbiome-Disease Association Studies
We explored whether ATLAS partitions could provide improved 
resolution over OTUs in differential abundance analyses. The 
original GEMS dataset contains 26,044 OTUs, many of which 

FIGURE 4 | ATLAS partitions for HMP and GEMS data typically capture subgenera information. Most partitions have the most recent common ancestor at the 
genus level for both (A) HMP and (B) GEMS datasets.
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are not prevalent or abundant enough to provide statistical 
power for identifying associations between health and disease. 
Filtering OTUs and partitions according to their abundance 
and prevalence, we retained just those that contained at least 
20 sequences and were found in at least 10% of the samples. 
Only 10,774 OTUs, comprising just 41% of the sequences in the 
dataset, were retained, whereas ATLAS partitions retained after 
filtering contained 25,135 total OTUs, comprising 97% of the 
sequences in the dataset (Table 2).

We identified statistically significantly different features 
between cases with diarrheal disease and healthy controls 
(Table  3). We performed this analysis separately on (i) OTUs, 
(ii) OTUs aggregated by genus-level assignments, and (iii) OTUs 
aggregated by ATLAS partitions. Compared to the OTU analysis, 
OTUs aggregated at the genus-level generally identified more 
significant OTUs, but fewer overall significant dataset sequences. 
This is potentially impacted by the fact that 2,411 OTUs and 
899,322 sequences had no assignment at the genus level. OTUs 
aggregated by ATLAS partitions identified a greater number of 
significant OTUs and sequences enriched in the control samples. 
When looking at the 10,774 OTUs included in both the OTU-level 
and partition-based analyses, the majority agreed on differential 
abundance results (i.e., they were significant or not significant 
in both analyses) (Table 4). Forty-one percent were significant 
by the partition analysis, but not by OTU based methods. These 
OTUs were most likely lower abundant community members that 
became significant as they were aggregated with similar, more 
abundant microbiota. The few remaining OTUs were significant 
at the OTU level but not in our partition-based analyses and 
generally belonged to low abundance genera (Supplemental 
Figure 5).

We also applied ATLAS to a separate acute diarrhea dataset 
from children in Bangladesh (Kieser et al., 2018), which 
used a different hypervariable region of the 16S rRNA gene, 
a different sequencing platform, and different downstream 
analyses. Within this dataset, we also identified sub-genus level 
partitions (Supplemental Figure 6A). Many of the sub-genus 
level partitions in the Bangladesh dataset were in Lactobacillus, 
Streptococcus, Helicobacter, and Campylobacter, genera which 
are commonly associated with diarrheal disease (Supplemental 
Figure 6B).

DISCUSSION

As DNA sequencing technologies become faster and cheaper, 
the number of microbiome studies are rapidly increasing. These 
studies are aimed at both developing a better understanding 
of the microbial communities inhabiting the world and at 
characterizing the association between microbiota and health. 
Accurate taxonomic assignment is a critical requirement for 
the interpretation of the data generated in such studies. Current 
approaches for taxonomic annotation fall at two extremes – 
computationally intensive phylogenetic inference methods that 
can accurately classify even sequences that are only distantly 
related to the reference database and fast approaches based on 
sequence alignment or k-mer analysis that are primarily effective 
in identifying already characterized sequences. Here, we have 
described an approach that bridges the two extremes. While 
it is based on sequence-similarity approach, ATLAS provides 
a similar level of accuracy as phylogenetic approaches while 
retaining computational efficiency.

ATLAS identifies the ambiguity in the classification of 
sequences in a sample-specific manner, thereby obviating the 
need for removing redundancy from the reference database 
(a computationally expensive process) and ensuring that the 
method effectively adapts to the specific parameters of the 
experiment (e.g., choice of hypervariable region in the 16S 
rRNA gene). While ATLAS is intended to replace commonly-
used “most recent common ancestor” (MRCA) approaches 
that are unnecessarily conservative, it can also improve on 
such techniques. The ATLAS partitions are constructed after 
examining all the query sequences, and after removing spurious 
connections between database sequences, thereby eliminating 
many of the errors that can reduce the taxonomic resolution of 
the MRCA approach.

TABLE 3 | Number of OTUs, genera, and ATLAS partitions that are 
statistically significantly different between moderate-to-severe diarrheal cases 
and healthy controls.

OTU Genus Partition

Significant 
Features with 
increased 
expression in 
case samples

679 OTUs
(415,257 

sequences)

16 genera
(892 OTUs,

342,960 
sequences)

13 partitions and
71 non-partitioned 

OTUs
(692 OTUs,

189,005 sequences)

Significant 
Features with 
increased 
expression in 
control samples

1,112 OTUs
(637,591 

sequences)

22 genera
(1,626 OTUs,

447,680 
sequences)

17 partitions and
108 non-partitioned 

OTUs
(4,917 OTUs,

1,300,544 sequences)

Non-significant 
Features

8,983 OTUs
(2,448,992 
sequences)

105 genera
(5,845 OTUs,

1,811,878 
sequences)

77 partitions and
745 non-partitioned 

OTUs
(5,165 OTUs,

2,012,291 sequences)

Features generated from 3,501,840 GEMS dataset sequences were considered 
differentially abundant if they had a fold change or odds ratio exceeding 2 in 
either cases or controls and the statistical association was significant (P < 0.05) 
after Benjamini-Hochberg correction for multiple testing. Singleton partitions have 
a single OTU mapped to them. Note that when aggregating at the genus level, 
2,411 OTUs and 899,322 sequences had no assignment.

TABLE 4 | Confusion matrix highlighting the number of shared/unshared 
statistically significant OTUs and ATLAS partitions.

OTUs

Not Significant Significant

Partitions Not Significant 4,557 608
Significant 4,426 1,183

Features were considered differentially abundant between healthy controls and 
diarrheal cases if they had a fold change or odds ratio exceeding 2 in either cases 
or controls and the statistical association was significant (P < 0.05) after Benjamini-
Hochberg correction for multiple testing.
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We have shown that ATLAS is effective in analyzing real 
microbiome datasets, where it is able to automatically discover 
taxonomic groupings that are relevant to the interpretation of 
the data but that do not match predefined taxonomic levels. 
Examples include subdivisions of the Bacillus genus and 
Clostridial class homology groups. Our paper describes results 
generated from 16S rRNA gene sequencing data, however, the 
approach is applicable to any other marker gene dataset. Because 
ATLAS relies on marker gene data, it can only provide a level of 
resolution matching that of the maker gene itself.

Our analysis of the HMP and GEMS datasets reveals a 
difference in the level of ambiguity identified by ATLAS; 
our method was able to better resolve the taxonomy of 
sequences from the HMP project than that of sequences 
from the GEMS dataset. This finding is likely due to the 
relationship between the sequences from the two studies and 
the data found in the reference database. The GEMS study 
contains data from children from sub-Saharan Africa and 
Southeast Asia, sequences that are only distantly related to the 
reference sequences primarily characterized within Western 
populations. Our findings support the idea that the choice of 
database plays a huge role in classification accuracy (Nasko 
et al., 2018). To ensure an accurate taxonomic annotation, a 
custom environment-specific database is desirable, and the 
accuracy of the database sequences and their annotation must 
be ensured. Studies must also carefully consider and document 
the choice of database.

The GEMS dataset was generated several years ago using 
454 sequencing technology with high-insertion-deletion error 
rates. This can provide useful information for future applications 
to current long read sequencing datasets, which also have 
higher insertion-deletion error rates compared to short-read 
technologies. Despite differences between the GEMS and 
Bangladesh datasets, ATLAS identified sub-genus partitions 
in important taxa previously associated with diarrhea. This 
improved resolution will provide greater insight into potentially 
harmful or beneficial organisms.

An opportunity for future research is the integration of the 
approach embodied in ATLAS with phylogenetic algorithms. 
Phylogenetic approaches can use the partitions identified by 
ATLAS to prune the reference tree before attempting to place 
query sequences on the tree, resulting in higher accuracy with 
lower computational overhead. In the future, we also plan 
to identify and investigate cases where ATLAS assignments 
and phylogenetic classifications disagree in order to identify 
opportunities for improvements to either alignment-based or 

phylogenetic approaches. As the wealth of microbiome data 
increases, greater emphasis is being placed on more accurate 
taxonomic annotations that currently cannot be obtained using 
fast, sequence similarity-based methods. ATLAS is the first step 
in this direction. 
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The majority of microbial communities consist of hundreds to thousands of species, 
creating a massive network of organisms competing for available resources within an 
ecosystem. In natural microbial communities, it appears that many microbial species have 
highly redundant metabolisms and seemingly are capable of utilizing the same substrates. 
This is paradoxical, as theory indicates that species requiring a common resource should 
outcompete one another. To better understand why microbial species can coexist, we 
developed metabolic overlap (MO) as a new metric to survey the functional redundancy 
of microbial communities at the genome scale across a wide variety of ecosystems. 
Using metagenome-assembled genomes, we surveyed nearly 1,000 studies across nine 
ecosystem types. We found the highest MO in extreme (i.e., low pH/high temperature) 
and aquatic environments, while the lowest MO was observed in communities associated 
with animal hosts, the built/engineered environment, and soil. In addition, different 
metabolism subcategories were explored for their degree of MO. For instance, overlap in 
nitrogen metabolism was among the lowest in animal and engineered ecosystems, while 
species from the built environment had the highest overlap. Together, we present a metric 
that utilizes whole genome information to explore overlapping niches of microbes. This 
provides a detailed picture of potential metabolic competition and cooperation between 
species present in an ecosystem, indicates the main substrate types sustaining the 
community, and serves as a valuable tool to generate hypotheses for future research.

Keywords: bioinformatics, metagenomics, microbial communities, metagenome assembled genomes (MAGs), 
niche, functional redundancy

INTRODUCTION

Microorganisms drive global biogeochemical cycles, but they do not work or live in isolation. In 
order for any living species to survive, they must engage in competition for space and resources 
with other organisms that share similar nutritional requirements. The concept of loss of species less 
adapted relative to their competitors is known as competitive exclusion (Gause, 1934). When one 
species cannot sufficiently persist in a habitat, they become locally extinct. Through selection of 
traits that reduce the dependence on a common resource, populations may shift toward coexistence. 
This is known as niche partitioning, whereby competition is avoided through the utilization of 
different resources (Schoener, 1974). Evidence that these ecological and evolutionary forces shape 
microbial communities is prevalent in literature; however, the strength of these forces varies with the 
availability of resources [reviewed in (Nemergut et al., 2013)].

Describing a niche of an organism has remained challenging ever since the concept first emerged 
(Hutchinson, 1957). Typically, closely related species are thought to share similar niches, assuming 
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their evolutionary relatedness is reflected in their nutritional 
requirements (Langille et al., 2013). Recently, neutral genetic 
markers have emerged as a proxy to measure species’ divergence 
on an evolutionary timescale; however, these phylogenetic 
markers (i.e., 16S rRNA genes) are unsuitable to evaluate 
differences in the biochemical capacity of the organisms (Caro-
Quintero and Konstantinidis, 2012). Whole genomes contain 
information relevant to the metabolic capacity of a species, 
which is essential to describe the putative niches a microbial 
species may occupy. If one were to ask about the overlap of two 
microorganisms’ niches, it is conceivable that this is akin to 
asking how similar the two are on a genomic level. Consequently, 
the metabolic niche of an organism can be predicted from the 
genome. However, the metabolic niche must be distinguished 
from the fundamental niche, which includes factors such as 
morphological features or transcriptional and translational 
regulation. These features also influence an organism’s adaptation 
and persistence in a community, but their inclusion introduces 
additional complexities that are largely absent from genomics-
based investigations.

With the continued advancement in high-throughput DNA 
sequencing, large amounts of genomic data are frequently 
released and available for public use. Several recent publications 
have reported thousands of novel bacterial and archaeal 
metagenome-assembled genomes (MAGs; Anantharaman 
et al., 2016; Parks et al., 2017; Delmont et al., 2018; Tully et al., 
2018). The sequencing data originated from hundreds of studies 
investigating different ecosystems, such that these genomes 
represent a diverse set of taxa from ecosystems around the 
globe. This presents an opportunity to address the following 
important questions: how variable is niche overlap in microbial 
communities across different ecosystems and does the nature of 
the overlap (i.e., abundance of genes involved in nitrogen cycling) 
change based on habitat?

In the current study, we surveyed niche overlap in microbial 
communities by searching for shared pathways in the metabolic 
reaction network of species within these communities, which we 
refer to as “metabolic overlap” (MO). This approach was used to 
investigate two main questions. First, does the degree of niche 
overlap in microbial communities vary between ecosystems (i.e., 

do some communities have more species that utilize the same 
substrates)? Second, how do these microbial communities vary 
in the degree of overlap of different metabolic categories (e.g., 
nitrogen or sulfur metabolism)?

We observed patterns of overlap in microbial community 
members’ metabolism across different ecosystems, which 
were largely consistent with literature reports (Martiny et al., 
2006; Kelly et al., 2014; Reese et al., 2018). For instance, a low 
degree of MO was found in microorganisms involved in highly 
specialized animal host–microbe associations, while aquatic 
microbes displayed a cosmopolitan repertoire of strategies 
for nutrient acquisition. These variations seem to be driven by 
different categories of metabolism, depending on the ecosystem. 
In addition, we addressed the question of how much the 
phylogenetic relationship of microbes corresponds to their MO. 
We found that phylogenetic distance between microorganisms 
was indeed a good predictor for the degree of MO. The strength of 
this relationship, however, varied between different ecosystems. 
Generally, survey-based metrics like MO enable observations 
of global trends and prompt fundamental questions about the 
biology and ecology of microorganisms.

RESULTS

Definition of MO
We defined MO as the number of compounds (i.e., reactants) 
that can be utilized by two organisms based on their shared 
metabolic network (Figure 1). For example, an organism (Org1) 
that can perform all steps of denitrification from nitrate (NO3

−) 
to nitrogen gas (N2, four reactions in total) shares two reactants 
with a partially denitrifying organism (Org2) that only reduces 
NO2

− to N2O. This then results in a MO  =  2 (ignoring the rest 
of their metabolism). To obtain a value that reflects the degree 
in which species in a community have overlapping niches, we 
calculated the median MO between all MAGs in a given study. 
These studies were grouped into distinct ecosystems based 
on their origin (Figure 2, Table 1). Conceivably, identifying 
MO allows a broad identification of species with overlapping 
niches by counting the compounds that link complementary 

FIGURE 1 | Metabolic overlap is a metric that compares the overlap in the metabolism of two organisms by calculating the number of reactants these species can 
utilize in common. This is determined by establishing their shared biochemical pathways (A) and counting which reactants both can use in common (i.e., common 
reactants utilized by organisms 1 and 2 is NO2

− and NO; thus, the MOorg(1,2)  =  2). The number of substrates shared between a set of organisms is represented in a 
matrix (B). Once all pairwise MO comparisons have been made for a community, the median metabolic overlap can be calculated.
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metabolic pathways. As the metabolic routes used to degrade 
certain substrates can vary between organisms, counting the 
number of shared reactants will reveal MOs that would not 
be uncovered by shared reactions only. Furthermore, as the 
number of reactants can vary between reactions, this approach 
is more sensitive in identifying weak metabolic similarities 
between organisms.

We acknowledge that previous efforts to predict microbe–
microbe interactions within microbial communities have been 
made with similar logic to the current approach. In particular, 
the NetCooperate software, utilizing the NetSeed framework, 
is a method to identify putative interactions in a community. It 
does so by using genome information to predict auxotrophies of 
the organisms present, based on the incompleteness of certain 
biosynthesis pathways leading to a dependency of the respective 
organism to external sources of the lacking metabolite (Carr 

and Borenstein, 2012; Levy et al., 2015). Thus, the NetSeed/
NetCooperate approach predicts complementarity between 
species, which consequently occupy distinct niches, while the 
goal of our MO approach is to identify to what extent two species 
fill a common niche.

Metabolic Overlap of Microbial 
Communities in Different Ecosystems
In order to survey the degree of MO in various ecosystems from 
around the globe, thereby identifying the degree in which microbial 
species within the community overlap in the niches they fill, the 
set of Uncultivated Bacteria and Archaea (UBA) MAGs published 
by Parks et al. (2017) was utilized. Contrasting to the naming 
scheme, this set contained some MAGs of cultured species also. 
The average predicted genome completeness of these MAGs ranged 
from 50% to 100%. A completion-based inclusion threshold of 
MAGs was found to have a negligible impact on the average MO of 
communities (Supplemental Figure 1). In contrast, the number of 
MAGs included drastically decreased as a result of a more stringent 
threshold on genome completeness, resulting in ecosystems poorly 
or not at all represented (Supplemental Figure 2). Several studies 
included in the UBA dataset included only one MAG and were 
excluded from our analyses. In total, 6,727 MAGs from the Parks et 
al. dataset, representing 962 studies, were included (Table 1). Studies 
were classified into their respective ecosystems of origin based on 
information included in the submission to the public repository or 
by manual curation if this information was insufficient. This resulted 
in nine ecosystem categories (Table 1). In total, the reaction space 
consisted of 1,386 unique compounds predicted to be utilized by the 
organisms represented by the current set of MAGs.

In a given ecosystem, MO and the predicted average genome 
sizes of MAGs were strongly correlated (Supplemental Figure 3; 
p < 0.01). In addition, average genome sizes significantly varied 
between ecosystems (Supplemental Figure 4; ANOVA; F  =  88; 
p < 0.001). The average predicted genome sizes were the highest 
in studies from the built environment (4 ± 0.65 Mbp) and lowest 
in extreme environments (2 ± 0.96 Mbp). The number of MAGs 
in a given community (grouped per study) negatively correlated 
with the average MO of the community (Figure  2; Kendall 
τ =  −0.38; p < 0.001). As we were interested in investigating how 

TABLE 1 | Number of studies and metagenomes within each ecosystem.

Fresh water Brackish Extreme Marine Built Animal Engineered Plant Soil

Amino Acid 4.97E-05 4.24E-05 5.22E-05 4.63E-05 4.06E-05 3.33E-05 3.59E-05 4.09E-05 3.52E-05
Aromatic 6.61E-06 3.26E-06 6.55E-06 8.59E-06 6.91E-06 1.05E-06 2.80E-06 4.43E-06 6.02E-06
carbohydrates 5.58E-05 5.29E-05 6.03E-05 5.42E-05 5.09E-05 4.64E-05 4.33E-05 4.53E-05 4.31E-05
Cofactors 5.27E-05 4.71E-05 4.99E-05 4.79E-05 4.15E-05 3.20E-05 3.34E-05 4.12E-05 3.68E-05
Fatty acids 6.49E-05 7.01E-05 6.32E-05 6.13E-05 5.58E-05 5.33E-05 4.67E-05 5.07E-05 4.35E-05
Nitrogen 4.80E-06 4.90E-06 4.17E-06 3.71E-06 4.40E-06 2.02E-06 2.40E-06 2.63E-06 3.37E-06
Nuleoside 2.27E-05 1.82E-05 2.39E-05 2.28E-05 1.97E-05 2.46E-05 2.29E-05 1.86E-05 1.89E-05
Nuelotide sugars 5.01E-06 4.57E-06 5.38E-06 4.01E-06 3.78E-06 4.62E-06 4.51E-06 3.10E-06 4.43E-06
Phosphorus 4.62E-06 4.07E-06 2.91E-06 3.87E-06 3.50E-06 3.58E-06 3.24E-06 1.93E-06 3.05E-06
Protein 1.88E-05 1.75E-05 2.50E-05 1.62E-05 1.29E-05 1.82E-05 1.63E-05 1.66E-05 1.49E-05
Respiration 8.11E-06 8.48E-06 7.24E-06 7.12E-06 6.27E-06 2.98E-06 4.87E-06 4.74E-06 5.34E-06
Secondary 
Metabolism

2.40E-06 2.11E-06 3.93E-06 2.29E-06 1.80E-06 1.88E-06 1.95E-06 3.35E-06 2.28E-06

Sulfur 3.10E-06 2.88E-06 2.65E-06 3.26E-06 4.17E-06 9.78E-07 1.45E-06 9.84E-07 2.34E-06

FIGURE 2 | Relationship between metabolic overlap and the number of 
genomes in a community. Each point represents one of the 962 studies. 
The x axis depicts the total number of MAGs in a given study; the y axis, the 
mean metabolic overlap of that study.
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MO varied between ecosystems, irrespective of the differences 
in genome sizes between ecosystems, we normalized MO to 
the median genome size of the respective study (Figure 3). MO 
was found to vary significantly between ecosystems (χ2  =  75.3; 
p < 0.001). Communities from animal, built, engineered, and soil 
ecosystems had significantly lower MO than aquatic ecosystems 
(p < 0.05; Figure 3, Supplemental Table 1). Furthermore, extreme 
ecosystems had significantly higher MO than built and engineered 
ecosystems (p < 0.05; Figure 3, Supplemental Table 1).

Breakdown of MO Scores Across Different 
Ecosystems to Different Levels of 
Metabolism
To investigate how MO varied between ecosystems within 
different categories of metabolism (SEED subsystems), the 
MO within these subcategories was determined for each 
ecosystem and compared to the average value of all ecosystems 
(Supplemental Table 2). All metabolic subsystems varied 
between ecosystems (Kruskal–Wallis; p < 0.001; Supplemental 
Table 2). Animal, built, and engineered ecosystems in general had 
a lower MO for the majority of subcategories of metabolism with 
a few exceptions (Dunn; p < 0.01; Supplemental Tables 3–15). 
In contrast, communities from the engineered ecosystems had 
higher MO in protein and nucleotide sugar metabolism, as did 
communities from animal ecosystems. While most subcategories 
of metabolism from the built environment had lower MO than 
other ecosystems, these communities contained higher MO in 

nitrogen and sulfur metabolism (Supplemental Table 16). In 
contrast to the above communities, which were dominated by 
lower than average MO scores, extreme, freshwater, and marine 
ecosystems had higher than average MO scores in the majority of 
the categories of metabolism (Supplemental Tables 3–15).

Nitrogen metabolism was used to further investigate the 
influence of partial pathways on the MO. Therefore, the ratios of 
complete to partial denitrifiers were calculated for all ecosystems 
(i.e., complete denitrifiers encoding all proteins required for NO3

−, 
NO2

−, NO, and N2O reduction; partial denitrifiers missing at least 
one gene; Figure 4A). The proportion of MAGs containing at least 
one denitrification gene ranged between ecosystems, with the lowest 
in the animal ecosystem and the highest in the built environment 
(Figure 4B). The built environment contained one of the highest 
MO in nitrogen metabolism and also had the highest ratio of 
complete to partial denitrifiers of all other ecosystems (Figure 4C). 
Contrary, the animal ecosystem, which by far had the lowest MO in 
this category, also contained mostly partial denitrifiers (Figure 4C).

Phylogenetic Relationship of Organisms 
and Its Relationship to the MO
In order to determine if the evolutionary relatedness between 
MAGs was correlated with MO, the UBCG pipeline was utilized 
to infer a phylogenetic tree based on a concatenated alignment of 
92 universal bacterial marker genes (Na et al., 2018). A significant 

FIGURE 4 | Proportions of complete and partial denitrifiers across different 
ecosystems. (A) Number of MAGs encoding all proteins to reduce NO3

− to N2 
(complete denitrifiers) compared to the number of MAGs with one or more of 
the respective genes missing. (B) Proportion of MAGs of the total community 
that were either partial denitrifiers or complete denitrifiers. (C) Ratio of 
complete to partial denitrification pathways.

FIGURE 3 | Metabolic overlap across all ecosystems. Boxplots are plotted 
with the black bar representing the median, the box corresponds to the 25% 
and 75% quartiles, and the whiskers are the extreme values. The y axis is 
MO normalized by genome size to account for differences between median 
genome sizes across ecosystems. The ecosystems are sorted from left to 
right based on the median MO. Each point represents the median MO of all 
MAGs from a given study.
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negative correlation was observed between phylogenetic distance 
and MO for all ecosystems (Figure 5; r  =  −0.33; p < 0.001); 
however, the strength of this association varied. Phylogenetic 
distance and MO had the strongest association in plant 
(r = −0.64), built (r  =  −0.53) and marine ecosystems (r  =  −0.47), 
whereas the lowest associations were seen in animal (r  =  −0.16), 
extreme (r  =  −0.19) and freshwater ecosystems (r  =  −0.21; 
Figure 5).

DISCUSSION

In the current study, a new metric termed MO, which describes 
how similar two species’ metabolisms are, was developed in the 
context of a genome-based survey of microbial communities 

from diverse ecosystems. High MO between two species suggests 
that they have the capacity to perform similar metabolic reactions 
and thus have similar growth requirements and fill similar niches. 
In contrast, low MO suggests that the two species in question 
may compete for fewer resources. Thus, the average MO of a 
community can be interpreted such that in a community with 
high MO many community members are overlapping in their 
biochemistry and could in theory compete for a similar niche, 
whereas a low average MO would suggest the opposite.

Ecological and Evolutionary Drivers of MO
There are several well-studied ecological forces that shape 
microbial community structure. Community diversity is 
maintained via dispersion (immigration and emigration) as well 

FIGURE 5 | Relationship between metabolic overlap and phylogenetic distance. Each point represents a pairwise comparison between two MAGs. The density of 
points is represented by a black and white gradient. The Spearman correlation coefficient is indicated in the upper left-hand corner of each plot.
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as speciation and extinction. In studying patterns of microbial 
biogeography, dispersion limitations were seen as one of the 
driving forces in structuring microbial community patterns in 
salt marshes and rice paddies and likely have an influence on 
the genomic adaptations of marine microorganisms (Martiny 
et al., 2006; Kelly et al., 2014; Lüke et al., 2014). Microbial 
biogeography theory has also been applied to help understanding 
compartmentalized host-associated microbial communities such 
as microbes in the human lungs (Whiteson et al., 2014). In this 
study, we observed major ecosystem-dependent differences in the 
MO of microbial community members (Figure 3). This variation 
may in part be attributed to dispersion limitations inherent to 
each ecosystem, where ecosystems in which the dispersion of 
microbial community members is limited would have less overlap 
than open homogenous ecosystems. Accordingly, the highest 
MO was observed in aquatic ecosystems, namely, communities 
from the marine open ocean environment, while animal host-
associated communities contained some of the lowest MO 
(Figure 3). Ecosystems such as the ocean are likely to not have 
as strong dispersal limitations as ecosystems like the animal gut 
or human lungs, and these differences may be a driving force in 
structuring the MO of their respective microbial communities.

In addition to dispersion as an ecological force, disturbances 
to ecosystems can also play a large role for species diversity, 
driving extinction or speciation within the community (Connell, 
1978; Buckling et al., 2000). Varying degrees of disruption would 
impart some signature on the metabolic pathways represented 
in the microbial community. A higher frequency of disturbance 
would contribute to the extinction of species and reduce the 
number of redundant metabolisms in a given system. For 
example, disturbances associated with the marine ecosystem 
(high MO) such as storms or temperature anomalies are likely less 
frequent and intense than the regular consumption of foodstuff 
or intermittent bouts of inflammation in animal guts (low MO) 
(Kashyap et al., 2013; David et al., 2014; Reese et al., 2018).

Substrate Spectrum as a Possible Driver 
of MO in Ecosystems
The availability of resources, both in quality and quantity, drives 
which species can thrive in a given system. In the open ocean, 
the input of labile organic matter is a major factor controlling 
microbial activity in the photic zone, where phototrophs fix 
large quantities of inorganic carbon, making new organic matter 
available to heterotrophic organisms (Hansell and Carlson, 2002; 
Aylward et al., 2015). It is understood that differences in the 
composition of dissolved organic matter enrich for different clades 
of microorganisms and that the composition of the community is 
highly influential on the capacity to degrade this carbon (Nelson 
et al., 2013; Solden et al., 2018). In the case of animal- and plant-
associated microorganisms, the composition of substrates provided 
to the microorganisms is often host-specific, which is thought to 
drive species specificity of the microbiota (Berg et al., 2014; Nelson 
et al., 2013; Hester et al., 2016; Quinlan et al., 2018; Reese et al., 
2018; Jones et al., 2019). It would follow that a higher substrate 
selection would drive diversity in the microbial community, and 

the higher diversity of substrates would then lead to more diverse 
microbial metabolisms. In the current study, a negative relationship 
between the richness of a community (number of genomes in a 
given sample) and their average MO was observed, which suggests 
that in more diverse communities there is less MO (Figure 2).

In addition to the quality of substrates, the quantity of 
organic matter also drastically differs between ecosystems. The 
concentration of dissolved organic carbon (DOC) can vary greatly in 
aquatic systems, with around 40 µmol L−1 DOC in groundwater and 
5,000 µmol L−1 in swamps and marshes (Søndergaard and Thomas, 
2004). Likewise, variations in animal’s diet influence the availability 
of different substrates for microorganisms. In particular, the diet of an 
animal influences the availability of nitrogen to microbes in animal 
guts (Reese et al., 2018). Equally, N availability has a strong impact on 
plant-soil feedbacks, influencing the abundance and metabolism of 
microorganisms in the rhizosphere (Hester, 2018). If substrates are 
available in high-enough concentrations, the effect of competition 
may be reduced, potentially leading to a higher number of species 
consuming a common substrate (i.e., higher MO). In the current 
study, we observe microbial communities from animal ecosystems 
had the lowest overlap in categories of metabolism involved in 
nitrogen and amino acid metabolism, which corresponds to the 
idea of N limitations in the animal gut and known auxotrophies 
(Supplemental Tables 3 and 8; Reese et al., 2018; Zengler and 
Zaramela, 2018). In contrast, microbial communities from the built 
environment tend to have higher overlap in nitrogen and sulfur 
metabolism, although the built environment is a loosely defined 
ecosystem type with limited literature detailing nutrient fluxes 
through the system (Supplemental Tables 8 and 15; Adams et al., 
2015). This stark contrast of nitrogen metabolism overlap between 
the built and animal ecosystems, which both generally displayed a 
lower than average MO, corresponded to the observed number of 
species capable of complete denitrification. The built ecosystem had 
the highest nitrogen metabolism MO, which largely was attributed 
to the highest proportion of microbial species capable of complete 
denitrification (Figure 4). This was contrasted by the low number 
of complete denitrifiers in the animal system. While the differences 
here could be due to nutrient availability, one should also consider 
possible differences in life strategies for persisting in a particular 
environment (i.e., detoxification vs. energy conservation).

