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Editorial on the Research Topic

Advances in Musculoskeletal Modeling and Their Application to Neurorehabilitation

INTRODUCTION

Neuromusculoskeletal (NMS) modeling has the potential to serve as a valuable tool for informing
the design of assistive devices or neurorehabilitation interventions. For these applications, an NMS
model must be able to represent the relevant unique characteristics of the targeted subject, e.g.,
a person with a neurological disorder. Motion predictive simulations, by considering the task
constraints and the neuromuscular requirements, can predict novel movements. Such simulation
methods must ideally capture the features and functionalities of the motor control system to
mimic human neuromechanical behavior. If a simulation performed with an NMS model fails
to accurately predict how a person moves or how that person controls his or her muscles
during movement, it will have limited utility for informing device and intervention design.
Although, in the past few years, several studies have developed NMS models and techniques to
anticipate responses to interventions, e.g., orthopedic surgery, orthoses, or neurorehabilitation, a
well-established rigorous framework that can accurately predict neuromusculoskeletal dynamics
of healthy and pathologic individuals is still lacking in the research community. Even after the
published papers of this topic, there is a strong need for greater research effort in the area of NMS
model personalization and personalized simulations of treatment design.

One of the emerging application areas for personalized NMS models is in the design of assistive
devices for rehabilitation and augmentation purposes. Integrated human and device interaction
models would save time and cost of multiple prototyping steps in both the design and evaluation
phases of such devices. Bio-fidelic predictive NMS models could delineate crucial parameters of
a design and elucidate the effect of a device conceptual design on an individual’s kinematics and
kinetics. Therefore, the design process will become human-centered in which a design optimization
step includes all important factors, such as mechanical, electrical, material, as well as physiological.
The perspective of this Research Topic was to cover the following topics by taking advantage of
neuromusculoskeletal models:
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1. New methods and approaches in the field of musculoskeletal
modeling and simulation, including motion prediction,
neural control, central pattern generators, subject-
robot co-simulations, foot-ground contact dynamics,
subject-specific simulations

2. Simulated effects of neurological conditions such as stroke,
spinal cord injury, and cerebral palsy on neural control and
muscle properties

3. Design of human-centered assistive devices such as
prostheses, orthoses, and hard and soft exoskeletons by
investigating properties such as kinematic alignment, changes
in subject movement pattern, strap and joint reaction forces,
and metabolic energy consumption

4. Studies of human-robot interaction.

The 10 contributions to this Research Topic provide a wide
range of perspectives and methodologies. These high-quality
contributions highlight the present potential of a community
of researchers interested in an interdisciplinary view of
the interaction between neuromusculoskeletal modeling and
rehabilitation science to compensate, augment, and restore
human function.

THE CONTRIBUTIONS

Many contributions to this topic combine experimental
data with theoretical approaches that were directly related
to neurorehabilitation (Pitto et al.; Romero-Sánchez et al.;
Sauder et al.) or can provide a better understanding of
human neuromechanics for future treatment design (Millard
and Mombaur; Seth et al.; Shuman et al.; Moissenet et
al.). Experimental human data spanned kinematics from
surface markers, ground reaction forces from force plates or
instrumented treadmills, and extensive fine wire and surface
EMG for muscles. Theoretical techniques ranged from kinematic
synergy analyses (Tang et al.) to highly complex predictive
neuromusculoskeletal optimal control problems (Sauder et
al.; Pitto et al.). Most of the contributions included a form of
musculoskeletal modeling/simulation, either by developing a
new method (Sauder et al.) or adapting a previously developed
technique (.Moissenet et al.; Tang et al.). The assistive devices in
the contributed studies ranged from passive orthoses (Michaud
et al.) to hybrid active exoskeletons (Romero-Sánchez et al.).
There was also a narrative review paper that presented interesting
ideas and concepts for the next generation of neuroprostheses
(Pizzolato et al.). Overall, the contributions to this Research
Topic reveal the wide range of research being conducted in
neuromusculoskeletal (NMS) modeling and the essential role it
can play in the future of neurorehabilitation.

Below, an overview is provided of the scientific contributions
to this Research Topic, which are listed within two
main categories:

1) Development of new NMS modeling methods that
contribute to the future of rehabilitation treatment design

2) Application of existing NMS modeling methods to
rehabilitation treatment design.

DEVELOPMENT OF NEW NMS MODELING

METHODS THAT CONTRIBUTE TO THE

FUTURE OF REHABILITATION

TREATMENT DESIGN

There are two important challenges in using NMS models in
the design process of neurorehabilitation. The first challenge
is to personalize generic NMS models to the relevant unique
characteristics of the patient, including personalization of
the neuromechanical impairment. The second challenge is
to simulate the effect of different treatment scenarios on
movement performance. Two contributions to this topic (Sauder
et al.; Pitto et al.) address these two challenges. Both studies
used OpenSim as their musculoskeletal modeling package,
modeled neural coordination through the concept of muscle
synergies, used pre-treatment data for model personalization,
and assumed that some components of the neural coordination
stay the same after treatment. Sauder et al. improved a
model personalization and treatment optimization pipeline for
enhancing the efficiency of fast functional electrical stimulation.
Optimal control simulations showed that optimizing muscle
selection and stimulation timing results in a 23% improvement
in the gait symmetry of an individual post-stroke compared to
the simulated results from common clinical practice. Pitto et al.
developed a simulation pipeline to explore the effect of treatment
by changing muscle and geometry parameters in cerebral
palsy children. A graphical user interface was also developed
for modifying the musculoskeletal properties according to the
surgical plan. Both studies are new doors to the use of predictive
NMS modeling for the design and evaluation of treatment.

Foot-ground contact model is an essential element in
predictive NMS models of gait. Although the foot-ground
interaction is often modeled as a grid of viscoelastic elements,
Millard and Mombaur developed and evaluated two rigid foot-
ground contact models that have potential advantages, e.g.,
model calibration is reduced to a geometric problem, and the
numerical stiffness of the equations of motion is similar in both
swing and stance phase. Both the ellipse-foot and the double-
circle-foot models were evaluated by analyzing ankle angle and
the center-of-pressure (CoP) kinematics, accuracy of kinematics
in a tracking gait problem, and changes in kinematics during a
predicted gait problem. Each model showed pros and cons with
the overall capability for use in predictive gait simulations.

To examine muscle function and to predict movement
reliably, one must use physiologically plausible musculoskeletal
models. The upper extremity is usually affected in neurological
impairments such as stroke, and the shoulder is one of the key
joints possessing a complex structure as well as a load-carrying
role. Seth et al. developed a novel shoulder model and looked at
the contribution of work and movement of muscles to shoulder
movement. Previous models of the human shoulder had coupled
scapula movement to humeral movement. To elucidate the roles
of the thoracoscapular muscles, Seth et al. developed a shoulder
model that represents the scapulothoracic joint accurately and
includes scapular muscles. The authors also showed that the
large thoracoscapular muscles do more work than glenohumeral
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muscles during arm-elevation tasks. Therefore, this model, which
along with the experimental data is freely available on SimTK.org,
is expected to be applied by researchers, including NMSmodelers
designing treatments for the shoulder joint.

One of the challenges in the design of active assistive devices
is the harmony between the device actuators and the individual’s
desired natural movement. Romero-Sánchez et al. developed a
theoretical framework and a computational model for a hybrid
orthosis—also referred to as a rehabilitation exoskeleton, which
consists of electromechanical actuation and functional electrical
stimulation (FES). The main challenge in these devices is to
coordinate and make transparent the two actuators governing
each degree of freedom so that their actuation profiles lead
to a natural motion, e.g., gait. Romero-Sánchez et al. included
muscular dynamics to attain higher neurophysiological fidelity
for the rehabilitation purpose for which these devices are
designed. This integrated approach estimates the actuation
profiles so that the reduction in peak muscle force due to
FES-inducing fatigue is compensated for a hybrid hip-knee-
ankle-orthosis as the assistive device. It is hoped that the
study’s results and theoretical workflow will contribute to the
design of more physiological hybrid exoskeletons that can
maintain rehabilitative function of the device by improving its
actuation control.

