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Editorial on the Research Topic

Role of Diet, Physical Activity and Immune System in Parkinson’s Disease

It is believed that Parkinson’s disease (PD) may originate outside of the central nervous system
and converging evidence strongly suggests that gastrointestinal tract (GI) tract may be a critical
system in PD pathogenesis. (a) The GI tract is the largest surface area and point of entry for
environmental factors to interact with the host. (b) The microbiota that inhabit the GI tract are
profoundly impacted by environmental factors including those that are known to be risk factors
for PD pathogenesis such as high fat, high sugar/low fiber Western diet, and lack of physical
activity [Jackson et al., (1)]. (c) GI tract dysfunction such as constipation is commonly observed
in PD patients and often occurs decades before PD diagnosis and an abnormal microbiota (i.e.,
dysbiosis) is observed with those with constipation (2). (d) A pathological hallmark of PD, α-
synuclein misfolding and aggregation, is thought to be a consequence of inflammation and the
source of that inflammation could be the microbiota. Indeed, the intestinal microbiota (especially
a pro-inflammatory, dysbiotic microbiota) can activate intestinal mucosal, systemic, and brain
immune systems, which can culminate in neuroinflammation (3). (e) PD patients have microbiota
dysbiosis with low levels of anti-inflammatory short chain fatty acids (SCFA) and high levels of
pro-inflammatory lipopolysaccharide (LPS) (4, 5). (f) The GI tract is continuously inundated with
a high antigenic load resulting from exposure to pathogens, pathobionts, and commensal bacteria
leading to chronic mucosal immune activation (6). A combination of pro-inflammatory dysbiotic
microbiota and exaggerated mucosal immune activation due to intestinal leak in PD appears to
be the underlying mechanism of intestinal inflammation in PD. Examination of colonic biopsy
tissue from PD patients demonstrate high levels of pro-inflammatory cytokines (TNFα, IL-1β,
IFNγ, IL-5) (7). Production of these cytokines is important because co-culture of autologous Th17
cells with dopaminergic neurons showed that Th17 cell production of IL-17A damage DA neurons
resulting in cell death (8). GI tract inflammation is a feature associated with PD, even during early
stages of the disease, and this mucosal immune activation/inflammation may trigger and/or sustain
neuroinflammation is required for α-synuclein aggregation and loss of dopaminergic neurons
in PD. Taken together, these findings provide compelling evidence to support the view that the
dysbiotic intestinal microbiota is a trigger and/or enabler for the sustained neuroinflammation that
can initiate and/or promote PD pathogenesis.

Among the lifestyle factors most strongly implicated in PD pathogenesis are diet and physical
activity. Consumption of a Western diet is a risk factor for PD whereas diets high in fiber are
associated with reduced risk. While diet has many effects on the body (e.g., omega-3-fatty acids,
polyphenols), diet robustly impacts the intestinal microbiota. Consumption of a Western diet
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promotes pro-inflammatory intestinal microbiota dysbiosis,
characterized by a high relative abundance of LPS-containing
bacteria and low relative abundance of SCFA-producing bacteria
(4), which can promote neuroinflammation. Additionally,
there is a growing body of evidence that physical activity
reduces the risk of developing PD (9) and ameliorates
Parkinsonism symptoms (10–15), and quality of life (16).
Imaging studies demonstrate that exercise is associated with
greater release of DA in the ventral and dorsal striatum,
increases neurotrophin levels, improves vascularization,
facilitates synaptogenesis, reduces inflammation, and reduces
disordered protein deposition (15). It is not clear how physical
activity mediates these beneficial effects on PD patients,
but it may include changes in the microbiota. For example,
physical activity is associated with a reduction in pro-
inflammatory LPS-containing bacteria and an increase in
SCFA-producing bacteria. It is possible that both diet and
physical activity via changes in the microbiota modulate
neuroinflammation and PD pathogenesis via changes in
immune function.

How does dysbiotic microbiota trigger/promote
neuroinflammation? The microbiota has many features that
can influence inflammation, but compelling evidence indicates
that low SCFA and high LPS [via binding to toll like 4 receptor
(TLR) leading to activation of the NLRP3 inflammasome] are
important. SCFA are thought to be anti-inflammatory with
an inverse relationship observed between SCFA levels and
pro-inflammatory cytokines such as IL-6, IL-12, and TNF-α (17).
SCFA can cross the blood brain barrier and microglia (resident
immune cells in the brain) are influenced by SCFA (18). SCFA
(especially butyrate) are essential for health of intestinal colonic
epithelial cells (19) and low SCFA are associated with disrupted
intestinal barrier with a concurrent increase in LPS in the
systemic circulation (20). There is also a substantial amount of

data demonstrating the importance of the LPS-induced NLRP3
inflammasome activation in PD (21). Activation of the NLRP3
inflammasome following exposure to microbial (e.g., LPS or
damage-associated stimuli) induces robust inflammation (e.g.,
production of IL-1β). NLRP3 levels increase in response to
factors such as consumption of a Western diet and it could be
that this primes the immune system to respond to increased LPS
(as is the case of microbiota dysbiosis) (22). These mechanisms
(and others) might be the underlying mechanism for impact
of the diet and physical activity on PD pathogenesis and
disease course.

This special issue will present evidence demonstrating the
critical role of the intestinal microbiota and the immune system
in PD pathogenesis, as well as how diet and physical exercise
might impact PD disease course (via a mechanism including an
altered microbiota). This special issue highlights the potential
importance of the bi-directional relationship of the brain and
intestinal microbiota and microbiota/immune system in PD
underscoring the need to better understand the microbiota-
gut-brain axis in PD in order to identify potential therapeutic
target(s) to design scientifically-based, gut/microbiota-directed
disease modifying therapeutics to prevent and/or treat PD and
positively impact PD disease course.
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Effective disease-modifying treatments are an urgent need for Parkinson’s disease (PD).

A putative successful strategy is to counteract oxidative stress, not only with synthetic

compounds, but also with natural agents or dietary choices. Vitamin E, in particular,

is a powerful antioxidant, commonly found in vegetables and other components of

the diet. In this work, we performed a questionnaire based case-control study on

100 PD patients and 100 healthy controls. The analysis showed that a higher dietary

intake of Vitamin E was inversely associated with PD occurrence independently from

age and gender (OR = 1.022; 95% CI = 0.999–1.045; p < 0.05), though unrelated

to clinical severity. Then, in order to provide a mechanistic explanation for such

observation, we tested the effects of Vitamin E and other alimentary antioxidants

in vitro, by utilizing the homozygous PTEN-induced kinase 1 knockout (PINK1−/−)

mouse model of PD. PINK1−/− mice exhibit peculiar alterations of synaptic plasticity

at corticostriatal synapses, consisting in the loss of both long-term potentiation (LTP)

and long-term depression (LTD), in the absence of overt neurodegeneration. Chronic

administration of Vitamin E (alpha-tocopherol and the water-soluble analog trolox) fully

restored corticostriatal synaptic plasticity in PINK1−/− mice, suggestive of a specific

protective action. Vitamin E might indeed compensate PINK1 haploinsufficiency and

mitochondrial impairment, reverting some central steps of the pathogenic process.

Altogether, both clinical and experimental findings suggest that Vitamin E could be a

potential, useful agent for PD patients. These data, although preliminary, may encourage

future confirmatory trials.

Keywords: Parkinson’s disease, Vitamin E, antioxidant, neuroprotection, protective factors, diet, PINK1, synaptic

plasticity

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder, idiopathic, and multifactorial,
mainly due to the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc) and
to excessive brain accumulation of α-synuclein positive cytoplasmic Lewy bodies (LB). PD causes a
progressive and disabling syndrome, including motor and non-motor disturbances, which severely
impair patients’ quality of life. Therefore, effective diseasemodifying treatments represent an unmet
clinical need (1–3).
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Successful neuroprotection may imply a combined approach
against the different partners of neurodegeneration (4). Since
oxidative stress is a major player of the neurodegenerative
process in PD, the modulation of redox balance has been
extensively explored as a potential strategy to prevent neural
death and disease progression. Indeed, different antioxidant
agents are under investigation in several clinical trials (5–9).
Besides synthetic compounds, an invaluable source of natural
antioxidants is food, namely fruits and vegetables (10). Therefore,
an antioxidant-rich diet could represent a viable option to boost
antioxidant pathways counteracting neurodegeneration.

Multiple antioxidant species can be found in food, which
operate differently in cellular metabolism. Vitamin E, in
particular, is a powerful antioxidant, found in plants and
abundant in many aliments consumed in our diet (11). Vitamin
E family includes a number of lipophilic molecules (α-, β-, γ-,
δ-tocopherols and α-, β-, γ-, δ-tocotrienols), whose antioxidant
properties rely on lipoperoxyl radical scavenging activity (11).
Their neuroprotective effects have been demonstrated inmultiple
experimental models; likewise, the reduced levels of these
molecules in humans have been associated with the occurrence
of neurodegenerative diseases (12, 13).

We hypothesized that a higher dietary intake of Vitamin
E might protect from progressive neurodegeneration in PD.
Therefore, we conducted a study including: (1) a retrospective
assessment of dietary Vitamin E intake (VEI) in PD patients
compared to healthy controls, aimed at determining if a different
dietary VEI is associated with diverse clinical conditions; (2) an
in vitro protocol in brain slices of a PD mouse model, aimed
at evaluating the effects of Vitamin E on synaptic plasticity
abnormalities, a peculiar endophenotype observed in distinct
PD models. Specifically, we used homozygous PTEN-induced
kinase 1 (PINK1) knockout mice (PINK1−/−), an established
model of subclinical PD, which might reflect the early phases of
the disease. In this model, we previously observed a significant
decrease in dopamine release, which is the major determinant
of the loss of bidirectional synaptic plasticity at corticostriatal
synapses. Indeed, both long-term potentiation (LTP) and long-
term depression (LTD) are impaired in these mice, in the absence
of overt neuronal degeneration, thereby representing an early
pathophysiological event preceding cellular death (14–16).

METHODS

Case-Control Study
Population
The study involved 200 consecutive subjects (100 PD patients
and 100 sex/age matched controls), afferent to the Neurology
Unit of Tor Vergata University Hospital (Rome, Italy). PD was
diagnosed according to the United Kingdom PD Society Brain
Bank criteria. Controls (CTL) were healthy subjects, without
history of neurological diseases or neurological signs at clinical
examination, enrolled among non-blood relatives of patients.
Exclusion criteria were cognitive decline withMini-Mental status
Examination (MMSE) <25 (adjusted for age and educational
level); gastrointestinal disorders and malabsorption; abdominal
surgery; diabetes; obesity (BMI > 29); alcoholism; internal

failures (e.g., liver, heart); feeding problems; dietary restrictions;
habit to taking vitamins integration. All the participants signed a
written informed consent. The study was carried out according to
the Declaration of Helsinki and was approved by the local ethical
committee (Tor Vergata, Rome—Italy; number 98–09).

Assessment of VEI
All subjects underwent a structured ad hoc interview assessing
dietary habits: the interview relied on a questionnaire, including
explicative pictures to avoid misunderstanding. Subjects were
asked how frequently each specific Vitamin E-rich aliment was
habitually consumed in the preceding year (2 = more than once
a week; 1 = at least once a month; 0 = never). Vitamin E-rich
aliments’ daily portions were named in a list including fresh fruits
(e.g., kiwi, mango), dried fruits (e.g., almonds, walnuts), vegetable
(e.g., spinach, broccoli), seeds (e.g., sunflower, pumpkin), oil
(e.g., olive, sunflower), fish (e.g., bluefish, crayfish); (source:
US Department of Agriculture, USDA (17)). Individual VEI
was finally estimated by summing the products of each food’s
vitamin E content (mg) ∗ the frequency of eating (0, 1, 2).
Vitamin E content values were obtained from the Swedish Food
Administration Database (18).

Statistical Analysis
The distribution of collected variables was preliminary examined
with the Shapiro–Wilk test. Then, the non-normally distributed
data were log-transformed to allow statistical analysis.
Differences between the groups were tested by parametric
(one-way ANOVA) or non-parametric (chi-square) tests,
as appropriate. In addition, possible differences in the VEI
depending on the H&Y stage and gender were tested by using
the one-way ANOVA. The association between PD and VEI was
assessed by means binomial logistic regression, adjusting the
model for age and gender.

Experimental Electrophysiology on PD

Mouse Model
Animal Model and Experimental Setting
Treatment and handling of animals were carried out in
accordance with both the EC and Italian guidelines (86/609/EEC;
DLS 116/1992, Directive 2010/63/EU; DLS/26 04/03/2014) and
were further approved by the University of Rome Tor Vergata
statute (n. 153/2001A) and by Animal Care and Use Committee
of University of Rome “Tor Vergata.” Transgenic mice (8- to
10-weeks old) were generated as previously described (14).

Intracellular recordings were obtained from striatal neurons
in a parasagittal brain slice (300µm) (9, 19, 20). A single slice
was transferred in a recording chamber (35◦C, 2–3 ml/min) and
submerged in a continuously flowing Krebs’ solution (35◦C, 2–
3 ml/min) bubbled with 95% O2 and 5% CO2. Kreb’s solution
was composed of (in mM): 126 NaCl, 2.5 KCl, 1.3 MgCl2, 1.2
NaH2PO4, 2.4 CaC12, 10 glucose, and 18 NaHCO3. Intracellular
recording electrodes were filled with 2M KCl (30–60 M�).
To evoke excitatory postsynaptic potentials (EPSPs), a bipolar
electrode was placed in the white matter, in close proximity
to the recording electrode or in layer VI of the cortex. Test
stimuli were delivered at a frequency of 0.1Hz in the presence

Frontiers in Neurology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 1488

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Schirinzi et al. Neuroprotection of Dietary Vitamin E in PD

of 50µM Picrotoxin to block GABA A-mediated responses. The
pharmacological effects on EPSPs recorded from knockout mice
(PINK1−/−) were calculated as percentage of control amplitude
in the wild-type (WT) or PINK1+/+ neuronal population.

For high-frequency stimulation (HFS, three trains 100Hz, 3 s,
20 s apart), stimulus intensity was raised to reach threshold level.
After HFS delivery, the amplitude of EPSPs was plotted over-time
as percentage of the control EPSP. Magnesium was omitted from
the medium for LTP induction (9, 19, 20).

Signals were recorded with an Axoclamp 2B amplifier
(Axon Instruments, Foster City CA 94404, USA), displayed
on a oscilloscope and stored on PC using Digidata 1,500A
and pClamp 10.6 (Axon Instruments, Molecular Devices,
USA). Data were examined of line by clampfit 10.7 software
(Axon Instruments, Molecular Devices, USA). After initial
analysis, all data were elaborated by Origin Microcal 2016
(Adalta) software.

Treatments
Effects of Vitamin E (alpha-tocopherol and the water-
soluble analog Trolox) were assessed in comparison to
other antioxidant agents of alimentary origin, in order to
test their action specificity. In particular, for our experiments we
specifically selected: beta-carotene (21, 22), lycopene (22, 23),
lutein (24), folic acid (25), ascorbic acid/Vitamin C (26),
retinol/Vitamin A (27), Vitamin K1/phylloquinone, and Vitamin
K2/menaquinones (28, 29).

The effects of drug treatments in PINK−/− mice were tested
in two different conditions: (1) ex-vivo, by acute preincubation of
parasagittal brain slices; (2) in vivo, by chronically administered
intraperitoneal injections.

For acute treatment, a single slice was incubated, from
40min before HFS induction and for the duration of the whole
experiment (about 1 h), in a bath solution containing the drug
dissolved in Krebs’ solution. Selected compounds were used in
bath at the respective dose of: alpha-tocopherol = 100µM and
Trolox = 100µM (9); beta-carotene = 100µM (30); lutein =

20µM (24); lycopene= 5µM (22, 23); folic acid= 100µM (25);
Vitamin A = 1µM (27); Vitamin C = 1–3mM (26); Vitamin K1
= 20µM, and Vitamin K2= 10µM (28, 29).

For chronic treatments, all compounds were solved in
ringer lactate and administered via intraperitoneal injections
for 7 days consecutively (9). Dose treatment was: alpha-
tochoperol = 100 mg/kg/7 days and Trolox = 5 mg/kg/7
days (9); beta-carotene = 2 mg/kg/7 days (31); lutein = 3
mg/kg/7 days (32); lycopene = 50mg /kg/7 days (31); folic
acid = 2 mg/kg/7 days (33); Vitamin A = 0.5 mg/kg/7
days (31); Vitamin C = 100 mg/kg/7 days (34); Vitamin
K2 = 50 mg/kg/7 days (35); Vitamin K1 = 150 mg/kg/7
days (36).

Drug Source
Beta-carotene, lycopene, folic acid, lutein, folic acid, Vitamin A,
Vitamin C, Vitamin K1 and K2, alpha-tochopherol, and Trolox
were purchased from Sigma-Adrich, Italy. All the other drugs
were purchased by Panreac Quimica (Spain).

TABLE 1 | Clinical-demographic parameters and VEI values of the study

population.

PD CTL Significance

Gender (M/F) 55.2% 44.8% 46.9% 53.1% ns

Age (years) Mean 63.3 60.5

St.dev. 8.5 10.6

Log10 Age Mean 1.80 1.77 ns

St.dev. 0.06 0.08

VEI (mg) Mean 31.6 38.4

St.dev. 13.5 17.8

Log10 VEI Mean 1.45 1.54 p < 0.05

St.dev. 0.21 0.21

H&Y Mean 2.4 –

St.dev. 0.7 –

Statistical Analysis
Data are presented as mean± standard error of the mean (SEM).
Statistical significance between pre and post HFS stimulation was
evaluated using Student T-test. Percentage values were calculated
for each individual experiment. An analysis of variance with the
Tukey’s post-hoc test was performed among the groups (P < 0.05;
alpha= 0.01). Statistical significance was set at <0.05.

RESULTS

Case-Control Study
Clinical-demographic parameters and the VEI of the study
population are summarized in Table 1. PD and CTL were
homogeneous in age and gender distribution; VEI was
significantly higher in CTL (38.4mg ± 17.8) than PD (31.6mg
± 13.5; Statistical analysis was conducted on Log-transformed
values, resulting p < 0.05). Conversely, VEI did not differ
depending on the gender in both groups, neither among the
stages of H&Y in PD patients. The binomial logistic regression
showed that VEI was directly associated with CTL status,
independently from age and gender (Odd Ratio, OR = 1.022;
95% CI= 0.999–1.045; p < 0.05).

Electrophysiology in PD Mouse Model
According to our previous findings (14, 16), HFS protocol
performed on parasagittal slice preparation induced a robust
LTD in MSNs recorded from WT mice (58.24 ± 3.79% of
control; n = 16 Figure 1A), whereas it failed to elicit LTD in
PINK1−/− mice (99.61 ± 2.88% of control; n = 22 p < 0.05 t-
test Figure 1A). After removal of magnesium from the bathing
medium, HFS induced LTP in WT mice (168.26 ± 5.21% of
control; n = 12; t-test p < 0.05 Figure 1B). In PINK1−/−

mice, HFS also increased EPSPs compared to pre HFS (123.39
± 4.88% of control; n = 12; t-test p < 0.05, Figure 1B),
but the magnitude was significantly lower than WT mice
(p < 0.05 ANOVA), suggesting the impairment of this form
of plasticity.

None of the other drugs, but Vitamin E, was able to
rescue either LTD or LTP in both acute and chronic treatment
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FIGURE 1 | Trolox fully rescues both forms of altered synaptic plasticity in PINK1−/− mice. (A) Time-course of LTD in WT and PINK1−/− mice recorded from

parasagittal slices. HFS (arrow) induces LTD in WT mice (gray circles), but not in PINK1−/− mice (black circles). The inset shows a representative sample of EPSPs

recorded in PINK1−/− before (pre) and 20min after (post) HFS. (B) The LTP induction protocol causes LTP in WT mice but not in PINK1−/− mice (black circles). The

magnitude of LTP measured in PINK1−/− mice is significantly reduced. The inset shows a representative sample of EPSPs recorded in PINK1−/− before (pre) and

20min after (post) HFS. (C,D) In slices acutely treated with Trolox 100µM (blue circles) or in slices from mice chronically treated with Trolox, both LTD (C) and LTP (D)

is rescued. LTD is fully rescued, while LTP increases in magnitude as in normal condition. The insets show two representative samples of EPSPs recorded in

PINK1−/− before (pre) and 20min after (post) HFS. Each data point represents the mean ± SEM from acute and chronic treatment, respectively.

(>5 observations for each experimental condition; T-test, p >

0.05; Table 2). Specifically, Trolox (the water-soluble analog of
Vitamin E) fully rescued both the forms of synaptic plasticity
either after acute or chronic administration (LTD protocol:
55.88 ± 6.01% of control; n = 16; t-test p < 0.05 Figure 1C;
LTP protocol: 175.30 ± 4.88% of control; n = 10; t-test
p < 0.05 Figure 1D, Table 2); alpha-tochoperol restored in
chronic conditions (intraperitoneal injection) (LTD protocol:
56.9 ± 4.21% of control; n = 8; t-test p < 0.05; LTP protocol:
177.2± 6.36% of control; n= 6; t-test p < 0.05, Table 2).

DISCUSSION

In this study, both the clinical retrospective analysis and our
electrophysiological experiments demonstrate that Vitamin E
might exert potential beneficial effects in PD.

The case-control analysis showed that dietary VEI is higher
in healthy subjects than age/sex matched PD patients. Such
a reduced intake in PD patients might suggest a lack of its
putative protective action, independently from age and gender.
Although consistent with other data from larger and prospective
cohorts (17, 18), a number of limitations should be considered
in the interpretation of the result, such as the sample size,
the recall bias, and the absence of accurate measurement
for the dietary intake. In fact, VEI was just approximately
estimated by a retrospective ad hoc questionnaire, scoring how
frequently the standard portions of aliments with Vitamin E
higher content were assumed in the last year, and not precisely
quantified. However, to prevent confounding factors due to
the occurrence of the disease, we excluded from the study
patients with alimentary restrictions (e.g., dysphagia), dementia
or any concomitant condition affecting feeding behavior or
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TABLE 2 | The table summarizes the effects of acute and chronic treatment of

every single compound on corticostriatal synaptic plasticity.

Drug Administration Rescue LTD Rescue LTP

Beta-carotene Acute NO NO

Chronic

Lutein Acute NO NO

Chronic

Lycopene Acute NO NO

Chronic

Folic acid Acute NO NO

Chronic

Vitamin A Acute NO NO

Chronic

Vitamin C Acute NO NO

Chronic

Vitamin K2 Acute NO NO

Chronic

Vitamin K1 Acute NO NO

Chronic

Alpha-tocopherol

(Vitamin E)

Acute NO NO

Chronic YES YES

Trolox (vitamin E) Acute YES YES

Chronic YES YES

Only alpha-tocopherol and Trolox resulted effective. Bold highlights drugs restoring

synaptic plasticity.

intestinal absorption. Moreover, the homogeneous distribution
of demographic features in the study population and the
statistical methodology might have limited the influence of
other potential confounding factors (e.g., sex/age-based dietary
choices, sex/age–dependent differences in internal metabolism).
In addition to confirm previous findings (17, 18), here we noticed
that VEI did not correlate with severity of PD, assessed by
H&Y score. Actually, the sample size and the exclusion from
the model of other clinical determinants (e.g., disease duration,
therapy) might represent a bias; indeed, it is possible that both
levodopa dose and disease duration, which are usually higher
in more advanced patients, may affect vitamin absorption (37),
causing some deficiency unrelated to the alimentary habits.
Also the occurrence and severity of constipation, which in turn
might influence dietary choices, pharmacotherapy and intestinal
function (38), has not been addressed in the study. Therefore,
caution is required in the interpretation of our preliminary
results. To this regard, it should be mentioned that other authors,
also by utilizing recall-based questionnaires, excluded significant
associations between alimentary VEI and PD (39, 40); these
studies differed in sample size, but were performed out of
Mediterranean area. Hence, we should consider regional diet
as a further potential confounding factor. Certainly, prospective
cohort studies, eventually supported by direct vitamin dosage, are
necessary to assess the weight of VEI in PD pathogenesis.

The protective action of Vitamin E on PD has been further
explored by using an experimental model of preclinical PD.

PINK1−/− mice indeed exhibit the disruption of bidirectional
plasticity at corticostriatal synapses, even in the absence of
overt neurodegeneration. Several studies indicate this model
as representative of a critical time-window of the disease in
which a specific intervention may revert the pathophysiological
cascade leading to symptoms onset, being thus appropriate
to test the efficacy of disease-modifying strategies (3, 14–16).
Our experiments show that the administration of Vitamin
E (alpha-tocopherol and Trolox), but not other dietary
antioxidant compounds (beta-carotene, lycopene, lutein, folic
acid, ascorbic acid/Vitamin C, retinol/Vitamin A, Vitamin
K1/phylloquinone, and Vitamin K2/menaquinones), was
able to revert synaptic plasticity abnormalities in PINK1−/−

mice. PINK1 haploinsufficiency precipitates mitochondrial
functioning, impairing mitophagy, and above all, energy
production under increased demand (41). This, in turn,
accounts for the reduced synaptic vesicle release at dopaminergic
terminals and the subsequent breakdown of corticostriatal
synaptic plasticity (9, 14, 16). It is thus conceivable that
Vitamin E, unlike other vitamins, specifically rescues striatal
homeostasis and neurotransmission in PINK1−/− mice, by
enhancing mitochondrial metabolism (42, 43) and energy-
dependent processes. Indeed, it has been recently demonstrated
that Vitamin E, but not other antioxidants, such as Vitamin
C, fully rescued longevity in a short-lived Candida elegans
gas-1(fc21) model of respiratory chain complex I defect (44).
Moreover, in other experimental models, Vitamin E resulted to
be able to activate cellular pathways involved in antioxidant,
detoxifying, and anti-inflammatory responses and to promote
bioenergy at mitochondrial level (45, 46). Regarding PINK1−/−

rodents model, Shim and colleagues demonstrated that Trolox
dramatically improved mitochondrial metabolism in PINK1-
deficient dopaminergic cells, by increasing complex I and
complex IV’s activity (47). Because neurotransmitter release
depends on mitochondrial bioenergetics (48), we hypothesize
a recovery of a physiological dopaminergic transmission with
the subsequent rescue of corticostriatal plasticity. However, a
specific set of experiments is required to assess this issue in
PINK1−/− mice. Yet, the complex interactions between PINK1-
mediated mitochondrial activities and Vitamin E-induced
cellular reactions (49, 50) could then explain the inefficacy of
other proved alimentary antioxidants in restoring corticostriatal
synaptic plasticity.

Since mitochondrial dysfunction is critical also in
pathogenesis of idiopathic PD (41, 51, 52), such a mechanism
may justify a beneficial action of higher dietary VEI on PD in
humans. Furthermore, Vitamin E seems to intervene on other
pathogenic pathways of PD, such as lysosome metabolism (53),
expanding potential restorative effects. Definitely, larger studies
are mandatory to validate this hypothesis.

Regardless the limitations, our findings suggest a potential
protective action of a Vitamin E rich diet. These data may
indicate that Vitamin E represents a potential therapeutic
target for disease-modifying treatments in PD. Therefore, diets
including Vitamin E rich aliments could be an immediate
option to reduce the risk of PD and other neurodegenerative
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diseases (54), although specific confirmatory trials
are necessary.
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The variability of symptoms in Parkinson’s disease (PD) suggests the need for

individualized treatment. A key aspect of precision medicine is lifestyle risk factor

modification, known to be important in the prevention and management of chronic

illness including other neurological diseases. Diet, cognitive training, exercise, and social

engagement affect brain health and quality of life, but little is known of the influence of

lifestyle on PD progression. Given disease heterogeneity, absence of objective outcome

measures, and the confounding effects of medication, investigating lifestyle as a potential

therapy in PD is challenging. This article highlights some of these challenges in the

design of lifestyle studies in PD, and suggests a more coordinated international effort

is required, including ongoing longitudinal observational studies. In combination with

pharmaceutical treatments, healthy lifestyle behaviors may slow the progression of PD,

empower patients, and reduce disease burden. For optimal care of people with PD,

it is important to close this gap in current knowledge and discover whether such

associations exist.

Keywords: Parkinson’s disease, lifestyle behaviors, observational studies as topic, longitudinal studies,

multimodal treatment concept

INTRODUCTION

Parkinson’s disease (PD) is an age-related complex progressive neurodegenerative disorder, with
key pathological features being the presence of alpha-synuclein-containing Lewy bodies and a
loss of dopaminergic neurons in the substantia nigra (1). Years to decades preceding diagnosis,
symptoms can include constipation, sleep behavior disorder, hyposmia, and anxiety (2). At
diagnosis, hallmark motor symptoms of bradykinesia, as well as either resting tremor or rigidity,
are defining (3).

The spectrum of motor and non-motor symptoms, and their impact on patient quality of
life, suggests a need to individualize treatment. Current treatments primarily act to replace or
boost existing dopamine, managing mostly motor symptoms. However, their long-term use leads
to side effects, and reduced efficacy (4). Treatment of non-motor symptoms, including fatigue
and cognitive impairment, is often secondary though they can have a significant impact on daily
living (5, 6).

A broader range of therapeutic alternatives is needed to manage symptoms and ideally slow PD
progression. The difficulty in therapeutic discovery is partially attributed to limited understanding
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of PD pathogenesis, assuming similar disease mechanisms
across clinically heterogeneous patients, and the absence of
biological markers to measure disease progression (7, 8).
Nevertheless, as the spectrum of individual symptoms is
increasingly being recognized, precision medicine is receiving
warranted attention.

A key aspect of precision medicine is attention to modifiable
lifestyle risk factors, including nutrition and exercise, known
to be important to neuronal health (9–11), and potentially
important in secondary prevention of progression of PD. Several
studies have shown associations between modifiable lifestyle
factors and PD risk and outcomes (Figure 1). Reduced risk
of developing PD is associated with physical activity and
perversely with smoking, while increased risk is associated with
constipation and anxiety or depression (12).Mind-body practices
and endurance exercise can improve PD health outcomes (13,
14), however their long-term effects on neuroprotection or
disease-modifying potential in PD remain inconclusive (4, 12,
15). Similarly, despite associations observed between PD risk and
urate, dairy, and caffeine, the effects of nutrition on progression
remain unclear (15–17). Further research is required to elucidate
the long-term effects of lifestyle behaviors on PD management
and progression if secondary prevention of PD with lifestyle
modification is to be a realistic treatment option.

STUDY DESIGNS TO MEASURE

LIFESTYLE BEHAVIORS

Randomized controlled trials (RCTs) are the gold standard
to examine therapeutic efficacy of an intervention (18, 19).
However, selection bias, randomization, adherence, and short
study duration often make RCTs impractical for lifestyle studies.
In any event, there is scant information on which lifestyle factors
might even be tested in such studies. To discover potential
lifestyle exposures that might benefit neuronal health in PD and
warrant trialing, unbiased monitoring of a population for lengthy
periods is required. Here, registries can provide a valuable tool.

Barriers in establishing population-based registries include
recruitment, cost, and data quality. While opt-out enrolment
avoids recruitment bias, registries require close to 100% capture
of patients with the disease in a given demographic. Extraction of
data elements from patient electronic health records can save cost
and time, with better data quality. Successful registries require
significant collaborative efforts from clinicians and trained
staff, to contribute data to a centralized repository. Time-poor
clinicians may be reluctant to participate, and issues of data
access, ownership, and governance can be additional barriers.

A cost- and time-efficient approach is an embedded trial
within an existing database (18, 19). With this approach, a
database with high quality data is required. Most existing
databases capture predominantly Caucasian participants, recruit
from hospitals, have low incident cases of PD, and collect
little data on lifestyle behaviors (20). These issues could be
lessened by combining comparable multi-center international
cohorts and adding lifestyle variables to datasets. The success of
combining cohorts necessitates a commitment to collaboration,

FIGURE 1 | Modifiable lifestyle factors associated with Parkinson’s

disease risk and outcomes. The strongest lifestyle factors associated with

Parkinson’s disease, reported to date, include (A) reduced risk: caffeine,

smoking, uric acid, quality diets, and exercise (B) increased risk: exposure to

pesticides, head injury, and dairy products, and (C) improved outcomes:

mind-body exercises and physical activity.

standardized data definitions, data management and governance,
and significant ongoing funding.

Observational cohort studies are less resource intensive
than RCTs, and useful for complex study protocols and small
patient populations (18). Selection bias and participant drop-
out may be addressed through multifactorial recruitment and
active engagement methods such as free access to wellbeing
classes, and regular communication through newsletters, public
seminars, and interactive workshops. Information bias and
confounding may be minimized by design and analysis (19). In
addition to efficiency, benefits of observational studies include
minimal participant effort and adherence issues, as one follows
natural behaviors.

Given that someone may follow more than one aspect of
a healthy lifestyle, observational studies are most practical to
evaluate associations of lifestyle and health outcomes. A proposed
research design would be a longitudinal cohort study, with
inclusion of an enriched PD population, caputuring data via
a combination of data linkage to diagnosing and treatment
clinics as well as self-reported online surveys (Figure 2).
Selecting appropriate data variables to capture requires scientific
rationale, with consideration of feasibility, practicality, and cost-
effectiveness. The ability of potential recommendations to be
seamlessly incorporated into people’s everyday lives also needs to
have a bearing on data capture.

Registry and observational studies can provide informed
decisions for areas of focus for RCTs (18). Ideally, any strong
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FIGURE 2 | Proposed research design for lifestyle. For research into multimodal lifestyle factors that impact Parkinson’s disease, we propose a longitudinal study of

an enriched population, capturing data via linkage, and self-reported online surveys.

association should be verified with a RCT prior to clinical
recommendation. However, where common sense points to
beneficial effects of low-risk modifiable behaviors on stress
reduction, weight management, and cognitive engagement,
health professionals may choose to prioritize patient education
to incorporate healthy lifestyle into daily living.

LIMITATIONS OF EXISTING LIFESTYLE

STUDIES IN PD

Several databases capture data on aging community members, as
well as people at high risk of or diagnosed with PD. A 2017 study
reviewed 44 of 68 identified PD databases around the world,
showing that many include few incident cases of PD, little data on
lifestyle, and were of limited duration (20). The authors highlight
an unaddressed opportunity to combine these databases, thereby
increasing research collaboration and knowledge of PD with a
larger patient cohort.

Variability of interventions, improper controls, lack of
relevant outcomes measures, and recruitment bias, make
results of existing studies difficult to interpret or generalize
(4). Additionally, there is no distinction or stratification of
participants based on PD stage or subtype, which delineate
disease symptoms and rate of progression (21, 22).

Questions remain unanswered on minimal dose
requirements, distinction of a learnt response, sustainable
effects once intervention ceases, as well as the impact of aging,

baseline health, and comorbidities. The significant lack of
evidence points to the need for an ongoing large-scale database
to capture and monitor lifestyle and health outcomes in people
with PD.

CHALLENGES OF LIFESTYLE

OBSERVATIONAL STUDIES

Selection bias, confounding, and recruitment are key challenges.
Multifactorial recruitment strategies and appropriate analysis
can minimize selection bias and confounders, respectively (19).
Screening for an enriched cohort may increase recruitment
efficiency and the possibility of observing a therapeutic
effect. Prodromal cohorts allow identification of PD in its
earliest stages, with time to conversion being a measure of
disease progression. Algorithms based on a combination
of risk factors group participants into high, medium, and
low risk of conversion, thereby potentially isolating an
enriched, trial-ready population (23). Interventions are
likely to have the most effect on this high-risk group as
neurodegeneration is less established. Primary limitations
are identifying participants with prodromal features, lack of
generalizability given a selective PD sub-type, slow conversion of
up to 14 years, and distinguishing intervention effects from slow
rate of conversion.

Within diagnosed groups, extensive neuronal damage may
result in barely perceptible effects of lifestyle changes, and these
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may only affect non-motor symptoms. De novo participants
with both short prodromal phase and time from diagnosis are
favorable subjects, however misdiagnosis is common in this
early phase (24). Most patients will be medicated within 12
months of diagnosis, after which time the effects of interventions
are difficult to untangle. Measures of disease progression in
diagnosed cohorts may therefore need to include time to
pharmaceutical treatment, stable medication dose, motor or
cognitive decline, and neuroimaging.

