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Editorial on the Research Topic

Advances of Neuroimaging and Data Analysis

Neuroimaging is a discipline that studies the structure and function of the nervous system bymeans
of imaging technology, and where the images of the brain can be obtained in a non-invasive way.
It explores a series of mechanisms such as cognition, information processing, and brain changes
in the pathological state. In recent years, the neuroimaging has developed rapidly and become a
powerful tool for medical research and diagnosis. With the increasing prevalence of neurological
diseases, higher requirements have been put forward for neuroimaging technology and subsequent
data analysis, and many advances have been made in this field.

Now, we will briefly summarize the cutting-edge progress in the theme of “neuroimaging and
data analysis.” A total of 16 papers have been published on this topic. They were presented from
different countries, including China, USA, Germany, Italy, Brazil, and so on, and they involve novel
neuroimaging technology, neuroimaging analysis, clinical diagnosis, and mechanism research.
Accordingly, we divide these studies into three sub-topics.

The four papers in the first part of this special issue focused on the practice and development
of cerebral hemodynamics in healthy elite athletes and patients, including the exploration of the
clinical mechanisms and the discovery of new markers for clinical diagnosis and treatment. Bao
et al. reported that by utilizing functional magnetic resonance (fMRI) technology, they realized
that fatiguing aerobic exercise changed the cerebral blood supply in the brain and had no significant
effect on the ability of the brain to extract oxygenation. Their study provides essential values for the
evaluation of anaerobic exercise in sports science and clinics, suggesting that it is meant to establish
the CBF and OEF as novel markers for physical and physiological function. Yan et al. assessed the
cerebral hemodynamic variations, including bilateral middle cerebral artery (MCA) peak systolic
velocity (PSV), pulsatility index (PI), and blood pressure (BP), in unilateral carotid artery stenosis
patients with or without Contralateral Carotid Occlusion (CCO) in hours following carotid artery
stenting (CAS) using transcranial doppler (TCD) and transcranial doppler color code (TCCD). In
particular, they suggested that CCO was a factor of the increased blood flow velocity in ipsilateral
MCA after unilateral CAS. Early identification of high-risk patients with transient ischemic attack
(TIA) using imaging techniques is essential for administering the proper medications to treat
or prevent TIA and the consequent stroke, which will improve the clinical diagnosis of TIA.
Thus, Wang et al. explored the probability and related influencing factors of MR Hypoperfusion
abnormalities in Chinese patients with transient ischemic attack and normal diffusion-weighted
imaging (DWI) findings. Sheng et al. characterized the quantitative DTI-derived diffusion, and
DSC-derived perfusion parameter changes underlying different Susceptibility-weighted imaging
(SWI) signal intensities of multiple sclerosis (MS) lesions. Moreover, the creatively idea of the work
was that the signal intensities detected on SWI in MS lesions might be a non-invasive biomarker
that represented a specific stage of lesion evolution or a particular pathological substrate associated
with iron deposition, demyelination/axonal injury, or inflammatory activity.

5

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.00257
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.00257&domain=pdf&date_stamp=2020-04-08
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhangjue@pku.edu.cn
https://doi.org/10.3389/fneur.2020.00257
https://www.frontiersin.org/articles/10.3389/fneur.2020.00257/full
http://loop.frontiersin.org/people/596838/overview
https://www.frontiersin.org/research-topics/8732/advances-of-neuroimaging-and-data-analysis
https://doi.org/10.3389/fneur.2019.00654
https://doi.org/10.3389/fneur.2019.00958
https://doi.org/10.3389/fneur.2019.00867
https://doi.org/10.3389/fneur.2019.00747


Zhang et al. Advances of Neuroimaging

The second subtopic is about the exploration of neural
mechanisms of different clinical pathologies and investigations
of promising diagnostic methods, including the following eight
papers. By using high-field magnetic resonance imaging (7.0-
T MRI), Ling et al. analyzed the changes in the lenticulostriate
arteries (LSAs) measurements, such as the number of LSA
branches and the proportion of discontinuous LSAs in patients
with CADASIL. They showed that patients with CADASIL
exhibit fewer LSA branches and a higher proportion of
discontinuous LSAs than healthy individuals. This suggested
that 7.0-T MRI provides a promising and non-invasive method
for the study of small artery damage in CADASIL. Song
et al. demonstrated the feasibility of performing Functional
Ultrasound Imaging (fUS) on two animal models during
spinal cord stimulation (SCS). This study could pave the
way for future systematic studies to investigate spinal cord
functional organization and the mechanisms of spinal cord
neuromodulation in vivo. Klietz et al. attempted to study the
altered brain metabolism in Parkinson’s disease (PD) patients
systematically with the aid of the whole-brain MR spectroscopic
imaging (wbMRSI). They demonstrated that wbMRSI-detectable
brain metabolic alterations revealed the potential to serve as
biomarkers for early PD.

Generally, how to make better use of image analysis methods
to improve the efficiency and accuracy of clinical diagnosis
is always an essential issue in neuroimaging. Sun et al.
investigated topological organization of the brain structural
connectome and demonstrated more severe disruptions of
structural connectivity in amnestic mild cognitive impairment
(aMCI) converters compared with non-converters. This work
may provide potential structural connectome/connectivity-based
biomarkers for predicting disease progression in aMCI, which
is of great importance for the early diagnosis of Alzheimer’s
disease (AD). Ruffini et al. proposed a deep learning model for
diagnosis/prognosis of Parkinson’s disease (PD) derived from
only a fewminutes of eyes-closed resting electroencephalography
data (EEG) and obtained excellent predicting performance,
which perhaps contributes a useful tool for the analysis of EEG
dynamics. Wuschek et al. aimed to reduce the variance of CSF
protein concentrations and, hence, to increase their diagnostic
value by considering brain volumes derived from magnetic
resonance imaging (MRI). This work can still be considered as
a meaningful attempt despite the conclusion that accounting for
individual brain volumes is unlikely to decrease the variability
of CSF protein concentrations considerably. Moreover, there
are also several investigations about the experiment design and
pathological characteristics. Schäfer et al. conducted a study
to find optimized design paradigms for presenting baby body
odors in the fMRI. The paradigms they recommend may
transfer to general body odor perception. Jama-António et al.
evaluated the frequency of hippocampal atrophy (HA), and
the imaging findings and clinical evolution in patients with
calcified neurocysticercotic lesions (CNLs), which promotes to
identify parenchymal alterations associated with the occurrence
of epileptic seizures.

The third subtopic mainly includes four literature
reviews, including image analysis methods and challenges
of new neuroimaging technology in clinical application. It

comprehensively summarizes the functional magnetic resonance
imaging, brain structure and aging, and other fields. Franke and
Gaser focused on establishing biomarkers of the neuroanatomical
aging processes exemplifies for predicting age-associated
neurodegenerative diseases. They summarized recent studies
that utilize the innovative BrainAGE biomarker to evaluate the
effects of interaction of genes, environment, life burden, diseases,
or lifetime on individual neuroanatomical aging. Furthermore,
they concluded that predictive analysis method could provide a
personalized biomarker of brain structure, which helps to clarify
and further study the patterns and mechanisms of individual
differences in brain structure and disorder stages. Besides the
BrainAGE biomarker, simultaneous EEG-fMRI technology
could offer the possibility to characterize the relationship
between EEG spectrum and regional brain activation, providing
new insights on neurological and psychiatric diseases and,
hopefully, new treatment targets. Mele et al. paid attention to
simultaneous EEG-fMRI technology and related early studies,
dealing with issues related to the acquisition and processing of
simultaneous signals. They realized that despite this technique
appear essential to investigate physiological brain networks
in healthy subjects, which introduce new evidence about
the electrical neural activity and the neurovascular coupling
underpinning the BOLD signal, the optimal integrated and
standardized analysis is still open, representing the real challenge
that follows the technological development. Moreover, there are
many innovative applications based on deep learning in various
technical aspects of Neuro-Imaging, particularly applied to
image acquisition, risk assessment, segmentation tasks. Zhu et al.
addressed this topic and presented an overview. They pointed
out that although deep learning techniques in medical imaging
have been enthusiastically applied to imaging techniques with
many enlightening advances, they are still in the initial stage and
face challenges such as overfitting and difficult interpretation of
models, lack of high-quality data sets, etc. It is worth mentioning
that there is also a very interesting work in this part, O’Connor
and Zeffiro summarized the difficulties of resting fMRI (rs-
fMRI) in clinical diagnosis thorough investigation, such as
availability of robust denoising procedures, and single-subject
analysis techniques. The survey results showed that despite
some perceived impediments to expanding clinical rs-fMRI
use, neuroradiologists were generally confident in the clinical
research and application of rs-fMRI.

To sum up, this special issue covers three topics of
neuroimaging and data analysis: (1) exploring the physiological
mechanism and diagnostic methods of clinical diseases; (2)
investigating how the new technology can be effectively applied
in clinical practice; (3) tracking the development of cutting-
edge technologies. These researches not only contribute to
understanding the impact of the development of neuroimaging
on the perception of the nerve system, especially in the influence
on structure-function and brain-behavior relationships, but
also provide new insight into the role of neuroimaging in
clinical application. Using imaging techniques to advance the
understanding of pathology, abnormal development, and the
use of biomarkers or other questions of clinical utility will
be an essential part of neuroimaging. However, it is also a
problem worthy of attention to objectively view the development
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of new technology and its proper use in clinical practice.
In particular, deep learning, as an excellent and widely used
image analysis method, has much work to do to increase
its internal interpretability and use limited medical data for
practical analysis.
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Background: Early prediction of disease progression in patients with amnestic mild

cognitive impairment (aMCI) is important for early diagnosis and intervention of

Alzheimer’s disease (AD). Previous brain network studies have suggested topological

disruptions of the brain connectome in aMCI patients. However, whether brain

connectome markers at baseline can predict longitudinal conversion from aMCI to AD

remains largely unknown.

Methods: In this study, 52 patients with aMCI and 26 demographically matched healthy

controls from a longitudinal cohort were evaluated. During 2 years of follow-up, 26

patients with aMCI were retrospectively classified as aMCI converters and 26 patients

remained stable as aMCI non-converters based on whether they were subsequently

diagnosed with AD. For each participant, diffusion tensor imaging at baseline and

deterministic tractography were used to map the whole-brain white matter structural

connectome. Graph theoretical analysis was applied to investigate the convergent and

divergent connectivity patterns of structural connectome between aMCI converters and

non-converters.

Results: Disrupted topological organization of the brain structural connectome were

identified in both aMCI converters and non-converters. More severe disruptions of

structural connectivity in aMCI converters compared with non-converters were found,

especially in the default-mode network regions and connections. Finally, a support

vector machine-based classification demonstrated the good discriminative ability of

structural connectivity in differentiating aMCI patients from controls with an accuracy

of 98%, and in discriminating converters from non-converters with an accuracy of 81%.
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Conclusion: Our study provides potential structural connectome/connectivity-based

biomarkers for predicting disease progression in aMCI, which is important for the early

diagnosis of AD.

Keywords: brain network, conversion, diffusion tensor imaging, graph theory, mild cognitive impairment, machine

learning

INTRODUCTION

Mild cognitive impairment (MCI) is generally associated with
a higher risk of dementia and is considered as an intermediate
stage between normal aging and Alzheimer’s disease (AD) (1–
3). A prospective population-based study in elders showed that
the incidence of dementia was highest for patients with amnestic
MCI (aMCI) (4). However, not all patients with aMCI progress
to dementia (5). Early prediction and identification of individuals
with aMCI who are at high risk for conversion to AD aids timely
detection of dementia, which is essential for early intervention
strategies.

Previous studies have shown the potential of imaging

markers to predict conversion from MCI to AD dementia.
Among multiple neuroimaging modalities, MRI has attracted

significant interests due to its completely non-invasive
nature, high availability in mild symptomatic patients and

high spatial resolution. Structural MRI biomarkers such as
gray matter atrophy in the medial temporal lobe (6) and
hippocampal/entorhinal cortex (7) have been identified as
efficacious AD-specific biomarkers for the early diagnosis
and prediction of disease progression. With diffusion MRI
techniques, promising markers of microstructural white matter

(WM) damage in AD and MCI patients have been proposed
(5, 8, 9). Specifically, regional diffusion metrics of limbic WM
in the fornix, posterior cingulum, and parahippocampal gyrus

have shown better performance than volumetric measurements

of gray matter in predicting MCI conversion (10–14).

However, compared with local or regional imaging markers,

the network model has provided a new perspective to investigate
the neuropathological progression of AD from a system

level (15–18). The whole-brain WM structural network at

macroscopic level can be constructed with diffusion MRI and
tractography approaches. The topological organization of brain
network can be further characterized with graph theoretical
analysis (for reviews, see (19, 20). Several non-trivial topological
properties, such as small-worldness, modular structure, and
rich-club organization of WM networks have been consistently
demonstrated in healthy population (21, 22). For AD and
aMCI, previous WM network studies have suggested that AD
patients exhibit decreased topological efficiency than healthy
controls, which is associated with cognitive decline (23, 24).

Similarly, our previous work has also found decreased network
efficiency in patients with aMCI (25–27) and in those at an
earlier stage (28). Importantly, hub regions are preferentially

disrupted in AD and aMCI patients, especially the default
mode network (DMN) regions, which concentrated most

of the pathology of Aβ deposition (29–32). These findings

suggest potential, sensitive connectome-based markers for the
early detection of structural alterations due to pathological
or/and neurodegenerative processes in the early stages of AD.
Recently, machine learning, deep learning and complex brain
networks have been recently applied to the early diagnosis
of neurodegenerative diseases with interesting results (33–36).
Specifically, functional MRI network studies have found more
severe disruptions in MCI converters, which may distinguish
converters from non-converters with high accuracy (37–39).
Structural MRI studies have also found topological differences
of brain connectome between the two groups (40–42). However,
whether the structural brain connectome can provide sensitive
markers to predict longitudinal conversion from aMCI to AD has
remained largely unknown.

Thus, in our study, we focused on aMCI patients who
progressed to probable AD in 2 years after their baseline
scan (referred to as “aMCI converters”) and compared them
with aMCI patients who were clinically stable (i.e., did not
develop AD) during 2 years follow-up (referred to as “aMCI
non-converters”). Diffusion MRI tractography and graph theory
approaches were performed to investigate baseline differences
in the topological organization of the WM structural networks
between aMCI converters and non-converters. We sought
to determine (1) whether the WM networks would show
progressive alterations in aMCI converters compared with non-
converters, (2) how network disruptions would predict disease
progression in aMCI patients, and (3) the potential utility of brain
structural connectome for individual prediction and diagnosis in
the early stage of AD.

MATERIALS AND METHODS

Participants
This retrospective study involved 78 elderly subjects, including
52 aMCI patients, who were recruited from the Memory
Clinic of the Neurology Department, XuanWu Hospital, Capital
Medical University, Beijing, China and 26 demographically
matched healthy controls (HCs) who were recruited from local
communities. The inclusive criteria of aMCI patients were
proposed by Petersen (43, 44) and described as follows: (1)
definite complaints of memory declined, preferably confirmed
by an informant; (2) objective cognitive performances in
single or multiple domains including memory documented by
neuropsychological tests scores were below or equal to 1.5 SD
of age- and education-adjusted norms; (3) a Clinical Dementia
Rating (CDR) score of 0.5; (4) preservation of independence
in activities of daily living; and (5) not sufficient to meet
the criteria for dementia based on DSM-IV-R (Diagnostic and
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Statistical Manual of Mental Disorders, 4th edition, revised).
Subjects who had no complaints of cognition and normal
objective cognitive performances as well as a CDR score of
0 were referred as HCs. The exclusive criteria of participants
were as follows: (1) a history of stroke, traumatic brain injury,
neurological/psychiatric diseases, and other central nervous
system diseases that may lead to cognitive impairment; (2)
major depression (Hamilton Depression Rating Scale score
>24 points); (3) other systemic diseases including thyroid
dysfunction, syphilis, severe anemia, or HIV that may cause
cognitive impairment; (4) addictions or treatments that would
influence cognitive ability; (5) vessel disease included cortical
and/or subcortical infarcts, or WM hyperintensity and lesions;
(6) severe visual or auditory disabilities.

These participants were selected from a larger cohort
(n = 205) and consisted of those who had completed MRI
scanning at baseline and undergone a 2 years longitudinal
follow-up at least once. During follow-up, patients with aMCI
were reclassified as aMCI converters (aMCI-c) or aMCI non-
converters (aMCI-nc) based on whether they were subsequently
diagnosed with dementia. The diagnosis of dementia was
triggered by a change in the CDR score from 0.5 to 1.0 and
confirmed by neuropsychological tests and physician evaluations.
This study included 26 aMCI-c who converted to AD within 2
years and 26 demographically matched aMCI-nc who remained
stable during the follow-up.

All participants underwent regular neuropsychological
assessments, including the Mini-Mental State Examination
(MMSE) (45), Montreal Cognitive Assessment (MoCA) (46),
Auditory Verbal Learning Test (AVLT), CDR (47), Hamilton
Depression Rating Scale (48), and Activities of Daily Living
scale. The study was registered on ClinicalTrials.gov (Identifier:
NCT02225964) and study protocol was approved by XuanWu
Hospital of Capital Medical University institutional review
board, and all participants completed a written informed consent
process before any study procedures. Table 1 summarized the
main demographic and clinical information of all participants.

Data Acquisition
All participants were scanned using a Siemens Trio 3.0 T MRI
scanner at XuanWu Hospital of Capital Medical University.
Participants lay still with their heads fixed by straps and
foam to minimize movement. The T1-weighted images were
acquired using a magnetization prepared rapid gradient echo
(MPRAGE) sequence with the following parameters: repetition
time (TR) = 1,900ms; echo time (TE) = 2.2ms; flip angle = 9◦;
acquisition matrix = 256 × 224; field of view (FOV) = 256 ×

224 mm2; slice thickness = 1mm; no gap; 176 sagittal slices;
and average = 1. The diffusion tensor imaging (DTI) data were
acquired using a single-shot EPI sequence with the following
parameters: TR = 11,000ms; TE = 98ms; flip angle = 90◦;
acquisition matrix = 128 × 116; FOV = 256 × 232 mm2; slice
thickness= 2mm; no gap; 60 axial slices; and average= 3. Thirty
non-linear diffusion weighting directions with b= 1,000 s/mm2

and one b0 image were obtained. All images were reviewed
and the leukoencephalopathy and vascular comorbidity was
evaluated by an experienced neuroradiologist.

Data Preprocessing
First, the DTI data was preprocessed to remove the effect of
eddy current distortion and motion artifact by applying an affine
alignment of the diffusion-weighted images to the reference
b0 image. Then the transformation was applied to reorient
the b-matrix. Second, the diffusion tensor was calculated and
diagonalized to obtain 3 eigenvalues (λ1, λ2, λ3) and their
corresponding eigenvectors. Finally, the FA image was calculated.
The preprocessing procedure was performed with the FMRIB
Diffusion Toolbox (FDT) in FSL (version 5.0, http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FDT).

Brain Network Construction
For each participant, the individual WM structural network was
constructed with the following procedures.

Network Node Definition
To define the network node, we used the Automated Anatomical
Labeling (AAL) atlas to parcellate the brain into 90 regions (49).
Briefly, T1-weighted image was coregistered to the b0 image in
DTI space. Then the transformed T1 images were normalized to
the ICBM152 T1 template in the Montreal Neurological Institute
(MNI) space. Finally, inverse transformations were applied to
AAL atlas to obtain an individual parcellation of 90 ROIs (45
for each hemisphere, Table S1), each representing a node of
the network (Figure 1). All procedures were performed using
the SPM8 software (https://www.fil.ion.ucl.ac.uk/spm/software/
SPM8/).

WM Tractography
Deterministic tractography was performed to reconstruct the
whole-brain fiber streamlines, by seeding each voxel with an
FA >0.2. The tractography was terminated if it reached a
voxel with an FA <0.2 or turned an angle >45 degrees
(50). The tractography was performed using Diffusion Toolkit
(http://www.trackvis.org/dtk/) based on the “fiber assignment by
continuous tracking” method (50).

Network Edge Definition
Between each pair of ROIs, the weight of the edge was defined
as the number of fiber streamlines (FN) with two end points
located in these two regions. Therefore, an FN-weighted 90 ×

90 structural connectivity (SC) network was constructed for each
participant (Figure 1).

Network Analysis
Small-World Properties
Several graph metrics were calculated to quantify the topological
organization of WM structural networks, including network
strength (Sp), global efficiency (Eglob), local efficiency (Eloc),
shortest path length (Lp), clustering coefficient (Cp), and small-
world parameters (λ, γ, and σ) (51). For regional characteristics,
we calculated the nodal global and local efficiency (52). The
detailed definitions of these network measures can refer to (51)
and Supplement 1.
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TABLE 1 | Demographics and neuropsychological testing.

aMCI-c (n = 26) aMCI-nc (n = 26) HC (n = 26) F value P-value

Age (years) 67.7 ± 8.1 (50–78) 67.7 ± 8.3 (50–78) 67.8 ± 8.0 (50–78) 0.01 0.99*

Gender(M/F) 12/14 14/12 13/13 – 0.86#

Education (years) 10.1 ± 5.0 (0–20) 9.4 ± 5.0 (0–18) 11.2 ± 5.4 (0–18) 0.63 0.54*

MMSE 23.1 ± 2.9 (17–28) 25.3 ± 3.5 (18–30) 28.0 ± 2.3 (20–30) 20.29 <0.001*abc

MoCA 17.6 ± 3.1 (10–23) 20.6 ± 4.0 (14–26) 26.5 ± 1.5 (25–30) 58.54 <0.001*abc

AVLT-Immediate Recall 4.8 ± 1.2 (2.7–7.3) 5.8 ± 1.7 (3.3–10.0) 9.3 ± 2.0 (2.7–14.7) 53.07 <0.001*bc

AVLT-Delayed Recall 2.7 ± 2.1 (0–6) 3.5 ± 3.1 (0–11) 10.1 ± 2.8 (4–15) 59.08 <0.001*bc

AVLT-Recognition 6.5 ± 3.9 (−3–13) 7.5 ± 3.7 (0–14) 12.2 ± 2.3 (5–15) 20.22 <0.001*bc

Values are represented as the mean ± SD (range). All of the scores are raw values.

HC, healthy control; aMCI, amnestic mild cognitive impairment; aMCI-c, aMCI converters; aMCI-nc, aMCI non-converters; MMSE, Mini-Mental State Examination (Chinese Version);

MoCA, Montreal Cognitive Assessment (Beijing Version); AVLT, Auditory Verbal Learning Test.

*The P-values were obtained using one-way analysis of variance (ANOVA). Post-hoc pairwise comparisons were performed using a t-test. P < 0.05 was considered significant.
#The P-values were obtained using the Kruskal-Wallis one-way ANOVA.
apost-hoc paired comparisons showed a significant group difference between aMCI-c vs. aMCI-nc.
bpost-hoc paired comparisons showed a significant group difference between aMCI-c vs. HC.
cpost-hoc paired comparisons showed a significant group difference between aMCI-nc vs. HC.

FIGURE 1 | Flowchart for construction of the WM structural network by DTI. (1) Coregistration from an individual T1-weighted image (A) to a DTI b0 image (B). (2)

Nonlinear registration from the T1-weighted image in the native DTI space to the ICBM152 T1 template in the MNI space (D). (3) Application of the inverse

transformation (T−1) to the AAL atlas in the MNI space (E), which results in individual-specific parcellation in the native DTI space (F). (4) The reconstruction of the

whole-brain WM fibers (C) was performed using deterministic tractography in Diffusion Toolkit. (5) The weighted networks of each subject (G) were created by

computing the number of the streamlines that connected each pair of brain regions. The connection matrix and 3D representation (axial view) of the WM structural

network of a representative healthy subject are shown in the right panel. The nodes are located according to their centroid stereotaxic coordinates and the edges are

sized according to their connection weights.

Hub Distribution
To identify the hub distributions of WM networks in each
group, we constructed the backbone network with consistent
edges which exist in over 80% subjects for each group.
Based on the backbone network, we identified the hub
regions by sorting the nodal degree [K(i) > mean + std].
According to the categorization of the nodes into hub and
non-hub regions, the edges were classified into rich-club,
feeder and local connections (21, 22). Finally, the connection
strength of each type of connections were calculated for each
participant.

The graph analyses of brain networks were performed using
the in-house software, GRETNA (http://www.nitrc.org/projects/
gretna/) (53) and were visualized using BrainNet Viewer software
(http://www.nitrc.org/projects/bnv/) (54).

Statistical Analysis
Group Differences
Demographic factors and clinical scores including age, years
of education, and neuropsychological scores among the three
groups were compared using one-way analysis of variance
(ANOVA). Post-hoc pairwise comparisons were then performed
using t-tests. Gender distribution was compared with the
Kruskal-Wallis one-way ANOVA. To determine the group
difference in network metrics, comparisons were performed
with univariate analysis of covariance (ANCOVA). Post-hoc
pairwise comparisons were then performed using a general linear
model. The effects of age, gender and years of education were
adjusted for all of these analyses. For regional properties, multiple
comparisons were corrected by using the false discovery rate
(FDR) correction.
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Network-Based Statistic (NBS)
To identify the specific connected components with significant
different structural connections between each pair of groups,
we used a NBS approach (55). Briefly, a primary cluster-
defining threshold was first applied to identify connections
above threshold, and the size (i.e., number of edges) of all
connected components was determined. For each component,
a corrected p-value was calculated using the null distribution of
maximal connected component size, which was derived using the
permutation approach (5,000 permutations). Notably, multiple
linear regressions were performed to remove the effects of age,
gender and years of education before the permutation tests. The
detailed descriptions of the NBS analyses can refer to (55) and
Supplement 1.

ROC Analysis
To determine the power of the connection strength of
the NBS components to serve as potential biomarkers for
clinical diagnosis of aMCI patients and differentiation between
converters and non-converters, we performed a receiver
operating characteristic (ROC) curve analysis for the strength of
NBS components, which showed significant group differences.

Relationships Between Network Metrics and Clinical

Scores
For the network metrics showing significant group differences,
partial correlation analyses were performed between the network
metrics and clinical scores for aMCI converters and non-
converters separately, while removing the effects of age, gender
and years of education. All the statistical analyses were performed
using the MATLAB program (The MathWorks, Inc.).

Support Vector Machine-Based
Classification
To determine the discriminative ability of structural connectivity
in separating aMCI patients from controls and separating
converters from non-converters, we used the connection strength
of the edges as the features for individual classification. For
each pair of groups, we performed a support vector machine
(SVM) classification, with a Gauss kernel function and the default
settings of C = 1, coef = 0 and gamma as the reciprocal of the
number of features in the LIVSVM Toolbox (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/) (56). Leave-one-out cross-validation
(LOOCV) was used to evaluate the SVM model. Each subject
was designated the test subject in turns while the remaining ones
were used to train the SVM predictor. The hyperplane derived
from the training subjects was then used to make a prediction
about the group label of the test subject. Sensitivity, specificity,
accuracy, and area under the curve (AUC) value were calculated
to assess the performance of the classifier.

To avoid overfitting and reduce the redundant information,
the F-score was calculated for each feature (connection), and the
features with higher F-scores were used to train the model. The
number of selected features (1%−20%with an interval of 1%) was
decided by a grid search. The F-score was defined as (57):
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The radial basis kernel function was defined as:
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where x, z is the feature vector of a different instance; e is the Euler
number, and γ is the hyper-parameter.

Reproducibility Analysis
Effects of Different Thresholds
To test the stability of the results, we constructed individual WM
networks with five different thresholds of fiber number (wij = 1,
2, 3, 4, 5). If the streamline number of an edge was less than the
threshold, the edge weight was set to zero. For each threshold, the
global networkmetrics were computed, and the group differences
were assessed.

Effects of Different Parcellation Schemes
To evaluate the effects of different parcellation schemes on
the network metrics, we further subdivided the low-resolution
AAL (L-AAL) template into 1024 ROIs of equal size [i.e.,
high-resolution (H-1024)] (58). A high-resolution network was
constructed for each participant and followed that with the same
network analysis.

RESULTS

Demographics and Neuropsychological
Testing
No group differences were found in age, gender and years
of education among the three groups. For clinical scores,
aMCI patients showed a lower MMSE [F(2,75) = 20.29,
p < 0.001], MoCA [F(2,75) = 58.54, p < 0.001], and AVLT
scores [AVLT-immediate recall: F(2,75) = 53.07, p< 0.001; AVLT-
delayed recall: F(2,75) = 59.08, p < 0.001; AVLT-recognition:
F(2,75) = 20.22, p < 0.001] than controls. Between the two
aMCI groups, lower MMSE and MoCA scores were observed
in aMCI converters relative to non-converters (all p < 0.05;
Table 1).

Global Topology of the WM Structural
Networks
Characteristic small-world organization of the WM networks
(λ ≈ 1, γ > 1) were observed for both aMCI patients
and control subjects. Among the three groups, ANCOVAs
on the global network properties showed significant group
effects in network strength [F(2,75) = 10.18, p = 0.0001],
global efficiency [F(2,75) = 6.51, p = 0.0025], local efficiency
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TABLE 2 | Group differences in global network metrics.

aMCI-c

(n = 26)

aMCI-nc

(n = 26)

HC

(n = 26)

F value P value

Strength 220.4 ± 46.6 241.0 ± 37.3 268.6 ± 39.6 10.18 <0.001abc

Global efficiency 12.1 ± 2.5 13.0 ± 1.9 14.1 ± 2.1 6.51 0.002bc

Local efficiency 18.3 ± 3.3 19.7 ± 2.6 21.4 ± 3.0 8.05 <0.001abc

Lp (×10−2) 8.66 ± 2.16 7.85 ± 1.24 7.22 ± 1.07 6.40 0.003ab

Cp 0.53 ± 0.03 0.55 ± 0.02 0.55 ± 0.02 5.20 0.008ab

Lambda 1.18 ± 0.06 1.19 ± 0.03 1.19 ± 0.04 0.35 0.71

Gamma 3.21 ± 0.49 3.10 ± 0.30 3.03 ± 0.25 1.92 0.15

Sigma 2.72 ± 0.41 2.61 ± 0.24 2.55 ± 0.21 2.53 0.09

Values are represented as the mean ± SD. Abbreviations: HC, healthy control; aMCI, amnestic mild cognitive impairment; aMCI-c, aMCI converters; aMCI-nc, aMCI non-converters.

Lp, shortest path length; Cp, clustering coefficient.

The P-values were obtained with a univariate analysis of covariance (ANCOVA). Post-hoc pairwise comparisons were then performed using a general linear model. The effects of age,

gender and years of education were adjusted for all of these analyses. P < 0.05 was considered significant.

apost-hoc paired comparisons showed a significant group difference between aMCI-c vs. aMCI-nc.
bpost-hoc paired comparisons showed a significant group difference between aMCI-c vs. HC.
cpost-hoc paired comparisons showed a significant group difference between aMCI-nc vs. HC.

[F(2,75) = 8.05, p = 0.0007], shortest path length [F(2,75) = 6.40,
p= 0.0028] and clustering coefficient [F(2,75) = 5.20, p= 0.0078;
Table 2] (Figure 2). In addition, post-hoc comparisons showed
significantly reduced network strength, global efficiency and local
efficiency in both aMCI converters and non-converters relative
to the controls. Increased shortest path length and decreased
clustering coefficient were found only in aMCI converters
relative to controls. Between aMCI converters and non-
converters, significant group differences were found in network
strength [t(47) =2.28, p = 0.027], local efficiency [t(47) = 2.19,
p = 0.034), shortest path length [t(47) = −2.12, p = 0.039],
and clustering coefficient [t(47) = 2.20, p = 0.033; Table 2;
Figure 2].

Node-Based Analysis
Following the discovery of a disrupted global network
organization, we further localized the regions with altered
nodal global and local efficiency. For nodal global efficiency,
regions with significant group effects were mainly distributed
in the frontal and parietal cortices, including 7 frontal regions
(right dorsolateral superior frontal gyrus, right middle frontal
gyrus, right opercular part of the inferior frontal gyrus, right
triangular part of the inferior frontal gyrus, left anterior cingulate
gyrus, bilateral supplementary motor area) and 3 parietal
regions (left posterior cingulate gyrus, bilateral precuneus)
(p < 0.05, corrected) (Figure 3). Post-hoc tests showed that
all of these regions showed reduced global efficiency in both
aMCI converters and non-converters relative to controls. In
particular, several brain regions showed more severe disruptions
in aMCI converters compared with non-converters, including
the bilateral precuneus, left anterior cingulate gyrus, right middle
frontal gyrus, and right triangular part of the inferior frontal
gyrus (all p < 0.05).

For nodal local efficiency, regions with significant group
effects were mainly distributed in the limbic cortices (bilateral
median cingulate and paracingulate gyri and posterior cingulate
gyrus), temporal cortices (left superior temporal gyrus, right

temporal pole, and bilateral hippocampus), subcortical regions
(left caudate nucleus and bilateral putamen) and right superior
occipital gyrus (p < 0.05, corrected) (Figure 4). All of these
regions had a reduced local efficiency in aMCI converters
compared with controls. In seven of these regions, including the
bilateral putamen, bilateral median cingulate and paracingulate
gyri, left posterior cingulate gyrus, left hippocampus and left
caudate nucleus, reduced local efficiency was observed in
aMCI non-converters compared with controls. Between the two
aMCI groups, four regions (left superior temporal gyrus, right
superior occipital gyrus, right posterior cingulate gyrus, and
right hippocampus) showed a more severe disruption of local
efficiency in the aMCI converters relative to non-converters (all
p < 0.05).

Connectivity-Based Analysis
NBS analyses were carried out to identify the disrupted connected
components in patients. Compared to healthy controls, a
single component with 83 nodes and 177 connections was
altered in aMCI converters (p < 0.001, corrected) and a
component with 73 nodes and 122 connections was detected
in aMCI non-converters (p < 0.001, corrected) (Figure 5A).
The involved regions had a widespread distribution across the
frontal, temporal, parietal, occipital, and subcortical regions.
The comparison between aMCI converters and non-converters
revealed a component with decreased strength in converters,
which was composed of 70 nodes and 81 connections (p < 0.05,
corrected), mainly involving the bilateral precuneus, bilateral
putamen, left anterior cingulate gyrus, right superior parietal
gyrus, left middle temporal gyrus, left paracentral lobule, and left
superior occipital gyrus (Figure 5A).

ROC analyses were performed to evaluate the discriminative
ability of the disrupted component identified by NBS. The NBS
component exhibited good performance for the discrimination
between aMCI converters and healthy controls (with an AUC
value of 0.96), between aMCI non-converters and healthy
controls (with an AUC value of 0.91) and between aMCI
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FIGURE 2 | Global measures of the WM structural network were quantified in the aMCI converters, non-converters, and controls. The bars and error bars represent

the fitted values and the standard deviations, respectively. The fitted values indicates the residuals of the original values of the network metrics after removing the

effects of age, gender and years of education. The asterisk indicated a significant difference between groups. (*) represents a significant group difference at p < 0.05;

(**) represents a significant group difference at p < 0.01; and (***) represents a significant group difference at p < 0.001.

FIGURE 3 | The distribution of brain regions with significant group effects in the nodal global efficiency among the three groups (p < 0.05, corrected). The node sizes

indicate the significance of group differences in the nodal global efficiency. For each node, the bar and error bar represent the fitted values and the standard deviations,

respectively, of the nodal global efficiency in each group. post-hoc tests revealed that all of these regions showed reduced nodal global efficiency in both aMCI

converters and non-converters relative to controls. Several brain regions (5/10) showed more severe disruptions in aMCI converters compared with non-converters,

including the bilateral precuneus, left anterior cingulate gyrus, right middle frontal gyrus, and right triangular part of the inferior frontal gyrus. (*) represents a significant

group difference at p < 0.05; (**) represents a significant group difference at p < 0.01; and (***) represents a significant group difference at p < 0.001.

converters and non-converters (with an AUC value of 0.89)
(Figure 5B).

Rich-Club Organization
Similar hub distributions were found across three groups
(Figure 6A), mainly located in bilateral precuneus, bilateral
putamen, right dorsolateral superior frontal gyrus, left middle
temporal gyrus and several occipital regions. Several brain
regions were identified as hubs only in the control group, such as
bilateral orbital part of superior frontal gyrus. Among the three
groups, significant group effects were identified in the strength
of rich-club [F(2,75) = 6.67, p = 0.0022], feeder [F(2,75) = 7.25,
p = 0.0013] and local [F(2,75) = 9.44, p = 0.0002] connections
(Figure 6B). Compared with healthy controls, aMCI converters
showed significant decreases in all three types of connections (all
p < 0.005) and aMCI non-converters showed decreases in rich-
club [t(47) = 2.06, p = 0.045] and local [t(47) = 2.82, p = 0.007]

connections. Only feeder connections decreased significantly in
aMCI converters compared with non-converters [t(47) = 2.26,
p= 0.028].

Correlations Between Network Metrics
and Neuropsychological Tests
The relationship between network metrics and clinical scores
were examined for aMCI converters and non-converters,
respectively. In aMCI converters: MoCA was positively
correlated with global efficiency (r = 0.41; p = 0.049), and
negatively correlated with shortest path length (r = −0.53;
p = 0.010); MMSE was negatively correlated with shortest
path length (r = −0.43; p = 0.041) (Figure 7A). In aMCI
non-converters: MMSE was positively correlated with network
strength (r = 0.44; p = 0.034) and global efficiency (r = 0.47;
p = 0.022), and negatively correlated with shortest path
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FIGURE 4 | The distribution of brain regions with significant group effects in the nodal local efficiency among the three groups (p < 0.05, corrected). The node sizes

indicate the significance of group differences in the nodal local efficiency. For each node, the bar and error bar represent the fitted values and the standard deviations,

respectively, of the nodal local efficiency in each group. post-hoc tests revealed that all of these regions had a reduced nodal local efficiency in aMCI converters

compared with controls. In seven of these regions, including the bilateral putamen, bilateral median cingulate, and paracingulate gyri, left posterior cingulate gyrus, left

hippocampus and left caudate nucleus, reduced local efficiency was observed in aMCI non-converters compared with controls. Between the two aMCI groups, four

regions (left superior temporal gyrus, right superior occipital gyrus, right posterior cingulate gyrus, and right hippocampus) showed a more severe disruption of local

efficiency in the aMCI converters relative to non-converters. (*) represents a significant group difference at p < 0.05; (**) represents a significant group difference at

p < 0.01; and (***) represents a significant group difference at p < 0.001.

FIGURE 5 | Altered structural connectivity between each pair of groups identified using NBS. (A) Compared to healthy controls, a single component with 83 nodes

and 177 connections was altered in aMCI converters (p < 0.001, corrected) and a component with 73 nodes and 122 connections was detected in aMCI

non-converters (p < 0.001, corrected). The comparison between aMCI converters and non-converters revealed a component with decreased strength in converters,

which was composed of 70 nodes and 81 connections (p < 0.05, corrected). The edge sizes indicate the significance of the between-group differences. (B) ROC

curve of the NBS component between aMCI converters and healthy controls (AUC = 0.96); between aMCI non-converters and healthy controls (AUC = 0.91); and

between aMCI converters and non-converters (AUC = 0.89). (AUC, area under the curve).
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FIGURE 6 | Hub distributions of the WM structural network in the aMCI converter, aMCI non-converter and control groups. (A) The hub nodes are shown in red with

the node sizes indicating their nodal degree. The networks shown here were constructed by averaging the WM connection matrices of all the subjects in each group

with a sparsity of 10%. (B) The group differences in the rich-club/feeder/local connection strengths. The bars and error bars represent the fitted values and the

standard deviations, respectively, of the connection strength in each group. (*) represents a significant group difference at p < 0.05; (**) represents a significant group

difference at p < 0.01; and (***) represents a significant group difference at p < 0.001.

length (r = −0.47; p = 0.025); AVLT-Immediate Recall was
positively correlated with global efficiency (r = 0.43; p = 0.038)
(Figure 7B).

Individual Classification of aMCI
Converters and Non-converters
The results of SVM classification demonstrated good
discriminative ability of structural connectivity in the
differentiation between aMCI patients and controls and
between aMCI converters and non-converters. The ROC curves
for the classification between each pair of groups are shown in
Figure 8A. For the discrimination between aMCI converters
and controls, an AUC value of 1.00 was obtained, with an
accuracy of 98.08%, sensitivity of 100% and specificity of 96.15%.
Between aMCI non-converters and controls, an AUC value
of 0.99 was obtained, with an accuracy of 98.08%, sensitivity
of 100% and specificity of 96.15%. Between aMCI converters
and non-converters, an AUC value of 0.89 was obtained, with
an accuracy of 80.77%, sensitivity of 92.31%, and specificity
of 69.23%. The effects of number of selected features on the
classification accuracy were also evaluated (Figure S1).

The discriminative features for the classification were mapped
onto the regions, which were rendered with the total number
of connections from this region selected as features in the

SVM classification (Figure 8B). For the classification between
aMCI and controls, the most selected features were connections
of the bilateral precuneus, bilateral posterior cingulate gyrus,
right putamen, right thalamus, right dorsolateral superior
frontal gyrus, left orbital part of the inferior frontal gyrus,
and left caudate nucleus. For the classification between aMCI
converters and non-converters, the most contributed features
were connections of the bilateral precuneus, bilateral middle
temporal gyrus, bilateral putamen, right medial superior frontal
gyrus and left triangular part of the inferior frontal gyrus.

Reproducibility of the Findings
Effects of Different Thresholds
For the different thresholds of network construction
(wij = 1,2,3,4,5), similar group differences were found for
network strength, global efficiency, local efficiency, and shortest
path length (all p < 0.05) (Figure S2A).

Effects of Different Parcellation
For the high-resolution (H-1024) network analysis, significant
group effects in network strength [F(2,75) = 10.14, p = 0.0001],
global efficiency [F(2,75) = 9.40, p = 0.0002], local efficiency
[F(2,75) = 6.41, p = 0.0027], and shortest path length
[F(2,75) = 9.30, p= 0.0003] were observed (Figure S2B). Post-hoc
analysis revealed significantly reduced network strength, global
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FIGURE 7 | Clinical correlations of the network metrics in aMCI converters and non-converters. Plots showing the significant correlations between the network

metrics and the clinical scores in aMCI converters (A) and non-converters (B), respectively. The fitted values indicate the residuals of the original values of the network

metrics after removing the effects of age, gender and years of education.

FIGURE 8 | ROC curves of the SVM classification between each pair of groups. (A) ROC curve of the SVM classification between aMCI converters and healthy

controls, AUC = 1.00; between aMCI non-converters and healthy controls, AUC = 0.99; and between aMCI converters and non-converters, AUC = 0.89. (AUC, area

under the curve) (B) Regions to which the structural connections with the most discriminative power in the SVM classification was connected. The color shows the

average number of edges selected as the features in each SVM classification connected to this region.

efficiency, local efficiency and increased shortest path length
in both aMCI converters and non-converters relative to the
controls (all p < 0.05). Between aMCI converters and non-
converters, significant group differences were found in network

strength [t(47) = 2.06, p = 0.044], global efficiency [t(47) = 2.06,
p = 0.044], and shortest path length [t(47) = −2.27, p = 0.028].
The group differences of global networkmetrics were comparable
with those from low-resolution networks.

Frontiers in Neurology | www.frontiersin.org 10 January 2019 | Volume 9 | Article 117817

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sun et al. Brain Connectome Predicts MCI Conversion

DISCUSSION

By combining DTI tractography and graph theoretical analyses,
we demonstrated convergent and divergent topological
alterations of the brain structural connectome in aMCI
converters and non-converters. More severe disruptions of
the structural connectome were identified in aMCI converters,
especially in the DMN regions and connections. Importantly,
the structural connectivity showed good discriminative
ability in the differentiation of aMCI converters and non-
converters, providing potential connectome-based markers
for the early prediction of disease progression in aMCI
patients.

Global Network Disruption Between MCI
Converters And Non-converters
First, we found similar patterns of global network alterations
in both aMCI converters and non-converters. Compared with
healthy controls, aMCI patients showed reduced network
strength, global efficiency and local efficiency, but remained
similar with respect to small-world parameters. These findings
are consistent with our previous graph analysis of brain
structural networks in aMCI patients (26, 27). As a disconnection
disease, lower network global, and local efficiency were related
to the widespread disruption of both long-range and short-
range structural connectivity in aMCI patients, which indicated
the pathological or degenerative alterations of WM in the
early stage of AD. The possible mechanisms of structural
disconnection may be due to cortical amyloid deposition,
neural dysfunction, vascular damage, demyelination and so on
(59–61).

Importantly, compared to aMCI non-converters, converters
demonstrated lower network strength, local efficiency, and
increased shortest path length even at baseline. Lower network
strength was associated with sparse connectivity of brain
networks, which indicated reduced WM integrity in the early
phase of aMCI converters. This finding is in line with the
evidence of more severe disruption of WM connectivity in MCI
converters than non-converters with conventional DTI analyses
(10, 12, 62). In addition, decreased local efficiency is mainly due
to the loss of short-range connections among the neighborhood
regions, and an increased shortest path lengthmay be attributable
to the disrupted long-range connections between remote regions,
which is important for interregional effective integrity or prompt
transfer of information in brain networks and constitutes the
basis of cognitive processes (63). The alteration pattern of WM
networks between converters and non-converters was similar
to that in prior cross-sectional studies, which have identified
network alterations with disease progression in AD and MCI
patients (64–66). More severe disruptions of network properties
in AD patients relative to MCI patients were found. Our study
confirmed these cross-sectional reports of network dysfunction
in AD and MCI and extended those with additional new
findings.

Before disease transition, more severe structural or functional
connectivity alterations already existed in the aMCI converters
compared with non-converters (37–41). From the current study,

we found that the network measures from DTI data are sensitive
enough to detect the topological differences even at baseline,
and correlated with the disease severity evaluated by clinical
scores (MMSE, MoCA, and AVLT-Immediate Recall) in aMCI
patients. Compared with the traditional regional or local brain
measures, brain network studies provide a systematic perspective
to investigate the disease progression and new insights into
understanding the neuropathological mechanisms of disease
conversion. Our results suggest the pivotal role of WM network
disruption in the genesis of dementia and highlight the potential
of a disease marker to identify patients at risk for dementia at an
early stage.

Regional/Connectivity Differences
Between MCI Converters and
Non-converters
Between aMCI patients and controls, significant differences in
nodal global efficiency were mainly located in the bilateral
precuneus, prefrontal cortex, and posterior cingulate gyrus,
consistent with our previous network findings of aMCI patients
(25–27). The reduced nodal global efficiency reflected a disrupted
global integration of the structural connectivity in these regions,
which may be due to more severe disconnection in AD-
related hub brain regions concentrating most of the amyloid
deposition (30, 31, 67–69). Furthermore, relative to aMCI
non-converters, aMCI converters showed reduced nodal global
efficiency in the bilateral precuneus, left anterior cingulate gyrus
and right middle frontal gyrus, the regions that belong to
the default mode network (DMN), which overlap with brain
regions in distribution of early accumulation of cortical Aβ

fibril (70), as well as to the pattern of hypometabolism found
on FDG-PET studies (71) and of hypoperfusion on resting
MR perfusion studies of AD patients (72). A functional MRI
study has suggested the significant predictive value of DMN
connectivity in predicting the disease progression to AD in MCI
patients (73). Amyloid accumulation started from the DMN
and was correlated with hypoconnectivity of the DMN (70).
The association between amyloid accumulation and cognition
was found to be influenced by functional connectivity of
the DMN (74). Moreover, a prior DTI study has suggested
that an increased amyloid burden is related to changes in
topology of WM network architecture in MCI and AD patients
(60), suggesting that pathological propagation affects large-
scale functional and structural brain networks with disease
progression. Notably, the most significant differences between
converters and non-converters were located in the bilateral
precuneus; as one of the most important regions of the DMN,
the precuneus plays a critical role in memory processing and
AD progression. A previous structural MRI-based network
study has found that betweenness centrality of the precuneus
is associated with cognitive decline (75), which may suggest a
key role of the precuneus in the disease conversion of aMCI
patients.

Meanwhile, group differences in nodal local efficiency
were mainly located in the bilateral hippocampus, middle
and posterior cingulate gyri, superior and middle temporal
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gyri, which were characteristic AD-signature regions (9).
Previous neuroimaging studies have also reported the structural
or functional alterations in these brain regions in AD
and MCI patients (27, 76–78). Reduced local efficiency of
these regions may reflect local impairment in functional
segregation of episodic memory, which may be related to the
structural disruptions of short-range connections within the
memory network which centered on the hippocampus (79–
81). Relative to non-converter, reduced nodal local efficiency
in the left superior temporal gyrus, right hippocampus and
right superior occipital gyrus were found in aMCI converters.
These regions were also identified as features for predicting
progression to AD in MCI patients based on amyloid-
PET (82).

Similar hub distributions were found across three groups,
which were consistent with previous findings (27, 83). Hubs
play a pivotal role in global information transfer and seem to
be vulnerable and preferentially affected in AD patients (29).
In our study, both hub and non-hub regions showed decreased
efficiency and all categories of edges showed lower strength in
aMCI patients. Between aMCI converter and non-converters,
only feeder connections showed progressive disruption. We
speculate that aMCI initiates with a widespread disruption
of WM connectivity, and alterations in feeder connections
may be with important predictive value for the disease
progression.

Machine learning approaches for the individual prediction of
disease progression Identifying sensitive and early biomarkers
for the individual prediction of disease progression is important
for early disease diagnosis and precise medicine. Machine
learning approaches with big multimodality data provide a
promising area for future intelligent computer-aided-diagnosis
(84). For AD and MCI, a number of previous studies
have tested different imaging, CSF or neuropsychological
measures for the early prediction of disease conversion (9,
85–87). Based on the brain structure connectome and SVM
classification, we obtained a high classification accuracy of 98%
between aMCI patients and controls. Even between converters
and non-converters, the accuracy can reach 81%, which is
comparable and even higher than previous results (10, 12,
14, 38, 42, 88). This finding suggested the potential utility of
brain structural connectivity/connectome-based markers for the
individual prediction of disease conversion, which may provide
biologically relevant information not present in other imaging
markers.

Methodological Issues
Several methodological issues should be addressed. First, the
results were limited by the small sample size. In the future studies,
several large publicly available datasets, such as ADNI, should be
used as an independent cohort for validating the reproducibility
of our findings. Second, we only identified abnormalities
in patients with aMCI converters and non-converters at
baseline, and longitudinal follow-up studies of the same study
population are needed to verify the effects of early imaging

markers for disease prediction. Third, we only studied WM
structural networks. In future studies, the combination of the
multimodal imaging and conventional pathological biomarkers
would contribute to a more comprehensive prediction of the
progression from aMCI to AD dementia. Finally, some newly
developed network analysis approaches, such as multiplex
networks, can help early AD classification (33). These approaches
deserve a further investigation in future studies.

CONCLUSIONS

By using DTI tractography combined with graph analysis,
our study demonstrated more severe disrupted topological
organization of brain structural connectome in aMCI
converters compared with non-converters, providing potential
connectivity/connectome-based biomarkers for the early
prediction of disease progression in aMCI patients.
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Functional magnetic resonance imaging of body odors is challenging due to

methodological obstacles of odor presentation in the scanner and low intensity of body

odors. Hence, few imaging studies investigated neural responses to body odors. Those

differ in design characteristics and have shown varying results. Evidence on central

processing of baby body odors has been scarce but might be important in order to

detect neural correlates of bonding in mothers. A suitable paradigm for investigating

perception of baby body odors has still to be established.We compared neural responses

to baby body odors in a new to a conventional block design in a sample of ten normosmic

mothers. For the new short design, 6 s of continuous odor presentation were followed

by 19 s baseline and 13 repetitions were performed. For the conventional long design,

15 s of pulsed odor presentation were followed by 30 s of baseline and eight repetitions

were performed. Neural responses were observed in brain structures related to basal

and higher-order olfactory processing, such as insula, orbitofrontal cortex, and amygdala.

Neural responses following the short design were significantly higher in comparison to the

long design. This effect was based on higher number of repetitions but affected olfactory

areas differently. The BOLD signal in the primary olfactory structures was enhanced by

short and continuous stimulation, secondary structures did profit from longer stimulations

with many repetitions. The short design is recommended as a suitable paradigm in order

to detect neuronal correlates of baby body odors.

Keywords: fMRI design, olfaction, olfactory fMRI, body odor, baby odor, body odor perception

INTRODUCTION

Neural processing of social stimuli has been well studied for the senses of vision and audition, but
examination of interpersonal human chemosensation is just in the beginning due to challenges
related to the olfactory system.

The detection of reliable neural activations to odors is complicated due to the anatomical
structures of the olfactory system and methodological obstacles related to the presentation of
olfactory stimuli (1). We briefly outline those challenges.

Central olfactory processing occurs in several stages [compare (1)]. Olfactory signals coming
from the olfactory bulb (OB) pass on to the basal frontal and medial temporal lobe. Thereby, the
piriform cortex, the amygdala, the perirhinal and entorhinal cortices receive parts of the incoming
information from the OB (2). Those areas are commonly considered as primary olfactory areas (3).
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From there, olfactory information is further processed in
secondary structures, such as the anterior insula, hippocampus,
hypothalamus, and orbitofrontal cortex (OFC). In contrast to
other modalities, olfactory processing is characterized by direct
pathways projecting into primary and secondary structures
without passing through the thalamus first. Due to the subcortical
structures involved in olfactory processing, the detection of
olfactory signals in functional magnetic resonance imaging
(fMRI) is challenging. The olfactory system is surrounded by
the frontal and the paranasal sinus, and the acoustic meatus
containing various tissues (bones, vessels, air) with different
magnetic field homogeneity characteristics (1). Those make this
system especially sensitive to susceptibility artifacts and limit
signal detection in the mediobasal parts of the brain. Although
well-adjusted fMRI sequences can reduce those artifacts, a
systematic overview of the most suitable procedures is still
missing.

Another difficulty in olfactory fMRI is the odor presentation:
stimulus concentration and duration are typically operated by
computer-controlled olfactometers, which are stationed outside
the scanner and deliver odors via several meters of tubing to
the participants’ nose. Thus, presenting precise stimulus onsets
is challenging. Particular devices, e.g., portable olfactometers,
facilitate stimulus presentation, as they allow the odors to be
placed close to the MRI scanner or within the scanning room
[e.g., (4)].

Besides that, the rapid adaptation to olfactory stimuli needs
to be considered (1) and the length of the olfactory stimulation
period as neural oscillations occurring after a longer stimulation
time may affect the signal (5).

In addition to those general challenges of olfactory fMRI,
the stimulation with body odors has particular demands: Body
odors are generally weak and not easily producible or storable in
high concentration as compared to other, e.g., liquid odorants.
Typically, clothes worn by the subject serve as body odor stimuli,
but the amount of odor molecules within such a piece of
clothing is limited. This weaker concentration of molecules may
explain the weaker neural activation compared to other olfactory
stimuli.

Further, the field of studies investigating neuronal
processing of body odors is small and lacks conventions
about optimal designs. To our knowledge, only four original
fMRI investigations on body odor perception exist (compare
Table 1). Two used a block design with about 20 s of pulsed odor
presentation (6, 7); the other two used an event-related design
with about 3 s of continuous odor presentation (8, 9). All four
studies report weak activations in general and in some studies
the expected olfactory areas were not observed at all. Further
studies based on positron emission tomography [PET, (10, 11)],
or near infrared spectroscopy [NIRS; (12)] report similar, and
again, weak effects (see Table 1).

Besides olfactory areas, both the anterior and the posterior
cingulate cortex (ACC, PCC) have been associated with body
odor perception (6, 10) and it was supposed that the processing
of endogenous (body-) odors differs from exogenous odors
and activates other brain areas apart from the olfactory system
(10).

To our knowledge, only two imaging studies have investigated
baby body odor perception in mothers [fMRI: (7); NIRS: (12)].
Baby body odors are subtle which implicate that investigations
and the detection of strong neural effects are especially
challenging. The present study was conducted in order to
investigate which design characteristics are particularly suitable
for imaging neural responses to baby body odors.

We designed a new, short block presentation paradigm aimed
to account for rapid adaptation (by shortening odor presentation
time to 6 s) and for weak neural responses following body
odors (by increasing the number of stimulus repetitions). We
compared this to a long block design, which follows recent
recommendations (1) with 15 s of odor presentation; hereby the
odor presentation was performed in a pulsed way to overcome
adaptation. Our targeted outcome was the strength of neural
activation in olfactory relevant brain areas depending on the
design. According to previous results, we focused our analysis
on the anterior insula, the OFC, the piriform cortex and the
thalamus, as well as on the ACC and PCC. We furthermore
included the amygdala and the hippocampus as regions of
interest (ROI) which are frequently activated in response to odor
presentation.

MATERIALS AND METHODS

The ethics committee of the University of Dresden (Code: EK
104032015) approved the conduction of the study according
to the “World Medical Association’s Declaration of Helsinki.”
Written, informed consent was obtained from all participants.

Participants
Our sample consisted of 10 healthy, normosmic mothers (aged
27 to 39 years, M = 32.2; SD = 4.7) having a child under
the age of 2 years (aged 10 to 15 months, M= 10.30, SD =

4.22). Normosmic functioning was ensured with a Sniffin’ Sticks
identification screening (13). This study was done as a pilot
measurement for a larger project.

Magnetic Resonance Imaging Procedures
Functional magnetic resonance data were acquired on a Siemens
3T scanner SONATA with an 8-channel head coil using
a protocol with a T2∗-weighted gradient-echo, echo-planar
imaging sequence (TR = 2.5 s, TE 51ms, flip angle 90◦, 25mm
× 6mm axial slices, 3.6 × 3.6mm in-plane resolution). In order
to receive a precise anatomical mapping of the functional data,
a high resolution T1 sequence (TR = 2.5 s, 0.7 × 1mm in-
plane resolution) was added. The scanning planes were oriented
parallel to the anterior-posterior commissure line and covered
olfactory relevant regions from the cerebellum up to the dorsal
end of the cingulate cortex. As all areas dorsal to the cingulate
cortex were no regions of interest in the present study, we decided
to limit the scanned area of axial sections from the brain stem up
to the cingulate cortex (z = 45 at y =−80 to z = 20 at y = 60) in
order to enhance the repetition time and to allow for more scans
during the session.
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Body Odor Sampling and Presentation
Procedure
Body odor samples were collected with onesies worn for
one night by the babies after a standardized procedure (see
Supplementary Material). The armpit of the onesie was stored
in a glass bottle connected with teflon tubes (5m length) to the
air-dilution computer controlled olfactometer (4).

Two different designs of odor presentation were used. Both
lasted for the same time of 6min, but differed in the duration,
mode, and number of repetitions of odor presentation within
(Supplementary Figure 1). This was done in order to match
previous design characteristics which used either block designs
with long pulsed stimulus presentation (6, 7) or event-related
designs with short continuous presentation (8, 9).

Hence, we used a long pulsed block design and compared this
to a short odor presentation. The short was similar to previous
event-related designs in terms of a short continuous presentation
but differed as we did not jitter and randomize the olfactory
stimuli within the run. We refrained from that in order to not
over complicate the comparison with additional variables as
study power was limited.

In the long design, 8 on-blocks of 15-s each in which the
odor was delivered were followed each by 8 off-blocks of 30-
s each. Due to the long on-blocks, a pulsed odor presentation,
where 2 s of air followed every 1 s of odor presentation, was
used in order to minimize adaptation and habituation to the
odors. In the short design, 13 on-blocks in which the odor was
continuously delivered for 6 s were followed each by 13 off-
blocks of 19 s each. Each paradigm was tested with two different
stimuli in randomized order: the body odor of the own baby
and an unfamiliar sex- and age-matched child, resulting in four
runs in total. During baseline, clean air was presented. As the
main focus of the present study was to compare the design
paradigms, the effect of baby body odor was merged across own
and unfamiliar baby for statistical analysis. Single results of own
and unfamiliar child are provided in Supplementary Tables 3, 4.
Before the experiment, participants were instructed to breathe
regularly through the nose as follows: “You are presented to
baby body odors, one of which is your child. Please, breathe
regularly and smoothly as normally through the nose.” After
each run, participants rated pleasantness, intensity, and wanting
of the odor stimuli on a Likert-scale ranging from 1 = “not
pleasant/intense/not at all” to 10 “very pleasant/intense/very
much.” Pleasantness and wanting reflect different characteristics
of reward (14). Wanting thereby indicates the incentive value of
the stimulus and was assessed with the item asking “How much
would you like to smell the odor again?,” whereas pleasantness
displays the hedonic aspect and was assessed by the question
“How pleasant is this odor?” In addition, the mothers were asked
if the presented odor belonged to their own child (“yes/no/I
don’t know).” Answers of the behavioral ratings are provided in
Table 2.

Data Analysis
Data was analyzed with SPM 12 (Wellcome Trust Center for
Neuroimaging, London, UK, implemented in Matlab R2014b;
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MathWorks, Inc., Natick, MA, USA). The preprocessing was
done identically for both designs with the default settings used
in SPM 12 and comprised realignment with 2nd degree B-
spline, unwarping with 4th degree B-spline, and co-registration
by segmentation fitting to the individual T1 volume. The images
used for analyses were spatially normalized (stereotactically
transformed into MNI ICBM 152-space) and smoothed with a
Gaussian kernel of 6mm FWHM.

For the first level analyses, we started with the two sessions
performed with the short design: The full 13 stimulation periods
were contrasted to the full (13 × 6 s = 78 s) subsequent off-
period (13 × 19 s = 247 s, compare Supplementary Figure 1).
We named this contrast “shortfull.”

For both sessions performed with the long design, the whole
on-period (8 × 15 s = 120 s) was contrasted to the whole
subsequent off-period (8× 30 s= 240 s). We named this contrast
“longfull.”

As the short design comprised more repetitions than the long
design, we performed an additional analysis. In order to match
the number of repetitions between both designs, we analyzed only
the first 8 on- and off–blocks from both sessions. We named this
contrast “shortreduced.”

As the long design was characterized by longer stimulus
delivery than the short design, an additional analysis was
performed. In order to match the stimulation duration, only
the first half of the on-period was used (8 × 7.5 s = 60 s)
and compared to the whole subsequent off-period (compare
Figure 1). We named this contrast “longreduced.”

For the second level analyses, four t-contrasts with one-
sample t-tests were computed for the overall effect of the baby
odor (on-period merged across own and unfamiliar baby vs.
off period, clean air) for each design and analysis approach
(shortfull, longfull, shortreduced, longreduced) in order to detect
general activations related to the odor presentation across all
subjects.

As the main aim of this study was not the determination
of neural activations, but the exploration of the best suitable
design characteristics, the comparison between both designs was
based on the signal strength within a given ROI. ROI analyses
were performed for the following regions: Anterior insula,
OFC, amygdala, hippocampus, ACC, PCC, piriform cortex, and
thalamus. ROIs were built with WFU Pick Atlas 3.0.3 (15)
toolbox for SPM (for details, see Supplementary Material). ROI
analyses were performed contrasting the effect of the baby body
odor to the baseline condition. For each ROI in each design
(apart from the ACC and the piriform cortex where no supra
threshold activations were observed), the mean beta signal across
all subjects was extracted for a 4mm sphere around the peak
voxel using MarsBar (16).

Subsequently, a generalized linear mixed model (GLM) was
performed (IBM SPSS Statistics 25) in order to test the effect
of the design on the signal strength. Each participant (n = 10)
served as an individual, each stimulus (own and other baby) and
each ROI (anterior insula, OFC, amygdala, hippocampus, PCC,
thalamus) served as repeated measurement. The extracted mean
beta signal was used as target for the main effect of the design
across all ROIs.