APPLICATION OF EXISTING NMS

MODELING METHODS TO

REHABILITATION TREATMENT DESIGN

Moissenet et al. established a computational approach
suitable for tracking simulations of healthy and pathological
gait. The approach can track experimental data while
also allowing for simulation of different variations in
the model, e.g., pathology or treatment. A previously
developed EMG-marker tracking optimization method was
adapted to a lower extremity musculoskeletal model during
equinus gait. This dynamic optimization approach tracked
experimental marker trajectory, EMG signal, and ground
reaction force data. Although this preliminary study was
the authors’ first step toward their treatment modeling
framework, this approach showed its potential to be a
candidate for experimentally and dynamically consistent
musculoskeletal simulations.

One key aspect of neuromusculoskeletal modeling is
muscle recruitment or force distribution problem. It has been
hypothesized that the human central nervous system simplifies
the construction of muscle excitations during dynamic tasks by
constraining those excitations to weighted groups, referred to as
muscle synergies. In this Research Topic, Pitto et al., Sauder et
al., and Shuman et al. applied muscle synergies in different NMS
simulations to address populations with different neurological
disorders. While Sauder et al. targeted stroke, Pitto et al. and
Shuman et al. looked at or cerebral palsy (CP). While Sauder
et al. and Pitto et al. predicted gait post-treatment, Shuman
et al. focused on estimating muscle activations and discussing
whether estimates generated by imposing a muscle synergy

structure improve the correlation with experimental muscle
activities. Shuman et al. used a scaled generic musculoskeletal
model and compared two cases: (1) static optimization (SO) with
minimization of squared muscle activations, and (2) synergy
SO (SynSO) with minimization of squared synergy activations
and using synergy weights obtained by analysis of EMG data. In
SynSO, synergy weights are decomposed from EMG data while
the synergy activations are computed one time step at a time,
similar to SO. The correlation with EMG data was not found to
be higher in SynSO than in SO.

It is a kinematic requirement that rehabilitation exoskeletons
move with a spatiotemporal motion that is synchronized
with the kinematic structure of the upper-limb joint. Tang
et al. analyzed the spatiotemporal kinematic synergies of
arm reaching movements and investigated their potential
usage in upper limb assistive exoskeleton motion planning.
Kinematic synergies—coordination between shoulder and
elbow joints—were extracted by running principal component
analysis on experimental reaching trials of multiple subjects.
Tang et al. concluded that kinematic synergies could be used
for exoskeleton motion planning, and different principal
components partly contributed to motion trajectory and
end-point accuracy. Although this study did not include
a kinetic and a neuromuscular model, the concept of
kinematic synergies may provide simplified yet worthwhile
strategies for initial motion planning and kinematic design
of assistive devices to restore natural upper-limb motion and
motor function.

Energy expenditure is one of the key criteria used for
the design and evaluation of assistive devices in different
populations. While total body metabolic energy rate can be
measured by means of O2/CO2 consumption/production rates
experimentally, muscle metabolic models could be utilized for
two main reasons: (1) It is nearly impossible today to measure
the metabolic energy of a muscle experimentally and (2) There
may be circumstances in which it is desirable to avoid in vivo
measurement of subjects or activities. Michaud et al. adapted
their previously proposed musculoskeletal modeling approach
for estimating muscle forces/activations to a healthy subject
and validated their total body metabolic energy rate estimates
from two commonly used models with data from a portable
gas analyzer. Then, both metabolic energy rate models estimated
energetic efficiency using two types of assistive devices on an
individual with spinal cord injury during crutch-assisted gait.
The two assistive devices were a passive and an active knee-ankle
foot orthosis (KAFO). The authors found that the active KAFO
resulted in simultaneous improved gain pattern and reduced
energy consumption.

Pizzolato et al. presented a narrative review of how
NMS models combined with finite element models of
musculoskeletal tissues can be integrated with models of
assistive and robotic devices for neural restoration in the
SCI population. The authors discussed how NMS models
can be deployed in related real-time applications, such as
muscle activity optimization, functional progress tracking,
balance and safety monitoring, and augmented feedback during
rehabilitation. Enhancement of current neurorehabilitation
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may be achieved via development of the next generation
orthoses/prostheses incorporating personalized NMS models
of patients.

CONCLUSIONS

This Research Topic focuses on advances in
neuromusculoskeletal modeling and applications to
neurorehabilitation. Contributions to this topic utilized
both experimental and computational approaches to
address research questions involving neuromechanics
and rehabilitation. The researchers contributed to the
topic and the editors hope that this Research Topic will
open new horizons to more direct clinical applications of
neuromusculoskeletal modeling. Although research studies
of high quality were presented under this Research Topic,
we hope that these studies will only be the beginning
and that momentum would continue to grow in this
research area. We eagerly hope to observe more advances
in neuromusculoskeletal model personalization and their
application toward personalized interventions to restore,
compensate, or augment motor function, such as via gait
retraining or design of assistive devices, in neurologically
impaired populations.
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In the context of neuro-orthopedic pathologies affecting walking and thus patients’ quality

of life, understanding the mechanisms of gait deviations and identifying the causal motor

impairments is of primary importance. Beside other approaches, neuromusculoskeletal

simulations may be used to provide insight into this matter. To the best of our knowledge,

no computational framework exists in the literature that allows for predictive simulations

featuring muscle co-contractions, and the introduction of various types of perturbations

during both healthy and pathological gait types. The aim of this preliminary study was

to adapt a recently proposed EMG-marker tracking optimization process to a lower limb

musculoskeletal model during equinus gait, a multiphase problem with contact forces.

The resulting optimization method tracking EMG, ground reactions forces, and marker

trajectories allowed an accurate reproduction of joint kinematics (average error of 5.4

± 3.3mm for pelvis translations, and 1.9 ± 1.3◦ for pelvis rotation and joint angles)

and ensured good temporal agreement in muscle activity (the concordance between

estimated and measured excitations was 76.8 ± 5.3 %) in a relatively fast process (3.88

± 1.04 h). We have also highlighted that the tracking of ground reaction forces was

possible and accurate (average error of 17.3± 5.5N), even without the use of a complex

foot-ground contact model.

Keywords: musculoskeletal modeling, direct multiple shooting, co-contraction, musculo-tendon forces,

neuromusculoskeletal simulations

INTRODUCTION

Walking is often considered to be the most important activity in daily living (Chiou et al., 1985).
The ability to move without pain, fatigue, or major gait deviation is closely related to quality
of life (Cuomo et al., 2007; van Schie, 2008). Many neuro-orthopedic pathologies (e.g., cerebral
palsy, stroke) induce impairments (i.e., paresis, muscle overactivity, soft tissue contractures,
and bone deformities) that compromise normal movement. Consequently, the goal of many
therapeutic interventions is to minimize gait deviations in patients. In order to improve these
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interventions, understanding the possible mechanisms of these
gait deviations, and being able to identify the causal motor
impairments is of primary importance (Davids et al., 2004;
Gough and Shortland, 2008; Wren et al., 2011). Currently, the
relationship between motor impairments and gait deviations
is unclear (Bonnefoy-Mazure et al., 2016), and there is a
lack scientific evidence for these relationships due to the
inherent complexity of the human neuromusculoskeletal system
during dynamic tasks such as walking (Armand et al., 2017).
Compared to existing approaches (e.g., pathologic models,
experimental procedures with human subjects, robots with
human-like gait), in silico neuromusculoskeletal simulations of
normal and pathological gait could provide additional insight
into gait deviations (Armand et al., 2017). The advantage of
neuromuscular simulations as a method is that large numbers
of simulations may be performed relatively quickly, and without
the ethical issues involved with performing invasive and lengthy
experiments in vulnerable patient groups such as those with
neuromuscular deficits.

To date, simulations reported in the literature are often limited
to the analysis of the consequences of isolated impairments
on gait such as muscle weakness (van der Krogt et al.,
2009; Thompson et al., 2013) or muscle spasticity (Jansen
et al., 2014). Most of these studies only report possible
muscular compensations (adaptations) that occur due to
muscular redundancy–results are achieved by tracking the
normal gait kinematics and then applying a perturbation to
the model. Very few studies have been based on a numerical
framework allowing kinematic adaptations in response to more
varied perturbations. Within the TLEMsafe project (https://
www.tlemsafe.eu), Fluit et al. (2014b) combined an optimized
inverse model and a ground reaction force predictive model
to simulate lower limb kinematics after the removal of the
rectus femoris and the vastus lateralis from the model. Santos
et al. (2017) also proposed a numerical framework based
on direct collocation and an optimal control package to
simulate lower limb kinematics after the introduction of a
weakening of the triceps surae and the tibialis anterior, or
after increasing the ankle joint stiffness. These two approaches
represent a first step toward the simulation of pathological
gait. However, neither were able to reproduce muscle co-
contractions. While this capacity was not necessarily needed in
these studies, this feature is essential to establish a pathological
gait simulator that would be able to reproduce physiological gait
adaptations biofidelically.