Study duration and participant retention are additional
challenges. Lifestyle signals may be modest; therefore, an
observational plan needs to be made for at least 5 years
to see meaningful progression of the disease. Research
funding is typically granted for 2–3 years, limiting
potential for such data collection. To encourage retention,
researchers should engage with participants by regularly
communicating study milestones and other relevant and
useful information, as well as promote involvement in events.
Creative reminders and motivators to complete surveys with
accuracy, to ensure unbiased data collection and analysis, are
also important.

OUTCOME MEASURES

Lifestyle interventions are hard to measure precisely and
may produce very specific and subtle signal changes. High
baseline levels of healthy living are likely to be neuroprotective,
thus increasing these levels may produce little change in
health outcomes (25). Each intervention component should be
measured at baseline and adjusted for effect size. Ideally, this
would be measured with a combination of physiological markers
and clinical assessments.

The development of markers of PD risk, diagnosis, and
progression is a priority. Advances have been made for
potential risk and diagnostic markers, including smell and
sleep tests, imaging to detect dopamine neurotransmitter,
alpha-synuclein, in the peripheral nervous system or
cerebrospinal fluid, and gene variants in family members.
As yet, no biomarker has however been validated as reliable
or replicable for clinical use and none exists to measure
disease progression (26). While important to provide
insight into potential mechanisms for effective intervention,
physiological tests often are not translatable to a clinically
measurable outcome with which the patient can identify. Until
sensitive and specific biomarkers are available to measure
progression, a composite panel of clinical assessments is
most appropriate.

Clinical assessments are recommended by the Movement
Disorder Society (MDS) and a standard set of outcome
measures recommended by the International Consortium
for Health Outcomes Measurement (27). The MDS Unified
Parkinson’s Disease Risk Score [MDS-UPDRS; (28)] is the
standard clinical measure for PD diagnosis and progression,
though limited in detection of subtle improvements and
susceptible to dopaminergic treatment effects and assessor
subjectivity. Together, clinical measures of motor and

non-motor symptoms, and quality of life, provide outcomes
with relevance to the patient. These may be complemented
with wearable devices and smart-phone applications that
monitor PD specific behaviors (29). These technologies have
the capacity to objectively measure changes in behaviors,
including detailed information about patterns of movement,
sleep quality, and blood pressure, with potential to develop
computer programs to predict early indicators of PD, disease
progression, and response to treatment. Determining which
measures to assess requires consideration of data reliability and
patient burden.

SUMMARY

Lifestyle has an important impact on risk and secondary
prevention of many chronic conditions. There is increasing
interest in the collection of lifestyle variables in PD cohorts.
However, inadequate and lengthy self-reported recall surveys,
the unlikelihood of lifestyle to have short-term or disease-
modifying effects, and absence of objective outcome measures,
are deterrents to capturing these data.

Given the complexity of symptoms in PD, the most
viable therapeutic approach of lifestyle management may be
multimodal. A combination of cognitive training, exercise, stress
reduction, nutrition, and social components may be beneficial to
quality of life. Whether these have a clinically significant effect on
more objective health outcomes is best initially evaluated through
longitudinal observational studies.

While there is much evidence on the benefits of lifestyle
on general health outcomes (9, 10), such advice for people
with PD must await a more concerted research effort
to identify risk factors for disease progression. Then,
implementation will require positive health promotion by
health professionals, government, media, and policy makers.
Health promotion initiatives can include prescribed exercise
regimes, nutritional labels on foods, responsible marketing of
tobacco and alcohol, and prioritizing wellbeing in educational
and workplace organizations. While inducing long-term
behavioral change is obviously a challenge, currently there
is insufficient evidence to embark on such public health
approaches in PD for most lifestyle factors, with the exception
of exercise.

To enable a true overview of patient health and expedite
research answers, data sharing and contribution to registries
should be encouraged, and governments should prioritize
resources for electronic data linkage between health services
and research centers. The discovery of an evidence base
around potential lifestyle modification in secondary prevention
of PD progression depends on a much more robust and
coordinated research effort world-wide than we have seen
to date.

Modification of lifestyle risk factors is a foundational approach
to prevention and management of chronic disease. These low-
risk, self-managed therapies can empower the patient and reduce
disease burden. Despite a robust evidence base in neurological
diseases like stroke (10), there has been little coordinated effort
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to discover such evidence in PD. Considering the growing burden
of PD, this is an important omission in modern PD research and
needs to be addressed.
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Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by loss of

dopaminergic neurons in the substantia nigra. Recent evidence supports the involvement

of the gastrointestinal tract in PD pathogenesis, including alterations in microbiota

and intestinal permeability. Apart from being the preferred energy source for colonic

epithelial cells, butyrate is involved in anti-inflammatory, enteroendocrine and epigenetic

mechanisms that influence colonic and systemic health, including brain function. A few

studies using oral administration of sodium butyrate indicate beneficial effects in PD

animal models; however, prebiotic fibers that generate butyrate locally in the gut may

be more effective. The design and selection of butyrogenic prebiotic fibers would allow

preclinical studies to evaluate how gut-derived butyrate could affect PD pathophysiology.

This review describes potential benefits of increasing gut butyrate production in PD

through a prebiotic approach. Moreover, physico-chemical features of prebiotic fibers

that target butyrogenic colonic bacteria are discussed.

Keywords: dietary fiber, Parkinson’s disease, butyrate, gut microbiota, prebiotics

INTRODUCTION

Parkinson’s disease (PD) is a relentlessly progressive neurodegenerative disease of aging, with a
considerable burden of disability. It is believed that PD pathology is a consequence of both genetic
susceptibility and toxic environmental factors, resulting in increasing neuronal oxidative stress (1).
The pathological hallmark of PD is neuronal inclusions termed Lewy bodies (LB) or Lewy neurites
(LN) whose main component is aggregated and phosphorylated α-synuclein and is responsible for
neurological symptoms and signs of PD (2).

Gastrointestinal involvement in PD may be pathogenic or a consequence of the disease. More
recently, researchers have provided evidence that supports a role for the gastrointestinal tract
and the enteric nervous system (ENS) in the pathogenesis of PD (3, 4). α-Synuclein aggregates
are present in Substance P containing neurons in the sigmoid colonic submucosal neurons in
patients with PD (5). Microbiota differs between those with PD and healthy controls; for instance,
those with PD have a lower abundance of Clostridium cluster XIVa and IV (6–10). Changes
in caecum mucosal-associated and luminal microbiota, including a significant decrease in the
relative abundance of the beneficial commensal bacteria genus Bifidobacterium, has been induced
by a mouse model of PD (11). Recently, evidence for proinflammatory dysbiosis in PD patients
has been shown, and researchers suggest that this dysbiosis could trigger inflammation-induced
misfolding of α-Syn and development of PD pathology (6). Additionally, intestinal permeability
was increased and beneficial metabolites of microbiota function, such as short chain fatty
acids (SCFA), were lower in those with PD compared to healthy controls (5). As evidence
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for gastrointestinal tract involvement in PD exists, this
suggests that therapeutic interventions may be warranted that
positively impact the intestinal milieu by changing microbiota
to produce less pro-inflammatory/injurious products and/or
prevent gut leakiness.

PREBIOTIC FIBER: DEFINITION,

STRUCTURE AND FUNCTION

The term prebiotics was first introduced in 1995 by Gibson and
Roberfroid as “a non-digestible food ingredient that beneficially
affects the host by selectively stimulating the growth and/or
activity of one or a limited number of bacteria in the colon,
and thus improves host health” (12). Since then, the original
definition has been revised several times and recently broadened
to ‘a substrate that is selectively utilized by host microorganisms
conferring a health benefit’ (13).This should not be confused
with probiotics, defined as “live microorganisms that confer
a health benefit on the host when administered in adequate
amounts” (14).

Although prebiotic definitions are general to all oligo-
and polysaccharide prebiotic substrates, researchers
up to 2010 have largely focused only on the use of
fructans (fructooligosaccharides [FOS] and inulin),
galactooligosaccharides (GOS) and, to a minor extent, lactulose,
to promote beneficial shifts in the gut bacterial community
(15). Prebiotic oligosaccharides were mainly used to promote
increases in Lactobacillus and Bifidobacterium species (16).

More recently, however, as the complexity and function of
gut microbial ecosystems have been unveiled, new microbial
groups or species of health interest have been identified, as well
as ways to promote them (17–19). The challenge of achieving
prebiotic effects favoring specific microbial groups requires the
understanding of how prebiotic structure relates to substrate
requirements of target bacteria and how they compete on
substrates relative to other microbial groups (20).

The majority of prebiotic substrates fall into the dietary fiber
classification—i.e., carbohydrate polymers not hydrolyzed by
endogenous enzymes in the small intestine (21). Carbohydrates
are the most abundant and heterogeneous class of molecules
found in nature. In plants, non-cellulosic carbohydrate fibers
include β-glucans, fructans, mannans, xylans, galactans,
arabinans, arabinogalactans, pectins, and resistant starch. Also,
carbohydrate fibers such as agars, sulfated carbohydrates,
alginates, fucoidans, α,β-glucans and chitin may be found in
other natural sources (22, 23). Apart from being a highly diverse
class of molecules, complex variations at the fine chemical
structure level (e.g., polymer size, linkage type, composition
and arrangement of side chains, degree, and identity of ester-
linked molecules) are possible within polymer class, resulting
in dietary fibers with distinct solubilization degree, viscosity
and tridimensional structure (20). For the complete hydrolysis
and utilization of such complex molecules, a given gut bacteria
should have within its genome the ability to produce recognition
and binding proteins, transporters and carbohydrate-active

enzymes (CAZymes) specific to a particular physicochemical
structure (24). As such, the ability and efficiency in utilizing
carbohydrates widely varies within gut individual bacteria or
bacterial groups (24, 25). In addition, overlapping abilities in
fiber degradation within bacterial species result in competitive
pressures within the gut. For instance, Xu et al. (26) showed that
strains of B. cellulosilyticus and B. ovatus both had the ability
to grow on simple arabinoxylan structures. However, when the
strains were cultivated together, B. ovatus outcompeted and
dominated over B. cellulosilyticus. Thus, prebiotic fibers with
specific physicochemical features can be selected to promote
certain bacteria based on the ability of a bacteria or bacterial
group to access and utilize them efficiently in the competitive
environment of the colon (20).

METABOLITES FROM COLONIC DIETARY

FIBER FERMENTATION IN PARKINSON’S

DISEASE

The colonic fermentation of dietary fiber by specialist microbes
in the gut leads to the formation of a variety of gases and
metabolites. SCFAs including acetate, propionate, and butyrate
comprise 90–95% of all microbiota metabolites produced in
the colon (27–29). SCFAs hold biological significance and may
act both locally in the gut and systemically to promote health
benefits at distinct body sites. In neurological disorders, SCFAs
are potentially important for their role in anti-inflammatory
processes (30–32), promotion of blood-tissue barrier integrity
(33, 34), and neuromodulation (35, 36). Moreover, local effects
such as triggering gut peristaltic reflexes (37) could be relevant,
as constipation is an usual clinical finding in many neurological
disorders, including PD (38, 39). Although there are no studies
evaluating acetate and propionate singly in PD, butyrate has been
studied and the majority of preclinical evidence suggests that it
specifically could be beneficial in many aspects of PD (40–45).

Butyrate
Butyrate is the preferred energy source for gut enterocytes,
responsible for most of their energy metabolism (46). Butyrate
also supports gut barrier function through the stimulation of
tight junction assemblies and mucus production. As mentioned,
hyperpermeability of the colonic epithelium occurs in PD (5);
thus, the action of butyrate on the gut barrier may have
clinical importance in PD. At the cell surface level, butyrate
elicits a variety of physiological responses through G protein-
coupled receptors (GPCR) in enterocytes (47). In particular,
butyrate regulates inflammatory pathways that are important
in maintaining gut homeostasis (48, 49) and stimulates the
production of enteroendocrine hormones such as glucagon-like
peptide 1 (GLP-1) and peptide YY (50, 51) (Figure 1). Both of
these hormones reach circulation and exert their action through
receptors spread at distinct body sites, including the brain. In
a mouse model of PD, oral administration of sodium butyrate
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FIGURE 1 | Dietary fiber approach to increase gut-produced butyrate and pathways that have potential benefits to Parkinson’s Disease. Insoluble dietary fibers with

specific chemical structures are fermented by butyrate producers in the gut (e.g., Clostridium Cluster XIVa and IV species). The butyrate produced during fermentation

supports gut barrier function through the stimulation of mucus production and tight junction assemblies, and minimizing antigen translocation and inflammation.

Butyrate also regulates inflammatory pathways through G protein-coupled receptors (GPCR) in enterocytes and through inhibition of histone deacetylase (HDAC) in

macrophages. GPCR signaling in enteroendocrine cells (EEC) induce secretion of hormones (e.g., glucagon-like peptide-1 [GLP-1] and peptide YY[PYY]) that act in

many organs, including the brain.

increased colonic GLP-1 levels as well as upregulated GLP-
1 receptors (GLP-1R) in the brain and resulted in improved
neurobehavioral impairment (52).

Butyrate also influences histone acetylation, a post-
translational modification that influences the propensity of
a gene to be transcribed or repressed (53). Butyrate acts as
a histone deacetylase inhibitor (HDACi) (54), attenuating
production and secretion of pro-inflammatory cytokines
in response to lipopolysaccharide stimuli in macrophages,
complementing analogous modulation of inflammatory process
via GPCRs (55) (Figure 1). Butyrate-targeted histone deacetylase
inhibition is also neuroprotective against dopamine cell death
(44) and DNA damage (42) in-vitro. In a rotenone-induced
drosophila model of PD, sodium butyrate was able to improve
locomotor deficits and reduce early mortality (40). Similar results
were observed in a 6-hydroxydopamine-induced rat model of
PD, in which sodium butyrate attenuated motor impairment
and increased dopamine levels (45). In addition, Zhou et al.
(43) showed that in a cell culture and a murine model of PD,
sodium butyrate was able to up-regulate gene expression of DJ-1,
a protein known to protect dopamine neurons from oxidative
stress and moderate protein aggregation.

All animal studies using PD models utilized oral
administration of sodium butyrate, rather than an approach
using butyrogenic prebiotics. It should be noted that sodium

butyrate is delivered differently to the body compared to
microbiota-produced butyrate from prebiotic fermentation.
Sodium butyrate is absorbed mostly in upper segments of
the gastrointestinal tract, it leads to significant increases in
plasma concentrations of butyrate (56). While this could result
in direct actions in the brain, upper gastrointestinal tract
absorption prevents most of the butyrate supplemented to
reach the large intestine, where it has functions that could
be relevant in PD (e.g., gut barrier function, regulation of
inflammatory pathways, enteroendocrine hormone release).
Microbiota-derived butyrate, on the other hand, generally is
considered to act locally in the gut, with the remaining portion
absorbed by the liver with no significant amounts reaching
bloodstream (57). Interestingly, some reports show increased
blood levels of circulating butyrate in healthy subjects in
response to dietary fiber interventions (58–60), indicating that
a portion of butyrate may escape liver absorption and could
have a direct action in the brain. Inflammatory conditions may
also cause an increase of SCFAs in peripheral venous blood
(61), and therefore, the extent of microbiota produced-butyrate
that reaches bloodstream in PD patients is still a matter of
investigation. Overall, the use of prebiotic dietary fibers to
increase butyrate in the colon could promote both localized
and systemic effects (Figure 1), which seems like a promising
approach in the management of PD. However, preclinical
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studies are needed to evaluate how gut-derived butyrate affects
PD pathophysiology.

Some controversy regarding the commonly accepted concept
of anti-inflammatory and neuroprotective action of SCFAs was
brought to light in a study using a mouse model of PD (62, 63).
Sampson et al. (62) reported that the oral administration of a
SCFA mixture, as well as a fecal transplant, to animals raised
in a germ-free environment or antibiotic-treated, enhanced
PD pathophysiology. It was not clear, however, if the SCFA
mixture dosage utilized corresponds to levels that can be
reached through gut-microbiota production. In this regard,
oral administration of 100 mg/kg of sodium butyrate (NaB),
but not 1,200 mg/kg, attenuated social deficits in an autism
mouse model (64), indicating that distinct outcomes may take
place by changing SCFA concentration. Another consideration
is that orally delivered butyrate is mainly absorbed in the upper
gastrointestinal tract and could have distinctly different outcomes
from the colonic-produced butyrate.

BUTYROGENIC BACTERIA IN THE LARGE

INTESTINE

A number of commensal gram-positive bacteria in the human
gut possess the ability to produce butyrate. The majority
of the butyrate producing bacteria belong to Clostridium
Clusters IV and XIVa of the Firmicutes phylum. These clusters
comprise highly oxygen-sensitive bacteria, which are estimated to
significantly contribute to colonic butyrate production (65, 66).
They also correspond to a numerically important portion of
colonic bacteria. Faecalibacterium prausnitzii from Clostridium
Cluster IV and Eubacterium rectale from Clostridium Cluster
XIVa comprise up to 14 and 13%, respectively, of total fecal
gut microbiota (67). Other major butyrogenic bacteria isolated
from the human colon are Roseburia spp., Eubacterium spp.,
Anaerostipes caccae, Butyrivibrio fibrisolvens, Coprococcus spp.
from Clostridium Cluster XIVa and Subdoligranulum variabile
andAnaerotruncus colihominis fromClostridiumCluster IV (66).
Many of commensal clostridial species preferentially colonize the
mucus layer (e.g., E. rectale, F. prausnitzii, and R. intestinalis)

which is in close proximity to gut epithelium. This strategic
position favors butyrate interaction and uptake by intestinal cells,
stimulating physiologic, metabolic and immunologic processes of
health significance. Nonetheless, species such as A. caccaemostly
inhabit the lumen of the colon where butyrate production helps
to reduce luminal pH, preventing the growth pathogenic bacteria
(68–70). Non-butyrogenic species also indirectly contribute to
butyrate formation through production of other SCFA as a more
acidic gut milieu favors the growth of butyrogenic species (71–
73). Also, many butyrogenic bacteria utilize lactate and acetate
from other bacteria to produce butyrate (66). The importance of
such crossfeeding mechanisms to improve butyrate formation in
the gut is still a matter of discussion as many butyrogenic bacteria
occupy spatially distinct niches different than non-butyrogenic
ones within the gut (70, 74, 75).

Depletion of butyrogenic bacteria from Clostridium Cluster
IV and XIVa, especially those found nearly associated to the
mucus layer is a common and potentially negative finding in the
elderly (68). On top of that, PD patients show lower abundance
of Lachnospiraceae family members (Clostridium Cluster XIVa)
(6–8) and Faecalibacterium (ClostridiumCluster IV) (6, 8–10), as
well as low production of all three SCFAs, including butyrate (9)
compared to individuals of similar age.

PREBIOTIC DIETARY FIBER TARGETING

BUTYROGENIC BACTERIA AND

BUTYRATE PRODUCTION

Colonic bacteria produce butyrate mainly through dietary fiber
fermentation, with proteolytic pathways contributing very little
to overall butyrate production (65). Consumption of a meat-
based diet for five consecutive days resulted in lower butyrate
levels in fecal samples of healthy volunteers when compared
to a plant-based diet. Butyrate reduction was accompanied by
decrease in abundance of butyrogenic bacteria from Firmicutes,
such as Roseburia and E. rectale (Clostridium Cluster XIVa).
Another study with obese individuals showed that 4 weeks
of a very low total carbohydrate intake (24 g/day), including
low dietary fiber, resulted in a 4-fold decrease in Roseburia

TABLE 1 | Examples of insoluble substrates capable of promoting butyrogenic colonic bacteria.

Dietary fiber Study design Butyrogenic bacteria positively affected Study

Chitin-glucan complexes Fecal analysis from diet-induced obese mice Clostridium Cluster XIVa, including Roseburia

spp.

Neyrinck et al. (80)

β-1,3/1,6-D-glucan In vitro human fecal fermentation Anaerostipes spp. and Roseburia Cantu-Jungles et al. (81)

Whole grain barley Fecal analysis from healthy human subjects Eubacterium rectale, Roseburia faecis and

Roseburia intestinalis

Martinez et al. (82)

Wheat bran Fecal analysis from obese males Members from Lachnospiraceae family Salonen et al. (83)

Acetylated galactoglucomannan and highly

acetylated arabinoglucuronoxylan (AGX)

In vitro human fecal fermentation Faecalibacterium prausnitzii La Rosa et al. (84)

Wheat bran In vitro human fecal fermentation Members from Lachnospiraceae family and

uncultured butyrate producers

Duncan et al. (85)

Coarse wheat bran In vitro human fecal fermentation Coprococcus eutactus, Roseburia and other

Lachnospiraceae family members

Tuncil et al. (86)
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spp. and E. rectale accompanied by the same magnitude
reduction in butyrate fecal content (76). These data suggest that
these colonic bacteria are particularly dependent upon dietary
fiber consumption.

Contrary to what is found in Bacteroidetes (known as
carbohydrate generalists, as many species have overlapping
nutrient utilization abilities), available data suggest that,
in addition to crossfeeding, butyrogenic bacteria are more
specialized to degrade unique fiber structures. For example,
Sheridan et al. (77) showed that even bacteria from the same
Roseburia genus (Clostridium Cluster XIVa) present variable
abilities to grow in distinct substrates in single cultures, with
little overlapping in fiber utilization capabilities within species.

As previously discussed, fiber physical features are also related
to its fermentation profile. Most bacteria attached to particles
recovered from human feces belong to Firmicutes (mean 76.8%
against only 18.5% Bacteroidetes), with high abundance of
species from Clostridium Cluster IV and XIVa (74). In vitro fecal
fermentation of wheat bran also showed that Clostridium Cluster
XIVa dominated amongst particle-associated bacteria (78). As
primary colonizers of insoluble substrates, these bacteria would
hold a competitive advantage to degrade insoluble fermentable
substrates. In fact, in pure cultures of R. intestinalis and
Bacteroides xylanisolvens, the former was shown to be strongly
associated with insoluble xylan, while B. xylanisolvens was
enriched in solubilized xylan fractions (79).

Corroborating these results, many insoluble substrates such
as chitin-glucan and β-glucan, as well as some cereals rich
in insoluble fractions, were shown to increase butyrate and/or
colonic butyrogenic bacteria (Table 1). Chitin-glucan complexes
were shown to specifically increase Clostridium Cluster XIVa,
including Roseburia spp. in high-fat (HF) diet-induced obese
mice and promoted desirable metabolic outcomes (80). In
our research group, insoluble β-glucans from fungi specifically
increased Anaerostipes spp. (Clostridium Cluster XIVa) from
<0.5% of the total bacteria in the initial inoculum to
approximately 24% after fermentation of such fiber in vitro (81).
This was accompanied by butyrate increase from 12.5 to 24–26%
after β-glucan fermentation (81). Whole grain barley (82) and
wheat bran (83, 85) were shown to be fermented by members
of Lachnospiraceae family (Clostridium Cluster XIVa) in human
colonic microbiota. Lignocellulosic dietary fibers from feedstocks
such as galactoglucomannan and arabinoglucuronoxylan were
shown to increase Faecalibacterium prausnitzii (Clostridium
Cluster IV) (84). In an indirect way, acetate producers, such as
Ruminococcus bromii through utilization of resistant starch, can
promote butyrate production through cross-feeding (87). These
studies confirm that insoluble polymers with distinct chemical
structures boost divergent butyrogenic bacteria in the colon.

Finally, besides solubility degree and chemical structure, particle
size may be an important fiber characteristic to consider in

butyrogenic prebiotic fiber design and selection. Tuncil et al.
(86) showed that in vitro fecal fermentation of larger wheat bran
particle size fractions led to higher butyrate production, as well
as increases in some members of the Lachnospiraceae family
(Clostridium Cluster XIVa). In contrast, smaller particles were
associated with higher propionate production.

Overall, the few studies using dietary fiber treatment in PD
patients have focused on intestinal constipation (39, 88) and its
pharmacokinetic effects on drug absorption (88). Metabolites
produced in the gut, and composition of gut microbiota in
response to dietary fiber treatment, have not been assessed.
Cross-sectional studies indicate that the microbial composition
in PD patients present distinct composition from healthy
controls (6–10). Although differences in microbial composition
varies between PD and healthy controls across studies, all
researchers report decreased abundance of butyrate producers,
such as bacteria from Clostridium Cluster XIVa and/or IV
(6–10). As butyrate is known to play important physiological
roles both within the gastrointestinal tract and in diverse body
sites, a dietary fiber approach targeting increases in colonic
butyrogenic bacteria (Figure 1) could be beneficial to PD. Studies
designed to evaluate dietary fiber effects on bacterial shifts and
beneficial metabolite production, especially butyrate, as well as
its relation to inflammation, gut permeability, and neurological
outcomes in PD, should be conducted. Dietary fibers with
specific chemical structures can be selected and/or designed to
evaluate if a targeted colonic increase in butyrate and butyrate
producers is beneficial to the management of PD outcomes
beyond intestinal constipation.

CONCLUSION

Promoting increases in gut-derived butyrate is a promising
approach in PD that could have implications in the management
of gut and systemic disturbances. Prebiotic fiber features such
as solubility degree, and chemical and physical structures may
be important in allowing butyrogenic bacteria to compete
against Gram-negative carbohydrate-utilizing bacteria for a more
targeted prebiotic approach. The use of specific butyrogenic
prebiotic fiber structures in PD models would allow for future
pre-clinical studies to understand the effect of gut-produced
butyrate in PD.

AUTHOR CONTRIBUTIONS

TC-J and HR wrote the manuscript. HR and BH revised
the manuscript.

REFERENCES

1. Thomas B, Beal M. Parkinson’s disease. Hum Mol Genet. (2007) 16:R138–94.

doi: 10.1093/hmg/ddm159

2. Braak H, Del Tredici K. Nervous system pathology in sporadic

Parkinson disease. Neurology. (2008) 70:1916–25. doi: 10.1212/01.wnl.

0000312279.49272.9f

3. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a

dual-hit hypothesis. Neuropathol Appl Neurobiol. (2007) 33:599–

614. doi: 10.1111/j.1365-2990.2007.00874.x

4. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des

Varannes S, Neunlist M, et al. The second brain and Parkinson’s

disease. Eur J Neurosci. (2009) 30:735–41. doi: 10.1111/j.1460-9568.2009.

06873.x

Frontiers in Neurology | www.frontiersin.org 5 June 2019 | Volume 10 | Article 66323

https://doi.org/10.1093/hmg/ddm159
https://doi.org/10.1212/01.wnl.0000312279.49272.9f
https://doi.org/10.1111/j.1365-2990.2007.00874.x
https://doi.org/10.1111/j.1460-9568.2009.06873.x
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cantu-Jungles et al. Butyogenic Prebiotic Fibers Parkinson’s

5. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA,

et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-

synuclein staining and endotoxin exposure markers in early Parkinson’s

disease. PLoS ONE. (2011) 6:e28032. doi: 10.1371/journal.pone.0028032

6. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al.

Colonic bacterial composition in Parkinson’s disease. Mov Disord. (2015)

30:1351–60. doi: 10.1002/mds.26307

7. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen

ZD, et al. Parkinson’s disease and Parkinson’s disease medications have

distinct signatures of the gut microbiome. Mov Disord. (2017) 32:739–

49. doi: 10.1002/mds.26942

8. Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva

YB, et al. Analysis of Gut Microbiota in Patients with Parkinson’s Disease. Bull

Exp Biol Med. (2017) 162:734–7. doi: 10.1007/s10517-017-3700-7

9. Unger MM, Spiegel J, Dillmann K-U, Grundmann D, Philippeit H, Bürmann

J, et al. Short chain fatty acids and gut microbiota differ between patients with

Parkinson’s disease and age-matched controls. Parkinson Relat Disord. (2016)

32:66–72. doi: 10.1016/j.parkreldis.2016.08.019

10. Li W, Wu X, Hu X, Wang T, Liang S, Duan Y, et al. Structural changes of gut

microbiota in Parkinson’s disease and its correlation with clinical features. Sci

China Life Sci. (2017) 60:1223–33. doi: 10.1007/s11427-016-9001-4

11. Perez-Pardo P, Dodiya HB, Engen PA, Naqib A, Forsyth CB, Green SJ, et al.

Gut bacterial composition in a mouse model of Parkinson’s disease. Benef

Microbes. (2018) 9:799–814. doi: 10.3920/BM2017.0202

12. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic

microbiota: introducing the concept of prebiotics. J Nutr. (1995) 125:1401–

12. doi: 10.1093/jn/125.6.1401

13. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ,

et al. Expert consensus document: the International Scientific Association

for Probiotics and Prebiotics (ISAPP) consensus statement on the

definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. (2017)

14:491. doi: 10.1038/nrgastro.2017.75

14. Ciorba MA. A gastroenterologist’s guide to probiotics. Clin Gastroenterol

Hepatol. (2012) 10:960–8. doi: 10.1016/j.cgh.2012.03.024

15. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland

I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. (2010)

104:S1–63. doi: 10.1017/S0007114510003363

16. Gibson GR, Fuller R. Aspects of in vitro and in vivo research approaches

directed toward identifying probiotics and prebiotics for human use. J Nutr.

(2000) 130:391S−5S. doi: 10.1093/jn/130.2.391S

17. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease.

Curr Opin Gastroenterol. (2015) 31:69. doi: 10.1097/MOG.0000000000000139

18. Rivière A, SelakM, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-

producing colon bacteria: importance and strategies for their stimulation in

the human gut. Front Microbiol. (2016) 7:979. doi: 10.3389/fmicb.2016.00979

19. Zhang Y-J, Li S, Gan R-Y, Zhou T, Xu D-P, Li H-B. Impacts of

gut bacteria on human health and diseases. Int J Mol Sci. (2015)

16:7493. doi: 10.3390/IJMS16047493

20. Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber

structures and their potential effect on the gut microbiota. J Mol Biol. (2014)

426:3838–50. doi: 10.1016/j.jmb.2014.07.028

21. Codex Alimentarius Commission. Report of the 30th Session of the Codex

Committee on Nutrition and Foods for Special Dietary Uses (ALINORM

09/32/26). Rome: Codex Alimentarius Commission (2009).

22. de Jesus Raposo MF, de Morais AMMB, de Morais RMSC. Emergent

sources of prebiotics: seaweeds and microalgae. Mar Drugs. (2016)

14:27. doi: 10.3390/md14020027

23. Ruthes AC, Smiderle FR, Iacomini M. Mushroom heteropolysaccharides:

a review on their sources, structure and biological effects.

Carbohydr Polym. (2016) 136:358–75. doi: 10.1016/j.carbpol.2015.

08.061

24. Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H. Polysaccharide

utilization loci: fuelling microbial communities. J Bacteriol. (2018)

199:e00860-16. doi: 10.1128/JB.00860-16

25. Rose DJ, Patterson JA, Hamaker BR. Structural differences among alkali-

soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat

(Triticum aestivum) brans influence human fecal fermentation profiles. J Agric

Food Chem. (2010) 58:493–9. doi: 10.1021/jf9020416

26. Xu H. Influence of the Structural Complexity of Cereal Arabinoxylans on

Human Fecal Fermentation and Their Degradation Mechanism by Gut

Bacteria. Theses Diss Available from ProQuest (2012) Available online at:

https://docs.lib.purdue.edu/dissertations/AAI3544591 (accessed January 28,

2019).

27. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker

BM. The role of short-chain fatty acids in the interplay between diet,

gut microbiota, and host energy metabolism. J Lipid Res. (2013) 54:2325–

40. doi: 10.1194/jlr.R036012

28. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota.

Gut Microbes. (2017) 8:172–84. doi: 10.1080/19490976.2017.1290756

29. Zoetendal EG, de Vos WM. Effect of diet on the intestinal

microbiota and its activity. Curr Opin Gastroenterol. (2014)

30:189–95. doi: 10.1097/MOG.0000000000000048

30. VinoloMAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation

by short chain fatty acids.Nutrients. (2011) 3:858–76. doi: 10.3390/nu3100858

31. Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties

of the short-chain fatty acids acetate and propionate: a study with relevance

to inflammatory bowel disease. World J Gastroenterol. (2007) 13:2826–

32. doi: 10.3748/wjg.v13.i20.2826

32. Liu T, Li J, Liu Y, Xiao N, Suo H, Xie K, et al. Short-chain fatty acids suppress

lipopolysaccharide-induced production of nitric oxide and proinflammatory

cytokines through inhibition of NF-κB pathway in RAW264.7 cells.

Inflammation. (2012) 35:1676–84. doi: 10.1007/s10753-012-9484-z

33. Al-Asmakh M, Hedin L. Microbiota and the control of blood-tissue barriers.

Tissue Barriers. (2015) 3:1039691. doi: 10.1080/21688370.2015.1039691

34. Hoyles L, Snelling T, Umlai U-K, Nicholson JK, Carding SR, Glen

RC, et al. Microbiome-host systems interactions: protective effects

of propionate upon the blood-brain barrier. Microbiome. (2018)

6:55. doi: 10.1186/s40168-018-0439-y

35. Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs

and gasotransmitters produced by the human symbiotic microbiota. Microb

Ecol Heal Dis. (2016) 27:30971. doi: 10.3402/mehd.v27.30971

36. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res.

(2018) 1693:128–33. doi: 10.1016/j.brainres.2018.03.015

37. Grider JR, Piland BE. The peristaltic reflex induced by short-chain fatty acids

is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF.

Am J Physiol Liver Physiol. (2007) 292:G429–37. doi: 10.1152/ajpgi.00376.2006

38. Winge K, Rasmussen D, Werdelin LM. Constipation in neurological diseases.

J Neurol Neurosurg Psychiatry. (2003) 74:13–9. doi: 10.1136/JNNP.74.1.13

39. Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C, et al.