Influence of Phylogenetic Relationship  
on MO
Populations that become isolated and diverge on an evolutionary 
timescale do so as a result of being exposed to different 
environments and thus different selection pressures on specific 
traits, although some mechanisms exist that make this divergence 
less clear (i.e., convergent evolution, horizontal gene transfer, 
etc.). In the current study, a correlation was observed between 
the MO of species and their phylogenetic relationship (Figure 5), 
with a reduced MO in taxa that are more distantly related. While 
this corresponds well to theory, the strength of the relationship 
between phylogenetic relatedness and MO varied between 
ecosystems, suggesting that ecological differences between these 
ecosystems influence this relationship.
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The dominant taxonomic groups often vary between 
different ecosystems as a result of the underlying nutrient 
profiles or physical properties of those ecosystems. This may 
be a result of stronger selection pressures in a given ecosystem 
for traits specific to a few select phylogenetic groups (i.e., 
methanogenesis, ammonia, and nitrite oxidation), as opposed 
to traits that are more widespread (i.e., denitrification). 
Phylogenetic groups may vary in the number of traits (i.e., some 
groups are more metabolically versatile than others, which often 
is also reflected in larger genome sizes within these groups), and 
MO is determined by the number of reactions a given pair of 
species share. For example, Zimmerman et al. (2013) found that 
a set of phylogenetically diverse bacteria and Archaea had the 
potential to produce a subset of three extracellular enzymes. The 
ability to produce these enzymes was nonrandomly distributed 
phylogenetically. It follows that ecosystems that have strong 
selection pressures for metabolically diverse phylogenetic groups 
would have a weaker relationship between the phylogenetic 
relatedness and MO. Interestingly, within each ecosystem type, 
there was a strong positive correlation between genome size 
and MO (Supplemental Figure 3), and the observed negative 
relationship of phylogenetic distance and MO seemed to be 
related to genome size (Figure 5). The built environment, 
which contained the largest genomes out of all ecosystems 
(Supplemental Figure 4), also had the strongest negative 
relationship between phylogenetic distance and MO (Figure 5). 
On the other hand, genomes from the animal ecosystem were 
the smallest and also showed the weakest relationship between 
MO and phylogenetic distance. It thus appears that both genome 
size (i.e., number of genes) and phylogenetic affiliation (closely 
related species sharing similar pathways) jointly influence MO 
between a given pair of species.

Caveats and Limitations of Genetic 
Predictions of MO
The emergence of vast amounts of sequence data has allowed 
the assembly of genomes of microorganisms from fragmented 
DNA isolated from the environment. The degree of information 
in whole genomes compared to that from marker genes (both 
phylogenetic and metabolic) is likely to provide significant 
advances in our understanding of the genetic organization 
of microorganisms. In addition, knowing that a certain set of 
genomes were physically in the same sample is advantageous 
in addressing fundamental questions about the ecology 
and evolution of microbial communities in natural settings. 
Unfortunately, there are still significant limitations when 
dealing with MAGs. Specifically, the amount of information 
lost in the process of genome assembly and binning reduces 
our understanding of population-level genetic variation. It 
is still challenging to assemble genomes from organisms of 
low abundance, in particular when communities are complex 
(Cleary et al., 2015; Ayling et al., 2019). This narrows our view 
of genetic linkages between microorganisms toward the highly 
abundant and thus frequently observed species. However, these 
are mainly technological limitations, with solutions like long 
read sequencing becoming more widely available. Additionally, 

there is a significant lack of information about the environments 
in which samples were taken in the public archives. For instance, 
knowing the abundance of an organism in the community 
would significantly aid in inferring ecological interactions. The 
absence of such information limits what can be assessed with 
metrics such as MO and calls for an urgent need to provide as 
much metadata on samples as possible.

In addition to the technical limitations mentioned above, 
there are also limitations in methods such as MO, which rely 
heavily on accurate automated annotation of genetic elements 
in genomes. Specifically, database quality is a key driver in the 
accuracy of survey studies such as the one presented here. A 
major issue is the inability to assign functions to many genes, 
even in the genomes of the most well-studied microorganisms 
(35% hypothetical proteins in Escherichia coli genome; 
Ghatak et al., 2019). Apart from the limitations to automatic 
annotation methods, there are different levels of biology 
associated with niches that are not captured in genome-level 
information. These limitations include a lack of information 
of whether a gene is transcribed, whether the transcript is 
translated to a functional product, and ultimately variations in 
affinity and activity of this protein. The variation in transport 
efficiency and regulatory mechanisms certainly contributes to 
the competitive advantage of an organism and thus the niche 
this organism fills. These complexities are not easily derived 
from genomic information. Complementary techniques, such 
as transcriptomics, proteomics, and exometabolomics, could 
supplement the approach presented here by highlighting 
pathways that are expressed or translated under a given 
condition. Ideally, as emphasized by Bowers et  al. (2017), in 
order to improve discovery-based approaches that rely on 
machine readable formats of public repositories, additional 
information should accompany MAG submissions. This set 
of information would not only help assess the quality of the 
genome but aid in associating the genetic information to the 
biology and ecology of the organism. Ideally, such information 
should include conditions of the environment from which the 
species’ genome was obtained (i.e., pH and temperature) and, 
if the species was cultivated, any physiological parameters that 
may have been measured (i.e., growth rate, substrate usage 
profile and affinities, etc.).

CONCLUSIONS

The observation of variation in MO across different ecosystems 
begs several questions about the nature of microbial community 
metabolism. Specifically, what drives metabolic versatility in 
microbial communities? Are there generalizable rules that can 
be deduced? Survey-based studies enriched with additional 
information, such as those highlighted above, may shed 
additional light on important factors that drive MO. In addition, 
there is an urgent need to complement predictions based on the 
genetics of microorganisms with phenotypic data. Ultimately, 
understanding drivers of microbial community metabolism 
will lead to a better ability to predict and engineer microbial 
communities for industrial or conservational purposes.
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METHODS

Data Origin and Annotation of Ecosystems
Metagenome-assembled genomes utilized in the current study 
comprised the set published by Parks et al. (2017). The UBA 
MAGs were downloaded from the authors’ repository (https://
data.ace.uq.edu.au/public/misc_downloads/uba_genomes/). 
The accompanying data from the UBA MAG set, including 
CheckM metrics of predicted genome completeness and size, 
were obtained from the publication (Parks et al., 2017). Each 
study in the UBA set of MAGs was manually sorted into a set of 
nine ecosystems.

Metabolic Overlap Calculation
All MAGs were subsequently annotated using a custom pipeline 
based on the SEED API (Overbeek et al., 2005; Aziz et  al., 
2008). In brief, protein encoding genes (pegs) were called 
from the assemblies using svr_call_pegs (http://servers.nmpdr.
org/sapling/server.cgi?pod=ServerScripts). Each of these 
proteins was then assigned to a figfam with svr_assign_using_
figfams (our annotations can be found at: ericrhester.com/
metabolicOverlap/annotations/results.tar.gz). The association 
of a protein to a biochemical reaction was then made with svr_
roles_to_reactions. Custom script (rxn_expandinfo) associated 
reactions with compounds from the reaction database, which 
is found on the ModelSEED git repository (https://github.com/
ModelSEED). Finally, the number of compounds shared between 
two organisms’ set of biochemical reactions is calculated to create 
a pairwise MO score, and an overlap matrix was constructed to 
store this information. This was made using the custom python 
scripts rxn_to_connections and lists_to_matrix, respectively 
(https://github.com/ericHester/metabolicOverlap). The overlap 
matrix represents the MO of all organisms within a single 
community and the average MO of all of these organisms is 
utilized in comparison in this study.

In addition to an overall MO score for a community, the above 
approach was used to calculate the MO of various subcategories 
of metabolism for the respective community. In addition to 
the above, an additional step was performed where pegs were 
assigned to their respective SEED subsystems and filtered with a 
custom script utilizing svr_roles_to_subsys. With pegs assigned 
to these metabolic categories, the above pipeline was used to 
identify reactions and compounds shared between pairs of 
organisms, subsequently resulting in an overlap matrix similar 
to that above. In this case, the overlap matrix stores the MO of 
the community pertaining to a specific category of metabolism. 
Matrices and accompanying data were further analyzed in R (R 
Core Team, 2016).

Relating Phylogenetic Distances of Mags 
to Their MO Within Communities
In order to associate the phylogenetic distance of assembled 
genomes to their MO, the UBCG pipeline was utilized (Na 
et al., 2018). This pipeline extracts 92 conserved phylogenetic 
marker genes and builds multiple alignments for each gene. 

The resulting alignments are concatenated, and a maximum 
likelihood tree is inferred. This tree was imported into R 
utilizing the ape package, and distances were extracted from the 
tree object with the cophenetic function (Paradis et al., 2004). 
The result is a distance matrix containing phylogenetic distances 
between each pair of MAGs. Subsequently, this phylogenetic 
distance matrix and the overlap matrix storing MO scores were 
correlated using the mantel.test function from the ape package. 
The Spearman rank correlation coefficient was calculated for 
each ecosystem subset.
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SUPPLEMENTAL FIGURE 1 | Relationship between the genome completeness 
and the average metabolic overlap observed (colored lines, right axis). Each 
point represents the median MO of a study, which includes MAGs with a given 
genome completeness or higher.

SUPPLEMENTAL FIGURE 2 | The number of MAGs included in the analysis at 
a given genome completeness cutoff.

SUPPLEMENTAL FIGURE 3 | Relationship between metabolic overlap and 
genome size. Each point represents one study. The y axis indicates the median 
metabolic overlap of all MAGs in one study, and the median genome size for all 
MAGs in this study is on the x axis.

SUPPLEMENTAL FIGURE 4 | Genome sizes across ecosystems. The black 
bar of the boxplot indicates the median, the box edge represents the upper 
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and lower quartiles, whiskers denote extreme values, and individual points 
are outliers.

SUPPLEMENTAL TABLE 1 | Multiple comparisons for differences in median 
MO for each ecosystem.

SUPPLEMENTAL TABLE 2 | Kruskal–Wallis test statistics for differences 
in metabolic overlap for different categories of metabolisms grouped by 
SEED subsystems.

SUPPLEMENTAL TABLE 3 | Dunn multiple comparisons evaluating the amino 
acid metabolism subsystem.

SUPPLEMENTAL TABLE 4 | Dunn multiple comparisons evaluating the 
aromatic compound metabolism subsystem.

SUPPLEMENTAL TABLE 5 | Dunn multiple comparisons evaluating the 
carbohydrate metabolism subsystem.

SUPPLEMENTAL TABLE 6 | Dunn multiple comparisons evaluating the 
cofactors metabolism subsystem.

SUPPLEMENTAL TABLE 7 | Dunn multiple comparisons evaluating the fatty 
acids metabolism subsystem.

SUPPLEMENTAL TABLE 8 | Dunn multiple comparisons evaluating the nitrogen 
metabolism subsystem.

SUPPLEMENTAL TABLE 9.| Dunn multiple comparisons evaluating the 
nucleoside metabolism subsystem.

SUPPLEMENTAL TABLE 10 | Dunn multiple comparisons evaluating the 
nucleotide sugar metabolism subsystem.

SUPPLEMENTAL TABLE 11 | Dunn multiple comparisons evaluating the 
phosphorus metabolism subsystem.

SUPPLEMENTAL TABLE 12 | Dunn multiple comparisons evaluating the 
protein metabolism subsystem.

SUPPLEMENTAL TABLE 13 | Dunn multiple comparisons evaluating the 
respiration subsystem.

SUPPLEMENTAL TABLE 14 | Dunn multiple comparisons evaluating the 
secondary metabolism subsystem.

SUPPLEMENTAL TABLE 15 | Dunn multiple comparisons evaluating the sulfur 
metabolism subsystem.

SUPPLEMENTAL TABLE 16 | Summary of the median metabolic overlap for 
each subsystem of metabolism for all ecosystems.
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Studies in microbiology have long been mostly restricted to small spatial scales. However,
recent technological advances, such as new sequencing methodologies, have ushered an
era of large-scale sequencing of environmental DNA data frommultiple biomes worldwide.
These global datasets can now be used to explore long standing questions of microbial
ecology. New methodological approaches and concepts are being developed to study
such large-scale patterns in microbial communities, resulting in new perspectives that
represent a significant advances for both microbiology and macroecology. Here, we
identify and review important conceptual, computational, and methodological challenges
and opportunities in microbial macroecology. Specifically, we discuss the challenges of
handling and analyzing large amounts of microbiome data to understand taxa distribution
and co-occurrence patterns. We also discuss approaches for modeling microbial
communities based on environmental data, including information on biological
interactions to make full use of available Big Data. Finally, we summarize the methods
presented in a general approach aimed to aid microbiologists in addressing fundamental
questions in microbial macroecology, including classical propositions (such as “everything
is everywhere, but the environment selects”) as well as applied ecological problems, such
as those posed by human induced global environmental changes.

Keywords: microbial community modeling, microbial macroecology, spatial scales, machine learning,
co-occurrence networks
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INTRODUCTION

The purpose of macroecology is to describe spatial patterns of
species distribution and abundance, as well as the mechanisms
underlying such patterns (McGill, 2003; McGill and Nekola,
2010). The availability of large amounts of data (Hampton et al.,
2013) has helped to uncover global ecological patterns in species
distribution and abundance, greatly advancing the field of
macroecology. This is highlighted by several studies discussing
the contribution of microbial community investigations to a
unified macroecological theory (Barberán et al., 2014; Blaser
et al., 2016; Nelson et al., 2016; Shade et al., 2018). Strong
evidence suggests that micro-organisms in deep display
biogeographical patterns which are driven by dispersal
processes, climate and evolutionary history, such as species-area
and distance-decay associations (Horner-Devine et al., 2004;
Astorga et al., 2012; Barberán et al., 2015). The field of
microbial macroecology has therefore emerged as a promising
research path to the unified understanding of ecological processes
shaping patterns across different branches in the tree of life.

The contributions of microbiology to macroecology are
currently possible largely due to the methodological advances in
theoretical and computational tools for investigating
microbiomes. Advances in molecular biology and DNA
sequencing in the last decade have provided microbial ecologists
with new tools allowing the extraction of an unprecedented
amount of information from myriads of microbial communities
(Snyder et al., 2009). As a result of the growing amount of stored
data, new software has been developed for the systematic study of
microbial communities on a macroecological scale. Integration
among these tools, however, is not a simple task. Microbial
macroecology stands to benefit from a formal summary
describing the coupling of microbial community characteristics
with spatial environmental information.

In this review, we summarize important conceptual challenges
as well as computational and methodological opportunities in the
study of microbial macroecology, in order to facilitate data
integration. We begin by reviewing what has already been
described in this field, specifically addressing the conceptual
issues of transitioning from micro- to macro- scales when using
micro-organisms as model systems. Then, we provide a
comprehensive summary of computational tools for describing
microbial communities and predicting the distribution of taxa
across large spatial scales. Finally, we conclude by proposing a
general framework to aid microbiologists in incorporating the
peculiarities of micro-organisms into conceptual frameworks of
macroecology, in order to promote the unification of microbial
ecology and general ecology.

What Have We Done So Far: A Brief
Review of Macroecological Studies in
Microbiology
Most macroecological studies of microbial communities to date
sought primarily to describe patterns in large spatial scales,
investigating whether biogeographical patterns exist for the
microbiota (Noguez et al., 2005). Most studies were conducted
Frontiers in Genetics | www.frontiersin.org 2105
in soil and marine environments and revealed that such patterns
do exist. They suggest that environmental predictors for
microbiomes could differ from those usually assumed for
macroorganisms (i.e., temperature, precipitation and altitude;
Fierer and Jackson, 2006); environmental features such as pH,
edaphic conditions and land usage are stronger and better
predictors for soil microbiomes. However, soil moisture and
temperature also appear to be important to predict microbial
community composition in some cases (Fierer and Jackson,
2006; Lauber et al., 2009; Drenovsky et al., 2010; Zhou et al.,
2016). In marine environments, spatial structure for microbial
communities appears to be less prominent (i.e., lower beta-
diversity) in comparison to terrestrial and freshwater systems,
which is probably due to the more homogeneous abiotic
structure of the open ocean (Soininen, 2012) in relation to
other environments. Additionally, temperature was a strong
predictor for a latitudinal gradient pattern found in planktonic
bacteria, with little importance from other variables, such as
productivity and salinity (Fuhrman et al., 2008). One study
suggested the influence of altitude—a factor that influences
that altitudinal patterns of macroorganisms (Lomolino, 2001)
—seem to be not relevant for micro-organisms (Fierer et al.,
2011). By contrast, Delgado-Baquerizo et al. (2016) stated that
altitude gradients are important drivers for microbial diversity
considering a wide spatial range (0–4600 m). Finally, it was
suggested that micro-organisms in the atmosphere follow a
precipitation gradient at continental scales (Barberán et al.,
2015). These studies show that some macroecological patterns
exist at microbial scales and that they may be similar to those
found for macroorganisms in some cases, but not similar in other
instances. This raises the question: to which extent are these
patterns ubiquitous through all domains of life?

Although much effort has been made to unravel microbial
macroecological patterns, so far there is no consensus on which
abiotic factors are good predictors of microbial community
compos i t i on , h ampe r i ng th e imp l emen t a t i on o f
macroecological models to microbial data. Additionally, even
though the studies above show strong correlations between
variables and microbiome composition, it is still unknown
whether the used variables are true drivers of the observed
processes, or whether they are actually correlated to
unmeasured, confounding factors (Rahbek, 2005). Biotic
interactions seem to be equally important in determining
community composition; a modeling approach using Artificial
Neural Network (Larsen et al., 2012) highlighted the importance
of such interactions for creating more accurate models, and a
recent study using large microbial community datasets suggested
that rarer taxa are better predictors of community structure than
environmental factors (Ramirez et al., 2018). Therefore, a
modeling framework based on the conceptual idiosyncrasies of
microbiomes is required.

Conceptual Challenges for Transitioning
Across Spatial and Temporal Scales
An issue arising in all studies addressing microbial macroecology
is the proper evaluation of spatial and temporal scales under
January 2020 | Volume 10 | Article 1344
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investigation. The idea that ecological patterns are scale-
dependent is pervasive in ecological theory (e.g., Levin, 1992;
Crawley and Harral, 2001; Chase and Leibold, 2002; Wu et al.,
2002). Two macroecological studies (Willig et al., 2003; Rahbek,
2005) performed at different spatial scales reported distinct
patterns for how species richness was associated with latitude
and altitude. Hump-shaped patterns dominate species richness
and altitude relationships, when the scale of the gradient survey
is higher than 1,000 km, but is an uncommon pattern when the
scale is below this value. The two studies cited above define two
attributes of the sampling design that determine the scale that is
being analyzed (Figure 1): the unit of sampling and the
geographic space covered. The sampling unit is determined by
the grain or focus size, i.e., the size of the common analytical unit
in the analysis, whereas the geographic space covered, also called
the extent, represents the geographical space on which inferences
can be made (Figure 1A), in other words, the spatial extent
covered by all sampling sites (Rahbek, 2005). Macroecological
studies investigate processes in large geographical spaces, e.g.,
continental or global scales (Fierer and Jackson, 2006; Fuhrman
Frontiers in Genetics | www.frontiersin.org 3106
et al., 2008; Nelson et al., 2016), which in general define a large
extent for macroecological inference. The unit of sampling is
represented by the degree of resolution in both response and
predictor variables utilized, which can vary widely across studies.
Communities' abundance or richness profiles (the response
variable) might represent samples in a specific point in space,
or samples across different spatial points in the same assumed
community (Figure 1B). Equally, a single value in a predictor
variable (e.g., abiotic conditions, such as temperature, pH,
altitude, humidity, etc.) might represent either a 1 km2 or a 10
km2 geographic area, depending on how coarse the available
environmental information is (Nottingham et al., 2018). The
choice and evaluation of the available information is an
important step in macroecological studies and may have a
deep impact on the results obtained.

Several processes that might be important at local scales may
have little effect on, and sometimes even confuse, a pattern at
larger spatial scales. For example, Hillebrand (2004) compared
studies on the latitudinal species richness gradient, a long well-
recognized macroecological pattern, where species richness was
FIGURE 1 | Spatial extent and sampling unit in macroecological analyses. (A) Different spatial extents can be analyzed in a macroecological study, which will reflect
on the environmental information available for inference and how much extrapolation can be derived from the conclusions of the study. The figure shows annual
mean temperature per cell, ranging from low temperatures in blue and high temperatures in red. Notice that the lowest temperatures (blue and green cells) are
different for each extent. For instance, when studying Central America, the lowest temperatures can be found in Mexico highlands, whereas an extent focused on the
whole Neotropics show lowest temperatures around the Andes mountains. Therefore, caution is necessary when inferences from studies on the Central America are
extrapolated to the Neotropics extent. (B) Example of two different sampling units in macroecological studies: equally distant squared grids and local sites unevenly
distributed through the globe. As highlighted by Hillebrand (2004), squared grids consist of a value averaged across sites within the grid, which decreases the effect
of local scale factors (e.g., biotic interactions, dispersal and stochasticity) on the latitude gradient diversity pattern.
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known from occurrences equally sized squared areas equally
distributed across space (i.e., grids) and studies where species
richness was known from sampling points from different studies
unevenly distributed across the globe (i.e., local sites). The results
demonstrated that the decline of diversity towards higher
latitudes was steeper in grid-based studies, suggesting the
pattern is easier to detect by using a coarse-grained metric of
diversity (as exemplified Figure 1B) because local processes (e.g.,
biotic interactions, dispersal and stochasticity) are averaged out.
Additionally, microbial communities seem to be spatially
structured mostly at larger study scales (Soininen, 2012), since
such scales encompass multiple biogeographical regions
separated by dispersal barriers and large variation in climate
(Martiny et al., 2006). Therefore, at a smaller spatial scale,
community composition may seem stochastic, or greatly vary
in short periods of time. The overall conclusion from these
studies is that different predictor variables will be biologically
relevant at different ecological scales. This suggests that selection
a set of predictor variables for model calibration must take into
account the ecological scale of the investigated process.
Traditionally, in macroecological species distribution models,
temperature and precipitation have been successfully used as
predictors for macro-organisms, although recent approaches
have successfully incorporated biotic interactions into such
models (e.g., Araújo and Luoto, 2007; Wisz et al., 2013). A
remaining question is whether these same variables are
biologically relevant for micro-organisms at large scales. At
least for specific and microbiologically diverse ecosystems such
as soils, climate—expressed both in terms of climatic factors such
as temperature and precipitation, as well as climate-associated
attributes such as soil pH, aridity and productivity—is
considered a key driver of the structuring and functioning of
global microbiomes (Delgado-Baquerizo et al., 2016; Delgado-
Baquerizo et al., 2018; Bastida et al., 2019).

There are two main aspects of micro-organisms, which
suggest that biologically relevant variables to predict micro-
organisms' distribution may indeed be different from those
used for macro-organisms. First, micro-organisms exhibit a
higher evolutionary rate. Second, due to the organism size, the
spatial scale at which micro-organisms perceive the environment
is different from that of macro-organisms (Barberán et al., 2014).
The first of these aspects indicates that micro-organisms readily
adapt to new environments, which means that the distribution
range of different microbial taxa is likely to be in equilibrium
with environmental variables, which is not always true for
macro-organisms (Araújo and Pearson, 2005). Additionally, a
high evolutionary rate in micro-organisms indicates that
temporal variability in microbiome composition may be high:
when environmental changes occur, the microbiome structure is
rapidly modified in response, whereas such responses in macro-
organisms (expressed in the arrival and disappearance of species,
as well as the rise of new adaptations in native species) may take a
longer time. This suggests that each microbial sampling is
invariably a narrow temporal snapshot of the microbiota,
highlighting the importance of time-series sampling to describe
for macroecological trends. The very reduced organism size
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implies that micro-organisms interact with different aspects of
the environment, indicating that relevant predictor variables
might include, but are certainly not restricted to, large-scale
environmental variation. This is still a debatable topic in
macroecology of micro-organisms, as some studies argue that
micro-organisms respond to continental-scale climatic and
environmental variation (e.g., Barberán et al., 2014; Delgado-
Baquerizo et al., 2018), whereas others highlight that microscale
environmental variation might be more important in predicting
distribution patterns (Hendershot et al., 2017). Therefore, when
implementing microbiome modeling, one should keep in mind
that there is no consensus on which predictor variables should be
used. For micro-organisms, the word “environment” might
reflect both biotic and abiotic factors surrounding individuals
of a species in a defined area, and the relative importance of these
two types of factors might be different from what is known for
macro-organisms.

The differences between micro- and macro-organisms need to
be considered when implementing any of the methods described
in this review. For each approach, it is necessary that the
macroecological question is clearly stated, and in a way that
the scale of sampling and the scale of the studied processes are in
agreement with the scale of the proposed questions. In the
following sections, we discuss different macroecological
approaches for microbiomes, focusing on the description of
macroecological patterns and the modeling of microbiomes at
macroecological scales. In each case, we highlight how available
methods and information can help researchers to answer
questions at different spatial and temporal scales.
DESCRIBING THE MICROBIOME IN
MACROECOLOGICAL SCALES

Taxonomic Profiling and Exploratory
Analyses in Microbial Macroecology
The basic input data for macroecological studies is a matrix
displaying the presence-absence or abundance data of a
biological entity in any taxonomic level across different
sampling units (usually a locality defined by a pair of
coordinates, but may reflect finer or coarser areas, depending
on the specific question, Shade et al., 2018). For microbial
communities, such a matrix is usually obtained through the
taxonomic annotation of several short DNA sequences (i.e.,
reads) derived from the high-throughput sequencing of an
environmental sample (Riesenfeld et al., 2004; Hugenholtz and
Tyson, 2008). Reads must first be filtered according to quality
and to remove possible contaminants, in order to minimize
annotation errors; these tasks can be accomplished using tools
such as Prinseq (Schmieder and Edwards, 2011) and
Trimmomatic (Bolger et al., 2014). A common and desired
practice is to deposit filtered reads in public repositories along
with associated metadata, providing public access to the
information. This is particularly important for macroecological
studies, which make use of secondary data for analysis at large
spatial scales. The most prominent repositories for metagenomic
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data are the NCBI short read archive (SRA; Leinonen et al.,
2011b), MG-RAST (Meyer et al., 2008) and the European
Nucleotide Archive (ENA; Leinonen et al., 2011a), some of
which also provide bioinformatics tools for taxonomic
annotation and statistical analysis (e.g., MG-RAST and
MGnify; Mitchell et al., 2018). Is worth mentioning that the
metadata standard for sequences deposited in International
Nucleotide Sequence Database Collection (INSDC) is MIxS
(Yilmaz et al., 2011).

Multiple approaches currently exist for obtaining taxonomic
profiles from metagenomic sequences, and they mostly fall into
four categories depending on the type of data used: 1) amplicon
reads, 2) Whole Genome Shotgun (WGS) sequencing reads, 3)
assembled contigs and 4) Metagenome-assembled Genomes
(MAGs; Figure 2A). Each of these has unique advantages and
limitations and is suitable to address different scientific questions
(Table 1). Amplicon analysis consists mostly of PCR
amplification of the 16S rRNA gene through the use of
degenerate primers designed to cover as much of the diversity
of Bacteria and Archaea as possible (Schmidt et al., 1991;
McDonald et al., 2012). Next, amplicon sequences are mapped
to reference databases, such as RDP (Cole et al., 2014), SILVA
(Quast et al., 2013) and Greengenes (DeSantis et al., 2006), which
contain pre-computed high-quality alignments of 16S rRNA
genes, allowing for fast taxonomic assignments for millions of
sequences. This approach tends to be accurate at low
taxonomical levels (e.g., genera) and is cost effective,
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considering the coverage of sequencing per sample, making it
possible to sample many more replicates per study. On the other
hand calculating taxa abundances across samples can be a
limitation due to the presence of multiple copies of the 16S
rRNA gene in a single genome. Additionally, the so-called
universal primers used for amplicon analysis usually do not
amplify genes derived from major fractions of the diversity of
Bacteria and Archaea, such as the candidate phyla radiation
(Hug et al., 2016a).

One common alternative to amplicon sequencing is Whole
Genome Shotgun (WGS), i.e., the sequencing of DNA fragments
covering the whole diversity of genes in an environmental
sample. Similar to amplicon based studies, WGS reads are
annotated by comparing them to previously characterized
sequences deposited in reference databases, encompassing
genes from multiple taxa. This comparison can be based on
homology or the search for similar k-mer profiles (i.e., the set of
all possible sub-strings of different lengths for a DNA sequence).
Due to redundancy in the genetic code, proteins are more
conserved than nucleotide sequences; using homology to detect
similar protein sequences is more sensitive and suitable for
detecting distant evolutionary relationships, allowing more
sequences to be classified. Because the degree of identity
between the sequences of naturally occurring microbes and
those available in reference databases is often very low,
annotations of WGS reads often require using permissive
cutoffs (i.e., reads are assigned to a taxon even if the identity is
FIGURE 2 | A workflow summary for taxonomic annotation and exploratory analyses. Taxonomic annotation methods are used to generate, for instance, presence-
absence matrices (A), which can be combined with environmental variables into correlation analyses (B). The biological variation in environmental variables can be
simplified through ordination analyses (such as PCA and MDS). Finally, distance matrices can be created for both ecological and environmental variation, and
distance matrix correlation can be used to infer if environmental distances correlate with ecological differences among sampling sites.
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low, e.g., only 30%), provided that it falls within other assumed
cutoffs of alignment, length and e-value. Several reference
databases are currently available, as well as tools to detect
protein-protein and protein-nucleotide homology (Table 1).
As an alternative to homology searches, k-mer composition
profiles are significantly faster and make it possible to rapidly
analyze a large number of samples (Table 1).

UsingWGS sequencing further allows for the assembly of raw
reads into larger contigs, and, in some cases, later binning into
metagenome-assembled genomes (MAGs; Figure 2). This
approach may improve taxonomic classification by assessing
longer genomic fragments that derive from such sequence
assembly. The Crit ical Assessment of Metagenome
Interpretation (CAMI) challenge reviewed several metagenomics
tools (Sczyrba et al., 2017). This study distinguished between
taxonomic binners (which allow taxonomic abundances to be
inferred by clustering individual sequences, then assessing longer
genomic fragments Lin and Liao, 2016; Wu et al., 2016), from
taxonomic profilers (which focus on predicting a taxonomic
abundance profile without necessarily classifying every
sequence, often assessing only raw reads Ounit et al., 2015;
Koslicki and Falush, 2016). They show that classifiers in general
were more accurate than profilers in estimating the relative
6109
abundances of taxa. This increased performance is due to the
fact that longer sequences contain more phylogenetic information
than short reads, leading to less noise in the taxonomic profile.
Moreover, because sequence assembly reduces the total volume of
sequence data to be classified, more sensitive homology searches
that are computationally more demanding may be applied than
the rapid searches that are used for classification of short, raw
reads. Two recently developed tools that explicitly exploit the
added information in assembled contigs are MEGAN-LR (Huson
et al., 2018) and the Contig Annotation Tool [CAT, (von
Meijenfeldt et al., 2019); https://github.com/dutilh/cat] that
exploit all sequences in the full GenBank reference database for
taxonomic classification. A limitation of metagenomic assembly is
that it is susceptible to possible errors arising during the assembly,
which is aggravated when population diversity of the sampled
microbial community is high (Sczyrba et al., 2017). Moreover,
high levels of sequence heterogeneity between related strains may
lead to abundant genomes in the sample being misassembled as
chimeras, and potentially misclassified. The subsampling of
shotgun metagenomic reads before assembly has been applied
to resolve this problem (Hug et al., 2016b).