From a methodological point of view, inverse dynamics-
based approaches (such as static optimization) are commonly
used due to their computational efficiency (Erdemir et al.,
2007), but are not appropriate for predictive simulations.
Moreover, static optimizationmethod underestimates or neglects
antagonist co-contractions unless hybrid approaches are used
(Brookham et al., 2011; Son et al., 2012). On the other hand,
forward dynamics-based approaches are often criticized for being
time-consuming–several studies report convergence times in
the hundreds of hours range (Anderson and Pandy, 2001).
Despite this disadvantage, these methods have the potential to
predict new movements, such as an adaptation in response

to a perturbation. For example, state-of-the-art algorithms
used in conjunction with existing musculoskeletal models–like
direct collocation (Santos et al., 2017) and direct multiple
shooting (Bélaise et al., 2018a,b)—can be used to solve forward
dynamics problems in a timely manner. Recently, Bélaise et al.
(2018a,b) introduced an EMG-marker tracking optimization
method to predict musculo-tendon forces in a co-contraction
case. Based on simulated datasets of upper limb movements,
the authors showed the importance of tracking both marker
trajectories and EMG, in particular to reproduce muscle co-
contractions. To the best of our knowledge, such an approach
has never been applied on experimental gait records with
muscle co-contractions.

The objective of our project is to establish a computational
framework appropriate for predictive simulations of healthy
and pathological gait, that is able to reproduce muscle co-
contractions, and that allows for the introduction of various kind
of perturbations on the model (e.g., therapy-related, surgery-
related, pathology-related perturbations). This preliminary study
represents a first step toward this project by adapting the
computational framework proposed by Bélaise et al. (2018a,b) to
a lower limb musculoskeletal model during gait. This framework
has been tested for this purpose on a type of pathological gait
known as equinus gait.

METHODS

Lower Limb Musculoskeletal Model
A generic three-dimensional musculoskeletal model of the lower
limb [Lower Extremity Model, OpenSim (Delp et al., 1990)]
was adapted for our study (Figure 1). This model consists of
five rigid segments: the pelvis, right thigh, patella, shank, and
foot. Twenty-six markers were associated with these segments
by virtual palpation to reproduce the experimental marker
locations (Table 1; see section Dataset). To simplify the dynamic
optimizations to a two-dimensional motion in this preliminary
study, the original degrees of freedom (DoF) were reduced
to three DoFs for the pelvis-ground joint (vertical translation,
translation in the direction of walking, pelvis tilt) and one
DoF (flexion-extension modeled as a hinge joint) at the hip,
knee, and ankle joints. Joints were actuated by the muscle
torques resulting from 17 muscle lines of action (Table 2),
and the pelvis DoFs were actuated by three generalized forces
applied on the pelvis. The path, optimal length, maximal
isometric force, tendon slack length, and pennation angle of each
muscle lines of action were derived from the original model
(Delp et al., 1990).

Segment lengths were scaled to the dataset used in this
study (see section Dataset) using OpenSim 3.3 (Delp et al.,
2007) by minimizing the distance between experimental and
model markers placed on bony landmarks (Table 1). All
components of the model that depend on bone lengths (e.g.,
muscle attachment points, optimal fiber length), segment
masses, and inertial parameters were also scaled. The resulting
scaled model was transferred to the bioRBD musculoskeletal
modeling package (https://github.com/pyomeca/biorbd)
based on the Rigid Body Dynamic Library (Felis, 2017).
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FIGURE 1 | Anterior (A), lateral (B), and posterior (C) views of the right

lower-limb musculoskeletal model derived from OpenSim [Lower Extremity

Model, OpenSim (Delp et al., 1990)] and adapted to the bioRBD

musculoskeletal modeling package (https://github.com/pyomeca/biorbd). Red

lines and pink dots represents the 17 Hill-type muscle lines of action and the

26 markers related to this model, respectively.

This model was defined by 29 states (six generalized joint
positions and their six related velocities, 17 muscle activations)
and 20 controls corresponding to the 17 muscle neural
excitations plus three generalized forces driving the three
pelvis DoFs.

Equations of Motion and
Activation Dynamics
The generalized accelerations q̈ of the rigid multibody system
were computed using a forward dynamics approach for given
generalized joint positions q, joint velocities q̇, and generalized
forces τ:

q̈ = M
(

q
)−1

(

τ

(

q, q̇, a, e
)

+ C
(

q
)T
R− N

(

q, q̇
)

q̇− G
(

q
)

)

s.t. C
(

q
)

q̈+ Ċ
(

q
)

q̇ = 0 and C
(

q
)

q̇ = 0

where M is the inertia matrix, C is the external contact Jacobian
matrix, R is the Lagrange multipliers vector corresponding to
the ground reaction forces (GRF), N is the non-linear effects
(Coriolis and centrifugal forces) vector, and G is the gravity
effects vector. It was assumed that contact points have a null
acceleration and velocity throughout the entire contact phase. In
line with equinus gait, one fixed contact point was defined on
the forefoot for the entire contact phase (see section Dynamic
Optimizations). Generalized forces were divided into τ1 =

[τ11 τ12 τ13]
T driving the three pelvis DoFs, and τ2 = ∂Lmt

∂q Fmt

corresponding to the net joint torques due to themusculo-tendon

TABLE 1 | List of the 26 markers used in this study.

Abbreviations Palpation details Related

segments

L_IAS Left anterior-superior iliac spine Pelvis

L_IPS Left posterior-superior iliac spine Pelvis

R_IPS Right posterior-superior iliac spine Pelvis

R_IAS Right anterior-superior iliac spine Pelvis

R_FTC Right greater trochanter Thigh

R_Thigh_Top Superior marker of the thigh cluster Thigh

R_Thigh_Down Inferior marker of the thigh cluster Thigh

R_Thigh_Front Anterior marker of the thigh cluster Thigh

R_Thigh_Back Posterior marker of the thigh cluster Thigh

R_FLE Right lateral femoral epicondyle Thigh

R_FME Right medial femoral epicondyle Thigh

R_FAX Right fibula head Shank

R_TTC Right tibial tuberosity Shank

R_Shank_Top Superior marker of the shank cluster Shank

R_Shank_Down Inferior marker of the shank cluster Shank

R_Shank_Front Anterior marker of the shank cluster Shank

R_Shank_Tibia Additional marker of the shank cluster on the tibia Shank

R_FAL Right lateral tibial malleolus Shank

R_TAM Right medial tibial malleolus Shank

R_FCC Right posterior calcaneus Foot

R_FM1 Right 1st distal metatarsal head Foot

R_FMP1 Right 1st proximal metatarsal head Foot

R_FM2 Right 2nd distal metatarsal head Foot

R_FMP2 Right 2nd proximal metatarsal head Foot

R_FM5 Right 5th distal metatarsal head coordinates Foot

R_FMP5 Right 5th proximal metatarsal head coordinates Foot

Palpation details used to place experimental reflective cutaneousmarkers (as well as virtual

markers by virtual palpation) and the related segment are also mentioned.

forces Fmt, where
∂Lmt
∂q is the generalized muscular lever arms

matrix and Lmt the vector of muscle line of action lengths.
Fmt were computed from muscle activations a using a Hill-
type muscle model with a generic force-length-velocity relation
f (Zajac, 1989):

Fmt

(

q, q̇, a
)

= af
(

F0mt, lm, vm
)

,

where F0mt is the maximal isometric forces vector, lm is the
muscle fiber lengths vector, and vm is the muscle fiber velocities
vector. Again, musculo-tendon forces were divided into Fmt1

(with related activations a1 and excitations e1), corresponding
to the muscles for which electromyographic (EMG) records were
available, and Fmt2 (with related activations a2 and excitations e2)
where EMG measurements were unavailable. Muscle activation
dynamics was implemented as a set of first-order differential
equations (Buchanan et al., 2004):

ȧ
(

t, e (t) , a(t)
)

=







(e(t)− a(t))
tact(0.5+1.5 a(t))

, e (t) > a(t)

e(t)− a(t)
tdeact

(

0.5+ 1.5 a(t)
)

, e (t) ≤ a(t)
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where e(t) is the muscle neural excitations at time t. Time
constants tact and tdeact (for activation and deactivation) were set
at 10 and 40ms, respectively (Thelen et al., 2003).