Probiotics and prebiotic fiber for constipation associated with Parkinson

disease. Neurology. (2016) 87:1274–80. doi: 10.1212/WNL.0000000000003127

40. St. Laurent R, O’Brien LM, Ahmad ST. Sodium butyrate improves

locomotor impairment and early mortality in a rotenone-induced

Drosophila model of Parkinson’s disease. Neuroscience. (2013)

246:382–90. doi: 10.1016/j.neuroscience.2013.04.037

41. Mony L, Kew JN, Gunthorpe MJ, Paoletti P. Allosteric modulators

of NR2B-containing NMDA receptors: molecular mechanisms

and therapeutic potential. Br J Pharmacol. (2009) 157:1301–

17. doi: 10.1111/j.1476-5381.2009.00304.x

42. Paiva I, Pinho R, Pavlou MA, Hennion M, Wales P, Schütz A-L, et al.

Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced

transcriptional deregulation and DNA damage. Hum Mol Genet. (2017)

26:2231–46. doi: 10.1093/hmg/ddx114

43. Zhou W, Bercury K, Cummiskey J, Luong N, Lebin J, Freed CR.

Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell

culture and in animal models of Parkinson disease. J Biol Chem. (2011)

286:14941–51. doi: 10.1074/jbc.M110.211029

44. Kidd SK, Schneider JS. Protection of dopaminergic cells from MPP+-

mediated toxicity by histone deacetylase inhibition. Brain Res. (2010)

1354:172–8. doi: 10.1016/j.brainres.2010.07.041

45. Salama AF, Ibrahim W, Tousson E, Sakr S, Masoud A, Akela MA, et al.

Epigenetic study of Parkinson’s disease in experimental animal model. Int J

Clin Exp Neurol. (2015) 3:11–20. doi: 10.12691/IJCEN-3-1-3

46. Roediger WEW. Utilization of nutrients by isolated epithelial

cells of the rat colon. Gastroenterology. (1982) 83:424–

9. doi: 10.1016/S0016-5085(82)80339-9

Frontiers in Neurology | www.frontiersin.org 6 June 2019 | Volume 10 | Article 66324

https://doi.org/10.1371/journal.pone.0028032
https://doi.org/10.1002/mds.26307
https://doi.org/10.1002/mds.26942
https://doi.org/10.1007/s10517-017-3700-7
https://doi.org/10.1016/j.parkreldis.2016.08.019
https://doi.org/10.1007/s11427-016-9001-4
https://doi.org/10.3920/BM2017.0202
https://doi.org/10.1093/jn/125.6.1401
https://doi.org/10.1038/nrgastro.2017.75
https://doi.org/10.1016/j.cgh.2012.03.024
https://doi.org/10.1017/S0007114510003363
https://doi.org/10.1093/jn/130.2.391S
https://doi.org/10.1097/MOG.0000000000000139
https://doi.org/10.3389/fmicb.2016.00979
https://doi.org/10.3390/IJMS16047493
https://doi.org/10.1016/j.jmb.2014.07.028
https://doi.org/10.3390/md14020027
https://doi.org/10.1016/j.carbpol.2015.08.061
https://doi.org/10.1128/JB.00860-16
https://doi.org/10.1021/jf9020416
https://docs.lib.purdue.edu/dissertations/AAI3544591
https://doi.org/10.1194/jlr.R036012
https://doi.org/10.1080/19490976.2017.1290756
https://doi.org/10.1097/MOG.0000000000000048
https://doi.org/10.3390/nu3100858
https://doi.org/10.3748/wjg.v13.i20.2826
https://doi.org/10.1007/s10753-012-9484-z
https://doi.org/10.1080/21688370.2015.1039691
https://doi.org/10.1186/s40168-018-0439-y
https://doi.org/10.3402/mehd.v27.30971
https://doi.org/10.1016/j.brainres.2018.03.015
https://doi.org/10.1152/ajpgi.00376.2006
https://doi.org/10.1136/JNNP.74.1.13
https://doi.org/10.1212/WNL.0000000000003127
https://doi.org/10.1016/j.neuroscience.2013.04.037
https://doi.org/10.1111/j.1476-5381.2009.00304.x
https://doi.org/10.1093/hmg/ddx114
https://doi.org/10.1074/jbc.M110.211029
https://doi.org/10.1016/j.brainres.2010.07.041
https://doi.org/10.12691/IJCEN-3-1-3
https://doi.org/10.1016/S0016-5085(82)80339-9
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cantu-Jungles et al. Butyogenic Prebiotic Fibers Parkinson’s

47. Husted AS, Trauelsen M, Rudenko O, Hjorth SA, Schwartz TW.

GPCR-mediated signaling of metabolites. Cell Metab. (2017) 25:777–

96. doi: 10.1016/J.CMET.2017.03.008

48. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain

fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to

promote inflammatory responses in mice. Gastroenterology. (2013) 145:396–

406.e10. doi: 10.1053/j.gastro.2013.04.056

49. D’Souza WN, Douangpanya J, Mu S, Jaeckel P, Zhang M, Maxwell JR, et al.

Differing roles for short chain fatty acids andGPR43 agonism in the regulation

of intestinal barrier function and immune responses. PLoS ONE. (2017)

12:e0180190. doi: 10.1371/journal.pone.0180190

50. Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM,

Holst JJ. The impact of short-chain fatty acids on GLP-1 and PYY secretion

from the isolated perfused rat colon. Am J Physiol Liver Physiol. (2018)

315:G53–65. doi: 10.1152/ajpgi.00346.2017

51. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki

E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion

via the G-protein-coupled receptor FFAR2. Diabetes. (2012) 61:364–

71. doi: 10.2337/db11-1019

52. Liu J, Wang F, Liu S, Du J, Hu X, Xiong J, et al. Sodium

butyrate exerts protective effect against Parkinson’s disease in mice

via stimulation of glucagon like peptide-1. J Neurol Sci. (2017)

381:176–81. doi: 10.1016/j.jns.2017.08.3235

53. Santos AL, Lindner AB. Protein posttranslational modifications: roles in

aging and age-related disease. Oxid Med Cell Longev. (2017) 2017:1–

19. doi: 10.1155/2017/5716409

54. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. (2003)

133:2485S−93S. doi: 10.1093/jn/133.7.2485S

55. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial

metabolite butyrate regulates intestinal macrophage function via

histone deacetylase inhibition. Proc Natl Acad Sci USA. (2014)

111:2247–52. doi: 10.1073/pnas.1322269111

56. Egorin MJ, Yuan Z-M, Sentz DL, Plaisance K, Eiseman JL. Plasma

pharmacokinetics of butyrate after intravenous administration of

sodium butyrate or oral administration of tributyrin or sodium

butyrate to mice and rats. Cancer Chemother Pharmacol. (1999)

43:445–53. doi: 10.1007/s002800050922

57. Knudsen KEB, Serena A, Canibe N, Juntunen KS. New insight into

butyrate metabolism. Proc Nutr Soc. (2003) 62:81–6. doi: 10.1079/PNS20

02212

58. Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN. Insulin-

sensitizing effects of dietary resistant starch and effects on skeletal

muscle and adipose tissue metabolism. Am J Clin Nutr. (2005) 82:559–

67. doi: 10.1093/ajcn.82.3.559

59. Priebe MG, Wang H, Weening D, Schepers M, Preston T, Vonk RJ. Factors

related to colonic fermentation of nondigestible carbohydrates of a previous

evening meal increase tissue glucose uptake and moderate glucose-associated

inflammation. Am J Clin Nutr. (2010) 91:90–7. doi: 10.3945/ajcn.2009.

28521

60. Wolever TM, Chiasson JL. Acarbose raises serum butyrate in human

subjects with impaired glucose tolerance. Br J Nutr. (2000) 84:57–61.

doi: 10.1017/S0007114500001239

61. Ktsoyan ZA, Mkrtchyan MS, Zakharyan MK, Mnatsakanyan AA, Arakelova

KA, Gevorgyan ZU, et al. Systemic concentrations of short chain

fatty acids are elevated in salmonellosis and exacerbation of familial

mediterranean fever. Front Microbiol. (2016) 7:776. doi: 10.3389/fmicb.2016.

00776

62. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG,

Ilhan ZE, et al. Gut microbiota regulate motor deficits and

neuroinflammation in a model of Parkinson’s disease. Cell. (2016)

167:1469–80.e12. doi: 10.1016/j.cell.2016.11.018

63. Mulak A. A controversy on the role of short-chain fatty acids in

the pathogenesis of Parkinson’s disease. Mov Disord. (2018) 33:398–

401. doi: 10.1002/mds.27304

64. Kratsman N, Getselter D, Elliott E. Sodium butyrate attenuates social behavior

deficits and modifies the transcription of inhibitory/excitatory genes in the

frontal cortex of an autism model. Neuropharmacology. (2016) 102:136–

45. doi: 10.1016/j.neuropharm.2015.11.003

65. Vital M, Karch A, Pieper DH. Colonic butyrate-producing communities

in humans: an overview using omics data. mSystems. (2017) 2:e00130-

17. doi: 10.1128/MSYSTEMS.00130-17

66. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-

producing bacteria from the human large intestine. FEMS Microbiol Lett.

(2009) 294:1–8. doi: 10.1111/j.1574-6968.2009.01514.x

67. Walker AW, Duncan SH, Louis P, Flint HJ. Phylogeny, culturing, and

metagenomics of the human gut microbiota. TrendsMicrobiol. (2014) 22:267–

74. doi: 10.1016/J.TIM.2014.03.001

68. El Aidy S, Van den Abbeele P, Van de Wiele T, Louis P, Kleerebezem M.

Intestinal colonization: how key microbial players become established in

this dynamic process. BioEssays. (2013) 35:913–23. doi: 10.1002/bies.2013

00073

69. Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos

WM, Thas O, et al. Butyrate-producing Clostridium cluster XIVa species

specifically colonize mucins in an in vitro gut model. ISME J. (2013) 7:949–

61. doi: 10.1038/ismej.2012.158

70. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia:

leading players in the maintenance of gut homeostasis. Gut Pathog. (2013)

5:23. doi: 10.1186/1757-4749-5-23

71. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW,

Flint HJ. pH and peptide supply can radically alter bacterial

populations and short-chain fatty acid ratios within microbial

communities from the human colon. Appl Environ Microbiol. (2005)

71:3692–700. doi: 10.1128/AEM.71.7.3692-3700.2005

72. Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint

HJ. Impact of pH on lactate formation and utilization by human

fecal microbial communities. Appl Environ Microbiol. (2007) 73:6526–

33. doi: 10.1128/AEM.00508-07

73. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining

the species composition of the human colonic microbiota. Environ Microbiol.

(2009) 11:2112–22. doi: 10.1111/j.1462-2920.2009.01931.x

74. Walker AW, Duncan SH, Harmsen HJM, Holtrop G, Welling GW, Flint HJ.

The species composition of the human intestinal microbiota differs between

particle-associated and liquid phase communities. Environ Microbiol. (2008)

10:3275–83. doi: 10.1111/j.1462-2920.2008.01717.x

75. Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol.

(2017) 19:1366–78. doi: 10.1111/1462-2920.13659

76. Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE.

Reduced dietary intake of carbohydrates by obese subjects results in decreased

concentrations of butyrate and butyrate-producing bacteria in feces. Appl

Environ Microbiol. (2007) 73:1073–8. doi: 10.1128/AEM.02340-06

77. Sheridan PO, Martin JC, Lawley TD, Browne HP, Harris HMB, Bernalier-

Donadille A, et al. Polysaccharide utilization loci and nutritional specialization

in a dominant group of butyrate-producing human colonic Firmicutes.

Microb Genomics. (2016) 2:e000043. doi: 10.1099/mgen.0.000043

78. Leitch ECM, Walker AW, Duncan SH, Holtrop G, Flint HJ. Selective

colonization of insoluble substrates by human faecal bacteria. Environ

Microbiol. (2007) 9:667–79. doi: 10.1111/j.1462-2920.2006.01186.x

79. Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille

A, Forano E, et al. Dietary fibre degradation and fermentation by

two xylanolytic bacteria Bacteroides xylanisolvens XB1A T and Roseburia

intestinalis XB6B4 from the human intestine. J Appl Microbiol. (2010)

109:451–60. doi: 10.1111/j.1365-2672.2010.04671.x

80. Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD,

Delzenne NM. Dietary modulation of clostridial cluster XIVa gut bacteria

(Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations

induced by high-fat diet in mice. J Nutr Biochem. (2012) 23:51–

9. doi: 10.1016/j.jnutbio.2010.10.008

81. Cantu-Jungles TM, Ruthes AC, El-Hindawy M, Moreno RB, Zhang X,

Cordeiro LMC, et al. In vitro fermentation of Cookeina speciosa glucans

stimulates the growth of the butyrogenicClostridium cluster XIVa in a targeted

way. Carbohydr Polym. (2018) 183:219–29. doi: 10.1016/j.carbpol.2017.

12.020

82. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG,

et al. Gut microbiome composition is linked to whole grain-induced

immunological improvements. ISME J. (2013) 7:269–80. doi: 10.1038/ismej.

2012.104

Frontiers in Neurology | www.frontiersin.org 7 June 2019 | Volume 10 | Article 66325

https://doi.org/10.1016/J.CMET.2017.03.008
https://doi.org/10.1053/j.gastro.2013.04.056
https://doi.org/10.1371/journal.pone.0180190
https://doi.org/10.1152/ajpgi.00346.2017
https://doi.org/10.2337/db11-1019
https://doi.org/10.1016/j.jns.2017.08.3235
https://doi.org/10.1155/2017/5716409
https://doi.org/10.1093/jn/133.7.2485S
https://doi.org/10.1073/pnas.1322269111
https://doi.org/10.1007/s002800050922
https://doi.org/10.1079/PNS2002212
https://doi.org/10.1093/ajcn.82.3.559
https://doi.org/10.3945/ajcn.2009.28521
https://doi.org/10.1017/S0007114500001239
https://doi.org/10.3389/fmicb.2016.00776
https://doi.org/10.1016/j.cell.2016.11.018
https://doi.org/10.1002/mds.27304
https://doi.org/10.1016/j.neuropharm.2015.11.003
https://doi.org/10.1128/MSYSTEMS.00130-17
https://doi.org/10.1111/j.1574-6968.2009.01514.x
https://doi.org/10.1016/J.TIM.2014.03.001
https://doi.org/10.1002/bies.201300073
https://doi.org/10.1038/ismej.2012.158
https://doi.org/10.1186/1757-4749-5-23
https://doi.org/10.1128/AEM.71.7.3692-3700.2005
https://doi.org/10.1128/AEM.00508-07
https://doi.org/10.1111/j.1462-2920.2009.01931.x
https://doi.org/10.1111/j.1462-2920.2008.01717.x
https://doi.org/10.1111/1462-2920.13659
https://doi.org/10.1128/AEM.02340-06
https://doi.org/10.1099/mgen.0.000043
https://doi.org/10.1111/j.1462-2920.2006.01186.x
https://doi.org/10.1111/j.1365-2672.2010.04671.x
https://doi.org/10.1016/j.jnutbio.2010.10.008
https://doi.org/10.1016/j.carbpol.2017.12.020
https://doi.org/10.1038/ismej.2012.104
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cantu-Jungles et al. Butyogenic Prebiotic Fibers Parkinson’s

83. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH,

et al. Impact of diet and individual variation on intestinal microbiota

composition and fermentation products in obese men. ISME J. (2014) 8:2218–

30. doi: 10.1038/ismej.2014.63

84. La Rosa SL, Kachrimanidou V, Buffetto F, Pope PB, Pudlo NA, Martens

EC, et al. Wood-Derived Dietary Fibers Promote Beneficial Human Gut

Microbiota.mSphere. (2019) 4:18. doi: 10.1128/mSphere.00554-18

85. Duncan SH, Russell WR, Quartieri A, Rossi M, Parkhill J, Walker AW,

et al. Wheat bran promotes enrichment within the human colonic microbiota

of butyrate-producing bacteria that release ferulic acid. Environ Microbiol.

(2016) 18:2214–25. doi: 10.1111/1462-2920.13158

86. Tuncil YE, Thakkar RD, Marcia ADR, Hamaker BR, Lindemann SR.

Divergent short-chain fatty acid production and succession of colonic

microbiota arise in fermentation of variously-sized wheat bran fractions. Sci

Rep. (2018) 8:16655. doi: 10.1038/s41598-018-34912-8

87. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, Schmidt

TM. Dynamics of human gut microbiota and short-chain fatty acids in

response to dietary interventions with three fermentable fibers. mBio. (2019)

10:e02566-18. doi: 10.1128/MBIO.02566-18

88. Astarloa R, Mena MA, Sánchez V, de la Vega L, de Yébenes JG. Clinical and

pharmacokinetic effects of a diet rich in insoluble fiber on Parkinson disease.

Clin Neuropharmacol. (1992) 15:375–80.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Cantu-Jungles, Rasmussen and Hamaker. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org 8 June 2019 | Volume 10 | Article 66326

https://doi.org/10.1038/ismej.2014.63
https://doi.org/10.1128/mSphere.00554-18
https://doi.org/10.1111/1462-2920.13158
https://doi.org/10.1038/s41598-018-34912-8
https://doi.org/10.1128/MBIO.02566-18
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


REVIEW

published: 15 October 2019
doi: 10.3389/fneur.2019.01087

Frontiers in Neurology | www.frontiersin.org 1 October 2019 | Volume 10 | Article 1087

Edited by:

Giovanni Albani,

Italian Auxological Institute (Istituto di

Ricovero e Cura a Carattere

Scientifico), Italy

Reviewed by:

Santiago Perez-Lloret,

National Council for Scientific and

Technical Research

(CONICET), Argentina

Micaela Morelli,

University of Cagliari, Italy

*Correspondence:

Sahar El Aidy

sahar.elaidy@rug.nl

Specialty section:

This article was submitted to

Movement Disorders,

a section of the journal

Frontiers in Neurology

Received: 16 April 2019

Accepted: 27 September 2019

Published: 15 October 2019

Citation:

van Kessel SP and El Aidy S (2019)

Contributions of Gut Bacteria and Diet

to Drug Pharmacokinetics in the

Treatment of Parkinson’s Disease.

Front. Neurol. 10:1087.

doi: 10.3389/fneur.2019.01087

Contributions of Gut Bacteria and
Diet to Drug Pharmacokinetics in the
Treatment of Parkinson’s Disease

Sebastiaan P. van Kessel and Sahar El Aidy*

Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute,

University of Groningen, Groningen, Netherlands

Parkinson’s disease is the second-most common neurodegenerative disorder worldwide.

Besides deciphering the mechanisms that underlie the etiology of the disease, it is

important to elucidate the factors that influence the efficacy of the treatment therapeutics.

Levodopa, which remains the golden treatment of the disease, is absorbed in the

proximal small intestine. A reduction in levodopa absorption, leads to reduction in striatal

dopamine levels and, in turn, an “off”-episode. In fact, motor fluctuations represent a

major problem during the progression of the disease and alteration between “on” (mobility

often with dyskinesia) and “off” (immobility, akinesia) episodes contribute to a decreased

quality of life. Dietary amino acids can interfere with the absorption of levodopa from the

gut lumen and its transport through the blood brain barrier. In addition, higher abundance

of specific gut bacteria that restrict levodopa absorption plays a significant role in motor

fluctuations in a subset of Parkinson’s disease patients. Here, we review the impact of

factors potentially interfering with levodopa absorption, focusing on levodopa transport,

diet, and gut bacterial interference with the bioavailability of levodopa.

Keywords: levodopa, transporters, bioavailability, small intestinal bacterial overgrowth, gut motility

INTRODUCTION

Parkinson’s disease (PD) is the second-most common neurodegenerative disorder worldwide (1).
In 2015–2016, 6.1–6.2 million individuals were diagnosed with PD all over the globe (1, 2). The
prevalence of PD globally increases with age and peaks at 1.5% between 85 and 89 years of age
(2). During the progression of PD, patients encounter increasing severity of symptoms, which is
associated with rising costs for medical treatment, hospitalizations and nursing home care (3),
besides a significant decrease in the quality of life (3–6). The aggregation of α-synuclein in Lewy
bodies and loss of dopaminergic neurons (pars compacta) in the substantia nigra is the main
feature observed in PD patients (7). Although the exact factors contributing to the etiology of PD
are not well understood, the gut microbiota is likely to be a key contributor. This is evident from
the alteration in gut microbiota composition detected in fecal samples of PD patients compared
to healthy controls (HC) (8–12). Moreover, the production of short-chain fatty acids (SCFAs), the
main metabolic products produced by the large intestinal bacteria, is reduced in PD patients (12).
The latter has been shown to be involved in α-synuclein pathology in the gut in mouse models (13)
supporting the hypothesis that α-synuclein pathology starts in the enteric nervous system (14),
which synergizes with the finding of α-synuclein aggregates in colon tissue and appendix prior to
the onset of PD (15, 16). Equally important to elucidating the mechanisms involved in the cause

27

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.01087
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.01087&domain=pdf&date_stamp=2019-10-15
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sahar.elaidy@rug.nl
https://doi.org/10.3389/fneur.2019.01087
https://www.frontiersin.org/articles/10.3389/fneur.2019.01087/full
http://loop.frontiersin.org/people/738258/overview
http://loop.frontiersin.org/people/406987/overview


van Kessel and El Aidy Interference of Levodopa Treatment

of PD is to uncover the microbial and dietary interference
with the pharmacological treatment of the disease. Previous
studies have shown that Helicobacter pylori (HP) can interfere
with levodopa treatment and can bind to levodopa (3,4-
dihydroxyphenylalanine; L-DOPA) (17, 18). Recently, we showed
that bacteria can alter the levels of levodopa treatment in the
gut (19) resulting in quenching the availability of the drug
to be effective in the brain. This bacterial mediated reduction
in levodopa absorbed from the small intestine would lead to
reduction in striatal dopamine levels and an “off”-episode,
especially in patients with advanced stage PD, who have a
reduced capacity to store dopamine in the brain (20, 21). Besides,
fluctuating levodopa plasma levels could result in increased
pulsatile stimulation which is associated with dyskinesia (22).
The pharmacological treatment of PD and the gastrointestinal
(GI) dysfunction in PD have been extensively reviewed (23, 24),
mainly from a clinical perspective. This review focuses on the
impact of levodopa transport, gut bacterial degradation of PD
medication, and its impact on drug bioavailability. Furthermore,
we discuss the potential mediators that could lead to a vicious
circle where certain conditions (i.e., proton pump inhibitors and
gut motility) would favor the colonization of small-intestinal
bacteria, ultimately restricting the absorption of levodopa.

ADMINISTRATION ROUTES AND

TRANSPORT PROCESS OF LEVODOPA

The most common route for levodopa administration is
orally via immediate-release or extended-release formulations
of levodopa, where the latter might have potential benefits
over other levodopa formulations, reviewed in Mittur et al.
(25). Parenteral administration via subcutaneous injections are
impossible due to the low solubility of levodopa (26) and
continuous intravenous administration, although effective (27),
is impractical, as it requires large volumes of daily injections.
A promising alternative option to conventional levodopa
therapy for advanced PD patients with motor fluctuations and
dyskinesia is intestinal infusion of a levodopa/carbidopa gel via a
nasoduodenal tube (28) or via gastrojejunostomy (22).

When levodopa is administered orally, it is absorbed in
the proximal small intestine (29), where it has to be actively
transported from the lumen over the intestinal epithelial barrier
into the blood stream (30). To prevent peripheral and intestinal
levodopametabolism byDOPA decarboxylase (DDC), peripheral
DDC inhibitors, such as carbidopa, are co-administered with
levodopa. Levodopa (Figure 1) is a non-proteinogenic large
neutral amino acid (LNAA), and is therefore transported by
amino acid transporters in the GI-tract and at the blood brain
barrier (BBB) (Figure 2). The human body contains at least
11 different epithelial amino acid transport systems expressed
in the intestine, 10 of which are also expressed in the renal
epithelia, which was thoroughly reviewed before (31). Only two
amino acid transporters are expressed on the blood brain barrier
(BBB), LAT1 (SLC7A5) and SNAT5/11 (SLC38A5/11) (32). The
amino acid transporters, which are most likely responsible for the
transport of levodopa from the GI-tract to the blood and over the

BBB, based on in vitro/ex vivo studies, are discussed below and
summarized in Figure 2.

As a model for the BBB, a mouse brain endothelial cell line
(MBEC4), was tested for the expression of 4F2hc/LAT1
(SLC3A2/SLC7A5) and [3H]-levodopa transport was
evaluated in the presence of other amino acids (1:100
levodopa/amino acids). The study showed that tryptophan,
tyrosine, phenylalanine, isoleucine, leucine, histidine, and
2-amino-2-norbornane-carboxylic acid (BCH), which is used as
the defining synthetic amino acid for the L-system (consisting
of LAT1 to 4) (33), inhibited at least 80% of the [3H]-levodopa
uptake independent of Na+ (34). However, the potential
contribution of 4F2hc/LAT2 (SLC3A2/SLC7A8) or other
transporters were not addressed. Similar results were obtained in
Caco2 cells (35–38), renal proximal tubular epithelial cells (39),
and opossum kidney cells with either a high (HC) or a low (LC)
Na+ influx. Comparing the HC and LC cell lines indicated that
there was a minor contribution of Na+ dependent transport.
The authors concluded that 4F2hc/LAT2 (apparent from BCH
transport) and rBAT/b0,+ (SLC3A1/SLC7A9; apparent from the
uptake of the rBAT defining amino acid dimer, cystine) were
involved in levodopa transport (40). Although these studies
indicate which transporters are involved in levodopa transport
in the GI-tract, renal epithelia and the BBB, it remains unclear
which specific transporter is involved.

Studies using Xenopus laevis oocytes, an ideal single-cell
expression system for transporters due to its relatively large
size and low background activity (41), showed that 4F2hc/LAT1
(from rat C6 glioma cells) (42), 4Fhc/LAT2 (43), rBAT/b0,+ (from
rabbit intestine and human) (43, 44), and TAT1 (SLC16A10)
(from rat intestine) (45) are independently responsible for
levodopa transport. Only substrates with both positive and
negative charges at the α-carbon (the relative positive and
negative charges are from the amine-group and carboxyl-group
from levodopa, respectively, Figure 1) are being able to be
transported via 4F2hc/LAT1 (42). Importantly levodopa analogs
(m-O-methylDOPA, α-methylphenylalanine, α-methyltyrosine,
α-methylDOPA), gabapentin [γ-aminobutyric acid (GABA)
analog], melphalan (a chemotherapeutic agent), and thyroid
hormones (T3, triiodothyronine and T4, thyroxine) were able
to inhibit transport of L-[14C]-phenylalanine, and thus levodopa
(42), showing the broad range of potential levodopa transport
inhibitors. In fact, anti-thyroid treatment in a 70-year-old male
subject with PD on levodopa treatment had a beneficial effect
on the exaggerated Parkinsonian tremor (46). The authors could
not explain why the Parkinsonian tremor was aggravated by the
presence of hyperthyroidism. However, a plausible explanation,
which was not discussed, is the interference of exaggerated
thyroid hormone levels with levodopa uptake in the brain. Thus,
hyperthyroidism, which is prevalent at higher age, should be
considered in PD patients (46).

In X. laevis oocytes expressing TAT1, around 80% of L-[14C]-
tryptophan uptake was inhibited by tyrosine and tryptophan
and about 40% was inhibited by phenylalanine, levodopa,
and m-O-methylDOPA, indicating that TAT1 is an aromatic
amino acid transporter partly responsible for levodopa uptake.
Using N-acetylated amino acids, the authors concluded that
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FIGURE 1 | Human and bacterial levodopa metabolism. Levodopa is produced by hydroxylation of the meta-position of the phenyl-ring from tyrosine by TH (tyrosine

hydroxylase) using molecular oxygen. Sequentially levodopa can be decarboxylated to the active neurotransmitter dopamine by the AADC [aromatic amino acid

decarboxylase, also known as DDC (DOPA decarboxylase)], or can be methylated by COMT (catechol-O-methyltransferase). Bacterial TDC (tyrosine decarboxylase)

can decarboxylate (m-)tyrosine to (m-)tyramine but also levodopa to dopamine. Furthermore, bacteria can dehydroxylate the para-hydroxyl group of either levodopa or

dopamine and can sequentially deaminate the dehydroxylated products.

the α-carboxyl group (Figure 1) is essential for substrate
recognition by TAT1. Furthermore, it was shown that TAT1 is
mainly expressed throughout in the rat GI-tract and in the liver,
in particular, on the basolateral side of rat small intestine (45)
(Figure 2). Using trans-well culturing and everted murine jejunal
sacs, the authors concluded that 4F2hc/LAT2 (LAT1 was not

tested) and TAT1 are responsible for the basolateral transport
of levodopa (30). In contrast to 4F2hc/LAT1, 4F2hc/LAT2,
and TAT1, which are expressed basolaterally, rBAT/b0,+AT is
expressed apically and thus is mainly responsible for levodopa
absorption from the intestinal lumen. Further characterization
of rBAT/b0,+AT showed that the common co-administered
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PPI

SIBO

4F2hc

LAT2
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b0,+AT

4F2hc

LAT1

?
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LAT1

4F2hc

LAT1

TAT1

rBAT

b0,+AT
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FIGURE 2 | Bacterial degradation and dietary components restrict levodopa

transport. Levodopa is taken up in the small intestine by the apical transporter

rBAT/b0,+AT, and is sequentially is transported over the basolateral membrane

by 4F2hc/LAT2 and TAT1. The uptake from the lumen can be compromised by

LNAAs apically and by LNAAs and AAAs basolaterally. Bacterial degradation

can interfere with levodopa before it is transported and elevate levels of

dopamine in the lumen. Higher levels of luminal dopamine could affect the gut

motility, which, in turn, could result in a state of small intestinal bacterial

overgrowth, creating a vicious circle. The fraction of levodopa that ends up in

the blood has to be transported over the BBB via 4F2hc/LAT1, which can be

compromised by high levels of thyroid hormones (T3/T4), or LNAA. Serine left

over from a late proteic meal, can trans-stimulate 4F2hc/LAT2 inducing higher

efflux of levodopa in the circulation. Finally, the remaining levodopa will be

converted to dopamine in the brain by DDC, to compensate the loss of striatal

dopamine levels in PD patients.

inhibiters of peripheral levodopa degradation, carbidopa,
benserazide (decarboxylase inhibitors) and entacapone
[catechol-O-methyltransferase (COMT) inhibitor] were unable
to compete with rBAT/b0,+AT mediated levodopa transport,
indicating that other transporters/mechanisms are involved

in the uptake of peripheral levodopa metabolism inhibitors
(30). The transport of levodopa via other apical transporters,
PAT1, SIT1/ACE2, ASCT2, and B0AT1/ACE2 (the main other
natural amino acid transporter), expressed in X. laevis oocytes
was investigated and showed that none of them was able to
transport levodopa, indicating that rBAT/b0,+AT is the main
apical levodopa transporter (30) (Figure 2).

EFFECT OF DIET AND AGE ON THE

BIOAVAILABILITY OF LEVODOPA

Early studies in vivo, using radiolabeled levodopa ([14C]-
levodopa) showed that ∼90% of the total radioactivity is
transported into the circulatory system as measured in urine
samples after 48 h (47–49). Notably, only ∼13% of the total
radioactivity in blood plasma after the first hour was from intact
levodopa, and decreased further overtime. When carbidopa was
used in combination with levodopa the intact levodopa after
the first hour increased to ∼43% (47). These studies indicate
that less than half of the administered levodopa would reach
the brain and that approximately 10% of the total levodopa
radioactivity is not absorbed and could end up in fecal samples.
Moreover, levels of unabsorbed levodopa increase over age. For
example, a 10-fold increase (24.6–35.4% vs. 2.7–3.5% recovered
radioactivity) in levels of levodopa (including its metabolites)
were detected in fecal samples of old rats (0.5–2 years old)
when compared with their younger counterparts (5–15 weeks
old) after oral administration of [14C]-levodopa (50). This was
not related to an increased fecal excretion or decreased jejunal
blood flow, suggesting that there is impaired uptake at older
age (50). When levels of levodopa were measured over time in
plasma (AUC), older animals (1–2 years) had a higher AUC
and a longer half-life (T1/2) of systemic levodopa compared
to younger animals (9–26 weeks), suggesting an age-dependent
slower total body clearance of levodopa (50). Furthermore the
study showed that the intestinal metabolism (mainly by DDC),
which prevents levodopa to reach the brain and decreases over
age, contributes the most to the increased systemic availability of
levodopa at older age (50). The decreased clearance of levodopa
at higher age in rats is in agreement with a study performed
in healthy human subjects, who were administered levodopa
without DDC inhibitors (51). Coherently, a higher AUC and
systemic levodopa bioavailability (AUCoral/AUCintravenous) for
levodopa was observed in elderly (71.0 years n= 9) compared to
young subjects (21.8 years n = 8). Administration of carbidopa
diminished the differences in systemic levodopa bioavailability
between the two groups, while a higher AUC was still observed
in the elderly group. This suggests a lower systemic clearance
at higher age because carbidopa abolished the age differences
in systemic levodopa bioavailability (51). In PD patients, age
correlated significantly with higher levodopa (supplied with
DDC inhibitor) AUC and decrease in clearance (52, 53).
However, the high scatter in the correlation (r2 = 0.15–0.24)
from that study implies that other factors besides age contribute
to the variation among PD patients in the pharmacokinetics of
levodopa (52).
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Indeed, impaired uptake of [14C]-levodopa into the brain
was observed when rats were supplied intravenously with the
amino acids, phenylalanine, tryptophan, and to a lesser extent
histidine (54). The same effects were reported in humans, for
example, a clinical study showed that PD patients (n = 9),
who received levodopa/carbidopa intravenously directly after
a protein rich meal (containing LNAAs) or administration
of LNAAs, had increased Parkinsonian symptoms. Similarly,
when levodopa/carbidopa was taken orally, levodopa absorption
from the intestine was delayed after a protein-rich meal
(55). When levodopa/benzerazide (another DDC inhibitor) was
infused intraduodenally, motor functions decreased after protein
ingestion (56), indicating fluctuation in levodopa uptake in
the brain. Nonetheless no decrease in levodopa absorption
was observed (56) suggesting that the variability in plasma
LNAAs, absorbed from the intestine, could be responsible for
the fluctuating levodopa uptake in the brain (57). The authors
concluded that during ingestion of regular (hospital) diets,
10% of the levodopa brain uptake variability is explained by
LNAAs in plasma and the other 90% by levodopa plasma
levels (57). These hospital diets contained 2–3.7-fold less
LNAAs compared to other human studies [615 ± 105µM (57)
compared to 1,235–1,973µM (55), 1,615–2,012µM (58), 1,624–
2,292µM (56)] indicating that high LNAA levels do interfere
with levodopa absorption in PD patients but are not solely
responsible for the “on”–“off” fluctuations observed in PD
patients. Notably, cationic (lysine) or small (glycine) amino
acids had no effect on the “on”–“off” fluctuations (55). Using
regional jejunal perfusion of levodopa in healthy human subjects
it was shown that the LNAA L-leucine interfered with the
levodopa absorption from small intestine (59), at least at high
concentrations. This finding supports the involvement of the
L-transport system for levodopa transport (as described above)
from the intestine to the blood circulation, and, ultimately, to the
brain (Figure 2).

In vitro data and clinical investigations on the effect of
amino acids on the transport and bioavailability of levodopa
clearly indicate that amino acids can interfere with the uptake
of levodopa from the lumen or the systemic circulation.
Therefore, low protein diets (LPD) or protein redistribution
diets (PDR), where all dietary protein is ingested only during
the evening meal, are proposed for PD patients with motor
fluctuations (60). Refined physiologically based pharmacokinetic
(PBPK) modeling for GI absorption (WB-ACAT, Whole Body—
Advanced Compartmental Absorption and Transit Model)
combined with dynamic flux balance analysis (which measures
the flow of metabolites through a metabolic network) on
an epithelial cell (sIEC) model for small intestine segmented
into 7 parts (WB-ACAT-sIEC), was used to investigate the
spatiotemporal relationship between amino acids and levodopa
uptake kinetics (61). Simulation of levodopa absorption during
an aproteic or proteic meal showed that that dietary intervention
would be beneficial for PD patients with Hoehn and Yahr scale
3/4 (HY3/4; HY describes the disease progression from (mild
= 1) to severe = 5) (61). These findings are in agreement with
the guidelines for PD treatment, where dietary interventions
are proposed for advanced PD patients (20, 21). Comparing

a LPD (in silico administration of 0.8 g/kg amino acids
together with 200mg levodopa) vs. a PRD (assuming a high
fraction of amino acids present in the systemic circulation
before the morning levodopa dose) in the WB-ACAT-sIEC
model showed a cumulative increase in AUC of levodopa
during PRD. Furthermore, the AUC after a morning levodopa
dose was higher (11.23%) during PRD than during a fasting
state, which was attributed to a higher influx of residual
systemic LNAA from the last protein meal taken the evening
before levodopa administration. This higher influx through the
basolateral antiporter induced a higher efflux of levodopa (trans-
stimulation) into the circulation (61) (Figure 2). Although PRD
could provide short-term benefits as evident by the reported
response rates of >80% (60), it might not provide a long-term
solution as it is undesired by patients and is an imbalanced diet
(20, 21) that results in weight loss among patients (60). Extending
theWB-ACAT-sIECmodel with kidney and brain compartments
and setting the objective function (a desired outcome) for
optimizing levodopa transport across the BBB revealed that
threonine, serine and asparagine resulted in the highest brain
bioavailability of levodopa. This led the authors to propose that
a serine-rich meal taken after the last levodopa treatment could
be beneficial for the levodopa bioavailability (61). Nonetheless,
sensitivity analyses (i.e., the variable that contributes most to
the dependent outcome) showed that intestinal loss of levodopa
was the most influential factor on levodopa bioavailability (61).
Indeed, changes in the levels of levodopa in the small intestine
are affected by gut bacterial interference (17, 19), as discussed in
the next section.

GUT BACTERIAL INTERFERENCE WITH

LEVODOPA BIOAVAILABILITY

Levodopa is a non-proteinogenic amino acid produced by
the hydroxylation at the meta-position of the phenyl ring of
tyrosine. Subsequently, levodopa can be converted to dopamine
by DDC or to m-O-methylDOPA by COMT methylating of
the m-hydroxyl group in the human body (Figure 1). The
microbiota also poses enzymes able to perform similar or
additional reactions, which metabolize levodopa. In the early
70s, a study, comparing the metabolic profile of germ-free and
conventional rats, showed production ofm-hydroxyphenylacetic
acid and m-hydroxyphenylpropionic acid (Figure 1) only in
conventional rats when fed with levodopa, suggesting that a
bacterial dehydroxylation reaction was involved (62). When rat
caecal content was incubated with levodopa or dopamine for 6
days also m-tyramine was found, confirming earlier findings in
humans (63). Metabolites were detected over periods of 3 days in
the urine indicating that the detected metabolites could originate
from in the large intestine, which is supported by the caecal
incubations (62). Since the main site of levodopa absorption
is the proximal small intestine, it is unlikely that bacterial
metabolism of levodopa in the large intestine would affect the
drug bioavailability. Therefore, it is crucial to investigate potential
bacterial interference with levodopa treatment in the proximal
small intestine.
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Recently, we showed that gut bacteria harboring tyrosine
decarboxylases (TDC), mainly enterococci, can effectively
decarboxylate levodopa to dopamine in the small intestine of
rat. The study concluded that the natural variation of the tdc-
gene negatively correlated with the levodopa levels in the blood
of rats and positively correlated with the daily dose requirement
of levodopa in PD patients (19). High abundance of these
bacteria in PD patients, which could be caused by small intestinal
overgrowth (SIBO), could have implications on the absorption
of levodopa from the small intestine (Figure 2). To assess the
contribution of those bacteria to the bioavailability of levodopa in
PD patients, we are currently performing further clinical studies.