We contrasted the new to the conventional design (shortfull
vs. longfull). Afterwards, we systematically compared the different
analysis approaches to each other in order to specify whether this
effect was based on the number of repetitions, duration (length of
stimulation period) or mode (continuous or pulsed stimulation)
of the presentation. For effect sizes, we calculated Cohen’s d.
Results within the ROIs are descriptively reported.

In order to explore additional activations following baby
odor stimulation, a whole-brain analysis was performed for
the strongest design (shortfull). The effect of baby body odor
(merged across own and unfamiliar baby) was contrasted to
the baseline with a threshold of p < 0.001 (uncorrected) and
a cluster extent threshold of k > 20 (Supplementary Table 2,
Supplementary Figure 1). Analyses of the single effects of each
baby body odor (own baby vs. baseline; unfamiliar baby vs.
baseline) are presented in the Supplementary Material (compare
Supplementary Tables 3, 4, Supplementary Figure 2).

RESULTS

ROI Analyses
There were superior BOLD signal activations in the short design
compared to the long design across all ROIs [shortfull vs. longfull:
F(1,22) = 8.67, p = 0.007, d = 0.34, see Figure 1]. We aimed to
systematically compare whether this effect was based on number
of repetitions, duration, or mode of presentation.

The comparison between the longfull to the shortreduced design
indicated an effect of the number of repetitions: When both
designs had the same number of repetitions, the short was not
superior to the long design anymore [F(1, 13) = 1.74, p = 0.220).
The comparison of the shortfull to the longreduced design indicated
no effect of stimulation duration: When both designs had the
same duration, the short was still superior to the long design
[shortfull vs. longreduced: F(1, 159) = 15.61, p < 0.001, d= 0.24).

Thus, the observed superiority of the short design could be
either due to number of repetitions or to themode of presentation.
In order to explore this further, we statistically compared
the designs changing the parameter of interest (number of
repetitions, mode, duration) and keeping the other two elements
constant:

The direct comparison of number of repetitions, when
keeping duration and mode constant, did not show a significant
effect across the ROIs [shortfull vs. shortreduced: F(1, 18) = 0.01, p
= 0.922]. Visual inspection revealed a differential effect: A high
number of repetitions led to lower BOLD signal in amygdala
and hippocampus, but to higher signal in secondary structures,
namely the OFC and PCC (Figure 1).

The direct comparison of mode when keeping number of
repetitions and duration constant, did not show a significant
effect across all ROIs [shortreduced vs. longreduced: F(1, 21) =

1.59, p = 0.221]. Visual inspections showed a more differential
effect, so that continuous presentation led to a higher signal
in all ROIs except for the PCC and the anterior insula
(Figure 1).

The direct comparison of duration when keeping number of
repetitions and mode constant, did not show a significant effect
across the ROIs [longfull vs. longreduced: F(1, 41) = 0.67, p= 0.419].
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FIGURE 1 | Peak activations displayed for each ROI and each design. Beta mean values (baby body odor vs. baseline) extracted for a 4mm sphere around the peak

value (RH, right hemisphere; LH, left hemisphere, and MNI coordinates are displayed in square brackets) of each ROI and for each design across all subjects (n = 10).

Please note in the anatomical visualization, that peak activations may have occurred on different hemispheres. Error bars display 95% CI.

Visual inspection showed—again—a more differential effect: a
reduced duration of stimulation led to higher signal in amygdala,
hippocampus and anterior insula, but to lower signal in the OFC
(Figure 1).

Whole Brain Analyses
Whole brain analysis was performed for the paradigm with the
strongest neural activation (shortfull) and revealed rather weak
responses in a total of four significantly activated areas, namely
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the superior temporal gyrus (STG), the OFC, the brain stem, and
the anterior insula (compare Supplementary Table 1).

DISCUSSION

Our results demonstrated superior activations in the short
compared to the long design across ROIs. Systematic analyses
revealed differential effects on olfactory areas depending on
number of repetitions, duration, and mode of the stimulation.
The clearest results were observed for the amygdala: for this
structure, considered as part of the primary olfactory cortex
(3), it seems beneficial to design body odor stimulation with
fewer repetitions per run, shorter duration, and continuous
presentation. We assume that this effect is due to the rapid
habituation and adaptation in primary olfactory areas (17). To
overcome the early habituation and preserve power, we suggest
a higher number of short runs. Alternatively, stimulation with
long and jittered inter-stimulus intervals can be recommended,
though this will increase the total duration of the design.

For subsequent and later habituating structures, namely
the OFC, many repetitions and long stimulation seem to be
beneficial. Such an approach was implemented in the long design.
However, great care has to be exerted in order to achieve a
sufficient number of repetitions with this design. An optimal
combination of long stimulation and high number of repetitions
should be weighed. Based on our data we suggest 15 s of
stimulation and at least 13 repetitions.

Taken together, our study showed diverse effects on different
brain areas. A reduced stimulation duration for instance led to
stronger signal in amygdala, hippocampus, and anterior insula,
but to weaker signal in the OFC. This matches previous research
showing that BOLD signal of hippocampus and anterior insula
have similar time courses, while the BOLD signal time course of
the OFC is delayed (17). The authors attributed this to the high
interconnections, which result in similar patterns between the
former structures. The OFC receives likewise direct input from
primary olfactory areas (3). Additional incoming information via
the thalamic pathway may explain its prolonged response (17).
Hence, particular design characteristics should be considered
with regard to the areas of interest.

A recent study (5) suggested a benefit of a high number of
repetitions and short stimulation duration due to oscillations
in the neural signal, which only occur after longer duration.
Our study partly supports this assumption, as the combination
of short and continuous stimulation with higher number of
repetitions showed strongest activations. Yet, this effect could not
be linked to the short duration, but rather to differential effects
on primary or secondary structures depending on the respective
combination of design characteristics.

The comparison in our study refers only to a block design.
The short design was in fact similar to an event-related design
in terms of short continuous stimulation alternating with
rather long off-periods (8, 9). However, the stimuli were not
randomized within a run; the stimulation was longer than in

conventional event-related designs and on-off-periods alternated
in the same interval. Further research comparing the short with a
randomized and jittered design might be informative.

We are aware that the explanatory power of the study is
limited due to the small sample size. However, we like to
briefly review the additional results. Beyond the olfactory regions,
presentation of baby body odors activated the PCC, as well as
the STG. The PCC has been related to social chemosignaling
(10), which matches our findings. As the STG is important
for social cognition (18), the observed activation in our study
might be referred to the social relevance of the baby odor
stimuli.

The smell of the own baby is crucial for mother-child
interactions and facilitates kin recognition and bonding in many
species. In humans, higher reward-associated neural responses
to baby body odors were observed in mothers compared to
non-mothers (7) and it was suggested that maternal bonding is
moderated by olfactory cues. The present study aimed to work
out a suitable design for the detection of neural correlates to baby
body odors. It provides the ground to examine the differences of
neural processing of body odors from the own vs. other children.

CONCLUSION

There is no common paradigm for the detection of neural
correlates to body odor perception and the few studies performed
in this area showed diverse results. The present study was
conducted in order to find optimized design paradigms for
presenting baby body odors in the fMRI and results may transfer
to general body odor perception. As the short design revealed
superior activations, we recommend this as a time-efficient and
effective paradigm.
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Kazan Federal University, Kazan, Russia

This study presents the first implementation of functional ultrasound (fUS) imaging

of the spinal cord to monitor local hemodynamic response to epidural electrical

spinal cord stimulation (SCS) on two small and large animal models. SCS has been

successfully applied to control chronic refractory pain and recently was evolved to

alleviate motor impairment in Parkinson’s disease and after spinal cord injury. At present,

however, the mechanisms underlying SCS remain unclear, and current methods for

monitoring SCS are limited in their capacity to provide the required sensitivity and

spatiotemporal resolutions to evaluate functional changes in response to SCS. fUS

is an emerging technology that has recently shown promising results in monitoring

a variety of neural activities associated with the brain. Here we demonstrated the

feasibility of performing fUS on two animal models during SCS. We showed in vivo spinal

cord hemodynamic responses measured by fUS evoked by different SCS parameters.

We also demonstrated that fUS has a higher sensitivity in monitoring spinal cord

response than electromyography. The high spatial and temporal resolutions of fUS

were demonstrated by localized measurements of hemodynamic responses at different

spinal cord segments, and by reliable tracking of spinal cord responses to patterned

electrical stimulations, respectively. Finally, we proposed optimized fUS imaging and

post-processing methods for spinal cord. These results support feasibility of fUS imaging

of the spinal cord and could pave the way for future systematic studies to investigate

spinal cord functional organization and the mechanisms of spinal cord neuromodulation

in vivo.

Keywords: functional ultrasound, spinal cord, hemodynamic responses, spinal cord injury, ultrafast imaging,

electrical stimulation

INTRODUCTION

Over the last decades, epidural electrical spinal cord stimulation (SCS) was successfully
implemented to help patients with chronic intractable pain (1–3). Meanwhile, SCS was
reported as a promising alternative strategy to alleviate symptoms of motor impairments for
multiple sclerosis (4, 5) and Parkinson’s disease (6–9), and to improve motor (10–14) and
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autonomic functions (15) in patients with spinal cord injury.
The therapeutic effects of SCS rely on the stimulation parameters
used (intensity, frequency, pulse width, burst vs. continuous
stimulation, electrode configuration, etc.). At the same time, the
mechanisms and neural structures through which SCS inhibits
chronic pain and enables motor control remain unclear, although
several hypotheses were supported by computational simulations
(16–18) and data, primarily obtained from electrophysiological
recordings (19, 20). Electromyography (EMG) is widely used as a
diagnostic tool for neuromuscular disease and a research tool for
disorders of motor control. However, the EMG signal is limited
and can provide one-dimensional information concerning the
activation of spinal cord neurons. In this context, a combination
of emerging, innovative techniques providing high spatial and
temporal resolution, and electrophysiology techniques could
provide critical information on mechanisms of SCS and further
facilitate optimizations of SCS protocols. Spatial and/or temporal
resolution of available functional imaging tools, such as PET
and MEG, are far below what is required for evaluation of
the spinal cord functional changes during SCS. Although the
spatial resolution of functional magnetic resonance imaging
(fMRI) reaches submillimeter with ultra-high magnetic field
(21, 22), the size of MR machine can be prohibitive for an
intraoperative monitoring.

Functional ultrasound (fUS) imaging has the potential to
complement these techniques at low cost. fUS is an emerging
method that leverages the novel ultrafast plane wave imaging
technique and the neurovascular coupling effect to monitor
hemodynamic responses of tissue associated with neural activities
(23). Ultrafast plane wave imaging allows acquisition and

accumulation of ultrasound data at 10–20 kHz frame rate,
significantly boosting the Doppler sensitivity to small vessels for
fUS imaging (24–26). The rich spatiotemporal information of

ultrafast plane wave data also allows implementation of more
robust and intelligent tissue clutter filters based on singular value
decomposition (SVD) (27–29), further improving the sensitivity

of monitoring small vessel hemodynamic responses for fUS. In
contrast to fMRI which responds to both hemodynamic and
metabolic variations, fUS is only sensitive to hemodynamic

effects (23, 30). Therefore, interpretations of fUS results are
not confounded by the complex interactions between the
hemodynamic and metabolic effects (31). As compared to
other imaging techniques, fUS has higher spatial and temporal
resolutions and also potentially can be performed on freely
moving animals with miniaturized transducer size for long-term
and real-time monitoring (32, 33). This opens new directions
for potential applications of fUS, since currently there is no
available technique that could evaluate functional changes in
spinal cord in real-time in vivo. fUS could help in evaluation of
hemodynamic response during electrode placement in order to
optimize leads location for neuromodulation therapies and for
intraoperative monitoring of spinal cord hemodynamics during
surgical procedures. Finally, fUS may help to generate important
information about spinal cord functional organization, and
particularly, could help to trace circuitry response during
pharmacological interventions and neuromodulation.

One disadvantage of fUS is that ultrasound cannot effectively
penetrate through the bone. Therefore, fUS typically requires
removal or thinning of the skull to access the targeted tissue such
as brain (23, 31). Nevertheless, fUS has demonstrated promising
results in monitoring a wide range of brain activities involved
with visual, auditory, olfactory, and motor functions (23, 34–36),
imaging brain intrinsic connectivity (37), and measuring brain
activities of humans including neonates (38) and during surgery
(39). A comprehensive review of current preclinical and clinical
applications of fUS was recently published in (40).

To the best of our knowledge, this is the first attempt
of implementing fUS to study the effect of spinal cord
stimulation in animal models. Here we present a methodology
and work flow, including the optimized subpixel motion
registration, SVD-based clutter filtering, and hemodynamic
response quantification, to validate the feasibility of using fUS
to examine the SCS response. The capability of the proposed
work flow was tested on two species (rat and swine). Specific
spinal cord hemodynamic responses associated with different
SCS parameters were evaluated, including different voltages, and
stimulation patterns.

MATERIALS AND METHODS

Experimental procedures were approved by the Mayo Clinic
Institutional Animal Care and Use Committee. The National
Institutes of Health Guidelines for Animal Research (Guide
for the Care and Use of Laboratory Animals) were observed
rigorously. Animals were kept in controlled environment (21◦C,
45% humidity) on a 12-h light/dark cycle.

Rat Study Procedure
Sprague-Dawley rats (3 males, 325–350 gr, ad libitum access
to water and food) were anesthetized with isoflurane (1.5–3%).
Laminectomies were performed at T13-L2 and the spinal cord
was exposed. Two Teflon coated stainless steel wires were placed
at T13 and L2 and sutured on dura (corresponding approximately
to L2 and S1 segments of the spinal cord). Small windows were
opened between T11-L12 and L3-L4 allowing wires to be passed
under the T12 and L3 vertebrae. A small notch (0.5mm) facing
the spinal cord was made on the Teflon coating, serving as the
stimulating electrode. Breathing motion was minimized by fixing
the spine using a custom-made frame composed of a clamp
holding the Th12 spinous process and two pieces retracting
back muscles on both sides. Additionally, two rods were secured
over the coxal bones in order to hold up the pelvic girdle.
Dorsal skin flaps were attached around the frame to form a
pool facilitating transducer positioning (Figure 1). SCS consisted
of 0.5ms squared pulses delivered at 40Hz in monopolar or
bipolar configurations. Two reference electrodes were inserted
bilaterally in back muscles. EMG signals were recorded using
dual needle electrodes (Medtronic, Memphis, TN) inserted
bilaterally in tibialis anterior (TA) and gastrocnemius (GAS) hind
limb muscles. Warm saline solution (1.5ml) was administered
S.C. every 2 h. At the end of the experiment, animals were
euthanized using pentobarbital (150 mg/kg I.P.).
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FIGURE 1 | fUS imaging setup for the spinal cord stimulation study on a rat

model. (A) Optical image of the positioning of the fUS transducer on the spinal

cord. (B) Optical image of the targeted imaging region of the spinal cord with

the fUS transducer removed. A similar setup was used for the swine study.

Swine Study Procedure
A domestic white swine (male, 8 weeks old, 25 kg, ad libitum
access to water, fed once daily) was initially anesthetized
using a mixture of telazol (5 mg/kg) and xylazine (2 mg/kg
I.V.). Anesthesia was maintained using isoflurane (1.5–3%). For
analgesia, fentanyl (2–5 mg/kg/h) was administered throughout
the experiment. Similar surgical procedures as described in the
previous section were performed in swine (41). Two Teflon
stainless steel wires were placed onto L4 and L5-L6 and sutured
on dura after laminectomies were performed at L1-L6. Back
muscles were retracted and the spine stabilized using 4 blunt tip
rods that attached the spine to a custom-made frame. SCS was
delivered at 40Hz, 0.5ms pulse width in bipolar configuration.
A reference electrode was inserted in the back muscles. Needle
electrodes (Medtronic, Memphis, TN) were inserted bilaterally
in TA and GAS hind limb muscles to monitor EMG responses
during SCS. At the end of the experiment, the subject was
euthanized (sodium pentobarbital 100 mg/kg I.V.).

fUS Imaging Setup
A Verasonics Vantage ultrasound system (Verasonics Inc.,
Kirkland, WA) and a Verasonics high frequency linear array

transducer L22-14v (Verasonics Inc., Kirkland, WA) with center
frequency of 15 MHz were used in this study. Figure 1 shows
the fUS imaging setup. The fUS transducer was positioned on
the spinal cord between the rostral and caudal electrodes. An
imaging field-of-view (FOV) was carefully selected to align with
the longitudinal dimension of the spinal cord and intersect with
the central canal (Figure 1B). The position of the fUS transducer
was fixed throughout the study. A thin layer of mineral oil
was added between the fUS transducer and the spinal cord for
acoustic coupling.

An ultrafast compounding plane wave imaging-based fUS
imaging sequence was developed for the study. As shown in
Figure 2A, five steered plane waves (−4 to 4◦, with 2◦ of step
angle) were transmitted with each steering angle repeatedly
transmitted three times to boost signal-to-noise-ratio (SNR).
This compounding scheme has an equivalent SNR performance
to a conventional 15-angle compounding sequence, but reduces
the beamforming computational cost by a factor of 3 (32).
The pulse repetition interval was 35 µs (corresponding to a
pulse repetition frequency (PRF) of 28.6 kHz), and the total
time cost for transmitting and receiving all 15 transmissions
was 525 µs. To satisfy a post-compounding PRF of 500Hz, a
1,475 µs no-op time was added to each group of compounding
transmissions (Figure 2A). After coherent compounding (24),
high quality ultrasound data was obtained (Figure 2B) and used
as Doppler ensembles for future processing. A total of 200
Doppler ensembles (400ms duration) were collected within each
second to produce one power Doppler (PD) image per second
(Figure 2C). For the rat experiment, a total of 120 s of fUS data
was collected (corresponding to 24,000 frames of high frame-
rate ultrasound data) for each trial of SCS, including 30 s of
baseline measurement, 20 s of ES measurement, and 70 s of
recovery measurement. Five trials were repeated for each SCS
configuration. For the swine experiment, a total of 30 s of fUS
data was collected (6,000 frames), including 5 s of baseline, 15 s
of stimulation, and 10 s of recovery. Five trials were repeated for
each SCS configuration.

For data synchronization with the SCS and EMG
measurements, the Verasonics system was programmed to
send a trigger-out signal at the beginning of each second when
the first steered plane wave was transmitted. The trigger-out
signal was recorded together with the SCS and EMG signals
for post-processing.

fUS Post-processing Steps
Motion Correction
To facilitate accurate fUS measurements of hemodynamic
responses, we developed a robust and fast sub-pixel motion
correction algorithm to remove tissue motion induced by
breathing and SCS. Motion correction was applied both on the
original high frame-rate ultrasound data before clutter filtering
(e.g., Figure 2B), and on the PD images after clutter filtering
(e.g., Figure 2C). The motion correction method was based on
the principles of phase correlation-based sub-pixel registration
introduced in (42). Briefly, the method by Foroosh et al. (42)
derived an analytical solution of the phase correlation function
between images that are shifted by non-integer number of pixels
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FIGURE 2 | fUS imaging sequence based on ultrafast compounding plane wave imaging. (A) Schematic plots of the steering angles of the plane waves and the

corresponding low-quality plane wave images. The time axis indicates the imaging frame rate. A no-op was added to the end of each group of compounding angles

to satisfy a post-compounding frame rate of 500Hz. (B) Post-compounding high-quality ultrasound data with an effective PRF of 500Hz. Each high quality image is

compounded from 15 steered plane wave images (5 angles × 3 repetitions for each angle). (C) Power Doppler images obtained after the motion correction and clutter

filtering processing steps. Each PD image was generated from 200 Doppler ensembles (i.e., the high-quality post-compounding ultrasound data shown in B). The final

fUS imaging frame rate was 1Hz (that is, one PD image per second). The depth and width of the images are 9.86 and 12.8mm, respectively.

(1x, 1z), and presented a method of using the main peak
and side peaks of the inverse Fourier transform of the phase
correlation function (C) to calculate the sub-pixel displacement:

1x =
C(1,0)

C(1,0)± C(0,0)

1z =
C(0,1)

C(0,1)± C(0,0)
(1)

where C(0,0) indicates the main peak (i.e., location of the
pixel with highest positive pixel value) and C(1,0) and C(0,1)
indicates the side peaks (i.e., location of the pixel with second
highest positive pixel value) along x-dimension and z-dimension,
respectively. To improve the robustness of Equation (1) for
ultrasound applications, we added additional measurements of
1x′ and 1z′ using the main peak and side peaks with highest
negative pixel value:

1x′ =
C(−1,0)

−C(−1,0)± C(0,0)

1z′ =
C(0,− 1)

−C(0,− 1)± C(0,0)
(2)

Then an average sub-pixel displacement was calculated using
the results from Equations (1) and (2). Other available sub-pixel
motion estimation algorithm, such as the one presented in (43)
and the normxcorr2.m function in MATLAB, require heavy up-
sampling of ultrasound signals in order to measure the sub-
pixel motion between frames. In fUS imaging, this up-sampling
procedure is extremely computationally expensive due to the
large amount of ultrasound data acquired in temporal dimension.
In contrast, the sub-pixel motion estimation algorithm used in
this study does not require up-sampling and involves Fourier
transform, which can be executed at extremely fast speed.
Therefore, the computational cost can be greatly reduced with
the method used in this study.

To further improve the robustness of sub-pixel displacement
estimation and suppress false calculations, as shown in Figure 3,
a tissue velocity curve (Figure 3B) was first derived by taking a
derivative of the original displacement curve (Figure 3A). Then a
tissue velocity thresholding (cutoff was determined empirically as
2 mm/s for this study) was applied to the velocity curve to reject
high speed values, followed by an integral calculation to recover
the displacement curve (Figure 3C). False displacement could be
effectively removed by this process. This additional step was only
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FIGURE 3 | (A) Original displacement curve with false displacement

calculations. (B) Taking the derivative (i.e., velocity) of the displacement curve,

and applying a tissue velocity threshold. (C) Integral of the velocity curve after

rejection of large tissue velocities to remove the false displacement

calculations.

applied to the original high frame-rate ultrasound data, not to the
PD images.

Finally, to avoid creating the streaking artifacts associated
with applying a phase-shift to the Fourier spectrum (due
to bandlimited data), the gridded data interpolation (e.g.,
“griddedInterpolant.m” function in Matlab) was used to register
the moved ultrasound frames.

Tissue Clutter Filtering
The spatiotemporal SVD-based ultrasound clutter filter was used
in this study to suppress tissue clutter and extract micro-vessel
signals (27–29). Here we used the combination of an accelerated
SVD method (44) and a noise equalization technique (45) for
tissue clutter filtering. For the first 200 ultrasound ensembles in
each trial, a full SVD was calculated to determine a low-cutoff
singular value threshold for tissue rejection (28) and derive a
noise field for noise equalization (45). The same low-cutoff value
and noise field were used for the rest of the ultrasound data in the
trial. Figure 4 shows the PD images after the motion correction
and the clutter filtering process for the rat spinal cord (Figure 4A)
and the swine spinal cord (Figure 4B).

Spinal Cord Hemodynamic Response Calculation

and Measurement
Ultrasound Power Doppler signal measures the backscattering
power of the moving blood, which reflects the blood volume at
the interrogated location (e.g., each imaging pixel) (46). Here
we define the spinal cord blood volume change (1SCBV) as the
percentage of power Doppler (PD) signal variation compared to
the baseline:

1SCBV =
PDstim − PDbaseline

PDbaseline
× 100%

A Savitzky-Golay smoothing filter (47) (window length =

11, order = 1) was applied to the 1SCBV measurement for
each imaging pixel along the temporal direction to remove
noise. 1SCBV measurements with amplitude smaller than
twice the standard deviation of the baseline fluctuations
were rejected. The remaining 1SCBV measurements were

FIGURE 4 | Power Doppler (PD) images of the rat spinal cord (A) and the swine spinal cord (B) post SVD clutter filtering.
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FIGURE 5 | (A) Spinal cord hemodynamic response maps during SCS. Color map indicates the spinal cord blood volume change (1SCBV). A movie of the SCS

response is provided in Supplemental Video 1. (B) Selection of regions-of-interest (ROIs) for local 1SCBV assessment. (C) Indications of quantitative SCBV

measurements derived for SCS response.

color-coded and superimposed on the PD images (Figure 5A,
Supplemental Videos 1, 2 for spinal cord hemodynamic
response with and without SCS).

For quantitative local 1SCBV measurements, four regions-
of-interest (ROIs) were selected for the rostral-dorsal, rostral-
ventral, caudal-dorsal, and caudal-ventral sections of the spinal
cord (Figure 5B). For each section, the average 1SCBV was
calculated using all pixels inside the ROI for each time point.
Then the five 1SCBV curves from the five repeated SCS
trials were averaged and smoothed (by Savitzky-Golay filter
with 5th order and 21-sample window length) for quantitative

measurements, as indicated by the blue and the orange curve
in Figure 5C, respectively. Four parameters including the peak
response, ascending slope of the response curve (i.e., response
rate), area under the response curve (AURC), and the recovery
time were derived from the 1SCBV curve. For the response rate,
a linear fitting was performed on the ascending portion of the
1SCBV curve to calculate the slope (indicated by the yellow
curve in Figure 5C). To determine the end point of the SCS
response and spinal cord recovery, a linear fitting was performed
on the descending portion of the 1SCBV curve, and the point
where the fitted line intersects with the zero 1SCBV axis was
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FIGURE 6 | (A–C) Spinal cord hemodynamic response maps (A,B) and corresponding EMG recordings (C) from the GAS muscle at different SCS voltages.

Corresponding fUS movies of the SCS response were provided in Supplemental Videos 2, 3, respectively. (D) Mean spinal cord response (dorsal) curves from

different SCS voltages averaged from five trials. The error bars indicate standard deviation.

used as the end recovery point (indicated by the cross sign in
Figure 5C). The time interval between peak response and end
recovery point was calculated as the recovery time. Finally, the
total area under the curve between the onset of SCS and the
end recovery point was calculated as AURC, which reflects the
total spinal blood volume variations within the imaging FOV in
response to SCS.

RESULTS

Effect of SCS on Spinal Cord
Hemodynamic Change vs. Muscle Neuro
Electrophysiological Change
Figure 6 shows the spinal cord hemodynamic responses to SCS
on a rat model (rat #1) with different stimulation voltages (1.8

and 1.0V) at 40Hz SCS frequency. SCS at 1.8V produced a clear
EMG response reflected in the hemodynamic response maps and
response curve (Figures 6A,C,D, and Supplemental Video 3).
On the other hand, 1.0 V SCS did not produce a visible
EMG response and only a weak response curve was observed
primarily in dorsal part of the spinal cord (Figures 6B–D,
and Supplemental Video 4). From these results, one can clearly
see that higher SCS voltages produced stronger spinal cord
hemodynamic responses. Figure 7 shows that all quantitative
spinal cord response measurements at different sections were
decreased with stimulation at lower voltage. At the same time,
for both 1.8 and 1.0V of stimulation hemodynamic changes
were higher at the dorsal compared to the ventral part of the
spinal cord. Increasing SCS voltage also increased hemodynamic
responses in the ventral parts of the spinal cord across
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FIGURE 7 | Quantitative spinal cord hemodynamic response measurements

with two different SCS voltages. Measurements were obtained from averaged

SCS response curves from 5 trials using the method indicated in Figure 5C.

AURC, Area under the response curve.

different segments, which correlates with the EMG observations
in Figure 6C.

A gradually increased SCS voltage, from 0.4 to 1.2V, was
applied to another rat (rat #3). Supplemental Figure 1 shows
the monotonic and linear relationship between the measured
1SCBV and 1EMG at different SCS voltages. 1EMG denotes
the increase in root-mean-square (RMS) of EMG signal during
stimulation compared to its baseline. In our experiments we
observed that different rats had different tolerance and reaction
threshold to electrical stimulation. Even for the same rat, the
reaction threshold could also vary with different stimulation
frequency and electrode configuration. Results presented in
Supplemental Figure 1 was collected from a different rat to the
results in Figure 6, therefore distinct voltages were used.

Spatial Analysis of SCS Evoked Spinal
Cord Hemodynamic Response
Figure 8 shows the quantitative spinal cord hemodynamic
responses to SCS categorized by different sections of the
spinal cord. The main difference in hemodynamic changes with
SCS was found between activation of the dorsal and ventral
part of the spinal cord with higher activity in the dorsal
part across all tested segments. The difference between rostral
and caudal hemodynamics was less prominent, with higher
hemodynamic response on rostral segments (where the electrode
was placed). These results are in agreement with observations in
Figures 6A,B, where the rostral-dorsal section of the spinal cord
had the highest blood volume increase during the stimulation.

Spinal Cord Hemodynamic Response to
Patterned SCS
Figure 9 shows the results of fUS monitoring of spinal cord
response under a patterned SCS (rat #2). The patterned SCS
consists of three ON-OFF SCS cycles, with each cycle containing
a 20-s ON period and a 10-s OFF period with the SCS frequency
40Hz and amplitude 0.6V in bipolar configuration (Figure 9A).
Compared to the result in Figure 6, a lowered stimulation
voltage was used here, as the motor response threshold was
different among animals and with varied SCS parameters and
electrode configurations. From Figure 9B, one can clearly see
the variations of spinal cord blood volume following the ON-
OFF pattern of SCS. Inadequate recovery time was given between
consecutive SCS periods, and consequently the spinal cord blood
volume could not return to baseline value until the patterned SCS
was OFF. Simultaneous EMG response is shown in Figure 9C.
Supplemental Video 5 shows one representative movie of the
patterned SCS response in a rat model.

Feasibility Study on Swine Model
Figure 10 shows the results of the effect of SCS on hemodynamic
changes in the swine spinal cord. A 40Hz bipolar stimulation
was used with a stimulation voltage of 10V. Higher stimulation
voltage was used in the swine model compared to the rat
model due to differences in SCS thresholds for these two
species. Supplemental Video 6 shows the movie of the swine
spinal cord response. Similar to the results observed in
the rat study, the swine spinal cord showed well-correlated
hemodynamic responses to the SCS. As shown in Figure 10 and
Supplemental Video 6, similar to the rat study, the dorsal spinal
cord had significantly higher blood volume increase than the
ventral spinal cord.

DISCUSSION

An optimized work flow of using fUS to map local spinal cord
hemodynamic response during epidural electrical stimulation
was presented in this article. The proposed methodology was
applied on two animal species for feasibility and capability
validation. Although not a systematic study, the preliminary
results presented here demonstrated great potential of fUS

Frontiers in Neurology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 27938

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Song et al. fUS Imaging for Spinal Cord

FIGURE 8 | Spatial analysis of spinal cord hemodynamic response. (A) dorsal vs. ventral SCS response; (B) rostral vs. caudal response. AURC, Area under the

response curve.

FIGURE 9 | (A) Schematic plot of the patterned SCS. (B) fUS monitored

spinal cord response averaged from 5 trials. Error bar indicates standard

deviation. (C) EMG recording from the GAS muscle. The fUS response movie

can be found in Supplemental Video 4.

in monitoring and evaluating the spinal cord’s hemodynamic
response during epidural electrical stimulation in vivo.

In order to save the computational cost associated with
motion correction, the sub-pixel motion registration algorithm
was used in this study. This fast algorithm cannot correct for
non-rigid tissue motion which may occur in in vivo studies.
This may result in residual tissue motion that may cause false
spinal cord response measurements which produces fluctuations
of fUS-measured spinal cord response.

In this study, we investigated the spinal cord hemodynamic
response which was compared with electrophysiological
measurements during spinal cord epidural stimulation.
Compared to other functional imaging techniques, fUS provides
superior spatiotemporal resolutions that allow investigation
of local spinal cord responses even in small models like rat
and monitoring the time-varying spinal cord responses evoked
by SCS. Our data also suggest that fUS is a more sensitive
technique than commonly used electrophysiological assessment
such as EMG and can evaluate subthreshold to motor response
level of SCS.

The main objective of this study was to test the feasibility
and capability of using fUS to examine the epidural stimulation
evoked specific changes in spinal cord hemodynamics, measured
in the lumbosacral spinal cord segments. During in vivo
experiments in small (rat) and large (swine) animal models,
epidural stimulation produced significant blood volume changes
in spinal cord with clear specificity to the different areas of
the spinal cord. Specific anatomical organization of the spinal
cord vasculature with anterior and posterior spinal arteries
divides the spinal cord into two areas, providing relatively
independent blood supply for ventral and dorsal parts of
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FIGURE 10 | Snapshots of the fUS movie of the swine spinal cord response to SCS. The movie is provided in Supplemental Video 5.

the spinal cord (48–51). This difference between dorsal and
ventral parts, although evident from anatomical studies, to
our knowledge has not been correlated with the functional
organization of the spinal cord until now. Comparison between
right and left side of the spinal cord (rostral vs. caudal regions)
was also important to assess the level of asymmetry in activation
of spinal cord afferents, which could be functional or related to
anatomical position of the electrode on the spinal cord.

In order to provide good control over the position of the
fUS transducer and to reduce motion artifacts, this study was
conducted on anesthetized animals. Accordingly, our current
findings cannot reflect the full spectrum of spinal cord responses
that can be observed in awake animals. For example, isoflurane
anesthesia, used in this study, could affect vascular response by
causing vasodilation (52).

One limitation of fUS is the motion artifacts induced by
physiologic activities such as breathing and movement, which
could affect data collection and may require sophisticated
stabilization of the vertebral column and mechanical isolation
from the muscles. Another limitation is direct placement
of the fUS transducer on the spinal cord, since ultrasound
cannot penetrate the vertebra, which is an obstacle for this
technique in clinical translation. However, non-invasive fUS

with microbubble-enhanced Power Doppler technique has been
reported recently (40, 53), where fUS could be performed with
intact skull bone. This non-invasive form of fUS imaging can
be adopted and evaluated for spinal cord imaging in the future.
Also, this limitation of removing vertebra could be potentially
solved with miniaturization of the devices and development of
implantable transducers.

Current information on spinal cord functional organization
is primarily comes from electrophysiology experiments with
intracellular or extracellular recordings or based on activity
recorded in selected nerves or muscles. Using these approaches
previous studies showed that spinal circuitry is highly sensitive
to different modalities of afferent information, which determines
immediate and long-term changes and complex mechanisms
such as plasticity and neuroregeneration (54–56). Studies
performed on acute decerebrated cats (57) suggest that epidural
vs. intraspinal stimulation can activate different spinal cord
networks with important role of sensory information in their
modulation. The extensive convergence of afferent information
on different types of neurons produces significant limitations
in understanding of spinal circuitry organization with available
electrophysiological tools in real-time (58, 59). Evaluation of
spinal cord hemodynamic changes with fUS is a novel and highly
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sensitive tool that could help to provide information about real-
time spinal cord activity across multiple segments and improve
our understanding the spinal cord functional organization in
vivo. As a proof-of-concept work, this study was only performed
on a small and a large animal model. Massive and thorough
investigations will be conducted in the future to explore the
potentials of clinical translation.

CONCLUSIONS

The importance of understanding the physiological and
pathological mechanisms of the spinal cord hemodynamic
regulation is critical for diagnostics, for clinical monitoring, and
for developing novel therapies and new rehabilitation protocols.
The results of the present study indicate that epidural stimulation
can cause spinal hemodynamic changes related to complex
neuronal activity of spinal circuitry in both small and large
animal models. This study presents the first implementation
of fUS to explore functional organization of the spinal cord
hemodynamics and provides results on correlations between
SCS induced neural activities and local hemodynamics changes.
The fUS measurements indicate temporal and spatial resolutions
not achievable by other electrophysiological methods. Future
studies on modulation of neuronal activity and hemodynamic
response with spinal cord stimulation will help to address critical
questions about spinal cord functional organization in intact
spinal cord and its acute and chronic changes related to different
pathological conditions.
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Supplementary Figure 1 | Spinal cord hemodynamic response and EMG to a

gradient voltage.

Supplementary Video 1 | Five trials of spinal cord hemodynamic response to

electrical stimulation on a rat model.

Supplementary Video 2 | Silent spinal cord hemodynamic response to an OFF

electrical stimulation on a rat model.

Supplementary Video 3 | Spinal cord hemodynamic response to a 40 Hz, 1.8 V,

Monopolar electrical stimulation on a rat model.

Supplementary Video 4 | Spinal cord hemodynamic response to a 40 Hz, 1.0 V,

Monopolar electrical stimulation on a rat model.

Supplementary Video 5 | Spinal cord hemodynamic response to a patterned

electrical stimulation on a rat model.

Supplementary Video 6 | Spinal cord hemodynamic response to a bipolar

electrical simulation on a swine model.
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Why is Clinical fMRI in a Resting
State?

Erin E. O’Connor* and Thomas A. Zeffiro*

Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD,

United States

While resting state fMRI (rs-fMRI) has gained widespread application in neuroimaging

clinical research, its penetration into clinical medicine has beenmore limited.We surveyed

a neuroradiology professional group to ascertain their experience with rs-fMRI, identify

perceived barriers to using rs-fMRI clinically and elicit suggestions about ways to

facilitate its use in clinical practice. The electronic survey also collected information about

demographics and work environment using Likert scales. We found that 90% of the

respondents had adequate equipment to conduct rs-fMRI and 82% found rs-fMRI data

easy to collect. Fifty-nine percent have used rs-fMRI in their past research and 72%

reported plans to use rs-fMRI for research in the next year. Nevertheless, only 40% plan

to use rs-fMRI in clinical practice in the next year and 82% agreed that their clinical fMRI

use is largely confined to pre-surgical planning applications. To explore the reasons for the

persistent low utilization of rs-fMRI in clinical applications, we identified barriers to clinical

rs-fMRI use related to the availability of robust denoising procedures, single-subject

analysis techniques, demonstration of functional connectivity map reliability, regulatory

clearance, reimbursement, and neuroradiologist training opportunities. In conclusion,

while rs-fMRI use in clinical neuroradiology practice is limited, enthusiasm appears to

be quite high and there are several possible avenues in which further research and

development may facilitate its penetration into clinical practice.

Keywords: rs-fMRI, network, individuals, FDA, CPT code, ASFNR, survey

INTRODUCTION

Techniques for quantifying spatial and temporal brain activity have developed rapidly since the
first demonstrations that MRI could be used to measure modulations in blood oxygen level
dependent (BOLD) tissue contrast (1). The observation that MRI could be used to monitor
temporally correlated low-frequency activity fluctuations in spatially remote brain areas led to
widespread use of resting state functional magnetic resonance imaging (rs-fMRI) to evaluate resting
state network (RSN) properties. While BOLD-contrast is an indirect measure of neural activity,
similar inter-regional coherent spontaneous neural activity correlations have been observed
with electrophysiological techniques (2), suggesting that rs-fMRI networks can provide useful
information about the macroscopic organization of neural processing systems. The methods and
possible uses of rs-fMRI have recently been reviewed (3, 4).

Establishing that rs-fMRI can identify spontaneous brain activity patterns resembling those seen
with tasks (5) has led to its widespread acceptance, and a rapid expansion in rs-fMRI publications.
Nearly 10,000 rs-fMRI papers are currently listed in PubMed. The most rapidly developing type
of functional connectivity research involves investigations of disease-related group differences
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in brain network structure, enabled by the relative simplicity of
data collection from large samples. As a result, atypical resting-
state connectivity has been demonstrated in a wide range of
neuropsychiatric disorders, including epilepsy, schizophrenia,
attention deficit hyperactivity disorder, Alzheimer’s disease,
stroke, and traumatic brain injury.

rs-fMRI has several advantages over task-fMRI in clinical
contexts. First, data acquisition is less complex. Second, if
mapping multiple neural systems is needed, rs-fMRI can
identify them simultaneously, saving time. Finally, rs-fMRI can
be performed in individuals unable to cooperate for fMRI
tasks, such as young, sedated, paralyzed, comatose, aphasic,
or cognitively impaired patients. In addition to its utility in
detecting changes in group network properties, rs-fMRI can also
be used to detect individual differences (6–10).

Although the first reports of rs-fMRI clinical applications
appeared 10 years ago (11), rs-fMRI use in clinical
neuroradiology practice remains in a nascent stage, limited
mainly to pre-surgical planning (4, 12) and is typically
performed in conjunction with task-fMRI. Given the rapid rise
and widespread use of rs-fMRI in neuroimaging clinical research,
it might be expected that rs-fMRI would already be widely used in
clinical practice, particularly in academic centers. Nevertheless,
this is not the case and the reasons for the relatively weak
penetration of rs-fMRI methods into neuroradiology practice
are not entirely clear. To determine attitudes toward the use of
rs-fMRI use in neuroradiology research and practice, we recently
queried the American Society for Functional Neuroradiology
(ASFNR) membership. In this article we will discuss the results
of this survey, covering opinions about the current state of
rs-fMRI acquisition, analysis, and interpretation methods. We
then address existing barriers to using rs-fMRI in clinical practice
and propose possible solutions, presenting examples of typical
group and individual subject rs-fMRI analyses using public
domain data.

METHODS

After obtaining a human subjects research exemption, an
invitation to participate in a 20 item electronic survey was sent
to ASFNR members to collect information concerning their use
of rs-fMRI in clinical research and practice, demographics, and
work environment. Responses were collected using 5-point Likert
items and deidentified prior to analysis.

Because a majority of respondents expressed concerns that
substantial analysis and interpretation problems need to be
solved before rs-fMRI can be widely used in clinical practice,
we next explored examples of typical rs-fMRI analysis variations
using the publicly available NYU CSC TRT dataset (www.
nitrc.org/projects/nyu_trt), processed using the CONN Toolbox
(13), a popular open-source rs-fMRI analysis program (www.
nitrc.org/projects/conn). In one example, we explored the serial

Abbreviations: BOLD, blood oxygen level dependence; rs-fMRI, resting state

functional magnetic resonance imaging; ASFNR, American Society of Functional

Neuroradiology; RSNs, resting state networks; ICA, independent component

analysis; ROI, region of interest.

influence of time series preprocessing algorithms on language
network detection using an inferior frontal gyrus ROI. Effects
of applying global signal regression, incorporating head motion
estimates, using anatomical CompCorr, and outlier elimination
were examined in a group level analysis of 25 healthy participants.
Next, we explored the effects of denoising on single participant
data. The exercise revealed large effects that processing variations
can have on the detection of domain-specific maps at the
group or single-subject level. These results are presented in the
discussion of existing barriers related to increasing rs-fMRI use
in clinical practice.

RESULTS

The response rate was 24% (71/294). Of these, the majority
were involved in both clinical and research activities. Twenty-
one percent were female. Eighty-seven percent held MD, MBBS,
or MD PhD degrees; the others were PhDs. Only two of the
respondents were exclusively involved in research. The median
time since training was 12 years.

Ninety-two percent of the ASFNR respondents reported
having adequate MRI equipment to conduct rs-fMRI and 82%
indicated that rs-fMRI was relatively easy to collect.

Eighty percent reported using task-fMRI and 59% reported
using rs-fMRI in their past research. Seventy-two percent
reported plans to use rs-fMRI for research in the next year.
Yet, only 40% agreed, or strongly agreed, that they would
use rs-fMRI in clinical practice in the next year. Eighty-two
percent of respondents agreed or strongly agreed that task-fMRI
and rs-fMRI clinical use are largely confined to pre-surgical
planning, mentioning seizure focus detection as other promising
application. Thirty-two percent agreed, or strongly agreed, that
rs-fMRI is currently useful in pre-surgical planning and 68%
agreed, or strongly agreed, that it will be useful in future surgical
planning (Supplement Table 1).

While respondents expressed strong interest in rs-fMRI
clinical applications, they expressed concerns that may explain
its lack of penetration into clinical practice. For example,
66% agreed, or strongly agreed, that rs-fMRI data are difficult
to analyze. Twenty-four percent expressed concern about the
reliability and reproducibility of rs-fMRI in identifying canonical
brain networks. Seventy-seven percent agreed, or strongly agreed,
that there are substantial analysis problems to be solved before
rs-fMRI can be widely used in clinical practice. In addition,
77% agreed, or strongly agreed, that there are substantial
interpretation problems to be solved before rs-fMRI can be
widely used in clinical practice (Figure 1).

DISCUSSION

In summary, while most respondents had experience with fMRI
in both clinical and research contexts, have adequate MRI
systems at their institutions and are relatively enthusiastic about
incorporating rs-fMRI into clinical protocols, a number of
concerns appear to be slowing the translation of rs-fMRI from
research to practice. Some barriers to rs-fMRI implementation
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FIGURE 1 | Survey responses.

in clinical practice, and possible ways to circumvent them, are
addressed below.

Barrier 1: Precision Medicine Agenda
Functional MRI used in research settings typically averages
participant data in order to detect differences in regional task
effects between clinical and healthy groups. In clinical medicine,
however, diagnostic inferences and treatment recommendations
are made for single cases.

As most publications describe acquisition and analysis
methods optimized to detect between-group effects, better
methods to characterize rs-fMRI maps in individuals are needed.
Acquisition technology advances, such as higher magnetic field
strength, multi-channel coils, and faster image acquisition have
led to substantial sensitivity improvements, making the study of
individual resting state networks possible (14).

One simple way to improve network detection sensitivity is
to lengthen scan time. While some canonical RSNs, such as the
default mode or sensorimotor networks, can be reliably detected
at the group level using 5–6min scans, longer sampling times,
on the order of 12–30min, can substantially improve detection
of networks exhibiting lower average connectivity (15, 16).
Since rs-fMRI data is dominated by physiological noise, longer
sampling times with short TRs allow more effective physiological
denoising and more sensitive neural signal detection. While
most analysis techniques assume static connectivity effects
between pairs of network nodes, dynamic connectivity
estimates can benefit even more from longer sampling times.
Dynamic connectivity analysis, while relatively new to rs-fMRI,
holds promise in providing quantitative estimates of time-
varying connection phenomena that may be altered in brain
disease (17).

Variance in intrinsic connectivity contributed by cognitive
state and mood, rather than disease effects, may be responsible

for individual network structure variation (18). Nevertheless,
moderate-to-high test-retest reliability of rs-fMRI indices
challenges these concerns (19). In addition, longer sampling
times, as discussed above, can facilitate detection of individual
static network structure in the face of moderate dynamic
variations in connectivity.

While rs-fMRI is currently being used for preoperative
planning in a few centers (20), other clinical applications are
not as common. High within-subject reproducibility of RSNs
suggests that they might serve as biomarkers for monitoring
disease progression in individual patients (21).

Finally, tools comparing individual to group maps are needed.
Structural templates based on normative data sets that take
into account age, sex, magnetic field strength, and data quality
have been developed (22). Standardizing rs-fMRI acquisition
protocols, then collecting normative comparative data, would
greatly facilitate rs-fMRI clinical use by allowing comparison of
individuals to age, sex, and IQ adjusted norms. For example, a
clinically relevant target, the left hemisphere language network,
when identified using a left inferior gyrus ROI, exhibits
substantial between-subject variability, even when averaging
across three collection sessions (Supplement Figure 1). Of
greater concern is the fact that the majority of patients referred
for pre-surgical mapping have space occupying lesions that
distort both local and global anatomy, making mapping
to standard anatomical spaces difficult or impossible using
conventional spatial normalization techniques. Moreover,
slowly growing tumors may dynamically alter inter-regional
connectivity, making comparisons to functional group maps
derived from healthy participants difficult to interpret. In
pre-surgical planning, precisely determining the details of
how an individual patient’s functional anatomy differs from a
typical spatial distribution may be important in determining
treatment recommendations.
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Barrier 2: Diversity of Measures
Numerous methods can characterize regional intrinsic
connectivity, including ROI->ROI correlations, ROI->voxel
correlations, independent component analysis (ICA) of
canonical networks, dynamic functional connectivity analysis,
and graph theory analysis [see (3, 23) for recent reviews].
These different connectivity modeling techniques may measure
fundamentally different aspects of inter-regional coupling.

It is also unclear which connectivity measures are sensitive
to specific pathologies and therefore are most appropriate to
particular clinical questions. ROI->ROI analysis is useful for
identifying low spatial resolution network properties and is
computationally efficient due to the low number of correlations
computed. ROI->voxel approaches reveal more spatial detail,
at the cost of greatly increased calculation time. Voxel->voxel
methods, such as ICA, are the most computationally demanding,
but do not require a priori anatomical assumptions, and thus
may be better suited for exploratory studies of network structure
(14). In addition, techniques for ICA network identification have
not been standardized and are quite sensitive to specification
of the maximum number of identified components. Increasing
the maximum number can cause large networks to split
into smaller subsets. A major limitation of network analysis
methods based on graph theory metrics is that group sizes
larger than 40–50 are required to obtain stable estimates of
network properties using short acquisition protocols, making
them difficult to use in characterizing individual patients (24).
Nevertheless, novel indices, like the hub disruption index, may
be useful in characterizing an individual’s relationship to a group
(25). For all of these techniques, compensating for anatomical
distortion from space occupying lesions presents a substantial
analytical challenge.

Barrier 3: Reliability and Reproducibility
Recently, there has been growing concern about the reliability
and reproducibility of biomedical research (26). Our survey
demonstrates that the neuroradiology community shares this
concern with respect to rs-fMRI.

Identifying reliable and reproducible canonical brain
networks has received great attention in the rs-fMRI literature,
with studies showing reproducible networks in both adults and
children (27, 28). Yet, the neuroradiology community remains
uncertain about how these findings translate to individual
patients. More individual participant test-retest studies may be
needed to address this area of uncertainty.

Large test-retest data sets, focusing on rs-fMRI from over 36
laboratories around the world, have been made publicly available
by the Consortium for Reliability and Reproducibility (CoRR)
through the International Data-sharing Neuroimaging Initiative
(29). The individual scans composing the large aggregate
dataset have been collected using different acquisition parameters
and experimental designs, allowing investigators to assess rs-
fMRI reliability and reproducibility. In addition, the impact
of commonly encountered artifacts, such as motion, on inter-
individual variation can be explored (29). Publicly available
datasets from the NIH supported Human Connectome Project
(http://humanconnectome.org) are also being used to evaluate

the reliability of rs-fMRI and functional connectivity summary
measures (30).

In addition, there have not yet been any large scale validation
studies to determine if the cognitive domains commonly mapped
using intraoperative cortical stimulation can be identified using
rs-fMRI. Most rs-fMRI validation studies compare to task-fMRI
results, which are expected to have better specificity for specific
functions, making simple comparisons difficult. Comparisons
between cortical stimulation and other functional imaging
modalities have previously shown good between modality
correspondence (31), suggesting that this strategy may be useful.

Barrier 4: rs-fMRI Analysis Issues
While a majority of survey respondents indicated that rs-fMRI
data are relatively easy to collect, the majority also believed that
rs-fMRI data are relatively difficult to process.

Resting state data analysis can be time intensive and, therefore,
not always feasible during a typical demanding day on clinical
service. Automatic transfer of images to a clinical image archiving
system, followed by automated analysis, could facilitate clinical
workflows. One popular analysis program, the CONN Toolbox
(13), while well suited for automated analysis of group rs-fMRI
data, has limited options for single subject statistical analysis.
Nevertheless, a CONN Toolbox script optimized for clinical use
and running on a typical laboratory computer requires 10–15min
to process data from a single subject, in addition to the time
required to transfer images from PACS. Other toolboxes designed
for clinical practitioners, such as CLINICA (32), are not yet
widely used, but do hold promise for single subject analysis.

Hemodynamic signal artifacts resulting from physiological
noise, including head motion, cardiac pulsation, and respiratory
effects can severely compromise efforts to detect regional
modulations in neural activity.

Participant head motion is particularly problematic, as it
can bias estimated activity correlations between regions. Visual
examination of a participant’s scan immediately after completion,
using a movie loop, allows a clinician to repeat scans when
excessive head motion is detected. Nevertheless, even small
inter-scan head movements (<0.5mm) can bias correlation
estimates, influencing between-group effect estimates (33). For
this reason, motion correction using rigid body realignment is
an obligate part of the rs-fMRI preprocessing pipeline, followed
by inclusion of motion estimates in subsequent single-subject
statistical modeling (34).

Even images from cooperative patients will have physiologic
confounds that need to be addressed. Cardiac pulsation and
respiration can cause spurious connectivity patterns (35). Band-
pass filtering to remove fluctuations outside the frequency range
of interest mitigates cardiac and respiratory effects and does not
require external physiological recordings. Filtering frequencies
lower than ∼0.01Hz and > ∼0.2Hz, reduces the effects of
non-neuronal physiologic processes (36).

Global signal regression (20) is another method sometimes
used for physiologic noise reduction (37). GSR uses a denoising
covariate that contains information from both physiological
noise and neural signal. Its re-centers the mean of the
inter-regional correlation distribution, so that some positive
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FIGURE 2 | Denoising effects on functional connectivity estimates. (A) Additive effects of denoising sources on detection of seed connectivity in a group of 25 healthy

participants studied during three sessions. GSR, global signal regression; ACC, anatomical CompCorr; HM, head motion estimates; OUT, head motion and global

intensity outliers. Display threshold p < 0.001. Original data from NYU CSC TRT: subjects 1–25, sessions 1–3. (B) Denoising reduces structured noise in individuals.

Left–Connectivity values histograms in a single healthy participant before (gray) and after (yellow) denoising including WM signal, CSF signal, estimated head motion,

and outlier removal. Middle–Global signal variation before and after denoising. Right–carpet plot of voxel signal variation before (top) and after (bottom) denoising.

Original data from NYU CSC TRT: subject 16, session 1. (C) Denoising increases sensitivity to, and specificity for, the language network. Effects of including denoising

sources on detection of left inferior frontal gyrus seed connectivity are seen in a single participant. WM, white matter; CSF, cerebrospinal fluid; HM, head motion

estimates; Outliers, head motion and global intensity outliers. Display threshold r = 0.4. Original data from NYCSC TRT: subject 16, session 1.

correlations appear to be negative. Its use may therefore
confound attempts to distinguish sets of regions whose activity
are either positively or negatively associated (38). For this reason,
noise reduction techniques like anatomical CompCorr, that
exclude the cortical signal from the denoising procedure, may be
preferred in most circumstances (13) (Figure 2).

Systemic carbon dioxide (CO2) fluctuations alter BOLD-
contrast and contribute to respiratory induced signal variation
(39). To reduce CO2 fluctuation effects, end-tidal CO2 can

be measured with a face-mask or nasal cannula and the
measurements incorporated into the denoising pipeline (39).

Temporal signal-to-noise ratio (tSNR), the ratio of the mean
signal over its temporal standard deviation (SD), reflects the
ability to detect BOLD-contrast signal changes (40), and thus can
be used in quality assurance. More recently, the Physiological
Contributions in Spontaneous Oscillations index has been
proposed as a more sensitive measure of functional connectivity
strength (41).
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These denoising techniques are not only effective at the
group level (Figures 2A,B), but also can improve sensitivity
and specificity for detecting networks at the individual level
(Figure 2C).

In summary, the inter-regional associations estimated with
rs-fMRI may be relatively weak compared to the customary
task-fMRI effects, often being masked by physiological noise.
The reproducibility of the two modalities may also differ.
Varying acquisition and processing parameters can profoundly
affect detection sensitivity (42) and there is ongoing debate
regarding the role of GSR in pre-processing (43–45). Further,
different data analysis families such as ROI-based correlation
analysis, independent component analysis (ICA) detection
of canonical networks, and graph theory metrics used to
quantify local and global network properties, are likely to be
sensitive to very different aspects of inter-regional functional
connectivity (3).

To allow readers to reproduce the denoising pipeline
variations shown in Figure 2, links are provided to scripts
that preprocess and model the NYU CSC TRT dataset (www.
neurometrika.org/tutorials/fc-denoising).

Barrier 5: User Training
Traditionally, diagnostic radiology has been primarily an
anatomical medical specialty. Functional MRI acquisition
and interpretation is more physiological and statistical
in nature and may therefore may require somewhat
different training.

While many academic programs briefly expose trainees
to the principles of functional MRI, it is presently not
part of the standard curriculum in diagnostic radiology
residency or neuroradiology fellowship programs in the U.S.
More training in software systems for rs-fMRI analysis will
facilitate clinical practice implementation. Relevant curricular
offerings in systems neuroscience and statistical modeling
could help trainees gain a deeper understanding of the
origins of instrumental and physiological noise in rs-fMRI
data and thereby optimize their data acquisition, analysis, and
interpretation efforts.

Barrier 6: Standardization, Regulatory, and

Financial Issues
The lack of standardization of rs-fMRI acquisition and analysis
methods may reflect a lack of consensus regarding the best
approach to maximize inter-individual signal variability while
concomitantly minimizing intra-subject measure variability
(46). As task-fMRI analysis methods are relatively mature
compared to their rs-fMRI counterparts, more vigorous
engagement of professional societies with the rs-fMRI research
community will promote achieving agreement concerning
rs-fMRI analysis standards.

Of great importance from a practical viewpoint, there is
currently no FDA-cleared software for rs-fMRI analysis on
MRI consoles. Obtaining FDA marketing authorization for
rs-fMRI clinical use will require validating its intended use
as a “tool type” device and more clearly determining what
the statistical information derived from rs-fMRI means for

patient diagnosis and treatment. Overcoming these hurdles
will require a concerted effort from the interested academic
and commercial parties. MRI system vendors could have
a major role in these activities, working with academic
investigators to develop software tools and techniques in
accordance with standard medical device development
practices, thereby speeding the transition from research
to practice.

Acquiring the expertise needed for rs-fMRI acquisition,
analysis, and interpretation requires a substantial time
commitment. Busy clinicians may be more motivated to obtain
such training, and their associated hospitals be more willing to
support them, if rs-fMRI had an associated Current Procedural
Terminology (CPT) code. Before this can happen, however,
rs-fMRI protocols must be standardized by neuroradiologists.
Task-fMRI received a CPT code in the U.S. after relative
standardization of the processing and analysis techniques.
Societies such as the RSNA, ASNR, and ASFNR may be more
likely to pursue the process of obtaining an rs-fMRI CPT code
after clinical validation and standardization has been achieved.

Even after standardization and regulatory hurdles are
overcome, it will be necessary to identify the clinical applications
for which rs-fMRI can provide useful information to referring
physicians from neurosurgery, neurology and psychiatry. For
example, preoperative mapping of motor and language brain
function, the most common clinical application of fMRI and
rs-fMRI, has been widely integrated into pre-surgical planning
protocols in academic centers (32, 47). While resting-state pre-
surgical maps can reliably identify sensorimotor function (12,
48, 49), larger scale validation studies are still needed, and
solving problems related to substantial subject level variability
remains for language mapping (50, 51) (Supplement Figure 1).
Individual subject level reliability still needs to be addressed
with large studies before clinical services will routinely request
rs-fMRI for clinical practice.

LIMITATIONS

Our study has limitations. First, our response rate was 24% of
the ASFNR membership and respondents may have tended to
be more enthusiastic about using rs-fMRI in their research and
clinical practice than non-respondents. Second, surveys were
only sent to the ASFNR membership and thus non-member
neuroradiologists who use rs-fMRI were not sampled. Third,
for practical reasons, our survey was confined to members of
an American professional organization. It will be of interest
to survey a broader and more international sample of the
neuroimaging community to assess the generality of our findings
and interpretations.

CONCLUSIONS

Despite some perceived impediments to expanding clinical rs-
fMRI use, neuroradiologists were generally enthusiastic about
rs-fMRI in research and clinical applications, believing that
their current workplace MRI systems are suitable for rs-fMRI
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acquisition. Many of the concerns associated with using rs-fMRI
in clinical contexts are related to: (1) developing better methods
for minimizing physiological noise effects, (2) improving
methods for detecting the spatial characteristics of clinically-
relevant brain processing systems in individual patients,
and (3) overcoming remaining standardization, training, and
regulatory hurdles.
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Neurocysticercosis (NC) is the most common parasitic infection of the central nervous

system (CNS). Several studies have reported an association between NC and

mesial temporal lobe epilepsy (MTLE). We intended to evaluate the frequency of

hippocampal atrophy (HA), clinical evolution and imaging findings in patients with calcified

neurocysticercotic lesions (CNLs).

Methods: One hundred and eighty-one subjects (70 cases and 111 controls) were

evaluated for the presence or absence of HA. We assessed the imaging findings, and

the evolution of patients with NC treated or not with anthelmintics for NC.

Results: Hippocampal volumes were different between cases and controls (p < 0.001).

Seventy percent of the cases presented HA. 52.2% of the patients without a history of

anthelmintic treatment for NC had reports of epileptic seizures. There was an association

between non-treatment and the later occurrence of epileptic seizures (p = 0.006). There

was an association between perilesional edema onMRI and the presence of uncontrolled

epileptic seizures (p = 0.004).

Conclusions: Hippocampal atrophy is frequent in patients with NCC. There was

an association between no anthelmintic treatment in the acute phase of NC,

perilesional edema, more pronounced hippocampal atrophy, and the occurrence of

refractory seizures.

Keywords: neurocysticercosis, hippocampal atrophy, perilesional edema, magnetic resonance imaging, seizures,

epilepsy, brain calcifications

INTRODUCTION

Neurocysticercosis (NC) is the most common parasitic infection of the central nervous system
(CNS), caused by the larval form of Taenia solium (1). A frequent cause of symptomatic seizures
and epilepsy worldwide (2). It is a severe public health problem in several regions of Asia, Africa,
and Latin America (3–5).

The earliest documented descriptions of parasitic infection date back from Egyptian Medicine
(6). Aristotle was the first to report the presence of cysticerci in animals, between 389 and 375 b.C
(7). In ancient Greece, the disease was known as a pig disease (8). From the nineteenth century, it
was clear that the disease was transmitted by man and not by animals as it was thought (7). NC was
considered a public health problem after the second half of the twentieth century (8, 9).
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Taenia solium is an enteroparasite belonging to the
Platyhelminthes phylum, the Cestoda class, the Taeniidae
family, the genus Taenia, and the solium species (7).

In its adult form, Taenia soliummeasures typically 2–4 meters
in length and consists of scolex (head), neck (neck) and strobile
(body) (8). Adults live on average 3 years and can live up to 25
years, housed in the digestive tract of humans (1).

The scolex invaginates and attaches to the mucosa of the
small intestine. After cell division, they become adult tapeworm,
which later eliminates gravid proglottid containing thousands
of eggs, and thus, the cycle restarts (5). The man can act as an
intermediate host, in this case, the human contamination with
Taenia solium eggs is processed by (6, 7): External autoinfection;
hetero-infection by ingestion of water or food, contaminated
with T. solium eggs, disposed of in the environment by carriers;
internal autoinfection may occur by intestinal antiperistaltic
movements, making possible the presence of gravid proglottid or
eggs in the stomach (1).

The oncosphere, when it reaches its final location, undergoes a
vesiculation process and loses its aculeus, the invaginated scolex
of the future adult, cysticercus Cellulosae (5), forms internally
in the vesicle wall. Once established, the larval cysts, through
mechanisms of immune evasion (complement inhibition,
cytokine release, and masking of host immunoglobulins) actively
avoid host immune response (8).

The Taeniasis-cysticercosis complex is a neglected tropical
disease (NTD), usually associated with low socioeconomic
development (6, 10). It is estimated that 50.000.000 individuals
are infected each year (5, 11, 12).

Praziquantel and albendazole have been considered efficient
in NC etiologic therapy (13). Therapy with albendazole or
praziquantel is indicated in symptomatic individuals with
viable cysts on CT or MRI and with positive evidence of
immunological evidence for cysticercosis in CSF (2). The purpose
of anthelmintic therapy is to try to reduce the duration of the
neuroimmunological phenomena involved in NC (5). In most
patients, it accelerates the degeneration of cysts and improves
symptoms (14).