Dynamic Optimizations
As proposed in Bélaise et al. (2018a), controls and state variables
were simultaneously optimized using an EMG-marker tracking
optimization process. Because the model has a reduced muscular
redundancy and because a generic model was used as opposed
to a subject-specific model, the optimal maximal isometric forces
were also identified during this process.

The optimization consisted of the minimization of the
differences between predicted Mp and measured Mm marker
trajectories in the sagittal plane, and between predicted e1p
and measured e1m (EMG envelop) muscle neural excitations
(corresponding to the muscles for which EMG records are
available). This tracking optimization was extended to the
minimization of the differences between predicted Rp and
measured Rm GRF in the sagittal plane. This tracking was
necessary to impose physiologic generalized forces to the pelvis
(τ1), i.e., generalized forces that compensate for the missing
upper part of the body and contralateral lower limb.

To predict the activity of the muscles for which tracking
was not possible (i.e., muscles for which EMG records were
not available), the objective function J was written to find the

TABLE 2 | List of the 17 Hill-type muscle lines of action included in the model.

Abbreviations Muscle lines of

action

Details Joints

crossed

Available

EMG

R_GLUT_MAX1 Gluteus

maximus (1)

Anterior

fibers

Hip X

R_GLUT_MAX2 Gluteus

maximus (2)

Lateral

fibers

Hip

R_GLUT_MAX3 Gluteus

maximus (3)

Posterior

fibers

Hip

R_GLUT_MED1 Gluteus medius (1) Anterior

fibers

Hip

R_GLUT_MED2 Gluteus medius (2) Lateral

fibers

Hip X

R_GLUT_MED3 Gluteus medius (3) Posterior

fibers

Hip

R_SEMIMEM Semimembranosus / Hip, knee

R_SEMITEN Semitendinosus / Hip, knee X

R_BI_FEM_LH Biceps femoris Long head Hip, knee X

R_RECTUS_FEM Rectus femoris / Hip, knee X

R_VAS_MED Vastus medialis / Knee X

R_VAS_INT Vastus intermedius / Knee

R_VAS_LAT Vastus lateralis / Knee

R_GAS_MED Gastrocnemius

medialis

/ Knee,

ankle

X

R_GAS_LAT Gastrocnemius

lateralis

/ Knee,

ankle

R_SOLEUS Soleus / Ankle X

R_TIB_ANT Tibialis anterior / Ankle X

The muscles abbreviations, the joint(s) they cross and the related electromyographic

(EMG) signals (when available) are also mentioned.

least squared muscle activations a2 that produced the prescribed
marker trajectories, muscle neural excitations, and GRF (during
stance phase only):

J =

Ni
∑

1

(

wM

∥

∥Mp −Mm

∥

∥

2
+ we

∥

∥e1p − e1m
∥

∥

2
+ wR

∥

∥Rp − Rm

∥

∥

2
)

+wL

∫ Ti

0
a2 (t)2dt

where wR

∥

∥Rp − Rm

∥

∥

2
= 0 when i = 2, i.e., the swing phase.

where wM, we, wR, and wL are weighting factors adjusted to the
relative importance of each term, Ti is the duration of the current
stage (see section Simulations) and Ni is the related number of
time frames.

This objective function was minimized under three sets of
constraints. First, boundary conditions were applied on the state
and the control variables. In this study, the range of motion
of each DoF and related velocities were set to physiologic
values (Table 3), while activations and excitations were bounded
between 0 and 1. Second, the velocity of the contact point was
constrained to be null at the first frame and its acceleration to
be null at each time frame (see section Equations of Motion
and Activation Dynamics). Third, periodicity was ensured by
constraining the first and last time point of the cycle to have
similar values in terms of hip, knee, ankle joint angles, and
velocities, pelvis velocities, muscle excitations, and GRF.

TABLE 3 | Boundaries constraints applied during the optimization process to

each degree of freedom and related velocities.

Abbreviations Variables Min. Max.

PELVIS_TRANS_X Pelvis ant. (+)/post. (–)

translation (m)

−10.00 10.00

PELVIS_TRANS_Y Pelvis sup. (+)/inf. (–)

translation (m)

−0.50 1.50

PELVIS_ROT_Z Pelvis ant. (–)/post. (+)

tilt (◦)

−45.00 45.00

R_HIP_ROT_Z Hip flex. (+)/ext. (–) (◦) −20.00 60.00

R_KNEE_ROT_Z Knee flex. (–)/ext. (+) (◦) −90.00 5.00

R_ANKLE_ROT_Z Ankle dorsi.

(+)/plantarflex. (–) (◦)

−50.00 20.00

PELVIS_TRANS_VX Pelvis ant. (+)/post. (–)

linear velocity (m.s−1)

0.50 1.50

PELVIS_TRANS_VY Pelvis sup. (+)/inf. (–)

linear velocity (m.s−1)

−0.50 0.50

PELVIS_ROT_VZ Pelvis ant. (–)/post. (+)

tilt angular velocity

(◦.s−1)

−100 100

R_HIP_ROT_VZ Hip flex. (+)/ext. (–)

angular velocity (◦.s−1)

−300 300

R_KNEE_ROT_VZ Knee flex. (–)/ext. (+)

angular velocity (◦.s−1)

−300 300

R_ANKLE_ROT_VZ Ankle dorsi.

(+)/plantarflex. (–)

angular vel. (◦.s−1)

−300 300
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Simulations
Each dynamic optimization was solved using a direct multiple
shooting algorithm with MUSCOD-II (Leineweber et al., 2003).
Three phases were defined in the gait step: (1) the stance phase
(with an external contact between foot and ground), (2) the
swing phase (no external contact), and (3) the first frame of the
next stance phase following the impact between the foot and the
ground. These stages were divided into 25, 25, and 1 multiple
shooting intervals, respectively. For the sake of simplicity, the
first stage started just after the collision impact between the foot
and the ground. The duration of each stage was fixed to the
measured value.

The initial guess was set to the measured values for the joint
positions and velocities, 1% for all activations and excitations,
and 0 for the controls corresponding to the generalized forces
related to the pelvis DoFs. Weighting factors were set to wM =

30 (except for the foot markers for which wM = 50 to ensure
the correct position of the contact point), we = 1, wR = 0.05,
and wL = 1. These weighting factors were adjusted empirically to
set values around 1, in order to ensure optimization convergence
and produce simulation results close to the experimentally
measured data.

Dataset
The previously defined method was evaluated on a dataset of
emulated equinus gait. All data were recorded on a healthy
volunteer (male, 35 years old, 165 cm, 66 kg) without any neuro-
orthopedic conditions. This participant gave written informed
consent prior to his inclusion and the protocol was conformed
to the Declaration of Helsinki and approved by the National
Research Ethics Committee of Luxembourg (201805/01).

The 3D trajectories of 26 reflective cutaneous markers
(bilateral iliac anterior and posterior spines, right leg great
trochanter, medial and lateral femoral epicondyles, peroneal
head, tibial tuberosity, medial and lateral malleoli, 1st, 2nd,
and 5th proximal and distal metatarsal heads, calcaneum,
completed by a four-marker cluster on the thigh and on
the shank) (Figure 1) were recorded using a 10-camera
optoelectronic system (OQUS-4, Qualisys AB, Sweden) sampled
at 200Hz.Markers were placed by anatomical palpation (Table 1)
following the recommendation of van Sint Jan (2007) by an
experienced user. GRF and moments were recorded using
two side-by-side force plates (OR6-5, AMTI, USA) sampled
at 2,000Hz. The EMG activity of nine right leg muscles
(tibialis anterior, soleus, gastrocnemius medialis, vastus medialis,
rectus femoris, semitendinosus, biceps femoris long head,
gluteus medius, gluteus maximus) was collected with a wireless
electromyographic system (DTS clinic, Noraxon, USA) sampled
at 2,000Hz. The EMG surface electrodes were placed following
the recommended standard of the Surface EMG for a Non-
Invasive Assessment of Muscles (SENIAM) project (Hermens
et al., 2000).