In healthy conditions, SIBO is prevented by the ileocecal
valve, pancreatic enzyme activity, gut motility and gastric acid
(64). Importantly in PD patients, the prevalence of gut motility
dysfunction (constipation) and proton pump inhibitor (PPI)
usage is relatively high (77.1 and 39.6% respectively, n = 39)
(65) and is associated with SIBO (66). In patients (n = 200)
with gastroesophageal reflux disease using PPIs, varying from 2
months to 7 years, SIBO was detected in 50% of the cases and was
significantly higher than in healthy controls (n= 50) (66). Studies
looking at the alteration of the microbiota in subjects using
PPIs showed increased levels of Bacilli (including Lactobacillus,
Staphylococcus, and Enterococcus) in fecal samples (67, 68). In
duodenal samples, SIBO was also observed in 56% of patients on
PPIs (n = 25) and included mainly genera from the Bacilli class
(69). Bacterial species from the Bacilli class are of importance
as they harbor TDCs, which are able to interfere with levodopa
levels (19). When SIBO is eradicated in PD patients with
Helicobacter pylori infection using rifaximin, a common non-
absorbable antibiotic used to treat SIBO (70), motor fluctuations
were improved as apparent from the significant decreased
delayed “on” episodes/day and daily “off” time, although no
significant increase in levodopa pharmacokinetics was observed
(71). The underlying explanation of improvedmotor fluctuations
following SIBO eradication remains to be elucidated. However, a
plausible explanation is that eradication of bacterial degradation
of levodopa in the small intestine altered levels of the levodopa
metabolite, dopamine, in the small intestinal lumen (19), and/or
eliminated SIBO-induced small intestinal inflammation (71).

In 2001, investigators observed a clinical improvement in
PD patients after treatment with antibiotics used to eradicate
Helicobacter pylori in two almost identical reports. When
HP-infections were treated, the mean AUC of levodopa in
the blood significantly increased by ∼1.2-fold. A UPDRS-
III motor examination showed indeed a significant decrease
in motor score (72, 73). A follow-up study confirmed these
findings in a larger cohort (n = 17) and showed that either
2 weeks or 3 months after HP eradication, PD patients had
higher levodopa blood levels (AUC) and lower UPDRS-III
motor scores compared to before the eradication (18). Other
studies did not find a significant difference in pharmacokinetics
(74) or LEDD (levodopa equivalent daily dose) (75, 76) of
levodopa between PD patients tested positive or negative for
HP infection. In addition, no motor improvement (UPDSR-
III) was found after HP eradication in 34 patients (75). Despite
the discrepancy among studies, Helicobacter pylori might still

play a significant role in drug absorption. The mechanism of
Helicobacter pylori affecting the levodopa absorption is unclear,
one possible explanation for altered drug absorption might
be the gastric acidity, which is altered by Helicobacter pylori
infection and therefore interferes with drug pharmacokinetics
of levodopa, delavirdine, and thyroxine (77). Interestingly, an in
vitro study showed that adhesins exposed on the outer membrane
of Helicobacter pylori might bind to levodopa and therefore
might contribute to the lower pharmacokinetics in Helicobacter
pylori infected PD patients (17). No follow-up studies were
published and it remains to be elucidated which adhesin(s) are
responsible for binding levodopa. Besides, whether the antibiotic
cocktail used to treatHelicobacter pylori infections (1,000/500mg
amoxicillin/clarithromycin) could also eradicate other bacterial
species in the small intestine, which might interfere with the
availability of levodopa, and thus could be the actual reason
behind the observed increase in blood levels of levodopa, was
not investigated.

EFFECT OF DOPAMINE AND DOPAMINE

AGONISTS ON GUT MOTILITY

Bacterial species from the Bacilli class, especially enterococci, are
able to produce luminal dopamine (19). Importantly, dopamine
and their agonists have been shown to affect the gut motility
(discussed below), which could potentially favor the colonization
of levodopa decarboxylating bacteria (19) (Figure 2). In addition,
the dopamine agonists, which are usually used in combination
with levodopa treatment, could have a similar effect on
influencing gut motility to favor colonization of specific bacterial
species. Therefore, studies investigating the effects of dopamine
on gut motility of rodents, dogs, and humans were reviewed, with
a complete overview in Table 1.

Using electrical field stimulation (EFS) on longitudinal muscle
strips of guinea pig ileum in organ baths, dopamine (1–100µM)
and bromocriptine (0.15–15µM), a dopamine agonist used in PD
treatment, inhibited the cholinergic twitch up to∼46 and∼82%,
respectively. Neither dopamine antagonists, metoclopramide
nor pimozide prevented the observed inhibition by dopamine
or bromocriptine. When using the α-adrenoceptor antagonist,
phentolamine, only the observed inhibition of dopamine but
not of bromocriptine was rescued, indicating that dopamine
acts through the α-adrenoceptors (78). The same conclusions
on the inhibitory effect of dopamine were shown in an almost
identical study using ileum of guinea pig (79). Notably, tyramine,
a product of bacterial TDC, resulted in similar inhibitions of
cholinergic twitch (79). Dopamine, bromocriptine, and to a
lesser extent tyramine, were also able to relax methacholine-
contracted jejunal tissues from guinea pig (80). In rats, dopamine
initiated directly a short longitudinal contraction followed by
relaxation within 5min in the duodenum and jejunum. However,
in the ileum, only relaxations were observed (81). In addition,
dopamine had also an inhibitory effect on the spontaneous
contractions of longitudinal muscle strips from rat distal colon
(82). Themotility of mouse longitudinal fixed ileum (83), circular
muscle strips of colon (84) and longitudinal fixed colon (85)
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TABLE 1 | Studies investigating the effects of dopamine and dopamine agonists on gut motility in rodents, dogs and humans.

Study Organism Method Tissue Effect on motility Tested agonists

(µM)

Dopamine

receptor

antagonist (µM)

Adrenergic

receptor

antagonist

(µM)

Other

inhibitors

Effect inhibited

by

Conclusion

Zar et al.

(78)

Guinea pig Organ bath Ileum;

longitudinal

muscle;

electrical field

stimulation

Relaxation Dopamine

(1–100),

Bromocriptine

(0.15–15)

Pimozide (1) Phentolamine

(5),

Metoclopramide

(90)

None Phentolamine

(only DA)

Inhibition of longitudinal muscle motility

through α-adrenergic receptors

Görich

et al. (79)

Guinea pig Organ bath Ileum;

longitudinal

fixation

(reserpine

pretreatment)

Inhibitory Dopamine,

Noradrenaline,

Clonidine (and

tyramine) (1–100)

Metoclopramide

(1–30), sulpiride

(1–300),

domperidone

(0.01–1), pimozide

(0.01–0.1)

cis-flupentixol

(0.1–1)

Tolazoline

(0.3–3)

Reserpine

(VMAT2

inhibitor)

Metoclopramide,

sulpiride,

tolazoline

Inhibition of motility by all compounds

tested. Potentially through α-adrenergic

receptors. The potency (pA2*) of

metoclopramide and sulpiride was not

different between dopamine or

norepinephrine, indicating an α-adrenergic

inhibition, confirmed by tolazoline

Lucchelli

et al. (80)

Guinea pig Organ bath Jejunum;

longitudinal

fixation;

methacholine

induced

contraction

Relaxation Dopamine

(1–000),

Apomorphine

(3–100),

Bromocriptine

(1–56),

Fenoldopam

(1,000), [and

tyramine 1–3,000

(data not shown)]

Haloperidol (1,3),

cis-flupenhixol (1),

SCH-23390 (1,3)

Phentolamine

(1,3),

propranolol

(0.3,1,3,10)

Reserpine (I.P.

5 mg/kg), TTX

(0.3)

Phentolamine

(only ∼7%) and

propranolol (up

to ∼45%)

Relaxation of tissue of all tested compounds

(Reserpine, had no effect on DA induced

relaxation, and a minor effect on the others).

Slight inhibition of phentolamine

(α-adrenoceptor antagonist) and propranolol

(ß-adrenoceptor antagonist). Inconclusive

which receptor is involved

Kirschstein

et al. (81)

Rat Organ bath Duodenum,

jejunum,

ileum;

longitudinal

fixation

Relaxation and

Constriction

Dopamine (100) SCH-23390 (1),

raclopride (1)

Propranolol (3),

Prazosin (30)

None All tested Contraction and relaxation observed in

duodenum and jejunum, relaxation only

observed in Ileum. Contraction inhibition by

SCH-23390 and raclopride, relaxation

inhibition by propranolol and prazosin

Zhang

et al. (82)

Rat Organ bath Distal colon;

longitudinal

strips

Inhibitory Dopamine (3–30) SCH-23390 (10),

Supiride (10)

Not tested TTX (1) SCH-23390 Dopamine inhibited the spontaneous

contractions with EC50=8.3µM and was

not affected by TTX. The inhibitory affect was

affected only by D1R antagonist SCH-23390

Zizzo et al.

(83)

Mouse Organ bath Ileum;

longitudinal

fixation

Inhibitory Dopamine

(1–300),

SKF-38393

(0.003–100)

SCH-23390 (3,10),

Sulpiride (10),

Domperidone (5)

Propranolol (10)

SR-59230A

(0.1),

Phentolamine,

(10) Yohimbine

(10)

DDA (10),

Apamin (0.1),

Charybdotoxin

(0.1),

Iberiotoxin

(0,1), TTX (1),

L-NAME (100),

Atropine(1),

DPCPX (10),

DMPX (10),

MRS-1220

(0.1),

Methysergide

(1)

SR-59230,

Phentolamine,

Yohimbine (at

high

concentration of

DA),

SCH-23390 and

SCH-23390 in

combination

with Sulpiride or

Domperidone

Contractibility was inhibited by dopamine

and SKF-38933 (D1R agonist), at high

concentrations adrenoceptor antagonists

(SR-59230, phentolamine, yohimbine)

slightly prevented the inhibitory effect of

dopamine. D2 antagonists sulpiride and

domperidone had little effect on the

inhibitory effect of dopamine, except when

combined with SCH-23390 (D1R antagonist)

which induced a stronger effect then

SCH-23390 alone. Suggesting a synergic

contribution of D1 and D2 receptors

(Continued)
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TABLE 1 | Continued

Study Organism Method Tissue Effect on

motility

Tested

agonists

(µM)

Dopamine

receptor

antagonist

(µM)

Adrenergic

receptor

antagonist

(µM)

Other

inhibitors

Effect

inhibited by

Conclusion

Auteri

et al. (84)

Mouse Organ bath Colon; circular

muscle strips;

Carbachol

precontracted

or electrical

field

stimulation

Relaxation/

Inhibitory

Dopamine

(1–300),

SKF-38393 (up

to 100),

bromocriptine

(0.3–100),

isoproterenol

SCH-23390 (3),

domperidone (5)

Prazosin (1),

Yohimbine (1),

propranolol (1),

SR-59230A (0.1)

TTX (1),

ω-conotoxin

(0.1), SNX-482

(0.1),

ω-agatoxin TK

(0.1), L-NAME

(100)

MRS-2179 (1),

Domperidone

(during

carbochol

contraction);

SCH-23390

(during electrical

field stimulation)

Relaxation induced by DA via a D2-like

receptors; Not dependent on NO or P2Y1

receptors; Not affected by adrenergic

antagonists; not dependent on enteric

neuronal action potential or on modulation of

neurotransmitter release; SCH-23390

increased basal tone and the amplitude of

the spontaneous contractions; Relaxation of

bromocriptine is inhibited by domperidone

Walker

et al. (85)

Mouse Organ bath Distal colon

(WT and

DAT-/-);

Longitudinal

fixation;

Electrical field

stimulation

Inhibitory Dopamine

(0.01–300)

SCH-23390 (10),

sulpiride (10)

Not tested None SCH-

23390/sulpiride

Dopamine was only tested on WT distal

colon and showed a inhibitory effect (EC50

= 4.5µM), which was slightly abolished by

SCH-23390/sulpiride mixture (EC50 =

12.9µM, single applications of antagonist

were not performed)

Fioramonti

et al. (86)

Dog Implanted Ni/Cr

electrodes

Duodenum

and jejunum

Inhibitory Intracerebroven-

tricularly

dopamine (10

ug/kg);

Intravenous

dopamine (100

µg/kg)

None None None NA Decreased the duration of the migrating

motor complex episodes in the small

intestine 1 h before a meal compared to

controls (from 9.4 to 3.4 h and 7.8 to 2.4 h in

duodenum and jejunum), although

intravenously (100 µg/kg) this effect was not

observed

Bueno

et al. (87)

Dog Implanted strain

gauge transducers

Ascending,

traverse,

descending

colon

Inhibitory and

Inducing

Iv injections of

dopamine at 1

mg/kg/h or

bromocriptine 40

ug/kg/h

Haloperidol (0.2

mg/kg)

Phentolamine

(0.1 mg/kg),

Tolazoline (2

mg/kg),

Prazosin (0.2

mg/kg),

propranolol (0.5

mg/kg)

None Phentolamine,

prazosin and

haloperidol for

dopamine

inhibitory effect,

Dopamine had a inhibitory effect on the

ascending and transverse colon and a

inducing effect on the descending colon

MMCs. Bromocriptine had a inducing effect

in the whole colon MMCs; Potentially

through adrenergic and dopaminergic action

Marzio

et al. (88)

Human,

healthy

Intestinal

radiopaque tube

consisting of four

polyvinyl catheters

with 4 side

openings equally

spread perfused

with 1.59 ml/min

with distilled water.

Closure of the

openings gives rise

100mm hg/sec

Duodenum,

proximal

jejunum

Inducing Intravenously

dopamine 5

µg/kg/min for

15min

Domperidon

(10mg) and

sulpiride (100mg)

None None Domperidon

and sulpiride

Dopamine induced phase-III like MMCs in

the duodenum, similar to spontaneous

phase-III MMCs, although a slight longer

period of complete inhibition after phase-III

MMCs; Domperidon and sulpiride prevented

the inducing phase-III MMCs effect

(Continued)
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TABLE 1 | Continued

Study Organism Method Tissue Effect on

motility

Tested

agonists

(µM)

Dopamine

receptor

antagonist

(µM)

Adrenergic

receptor

antagonist

(µM)

Other

inhibitors

Effect

inhibited by

Conclusion

Marzio

et al. (89)

Human,

healthy

Nasoduodenal

probe consisting of

5 polyethylene

catheters with

evenly spaced

openings 20 cm

apart continuously

perfused with 0.5

ml/min distilled

water

Stomach,

Duodenum,

Proximal

Jejunum

Inducing/Inhibitory Intravenously

dopamine 5

µg/kg/min for

15min

Domperidon

(20mg)

None None Domperidon Dopamine induced phase-III like MMCs

during fed state in the small intestine, which

was inhibited by domperidone, and

decreased the motility of the stomach. After

the phase-III MMCs a short period of

complete quiescence was observed

Levein

et al. (90)

Human,

healthy

Paracetamol AUC;

orocaecal transit

time

Mouth ->

Ileum

Inhibitory Intravenously

dopamine 5

µg/kg/min

None None None NA Dopamine reduced the AUC(60min) of

paracetamol significantly, associated with a

delayed gastric emptying; OCT time was

significantly longer then controls indicating a

delayed gastric emptying and gut motility

Dive et al.

(91)

Human,

critically ill

adults

under

mechanical

ventilation

without

suffering

from active

gastro-

intestinal

disease

Multilumen tube

consisting of

polyvinyl catheters

with side openings,

1.5 cm apart for

stomach and

10 cm apart for

duodenum

continuously

perfused with 0.2

ml/min distilled

water

Stomach,

duodenum

Inhibitory/Inducing Intravenously

dopamine 4

µg/kg/min

None None None NA Decreased number of contractions in the

gastric antrum (only significant during

fasting) and induced phase III motor activity

in the duodenum (only significant during

feeding)

*pA2, the concentration that produces a 2-fold shift in the agonist concentration-response curve; Dopaminergic antagonists: SCH-23390, D1 receptor antagonist; Domperidone, Haloperidol, Metoclopramide, Pimozide, Raclopride,

Sulpiride, D2 receptor antagonist; cis-flupentixol, D1 and D2 receptor antagonist; Adrenergic antagonists: Tolazoline, Phentolamine, Prazosin, α1 adrenergic receptor antagonist; Yohimbine, α2 adrenergic receptor antagonist;

Propranolol, ß adrenergic receptor antagonist; SR-59230A, β3-adrenoceptor antagonist; Other antagonists and inhibitors: Apamin, SKCa channel blocker; Atropine, Muscarinic receptor blocker; Carbachol, Cholinergic agonist;

Charybdotoxin, IKCa-BkCa channel blocker; DDA, Adenylyl cyclase inhibitor; DMPX, Adenosine A2 receptor antagonist; DPCPX, Adenosine A1 receptor antagonist; Iberiotoxin, BKCa channel blocker; L-NAME, NO synthase inhibitor;

Methysergide, 5-HT receptor antagonist; MRS-1220, Adenosine A3 receptor antagonist; MRS-2179, Purinergic P2Y1 receptor antagonist; Reserpine, VMAT inhibitor; SNX-482, P/Q-type Ca2+ channel blocker; TTX, Na+voltage-gated

neural channel blocker; ω-agatoxin TK, R-type Ca2+ channel blocker; ω-conotoxin, N-type Ca2+ channel blocker.
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were all inhibited by dopamine and in the latter study also
by bromocriptine, attributed to dopaminergic and/or adrenergic
receptors. In dogs, the gut motility of the small intestine (86) and
the colon (87) was monitored in vivo using implanted electrodes.
Injection of dopamine (10 µg/kg) intracerebroventricularly 1 h
before a meal decreased the duration of the migrating motor
complex (MMC; intestinal motility pattern of the interdigestive
state) episodes in the small intestine compared to controls,
although this effect was not observed when dopamine was
injected intravenously (100 µg/kg) (86). In the colon, a similar
inhibition was observed, although with a 10 times higher
concentration of dopamine (1 mg/kg/h) injected intravenously
(87). Importantly, bromocriptine had an opposite effect, where
it induced the colon motility instead (87). In fasted human
subjects, intravenous administration of dopamine (75 µg/kg in
15min) induced phase-III like MMCs (last phase in the MMC
cycle which consists of strong contractions to completely occlude
the lumen) in the duodenum (88), which is in contrast to
the previous studies in rodents (organ bath experiments) and
dogs. The MMCs were similar to spontaneous phase-III MMCs,
although with a slight longer period of complete inhibition after
phase-III MMCs (88). Similar results were found in terminally
ill patients (91). A follow up study in humans during fed
state showed that dopamine disrupted the fed state MMCs and
induced phase-III like MMCs, followed by a short period of
complete quiescence (phase-I like MMCs), which was inhibited
by the dopamine receptor D2 blocker (DRD2) domperidone,
suggesting the involvement of peripheral D2 receptors (89).
Lastly, when the gut motility was investigated using orocaecal
transit time (OCT) and paracetamol pharmacokinetics as gastric
emptying marker during intravenous injection of dopamine (90),
a reduction in the AUCt=60min of paracetamol was observed. This
suggests that dopamine causes delayed OCT time, which could
be due to delayed gastric emptying and a decrease in gut motility
(90). Functional studies investigating the dopamine receptors in
the GI-tract of mouse showed that the dopamine receptor D2
(Drd2) is important for gut motility. Mice lacking Drd2, but not
Drd3, receptor showed an increased gut transit time compared
to the controls (92) suggesting that endogenous dopamine has
an inhibitory effect on intestinal motility (92). The findings
confirm the earlier organ bath experiments with rodent tissue. In
summary, these studies (Table 1) show that in rodents and dogs
the GI motility is inhibited by dopamine through dopaminergic
and adrenergic receptors.

In contrast, in humans, dopamine seems to inhibit stomach
motility and induce phase-III like MMCs followed by a short

time of quiescence through dopaminergic receptors. A potential
explanation of the discrepancy among the human and the animal
studies might be the experimental setup. In rodents, dissected
intestinal parts were placed in an organ bath ex vivo and in
dogs electrodes were implanted on the basal side of segments of
the GI-tract (86, 87). In contrast, in human studies, nasojejunal
luminal-tubes consisting of catheters with side openings were
fluoroscopically placed in the GI-tract and perfused with 0.2–1.59
mL/min water (88, 89, 91). The latter might induce an altered
gut motility per se in a non-physiological manner. More studies
should be conducted to test the effects of dopamine on the gut
motility in humans, and especially in PD patients, who might
already have an altered gut motility (4).

CONCLUSIONS AND FUTURE

PERSPECTIVES

The “on”/“off” motor fluctuations in PD patients are highly
dependent on the pharmacological treatment and factors
contributing to its efficacy. Dietary amino acids and gut
bacterial interference with levodopa treatment can contribute
to the reduction of levodopa dosage absorbed in the small
intestine, thereby restrict the effectiveness of the treatment.
Especially luminal dopamine, which is produced by gut bacterial
degradation of levodopa and is affecting the gut motility, would
enhance the overgrowth of these bacteria in the small intestine
and result in a vicious circle that enhances SIBO. The effect of
dopamine on (small) intestinal motility, urges the investigation
of the effect luminal dopamine and dopamine agonists on the gut
motility of PD patients. Finally, it is crucial to accurately measure
levels of SIBO in PD patients, especially in those who administer
PPIs, and to diagnose other possible underlying diseases, such as
hyperthyroidism. These precautions will help reduce the factors
contributing to compromised levodopa bioavailability and the
unwarranted side effects that result from increased frequency of
dosage treatment regimen.
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Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder affecting a

substantial proportion of the elderly Cypriot population. The objective of this study

was to evaluate PD risk variants that have been identified previously in Genome Wide

Association Studies (GWAS) and to find environmental factors that are predictors for PD

onset in the Cypriot population.

Methods: A case-control study was conducted with a total of 235 PD patients and 464

healthy controls of Greek-Cypriot ethnicity. Demographic and lifestyle characteristics,

exposure to PD risk factors and clinical data were collected. Moreover, 13 previously

GWAS-identified PD risk variants were genotyped. Univariate and multivariate regression

analyses examined the association between a number of environmental and genetic

factors and PD.

Results: Multivariable regression analysis revealed that exposure to both pesticides

and other toxic substances (P= 0.03), severe head injury accompanied with fainting (P=

0.001), nuts consumption (P= 0.004), red meat consumption (P= 0.02), and soft drinks

consumption (P = 0.008) were increasing the risk for PD, whereas cumulative smoking

(P = 0.02), and fish consumption (P = 0.02) were decreasing the risk for PD. Five out

of the 13 tested SNPs (rs12185268, rs6599389, rs356220, rs13312, and rs17649553)

were confirmed to be nominally significantly associated (P < 0.05) with PD risk in the

Cypriot population.

Conclusions: Collectively, this case-control study has shed some light on the nature of

PD epidemiology in Cyprus, by demonstrating a number of genetic and environmental

determinants of PD in the Cypriot population.

Keywords: Parkinson’s disease, environmental factors, genetic variants, Cypriot population, observational study,

case-control study, epidemiology
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder,
characterized by selective loss of dopamine secreting neurons and
accumulation of Lewy bodies in the brain and spinal cord (1). It
affects 0.3% of the general population and 1% of the population
over 60 years old in industrialized countries. The prevalence of
the disease is generally higher in Europe and North America
compared to South America and Africa (2, 3).

PD is categorized into genetic and sporadic, with the first
following Mendelian inheritance and the second being complex.
At present, sporadic PD accounts for about 90% of the cases,
with the exact pathogenic mechanisms underlying the disease not
being completely understood yet (4). However, it is well-known
that sporadic PD risk is determined by the complex interplay of
genetic and environmental risk factors. Numerous studies and
meta-analyses over the last three decades have revealed a number
of environmental and genetic risk factors associated with PD risk.

Environmental factors, such as head injury, rural living,
pesticides, anxiety/depression, and dairy products intake were
positively associated with PD, while physical activity, smoking,
coffee consumption, alcohol drinking, smoking, and serum uric
acid concentration were reported to be inversely associated with
the disease (5, 6).

The genetic component in sporadic PD is currently
undisputable. However, the level of heritability of the disease has
been debated, with twin studies, family segregation studies and
GWAS studies reporting estimates ranging from 6 to 45% (7–9).
The heritability value for PD explained by common variants was
recently estimated to be 0.21 (10). Currently there are 41 genetic
loci that have been associated with PD pathogenesis through 6
large meta-analysis studies (8, 10, 11).

At the moment there is lack of epidemiological data for PD

in the Cypriot population. Cyprus is a Mediterranean island and
although an isolated population, it is a crossroad between Africa,
Europe and Middle East. This made Cyprus a “genetic pool” for
transiting populations which gave the genetic signature to the
Cypriot population today, characterized by genetic affinity with
surrounding Southeast European and Near Eastern populations
(12). This renders genetic studies in the Cypriot population
informative for the genetically similar populations as well.
Characteristic of the genetic admixture and of the peculiarity
of the Cypriot population are the geographical clusters of
other neurological genetic diseases such as Friedreich ataxia,
Huntington disease, and Familial Amyloid Polyneuropathy (13–
15). Therefore, the investigation of the epidemiology of other
neurological diseases such as PD in the Cypriot population is
of particular interest. In addition, it is interesting to investigate
which environmental factors are associated with PD in the

Cypriot population, a population where some of the PD risk
factors are of high prevalence and compare the findings with

similar studies involving different populations.
Herein, we aimed to investigate both genetic and

environmental determinants of PD in the Cypriot population.
Previously published work by our group showed that
mitochondrial haplogroups influence the PD risk and age
of onset in a gender-specific manner (16). This is the first study

exploring the epidemiology of PD in the Cypriot population
and will function as a baseline for future studies concerning the
etiology as well as the early diagnosis of PD.

METHODS

Study Population and Exposure
Assessment
A cohort of 235 PD patients and 464 control subjects were
recruited from multiple medical and community centers across
Cyprus as described previously (16). Patients were included in
the study after clinical diagnosis of PD by a board certified
neurologist. Diagnosis was followed by a clinical evaluation,
using the UPDRS rating scale by a board certified CING
neurologist. Patients that had clinical signs suggestive of
Parkinsonian syndromes were excluded.

The 464 ethnically-matched controls were recruited using
random cluster sampling across all the districts of Cyprus.
Cluster sampling included mailing letters of invitation to
residences in randomly selected postal codes as well as visiting
randomly selected medical/community centers across Cyprus.
Individuals that were ≥45 years old and did not suffer from
any neurodegenerative disorder or cognitive impairment were
invited to participate as controls. All study participants were of
Greek-Cypriot nationality.

Epidemiological data from all study participants were
collected through a personal interview. The questionnaires
consisted of five main sections, which were assessed
retrospectively: demographic data, environmental exposure to
factors that associated with PD in previous studies (exposure to
pesticides and other toxic agents, well water consumption, severe
head injury, and intense stress), medical history, lifestyle (diet
habits, smoking, alcohol consumption), and anthropometric
data (BMI) (5, 6). The questionnaire addressed to the patients,
had an additional section covering information about the age of
onset, the type of the disease and the symptoms of the disease for
each patient.

SNP Selection and Genotyping
Thirteen SNPs that have been associated with PD (p≤ 5× 10−8)
in at least one out of the 5 large GWAS meta-analysis studies
for PD in the European population were selected for genotyping
(Supplementary Table 1) (10, 11, 17–19). The selection criteria
for the SNPs were based on the estimates of the association (0.81
> OR > 1.23) and on the frequency of the minor allele (MAF
> 5%), in order to ensure the maximum statistical power for
their investigation. There was an estimation of the power of the
study at a value of 0.05 to detect ORs similar to those previously
reported in the GWAS, given the allele frequencies observed in
the Cypriot population.

DNA was extracted from peripheral blood lymphocytes as
described elsewhere (14). SNP genotyping was performed using
Taqman genotype assays (Thermo Fisher Scientific). Each assay
was carried out using 10 ng genomic DNA in a 5µl reaction using
Taqman Universal PCR Master Mix (ABI). The fluorescence
profile was read on an ABI PRISM 7900HT instrument and the
results analyzed with Sequence Detection Software (ABI).
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Statistical Analysis
Statistical analysis was separated into four parts: descriptive
analysis of demographic data, univariate logistic regression
analysis, multi-variable logistic regression analysis, and logistic
regression for the genetic analysis.

Demographic characteristics of cases and controls were
described as frequency and percentage for categorical variables
and median and interquartile range (IQR) for continuous
variables with a non-normal distribution.

For the comparison of numerical variables between cases
and controls the non-parametric Mann Whitney Wilcoxon test
was used. For the categorical variables, the chi-square test was
employed to compare the frequencies of cases and controls.

Univariate non-adjusted logistic regression analysis was
used to test for any association between each variable and
PD status. The exposure variables were separated into
two large categories: lifestyle characteristics and previously
reported exposure risk factors. Lifestyle risk factors included
cumulative smoking (cigarettes over lifetime), coffee
consumption (cups per month), alcohol intake (glasses per
month), food dietary habits (frequency of consumption per
month), and indoor and outdoor activities (hours spent per
week). Six food categories that are over-represented in the
Mediterranean Diet were chosen to construct a new variable
called “healthy eating.” The Kruskal Wallis non-parametric
test was carried out to test whether age of onset differed

between the different food consumption categories. Previously
reported exposure risk factors include exposure to pesticides,
exposure to other toxic and chemical substances, well water
drinking, previous severe head injury and exposure to a
traumatic experience.

Following all binary logistic regression analyses, the
significantly predicting PD risk factors were combined into
a multi-variable logistic regression model. Bonferroni correction
was applied to account for multiple testing. This enabled us
to assess and adjust simultaneously for multiple covariates in
relation to a dichotomous outcome; in this case PD.

Trend test was performed for categorical or categorized
variables to test if there was a dose-response function between
the exposure and the outcome. The level of statistical significance
value for the trend analysis test was the 0.05.

All statistical analyses concerning the environmental
risk factors were performed using STATA V12 SE statistical
software package. SNPStats web-based application (http://
bioinfo.iconcologia.net/SNPstats) was used for descriptive
statistics of SNPs and assessment of the association of
each SNP with PD. Statistical analysis included logistic
regression models, adjusted for the age and gender of
participants. The log additive model—which indicates how
the risk for the disease is modified by each additional minor
allele—was chosen to test the association for each SNP
with PD.

TABLE 1 | Demographic characteristics of Cypriot PD cases and controls.

Variable Total Cases Controls p-value* (test)

Current age N 691 229 462 <0.0001 (Wilcoxon)

Median (IQR) 67 (17) 70 (12) 64.5 (16)

Age at baseline N 685 226 455 <0.0001 (Wilcoxon)

Median (IQR) 64 (15) 62 (16) 64.5 (16)

No of children N 691 229 462 0.87 (Wilcoxon)

Median (IQR) 3 (1) 3 (1) 3 (1)

Gender

Male N (%) 358 (51.5) 127 (54.5) 231 (50.0) 0.26 (chi-square)

Female N (%) 337 (48.5) 106 (45.5) 231 (50.0)

BMI (kg)

Normal weight 20–24.9 N (%) 165 (27.3) 64 (34.0) 101 (24.3) 0.01 (chi-square)

Underweight ≤20 N (%) 21 (3.5) 13 (6.9) 8 (1.9)

Overweight 25–29.9 N (%) 252 (41.7) 78 (41.5) 174 (41.8)

Obesity >30 N (%) 166 (27.5) 33 (17.6) 133 (32.0)

Education level

Primary school N (%) 281 (40.5) 104 (45.4) 177 (38.0) 0.13 (chi-square)

Secondary school N (%) 94 (13.5) 23 (10.0) 71 (15.3)

High school N (%) 199 (28.7) 61 (26.6) 138 (29.7)

Bachelor’s degree or higher N (%) 120 (17.3) 41 (17.9) 79 (17.0)

Retirement

Not yet N (%) 198 (30.8) 30 (14.1) 168 (39.2) <0.001 (chi-square)

Yes N (%) 320 (49.8) 113 (53.1) 207 (48.3)

Yes, early N (%) 124 (19.3) 70 (32.9) 54 (12.6)

*P-value nominal significance threshold = 0.05.

Significant p-values are marked in bold.
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TABLE 2 | Lifestyle and previously reported exposure risk factors in Cypriot PD cases and controls.

Variable Total Cases Controls OR* (95% CI) p-value** (LR) p-trend*** (LR)

CUMULATIVE SMOKING (CIGARETTES OVER LIFETIME)

Q0: 0 N (%) 377 (58.9) 138 (65.4) 239 (55.7) 1.00 0.02

Q1: 1–48,000 N (%) 53 (8.3) 14 (6.6) 39 (9.1) 0.62 (0.33–1.19) 0.15

Q2: 48,000–132,000 N (%) 50 (7.8) 17 (8.1) 33 (7.7) 0.89 (0.48–1.66) 0.72

Q3: 132,000–275,000 N (%) 53 (8.3) 16 (7.6) 37 (8.6) 0.75 (0.40–1.40) 0.36

Q4: 275,000–438,000 N (%) 54 (8.4) 15 (7.1) 39 (9.1) 0.67 (0.35–1.25) 0.21

Q5: 438,000–1,940,000 N (%) 53 (8.3) 11 (5.2) 42 (9.8) 0.45 (0.23–0.91) 0.026

TOTAL COFFEE CONSUMPTION (CUPS PER MONTH)

Q1: 0–28 N (%) 187 (27.5) 77 (34.1) 110 (24.3) 1.00 0.009

Q2: 28–56 N (%) 180 (26.5) 57 (25.2) 123 (27.2) 0.66 (0.43–1.02) 0.06

Q3: 56–84 N (%) 168 (24.7) 53 (23.5) 115 (25.4) 0.66 (0.43–1.02) 0.06

Q4: 84–420 N (%) 144 (21.2) 39 (17.3) 105 (23.2) 0.53 (0.33–0.85) 0.008

TOTAL ALCOHOL (GLASSES PER MONTH)

0 N (%) 234 (33.3) 77 (33.0) 153 (32.8) 1.00 0.65

Q1: 0–2.5 N (%) 118 (16.8) 43 (18.4) 75 (16.1) 1.14 (0.72–1.81) 0.58

Q2: 2.5–11.4 N (%) 117 (16.6) 36 (15.5) 81 (17.4) 0.88 (0.55–1.43) 0.61

Q3: 11.4–33.4 N (%) 117 (16.6) 41 (17.6) 76 (16.3) 1.07 (0.67–1.71) 0.67

Q4: 33.4–496 N (%) 117 (16.6) 36 (15.5) 81 (17.4) 0.88 (0.55–1.43) 0.61

HEALTHY EATING

0 N (%) 32 (4.6) 17 (7.3) 11 (2.4) 1 0.03

1 N (%) 60 (8.5) 18 (7.7) 42 (9.0) 0.28 (0.11–0.71) 0.007*

2 N (%) 102 (14.5) 36 (15.5) 66 (14.2) 0.35 (0.15–0.83) 0.02*

3 N (%) 142 (20.20) 51 (21.9) 91 (19.5) 0.36 (0.16–0.83) 0.02*

4 N (%) 188 (26.7) 58 (24.9) 130 (27.9) 0.29 (0.13–0.65) 0.003*

5 N (%) 138 (19.6) 41 (17.6) 97 (20.8) 0.27 (0.12–0.63) 0.003*

6 N (%) 41 (5.8) 12 (5.2) 29 (6.2) 0.27 (0.10–0.74) 0.01*

LR, Logistic Regression analysis.

*Univariate non-adjusted Logistic Regression Model.

**P-value nominal significance threshold = 0.05.

***Bonferroni adjusted significance threshold = 0.01.

Significant p-values are marked in bold.