Once contigs have been assembled into longer fragments of
the genomes present in the community, metagenome-assembled
genomes (MAGs) may be reconstructed by binning contigs from
the same genome together. Several software tools are available to
perform MAG reconstruction (Table 1). At this stage,
phylogenetic and phylogenomic methods can be used to
determine the taxonomic affiliation of these MAGs with even
more confidence than that of individual contigs. Additionally,
MAGs and assembled contigs can be used to build custom
sample-specific reference databases for read mapping (e.g.,
Speth et al., 2016). The main advantage of using such
databases is that often many more reads can be assigned,
because the contig sequences represent the strains that are
reconstructed from the same sample, minimizing the
occurrence of false positives. Therefore, the obtained taxonomic
profile contains less noise and more comprehensively represents
the data.

The taxonomic profiles obtained from the methods above can
be assembled into presence-absence or abundance matrices and
further explored using classic multivariate exploratory analyses,
such as multivariate ordination/canonical methods (Hanson
et al., 2012; Xue et al., 2018). Under the macroecological
rationale, exploratory analyses are used to describe the
biological variation across a global or continental gradient in
potential explanatory variables (e.g., describing diversity or
abundance variation across the latitudinal temperature
gradient, continental atmospheric variation, etc.; Shade et al.,
2018). Correlation among explanatory variables is a common
issue in biological statistics, and multivariate ordination is then
used to reduce dimensionality and yield new mathematically
uncorrelated axis from the original correlated explanatory
variables (Legendre and Legendre, 2012; Figure 2B). A few
approaches widely used for this purpose are: 1) Principal
components analysis (PCA), which is based on covariance or
correlation matrices and is suitable for sets of linearly correlated
TABLE 1 | Approaches for obtaining taxonomic profiles from
metagenomic samples.

Input type Software Speed Reference
Databases

Confidence Advantages

Amplicon Qiime,
MOTHUR

Fast SILVA, RDP
and

Greengenes

Low Extensive
databases o
sequences
and samples

for
comparison

WGS
Homology

Diamond,
BLAST, BLAT,

MEGAN

Slow nr, Uniprot,
pfam

Medium Based on
the whole
genetic
diversity

WGS K-
mer

Kraken,
FOCUS

Fast RefSeq
Genomes

Medium Based on
the whole
genetic
diversity

Assembled
Contigs

Assembly:
SPAdes, ID-
BA_ud, Ray-
Meta Contig
Classification:
CAT, MEGAN,

Kaiju

Slow nr, Uniprot,
pfam

High Discovery o
new taxa,
more reads
assigned

MAG Assembly:
SPAdes,
IDBA_ud,
Ray-Meta
Binning:
Metabat,
GroopM,

ABAWACA,
CheckM

Classification:
CAT/BAT

Slow N/A High Yields draft
or complete
genomes,
discovery of
new taxa,
more reads
assigned
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measures; 2) principal coordinates analysis (PCoA), which differs
from the PCA by extracting eigenvalues from similarity or
distance matrices, therefore being appropriate for non-linear
relationships; 3) multidimensional scaling (MDS) that, unlike
PCA and PCoA, is not based on eigenvalues decomposition and,
like PCoA, is limited to Euclidean distances matrices and 4)
correspondence analysis (CA), based on contingency table of
categorical variables (Bray and Curtis, 1957; Clarke, 1993). The
new mathematical axes provide a mathematical space where
measurements from the actual environmental samples can be
placed and compared. The associations between variables (e.g.,
diversity and temperature) can also be tested by classic statistical
analyses like regression and correlation, which can be based on
both original explanatory variables and new mathematical axes
created by ordination analyses. Additionally, ecological similarity
between localities can be explored using distance measures (e.g.
Euclidean, Mahalanobis, Jaccard, and Bray-Curtis) and
compared against a distance matrix for a potential explanatory
variable in the same localities and statistical significance can then
be assessed by using a test such as the Mantel test (Figure 2B).
Such approaches are commonly used in macroecological studies
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to statistically assess the correlation between two distance
matrices based on variables of interest (e.g., Duarte et al., 2009;
Bell, 2010).

Describing Community Structure With Co-
Occurrence Networks
Co-occurrence networks (CNs) has been used to describe
associations within microbial community (Figure 3). Usually,
in these networks, the nodes represent taxa and the edges
represent statistically significant positive or negative
correlations in the abundance of taxa across several samples in
a given environment or host (Faust and Raes, 2012). A few
authors may also include abiotic factors as nodes (e.g. Li et al.,
2017). Using CNs can reveal insights about possible ecological
interactions and distribution patterns of microbial taxa (Faust
and Raes, 2012; Cardona et al., 2016). Two important types of
information can be retrieved from CNs: 1) changes in
community structure across environmental gradients, that is,
variation not only in the species abundance, but especially in the
degree of correlation between taxa across environmental
gradients; and 2) potential biotic interactions that can be useful
FIGURE 3 | Co-occurrence networks applied to microbial macroecology. (A) A hypothetical example of a co-occurrence network. Circles represent different taxa
and edges connecting two circles indicate statistically significant co-occurrence between those two taxa, i.e., they co-occur more than expected by chance in the
set of samples analyzed. Network structure can indicate ecosystem properties, and these can be translated into statistics summarizing network topology (see Box
1). For instance, this hypothetical network shows two subunits (or modules) separated by the taxon indicated as a red circle. This taxon is also a node with high
betweenness centrality (i.e., indirect connections between any two nodes in the network has a high probability of going through this node), whereas the green circle
represents a node with high degree (i.e., showing a connection to many other taxa). (B) A hypothetical example of a macroecological study using co-occurrence
networks. Red squares represent an area where several samples were gathered and analyzed, yielding a single abundance matrix and a corresponding co-
occurrence network (two sites pointing to the same network represent areas in which networks are highly similar). The topology of the network changes in different
ecosystems across the globe, and the overall hypothetical pattern is represented in the graphics below: network modularity (i.e., defined as the number of subunits
within the network, as well as the relative proportion between connections within and between modules) decreases as precipitation and temperature increases (but
the change is less intense for temperature).
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for macroecological modeling (Predicting Microbial Distribution
and Community |Composition). Since CNs are based on
abundance correlation, it is desirable that they are built over a
large number of sampling units, and therefore hold great
potential for application in macroecological studies (Berry and
Widder, 2014). Distinct approaches have been used to construct
CNs and derive information from their structure, such as
distance or similarity matrix metrics among the samples used
to construct the networks (Fan et al., 2018; Jackson et al., 2018;
Marasco et al., 2018; Box 1). Overall, the same matrix generated
by the software tools listed in the previous section can be used as
input for CN calculation. Samples can be grouped according to
the macroecological variable of interest (e.g., temperature
Frontiers in Genetics | www.frontiersin.org 8111
variation across latitudes, atmospheric variation across a
continent, variation in land cover across the globe) and the
structure of CNs from each of these groupings can be compared
across global or continental scales (Figure 3). Note that
comparison of microbial community structure has often been
performed across different ecosystems (e.g., comparing the
structure of networks between fresh and saline water
environment), but the macroecological approach supports the
rationale of a comparison within the same environment (e.g., soil
samples) across an environmental gradient (e.g., temperature,
pH, etc.; Barberán et al., 2012). Several measures exist to describe
network structure, such as symmetry, degree distribution,
checkerboard index (Horner-Devine et al., 2007; Araújo et al.,
BOX 1 | Building and Interpreting Co-Occurrence Networks.

Several tools are available to build and interpret co-occurrence networks. The software CoNet (Faust and Raes, 2016), developed in Cytoscape (Shannon et al., 2003),
allows the usage of several measures for dependency, similarity and dissimilarity, to build and visualize co-occurrence networks. In order to build these CNs, the microbial
composition data is provided in relative abundances. Some annotation tools provide microbial composition in read counts, in this case one can use SparCC (Friedman
and Alm, 2012), which calculates abundance correlations among taxa without the issues associated with compositional data (Mendes et al., 2018), for further CNs
analysis. Alternatives to SparCC are REBACCA (Ban et al., 2015) and CCLasso (Fang et al., 2015). Kurtz et al. (2015) presented another tool: SPIEC-EASY, a pipeline that
transforms relative abundance data and estimates interaction graphs. Finally, a few approaches are based on information theory, for instance: using mutual information
combined with other metrics, implemented in CoNet (Lima-Mendez et al., 2015). Choosing a correlation method for network construction is critical once networks
generated by different methods can provide contrasting results (Weiss et al., 2016). Methods should be chosen taking into consideration if microbial community data are
presented as relative abundance or in absolute read counts.

Keystones in CN
There is no consensus on the operational definition of keystone for microbial ecology (reviewed in Banerjee et al., 2018). However, a usually proposed definition is that

keystones are highly connected microbial taxa presenting a unique and crucial role for community structure and functioning, so their loss or removal should have large
impacts on microbial community (Banerjee et al., 2018). In this sense, network theory provides us with quantitative ways to characterize how connected a given microbial
taxa is. One criterion, based in network theory, to determine a putative keystone taxon is high betweenness centrality (BC; e.g., Lupatini et al., 2014; Banerjee et al., 2016;
Jiao et al., 2016; Li et al., 2017; Mendes et al., 2018), albeit an investigation based on dynamical modeling found lower BC to be correlated with higher probability of a
taxon being keystone (Berry and Widder, 2014). The BC of a node A is the number of shortest paths connecting two nodes which pass through the node A. Nodes with
high BC connect portions of the network that would otherwise be sparsely or not connected at all. Therefore, removing high BC nodes leads to a sparser network,
disconnecting modules in several cases. The number of connections a node presents, which is called the node's degree, is also a frequent metric used as a keystone
index (Comte et al., 2016; Hartman et al., 2018). This is based on the idea that, taxa (nodes) that are connected with multiple others are important to network structure,
and their potential removal would have a high impact to the community. It is interesting to highlight that, whereas one node can have both high degree and high BC (in
which case this taxa would be considered keystone by both definitions), it is also possible to find nodes in which BC is high and degree is low, or vice-versa, leading to a
disagreement between these two keystones definitions. Therefore, it is important to have in mind the biological process of interest because this will determine the more
important features in a given community and what keystone definition one should use.

A different approach, based on metabolic networks (Guimera and Amaral, 2005), assumes that the network is formed by modules (i.e., semi-independent groups of
cohesive, interacting taxa). In this approach, one can calculate the z-score, which is a measure of the number of interactions a taxon has within its module; and the c-
score, which describes how evenly distributed are the interactions of a given taxon across multiple modules. These two values allow us to classify the taxa in network hubs
(z-score > 2.5; c-score > 0.6), module hubs (z-score > 2.5; c-score < 0.6), connectors (z-score < 2.5; c-score > 0.6) and peripherals (z-score < 2.5; c-score < 0.6) (Poudel
et al., 2016; Fan et al., 2018). Putative keystones taxa would then be the nodes identified as network hubs, module hubs and connectors. One advantage is that this
definition takes into account multiple features that might make a node important to a network (e.g., participating in a network within a hub or as connectors between hubs),
whereas, when one looks only at BC or high degree, a single type of keystone feature is taken into account.

Indirect Effects From CNs
In networks, species that do not directly interact can influence each other through cascading effects that spread through the network (indirect effects). Guimarães et al.

(2017) developed an analytical framework to quantify the total amount and the importance of the indirect effects in a given network. Their results show that network
structure is what drives how the indirect effects spread through the network (Guimarães et al., 2017). Networks of micro-organisms, which are species-rich networks
formed by a small core of highly connected species and many species poorly connected (Banerjee et al., 2018), are predicted to show a higher amount of indirect effects
than poor, highly modular networks. Therefore, quantifying indirect effects might be an important aspect in the study of which micro-organisms are keystones to a given
community relevant to maintain relevant ecosystems functions and contribution to resilience and stability in face of global environmental changes (Berry and
Widder, 2014).

In addition to measuring indirect effects, it is possible to explore the consequences of such effects. Resilience and stability are important aspects of network structure
that can be measured by using approaches derived from the study of dynamical systems. Coyte et al. (2015) proposed an extremely general and suitable framework that
can be used to analyze species-rich microbial networks. Their approach uses the eigenvalues of the matrix that describes the effects of ecological interactions at the
equilibrium (Jacobian matrix) associated to a given network, to analyze the stability and resilience of microbiome networks. Their approach can be used in networks that
possess any combination of different types of interactions (cooperation, competition, exploitation, amensalism and commensalism). One important result of their analyses
is that cooperation tends to destabilize microbial networks. The destabilization effect happens because of the presence of positive feedbacks between the species when
they cooperate, which leads to cascading effects. For example, a decrease in population size of one species might lead to all the species they positively interact with to
decrease as well. On the other hand, competition gives a stabilizing effect in the network; compensating the destabilizing effect that increasing richness can have in an
ecological community (May, 1972).
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2011; Layeghifard et al., 2017), but the best usage of such metrics
is an ongoing debate (Layeghifard et al., 2017) and is highly
dependent on the ecological question being asked.

Co-occurrence networks may also be used to identify
keystone taxa (Box 1). The keystone concept was first coined
by Paine (1966), who demonstrated that the removal of the sea-
star Pisaster ochraceus caused a dramatic change in community
structure on a rocky shore, concluding that the species
functioned as an important element for maintaining
community integrity, most likely due to its non-redundant role
(Paine, 1969). This definition can be applied in the microbial
ecosystem and be empirically investigated by using network
approaches. Keystone taxa can be compared across
macroecological scales to investigate whether and how the
importance of specific groups as key taxa in communities
across an environment varies on global scales. Since keystone
taxa usually perform important and non-redundant functions,
their identification may be important to understanding
ecosystem functioning.Thus, an approach coupling keystone
identification with measurements of functional diversity across
macroecological scales holds potential to bring numerous
insights (see below). Finally, another insight derived from CNs
is how the network structure may favor or constrain cascading
effects (Box 1), which may favor or imperil the resilience of the
communities against perturbations (another ongoing debate
within ecosystem ecology; Oliver et al., 2015). Cascading effects
often propagate across networks, connecting the dynamics of
taxa that do not directly interact with each other. In fact,
networks of taxa are subject to influences from taxa they
directly interact with, as well as to indirect effects that pervade
the network, i.e. from taxa with which they do not interact
directly. Under certain conditions, indirect effects can be more
important to the network dynamics than the direct effects
(Ohgushi, 2005). Indirect effects can be measured across
macroecological scales to assess, in a spatially explicit manner,
in which ecosystems indirect effects seem to play a more
important role to maintain microbial community stability
(Guimarães et al., 2017).

Revealing Macroecological Patterns From
Microbiome Functional Diversity
Functional ecology, defined as the study of the roles that
organisms play in their ecosystems, also holds great potential
for microbial macroecology. Studies investigating levels of
functional diversity across macroecological scales are already
common for macro-organisms (Fu et al., 2017; Jarzyna and Jetz,
2018), both in theoretical investigations of processes determining
functional diversity (Safi et al., 2011) and in more practical
inquiries such as the conservation of ecosystem functions
(Devictor et al., 2010). Yet similar studies have not been
performed for micro-organisms. For instance, previous studies
have explored like global patterns of mammalian functional
diversity (Safi et al., 2011) as well as global scale marine
macroecological patterns (Amend et al., 2013) have no
equivalent investigation concerning microbial functional
diversity. Macroecological studies might yield insights on the
Frontiers in Genetics | www.frontiersin.org 9112
patterns observed for the functional diversity of micro-
organisms across different environments in the globe, and
address their relation to ecosystem functioning and service
provision (Mace et al., 2012).

Functional diversity is one of the three main biodiversity
dimensions investigated in macroecology, alongside taxonomic
and phylogenetic diversity (Webb et al., 2002; Devictor et al.,
2010). Functional diversity is usually defined as the amount,
variation and distribution of traits in a community (Dıaz and
Cabido, 2001), originally measured by the calculation of the total
branch length of the functional dendrogram constructed from
information about taxa' functional traits (Petchey and Gaston,
2002). From this initial method, several new conceptual and
mathematical approaches have been developed and implemented
(a few revised in Petchey et al., 2004), but none of them dismiss
the need to 1) choose the functional traits through which
organisms will be distinguished, 2) define how the diversity of
the trait information will be summarized into a measure of
functional diversity, and 3) validate the measurements through
quantitative analyses and experimental tests (Petchey and
Gaston, 2006). In micro-organisms, functional traits are
usually viewed as the genetic and biochemical characteristics of
organisms affecting ecosystem functioning, such as the
production of metabolic inhibitors or enhancers, or enzymes
playing a role in ecosystem metabolic pathways (Dıaz and
Cabido, 2001). In this sense, the function of micro-organisms
in an ecosystem is defined by their genetic composition, which
ultimately dictates the molecules they metabolize (Faure and
Joly, 2016). Similar to taxonomic annotation, functional traits
can be derived by direct functional annotation of metagenomic
short-reads from an environmental sample (with no taxonomic
annotation). Alternatively, prior metataxonomic approaches
(e.g., 16S rRNA) can be used to taxonomically assign
individuals in a sample, and then functional annotation can be
derived from their phylogenetic position. Software tools to
perform both approaches are summarized in Table 2, with
their respective references. All of these metagenomic and
metataxonomic functional annotation approaches are based on
genomic databases and the accuracy of annotation depends on
the quality of software databases. Furthermore, many genes are
still unassigned, and their functions are unknown, making it
challenging to infer ecological functions from genetic content
alone (Faure and Joly, 2016).

The degree of functional diversity has been used to investigate
two main macroecological patterns in microbial communities: 1)
relationships between community taxonomic and functional
composition among microbial communities (Louca et al., 2016;
Vieira-Silva et al., 2016; Galand et al., 2018) and; 2) how
microbial functions vary in time and space (Dinsdale et al.,
2008; Ren et al., 2017; Galand et al., 2018). Usually the most
accessed functional measures are diversity (including functional
richness, evenness and divergence), composition, redundancy
and rarity. Several algorithms and computational tools have been
published in order to assess and quantify these functional
features (Table 3, also reviewed in Mouchet et al., 2010;
Schleuter et al., 2010; Song et al., 2014; Bond-Lamberty et al.,
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2016; Ricotta et al., 2016). Addressing the above-cited questions,
one of the emerging patterns in micro-organisms is a decoupling
between functional and taxonomic composition (Louca et al.,
2016). This trait suggests that microbial communities may
present a high degree of functional redundancy, meaning that
shifts in taxonomic community composition do not lead to shifts
in functional community composition. It has been hypothesized
that the mechanisms underlying microbial assemblage are
distinct from mechanisms governing functional composition,
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and that environmental factors are potential predictors of
functional composition (Louca et al., 2018). We further suggest
that approaches for characterizing functional diversity should
also be coupled with estimates of function turn-over and
nestedness; metrics that in macroecology are commonly used
to measure shifts in species composition mostly along abiotic
gradients, the so called beta-diversity (Legendre et al., 2005;
Anderson et al., 2006; Jost, 2007). This information would allow
us to answer questions such as whether a specific subset of
TABLE 2 | Tools used to annotate functional potential profiles from metagenomic reads or to infer them from 16S taxonomic annotation.

Tool Approach Synopsis Features Reference

BLASTx Read
annotation

Uses alignment approach to annotate nucleotide reads into
potential proteins

+ great sensitivity
- it can be very slow for high-throughput data

Altschul et al.
(1990)

MetaGeneAnnotator Read
annotation

Identify putative proteins by estimating di-codon frequencies
through the GC content of a nucleotide read

- not precisely estimate de Domain of a given
sequence

Noguchi et al.
(2006)

DIAMOND Read
annotation

Uses double indexing alignment to annotate nucleotide reads
into potential proteins

+ 2000 to 20000 times faster than BLASTx Buchfink
et al. (2015)

SUPER-FOCUS Read
annotation

Functional profiling of metagenomes + output consists in a three hierarchical level
functional profile, useful to choose your level of
functional resolution

Silva et al.
(2016b)

MGS-Fast Read
annotation

Preprocess and analyses WGS reads into functional profiles by
using stringent DNA-DNA matching to the IGC database.

+ includes preprocessing steps (read trimming and
removal of low-quality sequences) and taxonomic
profiling

Brown et al.
(2019)

MetaCLADE Read
annotation

Uses a multi-source domain annotation strategy to profile reads
into protein domains.

+ designed to also annotate metatranscriptomic
reads

Ugarte et al.
(2018)

PICRUSt 16S
inference

Uses evolutionary modelling to predict community putative
functional profiles from 16S marker gene using a genome
reference database

+ online interface to users unfamiliar with
programming

Langille et al.
(2013)

PAPRICA 16S
inference

Places reads into a 16S phylogenetic tree of consensus
genomes to predict the functional profile

+ very accurate to infer functional profile of well-
known organisms that have plenty of genomes in
the database

Bowman and
Ducklow
(2015)

FAPROTAX 16S
inference

Extrapolates community taxonomy into putative functional
profiles

- database used from cultivated organisms only Louca et al.
(2016)

QIIME Functional
pipeline

Provides a wide range of microbial assembly analysis and
visualizations from raw nucleotide sequences

+ network and phylogenetic analysis and core
assessment

Caporaso
et al. (2010)

MOCAT2 Functional
pipeline

Assemble and quality-filter reads to comprehensively predict
them functionally and quantify them

+ also annotate metagenomes taxonomically Kultima et al.
(2016)
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TABLE 3 | Tools to calculate functional diversity features.

Tool Approach Synopsis Features Reference

PHYLOCOM Software Calculates trait distribution to compare with random community consortia as
well as uses evolutionary models to simulate trait and phylogenetic evolution

+ uses null models to test hypothesis of trait
similarity
+ integrates trait information with
evolutionary analysis
+ able to deal with polytomies

Webb et al.
(2008)

FDiversity Software Focuses on calculation of functional diversity indexes and statistically analyze
them

+ user friendly interface
+ accepts different input data formats

Casanoves
et al. (2011)

FD R-
language
package

Uses functional dispersion index and measures diversity based on distances
of traits in a multidimensional space

+ allows missing values on calculation
+ allows weighting traits per abundance

Laliberté and
Legendre
(2010)

SYNCSA R-
language
package

Uses matrix correlation to estimate trait patterns, phylogenetic signal and
environmental variations for metacommunities

+ allows environmental characteristics to be
considered

Debastiani and
Pillar (2012)

cati R-
language
package

Estimates community assembly patterns by species interactions and
environmental filtering

+ allows differentiation among individuals
+ can integrate phylogenetic information into
analysis

Taudiere and
Violle (2016)

funrar R-
language
package

Estimates functional rarity based on abundance and/or spatial frequency of
species

+ estimates functional uniqueness,
distinctiveness and taxon scarcity and
restrictedness

Grenié et al.
(2017)
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functions is filtered and maintained in a specific environment; or
how functions are changing across abiotic gradients.
PREDICTING MICROBIAL DISTRIBUTION
AND COMMUNITY COMPOSITION

Macroecologists describe spatial patterns of biodiversity aiming
to ultimately create accurate models that can predict biodiversity
under different scenarios. The patterns described are analyzed,
and the underlying biotic and abiotic drivers of species
distribution and abundance are tested in a statistical
framework. Understanding the mechanisms behind these
patterns allows macroecologists to predict biodiversity in
geographic areas not yet studied, contributing to decrease
biodiversity shortfalls (Hortal et al., 2015) as well as how
biodiversity would respond to changes in the environment
(Kerr et al., 2007). The BAM (as an abbreviation for ‘biotic,
abiotic and movements') diagram is a conceptual framework used
in macroecological modeling to summarize the determinants of
species distribution on global scales (Figure 4; Soberón and
Nakamura, 2009).

In the BAM framework, the presence of a focal species in a
specific site is determined by: (1) the presence, absence and/or
Frontiers in Genetics | www.frontiersin.org 11114
abundance of other species in the same environment (i.e., biotic
factors, the B in BAM); (2) the availability of the environmental
attributes that are suitable for the focal species (i.e., abiotic
factors, the A in BAM) and; (3) the focal species capacity to
migrate into biotically and abiotically suitable areas (i.e.,
movement capacity, the M in BAM; Figure 4). This idea is
described in a more formal manner in the Hutchinsonian
concept of ecological niche, i .e . , the n-dimensional
hypervolume in which a species can exist (Colwell and Rangel,
2009; Holt, 2009; Figure 4). This conceptual framework is
important for models that attempt to predict the occurrence of
taxa, since it highlights which factors are expected to affect taxa
presence in different locations. For macroorganisms, models are
usually calibrated with the usage of abiotic factors at large spatial
scales, specifically temperature and precipitation, which were
shown to be good predictors of terrestrial species distribution
range (e.g., Soberón, 2010). Such models usually show acceptable
accuracy, but several studies highlight the importance of
accounting for migration capacity and species interactions in
distribution modeling (Araújo and Luoto, 2007; Wisz
et al., 2013).

When it comes to micro-organisms, it is necessary to clearly
understand which factors affect the distribution of microbial
species. The BAM diagram offers an adequate conceptual
framework to start addressing this question. Several authors
FIGURE 4 | The BAM Diagram. (A) A scheme of a hypothetical BAM diagram (abbreviation for “biotic, abiotic, and movements”), highlighting the intersection
between the different aspects determining the presence-absence of species. The b circle, colored in green, represents biological aspects allowing the presence of
the species; the a circle, colored in blue, represents the abiotic aspects; finally, the m circle, colored in orange, represents the movement aspect, which consists in
the dispersal capacity of the species. The intersection represents areas where more than one of those aspects allows the existence of the species. For instance, the
green intersection represents an area where both biotic and abiotic conditions allow the species to exist, but the species is unlikely to disperse to that area. Similarly,
the purple intersection represents an area where abiotic conditions allow the species to exist and is within the species' dispersal capacity; however, biotic conditions
(for example, presence or absence of important species with which it interacts) do not allow their existence. All species occur only in areas represented by the dark
green intersection, i.e. the intersection of all three factors. Mathematical models, however, can calibrate species niche based, solely on abiotic factors (which is the
case of most SDM approaches), and, in these cases, the BAM diagram is a good conceptual framework to interpret the results. (B) A geographical projection of the
BAM diagram for a hypothetical microorganism in South America. The grey areas across the continent represent sites to where the species can potentially disperse
to (based on the idea that micro-organisms have high dispersal capacity, see Predicting Microbial Distribution and Community Composition in text). Assuming our
hypothetical species prefer freshwater conditions, rivers in South America are colored in brown, to represent the intersection between factors a and m in the
diagram. Finally, the green color of the Amazon river indicates an area where all factors allow the existence of the species (i.e., the species can disperse to the area,
it is a freshwater environment, and it shows biotic conditions favorable to its establishment, e.g. the presence of specific species with which it cooperates).
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have suggested that the dispersal capacity of micro-organisms is
much higher than that of macroorganisms (Finlay and Clarke,
1999; Martiny et al., 2006; Barberán et al., 2014). In this aspect,
the movement feature of the BAM diagram would have little
effect on the distribution of species, since several studies indicate
that micro-organisms are highly dispersive (Bovallius et al., 1980;
Fenchel and Finlay, 2004; Martiny et al., 2006; Barberán et al.,
2014; but see, e.g., Peay et al., 2010), and that spatial structuring
of microbial communities are only perceivable on large spatial
scales. This leaves us with the biotic and abiotic factors as major
drivers of micro-organisms' distribution. As previously discussed
in Conceptual Challenges for Transitioning Across Spatial and
Temporal Scales, a few studies have highlighted the importance
of different abiotic factors in structuring microbial community,
which are not always related to the environmental predictors
used in distribution modeling of macroorganisms. Such variables
include, besides temperature and precipitation, edaphic
conditions, soil pH and concentrations of different chemical
molecules (Lauber et al., 2009; Drenovsky et al., 2010; Zhou et al.,
2016). Additionally, the biotic interactions among species have
been advocated as important determinants of species occurrence
(Larsen et al., 2012; Ramirez et al., 2015; Ramirez et al., 2018).
Therefore, in the following sections we describe how to access
available spatial-explicit environmental data for micro-
organisms modeling, as well as modeling approaches that can
account for both biotic and abiotic factors.

Using Abiotic Variables to Model
Microbial Communities
Each sample taken from the environment is under the influence
of a huge number of variables in many spatial and temporal
scales. In order to model the composition of microbiomes, and
therefore the distribution of micro-organisms across the globe, it
is important to have available environmental data on the relevant
spatial and temporal scales. The variables used to model micro-
organisms will depend on the specific environment under study.
Micro-organisms living in the soil are affected by different
environmental factors than those living in a freshwater lake or
in the ocean. This is different than what is seen for
macroorganisms, where global temperature and precipitation
play major roles defining biogeographic realms (McGill, 2010).
While acknowledging that global variation in temperature and
precipitation might define biogeographic areas for micro-
organisms (Martiny et al., 2006), we argue that this definition
will differ when comparing between micro-organisms living in
different environment types (e.g., soil vs freshwater
micro-organisms).

Physical properties are usually important in several
environments, such as temperature, precipitation, moisture and
solar radiation. These variables can be measured or modeled via
remote sensing platforms and remote sensing-based modeling
tools. Due to the advent of environmental monitoring satellites
and the creation of on-line data processing and distribution
platforms, there is a wealth of environmental data with global
coverage available to the general public, ranging from raw
satellite images to validated measurements of parameters, such
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as land surface temperature, precipitation rates, the
concentration of gases such as CO2 in the troposphere and
photosynthetic activity (Table 4). These databases contain
climatic spatially explicit information such as land surface
temperature, net primary productivity, vegetation and leaf area
indexes, evapotranspiration, detailed landcover map and
precipitation rate. Additionally, since other aspects of soil and
atmosphere might also be necessary to fully characterize the
abiotic environment of micro-organisms. Information pertaining
to soil physical (e.g., clay content) and chemical (e.g., pH)
conditions, as well as soil classification across the globe can be
retrieved from these databases. Similarly, when investigating the
atmosphere microbiome, the atmospheric chemical composition
may play a large role on community composition by changing
the chemical properties such as pH and playing an important
role on ecological processes, such as nitrification (Keller et al.,
2006; Hutchins et al., 2009; Hatzenpichler, 2012). An example of
atmospheric chemical composition data available, such as the
products based on the Atmospheric Infrared Sounder (AIRS), is
a hyperspectral instrument on board of Aqua satellite (Table 4).
By decomposing the infrared radiation in 2,378 bands, AIRS can
provide daily measurements of trace components abundances in
the atmosphere, including ozone, carbon monoxide, carbon
dioxide, methane, and sulfur dioxide in different strata of the
atmosphere, among other parameters (Morgan et al., 2004;
Maddy et al., 2008; Xiong et al., 2008; Engelen et al., 2009; Lin
et al., 2013).