All data were imported under Matlab (R2018a, The
MathWorks, USA) using the ezc3d package (https://github.
com/pyomeca/ezc3d). Marker trajectories were interpolated
when necessary using a cubic spline and smoothed by a 4th
order low-pass Butterworth filter with a cutoff frequency of

6Hz. Generalized kinematics (q, q̇, q̈) were computed using an
extended Kalman filter (Fohanno et al., 2014) following the
segmental coordinate systems defined in the original generic
three-dimensional lower limb musculoskeletal model [Lower
Extremity Model, OpenSim (Delp et al., 1990)]. GRF were
smoothed by a 4th order low-pass Butterworth filter with a
cut-off frequency of 15Hz. Raw EMG signals were band pass
filtered (4th order) between 30 and 300Hz, rectified, and EMG
envelops were obtained by a 4th order low-pass Butterworth
filter with a cut-off frequency of 25Hz. EMG envelops were then
normalized to their respective maximal voluntary activation
(Gaudet et al., 2018).

The participant was asked to mimic an equinus gait by
producing voluntarily controlled co-contractions of the muscles
crossing the ankle joint to restrain ankle dorsiflexion. Eight
trials were recorded and the related right steps were analyzed in
this study.

Analysis
In order to evaluate the capacity of the model to reproduce
the measured gait pattern and muscle excitations under the
mechanical properties and constraints imposed to the model,
a set of goodness-of-fit parameters were employed. Root mean
square error (RMSE) and coefficient of determination (R2)
were computed to assess the differences in intensity and shape,
respectively, between measured and estimated excitations, joint
angles and GRF.

Only estimated muscle excitations corresponding to the
measured EMG envelops (Table 2) are presented in this analysis.
The coefficient of determination (CC) (Giroux et al., 2013) was
computed for the muscles for which EMG data was recorded.
This method uses active/inactive state concordance between the
estimated muscle excitations and normalized EMG envelopes to
compute a coefficient of concordance defined as the percentage
of concordance elements.

RESULTS

The convergence time of the eight optimizations using
MUSCOD-II was 3.88 ± 1.04 h on an Intel R© CoreTM i5-3570
CPU @3.4 GHz. Estimated and measured muscle excitations,
musculo-tendon forces, joint angles, and GRF are reported in
Figures 2–5, respectively. Goodness-of-fit parameters (RMSE, R2

and CC) are reported in Table 4.
Considering the tracked muscle excitations (i.e., muscles for

which EMG records are available, see Table 2), the temporal
muscle activity of the model was in good overall agreement
with the experimental measurements, with an average CC of
76.8 ± 5.3%. RMSE values were generally low with an average
value of 0.2 ± 0.1 (values were adimensioned between 0 and 1).
However, RMSE was found to be higher for the gastrocnemius
medialis (0.3 ± 0.1) and the tibialis anterior (0.4 ± 0.1). For all
muscles, the correlation remained low with an average R2 at 0.02
± 0.52. Regarding all other model muscles, for which EMG was
not tracked, the optimized muscle excitations were higher than
those estimated for muscles for which EMG was tracked. This
is the case for R_GLUT_MAX2 and R_GLUT_MAX3 compared
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FIGURE 2 | Mean and standard deviation of normalized measured (EMG envelops) and estimated muscle excitations during gait cycle (EMG envelops have been

adimensioned (adim) by maximal voluntary contraction). Abbreviations of muscle names are given in Table 2. For illustration purpose, EMG envelops of gluteus

maximus, gluteus medius, semitendinosus, and vastus medialis are reported on plots R_GLUT_MAX1/R_GLUT_MAX2/R_GLUT_MAX3,

R_GLUT_MED1/R_GLUT_MED2/R_GLUT_MED3, R_SEMIMEM/R_SEMITEN, and R_VAS_MED/R_VAS_INT/R_VAS_LAT, respectively.
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FIGURE 3 | Mean and standard deviation of estimated musculo-tendon forces during gait cycle. Abbreviations of muscle names are given in Table 2.
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FIGURE 4 | Mean and standard deviation of measured and estimated pelvic position/orientation and joint angles during gait cycle. Abbreviations of each degree of

freedom are given in Table 3.

FIGURE 5 | Mean and standard deviation of measured and estimated vertical (R_GRF_V) and anterior/posterior (R_GRF_AP) ground reaction forces during gait cycle.

to R_GLUT_MAX1, R_GLUT_MED1, and R_GLUT_MED3
compared to R_GLUT_MED2, R_SEMIMEM compared to

R_SEMITEN, R_VAS_INT, and R_VAS_LAT compared to

R_VAS_MED, and for R_GAS_LAT compared to R_GAS_MED.
The same results are observed on the estimated musculo-tendon

forces. These forces are ranged between 0 and 2,000N, with the

highest peak forces obtained for R_SEMITEN, R_VAST_INT,
R_VAST_LAT, and R_SOLEUS.

With regard to the pelvis position/orientation and joint angles,

the model estimations were generally in agreement with the
experimental measurements. Average RMSE were 5.4 ± 3.3mm
for the pelvic translations, and 1.9 ± 1.3◦ for pelvic rotations

and joint angles. However, RMSE was found to be higher for the
ankle joint (4.0 ± 0.9◦). Considering all degrees of freedom, the
correlation remained very high with an average R2 at 0.94± 0.09.

For the GRF, the model estimations were found to be in
agreement with the experimental measurements (the average
RMSE is 17.3± 5.5N). For these forces, the correlation remained
high with an average R2 at 0.97± 0.03.

DISCUSSION

The main objective of this study was to adapt an EMG marker
tracking optimization process to solve a forward dynamics
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TABLE 4 | Root mean square error (RMSE), coefficient of determination (R2) computed to assess the differences in intensity and shape, respectively, between measured

and estimated excitations (adimensioned), pelvis position/orientation, joint angles, vertical ground reaction force (R_GRF_V), and anterior/posterior ground reaction force

(R_GRF_AP).

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

CC (%) 80.95 CC (%) 73.02 CC (%) 76.19 CC (%) 85.71 CC (%) 68.25 CC (%) 74.60 CC (%) 76.19 CC (%) 79.37

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

R_GLUT_MAX1 0.02 0.07 0.03 0.37 0.02 −0.11 0.02 0.64 0.05 0.55 0.03 0.13 0.01 0.50 0.03 0.44

R_GLUT_MED2 0.03 0.12 0.04 0.02 0.03 −0.09 0.03 −0.17 0.05 −2.93 0.02 −0.76 0.01 −1.13 0.03 0.21

R_SEMITEN 0.07 0.23 0.14 −0.22 0.06 0.59 0.05 0.24 0.06 0.57 0.07 0.24 0.05 0.64 0.09 0.08

R_BI_FEM_LH 0.06 0.02 0.08 0.10 0.11 0.38 0.07 0.22 0.17 0.17 0.14 0.10 0.06 0.47 0.08 0.27

R_RECTUS_FEM 0.13 0.02 0.20 −0.01 0.18 −0.06 0.15 −0.01 0.23 0.00 0.13 0.03 0.12 −0.09 0.15 0.09

R_VAS_MED 0.10 0.36 0.12 0.40 0.13 0.51 0.13 0.18 0.28 0.26 0.14 0.17 0.11 0.50 0.15 0.45

R_GAS_MED 0.16 −0.70 0.28 −0.28 0.28 −0.73 0.27 −0.72 0.34 −0.52 0.27 −0.52 0.22 −0.55 0.26 −1.07

R_SOLEUS 0.12 −0.17 0.13 −0.17 0.13 0.14 0.07 0.51 0.14 0.25 0.12 0.30 0.07 0.16 0.08 0.48

R_TIB_ANT 0.25 0.24 0.46 −0.02 0.38 0.05 0.46 0.10 0.51 −0.03 0.48 −0.04 0.44 0.07 0.45 −0.01

PELVIS_TRANS_X (mm) 8.67 1.00 7.72 1.00 7.65 1.00 10.22 1.00 8.57 1.00 8.84 1.00 8.58 1.00 8.36 1.00

PELVIS_TRANS_Y (mm) 1.75 0.98 2.17 0.98 2.47 0.98 2.14 0.99 3.18 0.96 2.11 0.98 1.75 0.99 2.57 0.97

PELVIS_ROT_Z (◦) 0.60 0.98 1.35 0.84 0.66 0.94 1.19 0.88 0.89 0.94 0.75 0.93 0.94 0.92 0.89 0.95

R_HIP_ROT_Z (◦) 1.16 0.99 2.09 0.96 1.02 0.99 2.12 0.97 1.57 0.99 1.28 0.99 1.48 0.98 1.15 0.99

R_KNEE_ROT_Z (◦) 0.65 0.99 1.13 0.98 1.09 0.97 1.50 0.97 1.53 0.98 1.45 0.98 1.43 0.97 1.84 0.97

R_ANKLE_ROT_Z (◦) 2.54 0.86 3.62 0.79 4.43 0.71 3.46 0.76 5.48 0.66 4.15 0.73 3.33 0.79 4.75 0.74

R_GRF_AP (N) 11.92 0.97 10.95 0.98 11.02 0.95 13.16 0.94 13.43 0.94 13.18 0.93 12.23 0.92 14.03 0.94

R_GRF_V (N) 27.73 0.99 21.85 1.00 19.56 1.00 20.62 1.00 21.57 1.00 26.18 0.99 19.25 1.00 19.79 1.00

The analysis of muscle excitations is completed by the coefficient of concordance (CC). The results are reported for each gait cycle. Abbreviations of each muscle names and degree

of freedom are given in Tables 1, 2, respectively. Bold values correspond to higher RMSE values and lower R2 values.