The clinical manifestations of NC are pleomorphic according
to the viability of the parasite, occurring during or after
the inflammatory process caused by the presence of dead or
degenerated or calcified forms in the cerebral parenchyma
(1, 8, 10, 15, 16). Epileptic seizures occur in up to 70–90%
of the symptomatic cases of NC and generally represent the
primary or unique manifestation of the parenchymatous form
of the disease (17, 18). Patients with seizures invariably have
prominent inflammatory infiltrate around the cysts, including
the presence of pro-inflammatory cytokines and an altered
blood-brain barrier (19).

The association between acute symptomatic epileptic seizures
and NC is already well established, but the association between
drug-resistant epilepsy and NC is still controversial (20). The
majority of patients with acute symptomatic seizures in the active
phase of the disease experience symptom remission in the next 3
to 6 months, together with the disappearance of the active lesions
(20). However, degenerate as well as calcified cysts can lead to
chronic epileptic seizures due to hippocampal sclerosis, probably

triggered by an inflammatory process, recurrent epileptic seizures
and local damage (2).

Neuroimaging and histology studies provide evidence that
some nodules are not completely solid, but contain remnants
of parasitic membranes that undergo periodic morphological
changes related to remodeling mechanisms, thus exposing the
host’s immune system to the trapped antigenic material, causing
recurrent epileptic seizures (2, 21, 22).

The presence of punctiform cerebral calcifications in the
correct clinical scenario is mainly indicative of chronic cerebral
NC (13). Often these calcifications are the only evidence of
the disease (21). However, it is difficult to determine the
causality of the relationship between epilepsy and NC, since
calcifications are observed in asymptomatic individuals living in
endemic areas (23). The use of CT and MRI produce objective
evidence regarding the diagnosis of NC (24). These neuroimaging
techniques have improved the accuracy of the diagnosis.

The first reports on NC findings on CT were published in
1977; since then, a number of studies have described in detail the
different forms of the disease (25). The radiological descriptions
allowed the development of clinical classifications of NC based
on the topography and evolutionary stage of the lesions and
were of great importance for the determination of the rational
therapeutic approach in the different forms of the disease (25).

The imaging changes suggestive of NC are dependent on the
development stage of the larva. Thus, in the CT the main ones are
the following (25):

- Active phase (viable cyst): a cystic lesion is present,
hypodense, with well-defined contours and with scolex inside
(eccentric hyperdense nodule), without surrounding edema,
nor contrast enhancement;

- Colloidal phase (cyst in degeneration): Presence of hypodense
lesion, poorly defined, with surrounding edema, and
enhancement in a ring or homogenous reinforcement in
enhancement phase;

- Granular phase (onset of calcium deposition): small
hyperdense nodules are present, surrounded by mild
post-contrast enhancement edema;

- Calcification stage: The cysts appear as small hyperdense
nodules, without perilesional edema or surrounded by post-
contrast enhancement.

The mean interval between cysticercus death and radiologically
perceptible calcification is approximately 25 months (26).

Cysticercus in intraventricular topography is not always
detected by CT since its density is similar to CSF. Therefore,
they can only be inferred by the distortion of the ventricular
cavity (25).

In MRI the cysts appear with signal properties similar to
CSF in both the T1 and T2 sequences. The scolex is usually
visualized within the cyst as a high-density nodule, a “hole-with-
dot” pathognomonic image, characterizing the viable phase (24).

Degenerating cysts (colloidal phase) present poorly defined
contours due to edema (25). Some show ring enhancement
after contrast administration. The cyst wall becomes thick and
hypointense, with marked perilesional edema, best visualized
in T2-weighted images (25). In the granular phase, cysts are
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visualized as ovoid signal areas in the T1 and T2 sequences,
with surrounding edema or gliosis with hyperintense borders
around the lesion (27). In the calcification phase, the cysts are
usually not visualized (25). The susceptibility weighted imaging
(SWI) sequence helps to visualize some calcifications. In the T1
and T2 sequences, calcifications can be visualized as small oval,
hypointense images (10).

It has recently been demonstrated that calcified cysts can
present perilesional edema and post-contrast enhancement,
associated with recurrence of symptoms (28, 29).

These characteristics may serve as treatment-definingmarkers
in these patients (30).

Hippocampal sclerosis is the most common structural brain
injury associated with refractory mesial temporal lobe epilepsy
(MTLE) (8, 31–37).

The histopathological mark of hippocampal sclerosis (HS)
is the segmental loss of pyramidal (neuronal) cells, which may
affect any segment of the “Ammon’s horn,” mainly CA1 and CA4,
associated with a severe pattern of astrogliosis in the hippocampal
formation, including the dentate gyrus (34, 37).

In MRI, HS is characterized by reduced volume and loss of
the internal structure of the hippocampus, better visualized in
T1-weighted images, observed as hypointense signal, as well as
an increased signal in T2-weighted images and FLAIR (37). On
the other hand, quantitative volumetric studies allow an objective
evaluation of the unilateral or bilateral atrophy of hippocampi,
which makes them useful for research applications (24).

The co-existence of NC and TLE associated with HS is
common in regions where NC is endemic (31, 33). It is
believed that, as in febrile seizures, NC functions as an initial
precipitating lesion that would later lead to hippocampal
sclerosis (9, 17, 26, 38, 39).

In the last decades, several studies have suggested an
association between NC and hippocampal atrophy (HA) (5,
40). New MRI techniques allowed more detailed evaluation
of cystic lesions, inflammatory response, and other associated
abnormalities (14).

Our objective was to evaluate the frequency of hippocampal
atrophy (HA) in patients with NC calcified lesions (NCC),
describe the symptomatic evolution of patients treated and not
treated for NC, and identify parenchymal alterations associated
with the occurrence of epileptic seizures.

METHODS

Ethics Statement
All participants signed the informed consent form before
performing the magnetic resonance (MRI) examination. This
study was approved by the ethics and research committee (CEP-
UNICAMP); CAAE Number: 55942116.5.0000.5404.

Clinical Data
We included 181 subjects (70 cases and 111 controls). Individuals
aged 18 years and older, followed by our outpatient’s epilepsy
clinic or headache clinic at the State University of Campinas (HC-
UNICAMP) clinic hospital. We defined our primary variable
of interest as the presence of active or calcified cysts in

Computed Tomography (CT). We extracted information on the
presence of active or calcified cysts from reports of radiological
examinations that were available in the medical records. When
they were not available, we assigned a qualified neurologist to
evaluate CT scans, taking into account Carpio’s criteria (41).
Patients with a history of follow-up due to neurotuberculosis,
neurotoxoplasmosis, tuberous sclerosis, and surgery for temporal
lobe epilepsy were excluded from the study. We also excluded
patients whose diagnosis was not confirmed after CT evaluation.
Seventy patients participated in the study; 48 had no history of
treatment for NC, 22 had a history of active cysticercosis and
received treatment for NC between the years 1993–2013. The
localization of cysts (calcified) observed on CT, were defined as
temporal and extratemporal. Patients with multiple calcifications
were classified as temporal lobe if they had a temporal lobe
lesions, regardless of the location of the other lesions. The
extratemporal category was assigned if the location of the lesion
was only outside the temporal lobe. Regardless of whether or not
they were treated for NC and the number of antiepileptic drugs
used, those who had at least one seizure during the evaluation
year were considered as individuals with uncontrolled seizures,
and those who were 1 year or more without seizures were
considered as with seizure control.

All participants performed MRI for volumetric analysis of
hippocampus. Those who did not have recent MRI exams (<2
years before the study) were invited to perform further MRIs.

Protocol of MR Image and Visual Analysis
Patient and control MRI scans were performed on a 3-T
Philips Intera Achieva scanner (Philips, Best, The Netherlands),
with acquisitions in the coronal, sagittal and axial planes, with
coronal sections obtained perpendicularly along the axis of the
hippocampal formation, to better study this structure.

MRI Acquisition Protocol
X Coronal images: (a) T2-weighted images multi-echo (3mm

thickness, repetition time (TR)= 3,300ms, echo time (TE)=
30/60/90/120/150ms, matrix= 200X180, field of view (FOV)
= 180X180); (b) T1-weighted images “inversion recovery”
(3mm thickness, TR = 3,550ms, TE= 15ms, inversion time
= 400, matrix = 240X229, FOV = 180 × 180), (c) Fluid
Acquisition Inversion Recovery (FLAIR) Suppression of fat,
4mm thickness, TR= 12,000ms, TE= 140ms, matrix= 180
× 440, FOV= 200× 200);

X Axial images: FLAIR images (Fat suppression, 4mm
thickness, TR = 12,000ms, TE = 140ms, matrix = 224 ×

160, FOV= 200× 200);
X T1 weighted volumetric images: 1mm isotropic voxels,

acquired in the sagittal plane (1mm thick, flip angle = 8◦,
TR = 7.0ms, TE = 3.2ms, matrix = 240 × 240, FOV = 240
× 240);

X T2-weighted volumetric images: isotropic voxels of 1.5mm,
acquired in the sagittal plane (TR = 1,800ms, TE = 340ms,
matrix= 140X140, FOV= 230× 230);

X SWI (susceptibility weighted imaging) and gadolinium
T1 weighted images for patients with a history of
active cysticercosis.
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Volumetry of the Hippocampus
Patients and controls were matched for age and sex (with similar
distribution about age, p= 0.211 and gender, p= 0.693). A group
of 111 healthy subjects was used as controls (55.9% female, age
18–80 years, mean 45.05).

We selected the 3D T1-weighted images for volumetry. These
were compressed in the neuroimaging informatics technology
initiative (NIFTI) format through a web interface. Subsequently,
the hippocampal volumes were obtained automatically using the
volBrain online program (http://volbrain.upv.es). The automatic
analyses were performed without knowledge of clinical data.
All individual hippocampal values were corrected for total
intracranial volumes. All values obtained were transformed
into Z-score. The Z-score values of the corrected volumes or
asymmetry index (defined by the ratio of the smallest to the
largest hippocampus), which were equal to or lower than−2 were
considered indicative of HA (Table 1).

Visual Analysis of Images
In patients with a history of NC treatment, a visual analysis of the
MRI examinations acquired on a 3T (as described previously) or
in a 2.0T (Elscint Prestige, Haifa, Israel) scanner was performed
by two investigators (JMCJA and FC). In addition, 54 MRIs were
analyzedwith the objective of evaluating the evolution of the cysts
through the images. Th MRI acquisitions of these 54 patients
were carried out between the years 2004 to 2018. The findings
were correlated with the occurrence of a seizure described in the
medical record during the period ofMRI (equal to or<1month).
Further details are in Tables 2, 3.

Statistical Analysis
Data analysis was performed using SPSS software version 23
for mac. First, we did an exploratory analyses, measuring
the frequency of categorical data and descriptive statistics for
quantitative data.

To compare the groups (controls and cases), we performed
a normality test (Kolmogorov-Smirnov). Then, the Mann-
Whitney or Kruskall-Wallis test was performed to analyze
numerical variables. Multivariate analysis was performed on
numerical variables (controls, treated, and not treated for
NC). The chi-square or Fisher’s test were used to analyze the
categorical variables. The significance was determined as p< 0.05
for all analyses.

RESULTS

From an original sample of 211 participants, we included 181
(111 controls and 70 cases). Ninety-nine were female, mean
age= 45.8, ±12.4. Hippocampal volumes of the controls were
significantly different from the cases by the Man-Whitney test
(p < 0.001, Figure 1). In a subgroup analysis (controls, patients
treated, and patients untreated for NC), we observed that there
was only a difference of controls compared to patients untreated
for NC (p = 0.001; Figures 2, 3). Groups had a similar gender
distribution (p= 0.693).

TABLE 1 | Distribution of the Z-score values and asymmetry index of the

hippocampus volumes of patients who had HA.

Number Side of the

atrophy

Right

Z-score

Left

Z-score

Index of asymetry

(Z-score)

1 L −1.35 −2.97 0.79 (−9.94)

2 L −1.26 −2.09 0.88 (−5.53)

3 R −1.6 1.23 0.77 (−11.04)

4 L −0.55 −2.45 0.78 (−10.37)

5 B −3.44 −3.40 0.95 (−1.74)

6 L −0.46 −1.09 0.91 (−3.99)

7 L 0.57 −0.25 0.90 (−4.29)

8 R −2.03 −0.42 O.86 (−6.23)

9 R −0.03 −0.58 0.92 (−3.34)

10 L 0.59 −2.98 0.65 (−16.71)

11 L −1.62 −3.21 0.78 (−10.71)

12 R −2.47 −0.43 0.82 (−8.34)

13 L −1.55 −1.71 0.94 (−2.12)

14 R −5.02 −0.39 0.57 (−20.95)

15 R −0.69 0.47 0.91 (−3.83)

16 R −3.66 2.97 0.52 (−23.26)

17 R −3.4 −1.72 0.83 (−7.70)

18 L −1.44 −4.18 0.66 (−16.16)

19 L 0.31 −3.01 0.67 (−16.01)

20 R −3.43 −1.08 0.78 (−10.46)

21 B −2.30 −2.04 0.99 (−0.08)

22 L 0.11 −2.55 0.72 (−13.25)

23 L 0.86 −3.39 0.71 (−14.03)

24 B −5.54 −3.88 0.80 (−9.29)

25 L −0.97 −2.21 0.84 (−7.49)

26 R −3.33 −1.13 0.79 (−9.68)

27 R −0.73 0.98 0.87 (−6.06)

28 L −1.21 −1.92 0.89 (−4.89)

29 L 0.43 −0.11 0.92 (−3.15)

30 R −3.40 0.22 0.68 (−15.20)

31 L 1.87 −1.32 0.72 (−13.27)

32 L −0.32 −4.66 0.54 (−22.06)

33 L −1.45 −3.02 0.79 (−9.81)

34 B −2.59 −3.03 0.90 (−4.40)

35 B −5.26 −2.03 0.65 (−16.67)

36 L −1.10 −1.37 0.94 (−2.51)

37 L −0.59 −1.25 0.90 (−4.16)

38 R 1.81 0.19 0.85 (−6.90)

39 R −3.09 0.83 0.67 (−15.69)

40 L −0.38 −3.50 0.66 (−16.71)

41 B −3.25 −3.17 0.96 (−1.40)

42 R −2.00 0.58 0.78 (−10.10)

43 L 1.30 −0.29 0.84 (−7.21)

45 L −0.49 −1.31 0.89 (−4.93)

46 B −2.10 −4.68 0.65 (−16.63)

47 L −0.89 −1.43 0.91 (−3.77)

48 R −0.44 0.36 0.94 (−2.25)

49 R 0.26 1.11 0.94 (−2.31)

L, left; R, right; B, bilateral; HA, hippocampal atrophy.
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TABLE 2 | Distribution of study variables and the level of significance.

Overall (n = 181)

Patients (n:70) Controls (n = 111) P-value

Mean age ± SD 47.14 (± 12.98) 45.05 (± 12) 0.211

Gender

Male n (%) 33 (47.1) 49 (44.1) 0.693

Female n (%) 37 (52.9) 62 (55.9)

Treated for

NC (n = 22)

Untreated for NC

(n = 48)

Controls (n = 111)

Family history (%) 4 (18.18) 13 (27.0) – 0.060

Hippocampus mean volume/SD Right Left Right Left Right Left 0.001

3.69 cm3

0.57

3.43 cm3

0.59

3.44 cm3

0.56

3.38 cm3

0.58

3.92 cm3

0.34

3.84 cm3

0.31

Seizure-recurrence (%) 8 (36.3) 36 (75.0) – – 0.003

Calcification

Temporal left n (%) 6 (27.27) 8 (16.66)

Temporal right n (%) 2 (9.09) 7 (14.58) – –

Temporal bil. n (%) 8 (36.36) 3 (6.25)

Extratemporal n (%) 6 (27.27) 30 (66.25)

Hip. Atrophy n (%) 15 (68.18) 34 (70.83) – – 0.825

The Kruskall-Wallis test showed a significant difference between the groups (p = 0.001). There was an association between non-treatment for NC and recurrence of seizures (p =

0.003, chi-square test). Hip, Hippocampal; bil, Bilateral; SD, Standard Deviation. Significant p-values are in bold.

Case Analysis
Of the 70 cases, 22 (31.4%) were treated for NC, 48 (68.6%) were
not (Figure 4). There was no difference in the volume of the
hippocampi of treated and untreated patients for NC (p= 0.225).
There was no age difference (p = 0.220) or sex distribution (p =
0.401) between groups.

Location of Calcifications
In 34/70 (48.6%) the NC calcifications were localized in the
temporal lobe: 14/34 (20%) in the left temporal lobe, 9/34 (12.9%)
in the right temporal lobe and 11/34 (15.7%) in both temporal
lobes. In 36/70 (51.4%) the NC calcifications were localized in
extratemporal regions.

Number of Calcifications
Twenty-six of 70 (37.1%) patients had one to two parenchymal
calcifications, 24/70 (34.29%) had three to five calcifications,
14/70 (20%) had six to twenty calcifications, 6/70 (8.57%) had
more than twenty calcifications.

Clinical Manifestation
Only 1/70 (1.4%) of the patients did not present seizures in the
acute phase or in the follow up.

Hippocampus Atrophy
Forty-nine of the 70 (70%) patients presented HA. There was no
difference between HA and the localization of calcifications (p =
0.2, Fisher exact test). Fifteen of the 22 (68.18%) patients treated
and 34/48 (70.83%) of the untreated patients had HA. There
was no association between the frequency of HA and treatment
for NC (p = 0.83); however, patients who did not receive
anthelmintic treatment in the acute phase had significantly

smaller hippocampal volumes (p = 0.0001). There was no
association between HA and sex (p = 0.96). Only 17/70 had
a family history of epilepsy (p = 0.06). Further details are in
Table 2.

Epileptic Seizures Report
forty-four of the 69 (68.8%) patients had uncontrolled epileptic
seizures; 36 of these 44 (81.8%) did not receive anthelmintic
treatment for NC in the acute phase of the disease. There was
an association between the uncontrolled epileptic seizures and
non-treatment for NC (p= 0.003).

Thirty-four of the 44 (77.3%) patients with uncontrolled
seizures presented HA and remaining 22.7% had well controlled
seizures (p= 0.065).

MRI Visual Analysis
Here we analyzed the patients with more than one MRI
exam, and whose presence of viable cysts was confirmed by
imaging tests.

Fifty-four MRI exams of 22 patients performed between
2004 and 2018 were analyzed. The average duration of follow-
up was 15 years (range of 4–23 years). Five of 22 (22.72%)
patients had active cysts in at least one of the exams. Two of 22
(9.09%) had ventricular dilatation, and 3/22 (13.63%) had diffuse
cerebral atrophy.

Nineteen of 22 (86.4%) patients presented perilesional gliosis
in at least one of the calcified lesions. However, there was no
association between the presence of gliosis and the occurrence
of seizure (p = 0.963). Sixteen of 22 (72.7%) presented
perilesional edema around at least one of the calcified lesions.
There was an association between the presence of perilesional
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edema and the occurrence of seizure in the weeks before
the MRI exam (p = 0.004). Fourteen of 22 (63.6%) had
contrast enhancement around at least one of the calcified
lesions. There was no association between contrast enhancement
and the occurrence of seizures (p = 0.51). Eight of these
22 (36.4%) had hippocampal atrophy. Further details are in
Table 4.

Evolution of Patients With Active Cysts
We evaluated an average of 3 exams for each patient, performed
between 3 to 11 years after the first examination of the acute phase
of cysticercosis (viable or degenerating cysts). Five of these 22
presented active cysts in initial MRIs.

In one case, we observed the occurrence of hippocampal
atrophy 2 years after the beginning of the cyst degeneration
process that was not present before (Figure 5).

The evolution of the cysts was variable (Figures 5–7): The
process of calcification occurred between 3 and 4 years after
the diagnosis of active cysts. However, in one specific case, the
degenerative cysts maintained enhancements for about 10 years
later (2007–2017, details in Figure 7).

DISCUSSION

We observed a high frequency of hippocampal atrophy in
patients with NC (70%), suggesting a possible association
between NC and HA. This possibility has been considered for

years by several authors, who have studied such an association
(5, 38, 40, 42, 43).

In a study that sought to determine the relationship between
HA, NC and seizure semiology in epileptic patients, the authors
observed that HA is more frequent in patients with MTLE and
calcified NC, compared to patients with extratemporal epilepsies
(40). In another population study, the authors, when assessing
the association between NC and HA in older adults living
in an endemic area found a high prevalence of HA (68%)
in patients with calcified NC compared to controls (26). In

TABLE 4 | Distribution of the main findings of visual MRI analysis and the level of

significance in relation to the seizure occurrence.

Variables. n (%) Patients with

uncontrolled

seizures

Patients with

seizure control

P-value

Patients (n = 22)

Perilesional gliosis 13 (68.42) 6 (31.57) 0.963

Perilesional edema 14 (87.5) 2 (12.5) 0.004

Contrast enhancement 10 (71.42) 4 (28.57) 0.510

Hippocampal atrophy

with other signs of HS.

6 (75.00) 2 (25.00) 0.490

Diffuse cerebral atrophy 3 (100) – –

Ventricular dilatation 2 (100) – –

There was an association between perilesional edema and recurrence of seizures (p =

0.004; Fisher’s test). Significant p-values are in bold.

TABLE 3 | Main findings of visual MRI analysis of patients treated for NC and report of seizures in the same period.

Number Year of initial

symptoms/year of MRI

Perilesional

gliosis

Perilesional

edema

Contrast

enhancement

Hippocampal

atrophy

Diffuse cerebral

atrophy

Ventricular

dilatation

Seizure

occurrence

1 1994/2015 Yes No No Yes No No No

2 1994/2013 Yes No No Yes No No No

3 2010/2015 Yes No Yes No No No No

4 2012/2017 Yes No No No No No No

5 1999/2016 Yes Yes Yes Yes No No Yes

6 2013/2017 Yes Yes Yes No No No Yes

7 1998/2015 Yes Yes Yes No No No Yes

8 1994/2011 Yes Yes Yes No No No Yes

9 1998/2017 Yes Yes Yes No No No Yes

10 2010/2010 Yes Yes Yes No No No Yes

11 1995/2016 Yes Yes No No No No Yes

12 2007/2017 Yes Yes Yes Yes No No Yes

13 1993/2011 No Yes No Yes Yes No Yes

14 1993/2015 Yes No Yes No No No No

15 2013/2016 Yes Yes Yes Yes Yes Yes Yes

16 2009/2011 Yes Yes Yes Yes Yes Yes Yes

17 2002/2011 No No No No No No Yes

18 1993/2013 Yes Yes No No No No No

19 1993/2011 Yes Yes No No No No Yes

20 2009/2011 Yes Yes Yes Yes No No Yes

21 2004/2012 Yes Yes Yes No No No Yes

22 2006/2012 Yes Yes Yes No No No No

In this table, we illustrate the gender, the date of the first MRI, the month and the year of the exam with parenchymal alteration, and the record of epileptic seizures in the same period.
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FIGURE 1 | Hippocampal volumes of patients and controls. This graph demonstrates that there is a difference in the size of the hippocampus of NC patients

compared to healthy controls. The Mann-Whitney test showed a significative difference between the hippocampal volume of patients and controls (p = 0.001).

Evidence of a possible relationship between NC and hippocampal atrophy. HIP.NOR.RIGHT: hippocampus normalized right; HIP.LEFT: hippocampus left. Patient–Hip.

Right, Mean = 3.50 cm; SD = 0.57; Range = 2.68; Hip. Left, Mean = 3.36 cm; SD = 0.60; Range = 2.88; Controls–Hip. Right, Mean = 3.92 cm, SD = 0.34, Range

= 1.92; Hip. Left, Mean = 3.84 cm, SD = 0.31; Range = 1.89.

FIGURE 2 | Frequency and percentage of hippocampal atrophy in patients

treated and untreated for NC.

another study, the authors evaluated 324 patients with MTLE-
HS undergoing temporal lobectomy, and they found a high
prevalence of calcific NC, 126/324 (38.9%) (4). Another case-
control study found a high frequency of calcified NC in patients
with MTLE-HS (31).

During the last decades, anecdotal reports and small
series of cases have brought this association to the attention
of the medical community, describing patients with drug-
resistant MTLE-HS whose neuroimaging studies showed
granular or calcified cysticerci located in the hippocampus
or neighboring tissues (2). In some cases, the pathological

FIGURE 3 | Frequency and percentage of uncontrolled seizures in patients

treated and untreated for NC.

exams revealed HS with neuronal loss in the CA1 and
CA4 layer, and gliosis, as well as the presence of an intense
inflammatory reaction in the brain tissue around the calcified
parasites (2).

In the active form of cysticercosis, inflammation involves
the parasites, and is the most common mechanism for the
occurrence of seizures in the acute phase on NC (3). This
inflammation is due to the aggregation of mononuclear
lymphocytes, plasma cells and variable numbers of
eosinophils at the lesion site (3). Experimental studies have
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FIGURE 4 | Study flowchart.

FIGURE 5 | Illustration of the relationship between neurocysticercosis and hippocampal atrophy. MRI evolution (2013–2015). (A) T1-weighted coronal image, post

contrast, with cysts in the colloidal phase, contrast enhancement, no atrophy of the hippocampus; (B) T1-weighted coronal image, with perilesional edema, without

hippocampal atrophy; (C) T1-weighted coronal image, showing diffuse cerebral atrophy, including bilateral hippocampal atrophy; (D) FLAIR sequence, with

hyperintense signal in the hippocampus (atrophy), and left frontal and perinsular hyperintense lesions.

suggested that the injection of Taenia granuloma material
into the mouse hippocampus is highly epileptogenic,
supporting the involvement of the hippocampus by the
inflammatory responses of the brain of the degenerating
cysticerci (38).

Current evidence shows that the relationship between
NC and MTLE-HS has always coexisted in endemic areas

(38). However, the extent of this occurrence remains to
be determined, so in many cases it is considered as “dual
pathology” (2, 9, 38). Most of the information on this
association comes from series of patients with MTLE-HS
that suggest a cause-and-effect relationship (2, 4, 26). As
in the febrile seizures during childhood, NC would act as
an initial precipitating lesion, which would cause damage to
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FIGURE 6 | Illustration of the calcified NC associated with perilesional edema. (A–C) T1-weighted images, with calcification in the putamen. (B–D) Images in T2 and

FLAIR, with edema around the calcification.

FIGURE 7 | Illustration of the cysticercus evolution in two patients, from vesicular to granular or calcified: (1) (2013–2017) (A) T1-weighted coronal image, post

contrast, showing cysts in vesicular phase (with scolex); (B) T1-weighted coronal image, without contrast, showing cysts in colloidal phase (perilesional edema); (C)

T1-weighted coronal image, contrast enhancement, showing cysts in granular phase (mild contrast enhancement); (D) SWI MRI, calcification phase (hypointense

image). (2) (2007–2017) (F) T2-weighted coronal image, showing cysts in vesicular phase (without scolex); (G) T1-weighted coronal image, post contrast, presenting

cysts in colloidal phase (perilesional edema and contrast enhancement); (H–I) T1-weighted coronal image, post contrast, granular phase (mild contrast enhancement).

the hippocampus, leading to loss of neurons and synaptic
reorganization of the cellular elements (9, 14, 38, 40, 44).
In this conjecture, it has been suggested that cysticerci can
lead to HS because they cause repetitive inter-ictal discharges,
recurrent clinical and subclinical seizures or possibly epileptic
status, which results in MTLE-HS, and in turn aggravate seizures
(9, 26, 38). These parasites do not necessarily have to be
located within the limbic system (17), suggesting a deleterious
remote effect of NC-induced reactive seizures in hippocampal
neurons (38).

On the other hand, parasitic cerebral lesions may lead
to inflammation-mediated hippocampal damage associated or
not with genetic susceptibility (9, 42, 45). In this view, the
periodic remodeling of cysticercus occurs with the exposure of
parasitic antigens bound to the host’s immune system, which
does not require recurrent seizures as a causal factor (9, 26).
Although this has not been demonstrated in humans, there

is experimental evidence showing that repeated exposure to
endotoxin and increased levels of pro-inflammatory cytokines
correlate with hippocampal damage, supporting the hypothesis of
inflammation-mediated atrophy or hippocampal damage (2, 26).

Another possibility is that the presence of HS in patients with
NC may be only a coincidence (31, 42), which in our view is
less likely, given the high prevalence reported in this and other
studies (40).

In cysticercosis calcification, recurrent seizures may result
from inflammation related to exposure of the host immune
system to parasitic remains (2). In the vicinity of the lesion,
the tissue reaction usually consists of astrocytic gliosis and a
small border of demyelination. Neurons are affected variably and
tend to undergo degenerative changes (3). It seems reasonable
to assume that the inflammation at the stage of nodular
calcification is similar to that of the colloidal stage. Acute and
recurrent seizures, if repeated, may cause additional hippocampal
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damage. Also, degenerate and calcified cysticerci can directly
induce hippocampal sclerosis by damage mediated by local or
remote inflammation of hippocampal neurons causing refractory
epilepsy (2).

The format of this study did not allow us to directly establish a
cause and effect relationship between NC and HA, however, in a
case of active NC, we were able to demonstrate that hippocampal
atrophy was related to the degenerate cysticercus, due to an
inflammatory reaction. There was no HS before degeneration of
the cysticercus, however, 3 years later the MRI signs of HS were
observed (Figure 2). In this case, the hippocampus has probably
been directly affected by the inflammatory response and gliosis
that develops around the cyst and/or adjacent areas (38).

In addition to the high frequency of MTLE-HS in our
patients with calcified NC, there was an association between
the absence of anti-helmintic treatment in the acute phase
of NC and later uncontrolled epileptic seizures, as well as
smaller hippocampal volumes, something that may infer that
anthelmintic treatment works as a protective factor. MTLE-HS
is often pharmacoresistant and many patients reach seizure-free
status only after surgical treatment (9).

The mechanism of involution of cysticercosis, which, contrary
to what was previously thought, the final step (degeneration and
calcification), is not completely inert (21, 46). It is known that NC
is a potential cause of refractory epilepsy and that the presence
of perilesional gliosis contributes to epileptogenicity (30). About
half of the patients with only calcified lesions and recent ongoing
seizures, developed perilesional edema at the time of seizure
recurrence (28). A plausible explanation for the occurrence of
perilesional edema may be that they are not all alike and may
differ in the amount, in the form of calcium deposition, in the
degree of antigens recognized by the host, in the level of residual
inflammation, or by the proximity of a blood vessel (46), which
favors the occurrence of perilesional edema. On the other hand,
genetic factors may also be related (20). Some attest that this is
due to dysfunction of the blood-brain barrier, probably due to the
presence of inflammation and/or perilesional gliosis conditioned
to the host’s response to the newly recognized or released parasite
antigen and/or to the positive regulation of the immune response
of the host (28). Histopathological examination of calcification
associated with multiple episodes of perilesional edema revealed

significant inflammation, which supports the concept that edema
is inflammatory in nature (28).

Some authors argue that perilesional edema is the result of
an inflammatory process directed at the sequestered parasite
antigen (47), and therefore advocates specific measures to limit
the inflammation process, which can be used to treat or prevent
complications (28).

Another hypothesis is that perilesional edema occurs as
a consequence of seizure activity (13). However, there are
differences between edema associated with a flurry of seizures
and perilesional edema, the first being more diffuse, with no
defined maximum area of activity, presumably caused by the
loss of fluid by damaged cells, while the second presents a peak,
almost always accompanied by contrast enhancement, probably
of vasogenic origin (28). In general, edema around calcification
after seizures is considered an evident form of injury that is
probably epileptogenic (20, 48). A previous study concluded that
the presence of edema is a predictor of recurrence of seizures (30).

We conclude that there is a high frequency of AH in patients
with NC, which may suggest an association between both. In
addition, there was an association between no anthelmintic
treatment and the later occurrence of uncontrolled seizures and
smaller hippocampi, as well as between perilesional edema and
seizures near the time of the MRI exam.
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Background: CSF protein concentrations vary greatly among individuals. Accounting

for brain volume may lower the variance and increase the diagnostic value of CSF

protein concentrations.

Objective: To determine the relation between CSF protein concentrations and

brain volume.

Methods: Brain volumes (total intracranial, gray matter, white matter volumes) derived

from brain MRI and CSF protein concentrations (total protein, albumin, albumin

CSF/serum ratio) of 29 control patients and 497 patients with clinically isolated syndrome

or multiple sclerosis were studied.

Finding: We found significant positive correlations of CSF protein concentrations with

intracranial, gray matter, and white matter volumes. None of the correlations remained

significant after correction for age and sex.

Conclusion: Accounting for brain volume derived from brain MRI is unlikely to improve

the diagnostic value of protein concentrations in CSF.

Keywords: albumin, brain volume, CSF, protein, MRI

INTRODUCTION

Cerebrospinal fluid (CSF) analysis is supportive of the diagnosis of many neurological diseases.
CSF protein concentrations constitute a mainstay of CSF analysis. Despite age- and sex-dependent
cut-offs (1–4), considerable interindividual variance may lower the diagnostic value of CSF protein
concentrations. We aimed to reduce variance of CSF protein concentrations and, hence, to increase
their diagnostic value by considering brain volumes derived from magnetic resonance imaging
(MRI). This idea may not seem practical at first glance but, given latest developments with regard
to modern hospital information systems and tools for automated MRI analysis, linking of multiple
paraclinical data seems to be in reach even in clinical routine. We reasoned that, since most
CSF proteins are both released into CSF (mainly ultrafiltration of blood plasma in the choroid
plexus) and retrieved from CSF (drainage into the venous system mostly through arachnoid
granulations) in certain circumscribed brain structures, differences in whole brain volumes may
not perfectly parallel the net capacity of CSF protein filtration and drainage as only this would lead
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to independence between brain volumes and CSF protein
concentrations. Thus, we studied the relation of CSF protein
concentrations (total protein, albumin, and albumin CSF/serum
ratio) and brain volumes (total intracranial volume, TIV; gray
matter, GM; white matter, WM).

METHODS

The study was approved by the local ethics committee of the
medical faculty of the Technical University of Munich. Written
informed consent was obtained. We selected patients, who
received brain MRI and lumbar puncture, from our in-house
database. As a surrogate of a healthy subjects, we firstly reviewed
medical records for patients with transient symptoms (e.g.,
headache) but without a severe or chronic neurological disorder.
Based on these strict criteria, we could only include 29 adult
patients (age, 31.4 ± 9.1 years; females, 24) as control patients
(CP). Given this relatively small number, we secondly selected
patients with clinically isolated syndrome (CIS) or multiple
sclerosis (MS) aged between 18 and 60 years resulting in a group
of 497 patients (age, 35.7 ± 9.4; females, 342; EDSS, 1.45 ±

1.40; CIS, 50.3%; relapsing-remitting MS, 44.1%, primary and
secondary progressive MS, each 2.8%). We chose this population,
because the suspicion of MS usually prompts performing both
cranial MRI and lumbar puncture in clinical setting. Therefore,
we could assemble a relatively homogenous and large group of
patients with both MRI and CSF data. This approach seemed
justified, since total protein levels are normal in 75 percent of
MS patients with mild elevation in the remainder (5, 6), whilst
levels above 1,000 mg/L are unusual (7). To increase statistical
power, we gathered patients with MS and its precursor CIS in
one group. Protein levels and albumin CSF/serum ratios were
determined by nephelometry (Siemens ProSpec R©). As described
earlier (8), all brain MRI were acquired with the same protocol
on the same 3T scanner (Achieva, Philips, Netherlands). We
used a 3D gradient echo T1-weighted sequence (orientation,
170 contiguous sagittal 1mm slices, reaching down to C4/C5;
field of view, 240 × 240mm; voxel size, 1.0 × 1.0 × 1.0mm;
repetition time (TR), 9ms; echo time (TE), 4ms) and a 3D
fluid attenuated inversion recovery sequence (orientation, 144
contiguous axial 1.5mm slices, reaching down to the foramen
magnum; field of view, 230 × 185mm; voxel size, 1.0 × 1.0 ×

1.5mm; TR, 10,000ms; TE, 140ms; TI, 2,750ms). Volumes of
GM and WM were obtained from the first segmentation step of
the CAT12 toolbox (Version 916, http://dbm.neuro.uni-jena.de),
an extension of SPM12 software (Version 6685, http://www.fil.
ion.ucl.ac.uk/spm). TIV was estimated by a ‘reverse brain mask
method’ (9) after lesion filling. For statistical analysis, we used
unpaired t-tests, simple, and partial correlations in IBM SPSS
Statistics for Windows (Version 25.0).

RESULTS

First, we characterized our data set by testing for well-known
associations of the demographic parameters of age and sex with
CSF protein concentrations on the one hand and with brain

TABLE 1 | Correlations of brain volumes with CSF protein concentrations.

Nuisance variable:

TIV, age, sex

CSF protein CSF albumin Q-Alb

r p-value r p-value r p-value

Control patients (N = 29)

GM −0.028 0.891 −0.012 0.952 −0.036 0.861

WM −0.090 0.663 −0.228 0.262 −0.192 0.347

CIS/MS patients (N = 497)

GM 0.061 0.179 0.052 0.254 0.037 0.413

WM 0.021 0.645 0.041 0.359 0.030 0.502

r, Pearson correlation coefficient; n, sample size; TIV, total intracranial volume; GM, gray

matter; WM, white matter; CSF protein, total protein concentration in the cerebrospinal

fluid in mg/L; CSF albumin, total albumin concentration in the cerebrospinal fluid in mg/L;

Q-Alb, albumin CSF/serum ratio × 10E-3.

volumes on the other hand. CSF protein concentrations were
significantly higher inmen than in women [independent-samples
t-test; protein in mg/L, 624 ± 207 vs. 492 ± 196, t(524) = 6.99;
albumin in mg/L, 318± 122 vs. 233± 100, t(524) = 8.39; albumin
CSF/serum ratio, 6.8 ± 2.4 vs. 5.3 ± 2.4, t(524) = 6.41; all p
< 0.001]. As expected (10), age correlated with CSF protein
concentrations (linear correlation; protein, r = 0.17; albumin,
r = 0.15; albumin CSF/serum ratio, r = 0.17; all p < 0.001).
Although CP were significantly younger than CIS/MS patients
[independent-samples t-test; 31.4 ± 9.1 vs. 35.7 ± 9.4, t(524)
= 2.38, p = 0.018], none of the CSF protein concentrations
significantly differed between the two groups [CP vs. CIS/MS;
independent-samples t-test; protein in mg/L, 489 ± 149 vs. 535
± 211, t(524) = 1.16, p = 0.25; albumin in mg/L, 234 ± 83 vs.
260 ± 116, t(524) = 1.21, p = 0.23; albumin CSF/serum ratio,
5.4 ± 1.9 vs. 5.8 ± 2.5, t(524) = 0.96, p = 0.34]. With regard
to brain volumes, we could replicate well-known associations:
men had larger TIV than women [independent-samples t-test;
1578 ± 141 vs. 1415 ± 136ml, t(524) = 12.42, p < 0.001); GM
volume negatively correlated with age (linear correlation, r =

−0.37, p < 0.001].
Given the strong associations of age and sex with both CSF

protein concentrations and brain volume measures, we report
only results of partial correlation analyses with age and sex as
covariates in detail. In the CP group, none of the CSF protein
concentrations correlated with brain volume. In the CIS/MS
group, we found statistically significant positive correlations of
brain volumes with protein CSF concentrations. Yet Pearson
correlation coefficients were in the same range as in the CP
group suggesting a lack of statistical power to demonstrate these
associations in this small group of only 29 subjects. In the CIS/MS
group however, none of significant associations between CSF
protein concentrations and brain volumes survived correction
for TIV, age, and sex (Table 1).

DISCUSSION

We related brain volumes, derived from high-resolution MRI as
available in clinical routine, to CSF protein concentrations. Our
data are plausible as we could replicate well-known associations.
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Men showed higher values of CSF protein concentrations than
women. Protein concentrations increased with age. Moreover,
we could replicate well-known associations of brain volumes
with age and sex. Age and sex are very important clinical
parameters; they are available and considered in (almost) every
patient in clinical routine and go along with differences in
both CSF protein concentration and brain volumes. Therefore,
we felt that an association of CSF protein concentration and
brain volumes, potentially meaningful in clinical routine, should
remain significant after correction for both age and sex.

Accordingly, after having failed to demonstrate a relationship
of brain volumes and CSF protein concentrations beyond
that explained by age and sex in as many as 526 subjects,
we conclude that accounting for individual brain volumes is
unlikely to considerably decrease the variability of CSF protein
concentrations and, hence, to increase their diagnostic value.
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The fatigue in aerobic exercise affects the task performance. In addition to the fatigue in

the muscular system, the diminished performance may arise from the altered cerebral

blood supply and oxygen extraction. However, the effects of the fatiguing aerobic

exercise on the ability of brain to regulate the cerebral blood flow (CBF) and to extract

the oxygen are not fully understood. In this pilot study, we aim to quantify such effects

via advanced functional MRI techniques. Twenty healthy younger elite athletes were

recruited. In the screening visit, one circle ergometer test was used to screen the maximal

relative oxygen consumption (VO2max). Eleven eligible participants then completed the

next MRI visit after 7 days. These participants completed a 2-min pulsed arterial spin

labeling (ASL) using the PICORE/QUIPSS II and 5-min asymmetric spin echo (ASE)

scan at baseline and immediately after the aerobic circle ergometer test. The CBF was

then measured using the ASL images and the oxygen consumption of the brain was

quantified using oxygen extraction fractions (OEF) derived from the ASE images. The test

time, VO2max, and anaerobic threshold were also recorded. As compared to baseline,

participants had significant reduction of global CBF (p = 0.003). Specifically, the CBF

in bilateral striatum, left middle temporal gyrus (MTG) and right inferior frontal gyrus

(IFG) decreased significantly (p < 0.005, K > 20). No significant changes of the OEFs

were observed. Participants with greater OEF within the right striatum at baseline had

longer test time, greater anaerobic threshold and relative VO2max (r
2 > 0.51, p < 0.007).

Those with longer test time had less reduction of CBF within the right IFG (r2 = 0.55,

p = 0.006) and of OEF within the left striatum (r2 = 0.52, p = 0.008). Additionally,

greater anaerobic threshold was associatedwith less reduction of OEFwithin the left MTG

(r2 = 0.49, p = 0.009). This pilot study provided first-of-its-kind evidence suggesting

that the fatiguing aerobic exercise alters the cerebral blood supply in the brain, but

has no significant effects on the ability of brain to extract oxygenation. Future studies

are warranted to further establish the CBF and OEF as novel markers for physical and

physiological function to help the assessment in the sports science and clinics.
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INTRODUCTION

Physiological fatigue is one of the main contributors to the
diminished performance in aerobic exercise. With the increase
of the exercise load, multiple physiological factors (1, 2), such as
the intramuscular metabolism, excitation-contraction coupling,
are altered, causing the inability of muscles to produce enough
power forming the voluntary motion (3). In addition to these
peripheral factors, the fatigue may affect the functionality of the
brain, including the regulation of cerebral hemodynamics and
oxygen consumption (4).

The successful completion of the motion in exercise is
dependent upon the capacity of neurons in the brain to process
the afferent information from peripheral systems and send
the feedback to musculoskeletal system via neurotransmitters
appropriately. These important neural activities rely on the
sustainable supply of the oxygenated blood and the extraction
of oxygen. Previous studies have provided preliminary evidence
showing the effects of the exercise-induced fatigue on the cerebral
hemodynamics and oxygen consumption. Poulin et al. (5), for
example, observed the global cerebral blood flow (CBF) of the
brain, asmeasured using transcranial Doppler ultrasound (TCD),
increased after the exercise of mild load (i.e., at 20 and 40% of
the maximal oxygen uptake). In a separate study, Thomas and
Stephane (6) observed that the oxygenation of the prefrontal
cortex, as measured using near-infrared spectroscopy (NIRs),
increased in the first minutes of the exercise but decreased when
the exercise load increased exhaustively. However, the changes of
the CBF and the extraction of the oxygen within the specific brain
regions, as well as the underlying mechanism of such regulation
in response to aerobic exercise (5), are still unclear.

The advanced functional magnetic resonance imaging (fMRI)
techniques enable non-invasively quantifying the functional
characteristics of the brain, including the cerebral blood flow
and oxygen consumption with high-resolution images. The
development of the oxygen extraction fraction (OEF) sequences
in fMRI (7), for example, allows measuring oxygen uptake of
the small brain regions (as small as within several voxels).
In this pilot study, we aim to explore the effects of fatiguing
aerobic exercise on the regulation of cerebral blood flow
and the oxygen extraction of the brain via these advanced
fMRI techniques. Specifically, we hypothesize that after the
aerobic circle ergometer exercise with incremental load to the
maximal oxygen consumption (VO2max), participants would have
a significant decrease in their CBFs and OEFs, particularly in the
cerebral regions associated with the voluntary movements and
task motivation.

METHODS

Participants
After screening the performance of 800-meter race in 410 healthy
young athletes, 20 of them were recruited in this study. All
of them were “elite” as they were able to complete the 800-
meter race within 123 s. They had no injury within the past 3
months and were without any self-reported and/or diagnosed
metabolic or neurological diseases. Those with a relative VO2max

<55 ml/min/kg (8–10), as measured in the screening visit, were
excluded for the following MRI test.

ETHICS STATEMENT

This study was approved by Institutional Review Board of Beijing
Sport University, and conducted according to the principles of
the Declaration of Helsinki. All the participants provided written
informed consent as approved by the institutional review board.

Study Protocol
This study consisted of two visits: the screening visit and MRI
visit. The participants were first screened based upon their
relative VO2max measured in the cycle ergometer test in the
screening visit. Eligible participants then completed theMRI visit
7 days after and the CBF and OEF were measured during the
MRI visit.

Screening Visit
All the twenty participants completed one cycle ergometer test
on an electrical cycle ergometer (Monark839) on this visit. They
were instructed to not perform heavy exercise at least 24 h prior
to the visit or any other exercise on the same day of the visit.
They were also asked to not take consuming food or beverages
containing caffeine before the test. The temperature in the testing
room was maintained between 20 and 25◦C, and the relative
humidity was between 40% and 50%. The load of the ergometer
was set at 90 Watts at the beginning of the test and increased
progressively with 15 Watts per minute. The gas analyzer
(AEI Technologies, TX USA) was used to assess the oxygen
consumption. Before each test started, the gas analyzer was
calibrated. Several metrics of the oxygen consumption, including
the relative VO2max and anaerobic threshold, were measured. The
study personnel used the Borg Rating of Perceived Exertion scale
to assess the degree of the fatigue of the participants during
the test (11). This scale scored from 6 to 20 and greater score
represented higher fatigue.When the participant reported a score
≥19 (i.e., the exercise load with their maximal effort), the test
stopped. Nine of the participants had the relative VO2max <55
ml/min/kg and were thus excluded.

MRI Visit
The 11 eligible participants then completed the MRI visit 7 days
after the screening visit. All the participants completed the MRI
scan, consisting of a 2-min pulsed arterial spin labeling (ASL)
scan (12, 13) and a 5-min asymmetric spin echo (ASE) scan (14)
before and immediately after the cycle ergometer test. The same
protocol of ergometer test as in the screening visit was used.
The duration of the cycle ergometer test (i.e., test time), relative
VO2max and anaerobic threshold was recorded and used in the
following analyses.

A 3T MRI scanner (GE Medical System) with 8-channel
standard head array coil was used to acquire the MRI
data. A 3D FSPGR scan was collected for whole-brain high-
resolution anatomy. The ASL was used to acquire the CBF
using the following parameters: PICORE/QUIPSS II; Slice
thickness/gap = 8.0/2.0mm; flip angle = 90 degrees, field of
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view = 230mm × 230mm, TR = 3,000ms; TE = 3.1ms, TI1
(inversion time) = 700ms, TI2 = 1,500ms; volumes = 50. The
ASE protocol, consisting of one spin echo and 19 ASE scans, was
used to acquire the OEF (TE = 65ms, TR = 3,000ms, field of
view = 240mm × 240mm, 64 × 64 acquisition matrix, slice
thickness= 5mm, 20 slices, Nex= 2, Tau= 49).

Data Processing
The CBF data were pre-processed using Statistical Parametric
Mapping software (SPM8, Wellcome Department of Imaging
Neuroscience, University College, London, UK) and ASLtbx (15,
16). The motion artifact was removed first using the realignment
function. Specifically, the rigid body transform was used to
estimate the motion time courses for all ASL’s control and label
images. Sinc interpolation of the ASL was then used to avoid
the BOLD contamination. The time-matched control and label
images were created, followed by subtraction to suppress BOLD
contamination (16, 17). The CBF image series were generated
based on a single compartment continuous ASL perfusion model
using ASLtbx (16). Functional images were reoriented with the
origin (i.e., the coordinate of x = 0, y = 0, and z = 0) set at the
anterior commissure. Then the ASL images were co-registered
to the corresponding anatomical images and then normalized
to the MNI (Montreal Neurological Institute) space for group
analysis (16). The registration performance of images was visually
checked. These data were then smoothed using a Gaussian
kernel of full-width half-maximum 8mm. The CBF maps were
constructed using an in-house program by applying a graymatter
mask for the calculation, and the threshold (i.e., probability of
gray matter) was set>0.8. The global and the regional CBFs
of cluster with a size of at least 20 voxels were then obtained
following the method proposed by Wang et al. (16).

The ASE data were acquired using different times ranging
from 10 to 24ms with an increment of 0.5ms. These data were
processed using a customized Matlab (MathWorks Inc. Natick,
MA, USA) program (14, 18). To improve the signal-to-noise
ratio, all the ASE images were first filtered using Gaussian low-
pass filter (the kernel size was 3 × 3, and the standard deviation
was 1.5).

The global and regional OEFs were then obtained using
the method proposed by An and Lin (7). Specifically, the
measurement of OEF and R2′ was derived from a theoretical
model proposed by Yablonskiy and Haacke (19), in which a set of
randomly orientated cylinders was used to characterize the signal
behavior in static dephasing regime. The signal can be written as:

S (τ ) = ρ (1− λ) · f (λ, δω, τ) ·

(

−
TE

T2

)

· g (τ ,T1,TR) ,

where ρ was the effective spin density, λ was the volume fraction
of muscle occupied by deoxyhemoglobin; where δω was the
characteristic frequency shift and was defined as:

Sω =
4

3
π · γ · 1χ0 ·Hct · B0 · OEF,

where γ was the gyromagnetic ratio; 1χ0was the susceptibility
difference between the fully oxygenated and fully deoxygenated
blood; Hct was the fractional hematocrit, B0 was the main

magnetic field strength, and 1χ0 of 0.27 ppm per unit Hct in
centimeter-gram-second units.

Statistical Analysis
All the statistical analyses were performed by using the Matlab.
To examine the effects of fatiguing aerobic exercise on the CBF,
we first identified the regions with significant changes in CBF
after the circle ergometer test using the paired-t test to compare
the CBFs within each voxel before (i.e., baseline) and after the
test. The significance level here was set as p < 0.01, and the
threshold of cluster size (i.e., K) was set as 20. Then we further
corrected the multi-comparison results using the false discovery
rate (FDR). To examine the effects of fatiguing aerobic exercise
on the OEF, we compared the global OEFs and regional OEFs
before and after the test. Particularly, we focused on those FDR-
identified regions with significant change in CBFs [i.e., regions
of interest (ROIs)]. The FDR was also used to compare the
OEF within the ROIs before and after the test. Secondarily, the
association between the oxygen consumption (i.e., the VO2max,
anaerobic threshold), the test time and the regional CBFs and
OEFs were examined using linear regression. The Bonferroni
correction was used in the multiple comparison.

RESULTS

All the 11 participants [age: 20.3± 0.8 (mean± S.D.) years, BMI:
21.6 ± 1.6] completed the circle ergometer test and two MRI
scans. The time of the cycle ergometer test they maintained was
687 ± 72.1 s. The relative VO2max was 60.1 ± 3.3 ml/min/kg and
the anaerobic threshold was 2882.3 ± 245.4 ml/min as measured
by the gas analyzer.

Compared to the baseline, significant reduction in the global
CBF was observed after exercise (p= 0.003, Figure 1). The CBFs
in four brain regions, including left and right striatum, left middle
temporal gyrus (MTG) and right inferior frontal gyrus (IFG),
significantly decreased after completing the cycle ergometer test
(K > 20, p < 0.005, Figure 2). However, no significant changes
were observed in global and regional OEFs as compared to the
baseline (p > 0.21, Table 1).

The OEF within the right striatum at baseline was associated
with multiple functional performance, including the test time
(r2 = 0.63, p= 0.003, Figure 3A), the relative VO2max (r

2 = 0.51,
p = 0.007, Figure 3B), and anaerobic threshold (r2 = 0.66,
p = 0.004, Figure 3C). Participants with greater OEF within the
right striatum at baseline were able to maintain the test for a
longer time, and/or had greater anaerobic threshold and relative
VO2max. Neither the OEFs in other regions nor the CBFs at
baseline were associated with those functional outcomes.

The percent change of CBF within the right IFG (r2 = 0.55,
p = 0.006, Figure 4A) and the change of OEF within the left
striatum (r2 = 0.52, p = 0.008, Figure 4B) was associated with
test time. Participants who had less reduction of the CBF within
the right IFG and/or of the OEF within the left striatum were
able to maintain the test longer. Additionally, the anaerobic
threshold was associated with the change of OEF within the
left MTG (r2 = 0.49, p = 0.009, Figure 4C), such that those
with less reduction of OEF within the left MTG had greater
anaerobic threshold.
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FIGURE 1 | The global CBF mappings at baseline (A) and after the fatiguing aerobic exercise (B). Compared to baseline, the global CBF across the brain significantly

decreased (p = 0.003) after the aerobic exercise. Brighter color in the figure was greater CBF (unit: ml/100 g/min).

FIGURE 2 | The identified brain regions with significant decrease of CBF. The FDR analyses revealed that the CBF within left and right striatum (left: p = 0.004, right:

p = 0.005) (A), left middle temporal gyrus (p < 0.0001) (B), and right inferior frontal gyrus (p = 0.005) (C) significantly decreased after the fatiguing aerobic exercise as

compared to baseline.

DISCUSSION

The regulation of the blood flow and oxygen extraction in the

cerebral regions is the fundamental for the neural activities,

which are important for individual’s capacity of enduring long-
term aerobic exercises. By using advanced fMRI techniques
measuring the CBF and OEF of brain regions, our pilot study
has demonstrated the first-of-its-kind evidence that compared to
the baseline, after the aerobic circle ergometer exercise with the
load up to VO2max, the cerebral blood flowmay decrease globally,
and particularly within the left and right striatum, left MTG and
right IFG that associate with voluntary motor control, sensory
perception, and task motivation; but no significant changes in
the global and regional OEFs are observed. Moreover, these
neuroimaging metrics, which captures the metabolism of the
brain, and their changes after the exercise are associated with
the performance of the task (i.e., test time) and the energy
consumption (i.e., anaerobic threshold, relative VO2max). These
preliminary findings may thus provide unique insight into the
mechanism underlying the regulation of cerebral hemodynamics

TABLE 1 | The regional OEFs before and after the cycle ergometer test.

Regions Baseline After the test p-values

Global 0.34 ± 0.1 0.33 ± 0.09 0.52

L-striatum 0.16 ± 0.10 0.13 ± 0.08 0.21

R-striatum 0.23 ± 0.04 0.22 ± 0.07 0.56

L-middle temporal gyrus 0.12 ± 0.07 0.13 ± 0.09 0.65

R-inferior frontal gyrus 0.10 ± 0.05 0.11 ± 0.07 0.66

pertaining to the aerobic exercise, which are worthwhile to be
confirmed in future study of larger sample size.

Studies have shown the benefits of aerobic exercise with mild
tomoderate physical load on brain health in young and old adults
(20, 21). However, the effects of fatiguing aerobic exercise or tasks
with high physical load on the functionalities of the brain remain
unclear. The cerebral metabolism of oxygen (e.g., the metabolic
rate of oxygen) relies on the CBF, OEF and the total oxygen
content in the arterial blood (22). Here our results suggest for
the first time that the diminished capacity of maintaining the
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FIGURE 3 | The association between the baseline regional OEFs and functional performance. Participants with greater OEF within the right striatum at baseline

sustained the cycle ergometer test longer [r2 = 0.63, p = 0.003; (A)], and had greater the relative maximal oxygen consumption (VO2max) [r
2 = 0.51, p = 0.007; (B)],

and anaerobic threshold [r2 = 0.66, p = 0.004; (C)].

FIGURE 4 | The association between the changes of regional hemodynamics of the brain and functional performance. Participants who had less reduction of the CBF

within the right inferior frontal gyrus (IFG) [r2 = 0.55, p = 0.006; (A)] and/or of the OEF within the left striatum [r2 = 0.52, p = 0.008; (B)] were able to maintain the test

longer. Additionally, those who had less reduction of OEF within the left middle temporal gyrus (MTG) had greater anaerobic threshold [r2 = 0.49, p = 0.009; (C)].

high-load aerobic exercise may be due at least in part to the
decreased cerebral blood flow, and the altered ability of these
brain regions to extract the oxygen maintains normally.

We observed the significant reduction of CBF within left
and right striatum, left MTG and right IFG after the aerobic
circle ergometer test. The striatum is the main structure of the
basal ganglia, a central hub associated with multiple function,
including the control of voluntary movement (23, 24) and task
motivation (25, 26). Chaudhuri and Behan (27) have shown
that the decreased activation of the basal ganglia alters the
neural integrator and the cortical feedback. This dysfunction
within the striato–thalamo–cortical loop is associated with the
diminished physical function and increased fatigue in many
neurodegenerative conditions, such as Parkinson’s disease (28).
Meanwhile, the MTG is associated with the multisensory
integration (29) and the IFG has been linked to the motion
inhibition and attention control (30). In our study, a continuous
aerobic task with extremely high load up to 100% VO2max was
used. The demand of the oxygen supply may thus increase over
the maximal supply the vascular system is able to provide. As
such, a potential “preserve” mechanism may be initiated: when
the exercise is severely overloaded, the supply of oxygenated
blood to the basal ganglia region, MTG and IFG decreases,
leading to the diminished activation of striatum loop, less
transmission of dopamine and declined sensory integration and
attention. This helps prevent the body continuing the task of high
risk, causing damages to our physiologic systems. Future studies

are worthwhile to explore and confirm this potential mechanism
by measuring the cerebral changes repeatedly along with the
increase of task load.

We also observed that participants with greater resting OEF
or less percent reduction in CBF was associated with greater time
to maintain the aerobic test, and greater anaerobic threshold and
relative VO2max. This may indicate that these markers derived
from the cerebral hemodynamics are sensitive to the physical and
physiologic function. Other studies have demonstrated the effects
of exercise on the cerebral function and physical performance
(20, 31). Leddy et al. (31), for example, reported that the aerobic
exercise restored/enhanced the activation of the cerebral regions
(e.g., anterior cingulate gyrus), as well as their physical function
in those with post-concussion syndrome. Our study for the first
time provide potential links between one’s capacity to adapt to
the aerobic exercise of high physical load to the cerebral function.
The effects of biological aging and other pathological conditions
on this relationship are worthwhile to be explored in future’s
longitudinal studies.

To measure the cerebral oxygen consumption, PET is still the
most widely used method. However, it relies on the radiocontrast
agent injected into the body (32), and many studies have
shown that the radiocontrast agent is toxic and may cause
adverse events (33, 34). Meanwhile, the low spatial resolution
of other techniques, such as the TCD and NIRs, also limits
their applications. We here implemented novel fMRI techniques
(i.e., ASL and ASE sequences) to non-invasively measure the
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CBF and OEF in the brain. These advanced neuroimaging
techniques shed light on characterizing the brain in
future studies.

The limitation of this pilot study is that the sample size is
small (n = 11) and currently we focus only on the cohort of elite
young athletes. The effects of fatigue on the hemodynamics of
the brain in other vulnerary populations, such as those suffering
from the chronic fatigue syndrome, are needed to be explored.
The observation in this pilot study may still be impacted by the
vascular changes within the cerebral regions. Moreover, multiple
underlying physiological characteristics may also contribute to
the observed changes in CBF here, including the exercise-
related changes of adenosine triphosphate, hematocrit, and blood
pressure, which, however, was not measured in this pilot study.
Additionally, we focused the OEF on only the regions with
significant changes in CBF. Future studies of larger sample size
are thus warranted to explore and confirm the results of this
pilot study by analyzing the regional OEF across multiple brain
regions, and to explore the potential physiological pathways
through which the fatigue affects the brain’s hemodynamics
by measuring those metrics. This pilot study nevertheless
demonstrated the effects of fatiguing aerobic exercise on the
cerebral hemodynamics and the extraction of oxygen in the
brain using advanced neuroimaging techniques, revealing a
potential preserve mechanism and providing several sensitive
neuroimaging markers of physical and physiological function,

whichmay ultimately help the functional assessment in the sports
science and clinics.
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Background and Purpose: Susceptibility-weighted imaging (SWI) has emerged as

a useful clinical tool in many neurological diseases including multiple sclerosis (MS).

This study aims to investigate the relationship between SWI signal changes due to iron

deposition in MS lesions and tissue blood perfusion and microstructural abnormalities to

better understand their underlying histopathologies.

Methods: Forty-six patients with relapsing remitting MS were recruited for this

study. Conventional FLAIR, pre- and post-contrast T1-weighted imaging, SWI, diffusion

tensor imaging (DTI), and dynamic susceptibility contrast (DSC) perfusion MRI were

performed in these patients at 3T. The SWI was processed using both magnitude

and phase information with one slice minimal intensity projection (mIP) and phase

multiplication factor of 4. MS lesions were classified into 3 types based on their lesional

signal appearance on SWI mIP relative to perilesional normal appearing white matter

(peri-NAWM): Type-1: hypointense, Type-2: isointense, and Type-3: hyperintense lesions.

The DTI and DSC MRI data were processed offline to generate DTI-derived mean

diffusivity (MD) and fractional anisotropy (FA) maps, as well as DSC-derived cerebral

blood flow (CBF) and cerebral blood volume (CBV) maps. Comparisons of diffusion and

perfusion measurements between lesions and peri-NAWM, as well between different

types of lesions, were performed.

Results: A total of 137 lesions were identified on FLAIR in these patients that include

40 Type-1, 46 Type-2, and 51 Type-3 lesions according to their SWI intensity relative

to peri-NAWM. All lesion types showed significant higher MD and lower FA compared

to their peri-NAWM (P < 0.0001). Compared to Type-1 lesions (likely represent iron

deposition), Type-2 lesions had significantly higher MD and lower FA (P < 0.001) as well

as lower perfusion measurements (P< 0.05), while Type 3 lesions had significantly higher

perfusion (P < 0.001) and lower FA (P < 0.05). Compared to Type-2, Type-3 lesions

had higher perfusion (P < 0.0001) and marginally higher MD and lower FA (P < 0.05).
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Conclusion: The significant differences in diffusion and perfusion MRI metrics

associated with MS lesions, that appear with different signal appearance on SWI, may

help to identify the underlying destructive pathways of myelin and axons and their

evolution related to inflammatory activities.

Keywords: DTI (diffusion tensor imaging), susceptibility-weighted imaging, multiple sclerosis (MS), PWI =

perfusion-weighted imaging, MRI - magnetic resonance imaging

INTRODUCTION

Multiple sclerosis (MS) is an inflammatory autoimmune
neurodegenerative disease of the central nervous system (CNS),
characterized by inflammation, demyelination, gliosis and neuro-
axonal loss in lesions. It is generally believed that the basic
pathogenesis of MS is collapse of immune tolerance to CNS
myelin or myelin-like antigens followed by pro-inflammatory
phagocytosis, oxidative injury, antigen presentation and T
cell co-stimulation (1). Demyelinating and axonal injury are
further consequences, which are typical features of MS. As
we have already known, the progressive neurodegenerative
processes in MS take a great toll on physical disability
and cognitive disorder (2), and can seriously impact the
quality of life in patients. Recent studies have shown that
the changes of iron content that are commonly seen in
MS lesions may be related to inflammatory activities (e.g.,
active myelin phagocytosis and intracellular iron depletion)
and oxidative tissue injury in the demyelinating disease (3–6).
Some other studies have found that iron is closely related to
the biosynthetic enzymes of myelin formation (7, 8). Public
opinions are divergent, but the effect of iron deposition on
cellular and microstructural changes in the MS lesions remains
an unresolved issue.