Furthermore, the data gathered from satellites and ground
observations, are used in the parameterization of climatic
models, which allows the calculation of additional climatic
variables. The Global Land Data Assimilation System (GLDAS)
is a good example of this kind of climatic modeling (Rodell et al.,
2004; Rodell et al., 2009). It models land surface states and fluxes,
using advanced land surface modeling techniques based on
optimal fields (Rodell et al., 2004). Currently GLDAS includes
datasets from four land surface models implemented in NASA's
software LIS (Land Information System), namely Mosaic, Noah,
the Community Land Model (CLM), and the Variable
Infiltration Capacity (VIC), resulting in massive archive maps
of up to 40 climatic parameters, water and energy flux, as well as
underground temperature and moisture, with maximum depth
of 1.1 m and with temporal coverage ranging from 1979-01-01 to
nowadays (Kumar et al., 2006; Peters-Lidard et al., 2007).
Another good example of a climatic model available is the
Worldclim, one of the most used climatic datasets in ecological
modeling. It comprises a set of 19 climatic variables relevant to
many ecological processes, with a global coverage of 1000 m
spatial resolution (Fick and Hijmans, 2017). This set of variables
is a result of the averaging of climatic parameters from 1970 to
2000, modeled through the usage of general circulation models
(GCM), which are suitable to model worldwide geographic
variation in ecological processes that respond to spatial
patterns of climatic heterogeneity. The calculation methods to
produce this set of variables were implemented in R and are
available through the function biovars, from the Package ‘dismo',
version 1.1-4 (Hijmans et al., 2017). In addition, Worldclim also
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provides future projections for the same set of 19 climatic
variables for two periods, 2050 (average for 2041–2060) and
2070 (average for 2061–2080), based on the set of models used in
the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC) for the four scenarios of greenhouse
gases concentration (Stocker et al., 2014). These future
projections provided by Worldclim have the advantage of
being bias corrected, using the current climate Worldclim data
as base line, making the three sets of variables compatible. In
addition, the AIRS, TRMM, GPM, and GLDAS products are
available in NASA’s Goddard Earth Sciences Data and
Information Services Center (GES DISC), which is part of the
Earthdata platform, specialized in processing and distribution of
climatic data.

Given the huge amount of climatic and environmental data
available to the global landscape, microbial ecologists are now
using those same analytical tools used in traditional
macroecological studies. This allows them to select the most
important drivers in predicting microbial diversity
distribution patterns and to predict the structure of
microbial communities across the globe, thereby accessing
Frontiers in Genetics | www.frontiersin.org 13116
cause and effect associations. In these efforts, machine
learning approaches, especially classification or regression
Random Forest analysis and structural equation modeling
(SEM) should be highlighted (Breiman, 2001; Grace, 2006).
Specifically, Random Forest analysis constitutes specific
algorithms of statistical methods of classification and
regression trees (CARTs) that use binary division or
regression, respectively, to form a set of trees where the
importance of each predictor is inferred by decreased
prediction accuracy through the random permutation of the
values of these predictors (Liaw and Wiener, 2002; Wei et al.,
2010). SEM routines are then used in microbial ecology studies
coupled with Random Forest in order to reveal the relation
between those ‘a priori' selected abiotic drivers and the target-
variable in question, such as the Shannon Index, used as a
proxy for microbial diversity (Delgado-Baquerizo et al., 2016).
Therefore, SEM is a valuable alternative when the objective is
to detail the specific relationships between multiple predictors
and the modeled variable, separating them as individual
pathways in the network of relationships that characterizes
natural systems (Delgado-Baquerizo et al., 2017).
TABLE 4 | Databases for spatially explicit abiotic ecological data for use in community modeling.

Database Data Synopsis References Data access

Atmospheric Infra-
Red Sounder
(AIRS)

Greenhouse gases concentration
in troposphere (CO2, CO, CH4,
O3); etc.

Provides atmospheric chemical composition
measurements by decomposing the infrared
radiation in 2378 bands

AIRS Science team and Texeira,
2008; Morgan et al., 2004; Maddy
et al., 2008; Xiong et al., 2008;
Engelen et al., 2009; Lin et al., 2013

https://search.earthdata.
nasa.gov

Tropical Rainfall
Measuring Mission
(TRMM)

Precipitation Precipitation rate and rainfall rate. Was
operational from 1997-12-01 to 2015-03-31

Wilheit et al., 1991 https://search.earthdata.
nasa.gov

GPM (Global
Precipitation
Measurement)

Precipitation Global observations of rain and snow.
Operational from 2014-03-01 until the
present

Hong et al., 2004; Huffman et al.,
2007; Stocker et al., 2018

https://search.earthdata.
nasa.gov

MODIS (Moderate
Resolution Imaging
Spectroradiometer)

Land surface temperature;
Vegetation idexes (NDVI, EVI,
LAI); Primary production;
Evapotransiration; Ocean
chlorophyll; etc…

Produces a huge list of high precision
environmental products, with high temporal
resolution, that are validated with field data

Cohen et al., 2003; Didan, 2015;
Friedl and Sulla-Menashe, 2015;
Giglio et al., 2015; Running et al.,
2017; Savtchenko et al., 2004;
Turner et al., 2006; Wan et al.,
2015

https://search.earthdata.
nasa.gov

SOILGRID Bulk density; Soil granulometry;
Soil classification; Cation
exchange capacity; Soil organic
content; pH; etc…

Models a set of soil's physical and chemical
properties through the combination of soil
samples data with a large set of soil
covariates using machine learning
techniques

Hengl et al., 2017 https://soilgrids.org

GLDAS—Global
Land Data
Assimilation
System Version 2

Rain precipitation rate;
Evapotranspiration; Root zone
soil moisture; Soil moisture (in
various depths); Soil temperature
(in various depths); etc.

Models land surface states and fluxes using
optimal fields. Includes 40 climatic
parameters with temporal coverage from
1979-01-01 to present with high temporal
resolution

Rodell et al., 2004; Rodell et al.,
2009; Kumar et al., 2006; Peters-
Lidard et al., 2007

https://search.earthdata.
nasa.gov

WorldClim
Version2

Annual Mean Temperature; Mean
Diurnal Range; Temperature
Seasonality; Temperature Annual
Range; Annual Precipitation;
Precipitation Seasonality; etc…

Set of 19 bioclimatic variables averaging of
climatic parameters from 1970 to 2000,
modeled through general circulation models
(GCM).

Fick and Hijmans, 2017 http://worldclim.org/
version2

WorldClim 1.4
downscaled
(CMIP5) data

The same as WorldClim Version2
projected to the future

Future projections for the same WorldClim
19 bioclimatic variables for two periods,
2050 (average for 2041–2060) and 2070
(average for 2061–2080), based
Intergovernmental Panel on Climate Change
(IPCC)

Stocker, 2014 https://www.worldclim.
org/cmip5v1
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Incorporating Biotic Interactions in
Modeling Microbial Communities
Another important issue in macroecological modeling is the
inclusion of biotic interactions as predictor variables. There is an
increasing evidence that species interactions improve the
explanatory and predictive power of species distribution
models, based on environmental variables for macroorganisms
(Araújo and Luoto, 2007). Usually the inclusion of biotic
interactions in species distribution models is based on
previous biological knowledge of the studied species and uses
a limited number of species/taxa per model, while considering
their geographical distribution (Araújo and Luoto, 2007; Wisz
et al., 2013; de Araújo et al., 2014). These models are usually
based on species distribution models and use a maximal entropy
approach—e.g., Maxent for modeling (Phillips and Dudík,
2008). However, there are also integrative modeling
approaches that incorporate co-occurrence patterns into
species distribution models (Pollock et al., 2014). Other
modeling techniques use machine learning approaches, such
as neural networks, which do not make assumptions related to
species occurrence probabilities and linear relationships among
environmental and biological variables, and so provide more
realistic assemblage models (Harris, 2015).

Studies with micro-organisms have also suggested that
including biotic interactions is necessary to build suitable
predictive models (Larsen et al., 2012). However, despite their
importance, these interactions can be elusive to detect, and
unraveling the interactions network in microbial communities
is an ongoing challenge (Faust and Raes, 2012). Biotic
interactions can be inferred to some extent from co-occurrence
networks (Describing Community Structure With Co-ccurrence
Networks), but the increase of computational capacity and the
development of accurate machine learning and network
modeling methods has made possible to explore new
approaches to statistically assess biotic interactions from large
abundance datasets, such as Bayesian networks (BNs) and
Genetic Algorithms (GA). The BNs are graphical models
consisting of a set of variables (represented as nodes in the
network) and directed arcs that describe the sets of conditional
dependencies between these variables, as well as the joint
probability distribution among then (Pearl, 2014; see also
Figure in Box 2). The variables set in BNs may be both abiotic
factors as well as biotic interactions, and the model can be
calibrated with the same input abundance matrices generated
by taxonomic annotation methods (Taxonomic Profiling and
Exploratory Analyses in Microbial Macroecology). Additional
columns representing abiotic aspects of each sampling site can
be added to the abundance matrix to represent the abiotic
environment experienced by a specific microorganism. This
approach allows the creation of species distribution models by
taking into account both biotic and abiotic aspects
simultaneously in a model across large geographical scales
(Staniczenko et al., 2017). These models can be further used to
predict the change in the abundance of an organism when any
other node (either an abiotic aspect or another species
Frontiers in Genetics | www.frontiersin.org 14117
abundance) changes in the environment. A few microbial
studies have already used a BN approach to study, e.g., the
bacterial diversity in gut microbiota for patients with psoriatic
arthritis (Scher et al., 2014) and the gut microbiota in HIV
positive patients (Vázquez-Castellanos et al., 2015). Similarly, in
macroecology, a few studies have used the BN approach, e.g., for
range prediction of California grassland community
(Staniczenko et al., 2017) and assessment of threat status of
pacific walrus population in Russian and Alaskan waters at four
different time periods (scenarios) throughout the twenty-first
century (Jay et al., 2011).

Similarly, the use of predictive models based on the genetic
algorithm (GA) method holds great potential to infer microbial
interactions but has not been explored by microbiologists so far,
to the best of our knowledge. The GA is an approach to solve
problems inspired by the process of natural selection. Genetic
programming (GP) is a particular type of GA that can be used to
generate computational artifacts, such as computer programs,
mathematical models, and logical models, that help to explain an
observed data (Koza, 1992). The GP approach usually starts from
a population of programs (algorithms) that show random levels
of success in solving a task (in this case, describing the significant
biotic interactions observed in a microbiome dataset). The fittest
programs, that is, those best describing the data, are selected for
reproduction and may undergo some “mutation” according to
predefined parameters. This process is repeated over several
generations in an analogy to natural selection, and the final
generations are expected to show a population of much fitter
programs than the initial ones. This procedure is essentially a
heuristic search technique that looks for an optimal or at least
suitable program among the space of all programs available.
Since the construction of the models is totally guided by data,
without the need of a priori hypotheses, the greatest potential of
this technique is to generate hypotheses about the relationship
between micro-organisms, as well as between micro-organisms
and environment, that can be assessed by other approaches (such
as BNs, dynamical modeling or common correlative statistics,
described above). Applications of GP include designing electrical
circuits (Koza et al., 2000), reverse engineering biochemical
reac t ions (Sug imoto e t a l . , 2005) and descr ib ing
epidemiological relationships (Veiga et al., 2018).

Another promising approach to resolve microbial
interactions is the use of dynamical models (Widder et al.,
2016), which can bridge the gap between fundamental
ecological knowledge and empirical interactions between taxa,
by relying on explicit and mechanistically sound hypotheses. For
such purpose, several modelling approaches are available
(reviewed by Song et al., 2014 and by Succurro and Ebenhöh,
2018), each presenting its own set of assumptions concerning
biotic and abiotic components of community. The most
widespread approach is assuming direct biotic interactions
among taxa and representing these interactions by using the
generalized Lotka-Volterra model (gLV). This is a particular case
of the population dynamic model, which can then serve to
investigate concepts related to community dynamics such as
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co-occurrence networks and keystone taxa (Berry and Widder,
2014; see Box 1). Some authors also advocate the use of
metabolic-explicit dynamical models that integrate aspects of
community and environmental variables, such as stoichiometry-
based models and flux balance analysis (FBA; Song et al., 2014).
While these approaches avoid black-box modeling and provide
valuable insights into community functioning across
environments, they present parameterization challenges, in
gLV for instance, the number of parameters increases with the
square of the number of interacting species, hindering model
analysis. Future developments integrating dynamical modeling
and statistical parameterization techniques are thus poised to
improve the suitability of dynamical modeling approaches to
exploration of microbial community interactions; meanwhile,
Frontiers in Genetics | www.frontiersin.org 15118
dynamical modeling is readily available to investigate important
subsystems with fewer interacting organisms.

Species Distribution Modeling for
Community Prediction
The steps described in Using Abiotic Variables to Model Microbial
Communities and Incorporating Biotic Interactions in Modeling
Microbial Communities allow us to highlight important abiotic
environmental factors as well as biotic interactions necessary to
model our focal microbial communities. Although few of the
techniques presented, such as BNs, can model community
composition on their own, another approach largely used in
macroecology for this purpose is the set of modeling tools
known as species distribution modeling (SDM). The use of
BOX 2 | Bayesian Networks: Advantages and Drawbacks.

Bayesian networks show several advantages that support their recent application in complex fields, such as: 1) network modularity, being able to integrate multiple
ecosystem components (Chen and Pollino, 2012; Nojavan et al., 2014; Nojavan et al., 2017; Uusitalo, 2007), such as in management decisions field, where it is possible to
integrate several sub-models as social, ecological and economic aspects (Chen and Pollino, 2012); 2) the capability of dealing with complex and nonlinear systems
(Uusitalo, 2007; Aguilera et al., 2011; Phan et al., 2016; Beuzen et al., 2018); 3) possibility of incorporating expert knowledge (Uusitalo, 2007; Aguilera et al., 2011;
Alameddine et al., 2011; Death et al., 2015; Phan et al., 2016), through blacklists (i.e., unrealistic relationships that are not allowed in the model) and whitelist (i.e.,
relationships already known in the literature); 4) being able to use a small number of samples (Uusitalo, 2007; Phan et al., 2016) 5) simplicity and little difficulty in interpreting
outputs, even for non-modelers (Aguilera et al., 2011; Death et al., 2015); 6) being a rather “open” approach, different from other methods, which can be considered
complicated “black-box” approaches (Chen and Pollino, 2012); 7) being able to handle high dimensional systems with the proper number of samples (Aguilera et al.,
2011); 8) dealing with missing data through conditional probabilities or Bayes theorem (Uusitalo, 2007; Aguilera et al., 2011; Death et al., 2015), and finally 9) presenting
less computational cost to analyze and compare different scenarios, such as climatic changes, by setting variables states in the model (Chen and Pollino, 2012; Death
et al., 2015).

The main weakness of the BN approach is the lack of feedback possibilities in the model, due to it being directed acyclic graph (DAG; Phan et al., 2016). This can be
bypassed by integrating models. The most critical drawback pointed in most studies is the discretization of continuous variables (Uusitalo, 2007; Aguilera et al., 2011;
Nojavan A. et al., 2014; Death et al., 2015; Phan et al., 2016). The principal argument is that it causes an inevitable loss of information from data, linear relationships and
consequently model performance (Uusitalo, 2007; Nojavan A. et al., 2017; Beuzen et al., 2018). However, using discrete values allows for better modeling of non-linear
relationships between variables, as well as complex distributions such as bi- or multimodal distributions and can introduce greater robustness against error (Hartemink,
2001). As alternatives, there are models that could handle continuous data and not have mathematical restrictions, such as Mixture of Truncated Exponentials (MTE)
models and the BN created for continuous variables (Qian and Miltner, 2015). However, it is hard to find simple examples and they are not easily found in any commercial
software, which makes implementation difficult for non-modelers.
FIGURE IN BOX 2 | A graphical example of a hypothetical Bayesian Network (BN), showing both biological taxa (green circles) and predictor abiotic variables (blue
circles). NDVI = Normalized difference vegetation index.
January 2020 | Volume 10 | Article 1344

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Mascarenhasz et al. Computational Methods for Microbial Macroecology
SDM has been regarded as a well-established approach that can be
used to overcome the lack of species spatial data, and holds great
advantages for micro-organisms, a group in which the Wallacean
deficit (i.e., the lack of information about species distribution)
tends to be high. The SDM techniques are generally based on the
concept of species ecological niches, which is the set of biotic and
abiotic conditions that allows a species to persist indefinitely in a
location (Soberón, 2007). Evidence so far suggests that biotic
interactions should have a larger importance at smaller scales (but
see Gotelli et al., 2010 and Araújo and Rozenfeld, 2013), while
abiotic conditions, such as climate, should have a larger influence
at larger spatial scales (McGill, 2010). Based on this,
macroecologists have used the set of climatic conditions where a
macroorganisms lives to estimate its potential geographic
dis t r ibut ion . Whereas this i s large ly e ffic ient for
macroorganisms, more empirical evidence is necessary to
evaluate these premises for micro-organisms.

Two sets of approaches can be used for SDMs: the mechanistic
and correlative species distribution modeling (Figure 5).
Mechanistic SDMs use information obtained from ex-situ
experiments that indicate the environmental conditions that a
species can tolerate (e.g., maximum and minimum temperature).
Frontiers in Genetics | www.frontiersin.org 16119
This information on physiological tolerances can then be used to
map areas that are environmentally suitable for the species, which
can be transformed into presence/absence information (Kearney
and Porter, 2009; Figure 5). The lack of experimental information
indicating species tolerance have limited the use of mechanistic
approaches; however, in areas where experimental data is
abundant, such as agricultural science, mechanistic models have
been used to predict potential areas for determined crop varieties
(e.g., Nabout et al., 2012). This approach can be potentially useful
for microbial macroecology, since these organisms can be easily
manipulated ex-situ, because of their small, short life span and
large population sizes (Jessup et al., 2004).

The correlative approach, on the other hand, uses statistical
associations between acknowledged species occurrences and
environmental conditions to estimate the Grinellian Niche
(Figure 5). The type of statistical model used for this approach is
then chosen upon the type of occurrence data available: continuous
(abundance data), binary (i.e., presence/absence data) or presence-
only data (usually the latter, since abundance information is not
always available and real absence data is challenging to confirm).
Presence-only models of species distributions are largely used for
macroecological studies, with several algorithms available, from
FIGURE 5 | A workflow on techniques for species distribution modelling. Ecological niches can be modeled both by using mechanistic models (upper left figure,
representing temperature laboratory manipulative experiments on plants) or by using correlative models (lower left figure, representing the use of spatial-explicit
environmental data combined with the knowledge about occurrence points for the species). The ecological niche is then calibrated on an n-hyperdimensional volume
defined by all predictor variables used in the study (only three dimensions are shown in the cube to the center). Green points indicate known occurrence for the
species projected into the environmental space; dashed green lines represent the ecological niche inferred from those points. The inferred ecological niche can then
be projected into geographical space, which consists on the geographical areas having environmental conditions within those inferred to be the species' niche (are
highlighted as suitable areas for the species in the map). Since the niche is statistically calibrated, i.e., as a statistical relation between predictor environmental
variables and presence-absence response variables, the final map shows a gradient of environmental suitability for the species across the space.
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simple ones, such as the BIOCLIM, up to more complex models
based on machine learning techniques - e.g, Random Forest and
MAXENT (Elith and Leathwick, 2009). While some authors claim
that some algorithms have a better performance than others, the
Frontiers in Genetics | www.frontiersin.org 17120
current view is that the choice of the algorithm also depends on the
context in which SDMs are applied (see Peterson et al., 2010).
Despite the known importance of abiotic conditions to determine
large-scale species distributions, one must consider also current
FIGURE 6 | A methodological framework to investigate the macroecology of micro-organisms. The framework shows methods related to (A) gathering taxonomic
data on environmental samples, (B) exploring the data with exploratory analyses as well as statistical tests (e.g., correlation and regression analyses), and (C) using
the data to create predictive models about the presence/absence of species across different environments. Solid red arrows indicates input and output data that is
used as input for analyses, and blue arrows indicate the output of these analyses. Dashed red arrows indicate data that can yield indirect insights for an analysis
(although they are not commonly used as direct data input for the method). Grey boxes indicate external information sources and green boxes indicate the
methodological approaches reviewed in this manuscript. Dark green boxes within green boxes indicate the specific techniques used in each approach. White boxes
indicate the final outputs for the macroecological approach, i.e., models explaining how environment and biotic interactions affect species presence-absence and
ultimately community composition. (A) Data from metagenomic databases can be annotated taxonomically to yield presence-absence or abundance matrixes for
several ecosystems. (B) Spatial-explicit environmental data can be incorporated into exploratory analyses (such as PCA and MDS) as well as correlation analyses
(such as regression and Mantel test) to investigate micro-organisms diversity patterns on global scales. Functional diversity can also be investigated on
macroecological scales (both directly inferred from sequence reads or from the taxonomic annotation of samples). Co-occurrence networks are commonly used in
microbiology studies and can yield interesting insights when different groups of samples are compared across an environmental gradient. The understanding of
functional diversity and functional redundancy can be coupled with co-occurrence networks to infer the existence of keystone taxa, as well as the extent of direct
and indirect effects throughout a network, and then describe the community structure and ecosystem functioning. Such structure can then be compared across
macroecological scales (e.g., analyzing how the importance of specific taxa as keystone taxa varies across different environments). (C) Spatial-explicit environmental
data can also be incorporated into models to understand community structure (such as Bayesian network modeling and genetic programming) as well as models to
calibrate ecological niche (such as mechanistic and correlative niche models). These models can incorporate insights from analyses shown in (B). Similarly, insights
on biotic interactions, derived from community structure models, can be incorporated into ecological niche models (which commonly only use abiotic environmental
variables as predictors). The final predictive models will allow microbiologists to understand interaction rules structuring microbial communities, predict the present of
important taxa in different environments and infer microbial community composition across the globe.
January 2020 | Volume 10 | Article 1344

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Mascarenhasz et al. Computational Methods for Microbial Macroecology
and historical movement limitations, such as geographical barriers,
dispersal capacity and biogeographical history (Barve et al., 2011).
However, it is still necessary to identify whether and how
movement limitations are important to model microbial
distributions, because of their overall high dispersal capacity.

Several computational tools can be used to apply SDMs, many
of them freely available, open source, and collaborative (e.g.,
Naimi and Araújo, 2016; Kass et al., 2018). Microbiology can
benefit from these methods in many research lines, since SDMs
have been used not only to predict individual species
distribution, but also species richness and composition (e.g.,
Guisan and Rahbek, 2011), species potential invasive areas (e.g.,
Smolik et al., 2010), as well as to understand niche evolution and
speciation patterns (e.g., Silva et al., 2014; Silva et al., 2016a), and
past species dynamics (e.g., Nogués-Bravo, 2009); and to model
geographical range responses to climate change (e.g., Pecl et al.,
2017). Specifically, SDMs present an important method to
understand how species geographic range may respond to
climate change. However, because of high microbial adaptation
capacity, it may be a methodological challenge for
microbiologists to incorporate evolution when trying to model
species distribution into other time periods (Ofori et al., 2017).
CONCLUSION

The vast amount of microbial community data available
represents an exciting prospect for advancing the field of
microbial macroecology. In this review, we outlined the main
questions in macroecology, community ecology and addressed
how microbial ecologists can address them with bioinformatics,
statistical and modeling tools. We covered fundamental aspects of
biodiversity, reviewed classical approaches used in microbial
ecology in a macroecological context, and highlighted the
existing caveats and solutions to implement ecological modeling
of microbial communities, which is a crucial research area for both
the theoretical and practical aspects of macroecology. These
approaches can serve as a general framework for microbial
macroecology, addressing the two-part focus of macroecology:
describing community patterns (and their drivers) at large scales
and predicting community composition across the globe (Figure
6). The framework we present here consists of 1) gathering
biological data to generate an abundance matrix, and
environmental data to generate an environmental matrix; 2)
exploring the associations between biological and environmental
data at macroecological scales, using exploratory and network
approaches; 3) incorporating insights from the previous step into
modeling tools for community prediction.

The main difficulties for this research avenue are the
theoretical implications derived from the biology of micro-
Frontiers in Genetics | www.frontiersin.org 18121
organisms, such as higher dispersal capacity, higher
evolutionary rate and the putative environmental drivers of
community composition. New studies are necessary to address
which environmental factors are relevant for modeling microbial
distribution and to define whether the high dispersal capacity of
micro-organisms makes this aspect uninformative for
biogeographic patterns (i.e. the classic statement of “Everything
is everywhere”). Also to evaluate whether the adaptive potential
of micro-organisms is indeed high enough to violate the usual
assumption of niche conservatism applied to ecological
modeling. The insights from these future studies will have
great impact on microbial ecological model interpretation. We
predict that the development of modeling methods and
approaches used in microbial macroecology, an exciting and
flourishing field, will significantly contribute to the unification of
microbial ecology and macroecology.
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NG-Tax 2.0 is a semantic framework for FAIR high-throughput analysis and classification
of marker gene amplicon sequences including bacterial and archaeal 16S ribosomal RNA
(rRNA), eukaryotic 18S rRNA and ribosomal intergenic transcribed spacer sequences. It
can directly use single or merged reads, paired-end reads and unmerged paired-end
reads from long range fragments as input to generate de novo amplicon sequence
variants (ASV). Using the RDF data model, ASV’s can be automatically stored in a graph
database as objects that link ASV sequences with the full data-wise and element-wise
provenance, thereby achieving the level of interoperability required to utilize such data to
its full potential. The graph database can be directly queried, allowing for comparative
analyses of over thousands of samples and is connected with an interactive Rshiny
toolbox for analysis and visualization of (meta) data. Additionally, NG-Tax 2.0 exports an
extended BIOM 1.0 (JSON) file as starting point for further analyses by other means. The
extended BIOM file contains new attribute types to include information about the
command arguments used, the sequences of the ASVs formed, classification
confidence scores and is backwards compatible. The performance of NG-Tax 2.0 was
compared with DADA2, using the plugin in the QIIME 2 analysis pipeline. Fourteen 16S
rRNA gene amplicon mock community samples were obtained from the literature and
evaluated. Precision of NG-Tax 2.0 was significantly higher with an average of 0.95 vs
0.58 for QIIME2-DADA2 while recall was comparable with an average of 0.85 and 0.77,
respectively. NG-Tax 2.0 is written in Java. The code, the ontology, a Galaxy platform
implementation, the analysis toolbox, tutorials and example SPARQL queries are freely
available at http://wurssb.gitlab.io/ngtax under the MIT License.

Keywords: operational taxonomic unit, amplicon sequence variants, taxonomic classification, FAIR, semantic web,
RDF, ontology, SPARQL
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INTRODUCTION

High-throughput sequencing technologies have empowered our
ability to study complex environmental and host-associated
microbial communities. Of these technologies, amplicon
sequencing targeting marker genes is currently the most cost-
effective tool to assess the microbial composition of large
numbers of samples (Tringe and Rubin, 2005; Yarza et al.,
2014; Stulberg et al., 2016). By using smart multiplexing
techniques hundreds of samples can be sequenced at once
while sequencing costs per sample are further reduced leading
to immense amounts of microbial community composition data
available for large scale comparisons.

High-throughput amplicon sequencing is, however,
inevitably noisy. Due to PCR artefacts and low-quality base
calls, a fraction of the amplicon reads will contain one or more
sequence errors (error-reads), which in turn could lead to false
taxonomic inferences. One strategy to reduce the number of false
taxonomic inferences due to these error-reads, is to cluster
amplicon reads by sequence identity in operational taxonomic
units (a process called OTU-picking) at some user defined
identity thresholds. To build these OTUs, centroid or seed
sequence-based greedy clustering approaches are frequently
used (Stackebrandt and Goebel, 1994; Konstantinidis and
Tiedje, 2005; Godzik and Li, 2006; Edgar, 2010). Centroid
based OTU-picking approaches however, have a number of
disadvantages as they require a predefined identity threshold,
while the representative centroid sequence is influenced by
selection of the seed, sequence input order and the amount of
amplicon sequences and PCR error present in the sample, all of
which make OTU-picking by clustering sample dependent and
therefore, in principle, not suitable for comparisons between
different sets of samples (Callahan et al., 2016). Recent studies
have shown that a de novo clustering approach using exact
matches would yield better results (Ramiro-Garcia et al., 2016;
Callahan et al., 2017). These exact match sequence clusters have
been termed Amplicon Sequence Variants (ASVs), sub-OTUs or
zero-radius OTUs (Tikhonov et al., 2015; Callahan et al., 2016;
Edgar, 2018). The rationale is that an ASV is not a representative
sequence from a cluster of similar sequences, but is directly
derived from a biological entity. An ASV can be separated from
error-reads on the basis of the expectation that due to the
biological origin, a real sequence variant is located at a fixed
position in the amplicon sequence and therefore more likely to
be repeatedly observed in those samples where the particular
biological variant is present. Error-reads are assumed to be
present at a relatively low abundance, and because sequence
errors are also positionally dispersed (Schirmer et al., 2016) they
are unable to form meaningful exact match ASV clusters. In NG-
Tax, an exact match OTU-picking algorithm is used to find ASV
forward and reverse sequence read pairs. Likely erroneous ASVs
are rejected if their read count does not exceed an experimentally
defined dynamic threshold that takes the evenness of the
distribution into account (Ramiro-Garcia et al., 2016). In the
past the accuracy of NG-Tax has been benchmarked against
QIIME (Caporaso et al., 2010), using synthetic mock
Frontiers in Genetics | www.frontiersin.org 2129
communities and has been shown to outperform it (Ramiro-
Garcia et al., 2016).