problem on a 3Dmusculoskeletal model of the lower limb during
equinus gait. To the best of our knowledge, the use of a direct
multiple shooting algorithm on a musculoskeletal model with
the tracking of measured EMG, marker trajectories, and GRF has
never been performed to date. As already shown by Bélaise et al.
(2018a,b), this approach allows for an accurate reproduction of
joint kinematics and ensures temporal fidelity in muscle activity
with improved computational time compared to traditional
forward dynamic approaches. We have also highlighted that the
tracking of GRF could be performed accurately, even without the
use of a complex foot/ground contact model.

Limitations
A primary limitation of this preliminary study is that it was
based on a small number trials for a single task, performed by
a single participant. As such, limited conclusions can be drawn
from this paper.

A second limitation is that only one contact point was defined
at the forefoot and it was only constrained to null velocity and
acceleration during the whole contact phase.While this approach
was in line with an equinus gait and was able to accurately
reproduce the tracked GRF, this definition cannot be applied
during normal gait trials, during which several contact points
should be defined (Fluit et al., 2014a). Elastic contact elements
(Peng et al., 2018), artificial muscle-like actuators (Fluit et al.,
2014a) or distance and velocity-dependent force models (Jung
et al., 2016) should be adapted to the present model to extend
its use to normal gait.

The proposed musculoskeletal model also only consisted
of the pelvis and the right lower limb. A forward dynamic
approach wasmade possible by replacing the forces andmoments
produced by the opposite lower limb and the upper part of the
body by a set of generalized forces acting on the pelvis. With such
an approach, the individual contribution of the opposite lower
limb and the upper part of the body to the muscle activity and
joint contact forces of the right lower limb cannot be evaluated
individually. It would thus be an important next step to complete
the missing body segments of the present musculoskeletal model
in order to obtain a full body musculoskeletal model. Several
full body musculoskeletal models (Rajagopal et al., 2016; Bassani
et al., 2017) have been proposed in the literature and could be
transferred to the bioRBD musculoskeletal modeling package.
These segments could be actuated by joint torques instead
of muscles.

In addition to this, while we used a 3Dmusculoskeletal model,
DoFs were reduced to only allow a two-dimensional motion
in the sagittal plane. It is however, established that walking is
a locomotion task that is performed in sagittal, coronal, and
transversal planes (Perry and Burnfield, 2010). In particular,
patients often develop compensatory movements in the coronal
plane when pathological impairments result in reduced foot
clearance capacity in the sagittal plane (Chantraine et al., 2016).
Despite this simplification, the accuracy of kinematic tracking
observed in the present results suggest that there is potential for
the EMG marker tracking optimization process to perform 3D
gait motion simulations.
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Finally, most of the parameters of the Hill-type muscle
model were kept with generic property definitions in this study.
Only optimal maximal isometric forces were identified during
dynamic optimizations, while muscle optimal lengths, tendon
slack lengths, and maximal isometric forces are usually identified
in similar studies (Sartori et al., 2014; Pizzolato et al., 2015). This
may explain the high excitations observed in muscles contained
in a group, for which tracking of excitation was applied to other
muscles. The introduction of further muscle parameters could be
implemented in future studies, and would only be expected to
impact the convergence time of the simulations.

Muscle Activity
The present study support the results of Bélaise et al. (2018a,b),
which demonstrated that EMG tracking could be an efficient way
to reproduce measured muscle excitations in simulations. While
some amplitude differences appeared for certain trackedmuscles,
the temporal activity was generally reproduced with good fidelity.
This outcome is crucial to ensure the ability of the model to
producemuscle co-contractions. Similar approaches have already
been proposed in the literature–EMG-driven musculoskeletal
models have also been used to accurately reproduce muscle
excitation patterns observed on EMG records (Shao et al., 2009;
Sartori et al., 2012). However, these models are constrained
to have as many muscle lines of action as EMG available in
the dataset. To overcome this limitation, some authors have
proposed hybrid approaches that combine EMG-driven and
static optimization methods (Lloyd and Besier, 2003; Moissenet
et al., 2014; Sartori et al., 2014). The drawback with this strategy
is that by minimizing the difference between the motor joint
moments computed by EMG-driven and inverse dynamics,
kinematics may not be accurately reproduced. In that sense,
the EMG-marker tracking algorithm proposed by Bélaise et al.
(2018a,b) is a novelty. As this method tracks joint kinematics
based on marker trajectories rather than joint moments as in a
forward dynamic approach, the error diffusion is minimized and
the simulation outputs reproduce the experimental kinematics
more faithfully.

In our trials of emulated equinus gait, co-contractions of the
ankle dorsiflexors, and plantarflexors can be observed during
early stance to stabilize the joint in this specific posture. It is
interesting to observe that, while the gastrocnemius medialis
and the soleus (muscles for which EMG records were tracked)
were contracted during this phase, the gastrocnemius lateralis
(a muscle for which EMG records were not measured) was not
in our simulations. Although use of EMG is somewhat limited
to available hardware, muscle locations and the signal quality,
measurement should be prioritized toward muscles presumed to
be active during the task being investigated. In our case, focusing
on a greater number of muscles crossing the ankle joint would
have brought more relevant information to the model. A similar
recommendation has already been proposed by Sartori et al.
(2014); these authors suggested to prioritize EMG use onmuscles
“that reflect the patient’s non-physiological muscular behavior.”

Although the EMG-GRF-marker tracking algorithm was able
to reproduce physiological muscle activity, two points must be
considered. First, we observed that when EMG was not tracked,
the optimized muscle excitations and musculo-tendon forces

were higher than the ones estimated when muscle EMG was
tracked. As pointed out in the limitations of the study, this
over-estimation is perhaps related to the use of generic muscle
model parameters. For example, if the parameters applied to
a muscle group would tend to limit its capacity to produce
a motor joint moment, a higher muscle excitation would be
required to reproduce the experimental measurements. This
effect is further exacerbated if the excitation of a muscle in
this group is constrained to a low level in accordance with
the experimental EMG tracking, as the excitation of the other
muscles of the group will have to compensate for this reduced
excitation in the other muscle. Second, due to equinus (results
in increased plantarflexion), the capacity of the triceps surae
to produce a plantarflexion moment is reduced (Delp et al.,
1990), in particular during the push-off phase. Thus, hip flexor
recruitment may be increased in this gait pattern to pull the
leg forward (Romkes and Schweizer, 2015). However, in our
model the primary hip flexors, i.e., the iliopsoas muscles, were
not included. van der Krogt et al. (2012) showed that an
increased activation of the rectus femoris may be developed
to compensate for a weakness of the primary hip flexors. In
our case, the absence of the iliopsoas muscles (equivalent to
a complete reduction of strength in these muscles) may have
induced the increased rectus femoris excitations observed during
the simulations compared to the experimental measurements.
Because the rectus femoris is a bi-articular muscle (i.e., hip
flexor, knee extensor), an increased excitation of this muscle
used to assist in hip flexion would simultaneously act to reduce
knee flexion, which would have require compensation from knee
flexors in order to maintain experimental kinematics (van der
Krogt et al., 2012). This could explain the non-physiological
activity of the triceps surae (ankle plantarflexors) during pre-
swing and early swing observed in our simulations, and the
increased tibialis anterior activity (ankle dorsiflexor) used to
balance ankle flexion due to the increased activity of ankle
plantarflexors. All these observations support the need for a
more comprehensive, full bodymusculoskeletal model, as already
discussed in section Limitations.