RESULTS

Descriptive Analysis of Demographic Data
A total of 235 PD cases (mean age 66.5 ± 10.5 years, mean age-
of-onset 60.4 ± 11.4 years, 54.5% males and 45.5% females) and

464 controls (mean age 65 ± 10.7 years, 50% males and 50%
females) were enrolled in this study. PD cases were classified

into tremor-dominant (84%) and non-tremor dominant (16%).

The prevalence of the most common PD motor and non-

motor symptoms of PD cases and their corresponding age at

onset are shown in Supplementary Figure 1. The demographic
characteristics of the study population are listed in Table 1

and Supplementary Table 2. Mann Whitney Wilcoxon test

showed that there was a statistically significant difference
between the current age of the two groups (p < 0.0001),

while there was also a significant difference between the age

at onset of PD cases and age at recruitment of controls (p
< 0.0001). Chi square test revealed a statistically significant
difference between PD cases and controls for retirement status
and BMI (p < 0.0001). Logistic regression revealed that
BMI was inversely associated with PD, while retirement was
positively associated with PD risk after adjusting for current age
(Supplementary Tables 3, 4).

Univariate Logistic Regression Analysis
Smoking, coffee consumption, alcohol consumption and food
dietary habits were tested for their association with PD
risk using univariate logistic regression analysis (Table 2
and Supplementary Table 5). There was statistically significant
evidence that heavy smokers had about two times less risk
to develop PD than non-smokers (OR: 0.45, 95% CI: 0.23–
0.91). Coffee consumption was also a predictor for PD in the
Cypriot population, with those in the lowest quartile of coffee
consumption exhibiting a double risk for PD than participants
in the highest quartile (OR: 0.53, 95% CI: 0.33–0.85). This coffee
consumption—PD risk inverse association survived Bonferroni
correction. Although there was no significant evidence to support
that total alcohol consumption affects the risk for PD, heavy
wine consumption was inversely associated with PD risk, without
accounting for any confounders (OR: 0.54, 95% CI: 0.30–0.96)
(Supplementary Table 5).

Considering dietary habits, PD cases were consuming
significantly more nuts, olives, red meat, carbohydrate rich food,
and soft drinks than controls. However, fish consumption was
significantly lower in PD cases than controls. PD cases had a
significantly lower adherence to “healthy eating” when compared
to controls. The associations between food categories and
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TABLE 3 | Previously reported exposure risk factors in Cypriot PD cases and controls.

Variable Total Cases Controls OR* (95% CI) p-value** (LR) p-trend*** (LR)

TOXIC AGENTS

No toxic agents N (%) 368 (53.3) 108 (47.6) 260 (56.2) 1 0.001

Pesticides N (%) 216 (31.3) 71 (31.3) 145 (31.3) 1.18 (0.82–1.7) 0.37

Other chemical agents N (%) 79 (11.5) 32 (14.1) 47 (10.2) 1.64 (0.99–2.71) 0.05

Both N (%) 27 (3.9) 16 (7.1) 11 (2.4) 3.50 (1.57–7.79) 0.002

WELL WATER CONSUMPTION

No N (%) 297 (43.2) 95 (42.0) 202 (43.8) 1 0.17

Yes, rarely N (%) 104 (15.1) 24 (10.6) 80 (17.4) 0.64 (0.38–1.07) 0.09

Yes, systematically N (%) 286 (41.6) 107 (47.4) 179 (38.8) 1.27 (0.90–1.79) 0.17

SEVERE HEAD INJURY

No N (%) 489 (71.0) 144 (63.7) 345 (74.5) 1 0.03

Yes, with no fainting N (%) 86 (12.5) 31 (13.7) 55 (11.9) 1.35 (0.83–2.18) 0.22

Yes, with fainting N (%) 114 (87.5) 51 (22.6) 63 (13.6) 1.94 (1.28–2.94) 0.002

INTENSE STRESS/TRAUMATIC EXPERIENCE

No N (%) 215 (31.5) 79 (35.6) 136 (29.6) 1 0.96

Yes, moderate N (%) 195 (28.6) 46 (20.7) 149 (32.4) 0.53 (0.35-0.82) 0.004

Yes, severe N (%) 272 (39.9) 97 (43.7) 175 (38.0) 0.95 (0.66-1.38) 0.81

LR, Logistic Regression analysis.

*Univariate non-adjusted Logistic Regression Model.

**P-value nominal significance threshold = 0.05.

***Bonferroni adjusted significance threshold = 0.01.

Significant p-values are marked in bold.

PD risk that remained statistically significant after Bonferroni
correction were the following: nuts-PD, redmeat-PD, soft drinks-
PD and healthy eating-PD. Kruskal Wallis test showed that
there was significant difference at the age of onset of PD in
Cypriot cases depending on “healthy eating” variable (p =

0.025) (Supplementary Figure 2). Physical activity was recorded
as indoor and outdoor activities. However, no association was
observed between physical activity duration and risk for PD
(Supplementary Table 6).

Given the positive association previously found between the
exposure to pesticides or other chemical substances and PD
risk, we evaluated this relationship in the Cypriot population
(Table 3 and Supplementary Table 7). Study participants that
were exposed to chemical agents had a 64% increased risk for PD
(OR: 1.64, 95% CI: 0.99–2.71). The association was considerably
stronger when the participants were exposed to pesticides in
addition to chemical agents (OR: 3.5, 95% CI: 1.57–7.79). Severe
head injury with fainting was also positively associated with
PD risk (OR: 1.94, 95% CI: 1.28–2.94). There was evidence
supporting that moderate traumatic experience was associated
with a 47% decreased risk for PD (OR: 0.53, 95% CI: 0.35–0.82).

Multi-Variable Logistic Regression Analysis
Multivariable Regression Analysis was applied to explore which
of the identified predictors for PD in the Cypriot population
were independently associated with the disease, even after the
adjustment for possible confounders. Therefore, the predictive
multivariable model included all 12 variables that exhibited
a nominally significant association with PD risk within the
unadjusted regression analysis, excluding coffee consumption

due to its high collinearity with smoking and adding the age
at baseline and gender variables as covariates (Figure 1 and
Supplementary Table 8). Multivariate logistic regression Model
1 revealed that the following variables were predictors for PD: fish
consumption (OR: 0.39, 95% CI: 0.17–0.87), nuts consumption
(OR: 2.74, 95% CI: 1.38–5.45), red meat consumption (OR:
1.92, 95% CI: 1.22–3.33), soft drinks consumption (OR: 2.06,
95% CI: 1.21–3.52), exposure to both pesticides and other toxic
substances (OR: 3.28, 95% CI: 1.15–9.36), severe head injury
with fainting (OR: 2.42, 95% CI: 1.43–4.09), moderate traumatic
experience (OR: 0.41, 95% CI: 0.23–0.72), and heavy smoking
(OR: 0.32, 95% CI: 0.13–0.83). Olive consumption, healthy
eating, and heavy wine consumption did not preserve nominally
statistical association within the multivariate analysis.

Genetic Analysis
Supplementary Tables 9, 10 illustrate the allele and genotype
frequencies, respectively, in PD cases and controls, for the 13
SNPs evaluated as well as the allele frequencies for each SNP as
reported in the 1000 Genomes project. Deviation from Hardy
Weinberg equilibrium was not observed for any of the SNPs
in the control subjects (P = 0.15–1). Five out of the 13 SNPs
(rs12185268 (OR: 0.69, 95% CI: 0.52–0.90), rs6599389 (OR:
1.50, 95% CI: 1.04–2.16), rs356220 (OR: 1.33, 95% CI: 1.05–
1.67), rs13312 (OR: 1.68, 95% CI: 1.23–2.28), and rs17649553
(OR: 0.71, 95% CI: 0.54–0.93) were statistically significantly
associated with PD in this study at P less than 0.05 (Table 4).
Rs12185268 is a missense variant located in SPPL2C gene,
while rs13312 is a non-coding variant located in the 3 prime
untranslated region of USP24 gene. Rs6599389, rs356220, and

Frontiers in Neurology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 104744

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Georgiou et al. Epidemiology of Parkinson’s Disease—Cyprus

FIGURE 1 | Multivariate logistic regression analysis for the evaluation of the association between environmental factors and PD (OR and 95%CI are represented for

each environmental factor).

rs17649553 are intron variants located in TMEM175, SNCA, and
MAPT genes, respectively (http://www.ncbi.nlm.nih.gov/SNP/).
Rs823118 (OR: 0.79, 95% CI: 0.62–1.01) and rs356182 (OR:
1.24, 95% CI: 0.98–1.57) SNPs marginally missed the nominal
significance level for association with PD risk. The direction
of the association of the seven SNPs with PD in the Cypriot
population was in line with the direction of the association
described in previous GWAS studies.

DISCUSSION

This case-control study confirmed for the first time a number of
predictors for PD, related to environmental exposure and genetic
risk factors, for the Cypriot population.

The proportion of PD cases that retired early (<65 years old)
was almost three times larger than the proportion of controls
that retired early. This was in line with an observational cohort
study for PD, which showed a hazard ratio of 2.08 for an earlier
retirement associated with PD status (20). This shows that the
ability to remain in the workforce decreases significantly as the
time since onset of the disease increases. Motor and non-motor
symptoms make holding an occupation challenging in many
psychological and biological aspects for PD patients.

The role of BMI in PD risk is still uncertain, with conflicting
results by different epidemiological studies (21, 22). In the
current study, we observed a significant inverse association
between BMI with PD risk. Weight loss is a frequent early
PD symptom as a result of gastrointestinal dysfunction and
anorexia (23). In some cases, nutritional complications pre-exist
motor-related symptoms. Therefore, one logical interpretation
for the inverse association between BMI and PD could be
reverse causation. However, this finding is in line with a recent
Mendelian randomization study that found a causal association
between lifetime exposure to higher BMI and a lower risk
for PD (24).

There is compelling evidence that both smoking and coffee
consumption are inversely associated with PD risk (25). Our
univariate findings regarding cumulative smoking and PD and

coffee consumption and PD are consistent with previous findings

reporting a protective effect of smoking and coffee consumption
for PD. Cumulative smoking was still significantly protective for

PD onset when the regression analysis was adjusted for multiple
variables. This finding lends support to the hypothesis that
biological mechanisms are involved in the smoking-PD relation.
One such possible mechanism is the neuroprotective effect of
nicotine by modulating the activity of mitochondrial complex I
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TABLE 4 | OR and 95% CI for the associations between 13 SNPs and PD risk.

# SNP Minor allele OR (95% CI)* P-value**

1 rs12185268 G 0.69 (0.52–0.90) 0.006∧

2 rs10513789 G 1.09 (0.82–1.45) 0.57

3 rs6599389 A 1.50 (1.04–2.16) 0.03

4 rs356220 T 1.33 (1.05–1.67) 0.02

5 rs7617877 A 1.03 (0.80–1.34) 0.80

6 rs17115100 T 1.06 (0.74–1.53) 0.75

7 rs10464059 A 1.13 (0.80–1.60) 0.49

8 rs13312 G 1.68 (1.23–2.28) 0.001

9 rs1801582 G 1.08 (0.80–1.46) 0.63

10 rs4837628 C 0.89 (0.69–1.14) 0.36

11 rs823118 C 0.79 (0.62–1.01) 0.056

12 rs356182 G 1.24 (0.98–1.57) 0.076

13 rs17649553 T 0.71 (0.54–0.93) 0.013

*Logistic Regression Model adjusted for age and gender.

**P-value Nominal significance threshold = 0.05.
∧Bonferroni adjusted significance threshold = 0.004.

Significant p-values are marked in bold.

of the respiratory chain and by activating nicotinic acetylcholine
receptors in dopaminergic neurons (26).

In the present study, we observed that PD patients had
different dietary habits than controls. The multivariable analysis
revealed fish consumption as a protective factor and red meat,
nuts, and soft drinks consumption as risk factors for the onset of
PD. A significant reduction of fish consumption among PD cases
was also observed in another retrospective study in the Italian
population (27). This protective association is supported by a
rat model study proposing that a combination of fish oil with
other neuroprotective substances is likely to provide a superior
therapeutic advantage in the prevention of oxidative stress-
mediated neurodegenerative conditions such as PD (28). This is
the first study detecting an increased risk for PD for moderate
and heavy soft drinks consumers. A possible explanation could
be given by a rat model study which demonstrated that
carbonated soft drinks induced oxidative stress and also altered
the expression of certain genes associated with brain activity
(29). However, soft drinks cover a broad range of drinks, with
a large number of components, making it challenging to trace
the component that could potentially cause neurodegeneration.
The fact that nuts were positively associated with PD risk in the
present study could be attributed to the fact that nuts are rich in
manganese and iron. The high dietary intake of both iron and
manganese demonstrated an almost 2 fold higher risk for PD
elsewhere (30). Also nuts have high levels of proteins and fat
where organochlorine pesticides are accumulated as it was shown
in a toxicology study carried out in India (31). Pesticides inside
nuts can accumulate not only from direct pesticide application
but also from pesticides concentrated in the soil where nut trees
grow. The significant positive association between red meat and
PD risk, may be explained by the heme content that may act as
a toxin when not digested properly (32). Although there is no
study reporting any significant association between red meat by
itself and PD risk, it was demonstrated that high intake of animal

fat accompanied with low transferrin saturation levels exhibited
a 9 fold increased risk for PD when compared to low animal fat
intake (33). In addition red meat is rich in saturated fats which
increase oxidative stress (34). An unexpected positive association
was detected between olives and PD in the univariate analysis.
However, this association faded away after adjusting for current
age of participants. This can be explained by the fact that older
Cypriots tend to consume olives more frequently than younger
Cypriots, thus rendering age as confounder in the association.

Exposure to both pesticides and chemical agents were
positively associated with PD risk in this case-control study,
being consistent with the findings of previous studies (35).
One possible interpretation for this positive association could
be that the exposure to a variety of environmental toxicants,
including pesticides has been associated with differential DNA
methylation of genes encoding for enzymes which are key players
in cellular redox homeostasis which was found to be involved
in PD pathogenesis (36). The results regarding severe head
injury with fainting are similar to the pooled results of a meta-
analysis study that included 22 studies testing the association
between head injury and PD risk (37). Surprisingly, there was
a statistically significant protective association detected between
moderate intense stress and PD risk. This is possibly a false
positive result which could be attributed to the fact that what a PD
patient considers as a moderate intense stress differs from what a
healthy control considers as a moderate intense stress after the
shock of PD diagnosis.

Recent genome wide meta-analysis studies have identified
several susceptibility loci for PD (10, 11, 17–19). We have
replicated the association of 5 previously reported common
variants of small effect size within the SPPL2C, TMEM175,
SNCA, USP24, and MAPT loci for the Cypriot population,
even though the analysis was underpowered (8, 11). The
significance of the detected associations between the genotyped
SNPs and PD risk were weaker in this study when compared
to other larger studies from different populations (8, 11, 38).
There are two possible scenarios for the failure to replicate
the association for the remaining genetic variants. The first
explanation could be the restricted power of our study to
detect associations with variants of small effect size due to
the small sample size and the second could be the fact that
the genetic variants identified in previous GWA studies are
just proxies for the putative functional variants and therefore
population-specific differences allele frequencies and in linkage
disequilibrium patterns.

This is the first study exploring both the genetic and
environmental determinants for PD in the Cypriot population.
Therefore, the results of the current study shed some light
regarding understanding the nature of PD epidemiology in the
Cypriot population. In addition, given the fact that a large
proportion of Cypriots were exposed to risk factors such as
pesticides, well water consumption, and intense stress (due to
the 1974 war) renders the study essential in understanding which
of this factors increase PD in this population and in devising
the appropriate prevention strategies. However, the current study
has some limitations, including its small sample size which
leads to low study power being perhaps its greatest restriction.
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Despite, the sample size is generally adequate for very common
exposures; it did not provide sufficient power for the detection
of expected associations for rare exposures. However, given the
fact that Cyprus is a small country and the fact that PD is not a
common disease, although it affects a considerable proportion of
the elderly population, a larger sample size was almost impossible
to recruit. Lastly, due to the observational nature of this study,
no inferences could be made regarding the causal nature of the
associations identified.

In conclusion, the current study has demonstrated a
number of genetic and environmental predictors for PD
in the Cypriot population. Multivariable regression analysis
revealed that exposure to both pesticides and other toxic
substances, severe head injury accompanied with fainting,
nuts consumption, red meat consumption, and soft drinks
consumption were predisposing factors, whereas cumulative
smoking and fish consumption were protective factors for PD
risk. The association between rs12185268, rs6599389, rs356220,
rs13312, and rs17649553 SNPs and PD risk was replicated in the
Cypriot population.
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Parkinson’s disease (PD) is manifested by progressive motor, autonomic, and cognitive

disturbances. Dopamine (DA) synthesizing neurons in the substantia nigra (SN)

degenerate, causing a decline in DA level in the striatum that leads to the characteristic

movement disorders. A disease-modifying therapy to arrest PD progression remains

unattainable with current pharmacotherapies, most of which cause severe side effects

and lose their efficacy with time. For this reason, there is a need to seek new therapies

supporting the pharmacological treatment of PD. Motor therapy is recommended

for pharmacologically treated PD patients as it alleviates the symptoms. Molecular

mechanisms behind the beneficial effects of motor therapy are unknown, nor is it known

whether such therapy may be neuroprotective in PD patients. Due to obvious limitations,

human studies are unlikely to answer these questions; therefore, the use of animal models

of PD seems indispensable. Motor therapy in animal models of PD characterized by the

loss of dopaminergic neurons has neuroprotective and neuroregenerative effects, and

the completeness of neuronal protection may depend on (i) degree of neuronal loss, (ii)

duration and intensity of exercise, and (iii) time elapsed between insult and commencing

of training. As the physical activity is neuroprotective for dopaminergic neurons, the

question arises what is the mechanism of this protective action. A current hypothesis

assumes a central role of neurotrophic factors in the neuroprotection of dopaminergic

neurons, even though it is still not clear whether increased DA level in the nigrostriatal axis

results from neurogenesis of dopaminergic neurons in the SN, recovery of the phenotype

of dopaminergic neurons, increased sprouting of the residual dopaminergic axons in the

striatum, or generation of local striatal neurons from inhibitory interneurons. In the present

review, we discuss studies describing the influence of physical exercise on the PD-like

changes manifested in animal models of the disease and focus our interest on the current

state of knowledge on the mechanism of neuroprotection induced by physical activity as

a supportive therapy in PD.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder. Due to the frequency of occurrence,
it is a serious medical, social, and economic problem. Currently,
no proven neuroprotective or disease-modifying treatment
is available for PD. Several agents can be used to treat the
motor symptoms as well as non-motor symptoms, such as
depression, fatigue, sleep disorders, and wakefulness, associated
with dopamine (DA) deficiency.

Although pharmacological therapy is the current gold
standard in the treatment of PD, recent clinical trials have shown
that physical activity alleviates and slows down the development
of movement impairments, reduces depression and anxiety, and
improves mood state, cognitive function, and sleep quality (1, 2).
Recent studies have shown that regular physical activity, such
as strength training, walking, flexibility, balance, and aerobic
training or dance, adjusted to the severity of the disease and
to the current PD patient’s state of health, is able to enhance
brain plasticity, which plays a key role in improving motor and
cognitive functions (3).

Physical activity has been found beneficial for persons
with PD; however, there is still no answer as to which
type, frequency, or intensity of physical exercise is the most
effective in relieving Parkinsonian symptoms. The lack of
standardized terminology, protocols, interventions, and outcome
measures limits the comparison of data and makes them
difficult to interpret.

Aerobic training, aimed mainly to increase cardiovascular
capacity, has a beneficial effect on PD patients. Reuter et al. (4)
study showed that flexibility and relaxation program, walking,
and Nordic walking reduced the pain and improved the quality of
life of all patients. Nordic walking proved superior in improving
postural stability and gait, and other researchers (5–8) confirmed
improvement of movement parameters by this kind of walking.
On the other hand, Bello et al. (9) demonstrated the superiority
of training on the treadmill compared to overground walking in
improving gait and body balance. In yet another study, treadmill
training was also found to improve speed, cadence, stride length,
and distance walked (10).

A common symptom of PD is muscle weakness. The strength
(resistance) training increases muscle mass and bone mineral
density, sustains body balance, and thus improves the quality
of life of PD individuals. Scandalis et al. (11) showed improved
gait function in patients with mild to moderate PD subjected to
resistance training. Hirsch et al. (12) confirmed a lower fall risk
and a longer independent life of PD individuals in response to
resistance and balance exercises.

Improvement in motor function can be seen as specific effect
of physical training. However, such activity also preserves or
improves cognitive function in PD patients, which suggests
training to act as a disease-modifying factor. Physical exercise
has been shown to improve performance in verbal fluency
tests and to reduce spatial working memory errors in cognitive
tests. Cruise et al. (13) showed that a combination of strength
and cardiovascular training improved executive function in the
course of PD. Tabak et al. (14) and Nocera et al. (15) in small

case studies observed improvement in executive function in PD
patients after aerobic exercises.

Although the collective evidence supports physical activity as
a measure for PD prevention, the mechanism underlying the
diminished risk of PD development in physically active persons
is still not fully understood (16). Based on animal studies, several
mechanisms are believed to explain the effects of physical activity
as an adjuvant therapy against PD: increased synthesis and release
of neurotrophins (17–20), restoration of the equilibrium between
the level and interactions of neurotransmitters (21, 22), increased
resistance to oxidative stress (23), reduced inflammatory process
in the brain (21, 24, 25), and enhanced synaptogenesis (26),
angiogenesis (27), and neurogenesis (28, 29) (Figure 1). In the
present review, we aimed to describe the influence of physical
exercise on PD symptoms in animal models of the disease and
report the current state of knowledge concerning the mechanism
underlying the neuroprotective effects of physical activity as
supportive therapy in PD.

EXERCISE INDUCES RECOVERY OF

MOTOR FUNCTION AND

NEUROPROTECTION IN ANIMAL MODELS

OF PD

Motor Performance
Many studies in animal models of PD showed that various
forms of physical activity, differing in type of effort, duration,

FIGURE 1 | Processes influenced by exercise in Parkinson’s disease. Physical

training can improve motor function, reduce neuroinflammation, and increase

resistance to oxidative stress or reduce the stress level. Motor therapy results

in mobilization of neurotrophic factors, protection of dopamine neurons, and

restoration of the equilibrium between neurotransmitters such as dopamine

and glutamate. Physical exercise may also lead to the enhancement of

cognitive functions.
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intensity, and starting point with respect to neurotoxic insult,
were neuroprotective and suppressed processes involved in PD
pathology (30–32).

The two commonly used toxins leading to the degeneration
of nigral dopaminergic neurons and, in consequence,
to DA depletion in the striatum are 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine
[6-OHDA]. The most commonly adopted forms of physical
activity in animals are the running wheel, performed voluntarily,
and forced treadmill training. There are data proving a
reduction of motor performance after administration of PD-
inducing neurotoxins (30–33) and a protective effect of physical
activity (19, 34–36) against behavioral impairments caused
by these neurotoxins in animals. However, the detection and
experimental quantification of mouse motor impairments that
truthfully mimic the symptoms of PD patients has proved
difficult. To detect reliably behavioral deficits using standard
mouse motor tests such as the rotarod, inverted grid test, and
general locomotor activity monitoring in open field, very large
doses of MPTP must be used and behavioral alterations often
appear to be transient (32, 37, 38). Movement disorders are
only slight in mice performing simple motor tasks, even if the
loss of dopaminergic neurons in SN after exposure to MPTP
ranges from 60 to 70% (39–41), and this may explain why
some researchers report no detectable motor deterioration.
Nevertheless, it has been shown that physical activity has both
protective (42, 43) and restorative (22, 44, 45) effects on motor
parameters such as velocity (46), locomotor activity (42), or body
balance and coordination (34, 43).

Several studies report that physical exercise led to motor
function improvement in rotarod test in a mouse model of PD
(47–51). The MPTP-treated groups that completed a treadmill
exercise regimen achieved significantly higher maximal velocity
than those in the MPTP sedentary group, although there are data
showing no effect of MPTP on the rotarod performance (32, 52).
A few reports show that mice treated with MPTP have reduced
locomotion; however, there are also studies that report no such
changes (53–55) as well as reports in which a restorative effect
of endurance exercise on locomotion measured in the open field
was noticed (42).

Movement in the upside-down position seems to be a
task so complex that it should reveal impairments caused
by the loss of dopaminergic neurons; therefore, the inverted
grid test was introduced by Tillerson et al. (32). During this
test, mouse movement on the underside of the horizontal
grid is recorded. Tillerson et al. (32, 56) detected sustained
behavioral deficits in MPTP-treated mice up to 28 days post-
injection, and these deficits were inversely correlated with
striatal DA content and expression of the dopamine transporter
(DAT), vesicular monoamine transporter 2 (VMAT2), and
tyrosine hydroxylase (TH). The inverted grid test was
then used by other researchers (57–63), but none of them
demonstrated any correlation between motor performance
and the degree of dopaminergic neuron loss. Interestingly,
in the study that provides an in-depth analysis of many
motor parameters (64), no adverse effect of MPTP treatment
was noticed.

The detection and experimental quantification of motor
impairments in rodents that truthfully mimic the anomalies of
Parkinsonian patients proved difficult either due to inadequate
behavioral tests or—very likely—because motor impairment
takes another form in these animals. So, at present, despite
the known ability of physical exercise to promote motoric
improvement, our knowledge regarding themost beneficial form,
duration, intensity, and frequency of exercise is still insufficient.

Protection of Dopaminergic Neurons
Depending on when physical training is commenced with respect
to neurotoxic insult, one may examine (i) the preventive role
of exercise against PD once such insult follows training; (ii) the
modification of the course of disease, when the chronic treatment
is paralleled with training; and (iii) the neuroregenerative effect of
exercise when physical training is applied post-insult.

The neuroprotective role of exercise against the loss of
dopaminergic neurons was studied by Gerecke et al. (65),
where voluntary physical activity on the running wheel was
applied before acute administration of MPTP. The authors
determined the critical duration of voluntary exercise necessary
for neuroprotection of dopaminergic neurons. They found that
1 month of training provided no neuroprotection, 2 months
of training conferred partial protection, and only the first
3 months of training prevented any loss of substantia nigra
pars compacta (SNpc) dopaminergic neurons by subsequent
neurotoxin treatment. However, beside duration of the training,
the distance covered also turned out to be essential. It was found
that the longer distance run on the wheel, the lesser loss of
DA neuron in the 3-month training group, so only mice that
had run the longest distance were completely protected against
MPTP toxicity.

The effects of ongoing training on the progression of PD were
modeled with daily treadmill running during chronic neurotoxin
treatment realized with 10 injections of MPTP spread over
5 weeks. Such chronic MPTP treatment leads to permanent,
lasting at least 6 months, neurological deficits resembling, though
incompletely, PD. This is unlike acute and subacute MPTP
treatments, after which neurological deficits and behavioral
changes soon wane spontaneously (65).

Ahmad et al. (66) using this chronic mouse model proved that
10- and 18-week-long treadmill training, started 1 week before
commencing MPTP treatment, reduced loss of dopaminergic
neurons in the ventral tegmental area (VTA). It should be noted,
though, that this model encompasses both parallel application of
neurotoxin and physical training as well as post-insult training.
Somewhat surprisingly, the number of DA neurons was greater
following 18 weeks of exercise training, than 10, whichmay prove
that either new DA neurons appeared and/or some DA neurons
that lost their phenotype regained it during subsequent 8 weeks.

Pothakos et al. (42), using the same model, started treadmill
training 1 week before MPTP treatment, continued it during
intoxication lasting 5 weeks, and over the subsequent 8–12 weeks.
They did not observe either the recovery of striatal DA or
preservation of TH positive neurons in the SNpc in exercising
MPTP-treated mice. It may be important that different doses
of MPTP have been used in these studies−12.5 vs. 25 mg/kg
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of MPTP per injection. The importance of dose was confirmed
by Lau et al. (19). In the same chronic model of PD with 18-
week treadmill training, which was started 1 week before MPTP
intoxication, they observed nearly complete preservation of TH
immunopositive neurons in the SNpc and the level of striatal
DA comparable to that in control mice. The importance of
MPTP dosing was reflected in the loss of 55% of TH positive
neurons observed in the study of Lau et al. (19) who used 15mg
MPTP/kg/injection and a 72% loss in the study of Pothakos et al.
(42) who applied 25 mg/kg/injection.

Two studies that used the protocol described above delivered
contrasting results: Pothakos et al. (42) did not observe either the
recovery of striatal DA or preservation of TH positive neurons
in the SNpc in exercising MPTP-treated mice, whereas Lau et al.
(19) found nearly complete preservation of TH immunopositive
neurons in the SNpc and the level of striatal DA comparable to
that in control mice. The possible explanation of this discrepancy
may be the dose of MPTP, which, in Pothakos et al. study, is twice
as big as in Lau et al. study. The difference in MPTP dose was
reflected in the 72% loss of nigral DA neurons in the former vs.
55% in the latter study.

Studies on the beneficial effects of exertion applied after
neurotoxin application show varying results: from no effect to
partial or complete preservation of the number of TH-positive
nigral neurons. Aerobic training lasting 4 weeks and started after
5 weeks of treatment with 25mg MPTP/kg/injection slightly
raised nigrostriatal TH andDA levels as compared with sedentary
MPTP-injected mice (67). Kintz et al. (22) found that training
lasting 37 days, which started 5 days after acute dosing with
MPTP, did not return the level of striatal DA reduced by the
neurotoxin. Zhao et al. (68) found that the number of nigral
dopaminergic neurons returned almost to that observed in
control mice after 4 weeks of vibration training following 1
week of MPTP treatment and was also significantly greater than
that in sedentary MPTP-treated animals. This was accompanied
by similar changes in the striatal DA level. In another study
(69), it was found that 8 weeks of progressive treadmill that
started 2 weeks after chronic high-dose (25 mg/kg/injection)
MPTP administration caused nearly complete restoration of TH-
positive neurons in the SNpc, as well as similar recovery of TH
and DAT in MPTP-treated exercising mice.

Increased number of dopaminergic neurons observed in
neurotoxin-treated animals after physical exercise could be the
result of better protection of neurons or neurogenesis. In a
study performed by Jang et al. (45), mice were intraperitoneally
injected with 25 mg/kg MPTP daily for 1 week. Training on
the treadmill lasted 6 weeks and was applied 4 weeks after
the last MPTP dose. This training induced neurogenesis in
MPTP-treated mice, evidenced by an increased number of
bromodeoxyuridine (BrdU)-positive neurons, and attenuated the
loss of dopaminergic neurons as manifested by higher levels of
TH and DAT. The authors also showed enhanced autophagy,
exemplified by changes in autophagy-related protein levels (e.g.,
microtubule-associated protein 1A/1B-light chain 3—MAP1LC3,
nucleoporin p62—p62, Beclin 1, Beclin 2 (Bcl-2)/adenovirus
E1B-19 kDa interacting protein—BNIP3, lysosome-associated
membrane protein 2—LAMP2, cathepsin L and transcription

factor EB—TFEB), and augmented antioxidant capability (e.g.,
increased level of superoxide dismutase-1—SOD-1, catalase,
glutathione peroxidase 1—GPX1, heme oxygenase-1—HO-1,
and DJ1) as compared with the results obtained in the MPTP
group with no treadmill training.

Also, in a rat model of PD induced by 6-OHDA injections,
significant preservation of TH-immunopositive neurons in the
SNpc and fibers in the striatum was observed after 4 weeks of
treadmill training applied 24 h post-neurotoxin insult (70).

The neuroprotective potency even of a late (i.e., post-
neurotoxic insult) physical training was recently illustrated
by our study (71), where training of the same duration and
intensity attenuated neuronal loss to the same degree, both when
commenced before or after chronic MPTP treatment.

Although most reports prove that physical activity positively
affects motor functions (19, 34, 44, 47–50, 72) and increases
the level of DA in the striatum (19, 73), there are also
studies reporting the lack of effects of physical exercise on
these parameters (22, 52, 53, 55). For example, Gerecke et al.
(65) have found that, even though 3 months of training
completely protected dopaminergic neurons against MPTP-
induced neurotoxicity, the level of DA and its metabolites in the
striatum was significantly lower compared to controls. In order
to account for these discrepant findings, the authors hypothesize
that uptake of 1-methyl-4-phenylpyridinium (MPP+) by DAT
generates the formation of hydrogen peroxide and nitrosylated
proteins. These compounds damage the dopaminergic terminals
but not the cell body. It is also possible that MPP+ alone lowers
the ability of dopaminergic neurons to transport DA into striatal
terminals leading to decreased DA level.

REGULATION OF DOPAMINERGIC AND

GLUTAMATERGIC TRANSMISSION VIA

PHYSICAL ACTIVITY

Degeneration of dopaminergic neurons in the SNpc and striatal
loss of axonal terminals are key pathological features of PD in
humans (74–76) and in toxin-induced animal models (19, 42, 71,
77). DA deficiency in PD also leads to loss of dendritic spines
within the striatum, which results in motor impairments (78).
Two different types of dopaminergic activity can be observed
in the striatum: a phasic, brief high-amplitude increase of DA
release that acts at the synaptic space through the low affinity
D1 receptor (D1R) and a tonic DA release of low amplitude that
acts through the high-affinity D2 receptors (D2R) located in the
extrasynaptic space. The striatum is functionally subdivided into
ventral and dorsal areas, which participate in different aspects
of motor control (74). The dorsal striatum is mainly composed
of two subpopulations of medium spiny neurons (MSNs): DA
D1 receptor-expressing MSNs that constitute the striatonigral or
direct pathway (dMSNs) and DA D2 receptor-expressing MSNs
that constitute the striatopallidal or indirect pathway (iMSNs). It
has been suggested that each pathway has a different role inmotor
control, with dMSNs being involved in the main aspects of motor
control, including motor program selection and activation, and
iMSNs in selection and activation of a context-specific motor
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programs based on the integration of motivational/emotional
signaling with sensory-motor inputs (79).

Toy et al. (77) have found a decrease in dendritic spine
density in bothD1R andD2R containingMSNs after acuteMPTP
administration and an increase in dendritic spine density and
arborization in MSNs of both pathways after 30 days of intensive
treadmill exercise. Recovery of dendritic spines was associated
with increased expression of post-synaptic density protein 95
(PSD-95) and of presynaptic synaptophysin, leading to increased
synaptogenesis in the dorsolateral striatum and improvement in
motor performance (77).

The deficiency of DA leads to structural and functional
changes in MSNs. These changes usually entail increased
glutamatergic projection and hyper-excitability of the indirect
pathway (D2R-iMSNs) (80). The prolonged elevated level
of glutamate in the intercellular space results in longer
depolarization and in disturbances of ionic homeostasis that
elicits excitotoxicity and, in consequence, cell death. The α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptor
(AMPAR), a fast-acting ionotropic glutamate receptor, plays a
critical role in these processes. AMPARs are tetrameric channels
composed of various combinations of four glutamate receptor
subunits, GluA1–GluA4. In particular, the presence or absence
of GluA2 decides about important electrophysiological channel
properties, including calcium (Ca2+) permeability. Reduced
level of GluA2 in AMPAR channels may lead to increased
permeability for calcium ions.

Alterations in AMPARs expression have also been noted
in animal models of PD characterized by a reduced level
of DA. Kintz et al. (22) have noticed that MPTP treatment
alone or combined with exercise evoked changes in AMPAR
level limited to the D2R-iMSNs striatopallidal pathway. They
observed an increase in the level of AMPARs lacking GluA2
in MPTP-treated mice. Increased expression of the GluA2
subunit of the AMPAR in animals that started to exercise after
acute MPTP administration suggested the restoration of normal
AMPAR subunit expression. Enhanced expression of GluA2-
lacking AMPAR possibly potentiates glutamatergic signaling,
which leads to hyperexcitability of the striatopallidal projection
pathway observed as a consequence of DA depletion (81).
Exercise increased the presence of GluA2 subunit in AMPARs
in MPTP-treated mice. This could decrease Ca2+ influx and
diminish glutamatergic drive leading to reduced glutamatergic
projection and thus increased survival of dopaminergic neurons.