MRI has had an enormous impact on MS and plays a
critical role as a paraclinical tool in routine clinical practice.
The multi-sequence or multi-contrast MR imaging not only
improves the diagnosis but also provides different specificity for
various elements of pathology including iron deposition and
microstructural destruction (9). Susceptibility weighted imaging
(SWI) (10), as a three dimensional high resolution gradient
echo sequence, is extensively applied for detecting abnormal iron
deposition or microbleeds inMS (11). Compared to conventional
T1- and T2-weighted MRI, SWI is more superior in displaying
paramagnetic dark or hypointense signals, including the iron
content in various forms of hemosiderin, ferritin and iron-
laden macrophage (12–15) with high sensitivity even with only
1 gFe/g tissue iron changes (16). Studies have shown that MS
lesions can also appear as an isointense or hyperintense signal
on SWI with unclear pathophysiological implications (16, 17). It
is therefore essential to identify the pathophysiological meaning
of different SWI signal appearances of MS lesions using non-
invasive imaging to fulfill this unmet need.

Recently, quantitative imaging measures have been
increasingly used in MS research to better elucidate the
hidden pathological mechanisms associated with tissue
microstructural and inflammatory changes (9). Among these
techniques, diffusion tensor imaging (DTI) (18–20) and dynamic

susceptibility contrast MRI (DSC-MRI) (21, 22) are gaining more
wide-spread utility in clinical practice and have shown great
potential for detecting the cellular microstructural integrity and
hemodynamic impairment at different stages of lesion evolution
in MS, respectively. The aim of this study is to characterize the
quantitative DTI-derived diffusion and DSC-derived perfusion
parameters changes underlying different SWI signal intensities
of MS lesions. We hypothesized that signal intensities detected
on SWI in MS lesions may be a noninvasive biomarkers that
can help clinicians to determine specific pathological processes
associated with demyelination, axonal loss, and inflammatory
processes in patients with relapsing-remitting MS.

MATERIALS AND METHODS

Subjects
The research protocol of this retrospective study followed
the tenets of the Declaration of Helsinki and was approved
by the New York University Langone Health (NYULH)
Institutional Review Board. Forty-six clinically definite
relapsing remitting MS patients (28 women, 18 men,
mean age 35.9 ± 11.3 years) enrolled from January 2012
to December 2016, were used in this study. All patients
were informed and signed the institutional review board
approved written consent form. The median disease duration
in these patients was 4.4 years (range 1.6–11.4 years) and the
median expanded disability status scale (EDSS) was 3.5 (range
1.5–5.5). These patients had no history of cerebrovascular
disease, evidence of small vessel ischemic disease and no
substantial intracranial pathology besides MS lesions in
MR imaging.

Image Acquisition and Processing
All patient data were acquired on a 3.0T Trio (Siemens Medical
Solutions, Erlangen, Germany) MR scanner using a 20-channel
array head coil. The MRI protocol included the following
sequences: (1) Fluid-attenuated inversion recovery (FLAIR)
imaging (TR/TE=9420/134ms, voxel size= 1× 1× 3 mm3); (2)
pre and post T1-weighted (T1W) imaging (TR/TE=630/15ms,
voxel size = 1 × 1 × 3 mm3); (3) susceptibility weighted
imaging (SWI) (TR/TE=28/20ms; FA=15◦, voxel size =0.86
× 0.86 × 3 mm3); (4) DTI with 30 directions (TR/TE =

7300/89ms, voxel size = 3.0 × 3.0 × 3.0 mm3, b = 1000
s/mm2); (5) dynamic susceptibility contrast (DSC) perfusion
imaging (TR/TE = 956/32ms, voxel size = 1.7 × 1.7 × 3.0
mm3) applied to 13 axial slices centered at lateral ventricle
body with 10 seconds injection delay. For DSC, a 3–5 cc/sec
bolus of Gadolinium contrast agent (Gd-DTPA; Magnevist,
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Bayer Schering Pharma) was administered at a dose of 10–
20 cc (0.075 mmol/kg) to acquire 60 time points. The post-
contrast T1-weighted imaging (the same sequence with pre-
contrast) was performed 10min after injection. The image
slice thickness from all sequences above is the same for lesion
identification and registration on different imaging contrast.
All sequences had 45 slices (13.5 cm) coverage of brain
except DSC. The total scan time for all sequences was about
45 min.

SWI data is processed using an in-house image-processing
software (SPIN) (23). The raw magnitude and phase from
each SWI scan used to generate minimal intensity projection
(mIP) using phase multiplication factor of 4 to enhance the
susceptibility effects. Instead of using multiple slices for mIP, one
slice mIP was used in this study to keep the slice thickness the
same with the rest sequences and to minimize the partial volume
effects from multi-slice mIP. DTI data analysis was performed
offline using DTI studio, by which tensor images were generated
to construct mean diffusivity (MD) and fractional anisotropy
(FA) (24). MD and FA are the scalar measures of the total
diffusion (e.g., average of eigenvalues) within a voxel and the
degree of anisotropy in a given voxel, respectively. DSC data was
processed using the perfusion analysis software package in Olea
Sphere (Olea Medical, Cambridge, MA). Data first underwent
preprocessing consisting of motion correction followed by spatial
and temporal filtering. The standard single value decomposition
(SVD) technique was then applied to the preprocessed data to
generate maps of mean transit time (MTT), CBF, and leakage-
corrected CBV (25). Because the absolute values of CBF (ml/100
ml/min) and CBV (ml/100ml) can only be determined up
to a multiplicative constant, the comparisons between lesion
types were used as relative measures (i.e., rCBF, rCBV) in this
study. Lastly, the diffusion and perfusion maps were manually
registered to their corresponding conventional T1 and FLAIR
imaging as well as SWI images using tkregister2 (Free Surfer,
Massachusetts General Hospital, Harvard Medical School) for
manually ROI placement and analysis.

Data and Statistical Analysis
As shown in Figure 1, according to signal intensity appearances
on SWI mIP, MS lesions were classified into three distinct
lesion types. Type-1: hypointense (i.e., higher susceptibility),
Type-2: isointense, and Type-3: hyperintense lesions. To
avoid the visual predisposition bias, a cut-off value of 30%
difference of mean intensity, measured between lesions and
perilesional region, was applied. Only lesions with a diameter
of 5mm or larger were included in the data analyses. These
lesions were first blindly reviewed and classified by each
of the two experienced radiologists, and finally determined
by consensus between the two for lesions with inconsistent
opinion. Quantitative data analyses of diffusion and perfusion
measurements were performed with Image J (National Institutes
of Health, Bethesda, MD) software. Lesions were identified
on conventional FLAIR, T1-weighted, and SWI images, on
which the anatomical regions of interest (ROIs) were manually
selected and then transferred onto co-registered FA, MD, CBF,
and CBV maps. For each lesion, the ROI was placed on

both lesion and perilesional NAWM (peri-NAMW) region for
comparison. In order to increase the accurate lesion selection
and avoid partial volume, the image with the lesion target
was zoomed-in 3 times bigger on ImageJ for better ROI
placement. On this magnified view, the ROI placement of peri-
NAWM was also improved. Mixed model analysis of covariance
(ANCOVA) was used to compare the lesions of each type to
the perilesional normal appearing white matter (peri-NAWM)
and to compare lesions of different types to each other with
respect to FA, MD, rCBF, and rCBV. A separate univariate
analysis was conducted for each perfusion measure. When
the value of P < 0.05, the difference is considered to be
statistically significant.

RESULTS

A total of 137 lesions were identified on conventional T2-
weighted and post-contrast T1-weighted imaging in 46
patients with relapsing remitting MS that had both DTI
and DSC data. Among them, there were 40 (or 29.2%)
Type-1, 46 (or 33.6%) Type-2, and 51 (or 37.2%) Type-3
lesions (Figure 1). In addition, there were 11 enhancing
lesions found in 6 patients; and 9 of these enhancing
lesions were Type-3 lesions that showed hyperintensity
on SWI, and another 3 enhancing lesions were Type-
2 lesions that show isointensity on SWI. In contrast,
none of the Type-1 lesions (hypointense on SWI) showed
Gadolinium enhancement.

As shown in Figure 2, compared to peri-NAWM
measurements, FA was significantly lower and MD was
significantly higher in all types of lesions (P < 0.0001), indicating
clear microstructural disruption in MS lesions. The mean FA
values of Type-1, Type-2, and Type-3 lesions were 0.31 ± 0.05,
0.24 ± 0.07, 0.27 ± 0.08, respectively; and the mean FA values
for their corresponding peri-NAWM were 0.49 ± 0.11, 0.52 ±

0.09, 0.45 ± 0.12 respectively. The mean MD values of Type-1,
Type-2, and Type-3 lesions were 1.16 ± 0.27, 1.42 ± 0.34,
1.27 ± 0.36, respectively; and the mean MD values for their
corresponding peri-NAWM were 0.71 ± 0.16, 0.68 ± 0.17, 0.82
± 0.09, respectively. For perfusion measures, both CBF and
CBV in Type-3 lesions (297.6 ± 126.5 ml/100 g/min, 385.9 ±

142.9 ml/100 g) showed significantly higher than peri-NAWM
(216.9 ± 80.6 ml/100 g/min, 234.7 ± 75.6 ml/100 g) with P =

0.0002 and P < 0.0001, respectively. Type 2 lesions showed
significantly lower CBF than peri-NAWM (158.6± 77.1 vs. 193.7
± 82.3 ml/100 g/min, P = 0.04) and significantly lower CBV
(206.4 ± 95.1 vs. 257.4 ± 89.1 ml/100 g, P = 0.009). However,
Type-1 lesions didn’t show a significant difference in perfusion
measurements with peri-NAWM.

The DTI-derived mean FA and MD values as well as DSC-
derived rCBF and rCBV values of three types of lesions and their
comparisons (P-values) are summarized in Table 1. Compared
to Type-1 lesions, Type-2 lesions showed significantly higher
MD and lower FA. Compared to Type-1 lesions, Type-3 lesions
only showed significant difference in MD (P = 0.036) but not
in FA. Compared to Type-3 lesions, Type-2 lesions showed
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FIGURE 1 | MS lesions are classified into three types based on their signal intensity appearance on SWI mIP image—Type-1: hypointense lesions; Type-2: isointense

lesions; and Type-3: hyperintense lesions. The group classification is defined as the difference between lesion signal intensity and surrounding perilesional NAWM

(peri-NAWM) is equal or over 30% cut-off. The arrows indicate the lesion types with different signal appearance on single-slice mIP SWI.

FIGURE 2 | Bar graphs showing comparisons of DTI-derived MD (A) and FA (B), as well as DSC-derived CBF (C) and CBV (D) measurements, between each lesion

type and its corresponding perilesional normal appearing white matter (per-NAWM). *P < 0.05, **P < 0.01, ***P < 0.001. MD, CBF, and CBV are in their units of

mm2/s, ml/100 g tissue/min, and ml/100 g tissue, respectively.

marginally higher MD and lower FA (P = 0.04). The mean
rCBF and rCBV were the lowest in Type-2 lesions and were
the highest in Type-3 lesions with Type 1 lesions being in the
middle. The increased blood perfusion in Type-3 lesions may

be associated with vascular inflammatory activities since most
enhancing lesions (9 out of 11) were Type-3 lesions.

Examples of diffusion and perfusion imaging parameter
characteristics of Type-1 lesions were shown in Figure 3.
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TABLE 1 | Diffusion and perfusion imaging measurements in different types of MS lesions on SWI and their comparisons.

Individual lesion types Comparison between types

Imaging measurements Type 1 Type 2 Type 3 Type 1 vs. Type 2 Type 1 vs. Type 3 Type 2 vs. Type 3

hypointense lesions Isointense lesions hyperintense lesions

MD 1.13 ± 0.32 1.41 ± 0.03 1.27 ± 0.04 P < 0.0001 P = 0.036 P = 0.047

FA 0.31 ± 0.05 0.27 ± 0.07 0.30 ± 0.12 P = 0.0004 P = 0.792 P = 0.047

rCBF 1.05 ± 0.46 0.86 ± 0.34 1.39 ± 0.41 P = 0.036 P = 0.0003 P < 0.0001

rCBV 1.05 ± 0.42 0.86 ±0.41 1.67 ± 0.46 P = 0.039 P < 0.0001 P < 0.0001

The values were reported in mean ± standard deviation. The unit for MD is in mm2/s. The reported rCBF and rCBV are relative (i.e., ratio) measurements and FA is an index for the

amount of diffusion asymmetry between 0 and 1 within a voxel, therefore, they don’t have absolute units. The intensity of different types of lesions is relative to the surrounding white

matter on SWI.

FIGURE 3 | Representative images of Type-1 lesions in two MS patients (top row from a 36-year-old male patient and bottom row from a 37-year-old female patient)

include FLAIR (A,A′), Gd-enhanced T1-weighted (B,B′), and SWI (C,C′), as well as parameter maps of MD (D,D′), FA (E,E′), and CBF (F,F′). The hypointense lesions

on SWI (arrows) are associated with a less significant change in diffusion and perfusion measurements, as compared perilesional NAWM.

As shown in one patient (in Figure 3 top row), SWI was
most sensitive in detecting iron-laden component of lesions.
The hypointense Type-1 lesions demonstrated a significant
increase in MD and decrease in FA but no change in
perfusion measurements compared to perilesional NAWM.
Similarly, in another patient (Figure 3 bottom row), visible
changes of MD and FA can be seen in another Type-
1 lesion compared to peri-NAWM with uncertain perfusion
changes. Representative Type-2 lesions were shown in Figure 4,

in which SWI lesions that appeared as slightly hypointense
(top row) or isointense (bottom row) showed a remarkable

increase in MD and decrease in FA as well as reduced CBF.
Such lesions in Figure 4 (top row) also showed hypointensity
on both FLAIR and post-contrast T1-weighted images. Two
Type-3 lesions with Gadolinium enhancement were shown
in Figure 5, in which there is a mild increase in MD
and marked decrease in FA as well as increase in CBF.
One MS lesion with both Type-2 and Type-3 components
was shown in Figure 6, in which the lesion showed a
mixed pattern of significant diffusion and perfusion changes
associated with non-enhancing center region and the enhancing
rim, respectively.
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FIGURE 4 | Representative images of Type-2 lesions in two MS patients (top row from a 43-year-old female patient and bottom row from a 37 female patient) include

FLAIR (A,A′), Gd-enhanced T1-weighted (B,B′), and SWI (C,C′), as well as parametric maps of MD (D,D′), FA (E,E′), and CBF (F,F′) The slightly hypointense (top

row) or isointense (bottom row) lesion on SWI (arrow) showed a remarkable increase in MD, and decrease in FA and CBF, suggesting the chronic necrotic lesions

indicated by the hypointensity on FLAIR, and T1-weighted imaging (i.e., top row) have severe microstructural destruction and disturbed perfusion.

FIGURE 5 | Representative images of Type-3 lesions in two MS patients (top row from a 32-year-old female and bottom row from 41-year-old female patient) include

FLAIR (A,A′), Gd-enhanced T1-weighted (B,B′), SWI (C,C′), as well as parametric maps of MD (D,D′), FA (E,E′), and CBF (F,F′). The hyperintense lesions (arrow) on

SWI showed gadolinium enhancement that is corresponding to increased perfusion and slightly increased MD as well as decreased FA.

DISCUSSION

Conventional MRI offers the most sensitive way to detect
MS lesions and their changes over time for ruling in
or ruling out a diagnosis of MS and for disease follow-
up monitoring. The addition of SWI, which is a quick
scan of routine conventional MRI protocols, may provide

in vivo pathophysiological insights into cellular microstructural
injury and tissue hemodynamic changes. Our results of MS
lesions on SWI, combining quantitative multi-contrast and
multi-parameter MRI, suggest that the intensity-based lesion
types on SWI may represent a specific stage of lesion
evolution or a certain pathological substrate associated with
demyelination/axonal injury or inflammatory activity. These
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FIGURE 6 | An ring-enhancing lesion in a 32-year-old female MS patient on FLAIR (A), Gd-enhanced T1-weighted (B), and SWI (C), as well as on MD (D), FA (E), and

rCBF (F) parametric maps. The lesion has both Type-2 (isointense center on SWI) and Type-3 (hyperintense rim on SWI) components. The center of the lesion

demonstrated larger MD changes compared to the enhancing rim that has increased perfusion of the entire lesion.

hidden pathological changes including blood-brain barrier
dysfunction can possibly be detected with SWI without using
Gadolinium contrast agent (26) as shown in Type-3 lesions. Our
data also confirm previous imaging-histopathological correlative
evidence of iron deposition, demyelination and axonal loss (6, 27,
28). In particular, three major observations emerge from these
data. First, a hyperintense (Type-3) lesion on SWI may be related
to the underlying enhanced vascular inflammatory activity with
increased BBB disruption that results in increased CBF and CBV.
Second, hypointense (Type-1) lesions on SWI are likely to have
less tissue destruction by diffusion measures compared to Type-
2 lesions; they also have less inflammatory activity than Type-
3 lesions by perfusion measures. Third, isointense SWI Type-2
lesions may represent a more chronic demyelinated plaque with
irreversible tissue destruction (e.g., black holes) showing themost
severe DTI-derived diffusion changes.

SWI is a 3D gradient-echo high-resolution sequence that is
fully flow-compensated with long-echo and combines magnitude
and filtered-phase information to enhance susceptibility effects
due to paramagnetic substances, such as hemosiderin and
deoxyhemoglobin (10). Unlike quantitative susceptibility
mapping (QSM), SWI is considered to be a qualitative MRI
technique for enhanced lesion detection, its unique image

contrast is particularly useful to gauge tissue iron content
and venous structures. Therefore, it is well-recognized that
hypointense (Type-1) lesions of MS are corresponding
to increased iron content, which is likely due to chronic
inflammatory activity with an elevated number of microglia and
macrophages that contain high amounts of iron (15, 29). Type-1
lesions are also likely caused by increased hemosiderin (30) from
old blood products leaked from inflammation-induced damaged
vessels. All Type-1 lesions in this study were not enhancing on
post-contrast T1-weighted imaging even though some lesions
showed slightly increased blood perfusion, indicating certain
inflammatory activities or lesion reactivity with increased
macrophage cells (21). Compared to Type-2 lesions, these Type
1 lesions showed less diffusion abnormalities, which are believed
to be corresponding to a lower degree of cellular architecture
destruction during a tissue repair stage (8, 31).

Most SWI studies of MS have been focusing on hypointense
(Type-1) lesions. In this study, besides the hypointense SWI
lesions, we have also characterized quantitative diffusion and
perfusion imaging features of isointense and hyperintense SWI
lesions. Out of 137MS lesions, 33.6% are Type-2 isointense
lesions and 37.2% are Type-3 hyperintense lesions. Since mIP
is a post-processed image using phase multiplication (with a
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factor of 4 in this study) and minimal intensity projection
algorithm (10), the true meaning of signal intensity on multi-
slice mIP images is uncertain. Therefore, in this study, the mIP
image was generated using only one slice, in order to avoid
the mixture effects of projected intensities. Except for high
susceptibility substances (e.g., non-heme iron or venous blood)
that contribute to dark signal on SWI, the non-dark signal
on SWI is likely due to the combined effects of the amount
free water content and edema (non-free intra- or extra-cellular
water) due to pro-inflammation activation status. SWI does not
provide a typical T1- or T2-weighted imaging contrast. After
being applied with phase information, it does not seem to be
a standard T2∗ contrast either. Although the non-iron laden
isointense or hyperintense SWI lesions have been consistently
shown in the literatures and represent most MS lesions (16,
17, 32, 33), their histopathological characteristics are unclear.
In this study, we found most isointense Type-2 lesions on SWI
are corresponding to isointense or hypointense (or black hole)
lesions on T1-weighted imaging. The well-demarcated black hole
lesions on T1-weighted imaging likely represent the hypocellular
area characterized by necrotic fluid elements and the loss of
tissue structures.

Our results of combining quantitative diffusion and perfusion
measurements support the notion that SWI can be used
as a promising alternative in determining the underlying
histopathological hallmarks of MS lesions. We found that Type-1
lesions have less diffusion changes than Type-2 lesions and less
perfusion changes than Type-3 lesions, despite Type-1 lesions
usually containing iron deposition. According to the previous
study, the origins of iron deposition in MS lesions may be the
concentrated iron of macrophages, debris of oligodendrocyte
and myelin, or hemosiderin of hemorrhagic products from the
leaky vessels (34, 35). The exact role of iron in MS is unclear
with views from both sides that iron can either contribute to
chronic inflammation, oxidative stress and neurodegeneration
(35) or contribute to tissue repair (31). The slightly increased
perfusion measurements (e.g., CBF and CBV) of Type-1 lesions
found in this study may support the increased inflammation and
cell activities.

To the best of our knowledge, this is the first time to
characterize the hyperintense signal (Type-3) lesions on SWI
with diffusion and perfusion measurements. Type-3 lesions
showed significantly increased rCBF and rCBV but less diffusion
changes compared to Type-2 lesions, indicating local vascular
inflammation induced vasodilation and increased perfusion in
these lesions (21, 36). This is also indicated by that fact that 9
out of 11 enhancing lesions in these patients are Type-3 lesions.
Based on QSM analysis, Zhang et al. (26) showed gadolinium-
enhancing MS lesions had relative low QSM values than non-
enhancing lesions, which are consistent with the findings in this
study that these enhancing lesions appear hyper- rather hypo-
intense on SWI. Another study (32) has also demonstrated that
enhancing lesions are likely to be hyperintensities in contrast to
the central dark vein on post-gadolinium SWI images, despite
that gadolinium is a paramagnetic agent and has strong T2∗

shortening effect. These results suggest that signal intensities on
SWI may help better detect BBB dysfunction and identify subtle

inflammatory activities that are not detected on post-contrast
T1-weighted imaging (35). The marginal or no difference of
diffusion measurements between Type-3 and Type-1 lesions,
as well as between Type-3 and Type-2 lesions, indicate that
there is a large span of variabilities for microstructural changes
in MS lesions depending on stages of lesion development and
evolution. However, Type-2 lesions demonstrated the highest
MD and lowest mean FA, suggesting most severe architecture
destruction and tissue loss in these lesions; and Type-1 lesions
showed the lowest mean MD, which may suggest a certain level
of water diffusion restriction [i.e., cytotoxic edema from hypoxia
injury (37, 38)] occurs in these lesions during high level of
macrophage activities.

There were several limitations associated with this study.
First, due to the challenge for quantifying the absolute CBF
and CBV using DSC MRI (39, 40) due to the uncertainties
of scaling coefficients for relaxivity and AIF partial volume,
we used relative perfusion measures for comparison between
lesion types. For comparisons between lesions and peri-NAWM,
although we used the actual CBF and CBV values from DSC
SVD algorithms, the values reported in these tissues are supposed
to be interpreted for comparisons only. Future longitudinal
studies are warranted for validating some of the findings
regarding the underlying histopathology of lesion development
and progression, in particular with a large sample size of patients
with enhancing lesions. Lastly, the definition of different types of
lesions was using 30% signal intensity differencemay be arbitrary,
however, we found the classification based on such a threshold
provided appropriate differentiable imaging features from DTI
and DSC data.

CONCLUSION

This study indicates that the addition of SWI to clinical MRI
protocol may provide in vivo pathological insights, suggesting
that the intensity-based lesion types on SWI may represent
a specific stage of lesion evolution or a certain pathological
substrate associated with iron deposition, demyelination/axonal
injury or inflammatory activity. Further studies investigating the
longitudinal evolution of lesion appearances on SWI and their
quantitative correlations will be envisioned.
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MR Spectroscopic Imaging

Martin Klietz 1†, Paul Bronzlik 2†, Patrick Nösel 2, Florian Wegner 1, Dirk W. Dressler 1,

Mete Dadak 2, Andrew A. Maudsley 3, Sulaiman Sheriff 3, Heinrich Lanfermann 2 and

Xiao-Qi Ding 2*

1Department of Neurology, Hannover Medical School, Hanover, Germany, 2Department of Neuroradiology, Hannover Medical

School, Hanover, Germany, 3Department of Radiology, University of Miami School of Medicine, Miami, FL, United States

Objective: To estimate alterations in neurometabolic profile of patients with early

stage Parkinson’s disease (PD) by using a short echo-time whole brain magnetic

resonance spectroscopic imaging (wbMRSI) as possible biomarker for early diagnosis

and monitoring of PD.

Methods: 20 PD patients in early stage (H&Y ≤ 2) without evidence of severe other

diseases and 20 age and sex matched healthy controls underwent wbMRSI. In each

subject brain regional concentrations of metabolites N-acetyl-aspartate (NAA), choline

(Cho), total creatine (tCr), glutamine (Gln), glutamate (Glu), and myo-inositol (mIns) were

obtained in atlas-defined lobar structures including subcortical basal ganglia structures

(the left and right frontal lobes, temporal lobes, parietal lobes, occipital lobes, and the

cerebellum) and compared between patients and matched healthy controls. Clinical

characteristics of the PD patients were correlated with spectroscopic findings.

Results: In comparison to controls the PD patients revealed altered lobar metabolite

levels in all brain lobes contralateral to dominantly affected body side, i.e., decreases

of temporal NAA, Cho, and tCr, parietal NAA and tCr, and frontal as well as occipital

NAA. The frontal NAA correlated negatively with the MDS-UPDRS II (R = 22120.585, p

= 0.008), MDS-UPDRS IV (R = −0.458, p = 0.048) and total MDS-UPDRS scores (R =

−0.679, p = 0.001).

Conclusion: In early PD stages metabolic alterations are evident in all contralateral

brain lobes demonstrating that the neurodegenerative process affects not only local

areas by dopaminergic denervation, but also the functional network within different brain

regions. The wbMRSI-detectable brain metabolic alterations reveal the potential to serve

as biomarkers for early PD.

Keywords: Parkinson’s disease, whole brain, MRI, spectroscopy, biomarker, early diagnosis
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INTRODUCTION

Parkinson’s disease (PD) is characterized by symptoms of rigidity,
bradykinesia, tremor, and postural instability. Diagnosis is based
on clinical findings, with an accuracy of only 53% for disease
duration <5 years, increasing to 88% for durations longer
than 5 years (1). Magnetic resonance imaging (MRI) reveals in
PD patients only unspecific brain changes and is used mainly
to exclude differential diagnoses (2–6). Magnetic resonance
spectroscopy (MRS) can be used to measure brain metabolites
like N-acetyl-aspartate (NAA), choline (Cho), myo-inositol
(mIns), total creatine (tCr), glutamine (Gln), and glutamate
(Glu), which provide information about neuronal integrity
(NAA), membrane turnover (Cho), gliosis (mIns), energy
metabolism (Cr), and glutamatergic neuronal activity (Glu, Gln)
in patients. Numerous MRS studies on PD have been reported
previously (7–11). Due to methodical limitations of commonly
used MRS techniques that suffered from limited spatial coverage,
most studies reported PD-related metabolic changes in one or a
few small brain structures. These results thus may not necessarily
reflect the metabolic status within whole brain. Considering that
human brain functions as organized networks with interactions
between different multiple brain regions (10, 12), information
about PD-related metabolic alterations within the whole brain
with high spatial resolution may help to better characterize
PD and understand the underlying pathologic mechanisms.
A recently established whole-brain MR spectroscopic imaging
(wbMRSI) technique provides the possibility to measure brain
metabolites simultaneously over different larger brain scales in
subjects in vivo (13), as well as in multiple specific small brain
areas (14, 15). Therefore, we are going to study altered brain
metabolism in PD patients systematically by use of the wbMRSI.
As a first part of the project we aimed to obtain an overview about
altered neurometabolic profile in early PD by exploringmetabolic
changes in eight brain lobes and cerebellum that composed the
whole brain, with the results being reported in the following.

PATIENTS AND METHODS

Patients and Clinical Examinations
Human subject studies were carried out with approval from the
local Ethics Committee of Hannover Medical School (No. 6167-
2016) and all subjects gave written informed consent. PD patients
were recruited from those treated at the neurological wards
and movement disorders outpatient clinic of Hannover Medical
School. Inclusion criteria were the neurological diagnosis of PD
according to the Movement Disorder Society (MDS) diagnosis
criteria with a Hoehn and Yahr stage (H&Y) of 1 or 2 in the
best medical on state and age of 75 or below. Definition of
early stage PD by the H&Y stage is in accordance with (7–13),
additionally, none of our patients complained of a significant
amount of motor complications qualifying for advanced PD
[see (16) for review]. Patients with atypical Parkinsonism and
other known brain pathologies e.g., stroke, small vessel disease
or tumor, were excluded. Additionally, patients with severe head
tremor, dystonia or dyskinesia had to be excluded from this study.

A movement disorders specialist enrolled the PD patients.
Twenty PD patients (48–72 years old, mean age 60.2 ± 7.2
years, 8 males) were included. Information about course of PD in
the individual patient was collected, including disease duration,
dominantly affected body side, main symptoms, medication, and
comorbidities. PD symptoms were assessed by the Movement
Disorders Society Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) (17). Patients were rated in best medication
“on” state. PD specific medication was noted and levodopa
equivalence dosage calculated (LED). Cognitive deficits were
quantified by the established test for dementia and mild cognitive
impairment DemTect (18). As controls 20 healthy participants
matched in age and sex on a one-to-one basis were also studied.
All patients and healthy controls were right-handed according
to self-report.

MR Examinations
All subjects underwent MR examinations at 3T (Verio, Siemens,
Erlangen, Germany). The routine MRI protocol included a T2
weighted turbo spin echo (TSE) sequence, a T2 weighted gradient
echo (GRE) sequence, a fluid attenuation inversion recovery
(FLAIR) sequence, a T1 weighted 3D magnetization-prepared
rapid gradient-echo (MPRAGE) sequence, and a volumetric
spin-echo planar spectroscopic imaging (EPSI) acquisition
(TR/TE = 1550/17.6ms, field-of view of 280 × 280 × 180 mm3,
matrix size of 50 × 50 with 18 slices with a nominal voxel
volume of 0.31ml (=5.6 × 5.6 × 10 mm3), echo train length
of 1,000 points, and bandwidth of 2,500Hz) for wbMRSI, as
described previously (13, 19). The scan time with EPSI was about
17min. The EPSI-acquisition included also a second dataset
obtained without water suppression, which was used for several
processing functions, including measurement and correction of
the resonance frequency offset at each voxel location, correction
of lineshape distortions and to provide internal signal reference
for the normalization ofmetabolite concentrations (20), while the
MPRAGE images were used as anatomical reference. The EPSI,
MPRAGE, FLAIR, TSE, and GRE scans were obtained with the
same angulation.

Data Processing
MPRAGE, FLAIR, TSE, and GRE images were inspected to
recognize possible morphological abnormalities, which were
done by two neuroradiologists. The EPSI data were processed
using the MIDAS software package to obtain volumetric
metabolite maps. Processing included zero-filling to 64× 64× 32
points and spatial smoothing, resulting in an interpolated basic
voxel volume of 0.107ml (4.375 × 4.375 × 5.625 mm3) and an
effective voxel volume of 1.5ml (13, 19). The processing also
included calculation of the fractional tissue volume contributing
to each MRSI voxel, which used a tissue segmentation (18, 19)
of the T1-weighted MPRAGE data to map gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF). All resultant
maps were then spatially transformed and interpolated to a
standard spatial reference (20) at 2mm isotropic resolution,
which was associated with an atlas that mapped the individual
brain lobes and the cerebellum. Mean regional metabolite
concentrations were then determined in atlas-defined brain lobes
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and cerebellum, which composed the whole brain (Figure 1):
The frontal lobe left (LFL) and right (RFL) including anterior
parts of the striatum and pallidum, the temporal lobe left (LTL)
and right (RTL) including posterior parts of the striatum and
pallidum, the parietal lobe left (LPL) and right (RPL) including
thalamus and subthalamic nucleus, the occipital lobe left (LOL)
and right (ROL), and the cerebellum (Cbl). To obtain brain
regional metabolite concentrations, especially to estimate the
metabolites with small MRS signal amplitudes (Glu and Gln)
separately, a modified data analysis approach suggested by
Goryawala et al. was applied, i.e., the spectra were averaged
by summing voxels within a region of interest (ROI) to obtain
high-SNR spectra from atlas-registered anatomic regions, which
was done following inverse spatial transformation of the atlas
into subject space (14). Prior to averaging, the voxels were
excluded if they had a spectral linewidth larger than 12Hz

FIGURE 1 | Exemplary MR spectra of each brain lobe and cerebellum

obtained from a PD patient (female, 62 years). Estimated anatomic assignment

of brain areas to brain lobes of our study. Frontal lobe: BA 4, 6, 8, 9, 10, 11,

12, 24, 25, 32, 33, 44, 45, 46, 47, head of caudate nucleus, accumbens,

anterior part of putamen and pallidum, anterior cingulum. Parietal lobe: BA 1,

2, 3, 5, 7, 23, 31, 39, 40, thalamus, subthalamic nucleus, posterior cingulum.

Temporal lobe: BA 13, 14, 15, 16, 20, 21, 22, 26, 27, 28, 29, 30, 34, 35, 36,

37, 38, 41, 42, 43, hippocampus, posterior parts of putamen and pallidum,

caudatus tail, amygdala. Occipital lobe: BA 17, 18, 19. RFL, right frontal lobe;

LFL, left frontal lobe; RPL, right parietal lobe; LPL, left parietal lobe; RTL, right

temporal lobe; LTL left temporal lobe; ROL right occipital lobe; LOL left

occipital lobe; Cbl, cerebellum; BA, Broadman Area.

or a CSF fraction larger than 30%. The application of these
selection criteria resulted in excluding more basic voxels in
frontal lobes (57% of the voxels within the structure), temporal
lobes (55%), and cerebellum (54%) than in parietal (47%) and
occipital lobes (33%), due to more filed distortion by neighbored
structures containing bone and air or locations containing more
CSF spaces. Finally, there were altogether 6,442 of 13,534 basic
voxel spectra accounted for the spectral averaging in nine brain
regions. The averaged spectra were subsequently analyzed with
the FITT program included in MIDAS, in which a Lorentz-
Gauss lineshape was used for spectral fitting. Mean regional
concentrations of NAA, Cho, Cr, Glu, Gln, and mIns were
determined as a ratio to a signal equivalent to that from 100%
tissue water and presented as institutional units (i.u.) (21).
Cramer-Rao lower bound (CRLB) of the spectral analysis was
used as quality criteria for estimated metabolite values, i.e.,
only metabolites estimated with a CRLB <30% for Gln [a
larger CRLB was selected for Gln to minimize possible bias
related to its lower concentration (14)] and <20% for all other
metabolites as often recommended for MRS analysis (http://
s-provencher.com/lcmodel.shtml) were considered for further
analyses. The fractional tissue volumes of CSF (FVCSF) and
total brain tissue (FVBT) in each brain region were derived by
usingmulti-voxel analysis based on nine atlas-defined anatomical
regions. Correction for CSF volume contribution was applied as
Met’=Met/(1-FVCSF).

Statistical Analysis
The results from the patient studies were compared with those
of 20 age- and sex-matched healthy controls. The normality of
the data was checked with Shapiro-Wilk test, where more than
80% of the data were normally distributed (p> 0.05). Paired t-test
was used for comparison of measured metabolite concentrations,
spectral linewidths, and the fractional volumes of CSF in each
of nine brain regions between patients and healthy controls.
Wilcoxon signed rank test was additionally used for the few
non-normally distributed data, which revealed the results with

TABLE 1 | Patient characteristic.

Mean SD Min Max

Sex 12 female, 8 male

Dominant side 12 right, 7 left

Type 8 ET, 8 TD, 4 AR

H&Y stage 1.6 0.5 1 2

Disease duration 6.0 3.7 1 13

MDS-UPDRS part I 7.7 4.5 2 20

MDS-UPDRS part II 7.0 4.3 2 17

MDS-UPDRS part III 15.4 7.5 5 31

MDS-UPDRS part IV 0.4 1 0 4

DemTect 15.9 1.9 13 18

LED 770mg 521mg 0mg 1600 mg

H&Y, Hoehn and Yahr stage; MDS-UPDS, Movement Disorders Society Unified

Parkinson’s Disease Rating Scale; DemTect test for cognitive assessment; LED,

Levodopa-equivalence dosage.
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the same significance levels as those derived by using paired
t-test, i.e., this part of the data showed no significant changes
in patients by both parametric and nonparametric estimation.
For simplicity, only the results of paired t- tests are given. In
addition, the lobar metabolite concentrations of the patients were
pooled in two hemispheres according to dominantly affected
body side (right side in 12 patients and left side in 7 patients,
one patient was excluded from this analysis due to no obvious
dominantly affected body side), i.e., the contralateral brain lobes
as well as ipsilateral brain lobes in respect to the affected/more
affected body side, and compared to those of the healthy controls
by using paired t-test. In addition, a nonparametric Spearman’s
correlation test was used to estimate possible correlations
between clinical MDS-UPDRS and pooled lobar metabolites
concentrations in patients. Corrections for multiple comparisons
or multiple correlation tests were performed by using the false-
discovery rate (FDR) method, with the desired false-discovery
rate to 0.05. Those results with p-values not significant after a
FDR correction were considered as showing a tendency (if p <

0.05) or a weak tendency (p < 0.75) of corresponding alterations

in patients. Statistical analyses were performed with SPSS version
23 (SPSS IBM, New York, U.S.A.).

RESULTS

PD Patient Characteristics
The 20 early stage PD subjects were clinically diagnosed. None of
the patients was suspected to suffer from atypical Parkinsonism
or was cognitively impaired. All patients reported an obvious
positive response on dopaminergic treatment and were examined
in the best medical on state. As summarized in Table 1, the
Hoehn and Yahr stage of the PD subjects was 2 or less with
mean disease duration of 6 years. Twelve PD subjects (60%)
showed right side dominant symptoms, seven (35%) left side,
and one patient (5%) presented mainly non-motor symptoms
with no dominantly affected body side. Of our 20 PD subjects
4 presented with an akinetic-rigid type (20%), 8 showed a
tremor dominant type (40%) or an equivalence type (40%),
respectively. All the early PD subjects revealed good cognitive
functions measured by the DemTect with a mean score of

FIGURE 2 | Lobar and cerebellar concentrations of NAA, Cho, tCr, Glu, Gln, and mIns measured in the PD patients and the healthy controls. NAA, N-acetyl-aspartat;

mIns, myo-inusitol; Cho, choline; Glu, glutamate; Cr, creatinin; Gln, glumatine; RFL, right frontal lobe; LFL, left frontal lobe; RPL, right parietal lobe; LPL, left parietal

lobe; RTL, right temporal lobe; LTL, left temporal lobe; ROL, right occipital lobe; LOL, left occipital lobe; Cbl, cerebellum.
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15.5 ± 2.9. The patients displayed a mean value of 7.7 points
in MDS-UPDRS part I as non-motor aspects of daily living
(SD 4.5, min 2, max 20), and 7.0 in MDS-UPDRS part II as
motor aspects of daily living (SD 4.3, min 2, max 17). Motor
deficits in the best medical on of our PD subjects in the MDS-
UPDRS part III scored in mean 15.4 points (SD 7.5, min 5, and
max 31). Using the MDS-UPDRS part IV as scale for motor
complications we measured a mean score of 0.35 points (SD 1,
min 0, max 4).

Whole-Brain MR Spectroscopic Imaging
Example averaged MR spectra of each brain lobe and cerebellum
obtained from a PD patient (female, 62 years) are shown
in Figure 1. The lobar and cerebellar concentrations of
NAA, Cho, tCr, Glu, Gln, and mIns measured in the PD
patients and healthy controls are drawn as Box-Whisker-
plots in Figure 2, which shows that several lobes exhibit clear
differences between the metabolite values of the patients and
the controls.

Results of paired t-tests for comparisons of metabolite
concentrations, spectral linewidths, and the fractional volumes
of CSF and total brain tissue between patients and controls are
shown in Tables 2, 3. Paired t-tests revealed that in patients NAA
was decreased significantly in the right temporal lobe (−8.6%,
p = 0.010), in the right parietal lobe (−6.7% and p = 0.007),
and the right occipital lobe (−8%, p = 0.005), with a tendency
to decrease in the left parietal lobe (p = 0.034) and with a
weak tendency to decrease in both frontal lobes (p = 0.073 and
0.061 respectively); Cho did not show significant changes but
revealed a weak tendency to decrease in right temporal lobe (p
= 0.066); tCr was decreased significantly in the right temporal
lobe (−7.6%, p = 0.004) and with a tendency to decrease in the
right parietal lobe (−4.8%, p = 0.033); glutamate was decreased
significantly in the right temporal lobe (−9.9%, p = 0.006) and
the right occipital lobe (−10.2%, p= 0.001); glutamine showed a
tendency to increase in the left temporal lobe (20.0%, p= 0.045);
mIns did not show significant differences between patients and
controls (Table 2). Moreover, in comparison to healthy controls

TABLE 2 | Comparison of lobar and cerebellar metabolite concentrations between patients and controls with paired t-tests.

Braina NAA (i.u.) Cho (i.u.) tCr (i.u.)

Region Nb Patients Controls p Patients Controls p Patients Controls p

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

RFL 20 9.71 0.94 10.30 0.92 0.073 2.13 0.20 2.20 0.26 0.281 8.82 0.73 9.28 0.76 0.097

LFL 20 9.69 0.74 10.20 0.93 0.061 2.13 0.22 2.16 0.34 0.735 8.89 0.52 9.26 1.04 0.186

RTL 20 8.00 0.83 8.75 0.96 0.010** 1.80 0.18 1.94 0.31 0.066 7.78 0.59 8.42 0.75 0.004**

LTL 20 8.73 1.07 9.06 1.07 0.382 1.91 0.22 1.99 0.35 0.374 8.29 0.83 8.63 0.99 0.343

RPL 20 9.94 0.82 10.66 0.66 0.007** 1.81 0.22 1.87 0.20 0.343 8.59 0.54 9.02 0.48 0.033*

LPL 20 10.39 0.74 10.89 0.89 0.034* 1.89 0.23 1.97 0.27 0.249 8.91 0.54 9.27 0.68 0.087

ROL 20 9.61 0.93 10.44 0.65 0.005** 1.41 0.19 1.40 0.18 0.811 8.50 0.88 8.89 0.41 0.080

LOL 20 10.23 0.92 10.66 0.89 0.155 1.58 0.23 1.51 0.21 0.198 9.16 0.78 9.31 0.71 0.544

Cbl 20 8.06 0.64 8.50 0.86 0.127 2.27 0.23 2.37 0.29 0.249 10.66 0.81 11.23 0.98 0.087

Brain mIns (i.u.) Glu (i.u.) Gln (i.u.)

region N Patients Controls p Patients Controls p N Patients Controls p

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

RFL 20 3.42 0.48 3.54 0.71 0.573 8.04 0.82 8.10 0.67 0.791 16 3.04 0.50 3.20 0.66 0.403

LFL 20 3.34 0.44 3.57 0.65 0.250 8.27 0.97 7.96 0.90 0.339 16 3.05 0.61 3.15 0.57 0.672

RTL 20 3.66 0.68 3.78 0.77 0.595 7.05 0.75 7.82 0.86 0.006** 18 2.86 0.73 2.85 0.65 0.978

LTL 20 3.92 0.73 3.93 0.71 0.986 7.32 0.83 7.48 0.93 0.573 14 3.34 0.63 2.78 0.65 0.045*

RPL 20 3.46 0.49 3.58 0.61 0.442 8.32 0.78 8.43 0.91 0.638 20 3.63 0.45 3.69 0.53 0.694

LPL 20 3.54 0.44 3.76 0.56 0.188 8.35 0.94 8.52 1.07 0.555 20 3.51 0.55 3.32 0.51 0.142

ROL 20 3.36 0.67 3.56 0.55 0.211 7.56 0.66 8.43 0.54 0.001** 18 3.49 0.74 3.49 0.68 0.984

LOL 20 3.67 0.56 3.62 0.64 0.754 8.18 0.81 8.08 0.63 0.635 18 3.28 0.65 3.30 0.54 0.904

Cbl 20 3.67 0.65 3.75 0.57 0.671 7.67 0.73 7.39 0.76 0.201 19 4.14 0.69 3.90 0.54 0.325

aDefinition of brain regions: left and right frontal lobe (LFL/RFL), left and right temporal lobe (LTL/RTL), left and right parietal lobe (LPL/RPL), left and right occipital lobe (LOL/ROL), and

cerebellum (Cbl).
bNumber of sampled subjects. Note that due to data quality controls (Crammer-Rao lower bond <30% for Gln, and <20% for all other metabolites) several subject pairs were not

sampled for Gln analysis. Metabolites were determined as a ratio to a signal equivalent to that from 100% tissue water and presented as institutional unit (i.u.). SD = standard deviation.

p-values < 0.05 were presented in bold.
**Significant after correction for multiple comparisons by using false-discovery rate (FDR).
*p < 0.05 but not significant after FDR correction.
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TABLE 3 | Comparison of the spectral linewidths and the fractional volumes of cerebrospinal fluid and total brain tissue between patients and controls with paired t-tests.

Braina Linewidth (Hz) FVCSFc FVTBd

Region Patients Controls p Patients Controls p Patients Controls p

Nb Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

RFL 20 8.02 0.48 7.58 0.46 0.004** 0.079 0.006 0.084 0.008 0.024* 0.918 0.007 0.914 0.009 0.091

LFL 20 8.14 0.60 7.55 0.46 0.001** 0.079 0.008 0.086 0.008 0.000** 0.917 0.008 0.912 0.008 0.000**

RTL 20 8.01 0.73 7.90 0.54 0.540 0.075 0.019 0.074 0.014 0.786 0.923 0.018 0.923 0.014 0.849

LTL 20 7.91 0.73 7.64 0.51 0.201 0.082 0.016 0.082 0.015 0.983 0.916 0.016 0.916 0.015 0.961

RPL 20 7.26 0.58 7.11 0.57 0.272 0.091 0.012 0.096 0.014 0.069 0.902 0.016 0.899 0.015 0.406

LPL 20 7.24 0.51 7.05 0.56 0.187 0.090 0.011 0.096 0.013 0.040* 0.903 0.016 0.900 0.017 0.428

ROL 20 7.58 0.56 7.22 0.36 0.004** 0.067 0.020 0.065 0.016 0.557 0.928 0.020 0.931 0.016 0.518

LOL 20 7.55 0.72 7.19 0.29 0.034* 0.074 0.017 0.073 0.017 0.863 0.922 0.018 0.923 0.016 0.768

Cbl 20 8.27 1.09 8.04 0.64 0.425 0.063 0.012 0.065 0.010 0.615 0.935 0.012 0.933 0.011 0.679

aDefinition of brain regions: left and right frontal lobe (LFL/RFL), left and right temporal lobe (LTL/RTL), left and right parietal lobe (LPL/RPL), left and right occipital lobe (LOL/ROL), and

cerebellum (Cbl).
bNumber of sampled subjects.
cFVCSF represents the fractional volumes of cerebrospinal fluid.
dFVTB represents the fractional volumes of total brain tissue.
**Significant after correction for multiple comparisons by using false-discovery rate (FDR).
*p < 0.05 but not significant after FDR correction.

the patients showed significantly broader spectral linewidths in
both frontal lobes and the right occipital lobe, and with a trend
to increase in the left occipital lobe. Slightly decreased FVCSF
in frontal lobes and in left parietal lobe, and a slight increase
of FVTB in left frontal lobe were also found in PD patients
(Table 3). On the other hand, the cerebellum did not reveal
significant differences between patients and controls concerning
metabolite concentrations, spectral linewidth and FVCSF.

The results of paired t-tests between pooled lobar metabolite
concentrations of the patients and the controls are shown in
Table 4, and those of the correlation tests of MDS-UPDRS to
pooled lobar NAA concentrations in patients in Table 5. In
comparison to healthy controls the patients revealed different
grades of alterations in pooled lobar metabolite concentrations in
respect to contralateral or ipsilateral hemispheres corresponding
to the prominently affected body side.

In the contralateral hemisphere, NAA decreased significantly

or with a trend in all 4 brain lobes (−6.82% and p = 0.039 in

FL, −8.00% and p = 0.023 in TL, −7.96% and p = 0.001 in

PL, and −6.07% and p = 0.049 in OL); Cho showed a trend
to decrease in one lobe (−8.47% and p = 0.030 in TL); tCr
significantly decreased in two lobes (−8.52% and p = 0.006 in
TL, and −6.40% and p = 0.009 in PL); glutamate decreased
only in TL (−11.06% and p = 0.007); mIns and Gln did not
show significant alterations (Table 4). Spearman’s correlation test

revealed significant correlations between MDS-UPDRS scores

and lobar NAA concentrations in contralateral frontal lobe in

patients, i.e., significant negative correlations of the NAA in
contralateral frontal lobe to UPDRS2 as motor activities of daily
living (R = −0.585, p = 0.008), and to total UPDRS (R =

−0.679, p = 0.001) (Table 5), and a trend of negative correction
to UPDRS4 as treatment complications (R=−0.458, p= 0.048).

In the ipsilateral hemisphere, only NAA and Glu revealed a
weak tendency to decrease in occipital lobe (p = 0.057 for NAA

and 0.059 for Glu) (Table 4), and no significant correlations of
NAA to MDS -UPDRS was found (Table 5).

DISCUSSION

In this study we assessed changes of brain lobar and cerebellar
metabolites in early stage PD. Our major findings are the
significant alterations of NAA contents in PD subjects in the
whole brain in comparison to age-matched healthy controls:
NAA was decreased or showed a tendency to decreased values
in a majority of brain lobes (6 of 8 lobes). Of course, variations
in tissue water content, which was used to calibrate the
metabolite contents, could impact the measured concentration
of metabolites in spectroscopy, however, this would affect not
only NAA but all metabolites and since they were not all altered
significantly we found no evidence for changes in tissue water
content. After pooling brain lobar metabolites in hemispheres
contralateral and ipsilateral to the dominantly affected body
side significantly decreased NAA contents was seen in all four
contralateral brain lobes, where frontal lobar NAA revealed
negative correlations to clinical scores of UPDRS2, UPDRS4,
and total UPDRS. Moreover, we found tCr decreased in two
contralateral brain lobes, and Cho and glutamate decreased
each in one contralateral brain lobe. In parallel, a significant
broadening of spectral linewidth was found in both frontal and
occipital lobes.

The findings of decreased NAA, Cho, tCr, and Glu, and
no changes of mIns were qualitatively consistent with those
previously reported, despite several methodological differences
on targeted brain regions or tissue type. For example, studies in
de novo PD subjects showed a reduction in NAA in the motor
cortex (22) and putamen (23). Decreased NAA/tCr and Glu/tCr
in PD subjects with psychosis were reported (24). Brain NAA,
Cho, and tCr were also measured over brain lobes with long echo
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TABLE 4 | Paired t-test of lobar metabolite levelsa between patients and controls measured in brain hemisphere contralateral or ipsilateral to affected/more affected body

side as indicated.

Brain lobe NAA (i.u.) Cho (i.u.) tCr (i.u.)

Nb Patient Control p N Patient Control p N Patient Control p

Contralateral Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Frontal 19 9.71 0.74 10.42 0.97 0.039* 19 2.13 0.20 2.21 0.33 0.368 19 8.88 0.69 9.41 1.01 0.121

Temporal 19 8.28 0.94 9.00 1.13 0.023* 19 1.84 0.20 2.01 0.31 0.030* 19 7.94 0.62 8.67 0.92 0.006**

Parietal 19 10.13 0.85 11.00 0.70 0.001** 19 1.83 0.25 1.95 0.25 0.083 19 8.68 0.53 9.27 0.64 0.009**

Occipital 19 9.87 0.95 10.50 0.85 0.049* 19 1.48 0.25 1.44 0.22 0.484 19 8.83 0.86 9.07 0.74 0.319

Ipsilateral

Frontal 19 9.87 0.76 10.11 0.88 0.340 19 2.17 0.19 2.15 0.28 0.824 19 8.91 0.55 9.09 0.79 0.386

Temporal 19 8.41 1.11 8.87 0.94 0.221 19 1.87 0.23 1.95 0.35 0.404 19 8.05 0.84 8.46 0.83 0.201

Parietal 19 10.33 0.69 10.69 0.76 0.154 19 1.89 0.21 1.91 0.22 0.821 19 8.86 0.59 9.07 0.53 0.295

Occipital 19 10.01 1.05 10.60 0.75 0.057 19 1.52 0.22 1.48 0.19 0.529 19 8.81 0.97 9.11 0.49 0.200

mIns (i.u.) Glu (i.u.) Gln (i.u.)

N Patient Control p N Patient Control p N Patient Control p

Contralater Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Frontal 19 3.40 0.49 3.74 0.67 0.128 19 8.22 0.82 8.07 0.86 0.638 14 3.28 0.47 3.13 0.60 0.501

Temporal 19 3.84 0.72 3.85 0.84 0.977 19 6.98 0.84 7.84 0.88 0.007** 15 3.10 0.82 2.89 0.65 0.517

Parietal 19 3.47 0.52 3.74 0.58 0.123 19 8.34 0.87 8.53 0.79 0.470 19 3.68 0.41 3.58 0.49 0.410

Occipital 19 3.51 0.60 3.55 0.67 0.836 19 7.94 0.69 8.03 0.52 0.670 17 3.45 0.66 3.54 0.69 0.586

Ipsilateral

Frontal 19 3.36 0.43 3.46 0.62 0.597 19 8.13 0.98 7.92 0.74 0.465 17 2.84 0.55 3.20 0.64 0.093

Temporal 19 3.65 0.58 3.93 0.65 0.225 19 7.29 0.71 7.46 0.92 0.518 15 3.06 0.67 2.69 0.62 0.127

Parietal 19 3.53 0.42 3.65 0.61 0.463 19 8.42 0.84 8.48 1.15 0.859 19 3.52 0.54 3.43 0.62 0.582

Occipital 19 3.55 0.68 3.63 0.55 0.584 19 7.91 0.87 8.46 0.65 0.059 17 3.28 0.71 3.33 0.47 0.800

aMeasured in ratio to brain internal water.
bNumber of patient-control pairs. One patient was excluded from the analysis because of bilateral predominate symptoms.

Due to data quality criteria (Crammer-Rao lower bond less than 30% for Gln, and less than 20% for all other metabolites) data of several patients were not sampled for Gln by the

analysis. Metabolites were determined as a ratio to a signal equivalent to that from 100% tissue water and presented as institutional unit (i.u.).
**Significant after correction for multiple comparisons by using false-discovery rate (FDR).
*p < 0.05 but not significant after FDR correction.

time wbMRSI by Levin et al., who found decreased NAA/tCr
and Cho/tCR in gray matter of temporal lobe, decreased NAA
in right occipital lobe, and decreased NAA/tCr (25), anyhow, a
detailed comparison to present study is difficult due to different
patient selections and not separating tissue type between gray
and white matter in the present. Since NAA is localized within
neurons and involved in synaptic processes a decrease of brain
NAA could be due to either a reduction in brain tissue volume
or due to reduced neuronal function and metabolism (13). As
no decrease of brain tissue volume in PD subjects was found
the observed decreases of NAA most likely reflect reduced
neuronal function and metabolism, which is consistent with the
observations of decreased tCr and Glu, suggesting alterations
in brain energy metabolism (tCr) and glutamatergic neuronal
activity (Glu). The observed increase of glutamine in LTL could
be a reactive response to reduced glutamate. Our findings of
increased spectral linewidth in bilateral frontal and occipital
lobes are most likely due to magnetic susceptibility-induced local
magnetic field distortions and suggest pathological accumulation
of brain iron in these brain regions, which has also been observed
by other MRI measurements (26–28).

Present observation that brain lobar metabolite alterations
were altered differently across the hemispheres contralateral
and ipsilateral to the dominantly affected body side provides
more insight into PD related brain metabolite changes. In the
contralateral hemisphere, the main metabolic alterations were
observed, which included significantly decreased NAA in all
4 brain lobes. In the ipsilateral hemisphere, smaller metabolic
changes were seen, e.g., with PD subjects having lower mean
NAA values in all lobes but not reaching significance. These
observations indicate that the brain metabolite alterations are
dominant in the hemisphere contralateral to more affected
body side, reflecting PD-associated asymmetrical reduction
of neuronal function and metabolism in early stage PD,
which is consistent with previously reported lateralization
findings of decreased NAA/tCr (29) and reduced dopamine
uptake (30) in contralateral basal ganglia in early PD. Within
the dominant hemisphere the distributions of the metabolic
alterations varied among the brain lobes. The greatest changes
occurred in the temporal lobe, with involvement of 3 metabolites
(−8.00% for NAA, −8,47% for Cho, and −8.52% for tCr),
the next occurred in the parietal lobe with involvement
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TABLE 5 | Correlations of MDS-UPDRS to brain NAA concentrations in respect to the most affected body side of the patients estimated by Spearman’s correlation testa.

Clinical scores NAA in contralateral brain lobe

Frontal Temporal Parietal Occipital

N R p R p R p R p

UPDSR1 19 −0.359 0.131 −0.130 0.597 −0.034 0.892 0.055 0.824

UPDSR2 19 –0.585 0.008** −0.050 0.840 −0.080 0.743 0.317 0.185

UPDSR3 19 −0.375 0.113 0.254 0.294 0.187 0.443 0.387 0.102

UPDRS4 19 −0.458 0.048* −0.017 0.946 0.062 0.800 0.255 0.291

UPDRS 19 –0.679 0.001** −0.055 0.822 −0.060 0.808 0.235 0.333

NAA in ipsilateral brain lobe

UPDSR1 19 0.184 0.450 −0.086 0.725 0.228 0.348 −0.030 0.903

UPDSR2 19 0.074 0.763 −0.233 0.338 0.000 1.000 −0.009 0.971

UPDSR3 19 0.211 0.386 −0.212 0.384 −0.062 0.800 −0.155 0.527

UPDRS4 19 −0.155 0.527 −0.338 0.157 −0.076 0.757 −0.035 0.888

UPDRS 19 0.208 0.392 −0.294 0.222 −0.034 0.889 −0.178 0.467

aTwelve patients with more affected right body side and 7 with more affected left body side.
**Significant after correction for multiple comparisons by using false-discovery rate (FDR).
*p < 0.05 but not significant after FDR correction. Bold values for results with p < 0.05.

of 2 metabolites (−7.96% for NAA and −6.40% for tCr),
while frontal and occipital lobes revealed decreases of one
metabolite (−6.82% for FL and −6.07% for OL for NAA),
showing the inhomogeneity of brain structures involved in
PD process that may relate to their contained substructures.
Interestingly, corresponding to the fact that the basal ganglia,
which has been reported to be involved in PD pathological
processes in previous MRS studies (22, 23, 31–36), are located
in the temporal and frontal lobar atlas regions used in this
study, we found that most metabolic changes occurred in
temporal lobe, while the frontal NAA changes correlated
significantly toMDS-UPDRS score describing clinical symptoms.
Previous studies have reported a significant correlation of
NAA/tCr to clinical symptoms (11, 31, 33, 34). However,
this study found that tCr was also altered in PD, which is
consistent with reduced concentrations of phosphates in the
striatum and midbrain that has been interpreted as early
mitochondrial dysfunction in PD patients (37). Therefore, the
use of metabolite ratios to tCr may underestimate PD related
metabolic changes.

This study performed the clinical evaluation and wbMRSI
of the patients in their best medical condition; therefore, the
low MDS-UPDRS part III score may underestimate the degree
of disability as the treatment reduces this score by at least 20–
30%. This may also have contributed to the lack of a significant
correlation of the MDS-UPDRS III with spectroscopic findings.
However, the MDS-UPDRS part II score for impairment of daily
living reflects more selectively the impact of the disease (17, 24).
The observed correlations of NAA in the frontal lobe, which
includes important areas of the telencephalic dopaminergically
innervated structures, with the MDS-UPDRS II, therefore,
indicate the potential of wbMRSI for assessment of disability in
Parkinson’s disease (38, 39).

Treatment of PD is difficult and a lot of therapeutic agents
are available (40). The impact of treatment in MRS studies has
been rarely investigated. While some studies reported patients’
on or off status during examination and imaging (11, 22, 25, 41–
47), for a large number of studies the medication status is unclear
(9, 31, 32, 37, 48–56). A recent study found significant metabolic
changes in PD subjects between medical on and off state (41).
These authors found a significant reduction in NAA, tCr, and
mIns in the clinical off which is reversed for NAA und tCr under
acute L-DOPA challenge (200mg intake) (41). Another early PD
spectroscopic study found no metabolic changes in the putamen
before and after apomorphine therapy in 5 PD patients (57).
Lucetti et al. reported an increased Cho/Cr ratio after 6 months of
treatment with the dopamine agonist pergolide in early de-novo
PD patients (43). Taking this limited amount of data together, PD
therapy seems to impact spectroscopic measurements, however,
dopamine agonists might not similarly influence spectroscopic
changes of metabolite profile. Hence, the impact of different PD
therapeutics is not yet clear and might vary in different brain
regions. Dopaminergic innervated brain regions seem to show
more likely PD medication dependent changes in metabolite
profile. The short echo time wbMRSI offers a potential method
to study these neurometabolic effects in more detail for a variety
of brain regions in the future. Importantly, the impact of off
state, acute levodopa challenge, and chronic treatment should be
addressed in future studies.

It remains unclear which brain region and metabolites could
be used as a valid spectroscopic marker for PD or atypical
Parkinsonism. For this purpose wbMRSI could be very useful,
because it provides a way to measure brain metabolites not
only in large brain scales but also in multiple specific brain
areas simultaneously, thus many hypotheses could be tested
in one set of data (13, 19). Clinically established imaging
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diagnostics are often unspecific and in PD the MRI is often
normal (2–6). In atypical Parkinsonism structural changes can
be seen in MRI scans, e.g., changes like midbrain atrophy,
putaminal rim, hot cross bun sign and others, are indicative of
different atypical Parkinson syndromes, however, in the absence
of these signs the diagnosis is difficult (4, 6, 58). DAT-SCAN
as marker for degeneration of dopaminergic transporters on
nigrostriatal projection neurons of the ventral midbrain is very
sensitive for early detection of PD (59). The discrimination of
Parkinson syndromes by the DAT-SCAN is not possible, because
all syndromes have the common pathological hallmark of
degeneration of midbrain dopaminergic neurons. By FDG-PET
imaging PD and atypical Parkinsonism could be discriminated by
specific metabolic patterns (60). Unfortunately, FDG-PET is off-
label for the usage in the differential diagnosis of Parkinsonism.
Furthermore, the methods of DAT-SCAN and FDG-PET require
radiotracers. As an alternativeWbMRSI offers a potential method
for discrimination of PD and Parkinsonism without exposure to
radioactive substances.

Present study focused on obtaining an overview of
early PD-related metabolic alterations within the whole
brain. Therefore, the cortical lobes and the cerebellum
were selected as regions of interest in order to cover the
whole brain. However, an accompanied limitation is that
any regional metabolic inhomogeneity within the lobar
or cerebellar structures was not accounted, especially the
different contributions of the white matter, the cortical gray
matter and basal ganglia were not separately evaluated.
As an ongoing project PD related metabolic changes in
multiple specific brain areas will be investigated in our
further study. These results may then provide information
related to specific brain functional networks and contribute
to our understanding of the pathophysiological processes
underlying PD.