Unlike centroid based OTUs which work with representative
sequences, ASV sequences are believed to directly descend from
an existing biological entity, and the presence of this entity can
therefore be validly compared across many samples (Callahan
et al., 2017). Such large-scale analyses would require tracking of
multiple ASVs over multiple samples and thus a high degree of
interoperability. Proper data handling can be achieved through
the application of the FAIR data principles which are intended to
make the information Findable, Accessible, Interoperable and
Reusable (Wilkinson et al., 2016). We adopted these principles in
NG-Tax 2.0 through implementation of a semantic framework
using a Linked Data format (RDF) for data serialization and
handling, combined with a strictly applied ontology. In NG-Tax
2.0 ASV amplicon sequences are automatically converted into a
semantic data model, ASV objects, that link ASV sequences with
the full data-wise and element-wise provenance thereby
achieving the level of interoperability required to utilize such
data to its full potential.

NG-Tax 2.0 is a complete redesign and rewrite of the NG-Tax
amplicon analysis pipeline. In NG-Tax 2.0 many of the
limitations of NG-Tax have been addressed and as a result
NG-Tax 2.0 has evolved into a highly automated framework
for high-throughput classification and comparative analysis of
marker gene amplicon sequences.

Using ten mock communities publicly available from the
Mockrobiota database (Bokulich et al., 2016) and data from
four staggered mocks described by (Tourlousse et al., 2017) the
precision and recall of NG-Tax 2.0 was evaluated against
DADA2 (Callahan et al., 2016) using the plugin in the QIIME
2 pipeline. The known relative abundance of each ASV in these
mock communities enabled a precise evaluation of the tools
on how they perform in predicting the number of species,
their relative abundance and their taxonomic classification.
The integrative power of using a semantic framework is
demonstrated by performing a meta-analysis across the mock
samples and multiple reference databases.
MATERIALS AND METHODS

NG-Tax 2.0
NG-Tax 2.0 is written in Java with Gradle as build system. A
Galaxy web implementation (Afgan et al., 2016) is also available.
A k-bounded Levenshstein distance function (Hawkins et al.,
2018) was implemented in Java to measure the edit distances
between amplicon sequences in OTU-picking and between ASV
sequences and reference database sequences for taxonomic
annotation of ASV objects. The distance function was slightly
modified to account for phantom out of word frame insertion
and deletions.

NG-Tax 2.0 Semantic Framework
An NG-Tax 2.0 specific expansion of the GBOL ontology (van
Dam et al., 2019) was developed in Protégé (Musen and Team,
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2015). Empusa (van Dam et al., 2019) was used to convert the
ontology to a Java API. As a result, picked ASVs, taxonomic
inferences and linked metadata can be automatically stored in a
graph database and can be directly retrieved and compared
through a list of (routine) SPARQL queries. A list of routine
SPARQL queries is provided (Data Sheet 1), the output of which
directly interacts with the NG-Tax 2.0 data analysis and
visualization toolbox that is based on Rshiny (Chang et al.,
2017). RDF (turtle) files were imported into a local GraphDB
(http://graphdb.ontotext.com/) repository and queried using the
SPARQL query language.

Mock Communities
Mock communities were retrieved from the Mockrobiota project
(Bokulich et al., 2016). Ten demultiplexed 16S-rRNA gene mock
communities were obtained (Table 1).

Bioinformatic Analysis
General
The mock communities were analysed using: NG-Tax 2.0 and
QIIME2 using the DADA2 plugin (Hall and Beiko, 2018, p. 2).
Apart from the variation in amplicon read length, all settings
remained as the default. The SILVA reference database was used
for the taxonomic classification (Yilmaz et al., 2014). For
comparison purposes, three incremental stable versions of the
database were downloaded from https://www.arb-silva.de/
download/archive/being: 123, 128 and 132 (latest) .
Additionally, a custom 16S rRNA gene database was created de
novo using sequences from (Hug et al., 2016; Data Sheet 2) as
input. For comparison the description line of the sequences was
converted to contain the taxonomic lineage in the SILVA format.
The chimera detection process has been described by Ramiro-
Frontiers in Genetics | www.frontiersin.org 3130
Garcia et al., 2016. Briefly, chimeras are detected using the
following condition: if the forward and reverse read of the
ASV are identical to two different ASVs in the same sample
and the abundance of the matched ASVs are at least twice of the
abundance, then the ASV is marked as chimeric.

Lookup Table
For taxonomic annotation of ASV objects, NG-Tax 2.0 creates a
lookup table from reference sequences. There are two options.

When a multiple alignment file, such as the 50,000 columns
long SILVA alignment is provided, NG-Tax 2.0 assumes that the
sequence of the primer region is conserved in the alignment.
Using a regular expression which takes care of IUPAC wildcard
characters, NG-Tax 2.0 finds in each aligned sequence, primer
start and stop positions, starting with the first aligned sequence
and keeps on doing this until a consensus start and stop column
position is obtained (defined as: the start and the stop position of
the primer are found to occur in the same columns/positions a
1,000 times). It then assumes that the region of interest is in the
columns between the primer columns, extracts this region,
removes alignment gaps, trims the sequences to the chosen
forward and reverse read length and subsequently transforms
the sequences into a four-column lookup table. An example is
shown in Table 2.

For special cases such when strain specific markers have been
developed, or for studying a new species or a designed
community in a closed system, NG-Tax 2.0 can also build a
custom lookup table from unaligned reference sequences. For
this NG-Tax 2.0 uses a regular expression representing the
(degenerate) primers used in amplification to find the region of
interest, taking into account a single mismatch with the
exception of the most 3-prime nucleotide of the primer which
must either have a perfect match or a G/T mismatch for
amplification to occur. The sequence region in between the
primers is subsequently used to build the lookup table as
described above. To illustrate this approach a custom 16S
rRNA gene database was created de novo using sequences from
(Hug et al., 2016, Data Sheet 2) as input.

NG-Tax 2.0 Configuration
To use the NG-Tax 2.0 command line interface, users need to
provide the paired-end amplicon reads in comma separated
format (-fS), the mapping file (-mapFile), a reference database
such as the SILVA database (-refdb) for creation of the look-up
TABLE 1 | Mock communities used for NG-Tax 2.0 benchmarking.

Mockrobiota
#

Composition Read
length

Reference

Mock13 21 bacterial strains, evenly
distributed

250/250 Kozich et al.,
2013

Mock14 21 bacterial strains, evenly
distributed

250/250

Mock15 21 bacterial strains, evenly
distributed

250/250

Mock16 49 bacterial strains, 10
archaea, evenly distributed

250/250 Schirmer et al.,
2015

Mock18 15 bacterial strains, evenly
distributed

250/250 Tourlousse et al.,
2017

Mock19 15 bacterial strains, 12
synthetic spike-in standards,
evenly distributed

250/250

Mock20 20 bacterial strains, evenly
distributed

301/301 Gohl et al., 2016

Mock21 20 bacterial strains, staggered 301/301
Mock22 20 bacterial strains, evenly

distributed
301/301

Mock23 20 bacterial strains, staggered 301/301
SRX1868061-
SRX1868064

15 bacterial strains, 12
synthetic spike-in standards,
staggered

250/250 Tourlousse et al.,
2017
*All mocks utilized the V4 region.
TABLE 2 | Example of the look-up table.

AGGAT… CGACA… Bacteria;Bacteroidetes;Flavobacteriia;
Flavobacteriales;Flavobacteriaceae;
Chryseobacterium

148

AGGAT… CGACA… Bacteria;Proteobacteria;Alphaproteobacteria;
Rickettsiales;Anaplasmataceae;Wolbachia

276

GGGAT… CGACA… Bacteria;Cyanobacteria;Chloroplast;
Corchorus_capsularis;_;_

3

GGGAT… CGACA… Bacteria;Cyanobacteria;Chloroplast;
Isatis_tinctoria;_;_

4

GGGAT… CGACA… Bacteria;Cyanobacteria;Chloroplast;
Aethionema_carneum;_;_

1
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table, the selected forward and the reverse primer used for
selection of the amplified region in the reference file (-for_p
and -rev_p), the name for the output RDF file (-t), and the name
for the output BIOM file (-b), and they need to specify whether
the primers were already removed from the sequences or not
(-primerRemoved). Various amplicon read lengths were used in
the analysis: 70, 100, 140, 200 and 240 nt. Other settings were
kept as the default as the following: -minPerT 0.1, -identLvl 100,
-errorCorr 1 and -classifyRatio 0.8. as described in (Ramiro-
Garcia et al., 2016). A full list of options can be found at http://
wurssb.gitlab.io/ngtax/commandLine.html. Parameters are
stored in the output file in “args” section of the extended
BIOM and RDF file.

QIIME2-DADA2 Configuration
For QIIME2, the latest SILVA database for QIIME2 (version
132) was downloaded from the official QIIME2 website at
https://docs.qiime2.org/2018.11/. SILVA database version 128
was downloadable through the forum page (https://forum.
qiime2.org/t/silva-128-classifiers-available-for-download/3558).
Silva database version 123 needed to be created manually
through q2-feature-classifier tutorial https://docs.qiime2.org/
2018.6/tutorials/feature-classifier/).

To analyse the data with this pipeline, we imported reads into
QIIME2 as an artefact using the Casava 1.8 paired-end
demultiplexed Fastq format. DADA2 (Callahan et al., 2016)
was selected as the method for quality control using the
following parameters: –p-trim-left-f 19 and –p-trim-left-r 20 as
the length of the primer combined with various read lengths, 140,
150, 180, 200, 220 and 240, for both –p-trunc-len-f and –p-
trunc-len-r. The trimming option (–p-trim-left-f and –p-trim-
left-r) was used only for mock 16, 18, 19, 22 and 23. This results
in a feature table, representative sequences and a statistical
outcome captured during this denoising step. Next, classify-
sklearn was used to classify the taxonomic lineage of the
representative sequences based on the given database. Then,
the classified sequences were collapsed with the feature table
in order to produce an OTU table at a certain taxonomic
lineage resolution based on the user input, such as 6 for
genus level. Finally, the OTU table is exported into a
Hierarchical Data Format (HDF5) file format which can be
converted in to a tab separated values (tsv) or a JavaScript
object notation (json) file format using the BIOM package
(http://biom-format.org/documentation/biom_conversion.
html#general-usage-examples).

Statistics
Binary Classifier
Comparison between the expected and the predicted results
using the confusion matrix.

recall =
TP

TP + FN

precision =
TP

TP + FP
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F − score = 2� precision� recall
precision + recall

where TP is the number of true positives, FN is the number of
false negatives and FP is the number of false positives. A TP was
defined as an exact match at genus level.

Modified Rv Coefficient
Comparison between two weighted adjacency matrices, which
in this case is the microbial composition and their relative
abundance. The results can be interpreted as Pearson’s
correlations.

RV2 X,Yð Þ =
Vec gXX0

� �0
Vec gYY 0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vec gXX0

� �0
Vec gXX0

� �
� Vec gYY 0

� �0
Vec gYY 0

� �r

Given matrix gXX0 = ½XX0 − diag(XX0)�, where diag(XX′) is a
matrix containing only the diagonal elements of XX′ on its
diagonal, and zero’s elsewhere. The same definition also
applied to YY′.
RESULTS

NG-Tax 2.0 is fully written in Java and can be executed from the
command line, while a Galaxy toolbox implementation (Afgan
et al., 2016) is also available. Using multiplexed amplicon
sequences as input, NG-Tax 2.0 executes four major tasks:
demultiplexing and amplicon read cleaning, generation of ASV
objects (a process generally referred to as OTU-picking),
denoising and taxonomic assignment. Processed samples,
derived ASV sequences, taxonomic inferences and data
provenance are automatically linked and serialized in an RDF-
triple store format and can be exported as an extended Biom 1.0
file for compatibility reasons (Figure 1).

Development of the Semantic Framework
NG-Tax 2.0 uses the RDF data model to capture and store
analysis results and associated data provenance as ASV objects.
To ensure consistency and to have a high degree of
interoperability and reusability a strictly defined ontology was
created, focusing on its function as file format and as database
schema. The modular design ensures that the ontology can be
extended and currently consists of eight main classes (Table 3).

To increase human readability, ontology class names
represent the underlying concept as closely as possible. Classes
start with uppercase whereas properties start with lowercase.
Library is the root of the ontology. Each Library contains
samples according to the input mapping file and it also refers
back to the metadata and the command arguments. Each
sample contains ASV objects composed of the forward and
reverse sequence of the particular ASV, the number of
amplicon reads in the sample that have this particular forward
and reverse sequence and their taxonomic annotation. The
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ASVAssignment class is a class where all the possible taxonomic
hits of the ASV objects are stored (Figure 2). The NG-Tax 2.0
ontology is integrated in the Genome Biology Ontology
Language available at http://gbol.life (van Dam et al., 2019).

ASV-Picking, Artefact Filtering and
Correction for the Impact of Error-Reads
on the Relative Abundance Estimates
NG-Tax 2.0 can handle both single and paired-end reads. In NG-
Tax 2.0 paired-end reads are filtered for matching primers and
barcodes but not merged and reads are subsequently processed in
parallel. As the forward and reverse read may significantly differ in
quality and reverse reads may require additional trimming, in NG-
Tax 2.0 the forward and reverse reads are not necessarily of the
same length and therefore two parameters are used (-for_read_len
and -rev_read_len) to define read lengths used for ASV formation.
If the -rev_read_len parameter is not set, single reads or merged
forward and reverse reads can be used in the analysis.

NG-Tax 2.0 error-handling is built on the assumption that
erroneous reads are more likely to be less abundant than true
Frontiers in Genetics | www.frontiersin.org 5132
biological variation. In addition, it is assumed that erroneous
sequences (reads with random sequencing errors and (amplified)
reads systematic sequence errors) have a high degree of sequence
similarity with true reads amplified from the same template
sequence in the sample. To deal with such erroneous sequences
NG-Tax 2.0 does not start from individual reads or read-pairs
but first builds a collection of initial ASV objects from the pool of
available reads. In NG-Tax 2.0 by default three (default, user
defined) or more identical forward and reverse sequences will
form an ASV object and the thus clustered forward and reverse
sequences of this object are subsequently used as a reference
sequences in the two-step error handling.

NG-Tax 2.0 first assumes that the remaining (singleton) read-
pairs are unable to join an already existing ASV object because of
a random sequencing error. NG-Tax 2.0 uses a k-bounded
Levenshtein function and a cumulative edit distance of one
nucleotide (mismatch or indel) to find a match between ASV
objects and singleton read pairs. If a singleton ASV read pair
shows a single mismatch (mutation or indel) with an ASV
reference in either the forward or the reverse read, it is
assumed this is due to a random sequence error and the
singleton is joined with the particular object thereby increasing
the read count of the object but not changing the original
sequences linked to the object. Singletons showing more than
one mismatch are considered as sample specific noise
and discarded.

Secondly, due to PCR and sequence-specific errors (Shin and
Park, 2016), specific amplicons may also accumulate above-
average sequencing errors resulting in the formation of an
erroneous ASV object. Here the assumption is that an
erroneous ASV object will show a high degree of sequence
similarity with an also existing true ASV object. To find
erroneous ASV objects, NG-Tax 2.0 ranks ASV-objects by read
counts and uses the k-bounded Levenshtein function to merge
ASV objects with read-count below a set threshold, with ASV
TABLE 3 | Description of the NG-Tax 2.0 ontology main classes.

Main ontology class Description

Library* Description of samples in a library
Sample Description of PCRPrimers, BarcodeSet and ASVSet
Sequence ASVSequence: ASV forward and reverse sequences
SequenceSet* ASVSet, RejectedAsChimera, RejectedASV

BarcodeSet, PCRPrimerSet
Taxon Taxon name and rank annotation of an ASVSet
ASVAssignment Taxon information and related provenance
Provenance Interlinks ProvenanceClassification, containing tool

specific information with the input Library
ProvenanceClassification* Contains confidence score of taxonomic assignment

and user input command argument in the analysis
*NG-Tax 2.0 specific extensions of the gbol ontology.
FIGURE 1 | NG-Tax 2.0 workflow. The workflow consists of four main steps: (A) barcode and primer filtering, (B) de novo OTU-picking of ASV sequences, artefact
filtering, correction for the impact of error reads on ASV relative abundance estimates and taxonomic inference; (C) ASV object serialization and storage. ASV
sequences, taxonomic inferences and data provenance including library and sample names and used settings are exported and stored as ASV objects in an RDF
triple store graph database and optionally exported in the Biom 1.0 file format. (D) Downstream analysis tool box. ASV data and meta-data can be directly queried
and analysed through the SPARQL endpoint. The Rshiny toolbox directly provides standard statistics and visualizations using predefined SPARQL queries.
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objects with read counts better than the set threshold starting
with the ASV object with the highest read count. If a selected
ASV object below the threshold has a single mismatch (mutation
or indel) with a high read-count ASV object the two ASV objects
are merged. The sequences of the high read-count object are kept
because they are believed to be true and the read-counts of both
objects are summed. For this merging process a user defined
relative abundance threshold is used and by default this is set to
0.1% of the total number of read-pairs associated with ASVs. If
NG-Tax 2.0 cannot merge an ASV object with a read count
below the set threshold, it will be labelled as ‘provisionally
rejected” but the ASV object remains in the output file for
further analysis as it could be a true variation, and therefore
the first 100 (default, user defined) most abundant provisionally
rejected ASVs also obtain a taxonomic assignment. However,
most of these flagged ASVs are likely to be sample specific noise
(Faith et al., 2013). To show that provisionally rejected ASVs are
likely noise we followed their fate in a closed biological system.
Samples were obtained from a dietary intervention in an in vitro
system that simulates the dynamics conditions in the human
colon (Data Sheet 3). To show reproducibility, several replicates
were taken. Because we do not delete but only label as such,
sample specific provisionally rejected ASVs we can track their
presence over multiple replicates and samples using SPARQL
queries. The sequences of almost all provisionally rejected ASVs
were only present in a single sample. The percentage of flagged as
rejected ASVs that were present in at least two individual
samples, ranged from 2.7 to 5.4%, which indeed suggests that
the vast majority of the flagged ASVs is likely sample
specific noise.
Frontiers in Genetics | www.frontiersin.org 6133
Taxonomic Assignment of ASV Objects
NG-Tax 2.0 uses reference fasta or alignment files obtained from
repositories such as the ARB-SILVA database (Quast et al., 2012)
for taxonomic assignments. To reduce the computational load,
reference sequences are trimmed such that they include only the
region matching the reads. The length of the regions of interest
are defined by the length of the reads in the ASV object while the
location of the amplicon primer sequences in the reference
sequences are used to mark the 5'- and 3'-end of the region of
interest. Subsequently, the thus reduced reference file is
converted into a look-up table by clustering and counting
entries that are identical in sequence and in taxonomic
annotation. This look-up table is automatically re-used when
different sets of samples with the same parameters are processed.
Using the k-bounded Levenshtein function with an upper-bound
of 50, the edit distance between each ASV read pair and entries in
the reference file is measured. For each edit distance with a
maximum sequence mismatch between the reference sequence
and the amplicon sequence of 15%, a list of sequence entries,
including frequency of occurrence in the reference database file
and taxonomic annotation is generated and stored as an integral
part of the particular ASV object. This list is also included in the
exported extended Biom file. Following a set of rules outlined
below, the classifier subsequently proposes from this list of
candidates the most likely taxonomic assignment by taking
into account the number of mismatches. Depending on the
level of sequence identity with the reference set, by default the
lowest possible taxonomic ranks proposed by NG-Tax 2.0 will be
used, out of species, genus, family and order. Species will only be
assigned when a perfect match is obtained with a single species.
FIGURE 2 | Graphical view of the NG-Tax 2.0 data management model. Nodes are defined in the GBOL ontology. Sample and ASVset are main hubs and
represent sample input and NG-Tax 2.0 processed data. Each ASVset represents a specific ASV object, consisting of a collection of (inter)linked descriptions of
entities representing data, knowledge and associated meta data of the specific ASV. Each ASVset is directly linked to the Sample node which is used as a hub for
the experimental dependencies. Each Sample is part of a Library containing information of an individual sequence and analysis run. The visualization was done in
GraphDB (http://graphdb.ontotext.com/) using the visual graph interface.
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Between 100-95% sequence identity the lowest proposed
taxonomic assignment is genus, between 95-92% the level is
family and below 92%, the level is order. These values are stored
as attributes of the CommandArgs class. Note that while these
rules provide a tentative taxonomic assignment based on best
practices, for each ASV the full list of reference database
sequences remains available and can be retrieved and
compared by querying the graph database at any time through
a SPARQL endpoint.

Analysis of NG-Tax 2.0 Precision
and Recall Using Mock Communities
We measured NG-Tax 2.0 precision and recall using ten
staggered and evenly distributed MiSeq 16S rRNA gene mock
communities (Table 1) obtained from the Mockrobiota public
repository. Then communities were analysed in parallel with the
DADA2 implementation in the QIIME2 pipeline (from here on
referred to as DADA2). NG-tax 2.0 and DADA2 taxonomic
predictions were compared using different read lengths and three
Frontiers in Genetics | www.frontiersin.org 7134
consecutive stable versions of the ARB-SILVA reference
database. The reference composition of the selected mock
communities is based on SILVA version 123 using a similarity
threshold of 97% and 99% respectively. Figure 3 displays a
typical example showing a compositional analysis of mock21
using either NG-Tax 2.0 or DADA2. For each tool, the optimal
read length was used.

The metrics used to compare and evaluate the performances
of both pipelines were recall, precision and F-score. F-score is a
single metric that combines both recall and precision and is used
here to select an optimal read length for the analysis. When
considering F-scores from both pipelines for different mock
communities at different read lengths, NG-Tax 2.0 had a
higher range of 0.65 to 0.97, compared to DADA2’s 0.42 to
0.76, across all mock communities (Figure 4). Moreover, NG-
Tax 2.0 revealed an optimal read length at 140 nucleotides with
F-scores ranging from 0.73 to 0.97 across all the communities. In
contrast, DADA2’s optimal read length varied between mock
communities, which suggests that the performance of this tool in
FIGURE 3 | Microbial composition of Mockrobiota mock community 21. Mock21 is a staggered mixture of 20 bacterial strains. Left mock21 NG-Tax 2.0 and
DADA2 predictions using the ARB-Silva reference database 123 for taxonomic annotation. In this comparison, for each tool the optimal read length was used: 140nt
for NG-Tax 2.0 and 220nt for DADA2. (A) NG-Tax 2.0. (B) DADA2. (C) Reference composition. Identical results were obtained with the reference database with 97%
and 99% similarity thresholds. In bold, mock21 reference taxons correctly identified with NG-Tax 2.0 and DADA2. *Mock21 reference taxons not detected by either
tool, **Mock21 reference taxons detected by NG-Tax 2.0 but not DADA2. Underlined, mock 21 reference taxons detected by DADA2 but not NG-Tax 2.0. ***No
prediction at genus level, however correctly assigned the taxonomic lineage. Right Venn diagram summarizing the taxonomic annotation results.
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this respect may depend on the sample composition. We
therefore selected a fixed read length per tool for further
analysis: 140nt for NG-Tax 2.0 and 220nt for DADA2 as they
provide the highest mean of the F-score calculated from all the
communities at that length, which results in 0.89 and
0.64 respectively.

The two factors that contribute to the F-score are recall and
precision. Both can be used to assess the quality of the pipeline
and are equally important. In general, the level of recall of
DADA2 and NG-Tax 2.0 were comparable with an average of
0.77 and 0.85, respectively. However, the precision of NG-Tax
2.0 was noticeably higher than that of DADA2 with an average of
0.95 vs 0.58 (Figure 5). The results show that both tools are
equally good at inferring the expected microbial composition
from the sample. However, DADA2 tended to predict taxonomic
assignment of a higher rank, which led to a lower precision and
F-score. Similar results using two staggered mocks from
Tourlousse et al., 2017 with two replicates each can be found
in Data Sheet 3.

Modified Rv Coefficient
An alternative metric used to determine the efficiency of both
pipelines is the modified RV coefficient. Unlike the previous
statistical measures, the modified RV coefficient takes into
account the relative abundance of the identified bacteria, which
is crucial for understanding a pipeline’s performance. Figure 5
shows that the modified RV coefficient from NG-Tax 2.0 on both
the number of taxonomic lineages and their corresponding
relative abundances are closer to the actual composition than
DADA2. The average for NG-Tax 2.0 is 0.74 whereas the average
coefficient for DADA2 is 0.28.
Frontiers in Genetics | www.frontiersin.org 8135
Tracking of Asvs Across Multiple Samples
ASVs have a single nucleotide resolution and are assumed to be
directly derived from an existing biological entity. As in NG-Tax,
ASV objects contain the forward and reverse sequence of the
specific ASV (Figure 2), we can design SPARQL queries to
explore the presence of specific ASVs across multiple mock
samples. As most of the selected mocks are not biologically
related, the majority of the ASVs will only be present in a single
sample. Mock13-15, however, are composed of genomic DNA
from the same 21 bacterial isolates and thus we expected a high
number of ASVs shared between these three samples. The
composition of mock13-15 includes three Streptococcus species
being Streptococcus agalactiae ATCC BAA-611, Streptococcus
mutans ATCC 700610, and Streptococcus pneumoniae ATCC
BAA-334, each of which has multiple, but not necessarily
identical copies of the 16S rRNA gene. For instance, the
Streptococcus agalactiae genome contains seven copies of the
16S rRNA gene. Nine distinctive mock13 ASV objects are
taxonomically annotated as Streptococcus and amplicon
sequences linked to five of those objects showed 100%
sequence identity with separate Streptococcus agalactiae 16S
rRNA genes. A SPARQL query showed that four of these
ASVs are present in all three mocks while one is not present in
mock14. Overall, of the 60 taxonomically annotated ASVs in
mock13, 56 variant sequences are present in all three mocks.
Similarly, when we include in the query the unrelated mock16
composed of genomic DNA from 57 bacterial isolates, the
expected taxon overlap is four; Bacteroides, Porphyromonas,
Deinococcus and Enterococcus. The SPARQL query showed
that five distinct ASVs are present in all four mocks. Two
ASV’s were annotated as Bacteroides, the other three as
FIGURE 4 | F-scores of NG-Tax 2.0 (A) and DADA2 (B) at different read length. Silva 123 was used as reference database. The x-axis indicates the trimmed read
length of the forward and reverse read. Note that mock16, mock 18 and mock 19 were not included in the comparison of the 240nt read length as after removal of
primer sequences these reads were too short.
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Porphyromonas, Deinococcus and Enterococcus. Figure 6
summarizes the result of a SPARQL query for the presence of
specific ASVs amplicon sequence variants across all mocks.

Impact of Incremental Databases
The taxonomic annotation of a 16S rRNA gene amplicon
depends on many variables, including the version of the
reference database used. Because new phylogenetic groups are
constantly being discovered (Hug et al., 2016), obtaining a
correct bacterial phylogeny will remain a moving target for
some time. Hence, keeping track of how the amplicon data was
analysed, the data provenance, is critical. The observation that
even a single reference database, clustered at two different
similarity thresholds can lead to different results led us to
investigate the impact of incremental versions of the SILVA
database. For this, we used SPARQL queries to analyse the
taxonomic annotation of the ten selected mock communities
Frontiers in Genetics | www.frontiersin.org 9136
using three incremental stable versions of the SILVA database,
namely releases 123, 128 and 132. NG-Tax 2.0 has the ability to
create a custom taxonomic reference file de novo using a set of
unaligned reference sequences as input. This allows for instance
to add a new species to an existing taxonomic reference file. To
demonstrate this feature we built a custom reference file using
16S rRNA gene sequences obtained from Hug et al., 2016. The
SILVA result showed that in the latest version of the SILVA
database some taxa have been reclassified. For instance, in
mock18 the phylum and class of Treponema_2 have been
reclassified from Spirochaetae and Spirochaetes to Spirochaetes
and Spirochaetia. The class and order of Nitrosomonas were also
reclassified from Betaproteobacteria and Nitrosomonadales to
Gammaproteobacteria and Betaproteobacteriales . Not
unexpected the biggest “change” was when we compared
taxonomic reference files from different origins. Results are
summarized in Table S1.
FIGURE 5 | Recall, precision and modified RV coefficient of NG-Tax 2.0 and DADA2. NG-Tax 2.0 is labelled in red and DADA2 is labelled in blue. Upper panel left,
recall; right, precision. Lower panel modified RV coefficient. Silva 123 is used as reference database clustered at 97 (filled circles) and 99% (open circles). Note that in
many cases results overlap in which case only the results obtained with the 97% threshold is shown.
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DISCUSSION

NG-Tax 2.0 is an open software framework that uses semantic
technologies for data and knowledge management. It is
particularly designed for FAIR and high-throughput taxonomic
classification and downstream analysis of marker gene amplicon
sequences. By using the RDF data model, NG-Tax 2.0 is able to
engage a traceable de novo OTU picking and de-noising
algorithm, generating ASV objects that link ASV sequence data
with the full data-wise and element-wise provenance. The linked
data structure ensures a high degree of interoperability. Serialized
ASV objects can be automatically stored in a standard graph
database structure and directly queried for comparative analyses
of data and meta-data across thousands of samples.

For targeted amplicon sequencing, denoising, i.e. the separation
of biological variation from amplicon sequencing errors, is essential
to increase the reliability of downstream analyses. Clustering
sequences into OTUs has been routinely applied in the past to
reduce the impact of sequence errors and to speed up the analysis
process by picking a representative sequence (Nguyen et al., 2016).
However, many recent studies now use a 100% similarity threshold
or ASVs. ASVs are standardly generated with NG-Tax 2.0 and with
DADA2, one of the most commonly used pipelines today. As both
NG-Tax 2.0 and DADA2 have a single nucleotide resolution, the
number of ASVs and taxonomic annotation from NG-Tax 2.0 and
DADA2 should be the same, however, the specific criteria used to
remove erroneous-sequences creates the differences.

To test the performance of NG-Tax 2.0 we used ten 16S rRNA
gene mock communities, staggered and even, and compared the
results with those obtained with DADA2. We showed that while
the recall of the expected microbial composition for both pipelines
Frontiers in Genetics | www.frontiersin.org 10137
was comparable, there are substantial differences in the precision
and the prediction of relative abundances. We proposed the use of
a modified RV coefficient for evaluating the performance of a given
pipeline (Smilde et al., 2009). It measures the common information
of two matrixes which represent the relative abundance
distributions of the microbial composition. This increases the
efficiency in differentiating between two communities as
compared to the binary classifier. The advantage in using this
method is the ease of interpretation. The results are presented as a
single value, which is convenient for visualization, and it can be
interpreted in the same way as a correlation coefficient with the
value between -1 and 1, which is already familiar to biologists.