The hypothesis of increased glutamatergic projection in the
course of PD and reduced glutamatergic tonus in response
to physical activity has been strengthened by Scone et al.
(21), who showed that while levels of vesicular glutamate
transporter 1 (VGLUT1) and glutamate transporter-1 (GLT-1)
were elevated after MPTP administration, the level of these
transporters was decreased following physical activity, restoring
glutamate homeostasis in treated mice. Fisher et al. (44) analyzed
the neuroprotective effect of 30 days of treadmill training on
proportions between dopaminergic and glutamatergic projection
in C57 BL/6J mice acutely administered with MPTP. The
treadmill training was started 4 days after MPTP or saline
treatment. The MPTP exercise group demonstrated significantly

reduced DAT immunoreactivity, higher expression of D2R
mRNA, and a significant decrease in the density of glutamate
terminals compared to the MPTP sedentary group. An increase
in the density of nerve terminal glutamate immunolabeling,
characteristic for MPTP lesioning, may, therefore, reflect
a decrease in the extracellular levels of striatal glutamate.
Consequently, the effect of exercise in an MPTP-lesioned brain
may be the increased release of glutamate at the synapse, which
may alter DA receptor subtype expression or/and function of
medium spiny neurons.

EXERCISE MOBILIZES NEUROTROPHIC

FACTORS

Post-mortem examinations of PD brain in human and animal
models demonstrate a decreased level of neurotrophic factors
(NTFs) in the nigrostriatal pathway (82–84), although this
reduction could be partially due to the loss of SNpc dopaminergic
neurons, which specifically express one of the NTFs, the brain-
derived neurotrophic factor (BDNF). Decreased efficiency of
neurotrophic factors, such as BDNF, nerve growth factor (NGF),
neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) in PD
may be connected with a reduced level of cyclic nucleotides.
Such reduction leads to dysregulation of transcription of
NFT encoding genes, mediated by the cyclic adenosine
monophosphate (cAMP) response element-binding protein
(CREB) (85–87).

NTFs are endogenous proteins that promote differentiation,
maintenance, function, and plasticity of the nervous system
and allow neurons to survive and repair after injury (88).
Therefore, NTFs may serve as potential therapeutic agents in
the treatment of neurodegenerative diseases including PD. For
example, BDNF, mesencephalic astrocyte-derived neurotrophic
factor (MANF), glial cell line-derived neurotrophic factor
(GDNF), and cerebral dopamine neurotrophic factor (CDNF)
have been shown to be neuroprotective and neurorestorative
toward damaged dopaminergic neurons in cell cultures and in
various PD animal models (89). In vivo, NTFs induce survival
of nigrostriatal DA cell bodies and fibers improving motor
performance compromised in parkinsonian animals.

The best known trophic factors that protect dopaminergic
neurons against oxidative stress are BDNF and GDNF.
Initially, the potential therapeutic role of BDNF and GDNF in
dopaminergic neurons was found in in vitro studies (31, 89, 90).
BDNF is widely and abundantly expressed in the brain and
significantly involved in several aspects of neuronal development
and maturation, plasticity, and recovery mechanisms (91, 92).
BDNF also supports the survival of several types of neurons,
including mesencephalic dopaminergic, septal cholinergic,
and striatal gamma-aminobutyric-acid-releasing (GABAergic)
neurons. Binding of BDNF to the high-affinity tropomyosin-
related kinase B (TrkB) receptor leads to phosphorylation of TrkB
and activation of the three essential downstream intracellular
signaling cascades within neuronal somata: phospholipase
C-γ (PLCγ), phosphatidylinositol 3-kinase/protein kinase B
(PI3K/AKT), and mitogen-activated protein kinase/extracellular
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signal-related kinase (MAPK/ERK) pathways. Furthermore,
BDNF may activate the CREB transcription factor and CREB-
binding protein (CBP) and regulate expression of genes encoding
proteins involved in stress resistance and cell survival and even
neural plasticity (93).

GDNF, in turn, is believed to be the most important
neurotrophic factor in the nigrostriatal dopaminergic system
and therefore is considered to have therapeutic potential for
neuroprotective and regenerative interventions in PD (88).
GDNF promotes the survival and maturation of dopaminergic
neurons and increases their high-affinity DA uptake (89). It exerts
similar effects on motor, adrenergic, parasympathetic, enteric,
and somatic sensory neurons (94). GDNF binds with high affinity
to glycosylphosphatidylinositol-linked receptor α1 (GFRα1),
which is highly expressed in midbrain dopaminergic neurons
when measured at mRNA and protein levels. The complex of
GDNF andGFRα1, in turn, recruits a transmembrane rearranged
during transfection (Ret) receptor and triggers downstream
signaling, which controls mitochondrial morphology and
complex I activity in dopaminergic neurons (94). GDNF, after
binding to its receptor, activates signaling pathways leading to
stimulation of dopaminergic neuron excitability, inhibition of
DAT activity, and stimulation of TH phosphorylation (95).

There is increasing evidence that NTFs are critical for
exercise-induced neuroprotection. The study of Lau et al. (19)
has shown that the exercise-induced recovery of cell number
and motor behavior in the chronic MPTP mouse model of PD
was associated with an improved mitochondrial function and
an increase in the brain region-specific levels of BDNF and
GDNF. Furthermore, Zhao et al. (68) demonstrated that inMPTP
mice, 4 weeks of vibration training almost completely restored
dopaminergic neurons in the SN, lost due to MPTP treatment,
and DA levels in the striatum, and significantly increased the
level of BDNF in the striatum. The authors postulated that long-
lasting vibration training could protect dopaminergic neurons
from MPTP-induced damage probably by upregulating BDNF.
In turn, Gerecke et al. (20), using BDNF+/− mice, showed that
exercise was not able to protect dopaminergic neurons from
MPTP-induced neurodegeneration.

In another study by Tajiri et al. (70), daily forced treadmill
training was used in the 6-OHDA acute rat model of PD. In
the 6-OHDA training group, behavioral recovery in the cylinder
test and a significant decrease in the number of amphetamine-
induced rotations were observed. This was accompanied by
the preservation of dopaminergic fibers in the striatum and
neurons in the SNpc. In addition, BrdU/doublecortin (Dcx) co-
staining revealed enhanced proliferation and migration of neural
progenitor cells from the subventricular zone (SVZ) toward the
injection site. At the same time, BDNF and GDNF levels were
upregulated in the striatum. Physical training in animal models
of PD, beside neuroprotection of the dopaminergic system, may
enhance neurogenesis and progenitor cell migration through
upregulating BDNF-TrkB and GDNF-Ret signaling, which can,
in turn, stimulate certain signaling cascades, including those
that activate the PI3K/Akt pathway or the extracellular signal-
regulated kinases 1 and 2 (ERK1/2) cascade. The PI3K/Akt
signaling pathway transmits anti-apoptotic signals stemming

from neurotrophins. This pathway activates transcription factors
such as CREB and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB), which trigger the expression of
genes involved in cell survival, such as Bcl-2 and other inhibitors
of apoptosis. It also suppresses the expression of pro-apoptotic
genes, such as the Bcl-2-associated death promoter (BAD) and
Forkhead box (FOX) transcription factors (96). Similarly, the
ERK1/2 signaling cascade induces anti-apoptotic genes such as
those encoding Bcl-2 and the transcription factor CREB. ERK1/2
also mediates neuritic outgrowth induced by neurotrophic
factors (97) and phosphorylation of TH, which increases its
enzymatic activity, thus enhancing DA synthesis (98).

Additionally, physical activity, through the induction of
neurotrophin signaling pathways, affects synaptic plasticity in
MPTP mice. In the study of Zhu et al. (99), the authors have
demonstrated that long-term potentiation (LTP) impairment
in the MPTP model was due to the decrease in hippocampal
BDNF level. Both induction of endogenous BDNF synthesis
by memantine or application of exogenous BDNF restored the
LTP deficit in the MPTP model. In addition to the effects
of memantine on LTP, MPTP-enhanced long-term depression
(LTD) was also reversed by memantine administration. These
data suggest that compounds that can activate BDNF synthesis
have the potential to protect memory in PD.

The evidence that exercise, through regulation of growth
factors, secures successful brain function was demonstrated in
several other studies (100–104). Also in our study (71), the results
suggest that 10 weeks of training on the treadmill, no matter
if started before or after PD induction, have a protective effect
against dopaminergic neuron degeneration in the chronic MPTP
mouse model of PD. Neuroprotective properties of exercise were
most likely associated with increased expression of endogenous
NTFs and reduced inflammation in the brain. Although the
actual sequence of events needs to be discerned, it is likely
that NTFs protect neurons against degeneration and in this
way prevent the inflammatory response. However, the other
way is also possible, i.e., that the strength of inflammation is
regulated by the neurotrophin signaling pathways irrespective
of neurodegeneration. It is likely that both ways operate when
training accompanies neurotoxic assault and also when it is
applied after such assault. In summary, these studies underscore
the view that physical activity remains neuroprotective even
during the advanced stage of PD and therefore provide strong
support for starting and continuing physical activity at any point
of the disease.

PHYSICAL TRAINING MODULATES

NEUROINFLAMMATORY MECHANISMS

Although the death of dopaminergic neurons is a well-
characterized pathological feature of PD, the primary cause of
the disease is still not clear. Since the first observations of
reactive microglia and astrocytes in post-mortem brain samples
of PD patients were made (105, 106), numerous studies have
proposed a role of glial cells in the neuropathology of PD
(107–109). Furthermore, infiltration of cells of the peripheral
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immune system into the brain is also likely to play a role
in the pathomechanism of PD (110, 111). It is not clear
whether inflammation is a primary cause of PD or a secondary
event, that is, the consequence of neuronal death. Short-lasting
inflammatory reactions may induce NTFs (112, 113) and may
protect neurons against reactive oxygen species (ROS) (114)
and glutamate neuronal hyperexcitability (115) but chronic
inflammation usually leads to degeneration and neuronal damage
(113, 116, 117).

Neuroinflammation means activation of microglia and
reactive astrocytes, which, in turn, produce cytokines,
chemokines, reactive oxygen, and nitrogen species, secondary
messengers, prostaglandins, and protein complement cascades
(118). Elevated levels of interleukin-6 (IL-6) acting as pro-
inflammatory cytokine, tumor necrosis factor alpha (TNF-α),
interleukin-1 beta (IL-1β), and nitric oxide synthase (NOS),
found in the SN, putamen, as well as in the cerebrospinal fluid
(CSF) and serum of PD patients suggest that, in PD, glial cells
acquire a pro-inflammatory phenotype (119).

Both the pro-inflammatory cytokines and their receptors play
a role in the pathogenesis of PD. A glial reaction in the brain
involving astrocytes and microglia have been described in several
toxin-induced animal models of PD (21, 46, 120, 121). Loss
of dopaminergic neurons is associated with activated microglia
(122–124), which, in turn, activates astrocytes. Increasing
evidence suggests that the CD200 protein and its receptor,
CD200R, play a critical role during microglia activation. Deficits
in the CD200–CD200R pathway exacerbate microglial activation
and degeneration of dopaminergic neurons (125).

Liddelow et al. (126) have shown in in vitro and in vivo
studies that activated microglia stimulate, in turn, astrocytes by
secreting interleukin-1 alpha (IL-1α), TNFα, and complement
component 1q (C1q). Lofrumento et al. (109) have observed a
significant increase in IL-1β, TNF-α, and IL-6 mRNA expression
level and an increase in both mRNA and protein levels of their
respective receptors IL-1RI (IL-1 receptor type I), TNF-αRI, and
IL-6Rα in the SN of MPTP-treated animals in comparison with
untreated mice.

Astrogliosis is characterized mainly by an increase in
the number and size of astrocytes and increased expression
of the glial fibrillary acidic protein (GFAP). Due to pro-
inflammatory activation, astrocytes lose the ability to promote
neuronal survival, neurite outgrowth, synaptogenesis, and
phagocytosis (127). Astrogliosis has been confirmed during PD
(35, 128). Sconce et al. (21) have shown an increase in GFAP
immunoreactivity and a reduced ratio of phosphorylated to non-
phosphorylated component 3 of the nuclear factor of activated
T-cells (NFATc3) within the SN in MPTP mice.

The neuroprotective effect of physical activity has been
linked to the prevention and modulation of the inflammatory
process (129). Recent evidence suggests that physical activity,
in addition to modifying the cardiovascular, muscular, and
hormonal systems, also affects the immune system, which can
lead to the overall anti-inflammatory effect in the whole body
(130), including attenuation of the inflammatory processes in the
brain in the course of neurodegenerative diseases.

Sconce et al. (21) have reported that running wheel
exercise affects behavioral deficits, as well as dopaminergic,
glutamatergic, and inflammatory biomarkers in a progressive
MPTP mouse model of PD. The authors noticed recovery
of motor abilities, increased VMAT2 expression, decreased
glycosylated-DAT expression, reduced levels of VGLUT1 and
GLT-1, and lower levels of the inflammatory marker, component
3 of the nuclear factor of activated T-cells (NFATc3), and of the
astrocytic marker, GFAP, in MPTP/exercised mice as compared
to MPTP mice without exercise. The anti-inflammatory effect
of different types of physical activity has been verified by Goes
et al. (24). The authors found that 4-week swimming training
alleviated cognitive and motor impairment, and prevented
both the increase of ROS and IL-1β levels and inhibition of
glutathione peroxidase (GPx) glutathione S-transferase (GST)
and glutathione reductase (GR) activities. This training also
restored DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and
homovanillic acid (HVA) activity levels in the striatum of mice
administered with 6-OHDA (24).

Recent studies have suggested that interaction between alpha-
synuclein (α-syn) and toll-like receptor 2 (TLR2) may play
a critical role in the onset of neuroinflammation (131). Jang
et al. (132) observed in mice that 8-week treadmill training
started after completion of chronic MPTP treatment eliminated
motor coordination deficits, increased nigrostriatal TH level,
and diminished expression of α-syn in the striatum. This, in
consequence, led to downregulation of TLR2 signaling molecules
such as myeloid differentiation primary response 88 (MyD88),
tumor necrosis factor receptor-associated factor 6 (TRAF6), and
phosphorylated transforming growth factor-β-activated protein
kinase 1 (p-TAK1). What was interesting, physical activity
significantly decreased GFAP level and increased the level of
phosphorylated NFATc3, thus reducing the susceptibility of
dopaminergic neurons to apoptosis.

In another study (71), the immunohistochemical staining
and ELISA assay against GFAP showed an increased number of
astrocytes and elevated GFAP concentration in SNpc and VTA
in MPTP sedentary mice. On the other hand, treadmill training
caused reduced GFAP concentration in the MPTP-trained
group, comparable to the concentration of GFAP observed in
the control groups. Furthermore, staining against CD11b and
ionized calcium-binding adapter molecule 1 (Iba1), the markers
of microglia, also showed higher intensity in the SNpc and
VTA of MPTP mice without treadmill training compared with
results obtained in controls and the MPTP group with treadmill
training (71).

Both subtypes of glial cells, astrocytes and microglia,
may be activated in two different ways, resulting in a pro-
inflammatory (classical M1 activation) or anti-inflammatory
(alternative M2 activation) formation of response. In the latter
case, stimulatedmicroglia show increased expression of cytokines
recognized as an anti-inflammatory, such as interleukin-10 (IL-
10), transforming growth factor beta (TGFβ), insulin growth
factor 1 (IGF-1), NGF, and BDNF (133). Astrocytes, similarly to
microglia, secrete anti-inflammatory compounds, among them
neurotrophic factors such as GDNF, BDNF, and MANF, which
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revive injured dopaminergic neurons and uphold their survival
(134, 135).

It is likely that physical training applied in MPTP mice not
only reduces M1-type pro-inflammatory glial activation but also
promotes M2-type neuroprotective activation of microglia. The
increased synthesis of trophic factors observed after prolonged
physical training could favor the neuroprotective pathway of
microglia activation. In consequence, dopaminergic neurons
protected by neurotrophins do not degenerate and thus do not
send signals that mobilize the pro-inflammatory response and
proliferation of glial cells. Training may reduce the reactivity
of microglia and mitigate inflammation by altering multiple
metabolic and transcriptional processes (136). For instance, it
may inhibit the activity of glycogen synthase kinase 3 (GSK-
3), which is a major regulator of the balance between the pro-
and anti-inflammatory mediators in immune cells, including
microglia (137). GSK-3 stimulates activated microglia to release
pro-inflammatory cytokines such as IL-1β, IL-6, and TNFα, and
inhibits the release of anti-inflammatory cytokines such as IL-10
(138–140). The way the exercise affects GSK-3 activity may rely
on the activation of some extracellular factors, including those
mediated by BDNF (141, 142) and GDNF (143, 144), which are
known to inhibit GSK-3.

PHYSICAL TRAINING ATTENUATES

MITOCHONDRIAL DYSFUNCTION AND

OXIDATIVE STRESS

It has long been recognized that oxidative stress may
be important in the etiology of a variety of late-onset
neurodegenerative diseases including PD (145–147). Oxidative
stress is connected with the production of ROS, which show
strong oxidizing properties. Although ROS at physiological
concentrations play a pivotal role in several cellular signaling
pathways such as cell cycle regulation, phagocytosis, and enzyme
activation, excessive generation of ROS leads to several harmful
effects including damage to DNA, lipids, and proteins (148).

In the PD brain, the nigral polyunsaturated free fatty acid
level is reduced, while the nigral level of lipid peroxidation
markers (malondialdehyde and 4-hydroxynonenal) is elevated
(149). Also, protein oxidative damage is evidenced by the
presence of protein carbonyls (150). Some results suggest that
reactive nitrogen species contribute to PD etiology due to their
role played in nitration and nitrosylation of certain proteins
(151). Oxidative stress leading to cell death may occur in the
SNpc because of (i) augmented production of H2O2 due to
increased DA turnover, (ii) reduced brain capacity to eliminate
H2O2 because of glutathione (GSH) deficiency, or (iii) promotion
of •OH formation caused by elevated level of the reactive iron
(152, 153). Synthesis of neuronal GSH requires delivery of GSH
precursors, which mainly arise from extracellular cleavage of
astrocyte-derived GSH. Lower nigral levels of GSH have been
found in post-mortem PD patient brains when compared with
age-matched controls. Diminished GSH release from astrocytes
may be caused by depletion of reduced GSH in astrocytes,
which in turn is caused by increased oxidant production by

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
(NOX) (154).

Mitochondria are a key point for programmed cell death
(PCD) where apoptosis may be triggered by several factors
produced as a result of intracellular stress, such as ROS and
calcium ions (Ca2+) overload (155). It has been reported that,
due to oxidative stress, there are more deletions in mitochondrial
DNA of the surviving nigral dopaminergic neurons of PD
patients (156, 157). The hypothesis of mitochondrial dysfunction
in PD was strengthened after the discovery of mutations in
several genes encoding mitochondrial proteins that give rise to
a familial form of PD (e.g., PINK1 and PARK2, DJ-1) (158).

The involvement of mitochondrial dysfunction and
mitochondrial ROS production has been demonstrated also
in experimental animal models using either toxin (MPTP)
or genetically altered mice. The post-mortem examination
of SNpc in PD patients showed a significant increase in the
H-subunit and a significant reduction in the L-subunit of
ferritin, which was associated with increased iron concentration,
ROS overproduction, and neuronal death (159). A reduction in
complex I activity has been demonstrated in the SN, lymphocytes,
and platelets of PD patients (160). Moreover, increased oxidative
stress has been detected in both the rotenone andMPTP-induced
toxin models and in genetic models of PD (160, 161). Studies
in animals have indicated that MPP+, the active metabolite of
MPTP, and rotenone inhibit ATP synthesis by blocking electron
transport. This blockade is due to binding to complex I. MPP+,
similarly to rotenone, produces superoxide anions in electron
transport particles, which supports the view that MPP+ is
primarily a mitochondrial toxin (162). The neurotoxic effects of
MPP+ can be effectively prevented by antioxidants, indicating
that the neurotoxicity of this compound is due to oxidative
stress (163).

Many studies demonstrate a positive effect of physical exercise
on inhibition of oxidative stress (47, 69, 164–172). Using a
chronic mouse model of PD, Patki, and Lau (173) revealed
that 18-week treadmill training inhibited cytochrome c release,
elevated levels of p53, and upregulated the expression of
mitochondrial transcription factor A (THAM) and of peroxisome
proliferator-activated receptor gamma coactivator 1α (PGC-
1α), which are known to be associated with mitochondrial
dysfunction and loss of dopaminergic neurons.

Koo et al. (69, 174) demonstrated, in a MPTP/probenecid-
induced mouse model of PD, that treadmill training improved
mitochondrial function and promoted autophagy via the
sirtuin-1 (SIRT1) signaling pathway causing α-syn level to
decrease. This subsequently attenuated the loss of dopaminergic
neurons due to reducing apoptotic cell death mediated by
α-syn. Most importantly, training increased expression of
SIRT1 that, in turn, enhanced mitochondrial biogenesis and
reduced oxidative stress by activating PGC-1α. Furthermore,
activation of SIRT1-activated microtubule-associated protein
1 light chain 3 (MAP1LC3) and, in consequence, promoted
autophagic clearance of α-syn. Improved mitochondrial function
and augmented autophagy caused by physical training were
accompanied by ameliorated motor abilities in mice chronically
treated with MPTP. Koo et al. (174) have also demonstrated that
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training on the treadmill, applied after MPTP administration
and lasting 8 weeks, reduced the loss of dopaminergic neurons,
altered the level of proteins involved in apoptosis (increased Bcl-
2 and decreased Bcl-2-associated X protein-Bax and caspase-3),
increased expression of core proteins of the translocase of the
outer mitochondrial membrane (TOM) complex, which is part
of the mitochondrial import machinery (MIM), and increased
the level of mitochondrial electron transport chain proteins
(cyclooxygenase—COX-I, COX-IV, and mitochondrial 70 kDa
heat shock protein—mtHSP70).

In the Al-Jarrah et al. (175) study, the authors have shown a
positive impact of exercise training on the concentration of nitric
oxide in the striatum of a chronicMPTPmousemodel of PD. The
4-week training on the treadmill started after MPTP injections
significantly decreased the level of neuronal nitric oxide synthase
(nNOS) and inducible form of NOS (iNOS) in animals subjected
to MPTP administration and treadmill training compared with
the MPTP sedentary group. Four weeks of treadmill training
improved the motor skills, evaluated through analyzing gait on
the CatWalk, in a unilateral 6-OHDA rat model of PD (167,
168). This training also improved dopaminergic neuron viability,
recovered mitochondrial function, and attenuated oxidative
stress in PD rats. It was suggested that this phenomenon
may be associated with improved mitochondrial turnover, that

is, mitochondrial fusion, fission, and clearance, giving rise to
increased quantities of mitochondria. It was demonstrated that
exercise prevented 6-OHDA-induced loss of TH immunolabeling
and activated the nuclear factor (erythroid-derived 2)-like 2
(Nrf2)–antioxidant response element (ARE) axis (i.e., ARE-
dependent transcription) in the nigrostriatal pathway in C57BL/6
mice (176). The Nrf2-ARE is a major cellular defense mechanism
against oxidative stress, which regulates the expression of
antioxidant enzymes, such as gamma-glutamylcysteine ligase
(γGCL) and HO-1. The Nrf2-ARE signaling pathway is strongly
involved in neuroprotection and anti-inflammatory response.
Treadmill training also stimulated mitochondrial biogenesis
in the striatum of animals that were more resistant to the
oxidant, 6-OHDA, and a nitric oxide donor, namely, (±)-S-
nitroso-N-acetylpenicillamine. Similar results were obtained in
the study of Tsou et al. (172) who showed that exercise enhanced
the nigrostriatal Nrf2-mediated antioxidant defense capacity to
protect dopaminergic neurons against MPP+-induced toxicity
in mice.

The study, designed to investigate the potential
neuroprotective effect of swimming training in a mouse model of
PD induced by 6-OHDA (24), demonstrated that a 4-week-long
training attenuated the following features associated with PD:
increased number of falls in the rotarod test, impairment of

FIGURE 2 | Main processes involved in exercise-induced and neurotrophin-mediated increased viability of dopaminergic neurons. Physical activity leads to an

increased level of neurotrophins in the brain. This upregulation stimulates anti-apoptotic proteins, mediates clustering and release of synaptic vesicles, activates CREB

leading to phosphorylation and activation of TH, increases BH4 level allowing conversion of tyrosine to L-DOPA, activates a pathway that inhibits DAT activity,

increases blood flow and angiogenesis, enhances neurogenesis, and reduces inflammation. In summary, all these processes lead to greater survival of dopaminergic

neurons and increased level of dopamine. Bcl-2, B-cell lymphoma 2; BH4, tetrahydrobiopterin; CREB, cAMP response-element binding protein; DAT, dopamine

transporter; L-DOPA, L-3,4-dihydroxyphenylalanine; TH, tyrosine hydroxylase.
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long-term memory in the object recognition test, depressive-like
behavior in the tail suspension test, and, at the same time,
increase in ROS and IL-1β levels, inhibition of GPx activity,
increase in GR and GST activities, and decrease in DA, HVA, and
DOPAC levels.

Altogether, the findings presented in the above sections
indicate that the beneficial effects induced by exercise, when
neurodegenerative diseases, such as PD, are concerned, are
mostly due to attenuation of oxidative stress and inflammation
and elevation of NTFs.

CONCLUSIONS

Epidemiological data support the notion of beneficial effects
of physical activity on preventing the risk, development, and
progression of PD. Due to the fact that the effectiveness of
pharmacological treatment decreases with the development of
the disease and because properly selected physical training
does not cause side effects, the physical activity should be
recommended, as a supportive therapy, to patients suffering from
PD. The physical activity not only reduces motor impairments
but also improves cognitive functions.

Studies in animal models of PD indicate that physical activity
may prevent the loss of, protect, or restore dopaminergic neurons
probably by activating signaling cascades triggered by the
increased availability of neurotrophins (Figure 2). Furthermore,
neurotrophins can stabilize intracellular calcium concentration,
induce antioxidant enzyme expression, and suppress the release
of proinflammatory cytokines. Neurotrophic factors also provide
important extracellular signals regulating neurogenesis in the
adult brain. Finally, exercise improves motor circuitry through
alterations in DA and glutamate neurotransmission.

However, animal models utilizing neurotoxins do not
completely reproduce clinical symptoms and pathologies of PD
in humans. Therefore, when MPTP is administered to animals,
we are talking about inducing parkinsonism, not systemic
PD. MPTP animal models are most often used to study the
pathogenesis and progression of the disease and the effectiveness
of drugs. Among the disadvantages of the animal model of
PD caused by MPTP administration, the short-term and acute
nature of pathological changes is mentioned. This disadvantage
is remedied by the method of administration of neurotoxin used
in chronic models of induction of parkinsonism in which the
loss of dopaminergic neurons persists for at least several months.
Another disadvantage is the difficulty or even impossibility
to reproduce the characteristic movement disorders seen in

humans. Lack of these disorders can be caused by a different
organization of movement control by the nervous system in
human and in mice. In animals, motor control is not so highly
hierarchical and there is lesser contribution of the cerebral cortex
and subcortical structures to locomotion than in humans.

It is likely that neurotoxin-based animal models of PD are
adequate experimental models to study aspects of the beneficial
effects of physical exertion, concerning changes at the tissue
and cellular level and may be well-used to investigate such
phenomena as neuroprotection, induction of trophic factors and
neurogenesis, alleviation of inflammation, reduction of oxidative
stress, and improvement of mitochondrial function. On the other
hand, these models seems not so useful in studying the effect of
exercise on alleviating movement disorders, because the results
of the latest studies indicate that the loss of motor function after
administration of neurotoxins is insignificant and difficult to
capture/notice in the behavioral tests used.

It is possible that the outline, as presented in this review, of
mechanisms by which physical activity confers neuroprotection
is valid. However, more research is needed to confirm these
mechanisms and elucidate their details. There is also a question
what is the optimal type, intensity, and duration of the exercise
when it should be performed to be maximally effective.

Specifically, as the majority of data supporting the ability
of physical activity to protect DA neurons stems from
neurotoxin PD models, the question arises whether this property
of physical activity would persist in other animal models
of PD. With a positive answer to this question, the next
issue to be cleared would be whether there are common
neuroprotective mechanisms. The existence of such common
mechanisms will be strongly supportive to continue physical
activity by PD patients during the whole course of illness as a
disease-modifying factor.
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Background: Parkinson’s disease (PD) is the most common movement disorder

affecting up to 1% of the population above the age of 60 and 4–5% of those above

the age of 85. Little progress has been made on efforts to prevent disease development

or halt disease progression. Diet has emerged as a potential factor that may prevent the

development or slow the progression of PD. In this review, we discuss evidence for a role

for the intestinal microbiome in PD and how diet-associated changes in the microbiome

may be a viable approach to prevent or modify disease progression.

Methods: We reviewed studies demonstrating that dietary components/foods were

related to risk for PD. We reviewed evidence for the dysregulated intestinal microbiome

in PD patients including abnormal shifts in the intestinal microbiota composition (i.e.,

dysbiosis) characterized by a loss of short chain fatty acid (SCFA) bacteria and increased

lipopolysaccharide (LPS) bacteria. We also examined several candidate mechanisms

by which the microbiota can influence PD including the NLRP3 inflammasome, insulin

resistance, mitochondrial function, vagal nerve signaling.

Results: The PD-associated microbiome is associated with decreased production of

SCFA and increased LPS and it is believed that these changes may contribute to the

development or exacerbation of PD. Diet robustly impacts the intestinal microbiome and

the Western diet is associated with increased risk for PD whereas the Mediterranean

diet (including high intake of dietary fiber) decreases PD risk. Mechanistically this may

be the consequence of changes in the relative abundance of SCFA-producing or

LPS-containing bacteria in the intestinal microbiome with effects on intestinal barrier

function, endotoxemia (i.e., systemic LPS), NLRP3 inflammasome activation, insulin

resistance, and mitochondrial dysfunction, and the production of factors such as

glucagon like peptide 1 (GLP-1) and brain derived neurotrophic factor (BDNF) as well

as intestinal gluconeogenesis.

Conclusions: This review summarizes a model of microbiota-gut-brain-axis regulation

of neuroinflammation in PD including several new mechanisms. We conclude with

the need for clinical trials in PD patients to test this model for beneficial effects of

Mediterranean based high fiber diets.

Keywords: Parkinson’s disease, diet, microbiome, SCFA, LPS, intestinal hyperpermeability, vagus nerve, GLP-1
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INTRODUCTION

Parkinson’s disease (PD) is recognized as the second most
common neurodegenerative disease of aging after Alzheimer’s
disease (AD) and the most common movement disorder,
affecting up to 1% of the population above the age of 60 and
4–5% of those above the age of 85 (1, 2). While there are
treatments that minimize symptoms of PD, little progress has
been made on efforts to halt disease progression (3). Less than
10% of PD is associated with specific genetic changes, which
means that the search is on for environmental risk factors for PD
(3, 4). Diet is one such environmental factor that has emerged
as a potential factor that can promote the development or
exacerbate the progression of PD (5–7). In this review, we will
discuss evidence for the diet involvement in PD development,
discuss the mechanisms by which the diet-mediated effects on
the microbiome may influence PD, and also discuss how dietary
interventions may be used to prevent or treat PD.

DIET IN PARKINSON’S DISEASE

There is a growing body of epidemiological evidence to support
that diet impacts (positively or negatively) the development of
neurodegenerative diseases such as PD. The Western diet is
among the greatest risk factors for developing neurodegenerative
diseases such as PD (8, 9). The Western diet is characterized by
high caloric intake of energy dense foods, high in saturated and
omega-6 (ω6) fatty acids, refined sugars, excessive salt intake,
and low consumption of omega-3 (ω3) fatty acids and fiber
(10–12). Studies of PD patients support total caloric intake
of macronutrient and micronutrient correlate with symptom
severity, with higher caloric intake associated with worse PD-
related symptoms (13). Consumption of high quantities of
animal saturated fat has been widely reported to be associated
with increased risk of developing PD (14, 15). Foods associated
with more rapid PD progression include canned fruits and
vegetables, soda, fried foods, beef, ice cream, and cheese (all
characteristic of the Western diet) (Figure 1) (9).

On the flip side, a “healthy” diet is associated with beneficial
effects relative to PD (6). Adherence to the Mediterranean diet
is associated with lower probability of developing PD (16).
Specific components of the Mediterranean diet are particularly
associated with these beneficial effects such as fresh vegetables,
fresh fruit, nuts, seeds, non-fried fish, olive oil, wine, coconut
oil, fresh herbs, and spices. Consumption of flavonoid-rich foods
(tea, berry fruits, apples, red wine, and orange/orange juice)
are also associated with a lower risk of developing PD (17).
Polyunsaturated fatty acids (PUFA) are also inversely correlated
with PD development (higher consumption of ω3 fatty acids is
associated with reduced PD risk) demonstrating the influence of
dietary fat intake on the brain (18, 19).

Diet can impact the body through multiple different
mechanisms including direct effects of dietary components
(e.g., vitamins, fats) on the body, but diet may modulate the
development and/or progression of PD indirectly through effects
on the intestinal microbiome (6, 20, 21). Indeed, diet is perhaps

the single greatest factor determining the structure andmetabolic
function of the intestinal microbiota (22–25).

Coffee and caffeine in the diet have also been consistently
associated with decreased risk of PD. Several key early studies
showed a significant dose dependent decrease in risk for PD
with increasing coffee consumption and for smoking as well
(26–28). Recent studies have confirmed a decreased risk for
PD in men and women with increasing caffeine consumption
(29, 30). Both caffeine (coffee) and nicotine (smoking) have been
shown to ameliorate disease in MPTP rodent models of PD
(31, 32). In addition, coffee has recently been shown to contain
chlorogenic acid that inhibits the NLRP3 inflammasome (33)
and polyphenols that have been shown to be neuroprotective
(34, 35) as well as promote healthy microbiome metabolism (36).
Significantly, two recent reviews that discussed the beneficial
effects of caffeine in reduced PD risk both propose a role for the
microbiome (37, 38).

With regard to alcohol consumption and PD, there does not
seem to be a clear conclusion. Two early large prospective studies
showed no effect of moderate alcohol consumption and PD
incidence (39, 40). However, another systematic review found
a protective inverse relationship between alcohol use and PD
(41). Another study found that heavy alcohol use was associated
with decreased risk for PD (42). A recent review of all alcohol-
PD studies concluded that prospective studies tended to find no
association between alcohol use and PD with 2 studies finding an
increased risk with moderate alcohol use and PD (43). However,
the case-control studies were more likely to find a protective
effect (43). Alcohol has also been shown to promote intestinal
leakiness and microbiome effects (44–46). Thus, it appears there
is no definitive view for the effects of alcohol consumption and
risk for PD.

Consumption of dairy products is another area of diet that
has evidence related to PD risk. Several studies have supported
the view that high consumption of milk and possibly dairy
products in general are associated with increased risk for PD
(47–49). A diet study in Greece also found association of dairy
and milk consumption with PD (50). Other more recent studies
also supported association of dairy product consumption and
increased PD risk (51, 52). A study in Hawaii found greater than
two glasses of milk per day was associated with decreased neural
density in the SN at autopsy (53). One proposed cause for these
associations has been pesticides in themilk, but there is no data to
support this. An intriguing recent study implicates microbiome
bacteriophages, especially associated with Lactococcus bacteria in
dairy products, as possible negative modulators of the bacterial
gut microbiome in PD (54). However, a recent position paper on
dairy products and PD risk concluded that overall the evidence
did not warrant alarming the public to avoid dairy products (55).

There is considerable evidence that dietary or environmental
exposure to neurotoxins such as rotenone and paraquat, maneb,
and related neurotoxins such as MPTP can promote Parkinson’s-
like neurodegeneration (56, 57). All of these neurotoxins target
the mitochondria and there is longstanding evidence that
mitochondria dysfunction is critical in PD development (58, 59).
Dysfunctional mitochondria activate the NLRP3 inflammasome
(60). Both the herbicide paraquat and antifungal maneb have
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FIGURE 1 | Mechanisms of communication between the intestinal microbiota and the brain. Diet robustly impacts the intestinal microbiota. Consumption of a

Western diet (or components of the Western diet) promotes the growth of LPS-containing bacteria and reduces the abundance of SCFA-producing bacteria whereas

consumption of a Mediterranean diet (or components of the Mediterranean diet) promotes the growth of SCFA-producing bacteria and reduces LPS-containing

bacteria. This shift is highly significant because LPS-containing bacteria are pro-inflammatory, they disrupt intestinal barrier integrity and LPS binding to TLR4

stimulates a cascade of events including NLRP3 inflammasome activation, mitochondrial dysfunction, and insulin resistance culminating in neuroinflammation and

neurodegeneration. In contrast, increased production of SCFA due to consumption of the Mediterranean diet (or components of the Mediterranean diet) fortifies the

intestinal barrier, stimulates the intestinal L-cell production of GLP-1 and GIP which inhibits NLRP3 inflammasome activation and normalizes insulin resistance. SCFA

also stimulate intestinal epithelial cell IGN and together with GLP-1/GIP stimulate the vagus nerve and brain BDNF which has numerous beneficial effects on

the brain and which improves neuron insulin resistance all of which function to promote neuronal health. Characteristic features of the PD microbiome are similar to those

(Continued)
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FIGURE 1 | observed following consumption of the Western diet (low SCFA-producing bacteria, high LPS-containing bacteria); therefore, dietary interventions such

as the Mediterranean diet (or components of the Mediterranean diet) may be a viable approach to blunt neuroinflammation and improve neuronal function in PD.