Limitations of this study include the lack of correction of
the results for age and for partial volume. However, the age
effect was minimized by matching the patients and controls
on a one-by-one basis appropriately in respect to age (and to
gender). The partial volume effect was minimized by including
only basic voxels containing <30% CSF for obtaining the
integrated spectrum of each lobar brain region, and by correction
for CSF volume contribution to measured metabolite values.
Further validation of this study is also needed in a larger
sample of patients together with a more comprehensive clinical
phenotyping of PD subtypes (61–63). The identification of
PD related metabolic changes in the white matter, cortical
gray matter and basal ganglia may help to understand the
metabolic processes during disease progression and spreading of
neurodegenerative pathology in the brain (33, 64).

CONCLUSION

This study has shown that NAA changed nearly ubiquitous in all
brain lobes with different grades and with a clear lateralization
contralateral to the major symptoms in early PD subjects. This
finding suggests that NAA may be a promising spectroscopic
marker for early diagnosis of PD (8), which is also favored by the
observations of significant negative correlations between frontal
NAA levels and the clinical UPDRS scores. Future studies with
larger cohorts of patients with different stages of PD are needed
to verify these results.

In conclusion, this study has demonstrated that even in early-
stage PD brain metabolic alterations are evident and involved
in all brain lobar areas of the cerebral hemisphere contralateral
to the dominant side of disability. This result indicates that PD
affects not only brain local regions by dopaminergic denervation,
but also the brain network within the hemisphere. The novel
wbMRSI-detectable brain metabolic alterations in PD may serve
as promising biomarkers for early PD diagnosis, differential
diagnosis of Parkinsonism (32) and with emerging disease-
modifying drugs also for treatment monitoring (65, 66).
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REM Behavior Disorder (RBD) is now recognized as the prodromal stage of α-

synucleinopathies such as Parkinson’s disease (PD). In this paper, we describe deep

learning models for diagnosis/prognosis derived from a few minutes of eyes-closed

resting electroencephalography data (EEG) collected at baseline from idiopathic RBD

patients (n= 121) and healthy controls (HC, n= 91). A few years after the EEG acquisition

(4±2 years), a subset of the RBD patients were eventually diagnosed with either PD (n=

14) or Dementia with Lewy bodies (DLB, n= 13), while the rest remained idiopathic RBD.

We describe first a simple deep convolutional neural network (DCNN) with a five-layer

architecture combining filtering and pooling, which we train using stacked multi-channel

EEG spectrograms from idiopathic patients and healthy controls. We treat the data as in

audio or image classification problems where deep networks have proven successful by

exploiting invariances and compositional features in the data. For comparison, we study

a simple deep recurrent neural network (RNN) model using three stacked Long Short

Term Memory network (LSTM) cells or gated-recurrent unit (GRU) cells—with very similar

results. The performance of these networks typically reaches 80% (±1%) classification

accuracy in the balancedHC vs. PD-conversion classification problem. In particular, using

data from the best single EEG channel, we obtain an area under the curve (AUC) of

87% (±1%)—while avoiding spectral feature selection. The trained classifier can also

be used to generate synthetic spectrograms using the DeepDream algorithm to study

what time-frequency features are relevant for classification. We find these to be bursts

in the theta band together with a decrease of bursting in the alpha band in future RBD

converters (i.e., converting to PD or DLB in the follow up) relative to HCs. From this first

study, we conclude that deep networks may provide a useful tool for the analysis of EEG

dynamics even from relatively small datasets, offering physiological insights and enabling

the identification of clinically relevant biomarkers.
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1. INTRODUCTION

RBD is a parasomnia characterized by intense dreams with
during REM sleep without muscle atonia (1), i.e., with
vocalizations and body movements. Idiopathic RBD occurs in
the absence of any neurological disease or other identified
cause, is male-predominant and its clinical course is generally
chronic progressive (2). Several longitudinal studies conducted
in sleep centers have shown that most patients diagnosed
with the idiopathic form of RBD will eventually be diagnosed
with a neurological disorder such as Parkinson disease (PD)
or dementia with Lewy bodies (DLB) (1–4). In essence,
idiopathic RBD has been suggested as a prodromal stage of α-
synucleinopathies [PD, DLB, and less frequently multiple system
atrophy (MSA) (1, 4)].

RBD has an estimated prevalence of 15–60% in PD and has
been proposed to define a subtype of PD with relatively poor
prognosis, reflecting a brainstem-dominant route of pathology
progression (see (5) and references therein) with a higher risk
for dementia or hallucinations. PD with RBD is characterized
by more profound and extensive pathology—not limited to the
brainstem—, with higher synuclein deposition in both cortical
and sub-cortical regions.

Electroencephalographic (EEG) and magnetoencepha
lographic (MEG) signals contain rich information associated
with functional processes in the brain. To a large extent, progress
in their analysis has been driven by the study of spectral
features in electrode space, which has indeed proven useful
to study the human brain in both health and disease. For
example, the “slowing down” of EEG is known to characterize
neurodegenerative diseases (6–8). It is worth mentioning
that the selection of disease characterizing features from
spectral analysis is mostly done after an extensive search in the
frequency-channel domain.

However, neuronal activity exhibits non-linear dynamics and
non-stationarity across temporal scales that cannot be studied
properly using classical approaches. Tools capable of capturing
the rich spatiotemporal hierarchical structures hidden in these
signals are needed. In Ruffini et al. (8), for example, algorithmic
complexity metrics of EEG spectrograms were used to derive
information from the dynamics of EEG signals in RBD patients,
with good results, indicating that such metrics may be useful per
se for classification or scoring. However, ideally we would like
to use methods where the relevant features are found directly by
the algorithms.

Deep learning algorithms are designed for the task of
exploiting compositional structure in data (9). In past work, for
example, deep feed-forward autoencoders have been used for the
analysis of EEG data to address the issue of feature selection, with
promising results (10). Interestingly, deep learning techniques,
in particular, and artificial neural networks in general are
themselves bio-inspired by the brain—the same biological system
generating the electric signals we aim to decode. This suggests
they may be well suited for the task.

Deep recurrent neural networks (RNNs), are known to be
potentially Turing complete [see, e.g., (11) for a review], but
general RNN architectures are notoriously difficult to train (12).

In this regard, it is worth mentioning that “reservoir” based
RNN training approaches are evolving (13). In earlier work,
a particular class of RNNs called Echo State Networks (ESNs)
that combine the power of RNNs for classification of temporal
patterns and ease of training (14) was used with good results
with the problem at hand. The main idea behind ESNs and other
“reservoir computation” approaches is to use semi-randomly
connected, large, fixed recurrent neural networks where each
node/neuron in the reservoir is activated in a non-linear fashion.
The interior nodes with random weights constitute what is called
the “dynamic reservoir” of the network. The dynamics of the
reservoir provides a feature representation map of the input
signals into a much larger dimensional space (in a sense much
like a kernel method). Using such an ESN, an accuracy of 85% in
a binary, class-balanced classification problem (healthy controls
vs. PD patients) was obtained using a relatively small dataset
in Ruffini et al. (14). The main limitations of this approach, in
our view, are the computational cost of developing the reservoir
dynamics of large random networks and the associated need
for feature selection (e.g., which subset of frequency bands and
channels to use as inputs to simplify the computational burden).

In this paper we use a similar but simpler strategy as the
one presented in Vilamala et al. (15), using Deep Convolutional
Neural Networks with EEG signals, i.e., multi-channel time
series. In comparison to Vilamala et al. (15), we reduce the
number of hidden layers from 16 to 4, use a simpler approach
for the generation of spectrograms, and do not rely on transfer
learning from a network trained on a visual recognition
task. Indeed, we believe such a pre-training would initialize
the filtering weights to detect object-like features not present
in spectrograms. The proposed method outperforms several
shallow methods used for comparison as presented in the
results section.

Lastly, we employ deep-learning visualization techniques for
the interpretation of results. Once a network has been trained,
one would like to understand what are the key features it is
picking up from the data for classification. We show below how
this can be done in the context of EEG spectrogram classification,
and how it can be helpful in identifying physiologically
meaningful features that would be hard to select by hand. This is
also very important for the clinical translation of such techniques,
since black-box approaches have been extensively criticized.

2. MATERIALS AND METHODS

2.1. Deep Learning in the Spectrogram
Representation
Our goal here will be to train a network to classify subjects
from the EEG spectrograms recorded at baseline in binary
problems, with classification labels such as HC (healthy control),
PD (idiopathic RBD who will later convert to PD), etc.

Here we explore first a deep learning approach inspired by
recent successes in image classification using deep convolutional
neural networks designed to exploit invariances and capture
compositional features in the data [see e.g., (9, 11, 12)]. These
systems have been largely developed to deal with image data,
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i.e., 2D arrays, possibly from different channels, or audio data
[as in van den Oord et al. (16)], and, more recently, with EEG
data as well (15, 17). Thus, inputs to such networks are data
cubes (multichannel stacked images). In the same vein, we aimed
to work here with the spectrograms of EEG channel data, i.e.,
2D time-frequencymaps. Such representations represent spectral
dynamics as essentially images with the equivalent of image
depth provided by multiple available EEG channels (or, e.g.,
current source density maps or cortically mapped quantities from
different spatial locations). Using such representation, we avoid
the need to select frequency bands or channels in the process of
feature selection. This approach essentially treats EEG channel
data as an audio file, and our approach mimics similar uses of
deep networks in that domain.

RNNs can also be used to classify images, e.g., using image
pixel rows as time series. This is particularly appropriate in the
case of the data in this study, given the good performance we
obtained using ESNs on temporal spectral data Ruffini et al. (14).
We study here also the use of stacked architectures of long-short
term memory network (LSTM) or gated-recurrent unit (GRU)
cells, which have shown good representational power and can be
trained using backpropagation (12, 18, 19).

Our general assumption is that some relevant aspects in
EEG data from our datasets are contained in compositional
features embedded in the time-frequency representation. This
assumption is not unique to our particular classification domain,
but should hold of EEG in general. In particular, we expect
that deep networks may be able to efficiently learn to identify
features in the time-frequency domain associated to bursting
events across frequency bands that may help separate classes,
as in “bump analysis” (20). Bursting events are hypothesized to
be representative of transient synchrony of neural populations,
which are known to be affected in neurodegenerative diseases
such as Parkinson’s or Alzheimer’s disease (21).

Finally, we note that in this study we have made no attempt
to fully-optimize the network architecture. In particular, no
fine-tuning of hyper-parameters has been carried out using a
validation set approach, something we leave for future work with
larger datasets. Our aim has been to implement a proof of concept
of the idea that deep learning approaches can provide value for
classification and analysis of time-frequency representations of
EEG data—while possibly providing new physiological insights.

2.2. Study Subjects
Idiopathic RBD patients (called henceforth RBD for data analysis
class labeling) and healthy controls were recruited at the Center
for Advanced Research in SleepMedicine of theHôpital du Sacrè-
Cœur de Montréal as part of another study and kindly provided
for this work. The protocol was approved by the Hôpital du
Sacré-Cœur de Montréal Ethics Committee, and all participants
gave their written informed consent to participate. For more
details on the protocol and on the patient population statistics
(age and gender distribution, follow up time, etc.), see Rodrigues-
Brazéte et al. (7) and Ruffini et al. (8).

The dataset includes a total of 121 patients diagnosed with
idiopathic RBD (of which 118 passed the first quality tests) and
85 healthy controls (of which only 74 provided sufficient quality

data) without sleep complaints and in which RBD was excluded.
EEG data was collected in every patient at baseline, e.g., when
patients were still RBD. After 1–10 years of clinical follow-up 14
RBDpatients converted to PD, 13 toDLB, while the rest remained
idiopathic RBD (see Figure 1).

In addition to EEG recording at baseline (further described
below) participants also underwent a complete neurological
examination by a neurologist specialized in movement disorders
and a cognitive assessment by a neuropsychologist. The only
data used from the follow-up evaluation, which was conducted
on average 10 years after baseline, was the updated diagnosis
change, if any, from RBD into PD or DLB, or the confirmation
of the RBD diagnosis. These data elements have been used
here as ground truth in the DCNN training and in the
performance evaluation on the test set as set up in the cross
validation procedure.

RBD was diagnosed based on AASM Version II
(https://aasm.org/aasm-updates-scoring-manual-version-
2-2-with-new-option-for-monitoring-respiratory-effort-
during-hsat/). This included a history of dream enactment
behaviors and a subsequent assessment of overnight
polysomnography (PSG) evaluation including video recording
and EMG evaluation (22). EEG was acquired at the end of the
PSG recording session in awake state.

PD was diagnosed following the Movement Disorder Society
Clinical Diagnostic Criteria for Parkinson’s disease (PD) (23).
In early recordings, the criteria was the standard at that
time based on Hughes et al. (24). DLB diagnosis was based
on standard procedures described in McKeith et al. (25).
Some subjects may have gone through neuroimaging (MRI, as
no DAT Scan was available in Canada) for confirmation or
differential diagnosis, but not in a systematic way in the overall
PD/DLB population.

No healthy controls reported abnormal motor activity during
sleep or showed cognitive impairment on neuropsychological
testing. Only a subset of healthy controls was followed up. In
general, patients were recruited within a year of RBD diagnosis.
However, we note as a limitation that the cohort was recruited
during a period of 15 years, which may have affected the
recruiting conditions.

2.3. EEG Dataset
All RBD patients with a full EEG montage for resting-state EEG
recording at baseline and with at least one follow-up examination
(without EEG) after the baseline visit were included in the study.
The first valid EEG for each patient enrolled in the study was
considered baseline.

As in related work (7, 8, 14), the raw data in this study
consisted of resting-state EEG collected from awake subjects
using 14 scalp electrodes. The recording protocol consisted of
conditions with periods of with eyes open of variable duration
(∼2.5 min) followed by periods with eyes closed in which
patients were not asked to perform any particular task. EEG
signals were digitized with 16-bit resolution at a sampling rate
of 256 S/s. The amplification device bandpass filtered the EEG
data between 0.3 and 100 Hz with a notch filter at 60 Hz
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FIGURE 1 | (A, top) Generation of spectrogram stack for each data epoch for a subject from preprocessed (artifact rejection, referencing, detrending) EEG data. (B,

bottom) Timeline and data collection study design: from diagnosis and EEG data collection to follow up with clinical evaluation for conversion to PD and DLB (or

remaining idiopathic RBD).

to minimize line power noise. All recordings were referenced
to linked ears.

2.4. Preprocessing and Generation of
Spectrograms
To generate spectrograms (here called frames), EEG data from
each channel was processed using Fourier analysis (FFT) after
detrending blocks of 1 s with a Hann window (FFT resolution
is 2 Hz) (see Figure 1). Twenty second 14 channel artifact-free
epochs were collected for each subject, using a sliding window
of 1 s. FFT amplitude bins in the band 4–44 Hz were used. The
resulting data frames are thus multidimensional arrays of the
form [channels (14)] x [FFTbins (21)] x [Epochs (20)]. To avoid
biases, the number of frames per subject was fixed as a trade-
off between data per subject and number of subjects included, to
148, representing about 2.5 min of data. We selected a minimal
suitable number of frames per subject so that each subject
provided the same number of frames. For training, datasets were
balanced for subjects by random replication of subjects in the
class with fewer subjects. For testing, we used a leave-pair-out
strategy [LPO, see (26)], with one subject from each class. Thus,
both the training and test sets were balanced both in terms of
subjects and frames per class. Finally, the data was centered and
normalized to unit variance for each frequency and channel.

2.5. Network Architectures
We have implemented three architectures: DCNN and stacked
RNN, as we now describe, plus a shallow architecture for
comparison (see Figure 2).

2.5.1. DCNN Architecture

The network (which we call SpectNet), implemented in
Tensorflow (27), is a relatively simple four hidden-layer
convolutional net with pooling (see Figure 2). Dropout has been
used as the only regularization. All EEG channels may be used
in the input cube. The design philosophy has been to enable
the network to find local features first and create larger views
of data with some temporal (but not frequency) shift invariance
via max-pooling.

The network has been trained using a cross-entropy
loss function to classify frames (not subjects). It has been
evaluated both on frames and, more importantly, on
subjects by averaging subject frame scores and choosing
the maximal probability class, i.e., using a 50% threshold. For
development purposes, we have also tested the performance
of this DCNN on a synthetic dataset consisting of Gaussian
radial functions randomly placed on the spectrogram time
axis but with variable stability in frequency, width and
amplitude (i.e, by adding some jitter top these parameters).
Frame classification accuracy was high and relatively
robust to jitter (∼95–100%, depending on parameters),
indicating that the network was capable of learning to detect
burst-like features with time-translational invariance and
frequency specificity.

2.5.2. RNN Architecture

The architectures for the RNNs consisted of stacked LSTM (12,
18) or GRU cells (19). The architecture we describe here consists
of three stacked cells, where each cell uses as input the outputs
of the previous one. Each cell used 32 hidden units, and dropout
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FIGURE 2 | (A) DCNN model displaying input, convolution with pooling layers, and hidden-unit layers. The input consists of a spectrogram stack (with a spectrogram

per chosen EEG channel). The output, here for the binary classification problem using one-hot encoding, is a two node layer. (B) Shallow neural network architecture

used for comparison. (C) Deep RNN using LSTM or GRU cells.

was used to regularize it. The performance of LSTM and GRU
variants was very similar.

3. RESULTS

3.1. Classification Performance
Assessment
Our goal is to classify subjects (e.g., HC or PD converter
labels) rather than frames. The performance of the networks
has been evaluated in the balanced dataset using two metrics
in a leave-pair out cross-validation framework—where the
data from a subject in each class is left out for validation
(LPO). First, using the accuracy metric (probability of good
a classification), and second, by using the area under the
curve (AUC) using the Wilcoxon-Mann-Whitney statistic (26).
To map out the classification performance of the DCNN for
different parameter sets, we have implemented a set of algorithms
based on the Tensorflow package (27) as described in the
following pseudocode:

TABLE 1 | Performance in different problems using a single EEG channel (P4, see

Figure 4).

Problem N

train/test

Frame

train/test ACC

Subject test

ACC (AUC)

DCNN: HC vs. PD 2x73 / 2x1 80% / 73% 79% (87%)

RNN: HC vs. PD 2x73 / 2x1 77% / 74% 81% (87%)

DCNN: HC+RBD vs. PD+DLB 2x159 / 2x1 73% / 68% 73% (78%)

RNN: HC+RBD vs. PD+DLB 2x159 / 2x1 76% / 68% 72% (77%)

From left to right: architecture used and problem addressed (groups); Number of subjects

in training and test sets per group (always balanced); train and test average performance

on frames; test accuracy and LPO cross-validation area-under-the-curve metric (AUC)

(26). Results to ±1%.

REPEAT N times (experiments):
1- Choose (random, balanced) training and
test subject sets (leave-pair-out)

2- Augment smaller set by random
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FIGURE 3 | (A) RNN Frame score histogram per class (HC in blue, PD in orange) using one channel (P4). (B) Subject mean score across folds. In this particular run,

with mean ACC = 80%, AUC = 87% (both ±1%). There are clearly some subjects that are not classified correctly (this is consistently with DCNN results). The PD

outlier is unusual in terms of other metrics, such as slow2fast ratio (EEG slowing) or LZW complexity (8). Results from the DCNN are very similar.

replication of subjects
3- Optimize the NN using stochastic
gradient descent with frames as inputs

4- Evaluate per-frame performance on
training and test set

5- Evaluate per-subject performance
averaging frame outputs

END
Compute mean and standard deviation of
performances over the N experiments

For each frame, the classifier outputs the probability of the
frame belonging to each class [using softmax, see, e.g., (12)] and,
as explained above, after averaging over frames per subject we
obtain the probability of the subject belonging to each class. This
provides an interesting score in itself. Classification is carried out
by choosing the class with maximal probability.

The results from classification are shown in Table 1 for
the HC vs. PD problem and the HC+RBD vs. PD+DLB
problem, which includes more data. Sample results for the
RNN architecture (which are very similar to DCNN results)
are provided in Figure 3. For comparison, using a shallow
architecture neural network resulted in about 10% less ACC
or AUC (in line with our results using support vector
machine (SVM) classifiers (Soria-Frisch et al., in preparation),
which required feature selection). On the other hand, in
Ruffini et al. (14), a peak accuracy of 85% was reached in
the balanced problem of HC vs PD, although this required

appropriate feature selection (a selection of channels and bands),
and in Ruffini et al. (8) similarly high AUC performance
was reached using global (in channel and frequency space)
complexity metrics.

Figure 4 provides the performance in the HC vs. PD problem
using different EEG channels (statistics computed using a smaller
number of folds).

3.2. Interpretation
Once a DCNN has been trained, it can be used to explore which
inputs optimally excite network nodes, including the output
nodes that provide the classification (29). The algorithm for
doing the latter consists essentially in maximizing a particular
class score using gradient descent, starting from, e.g., a random
noise image. An example of the resulting images using the
trained DCNN above can be seen in Figure 5, where image
corresponds to the input that maximizes each class output, e.g.,
HC vs. PD. This is a particularly interesting technique in our
diagnosis/prognosis problem and provides new insights on the
class-specific features in EEG of each class. In the case of
a HC vs. PD trained network, we can see alterations in the
alpha and theta spectral bands, appearing differentially in the
form of bursts in each class. In the difference spectrograms
we can observe the disappearance of alpha bursts in exchange
with bursting at lower frequencies. This findings are consistent
with others relating to alterations and slowing of EEG (6–
8, 28, Soria-Frisch et al., in preparation), and in particular of
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FIGURE 4 | Sample images produced by maximizing network outputs for a given class. (Left) From a network was trained using P4 electrode channel data on the

problem of HC vs. PD. The main features are the presence of 10 Hz bursts in the image maximizing HC classification (Top) compared to more persistent 6 Hz power

in the pathological spectrogram (Middle). The difference of the two is displayed at the bottom. (Right) Network was trained using P4 electrode data on the problem

of HC vs. PD+DLB (i.e., HC vs. RBDs that will develop an α-synucleinopathy or SNP). The main features are the presence of 10 Hz bursts in the HC class maximizing

image (Top) compared to more persistent 6–8 Hz power bursting in the pathological spectrogram (Middle).

FIGURE 5 | Mean test accuracy (blue) and AUC (black) per EEG channel (averages and standard error of the mean evaluated over 2,000-folds) for the single channel

HC vs. PD classification problem. Occipital and parietal electrodes provide better discrimination (top: DCNN architecture, bottom: RNN).

longitudinal alpha frequency and theta frequency band relative
power increases in PD with dementia (30). However, they
point out in more detail what the network has learned as
feature to separate the classes: bursting in the observed bands.
This adds a dimension (time) to the usually identified features
(power, slowing).

4. DISCUSSION

Our results using deep networks are complementary to earlier
work using machine learning to analyze this type of data using
SVMs and ESNs. However, we deem the use of deep learning
methods to be particularly interesting for various reasons. First,

Frontiers in Neurology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 806100

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ruffini et al. Deep Learning With EEG in RBD

they largelymitigate the need for feature selection (in this case the
choice of spectral bands and channels). Here we preprocessed the
EEG data to obtain spectrograms as a way to simplify the learning
task given the limitations in data availability (given enough data,
it would seem natural to work with raw or minimally cleaned
up multichannel EEG data). Secondly, the employed method
represents an improvement over related prior efforts, increasing
performance by about 5–10% in AUC (28, Soria-Frisch et al.,
in preparation).

The obtained results and especially the ones derived from the
use of feature visualization are in agreement with the findings
of slowing of EEG in PD with respect to HC and RBD patients
as observed in previous studies, i.e., power increase in lower
frequency bands and decrease in higher ones. More specifically,
the shifting of bursting events in the alpha band to lower
frequencies is especially interesting and may suggest potential
mechanistic explanations regarding the effects of disease on the
alpha band underlying circuitry. This underscores the fact that
the DCNN can pick up relevant discriminative features without
explicitly being tuned to do so, which is not the case for those
previous studies with hand-picked features.

The performance of the network was higher with the task of
discriminating HC and converters than RBD non-converters and
converters, which is expected and probably reflecting different
time courses of disease in subjects. This reflects a limitation in
our study, namely, that RBD diagnosis and recruitment may have
happened along different timepoints for each subject, creating a
confound in the analysis.

We note that another limitation in the used dataset is the
presence of healthy controls without follow up, which may
be a confound for the network—worsening its performance,
as some controls may actually be prodromal PD, for example
[around 2.2% (31)]. We hope to remedy in the future this by
enriching our database with improved diagnosis and follow up
methodologies. In addition to dataset quality improvements,
future steps include the exploration of this approach with
larger datasets as well as a more systematic study of network
architecture and regularization schemes. This includes the use
of deeper architectures, improved data augmentation methods,
alternative data segmentation and normalization schemes. With
regard to data preprocessing, we should consider improved
spectral estimation using more advanced techniques such as
state-space estimation and multitapering—as in Kim et al. (32),
and working with cortically or scalp-mapped EEG data prior
creation of spectrograms.

Although here, as in Vilamala et al. (15), we worked with
time-frequency pre-processed data, the field will undoubtedly
steer toward working with raw data in the future when larger
datasets become available—as suggested in Schirrmeister et al.
(33). Working with time-frequency power representations is
definitely a limitation, given current view indicating that neural
processing involves both amplitude and phase of signals, e.g.,
as in communication through coherence or, more generally,
oscillation-based communication (34).

In closing, we note that the techniques used in this pilot study
can be extended to other EEG related problems, such as brain-
computer interfaces, sleep scoring, detection of epileptiform
activity or EEG data pre-processing, where the advantages of
deep learning approaches may prove useful as well.
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Background and Purpose: Cerebral autosomal dominant arteriopathy with subcortical

infarcts and leukoencephalopathy (CADASIL) mainly affects the cerebral small arteries.

We aimed to analyze changes in the lenticulostriate arteries (LSAs) and the basal ganglia

in patients with CADASIL using high-field magnetic resonance imaging (7.0-T MRI).

Methods: We examined 46 patients with CADASIL and 46 sex- and age-matched

healthy individuals using 7.0-T MRI. The number and length of the LSAs, and the

proportion of discontinuous LSAs were compared between the two groups. The

Mini-Mental State Examination score, the modified Rankin Scale, the Barthel Index, and

the MRI lesion load of the basal ganglia were also examined in patients with CADASIL.

We analyzed the association between LSA measurements and the basal ganglia lesion

load, as well as the association between LSA measurements and clinical phenotypes in

this patient group.

Results: We observed a decrease in the number of LSA branches (t = −2.591, P

= 0.011), and an increase in the proportion of discontinuous LSAs (z = −1.991, P =

0.047) in patients with CADASIL when compared with healthy controls. However, there

was no significant difference in the total length of LSAs between CADASIL patients and

healthy individuals (t = −0.412, P = 0.682). There was a positive association between

the number of LSA branches and the Mini-Mental State Examination scores of CADASIL

patients after adjusting for age and educational level (β = 0.438; 95% CI: 0.093, 0.782;

P = 0.014). However, there was no association between LSA measurements and the

basal ganglia lesion load among CADASIL patients.
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Conclusions: 7.0-T MRI provides a promising and non-invasive method for the study

of small artery damage in CADASIL. The abnormalities of small arteries may be related

to some clinical symptoms of CADASIL patients such as cognitive impairment. The lack

of association between LSA measurements and the basal ganglia lesion load among

the patients suggests that changes in the basal ganglia due to CADASIL are caused by

mechanisms other than anatomic narrowing of the vessel lumen.

Keywords: cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

(CADASIL), 7.0-Tesla magnetic resonance imaging (7.0-T MRI), time-of-flight-magnetic resonance angiography

(TOF-MRA), lenticulostriate arteries, basal ganglia

INTRODUCTION

Cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL) is an inherited
small vessel disease caused by mutations in the NOTCH3
gene (1, 2). The main clinical features of CADASIL include
recurrent transient ischemic attack (TIA) and ischemic stroke,
migraine with or without aura, progressive cognitive decline,
and mood disturbances (3–5). Granular osmiophilic material
(GOM) deposits in the basement membrane of vascular smooth
muscle cells (VSMCs) represent the pathological hallmark of
CADASIL (1, 6). Magnetic resonance imaging (MRI) also plays a
crucial role in the diagnosis and clinical evaluation of CADASIL.
Diffuse white matter hyperintensities (WMHs), multiple lacunar
infarctions (LIs), and cerebral microbleeds (CMBs) are the typical
MRI abnormalities in patients with CADASIL (7, 8).

Small arteries, especially the cerebral small arteries are mainly
affected in CADASIL. The lenticulostriate arteries (LSAs) are the
major cerebral small arteries supplying blood to the basal ganglia,
a region of the brain that is particularly susceptible in CADASIL
(9, 10). Ultrastructural analysis is the commonly used method
for studying changes of small cerebral arteries in CADASIL.
Investigations using such methods have revealed that small
cerebral arteries in patients with CADASIL exhibited significantly
thickened vessel walls, which contain deposits of various collagen
and extracellular matrix proteins (11–13). However, it is difficult
to conduct large-scale histopathological investigations to more
fully elucidate the changes of small cerebral arteries, such as
the LSAs in CADASIL, because of the limitations in obtaining
post-mortem brain samples. Magnetic resonance angiography
(MRA) provides an effective, non-invasive method for observing
cerebral blood vessels in vivo. However, because of the limitations
in signal-to-noise ratio, traditional 3.0-T MRA is incapable
of visualizing the intracranial small arteries. Recently, several
studies have confirmed the superiority of 7.0-T time-of-flight
MRA (TOF-MRA) for examining the intracranial small arteries,

Abbreviations: ARWMC, age-related white matter change; CADASIL,

cerebral autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy; CI, confidence interval; CMBs, cerebral microbleeds;

CNR, contrast-to-noise ratio; ICC, intraclass correlation coefficient; LIs,

lacunar infarctions; LSAs, lenticulostriate arteries; MMSE, Mini-Mental State

Examination; MRI, magnetic resonance imaging; TIA, transient ischemic attack;

TOF-MRA, time-of-flight magnetic resonance angiography; WMH, white matter

hyperintensity.

especially the LSAs (14–16), providing a powerful tool for the
study of CADASIL arteriopathy.

In the present study, we aimed to examine changes of the
LSAs and the basal ganglia in patients with CADASIL using 7.0-T
MRI, and to analyze the association between LSA measurements
and the basal ganglia lesion load, as well as the association
between LSA measurements and clinical phenotypes in this
patient population.

MATERIALS AND METHODS

Patients
The present study was approved by the institutional review board
and ethics committee at the Peking University First Hospital,
and the study was conducted in accordance with the ethical
standards laid down in the 1964 Declaration of Helsinki and its
later amendments. Fifty patients with CADASIL and 53 sex- and
age-matched healthy controls were recruited and examined after
obtaining written informed consent. The diagnosis of CADASIL
was based on the gene sequencing results. The positive gene
result was defined as the presence of a heterozygous missense
mutation, which is pathogenic according to previous studies, in
theNOTCH3 gene. If GOM deposits on the basement membrane
of VSMCs were found in skin biopsy of the patient, the gene
results were considered positive, even though the mutation was
not previously reported (5). Healthy controls had no known
cerebrovascular disease or related risk factors (e.g., TIA, stroke,
diabetes, hypertension, dyslipidemia, cardiac disease, psychiatric
illness, major head trauma, or Alzheimer’s disease), as confirmed
via clinical interviews and examinations. Eleven of the controls
admitted to being current or former smokers and 13 controls
admitted to alcohol consumption.

The following clinical and demographic data were collected
for each patient at the time of inclusion: age, sex, disease duration
(determined based on the first occurrence of neurological
symptoms), history of hypertension (defined as blood pressure at
the time of presentation (≥140/90 mmHg) or previous diagnosis
of hypertension), history of diabetes (defined by previous
diagnosis), history of hyperlipidemia (defined by previous
diagnosis), and history of smoking/alcohol consumption (defined
as those who are currently consuming alcohol/smoking tobacco
at least once a week, or those who have quit smoking or drinking
less than a year ago). We also recorded the clinical symptoms
of the patients, such as TIA/stroke, cognitive impairment, etc.
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Patients with cognitive impairment were defined as those whose
Mini-Mental State Examination (MMSE) scores were lower than
the lower quartile of the age- and educational level-matched
healthy controls (17). The degrees of dependence of all patients
were determined using the modified Rankin Scale (mRS) and the
Barthel Index (BI) (18).

Brain MRI Analysis
All patients underwent MRI examination using a 7.0-T whole-
body research MR system (Siemens Healthineers, Erlangen,
Germany). The following imaging sequences were included
in the scanning: T1-weighted (T1w) magnetization-prepared
rapid gradient-echo for the localization and the identification
of LIs, 3-dimensional (3D) high-resolution TOF-MRA for
displaying the LSAs, T2-weighted (T2w) fluid-attenuated
inversion recovery (FLAIR) for identifying the WMHs and LIs,
and susceptibility weighted imaging (SWI) for detecting CMBs.
The imaging parameters of the sequences are summarized in
Supplementary Table 1.

3D reconstruction and analysis of MRA images were
performed using a non-commercial software (Horos R©; https://
horosproject.org) (19, 20). Firstly, we examined the whole circle
of Willis to exclude the presence of structural abnormalities in
large vessels. We excluded the imaging data from three patients
and seven controls because of poor image quality caused by
head motion, and moreover, excluded the data from one patient
because of a history of head trauma. Finally, 46 patients and 46
sex- and age-matched healthy controls were included.

We then counted the number of stems and branches of
the LSAs derived from the first segment of the bilateral
anterior cerebral arteries (ACAs) and from the first segment
of the bilateral middle cerebral arteries (MCAs). Only the
blood vessels pointing toward the anterior perforated substances
were counted. Stems were defined as LSAs that originated
directly from the ACAs or MCAs. The branches were defined
as daughter vessels originating from the parent LSA stems,
without any subordinate branches (single vessels) (21, 22).
If the trunk had no branches, it was recorded as both
stem and branch (Supplementary Figure 1). Secondary outcome
measures included the maximum length of the LSAs and
the proportion of discontinuous LSAs in each participant.
To measure the maximum length of the LSAs, maximum
intensity projections (MIPs) were reconstructed for coronal slabs
(thickness: 28mm) using Horos, and the lengths of the LSAs were
determined as the straight axial distance from the highest point
of the middle cerebral artery to the end of the longest perforating
artery (23, 24). We used the total length of the left and right
LSAs in the final data analysis. To evaluate discontinuous LSAs,
we first identified arteries with signal interruption on coronal
MIP images. We then returned to the axial image to identify
and measure the contrast-to-noise ratio (CNR) of the vessel

lumen. The CNR was calculated by
mean (signallumen)
mean (signaltissue)

(25). The

same region-of-interest was selected to obtain the CNR of 20
arteries. CNR in the normal signal region of arteries was 2.38
± 0.58, while that in areas with interrupted signal was 1.37 ±

0.31. Discontinuous LSAs were defined as arteries withmore than

one region with CNR <1.7, and the proportion of discontinuous

LSAs was calculated by number of discontinuous LSAs
total number of LSAs

.
Circular or elliptical lesions with a diameter of 3–15mm,

with a surrounding rim of high signal intensity on the FLAIR
sequence, and with the same signal as the cerebrospinal fluid
on both T1 and FLAIR sequence were defined as LIs; WMH
was defined as a high signal intensity region with a diameter
≥5mm on FLAIR sequence; Circular lesions with a diameter
of 2–10mm on SWI sequence were defined as CMBs (26). The
number of LIs and CMBs on the right and left sides of the
basal ganglia region (including the basal ganglia, and the internal
and external capsule) were counted manually. The WMH load
for the right and left sides of the basal ganglia region was
measured using the basal ganglia subscale of the age-related white
matter change (ARWMC) scores [Supplemental Table 2; (27)].
The basal ganglia lesions of a 51-year-old patient, as well as
the LSAs of a 39-year-old patient and an age- and sex-matched
control are shown in Figure 1.

The number and length of LSAs, as well as the proportion
of discontinuous LSAs were examined by a clinician and a
radiologist (LC and KQL), and the MRI lesions were assessed
by two clinicians (LC and FXJ). The mean of the measurements
was used for final statistical analyses. The intraclass correlation
coefficient (ICC) for the number of LSA stems of healthy controls
was 0.769 [95% confidence interval (CI): 0.618–0.865], that for
the number of LSA branches of healthy controls was 0.873
(95% CI: 0.782–0.928), that for the number of LSA stems of
CADASIL patients was 0.854 (95% CI: 0.750–0.916), and that
for the number of LSA branches of CADASIL patients was 0.867
(95% CI: 0.773–0.924). The ICC for the length of LSAs of healthy
controls was 0.992 (95% CI: 0.985–0.995), that for the length
of LSAs of CADASIL patients was 0.990 (95% CI: 0.981–0.994),
that for the proportion of discontinuous LSAs of healthy controls
was 0.873 (95% CI: 0.782–0.928), and that for the proportion
of discontinuous LSAs of CADASIL patients was 0.840 (95%
CI: 0.729–0.908). Among patients with CADASIL, the ICC for
ARWMC scores of the basal ganglia was 0.955 (95% CI: 0.920–
0.975), that for number of LIs in the basal ganglia was 0.869
(95% CI: 0.775–0.925), and that for number of CMBs in the basal
ganglia was 0.990 (95% CI: 0.982–0.994).

Statistical Analysis
Statistical analyses were performed using SPSS version 20.0
(SPSS Inc., Chicago, IL, USA). The normality of the data
was analyzed using the Kolmogorov-Smirnov test. Normally
distributed data were compared using independent two samples
t-tests (t), whereas non-normally distributed data were compared
using Mann–Whitney U-tests (z). When grouping by history of
smoking/alcohol consumption, all data were analyzed using non-
parametric tests due to the small sample size, and the P-value was
Bonferroni corrected (Bonferroni corrected P= P∗2).Chi-square
tests were used to compare the ratios.

We performed univariate analyses using Spearman rank
correlation and Mann–Whitney U-tests. Adjustments were
achieved using multiple linear regression (for ARWMC scores
and MMSE scores), or logistic regression (for the presence of
LIs and the presence of CMBs). ARWMC scores for the basal
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FIGURE 1 | 7.0-T MRI images of patients with CADASIL. (A) Representative LSA image of a 37-year-old healthy woman obtained using 7.0-T TOF-MRA. Arrows

indicate bilateral arteries. (B) Representative LSA image of a 39-year-old woman with CADASIL obtained using 7.0-T TOF-MRA. Arrows indicate bilateral arteries.

Compared to healthy control, decreased number of LSAs and increased proportion of discontinuous LSAs can be observed. (C) T1-weighted sequence of a

51-year-old woman with CADASIL demonstrating LIs in the basal ganglia. (D) FLAIR sequence of the same patient displaying WMHs and LIs in the basal ganglia.

(E) SWI sequence of the same patient exhibiting CMBs. LSA, lenticulostriate artery; LIs, lacunar infarctions; WMHs, white matter hyperintensities; CMBs, cerebral

microbleeds.

ganglia, the presence of LIs in the basal ganglia, the presence
of CMBs in the basal ganglia, and MMSE scores were used
as dependent variables. Age and LSA measurements, or age
and educational level were included as independent variables
in the final regression model. Because of the small number
of patients with hypertension, diabetes, or hyperlipidemia, we
did not include these variables in the final analyses. The ICC
was analyzed using a two-way random effects model. Statistical
significance was defined as P < 0.05.

RESULTS

Clinical Manifestations of Patients With
CADASIL
As shown in Table 1, among the 46 patients with CADASIL,
38 were symptomatic (45.16 ± 8.90 years; range, 28–63 years),
while eight were asymptomatic (34.25 ± 6.52 years; range,
23–43 years). Hypertension, diabetes, and hyperlipidemia were
noted in six, two, and six symptomatic patients, respectively.
Thirteen symptomatic patients reported a history of smoking,
while 17 reported a history of alcohol consumption. Among the
asymptomatic patients, with the exception of two patients with
a history of smoking and one patient with a history of alcohol
consumption, there were no other risk factors for cerebrovascular
disease. The mean age at the onset of CADASIL, among
symptomatic patients, was 39.53 ± 7.95 years (range, 24–56
years), and the median duration of disease was 5.5 years (range,
0–17 years). There were 35 patients had a history of TIA/stroke
and nine patients suffered from cognition impairment.

TABLE 1 | Demographic and clinical features of patients with CADASIL.

Category Patients with CADASIL Healthy controls

Symptomatic

(n = 38)

Asymptomatic

(n = 8)

Age (mean ± SD; range) 45.16 ± 8.90

(28–63)

34.25 ± 6.52

(23–43)

41.13 ± 10.26

(25–64)

Age of onset (mean ± SD;

range)

39.53 ± 7.95

(24–56)

– –

Disease duration (median;

range)

5.5 (0–17) – –

Sex (male/female) 21/17 3/5 24/22

History of smoking 13/38 2/8 11/46

History of alcohol

consumption

17/38 1/8 13/46

Hypertension 6/38 0/8 0/46

Diabetes mellitus 2/38 0/8 0/46

Hyperlipidemia 6/38 0/8 0/46

Cognitive impairment 9/31 0/4 –

TIA/stroke 35/38 0/8 –

MRI, magnetic resonance imaging; CADASIL, cerebral autosomal dominant arteriopathy

with subcortical infarcts and leukoencephalopathy; TIA, transient ischemia attack.

Changes in LSAs in Patients With CADASIL
There was no significant difference in age (t = 1.036,
P = 0.303) between the CADASIL patients and healthy
controls. The number of LSA branches was lower in patients
than in controls (t = −2.591, P = 0.011), whereas no
significant difference in the number of stems was found
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between the groups (z = −1.617, P = 0.106). An increased
proportion of discontinuous LSAs was also observed in patients
with CADASIL (z = −1.991, P = 0.047). However, there
was no significant difference in the total length of LSAs
between the patients and healthy individuals (t = −0.412,
P = 0.682) (Table 2).

In addition, we observed fewer LSA branches in patients
with a history of alcohol consumption (z = −2.247, Bonferroni
corrected P = 0.049) than in those without such a history,
but we did not find a significant change in the number of
LSA branches in patients with a history of smoking (z =

−2.221, Bonferroni corrected P = 0.053) (Figure 2). There was
no significant difference in the proportion of discontinuous
LSAs between smokers/drinkers and non-smokers/non-
drinkers (smokers vs. non-smokers: z = −1.145, Bonferroni
corrected P = 0.504; drinkers vs. non-drinkers: z = −0.034,
Bonferroni corrected P = 1.946). Moreover, there was no
significant difference in the total length of LSAs between
smokers/drinkers and non-smokers/non-drinkers (smokers
vs. non-smokers: z = −1.019, Bonferroni corrected P =

0.616; drinkers vs. non-drinkers: z = −1.305, Bonferroni
corrected P = 0.384).

Association Between LSA Measurements
and Basal Ganglia Lesion Load of CADASIL
Patients
In CADASIL patients, we did not find an association between
LSAs measurements and the basal ganglia lesion load in
univariate analyses. However, we found that patients with a
history of alcohol consumption had more CMBs (z = −2.026;
P = 0.043) and more LIs (z = −2.424; P = 0.015) in the basal
ganglia (Supplementary Table 3).

After adjusting for age, there was no significant association
between the number of LSAs and ARWMC scores (β = −0.049;
95% CI: −0.219, 0.121; P = 0.565) for the basal ganglia, the
presence of LIs (OR = 0.878; 95% CI: 0.698, 1.103; P = 0.264) in
the basal ganglia, or the presence of CMBs (OR = 1.011; 95% CI:
0.799, 1.279; P= 0.927) in the basal ganglia in CADASIL patients.
Moreover, we observed no significant association between the
proportion of discontinuous LSAs and ARWMC scores (β =

0.002; 95% CI:−0.032, 0.035; P= 0.912) for the basal ganglia, the
presence of LIs (OR = 1.041; 95% CI: 0.988, 1.098; P = 0.134) in
the basal ganglia, or the presence of CMBs (OR = 0.982; 95% CI:
0.932, 1.035; P = 0.500) in the basal ganglia in the patient group
after adjusting for age. There was also no significant association
between the length of LSAs and ARWMC scores (β = −0.030;
95% CI: −0.099, 0.039; P = 0.387) for the basal ganglia, the
presence of LIs (OR = 0.980; 95% CI: 0.895, 1.073; P = 0.665)
in the basal ganglia, or the presence of CMBs (OR = 0.951; 95%
CI: 0.860, 1.051; P = 0.326) in the basal ganglia in the patient
group after adjusting for age (Table 3). However, after adjusting
for age and LSAs measurements, alcohol consumption increased
the risk of CMBs and LIs in the basal ganglia in the patient group
(CMBs:OR= 6.000; 95%CI: 1.472, 24.454; P= 0.012; Nagelkerke
R2 = 0.199) (LIs: OR = 6.299; 95% CI: 1.394, 28.456; P = 0.017;
Nagelkerke R2 = 0.278).

Association Between LSA Measurements
and Clinical Phenotypes of CADASIL
Patients
Using univariate analysis, we found an association between the
number of LSA branches andMMSE scores of CADASIL patients
(ρ = 0.413; P = 0.014). However, no significant association was
found between the number of LSA branches and the mRS/BI
scores (mRS scores: ρ = −0.142, P = 0.348; BI scores: ρ

= 0.039, P = 0.799). The proportion of discontinuous LSAs
and the length of the LSAs were not significantly associated
with all the three clinical scores of the patients (Table 4). After
adjusting for age and educational level, there was still a positive
association between the number of LSA branches and MMSE
scores in CADASIL patients (β = 0.438; 95% CI: 0.093, 0.782;
P = 0.014). No significant difference in LSA measurements was
found between patients with a history of TIA/stroke and patients
without a history of TIA/stroke (the number of LSA branches: z
= −0.478, P = 0.633; the length of LSAs: z = −0.167, P = 0.867;
the proportion of discontinuous LSAs: z =−1.363, P = 0.173).

DISCUSSION

In the present study, we aimed to analyze the changes in
LSAs among patients with CADASIL using a 7.0-T MRI. Our
findings indicate that patients with CADASIL exhibit fewer LSA
branches and a higher proportion of discontinuous LSAs than
healthy individuals. Although there was no association between
the measurements of LSAs and the basal ganglia lesion load
in patients with CADASIL, we observed a positive association
between the number of LSA branches and MMSE scores in
CADASIL patients.

Clinical manifestations and MRI features in our patients were
consistent with those previously reported in Chinese CADASIL
cohorts (3, 5, 28). The median number and length of LSAs in
our cohort of healthy individuals were similar to that observed
in previous studies (14, 23, 24), confirming the reliability of
our imaging strategies. We observed that alcohol consumption
aggravated damage to the LSAs, consistent with the well-known
harmful effects of drinking on the cerebrovascular system.
Therefore, controlling alcohol intake is especially important for
patients with CADASIL. Presently, our results did not show a
significant decrease in the number of LSAs in patients with a
history of smoking. However, as the Bonferroni corrected P-value
is close to 0.05 (Bonferroni corrected P = 0.053), we presume
that further increase in sample size may lead to a significant
decrease in the number of LSAs in patients with a history
of smoking.

In the present study, patients with CADASIL exhibited a
decrease in the number of LSA branches and an increase
in the proportion of discontinuous LSAs. Since TOF-MRA is
based on the in-flow effect of cerebral blood flow, these results
suggested that there was an interruption in blood flow. Some
post-mortem studies have indicated that patients with CADASIL
exhibit stenosis and occlusion of the cerebral small arteries
(29, 30), whereas other studies have suggested abnormalities in
hemodynamics and vasomotor activities in both patients with
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TABLE 2 | Comparison of the measurements of lenticulostriate arteries between CADASIL patients and healthy controls.

Category Patients with CADASIL

(n = 46)

Healthy controls

(n = 46)

t (z) 95% CI (p25, p75) P

Age (years)a 43.26 ± 9.45 41.13 ± 10.26 1.036 −1.955, 6.215 0.303

Sex (male/female)c 24/22 24/22 – – 1.000

LSA stems (number)b 6.00 (6.00, 7.00) 7.00 (6.50, 7.50) −1.617 5.500, 8.000 0.106

LSA branches (number)a 10.72 ± 2.85 12.22 ± 2.70 −2.591 −2.650, −0.350 0.011*

Proportion of discontinuous LSAsb 7.29 (4.17, 13.27) 0.00 (0.00, 7.84) −1.991 0.000, 15.846 0.047*

Length of LSAs (mm)a 54.95 ± 6.85 55.56 ± 7.41 −0.412 −3.568, 2.343 0.682

LSAs, lenticulostriate arteries; Age, number of LSA branches and length of LSAs are presented as mean ± SD. Number of LSA stems and proportion of discontinuous LSAs are

presented as median with 95% CI. *Significant difference.
a Independent two samples t-test, and 95% CI of the difference is shown.
bMann-Whitney U-test, and p25–p75 of the transformation rank is shown.
cChi-square test.

FIGURE 2 | Comparison of the number of LSA branches between patients with or without a history of smoking/alcohol consumption. (Left) Drinkers vs. non-drinkers.

(Right) Smokers vs. non-smokers. Data are presented as the median with the 95% CI. NS, not significant; *Bonferroni corrected P < 0.05. LSA, lenticulostriate artery.

CADASIL and mouse models of CADASIL (31–33). Because of
the small luminal diameter of LSA branches and the limited
resolution of MRA devices, decreases in blood flow caused
by stenosis or hemodynamic changes may go undistinguished
and manifest as decreased number or discontinuity of arteries
on MRA images. Further studies are required to determine
which of these two factors plays a major role. A previous
study involving 22 patients with CADASIL and 11 healthy
controls reported that there were no changes in the number
of LSAs in patients with CADASIL (23), inconsistent with
our findings. Because our study included 46 patients as well
as 46 age- and sex-matched controls, these discrepancies
may be related to the differences in sample size. Thus, 7.0-
T MRI is a promising and non-invasive method for the
study of small artery damage in CADASIL, which may aid
evaluation of the clinical condition of CADASIL patients in
the future.

In our study, there was no association between LSA
measurements and the basal ganglia lesion load, consistent
with the findings of a previous 7.0-T MRI-based study on
patients with CADASIL (23). LIs and WMHs are usually
thought to be caused by hypoperfusion, which can also be

attributed to hemodynamic abnormalities other than arterial
stenosis. Additional studies have suggested that WMHs can
also be attributed to a dysfunctional blood-brain barrier (34,
35). Indeed, hemodynamic abnormalities and dysfunctional
blood-brain barrier have been observed in studies involving
both patients with CADASIL and animal models of CADASIL
(31, 33, 36, 37). Thus, we speculate that basal ganglia lesions
in patients with CADASIL may be caused by hemodynamic
abnormalities or a dysfunctional blood-brain barrier. This may
explain why we were unable to identify an association between
LSA changes and the basal ganglia lesion load. In addition,
although the resolution of 7.0-T MRA has improved, it is still
impossible to observe vessels with diameter <250µm by in
vivo imaging (23). Therefore, the possibility that the stenosis
of the lumen of smaller vessels leads to the lesions of the
basal ganglia cannot be ruled out. It is also possible that
the number of patients in our study was too small to yield
a significant association. Further, we observed that alcohol
consumption significantly increased the risk of CMBs and
LIs in the basal ganglia in the patient group, highlighting
the importance of controlling alcohol intake among patients
with CADASIL.
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TABLE 3 | Age adjusted association between LSA measurements and MRI lesion load of the basal ganglia in CADASIL patients.

Variables ARWMC scoresa Presence of LIsb Presence of CMBsb

β 95% CI P OR 95% CI P OR 95% CI P

Number of LSA branches −0.049 −0.219, 0.121 0.565 0.878 0.698, 1.103 0.264 1.011 0.799, 1.279 0.927

Proportion of discontinuous LSAs 0.002 −0.032, 0.035 0.912 1.041 0.988, 1.098 0.134 0.982 0.932, 1.035 0.500

Length of LSAs −0.030 −0.099, 0.039 0.387 0.980 0.895, 1.073 0.665 0.951 0.860, 1.051 0.326

LSAs, lenticulostriate arteries; LIs, lacunar infarctions; ARWMC, age-related white matter change; CMBs, cerebral microbleeds; CI, confidence interval.
aMultivariate linear regression analysis (“enter” model).
bBinary logistic regression (“enter” model).

TABLE 4 | Association between LSA measurements and clinical phenotypes of CADASIL patients.

Variables MMSE scores mRS scores BI scores

ρ P ρ P ρ P

Number of LSA branches 0.413 0.014* −0.142 0.348 0.039 0.799

Proportion of discontinuous LSAs −0.056 0.751 0.277 0.062 −0.076 0.617

Length of LSAs 0.183 0.294 −0.109 0.472 0.056 0.711

LSAs, lenticulostriate arteries; MMSE, Mini-Mental State Examination; mRS, modified Rankin Scale; BI, Barthel Index. *Significant difference. Data were analyzed using Spearman rank

correlation (ρ).

In addition, we found a positive association between the
number of LSA branches and MMSE scores in CADASIL
patients, suggesting that abnormalities of small arteries may
be related to some clinical symptoms of CADASIL patients.
There may be two explanations for this association. Firstly, in
recent years, the importance of the basal ganglia in cognition
has been reported by many studies, and it is known to
participate in several cognitive pathways such as executive
function, procedural memory, and attention (38, 39). Studies
of type 1 diabetes have suggested that reduced cerebral blood
flow in the bilateral caudate nucleus-thalamus is associated
with abnormal executive function (39). Therefore, the impaired
blood supply and basal ganglia dysfunction caused by LSA
abnormalities in CADASIL patients may directly lead to
cognitive impairment. Secondly, the LSAs are a part of the
cerebral perforating artery system, and therefore the LSA
abnormalities we observed may indirectly reflect changes to
the whole cerebral perforating artery system. Abnormal cerebral
perfusion and brain tissue damage caused by changes to
the cerebral perforating artery system could further lead to
cognitive impairment in CADASIL patients. However, the above
hypothesis lacks direct evidence and needs further research to
confirm its validity.

The present study possesses several limitations of note.
Because CADASIL is a rare disease, our analysis is inherently
limited by weaknesses in the case-control study design, including
imperfect matching, inevitable recall bias, and difficulty in
determining causal relationships. In addition, the method for
measuring the length of LSAs was simplified because of the lack
of a software for tracking and reconstructing LSAs. Although this
modified method may reflect the extensive stenosis of LSAs, such
measurements are easily affected by the curvature of blood vessels
and may not reflect the true length of these vessels.

CONCLUSIONS

We have shown that patients with CADASIL exhibit fewer
LSA branches and a higher proportion of discontinuous
LSAs than healthy individuals when examined using 7.0-
T MRI. This suggests that 7.0-T MRI is a promising and
non-invasive method for the study of small artery damage
in CADASIL. The abnormalities of small arteries may be
related to some of the clinical symptoms of CADASIL patients
such as cognitive impairment. However, since we observed
no association between the LSA measurements and the basal
ganglia lesion load, the changes in the basal ganglia due
to CADASIL are most likely caused by mechanisms other
than the anatomic narrowing of the vessel lumen, such
as hemodynamic abnormalities or a dysfunctional blood-
brain barrier.
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The increasing incidence of neurodegenerative and psychiatric diseases requires

increasingly sophisticated tools for their diagnosis and monitoring. Clinical assessment

takes advantage of objective parameters extracted by electroencephalogram and

magnetic resonance imaging (MRI) among others, to support clinical management of

neurological diseases. The complementarity of these two tools can be now emphasized

by the possibility of integrating the two technologies in a hybrid solution, allowing

simultaneous acquisition of the two signals by the novel EEG-fMRI technology. This

review will focus on simultaneous EEG-fMRI technology and related early studies, dealing

about issues related to the acquisition and processing of simultaneous signals, and

including critical discussion about clinical and technological perspectives.

Keywords: EEG, fMRI, multimodal image analysis, functional connectivity, EEG spectra

INTRODUCTION

The incidence of neurodegenerative and psychiatric diseases has increased in the last decades,
requiring finer, and advanced tools, ranging from electrophysiology to neuroimaging, for a
reliable diagnostic accuracy. Electrophysiology, and specifically the electroencephalogram (EEG),
represents a consolidated, and widespread tool supporting the diagnosis of neurological diseases.
Unlike imaging techniques, EEG offers an excellent temporal resolution, recording the electric
brain activity in the order of milliseconds through electrodes placed on the scalp. Through EEG
signal processing techniques, and dedicated experimental setup, quantitative parameters on the
spectrum of frequencies, amplitudes, and coherence can be achieved.

Conversely, computed tomography (CT), and mainly MRI, provide a morphological view
of brain (1), with an excellent spatial resolution, allowing a multiparametric assessment of
the brain tissue properties, both in terms of structural and functional information. In this
context, similarly to EEG but at different temporal scales (milliseconds vs. seconds), functional
MRI (fMRI) allows for non-invasive investigation of brain functional activation both during
resting state and task execution, enriching the panel of parameters achievable by MRI (e.g.,
structural connectivity revealed by diffusion tensor imaging, metabolites concentrations revealed
by magnetic resonance spectroscopy, and perfusion revealed by arterial spin labeling). This
complementarity of information is deeply exploited by multimodal acquisition systems that are
developed to overcome single modality drawbacks and to improve the compliance of the patients.
Both in preclinical and clinical settings (2–6), first multimodal imaging techniques attempted
to combine functional information derived by nuclear medicine modalities (positron emission
tomography—PET, and single photon emission computed tomography—SPECT) with structural
data achieved by CT and MRI, in order to complement diagnostic and prognostic approach
to different kind of patients (7). In neurology, simultaneous PET/MRI paved the way for a
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more comprehensive investigation of brain organization and
physiology, allowing to investigate, within a single integrated
exam, the cerebral connectivity in terms of structural, functional,
and metabolic connectome (8, 9). Recently, to fully investigate
healthy and pathological brain function, novel tools have been
developed to simultaneously acquire EEG and fMRI signals,
integrating the optimal temporal and spatial resolution of both
techniques and overcoming the limitations of single modalities.

In this review, simultaneous EEG-fMRI technology, detailing
current applications using both resting state and task approaches
and discussing future perspectives will be focused.

EEG

EEG is one of the most used techniques for studying
brain electrical activity. The first acquisition of an
electroencephalograph was made more than 50 years ago
by Berger, who recorded brain electrical activity via a radio
equipment. The discovery of EEG and, consequently, of cerebral
electrical activity definitely changed the way of approaching to
the study of brain structures and functions, and over the time
became a fundamental tool in both clinical and research fields
(10). Brain electrical activity is derived from the synchronizations
of a pool of cortical neurons, in particular of pyramidal cells.
These cells present a different electrical charge along the neuron,
resulting negative on dendrites and positive in the rest of cell.
This difference determines an electric dipole that can be acquired
by EEG electrodes, and represented as a series of positive and
negative waves. However, the electric field derived by a single
pyramidal cell is not enough to obtain a detectable EEG signal.
For this reason, the electrodes record a pool of cells arranged
parallel to each other, and producing radial and tangential
dipoles (11, 12). The EEG is acquired through the positioning
of electrodes on the scalp according to the international 10–20
system (13), which takes into account four main reference point:
nasion, inion, and the two preauricular points (A1, A2) (14).
The electrodes are fixed to the scalp by means of a conductive
paste and recorded a lot of brain oscillations including delta
rhythm (0.5–4Hz), theta rhythm (4–8Hz), alpha rhythm (8–
13Hz), beta rhythm (13–30Hz), and gamma rhythm (above
30Hz) (15) (Figure 1) Moreover, during the task execution,
it is possible to record evoked potentials that allow to study
different neuronal processes (16). The evoked potentials can
be divided according to latency. In fact, the potentials that
occur within the 100ms post stimulus are usually due to the
nature of the stimulus itself, while the subsequent components
reflect the cognitive processes related to the perception of the
stimulus (Shravani et al., 2009).Technological innovations have
led to the development of high-density EEG systems with a
high number of channels/electrodes for quantitative EEG and

Abbreviations: CT, Computed Tomography; MRI, Magnetic Resonance Imaging;

PET, Positron Emission Tomography; EEG, Electroencephalography; fMRI,

Functional magnetic resonance imaging; BOLD, Blood oxygenation-level-

dependent; rsfMRI, resting state functional Magnetic Resonance Imaging; JME,

Juvenile Myoclonic Epilepsy; DMN, Default Mode Network; BNG, Basal Ganglia;

SRN, Self-reference; PTSD, Post-Traumatic Stress Disorder; AD, Alzheimer

Disease; SM, Multiple Sclerosis.

FIGURE 1 | EEG power spectrum. It presents a Topographic representation of

Alpha power activity. Image obtained on a 40 years-old healthy volunteer with

hybrid EEG-fMRI system and included for illustrative purpose only.

brain connectivity studies (17). Currently, within a clinical
setting (configuration with about 20 electrodes), the EEG is
used to characterize numerous diseases including metabolic
or drug alterations, sleep disorders, epileptic syndromes,
neurodegenerative diseases, traumatic brain injury, and tumor
lesions, and the characterization of comatose patients and brain
death (18).

fMRI

The fMRI is one of the main non-invasive techniques that allow
to measure brain function. The mechanism that subtends the
signal of fMRI is called blood oxygen level dependent (BOLD)
effect, that describes the variation in the magnetic status of the
red blood cells linked to the hemoglobin oxygenation. Indeed,
the form of hemoglobin without oxygen is deoxyhemoglobin,
which has paramagnetic property, while oxyhemoglobin has
diamagnetic property. In resting conditions, the balance between
these two elements concentrations in the vascular brain system,
provides a signal indistinguishable from the surrounding
parenchyma. When a stimulus was applied, the hemoglobin
balance in specific brain areas changes, initially in favor to
deoxyhemoglobin concentration and so determining a decrease
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of signal, and following switching in favor to oxyhemoglobin
concentration and a signal increase (19). The detection of
these signal changes translates into a series of images, that can
be analyzed to show the activations of specific brain areas,
following the execution of specific tasks. It is important to
understand that BOLD effect is an indirect measure of neuronal
activation, depending from neurovascular coupling and so by
different interplay, such as alteration in blood flow and volume
and complex interactions between the activated neurocircuitry
with astrocytic and vascular targets. Briefly, neuronal activation
induced by the stimulus determines a neurotransmitter release
in the synaptic cleft and its uptake by the astrocytic process, in
the so-called tripartite synapse (20, 21). The secondary astrocytic
activation triggers intracellular Ca2+fluctuations in astrocyte
end-feet that elicit cellular molecular and hemodynamic changes
recorded by fMRI through the release of vasoactive peptides
(22). This complex cascade of events that subtend neurovascular
coupling and BOLD effect is also responsible of the time delay
between neuronal activation and BOLD signal fluctuation that
distinguish fMRI from direct electrophysiological measures.

In this context, while task-related fMRI has been applied
in many studies to investigate specific functions and/or brain
areas (23), more recently, resting-state fMRI approach is
coming out to analyze spontaneous physiological fluctuations
without the need of patient’s compliance, pathway’s integrity
and command following, sometime impossible in several kind of
patients (24, 25).

Since from its development, fMRI technique has been
applied to characterize brain functional connectivity in
several physiological conditions (26, 27) and many diseases,

including brain tumors (28), multiple sclerosis (29), Alzheimer’s
diseases (AD) (30, 31), epilepsy (32), but also psychiatric
disorders (33, 34).

SIMULTANEOUS EEG-fMRI

Simultaneous EEG-fMRI acquisition is used to evaluate the
correlation between electrical brain activity and hemodynamic
mutation. fMRI with high spatial resolution does not provide
adequate temporal sampling due to the slow BOLD response
(in order of seconds) unlike EEG that instead offers a high
temporal resolution (in the order of milliseconds), but with
a poor localization of signal sources (35). The integration of
these two tools in a hybrid simultaneous acquisition allows to
overcome the intrinsic limitations of both the techniques and to
increase the plethora of analyses that can be performed, and in
turns, of the information that can be achieved (36). Simultaneous
acquisition also guarantees an identical registration, as regards
the mental state of the subject, the execution of the task and the
inference of the recording environment. This does not happen by
recording the two methods separately, especially if the recording
takes place in different environments and with cognitive unstable
patients (37).