Discussions about how to analyse microbial community data is
an on-going process, and the golden standard for microbiome
analysis has not yet been settled (Knight et al., 2018; Pollock et al.,
2018). DADA2 generates a parametric error model based on the
dataset and uses it to remove or collapse the sequences. On the
other hand, NG-Tax 2.0 employs an empirically determined
relative abundance cut-off taking into account the evenness of
the read distribution over the ASVs to flag ASVs with an
associated low read count that are considered as artefacts. It
then attempts to merge those artefacts with ASVs with high
read counts, which are more likely to be true ASVs, using a
single mismatch as criterium. While both methods seem to be
effective in recalling the expected composition, precision of NG-
Tax 2.0 was much higher than that of DADA2 mainly because the
parametric model predicted more ASVs, an effect that will increase
along with the diversity of the community (Nearing et al., 2018).

NG-Tax 2.0’s novelty is in using the RDF data model to
transform amplicon data into ASV objects that link ASV
sequences data with the dataset-wise and element-wise
FIGURE 6 | Occurrence of accepted ASV forward and reverse sequences with a read length of 70 across multiple mock samples.
January 2020 | Volume 10 | Article 1366
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provenance. This not only greatly enhances the reproducibility of
the analysis but also increases the degree of interoperability of the
data required for comparative analyses. For instance, in finding
rare species in a particular community, DADA2 may have the
advantage while at the same time risking that those organisms
are artefacts. In NG-Tax 2.0, rejected ASVs with relatively low
read abundances are flagged as artefacts but due to a high degree
of interoperability NG-Tax 2.0 enables a reanalysis of the data by
comparing them between multiple samples and by using
alternative parameter settings.

To conclude, NG-Tax 2.0 provides a simple to use, semantic
framework for high-throughput microbiota analysis. Due to use
of the RDF data model it allows to generate fully traceable ASV
objects that link ASV sequence data with the full data-wise and
element-wise provenance. This data model allows users to
systematically adjust the parameters for the reanalysis or infer
the biology behind these sequences using comparative analyses.

We compared the analysis results from the publicly available
mock communities against those obtained by DADA2. The
outcome shows that both pipelines are able to recall the microbial
composition from the reference. However, NG-Tax 2.0 shows a
higher precision score and the predicted relative abundances are
closer to the expected composition than those provided by DADA2.
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Joshua S. Weitz 1,5*

1 School of Physics, Georgia Institute of Technology, Atlanta, GA, United States, 2Woods Hole Oceanographic Institution,

Marine Chemistry and Geochemistry, Woods Hole, MA, United States, 3Daniel K. Inouye Center for Microbial Oceanography:

Research and Education, University of Hawaii, Honolulu, HI, United States, 4 Interdisciplinary Graduate Program in

Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States, 5 School of Biological Sciences,
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Time-series can provide critical insights into the structure and function of microbial

communities. The analysis of temporal data warrants statistical considerations, distinct

from comparative microbiome studies, to address ecological questions. This primer

identifies unique challenges and approaches for analyzing microbiome time-series. In

doing so, we focus on (1) identifying compositionally similar samples, (2) inferring

putative interactions among populations, and (3) detecting periodic signals. We connect

theory, code and data via a series of hands-on modules with a motivating biological

question centered on marine microbial ecology. The topics of the modules include

characterizing shifts in community structure and activity, identifying expression levels with

a diel periodic signal, and identifying putative interactions within a complex community.

Modules are presented as self-contained, open-access, interactive tutorials in R and

Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated

and compositional data, with an eye to improving the robustness of inferences from

microbiome time-series. In doing so, we hope that this primer helps to broaden the use

of time-series analytic methods within the microbial ecology research community.

Keywords: microbial ecology, time-series analysis, marine microbiology, inference, clustering, periodicity, code:R,

code:matlab

1. INTRODUCTION

Microbiomes encompass biological complexity from molecules to genes, metabolisms, and
community ecological interactions. Understanding this complexity can be difficult due to
domain- or location- specific challenges in sampling and measurement. The application of
sequencing technology has revolutionized almost all disciplines of microbial ecology, by allowing
researchers the opportunity to access the diversity, functional capability, evolutionary history, and
spatiotemporal dynamics of microbial communities rapidly and at a new level of detail (Huse
et al., 2008; Caron, 2013). Increasingly it is now possible to sample at the time-scale at which
those processes occur, resulting in the collection of microbiome time-series data. While such
high-resolution sampling opens new avenues of inquiry, it also presents new challenges for
analysis (McMurdie and Holmes, 2014; Weiss et al., 2016, 2017; Widder et al., 2016; Knight et al.,
2018).

One of the first challenges in analyzing microbiome data is to categorize sequences in terms of
taxa or even “species” (Konstantinidis et al., 2006; Caron and Hu, 2019). Many methods have been
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developed to perform this categorization (Blaxter et al., 2005;
Konstantinidis and Tiedje, 2005; Huse et al., 2008; Mende et al.,
2013; Sunagawa et al., 2013; Eren et al., 2014; Katsonis et al., 2014;
Mahé et al., 2015; Varghese et al., 2015; Roux et al., 2016; Callahan
et al., 2017; Luo et al., 2017). Particular choices used to define
species-level units may alter downstream estimations of diversity
and other parameters of interest (Youssef et al., 2009; Kim et al.,
2011; Hu et al., 2015). Indeed, even the procedures for estimating
common diversity parameters are impacted by the properties of
read count data (Willis, 2019). However, some definition of taxa
is often necessary for characterizing the composition of microbial
communities. In this primer, we use the term taxon to denote
approximately species-level designations, such as operational
taxonomic unit (OTU) or amplicon sequence variant (ASV).

Once sequences have been categorized to approximate
species-level groups, the interpretation of their read count
abundances is accompanied by assumptions that violate many
standard parametric statistical analyses. For example, zero
reads from a sample mapping to a particular taxon is
commonplace in microbiome sequence results, yet it typically
remains unclear if a zero indicates evidence of absence (e.g.,
taxon not present in sample, incapable of transcribing a
gene) or absence of evidence (e.g., below detection, inadequate

FIGURE 1 | Independent random walks yield apparently significant correlations (when evaluated as independent pairs) despite no underlying interactions, in contrast

to residuals (i.e., point-to-point differences). (A) Time-series of independent random walks, xi (t). (B) Correlation structure of independent random walks. (C)

Distribution of correlation values for an ensemble of independent random walks, with p-value = 0.05 marked (red lines). (D) Time-series of the residuals of

independent random walks, i.e., 1xi (t) = xi (t+ 1t)− xi (t). (E) Correlation structure of residual time-series. (F) Distribution of correlation values for the same ensemble

as (C) but taken between the residual time-series, with p-value = 0.05 marked (red lines).

sequencing depth) (Paulson et al., 2013; Weiss et al., 2017).
In addition, sequence data is compositional, and therefore
does not include information on absolute abundances (Gloor
et al., 2017). As a result, compositional data has an intrinsic
negative correlation structure, meaning that the increase in
relative abundance of one community member necessarily
decreases the relative abundances of all other members
(Silverman et al., 2017).

The issues of categorization and sampling depth apply to
all kinds of microbiome data sets. In particular, temporal
autocorrelation presents an additional complexity tomicrobiome
time-series, in that each observation is dependent on the
observations previous to it in time. Autocorrelation also
precludes the use of many standard statistical techniques, which
assume that observations are independent. In Figure 1, we
show how autocorrelation leads to high incidences of spurious
correlations among independent time-series.

Complex microbiome data demand nuanced analysis. In
this paper, we provide a condensed synthesis of principles
to guide microbiome time-series analysis in practice. This
synthesis builds upon and is complementary to prior efforts
that established the importance of analyzing temporal
variation for understanding microbial communities (e.g.,
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Faust et al., 2015). Here, we introduce core statistical methods
for microbiome time-series analysis as a starting point and
suggest further reading on other possible methods. Our
process is described in detail via several code tutorials
at https://github.com/WeitzGroup/analyzing_microbiome
_timeseries that include analytic tools and microbiome time-
series data, and provide a software skeleton for the custom
analysis of microbiome time-series data. These tutorials
include the basics of discovering underlying structure in
high-dimensional data via statistical ordination and divisive
clustering, non-parametric periodic signal detection in temporal
data, and model-based inference of interaction networks using
microbiome time-series.

2. METHODS

2.1. Overview of Tutorials
We describe three distinct categories of time-series analyses:

clustering, identifying periodicity, and inferring interactions.

For each category, we demonstrate analyses that answer
an ecologically motivated question (Figure 2). Each
tutorial emphasizes normalization methods specifically

developed for the analysis of compositional data. Each

tutorial also addresses challenges related to multiple
hypothesis testing, overdetermination, and measurement

noise. Interactive, self-contained tutorials that execute the

workflows described in the manuscript are available in

FIGURE 2 | Workflow of techniques implemented in each module. The top layer considers questions of interest for a particular study. In the second layer, data

normalizations are listed as implemented in module I and module II. For module III, we use synthetic data and instead list modeling inputs. The third layer shows the

analytical techniques used in this primer, which we note is not exhaustive. These techniques provide some insight into the initial question asked, as described in the

fourth layer.
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R and Matlab https://github.com/WeitzGroup/analyzing
_microbiome_timeseries.

2.2. Dataset Sources
For modules I and II, time-series data are derived from an 18S
rRNA gene amplicon data set from Hu et al. (2018), in which
samples were collected at 4 h intervals for a total of 19 time
points (Lagrangian sampling approach). Input data are in the
form of sequence count tables, where samples are represented
as columns and each row is a taxonomic designation (OTU or
transcript ID) with sequence counts or read coverage abundance
per taxon (here we use “taxon” as shorthand). The code in each of
these modules can be customized for use on other data, although
for the purposes of analyzing any temporal-scale variability,
samples must be taken at a frequency sufficiently shorter than the
temporal scale of interest (e.g., daily temporal variability requires
sub-daily sampling, seasonal temporal variability requires sub-
seasonal sampling).

Formodule III, time-series data are simulated from a synthetic
microbial community, for which the “true” network is known.
The techniques in this module can be applied to time-series data
as has been done in a handful of studies (Mounier et al., 2008;
Stein et al., 2013; Fisher and Mehta, 2014; Marino et al., 2014;
Dam et al., 2016; Jover et al., 2016; Ovaskainen et al., 2017; Xiao
et al., 2017; Faust et al., 2018; Venturelli et al., 2018).

2.3. Normalization
2.3.1. Log-Ratio Transformations
Microbiome data tend to have three properties: (1) they are sum-
constrained (all reads sum to the sequencing depth), (2) they
are non-negative, and (3) they are prone to heteroskedasticity
(the variance of the data is not equal across its dynamic range).
These attributes of microbiome data violate some underlying
assumptions of traditional statistical techniques. Transforming
microbiome data into log-ratios (Aitchison, 1983) can mitigate
these problems by stabilizing variance and distributing values
over all real numbers, as well as mitigating statistical bias related
to sequencing protocols (McLaren et al., 2019).

The simplest log-ratio transformation requires selecting some
particular focal variable/taxon in the composition, dividing all
other variables in each sample by the abundance of the focal
taxon, and taking the natural logarithm. Mathematically:

LRi = ln(xi)− ln(xfocal) (1)

This kind of log-ratio transformation eliminates negative
constrained covariances, but all variables become relative
to the abundance of an arbitrary focal taxon. Instead of
selecting a focal taxon, the Centered Log-Ratio Transformation
constructs ratios against the geometric average of community
abundances (Egozcue et al., 2003).

CLRi = ln(xi)−
1

n

n
∑

k=1

ln(xk) (2)

This transformation retains the same dimensionality as the
original data, but is also still sum constrained:

n
∑

k=1

CLRk =

n
∑

k=1

(

ln(xk)−
1

n

n
∑

k=1

ln(xk)

)

(3)

n
∑

k=1

CLRk =

n
∑

k=1

ln(xk)−
n

n

n
∑

k=1

ln(xk) (4)

= 0 (5)

Log-based transformations require some caution when dealing
with data sets with large numbers of zeros, namely because
the logarithm of zero is undefined. To overcome this problem,
implementations usually employ some pseudocount method,
i.e., adding a small number to all observations to make the
log of zero observations calculable. Adding a pseudocount
disproportionately affects rare taxa, where the magnitudes of
differences between samples may be similar to the magnitude of
the added pseudocount and therefore obscured (Tsilimigras and
Fodor, 2016).

2.3.2. Z-Score Transformation
Another transformation that converts data from counts to a
continuous real-valued number is the z-score transformation,
achieved by applying this relationship:

zi =
xi − µx

σx
(6)

where xi is an observation,µx is the mean of population x, and σx
is the standard deviation of x. Often, µx and σx are estimated by
the sample mean and standard deviation. The z-score is how far,
in terms of number of standard deviations, a given observation
is from the sample mean Cheadle et al. (2003). Of note, this
transformation places variables of different magnitudes on a scale
with the same range.

2.3.3. Variance Stabilizing Transformation
Log-ratio-based transformations in microbiome applications
broadly serve the purpose of making the data more compatible
with statistical methods that assume continuous/real-valued
data and errors with equal variances. Such transformations are
necessary because of the heteroscedasticity of sequence count
data. A different approach to circumvent heteroscedastic data is
to directly estimate a function which describes how the variance
in the data increases as a function of the mean. Alternatively, it
is possible to use a variance-stabilizing transformation, e.g., as
implemented by the DESeq2 software package (Love et al., 2014).
While the variance-stabilizing transformation is similar to a log
transformation in the case of large counts, it is better suited to
deal with zeros and does not rely on a pseudocount.

2.3.4. Distance Metric
Multivariate microbiome data is not necessarily easy to
summarize or visualize in two or three dimensions. Therefore, to
summarize and explore data, we want to recapitulate the high-
dimensional properties of the data in fewer dimensions. Such
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low-dimensional representations are distance-based. A distance
matrix is obtained by applying a distance metric to all pairwise
combinations of observations. For example, given data matrix X,
the Euclidean distance between observations Xi and Xj is:

d(X)ij =
√

(xi − xj)2 (7)

Different metrics measure distance using different attributes
of the data [for comprehensive reviews of ecological distance
metrics we recommend (Kuczynski et al., 2010; Buttigieg
and Ramette, 2014)]. For example, only presence/absence of
different community members is used to calculate Jaccard
distance (Jaccard, 1912) and unweighted Unifrac (Lozupone
and Knight, 2005), which also takes into account phylogenetic
relationships between taxa. These metrics can be calculated
on count data without transformation, and capture changes
in the presence of rare taxa. On the other hand, Euclidean
distance emphasizes changes in relative composition. Weighted
Unifrac distance incorporates phylogenetic information as well
as changes in relative abundances. Euclidean distance performed
on log-ratio transformed data is analogous to Aitchinson’s
distance (Aitchison et al., 2000), which is recommended for the
analysis of the difference of compositions.

In addition to distance metrics, sample-to-sample difference
can also be compared by dissimilarities, such as the Bray-Curtis
dissimilarity, which is defined between sample i and sample j as:

BCij = 1−
2
∑n

k=1min(si,k, sj,k)
∑n

k=1 si,k +
∑n

k=1 sj,k
(8)

where n is the total number of unique taxon observed
between both samples, and si,k is the abundance of taxon k
in sample i. Bray-Curtis is widely used in ecological studies
to measure differences in community composition (Bray and
Curtis, 1957). A dissimilarity score of 0 means the two samples
had identical communities, and a dissimilarity score of 1 means
the two samples had no taxa in common. However, Bray-
Curtis dissimilarity does not obey the triangle inequality (Gower
and Legendre, 1986), which means that multivariate methods
that assume distance matrices as input (e.g., NMDS) may yield
uninterpretable results. For example, two samples that each have
a Bray-Curtis dissimilarity of 0.05 from a third sample may have
a Bray-Curtis dissimilarity of 1 from each other.

2.4. Ordination
2.4.1. Covariance-Based Ordination
Statistical ordination can be used to explore multivariate
microbiome data. An ordination is a transformation that
presents data in a new coordinate system, e.g., making high-
dimensional data visualizable in two or three dimensions.
Principal Components Analysis (PCA) is a method which selects
this coordinate system via the eigen decomposition of the
sample covariance matrix, i.e., which is equivalent to solving the
factorization problem:

Qm×m = Um×mDm×mU
T
m×m. (9)

Here, Q is the sample by sample covariance matrix, D is a
diagonal matrix containing the eigenvalues of Q, and U is a
matrix of the eigenvectors associated with those eigenvalues.
For PCA, the eigenvectors (or principal axes) are interpreted
as new, uncorrelated variables, which are an orthogonal linear
combination of the original m variables (Hotelling, 1933). Each
of the eigenvalues corresponds to one of the eigenvectors and
refers to its magnitude, which is proportional to the amount
of variance in the data explained by that eigenvector. To plot
a PCA, we select a subset of eigenvectors with the largest
associated eigenvalues, apply the linear combination of variables
contained in those eigenvectors to each observation, and then
plot the observations with the resulting coordinates. Importantly,
basic PCA relies on a least-squares approach for solving a
linear model with the observed variables, which poorly models
heteroscedastic non-negative data, such as taxon sequence
counts. Non-linear PCA (Kramer, 1991) is one extension of
PCA that can discover more sophisticated correlation structure
between observed variables.

Principal Coordinates Analysis (PCoA), based on PCA, is
another technique that allows for more flexibility in ordination
modeling (Buttigieg and Ramette, 2014; Gloor et al., 2017).
PCoA, on the other hand, uses the same procedure as PCA,
except on a sample by sample distance matrix is decomposed
instead of the sample covariance matrix (Borcard and Legendre,
2002), using the statistical properties of the distances instead
of the original observed data. The choice of distance metric
allows for the implementation of PCoA on either transformed
(in which distance, such as euclidean may be suitable) or raw
count (in which distance, such as Jaccard or unweighted Unifrac
may be suitable) microbiome data. For both PCA and PCoA,
scaling the data, for example with a z-score transformation,
is recommended so that no one variable disproportionately
influences the ordination (Holmes and Huber, 2019).

2.4.2. Non-metric Multidimensional Scaling
Non-metric Multidimensional Scaling (NMDS) is an alternative
ordination method which forces data to be projected into a
pre-specified number of dimensions (Kruskal, 1964). NMDS
projects high-dimensional data into a lower-dimensional space
such that all pairwise distances between points are preserved. To
implement NMDS, we solve the optimization problem:

X̂′ = argmin ‖d(X)− d(X′)‖2 (10)

whereX is the original data matrix andX′ is the data in the lower-
dimensional space. Here d is a distance metric (see Distance
section). Because the sum of pairwise distances is the quantity
being minimized by NMDS, this method is strongly affected
by outliers, so data should be examined for outliers prior to
NMDS ordination. Additionally, unlike PCA and PCoA, where
the new sample coordinates are directly related to the measured
variables, NMDS coordinates have no meaning outside of their
pairwise distances. Another important difference betweenNMDS
and PCA is that the NMDS is enforced to fit the ordination
to a fixed number of dimensions, which means the projection
is not guaranteed to be a good fit. Stress (Kruskal, 1964) is the
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quantification of how well the NMDS projection recapitulates the
distance structure of the original data:

Stress =

√
∑

(d(X)− d(X′))2
∑

d(X)2
(11)

The closer the stress is to 0, the better the NMDS performed.

2.4.3. Clustering
Clustering defines relationships between individual data points,
identifying a collection of points that are more similar to
each other than members of other groups. Many clustering
algorithms have been developed for the analysis of time
series data (comprehensively reviewed in Liao, 2005). These
algorithms include hierarchical methods, such as agglomerative
clustering and k-medoids (McMurdie and Holmes, 2014;
Gülagiz and Sahin, 2017), topological methods, such as
self-organizing maps (Kohonen, 1990; Kavanaugh et al.,
2014),and density-based methods, such as the DBSCAN
algorithm (Khan et al., 2014). As a working example, we
implement two types of hierarchical distance-based clustering
algorithms, the partitioning about medoids (PAM or k-medoid)
algorithm (Kaufman and Rousseeuw, 2009), and hierarchical
agglomerative clustering (Murtagh, 1985). A hierarchical
clustering method is one which works by partitioning the data
into groups with increasingly similar features. The number of
groups to divide the taxa into is determined prior to calculation,
which begs the question: how many groups? This question can
be quantitatively assessed using several indices. A clustering
algorithm can be implemented using a range of possible
numbers of clusters, and then comparison of these indices will
indicate which number has a high degree of fit without over-
fitting. These indices can also be used to help choose between
clustering algorithms.

One such index is sum of squared differences, which is related
to the total amount of uniformity in all clusters, defined as LaTeX
error this align should read:

SSE =

nclusters∑

k=0

nmembers∑

i=0





Cluster member
︷︸︸︷

xi,k −

Cluster center
︷︸︸︷

ck





2

(12)

A common heuristic to identifying an optimal number of clusters
is to plot SSE vs. k and look for where the curve “elbows,” or where
the decrease slows down (Liu et al., 2010; Gülagiz and Sahin,
2017) (see clustering tutorial).

Another way to evaluate the efficacy of clustering is via the
Calinski-Harabasz index (Calinski and Harabasz, 1974), which is
the ratio of the between-cluster squared distances to the within-
cluster squared differences (Liu et al., 2010):

CH =

B(x)
k−1

W(x)
n−k

(13)

where B(x) is the between cluster sum of square differences,W(x)
is the within cluster sum of square differences, n is the number

of taxa, and k is the number of clusters. This index accounts for
the number of clusters the data are partitioned into as well as
the overall variation in the data as a whole. A large value of CH
indicates that the between-cluster differences are much higher
than the average differences between the dynamics of any pair of
taxa in the data, so a maximum value of CH indicates maximum
clustering coherence.

The “Silhouette width” is another index which allows for
fine-scale examination of the coherence of individual taxon to
their cluster. Silhouette width is therefore helpful for identifying
outliers in clusters (Liu et al., 2010). The silhouette width for any
given clustering of data is calculated for each taxon by taking
the ratio of the difference between that taxon’s furthest in-cluster
neighbor and nearest out-of-cluster neighbor to the maximum of
the two, such that

SWi =

sum square diff out of cluster
︷ ︸︸ ︷

min(d(xi, xj/∈C)) −

sum square diff in cluster
︷ ︸︸ ︷

max(d(xi, xj∈C))

max(min(d(xi, xj/∈C)),max(d(xi, xj∈C)))
(14)

where C is all taxa in the cluster, and d is the sum square
difference operator. The widths can range from −1 to 1.
Silhouette widths above 0 indicate taxa which are closer to any
of their in-cluster neighbors than any out-of-cluster taxa, so
having as many taxa with silhouette widths above 0 as possible
is desirable. Any taxon with particularly low silhouette widths
compared to the rest of their in-cluster neighbors should be
investigated as potential outliers.

2.5. Periodicity Analysis
Periodicity analysis reveals whether or not a signal exhibits
a cyclical periodic change in abundance. Approaches to
identifying periodic signals include parametric methods and
non-parametric methods. The multi-taper method is an
example of a parametric method, which uses autoregression
to find periodic signals in low signal-to-noise data (Mann
and Lees, 1996) (for a software implementation in R
https://cran.r-project.org/web/packages/ssa/index.html). Other
examples of parametric methods include harmonic
regression (Yang and Su, 2010; Ottesen et al., 2014), methods
based on frequency spectral decomposition (Yang et al., 2011),
and a widely used (Aylward et al., 2017; Hughes et al., 2017;
Wilson et al., 2017; Hu et al., 2018) non-parametric method,
“Rhythmicity Analysis Incorporating Non-parametric methods”
(RAIN) (Thaben and Westermark, 2014).

The RAIN method identifies significant periodic signals
given a pre-specified period and sampling frequency. RAIN
then conducts a series of Mann-Whitney U tests [rank-based
difference of means (Mann and Whitney, 1947)] between time-
points in the time-series over the course of one period. For
example, one such series of tests might answer the question:
are samples at hours 0, 24, 48 higher in rank than the samples
at hours 4, 28 (Hotelling, 1933). Then, the sequence of ranks
is examined to determine if there is a consistent rise and
fall about a peak time. For this procedure to work, RAIN
relies on the assumption that time-series are stationary, or
have the same mean across all sampled periods. One way to
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normalize microbiome time-series to better fit this assumption is
detrending, or regression normalization, which removes longer-
term temporal effects, such as seasonality. A first approximation
of non-stationary linear processes can be made by taking the
linear regression of all time-points with time as the independent
variable, then subtracting this regression from the time-series.
This operation stabilizes the data to have a similar mean across
all local windows.

In order to assess periodicity for an entire microbial
community, we may conduct many hypothesis tests. The more
tests that are performed at once, the higher the probability of
finding a low p-value due to chance alone (Streiner, 2015). Some
form of multiple testing correction is therefore encouraged. False
Discovery Rate (FDR) based methods are recommended for
high-throughput biological data over more stringent Familywise
Error Rate corrections (Noble, 2009; Glickman et al., 2014).
The method employed here is the Benjamini-Hochberg step-
up procedure (Benjamini and Yekutieli, 2001) (for graphical
demonstration see the “periodicity” tutorial in the associated
software package). P-values are ranked from smallest to largest,
and all null hypotheses are sequentially rejected until test kwhere:

pk ≥
k

m
α (15)

where m is the total number of tests conducted, and α

is the desired false discovery rate amongst rejected null
hypotheses. Alternative p-value adjustmentmethods designed for
sequencing data have been proposed (Conneely and Boehnke,
2007) which take into account correlation between tests,
although simulations (Stevens et al., 2017) demonstrate that for
moderate effect sizes, methods, such as Benjamini-Hochberg
generally control false discoveries as expected, if not slightly
more conservatively.

2.6. Inferring Interactions
2.6.1. Model Specification of Ecological Dynamics
Inferring interactions using a model-based approach requires
the specification of ecological (or eco-evolutionary) dynamics.
Model specification requires extensive knowledge of the system
of interest. Furthermore, models can be specified at diffierent
levels of abstraction regarding taxonomic resolution (e.g. Storch
and Šizling, 2008) and biological mechanisms (e.g. Vincenzi et al.,
2016 ), leading to challenges in interpretability (Cao et al., 2017).
Alternatively, data-driven identification of dynamical systems is
an active area of research (e.g. Brunton et al., 2016; Mangan
et al., 2016, 2017), providinga possible way forward when an
appropriate model is not known a priori.

Currently, widely used models include some variation of
Lotka-Volterra dynamics where each taxon is represented as
a population whose abundances vary in time given density-
dependent feedback with other populations (Mounier et al.,
2008; Stein et al., 2013; Fisher and Mehta, 2014; Marino et al.,
2014; Dam et al., 2016; Jover et al., 2016; Ovaskainen et al.,
2017; Xiao et al., 2017; Faust et al., 2018; Venturelli et al.,
2018). Here, we focus on a variant of this class of problem, i.e.,
virus-microbe dynamics.

The microbe-virus ecological dynamics are modeled via a
system of differential equations

Ḣi = riHi

(

1−
1

K

NH∑

i′

Hi′

)

−Hi

NV∑

j

MijφijVj (16)

V̇j = Vj

NH∑

i

MijφijβijHi −mjVj (17)

where Hi and Vj denote the densities of host (i.e., microbe) type
i and virus type j as they change over time. There are NH host
types and NV virus types, each defined by their life history traits:
growth rate ri for host type i, decay rate mj for virus type j, and
a community-wide host carrying capacity K. The interactions
between hosts and viruses are modeled as antagonistic infections
culminating in the lysis (i.e., death) of the host cell and release
of new viruses. For each pair host type i and virus type j,
the infection is quantified by the interaction coefficient Mij,
adsorption rate φij and burst size βij. The interaction coefficient is
either 1 (the virus infects the host) or 0 (the virus does not infect
the host) (Jover et al., 2013; Korytowski and Smith, 2017).

We randomly sample the life history traits and interaction
parameters such that they are biologically plausible and guarantee
local coexistence of all host and virus types (as described in
Jover et al., 2016). We simulate the time-series of the resulting
dynamical system using ODE45 in Matlab.

2.6.2. Objective Function for Model-Based Inference
We seek the interaction network that minimizes the difference
between observed dynamics in densities and those predicted by
the dynamical model. We use the virus equations (Equation 17)
to derive the objective function

min

∣
∣
∣
∣

∣
∣
∣
∣
W −

(

M̃T −Em
)
(

H
E1

)∣
∣
∣
∣

∣
∣
∣
∣
2

+ λ ||∼ M||1 (18)

subject to M̃ij > 0 (19)

mj > 0 (20)

where Wjk is the per-capita derivative estimate of virus type j at
sampled time tk, Hik is the density of host type i at sampled time
tk, M̃

T
ij = Mijφijβij is the weighted infection coefficient between

virus type j and host type i and mj is the decay rate of virus type
j (as described in Jover et al., 2016). We seek to estimate the
unknownweighted infection network M̃, using sampled densities
of hosts H and virusesW over time.

To prevent over-fitting, we introduce a hyper-parameter λ,
which can be tuned to control the sparsity of the inferred
network M. Other approaches can also be used to identifya
balance between goodness of fit and model complexity, such as
k-crossfold validation or information criterion (e.g. AIC). For an
exampleof using k-crossfold validation, see Stein et al. (2013).

2.6.3. Interaction Inference via Convex Optimization
In practice, we can solve theminimization problem (Equation 20)
and infer the interaction network M̃ using convex optimization.
Convex optimization is a well-developed technology for
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efficiently and accurately solving minimization problems of a
particular form which are guaranteed to have a global minimum.
Here, we use a freely available third-party software package for
Matlab available for download at http://cvxr.com/cvx/ (Grant
and Boyd, 2008, 2014) (also available for implementation in
Python at https://www.cvxpy.org Diamond and Boyd, 2016;
Agrawal et al., 2018). The details of implementation are described
in Jover et al. (2016) and in the accompanying code tutorial.

In addition to convex optimization, there are many methods
for inferring the interaction network, and dynamical systems
parameters in general, from time-series. Two recent examples
include MCMC fitting (Thamatrakoln et al., 2019; Zobitz et al.,
2011) and Tikhonov regularization Stein et al. (2013).