BDNF, brain derived neurotrophic factor; GIP, gastrointestinal peptide; GLP-1, glucagon like peptide 1; IGN, intestinal gluconeogenesis; IL-1β, interleukin 1 beta; LPS,

lipopolysaccharide; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; ROS, reactive oxygen species; SCFA, short chain

fatty acids; TLR4, toll-like receptor 4.

been linked to PD (56). Rotenone, a broad based pesticide,
is currently used in animal models of PD (61, 62). MPTP,
which also targets the mitochondria like the other neurotoxins
listed, is also widely used as a model for PD (63, 64). There
is a large body of epidemiological and experimental evidence
for increased risk of PD due to environmental and dietary
exposure to these neurotoxins (63–66). An early study found that
exposure to pesticides resulted in a 70% increased risk for PD
(67). These neurotoxins have been shown to cause Parkinsonian
symptoms and SN neurodegeneration when injected systemically
or directly into the striatum (62, 64). However, the effects of these
environmental toxins on the microbiome has not been studied
in depth. Significantly, in a PD mouse model of oral gavage
administered rotenone, marked changes in the microbiome
correlated with disease markers and TLR4 expression in the
intestine and SN neuron loss (68, 69). Studies by this group
also showed that a uridine and fish oil diet could ameliorate
PD symptoms in these mice (61). In another rodent study using
rotenone IP injection, changes were also found in the intestinal
microbiome similar to those in PD patients (70). These studies
support the model that both oral and systemic injection of
these neurotoxins/pesticides can affect the microbiome. Another
recent study showed that the pesticide diazinon could modulate
the microbiome community in mice (71). Thus, the effects of
these neurotoxins on the intestinal microbiome appears to be an
important area for future study.

Recently the possibility of α-Syn in diet has become a focus
of potential causes of PD (72). α-Syn is a 140 AA protein found
in the brain as well as in lesser amounts in heart, muscle and
other tissues and dairy products (72, 73). The function of α-Syn is
unknown but hallmark inclusions known as Lewy pathology are
found in neurons of the SN in PD and it is believed to play a role
in PD (74). α-Syn aggregates can take many forms but it appears
as though the fibrillar (PFF) form may be the most pathogenic in
the brain because injection of this form can cause PD symptoms
and pathology (75–77). Several studies support a possible spread
of α-Syn with prion like properties and mutations in the α-Syn
gene are associated with familial PD (78, 79). Recent experiments
show injection of α-Syn PFF in the stomach or intestine traffic to
the brain via the vagus nerve in rodents (80, 81). If α-synuclein
spreads via a prion-like mechanism, then one question becomes,
what are the origins of this prion-like species? One source could
be meat products (72). First, it should be noted that no study
has quantified the amounts of intact α-Syn in the stool. It may
be that it is degraded by digestive functions and not available for
uptake or absorption by the intestines. If it does remain intact,
one possibility is α-Syn uptake by gut M cells. M cell depletion
prevents oral prion infectivity (82). Also T cells in the gut and
dendritic cells expressing LAG3 could bind α-Syn and promote
its spread (83). Leaky gut could also be a mechanism for α-Syn

translocation to the systemic circulation (84). Overall, research
to date has yet to directly test the contribution of dietary α-
synuclein to the mechanism of initiation and progression of PD
(72). However, α-Syn is found in beef, pork, chicken, and fish and
many people regularly consume these meat and dairy products,
but only a small fraction of the general population will develop
PD. Therefore, it is unlikely that eating meat products that
contain α-Syn is an independent cause of PD (72). Nonetheless,
future studies tracking α-Syn in the diet systemically as well as in
the intestinal tract could provide new insights to a role for this
key PD protein as a potential dietary risk factor.

DIET AND THE PD MICROBIOME

The human gastrointestinal tract (GIT) harbors trillions of
microorganisms collectively referred to as the microbiome (24,
85, 86). We have a symbiotic relationship with the microbiota
(the bacterial component of the microbiome). We provide them
with an environment (the GIT) and food and they provide us
with a myriad of benefits. The microbiota helps ward off harmful
microorganisms (competitive exclusion), regulate immunity, and
produce substances such as vitamins, secondary bile acids, and
short chain fatty acids (SCFA) (24). For example, dietary fiber is
used as a food source by the intestinal microbiota. Dietary fiber is
a general term for consumed plant-based complex carbohydrates
that are largely not digested by mammalian enzymes in the small
intestine and consequently cannot be absorbed. However, they
are available to be used as a food source by the intestinal (colonic)
microbiota (87). Colonic bacterial fermentation of these dietary
fibers generates metabolic byproducts and especially important
are SCFA (10, 87–89). In contrast to these beneficial commensal
bacteria, there are also pathogenic bacteria (pathobionts) that
can cause GIT dysfunction (intestinal barrier dysfunction) and
inflammation in the intestinal mucosa, systemic circulation, and
even in the brain (10, 90). Thus, the balance of microbiota
influences not only the GIT, but also organs throughout the body
including the brain (91).

Although no two human microbiota communities are
identical (influenced by lifestyle factors like diet, exercise, and
genetics), recent studies in the last 10 years have shown
people with certain diseases tend to share similar characteristic
microbiota features (24, 92). An abnormal microbiome (so called
“dysbiosis”) is associated with many human diseases such as
obesity/metabolic syndrome, inflammatory bowel disease (IBD)
and other chronic inflammatory diseases as well as in PD (90,
93, 94). The intestinal microbiota has become a major focus of
PD studies (95, 96). Initial studies by Scheperjans et al. (97) and
Keshavarzian et al. (98) reported abnormal intestinal microbiota
composition (dysbiosis) in PD patients. Subsequently, 15
additional studies from the USA, Europe and Asia have also

Frontiers in Neurology | www.frontiersin.org 4 December 2019 | Volume 10 | Article 124567

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Jackson et al. Diet and Microbiome in Parkinson’s

demonstrated dysbiosis in PD patients (Supplementary Table 1)
(95, 96). As detailed in Supplementary Table 1, the PD patient’s
microbiota composition alterations are not identical in all of
these studies. This is not surprising and should be expected
because of the significant intra- and inter-individual variability
discovered in the microbiota composition of healthy control
subjects (99, 100) and other diseases, where intestinal dysbiosis
has been reported (90, 92). Environmental factors, especially
diet, can markedly affect microbiota community structure and
composition, and thus it is expected that the intestinal microbiota
in patients from the USA should be different from those living
in Europe or Asia (21, 101). In fact, the intestinal microbiota
was found to be significantly different in individuals living in
different communities in the city of Chicago, Illinois, USA (102).
The important key finding is that patients with PD have abnormal
intestinal microbiota communities (“dysbiosis”) regardless of
where they live and also the PD microbiota community appears
abnormal still after 2 years of follow up (103, 104). The majority
of PD human studies employed bacterial 16S ribosomal RNA
(rDNA amplicons) sequencing to different variable regions to
identify bacteria in feces (majority of studies), colonic sigmoid
mucosa (98), nasal wash (105) or nasal swab and oral (106, 107)
samples. Three studies used targeted quantitative PCR, while
one study utilized metagenomics shotgun sequencing. Regardless
of sequence technique or bioinformatics methodologies, the
overall common discovery indicated dysbiotic bacterial profiles,
which suggested putative pro-inflammatory bacteria were more
abundant and putative beneficial bacteria were less abundant in
PD patients.

Parkinson’s disease subjects demonstrated significantly altered
intestinal microbial compositions in comparison to healthy
controls with some overall trends worthy of comment.
Briefly these include PD subjects to exhibit: increased relative
abundance of genera Akkermansia (7 studies) (98, 105, 108–
112), Bifidobacterium (5 studies) (103, 108, 110, 113, 114), and
Lactobacillus (7 studies) (97, 103, 110, 111, 113, 115, 116);
decreased abundance of genus Prevotella (7 studies) (97, 103, 104,
108, 109, 113, 117) and the family Lachnospiraceae (6 studies)
(98, 103, 110, 111, 114, 117) along with its lower taxonomic
hierarchal putative SCFA-producing genera Faecalibacterium (5
studies) (98, 108, 110, 113, 117), Roseburia (4 studies) (98,
103, 110, 111), Blautia (5 studies) (98, 103, 110, 113, 117),
Coprococcus (2 studies) (98, 113), and Dorea (2 studies) (98, 113)
(Supplementary Table 1).

Significantly, a few of the studies evaluated predicted
functional gene content profiling (PICRUSt) (118) to infer
changes in microbiota function. Keshavarzian et al. discovered
PD subject’s fecal samples had significantly higher abundant
genes involved in lipopolysaccharide (LPS) biosynthesis, with a
large number of genes involved in metabolism were significantly
less abundant (98). Hill-Burns et al. indicated 17 upregulated
pathways and 9 downregulated pathways, including xenobiotics
degradation and metabolism of plant-derived compounds in
PD subjects (110). Barichella et al. revealed 11 upregulated
pathways and 15 downregulated pathways in de novo PD
subjects, compared to healthy controls (111). Qian et al.
predictive functional analysis indicated four metabolic pathways

upregulated and 3 pathways downregulated (119). Finally, Bedarf
et al. used the detailed metagenomics shotgun analysis to infer
functional analyses of the metagenomes that showed differences
in microbiota metabolism in PD subjects involving the β-
glucuronate and tryptophan metabolism (109).

The intestinal microbiota does not appear to be the only
microbiota that is disrupted in PD patients. To date, there are
two studies that interrogated the nasal and oral microbiota
community structure and composition in PD patients. Pereira
et al. interrogated both nasal and oral microbiota profiles between
PD patients and healthy controls (107). The oral microbiota
composition was significantly altered in PD patients, compared
to healthy controls, predominantly by higher relative abundance
of opportunistic pathogens. The nasal microbiota lacked strong
significant individual taxa differences, but trended toward an
overall difference in the microbial composition between groups.
In contrast, Mihaila et al. interrogated the oral microbiota using
saliva samples through shotgun metatranscriptomic profiling
and found significant changes in the microbiota community
structure, composition and function in PD patients (106).
The study found several similarities between dysbiotic oral
microbiota and dysbiotic fecal microbiota in PD patients,
when they compared their findings with previously published
human PD studies. Dysbiotic oral microbiota once again was
characterized by higher relative abundance of putative pro-
inflammatory bacteria. This finding is potentially important in
PD pathogenesis because one proposed site of initial injury in PD
is the olfactory bulb, which is in close proximity to the oronasal
space, as proposed by Braak et al. (120, 121).

However, the causal link between dysbiotic microbiota and
the development of PD is yet to be established. The debate is
whether these changes in microbiota community structure and
composition in PD starts the trigger for PD, or are a consequence
of PD. Indeed, several studies have shown a correlation between
changes in microbiota and duration of the disease and dysbiosis
is more pronounced in those with longer duration of PD (98,
104, 115, 117). This is not surprising because PD patients
commonly change their life habit to better cope with their
symptoms and this life style change can impact microbiota
composition. For example, GI symptoms are common in PD
patients (122, 123) and thus they typically change diet that
could affect their microbiota. Although several studies did not
find a correlation between diet and dysbiosis in PD patients
numerous studies support a role for Western diet and possibly
dairy products in PD risk (47, 51, 61, 124, 125). Constipation is
very common in PD patients and typically occurs years before
onset of CNS symptoms (123, 126, 127) and constipation can
impact the microbiota community (128). However, dysbiosis
was also found to occur in those PD patients who did not
suffer from constipation (98). Patients with PD have poor sleep
and reversal of sleep/wake cycles that can cause disruption of
circadian rhythms (129, 130) and both disrupted sleep and
circadian disruption can cause dysbiotic microbiota in both
humans and rodents (131, 132). Additionally, PD medication
correlates with dysbiosis (105, 110, 119). However, dysbiosis was
still present in early onset and naïve PD patients on no PD
medication (98). More importantly, dysbiosis has been reported
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in patients with idiopathic rapid eye movement sleep disorder
(iRBD) (prodromal PD) (105). Thus, even though life style
changes from PD symptoms and PD medication may contribute
to changes in microbiota composition, it does not appear to
explain the observed dysbiosis in PD patients. Taken together,
these findings support the hypothesis that abnormal microbiota
composition plays a critical role in the pathogenesis of PD and is
a major contributor of symptomatic PD development.

One key question is how does the intestinal microbiota
dysbiosis observed in multiple PD studies arise? The current
model for a role for the microbiome in PD is that dysbiosis
may be driving PD progression either via systemic inflammatory
factors and/or increased α-Syn misfolding in the gut that results
in aggregates of α-Syn being transported to the brain via the
vagus nerve as hypothesized by Braak (95, 120). However, there
is no establishedmechanism to explain the intestinal microbiome
dysbiosis or even to what extent it is a consequence or cause of PD
(95, 96, 133). Studies in which PD patient fecal transplant into
genetic PD mice worsened the PD phenotype support a role for
microbiome dysbiosis directly promoting PD progression (134).
One possibility is a genetic contribution considering that LRRK2
polymorphisms are associated with PD risk and IBD risk and
LRRK2 mediates microbial immune signaling. But the majority
of sporadic PD appears to be associated with environmental risk
factors that also affect the microbiome such as stress, diet, lack of
exercise, and disruption of circadian rhythms seen in REM sleep
behavior disorder (RBD) (4, 105, 135–137). Change in life style
with PD that helps patients to cope with symptoms can affect
microbiota-like lack of exercise and change in diet- these changes
can explain worsening of dysbiosis in those with a long duration
of PD but also in early onset PD (138). Gut dysfunction also can
affect microbiota and constipation (128) could be a contributing
factor and several studies link prodromal constipation with
PD (123, 126). However, constipation cannot explain dysbiosis
completely because PD patients without constipation still had
dysbiosis and leaky gut (84, 98). Also, PD patients with RBD
who had no constipation still exhibited dysbiosis (105). Thus,
while the search goes on for mechanisms for PD dysbiosis, the
most likely cause is Western lifestyle factors known to affect the
microbiome including stress, Western diet, lack of exercise, and
circadian disruption (4, 136).

MICROBIOTA-GUT-BRAIN AXIS IN PD

Recent models for PD pathogenesis have focused on the
important role of the microbiota-gut-brain axis (MGBA). One
school of thought, originally proposed by Braak et al. (120)
actually proposes that PD originates in the GIT or possibly the
nasal mucosa (121) and spreads to the brain (139, 140). In
support of this model several studies have shown α-Syn protein
exhibits prion-like properties and cell to cell transmission (141).
Key papers showed inter-neuronal trans-synaptic transport of
α-Syn in pathological studies in PD patients that had received
striatal transplants supporting the spread of misfolded α-Syn to
normal adjacent cells (142–144). Recent studies have now shown
EE cells of the gut can produce misfolded α-Syn and synapse

with enteric nerves to transmit α-Syn (14, 145). However, the
true role of α-Syn in PD is still debated (146). The role of α-
Syn in the intestine is discussed further below. The MGBA is the
two-way communication between the GIT and the CNS/brain
and consists of many mechanisms (6, 147, 148). The mechanisms
of communication used by the MGBA include responses to
bacterial components and bacterial metabolites (including pro-
inflammatory products like LPS that could activate microglia and
trigger neuro-inflammation) (149–151) and anti-inflammatory
products like SCFA, especially butyrate (152), peptides [including
neurotransmitters and neuromodulators such as g-aminobutyric
acid (GABA)], serotonin, dopamine (151, 153) and hormones
produced by cells of the GIT (154, 155). This interaction includes
bidirectional microbiota–immune interaction and microbiota-
nervous system interaction. In fact, a growing number of studies
support two-way interaction of the microbiota with virtually
every organ system (24). This bidirectional communication is
increasingly acknowledged as playing an important role in brain
function including in neurodegenerative diseases (147, 151).

Evidence supports that virtually every part of the GIT is
affected in PD (122, 123). A pathologic hallmark of PD are so
called Lewy bodies in the brain substantia nigra (SN) neurons
that are found post-mortem. Lewy bodies are largely composed
of the neuronal protein alpha synuclein (α-Syn). A key feature
in PD is that aggregated and phosphorylated forms of α-Syn
protein have also been observed in every major part of the
GIT and enteric nervous system in patients with PD (84, 123,
156–158). For example, Lewy bodies/Lewy neurites are present
in 72–100% of intestinal samples from PD subjects and 62%
have phosphorylated α-Syn which is markedly greater than
that observed in the healthy population (0–33% have α-Syn).
These data suggest that intestinal synucleinopathy may be a
relatively sensitive and reliable indicator of PD (123, 159).
Importantly, increased phosphorylated α-Syn is also found in
GIT tissues from prodromal PD patients suggesting that GIT
involvement occurs early in disease pathogenesis (159, 160). This
is supported by a recent study which reported that distinctive α-
Syn immunoreactivity observed in intestinal biopsies collected
from healthy individuals who would later go on to develop
PD (156, 157). Taken together, these data support the idea that
abnormal enteric α-Syn appears before neurodegeneration in
CNS advances to a point that is sufficient for motor symptoms
to emerge. Such data also support an intestinal origin for PD.

Motor impairments in PD are generally preceded by non-
motor symptoms such as depression, olfactory deficits, sleep
behavior disorder, and a number of GIT symptoms. The GIT
symptoms can precede motor symptoms by more than 10 years
and include GIT motility problems, colonic inflammation, and
constipation (50–80%) (123, 127, 161). In fact, constipation is
associated with a 2.7- to 4.5-fold increase in the risk of developing
PD (123).

In 2003, Braak et al. postulated that an unknown pathogen
(virus, bacterium) or toxin originating in the GIT or nasal
passage/olfactory nerve (two hit hypothesis) could be responsible
for the initiation of sporadic PD (120, 121). In this model
of disease progression, the pathology initiates in the GIT (or
nasal/olfactory) and propagates to the brain via the Vagus nerve
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or olfactory nerve (120, 162). Researchers have demonstrated
that α-Syn fibrils, injected into the GIT mucosa of rodents, can
propagate through the Vagus nerve and can be found in the
brain (81, 163). Another recent study injected pre-formed α-Syn
fibrils into the mouse stomach mucosa and found progressive PD
pathology including α-Syn misfolding in the Vagus nerve and
SN, an effect that was absent in vagotomized mice (80). With
regard to vagotomy and risk of PD, a study by Svensson et al.
found that full truncal vagotomy is associated with a decreased
risk for subsequent PD, supporting that the vagal nerve may
be critically involved in the pathogenesis of PD as proposed by
Braak et al. (120, 164). However, two subsequent studies have
disputed these findings. Tysnes et al. reanalyzed these data and
found no significant risk reduction for PD with vagotomy (165).
In addition, a second independent human study in Sweden found
no decreased risk for PD after vagotomy (166). Thus, vagal
involvement in PD disease development is still disputed (133).

However, even if the Vagus nerve isn’t critical in initiating
or promoting α-Syn PD pathology there are many other
mechanisms by which the GIT can impact the brain via the
vagus as we discuss below. The changes observed in the GIT in
humans and animal models of PD are intriguing and begs further
investigation into what is causing the GIT dysfunction and α-Syn
aggregation to occur (140). One possible factor is the intestinal
microbiota (95, 96).

A growing body of evidence now supports that the intestinal
microbiota modulates behavior and contributes to neurological
disorders and neurodegenerative diseases (151, 167–169). In
fact, data show that the intestinal microbiota is necessary
for the development of PD-like behavior and pathology in
rodent models. Specifically, germ-free mice and antibiotic-
treated mice have ameliorated PD-like behavior and pathology
compared to their specific pathogen free counterparts (134).
These data suggest that signaling between the microbiota
and the brain is critical for PD-like outcomes in rodent
models. It also appears that there is something remarkable
about the PD microbiome that triggers events leading to
neuroinflammation and neurodegeneration. Transfer of a
microbiome from an MPTP-treated mouse into a control
(non-MPTP) mouse is sufficient to induce motor impairment
and activation of microglia and astrocytes in the SN (170).
In addition, colonization of α-Syn-overexpressing (ASO) mice
with microbiota from human PD patients enhances motor
impairments compared to mice that received microbiota
transplants from healthy human donors (134). These findings
support that intestinal microbiome can regulate the development
of PD-like pathology and behavior inmice and thereforemay also
be important in contributing to disease development in humans
(95, 96). Perhaps PD should no longer be viewed solely as a
complex disorder of motor functions, but rather as a progressive
condition involving the GIT (6, 148, 171).

GIT-derived bacteria, bacterial components, and bacterial
metabolites can trigger neurodegeneration through multiple
pathways which are affected by diet and discussed below.
First, is the intestinal barrier mechanism. In this mechanism,
bacterial components (e.g., LPS) and bacterial metabolites (e.g.,
SCFA) produced by the microbiota influence intestinal barrier

integrity which directly contributes to inflammation in the
systemic circulation and in the brain (91, 137, 172). Second, is
the NLRP3 inflammasome activation mechanism. Endotoxemia
(i.e., LPS in the blood) resulting from barrier dysfunction
activates the NLRP3 inflammasome and results in mitochondrial
dysfunction and IL-1b production and insulin resistance with
important consequences for neuronal function (77). Finally, are
the intestinal peptide and intestinal gluconeogenesis mechanisms
(173, 174). Bacterial metabolites influence the production of
the GIT peptide production, insulin resistance, mitochondrial
function, and vagal stimulation of brain derived neurotrophic
factor (BDNF) production in the brain. This list of potential
mechanisms is by no way means exhaustive but reflects key
topics that are rapidly emerging as factors contributing to
diet-microbiome regulation of gut-derived inflammation in
neurodegeneration and PD.

INTESTINAL BARRIER MECHANISM

The intestinal epithelial barrier separates the pro-inflammatory
luminal contents (e.g., LPS) from reaching the intestinal and
systemic circulation, and the intestinal microbiota is a critical
regulator of intestinal barrier integrity (91, 175). Intestinal barrier
dysfunction (i.e., intestinal leakiness) has been observed in newly
diagnosed, untreated PD patients which is also associated with
increased LPS staining and α-Syn aggregates in the colonic
mucosa (84). GIT dysfunction has also been described in
animal models of PD including in both genetic and toxin-
induced models (122, 123) which occurs concurrently with α-
Syn aggregations in the GIT (123). These observations further
support the hypothesis that PD may originate in the GIT (139).

Indeed, intestinal microbiota dysbiosis (especially when
characterized by a reduction in SCFA-producing bacteria
that has been reported in PD patients) is associated with
intestinal barrier dysfunction and endotoxemia (i.e., LPS in
the blood) (91, 95). Specifically, bacterial production of SCFA
appear to be critically important in regulating the barrier
(87). The three principal colonic SCFA include acetate (2-
carbon), propionate (3-carbon), and butyrate (4-carbon). These
typically exist in the colon in a millimolar ratio of 60:20:20
(acetate:propionate:butyrate) (176). Two other important SCFA
receiving are lactate and succinate. SCFA exert beneficial
effects through multiple mechanisms (87). Previous reviews
of SCFA mechanisms have focused on SCFA specific GPCR
signaling via specific receptors: GPR41 (propionate/butyrate),
GPR43 (acetate/propionate), and GPR109a (butyrate) for acetate,
propionate, and butyrate (87, 177). Also GPR81 (lactate) and
GPR91 (succinate) have received recent attention (87). These
GPCR for SCFA are reviewed in detail elsewhere (87, 177).
Broadly speaking, SCFA GPCR positively modulate immunity
and anti-inflammatory signaling in immune and other cells as
well as mitochondrial cellular metabolism (178, 179). Butyrate
(and to a lesser extent propionate and acetate) also has
histone deacetylase inhibitor (HDACi) activity that can have
epigenetic effects on gene expression, and butyrate is used
by colonocytes as an energy source (10, 177). It is through
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these mechanisms that SCFA (especially butyrate) influences
intestinal barrier integrity. Indeed, a reduction in putative SCFA-
producing bacteria or a reduction in luminal SCFA (due to
intestinal microbiota dysbiosis) is associated with intestinal
barrier dysfunction (10, 87, 180).

Diet-induced dysbiosis or even age-associated dysbiosis (a
normal feature associated with aging) (91, 175), are characterized
by a loss of SCFA-producing bacteria and SCFA, these may
be able to trigger intestinal barrier dysfunction and subsequent
inflammatory events leading to systemic inflammation as well
as neuroinflammation and neurodegeneration (101, 175). Newly
diagnosed, treatment naive PD subjects have evidence of
intestinal barrier dysfunction compared to age matched controls
(84, 181). Specifically, PD subjects have elevated levels of
serum LPS binding protein (LBP, binds to LPS to elicit an
immune response), abnormal intestinal tight junction proteins,
fecal markers of leaky gut, serum zonulin, as well as E. coli
in the intestinal mucosa compared to age matched controls
(84, 181, 182). In support of intestinal barrier dysfunction
being a critical mechanism, diseases characterized by intestinal
microbiota dysbiosis and barrier dysfunction are a risk factor
for developing PD. Specifically, Four studies in patients with
inflammatory bowel disease (IBD), which is also characterized by
intestinal microbiota dysbiosis and barrier dysfunction, support
a significantly increased risk for developing PD compared
to people without IBD (183–186). Also, a recent systematic
review and meta-analysis of these four IBD-PD studies above
concluded that the overall risk of PD in IBD was significantly
higher than controls. Crohn’s disease had a 28% increased
risk of PD and ulcerative colitis had a 30% increased risk
of PD compared to controls (187). In support of these data
two studies using the DSS rodent model of ulcerative colitis
concluded that DSS in drinking water and the resulting intestinal
inflammation exacerbated symptoms of PD in both the LPS-
striatum injection PD model (188) and an α-Syn overexpressing
genetic PD model (189). However, in one recent US study
using a large Medicare database analysis and newly diagnosed
PD patients, IBD was associated with lower risk of PD as
were Crohn’s disease and Ulcerative colitis individually (190).
The reasons for these differences are not clear and the role
of IBD in PD risk remains to be defined. Studies have also
demonstrated that a genetic variant that is a risk factor for
IBD (leucine rich repeat kinase 2, LRRK2, important in the
response to microbial ligands), is also a risk factor for PD (191).
Furthermore, restraint stress (which caused intestinal barrier
leak) exacerbated PD-like symptoms and loss of dopaminergic
neurons in the striatum in the rotenone rodent model of
PD (137).

Endotoxin in the blood (as a consequence of intestinal barrier
dysfunction) can affect the brain directly (101, 149, 175). Like
PD, Alzheimer’s disease (AD) is a neurodegenerative disease
that is also characterized by intestinal microbiota dysbiosis and
barrier dysfunction (192, 193). Recent post mortem analysis of
AD patient brains reveals LPS staining in the hippocampus and
cortex of AD patients is 21-fold greater than that observed in
control brain tissue (150, 194). Like AD, PD is also characterized
by intestinal barrier dysfunction and endotoxemia (84), therefore

it is possible that intestinal barrier dysfunction may play a key
role in PD development and/or progression (95).

Mechanistically, Western diet dysbiosis, intestinal barrier
dysfunction and endotoxemia can lead to immune activation and
neuroinflammation (91, 101, 195–197). Toll like receptors (TLRs)
recognize pathogen associated molecular patterns (PAMPs)
located on the surface of bacteria (198). Among the most widely
studied is the interaction between TLR4 and LPS (199). TLRs
are located on a wide variety of cell types and are critical to
mount an appropriate immune response to bacteria. In fact,
administration of systemic LPS has been used as a model
for PD for many years (149, 197, 200). Mechanistically, this
appears to be the consequence of LPS-driven activation of
TLR4, especially on brain microglia (201). Specifically, TLR4
knock out mice are protected from the effects of oral low dose
rotenone as well as MPTP including less neuroinflammation
and neurodegeneration, compared to rotenone-treated, wild-
type mice (68, 202). These data support that TLR4 receptors are
important in the development of PD-like pathology.

Taken together, it appears that barrier dysfunction, leading
to endotoxemia, and TLR4 receptor activation may result in
a series of events culminating in systemic inflammation and
neuroinflammation and neurodegeneration (91, 101, 203–
205). Even if intestinal barrier dysfunction is a consequence
of PD (and not an initiating trigger/cause), intestinal barrier
dysfunction and the resulting endotoxemia may still produce
sustained neuroinflammation that promotes PD disease
progression (101, 203).

NLRP3 INFLAMMASOME ACTIVATION

MECHANISM

One of the consequences of TLR activation is microglial NLRP3
inflammasome activation (77, 206). In response to activation
of TLRs, the NLRP3 inflammasome assembles and produces
inflammatory cytokines (207, 208). Among the most widely
studied inflammasomes is the NLRP3 inflammasome which
produces pro-inflammatory cytokines especially IL-β as well as
IL-1α, IL-18, and IL-33 (209). Inflammasomes are present in
peripheral immune cells such as macrophages, as well as in
the brain and especially in microglia (206, 210, 211). A role
for microglial NLRP3 inflammasome in PD has recently been
proposed (77). The NLRP3 inflammasome has also emerged
as a potential driver of α-Syn neuroinflammation in PD (212).
The current model of NLRP3 activation proposes a “two signal”
model (213). In this model, TLR signaling is the first signal
which induces NF-kB-mediated expression of pro-IL-1β and pro-
IL-18. The second signal can be ATP, calcium or potassium
flux or mitochondrial reactive oxygen species (ROS) which can
occur as a consequence of a number of factors such as intestinal
microbiota dysbiosis, endotoxemia (11, 213–217) or other factors
that induce mitochondrial dysfunction such as aging (60, 218).
Another possible second signal is misfolded α-Syn (aggregated
α-Syn) that was induced by TLR/NF-kB mediated inflammation
(77, 212). The second signal induces NLRP3 assembly and
subsequent caspase-1 activation. The combination of the first
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and the second signals results in cleavage of pro-IL-1β to
its active form IL-1β (and other cytokines like IL-18) (213)
which has a wide range of biological consequences including
creation of sustained pro-inflammatory/oxidative stress in the
brain that would lead to more α-Syn aggregation, more neuro-
inflammation enough to cause DA loss and neurodegeneration
and symptoms of PD (77).

There is a substantial amount of data demonstrating the
importance of the NLRP3 inflammasome in PD. Recent
post mortem studies in PD patients show that the NLRP3
inflammasome is significantly upregulated in the SN of PD
patients (almost entirely localized to microglia) (77). This
upregulation in NLRP3 was also observed in mouse models of
PD and AD (77, 219) and it appears to be important in disease
pathogenesis. Specifically, inhibition of NLRP3 protects against
neurodegeneration in all rodent models of PD tested including
injection of pre-formed α-Syn fibrils (PFF), rotenone, and MPTP
models (77, 215, 220). Similarly, knocking out NLRP3 in an
AD animal model (another neurodegenerative disease) protects
mice from developing AD-like behavior and brain pathology
(219). Thus, activated NLRP3 inflammasome appears to be a
key driver of neuroinflammation in PD (77, 220). In addition,
NLRP3 levels also appear to increase with other factors such as
age and consumption of a Western diet, it could be that the
increase in NLRP3/IL-1b reduces the resiliency of the brain to
respond to a secondary insult such as gut-derived endotoxemia
from microbiota dysbiosis and/or intestinal barrier dysfunction
(11, 221, 222).

In addition to LPS activation of TLR4, the microbiota can
also influence theNLRP3 inflammasome by producing secondary
bile acids. Primary bile acids are produced in the liver and
are subsequently released into the GIT to aid in the digestion
and absorption of lipids. Most primary bile acids are absorbed
in the small intestine but those that reach the colon are
metabolized by the intestinal microbiota to form secondary bile
acids. Importantly, secondary bile acids can inhibit the NLRP3
inflammasome via the TGR5 receptor and are dysregulated in
Western diet induced dysbiosis (223, 224).

As alreadymentioned, NLRP3 activation results in production
of several cytokines but perhaps the one that may be most
relevant for PD is IL-1β. IL-1β is not only a potent pro-
inflammatory cytokine and thus a major player in neuro-
inflammation in PD, but also has many other biological effects.
Among the many consequences of IL-1β production is the
development of insulin resistance (218). Specifically, IL-1β
blocks signaling associated with insulin receptors. Activation
of NLRP3 and subsequent IL-1β production are the single
greatest factors that drive insulin resistance, and NLRP3 KO
mice are protected from developing insulin resistance (225, 226).
Specifically, cytokines, especially IL-1β, block insulin signaling
which has important detrimental consequences on neuronal
mitochondrial function and cellular health. In fact, insulin
resistance is characteristic of both the PD and AD brain (227–
229) and diabetes is a risk factor for development of PD (228).

Insulin resistance and type 2 diabetes mellitus
(T2DM, characterized by insulin resistance) may cause
neuroinflammation by driving mitochondrial dysfunction,

leading to excessive production of ROS, cellular stress, NLRP3
activation and neuroinflammation (especially via microglia),
ultimately culminating in neuronal dysfunction and death
(228, 229). Insulin resistance is commonly observed during
aging, but it may also be important in the pathogenesis of PD
(229). The incidence of both T2DM and PD are both increasing
in Western societies suggesting that these two diseases may be
related (230). In fact, as noted, T2DM is a risk factor for PD
and is characterized by intestinal microbiota dysbiosis similar to
that observed in PD (loss of SCFA-producing bacteria, increase
in LPS-containing bacteria) (231–236). Premature cognitive
decline is also a feature commonly observed in patients with
T2DM (231). Inhibition of NLRP3 (via glyburide or pioglitazone,
the SCFA butyrate, or MCC950) prevents the development of
insulin resistance and T2DM as well as PD (77, 211, 237–240).
Taken together, these data support a model for a cascade of
events culminating in intestine-derived neuroinflammation
and neurodegeneration. Specifically, LPS-TLR activation of the
NLRP3 inflammasome induces production of IL-1β resulting
in insulin resistance, mitochondrial dysfunction, and ROS
production, further NLRP3 activation and neuroinflammation
and neurodegeneration.

INTESTINAL PEPTIDE AND INTESTINAL

GLUCONEOGENESIS MECHANISMS

Influence of diet and the intestine on brain function (gut-brain
axis) is not necessarily limited through intestinal microbiota.
The intestine produces a number of substances that directly or
indirectly influence the brain. These substances are produced in
response to dietary components (e.g., fats) but also are produced
in response to bacterial metabolites. Bacterial products, SCFA
and secondary bile acids, can both promote the production of the
incretin hormones glucagon-like peptide-1 (GLP-1) and glucose
dependent insulinotropic polypeptide (GIP) by L-cells of the
GIT (87, 241–243). GLP-1 and GIP impact a number of cell
types that can directly or indirectly affect neuroinflammation and
neurodegeneration in PD.

GLP-1 has multiple mechanisms of action. One important
consequence of GLP-1 production is reduced inflammation.
For example, stimulation of the GLP-1 receptor (via GLP-1
or agonists) inhibits the NLRP3 inflammasome (244–246). In
so doing, GLP-1 prevents the cascade of events including IL-
1β production culminating in insulin resistance, mitochondrial
dysfunction and cellular stress. GLP-1 also corrects insulin
resistance by stimulating pancreatic cells to produce insulin and
normalizing insulin signaling and mitochondrial function in
brain neurons (247). Normalizing insulin resistance improves
mitochondrial function and reduces ROS production, which has
the net effect of blocking neuroinflammation and improving
neuronal health. GLP-1 can have effects within the brain itself
because it can cross the blood brain barrier and receptors
for GLP-1 are located on neurons, astrocytes, and microglia
(247–249). GLP-1R-deficient mice show impaired performance
in memory-related behavioral tasks (248). In addition, GLP-
1 is protective against neuronal apoptosis in the Alzheimer’s
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disease model (247). Finally, stimulation of GLP-1 receptors
induce production of BDNF in the brain and also stimulate vagal
signaling from the gut to further promote brain BDNF (247, 248).
BDNF is a critical factor for survival and health of dopaminergic
neurons in the SN (250). Indeed BDNF is dramatically decreased
in PD brain tissue, thus, the ability to increase BDNF is an
important consequence of GLP-1 production (250, 251).