Kinematics and Ground Reaction Forces
Unlike inverse dynamics-based optimization approaches (i.e.,
static optimization), where measured kinematics and calculated
joint torques are the input constraints to the optimization
problem, in a forward dynamics approach it is essential to
assess the accuracy of reproduced kinematics. This is generally
assessed by tracking experimental kinematics (Erdemir et al.,
2007; Chèze et al., 2015). In the present study, marker trajectories
were tracked rather than joint kinematics, as proposed by Bélaise
et al. (2018a,b). This tracking was able to produce accurate
marker trajectories as highlighted in Bélaise et al. (2018a) with
a tracking residual of 0.31 ± 0.32 cm during elbow flexion. This
approach, used in the present study gave accurate kinematics with
a maximum RMSE obtained at the ankle joint <5◦, a threshold
recognized as critical for clinical interpretation (McGinley et al.,
2009). The main errors appeared at the end of the stance phase
in most of the DoFs. This issue may be associated with the
non-physiological activity of the triceps surae and the rectus
femoris during this phase, as discussed in sectionMuscle Activity.
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Our simulations tended to reduce the plantarflexion induced by
the emulated equinus gait. By increasing ankle dorsiflexion, the
triceps surae moment arm was increased (Delp et al., 1990) and a
minimal ankle plantarflexion moment was kept.

Interestingly, GRF were estimated accurately without an
advanced foot-ground contact model definition. The use of
simple generalized forces applied on the pelvis, designed to
compensate for the absence of the opposite lower limb and the
upper part of the body in our model, acted as efficient reserve
actuators (Modenese et al., 2013) to provide the forces required
to track experimental GRF. This approach may thus present a
valid means by which to manage external forces and moments in
the dynamic equation when the interactions between the upper
limb and/or the contralateral lower limb with the ipsilateral
lower limb are not known. Otherwise, as already discussed in
section Limitations, a full body musculoskeletal model would
be recommended.

Clinical Perspectives
The simulation of equinus gait represents an important clinical
issue in the context of toe walking, a common gait deviation
observed in many pathologies such as cerebral palsy, myopathy,
and neuropathy (Armand et al., 2007). Numerical simulations
may present a useful tool in this context of identifying potential
biomechanical causes of this deviation, such as: pre-tibial
muscle weakness, inadequate ankle dorsiflexors activity, ankle
plantarflexors contracture, and/or spasticity, excessive voluntary
ankle plantarflexion in compensation for quadriceps weakness,
knee flexor contracture caused by overactivity of the hamstring,
combined spasticity of the hamstring and ankle plantarflexors,
and leg length discrepancy (Armand et al., 2007; Perry and
Burnfield, 2010). In more general terms, there is a need for a
numerical framework allowing for the introduction of pathology
(Santos et al., 2017), treatment, or surgical intervention-related
(Fox et al., 2009) perturbations in a model, and the analysis
of their impact on the structures of the musculoskeletal
system during daily living activities. However, before clinical
applications, models have to be evaluated and validated (Hicks
et al., 2015). It will thus be necessary that we assess the capacity
of our approach to produce physiological musculo-tendon forces
and joint contact forces. Validation datasets, such as the ones
made available by Bergmann et al. (2016) and Fregly et al. (2012),
should thus be tested on our numerical framework in the future.

CONCLUSION

In conclusion, we have improved the recent EMG-marker
tracking optimization method to a multiphase cyclic movement
with GRF. This numerical framework was successfully tested on
a dataset of equinus gait for which our approach was able to
estimate lower-limb kinematics, GRF and muscle activity with
reasonable accuracy.
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Gait deficits in cerebral palsy (CP) are often treated with a single-event multi-level

surgery (SEMLS). Selecting the treatment options (combination of bony and soft tissue

corrections) for a specific patient is a complex endeavor and very often treatment

outcome is not satisfying. A deterioration in 22.8% of the parameters describing gait

performance has been reported and there is need for additional surgery in 11% of

the patients. Computational simulations based on musculoskeletal models that allow

clinicians to test the effects of different treatment options before surgery have the

potential to drastically improve treatment outcome. However, to date, no such simulation

and modeling method is available. Two important challenges are the development of

methods to include patient-specific neuromechanical impairments into the models and

to simulate the effect of different surgical procedures on post-operative gait performance.

Therefore, we developed the SimCP framework that allows the evaluation of the effect

of different simulated surgeries on gait performance of a specific patient and includes a

graphical user interface (GUI) that enables performing virtual surgery on the models. We

demonstrated the potential of our framework for two case studies. Models reflecting the

patient-specific musculoskeletal geometry and muscle properties are generated based

solely on data collected before the treatment. The patient’s motor control is described

based on muscle synergies derived from pre-operative EMG. The GUI is then used to

modify the musculoskeletal properties according to the surgical plan. Since SEMLS does

not affect motor control, the samemotor control model is used to define gait performance

pre- and post-operative. We use the capability gap (CG), i.e., the difference between the

joint moments needed to perform healthy walking and the joint moments the personalized

model can generate, to quantify gait performance. In both cases, the CG was smaller

post- then pre-operative and this was in accordance with the measured change in gait

kinematics after treatment.

Keywords: cerebral palsy, muscle synergies, single event multilevel surgery, orthopedic interventions, capability

gap, subject specific model

21

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00054
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00054&domain=pdf&date_stamp=2019-07-17
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lorenzo.pitto@kuleuven.be
https://doi.org/10.3389/fnbot.2019.00054
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00054/full
http://loop.frontiersin.org/people/712815/overview
http://loop.frontiersin.org/people/617199/overview
http://loop.frontiersin.org/people/755833/overview
http://loop.frontiersin.org/people/580911/overview
http://loop.frontiersin.org/people/376220/overview
http://loop.frontiersin.org/people/400561/overview
http://loop.frontiersin.org/people/706046/overview


Pitto et al. SimCP: Simulation Platform for CP

INTRODUCTION

Cerebral Palsy (CP) is the most common cause of motor
deficiency in young children with a prevalence of 2–3 cases per
1,000 live births (Fairhurst, 2012; Colver et al., 2014; Graham
et al., 2016). Due to lesions in the developing brain, children with
CP display motor disabilities that vary greatly in presentation
and severity. While CP is not a progressive disease, with time,
secondary symptoms might arise, such as bony deformities and
muscle contractures. Alongside increasing pain and fatigue, these
symptoms can pose severe limitations to the quality of life
and independence of the patients (Hanna et al., 2009; Opheim
et al., 2009). Nowadays, several orthopedic treatments, often in
combination with physical therapy and orthoses, are available
and aim at improving the functionality and therefore quality of
life of these patients (Fairhurst, 2012; Narayanan, 2012; Fitoussi
and Bachy, 2015; Strobl et al., 2015; Nieuwenhuys et al., 2016).

For ambulatory patients, orthopedic treatments usually aim
at improving walking speed and stability, at reducing the need
of walking aids and at mitigating or preventing fatigue and
pain (Narayanan, 2012). The selection of the most appropriate
surgical treatment is a complex endeavor that nowadays is mainly
based on the clinical assessment of the patient, integrated 3D
gait analysis and medical imaging (Molenaers et al., 2001; Strobl
et al., 2015). The outcome, however, is not always as desired and
studies reported a deterioration in 22.8% of the parameters used
to describe gait performance after surgery (Filho et al., 2008). In
11% of the cases, additional surgeries are needed to improve the
functional outcome, although, this can be as high as 32% when
no gait analysis is used to support the decision-making process
(Wren et al., 2009).

It is therefore of the utmost importance to identify the
parameters that determine the success of an orthopedic
intervention (Hersh et al., 2002; Arnold et al., 2006a; Niiler
et al., 2007; Fox et al., 2009; Reinbolt et al., 2009; Hicks
et al., 2011; Schwartz et al., 2013, 2016; Mansouri et al., 2016;
Galarraga et al., 2017). This would allow making pre-operative
predictions in order to guide the decision-making process
toward the most effective treatments in terms of functional
outcome. Several studies applying statistical approaches and
more recently machine learning methods to explore these
relationships (Hersh et al., 2002; Reinbolt et al., 2009; Hicks et al.,
2011; Schwartz et al., 2013, 2016) have been quite successful
in predicting the improvement or non-improvement of a few
selected outcome indicators when dealing with selected surgeries.
However, existing methods do not produce a comprehensive
outcome prediction and do not account for combinations of
different surgeries. Notably, Galarraga et al. (2017) developed
a method based on dimension reduction and multiple linear
regression to predict lower limb kinematics for a large number
of surgical procedures. All these methods, however, have the
drawback that they are black box methods and therefore do
not allow investigating the mechanisms relating outcomes in
motor function to the specific interventions (Halilaj et al., 2018).
On the other hand, methods relying on musculoskeletal models
and computational simulations are often suggested to have

the potential to identify the causal relation between individual
impairments, their interactions and the treatment outcome
(Morrison et al., 2018).