As for technological issues, the acquisition of simultaneous
EEG/fMRI involves the use of specialized EEG hardware that is
safe and compatible with the MR environment and comfortable
to the participant. Improper use of the equipment may result
in considerable risks. Regarding safety, a potential risk for the
subjects comes from electrodes and heating of conducting leads
during MR radio frequency transmission, resulting in discomfort

FIGURE 2 | Gradient artifact on electroencephalographic recording. It presents a broadband artifact covering the entire spectrum of EEG frequencies. The amplitude

of the artifact is more than 1,000 times that of the EEG signal. Image obtained on a 40 years-old healthy volunteer with hybrid EEG-fMRI system and included for

illustrative purpose only.
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or even burns (38). To reduce the risk of subject discomfort
or injuries, there are several precautions, for example fMRI
sequences should be based on gradient echo-echo planar imaging
(GE-EPI); for anatomical reference scans, low specific absorption
rate (SAR) sequences should be used, in particular GE-T1-
weighted sequences; for all sequences in EEG-fMRI protocol, it
should be ascertained that their SAR does not exceed the SAR
of the GE-EPI sequence. Otherwise, extensive safety testing with
temperature sensors is necessary. Staff performing EEG-MRI
studies must have received appropriate training, as injuries due
to MR-compatible EEG equipment cannot be ruled out if the
equipment is accidentally used out of specifications, especially
in the case of body coil transmission (39). The adoption of
these guidelines is particularly important in vigilance-reduced
subjects (sleeping or sedated subjects) or, generally, in subjects
who cannot give notice of any discomfort reliably (children).

Regarding the compliance of the subjects, it is important
when using EEG/fMRI to make sure that they have a good
understanding of all steps involved, that they are comfortable
with all steps, and that there are no accidents that could cause
discomfort leading to movement and resulting in failure of
the experiment (40). The participants should understand that
nothing will be painful even if some steps may be slightly
uncomfortable, such as slight abrasion of the scalp during
placement of EEG electrodes; this helps eliminate much of the
anxiety that the participant might otherwise have, in order to
complete the experiment properly and safely.

Moreover, the data obtained from the simultaneous
acquisition of EEG-fMRI are strongly influenced by artifacts. On
the one hand the presence of the helmet generates a variation
in the homogeneity of the magnetic field that involved a
variation in images quality, on the other hand the presence of the

FIGURE 3 | Ballistocardiogram artifact. It has a maximum amplitude of about 100 microvolt and is most evident in the frequency range up to 30Hz. The artifact

undergoes spatio-temporal variability linked to cardiac activity. Image obtained on a 40 years-old healthy volunteer with hybrid EEG-fMRI system and included for

illustrative purpose only.
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FIGURE 4 | Pie chart. Proportion of EEG-fMRI studies in relation to

neuropsychological impairments and healthy control subjects.

magnetic field itself generates broad-band artifacts, which almost
completely cover the electroencephalographic signal (Figure 2)
(41). Moreover, the movement of the electrodes caused by pulse-
related in the static magnetic field generates a ballistocardiogram
artifact that is influenced by the spatio-temporal variability of
cardiac cycles in place during recording (Figure 3) (42). For
this reason, researchers developed different methods to remove
artifact, such as independent component analysis (ICA), that
is considered the best method for remove ballistocardiogram
artifact (43), or Fourier transform that can be used to correct
gradient artifacts (44).

Scientific articles published since 2014 on PubMed website,
using as key word “simultaneous EEG-fMRI” have been collected
in order to include studies with simultaneous acquisitions of
EEG-fMRI both in resting state and during tasks execution
(Figure 4).

Simultaneous Resting-State EEG-fMRI
Brain is a dynamic system that generates activity even in a
state of rest (Table 1). This can be revealed by EEG recording
through the detection of neural waves with different frequency
and amplitude and by fMRI through the estimation of different
resting state networks linked to specific cerebral functions. The
simultaneous acquisition of rsfMRI and EEG makes it possible
to consider the brain as a series of systems or networks that
interact with each other (47, 51). The interactions are dependent
by the concurrent variation of BOLD fluctuations and brain
electrical activities. There are many fields of application of
simultaneous acquisition of rsfMRI and EEG (Table 1). First
studies have focused onmethodological issues in healthy subjects,
analyzing the reconstruction of EEG signal sources, based
on fMRI information, and mainly oriented to a connectivity
analysis. However, it is considered necessary to implement
the study sample in order to validate the theory (47). The
authors demonstrated that simultaneous approach using a 64
channel MR-compatible EEG cap in seventeen adult volunteers
is useful to validate whole-brain connectomes extracted by
each modality and to elaborate predictive model of dynamic

functional connectivity (47). Another study (36) correlated theta
and delta frequencies of the temporal lobe with simultaneous
fMRI acquisition in fourteen healthy sleep-deprived subjects in
awake and drowsy states. The study identified, for the first time,
a different brain regional source for the delta and theta rhythms,
although their analysis also includes the fastest rhythms, such as
alpha, beta and gamma. This kind of approach produces a greater
differentiation of the slow rhythms, but decreases the localization
of the sources generating different EEG bands. The electrical-
BOLD correlation seemed to be stronger for frequencies lower
than 1Hz, and influenced by the spatial relationship between
the resting state networks analyzed and the recording zones
(48). This relationship has also been used to investigate the
basis of some specific electrical oscillations such as the mu
rhythm. In a study conducted on thirty-six healthy subjects,
simultaneous acquisition of EEG-fMRI has allowed to identify
a positive correlation between the power of mu rhythm and
the BOLD signal in areas including the anterior cingulate
cortex and the anterior insula, confirming the multiple origin
of this specific rhythm (50). Concerning neurological diseases
applications, a study on eighteen subjects affected by juvenile
myoclonic epilepsy demonstrated the added value of the EEG-
fMRI acquisition to unveil the pathophysiology of the disease,
highlighting the relationships between the frontal networks and
the epileptic discharges (46). Another study (45) detected a
reduced association between occipital alpha band power and
the fluctuation of the BOLD signal in frontal and temporal
cortices and in the thalami of fourteen AD patients. In psychiatry,
other authors demonstrated a close relationship between the
temporal dynamics of default mode network and post-traumatic
stress disorder (PTSD) severity in thirty-six veterans, compared
to twenty combat-exposed controls (49). It becomes clear that
the simultaneous recording of EEG-fMRI can give substantial
information on the relationships between the hemodynamic
response and neuronal activity. In particular, the resting state
acquisition can be fundamental for underling the variability of
brain activity and above all to define the structures generally
involved in the triggering EEG waves in resting state. In this case,
increasing the sample size and using different methods of analysis
could validate previous results and disentangle inconsistent or
controversial findings.

Simultaneous Task EEG-fMRI
The execution of tasks allows to establish, according to the
cognitive domain studied, which cerebral areas are assigned
to the specific task (Table 2). According to studies performed
with a recognition memory task, EEG-fMRI experiments have
demonstrated that theta-alpha low frequency oscillations (4–
13Hz) are linked to the functional activation of a network
involving the hippocampus, the striatum and the pre-
frontal cortex. These findings confirmed the theory that the
hippocampus acts as a modulator of brain activity by acting
through low frequency oscillations (52). Hippocampus seems
to have an important role also during sleep. In fact, it was
demonstrated that hippocampus activity increases during light
sleep in relationship with alpha activity (58). It could confirm
the idea that memory fixation could occur in light sleep phases,
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TABLE 1 | A summary of the resting state EEG-fMRI studies since 2014.

References Application

field

Subjects MR

field

MR sequence details EEG preprocessing Results

Bruggen et al.

(45)

AD 14 AD patients and Healthy

control

3T EPI TR/TE:2.5 s/30ms RES:

3.5 × 3.5 × 3.5mm

Brain Products

32- channels

EEG: Brain Vision Analyzer

for BCG and GA Filter

0.5–70 Hz

Notch 50Hz;

MRI: Spm (Matworks and

VBM8 toolbox)

Diminished positive association between

alpha band power fluctuation and BOLD

signal fluctuation in several brain region of

AD patient compared to healthy controls

Dong et al.

(46)

JME 18 Jouvenil Myoclonical

Epilepsy

3T TR/TE: 52,000 ms/30ms

RES: 1 × 1 × 1

Neuroscan 62- channels EEG: Curry 7 (Neuroscan

software) MRI: SPM8

Evidence of complex discharge-affecting

networks in JME patients, in which linear

and nonlinear relationships between EEG

and fMRI features existed.

Deligianni

et al. (47)

Connectivity 17 Healthy Volunteers 1.5T EPI sequence

TR/TE = 2,160/30ms, 3.3

× 3.3 × 4.0mm

Electrode cap

(BrainCap MR,)

64 channel

EEG: Brain Vision Analyzer

2, SPM12b MRI: Freesurfer,

SPM12b

Correlation between the EEG signals and

the anatomical zones from which they are

generated.

Marawar et al.

(36)

Sleep 14 Healthy sleep-deprived

subjects

3T EPI sequence

TR/TE = 2000 /30 ms

RES:4 × 4 × 4mm

fEEG; Kappametrics Inc,

Chantilly, VA

EEG: MATLAB, MRI: FEAT,

FSL

Different correlations for the Delta and

Theta rhythms

Keinanen

et al. (48)

Epilepsy 10 Healthy controls; 10

patients with drug-resistant

epilepsy (DRE).

3T MREG

TE/TE: 100/35 ms

RES: 4.5mm

BrainAmp system with 32

Ag/AgCl electrodes

EEG: Brain Vision Analyzer

(version 2.0, Brain

Products); MRI: FSL pipeline

Intrinsic brain pulsations play a role in DRE

and critically sampled fMRI may provide a

powerful tool for their identification.

Yuan et al.

(49)

PTSD 36 PTSD; 20

combat-exposed(controls)

3T EPI sequence

(TR/TE) = 2,000/30 ms

RES: 1.875 × 1.875 ×

2.9mm

BrainAmp MR Plus

amplifiers (Brain Products)

32ch

EEG: BrainVision Analyzer

software; MRI: AFNI,

RETROICOR,Advanced

Normalization Tools

Correspondence between the temporal

dynamics of default mode network and

PTSD severity

Yin et al. (50) motor

control

36 Healthy Volunteers 3T (EPI) TR/TE = 1,980/30 ms

RES: 3.50mm

32-channel MR-compatible

EEG system (Brain

Products)

EEG: Brain Vision Analyzer

2.0

RMI: SMP 5

Power of Mu rhythms positively correlated

with BOLD within the anterior cingulate

cortex and the anterior insula.
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TABLE 2 | A summary of the task EEG-fMRI studies since 2014.

Reference Application

Field

Subjects MR

field

MR sequence details EEG preprocessing TASK Results

Herweg et al.

(52)

Behavioral/

Cognitive

19 Healthy

Control

3T EPI TR/TE =

4,000/25ms RES: 2 ×

2 × 2mm

Braincap MR;

Brain Products

64-channels

MRI: SPM12b EEG:

BrainVision Analyzer

2.0; EEGLAB

Recognition memory

task inside of the

scanner.

Theta-alpha power is linked to

hippocampal connectivity with the

striatum and PFC

Zotev et al.

(53)

Neurofeedback 15 Healthy

Control

3T EPI TR/TE =

5.0/1.9ms RES: 0.94

× 0.94 × 1.2mm 3mm

Brain Products

32-channels

EEG: BrainVision

Analyzer 2.1 software

Frmi: AFNI

Retrival of happy

autobiographical

monets

Emotional control training can

improve alpha activity and functional

connectivity of amygdala and

prefrontal cortex

Pisauro et al.

(54)

Neuroscience 21 Healthy

Control

3T EPI TR/TE = 2.5

s/40ms RES: 3 ×

3mm

Brain Amps MR-Plus

64-channels

EEG: Matlab MRI:

FMRIB’s Software

Library

Independent

reward-based

decision-making task

task-dependent correlation with the

ventromedial prefrontal cortex and the

striatum

Andreou et al.

(55)

Translational

Psychiatry

22 Healthy

Control

3T EPI TR/TE = 2,000/ TE

=25 ms

RES: 1 × 1 × 1mm

BrainVision Recorder

64channel

EEG: Brain Vision

Analyzer Version 2.0

MRI: SPM 12

Gambling Task Negative feedback: Increase in theta

band power associated that

correspond with activation of

fronto-parietal areas. Positive

feedback: Increasing in beta band

power that reflect activation of

subcortical areas

Guo et al. (56) Neuropsychology 20 Healthy

Control

3T EPI TR/TE = 2,000

ms/35ms RES: 1 × 1

× 1mm

Net Station (EEG

Electrical Geodesics)

64-channels

EEG: Net Station

Software MRI: SPM8

Monerary gambling

task

Egg-fMRI acquisition during gambling

task underline activation of a posterior

cingulate, medial pre-frontal cortex

and ventral striatum

Zotev et al.

(53)

Neurofeedback 30 Patients

with PTSD

3T EPI TR/TE =

2,000/30ms RES:

1.875 × 1.875 ×

2.9mm

Brain Products

32 Channels

EEG: BrainVision

Analyzer 2.1 software

Frmi: AFNI

Think of and write

down five happy

autobiographical

memories.

rtfMRI-nf of the amygdala activity has

the potential to correct the

amygdala-prefrontal functional

connectivity deficiencies specific to

PTSD

Zich et al. (57) Neuropsychology 24 Healthy

Control

3T EPI TR/TE = 1.5

s/2.52ms RES: 3.1 ×

3.1 × 3.0mm

Brain Product

32-channels

EEG: Brain Vision

Analyzer RMI: spm8

Eeg neurofeedback-

motor task

Indicate a complex relationship

between MI EEG signals and

sensorimotor cortical activity and

support the role of MI EEG feedback

in motor rehabilitation.
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although the acquired subjects had not performed any learning
task (58). As for decision making assessment, a simultaneous
approach has been employed to investigate common neural
substrates for perceptual decisions and accumulation of
evidences, highlighting a common role for the posterior medial
frontal cortex in both the processes (54). In another study
using a two-choice decision-making paradigm, the authors
demonstrate that an increase in theta band power, associated
with a choice with a negative feedback, corresponds to the
activation of fronto-parietal areas; at contrary, an increase in
the power of the beta band, associated with a positive feedback,
reflects the activation of subcortical are as involved in the
reward network (55). Other authors employed the gambling
task paradigm in 20 healthy controls to analyze the concurrent
activation of large areas related to the reward and punishment,
such as posterior cingulate, medial pre-frontal cortex and ventral
striatum (56).

A further application of EEG-fMRI is represented by neuro
feedback, which allows the modulation of the brain activities,
although up to now the information that come back to the patient
belong to only EEG (57) or fMRI scan (53, 56, 59). As for EEG
neurofeedback, several authors have compared brain activation
during motion imaginations and movement execution in healthy
subjects, suggesting a role for this approach in the rehabilitation
of patients affected by post-stroke paralysis (57). As for fMRI

neurofeedback, two studies have investigated the correlation
between EEG rhythms and BOLD signal following behavioral
modulation. The first one, in a sample of 34 healthy subjects,
reported that themodulation of thalamic nuclei activation during
the retrieval of happy autobiographical memories, is able to
modulate both the alpha activity and the BOLD signal (59).
The second one, performed by the same group, in a population
of patients affected byPTSD, showed that emotional control
training can improve the alpha rhythm and the functional
connectivity between the amygdala and the prefrontal cortex,
and this enhancement was correlated with a better clinical
performance (53).

Up to now, only one article reported the implementation of
a novel simultaneous real time fMRI and EEG neurofeedback
(60). The authors demonstrated that the training of emotional
self-regulation in healthy subjects, based on retrieval of
happy autobiographical memories, can modulate both amygdala
BOLD fMRI activation and beta band EEG power asymmetry
(60). Summarizing, major evidences derived from task-related
EEG-fMRI focus on emotional and cognitive processes. This
certainly represents a great starting point for understanding and
discovering everything concerning psychiatric and neurological
syndromes that still remain a big question mark. Although
the multimodal approach determines several issues that can
complicate the research process, simultaneous EEG-fMRI

FIGURE 5 | Source analysis. (Left) Sources localization of the EEG frequencies for a time period of 3 s, accomplished through the LORETA analysis. (Right) 3-s

period electroencephalographic pattern of a healthy subject. Image obtained on a 40 years-old healthy volunteer with hybrid EEG-fMRI system and included for

illustrative purpose only.

Frontiers in Neurology | www.frontiersin.org 8 August 2019 | Volume 10 | Article 848119

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mele et al. EEG-fMRI in Neurology

acquisition remains one of the most appreciated approach,
which certainly allows a complete view of brain activity, without
affecting the state of patients and subjects participating in
the study.

EEG-fMRI ANALYSIS METHODS

Data analysis is a fundamental step for EEG-fMRI research
studies and, in general, for simultaneous multimodal
acquisitions. The various analysis used can be contained in
two macro-areas: symmetric analysis and integrated analysis
(61). Briefly, the symmetrical approach involves the simultaneous
analysis of the data extracted from the two methods, while the
integrated analysis exploits the data collected by one of the
two methods, to understand and validate the data collected
from the other one. In this way, it is possible to generate a
unique model that facilitates the understanding of brain activity
(62). In particular, integrated analyzes include two methods
of applications: EEG-informed fMRI (63) and fMRI-informed
EEG (64). The first one uses brain electrical activity to predict
hemodynamic variations (15). The second one, uses the
activation maps extracted by the fMRI to correct and analysis the
EEG sources (Figure 5) (65).

Nevertheless, the optimal procedure for the analysis of the
simultaneous EEG-fMRI data is still an open issue that needs
further investigation in order to extract meaningful quantitative
biomarkers, useful to characterize physiological and pathological
brain activity, taking advantages by mutual information.

FUTURE PERSPECTIVES

Even if MRI and EEG complement each other considering their
different spatial and temporal resolution, the characterization
of molecular processes that subtend resting state analysis or
a specific task is not achievable through these tools. For this
reason, a trimodal approach integrating anMR-compatible EEG-
system in the hybrid MR–PET scanner has been proposed
and successfully implemented (66). The trimodal acquisition
certainly allows a broader and integrative view of the brain

activity, although technical issues derived by the PET attenuation
of the EEG cap are debated (67, 68).

In an exploratory pilot study, 10 healthy subjects are analyzed
in order to implement the value of the single technique and
explore the human brain through the different information
provided with the same physiological and psychological
condition of the subject. The results of these early studies pave
the way for further research on different patient populations to
exploit the mutual clinical potential of the methods (69).

This kind of approach appeared promising, ensuring the
same physiological conditions for all measurements, with the
possibility to acquire other synergistic information like perfusion
and diffusion changes via MR-based methods.

CONCLUSIONS

Simultaneous EEG-fMRI acquisition represents a reference
tool to evaluate the correlation between brain electrical
activity and BOLD signal. This technique appeared essential
to investigate physiological brain networks in healthy
subjects, introducing new evidences about the electrical
neural activity and the neurovascular coupling underpinning
the BOLD signal. Moreover, it offers the possibility to
characterize the relationship between EEG spectrum
and regional brain activation, providing new insights on
neurological and psychiatric diseases and, hopefully, new
treatment targets.

Despite the increasing use of EEG-fMRI, as other multimodal
techniques, the question about the optimal integrated and
standardized analysis is still open, representing the true challenge
that follows the technological development.
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Many clinical applications based on deep learning and pertaining to radiology have been

proposed and studied in radiology for classification, risk assessment, segmentation

tasks, diagnosis, prognosis, and even prediction of therapy responses. There are

many other innovative applications of AI in various technical aspects of medical

imaging, particularly applied to the acquisition of images, ranging from removing image

artifacts, normalizing/harmonizing images, improving image quality, lowering radiation

and contrast dose, and shortening the duration of imaging studies. This article will

address this topic and will seek to present an overview of deep learning applied to

neuroimaging techniques.

Keywords: artificial intelligence, deep learning, radiology, neuro-imaging, acquisition

INTRODUCTION

Artificial intelligence (AI) is a branch of computer science that encompasses machine learning,
representation learning, and deep learning (1). A growing number of clinical applications based on
machine learning or deep learning and pertaining to radiology have been proposed in radiology
for classification, risk assessment, segmentation tasks, diagnosis, prognosis, and even prediction
of therapy responses (2–10). Machine learning and deep learning have also been extensively
used for brain image analysis to devise imaging-based diagnostic and classification systems of
strokes, certain psychiatric disorders, epilepsy, neurodegenerative disorders, and demyelinating
diseases (11–17).

Recently, due to the optimization of algorithms, the improved computational hardware, and
access to large amount of imaging data, deep learning has demonstrated indisputable superiority
over the classic machine learning framework. Deep learning is a class of machine learning that
uses artificial neural network architectures that bear resemblance to the structure of human
cognitive functions (Figure 1). It is a type of representation learning in which the algorithm learns
a composition of features that reflect a hierarchy of structures in the data (18). Convolutional
neural networks (CNN) and recurrent neural networks (RNN) are different types of deep learning
methods using artificial neural networks (ANN).

AI can be applied to a wide range of tasks faced by radiologists (Figure 2). Most initial deep
learning applications in neuroradiology have focused on the “downstream” side: using computer
vision techniques for detection and segmentation of anatomical structures and the detection of
lesions, such as hemorrhage, stroke, lacunes, microbleeds, metastases, aneurysms, primary brain
tumors, and white matter hyperintensities (6, 9, 15, 19). On the “upstream” side, we have just
begun to realize that there are other innovative applications of AI in various technical aspects of
medical imaging, particularly applied to the acquisition of images. A variety of methods for image
generation and image enhancement using deep learning have recently been proposed, ranging from
removing image artifacts, normalizing/harmonizing images, improving image quality, lowering
radiation and contrast dose, and shortening the duration of imaging studies (8, 9, 15).
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FIGURE 1 | Example of components of Biologic Neural Network (A) and Computer Neural Network (B). Reprinted with permission from Zaharchuk et al. (15).

Copyright American Journal of Neuroradiology.

As RNNs are commonly utilized for speech and language
tasks, the deep learning algorithms most applicable to radiology
are CNNs, which can be efficiently applied to image segmentation
and classification. Instead of using more than billions of
weights to implement the full connections, CNNs can mimics
mathematic operation of convolution, using convolutional and
pooling layers (Figure 1) and significantly reduce the number
of weights. CNNs can also allow for spatial invariance. For
different convolutional layers, multiple kernels can be trained
and then learn many location-invariant features. Since important
features can be automatically learned, information extraction
from images in advance of the learning process is not necessary.
Therefore, CNNs are relatively easy to apply in clinical practice.

There are many challenges related to the acquisition and
post-processing of neuroimages, including the risks of radiation
exposure and contrast agent exposure, prolonged acquisition
time, and image resolution. In addition, to expert parameter
tuning of scanners always required to optimize reconstruction
performance, especially in the presence of sensor non-idealities

and noise (20). Deep learning has the opportunity to have
a significant impact on such issues and challenges, with
fewer ethical dilemmas and medical legal risks compared to
applications for diagnosis and treatment decision making (21).
Finally, these deep learning approaches will make imaging much
more accessible, from many perspectives, including cost, patient
safety, and patient satisfaction.

Published deep learning studies focused on improving

medical imaging techniques are just beginning to enter

the medical literature. A Pubmed search on computer-
aided diagnosis in radiology, machine learning, and deep

learning for the year 2018 yielded more than 5,000 articles.
The number of publications addressing deep learning as
applied to medical imaging techniques is a small fraction
of this number. Although many studies are not focused
on neuroimaging, their techniques can often be adapted for
neuroimaging. This article will address this topic and will
seek to present an overview of deep learning applied to
neuroimaging techniques.
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FIGURE 2 | Imaging value chain. While most AI applications have focused on the downstream (or right) side of this pathway, such the use of AI to detect and classify

lesions on imaging studies, it is likely that there will be earlier adoption for the tasks on the upstream (or left) side, where most of the costs of imaging are concentrated.

USING DEEP LEARNING TO REDUCE THE
RISK ASSOCIATED WITH IMAGE
ACQUISITION

There aremany risks associated with different image acquisitions,
such as ionizing radiation exposure and side effect of contrast
agents. Deep learning based optimizing acquisition parameters
is crucial to achieve diagnostically acceptable image quality at the
lowest possible radiation dose and/or contrast agent dose.

MRI
Gadolinium-based contrast agents (GBCAs) have become
indispensable in routine MR imaging. Though considered safe,
CBCAs were linked with nephrogenic systemic fibrosis, which is
a serious, debilitating, and sometimes life-threatening condition.
There is ongoing discussion regarding the documented
deposition of gadolinium contrast agents in body tissues
including the brain, especially for those patients who need
repeated contrast administration (22). Recent publications have
reported the gadolinium deposition in the brain tissue, most
notably in the dentate nuclei and globus pallidus (23, 24). This
deposition can probably be minimized by limiting the dose
of gadolinium used (25). Unfortunately, low-dose contrast-
enhanced MRI is typically of insufficient diagnostic image
quality. Gong et al. (26) implemented a deep learning model
based on an encoder-decoder CNN to obtain diagnostic quality
contrast-enhanced MRI with low-dose gadolinium contrast. In
this study 60 patients with brain abnormalities received 10% low-
dose preload (0.01 mmol/kg) of gadobenate dimeglumine, before

perfusion MR imaging with full contrast dosage (0.1 mmol/kg).
Pre-contrast MRI and low-dose post-contrast MRI of training
set were introduced as inputs, and full dose post-contrast MRI
as Ground-truth. The contrast uptake in the low-dose CE-MRI
is noisy, but does include contrast information. Through the
training, the network learned the guided denoising of the noisy
contrast uptake extracted from the difference signal between
low-dose and zero-dose MRIs, and then combine them to
synthesize a full-dose CE-MRI. The results demonstrated that
the deep learning algorithm was able to extract diagnostic quality
images with gadolinium doses 10-fold lower than those typically
used (Figure 3).

CT
Computed Tomography (CT) techniques are widely used in
clinical practice and involve a radiation risk. For instance, the
radiation dose associated with a head CT is the same as 200
chest X-rays, or the amount most people would be exposed to
from natural sources over 7 years. CT acquisition parameters
can be adjusted to reduce the radiation dose, including reducing
kilovoltage peak (kVp), milliampere-seconds (mAs), gantry
rotation time, and increasing acquisition pitch. However, all
these approaches also reduce image quality. Since an insufficient
number of photons in the projection domain can lead to excessive
quantum noise, the balance between image quality and radiation
dose is always a trade-off.

Various image denoising approaches for CT techniques have
been developed. Iterative reconstruction has been used, but
sparsely, in part due to significant computational costs, time
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FIGURE 3 | Example of low-dose contrast-enhaced MRI. Results from a deep network for predicting a 100% contrast dose image from a study obtained with 10% of

the standard contrast dose. This example MRI is abtained from a patient with menigioma. Such methods may enable diagnostic quality images to be acquired more

safely in a wider range of patients (Courtesy of Subtle Medical, Inc.).

delays between acquisition and reconstruction, and a suboptimal
“waxy” appearance of the augmented images (27, 28). Traditional
image processing methods to remove image noise are also
limited, because CT data is subject to both non-stationary and
non-Gaussian noise processes. Novel denoising algorithms based
on deep learning have been studied intensively and showed
impressive potential (29). For example, Xie et al. (30) used a
deep learning method based on a GoogLeNet architecture to
remove streak artifacts due to missing projections in sparse-
view CT reconstruction. The artifacts from low dose CT imaging
were studied by residual learning, and then subtracted from
the sparse reconstructed image to recover a better image. These
intensively reconstructed images are comparable to the full-
view projection reconstructed images. Chen et al. (28, 31)
applied a residual encoder-decoder CNN, which incorporated
a deconvolution network with shortcut (“bypass”) connections
into a CNN model, to reduce the noise level of CT images.
The model learned a feature mapping from low- to normal-dose
images. After the training, it achieved a competitive performance
in both qualitative and quantitative aspects, while compared with
other denoising methods. Kang (27) applied a CNN model using
directional wavelets for low-dose CT reconstruction. Compared
to model-based iterative reconstruction methods, this algorithm
can remove complex noise patterns from CT images with greater
denoising power and faster reconstruction time. Nishio et al.
(32) trained auto-encoder CNN for pairs of standard-dose
(300mA) CT images and ultra-low-dose (10mA) CT images,
and then used the trained algorithm for patch-based image
denoising of ultra-low-dose CT images. The study demonstrated
the advantages of this method over block-matching 3D (BM3D)
filtering for streak artifacts and other types of noise. Many

other deep learning-based approaches have been proposed in
radiation-restricted applications, such as adversarially trained
networks, sharpness detection network, 3D dictionary learning,
and discriminative prior-prior image constrained compressed
sensing (33–36).

Reconstruction algorithms to denoise the output low-quality
images or remove artifacts have been studied intensively (27,
28, 30–32). Gupta et al. (37) implemented a relaxed version
of projected gradient descent with a CNN for sparse-view CT
reconstruction. There is a significant improvement over total
variation-based regularization and dictionary learning for both
noiseless and noisy measurements. This framework can also be
used for super-resolution, accelerated MRI, or deconvolution,
etc. Yi et al. used adversarially trained network and sharp
detection network to achieve sharpness-aware low-dose CT
denoising (34).

Since matched low- and routine-dose CT image pairs are
difficult to obtain in multiphase CT, Kang et al. (38) proposed
a deep learning framework based on unsupervised learning
technique to solve this problem. They applied a cycle-consistent
adversarial denoising network to learn themapping between low-
and high-dose cardiac phases. Their network did not introduce
artificial features in the output images.

Sparse-Data CT
The reconstruction of Sparse-data CT always compromises
structural details and suffers from notorious blocky artifacts.
Chen et al. (39) implemented a Learned experts’ assessment-
based reconstruction network (LEARN) for sparse-data CT. The
network was evaluated with Mayo Clinic’s low-dose challenge
image data set and was proved more effectively than other
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methods in terms of artifact reduction, feature preservation, and
computational speed.

PET
Radiation exposure is a common concern in PET imaging. To
minimize this potential risk, efforts have been made to reduce the
amount of radio-tracer usage in PET imaging. However, low-dose
PET is inherently noisy and has poor image quality. Xiang et al.
combined 4-fold reduced time duration 18F-fluorodeoxyglucose
(FDG) PET images and co-registered T1-weighted MRI images
to reconstruct standard dose PET (40). Since PET image quality
is to a first degree linear with true coincidence events recorded
by the camera, such a method could also be applied to reduced
dose PET. Kaplan and Zhu (41) introduced a deep learningmodel
consisting an estimator network and a generative adversarial
network (GAN). After training with simulated 10x lower dose
PET data, the networks reconstructed standard dose images,
while preserving edge, structural, and textural details.

Using a simultaneous PET/MRI scanner, Xu et al. (42)
proposed an encoder-decoder residual deep network with
concatenate skip connections to reconstruct high quality brain
FDG PET images in patients with glioblastoma multiforme using
only 0.5% of normal dose of radioactive tracer. To take advantage
of the higher contrast and resolution of the MR images, they
also included T1-weighted and T2-FLAIR weighted images as
inputs to the model. Furthermore, they employed a “2.5D” model
in which adjacent slice information is used to improve the
prediction of a central slice. These modifications significantly
reduced noise, while robustly preserving resolution and detailed
structures with comparable quality to normal-dose PET images.

These general principles were also applied by Chen et al.
to simulated 1% dose 18F-florbetaben PET imaging (43). This
amyloid tracer is used clinically in the setting of dementia of
unknown origin. A “positive” amyloid study is compatible with
the diagnosis of Alzheimer’s disease, while a negative study
essentially rules out the diagnosis (44, 45). Again, simultaneous
PET/MRI was used to acquire co-registered contemporaneous
T1-weighted and T2-FLAIR MR images, which were combined
as input along with the 1% undersampled PET image. They
showed the crucial benefit of including MR images in terms
of retaining spatial resolution, which is critical for assessing
amyloid scans. They found that clinical readers evaluating the
synthesized full dose images did so with similar accuracy to
their own intra-reader reproducibility. More recently, the same
group has demonstrated that the trained model can be applied
to true (i.e., not simulated) ultra-low dose diagnostic PET/MR
images (Figure 4).

ACCELERATE IMAGING ACQUISITION
AND RECONSTRUCT UNDER-SAMPLED
K-SPACE

Image acquisition can be time-consuming. Reducing raw data
samples or subsample k-space data can speed the acquisition, but
result in suboptimal images. Deep learning based reconstruction
methods can output good images from under-sampled datasets.

Compared to most other imaging modalities, MRI acquisition
is substantially slower. The longer acquisition time limits the
utility of MRI in emergency settings and often results in more
motion artifact. It also contributes to its high cost. Acquisition
time can be reduced by simply reducing the number of raw
data samples. However, conventional reconstruction methods
for these sparse data often produce suboptimal images. Newer
reconstruction methods deploying deep learning have the ability
to produce images with good quality from these under-sampled
data acquired with shorter acquisition times (46). This approach
has been applied in Diffusion Kurtosis Imaging (DKI) and
Neurite Orientation Dispersion and Density Imaging (NODDI).
DKI and NODDI are advanced diffusion sequences that can
characterize tissue microstructure but require long acquisition
time to obtain the required data points. Using a combination of
q-Space deep learning and of simultaneous multi-slice imaging,
Golkov et al. (47) were able to reconstruct DKI from only 12
data points and NODDI from only 8 data points, achieving
an unprecedented 36-fold scan time reduction for quantitative
diffusion MRI. These results suggest that there is considerable
amount of information buried within the limited number of data
points that can be retrieved with deep learning methods.

Another way to reduce acquisition time is to subsample k-
space data. However, naive undersampling of k-space will cause
aliasing artifact once the under-sampling rate exceeds theNyquist
conditions. Hyun et al. (48) trained a deep learning network,
using pairs of subsampled and fully sampled k-space data as
inputs and outputs respectively, to reconstruct images from sub-
sampled data. They reinforced the subsampled k-space data with
a few low-frequency k-space data to improve image contrast.
Their network was able to generate diagnostic quality images
from sampling only 29% of k-space.

Lee et al. (49) investigated deep residual networks to remove
global artifacts from under-sampled k-space data. Deep residual
networks are a special type of network that allows stacking of
multiple layers to create a very deep network without degrading
the accuracy of training. Compared to non-AI based fast-
acquisition techniques such as compressed sensing MRI (which
randomly sub-samples k-space) and parallel MRI (which uses
multiple receiver coils), Lee’s technique achieved better artifact
reduction and use much shorter computation time.

Deep learning techniques for acceleration and reconstruction
are not limited to static imaging, but are also applicable
for dynamic imaging, such as cardiac MRI. Due to inherent
redundancy within adjacent slices and repeated cycles in dynamic
imaging, the combination of under-sampling and using Neural
Networks for reconstruction seem to be the perfect solution.
Schelmper’s (50) trained CNN to learn the redundancies and the
spatio-temporal correlations from 2D cardiac MR images. Their
CNN outperformed traditional carefully handcrafted algorithms
in terms of both reconstruction quality and speed. Similarly,
Majumdar (51) address the problem of real-time dynamic MRI
reconstruction by using a stacked denoising autoencoder. They
produced superior images in shorter time, when compared to CS
based technique and Kalman filtering techniques.

Hammernik et al. (52) introduced a variational network
for accelerated Parallel Imaging-based MRI reconstruction. The
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FIGURE 4 | Example of ultra-low dose 18F-florbetaben PET/MRI. Example of a positive 18F-florbetaben PET/MRI study acquired at 0.24 mCi, ∼3% of a standard

dose. Similar image quality is present in the 100% dose image and the synthetized image, which was created using a deep neural network along with MRI information

such as T1, T2, and T2-FLAIR. As Alzheimer Disease studies are moving toward cognitively normal and younger patients, reducing dose would be helpful.

Furthermore, tracer costs could be reduced if doses can be shared.

reconstruction time was 193ms on a single graphics card, and
the MR images preserved the natural appearance as well as
pathologies that were not included in the training data set. Chen
et al. (53) also developed a deep learning reconstruction approach
based on a variational network to improve the reconstruction
speed and quality of highly undersampled variable-density
single-shot fast spin-echo imaging. This approach enables
reconstruction speeds of ∼0.2 s per section, allowing a real-
time image reconstruction for practical clinical deployment. This
study showed improved image quality with higher perceived
signal-to-noise ratio and improved sharpness, when compared
with conventional parallel imaging and compressed sensing
reconstruction. Yang et al. (54) proposed a deep architecture
based on Alternating Direction Method of Multipliers algorithm
(ADMM-Net) to optimize a compressed sensing-based MRI
model. The results suggested high reconstruction accuracy with
fast computational speed.

Several studies also used generative adversarial networks to
model distributions (low-dimensional manifolds) and generating
natural images (high-dimensional data) (35, 55). Mardani et al.
(56) proposed a compressed sensing framework using generative
adversarial networks (GAN) to model the low-dimensional
manifold of high-quality MRI. This is combined with a
compressed sensing framework, a method known as GANCS.
It offers reconstruction times of under a few milliseconds and

higher quality images with improved fine texture based on
multiple reader studies.

ARTIFACTS REDUCTION

Image denoising is an important pre-processing step in medical
image analysis, especially in low-dose techniques. Much research
has been conducted on the subject of computer algorithms
for image denoising for several decades, with varying success.
Many attempts based on machine learning (57) or deep learning
(58, 59) have been successfully implemented for denoising of
medical images.

Standard reconstruction approaches involve approximating
the inverse function with multiple ad hoc stages in a signal
processing chain. They depend on the details of each acquisition
strategy, and requires parameter tuning to optimize image
quality. Zhu et al. (20) implemented a unified framework
system called AUTOMAP, using a fully-connected deep neural
network to reconstruct a variety of MRI acquisition strategies.
This method is agnostic to the exact sampling strategy used,
being trained on pairs of sensor data and ground truth images.
They showed good performance for a wide range of k-space
sampling methods, including Cartesian, spiral, and radial image
acquisitions. The trained model also showed superior immunity
to noise and reconstruction artifacts compared with conventional
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handcrafted methods. Manjón and Coupe (59) used two-stage
strategy with deep learning for noise reduction. The first stage
is to remove the noise using a CNN without estimation of local
noise level present in the images. Then the filtered image is
used as a guide image within a rotationally invariant non-local
means filter. This approach showed competitive results for all the
studied MRI acquisitions.

Low Signal-To-Noise Ratio
MR images often suffers from low signal-to-noise ratio, such as
DWI and 3D MR images. Jiang et al. (60) applied multi-channel
feed-forward denoising CNNs, and Ran et al. (61) applied
residual Encoder-Decoder wasserstein GAN, respectively, to
restore the noise-free 3D MR images from the noisy ones.

Another MRI acquisition suffering from an inherently
low-signal-to-noise ratio is arterial spin labeling (ASL) perfusion
imaging. ASL has been used increasingly in neuroimaging
because of its non-invasive and repeatable advantages in
quantification and labeling. Repeated measurements of
control/spin-labeled paired can lead to a fair image quality,
but with the risk of motion artifacts. Ultas et al. (62) followed
a mixed modeling approach including incorporting a Buxton
kinetic model for CBF estimation, and training a deep fully
CNN to learn a mapping from noisy image and its subtraction
from the clean images. This approach produced high quality
ASL images by denoising images without estimating its noise
level. Due to a lower number of subtracted control/label pairs,
this method also reduced ASL scan and reconstruction times,
which makes ASL even more applicable in clinical protocols.
Similarly, Kim et al. demonstrated image quality improvement
using pseudocontinous ASL using data with 2 signal averages to
predict images acquired with 6 signal averages, a roughly 3-fold
speedup in imaging time (63). They also demonstrated that it was
possible to reconstruct Hadamard-encoded ASL imaging from a
subset of the reconstructed post-label delay images (though this
does not allow for any speed-up in image acquisition). Owen
et al. used a convolutional joint filter to exploit spatio-temporal
properties of the ASL signal. This filter could reduce artifacts
and improve the peak signal-to-noise ratio of ASL by up to 50%
(64). Finally, Gong et al. demonstrated the benefits of including
multi-contrast approaches (i.e., proton-density images along
with ASL difference images) with multi-lateral guided filters
and deep networks to boost the SNR and resolution of ASL
(65). They also showed that the network could be trained with
a relatively small number of studies and that it generalized to
stroke patients (Figure 5).

Spurious Noise
Proton MR spectroscopic imaging can measure endogenous
metabolite concentration in vivo. The Cho/NAA ratio has been
used to characterize brain tumors, such as glioblastoma. One
challenge is the poor spectral quality, because of the artifacts
caused by magnetic field inhomogeneities, subject movement,
and improper water or lipid suppression. Gurbani et al. (66)
applied a tiled CNN tuned by Bayesian optimization technique
to analyze frequency-domain spectra to detect artifacts. This
CNN algorithm achieved high sensitivity and specificity with

an AUC of 0.951, while compared with the consensus decision
of MRS experts. One particular type of MRS artifact is ghost
or spurious echo artifact, due to insufficient spoiling gradient
power. Kyathanahally et al. (67) implemented multiple deep
learning algorithms, including fully connected neural networks,
deep CNN, and stacked what-where auto encoders, to detect and
correct spurious echo signals. After training on a large dataset
with and without spurious echoes, the accuracy of the algorithm
was almost 100%.

Motion Artifact
MRI is susceptible to image artifacts, including motion artifacts
due to the relatively long acquisition time. Küstner et al. (68)
proposed a non-reference approach to automatically detect the
presence of motion artifacts on MRI images. A CNN classifier
was trained to assess the motion artifacts on a per-patch basis,
and then used to localize and quantify the motion artifacts on a
test data set. The accuracy of motion detection reached 97/100%
in the head and 75/100% in the abdomen. There are several other
studies on the detection or reducing of motion artifacts (69–71).
Automating the process of motion detection can lead to more
efficient scanner use, where corrupted images are re-acquired
without relying on the subjective judgement of technologists.

Metal Artifact
Artifacts resulting from metallic objects have been a persistent
problem in computed tomography (CT) images over the last four
decades. Gjesteby et al. (72) combined a CNN with the NMAR
algorithm to reduce metal streaks in critical image regions. The
strategy is able to map metal-corrupted images to artifact-free
monoenergetic images.

Crosstalk Noise
Attenuation correction is a critical procedure in PET imaging for
accurate quantification of radiotracer distribution. For PET/CT,
the attenuation coefficients (µ) are derived from the CT
Hounsfield units from the CT portion of the examination. For
PET/MRI, attenuation coefficient (µ) has been estimated from
segmentation- and atlas-based algorithms. Maximum-likelihood
reconstruction of activity and attenuation (MLAA) is a new
method for generating activity images. It can produce attenuation
coefficients simultaneously from emission data only, without the
need of a concurrent CT or MRI. However, MLAA suffers from
crosstalk artifacts. Hwang et al. (73) tested three different CNN
architectures, such as convolutional autoencoder (CAE), U-net,
and hybrid of CAE to mitigate the crosstalk problem in the
MLAA reconstruction. Their CNNs generated less noisy and
more uniform µ-maps. The CNNs also better resolved the air
cavities, bones, and even the crosstalk problem.

Other studies have used deep learning to create CT-like
images from MRI, often but not always for the purposes of
PET/MRI attenuation correction. Nie et al. (74) applied an auto-
context model to implement a context-aware deep convolutional
GAN. It can generate a target image from a source image,
demonstrating its use in predicting head CT images from T1-
weighted MR images. This CT could be used for radiation
planning or attenuation correction. Han (75) proposed a deep
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FIGURE 5 | Deep learning for improving image quality of arterial spin labeling in a patient with right-sided Moyamoya disease. Reference scan (A) requiring 8min to

collect (nex = 6). Using a rapid scan acquired in 2min (nex=1) (B), it is possible to create an image (F) with the SNR of a study requiring over 4.5min (nex = 3) (E).

The peak signal-to-noise (PSNR) performance is superior to existing de-noising methods such as (C) block matched 3D (BM3D) and (D) total generalized variation

(TGV). Such methods could speed up MRI acquisition, enabling more functional imaging and perhaps reducing the cost of scanning.

CNN with 27 convolutional layers interleaved with pooling and
unpooling layers. Similar to Nie et al., the network was trained
to learn a direct end-to-end mapping from MR images to their
corresponding CTs. This method produced accurate synthetic
CT results in near real time (9 s) from conventional, single-
sequenceMR images. Other deep learning networks, such as deep
embedding CNN by Xiang et al. (76), Dixon-VIBE deep learning
by Torrado-Carvajal et al. (77), GAN with two synthesis CNNs
and two discriminator CNNs by Wolterink et al. (78), as well
as deep CNN based on U-net architecture by Leynes et al. (79)
and Roy et al. (80), were also proposed to generate pseudo CT
fromMRI.

Liu et al tried to train a network to transform T1-weighted
head images into “pseudo-CT” images, which could be used for
attenuate calculations (81). The errors in PET SUV could be
reduced to less than 1% for most areas of the brain, about a 5-fold
improvement over existing techniques such as atlas-based and 2-
point Dixon methods. More recently, the same group has shown
that it is possible to take non-attenuation correction PET brain
images and using attenuation corrected images as the ground
truth, to directly predict one from the other, without the need
to calculate an attenuation map (82). This latter method could
enable the development of new PET scanners that do not require
either CT or MR imaging to be acquired, and which might be
cheaper to site and operate.

Random Noise
Medical fluoroscopy video is also sensitive to noise. Angiography
is one medical procedure using live video, and the video quality
is highly important. Speed is the main limitation of conventional
denoising algorithms such as BM3D. Praneeth Sadda et al. (83)
applied a deep neural network to remove Gaussian noise, speckle
noise, salt and pepper noise from fluoroscopy images. The final

output live video could meet and even exceed the efficacy of
BM3D with a 20-fold speedup.

SYNTHETIC IMAGE PRODUCTION

Each imaging modality (X-ray, CT, MRI, ultrasound) as well
as different MR sequences have different contrast and noise
mechanisms and hence captures different characteristics of the
underlying anatomy. The intensity transformation between any
two modalities/sequences is highly non-linear. For example,
Vemulapalli et al. (84) used a deep network to predict T1 images
from T2 images. With deep learning, medical image synthesis
can produce images of a desired modality without preforming an
actual scan, such as creating CT images from MRI data. This can
be of benefit because radiation can be avoided.

Ben-Cohen et al. (85) explored the use of full CNN and
conditional GAN to reconstruct PET images from CT images.
The deep learning system was tested for detection of malignant
tumors in the live region. The results suggested a true positive
ratio of 92.3% (24/26) and false positive ratio of 25% (2/8). This
is surprising because no metabolic activity is expected to be
present on CT images. It must be assumed that the CT features
somehow contain information about tumor metabolism. In a
reverse strategy, Choi and Lee (86) generated structural MR
images from amyloid PET images using generative adversarial
networks. Finally, Li et al. (87) used a 3D CNN architecture
to predict missing PET data from MRI, using the ADNI study,
and found it to be a better way of estimating missing data than
currently existing methods.

High-Field MRI
More recently, AI based methods, such as deep CNN’s, can take
a low-resolution image as the input and then output a high-
resolution image (88), with three operations, “patch extraction
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and representation,” “non-linear mapping,” and “reconstruction”
(89). Higher (or super-) resolution MRI can be implemented
using MRI scanners with higher magnetic field, such as advanced
7-T MRI scanners, which involves much higher instrumentation
and operational costs. As an alternative, many studies have
attempted to achieve super-resolution MRI images from low-
resolution MRI images. Bahrami et al. (90) trained a deep
learning architecture based CNN, inputting the appearance
and anatomical features of 3T MRI images and outputting as
the corresponding 7T MRI patch to reconstruct 7T-like MRI
images. Lyu et al. (91) adapted two neural networks based
on deep learning, conveying path-based convolutional encoder-
decoder with VGG (GAN-CPCE) and GAN constrained by the
identical, residual, and cycle learning ensemble (GAN-CIRCLE),
for super-resolution MRI from low-resolution MRI. Both neural
networks had a 2-fold resolution improvement. Chaudhari et al.
(92) implemented a 3-D CNN entitled DeepResolve to learn
residual-based transformations between high-resolution and
lower-resolution thick-slice images of musculoskeletal MRI. This
algorithm canmaintain the resolution as diagnostic image quality
with a 3-fold down-sampling. Similar methods have recently
been applied to T1-weighted brain imaging, which requires a
long acquisition time to obtain adequate resolution for cortical
thickness mapping (Figure 6).

Synthetic FLAIR
Synthetic MRI imaging has become more and more clinically
feasible, but synthetic FLAIR images are usually of lower quality
than conventional FLAIR images (93). Using conventional
FLAIR images as target, Hagiwara et al. (94) applied a conditional
GAN to generate improved FLAIR images from raw synthetic
MRI imaging data. This work created improved synthetic FLAIR
imaging with reduced swelling artifacts and granular artifacts in
the CSF, while preserving lesion contrast. More recently, Wang
et al. showed that improvements in image quality for all synthetic
MR sequences could be obtained using a single model for multi-
contrast synthesis along with a GAN discriminator, which was
dubbed “OneforAll” (95). This offered superior performance to a
standard U-net architecture trained on only one image contrast
at a time. Readers scored equivalent image quality between the
deep learning-based images and the conventional MR sequences
for all except proton-density images. The deep learning based T2
FLAIR images were superior to the conventional images, due to
the inherent noise suppression aspects of the training process.

IMAGE REGISTRATION

Deformable image registration is critical in clinical studies.
Image registration is necessary to establish accurate anatomical
correspondences. Intensity-based feature selection methods are
widely used in medical image registration, but do not guarantee
the exact correspondence of anatomic sites. Hand-engineered
features, such as Gabor filters and geometric moment invariants,
are also widely used, but do not work well for all types of
image data. Recently, many AI-based methods have been used
to perform image registration. Deep learning may be more
promising when compared to other learning-based methods,

because it does not require prior knowledge or hand-crafted
features. It uses a hierarchical deep architecture to infer complex
non-linear relationships quickly and efficiently (96).

Wu et al. (96) applied a convolutional stacked auto-encoder to
identify compact and highly discriminative features in observed
imaging data. They used a stacked two-layer CNN to directly
learn the hierarchical basis filters from a number of image patches
on the MR brain images. Then the coefficients can be applied
as the morphological signature for correspondence detection
to achieve promising registration results (97). Registration for
2D/3D image is one of the keys to enable image-guided
procedures, including advanced image-guided radiation therapy.
Slow computation and small capture range, which is defined as
the distance at which 10% of the registrations fail, are the two
major limitations of existing intensity-based 2D/3D registration
approaches. Miao et al. (98) proposed a CNN regression
approach, referred to as Pose Estimation via Hierarchical
Learning (PEHL), to achieve real-time 2D/3D registration with
large capture range and high accuracy. Their results showed
an increased capture range of 99–306% and a success rate
of 5–27.8%. The running time was ∼0.1 s, about one tenth
of the time consumption other intensity-based methods have.
This CNN regression approach achieved significantly higher
computational efficiency such that it is capable of real-time
2D/3D registration. Neylon et al. (99) presented a method
based on deep neural network for automated quantification of
deformable image registration. This neural network was able to
quantify deformable image registration error to within a single
voxel for 95% of the sub-volumes examined. Other studies also
include fast predictive image registration with deep encoder-
decoder network based on a Large Deformation Diffeomorphic
Metric Mapping model (100).

QUALITY ANALYSIS

Quality control is crucial for accurate medical imaging
measurement. However, it is a time-consuming process. Deep
learning-based automatic assessment may be more objective and
efficient. Lee et al. (101) applied a CNN to predict whether CT
scans meet the minimal image quality threshold for diagnosis.
Due to the relatively small number of cases, this deep learning
network had a fair performance with an accuracy of 0.76 and
an AUC of 0.78. Wu et al. (102) designed a computerized fetal
ultrasound quality assessment (FUIQA) scheme with two deep
CNNs (L-CNN and C-CNN). The L-CNN finds the region of
interest, while the C-CNN evaluates the image quality.

CHALLENGES OF DEEP LEARNING
APPLIED TO NEUROIMAGING
TECHNIQUES

In summary, deep learning is a machine learning method
based on artificial neural networks (ANN), and encompasses
supervised, unsupervised, and semi-supervised learning. Despite
the promises made by many studies, reliable application of deep
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FIGURE 6 | Use of convolutional neural networks to perform super-resolution. High-resolution T1-weighted imaging often requires long scan times to acquire

sufficient resolution to resolve the gray-white border and to estimate cortical thickness. Shorter scans may be obtained with lower resolution, and AI can be used to

restore the required high resolution (Image courtesy of Subtle Medical Inc.).

learning for neuroimaging still remains in its infancy and many
challenges remain.

First of them is overfitting. Training a complex classifier
with a small dataset always carries the risk of overfitting. Deep
learning models tend to fit the data exceptionally well, but it
doesn’t mean that they generalize well. There are many studies
that used different strategies to reduce overfitting, including
regularization (103), early stopping (104), and drop out (105).
While overfitting can be evaluated by performance of the
algorithm on a separate test data set, the algorithm may not
perform well on similar images acquired in different centers,
on different scanners, or with different patient demographics.
Larger data sets from different centers are typically acquired
in different ways using different scanners and protocols, with
subtly different image features, leading to poor performance
(21). According to those, data augmentation without standard
criteria cannot appropriately address issues encountered with
small datasets. Overcoming this problem, known as “brittle
AI,” is an important area of research if these methods are
to be used widely. Deep learning is also an intensely data
hungry technology. It requires a very large number of well
labeled examples to achieve accurate classification and validate
its performance for clinical implementation. Because upstream
applications such as image quality improvement are essentially
learning from many predictions in each image, this means that
the requirements for large datasets are not as severe as for
classification algorithms (where only one learning data point is
available per person). Nonetheless, building large, public, labeled
medical image datasets is important, while privacy concerns,
costs, assessment of ground truth, and the accuracy of the

labels remain stumbling blocks (18). One advantage of image
acquisition applications is that the data is in some sense already
labeled, with the fully sampled or high dose images playing the
role of labels in classification tasks. Besides the ethical and legal
challenges, the difficulty of physiologically or mechanistically
interpreting the results of deep learning are unsettling to some.
Deep networks are “black boxes” where data is input and an
output prediction, whether classification or image, is produced
(106). All deep learning algorithms operate in higher dimensions
than what can be directly visualized by the human mind, which
has been coined as “The Mythos of Model Interpretability” (107).
Some estimates of the network uncertainly in prediction would
be helpful to better interpret the images produced.

CONCLUSION

Although deep learning techniques in medical imaging are
still in their initial stages, they have been enthusiastically
applied to imaging techniques withmany inspired advancements.
Deep learning algorithms have revolutionized computer vision
research and driven advances in the analysis of radiologic images.
Upstream applications to image quality and value improvement
are just beginning to enter into the consciousness of radiologists,
and will have a big impact on making imaging faster, safer, and
more accessible for our patients.
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Objectives: The present study aimed to examine the prevalence of and risk factors for

magnetic resonance (MR) perfusion abnormality in a Chinese population with transient

ischemic attack (TIA) and normal diffusion-weighted imaging (DWI) findings.

Methods: Patients with TIA admitted to our stroke center between January 2015

and October 2017 were recruited to the present study. MRI, including both DWI

and perfusion-weighted imaging (PWI), was performed within 7 days of symptom

onset. Time to maximum of the residue function (Tmax) maps were evaluated using

the RAPID software (Ischemaview USA, Version 4.9) to determine hypoperfusion.

Multivariate analysis was used to assess perfusion findings, clinical variables, medical

history, cardio-metabolic, and the ABCD2 scores (age, blood pressure, clinical features,

symptom duration, and diabetes).

Results: Fifty-nine patients met the inclusion criteria. The prevalence of MR perfusion

Tmax ≥ 4 s ≥ 0ml and ≥ 10mL were 72.9% (43/59) and 42.4% (25/59), respectively.

Multivariate analyses revealed that history of hypertension is an independent factor

associated with MR perfusion abnormality (Tmax ≥ 4 s≥ 10mL) for Chinese patients with

TIA (P = 0.033, adjusted OR = 4.11, 95% CI = 1.12–15.11). Proximal artery stenosis

(>50%) tended to lead to a larger PW lesion on MRI (p = 0.067, adjusted OR = 3.60,

95% CI = 0.91–14.20).

Conclusion: Our results suggest that the prevalence of perfusion abnormality is high

as assessed by RAPID using the parametric Tmax ≥ 4 s. History of hypertension is a

strong predictor of focal perfusion abnormality as calculated by RAPID on Tmax map of

TIA patients with negative DWI findings.

Keywords: DWI, PWI, transient ischemic attack, risk factors, hypertension
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INTRODUCTION

Transient ischemic attack (TIA) has been redefined as a transient
episode of neurological dysfunction caused by focal brain, spinal
cord, or retinal ischemia without evidence of acute infarction
(1). According to a multicenter, community-based study, the
population of TIA survivors at any given time in China is as
large as 10–12 million (2). TIA is associated with high risk
of early subsequent stroke up to 20% of patients (3). TIA
has been evaluated as a major risk factor for future recurrent
ischemic attacks, and emergent diagnosis of the cause is needed
to ensure timely treatment and to dramatically reduce the risk of
developing strokes (4–6).

Prognosis of TIA depends on not only its pathological basis,
but also early identification of high-risk patients with TIA and
timely treatment. Usually, TIA diagnosis relies primarily on the
reported history. The ABCD2 prediction score (range 0–7, age,
blood pressure, clinical symptoms, duration, and diabetes) was
originally intended to aid non-specialists in community and
emergency department settings to improve risk stratification of
patients with transient neurological symptoms, and had little
specificity between hospital-based neurologists (7). Therefore,
the diagnosis of TIA based on symptoms alone is challenging
(8). Moreover, agreement on the vascular origin of transient
neurologic symptoms can be low, even among experienced
neurologists (9, 10). Early evaluation using imaging techniques
is essential for administering the proper medications to treat or
prevent TIA and the consequent stroke, which will refine the
clinical diagnosis of TIA.

Based on the current diagnostic criteria, TIA is defined as a
condition in which transient episode of neurological dysfunction
exists without lesions on DWI. However, imaging results of TIA
patients show diverse pictures. For example, perfusion-weighted
imaging (PWI) shows either positive or negative findings in DWI
negative patients. It is estimated that 23–42% of patients with TIA
who have a negative DWI show PWI positive lesions (11–15).
Acute PWI abnormality is associated with recurrent attacks and
even infarct progression (13, 15–18). Therefore, low perfusion
may be one of the pathological mechanisms of TIA recurrence.
However, little research has been done on the relationship
between TIA with negative DWI and perfusion abnormality in
Chinese populations. The aim of the present study, therefore, was
to assess the prevalence of MR perfusion abnormality and its risk
factors in Chinese patients with TIA and negative DWI.

METHODS

Subjects
We retrospectively identified patients with TIA admitted to
our stroke center between January 2015 and October 2017.
The inclusion criteria for this study: (a) patients presented
with TIA and evaluated by a certified stroke neurologist
at the time of admission and discharge, diagnosis of TIA
was confirmed by two certified stroke neurologists; (b) MRI
including both DWI and PWI within 7 days of symptom
onset, and no DWI evidence of restricted diffusion; (c) Time
to maximum of the residue function (Tmax) maps were

assessed independently using the RAPID software (Ischemaview
USA, Version 4.9). The exclusion criteria: (a) patients with
TIA did not have perfusion status assessed, or had DWI
showing a lesion; (b) Patients received revascularization therapy
(thrombolysis/thrombectomy). Radiologists blinded to clinical
information independently evaluated the presence of acute
ischemic lesions detected on DWI/PWI. Demographic data,
clinical variables, risk factors, ABCD2 scores, neurologic deficits,
duration of TIA, number of TIA attacks, time between MRI and
onset were documented for each patient. Ethical approval for
this study (2018011) was obtained from Human Research Ethics
Committee of Shanghai Fourth People’s Hospital Affiliated to
Tongji University School of Medicine.

Imaging
MRI was performed using a 1.5-T Avanto scanner (Siemens,
Erlangen, Germany). The imaging protocol included DWI,
FLAIR, PWI, and MR angiography (MRA). Imaging parameters
were listed below. The head coil is an-8-channel phased-array
coil. Axial EPI-DWI: 19 slices, slice thickness = 5.5mm; TR/TE,
3,600/102ms; FOV = 230 mm2, b = 0 and 1,000 s/mm2;
EPI factor = 192; matrix = 192 × 192; bandwidth = 964
Hz/pixel. Axial FLAIR: 18 slices, slice thickness = 5.5mm;
TR/TE, 4,000/92ms; FOV = 230 mm2; TI = 1,532.6ms; Matrix
= 256 × 190; bandwidth = 190 Hz/Px; flip angle = 150◦.
Axial EPI-PWI: 19 slices, slice thickness = 5, 1.5mm spacing;
TR/TE, 1,590/32ms; measurements = 50; FOV = 230 mm2;
matrix size= 128× 128; band width= 1,346 Hz/pixel; flip angle
= 90◦. Gd-DTPA contrast agent (gadopentetate dimeglumine;
Shanghai Pharmaceutical Corporation, Shanghai, China) was
intravenously injected (0.2 mmol/kg body weight) at a rate
of 4 mL/s after flushing with 30ml saline. Time-of-flight MR
angiography: slice thickness = 0.7mm; TR/TE, 25/7ms; FOV =

180 mm2; Matrix = 241 × 256; Bandwidth = 100 Hz/PX; flip
angle= 25◦.

Based on the clinical manifestation of TIA patients, the
ischemic lesion site was localized.

Estimates of the volume of hypoperfusion fromMRI perfusion
scans were performed using the RAPID software, which is an
automated image post-processing system (19). We used RAPID
in our trial to measure the volume of hypoperfusion (20). Lesion
volumes of Tmax ≥ 4 s were used for determining perfusion
deficits in TIA patients with negative DWI findings (13, 15).

Statistical Analysis
Continuous variables were presented with mean ± standard
deviation (SD) or median with interquartile range (IQR);
categorical variables were summarized as percentages. The
normality of distribution for continuous variables was checked
with the one-sample Kolmogorov–Smirnov test. Baseline
information of patients with and without MR perfusion
abnormality was compared using the independent sample t-test
or Mann-Whitney U-test for continuous variables and Pearson
chi-square or Fisher’s exact tests for categorical variables.
Binary logistic regression was used to assess the independent
association between perfusion abnormality and risk factors.
Univariate binary logistic regression analysis was used to screen
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for possible risk factors using P < 0.1. We assessed odd ratios
(OR) of two patterns of perfusion abnormality for categorical
variables (MR perfusion Tmax ≥ 4 s < 10ml as no abnormality,
and Tmax ≥ 4 s ≥ 10ml as abnormality) with MRI perfusion
normality being used as the reference. Correlation between TIA
patients clinical information and perfusion abnormality with
respect to MRI perfusion was tested using the multiple logistic
regression analysis modeling with the “Enter” method. The
multivariate regression model included history of hypertension
and stenosis (50%) with a univariate P < 0.1 as independent
variables. Meanwhile, the ABCD2 score, which is known to be
correlated with perfusion abnormality, was also included for
further analysis though its P > 0.1.

All association data were expressed as OR with corresponding
95% confidence intervals (CI) and P-values. Two-tailed tests were
used for all analyses, with the statistical significance level set
at 0.05. The data were analyzed with SPSS (version 20.0) for
Windows (SPSS Inc., Chicago, IL, USA).

RESULTS

A total of 154 patients records were evaluated for probable TIA at
the Stroke Center of Shanghai Fourth People’s Hospital Affiliated
to Tongji University School of Medicine between January 2015
and October 2017. Fifty nine patients (24 women, 35 men; age
range, 49–86 years; mean, 69 years) met the inclusion criteria.
Sixty three patients were excluded because perfusion weighted
images were not available (n = 63) after a TIA. Another 12
patients were excluded because they were not given a discharge
diagnosis of tissue-negative TIA. Eighteen patients had DWI
positive lesions, and another two had inadequate information.