Alterations in GLP-1 signaling are associated with many
features associated with PD or risk factors for developing PD. For
example, intestinal microbiota dysbiosis disrupts normal GLP-
1 signaling (252), reduced GLP-1 production is associated with
metabolic syndrome (insulin resistance) (253), and reduced GLP-
1 is associated with reduced BDNF in the brain (254). On the
flip side, GLP-1 agonists are protective in several rodent models
of PD (174, 247). Agonists of GLP-1 and dual treatment of
GLP-1/GIP demonstrate neuroprotection inMPTPmodels of PD
(255, 256). It is possible that these effects are mediated through a
mechanism involving both inhibition of NLRP3 and an increase
in the production of glial derived neurotrophic factor (GDNF)
and BDNF and may involve GLP-1 induced improvement in
insulin sensitivity as well as GLP-1 vagal stimulation (174).
Importantly, recent clinical trials show that GLP-1 agonists elicit
significant improvements in PD patient disease scores compared
to placebo (248, 257, 258).

Intestinal gluconeogenesis (IGN) is also a mechanism by
which the diet and microbiota can influence neuroinflammation
and neurodegeneration. Recent studies have shown that the
SCFA (butyrate, propionate) can regulate host metabolism by
stimulating IGN in intestinal epithelial cells that in turn promotes
vagal signaling (173). It should not be surprising then that a
healthy high fiber diet and increased gut SCFA can correct insulin
resistance via both IGN-vagal-BDNF signaling and by GLP-
1/GIP stimulation and preventing intestinal leakiness andNLRP3
activation (10, 87, 259). IGN vagal BDNF stimulation is a key
mechanism by which IGN may promote normal brain glucose
metabolism which is dysregulated in PD (173). Thus, IGN from
gut SCFA can also influence BDNF production in the brain via
the vagus (260). BDNF promotes neuronal cell health and normal
insulin signaling in the brain (261). It makes sense then that
impaired insulin sensitivity in the PD brain is associated with low
BDNF levels (250, 262–264).

There are multiple mechanisms by which GLP-1, GIP, and
IGN can influence the brain but it is interesting that they all share
the feature of being able to upregulate production of BDNF (262).
BDNF is also a key neurotrophic factor in CNS degeneration
and regeneration (262). Reduced levels of serum BDNF are
observed in PD patients compared to healthy controls, including
in the serum and in the brain (SN, caudate-putamen) (251,
265, 266). It is intriguing to think that Western diet intestinal
microbiota dysbiosis leading to low SCFA production might
blunt the expression of BDNF through a mechanism involving
gut leakiness and loss of GLP-1, GIP, and/or IGN. Western diet
dysbiosis also results in loss of (fewer) gut vagal afferents in
rats (267). Finally, it is noteworthy that GLP-1, GIP, and IGN
and other intestinal hormones are largely influenced by diet and
dietary intervention such as switching from primarily animal-
based Western diet to primarily plant-based diet can promote

normal homeostasis of these hormones. These data are yet
another scientific rationale for considering dietary intervention
to prevent/treat or at least modify disease course in PD.

DIET AS A PREVENTION OR TREATMENT

FOR PD

Based on these data it is clear that there are several
mechanisms by which intestinal bacteria, bacterial products,
or bacterial metabolites and intestinal hormones can influence
neuroinflammation and neurodegenerative processes. Therefore,
it seems logical that dietary interventions targeted at modifying
the intestinal microbiota structure and/or function and
intestinal peptides may modify PD disease pathogenesis. Indeed,
Hippocrates’ said: “Let food be thy medicine and medicine be thy
food” (10). Diet has recently gained importance as a risk factor
for developing PD and also as a potential therapeutic approach to
treat PD (6, 7, 268). Below is a summary of dietary interventions
that may be useful in the prevention and/or treatment of PD as
well as the mechanisms by which this benefit may be conferred
on the brain.

MEDITERRANEAN DIET AS A TREATMENT

The main components of the Mediterranean diet (MedD)
include: daily consumption of vegetables, fruits, nuts, whole
grains, and healthy fats; weekly consumption of fish, poultry,
beans, and eggs; moderate consumption of dairy products; and
limited intake of red meat (10, 124). Adherence to the MedD
is associated with decreased risk of PD (9, 269, 270). One of
the most dramatic differences between the traditional Western
diet and the MedD is dietary fiber intake. Consumption of
dietary fiber is typically very low (<10–15 g/day) in Western
societies, but high (>25–30 g/day) in those who consume a
Mediterranean diet (10, 87–89). It makes sense then that the
Mediterranean diet-associated microbiome is characterized by
a high relative abundance of bacteria that can utilize fiber as
an energy source such as SCFA-producing bacteria (10, 89).
Indeed, microbiota communities from subjects consuming a
Mediterranean diet are enriched in SCFA-producing bacteria
(10, 87, 89, 271). Fiber can also be administered experimentally to
alter the microbiota structure and function including an increase
in the relative abundance of fiber-fermenting (“good”) bacteria as
well as increased production of SCFA (10, 87).

These microbiome changes can elicit a myriad of effects
that are beneficial in blunting neuroinflammation and PD
pathogenesis. For example, consumption of a high fiber diet
improves intestinal barrier function and insulin resistance,
improves insulin sensitivity, increases GLP-1/GIP production,
stimulates IGN, and increases brain BDNF production (173,
259, 272, 273). Conversely, when fiber consumption is low, the
microbiota instead use protein as an energy source which favors
the growth of gram negative (LPS-producing, dysbiosis) bacteria
and the production of metabolites such as branched chain fatty
acids including isovalerate and 2-methyl butyrate that have been
associated with insulin resistance (a feature of PD) (274). Fiber
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consumption (and the consequent production of SCFA) is one
mechanism by which the Mediterranean diet may beneficially
impact PD development and progression.

In addition to fiber, the Mediterranean diet is also rich in
foods that contain anti-oxidant bioflavonoids and polyphenols,
which are associated with decreased risk of PD (9, 35, 270).
Flavonoids are typically found in fruits, vegetables, grains, and
tea. There are not a lot of data available, but it appears that
flavonoid consumption also may trigger an increase in SCFA
production (36) and several polyphenol bioflavonoids (including
in coffee) and fish oil are associated with inhibition of the NLRP3
inflammasome (33, 275). Also, nuts and olive oil stimulate GLP-1
secretion and the MedD after 28 days has been shown to increase
GLP-1 production (241).

Taken together there are multiple mechanisms by which the
Mediterranean diet can beneficially impact the brain. There is a
common theme that components of the Mediterranean diet are
especially able to alter the microbiota in a way that promotes
SCFA production. SCFA can influence so many PD relevant
mechanisms such as barrier function, mitochondrial function,
NLRP3, and intestinal peptide production (259, 272, 273) and
vagal stimulation of BDNF and thus might be beneficial in PD.
However, to date there is no high-quality clinical trial to test the
potential benefit of a high fiber Mediterranean diet in PD. These
data above provide a strong scientific rationale for conducting
randomized controlled dietary trials in PD to determine whether
Mediterranean diet can impact neuroinflammation and disease
course of PD patients.

KETOGENIC DIET AND FASTING AS A

TREATMENT

It is well-established that caloric restriction and/or intermittent
fasting are anti-inflammatory processes and can ameliorate
disease in a variety of experimental models, including PD (276,
277). Intermittent fasting is a feeding regimen that cycles between
periods of fasting (with either no food or significant caloric
restriction), and periods of unrestricted eating. Caloric restriction
can improve health, increase lifespan, and improve tolerance to
metabolic stresses (278, 279). Indeed, rodents on an intermittent
fasting diet exhibit less neuronal dysfunction/degeneration, and
fewer PD-like symptoms in models of PD compared to ad
libitum-fed controls (280). Similarly, caloric restriction increases
levels of neurotrophic factors such as BDNF and attenuates
PD-like pathology (including dopaminergic neuron loss) and
behavior in rodent and primate models of PD (281, 282) lifestyle
interventions such as caloric restriction/fasting and ketogenic
diets are currently used to treat epilepsy and other neurological
diseases (278, 279). These effects may be due to the fact that
ketosis (due to caloric restriction/intermittent fasting, ketogenic
diet) increase neurotrophic factors such as BDNF, increases
levels of antioxidants, and reduces pro-inflammatory cytokine
production (280, 282).

Both fasting and consumption of a ketogenic diet (55–
60% fat, 30–35% protein, 5–10% carbohydrate) result in the
production of ketone bodies (283). Two metabolic processes are

critical in producing energy: gluconeogenesis and ketogenesis.
Gluconeogenesis is the endogenous production of glucose in
the body primarily from lactic acid, glycerol, and the amino
acids alanine and glutamine. When glucose levels are low for
prolonged periods (as with fasting), the endogenous production
of glucose is not able to keep up with the needs of the body
and ketogenesis is primarily used to derive energy (8, 278).
Fatty acids and some amino acids are metabolized to form
basic ketone bodies which accumulate in the body including:
acetoacetate, beta-hydroxybutyrate (BHB), and acetone (8, 278).
Ketone bodies may play an important role in mediating the
beneficial effects of intermittent fasting and the ketogenic diet on
the brain (276).

Ketone bodies are beneficial in humans with PD and
animal models of PD. One early study found beneficial
effects of hyperketonemia on PD patients (284). Likewise,
in a rodent model of PD, BHB is associated with protection
against MPTP-induced damage to dopaminergic neurons
(285). Furthermore, BHB injection into the brain can
rescue mitochondrial function and ameliorate dopaminergic
neurodegeneration and motor deficits induced by MPTP in
mice (286).

The effects of ketone bodies may be the consequence of
a wide variety of mechanisms. For example, ketone bodies
can cross the blood brain barrier and may bypass the type 1
complex mitochondrial defect in PD to rescue mitochondrial
ATP function (8, 278). Another intriguing potential mechanism
is the effects of ketone bodies on the NLRP3 inflammasome
(287). For example, fasting can inhibit NLRP3 activation, which
is thought to be due to effects of BHB (288, 289). Indeed,
BHB directly inhibits the NLRP3 inflammasome and attenuates
NLRP3-mediated inflammatory disease (287, 290). Likewise,
fasting MPTP mice decreases IL-1β, a marker for NLRP3
activation (218).

In addition to ketone bodies, fasting and consumption of a
ketogenic diet can also impact PD pathogenesis by influencing
intestinal peptide production (i.e., GLP-1 and GIP) with
downstream effects on NLRP3 inflammasome, insulin resistance,
and BDNF production (276). Indeed, caloric restriction increases
brain BDNF in a primate model of PD (282). Recent studies in
MPTPmice shows that fasting increases BDNF in the brain (276).

Also, it appears that fasting impacts normal insulin signaling.
Every other day fasting also corrects insulin resistance/T2DM
in mice (291). This affect appears to be specific to changes
in the intestinal microbiome, including the production of
SCFA. Transfer of stool from mice fed every other day into
mice with T2DM was sufficient to improve insulin resistance
in the recipient mice similar to that observed due to every
other day fasting itself (291). Thus, microbiota SCFA, IGN,
and/or GLP-1 mediated mechanisms discussed above may play
a role in the fasting effects as well. Intermittent fasting also
promotes secondary bile acid production and improves intestinal
barrier function in mice by restructuring the microbiome
to produce more SCFA (292). Finally, ghrelin is another
intestinal peptide that is produced in response to fasting and
ghrelin is neuroprotective in the PD MPTP model (293). It
is thought that the ghrelin protective mechanism may be by
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promoting mitochondrial health and preventing NLRP3 IL-1β
production (293–295).

Collectively, there is evidence that fasting and a ketogenic diet
might be beneficial in PD and this effect may be mediated in
significant part by changes in the intestinal microbiota. However,
once again a well-designed trial is needed to show if the ketogenic
diet is beneficial in PD before any serious consideration of
fasting/ketogenic diet in the clinical care of PD patients.

OMEGA 3 POLYUNSATURATED FATTY

ACIDS

Consumption of PUFAs is also an element of the Mediterranean
diet and generally protective against neurodegeneration in AD or
PD (296). There are three principal types of omega-3 (ω3) PUFAs
including eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA, typically from fish oil), and alpha-linolenic acid (ALA)
(296). Dietary supplementation with PUFAs reduces depression
in PD patients, which is important because depressive symptoms
are common in PD patients and often impact other clinical
aspects of the disease (297). In addition, EPA are neuroprotective
in several neurodegenerative diseases including PD (6, 18,
298–300). Rodent models of PD also show benefit of PUFA
administration. Consumption of an EPA-enriched diet lessens
MPTP-induced movement dysfunction (i.e., hypokinesia) and
ameliorates memory deficits in mice (298, 301). Administration
of DHA reduces 6-OHDA-induced behavior deficits (i.e.,
ipsilateral rotations) and increases tyrosine hydroxylase (the

enzyme required to produce dopamine) levels in a PD rat model
(302). Experimentally, DHA is often combined with uridine
monophosphate (UMP, a dietary precursor for membrane
phospholipid synthesis), the DHA/UMP combination prevents
the development of PD-like behavior and pathology in oral and
striatal administration of rotenone models (61, 303). In addition,
DHA/UMP combination reduces parkinsonian-like behaviors
and elevates dopamine levels in 6-OHDA treated rodents (302).
There are many mechanisms by which ω3 fatty acids may impact
the brain and be beneficial in the prevention and/or treatment
of PD. GLP-1 stimulation: As noted above, fish oil and olive
oil can stimulate GLP-1/GIP production by the intestine (241).
Cell Death: Studies have revealed that supplementation with
EPA or DHA attenuates dopaminergic cell death induced by
MPTP administration (301, 304). DHA may protect neurons
against cytotoxicity through a variety of mechanisms such as
inhibition of nitric oxide production, inhibition of caspase
signaling pathways (305), inhibition of tau hyperphosphorylation
(306), as well as regulation of other signaling pathways (e.g.,
PI3K/Akt). Cell Function: In addition to inhibiting neuronal
cell death, DHA promotes optimal dopaminergic structure
and function including synaptic plasticity (synapse formation,
dendritic spine density) and dopaminergic neurotransmission
(303, 307). Inflammation: The protective effects of DHA may be
mediated by a metabolic derivative known as neuroprotectin D1
(NPD1) (308, 309) which is an inhibitor of NLRP3 (310). Indeed,
NPD1 protects neurons against oxidative stress, inflammation,

and from activation of apoptotic signaling pathways. Thus, while
Western diet saturated fats activate the NLRP3 inflammasome
(11), consumption of ω3 fatty acids inhibit the NLRP3
inflammasome (including in brain microglia) probably via
a mechanism involving reduced mitochondrial stress (311–
313). It should not be surprising then that ω3 fatty acids
prevent NLRP3 inflammasome-dependent inflammation and
insulin resistance in a T2DM rodent model (314). Other: DHA
may also protect the brain by increasing glutathione reductase
activity essentially preventing protein oxidation (315, 316),
lipid peroxidation, and the production of ROS (317). Other
potential mechanisms of action of DHA include regulation of
NF-κB activation, transcription modulation, and cell membrane
properties (318, 319). Again, these data provide a strong scientific
rationale for conducting randomized controlled dietary trials
in PD to determine whether PUFA supplements can impact
neuroinflammation and the disease course of PD patients before
recommending it to PD patients.

CONCLUSION

There is a growing body of experimental in vitro, in
vivo animal and epidemiological evidence strongly suggesting
that diet impacts the development/progression of multiple
neurodegenerative diseases including PD. This includes both
beneficial effects of diets rich in fiber, bioflavonoids, and ω3
fatty acids (e.g., the Mediterranean diet), and fasting and the
ketogenic diet due the production of ketone bodies as well as

the collective detrimental effects of the Western diet that include
gut leakiness, NLRP3 activation, insulin resistance, and lack of
beneficial SCFA/GLP-1 vagal signaling due to low fiber content.
As we have discussed many of these effects may be due in large
part to beneficial or negative effects on the intestinal microbiota.
Diet rapidly and robustly alters the intestinal microbiome; thus, it
is possible that these effects of diet are mediated (at least in part)
by changes in microbiota structure and or function.

We described a mechanism by which intestinal dysbiosis can
trigger intestinal barrier dysfunction leading to gut-derived LPS
with systemic and neuroinflammation. We also described how
bacterial components such as LPS can serve as a first signal in
NLRP3 inflammasome mediated production of IL-1β, insulin
resistance, and mitochondrial dysfunction. Finally, we described
how bacterial metabolites such as SCFA and secondary bile acids
can directly improve mitochondrial health as well as influence
the production of the intestinal peptides GLP-1 and GIP that can
directly promote brain health and stimulate IGN and together
also regulate vagal stimulation of BDNF in the brain as well.

These data suggest that consumption of a Mediterranean diet
might be a useful approach to prevent and possibly treat PD.
This is because the characteristic features of the Mediterranean
diet including high dietary fiber, bioflavonoids, and ω3 fatty
acids that will modulate the microbiome and intestinal cell
signaling and result in several alterations that confer benefits in
the brain such as improved intestinal and blood brain barrier
function, decreased NLRP3 inflammasome activation and IL-1β
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production, improved insulin sensitivity, increased GLP-1/GIP,
IGN vagal stimulation, and increased production of BDNF in
the brain. Even if not adhering to the Mediterranean diet,
including dietary supplements for dietary fiber, bioflavonoids,
or ω3 fatty acids may be beneficial. Similar benefits may be
obtained by following a diet involving intermittent fasting or a
ketogenic diet.

Further investigations into the mechanisms by which the
intestinal microbiota contributes to the development and
progression of PD are warranted. More importantly, there is a
major unmet need to determine whether dietary intervention
can prevent progression of PD from the prodromal phase to the
overt CNS/motor phase and whether dietary intervention can
modify disease course and disease progression (and response to
levodopa treatment) in those who suffer from motor symptoms.
We believe that the experimental data and epidemiological
findings discussed above provided a strong scientific rationale
to conduct well-designed dietary and intestinal microbiota-
directed randomized control trials (RCT) in both prodromal and
established PD patents.
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Increasing evidence suggests an association between gastrointestinal (GI) disorders

and susceptibility and progress of Parkinson’s disease (PD). Gut–brain axis has been

proposed to play important roles in the pathogenesis of PD, though the exact

pathophysiologic mechanism has yet to be elucidated. Here, we discuss the common

factors involved in both PD and GI disorders, including genes, altered gut microbiota,

diet, environmental toxins, and alteredmucosal immunity. Large-scale prospective clinical

studies are needed to define the exact relationship between dietary factors, microbiome,

and genetic factors in PD. Identification of early diagnostic markers and demonstration

of the efficacy of diet modulation and regulation of gut microbiome through specific

therapeutics can potentially change the treatment paradigm for PD.

Keywords: Parkinson’s disease (PD), gut, genetics, microbiome, diet

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder affecting 1–2 per 1,000 of the
population (1). The incidence rate is generally lower for individuals before the age of 50 years, and
it increases steadily with advanced age, peaking at 80 years old (2). The pathological hallmark in
PD is the presence of intraneuronal aggregated alpha-synuclein (α-syn), Lewy body formation, and
progressive loss of dopaminergic neurons in the substantia nigra compacta (SNc) which leads to
the typical clinical symptoms including tremor, rigidity, bradykinesia, and posture instability (1).
Current treatment for PD is largely symptomatic.

Although motor symptoms are characteristic in PD, non-motor abnormalities in pre-PD
phase are increasingly recognized. Among those, constipation is a prodromal marker in research
diagnostic criteria for PD and may be an early manifestation of PD pathophysiology (3–5). The
extent of the observed severity of themanifestation, especially the duration preceding PD, is unclear
(3). However, several studies associate gastrointestinal (GI) dysfunction as a risk factor for PD
development, with an early prevalence of 20% pre-PD diagnosis and 50% of the PD cases post-
diagnosis (6, 7). Moreover, the association with GI dysfunction corroborates the well-established
Braak’s theory that PD initiation might begin in the GI tract, supported by the presence of Lewy
body burden in the enteric nervous system (ENS) compared with other body regions and in
the central nervous system (CNS) (8, 9). This has led to considerable interests to understand
the etiology and presentation of pre-motor symptoms in PD patients. This review highlights the
current findings linking pathophysiologic mechanisms between CNS and ENS in PD (Figure 1).
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FIGURE 1 | Bi-directional interaction between gastrointestinal (GI) tract and central nervous system (CNS). Schematic representation summarizes Braak’s model of

Parkinson’s disease (PD) progression initiated from the GI tract. Changes in GI mucosal immunity, environmental toxins, infection, sleep quality, diet, and genetics

modify the gut microflora and induce inflammation, mitochondrial dysfunction, and abnormal protein accumulation. Accumulation of α-syn in the GI tract spread via

the vagus nerve to the CNS and leads to dopaminergic neuron degeneration.

Braak’s Hypothesis and α-Synuclein
Emerging evidences have shown that PD involves not only
the brain but also outside the CNS including the GI system
(10, 11). Some propose the idea of a prion-like spread whereas
others believe that it involves an interplay of multiple complex
molecular mechanisms, including the well-known Braak’s dual-
hit model (12–15). According to Braak et al., the bi-directional
communication between the network of neurons in the GI tract
and the neurons of the CNS forms the gut–brain axis (10).
Though criticisms argue that not all PD patients have the specific
α-syn spreading pattern proposed by Braak, Braak’s hypothesis
suggests disease initiation and progression in a systematic
manner in sporadic PD (14).

Braak et al. initial suggestion was an involvement of a
neurotrophic agent or an unknown pathogenic insult in the
GI tract (9). They went on to propose a six-stage system of
PD progression in the brain and surrounding olfactory regions
based on observed α-syn spreading patterns (16), and this
can be linked to the many clinical features, and motor and
non-motor syndromes of Parkinsonism (17, 18). Moreover,
evidence of α-syn aggregations at olfactory bulbs (OBs), the
ENS, and submucosal plexuses was associated with different
pathologies observed in PD (17). Further studies underline the
fact that the invading neurotrophic agent may either be a GI-
initiated trigger by the intestinal microbiota or a toxin/pathogen
from an external environment entering through the olfactory

route (9, 19). As a consequence, this invasion promotes a
pro-inflammatory intestinal mucosal environment, increases
intestinal barrier permeability, which leads to the accumulation
of reactive oxygen species (ROS), and creates an unbalanced
homeostasis activating various immune mechanisms, which may
ultimately trigger α-syn aggregation (14). It was increasingly
evident that the initiation and spreading projected from two
pathways, olfactory and GI tract (20, 21). Projecting neurons
create a path via the vagal nerve and the dorsal motor nucleus
of the vagus nerve (DMV) in the medulla (21). The aggregated
α-syn was postulated to ascend anterogradely from the OB and
retrogradely from the plexus of the GI tract via the vagus nerve
(21). The α-syn aggregates propagate trans-synaptically to the
DMV and eventually other regions of the CNS (15, 16, 21).

Common Factors in the Pathogenesis of

PD and Gastrointestinal Disorders
Here, we review potential factors involved in the association of GI
disorders and PD, focusing on the common genetic factors, gut
microbiota, and mucosal immunity. The environmental factors
such as diet and environmental toxins together with potential
role of sleep disorder will also be briefly discussed.

Genetic Factors
While most PD are sporadic with unknown etiologies,
monogenic forms of PD and common genetic risk variants
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in sporadic PD have been identified (1, 22, 23). Carriers of
pathogenic gene mutations frequently have indistinguishable
clinical presentation from non-carriers (24).

Leucine-rich repeat kinase 2 (LRRK-2) is the most common
genetic cause of autosomal dominant PD, accounting for 10–40%
of familial cases in different populations (25). Genome-wide
association studies (GWAS) show that some PD-associated
LRRK2 variants are also independently associated with
inflammatory bowel diseases (IBDs) (1, 23, 26, 27). More
than 100 putative mutations have been reported in LRRK2
gene, though only six have been consistently shown to cause
diseases, with two of these mutations G2019S and R1441C
most commonly reported (28). Among the many functions of
LRRK-2, the key roles include α-syn clearance and regulating the
inflammatory response (22).

The genetic basis for IBD, in particular, Crohn’s disease (CD)
and ulcerative colitis (UC), has been supported by GWAS, which
also suggested that some GWAS loci may also be associated
with risk for PD (27, 29–31). This may be caused by susceptible
individuals having an impaired mucosal immune response to GI
commensals (29, 32). A Danish study made a similar association
between PD and IBD in their cohort comprising IBD and
non-IBD population (22). Apart from immune involvement,
the authors also observed prominent differences in the gut
microbiota in both CD and UC patients (22). These changes may
have enabled the formations of Lewy pathology observed in PD,
which can eventually through gut–brain neuronal interactions
spread throughout the body (14).

Gut Microbiota
The involvement of gut microbiota in α-syn aggregation in
PD has received increasing attention in the past several years
(33, 34). Sampson and colleagues had shown that orally
giving microbial metabolites can cause neuroinflammation in
germ-free mice which leads to motor symptom development
(35). Remarkably, microbiota transplants from PD patients
exaggerated motor symptoms in α-syn-overexpressing mice
compared with healthy controls. Other studies also suggested the
synergistic role of gut microbiota in α-syn pathophysiology and
neurodegeneration (36).

Gram-negative bacterium Helicobacter pylori causes gastritis
and various GI problems, especially peptic ulcers (37–39).
The association between PD and H. pylori was highlighted
by Altschuler who noted the presence of duodenal ulcers in
many clinical situations and suggested a probable causal link
with idiopathic PD (40). Meta-analyses comparing healthy and
H. pylori–affected individuals demonstrate a clear association
between H. pylori and PD (39, 41). However, disease progression
can be multifactorial, and it is impossible to single out a direct
cause. Several investigators proposed various mechanisms of
action associating H. pylori with PD pathogenesis. First, it is
possible that H. pylori could be releasing CNS toxins vacuolating
toxin, Vag A, and cytotoxin-associated gene, Cag A (37). Second,
the damage can be through H. pylori–mediated glycosylation to
generate cholesteryl glucosides, similar in form to toxin cycads
(37, 42). These cholesteryl glucosides are neurotoxic, and they
cross the blood–brain barrier (BBB) to cause dopaminergic

neuron degeneration (37). Third, H. pylori can activate immune
mechanisms,monocytes, eicosanoids, interleukins, and cytokines
(TNF-α, IL-10, IL-6, IL-8, IL-1B, IL-13), resulting in an
exaggerated neuroinflammatory response, leading to disruption
and infiltration in the BBB, microgliosis, and neurodegeneration
(39). Fourth, H. pylori can initiate apoptosis through apoptotic
pathways such as the nitric oxide and mitochondrial Fas–
FasL pathway, causing neurodegeneration (39). Lastly, the
production of autoantibodies against dopaminergic neurons
induced by H. pylori and host antigens can lead to widespread
neuroinflammation (37, 39).

More recently, Wallen et al. conducted an association
study (MWAS) between microbiome and PD using two
large datasets. They found that the opportunistic pathogens
and carbohydrate-metabolizing probiotics were significantly
increased while short-chain fatty acid (SCFA)–producing
bacteria were decreased in PD patients (43). These findings will
facilitate testing the potential role of some of these pathogens in
PD pathogenesis.

Diet
The association between diet, nutritional status, and PD
pathogenesis has also attracted considerable attention after
studies on the existence of the gut–brain axis and gut microbiota
(22). Reduction in gut commensal Prevotellaceae composition
reduces mucin synthesis increasing gut leakiness, affecting the
production of SCFA involved in thiamine and folate biosynthesis,
and the increase in Lactobacilliceae can alter gut hormone ghrelin
which canmodify nigrostriatal dopamine neuronal integrity (19).
SCFAs can also exert a systemic anti-inflammatory response
increasing ROS, which can lead to synucleinopathy (14, 19).

Moreover, celiac disease, a gluten-induced gastrointestinal
disorder, has been reported to be associated with PD
pathogenesis. Based on the results from a pilot study, 2 out
of 67 celiac disease patients from the cohort reported PD
symptoms (44). When these patients underwent a diet alteration
to a more gluten-free one, their symptoms improved (45).
Although these studies are preliminary, further investigation
should be conducted with a larger cohort to illustrate this
association and the importance of diet in PD.

Mucosal Immunity
The intestinal lumen encompasses the most extensive enviro-
host interface, continuously interrogated by a high antigenic
load resulting from exposures to deadly pathogens, diet changes,
and commensals (32). Existing immune systems and co-evolving
microbial community are reciprocal, and there are mandatory
checkpoints available to ensure an appropriate response to a
pathogenic insult (46). These systems continue to regulate and
shape its response, accommodating to the changes observed
throughout the host’s lifetime (46).

The cellular aspects of GALT and the epithelial barrier
comprise the localized microenvironment, lymphoid follicles,
mesenteric lymph nodes, and Peyer’s and colonic patches,
whereas the molecular compartment consists of T and B
regulatory cells, intraepithelial lymphocytes (IELs), innate
lymphoid cells, macrophages, and dendritic cells (46, 47). GALT,
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especially the immune cells in the appendix, were recently
found unique for PD pathogenesis (48). The epithelial barrier
and the cells of the intestinal epithelium are the first lines
of defense against any invading pathogen (32, 46). Its unique
structure functions to provide a physical barrier, drawing a
forefront rich with antimicrobial peptides, immunoglobulins A
(IgA), and a tight monolayer preventing bacterial penetrations
(32, 46). Although there were contradicting observations on
the noticeable structural changes in a disease state, many agree
that the most imminent damage occurs to the tight monolayer
(49). Epithelial dysfunction demonstrated in 1-methyl-4-phenyl-
1,2,3,6-tetrahydropiridine (MPTP) animal models demonstrated
noticeable differences in expression patterns of ZO-1, occludin,
and tight-junction proteins (32, 50). Indeed, colonic biopsies
from PD individuals confirm this observation (50).

Regulatory cells (Tregs) are a subset of CD4+ T cells that
hamper the progression of IBDs and provide peripheral tolerance
(32). Among the many functions of Tregs, one which is worth
mentioning is its ability to act as a negative regulator, aimed
at curtailing a pro-inflammatory situation presented by effector
(Teff) cells (32). They achieve this by actively secreting cytokines
(IL-10, TGF-β) and cytotoxic T-lymphocyte antigen, CTLA
4 (32).

It would be apt to describe the characteristic features of
IBD as a disease with a defective T-cell signaling, mostly
imbalances between Treg and Th17, along with an altered
cytokine profile (32, 51). Both Th17 and Treg cells originate
from a common CD4+ precursor cell, mediated by TGF-β
signal (52). However, their fates differ at the end stage of
differentiation (52). As opposed to Treg’s function of maintaining
intestinal homeostasis, Th17 cells initiate gut inflammation (51).
In addition, commensal microbiota and bacterial metabolites
can also positively or negatively alter cytokine profiles, inducing
the pathway toward Treg or Th1/Th17 formations (32, 52).
Supporting this observation, independent findings on PD
patients’ colonic biopsies and inflammatory diseases both
indicate an exaggerated inflammation with extreme amounts
of pro-inflammatory (TNF, IL-1β, IFNγ, IL-5) molecules (22,
32). Co-culture of autologous Th17 cells and stem cell–derived
dopaminergic (DA) neurons showed that Th17 cells can kill the
DA neurons through releasing of IL-17A (35). Whether these
DA neuron–specific Th17 cells are from the mucosal immunity
is unknown.

There are other relevant cells of the immune system with a
primary role to function constitutively with other immune cells
to maintain homeostasis in PD. They provide a supportive role
in ensuring inflammation control and immune surveillance. For
instance, the intestinal epithelial cells (IECs) of the epithelium
secrete IgA, antimicrobial proteins, and anti-inflammatory
cytokines with crucial roles in differentiation, maturation,
migration, and response (32). Similarly, another cell population
found alongside IECs are the IELs (32, 47). IELs are T cells
with a T-cell receptor which have come in contact with antigens
and have differentiated in either natural IEL or induced IELs
(32). Although they take on separate differentiation patterns,
their central role is to maintain intestinal homeostasis (32). They
secrete pro-inflammatory (IFNγ and TNF) cytokines, provide
immune surveillance through migration to intestinal epithelial

surface, which is in close contact with pathogens, and produce
IL-10 and TGF-β suppressing intestinal inflammation (32).
Likewise, regulatory B cells (Bregs), antibody-producing cells,
which release cytokines (IL-10) are also involved in maintaining
homeostasis and suppressing inflammation, and regulating the
balance of Tregs, Th1, and Th17 (32).

The distinctive pattern of GI inflammation, especially at the
early stages of the disease, with its signature symptoms, suggests
the extent of the involvement of the mucosal immune system.
It is unclear if α-syn aggregates were the cause or effect in the
pathophysiology (53). Stolzenberg et al. concluded that α-syn
secreted from enteric nerves of a pro-inflammatory ENS is the
cause of GI inflammation, and it also acts as a chemoattractant
for neutrophils and monocytes perpetuating the condition (53).

Environmental Toxins
The link between herbicide and paraquat exposure and
neurotoxin MPTP administration and PD has suggested that
environmental toxins can cause the disease. A recent meta-
analysis from 31 studies with occupational exposure to pesticides
suggested a significant association with PD risk (54). Rotenone
has been reported to inhibit mitochondrial complex 1 activity,
whereas paraquat causes oxidative stress (55–58). The gram-
negative bacteria endotoxin lipopolysaccharides (LPS) have also
been reported to induce dopaminergic neuron death in animal
models (59–61). Supporting Braak’s theory of a peripheral-to-
central spread, agrochemicals such as metals, pesticides, and
herbicides that enter the body via inhalation and/or ingestion
are suggested to be a possible initiator causing widespread
inflammation and mitochondrial dysfunction which ultimately
lead to abnormal α-syn accumulation and dopaminergic neuron
degeneration in the midbrain (10, 59, 62). Moreover, an
established causal link between agrochemical use and PD can
be challenging as the time between exposure and symptom
presentation has a long latency period (10 to 20 years) (62).
Hence, epidemiological studies have to improve their assessment
methodologies, employ neurologists for diagnostics, and redefine
the way they study past exposures accurately (63).

Sleep Quality
Sleep disorder is one of the non-motor symptoms reported in
PD patients in the prodromal phase (64, 65). Interestingly, sleep
disturbance has also been reported in IBD patients (66, 67). The
underlying mechanisms for the sleep disturbance in PD and IBD
are yet to be elucidated.

CONCLUSIONS AND FUTURE

PERSPECTIVES

The etiology of PD involves both genetic and environmental
factors. The gut is one of the major systems exposed to the
environment directly and connects to the brain. Understanding
the gut–brain axis has allowed us to appreciate the development
and progression of the disease considerably. The GI system
(which consists of the microbiome) is continuously being
influenced by various factors, such as environment, diet,
infection, and mucosal immunity. The overlapping genetic
factors between PD and GI disorders suggest common etiologic
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links between the GI system and PD development. Given
that the current treatments for PD are mainly symptomatic,
regulation of the gut microbiota and mucosal immunity through
diet, such as giving probiotics, may have protective effect in
PD treatment. The association of PD with GI system may
provide prophylactic and targeted PD therapy in selected
risk individuals.

Large-scale prospective clinical studies are needed to define
the exact relationship between dietary factors, microbiome, and
genetic factors in PD. Identification of early diagnostic markers
and demonstration of the efficacy of diet modulation and
regulation of gut microbiome through specific therapeutics can
potentially change the treatment paradigm for PD.
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A Corrigendum on

Gut–Brain Axis: Potential Factors Involved in the Pathogenesis of Parkinson’s Disease

by Chao, Y.-X., Gulam, M. Y., Chia, N. S. J., Feng, L., Rotzschke, O., and Tan, E.-K. (2020). Front.
Neurol. 11:849. doi: 10.3389/fneur.2020.00849

In the original article, there was an error. The findings cited in Reference Number 43 (Wallen et al.,
2020) were inaccurately stated.

A correction has been made to Common factors in the Pathogenesis of PD and Gastrointestinal
Disorders, Gut Microbiota, Paragraph 3. The corrected paragraph is shown below:

More recently, Wallen et al. conducted an association study (MWAS) between microbiome
and PD using two large datasets. They found that the opportunistic pathogens and carbohydrate-
metabolizing probiotics were significantly increased while short-chain fatty acid (SCFA)–producing
bacteria were decreased in PD patients (43). These findings will facilitate testing the potential role
of some of these pathogens in PD pathogenesis.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.
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