3. RESULTS AND DISCUSSION

3.1. Exploring Shifts in Daily Protistan
Community Activity
The North Pacific Subtropical Gyre (NPSG) is widely studied as a
model ocean ecosystem. Near the surface, the NPSG undergoes
strong daily changes in light input. Abundant microorganisms
in the NPSG surface community, such as the cyanobacteria
Prochlorococcus and Crocosphaera, adapt metabolic activities,
such as cell growth and division to particular times of
day (Aylward et al., 2015; Ribalet et al., 2015; Wilson et al., 2017).
However, the extent to which these daily cycles and the timings
of particular metabolic activities extend to protistan members
of the NPSG surface ecosystem remains less characterized. To
this end, we examined an 18S rRNA gene diel dataset from a
summer 2015 cruise sampled every 4 h for 3 days on a Lagrangian
track near Station ALOHA (Hu et al., 2018). In this expedition,
both rRNA and rDNA were sampled to explore differences in
metabolic activity for particular community members at different
times of day (Hu et al., 2016). Previous work (Hu et al., 2018)
found shifts in the metabolically active protistan community,
including phototrophic chlorophytes and haptophytes as well as
parasitic Syndiniales.

In this analysis, we asked whether or not the metabolically
active component of the microbial community is unique to
different times of day. Therefore, we focused specifically on the
18S rRNA gene data as a proxy for overall functional activity
of protistan taxa (Charvet et al., 2014; Hu et al., 2016; Xu
et al., 2017). We used statistical ordination to explore underlying
sample covariance. Samples that appear near each other in a
statistical ordination have similar multivariate structure. In the
clustering tutorial we present several methods for performing
ordination, e.g., NMDS and PCoA (see Methods: Ordination).
In Figures 3B,C, we construct a PCoA using Jaccard distance
to emphasize changes in presence/absence of rRNA signatures,
and find that the first 3 Principal Coordinates explain 64.76%
of the variation amongst all samples. Samples from 2 PM and 6
AM strongly differentiate along the first coordinate axis, while
samples at 10 AM settle between them. The ordination suggests
that the taxa which are transcribing the 18S rRNA gene at 2
PM are fairly distinct from those transcribing at 6 AM, while
10 AM is intermediate between the two. We also constructed a
corresponding NMDS ordination using the same distance matrix

that we constrained to two dimensions. The pattern of separation
between 2 and 6 PM is maintained in this projection, reinforcing
its importance as an underlying structural feature of these data.
Next, we constructed an additional PCoA ordination on the
Euclidean distance matrix of isometric log-ratio transformed
18S rRNA counts (see clustering tutorial for implementation).
We select the isometric log-ratio transformation to alleviate
the constraint of compositionality and to scale the data to
a similar range of magnitudes, making Euclidean distance a
suitable choice of distance metric. As seen in the scree plot
in Figure 3E, while the first Principal Coordinate explained
about 25% of the variation between samples, the following four
Principal Coordinates each explained around 5% of the variation.
Despite the low proportion of total variance explained, strong
separation emerges between 2 PM and 6 AM samples along
the largest coordinate axis. This ordination qualitatively agrees
with a corresponding NMDS ordination (Figure 3D) forced into
two dimensions.

Noting the differences in active community members between
2 PM and 6 AM, we identified co-occurring taxa by clustering
their temporal dynamics after variance-stabilization and scaling
normalizations (see clustering tutorial for discussion). Based on
comparisons of sum squared errors and the CH index introduced
in Methods, we opted to divide the OTUs into eight clusters
(Figure 4 for composition and representative temporal signature,
tutorial for details on cluster selection). After comparing cluster
evaluation metrics for hierarchical agglomerative clustering and
a k-medoids algorithm, we conducted this clustering with
k-medoids (see clustering tutorial for implementation). This
method allows us to identify the time-series of the median taxon
for each cluster as a representative shape for the cluster’s temporal
dynamics. We observe 2 PM peaks associated with clusters 2, 3,
6, and 8 and increased nighttime expression levels in cluster 1.
These temporal patterns coincide with those surmised during our
exploratory ordination of the community sampled at each time
point (where 2 PM and 6 AM samples formed distinct clusters,
Figure 3). Upon closer inspection of cluster membership (bar
plots in Figure 4A), we find cluster 3 contains 65/105 (62%) of
haptophyte OTUs and 18/33 (55%) of archaeplastids, including
members of chlorophyta.

These results suggest temporal niche partitioning within the
complex protistan community, consistent with the findings of Hu
et al. (2018). By clustering results with respect to temporal
patterns, we were able to parse the complex community to reveal
the identities of key taxonomic groups driving the observed
temporal patterns. The taxonomic composition of cluster 3
was made up of haptophytes and chlorophytes. Photosynthetic
chlorophytes have previously been found to be correlated with
the light cycle (Poretsky et al., 2009; Aylward et al., 2015) and
the temporal pattern found in Hu et al. (2018) was similar to
the standardized expression level (Figure 4B), as was the inferred
relative metabolic activity of haptophytes.

3.2. Identifying Protists With Diel
Periodicity in 18S Expression Levels
The metabolic activity of microbes is a critical aspect of the
basis of marine food webs (Karl, 2002). In the euphotic zone,
microbial populations are inherently linked to the light cycle as
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the energy source for metabolism. Identifying diel patterns in
protists is particularly interesting due to widespread mixotrophy,
where a mixotroph may ingest prey during periods of limiting
inorganic nutrients or light (Nygaard and Tobiesen, 1993;
Finkel et al., 2009; McKie-Krisberg et al., 2015). Additionally,
protistan species encompass a wide range of cell sizes, thus
the synchronization of light among photoautotrophs may reflect
species-specific differences in nutrient uptake strategies (Hein
et al., 1995; Gerea et al., 2019). Based on the observation of
sample differentiation between the middle of the day (2 PM)
and dawn (6 AM) from exploratory ordination and clustering
analyses described in 4.1, we further investigated the hypothesis
that some protists may exhibit a 24-h periodicity in their 18S
rRNA gene expression levels.

The high-resolution nature of the sequencing effort in this
study enabled us to ask which members of the protistan
community had 24-h periodic signals. Following normalization
(CLR, Equation 2) and detrending to center mean expression
levels across the entire time series (see Periodicity tutorial and
Methods: Periodicity Analysis), we used RAIN to assess the
periodic nature of each OTU over time. Results from RAIN

analysis reported p-values for each OTU at the specified period
as well as estimates of peak phase and shape. The null hypothesis
tested by RAIN is that the observations do not consistently
increase, then decrease (or vice-versa) once over the course of a
period. Rejecting the null hypothesis, then, asserts a time-series
has one peak during the specified period. To determine which
OTUs were found to have significant periodicity we rejected
the null hypothesis at 5% FDR level (Equation 13). Figure 5
illustrates examples of two protistan OTUs with significant
diel periodicity, a haptophyte and stramenopile. Trends in
CLR normalized values for each OTU indicated that there was
a repeated and temporally coordinated relative increased in
the metabolic activity of both taxa at 2 PM (Figure 5). Both
groups have previously been found to respond to day-night
environmental cues, which is also supported by Hu et al. (2018).

Identities of OTUs found to have significant diel periodicity
included taxa with known phototrophic and/or heterotrophic
feeding strategies. This suggests that taxa with diel changes in
metabolic activity may be responding to light or availability
of prey. More specifically, several known phototrophs or
mixotrophs, including dinoflagellates, haptophytes, and

FIGURE 3 | Comparing statistical ordination techniques for 18S community compositions across samples. (Top row) Ordinations using Jaccard distance for

comparison of presence/absence of community members between samples. (Bottom row) Ordinations using Euclidean distance on isometric log-ratio transformed

data. (A,D) Non-metric Multidimensional Scaling (NMDS) projection in two dimensions, arbitrary units. Convex hulls have been drawn to emphasize ordinal separation

of 6 AM (yellow), 10 AM (light green), and 2 PM (teal) samples. (B,E) Scree plots for PCoA ordinations. Each bar corresponds to one axis of the PCoA, the height is

proportional to the amount of variance explained by that axis. We decided the first 3 axes were necessary to summarize the data in these cases [explaining a total of

(B) 64.76% and (E) 37.54% of the variance]. Shading of bars indicate our interpretations of which axes are important to show (black), which are unimportant (light

gray), and which are intermediate cases (medium gray). (C,F) PCoA ordinations using the selected axes after scree plot examination. Each point is one sample, the

color of the point indicates the time of day at which the sample was taken (colors correspond to NMDS projections).
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stramenopiles were found to have significant diel periodicity.
Interestingly, there were a number of OTUs identified as
belonging to the Syndiniales group (Alveolates) which are

obligate parasites. Diel rhythmicity among these parasites
suggests that they may be temporally coordinated to hosts that
also have a periodic signal, which includes dinoflagellates.

FIGURE 4 | Characterization of protist clusters. (A) Cluster membership based on the phylum or class level protistan taxonomy. The “Other/unknown” category

includes sequences with non-specific identity, such as “uncultured eukaryote” and “Unassigned” denotes sequences with no taxonomic hit (< 90% similar to

reference database). (B) Representative taxon time-series for each cluster. Y-axis is z-score (see Methods: Normalizations), so a value of 0 corresponds to mean

expression level. White and shaded regions represent samples taken during the light (white) dark cycle (shaded).

FIGURE 5 | Centered Log Ratio (CLR)-transformed, detrended 18S rRNA gene levels (y-axes) over time (x-axes) for a subset of OTUs found to have significant diel

periodicity (RAIN analysis). A value of 0 denotes the mean expression level for a given OTU. Included OTUs belong to the (A) Haptophyte and (B) Stramenopile

groups. White and shaded regions represent samples taken during the light (white) dark cycle (shaded).
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3.3. Inferring Interactions in a Synthetic
Microbial Community
The goal of an inference method is to quantify ecological
interactions between pairs of populations or taxonomic
designation of interest. The result of such analysis is an
interaction network for the community of interest. In the
context of microbial communities, “interaction” can be broadly
defined and include, for example, direct competition for a
nutrient, toxin-mediated attacks, or cooperation via exchange
of secondary metabolites. Besides pairwise interactions between
microbes, other interactions may be of interest, such as higher-
order interactions [e.g., three-way microbial exchanges (Fisher
and Mehta, 2014; Bairey et al., 2016; Grilli et al., 2017)],
pressures from other trophic levels (e.g., grazers, viruses), or

driving via environmental variables (e.g., antibiotics, nutrient
flux). Inferring interaction networks is a challenging task,
in part due to autocorrelation inherent in time-series data.
Time-series which are highly autocorrelated appear correlated
with one another, even when there is no underlying causal
relationship (see Figure 1). This leads to high false-positive
rates of inferred interactions, particularly for correlation-based
inference methods (Kurtz et al., 2015; Weiss et al., 2016; Coenen
and Weitz, 2018; Carr et al., 2019; Hirano and Takemoto, 2019;
Mainali et al., 2019; Thurman et al., 2019).

Model-based inference methods are built from dynamical

models of microbial community ecology. As such, temporal
variation and structure is incorporated into any model-

based inference framework, accounting for potentially difficult

FIGURE 6 | Inferring the microbe-virus infection network from time-series data for a 10 by 10 synthetic microbe-virus community. (A) Simulated host (left) and virus

(right) densities over time. (B) Host densities (left, H) and transformed virus differences (right, W), for input into the objective function (Equation 20). (C) The original

“ground-truth” interaction network (left) and the reconstructed network (right). In the interaction matrix, the rows denote hosts, the columns represent viruses, and the

colors denote the scaled intensity of interactions (where white denotes no interaction).
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statistical properties, such as autocorrelation. Model-based
inference has been shown to perform favorably in in silico
studies (Mounier et al., 2008; Stein et al., 2013; Fisher and
Mehta, 2014; Marino et al., 2014; Dam et al., 2016; Jover
et al., 2016; Ovaskainen et al., 2017; Xiao et al., 2017; Faust
et al., 2018; Venturelli et al., 2018). Major challenges remain
for implementing model-based inference in practice, including
requirements of high time-resolution data and a detailed
understanding of the biological and ecological mechanisms
at play in order to correctly specify the underlying model.
Futhermore, evaluating accuracy of inferred networks remains
dificult, in part because difierent networks can produce similar
patterns of ecological dynamics (Cao et al., 2017). Despite
challenges, model-based inference has shown potential to
accurately infer interaction networks in a computationally
efficient and scalable manner (see one such application in Stein
et al., 2013).

Here, we demonstrate the use of a model-based inference
method on a synthetic microbial community with viruses
(methods and code adapted from Jover et al., 2016). We use
a synthetic community so that the inferred network can be
compared to the original, “ground-truth” network. Using our
model for microbe-virus ecological dynamics (Equation 17),
we simulate population time-series of the community over
the course of several days. We sample the simulated time-
series to use as data inputs into the minimization problem
(Equation 20), from which we estimate the weighted microbe-
virus infection network M̃. Simulated time-series, data inputs,
original and reconstructed networks are shown in Figure 6).
As shown, the reconstructed network closely resembles the
original, with only minor quantitative differences (i.e., in the
strengths of the interactions). We caution that the choice (and
parameterization) of ecological dynamics is critical to developing
a model-based approach, for alternative examples see Mounier
et al. (2008), Stein et al. (2013), Fisher and Mehta (2014),
Marino et al. (2014), Dam et al. (2016), Jover et al. (2016),
Ovaskainen et al. (2017), Xiao et al. (2017), Faust et al. (2018),
and Venturelli et al. (2018).

4. CONCLUSION

The aim of this primer was to integrate analytic advances
together to serve practical aims, so that they can be transferred
for analysis of other high resolution temporal data sets.
Conducting high-resolution temporal analyses to understand
microbial community dynamics has become more feasible in
recent years with continued advances in sequence technology.
Accordingly, specific statistical considerations should be taken
into account as a precursor for microbiome analysis. In
this primer, we summarized challenges in analyzing time-
series data and present examples which synthesize practical
steps to manage these challenges. For further reading on the
topics addressed here, we recommend: normalizations and log-
ratios (Egozcue et al., 2003; Silverman et al., 2017), distance
calculations (Willis and Martin, 2018), clustering (Kurtz et al.,
2015; Martin-Platero et al., 2018), statistical ordination (Morton

et al., 2017; Ren et al., 2017), regression (Martin et al.,
2019), vector autoregression (Opgen-Rhein and Strimmer, 2007),
periodicity detection (Ernst and Bar-Joseph, 2006), general best
practices (Holmes and Huber, 2019), and an in-depth review
of multivariate data analysis (Buttigieg and Ramette, 2014). For
inferring interactions from time-series, model-based inference
approaches have significant potential (Mounier et al., 2008; Stein
et al., 2013; Fisher and Mehta, 2014; Marino et al., 2014; Dam
et al., 2016; Jover et al., 2016; Ovaskainen et al., 2017; Xiao
et al., 2017; Faust et al., 2018; Venturelli et al., 2018). Although
correlation-based methods have been widely used for inferring
interactions, recent literature suggests that correlation-based
methods are poor indicators of interaction (Weiss et al., 2016;
Coenen andWeitz, 2018; Carr et al., 2019; Hirano and Takemoto,
2019; Mainali et al., 2019; Thurman et al., 2019). Other model-
free methods, such as Granger causality (Mainali et al., 2019)
and cross-convergent mapping (Sugihara et al., 2012), may be
useful alternatives for inference although care should be taken
that data do not violate the methods’ assumptions (McCracken
and Weigel, 2014; Baskerville and Cobey, 2017). In closing, we
hope that the consolidated methods and workflows in both R
and Matlab help researchers from multiple disciplines advance
the quantitative in situ study of microbial communities.
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Marker gene sequencing of the rRNA operon (16S, 18S, ITS) or cytochrome c oxidase

I (CO1) is a popular means to assess microbial communities of the environment,

microbiomes associated with plants and animals, as well as communities of multicellular

organisms via environmental DNA sequencing. Since this technique is based on

sequencing a single gene, or even only parts of a single gene rather than the entire

genome, the number of reads needed per sample to assess the microbial community

structure is lower than that required for metagenome sequencing. This makes marker

gene sequencing affordable to nearly any laboratory. Despite the relative ease and

cost-efficiency of data generation, analyzing the resulting sequence data requires

computational skills that may go beyond the standard repertoire of a current molecular

biologist/ecologist. We have developed Cascabel, a scalable, flexible, and easy-to-use

amplicon sequence data analysis pipeline, which uses Snakemake and a combination of

existing and newly developed solutions for its computational steps. Cascabel takes the

raw data as input and delivers a table of operational taxonomic units (OTUs) or Amplicon

Sequence Variants (ASVs) in BIOM and text format and representative sequences.

Cascabel is a highly versatile software that allows users to customize several steps of

the pipeline, such as selecting from a set of OTU clustering methods or performing

ASV analysis. In addition, we designed Cascabel to run in any linux/unix computing

environment from desktop computers to computing servers making use of parallel

processing if possible. The analyses and results are fully reproducible and documented

in an HTML and optional pdf report. Cascabel is freely available at Github: https://github.

com/AlejandroAb/CASCABEL.

Keywords: amplicon sequencing, 16S/18S rRNA gene, Illumina, community profiling, microbiome, pipeline,

snakemake

1. INTRODUCTION

High-throughput sequencing of an omnipresent marker gene, such as the gene coding for the small
subunit of the ribosomal RNA (16S for prokaryotes or 18S for eukaryotes) is a cost-efficient means
for community profiling that is affordable for nearly every lab. On current sequencing platforms,
up to hundreds of samples can be combined (multiplexed) in a single sequencing run, decreasing
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the sequencing costs per sample tremendously, and generating
massive amounts of data. Not surprisingly, community
compositions based on DNA analyses have been generated
from most of the habitats on earth, including the human
body (Human Microbiome Project Consortium, 2012), the open
ocean (Sunagawa et al., 2015), deep sea (Sogin et al., 2006),
and intracellular symbionts (Balzano et al., 2015). Moreover,
sequencing a marker gene like cytochrome c oxidase I (CO1)
or mitochondrial 12S in environmental DNA also allows to
track larger multicellular organisms, for example fish in the sea
(Hänfling et al., 2016; van Bleijswijk et al., 2020). Amplicon
sequencing can also be used to investigate active microbial
communities based on ribosomal RNA abundance instead of
the rRNA gene locus (Massana et al., 2015; Forster et al., 2016).
Typically, a short fragment of 100–600 nucleotides of the marker
gene is amplified by PCR from the DNA extract or cDNA
generated from the rRNA extract of the community, and then
sequenced by high throughput sequencing. During sequence
analysis, sequences are often grouped in Operational Taxonomic
Units (OTUs) following one of two main strategies: de novo
or closed-reference OTU picking (Westcott and Schloss, 2015).
With closed-reference OTU picking, sequences are assigned to a
sequence from a reference database given an identity threshold.
Sequences which are not similar enough to any sequence in the
database are excluded from downstream analyses.

De novo OTU picking clusters reads sharing a predefined
sequence identity, commonly 97%, yielding approximately
species resolution considering the entire 16S rRNA gene (about
1,500 nt) (Stackebrandt and Goebel, 1994). Although widely
used, its application to short read sequencing data has been
criticized because the individual variable regions of the 16S rRNA
gene have quite different taxonomic resolution for different
groups of organisms, such that it is impossible to find a general
cutoff of sequence identity which would reliably distinguish
species (Johnson et al., 2019). For eukaryotes, the situation is
similar with respect to the taxonomic resolution at a given
sequence identity threshold of the 18S gene, as this can vary
even within the same taxonomic group. For example, it has
been shown that within diatoms, Nitzschia and Thalassiosira
species can be easily separated based on the diversity of their 18S
rRNA gene (Hoppenrath et al., 2007; Rimet et al., 2011) whereas
distinct Pseudo-nitzschia and Chaetoceros species share identical
18S rRNA gene sequences (Amato et al., 2007; Balzano et al.,
2017).

In response to the criticism of OTUs, alternative methods
have been developed which model sequencing errors to estimate
the true biological sequence. DADA2 (Callahan et al., 2016) and
deblur (Amir et al., 2017) cluster reads such that the clusters
are consistent with the error model, while Minimum entropy
Decomposition (MED) (Eren et al., 2015) and Swarm (Mahé
et al., 2015) assume that sequence errors occur randomly and
they use this assumption and abundance information of unique
sequences to cluster them into supposedly biological entities. To
set them apart fromOTUs, the term “Amplicon Sequence Variant
(ASV)” has been coined for results from denoising algorithms,
such as DADA2 and Deblur, while MED uses “oligotypes” and
Swarm “swarms” for their clusters. All of these approaches do not

require setting a sequence identity threshold, and the resolution
is determined by the data, which seems to better reflect the true
state of nature (Caruso et al., 2019). However, OTU methods
are still widely being used and might deliver useful insights for
applications where lower taxonomic resolution is sufficient.

While the experimental part of community profiling studies
is fairly simple (DNA extraction, PCR), the current bottleneck is
the computational analysis of the (potentially massive) sequence
data. For scientists with little background in bioinformatics,
the amount of data and complexity of data analysis can be
overwhelming. Popular software solutions for the individual
steps from raw sequence data to an OTU or ASV table,
e.g., QIIME (Caporaso et al., 2010b), mothur (Schloss et al.,
2009), and DADA2 (Callahan et al., 2016), are not necessarily
straightforward to use. The software package mothur (Schloss
et al., 2009), which comes with its own computational
environment, and the QIIME framework (Caporaso et al., 2010b)
both require the ability to work on the command line. Analyzing
multiple sequencing libraries quickly becomes tedious for users
not proficient in implementing bash (or any other programming
language) scripts which chain the individual steps and allow
parallel processing. The ASV analysis tool DADA2 (Callahan
et al., 2016) comes as an R package, which also requires some
scripting skills. While web servers for microbial community
data analysis like SILVAngs (Quast et al., 2013) and MG-
RAST (Glass et al., 2010), NGTax2 (Poncheewin et al., 2019)
and SLIM (Dufresne et al., 2019) are easy to use, they are
inherently inflexible and also limited in throughput. QIIME2
(Bolyen et al., 2018) has command line and graphical user
interface (GUI) modes of operation and offers even a larger
choice of algorithms for data analysis than the original QIIME,
including statistical analyses of the resulting community profiles.
The GUI has limited functionality though and might not be
a convenient solution for analyzing many samples. The same
holds for recently developed GUIs like BTW (Morais et al.,
2018) and SEED2 (Vetrovský et al., 2018) which run under
Microsoft Windows, and PipeCraft (Anslan et al., 2017) which
provides a GUI running on Linux systems. For example, none
of these three provide an ASV analysis method. More recently
developed pipelines which run on the command line focus on
usability with minimal bioinformatic skills, but allowing higher
throughput than a webserver. These recent pipelines frequently
chain existing tools to make them more accessible, but often at
the cost of flexibility due to fixed parameter settings, e.g. BMPOS
(Pylro et al., 2016), BTW (Morais et al., 2018), and MetaAmp
(Dong et al., 2017), or fixed reference databases, like PEMA
(Zafeiropoulos et al., 2020). Others miss essential functionality
which requires additional tools to make them useful, e.g., PEMA
(Zafeiropoulos et al., 2020), and iMAP (Buza et al., 2019) do not
provide demultiplexing of sequence libraries.

None of the easy-to-use tools cited above allow the
analysis of sequence read pairs which are not overlapping
(DADA2 supports non-overlapping reads, but requires R
skills). Although most often amplicons are designed and
sequenced such that forward and reverse reads overlap
and can be merged into one continuous sequence, for
example the primer pair 515F (GTGCCAGCMGCCGCGGTAA),
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926R (CCGYCAATTYMTTTRAGTTT) amplifies bacterial and
archaeal 16S as well as eukaryotic 18S regions (Needham and
Fuhrman, 2016). This makes it a cost-efficient approach if both
prokaryotic and eukaryotic communities are of interest. With
marine environmental samples, the primers produce an amplicon
of on average 411 nucleotides originating from prokaryotic
sequences and an amplicon of on average 585 nucleotides derived
from eukaryotic sequences. Forward and reverse reads from the
longer eukaryotic amplicon typically do not overlap sufficiently
(current maximum read length of an Illumina MiSeq is 2 ×
300 nucleotides) to merge both reads, especially when amplicon
length varies between species, and low quality and adapter
sequences are trimmed from the reads. The MeFit pipeline
(Parikh et al., 2016) can merge forward and reverse reads with
N characters, but it is merely a merging and filtering tool, not a
complete amplicon data analysis pipeline. A complete workflow
to carry on with this kind of analysis is currently not available, to
the best of our knowledge. Cascabel allows to “stitch” together
the forward and reverse non- or not sufficiently overlapping
read pairs with any character and continues with the analysis. In
existing pipelines, these sequences would be discarded.

Moreover, most of the existing tools do not have
documentation functions to guarantee reproducibility and
facilitate communicating which software tools, their versions
and parameter settings were used. We could identify only one
tool, iMAP (Buza et al., 2019), developed at the same time as
Cascabel, which can generate a report of the analysis. However,
iMAP requires editing and adapting bash scripts before it can be
run and is therefore not very user-friendly.

Therefore, we anticipated a need for a pipeline which
combines the flexibility and scalability provided by using
bioinformatic tools on the command line with the ease of using
interactive web servers for analyzing and interpreting amplicon
sequencing data.

Moreover, issues with reproducibility of research findings
have made data provenance an important aspect of data analysis
and scientific journals start to require documentation of data
provenance for submitted manuscripts (www.nature.com, 2019).
Not all pipelines are transparent enough to trace back all the
exact steps taken by underlying software and their versions
used within the pipeline. With interactive webservers it is
often impossible to reproduce an analysis because once the
webserver is updated, previous versions are no longer accessible,
or, even worse, the webserver changes without the user noticing.
Even if versions are documented and previous versions are
available, it is the responsibility of the user to actively record all
parameter settings in an unambiguous way, which is an error-
prone endeavor. Also, this information cannot be recovered
at a later time point, and wrong documentations are likely to
go unnoticed.

One of the main strengths of Cascabel is that all analyses
(runs) performed are completely documented and reproducible.
All scripts of Cascabel are located within the project folder, and
together with the Snakemake and configuration file, every run of
the pipeline is completely reproducible at any time. All software
versions used are documented in the run reports (in HTML and
pdf format). The code of all Cascabel scripts is open source,

although we use some third-party modules which are not open
source, e.g., UCLUST, USEARCH (Edgar, 2010).

We here provide Cascabel, a Snakemake (Köster and
Rahmann, 2012) pipeline for the analysis of community
marker gene sequence data which is easy to use for people
with little bioinformatics background, and both flexible and
powerful enough to be attractive for people with bioinformatics
training. Cascabel supports large sample and sequencing library
throughput as well as parallel computing on personal computers
and computing servers. Moreover, the results are summarized in
an HTML and pdf report, and all input and output files, tools,
parameters and their versions are documented, rendering the
analyses fully reproducible.

2. IMPLEMENTATION

Our pipeline makes use of the workflow management engine
Snakemake (Köster and Rahmann, 2012), which scales from
personal workstations to computer clusters. Cascabel consists of
a set of “rules” which specify the input, the action to perform
on the input (executed by a bash/python/R/java script), and the
output. The user defines via a configuration file (called “config
file” from now on) in yaml format, how these “rules” are chained
to perform amplicon sequence data analysis from the raw data
to the final OTU or ASV table. Cascabel saves the OTU or ASV
table in BIOM and text format to allow further analysis and
interpretation with statistical or visualization tools. For most of
the rules,Cascabel provides several alternative algorithms or tools
and allows passing arguments via the config file to the algorithm
being used. In addition, rules can be skipped, and the pipeline
can be entered and exited at every step. This makes Cascabel
very flexible and highly customizable. Moreover, the pipeline is
easily extendable and amendable to personal needs, allowing for
example the analysis of any marker gene sequence data.

In addition to securing data provenance, Cascabel has a
suite of rules (modules) which are not readily available or
straightforward for a non-bioinformatician to implement with
existing amplicon sequence data analysis tools. The first one
is a custom dereplication rule for very large data sets based
on VSEARCH (Rognes et al., 2016), which, depending on the
duplication level of the sequence data, can up to double the
number of reads which can be dereplicated on a given system.
Second, Cascabel supports the analysis of non-overlapping read
pairs arising from long amplicons. Cascabel can “stitch” these
reads together with any desired sequence of characters, e.g., one
or several N and then proceeds with OTU or ASV analysis. We
recommend using RDP for taxonomic classification as this k-mer
based method is not affected by additional N characters.

Furthermore, Cascabel can generate data files for submission
to a public sequence read archive. Demultiplexed fastq files can
be generated with barcodes, or barcodes and primers/adapters
removed, ready for submission. Another unique feature of
Cascabel is that the user can determine the level of interaction
with the pipeline. In interactive mode, the user is informed about
the results of individual rules and can amend parameters during
runtime, while in non-interactive mode the pipeline will proceed

Frontiers in Genetics | www.frontiersin.org 3 November 2020 | Volume 11 | Article 489357157

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Abdala Asbun et al. Amplicon Analysis With Cascabel

according to the parameter settings in the config file. We outline
the individual steps performed by Cascabel below.

Running Cascabel requires the raw fastq sequence data files, a
mapping file indicating which sample carries which barcode if the
data should be demultiplexed, and optionally sample metadata
(e.g., geographic coordinates of the sampling stations, physical,
chemical, or biological properties), and the config file specifying
the tools and parameters used for running the pipeline. When
working with one sequencing library, users can pass file paths
to the raw data and metadata directly in the config file. When
working with multiple libraries, users can choose between listing
the input file names in a text file and referring to this file in the
config file, or using the helper script initSample.sh. This script is
run for each library to initialize the folder structure expected by
Cascabel. With all three options, the folder structure will look like
the one illustrated in Figure 1A.

We provide example config files with default parameters
for double- and single barcoded paired-end reads for
OTU and ASV analysis on the github page of Cascabel
(https://github.com/AlejandroAb/CASCABEL). However, we
strongly advise to make informed choices about parameter
settings matching the individual needs of the experiment and
data set. With the files in place, Cascabel is started with a one-line
command on the terminal. Snakemake takes care of executing the
rules in a computationally efficient manner, making optimal use
of available resources, e.g., distributing jobs over several nodes.
Figure 2 provides an overview of the workflow of Cascabel. In

Table 1 we summarize the options and methods provided for the
individual steps of the analysis performed by Cascabel.

Cascabel has an interactive and a non-interactive mode. In
interactive mode, several modules have a check-point which
needs to be passed to continue with the analysis. If the check
fails (e.g., if too many FastQC (Andrews, 2010) quality modules
failed or the number of sequences assigned to sample barcodes
is too low), the pipeline stops and the user has to decide to
continue, change parameters and continue, or exit the pipeline.
If parameters were changed interactively, the new ones are
documented in the reports. The interactive mode is useful in the
explorative data analysis stage, while the non-interactive mode
is suitable for running large batches of data and evaluating the
results later.