Patient Baseline Characteristics
A total of 59 subjects, including 35 males and 24 females,
were included in the study. The median age of patients was
69 [interquartile range (IQR): 63–78]. Median (IQR) ABCD2
score was 4 (2–4). Baseline perfusion scans were performed after
a median (IQR) delay of 5 (4–9) days from symptom onset
or five (IQR 3–8) days from last attack. The median (IQR)
symptom duration was 15 (5–60) min and the median frequency
of TIA attacks at baseline was one (IQR 1–2). The average total
cholesterol of patients was 4.24 ± 1.15 mmol/L, ranging from
1.94 to 8 mmol/L. The mean low-density lipoprotein (LDL)
cholesterol level was 2.22 ± 0.84 mmol/L, ranging from 0.65 to
4.42 mmol/L. The average fasting blood-glucose (FBG) was 5.65
± 1.40 mmol/L, ranging from 4.4 to 12.2 mmol/L. A history of
hypertension was present in 67.8% (40/59) of patients, diabetes
mellitus in 27.1% (16/59), and atrial fibrillation in 3.4% (2/59),
history of stroke in 28.8% (17/59), smoking in 30.5% (18/59), and
anterior circulation symptoms in 54.2% (32/59) (Table 1).

Comparison of Demographic and Clinical

Variables Between Patients With and

Without MR Perfusion Abnormality
The prevalence of MR perfusion Tmax ≥ 4 s > 0mL and Tmax ≥

4 s ≥10mL was 72.9% (43/59) and 42.4% (25/59), respectively.

Figure 1 showed typical images of an 84 year old female whose
DWI showed negative findings of strokes, but PWI showed a focal
lesion on Tmax.

Table 1 presented the socio-demographic characteristics and
clinical risk factors associated with MRI perfusion abnormality.
Comparisons of these variables between patients with and
without PWI abnormalities (Tmax ≥ 4 s ≥ 10mL) showed no
significant difference in these variables between the two groups
except in history of hypertension (χ2 = 5.22; p = 0.022).
Surprisingly, there was no significant difference in the baseline
ABCD2 score between these two groups, ABCD2 score has
a strong predictive value of early neurological deterioration.
Patients with atrial fibrillation tended to have a larger volume of
lesions on PW images (8% compared with 0% of patients with
no PWI abnormalities, p = 0.094). Patients with focal perfusion
abnormalities tended to showmore severe stenosis of responsible
vessels (p= 0.056).

Prediction of MRI Perfusion Abnormality
In univariate binary logistic regression analysis, history of
hypertension (p = 0.028, OR = 4.15, 95% CI = 1.17–14.69)
was independently associated with MR perfusion deficit. Stenosis
(50%) (p = 0.065, OR = 3.53, 95% CI = 0.93–13.47) and systolic
blood pressure (sBP) (p= 0.198, OR= 1.02, 95% CI= 0.99–1.05)
on admission tended to be related to perfusion abnormality after
a TIA. ABCD2 score (p = 0.959, OR = 0.99, 95% CI = 0.70–
1.41) was not associated with perfusion abnormality (Table 2).
Multivariate regression modeling was performed for predictors
with p < 0.20.

The multivariate logistic regression of associations between
history of hypertension, stenosis (50%), sBP, and MR perfusion
abnormality was shown in Table 3. It was clear that patients with
a history of hypertension had a significantly higher risk of PWI
abnormality (Tmax ≥ 4 s ≥ 10mL) after a TIA. After adjusting
potential confounding factors (age, sex, ABCD2), the odds ratios
were 3.89 (95% CI, 1.08–13.96, p = 0.037, model 1), 4.33 (95%
CI, 1.20–15.65, p = 0.025, model 2), and 4.11 (95% CI, 1.12–
15.11, p = 0.033, model 3), respectively. Stenosis (50%) and sBP
on admission were not independently associated with perfusion
abnormality after adjusting potential confounders.

DISCUSSION

To the best of our knowledge, this is the first report that
presented the prevalence and clinical risk factors for MRI
perfusion abnormality in TIA patients of a Chinese population.
The prevalence of MR perfusion Tmax ≥ 4 s ≥ 10mL was 42.4%
(25/59). Meanwhile, we found that among Chinese patients with
acute TIA, history of hypertension is an independent factor
associated with MR perfusion abnormality (Tmax ≥ 4 s≥ 10 mL).

Prevalence of MR Perfusion Abnormality
Our study showed a 72.9% (43/59) prevalence of MR perfusion
(Tmax ≥ 4 s > 0mL) in patients with DWI-negative TIA
and 42.4% (25/59) (Tmax ≥ 4 s ≥ 10mL) had an acute focal
PWI lesion without showing a DWI lesion, which is similar
to the previous report in Canada which showed a prevalence
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TABLE 1 | Basic demographic and clinical characteristics of TIA patients (n = 59) stratified according to the presence of MR perfusion abnormality.

Characteristics Total (n = 59) Tmax ≥ 4 s < 10mL (n = 34) Tmax ≥ 4 s ≥ 10mL (n = 25) Z, t, or X2 P value

Age, y, median (IQR) 69.0 (63.0–78.0) 68.5 (61.75–75.75) 69 (63.5–80.0) 1.154 0.248

Female, n (%) 24 (40.7) 14 (41.2) 10 (40.0) 0.051 0.928

Medical history, n (%)

Hypertension 40 (67.8) 19 (55.9) 21 (84.0) 5.217 0.022

Diabetes mellitus 16 (27.1) 10 (29.4) 6 (24.0) 0.213 0.644

Atrial fibrillation 2 (3.4) 0 (0) 2 (8.0) 2.815 0.093

Smoking 18 (30.5) 10 (29.4) 8 (32.0) 0.046 0.831

Drinking 8 (13.6) 6 (17.6) 2 (8.0) 1.144 0.447

Stroke 17 (28.8) 8 (23.5) 9 (36.0) 1.092 0.296

Cardo-metabolic

Ghb (g/L) 129.59 ± 18.17 127.21 ± 19.78 132.84 ± 15.49 1.181 0.243

NEU% 64.07 ± 7.82 64.16 ± 8.88 63.94 ± 6.26 0.110 0.913

FBG (mmol/L) 5.2 (4.9–5.9) 5.20 (4.88–5.95) 5.3 (4.90–5.95) 0.061 0.951

2hBG (mmol/L) 7.64 (6.44–11.7) 7.28 (6.30–12.10) 8.32 (6.64–11.40) 0.629 0.529

Triglyceride (mmol/L) 1.7 (1.15–2.61) 1.62 (1.12–2.78) 1.75 (1.21–2.41) 0.307 0.759

Total cholesterol (mmol/L) 4.24 ± 1.15 4.30 ± 1.14 4.15 ± 1.19 0.494 0.624

LDL (mmol/L) 2.22 ± 0.84 2.27 ± 0.82 2.15 ± 0.88 0.552 0.583

ESR (mm/h) 14 (6–28) 13.5 (6.75–28.25) 18 (6–28) 0.177 0.860

Days_before, day, median (IQR) 2.0 (0.6–5.0) 1.50 (0.64–5.00) 2 (0.52–7.00) 0.131 0.896

Times_before, median (IQR) 1 (1–2) 1 (1–2.25) 1 (1–2) 0.337 0.736

ABCD2 score, median (IQR) 4 (2–4) 4 (2.75–5) 4 (2–4) 0.228 0.819

Duration_onset, min, median (IQR) 15 (5–60) 20 (5–60) 10 (4.00–45.00) 0.819 0.284

sBP at admission, median (IQR) 140 (130–150) 140 (130–142) 140 (130–153) 1.335 0.182

Days_inhos, median (IQR) 10 (9–13) 9 (8.00–13.00) 11 (10–12.5) 1.615 0.106

Perfusion_first, d, median (IQR) 5 (4–9) 5.5 (3.0–9.25) 5 (4.0–8.5) 0.337 0.926

Perfusion_last, d, median (IQR) 5 (3–8) 4.75 (3–8) 5 (4–6) 0.231 0.817

Stenosis (50%) n (%) 12 (20.3) 4 (11.8) 8 (32) 3.641 0.056

Anterior n (%) 32 (54.2) 18 (52.9) 14 (56.0) 0.231 0.817

Tmax ≥ 4 s, Time to maximum of the residue function ≥ 4 s; IQR, interquartile range; Ghb, hemoglobin; NEU%, neutrophil percentage; FBG, fasting blood-glucose; LDL, low-density

lipoprotein cholesterol; ESR, erythrocyte sedimentation rate; sBP, systolic blood pressure; Days_inhos, Days in hospital.

ABCD2: age 60 (1 point), SBP 140, or DBP 90mm Hg (1 point), clinical features as unilateral weakness (2 points) or speech impairment without weakness (1 point), symptom duration

60min (2 points), or 10–59min (1 point), diabetes (1 point).

Significant difference when P < 0.05.

FIGURE 1 | Typical images of an 84-year old female with a history of hypertension who presented with right upper limb paresis three times within 4 h. It lasted 2min

each time. DWI showed negative findings of strokes (A), but Tmax showed focal hypoperfusion areas in the left frontal and parietal lobes (B, green areas).
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of 42% (57/137) (13), but higher than the prevalence of
25% (16/64) in South Korea (15) and 23% (57/137) in the
United States (14). There are a few possible reasons for the
higher prevalence. Firstly, the variability of findings in these
studies is likely due to the inconsistent definition of perfusion.
A study reported that a regional PWI lesion was detected on
time-to-peak (TTP) and Mean transit time (MTT) maps, which
were produced by the standard software bound to the scanner
(15). Another study showed that a focal perfusion abnormality
was identified on either time to maximum of the residue
function (Tmax) or Cerebral blood flow (CBF) maps (14). In
the present study, Tmax ≥ 4 s was used to define the regional
perfusion abnormality. Secondly, different algorithms used for
discrete platforms might be responsible for the discrepancy.
Focal perfusion abnormalities were evaluated independently by
two observers in some studies (14, 15) or PWI source images
were analyzed by a customized Matlab 7.4 (The Mathworks)
software (13). However, in this present study we used RAPID
to calculate the volume of perfusion. Therefore, the prevalence
of MR perfusion abnormality in the present study is higher than
that of previous reports. Thirdly, participants in the present study
were all inpatients of our stroke center, who were more likely to
have perfusion lesions than outpatients because their conditions
were more serious.

In the present study, 25 of 59 patients had Tmax ≥ 4 s ≥

10mL. Tmax delay threshold 4 s seems to be optimal for early
assessment of critically hypoperfused tissue (21). Tmax volume is
a good predictor for clinical outcome in MCA occlusions (22).
The threshold (Tmax ≥ 4 s) at a volume of 10mL is optimal

TABLE 2 | Possible predictors of Tmax ≥ 4 s ≥ 10 ml in patients with TIA

(univariate Binary logistic regression analysis).

OR 95% CI P

History of hypertension 4.15 1.17–14.69 0.022

Stenosis (50%) 3.53 0.93–13.47 0.056

ABCD2 score 0.99 0.70–1.41 0.959

CI, confidence interval; OR, Odds ratio.

ABCD2: age 60 (1 point), SBP 140 or DBP 90mm Hg (1 point), clinical features as

unilateral weakness (2 points), or speech impairment without weakness (1 point), symptom

duration 60min (2 points), or 10–59min (1 point), diabetes (1 point).

for predicting infarct growth with the maximal sensitivity and
specificity (13).

Risk Factors Associated With MR

Perfusion Abnormality
There are multiple possible clinical risk factors for MR perfusion
abnormality in the context of TIA. 67.8% of the 59 TIA patients
included in this study had a history of hypertension, which
is similar to that of previous studies (14, 23, 24). In the
present study, 84% of 25 patients with Tmax ≥ 4 s ≥ 10mL
after TIA onset had a history of hypertension. We found that
the increased prevalence of MR perfusion lesions occurred in
patients with a history of hypertension, which was further
confirmed in the stepwise multiple logistic regression analysis,
suggesting that history of hypertension is an independent risk
factor for MR perfusion abnormality in patients with TIA.
A previous study showed that hypertension could lead to
morphological impairment of the cerebral microvasculature,
blood-brain barrier disruption, and neuroinflammation (25).
Previous findings suggest that acute PWI lesions may be due to a
persistent microvascular injury that results in hypoperfusion (15,
26). However, we found that sBP at admission is not a stronger
predictor ofMR perfusion abnormality after TIA than a history of
treated hypertension, which is inconsistent with previous reports
on Western populations (23, 24). In their reports, elevated SBP
at presentation is more predictive of stroke after a TIA than a
history of hypertension (23, 24). There are a couple of possible
reasons for this discrepancy. Firstly, Median sBP at admission
was measured 2 days after the acute TIA period (>24 h after
symptom onset), therefore, it is less likely to reflect the real
sBP when TIA occurred and therefore, less predictive for poor
short-term prognosis (27). Secondly, the fluctuation of sBP (130–
150 mmHg) in the early course of TIA is minimal, which is
not associated with poor 90-day survival (28). Together, our
findings suggest that the history of hypertension, but not sBP at
admission, is significantly associated with local PWI lesions after
a TIA.

In subset analysis of our participants with MR perfusion
abnormalities, one-thirds (8/25) of the patients had evidence
of proximal artery stenosis or occlusion, which is consistent
with previous reports (11, 14, 29). In our study, proximal artery
stenosis (>50%) tended to have a larger PW lesion on MRI

TABLE 3 | Factors independently associated with Tmax ≥ 4 s ≥10 ml in patients after TIA.

Risk factors Model 1 Model 2 Model 3

Adusted OR (95% CI) P value Adusted OR (95% CI) P value Adusted OR (95% CI) P value

History of hypertension 3.89 (1.08–13.96) 0.037 4.33 (1.20–15.65) 0.025 4.11 (1.12–15.11) 0.033

Stenosis (50%) 3.56 (0.92–13.79) 0.067 3.65 (0.94–14.27) 0.063 3.60 (0.91–14.20) 0.067

CI, confidence interval; OR, Odds ratio; sBP, Systolic blood pressure at admission.

ABCD2: age 60 (1 point), SBP 140, or DBP 90mm Hg (1 point), clinical features as unilateral weakness (2 points) or speech impairment without weakness (1 point), symptom duration

60min (2 points), or 10–59min (1 point), diabetes (1 point).

Model 1: adjusted for age and sex.

Model 2: adjusted for ABCD2.

Model 3: adjusted for age, sex, and ABCD2.
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scans (adjusted OR = 3.60, 95% CI (0.91–14.20), p = 0.067).
This finding suggests the added diagnostic value of MR perfusion
imaging with MRA for detection of hemodynamic abnormality
within the microvasculature (13, 30). In the present study, the
widely used ABCD2 score was not associated with perfusion
deficit, which is similar to what was reported by a previous study
(30). The possible explanation for this might be that ABCD2
score is based on patients’ clinical factors and does not include
information about brain hemodynamics.

This study has a number of limitations. Firstly, it is a cross-
sectional study design and cannot demonstrate direct causality
between MR perfusion and the risk factors in subjects with
TIA. A longitudinal design can help to investigate the direct
causality of MR perfusion in future studies. Secondly, we had
a relatively small sample size, possibly introducing unknown
patient selection bias. Therefore, a large sample size would be
optimal for confirming our findings. Thirdly, all patients were
recruited from inpatients admitted to one local hospital. Hence,
conclusions and observations should be treated with caution.
However, our hospital is the first and the only one that can use
RAPID to calculate the volume of Tmax ≥ 4 s within the first
7 days after a TIA attack in China. Fourthly, the present study
lacks imaging and clinical follow-up. It is unknown whether
perfusion abnormalities observed were reversible or progressed
to infarction after initial imaging. Therefore, the findings in
this study should be considered as preliminary and should be
confirmed in future studies. Fifthly, in this study we used Tmax

≥ 4 s for defining perfusion deficits (21), and volume of Tmax ≥

4 s > 10mL for defining perfusion abnormality (13). Although
our method is based on a previous study, whether this method
has better accuracy and applicability needs further prospective,
large-scale studies to verify.

In conclusion, history of hypertension is a strong predictor of
focal perfusion abnormality calculated by RAPID on Tmax maps
in DWI-negative TIA patients. However, further prospective
studies including a larger number of patients are needed to
confirm this finding.
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With the aging population, prevalence of neurodegenerative diseases is increasing, thus

placing a growing burden on individuals and the whole society. However, individual rates

of aging are shaped by a great variety of and the interactions between environmental,

genetic, and epigenetic factors. Establishing biomarkers of the neuroanatomical aging

processes exemplifies a new trend in neuroscience in order to provide risk-assessments

and predictions for age-associated neurodegenerative and neuropsychiatric diseases at

a single-subject level. The “Brain Age Gap Estimation (BrainAGE)” method constitutes

the first and actually most widely applied concept for predicting and evaluating individual

brain age based on structural MRI. This review summarizes all studies published within

the last 10 years that have established and utilized the BrainAGE method to evaluate the

effects of interaction of genes, environment, life burden, diseases, or life time on individual

neuroanatomical aging. In future, BrainAGE and other brain age prediction approaches

based on structural or functional markers may improve the assessment of individual

risks for neurological, neuropsychiatric and neurodegenerative diseases as well as aid

in developing personalized neuroprotective treatments and interventions.

Keywords: brain age estimation, biomarker, intervention, metabolic health, MRI, neurodegeneration,

neurodevelopment, psychiatric disorders

INTRODUCTION

With population growth and prolonged lifespan, the numbers of individuals with a range
of (non-fatal, but) disabling disorders, including neurodegenerative diseases such as cognitive
decline and dementia, are rising (1). Understanding the links between brain aging processes and
neurodegenerative disease mechanisms is an urgent priority for health systems in order to establish
effective strategies to deal with the rising burden. Aging is broadly defined as a time-dependent
functional decline, driven by a progressive accumulation of cellular damage throughout life (2)
and changes in intercellular communication (3–6). Aging is also a vastly complex process, which is
individually modified by manifold genetic and environmental influences (5).

The assessment of the individual’s “biological age” was recently promoted, resulting from
the interaction of genes, environment, lifestyle, health, and life time, in order (i) to identify
subject-specific health characteristics as well as subject-specific risk patterns for various age-related
diseases based on pre-established reference curves for healthy aging, and (ii) to develop and
monitor (clinical) interventions that are personally tailored based on “biological age” instead of
chronological age (7). Several cell-, tissue- or function-based biomarkers that measure differences
in the individual aging processes have been developed recently in order to identify and predict
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individual risks for age-associated diseases and mortality [for
recent reviews see (8, 9)], as well as to improve intervention
and treatment strategies (2, 5), including DNA methylation
status, measuring the accumulation of genetic damage (7,
10, 11), telomere length, assessing telomere attrition (12–16),
physical fitness, and allostatic load as a measure for physical,
physiological, and metabolic health etc. (17, 18).

Structural brain maturation/aging in humans is characterized
by region-specific, non-linear patterns of very well-coordinated
and sequenced occurrences of progressive and regressive
processes (19) / atrophy (20, 21), respectively, demonstrating
robust patterns of alterations (22, 23), where some brain regions
are showing greater alterations than others. With the advent
of non-invasive methods of in vivo brain imaging, especially
magnetic resonance imaging (MRI), and the availability of
sophisticated computational methods for processing and
analyzing MRI data, cross-sectional as well as longitudinal
neuroimaging studies on brain structure and function are
increasingly contributing to a more profound understanding of
healthy as well as diseased structural brain maturation and aging
for recent reviews see (8, 9).

As research increasingly focuses on the interplay between
aging and disease, a growing body of research utilizes
neuroimaging to develop a biomarker of individual brain
health, so-called “brain age.” Lately, data-driven learning
methods, including cross-validation, pattern classification, and
regression-based predictive analyses, exemplify a new trend in
biomedical and neuroscientific research, allowing measurements
and predictions even at the single subject level (24). To determine
the individual trajectory of brain maturation and aging as well
as the risks for cognitive dysfunction and age-associated brain
diseases, a number of structural and functional brain-based
prediction methods for age or cognitive state enjoy increasing
popularity in (cognitive) neuroscience, providing personalized
biomarkers of brain structure, and function by identifying
deviations from pre-established reference curves or automatically
discriminating patients with brain disorders from healthy
controls (25–30). Most of these studies are using state-of-the-art
machine learning techniques to make predictions at the single-
subject level. Especially pattern recognition and regression-based
computational modeling methods aim to predict the values of
continuous variables, like structural brain age, cognitive states, or
neuropsychological characteristics (27). These new brain-based
biomarkers offer a powerful strategy for using neuroscience in
clinical practice and have a wide range of implementations, such
as providing reference curves for healthy brainmaturation/aging,
predicting personalized brain maturation/aging trajectories,
discovering protective, and harmful environmental influences
on brain health, disentangling age-related from disease-specific
changes in individual brain structure, aiding in the risk-
assessment, and early detection of certain neurodegenerative
diseases, tracking individual disease progression, as well as
determining the individual relationship of structural brain aging
to cognitive performance and neuropsychiatric symptoms (8).

The “brain age gap estimation (BrainAGE)” method, which
utilizes structural MRI data to directly quantify acceleration
or deceleration of individual brain aging, was the first brain

aging estimation approach that (1) established reference curves
for healthy brain maturation during childhood into young
adulthood and for healthy brain aging during adulthood into
senescence, (2) examined deviations of individual brain aging
from the established reference curve of healthy brain aging in
neurodegenerative diseases, (3) analyzed longitudinal changes of
individual brain aging in several samples, (4) used deviations of
individual brain age predictions from the established reference
curve of healthy brain aging to predict worsening of cognitive
functions and conversion to Alzheimer’s disease (AD), (5) studied
the effects of a number of several health- and lifestyle-related
factors on individual brain aging, (6) monitored the effects
of protective interventions on individual brain aging, and (7)
was adapted to be also applied in experimental studies with
rodents and nun-human primates. This review firstly describes
the generation of the BrainAGEmodel and secondly recapitulates
and integrates all studies predicting individual brain age with
the innovative BrainAGE method in healthy and diseased
populations. Wherever possible, studies applying other brain age
prediction approaches to examine the very issue are additionally
included in this review. A short summary of all BrainAGE studies
summarized here can be found in Table 1.

GENERATION OF THE BRAINAGE MODEL

A growing body of research is using high-dimensional
neuroimaging data, i.e., often including several hundred
(multi-modal) parameters per individual, and employing
supervised, linear, or non-linear pattern recognition techniques
in order to depict and quantify structural brain development and
aging across the lifespan. In contrast to univariate approaches,
multivariate analyses of individual brain structure are able to
detect and quantify subtle, but widespread deviations in region-
or voxelwise brain structure within the whole brain for the
individual’s age.

In general, the brain age prediction model needs to be
trained first in order to subsequently assess a person’s individual
brain age. The brain age prediction model is generated by
recognizing multivariate patterns of age-typical brain structure
and parameters, utilizing MRI data of a large sample of
(cognitively) healthy subjects. Subsequently, the age prediction
model is applied in previously unseen test subjects, i.e., estimating
the subject-specific brain ages utilizing their individual MRI data.
The difference between a person’s estimated brain age and its
chronological age finally identifies the individual deviation from
the typical maturation/aging trajectory.

Pipeline for the Generation of Brain Age
Estimations
In general, the workflow of our innovative BrainAGE model
includes several processing steps (Figure 1). Firstly, the raw T1-
weighted image data are preprocessed with a standardized voxel-
based morphometry (VBM) pipeline, resulting in comparable
as well as more easily processible data to be utilized in
the following analysis steps (see Preprocessing of raw MRI
data). Secondly, automated data reduction of the preprocessed
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TABLE 1 | Studies utilizing the BrainAGE model for analyzing individual brain aging.

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

EVALUATION OF BRAINAGE PREDICTION PERFORMANCE IN REFERENCE SAMPLES

Performance of the

BrainAGE model for brain

maturation during childhood

& adolescencea

CTR 394 [47%] 10.7 ± 3.8 [5 – 19] 1.5T [6] – • Brain age estimation was highly accurate (r = 0.93; p < 0.001).

• The 95% confidence interval for the prediction of brain age was stable across the entire age

range (±2.6 years).

• MAE was 1.1 years.

• BrainAGE model for brain maturation during childhood and adolescence

explained 87% of the individual variations in brain structures.

Performance of the

BrainAGE model for brain

aging from early into late

adulthoodb

CTR 547 [56%] 48 ± 17 [19 – 86] 1.5T [2], 3T [1] – • Brain age estimation was highly accurate (r = 0.92; p < 0.001).

• The 95% confidence interval for the prediction of age was stable along the age range, with

no broadening at old age (cf. age = 20 ± 11.6 years, age = 80 ± 11.7 years).

• Correlation between MAE and the true age indicated no systematical bias in the age

estimations as a function of true ages (r = −0.015).

• MAE was 4.9 years.

• Results did not differ between genders (MAE: 5.0 years for males, 4.9 years for females; r

= 0.9 for both genders).

• BrainAGE model for brain aging during adulthood explained 85% of the individual

variations in brain structures.

CTR 108 [37%] 32 ± 10 [20 – 59] 1.5T [1] –

Performance of the

BrainAGE model in

baboonsc

CTR 29 [52%] 9.5 ± 4.9 [4 – 22] 3T [1] – • Strong correlation between estimated brain age and chronological age (r= 0.80; p< 0.0001)

• MAE was 2.1 years.

• Best fit between chronological and estimated brain age was linear (R2 = 0.64; p < 0.0001).

• With only 29 MRI data in the baboon sample, the baboon–specific BrainAGE

framework showed very good performance, certainly improving with

additional data

Performance of the

BrainAGE model in rodentsd
CTR 24 (up to 13 scans;

n = 273)

life span: 734 ± 110 days 3T [1] – • Brain age estimation was highly accurate (r = 0.95; p < 0.0001).

• MAE was 49 days, which equates to an estimation error of 6% in relation to the age range

• Best fit between chronological and estimated brain age was linear (R2 = 0.91; p < 0.0001).

• Analyses of individual brain aging trajectories showed increasing variance at old ages.

• Rodent–specific BrainAGE model showed excellent performances, explaining

91% of the individual variations in brain structures.

RELIABILITY OF BRAINAGE ESTIMATIONS

Scan-rescan-stability of

BrainAGE estimations (same

scanner)e

CTR, double-scanned on

same scanner

20 [60%] 23.4 (4.0) [19 – 34] 1.5T [1] 1st scan: 13.8 (6.1) 2nd scan:

12.8 (5.6)

• BrainAGE estimations from 1st and 2nd scan were strongly correlated (r = 0.93***) and

showed ICC of 0.93***.

• BrainAGE scores linearly adjusted for the offset at each scanning time point strongly

correlated with raw scores (r = 0.996***).

• BrainAGE estimations within the same subjects proved to be stable across a

short delay between two scans.

Effect of MRI field strengths

on stability of BrainAGE

estimationse

CTR, double-scanned on

1.5T & 3T scanners

60 [63%] 75.2 (4.8) [60 – 87] 1.5T/3T

[26/26]

1.5T scan: −5.9 (7.0) 3T scan:

−9.1 (6.6)

• BrainAGE estimations from 1.5T and 3T scan were strongly correlated (r=0.91***) and

• showed ICC of 0.90***.

• BrainAGE scores, linearly adjusted for the scanner–specific offset, did not differ between

scanners***.

• • BrainAGE estimations within the same subjects proved to be stable across

scanners with different field strengths.

Short-term changes of

BrainAGE during the

menstrual cycle f

CTR (naturally cycling

women)

7 [100%] [21 – 31] 1.5T [1] Difference to scan at menses:

• Ovulation: −1.3 (1.2)

• Midluteal: 0.0 (1.6)

• Next menses: 0.1 (0.6)

• BrainAGE decreased by −1.3 years* from menses to ovulation.

• Classification analyses of data whether acquired at menses or ovulation is much more

precise when based on BrainAGE (accuracy: 86%/AUC: 0.88) as compared to GM (57%

0.55), WM (43%/0.51), and CSF (64%/0.55) volumes*.

• Lower BrainAGE were correlated to higher estradiol levels (r = −0.42*), whereas

progesterone levels did not correlate with individual BrainAGE.

• The BrainAGE method proved to recognize short-term effects of hormones on

individual brain structure.

(Continued)
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TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

BrainAGE MODEL FOR BRAIN MATURATION DURING CHILDHOOD AND ADOLESCENCE

Effects of being born

preterm on brain

maturationa

Born preterm, before 27

weeks of gestation

10 14.3 (1.4) [12 – 16] 1.5T (1) −2.0 (0.7) • Scanned between the ages of 12–16 years,BrainAGE were about 1.5 years lower in subjects

who were born before the end of the 27th week of gestation vs. subjects who were born

after the end of the 29th week of gestation**.

• Although the mean difference in gestational age between both groups was only 5

weeks, results show a systematically lower BrainAGE in adolescents who were

born extremely preterm, implying delayed brain maturation.

Born preterm, after 29

weeks of gestation

15 14.7 (1.5) [12 – 16] −0.4 (1.5)

BRAINAGE IN MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

Premature brain aging in

ADb
CTR 232 [49%] 76.0 (5.1) [60 – 90] 1.5T [26] 0 • For people with mild AD, the mean BrainAGE score was 10 years, implying a

systematically higher estimated than chronological age based on structural MRI

data***.

• BrainAGE estimations differed significantly between CTR/sMCI vs. pMCI/AD at baseline*

and follow-up*.

• Over the follow-up period of up to 4 years, BrainAGE remained stable for CTR (annual

changing rate: 0.12) & sMCI (0.07), but increased in the pMCI (1.05) and AD (1.51), thus

suggesting additional acceleration in brain aging*.

• Higher BrainAGE were related to worse cognitive functioning and more severe clinical

symptoms at baseline (ADAS: r = 0.45***; CDR: r = 0.39***; MMSE: r = −0.46***) and at

follow up (ADAS: r = 0.55***; CDR: r = 0.46***; MMSE: r = −0.55***).

AD 102 [54%] 75.8 (8.2) [55 – 88] 10

Longitudinal changes of

individual brain aging in

CTR, MCI, ADe

CTR 108 [43%] Baseline: 75.6 (5.0)

follow-up: 78.9 (5.0)

1.5T (26) Baseline: −0.3 follow-up: −0.1 • Changes in BrainAGE from baseline to last follow-up scan were related to worsening of

cognitive functioning and clinical symptoms (ADAS: r = 0.30***; CDR: r = 0.27***; MMSE: r

= −0.33***).

• Results suggest structural changes that show the pattern of accelerated brain

aging in pMCI and AD, accelerating even more, at the speed of 1 additional year in

BrainAGE estimation per follow-up year in pMCI and 1.5 additional years in AD.

sMCI 36 [17%] Baseline: 77.0 (6.1)

follow-up: 80.1 (6.0)

Baseline: −0.5 follow-up: −0.4

pMCI 112 [40%] Baseline: 74.5 (7.4)

follow-up: 77.2 (7.6)

Baseline: 6.2 follow-up: 9.0

AD 150 [49%] Baseline: 74.6 (7.6)

follow-up: 76.3 (7.7)

Baseline: 6.7 follow-up: 9.0

Effects of APOE–genotype

on longitudinal changes in

CTR, MCI, ADg

CTRC [APOE ε4 carriers] 26 Baseline: 75.0 (5.1)

follow-up: 78.2 (5.1)

1.5T [26] Baseline: −0.1 (6.8) follow-up:

−0.2 (7.9)

• BrainAGE estimations differed significantly between CTR/sMCI vs. pMCI/AD at baseline* and

up to 4 years follow-up*, without significant effects regarding APOE ε4 status or interaction

between diagnostic group and APOE ε4 status, nor particular allelic isoforms.

• Annual changing rates in BrainAGE differed significantly between CTR/sMCI vs. pMCI/AD

as well as between APOE ε4 carriers vs. ε4 non-carriers*, with APOE ε4

carriers showing C NC C NC C increased changing rates (NO: 0.0; NO: 0.0; sMCI: 0.2; sMCI:

−0.1; pMCI: 1.1; NC C NC pMCI: 0.6; AD: 1.7; AD: 0.9).

• Larger BrainAGE were significantly related to worse cognitive functioning and more sever

clinical symptoms at baseline, being stronger in APOE ε4 non-carriers vs. ε4 carriers.

• Results suggest structural changes that show the pattern of accelerated brain

aging in pMCI and AD, accelerating even more during follow-up in pMCI and AD,

with APOE ε4 carriers showing faster acceleration of brain aging.

sMCIC [APOE ε4 carriers] 14 Baseline: 77.3 (5.6)

follow-up: 80.4 (5.4)

Baseline: −0.9 (6.1) follow-up:

0.0 (6.0)

pMCIC [APOE ε4 carriers] 78 Baseline: 74.1 (6.5)

follow-up: 76.7 (6.7)

Baseline: 5.8 (6.4) follow-up:

8.7 (7.2)

ADC [APOE ε4 carriers] 101 Baseline: 74.1 (6.8)

follow-up: 75.8 (6.9)

Baseline: 5.8 (7.7) follow-up:

8.3 (8.0)

CTRNC [APOE ε4

non-carriers]

81 Baseline: 75.9 (4.9)

follow-up: 79.1 (5.0)

Baseline: −1.3 (6.4) follow-up:

−1.4 (6.1)

sMCINC [APOE ε4

non-carriers]

22 Baseline: 76.8 (6.5)

follow-up: 79.9 (6.5)

Baseline: −0.9 (6.1) follow-up:

−0.6 (4.8)

pMCINC [APOE ε4

non-carriers]

34 Baseline: 75.5 (9.3)

follow-up: 78.1 (9.4)

Baseline: 5.5 (9.7) follow-up:

7.3 (10.3)

ADNC [APOE ε4

non-carriers]

49 Baseline: 75.7 (8.9)

follow-up: 77.4 (9.1)

Baseline: 6.2 (9.5) follow-up:

7.7 (10.1)

(Continued)
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TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

BRAINAGE–BASED PREDICTION OF CONVERSION TO ALZHEIMER’S DISEASE

BrainAGE–based prediction

of conversion from MCI to

ADh

(1) sMCI 62 [21%] 76.4 (6.2) [58 – 88] 1.5T [26] 0.75 • Predicting future conversion to AD within 12-months follow-up based on baseline BrainAGE

(accuracy: 81%/AUC: 0.83) was significantly more accurate than predictions based on

chronological age (41%/0.59), hippocampus volumes (left: 66%/0.69; right: 61%/0.67),

cognitive scores (ADAS: 66%/0.80; CDR–SB: 59%/0.71; MMSE: 57% /0.69), and CSF

biomarkers (T-Tau: 60%/0.60; P-Tau: 57%/0.66; Aβ42: 57%/0.58; Aβ42/P-Tau: 69%/0.65).

• Predicting future conversion to AD within 36-months follow-up based on baseline BrainAGE

(accuracy: 75%/AUC: 0.78) was significantly more accurate than predictions based on

chronological age (52%/0.56), hippocampus volumes (left: 61%/0.69; right: 54%/0.67),

cognitive scores (ADAS: 48%/0.75; CDR–SB: 38%/0.67; MMSE: 37%/0.67), and CSF

biomarkers (T-Tau: 58%/0.61; P-Tau: 43%/0.63; Aβ42: 49%/0.56; Aβ42/P-Tau: 73%/0.62).

• Prognostic certainty for prediction of conversion to AD increased from 68%

pre-test probability to 90% post-test probability when using BrainAGE (right

hippocampus: 84%; left hippocampus: 85%; ADAS: 86%; CDR-SB: 68%; MMSE:

79%).

• Each additional year in BrainAGE was associated with a 10% greater risk of

developing AD during 36-months follow-up.

(2) pMCI_early 58 [43%] 73.9 (7.0) [55 – 86] 8.73

(3) pMCI_late 75 [36%] 75.2 (7.3) [56 – 88] 5.62

Effects of APOE-genotype

on BrainAGE-based

prediction of conversion

from MCI to ADg

sMCIC [APOE ε4 carriers] 26 [12%] 76.5 (5.2) 1.5T [26] 0.0 (4.4) • Cox regression showed higher baseline BrainAGE being associated with a higher risk of

converting to AD independent of APOE status, with BrainAGE above median of 4.5 years

indicating a nearly 4 times greater risk of converting to AD as compared to BrainAGE below

median***#.

• Including APOE status into Cox model, the accuracy of the prediction tended to improve.

• APOE ε4 carriers: predicting future conversion to AD within 12-months follow-up based

on baseline BrainAGE (accuracy: 85%/AUC: 0.88) was significantly more accurate than

predictions based on chronological age (39%) or cognitive scores (ADAS: 69%; CDR-SB:

49%; MMSE: 46%).

• APOE ε4 carriers: predicting future conversion to AD within 36-months follow-up based

on baseline BrainAGE (accuracy: 75%/AUC: 0.82) was significantly more accurate than

predictions based on chronological age (54%) or cognitive scores (ADAS: 43%; CDR-SB:

26%; MMSE: 23%).

• APOE ε4 non-carriers: predicting future conversion to AD within 12-months follow-up based

on baseline BrainAGE (accuracy: 78%/AUC: 0.75) was significantly more accurate than

predictions based on chronological age (50%) or cognitive scores (ADAS: 68%; CDR SB:

67%; MMSE: 60%).

• APOE ε4 non-carriers: predicting future conversion to AD within 36-months follow-up based

on baseline BrainAGE (accuracy: 74%/AUC: 0.71) was significantly more accurate than

predictions based on chronological age (47%) or cognitive scores (ADAS: 64%; CDR SB:

51%; MMSE: 47%).

• From diagnosis at study baseline onwards, APOE ε4 carriers showed the tendency to take to

convert to AD (560 ± 280 days) as compared to APOE ε4 non-carriers (471 ± 233 days)#.

• Prediction of conversion was most accurate using BrainAGE as compared to

neuropsychological test scores, even when including the APOE ε4-status.

pMCIC_early [APOE ε4

carriers]

33 [39%] 72.9 (6.0) 9.0 (6.3)

pMCIC_late [APOE ε4

carriers]

58 [38%] 75.0 (6.4) 5.7 (6.0)

sMCINC [APOE ε4

non-carriers]

36 [28%] 76.2 (6.8) 1.2 (4.0)

pMCINC_early [APOE ε4

non- carriers]

24 [46%] 75.3 (8.3) 8.0 (9.2)

pMCINC_late [APOE ε4

non- carriers]

16 [31%] 76.4 (10.0) 5.0 (7.7)

EFFECTS OF PSYCHIATRIC DISORDERS ON BRAIN AGING

Effects of schizophrenia and

bipolar disorder on brain

agingi

CTR 70 [43%] 33.8 (9.4) [22 - 58] 3T [1] −0.2 (5.6) • BrainAGE scores were significantly higher in SZ by about 3 years*, but not BD patients.

• Structural brain aging in bipolar disorder is comparable to healthy brain aging.

• Structural brain aging is significantly advanced in schizophrenia.

SZ 45 [36%] 33.7 (10.5) [21 – 65] 2.6 (6.0)

BD 22 [55%] 37.7 (10.7) [24 – 58] −1.2 (4.6)

(Continued)
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TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

Brain age in early stages of

bipolar disorders or

schizophreniak

CTR 43 [40%] 27.0 (4.4) 3T [1] −0.01 (4.1) • BrainAGE scores were significantly higher in SZ by about 3 years**.

• The proportion of participants who had a greater biological than chronological age was

higher in SZ (74%) than CTR (46%)**.

• BrainAGE was not associated with duration of illness or duration of untreated psychosis.

• No differences in BrainAGE between the SZ diagnoses.

• BrainAGE in SZ was negatively associated with GM volume diffusely throughout the brain***.

• Structural brain aging is significantly advanced in schizophrenia

• BrainAGE scores were comparable between unaffected, high-risk for BD, BD, and CTR

participant’s#.

• BrainAGE scores were not associated with number of episodes or hospitalizations, as we

as duration of illness.

• Structural brain aging in bipolar disorder and unaffected, high-risk subjects for

BD is comparable to healthy brain aging.

SZ (FES) 43 [40%] 27.1 (4.9) 2.6 (4.1)

CTR 60 [60%] 23.4 (4.9) 1.5T [2] 0.2 (5.3)

Unaffected, high- risk for

BD

48 [60%] 20.9 (4.1) −1.0 (5.0)

BD 48 [69%] 23.1 (4.5) −1.0 (5.2)

Obesity, dyslipidemia and

brain age in first-episode

psychosisl

CTR 114 [45%] 33.8 (9.4) [18 – 35] 3T [1] −0.2 (5.6) • BrainAGE scores were significantly associated with FEP**, obesity**, and BMI*.

• BrainAGE was highest in participants with a combination of FEP and obesity (3.8 years) and

lowest in normal weight CTRs (−0.3 years) *.

• Even among only FEP participants, BMI remained significantly associated with BrainAGE.

• As compared to CTRs, BrainAGE scores in non-medicated FEP participants were greater

than in CTRs**, comparable to previously medicated FEP individuals, and not associated

with cumulative exposure to antipsychotics (with non-medicated FEP participants not

differing from the previously medicated ones in relevant clinical variables).

• Medication dosage at the time of scanning was not associated with BrainAGE or BMI.

• BrainAGE was not associated with duration of illness, duration of untreated psychosis,

another health markers.

• Brain structural aging is significantly advanced in medicated as well as non-

medicated patients with psychosis (FEP).

• Obesity added to advanced structural brain aging in controls as well as psychosis.

FEP 120 [38%] 33.7 (10.5) [18 – 35] 2.6 (6.0)

EFFECTS OF INDIVIDUAL HEALTH ON BRAIN AGING

Effects of type 2 diabetes

mellitus on brain agingm
CTR 87 [53%] 65.3 (8.5) 3T [1] 0.0 (6.7) • Brain ages in DM2 were estimated 4.6 years higher than their chronological age***.

• Diabetes duration correlated positively with BrainAGE scores (r = 0.31*).

• BrainAGE scores in whole sample were related to fasting blood glucose (r= 0.34*; BrainAGE

1st vs. 4th quartile: 5.5 years*), TNFα levels (r = 0.29**), smoking duration (r = 0.20**;

BrainAGE 1st vs. 4th quartile: 3.4 years**), alcohol consumption (r = 0.24***; BrainAGE

1st vs. 4th quartile: 4.1 years**).

• BrainAGE scores in whole sample were related to verbal fluency (r=−0.25**; BrainAGE 1st

vs. 4th quartile: 5.6 years***).

• BrainAGE scores in whole sample were related to depression scores (r = 0.23*; BrainAGE

1st vs. 4th quartile: 5.4 years**).

• BrainAGE scores were higher in males than females**.

• Type 2 DM is associated with structural brain changes that reflect advanced

brain aging.

DM2 98 [46%] 64.6 (8.1) 4.6 (7.2)

Longitudinal effects of type 2

diabetes mellitus on brain

agingm

CTR 13 [61%] Baseline: 69.9 (5.5)

follow-up: 73.9 (5.7)

3T [1] Baseline: 0.0 follow-up: 0.0 • At baseline BrainAGE scores in DM2 subjects were 5.1 years higher than in CTR*.

• BrainAGE scores in CTR did not change during 3.8 ± 1.5 years follow-up.

• BrainAGE scores in DM2 subjects after 3.8± 1.5 years follow-up were 5.9 years higher than

in CTR*.

• BrainAGE in DM2 is increasing by 0.2 years per follow-up year.

DM2 12 [67%] Baseline: 63.3 (6.9)

follow-up: 66.8 (6.7)

Baseline: 5.1 follow-up: 5.9

Gender-specific effects of

health parameters on brain

agingn

male CTR 118 75.8 (5.3) [60 – 88] 1.5T [26] 0 • 39% of variance within BrainAGE scores were attributed to health parameters, with BMI,

uric acid, GGT, DBD contributing most***.

• BrainAGE scores were related to BMI (r = 0.35***; BrainAGE 1st vs. 4th quartile: 7.5

years***), uric acid (r = 0.25**; BrainAGE 1st vs. 4th quartile: 5.6 years*), GGT (r = 0.20*;

BrainAGE 1st vs. 4th quartile: 7.5 years**), DBD (r = 0.19*; BrainAGE 1st vs. 4th quartile:

6.6 years**).

female CTR 110 76.1 (4.8) [62 – 90] 0

(Continued)
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TABLE 1 | Continued

Study focus Study sample Main study results$

Groups No. of subjects

[female]

Age mean ± SD [range]

in years

MRI [no.] Mean BrainAGE (SD) in years

• BrainAGE scores in “healthy” men (values below the medians of BMI, DBD, GGT, uric acid;

n = 9) vs. men with “risky” health markers (values above the medians of BMI, DBD, GGT,

and uric acid; n = 14): −8.0 vs. 6.7 years*.

• In cognitively healthy elderly men, markers of the metabolic syndrome, and

impaired liver and kidney functions were associated with subtle structural changes

that reflect accelerated brain aging, whereas protective effects on brain agingwere

observed for markers of good health.

• 32% of variance within BrainAGE scores were attributed to health parameters, with GGT,

ALT, AST, vitamin B12 contributing most**.

• BrainAGE scores were related to GGT (r= 0.25*; BrainAGE 1st vs. 4th quartile: 6.1 years**),

ALT (r = 0.23*; BrainAGE 1st vs. 4th quartile: 5.1 years*), AST (r = 0.20*; BrainAGE 1st vs.

4th quartile: 3.1 years), vitamin B (r = −0.17; BrainAGE 1st vs. 4th quartile: 4.8 years*). 12

• BrainAGE scores in “healthy” women (values below the medians of GGT, ALT, AST, vitamin

B12; n = 14) vs. women with “risky” health markers (values above the medians of GGT, ALT,

AST, vitamin B12; n = 13): −1.0 vs. 3.8 years.*

• In cognitively fit elderly women, protective effects on brain aging were observed

for markers of good health.

PROTECTING INTERVENTIONS FOR BRAIN AGING

Effects of long-term

meditation practice on brain

agingo

CTR [no meditation

practice]

50 [44%] 51.4 (11.8) [24 – 77] 1.5T [1] 0 • Brains of meditators (4–46 years practice, mean= 20 years) were estimated to be 7.5 years

younger at age 50 than those of CTRs*.

• For every additional year over age fifty, meditators’ brains were estimated to be an additional

1 month, 22 days younger than their chronological age*.

• Female brains were estimated to be 3.4 years younger than male brains**.

• Meditation is beneficial for brain preservation, effectively protecting against

age–related atrophy with a consistently slower rate of brain aging throughout life.

Meditators 50 [44%] 51.4 (12.8) [24 – 77] −7.53

Effects of making music on

brain agingp
CTR [non-musicians] 38 [39%] 25.2 (4.8) 1.5T [1] 0.48 (6.85) • Musicians had younger brains than non-musicians**.

• Small positive correlation between years of music making and BrainAGE score in

professional musicians (r= 0.32*), suggesting that with increasing number of years of music

making, the age-delaying effect (in professionals) might lessen.

• Making music has an protecting effect on brain aging, with a stronger effect when

it is not performed as a main profession, but as a leisure or extracurricular activity.

Amateur musicians 45 [40%] 24.3 (3.9) −4.51 (5.60)

Professional musicians 42 [48%] 24.3 (3.9) −3.70 (6.57)

EFFECTS OF PRENATAL UNDERNUTRITION ON BRAIN AGING IN HUMANS AND NON-HUMAN PRIMATES

Gender-specific effects of

prenatal under nutrition on

brain aging in humansq

Men born before Dutch

famine

14 68.6 (0.4) 3T [1] −1.8 (3.5) • In men, the variance in individual BrainAGE scores was best explained by birth

characteristics, late–life health characteristics, chronological age, and famine exposure*.

• In women, the variance in individual BrainAGE scores was best explained by birth

characteristics, chronological age at MRI data acquisition, and famine exposure*.

• Premature brain aging by about 4 years in male offspring who had been exposed to Dutch

famine during early gestation, as compared to men born before the famine.

• BrainAGE did not differ in the female sample.

• Cognitive and neuropsychiatric test scores in late adulthood did not differ between the famine

exposure groups.

• Exposure to prenatal under nutrition is associated with premature brain aging

during late adulthood.

Men exposed to Dutch

famine in early gestation

19 67.4 (0.1) 2.5 (5.2)

Men conceived after

Dutch famine

19 66.7 (0.4) 0.5 (4.6)

Women born before

Dutch famine

21 68.7 (0.5) −0.1 (4.3)

Women exposed to Dutch

famine in early gestation

22 67.4 (0.2) 0.9 (4.0)

Women conceived after

Dutch famine

23 66.7 (0.4) −0.1 (5.3)

(Continued)
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MRI data is performed in order to reduce computational
costs, avoid method-typical over-fitting of pattern recognition,
as well as to provide a robust and widely applicable age
estimation model (see Data reduction). Thirdly, relevance vector
regression (RVR) is performed, capturing the multidimensional
maturation/aging patterns throughout the whole brain and
thus modeling structural brain maturation/aging. Subsequently,
individual brain ages can be estimated (see Training of the
BrainAGE algorithm).

Preprocessing of Raw MRI Data
Preprocessing of the raw MRI data is done using SPM including
the VBM8/CAT12 toolbox, running under MATLAB. More
specifically, T1-weighted images are corrected for bias-field
inhomogeneities (46, 47). Following, the images are spatially
normalized. Afterwards, the images are segmented into the tree
brain tissue types, i.e., gray matter (GM), white matter (WM),
and cerebro-spinal fluid (CSF), within the same generative model
(48). Furthermore, adaptive maximum a posteriori estimations
(49) and a hidden Markov random field model (50) are applied
in order to account for partial volume effects (51). Finally, image
preprocessing includes affine registration.

Data Reduction
Preprocessed MRI data are smoothed with 4 or 8mm full-
width-at-half-maximum (FWHM) Gaussian kernels. Thereafter,
data are re-sampled to 4 or 8mm spatial resolution, resulting
in 29,852 or 3,747 voxels per subject after masking out non-
brain areas, respectively. Finally, principal component analysis
(PCA) is applied to further reduce data dimensionality. As a
great portion of the resulting voxels are still sharing much of its
variances with their neighboring voxels, PCA is mathematically
allowed to be performed although the numbers of data sets in
the training sample is lower than the number of voxels, given
the numbers of data sets in the training sample is sufficient (see
Performance of the BrainAGE model for brain aging from early
into late adulthood). The PCA model is calculated within the
training data only and subsequently the resulting transformation
parameters are utilized to reduce data dimensionality within the
independent test samples.

Training of the BrainAGE Algorithm
The BrainAGE framework utilizes RVR (52, 53) with a linear
kernel. Importantly, RVR does not require additional (manual)
parameter optimization during the training procedure, which is
advantageous over the commonly used support vector machines
with regards to computational costs and robust model fitting.

In general, the age regression model is calculated within
the training sample, utilizing the preprocessed structural MRI
data as independent variables and the chronological ages as
dependent variables, resulting in a complex model of healthy
brain maturation/aging (Figure 1A, left panel). Within this
specified regression task (i.e., healthy brain maturation/aging),
voxel-specific weights are calculated, representing the voxel-
specific importance within this regression task (for illustrations
of the resulting voxel-specific weights see Figure S1 for the brain
maturation model & Figure S2 for the brain aging model).
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FIGURE 1 | Depiction of the BrainAGE concept. All MRI data are automatically preprocessed via VBM. (A) The model of healthy brain aging is trained with the

chronological age and preprocessed structural MRI data of a training sample (left; with an illustration of the most important voxel locations that were used by the age

regression model). Subsequently, the individual brain ages of previously unseen test subjects are estimated, based on their MRI data. (B) The difference between the

estimated and chronological age results in the BrainAGE score, with positive BrainAGE scores indicating advanced brain aging (orange line), increasing BrainAGE

scores indicating accelerating brain aging (red line), and negative BrainAGE scores indicating delayed brain aging (green line). [Figure and legend adapted from Franke

et al. (45), with permission from Hogrefe Publishing, Bern].

Subsequently, the brain maturation/aging model is applied
to aggregate the complex, multidimensional maturation/aging
pattern throughout the whole brain of a new test subject,
resulting in one single value, i.e., the estimated brain age
(Figure 1A, right panel).

Finally, the difference between estimated brain age and
chronological age reveals the individual brain age gap estimation
(BrainAGE) score. For BrainAGE, positive values are indicating
advanced structural brain maturation/aging, whereas negative
values are indicating delayed structural brain maturation/aging.
In longitudinal studies, increasing BrainAGE scores are
indicating accelerating brain aging over the time. Thus, the
individual BrainAGE score is directly quantifying the amount of
acceleration or deceleration of brain maturation/aging in terms
of years (Figure 1B). For example, if a 70 years old individual
shows a BrainAGE score of +5 years, the typical atrophy pattern
of this individual resembles the brain structure of a 75 years
old individual.

Cross-Validation of the BrainAGE Model in Reference

Samples
In order to generate and validate the brain age model, most
studies are employing a so-called “cross-validation” approach,
i.e., the neuroimaging parameters of a large portion of the
reference sample of healthy individuals are used to generate
the brain age model. The generated brain age model is then
applied to the smaller portion of the reference sample that
was not included in the model generation step (i.e., “left-
out”), in order to predict individual brain ages based on the
identified neuroimaging parameters within the actual training
sample. This procedure is repeated multiple times, until an
individual brain age is provided for each subject in the whole
reference sample.

To measure the accuracy of age estimation, Pearson’s
correlation coefficient (r), mean absolute error (MAE), and root
mean squared error (RMSE) between individual estimated brain

ages and chronological ages are calculated:

MAE = 1/n∗
∑

i
|BAi − CAi|, (1)

RMSE = [1/n∗
∑

i
(BAi − CAi)

2]1/2, (2)

with n being the number of subjects in the test sample, BAi

being the estimated subjects-specific brain ages, and CAi being
the subject-specific chronological ages. Additionally, F statistics
of the regression model is used to analyze the fit between BA
and CA.

Application of the Generated BrainAGE Model in

Independent Test Samples
Additionally to the cross-validation in the reference samples,
the brain age model is further validated in independent test
samples of healthy and clinical subjects, in order to prove the
generalizability of the pre-established brain age model across
different samples and even MRI scanners, which is crucial for
broad application in a clinical context, as well as to investigate
the power of the brain age models as a diagnostic and prediction
tool at a single-subject level, for monitoring individual changes
in brain aging during treatment studies, or to explore the effects
of various health characteristics, diseases, and life experiences on
individual brain aging.

Species-Specific Adaptations of the
BrainAGE Model for Experimental Animal
Studies
Species-Specific BrainAGE Model for Baboons
Within the species-specific BrainAGE model for baboons, we
used a customized preprocessing pipeline as described in
Franke et al. (33). To further reduce high-frequency noise,
a spatial adaptive non-local means (SANLM) filter (54) is
applied. The segmentation and spatial registration step requires
a baboon-specific tissue probability map (TPM) as well as a
“Diffeomorphic Anatomical Registration using Exponentiated
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Lie algebra” (DARTEL) template (55), which is estimated during
an iterative process based on a rescaled human template. More
specifically, affine transformation is initially used to scale the
human SPM12 TPM and the CAT12 Dartel template map onto
the brain size of baboons. Image resolution of this template is
set to isotropic voxel size of 0.75mm. For each of the performed
iteration steps, the resulting tissue maps are averaged and
subsequently smoothed with a 2mm FWHM kernel to estimate
an affine registration, finally resulting in a newTPM, a T1-average
map, as well as a baboon-specific brainmask. To achieve averaged
data, a median function is used in order to reduce distortions
by outliers or failed processing. The iteration process is stopped
when the actually accomplished change is below a pre-defined
threshold as compared to the previous template, resulting in the
final segmentation.

After Segmentation and Registration, Data are Smoothed
With a 3mm FWHM Gaussian Smoothing Kernel and re-
sampled to 3mm. Finally, PCA is Applied to Further Reduce
Data Complexity (as Described in Data Reduction).

Species-Specific BrainAGE Model for Rodents
As described in Franke et al. (34), a preprocessing framework
for automatically preprocessing and analyzing MRI data of
rodents is providing analyses in the space of a Paxinos atlas (56),
including several realignment and normalization steps. First,
affine co-registration to the Paxinos template is applied utilizing
normalized mutual information. In the next step, a deformation
based morphometry (DBM) approach is utilized to analyze
positional differences between every voxel within the actual brain
data and a reference brain in order to detect structural differences
over the entire brain. Thus, all measured time points of the
data set of one animal are registered to the individual baseline
scan. Afterwards, the deformations between all-time points
and the subject-specific baseline measures are being estimated.
Minimizing the morphological differences between the baseline
and the follow-up brain scans, the deformation maps now
encode the information about these differences. Subsequently,
the Jacobian determinant of the deformations can be used to
calculate local volume changes. Finally, the resulting Jacobian
determinants in each voxel are filtered with a 0.4mm FWHM
Gaussian smoothing kernel.

Technical Notes
The BrainAGE framework is fully automatic. All steps,
including MRI preprocessing, data reduction, model training,
and brain age estimation, are executed within MATLAB
(www.mathworks.com). For preprocessing the T1-weighted
images, SPM8 is utilized (www.fil.ion.ucl.ac.uk/spm), integrating
the VBM8 toolbox (http://dbm.neuro.uni-jena.de). For the
generation of brain age models in baboons and rodents
our new CAT12 toolbox (http://dbm.neuro.uni-jena.de) is
utilized. For PCA, the “Matlab Toolbox for Dimensionality
Reduction” (https://lvdmaaten.github.io/drtoolbox/) is applied.
RVR analyzes are performed utilizing the toolbox “The Spider”
(http://people.kyb.tuebingen.mpg.de/spider/).

Preprocessing the human MRI data takes about 20–30min
per MRI data set on a MAC OS X, Version 10.12, 2.2 GHz

Intel Core i7. The whole process of training the BrainAGE
model and estimating brain ages takes between 1 and 5min
in total, depending on the number of features, training, and
test subjects.

Baboon TPM and template generation needs about 30min per
subject and iteration, summing up in about 48 h for the whole
sample of 29 control subjects. The whole process of training the
baboon-specific BrainAGE model and estimating the individual
brain ages takes about 1min in total.

Preprocessing MRI data of rodents takes about 10–15min
per MRI data set on MAC OS X, Version 10.6.3, 2.8 GHz Intel
Core 2 Duo, resulting in about 5–6 h for a sample of 24 rats
with up to 13 MRI data sets per subject. Within this sample, the
whole process of training the rodent-specific BrainAGE model
and estimating the individual brain ages is performed within
about 5 min.

EVALUATION OF BRAINAGE PREDICTION
PERFORMANCE IN REFERENCE
SAMPLES

Performance of the BrainAGE Model for
Brain Maturation During Childhood and
Adolescence
For generating the BrainAGE model during childhood and
adolescence (31), GM and WM images of a cross-sectional
reference sample of 394 healthy children and adolescents
from the Pediatric MRI Data Repository [NIH MRI Study
of Normal Brain Development; (57)] were utilized, aged
5–18 years (mean age = 10.7 years; SD = 3.9 years),
with structural data acquired on six different MRI scanners
(1.5T). Using leave-one-out cross-validation, the MAE between
estimated brain age and chronological age was 1.1 years.
Between estimated brain age and chronological age 87% of
the variance were explained (r = 0.93; p < 0.001), with the
95% confidence interval being stable across the age range
(± 2.6 years; Figure 2A).

Additionally, training the BrainAGE model with the data
from only five of the six MRI scanner sites included in the
study, and then applying to data from the left-out MRI scanner,
estimation accuracy proved to remain stable across all scanner
sites. Prediction accuracy ranged between r = 0.90–0.95 and
MAE = 1.1–1.3 years, which proved stability of brain age
estimation even across scanners (31).

A number of other studies establishing models for brain
maturation including age ranges from early childhood to young
adulthood have been published so far (58–63). Accuracies
for brain age predictions derived from cross-validation in the
reference sample ranged from r = 0.43–0.96 and MAEs from 1.0
to 1.9 years. The most accurate model for brain age prediction
during development in healthy individuals aged 3–20 years used
a number of parameters derived from different MRI modalities
(i.e., T1, T2, DTI), including cortical thickness, cortical
surface area, subcortical volumes, apparent diffusion coefficient,
fractional anisotropy, and T2 signal intensities in predefined
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FIGURE 2 | Reference curves for BrainAGE. (A) Individual structural brain age based on anatomical T1-images of 394 healthy subjects (aged 5–18 years).

Chronological age is shown on the x-axis and the estimated brain age on the y-axis. The overall correlation between estimated brain age and chronological age is r =

0.93 (p < 0.001), and the overall MAE = 1.1 years. The 95% confidence interval of the quadratic fit is stable across the age range (±2.6 years). [Figure and legend

reproduced from Franke et al. (45), with permission from Elsevier, Amsterdam.] (B) Estimated brain age and chronological age are shown for the whole test sample

with the confidence interval (red lines) at a real age of 41 years of ± 11.5 years. The overall correlation between estimated brain age and chronological age is r = 0.92

(p < 0.001), and the overall MAE = 5.0 years. [Figure and legend modified from Franke et al. (32), with permission from Elsevier, Amsterdam.] (C) Scatterplot of

estimated brain age against chronological age (in years) resulting from leave-one-out cross-validation in 29 healthy control baboons using their in vivo anatomical MRI

scans. The overall correlation between chronological age and estimated brain age is r = 0.80 (p < 0.001), with an overall MAE of 2.1 years. [Figure and legend

reproduced from Franke et al. (33), permitted under the Creative Commons Attribution License.] (D) (a) Chronological and estimated brain age are shown for a sample

of untreated control rats, including the 95% confidence interval (gray lines). The overall correlation between chronological and estimated brain age was r = 0.95 (p <

0.0001). [Figure and legend reproduced from Franke et al. (34), with permission from IEEE.] (E) Longitudinal brain aging trajectories for the individual rats. [Figure and

legend reproduced from Franke et al. (34), with permission from IEEE].

subcortical regions, applying a regularized multivariate non-

linear regression-like approach, resulting in r = 0.96 and MAE

= 1.0 years (59). Although each single MRI modality showed

similar predictive power (r≈ 0.9) across the full age range (i.e., 3–

20 years), modality-specific contributions to the generation of the

brain age model differed across neuroanatomical structures and
age sub-ranges, with measures of T2 signal intensity being the
strongest predictors in age 3–11 years and diffusivity measures
being the strongest predictors in the ages 17–20 years (59).
Additionally, modality-specific subsets showed worse prediction
accuracies compared to the combined model (T1 subset: r =

0.91, MAE = 1.7 years; T2 subset: r = 0.91, MAE = 1.6
years; DTI subset: r = 0.90, MAE = 1.7 years). However, the
BrainAGE method (31) outperformed all other brain age models
using only a single MRI modality or single-modality subsets,
and additionally proved sufficient generalizability across different
scanners and even across studies.

Performance of the BrainAGE Model for
Brain Aging From Early Into Late Adulthood
In our first study introducing the BrainAGE model (32),
two different samples were used to assess the brain
age, i.e., the reference sample from the IXI database
(www.brain-development.org; n = 550, aged 19–86 years,
collected on three MRI scanners) and another independent test
sample of healthy subjects (n = 108, aged 20–59 years, collected
on a fourth scanner). The brain age of healthy subjects in both
validation samples was accurately estimated, resulting in a MAE
of 5 years and an overall correlation of r = 0.92, with the 95%
confidence interval for the prediction of age being stable across
the age range (Figure 2B). The BrainAGE model showed no
systematical bias in MAE of brain age estimation as a function of
chronological age (r= – 0.01). Furthermore, brain age estimation
did not differ between genders (r = 0.92 for both genders; MAE
= 5.0 years for males, MAE= 4.9 years for females).
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FIGURE 3 | Influences of the various parameters on BrainAGE estimation accuracy. (1) The accuracy of age estimation essentially depends on the number of subjects

used for training the age estimation model (blue lines: full training sample; green lines: ½ training sample; red lines: ¼ training sample). (2) The method for

preprocessing the T1-weighted MRI images also showed a strong influence on the accuracy of age estimation. (3) Data reduction via principal component analysis

(PCA) only had a moderate effect on the mean absolute error (MAE). AF, affine registration; NL, non-linear registration; R4/8, re-sampling to spatial resolution of

4/8mm; S4/8, smoothing with FWHM smoothing kernel of 4/8mm. [Figure and legend modified from Franke et al. (32), with permission from Elsevier, Amsterdam].