The first step of Cascabel consists of checking the validity
of the input files including the barcode mapping file and the
config file. Cascabel supports single-end as well as paired-end
sequence data as input from one or multiple samples per input
file. Barcodes for demultiplexing samples can be situated at the
beginning of one or both of the reads. The barcode sequences
are read from the barcode mapping file, which is exemplified
in Figure 1B. Supplementary Datasheets 1, 2 contain sample
config files, which were used to generate the reports provided in
Supplementary Datasheets 3–5. After having validated the input
files, Cascabel proceeds with analyzing sequence data quality with
FastQC (Andrews, 2010). In interactive mode, Cascabel will stop
if more than a specified number of quality check modules failed.

FIGURE 1 | Input file structure for Cascabel. (A) This input file structure is generated from the file paths provided in the config file when the dataset consists of a single

sequencing library. For multiple libraries, it is created from a text file specifying the individual libraries or by the helper script initSample.sh. (B) Example of a barcode

mapping file for four samples. Barcode and primer sequences are listed in 5′-3′ direction and have been abbreviated.
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FIGURE 2 | Overview of Cascabel. The workflow indicates input files (config

file, sequence data in fastq format, barcode mapping file), mandatory and

optional steps of the pipeline (blue boxes) as well as the main output files. The

boxes of optional steps have dashed borders. “Clean and filter” refers to

removing primers/adapters and chimeras. Table 1 shows a detailed summary

of the steps, available tools and output files.

Next, read pairs are assembled with PEAR (Zhang et al., 2014)
and the quality of the assembled reads is again assessed with
FastQC. Cascabel also offers an “unpaired” workflow for paired-
end sequence data with non-overlapping reads. For this kind of
data, Cascabel merges the forward and reverse read with an “N”
or any other character, and assigns taxonomy using the RDP

TABLE 1 | Outline of the steps performed by Cascabel. “Script(s)” refers to

Cascabel scripts in bash, java or R.

Step Tools/Algorithms Output

Initialize structure Script Project folder and

file structure

Quality Control FastQC (Andrews, 2010) FastQC report

Merge reads PEAR (Zhang et al., 2014) Merged

(assembled)

sequences

Demultiplex QIIME (Caporaso et al., 2010b),

scripts

Sequences

assigned to

samples in one file

and per sample

Align vs. reference Mothur (Schloss et al., 2009) Aligned sequences

Remove chimeras usearch61 (Edgar, 2010),

Uchime_denovo and uchime_ref

(VSEARCH) (Rognes et al., 2016)

Chimera-free

sequences

Remove adapters Cutadapt (Martin, 2011) Adapter-free

sequences

Size filter Script Filtered sequences

Dereplicate VSEARCH Dereplicated

sequences

Generate OTUs Mothur (Schloss et al., 2009),

prefix/suffix (Caporaso et al., 2010b),

CD-HIT (Li and Godzik, 2006),

SUMACLUST (Kopylova et al., 2016),

Swarm (Mahé et al., 2015), UCLUST

(Edgar, 2010), trie (Caporaso et al.,

2010b) sortmerna (Kopylova et al.,

2012)

OTU table

Pick

representatives

(OTUs)

Random, longest, most_abundant,

first

Fasta file with

representative

sequences

Generate ASVs DADA2 (Callahan et al., 2016) ASV table

Assign taxonomy

OTUs

QIIME [BLAST (Altschul et al., 1990),

UCLUST, RDP (Wang et al., 2007)],

blastn (BLAST+) (Camacho et al.,

2009), VSEARCH

Taxonomic

assignments for

each OTU

Assign taxonomy

ASVs

RDP Taxonomic

assignments for

each ASV

Generate OTU

table

QIIME, scripts Annotated OTU

table

Generate ASV

table

DADA2 Annotated ASV

table

Alignment Pynast (Caporaso et al., 2010a), mafft

(Katoh and Standley, 2013), infernal

(Nawrocki and Eddy, 2013), clustalw

(Larkin et al., 2007), muscle (Edgar,

2004)

Multiple sequence

alignment

Make tree Muscle, clustalw, raxml (Stamatakis,

2006), fasttree (Price et al., 2009)

Phylogenetic tree

Report Scripts, Krona (Ondov et al., 2011) HTML, pdf report,

Krona charts

classifier, which, due to using a k-mer approach, is not impacted
by this procedure (Jeraldo et al., 2014).

If the library contains sequences from several samples, they
are demultiplexed based on the barcode sequences provided
in the barcode mapping file. To do so, Cascabel makes
use of QIIME (Caporaso et al., 2010b) and a custom R
script to (optionally) allow sequence errors in the barcodes.
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Demultiplexed data can also be stored in individual fastq files
for further use outside the pipeline, e.g., for submitting data
to public repositories. Optionally, Cascabel will align sequence
reads against a reference sequence database to remove off-target
reads and facilitate removing sequence adapters or primers or
both. Adapter and primer sequences can be trimmed off with
Cutadapt (Martin, 2011). Then, Cascabel generates a histogram
of sequence lengths. In interactive mode, Cascabel shows the
frequency of occurrence of each of the read lengths on the
terminal and allows to change the minimum and maximum
sequence length provided in the config file. The library report
contains a smoothed histogram of the sequence lengths to
validate the choice of the minimum and maximum sequence
length (Figure 3A). Optionally, Cascabel identifies and removes
chimeras either de novo based on sequence abundance or
searching against the gold database provided by QIIME with the
usearch61 algorithm (Edgar, 2010). The user can also provide
different databases, such as SILVA (Quast et al., 2013) or
PR2 (Guillou et al., 2013) to search for chimeras. Assembled
and potentially filtered sequence reads from all samples are
then concatenated into one fasta file. Cascabel generates a
histogram to visualize the number of reads per sample for
each of the libraries to assess whether the sequences are evenly
spread across the samples (Figure 3B). Furthermore, the reports
for each of the libraries contain a plot of the number and
percentages of raw, assembled, demultiplexed and length filtered
sequences (Figure 3C).

When working with large datasets, a dereplication step which
collapses identical sequences into one representative sequence
can drastically reduce computation time. Cascabel provides a
custom rule based on VSEARCH (Rognes et al., 2016). Cascabel’s
dereplication rule splits the data in two chunks and dereplicates
them individually first, which, depending on howmany duplicate
sequences there are in the dataset, up to doubles the number
of reads which can be dereplicated with the available memory.
Then, the two chunks of dereplicated reads are merged and again
dereplicated. To generate an OTU table, the dereplications are
traced back by Cascabel.

Cascabel provides a range of popular methods to generate
OTUs with or without a reference sequence database
[Swarm (Mahé et al., 2015), sortmerna (Kopylova et al.,
2012), mothur (Schloss et al., 2009), trie (Caporaso et al., 2010b),
UCLUST/UCLUST_REF/USEARCH/USEARCH_REF (Edgar,
2010), prefix/suffix (Caporaso et al., 2010b), CD-HIT (Li and
Godzik, 2006), and SUMACLUST (Kopylova et al., 2016)], some
of these are executed by QIIME.

Then, representative sequences are chosen for each OTU
(with options: random, longest, most_abundant, first) (Caporaso
et al., 2010b). OTU and representative sequence picking
methods provided by Cascabel are listed in Table 1. From the
abundances of the OTU sequences within each of the samples,
Cascabel creates an OTU abundance table. The OTUs can
further be grouped at higher taxonomic levels depending on
the desired resolution. An overview of the folder structure
and main output files generated by Cascabel is given in
Supplementary Datasheet 6.

Alternatively, Cascabel can perform Amplicon Sequence
Variant (ASV) analysis with DADA2 (Callahan et al.,
2016) for paired-end sequence data. In this case, Cascabel
takes the demultiplexed fastq files and passes them to
various R scripts which run sequence filtering, ASV
identification, chimera detection and taxonomic assignment
with DADA2. The main output of the ASV analysis are
an ASV count table and ASV representative sequences. An
example config file for an ASV analysis can be found in
Supplementary Datasheet 2, and the ASV report for this analysis
is shown in Supplementary Datasheet 5. The main output files
of the ASV analysis are shown in Supplementary Datasheet 7.

Cascabel can process sequence data from any marker gene.
Cascabel comes with taxonomic mapping files for 16S rRNA and
18S rRNA gene sequences from SILVA v132 (Quast et al., 2013),
but the user can always choose to make use of a different public
or a custom reference sequence database. Cascabel provides three
different approaches to assign taxonomy to the representative
sequences: VSEARCH, which performs global alignment of the
target sequences against the reference database; BLAST, making
use of BLAST+ (Camacho et al., 2009); QIIME, with methods
BLAST (Altschul et al., 1990), UCLUST or the RDP classifier.
Alternatively, any other public or custom database can be
used for taxonomic annotation. If taxonomy is assigned with
VSEARCH or BLAST, the user can choose to assign the sequences
to the lowest common ancestor (LCA) with the stampa approach
(https://github.com/frederic-mahe/stampa).

Subsequently, the user can opt to remove singletons, align
representative sequences, filter the alignment and make a
phylogenetic tree. To align representative sequences, Cascabel
offers pynast (Caporaso et al., 2010a), mafft (Katoh and Standley,
2013), infernal (Nawrocki and Eddy, 2013), clustalw (Larkin
et al., 2007), and muscle (Edgar, 2004). A phylogenetic tree can
be generated with muscle, clustalw, raxml (Stamatakis, 2006) and
fasttree (Price et al., 2009) (Table 1).

The last rule of Cascabel (the “target” rule) generates HTML
and optional pdf reports with documentation, figures and tables
summarizing the results of individual rules, as well as all software
versions and parameter settings used. If more than one library
was analyzed, there will be a report for each library as well as
a report summarizing all libraries (otu_report or asv_report).
Among other graphics, the otu_report shows the percentages
and the total number of reads after filtering (“combined reads”),
dereplicated reads, OTUs, OTUs assigned to a taxonomic level,
OTUs excluding singletons (“no singletons”), and assigned
OTUs excluding singletons (Figure 3D). The asv_report shows
similar information in a table. Supplementary Datasheet 3

shows an example library report, Supplementary Datasheet 4 an
otu_report, and Supplementary Datasheet 5 an asv_report. In
addition, Cascabel generates an interactive Krona chart (Ondov
et al., 2011) for the run which displays community composition
for individual samples or the complete data set. The Krona
chart shows the taxonomic assignments in an interactive HTML
document composed of a multi-layered pie-chart and the user
can zoom in and browse these different levels. An example is
shown in Figure 3E.
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FIGURE 3 | Figures shown in Cascabel reports. (A) Smoothed sequence length distribution after merging reads, for one library. The plot is meant to help making a

sensible choice for sequence length filtering. (B) Number of sequences per sample. This histogram is part of the OTU report (including all libraries). (C) Number of

sequences after individual pre-processing steps. “Assembled” refers to the number of raw read pairs which could be merged based on their overlap. “Demultiplexed”

(Continued)
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FIGURE 3 | refers to the number of raw reads which could be assembled and assigned to a sample, and “Length filtering” indicates the number of raw reads passing

the previous and the sequence length criteria. This plot is part of the library report. (D) Number of sequences after individual steps after potentially combining several

libraries (total number of reads) and generating OTUs. “Derep.” indicates the number of dereplicated reads and their percentage relative to the total combined reads.

“OTUs” is the total number of OTUs and the percentage is relative to the number of combined reads. “Assigned OTUs” is the number and percentage of OTUs with a

taxonomic assignment. “No singletons” refers to the number and percentage of OTUs excluding singleton OTUs, and “Assigned NO singletons” is the number and

percentage of singleton-free OTUs with a taxonomic assignation. The plot is part of the OTU report. (E) Krona chart for one sample. The krona charts are interactive

and can be viewed with a web browser. Colors indicate the taxonomic groups to which the OTU was assigned. Each ring of the pie chart represents a different

taxonomic level. An example of a full library report is shown in Supplementary Datasheet 3, and an OTU report is provided in Supplementary Datasheet 4.

A unique feature of Cascabel is its native handling of multiple
analyses on the same dataset. Snakemake will not re-run a rule if
the output file of that rule already exists, unless ––forcerun is
used or the input file has a more recent date than the existing
output file. This avoids unintentional over-writing of existing
results, but also renders it impossible to keep results of multiple
analyses on the same data in the same project. To allow multiple
analyses within the same project, we implemented Cascabel
with a “Run” parameter. Whenever the user changes the “Run”
parameter, a new analysis will be performed (except for quality
control on the raw data) and the results saved in a different
“Run” folder. Each run has its own reports and is therefore
fully documented and reproducible. Confusion about parameter
settings for a specific analysis cannot happen.

The “Run” parameter is also useful to analyse data from
primers which generate multiple fragments with different
lengths. The data can then be analyzed with individual runs for
each expected fragment length. For example, when using primers
which amplify both bacterial/archaeal 16S and eukaryotic 18S
sequences, albeit with different length, one run can target the
shorter fragment and a second run the longer fragment. If the
longer fragment generates non-overlapping read pairs, these can
be analyzed with the “unpaired” workflow as indicated in the
config file.

To facilitate comparing different taxonomy assignment
approaches, the user can perform taxonomic assignments for the
same run using different methods and the results will be saved in
individual “taxonomy” folders. When starting a new taxonomic
assignment, the existing OTU representative sequences are used
so no processing time is wasted by performing the same upstream
rules several times.

The user can make use of all intermediate files generated by
individual rules, and most importantly the OTU or ASV table
and representative sequences for follow-up analyses. To save disk
space, the user can also opt to have Cascabel remove temporary
files at the end of the analyses. For many rules, the user can pass
additional parameters to the command or tool at hand using the
“extra_params” parameter in the config file.

3. RESULTS

3.1. Cascabel Example Analysis of a 16S
Dataset
To demonstrate the functionality of Cascabel, we applied it to
16S rRNA gene amplicon data generated from water column
samples taken from Lake Chala. Cascabel offers two routes of

analysis: OTU and ASV analysis. Some rules apply to both routes,
others only to one of them. This is indicated in the header of
the rule in the config file by either “BOTH_WF,” “OTU_WF,” or
“ASV_WF.” If choosing “OTU_WF,” for example, the “ASV_WF”
rules and their parameter settings are ignored. We chose
‘ANALYSIS_TYPE: “OTU”’ here. After validating the input files,
Cascabel proceeded with analyzing sequence data quality with
FastQC (Andrews, 2010). In interactive mode, Cascabel will stop
if more than a specified number of quality check modules failed,
in non-interactive mode it will proceed. Next, we assembled read
pairs, which is mandatory for paired-end data (rule “pear”). If
the amplicon is so long that the forward and reverse read do not
overlap, Cascabel can be run using the rule “UNPAIRED DATA
WORK FLOW” and setting “UNPAIRED_DATA_PIPELINE”
to true. After forward and reverse read assembly or merging,
the quality of the assembled reads was again assessed with
FastQC. Then, the sequencing library was demultiplexed based
on the barcode sequences provided in the barcode mapping
file (rules “write_dmx_files” and “extract_barcodes”). This step
is optional to allow processing already demultiplexed data. We
demultiplexed the Lake Chala data based on a sample barcode
of 12 nucleotides at the beginning of the forward and the
reverse read, using the “barcode_paired_stitched” configuration
which merges the barcode sequence of the forward read with
the barcode sequence of the reverse read. Barcode sequences
were provided in a barcode mapping file, such as exemplified
in Figure 1B. Individual barcodes were designed such that they
have a nucleotide difference of at least three, however, we allowed
only two mismatches in the merged barcode of 24 nucleotides
to assign reads to samples to avoid false positive assignments
due to sequencing errors. The demultiplexing rule can also save
demultiplexed data in individual fastq files for further use outside
the pipeline, e.g., for submitting data to public repositories, by
setting the “create_fastq_files” parameter to “T” (true). During
demultiplexing, technical sequences, such as primers can also be
removed, and we did so for the Lake Chala data (primers are
indicated in the config file, Supplementary Datasheet 1).

After demultiplexing, sequence chimeras can be removed
based on a reference database, e.g., the gold database, and/or
de novo based on sequence abundance, but we set this
rule (“search_chimera”) to false. The next step is to filter
out sequences with unexpected length. To facilitate setting
length thresholds, Cascabel generates a smoothed histogram
of observed sequence lengths, which is shown in the library
report (Figure 3A). In interactive mode, Cascabel also shows
the frequency of each of the read lengths on the terminal, and
allows to change the minimum and maximum sequence length
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provided in the config file on the command line. For the analyzed
example data, we filtered out sequences whose length differed
more than 10 nucleotides from the average sequence length. Next,
we dereplicated sequences which were identical over the full
sequence length (rule “dereplicate”). This step is optional, but
recommended to decrease the runtime of OTU clustering and
avoid memory issues with very large datasets.

For OTU clustering, we chose UCLUST with a similarity
threshold of 0.97, resulting in roughly 2.5 million OTUs (rule
“cluster_OTUs”). We selected the longest sequence of an OTU as
representative sequence to be used for taxonomic assignment of
the OTU (rule “pick_representatives”). Then we used VSEARCH
to assign taxonomy to the representative sequences based on the
SILVA database (SILVA version 132, rule “assign_taxonomy”).
From the abundances of the OTU sequences within each of the
samples, Cascabel creates an OTU abundance table in BIOM
and plain text format (rule “make_otu_table”). The OTUs
were also summarized at different taxonomic levels making
use of the rule “summarize_taxa.” Subsequently, we removed
singletons (rule “filter_otu”), aligned representative sequences
(“align_rep_seqs”), filtered the alignment (“filter_alignment”),
and made a phylogenetic tree (“make_tree”). Removing
singletons reduced the number of OTUs in the analyzed dataset
to roughly 500, 000. To align representative sequences, we used
pynast and fasttree to generate a phylogenetic tree. Finally,
Cascabel generated a Krona chart, and HTML and pdf reports
of the analysis, documenting all software and parameters
used. Supplementary Datasheet 1 contains the config file with
parameter settings for the analysis described above.

The total runtime of Cascabel using the OTU workflow on
the Lake Chala dataset was 14.5 h. Currently, we experience a
bottleneck in the runtime of the barcode error correction, which
took 10.25 h on this large dataset and will be improved in future
versions of Cascabel. We also ran the ASV workflow on the same
data (config file shown in Supplementary Datasheet 2), which
took 13.2 h in total, with again barcode error correction being the
most time-consuming step (10.25 h). Running Cascabel assigning
reads with perfectly matching barcodes only would take 4.25 h for
the OTU workflow and 2.95 h for the ASV workflow.

3.2. Analyses of Mock Datasets
We evaluated the results of the individual runs in terms of
the number of genera identified correctly (true positives), the
number of genera missed (false negatives) and the number of
genera identified which were not part of the mock community
(false positives). We evaluated all runs with respect to true and
false positives, and show the individual true and false positive
genera for a selection of the runs which we performed on the
mock datasets. The selection included at least one run using
UCLUST, one using Swarm and one ASV run with DADA2. We
also varied Swarm parameters, reference databases, clustering
thresholds, and chimera detection, but evaluating all possible
combinations of parameters would not be feasible. An overview
of the runs performed and the evaluation in terms of true
and false positives, false negatives, precision, recall and F1
statistic (harmonic mean of precision and recall), is shown in
Supplementary Datasheet 8. While on the 16S mock dataset,

all of UCLUST, swarm and DADA2 had a very good recall
rate of 0.95, the OTU/ASV clustering methods had different
numbers of false positive predictions. DADA2 had the lowest
number of false positives (1), followed by Swarm (14–27) and
UCLUST (21–25). Therefore, DADA2 performed best in terms
of precision (0.95) and F1 statistic (0.95). The 18S mock dataset
was more challenging than the 16S dataset for all combinations
of methods tested. UCLUST with a similarity threshold of 0.97
and VSEARCH for taxonomy assignment using SILVA v138
performed best in terms of recall (0.92). However, DADA2
performed best concerning precision (1.0) and the harmonic
mean of precision and recall (0.8). On the ITS dataset, the best
performance was shown by Swarm using d = 2 and VSEARCH
for taxonomy assignation, with an F1 statistic of 0.92. This run
also showed the best recall (0.89). The highest precision was
achieved by UCLUST (1.0), however, with a very low F1 statistic
(0.19). The performance of DADA2 was lower than the one of
Swarm, with an F1 statistic of 0.8. Thus, we observed substantial
differences between different methods and parameter settings,
and there was no one setting that would perform best on all three
datasets. On the contrary, the best results were obtained with
different methods and parameter settings for different marker
genes. These results confirm that it is important to have a flexible
pipeline to adapt it to the needs of the dataset at hand, but
also that it is important to include a mock community ideally
in every sequencing run that is performed to allow making
informed choices about method and parameter selection. We
also compared the different clustering algorithms in terms of
runtime. The 16S mock community consisted of 207,197 paired-
end reads of 300 nucleotides each, considerably smaller than the
Lake Chala dataset, and therefore the analyses were much faster.
The analysis with UCLUST (config_4.yaml) took 43 min and 18
s, of which 38 min and 42 s were spent on searching chimeras de
novo. Swarm needed 5 min and 16 s for a run including chimera
search against a reference database (config_12.yaml), searching
chimeras took 1 min and 24 s of the total time. A DADA2 run
(config_14.yaml) needed 8 min and 52 s including DADA2’s own
chimera search method.

4. DISCUSSION

Cascabel has been developed at the Royal Netherlands Institute
for Sea Research (NIOZ) to facilitate, unify and easily track
data provenance of amplicon sequence data analyses. Apparent
advantages of using this pipeline compared to custom scripts
are that the individual steps of the pipeline have been tested
by many members of the community at the NIOZ who are
experienced in amplicon sequencing data analyses (van Bleijswijk
et al., 2015; Balzano et al., 2018; Besseling et al., 2019; Klunder
et al., 2019), and therefore should contain fewer mistakes than
scripts that were written for a specific analysis by one person.
Moreover, community knowledge and experience have created a
workflow which is probably more comprehensive and powerful
than one that was created by a single person. In addition,
the availability of the pipeline has facilitated comparing and
integrating research results from different data sets generated at
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the NIOZ because scientists can agree on certain settings and
reference database versions and the pipeline guarantees that the
analyses are performed in the same way. Because Cascabel keeps
track of data provenance, documenting the process of analyzing
the data to generate results, it also facilitates preparing research
manuscripts. While most of the scientific journals request the
raw sequencing data to be submitted to a public repository for
many years already, also reporting data provenance becomes
more important. The journal “Nature,” for example, requires
authors to make materials, data, code, and associated protocols
available (www.nature.com, 2019). Cascabel facilitates providing
data, code and protocols. Public sequence repositories often
require the raw data to be submitted per sample, but sample
demultiplexing typically takes place after merging read pairs
such that the raw data cannot be recovered. Therefore, Cascabel
demultiplexes the raw data in parallel to the analyses such
that it is ready for public data repository deposition. The code
of Cascabel is open source and all analyses are protocolled
in the reports and config file, complying with the rules for
reproducible computational research described by Sandve et al.
(2013).

DNA sequencing technology, algorithms and analysis
approaches are constantly evolving. It is logical that pipelines
lag behind with the most recent developments because it takes
time to test and integrate new modules. Because Cascabel is
a Snakemake workflow, it is flexible and easy to extend to
encompass more or alternative rules. We are constantly working
on extending the range of applications and making new methods
available. For the sake of consistency, we deliberately keep older
methods to allow users to compare runs using their familiar
algorithm with newer algorithms and to compare or integrate
new data with data generated previously.

The task of generating biological meaningful microbial
community profiles from amplicon sequence data is far from
trivial, and we believe that there is not one best strategy for data
analysis. Based on the environment investigated and the scientific
question, desired taxonomic resolution may differ. Therefore, we
do not want to promote any optimal settings of the tools used
by Cascabel. We do, however, provide some guidance by making
pre-configured config files available, but advise any user to check
them carefully and modify them to their needs. Our analyses on
public mock datasets have shown that the optimal method may
depend on the marker gene and the dataset at hand. Therefore,
we advise users to evaluate their favorite configurations for an
analysis on mock datasets and ideally include a mock community
in their own sequencing projects.

Cascabel provides reference databases for taxonomy
assignment and chimera detection, but the user can always
supply a different database and specify that in the config file.
Moreover, Cascabel is not limited to Illumina sequence data
that we used for demonstration purposes, but can handle
sequence data from other technologies which produce short
reads from amplicons as well (e.g., Ion Torrent). With some
minor modifications, Cascabel can even be used to analyze long
read amplicon sequence data.

Galaxy (Afgan et al., 2018) is a user-friendly web-based
alternative to Cascabel which offers interfaces to VSEARCH and

mothur executables. Having a medium-sized user group at the
institute, we did not want to overload a public server and setting
up and maintaining our own server would also need resources
that we preferred to allocate to the development of a workflow
for which we have full control and flexibility.With Cascabel being
invoked from the command line, the user can make use of the
full potential that Snakemake has to offer, e.g., ––prioritize
to force the execution of specific rules prior to others when
distributing tasks across computing resources, ––until to run
the pipeline up to a specific rule, ––summary, which shows
the rules executed so far and ––dag which shows the rules
executed and the ones yet to be done in a directed acyclic graph.
Moreover, we consider Cascabel’s report an essential element
to move forward in terms of user-friendly data provenance
and reproducibility.

We have presented Cascabel, an open source pipeline to
analyze amplicon sequence data based on the workflow engine
Snakemake. The pipeline can be easily installed using Anaconda
or Miniconda, comes with documentation, a wiki, and a test
dataset on github and can be executed by users with basic
command line skills. At the same time, Cascabel is flexible,
offering alternative options for most of the steps and supporting
custom reference databases, and can easily be modified and
extended by users with computational skills. Moreover, all
analyses performed with Cascabel are fully documented and
reproducible. We believe that Cascabel will prove to be useful to
scientist who needmore flexibility and throughput than provided
by tools based on web servers, but do not want to or cannot
generate their own command-line based workflow.

5. METHODS

5.1. Sampling, DNA Extraction, and
Sequencing of Example Dataset
Suspended particulate matter (SPM) was collected from the water
column of Lake Chala, a lake situated on the border of Kenya and
Tanzania, east of Mount Kilimanjaro in Africa, from September
2013 to May 2014 from a total of 111 samples as described in van
Bree et al. (2018). DNA was extracted from 1/32 section of the
filters on which SPM was collected by using the PowerSoil DNA
extraction kit (Mo Bio Laboratories, Carlsbad, CA, USA).

The V4 region of the 16S rRNA gene was amplified with the
primers forward:
515F: GTGYCAGCMGCCGCGGTAA (Parada et al., 2016) and
reverse:
806RB: GGACTACNVGGGTWTCTAAT (Apprill et al., 2015).
Wemade use of 12 nucleotide Golay barcodes at the beginning of
the forward and the reverse read. Paired-end sequencing of 250
nt was performed on an Illumina MiSeq instrument (Illumina,
San Diego, CA) using the Truseq DNA nano LT kit for library
preparation and V3 sequencing chemistry at the sequencing
facility of the University of Utrecht (USEQ), theNetherlands. The
dataset contains a total of 10, 979, 168 paired-end sequence reads.
The data is publicly available at NCBI, BioProject PRJNA526242.
Sample and run identifiers of the samples used are listed in
Supplementary Datasheet 9.
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5.2. Analysis of Example Dataset
Starting from the config file template for paired-end sequencing
data (config.otu.double_bc.yaml, provided on github: https://
github.com/AlejandroAb/CASCABEL), we supplied the file
paths to the raw sequence data (fastq files) in the “GENERAL
PARAMETERS SECTION” (subsection “INPUT FILES”). Note
that fastq files can also be provided as gzipped files, then in
the “INPUT TYPE” section of the general parameter section,
the parameter gzip_input needs to be set to “T” (True).
The barcode mapping file was passed to Cascabel via the
“metadata” parameter in the subsection “INPUT FILES” of
the config file. In the “GENERAL PARAMETERS SECTION,”
we chose a project name (“CascabelTest”) and set the “RUN”
parameter to “report_test,” Cascabel then used these names
to generate a project folder and a run folder. All settings
and parameters chosen to analyze the example data set are
documented in the config files (Supplementary Datasheets 1, 2)
and the reports (Supplementary Datasheets 3–5). The reports
also contain software versions of third-party tools incorporated
in Cascabel.

5.3. Analyses of Mock Community Datasets
To show the flexibility and assess the performance of running
Cascabel with different methods and parameter settings, we
analyzed three published mock community datasets with
multiple Cascabel runs. We chose one dataset consisting of 16S
rRNA data, one of 18S rRNA data and one of ITS sequences.
The 16S rRNA dataset is part of the public resource project
for bioinformatics benchmark data, Mockrobiota (Bokulich
et al., 2016). The mock community is composed of 20
evenly distributed bacterial strains as described in Gohl et al.
(2016). For the ITS marker gene, we used a dataset of
Bakker (2018), composed of 19 fungal species with staggered
abundances, intended to mimic the abundance distribution
of natural microbial communities. Finally, for the 18S rRNA
marker gene, we selected a mock community composed of
12 algal species across five major divisions of eukaryotic
microalgae (Bradley et al., 2016). More information about the
selected datasets, sample accessions, links to the rawdata and
different parameters used to run Cascabel can be found in
Supplementary Datasheet 8. The config files of the individual
runs are available in Supplementary Datasheet 10 and at
Cascabel’s test data repository (https://github.com/AlejandroAb/
CASCABEL-Test/tree/master/mock_analysis). Fastq files were
downloaded from the European Nucleotide Archive (ENA) using
an in-house download tool (https://github.com/AlejandroAb/
ENA-downloader-tool).
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of sequences left after each step of the analysis.
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(“rules”) and parameters which were used in the analysis. In addition, graphics

summarize the data in terms of sequence output per sample, number of OTUs

and taxonomic composition.
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the ASV analysis of the example 16S sequencing data. It contains the names and

locations of all input and output files, names and short description of the modules

(“rules”) and parameters which were used in the analysis. In addition, the data is

summarized in terms of sequence output per sample, number of ASVs and
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performed with Cascabel. Note that only the main files are displayed, log files and

temporary files are not shown.
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Supplementary Datasheet 8—Mock community datasets and

evaluation | List of mock community datasets used, including NCBI BioProject

and SRA accession numbers. Overview of Cascabel runs performed on the mock

community data and evaluation of the performance of the

individual runs.

Supplementary Datasheet 9—SRA identifiers of PRJNA526242 | Table

spreadsheet indicating the sample, experiment and run identifiers of BioProject

PRJNA526242 to download the raw data used for the worked example from the

NCBI Sequence Read Archive (SRA).

Supplementary Datasheet 10—Config files of mock community

analyses | Config files of the Cascabel runs performed on the mock community

datasets as listed in Supplementary Datasheet 8.
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