Additional analyses showed that the number of subjects in
the reference sample has the strongest influence on brain age
prediction accuracy, even though the choice of the preprocessing
approach and model-training algorithm would also influence
model performance as well as generalizability (32). In detail, the
accuracy of brain age estimation worsened with reducing the size
of the training/reference sample (full data set for training the
BrainAGE model [n = 410]: MAE = 5 years; ½ data set [n =

205]: MAE = 5.2 years; ¼ data set [n = 103]: MAE = 5.6 years).
The results further recommend a fairly rapid preprocessing of
the T1-weighted MRI images with affine registration and a rather
broad smoothing kernel. Dimensionality reduction of the data
via PCA moderately improved brain age estimation accuracy
and generalizability, while at the same time speeding up the
computing time for generating the BrainAGE model as well as
estimating the individual brain age values of the independent test
subjects (Figure 3).

A number of other studies establishing models for brain
aging have been published so far (55, 60, 64–79). Accuracies
for brain age predictions derived from cross-validation in the
whole reference sample of healthy subjects ranged from r =

0.43–0.97, MAEs from 4.3 to 13.5 years, and RMSEs from 5.1 to
21.0 years. In general, studies mathematically modeling healthy
brain aging, which use a number of parameters derived from
different MRI modalities, tended to provide more accurate brain
age predictions. The best performing model in a sample of
healthy participants aged 8–85 years was based on a number of
T1- and DTI-derived parameters, utilizing linked independent
component analysis (ICA), resulted in an overall prediction

accuracy of r = 0.97 and MAE = 5.9 years (67). Another study
also used a number of parameters derived from different MRI
modalities (i.e., T1, T2, T2∗, DTI), generating and testing their
brain age model by utilizing multiple linear regression in a
sample of healthy individuals aged 20–74 years, resulting in an
overall age prediction accuracy of r = 0.96 (74). Additionally,
this study found voxel-wise mean diffusivity to be the main
predictor of the brain age model (i.e., explaining 62.4% of
intra-individual variance), followed by GM volume (18.3%),
R2∗ (14.2%) and fractional anisotropy (3%). However, although
DTI is a powerful tool offering unique information on tissue
microstructure and neural fiber connections that cannot be
obtained from standard structural MRI, parameters derived from
DTI can differ significantly depending on the type of scanner,
field strength, gradient strength, number of gradient orientations,
preprocessing, fitting procedure, tractography algorithm etc.
(80–83). Unfortunately, all studies including DTI failed to prove
generalizability of the established brain agemodel in independent
test samples and across scanners.

Another very recent study used a number of parameters
derived from T1 and T2∗, including cortical and subcortical
measures as well as connectivity data, generating and testing the
brain age model by utilizing linear support vector regression
(SVR) (79). This approach showed very good performance
during cross-validation within the reference sample (combined
model: r = 0.93, MAE = 4.3 years), but a rather fair
generalizability when validating the brain age model in an
independent sample of healthy subjects, with data acquired on a
different scanner (combined model: r = 0.86, MAE = 8.0 years).
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Aside from the BrainAGE approach, best prediction accuracies
during cross-validation in the reference samples as well as during
validation of the brain age model in independent test samples
were achieved utilizing linear SVR (reference sample: r = 0.89,
MAE = 4.3 years; independent test sample: MAE = 3.9 years;
(76)], and Gaussian process regression [reference sample: r =

0.92, MAE = 6.2 years; independent test sample: r = 0.93, MAE
= 5.8 years; (73)].

Performance of the BrainAGE Model in
Baboons
For establishing the baboon-specific brain aging model, only
GM images were used. The baboon-specific brain age estimation
model was trained and tested via leave-one-out cross-validation,
utilizing one MRI scan per subject. Within each cross-validation
loop, PCA was calculated separately in the training set and
subsequently applied to the test data before performing RVR. The
baboon-specific BrainAGE model showed very good accuracy (r
= 0.80), with the linear regression model showing the best fit (R2

= 0.64; p < 0.0001; Figure 2C). Calculation of MAE resulted in
2.1 years, equating to an age estimation error of 11% in relation
to the age ranged included (33, 34).

Performance of the BrainAGE Model in
Rodents
As described in Franke et al. (34), training and testing of the
rodent-specific BrainAGE model was performed with subject-
specific leave-one-out cross-validation processing, utilizing data
sets of 24 rats, repeatedly scanned with up to 13 time points
between 97 and 846 days after birth. In detail, to model the
rodent-specific aging process, RVR was performed with the
preprocessed structural MRI data of all scanning time points of
23 out of the total of 24 subjects. Subsequently, individual brain
ages for each scanning time point of the left-out test subject
were estimated, repeating the whole procedure for all 24 subjects.
Brain age estimation was highly accurate (r = 0.95; p < 0.0001),
with the linear regression model showing the best fit between
chronological and estimated age (R2 = 0.91; F = 2622.3; p <

0.0001; Figure 2D). Mean MAE was 49 days, which equates to
an error of 6% in relation to the age range within this study.
Mean RMSE was 71 days. Additionally, longitudinal analyses
of subject-specific brain aging trajectories revealed increasing
variance between subjects in old age (Figure 2E).

RELIABILITY OF BRAINAGE ESTIMATIONS
IN HEALTHY ADULTS

Scan-Rescan-Stability of BrainAGE
Estimations (Same Scanner)
To analyze stability and reliability of BrainAGE estimations, T1-
weighted MRI data of 20 healthy subjects were utilized, applying
the BrainAGEmethod to two MRI scans per subject, which were
acquired on the sameMRI scanner (1.5T) within a time period of
max. 90 days. The results showed a strong scan-rescan-stability of
BrainAGE estimations based on MRI data acquired on the same
scanner, with mean BrainAGE scores between 1st and 2nd scan

not differing among each other (p = 0.60) and the intra-class
correlation coefficient (ICC; two-way random single measures)
between BrainAGE scores calculated from the 1st and 2nd scan
resulting in 0.93 [95% confidence interval [CI]: 0.83–0.97; (45)].

Effect of Different MRI Field Strengths on
BrainAGE Estimations
To analyze estimation stability across different scanners and field
strengths, T1-weightedMRI data of 60 healthy subjects (aged 60–
87 years) were utilized, applying the BrainAGE method to two
MRI scans per subject, acquired on two different MRI scanners
(1.5T & 3T) within a short period of time. The results suggest that
the field strength affects BrainAGE estimations, which should be
corrected for by shifting the BrainAGE scores to a zero group
mean with a linear term in both data sets in order to gain
interpretability of the results (Figure S3). After linearly adjusting
for the scanner-specific offset, Student’s t-test did not show any
difference between the BrainAGE scores calculated from the 1.5T
and 3T scans (p = 1.00). ICC between the BrainAGE scores
calculated from the 1.5T and 3T scans resulted in 0.90 (CI: 0.84–
0.94), demonstrating strong reliability and generalizability of the
BrainAGE model, even with data from different scanners and
field strengths (45).

Sensitivity to Hormone-Related Short-Term
Changes of BrainAGE in Women
In order to establish the BrainAGE model as an innovative tool
to monitor and evaluate short-term changes in individual brain
aging induced by treatments and interventions, we explored
its potential to recognize short-term changes in brain structure
occurring during the menstrual cycle due to varying hormonal
influences (35). A total of 7 young, healthy, naturally cycling
women (age range 21–31 years) were scanned on a 1.5T MRI
scanner (t1) during menses, (t2) at time of ovulation, (t3) in
the midluteal phase, and (t4) at their next menses. During
menstrual cycle BrainAGE scores significantly differed (p< 0.05),
with BrainAGE scores decreasing by −1.3 years from menses
to ovulation (SD = 1.2 years; p < 0.05) and after ovulation
slowly increasing (Figure 4). Additionally, estradiol levels did
negatively correlate with BrainAGE scores (r=−0.42, p < 0.05),
but progesterone levels did not (r= 0.08, p= 0.71).

Another study by Luders et al. (84) explored the changes
in BrainAGE after pregnancy. A total of 14 healthy women
(aged 25–38 years) were scanned on a 3T MRI scanner within
the first two after childbirth (early postpartum) as well as 4–6
weeks after childbirth (late postpartum). BrainAGE scores were
significantly decreased by an average of −5.4 years from early to
late postpartum (SD= 2.4 years; p < 0.001). Additional analyzes
of hormone levels also showed a profound postpartum decrease
in estradiol (p < 0.001) and progesterone (p < 0.001).

Taken together, these results provide strong evidence that
hormonal changes during the course of the menstrual cycle have
significant effects on the individual brain structure. Furthermore,
the BrainAGE method demonstrated its potential to capture and
identify subtle short-term changes in individual brain structure.

Frontiers in Neurology | www.frontiersin.org 13 August 2019 | Volume 10 | Article 789155

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Franke and Gaser BrainAGE Review

FIGURE 4 | Change in BrainAGE scores during the menstrual cycle. BrainAGE

scores significantly decreased by −1.3 years (SD = 1.2) at time of ovulation

(i.e., t2-t1; *p < 0.05). The data are displayed as boxplots, containing the

values between the 25th and 75th percentiles of the samples, including the

median (red lines). Lines extending above and below each box symbolize data

within 1.5 times the interquartile range. The width of the boxes depends on the

sample size. Note: reduced sample size at t4. [Figure and legend reproduced

from Franke et al. (35), with permission from Elsevier, Amsterdam].

APPLICATIONS OF BRAINAGE MODEL
FOR BRAIN MATURATION DURING
CHILDHOOD AND ADOLESCENCE

Effects of Being Born Preterm on Individual
Brain Maturation
In a study with pre-term born adolescents, individual BrainAGE
scores of subjects being born before the end of the 27th week
of gestation (i.e., GA < 27; n = 10) were compared to those
being born after the end of the 29th week of gestation (i.e., GA
> 29; n = 15), applying the pre-established BrainAGE model
for brain maturation during childhood and adolescence (31).
At MRI scanning (1.5T), subjects were aged between 12 and
16 years. The results show significantly lower BrainAGE scores
by 1.6 years in the group of adolescents being born GA < 27
(−1.96± 0.68 years) as compared to subjects being bornGA> 29
(−0.40 ± 1.50 years), although the mean difference in gestation
age was only 5 weeks, thus probably implying delayed structural
brain maturation.

BRAINAGE IN MILD COGNITIVE
IMPAIRMENT AND ALZHEIMER’S DISEASE

Premature Brain Aging in AD
In a first proof-of-concept application, individual brain ages was
studied in a group of cognitively healthy control subjects (CTR;
n= 232) and a group of patients suffering from early Alzheimer’s
disease (AD; n = 102), applying the pre-established BrainAGE

model for brain aging during adulthood (32). For the AD group,
the mean BrainAGE score was +10 years (p < 0.001), implying
systematically advanced brain aging.

In another study that applied the pre-established BrainAGE
model for brain aging during adulthood to data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
baseline BrainAGE scores resulted in the following group means:
(1) −0.3 years in CTR (i.e., being stable in the diagnosis of
CTR during 36-months follow-up; n = 108), (2) −0.5 years in
sMCI (i.e., stable MCI; being stable in the diagnosis of mild
cognitive impairment (MCI) during 36-months follow-up; n
= 36), (3) 6.2 years in pMCI (i.e., progressive MCI; changing
diagnosis from MCI at baseline to AD during 36-months follow-
up; n = 112), and (4) 6.7 years in AD (i.e., being stable in the
diagnosis of AD during 36-months follow-up or until death; n =

150). Post-hoc t-tests resulted in significant BrainAGE differences
between CTR/sMCI vs. pMCI/AD groups (p < 0.05), suggesting
strong evidence for structural brain changes that show the
pattern of advanced brain aging in the pMCI and AD groups
(Figure 5A) (45).

Longitudinal Changes of Individual Brain
Aging in CTR, MCI, AD
Further analyses explored the individual brain aging trajectories
in CTR, sMCI, pMCI, and AD during a follow-up period of
up to 36 months (45). BrainAGE scores in pMCI and AD
significantly increased by 1.0 additional year in brain aging per
follow-up (chronological age) year in pMCI and 1.5 additional
years in brain aging per follow-up (chronological age) year in
AD, suggesting acceleration of individual brain aging during
the course of disease (Figure 5C). With pMCI and AD subjects
already showing advanced BrainAGE scores of about 6 to 7 years
at baseline assessment and mean follow-up durations of 2.6 years
for pMCI and 1.7 years for AD, mean BrainAGE scores at last
follow-up MRI scan accumulated to about 9 years at the last
MRI scan in both diagnostic groups (Figure 5B). In contrast,
mean BrainAGE scores in CTR and sMCI subjects did not change
during follow-up, thus suggesting no deviations from healthy
brain aging in both groups.

Additionally, advanced structural brain aging was related to
worse cognitive functioning and more severe clinical symptoms
during the 36 months follow-up period (baseline BrainAGE
scores: r = 0.39–0.46; BrainAGE scores at last follow-up visit: r
= 0.46–0.55). Moreover, individual changes in BrainAGE scores
were correlated with individual changes in cognitive test scores
and clinical severity (r = 0.27–0.33), denoting a significant
relationship between acceleration in individual brain aging and
prospective worsening of cognitive functioning, being most
pronounced in pMCI and AD subjects (45).

Effects of APOE-Genotype on Longitudinal
Changes in CTR, MCI, AD
Studying the effects of Apolipoprotein E (APOE) on individual
brain aging trajectories during a 36 months follow-up period,
neither APOE ε4-status, nor particular allelic isoforms had
a significant effect on baseline BrainAGE scores in the
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four diagnostic groups (36). However, individual brain aging
accelerated significantly faster in APOE ε4-carriers as compared
to APOE ε4-non-carriers in the pMCI and AD groups.
More specifically, in pMCI ε4-carriers individual brain aging
accelerated with the speed of 1.1 additional years per follow-up
year, whereas in pMCI ε4-non-carriers individual brain aging
accelerated with the speed of only about 0.6 years. Likewise, in

AD ε4-carriers individual brain aging accelerated with the speed
of 1.7 additional years per follow-up year, whereas in AD ε4-
non-carriers individual brain aging accelerated with the speed of
only about 0.9 years per follow-up year. In line with previous
results, deviations from normal brain aging trajectories were
not observed in healthy controls or sMCI subjects, neither in
ε4-carriers nor ε4-non-carriers (Figure 6).

FIGURE 5 | Longitudinal BrainAGE. Box plots of (A) baseline BrainAGE scores and (B) BrainAGE scores of last MRI scans for all diagnostic groups. Post-hoc t-tests

showed significant differences between NO/sMCI vs. pMCI/AD (*p < 0.05) at both time measurements. (C) Longitudinal changes in BrainAGE scores for NO, sMCI,

pMCI, and AD. Thin lines represent individual changes in BrainAGE over time; thick lines indicate estimated average changes for each group. Post-hoc t-tests showed

significant differences in the longitudinal BrainAGE changes between NO/sMCI vs. pMCI/AD (*p < 0.05). [Figures and legend reproduced from Franke et al. (45), with

permission from Hogrefe Publishing, Bern].
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FIGURE 6 | Longitudinal BrainAGE in APOE ε4-carriers and ε4-non-carriers.

BrainAGE scores at (A) baseline for APOE ε4-carriers [C] and non-carriers

[NC] in the 4 diagnostic groups NO, sMCI, pMCI, and AD. BrainAGE scores

differed significantly between diagnostic groups (p < 0.001). Post-hoc tests

showed significant differences between BrainAGE scores in NO as well as

sMCI from BrainAGE scores in pMCI as well as AD (p < 0.05). (B) Estimated

longitudinal changes in BrainAGE scores for the 4 diagnostic groups: NO (light

blue), sMCI (green), pMCI (red) and AD (blue), subdivided into APOE ε4 carriers

and non-carriers. Post-hoc t-tests resulted in significant differences for ε4

carriers and non-carriers as well as for NO/sMCI vs. pMCI/AD (p < 0.05).

[Figures and legend reproduced from Loewe et al. (36), permitted under the

Creative Commons Attribution License].

BRAINAGE-BASED PREDICTION OF
CONVERSION TO ALZHEIMER’S DISEASE

BrainAGE-Based Prediction of Conversion
From MCI to AD
In a study by Gaser et al. (37), the BrainAGE approach was
implemented to predict future conversion to AD at a single-
subject level up to 36 months in advance, based on structural
MRI. The sample included 195 participants diagnosed with MCI
at baseline, of whom 133 participants were diagnosed with AD

during 36 months of follow-up. The BrainAGE scores at baseline
examination differed significantly between the participants, who
did not convert to AD (i.e., sMCI; 0.7 years) and those, who
converted to AD within the 1st follow-up year (i.e., pMCI_fast;
8.7 years) as well as in 2nd or 3rd follow-up year (i.e., pMCI_slow;
5.6 year). A close relationship was shown between advanced
brain aging, prospective worsening of cognitive functioning,
and clinical disease severity. Predicting conversion from MCI
to AD by using baseline BrainAGE scores, post-test probability
increased to 90%. This gain in certainty based on the baseline
BrainAGE score was 22%, being the highest as compared to
baseline hippocampus volumes (right/left: 16%/17%), cognitive
scores (MMSE: 11%; CDR-SB: 0%; ADAS: 18%), and even state-
of-the-art CSF biomarkers (T-Tau: 4%, P-Tau: 0%, Aβ42: 0%,
Aβ42/P-Tau: 8%). Predicting future conversion to AD during the
1st follow-up year based on baseline BrainAGE scores showed an
accuracy of 81% (area under curve (AUC) in receiver-operating
characteristic (ROC) analysis = 0.83), being significantly more
accurate than conversion predictions based on chronological age,
hippocampus volumes, cognitive scores, and CSF biomarkers
(for exact numbers see Table 1). Furthermore, higher BrainAGE
scores were related to a higher risk of developing AD, i.e., each
additional year in BrainAGE score induced a 10% greater risk of
developing AD (hazard rate: 1.1, p < 0.001). More specifically, as
compared with participants in the lowest quartile of BrainAGE
scores, participants in the 2nd quartile had about the same risk of
developing AD (hazard ratio [HR]: 1.1; p= 0.68), those in the 3rd
quartile had a three times greater risk (HR: 3.1; p < 0.001), and
those in the 4th quartile had a more than four times greater risk
(HR: 4.7; p < 0.001) of developing AD (Figure 7A). BrainAGE
outperformed all other baseline measures.

Effects of APOE-Genotype on
BrainAGE-Based Prediction of Conversion
From MCI to AD
A study by Loewe et al. (36) additionally explored the
effects of the APOE-genotype on BrainAGE-based prediction of
conversion from MCI to AD during the 36 months of follow-up
period. Independent of APOE status, higher baseline BrainAGE
scores were associated with a higher risk of converting to AD,
with BrainAGE scores above median of 4.5 years resulting in
a nearly 4 times greater risk of converting to AD as compared
to BrainAGE scores below the median (HR: 3.8, p < 0.001).
Again, the Cox regression model based on baseline BrainAGE
scores outperformed all other models based on cognitive scores,
even when including the APOE ε4-status into the models
(Figure 7B). Also, predictions based on baseline BrainAGE
scores were significantly more accurate than predictions based on
chronological age or cognitive test scores (for exact numbers see
Table 1), especially in APOE ε4-carriers.

EFFECTS OF PSYCHIATRIC DISORDERS
ON BRAIN AGING

A recent study on the effects of psychiatric disorders on
individual brain aging analyzed data from schizophrenia (SZ)
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FIGURE 7 | Cumulative probability for MCI patients of remaining AD-free

based. (A) Kaplan-Meier survival curves based on Cox regression comparing

cumulative AD incidence in participants with MCI at baseline by BrainAGE

score quartiles (p for trend < 0.001). [Figure and legend reproduced from

Gaser et al. (37), permitted under the Creative Commons Attribution License.]

(B) Kaplan-Meier survival curves based on Cox regression comparing the

cumulative incidence of AD incidence in ε4-carriers [red] and ε4-non-carriers

[blue] with MCI at baseline, divided into patients with baseline BrainAGE scores

below the median (light lines) and above the median (dark lines). Duration of

follow-up is truncated at 1,250 days. [Figure and legend reproduced from

Loewe et al. (36), permitted under the Creative Commons Attribution License].

patients, bipolar disorder (BD) patients (mostly with previous
psychotic symptoms or episodes), as well as CTR participants,
aged 21–65 years. Significantly higher BrainAGE scores by
2.6 years were found in SZ, but not BD patients, indicating
advanced structural brain aging in SZ (Figure 8A). This study
thus suggested, that there might be an additional progressive
pathogenic component despite the conceptualization of SZ as a
neurodevelopmental disorder (38).

Interestingly, another study by Hajek et al. (39) in young
adult patients with early SZ as well as young adult patients with
early BD and young adults with familial risk for BD, aged 15–
35 years, resulted in comparable results. Specifically, participants
with first-episode SZ showed advanced BrainAGE of 2.6 years
as compared to their chronological age (p < 0.001), whereas
participants at familial risk for or in the early stages of BD
showed no differences between brain age and chronological age
as well as compared to controls (p = 0.70). Post-hoc analyses
additionally showed that BrainAGE was negatively associated
with GM volume diffusely throughout the brain (Figure 8C). The
authors concluded that the greater presence of neurostructural
antecedents may differentiate SZ from BD and that BrainAGE
could consequently aid in early differential diagnosis between BD
and SZ.

A third study in first-episode SZ investigated whether
comorbid obesity or dyslipidemia additionally contributes to
brain alterations (40). Comparable to previous studies, young
adult participants with first-episode SZ (n = 120; 18–35 years)
showed neurostructural alterations, which resulted in their brain
age exceeding their chronological age by 2.6 years (p < 0.001).
Furthermore, the diagnosis of first-episode SZ and obesity were
each additively associated with BrainAGE (p < 0.001), resulting
in BrainAGE scores being highest in obese participants with first-
episode SZ (3.8 years) and lowest in normal weight controls (−0.3
years; Figure 8B). However, neither dyslipidemia nor medical
treatment was associated with BrainAGE. In conclusion, this
study suggests obesity being an independent risk factor for diffuse
brain alterations, manifesting as advanced brain aging already
in the early course of SZ. Thus, targeting metabolic health and
intervening at the BMI level might potentially slow brain aging
in schizophrenic and psychotic patients.

EFFECTS OF INDIVIDUAL HEALTH ON
BRAIN AGING

Effects of Type 2 Diabetes Mellitus on
Brain Aging
In the study by Franke et al. (41), the BrainAGE method was
applied to a sample of participants with type 2 diabetes mellitus
(DM2) and CTR participants (mean age: 65 ± 8 years) in order
to quantify the effects of DM2 on individual brain aging in
cognitively healthy older adults. Participants with DM2 showed
significantly increased BrainAGE by 4.6 years as compared to age-
matched healthy CTRs (p < 0.001). Moreover, longer diabetes
duration was correlated to higher BrainAGE scores (r= 0.31, p<

0.05). Additionally, BrainAGE scores were also positively related
to fasting blood glucose (r = 0.34, p < 0.05), with a difference
of 5.5 years (p < 0.05) between participants with the lowest vs.
highest values.

Longitudinal Effects of Type 2 Diabetes
Mellitus on Brain Aging
Additionally, Franke et al. (41) further analyzed a small
subsample of DM2 and CTR participants that completed a
follow-up MRI scan 3.8 ± 1.5 years after their baseline
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FIGURE 8 | BrainAGE in psychiatric disorders. (A) Box-plot of BrainAGE scores in healthy controls (CTR), bipolar disorder patients (BPD), and schizophrenia patients

(SZ) with significant group effect (ANOVA, p = 0.009), and schizophrenia patients showing higher BrainAGE scores than either CTR or BPD. [Figure and legend

reproduced from Nenadic et al. (38), with permission from Elsevier, Amsterdam.] (B) Associations between BrainAGE scores and psychiatric diagnosis and metabolic

factors. Obesity was significantly associated with BrainAGE scores additively to the effect of first-episode schizophrenia (FES; age adjusted mean and 95%

confidence intervals). [Figure and legend reproduced from Kolenic et al. (40), with permission from Elsevier, Amsterdam.] (C) Negative association between BrainAGE

and gray matter volume in participants with first episodes of schizophrenia-spectrum disorders (P ≤ 0.001, cluster extent = 50). [Figure and legend from Hajek et al.

(39), with permission from Oxford University Press].

assessment. GM and WM volumes did not differ between both
groups or between time points. However, BrainAGE scores were
increasing by 0.2 years per follow-up year in participants with
DM2, but did not change in CTRs during follow-up. Specifically,
baseline BrainAGE scores in DM2 patients were increased by 5.1
years as compared to CTR (p < 0.05), they even increased by 0.8
years during follow-up (p < 0.05). Thus, brain aging in DM2 did
even more accelerate during follow-up.

Individual Health and Brain Aging
In addition to the effects of DM2 on individual brain aging
in non-demented older adults, the study by Franke et al. (41)
also explored the (additional) effects of lifestyle risk factors
(i.e., smoking duration, alcohol intake), individual health marker
(i.e., hypertension, TNFα), and common clinical outcomes (i.e.,
cognition, depression). The results revealed BrainAGE being also
correlated to smoking duration (r = 0.20, p < 0.01), alcohol
consumption (r = 0.24, p < 0.001), TNFα levels (r = 0.29, p
< 0.01), verbal fluency (r = −0.25, p < 0.01), and depression
(r = 0.23, p < 0.05), but not to hypertension (p = 0.9).

Furthermore, contrasting individuals with the lowest values (i.e.,
1st quartile) vs. those with the highest values in these measures
(i.e., 4th quartile) resulted in BrainAGE differences of 3.4 years
for smoking duration (p< 0.01), 4.1 years for alcohol intake (p <

0.01), 5.4 years for TNFα (p < 0.01), 5.6 years for verbal fluency
(p < 0.001), and 5.4 years for depression (p < 0.01; Figure 9A),
with all results being independent of diabetes duration, gender,
and age (41).

Gender-Specific Effects of Health
Characteristics on Brain Aging
In a study by Franke et al. (42), the effects of various physiological
and clinical markers of personal health on individual BrainAGE
scores were further explored and quantified, utilizing a sample of
cognitively unimpaired participants, aged 60–90 years.

In the male sample, the included health parameters explained
39% of the observed variance in BrainAGE (p< 0.001), with body
mass index (BMI), uric acid, γ-glutamyl-transferase (GGT), and
diastolic blood pressure (DBP) contributing most. Additional
quartile analyses revealed significant differences in BrainAGE
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FIGURE 9 | The effects of low vs. high levels in distinguished variables on BrainAGE. (A) Mean BrainAGE scores in participants with values in the 1st (plain squares)

and 4th (filled squares) quartiles of distinguished variables from the diabetes study. [Figure and legend reproduced from Franke et al. (41), permitted under the Creative

Commons Attribution License.] (B) Mean BrainAGE scores of cognitively healthy CTR men in the 1st vs. 4th quartiles of the most significant physiological and clinical

chemistry parameters (left panel). BrainAGE scores of cognitively healthy CTR men with “healthy” markers (i.e., values below the medians of BMI, DBP, GGT, and uric

acid; n = 9) vs. “risky” markers (i.e., values above the medians of BMI, DBP, GGT, and uric acid; n = 14; p < 0.05; right panel). [Figures and legend modified from

Franke et al. (42), permitted under the Creative Commons Attribution License.] (C) Mean BrainAGE scores of cognitively healthy CTR women in the 1st vs. 4th

quartiles of the most significant physiological and clinical chemistry parameters (left panel). BrainAGE scores of cognitively healthy CTR women with “healthy” markers

(i.e., values below the medians of GGT, ALT, AST, and values above the median of vitamin B12; n = 14) vs. “risky” clinical markers (i.e., values above the medians of

GGT, ALT, AST, and values below the median of vitamin B12; n = 13; p < 0.05; right panel). [Figures and legend modified from Franke et al. (42), permitted under the

Creative Commons Attribution License]. *p < 0.05; **p < 0.01.
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scores between the 1st vs. 4th quartile groups (Figure 9B, left
panel), resulting in 7.5 years for BMI (p < 0.001), 6.6 years for
DBP (p < 0.01), 7.5 years for GGT (p < 0.01), and 5.6 years for
uric acid (p < 0.05). When combining these four health markers,
the effects on individual BrainAGE even were compounded. In
detail, comparing individual brain ages of male subjects with
values below the medians vs. those with values above the medians
of BMI, DBP, GGT, and uric acid resulted in BrainAGE scores
of −8.0 vs. 6.7 years (p < 0.05; Figure 9B, right panel), thus
suggesting a strong relationship between individual health and
neurostructural aging in men.

In the female sample, the included health parameters
explained 32% of the observed variance in BrainAGE (p <

0.01), with GGT, aspartat-amino-transferase (AST), alanin-
amino-transferase (ALT), and vitamin B12 contributing most.
In addition, 1st vs. 4th quartile analyses resulted in differences
in BrainAGE (Figure 9C, left panel) of 6.6 years for GGT (p
< 0.01), 3.1 years for AST (p < 0.10), 5.1 years for ALT (p <

0.05), and 4.8 years for vitamin B12 (p < 0.05). Again, when
combining these four health markers, the effects on individual
BrainAGE were compounded, resulting in mean BrainAGE
scores of −1.0 vs. 3.8 years (p < 0.05; Figure 9C, right panel),
thus suggesting a mediocre relationship between individual
health and neurostructural aging in women.

PROTECTING INTERVENTIONS FOR
BRAIN AGING

Effects of Long-Term Meditation Practice
on Brain Aging
Exploring the effects of long-term meditation practice, the study
by Luders et al. (43) included 50 meditation practitioners with 4–
46 years of meditation experience (mean: 20 ± 11 years) and 50
non-meditating, age-matched CTRs. At age 50 years, BrainAGE
in meditation practitioners was about 7.5 years lower than in
CTRs (p < 0.05). Additionally, gender exerted a main effect,
with BrainAGE in females being lower by 3.4 years as compared
to males (p < 0.01). Furthermore, age-by-group interaction
was significant (p < 0.05), with follow-up analyses revealing
significant effects for BrainAGE in meditation practitioners. In
detail, for each year in chronological age over the age of 50
years, there was a significant decrease of 1 month and 22 days
in BrainAGE in the meditation practitioners (Figure 10).

Effects of Making Music on Brain Aging
Another study investigated the impact of music-making on
brain aging, including non-musicians, amateur musicians, and
professional musicians, aged 25 ± 4 years (44). All three groups
were closely matched regarding age, gender, education, and other
leisure activities. The “musician status” had a significant effect
on BrainAGE (p < 0.05; non-musicians: −0.5 ± 6.8 years;
amateur musicians: −4.5 ± 5.6 years; professional musicians:
−3.7 ± 6.6 years), suggesting a decelerating effect of making
music on individual brain aging. Post-hoc comparisons revealed
lower BrainAGE scores in amateur musicians (p < 0.05) and
professional musicians (p= 0.07) as compared to non-musicians.

While no significant correlation between years involved in
musical activities and BrainAGE score was found in amateur
musicians (r = −0.1, n.s.), a small correlation was found in
professional musicians (r = 0.3, p < 0.05). Thus, making music
seems to have a slowing effect on the aging of the brain, especially
for amateur musicians, while professional musicians revealed a
lower effect probably due to stress-related interferences.

GENDER-SPECIFIC EFFECTS OF
PRENATAL UNDERNUTRITION ON
INDIVIDUAL BRAIN AGING

Results From Studies in Humans
Utilizing a subsample of the Dutch famine birth cohort, a recent
study investigated the effects of fetal undernutrition during
early gestation on individual brain aging in late-life (85). The
participants of the MRI subsample were aged about 67 years at
the time of MRI acquisition, including individuals being born
before the famine inWinter 1944/45, individuals being prenatally
exposed to the famine during early gestation, and individuals
being conceived after the famine. In females, 28% of the observed
variance BrainAGE at age 67 years was explained by birth
characteristics, chronological age at MRI data acquisition, and
famine exposure (p < 0.05), whereas in males, 76% the observed
variance in BrainAGE was explained by the combination of birth
characteristics, late-life health characteristics, chronological age,
and famine exposure (p < 0.05). In the male sample, BrainAGE
scores differed significantly between the three groups (p <

0.05). In the female sample, BrainAGE scores did not differ
between the groups. Post-hoc tests in the male sample showed
advanced brain aging by 2.5 years (p < 0.05) in those who had
been prenatally exposed to the famine during early gestation,
whereas those who had been born before the famine showed
delayed brain aging by −1.8 years, resulting in a difference of
about 4 years (p < 0.05; Figure 11A). With regard to BrainAGE
scores there were no significant differences between males
and females (85).

Results From Studies in Non-human
Primates
An experimental study of maternal nutrient restriction (MNR)
in baboons also studied the effects of prenatal undernutrition on
structural brain aging based on the baboon-specific BrainAGE
model [see Species-specific BrainAGE model for baboons; (33)].
The experimental group included 11 subjects [5 females], with
prenatal undernutrition being induced by MNR of 30% during
the whole gestation. The CTR group included 12 same-aged
subjects [5 females]. Subjects were aged 4–7 years [human
equivalent to 14–24 years] at time of MRI data acquisition. In the
female MNR offspring, baboon-specific BrainAGE scores were
increased by 2.7 years, as compared to female CTR offspring
(p = 0.01; Figure 11B), strongly suggesting premature brain
aging resulting from prenatal undernutrition during the whole
gestation. There were no differences in BrainAGE scores between
the male MNR and CTR offspring (33).
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FIGURE 10 | Group-specific links between age-related measures. Scatterplots and regression lines were generated separately for (A) controls (circles) and (B)

meditation practitioners (triangles). The x-axes display the chronological age; the y-axes display the BrainAGE index (negative values indicate that participants’ brains

were estimated as younger than their chronological age, positive values indicate that participants’ brains were estimated as older). [Figures and legend reproduced

from Luders et al. (43), with permission from Elsevier].

FIGURE 11 | Effects of prenatal undernutrition on brain aging. (A) Dutch famine sample: BrainAGE scores in late adulthood differed significantly between the three

groups only in men (blue), but not in women (red). In men, post-hoc tests showed significantly increased scores in those with exposure to famine in early gestation (*p

< 0.05). [Figure and legend reproduced from Franke et al. (85), with permission from Elsevier, Amsterdam.] (B) Baboon sample: BrainAGE scores in late

adolescence/young adulthood differed significantly between female (red) CTR and offspring with maternal nutrient restriction (MNR) by 2.7 years (**p < 0.01), but not

between male (blue) CTR and MNR offspring. [Figure and legend reproduced from Franke et al. (33), permitted under the Creative Commons Attribution License].
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FIGURE 12 | Graphical summary of BrainAGE results in human studies. Dots, study means; Lines, longitudinal results; Blue, males; Red, females. [AD, Alzheimer’s

disease; BPD, bipolar disorder; CTR, control subjects; DM2, diabetes mellitus type 2; FES, first episode of schizophrenia-spectrum disorders; GA, gestational age;

MCI, mild cognitive impairment; pMCI, progressive MCI (i.e., convert from MCI to AD during follow-up); pMCI_fast, diagnosis was MCI at baseline, conversion to AD

within the first 12 months (without reversion to MCI or CTR at any available follow-up; pMCI_slow, diagnosis was MCI at baseline, conversion to AD was reported after

the first 12 months of follow-up (without reversion to MCI or CTR at any available follow-up); sMCI, stable MCI (i.e., diagnosis is MCI at all available time points, but at

least for 36 months); SZ, schizophrenia].

SUMMARY

In this review, we recapitulated studies that utilized the

innovative BrainAGE biomarker to capture individual age-

related brain structure, covering age ranges from childhood

until late adulthood (Figure 12 for a graphic summary of all

results in human studies). This predictive analytical method

provides a personalized biomarker of brain structure that
can help to elucidate und further examine the patterns and
mechanisms underlying individual differences in brain structure
and disease states. Because brain-age estimation is done on
an individual level, the BrainAGE biomarker might be very
well-suited for clinical use. The method is deriving individual
predictions from multivariate patterns and interactions between
voxels across the whole brain. In contrast to other structural
measures, such as regional or global volumes, cortical thickness,
or fractional anisotropy, BrainAGE scores are preserving the
complex patterns of subtle variations in brain structure and
their regional interactions. Additionally, reducing the complex

multivariate structural information from the whole brain into a
single metric resolves the problem of multiple comparisons and
enables a better detection of effects (7, 24).

According to the American Federation of Aging Research (86),
markers of aging should possess certain characteristics: They
should be able to determine biological aging, predict the rate
of aging, monitor the fundamental processes underlying aging,
and be measured accurately, efficiently, and repeatedly, without
harming the subject. Further, the markers need to be applicable
across the species for mechanistic examinations. However,
reproducibility and accuracy of some widely used biomarkers
of aging, like telomere length, vary widely due to differences
in extraction methods, laboratory-dependent methodological
details, and measurement methods (87–89). Thus, accuracy is
sometimes so low that measurement errors impede detection
of differences in telomere length (88). Although biomarkers of
aging should preferably be closely related to the mechanistic
aging process, development of markers of brain aging that are
related to brain function and structure is much more advanced
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and provide a considerably higher degree of correlation to
age and diagnostic specificity. Moreover, brain-aging markers
based on structural MRI show less inter-individual variability
and methodological variations of measurements across labs or
study sites. The superiority of phenotype-related markers may
be explained by a number of reasons: At present, it is easier
to determine phenotype because the processes underlying brain
aging are complex and not yet well-understood. This is all the
more so for the many compensatory pathways in the biological
environment by which the organism modulates or responds to
the process of aging. Aside from the complexity being present at
the cellular level, the organism can respond to an infinite number
of biological and environmental influences with only limited
changes to the phenotype. Consequently, establishing phenotype-
related biomarkers for structural brain maturation and aging
(e.g., BrainAGE) might probably be a better approach to assess
and longitudinally track individual brain aging trajectories.

In general, cognitive impairment is not due to just one disease.
Cognitive impairment could be caused by AD and other forms
of dementia, as well as several disease conditions, e.g., traumatic
brain injury, stroke, depression, or developmental disabilities.
Age-related cognitive decline is a growing concern in modern
societies since mental health is perceived as a major determinant
limiting quality of life during aging (90). Thus, biomarkers
measuring individual brain age and predicting individual
trajectory of cognitive decline are highly desirable. Approaches to
determine brain age based on structural neuroimaging data are
designed to indicate deviations in age-related changes in brain
structure by establishing reliable reference curves for healthy
brain aging and providing individual brain age measures, while
accounting for the multidimensional atrophy patterns in the
brain. Although multiple factors affect and modify individual
brain aging trajectories, normal brain aging follows coordinated
and sequenced patterns of GM and WM loss as well as CSF
expansion (21, 91, 92). Several studies applying the MRI-based
models for structural brain aging, have already demonstrated
profound relationships between premature brain aging and AD
disease severity and prospective decline of cognitive functions
(45), MCI and AD (93), conversion to AD (37), SZ (76, 94),
traumatic brain injury (73), HIV (95), chronic pain (96), DM2
(41), and elderly people suffering from undernutrition during
gestation (85), as well as being indicative of poorer physical
and mental fitness, higher allostatic load, as well as increased
mortality (97). Furthermore, significant associations between
individual brain aging and various health parameters, personal
lifestyle, or drug use (42, 98), levels of education and physical
activity (77), and meditation practice (43) have been shown.
However, although Brown et al. (59) showed a relation between
increased premature brain maturation and increased executive

intelligence measures in adolescents as well as Steffener et al.
(77) showing a correlation between delayed brain aging and
higher education levels in adults, this issue has to be explored in
more depth with well-characterized and well-tested samples with
regards to cognitive reserve and IQ levels.

In conclusion, the phenotypic approach presented here has
already established and validated reference curves for age-related
changes in brain structure. Furthermore, it also showed great

potential for easy application in multi-center studies. Thus,
this predictive analytical method provides an individualized
biomarker for determining the biological age of brain structure,
which also relates to cognitive function. This MRI-based marker
is able to predict individual aberrations in brain maturation
and aging as well as the occurrence of age-related cognitive
decline and age-related neurodegenerative diseases. This
review has recapitulated evidence that neuroimaging data
can be used to establish biomarkers for brain aging, which
has already been confirmed as providing vital prognostic
information. In future, combining different biomarkers of
structural and functional brain age, like the assessment of
age-related changes of parameter estimates based on the
“theory of visual attention” (99–103), may enhance sensitivity
and specificity for detecting aberrations in biological age
compared to the chronological age in various neurological and
psychiatric conditions and in neurodegenerative diseases.
The important prognostic information included in the
estimation of the structural and functional brain age may
aid in developing personalized neuroprotective treatments
and interventions.
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Objective: To evaluate the cerebral hemodynamic variations in patients with unilateral

carotid artery stenosis and contralateral carotid occlusion (CCO) in hours following

carotid artery stenting (CAS) by transcranial Doppler (TCD) or transcranial color-code

Doppler (TCCD).

Methods: Sixty-five consecutive patients who underwent unilateral CAS were enrolled.

Among them, 14 patients had ipsilateral severe stenosis and CCO (CCO group) while the

other 51 patients had only unilateral severe carotid stenosis without CCO (UCS group).

All patients underwent TCD or TCCD monitoring before, at 1 and 3 h after CAS. We

monitored bilateral middle cerebral artery (MCA) peak systolic velocity (PSV), pulsatility

index (PI), and blood pressure (BP), and compared that data between two groups.

Results: In UCS group, ipsilateral MCA PSV increased relative to baseline at 1 h (96± 30

vs. 85± 26 cm/s, 15%, P < 0.001) and 3 h (97± 29 vs. 85± 26 cm/s, 17%, P < 0.001)

following CAS. Significant PI increases were observed at 1 and 3 h following CAS on the

ipsilateral side. In CCO group, ipsilateral MCA PSV increased relative to baseline at 1 h

(111 ± 30 vs. 83 ± 26 cm/s, 35%, P < 0.001) and 3 h (107 ± 28 vs. 83 ± 26 cm/s,

32%, P <0.001) following CAS. The magnitude of ipsilateral MCA PSV increase was

significantly higher in CCO group compared with UCS group at 1 h (P = 0.002) and 3 h

(P = 0.024) following CAS, while BP similarly decreased between the two groups. On

the contralateral side, significant MCA PSV increases were observed following CAS in

CCO group but not in UCS group. Bilateral MCA PSV increases were higher in patients

with a stenosis degree of ≥90% than in patients with stenosis degree of 70–89% only in

CCO group.
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Conclusion: The ipsilateral MCA PSV and PI increase moderately in the initial hours

after unilateral CAS in patients without CCO. In patients with CCO, the ipsilateral, and

contralateral MCA PSV increase significantly in the early stage following CAS. CCO is a

factor of the increased blood flow velocity in ipsilateral MCA after unilateral CAS.

Keywords: carotid artery stenosis, contralateral carotid occlusion, carotid artery stenting, transcranial Doppler,

transcranial color-code Doppler, cerebral hemodynamics, early stage

INTRODUCTION

Contralateral carotid artery occlusion (CCO) was found in 5–
15% of carotid artery stenosis (CS) patients (1–4). According
to the North American Symptomatic Carotid Endarterectomy
Trial (NASCET), CCO has been demonstrated as an independent
risk factor for carotid endarterectomy CEA (1, 2, 5, 6). While,
carotid artery stenting (CAS) is suggested as an alternative for
the treatment of patients with CS and CCO (2, 3). A recent
meta-analysis about cerebral hyperperfusion syndrome (CHS)
encouraged further investigation on cerebral hemodynamic
monitoring (7). Besides, a crucial risk factor of periprocedural
stroke following CAS is hemodynamic disturbance (HD), which
often occurs within 6 h after CAS (8–11). However, only a few
studies have evaluated cerebral hemodynamic changes in the
early stage following CAS in patients with CCO. Transcranial
Doppler (TCD) and transcranial color-code Doppler (TCCD)
are bedside examinations and can be used for routine clinical
monitoring of cerebral hemodynamic changes immediately after
CAS (12). Our study used TCD and TCCD to assess the
immediate effect on cerebral hemodynamics after CAS in patients
with and without CCO.

MATERIALS AND METHODS

Subjects
All patients who underwent CAS in Department of
Interventional Radiology and Vascular Surgery at Peking
University First Hospital from Jan, 2013 to Dec, 2018 were
enrolled in this study. One hundred forty-eight patients
underwent CAS, of whom 27 patients had no bone window.
TCD were performed in 121 patients and 56 of them were
excluded because of simultaneous bilateral carotid stenting
(nine patients), simultaneous vertebral or subclavian artery
stenting (16 patients), carotid artery near occlusion (20 patients),
or moderate-severe contralateral carotid artery stenosis (11
patients). Carotid stenosis was diagnosed using ultrasound
and computed tomography angiography (CTA), and finally
Four-vessel angiography. Among all the remaining 65 patients,
14 patients were diagnosed severe CS with CCO, 51 patients had
severe unilateral CS.

CAS Protocol
CAS was performed in symptomatic (at least 2 weeks after
onset of symptom) or asymptomatic patients with>70% stenosis
(NASCET criteria).Written informed consent was obtained from
all of the patients that underwent CAS. At least 72 h before the

procedure, all patients received antithrombotic premedication
(100mg aspirin and 75mg clopidogrel). Transbrachial approach
was used in one patient because of aortic-iliac artery occlusion.
Transfemoral approach with local anesthesia using 2% lidocaine
was used in all the other cases. Distal embolic protection device
was used in all the patients. We routinely applied pre-dilation
with a 4.0–5.0mm balloon catheter (Boston Scientific, Natick,
MA), and selected the appropriate stent device (Precise RX,
Cordis Endovascular; Acculink, Abbott Vascular; and Carotid
Wallstent, Boston Scientific) according to the anatomic location
and the diameter of the artery at the operater’s discretion. We
would not perform post-dilation unless the residual stenosis
was more than 30%. The completion angiogram of carotid
artery and distal cerebral vasculature was performed after stent
deployment (Figure 1).

Transcranial Doppler
Examination was performed using a 2-MHz probe connected to
a TCD machine (TC2021, EME, Companion III, Germany) or a
transcranial color-code Doppler (TCCD) machine (GE LOGIOe)
fitted with 2.0-MHz sector array transducer. The ipsilateral
and/or contralateral middle cerebral artery (MCA) was insonated
through the temporal window at a depth of 46–60mm. We
recorded peak systolic velocity (PSV) and pulsatility index (PI)
at baseline on the day before CAS, and again at about 1 and
3 h following the CAS procedure. To maintain a constant depth,
angle of insonation, and an original probe-skin contact point
(Figure 1), all TCD or TCCD examinations in the patients were
performed by an identical physician. Post-CAS hyperperfusion
was defined as the MCA-PSV exceeded 2-fold of the pre-CAS
TCD measurement (13, 14).

Blood Pressure Control
Blood pressure (BP) was monitored and controlled throughout
the periprocedure period. Before balloon predilation, systolic BP
was controlled below 160 mmHg. After predilation and stent
deployment, systolic blood pressure was preliminarily controlled
between 90 and 140 mmHg for unilateral CAS patients. If
potential hyperperfusion or hypoperfusion were detected by
the first TCD, BP would be further adjusted. Hemodynamic
depression (HD) was defined as periprocedural hypotension (BP
< 90/60 mmHg) or bradycardia (heart rate < 50 beats/min).
Persistant HD was defined as HD persisted for at least 1 h.
Dopamine or/and atropine were used for HD patients. Urapidil
or/and nicardipine were administered intravenously to lower BP,
which was measured during the examination using a standard
BP cuff.
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FIGURE 1 | A patient with carotid artery stenosis and contralateral carotid occlusion (CCO) underwent carotid artery stenosis (CAS), and periprocedural transcranial

color-code Doppler (TCCD) monitoring. (A) Digital subtraction angiography (DSA) showing right internal carotid artery (ICA) occlusion (black arrow) and right external

carotid artery supplying right middle cerebral artery (MCA) via collateral circulation of ophthalmic artery. (B) DSA showing left ICA severe stenosis (arrow). (C) DSA

showing left ICA supplying right anterior cerebral artery (ACA) via anterior communicating artery. (D) TCCD before CAS showing left MCA peak systolic velocity (PSV)

was 94 cm/s, while systolic blood pressure (SBP) was 155 mmHg. (E) DSA showing left ICA following CAS. (F) DSA showing left ICA supplying right ACA and MCA

via anterior communicating artery following CAS. (G) TCCD at 1 h after CAS maintained a constant depth, angle of insonation, and an original probe-skin contact

point, showing left MCA PSV was 133 cm/s, while SBP was 130 mmHg.

Statistical Analysis
We performed all statistical analyses using IBM SPSS software
(version 23.0). TCD data are presented as mean ± standard
deviation (SD). PSV and PI values the day before CAS,
and at both 1 and 3 h following CAS were evaluated using
paired t-test, after repeated measure ANOVA. Bonferroni
correction was used, and statistical significance was considered
to be P < 0.05/3 (=0.0167). Variations between groups were
compared using independent t-test and P < 0.05 was considered
statistically significant.

Study Approval
The protocol for this study was approved by the institutional
review board at the Peking University First Hospital in
accordance with the Chinese clinical research ethics guidelines.
All data were obtained from the Peking University First Hospital,
Department of Interventional Radiology and Vascular Surgery,
after anonymization.

RESULTS

All CAS procedures were successful and without adverse events.
Among the 65 patients enrolled, 14 patients had ipsilateral severe
stenosis and CCO (CCO group), the other 51 patients had only
unilateral severe carotid stenosis without CCO (UCS group).
The mean (±SD) age of UCS group was 66 ± 8 years. Of these
patients, 24 (47%) were symptomatic, while the remaining 27

patients (53%) were asymptomatic. Forty-two patients (82%) of
UCS group weremale. The average degree of ICA stenosis of UCS
group was 82 ± 8%. The mean (±SD) age of CCO group was 67
± 7 years. Of these patients, 10 (71%) were symptomatic, while
the remaining four patients (29%) were asymptomatic. Twelve
patients (86%) of CCO group were male. The average degree of
ICA stenosis of CCO group was 81± 11%. Angiography showed
opened anterior communicating branch in all the CCO patients.
Contralateral MCA was supplied by anterior communicating
branch in four patients before CAS and in six patients after CAS.

The demographic data are shown in Table 1. Three different
types of stent were used in both groups. There were no instances
of severe hyperperfusion syndrome, renal failure, deaths or
disabling strokes in any of the participants in themonth following
CAS. Three patients in UCS group had minor stroke in the
early phase following CAS. Four patients in UCS group and two
patients in CCO group had persistent HD, which we treated with
dopamine during the 24-h period following CAS (Table 1). In
both groups, the mean BP decreased after CAS. The mean BP
values did not significantly differ between the two groups, either
at baseline or post-CAS.

TCD examinations were performed in all the 65 patients
before CAS, and at 1 and 3 h after CAS. Among them, three
patients in UCS group and two patients in CCO group received
only ipsilateral TCD examination because of unilateral absence
of bone window, or contralateral MCA occlusion. In UCS group,
at 1 h after CAS, TCD showed a significant PSV increase in the

Frontiers in Neurology | www.frontiersin.org 3 September 2019 | Volume 10 | Article 958171

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yan et al. Hemodynamics After CAS for CCO

TABLE 1 | Patient demographic, stents and outcome data.

Variable UCS group (n = 51) CCO group (n = 14) P

Male 42 (82%) 12 (86%) 0.562

Age≥ 70 years 19 (37%) 5 (36%) 0.916

Hypertension 41 (80%) 9 (64%) 0.205

Diabetes mellitus 23 (45%) 3 (21%) 0.096

Smoke 32 (63%) 10 (71%) 0.394

Asymptomatic 27 (53%) 4 (29%) 0.093

Hyperlipidemia 42 (82%) 11 (79%) 0.711

Different stent:

Precise RX 36 (70%) 11 (79%) 0.411

Wallstent 6 (12%) 1 (7%) 0.528

Acculink 9 (18%) 3 (14%) 0.506

Outcome:

Stenosis degree ≥ 90% 19 (37%) 5 (36%) 0.916

Pre-CAS iMCA PSV (cm/s) 85 ± 26 83 ± 26 0.829

Transient or Permanent HD 16 (31%) 5 (36%) 0.497

Transient HD 12 (24%) 3 (21%) 0.590

Persistent HD 4 (8%) 2 (14%) 0.384

Minor stroke 3 (6%) 0 0.477

Hyperperfusion syndrome 0 0

Myocardial infarction, renal

failure, or other events

0 0

NO, near occlusion; ICA, internal carotid artery; iMCA, ipsilateral middle cerebral artery;

PSV, peak systolic velocity; CAS, carotid artery stenting; HD, hemodynamic depression.

P < 0.05 was considered statistically significant.

TABLE 2 | Parameters of hemodynamic changes in UCS group.

Pre-CAS 1h post-CAS P 3h post-CAS P

BP (mm Hg) 143 ± 16 116 ± 12 <0.001 117 ± 12 <0.001

iMCA PSV (cm/s) 85 ± 26 96 ± 30 <0.001 97 ± 29 <0.001

iMCA PI 0.85 ± 0.16 0.94 ± 0.24 0.003 1.0 ± 0.25 <0.001

cMCA PSV (cm/s) 89 ± 24 90 ± 27 0.631 90 ± 26 0.395

cMCA PI 0.93 ± 0.15 0.93 ± 0.21 0.953 0.95 ± 0.19 0.234

CAS, carotid artery stenting; BP, blood pressure; iMCA, ipsilateral middle cerebral artery;

PSV, peak systolic velocity; PI, pulsatility index; cMCA, contralateral middle cerebral artery.

P < 0.017 (after Bonferroni correction) was considered statistically significant.

ipsilateral MCA (from 85± 26 to 96± 30 cm/s, 15%, P < 0.001).
The average PI also increased in the ipsilateral MCA (from 0.85
± 0.16 to 0.94 ± 0.24, P = 0.003). At 3 h after CAS, the PSV
in the ipsilateral MCA was also significantly increased compared
to the value before CAS (from 85 ± 26 to 97 ± 29 cm/s, 17%,
P <0.001), but similar to the value 1 h after CAS (P = 0.514). A
significant PI increase was observed 3 h after CAS (from 0.85 ±

0.16 to 1.0± 0.25, P< 0.001). On the contralateral side, there was
no significant PSV or PI increase in the MCA for either 1 or 3 h
after CAS (Table 2).

In CCO group, at 1 h after CAS, TCD showed a significant
PSV increase in the ipsilateral MCA (from 83 ± 26 to 111 ±

30 cm/s, 35%, P < 0.001). At 3 h after CAS, the PSV value in
the ipsilateral MCA was also significantly increased compared to
prior CAS (from 83 ± 26 to 107 ± 28 cm/s, 32%, P < 0.001),

TABLE 3 | Parameters of hemodynamic changes in CCO group.

Pre-CAS 1h post-CAS P 3h post-CAS P

BP (mm Hg) 148 ± 12 125 ± 17 <0.001 122 ± 19 <0.001

iMCA PSV (cm/s) 83 ± 26 111 ± 30 <0.001 107 ± 28 <0.001

iMCA PI 0.85 ± 0.16 0.90 ± 0.17 0.191 0.92 ± 0.19 <0.097

cMCA PSV (cm/s) 69 ± 16 90 ± 29 0.001 86 ± 29 0.005

cMCA PI 0.74 ± 0.13 0.77 ± 0.15 0.231 0.75 ± 0.13 0.634

CAS, carotid artery stenting; BP, blood pressure; iMCA, ipsilateral middle cerebral artery;

PSV, peak systolic velocity; PI, pulsatility index; cMCA, contralateral middle cerebral artery.

P < 0.017 (after Bonferroni correction) was considered statistically significant.

TABLE 4 | Increase rate of ipsilateral MCA PSV following CAS in UCS group and

CCO group.

1h post-CAS 3h post-CAS

Average increase rate BP iMCA PSV BP iMCA PSV

UCS group (n = 51) −18% 15% −18% 17%

CCO group (n = 14) −15% 35% −17% 32%

P 0.331 0.002 0.930 0.024

CCO group ≥ 90% (n = 5) −17% 53% −17% 52%

CCO group < 90% (n = 9) −14% 26% −18% 21%

P 0.656 0.004 0.927 0.018

UCS group ≥ 90% (n = 19) −18% 22% −17% 24%

UCS group < 90% (n = 32) −19% 11% −18% 12%

P 0.715 0.089 0.753 0.056

CAS, carotid artery stenting; BP, blood pressure; iMCA, ipsilateral middle cerebral artery;

PSV, peak systolic velocity; PI, pulsatility index.

P < 0.05 was considered statistically significant.

but similar to the value at 1 h after CAS (P = 0.144). There was
no significant PI increase in the ipsilateral MCA for either 1 or
3 h after CAS. On the contralateral side, the MCA PSV increased
in 1 h after CAS (69 ± 16 vs. 90 ± 29, 28%, P = 0.001) and 3 h
after CAS (69 ± 16 vs. 86 ± 29, 22%, P = 0.005) compared with
the value before CAS. There was no significant PI increase in the
contralateral MCA for either 1 or 3 h after CAS (Table 3).

The increase rate of BP had no significant difference at 1 or
3 h after CAS between the two groups. There was no significant
difference of the average pre-CAS ipsilateral MCA PSV between
the two groups (P = 0. 829). The magnitude of ipsilateral MCA
PSV increases in CCO group significantly exceeded that observed
in UCS group at both 1 h after CAS (35 vs. 15%, P = 0.002), and
3 h after CAS (32 vs. 17%, P = 0.024; Table 4). In CCO group,
five patients had a ≥90% stenosis degree. In these patients, the
magnitude of ipsilateral MCA PSV increase was 53 ± 17% at
1 h and 52 ± 21% at 3 h after CAS, significantly higher than
the magnitude of 26 ± 11% (P = 0.004) at 1 h and 21 ± 19%
(P = 0.018) at 3 h in the other nine patients. In UCS group, at 1
or 3 h after CAS, the magnitude of ipsilateral MCA PSV increase
had no statistically significant difference whether stenosis degree
was≥90% (Table 4). In both groups, the magnitude of ipsilateral
MCA PSV increase had no significant difference with the varied
type of Willis circle, whether the patients were ≥70 years old or
whether the patients were asymptomatic (data not shown).
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DISCUSSION

Patients with CS and CCO carry a higher incidence of
complication following CEA and CAS (15). A previous meta-
analysis recommended CAS, rather than CEA in patients with
CCO (2). HD and CHS are two different complications of CAS
related to cerebral hemodynamic changes, bothmay occur within
6 h following CAS (16–19). However, only few studies have
focused on cerebral hemodynamic changes in the early stage
following CAS, especially in the patients with CCO. The present
research clarified the changes of bilateral MCA PSV in the early
stage after unilateral CAS in patients with or without CCO.

A previous research demonstrated an about 20% increase of
the ipsilateral MCA PSV in the early stage following CAS (12).
However, sample in that research had some extent heterogeneity.
The present research excluded several potential risk factors,
such as simultaneous bilateral carotid stenting, simultaneous
vertebral or subclavian artery stenting, carotid artery near
occlusion, or contralateral carotid artery stenosis (12, 20).
Therefore, the variation of cerebral blood flow velocity after
CAS in patients with simple unilateral carotid artery stenosis
could be observed for the first time. Meanwhile, the influence
of CCO on MCA PSV change after unilateral CAS could be
demonstrated more clearly. Concerning the changes of PSV, the
previous research stated that there were no significant differences
between patients with ≥90% stenosis and those with 70–89%
stenosis. The present research shows that although in UCS
group the increment in ipsilateral MCA PSV in patients with
≥90% stenosis is greater, there is still no statistical significance.
In CCO group, however, it is observed that ipsilateral MCA
PSV increased significantly higher in patients with a ≥90%
stenosis, which might be attributed to the impaired cerebral
hemodynamic autoregulation.

Following CAS, there is a 3.1–6.8% risk of CHS, that most
likely occurs in the early post-procedural period (7). Abou-Chebl
et al. (11) has suggested that patients with severe bilateral carotid
stenosis were predisposed to CHS, and patients with CCO should
require more intensive hemodynamic monitoring after CAS.
However, in the present study, no patient had more than 100%
increase of the MCA PSV following the procedure and none
CHS occurred. The increase of ipsilateral MCA PSV was at an
average of 35 and 32% at 1 and 3 h following CAS, respectively.
The maximum magnitude of MCA PSV increase was 84% in the
ipsilateral side and 67% in the contralateral side. These results
suggest that for patients with CCO, under a strict BP control and
cerebral hemodynamic monitoring after CAS, the risk for CHS
can be reduced.

Regional cerebral blood flow is proportional to blood flow
velocity in the MCA (21, 22). A previous research measured
cerebral blood flow by SPECT within 2 h following CAS in
patients with CCO (23). In that research, no significant difference
was found in resting cerebral blood flow in both hemispheres
immediately after CAS, which differed from the present research.
Besides, the previous research did not include comparisons with
a control group. To our knowledge, there are no other study
focus on the immediate cerebral hemodynamic changes in CCO
patients following CAS.

In the control group, there were only a little bit more than
15% average increase of ipsilateral MCA PSV at 1 and 3 h
following procedure, perhaps due to a relatively normal cerebral
autoregulation (24). In this article, we analyzed not only PSV but
PI. Increase of PI indicates that the waveform becomes steeper.
The PI is not dependent solely on cerebrovascular resistance but
a product of the interplay between cerebral perfusion pressure,
pulse amplitude of arterial pressure, cerebrovascular resistance
and compliance of the cerebral arterial bed as well as the heart
rate (25). Notably, PI increased significantly in the ipsilateral
MCA following CAS in UCS group. This finding reveals that
vasoconstriction of resistance arterioles can accommodate the
substantially increased MCA blood flow that follows CAS
(18, 25, 26). It is probably because CCO could reduce the cerebral
vascular reactivity and the cerebral perfusion reserve (27–29), no
PI changes were found in CCO group. Hence the increases of
bilateral MCA PSV as well as the cerebral blood was greater than
that of patients without CCO.

The present study did not include some parameters such
as intracranial pressure or cerebrovascular reactivity. Only to
measure the MCA velocities can facilitate the TCD examination
and ensure the data of all the patients could be collected
on time. Some medications, such as statins, vasopressor or
antihypertensives, may have an impact on cerebral circulation
(30). The potential confounding role of these medications will be
studied in future researches. There were two limitations in the
present research. First was the limited sample size. The present
research observed greater increases of ipsilateral MCA PSV in
patients with an original stenosis degree of ≥90%. However, it
needs further confirmation by future large sample study. The
second limitation was the gender imbalance. This was because
TCD or TCCD were not feasible in patients with a poor temporal
window, and female accounted for a high incidence.

CONCLUSIONS

In patients with unilateral severe carotid stenosis and without
CCO, the ipsilateral MCA PSV and PI increase moderately in
the initial hours after unilateral CAS. In patients with CCO, the
ipsilateral and contralateral MCA PSV significantly increase in
the early stage following CAS. The MCA PSV of both sides may
increase more in CCO patients with an original stenosis degree
of ≥90%. CCO is a factor of the increased blood flow velocity in
ipsilateral MCA after unilateral CAS.
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