To introduce simulation-based decision-supporting tools into
clinical practice, a few obstacles have yet to be overcome. One of
the major obstacles in this respect is the need for a representative
translation of the neuromusculoskeletal dysfunctions of
the patients (i.e., the altered musculoskeletal geometry,
musculoskeletal parameters, and altered neural control) into
the musculoskeletal models. The need to account for the
musculoskeletal deformities of the individual CP patient and the
bony deformities in particular, dictates the use of subject-specific
musculoskeletal models when generating dynamic simulations of
CP gait. In this respect, the added value of magnetic resonance
imaging (MRI) based models has been extensively demonstrated
(Scheys et al., 2011a,b; Bosmans et al., 2016).

The altered muscle parameters (i.e., muscle contracture
and weakness) in patients with CP compared to a healthy
population (Theis et al., 2016; Kruse et al., 2017; Kalkman
et al., 2018) invalidates the use of scaled generic parameters.
Appropriate parameter tuning capturing the patient-specific
muscle properties is therefore needed. Several methods have
been proposed for tuning and scalingmusculoskeletal parameters
(Van Campen et al., 2014; Modenese et al., 2016; Falisse et al.,
2017). Nevertheless, most of these methods require an extensive
amount of data collected based on a specific method (e.g.,
instrumented dynamometry) that is typically not available in the
common clinical practice and might be difficult to apply in the
case of neuromotor deficits.

The altered motor control of patients with CP is reflected in
the use of aberrant coordination patterns of the muscles during
gait compared to a healthy population (Steele et al., 2015). The
concept of muscle synergies is an elegant way to summarize these
coordination patterns and by comparing them between CP and
typically developing (TD) children, altered motor control aspects
have already been identified in terms of number of independent
components and stride-by-stride variability (Steele et al., 2015;
Kim et al., 2018). In addition, muscle synergies have already been
used in the control of musculoskeletal models during dynamic
simulations (Allen and Neptune, 2012; Sartori et al., 2013; Meyer
et al., 2016). In healthy subjects, themuscle activations generating
the observed muscle synergies are very similar to those generated
when muscles are recruited independently according to an
optimality criterion (De Groote et al., 2014). However, patients
with CP exhibit different sets of muscle synergies with respect to
a healthy population (Steele et al., 2015), thus highlighting the
importance of including a subject-specific motor control model
into the framework (Meyer et al., 2016; Sartori et al., 2017).

Literature results (Patikas et al., 2007) and a pilot study
from our research group (Pitto et al., 2018), suggest that the
same motor control model can be used to describe both the
pre- and post-operative patient’s condition. Therefore, the pre-
operative synergies may also be used for the simulations of the
post-operative condition, as their composition remains mostly
unchanged after a specific orthopedic treatment. The advantage
of this approach is that it relies entirely on pre-operative
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data, thus making it suitable for the pre-operative decision-
making process.

Apart from describing the patient-specific features in the
modeling framework, also the specific therapeutic interventions
(and multi-level surgeries in particular) need to be accounted
for into the musculoskeletal model. Whereas the effect of
muscle-tendon lengthening and muscle transfer on the moment-
generating capacity, lengths and velocities of the muscles have
been described (Delp and Zajac, 1992; Arnold et al., 2006b), only
few studies attempted a forward simulation aiming to predict
the post-intervention outcome. For instance, two studies using
musculoskeletal modeling and forward dynamics simulations
(Fox et al., 2009; Mansouri et al., 2016) investigated the effect of a
rectus femoris transfer surgery on the recovery of balance after a
perturbation and on knee flexion in stiff knee gait in children with
CP.While these studies represent a step forward in this direction,
their scope remains quite restricted, accounting for only one kind
of intervention and analyzing the effect on a single parameter.

Clinical use of simulation-based decision-supporting tools
requires the definition of comprehensive parameters that relate
to the functional improvement of the patient and therefore
can be used as outcome measures to evaluate the effect of
different interventions. In the field of assistive exoskeletons
(Afschrift et al., 2014), the concept of the capability gap (CG) was
introduced to represent the amount of support the exoskeleton
had to provide in order to allow the patient to perform a given
task. This concept can be translated to the estimation of the
motor performance of the patient, before and after the simulated
interventions, as a measure of “difficulty” in performing a desired
motion, i.e., gait pattern of a TD child. By integrating the patient-
specific impaired motor control, abnormal muscle properties,
and/or altered musculoskeletal geometry, the changes in the CG
after a simulated orthopedic treatment inform the clinician on
how a specific intervention improves the ability of the child to
adopt a TD gait pattern.

Within the SimCP project, a comprehensive simulation-
based framework was developed to evaluate the functional
effect of a therapeutic/surgical intervention in a specific
patient with CP, thereby assisting the most appropriate
treatment selection (Figure 1). This framework relies on the
creation of a personalized neuro-musculoskeletal model of
the patient. In this model, the musculoskeletal geometry is
obtained from imaging data. The framework then provides
the tools to personalize the muscle parameters according
to information collected during gait analysis and clinical
examination. Furthermore, the motor control is personalized
using EMG data collected during the treatment-planning
phase. Thereafter, a Graphical User Interface (GUI) allows
clinicians to simulate combinations of different multi-level
surgical procedures. Finally, the functional performance (i.e.,
walking ability) of the patient can be quantified for different
simulated post-operative conditions by evaluating the change
in the predicted capability gap with respect to the pre-
operative condition. These operations rely only on experimental
data collected pre-operative. In this manner, it is feasible to
compare the effectiveness of a set of candidate treatments in
improving the gait performance of the patient, thus supporting

the clinical decision-making process and optimizing individual
treatment outcome.

Throughout this article, the different building blocks
composing the framework are described and two representative
cases studies are introduced to assess the methods and elucidate
the several steps.

METHODS

The goal of the SimCP framework is to predict gait performance
following different candidate orthopedic treatments solely based
on data collected before the treatment and the surgical plan.
Pre-operative data includes gait analysis, clinical examination
(e.g., documenting joint range of motion) and medical images.
To this aim, the framework contains several building blocks
(Figure 1). First, a personalized musculoskeletal model capturing
the patient’s musculoskeletal geometry (section Musculoskeletal
Geometry) and muscle properties (section Muscle Parameters)
is generated. Then, a description of the patient’s motor control
is added to this model (section Motor Control). Next, the
orthopedic surgeries are simulated (section Surgery Simulation).
Finally, the simulated post-operative gait performance is
computed (section Capability Gap and Muscle Report).
The framework also offers the possibility to investigate the
contributions of the different impairments to gait performance
(section Alternative Analyses). We illustrate the salient features
of the SimCP framework using data from two representative
patients (section Case Studies).

Data Collection
In order to provide the information needed for the complete
personalization of the models, inputs from several sources
are required. First, imaging data, such as CT scans and
MRI-images, allow defining the musculoskeletal geometry.
Second, three-dimensional gait analysis data, including marker
trajectories and ground reaction forces as well as EMG
signals from the most important muscles in the lower limb,
are needed for the personalization of the muscle parameters
and definition of the motor control model. Third, clinical
examination reporting the passive range of motion of the patient
contains useful information to refine the personalization of the
muscle parameters.

Musculoskeletal Geometry
The musculoskeletal models are based on a generic SIMM
(Motion Analysis Corp., Santa Rosa, CA) model and are
composed of 14 bodies and 21 degrees of freedom that are
actuated by 86 muscles. The musculoskeletal geometry of this
generic model is adapted to reflect the patient’s musculoskeletal
geometry. The model is then further personalized by tuning
the muscle-tendon parameters (section Muscle Parameters) and
by adding a model of the patient’s motor control (section
Motor Control).

Musculoskeletal geometry is derived from MRI-images. The
workflow to create the MRI-based models has been published
previously (Scheys et al., 2008, 2011b). In short, bones of the
lower limbs and pelvis are segmented using Mimics (Materialize,
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FIGURE 1 | Framework description. Data collected on the patient in the pre-operative phase are used as input to generate a pre-operative model with personalized

musculoskeletal geometry and muscle parameters. Next, the motor control of the patient is modeled, using synergy decomposition analysis, based on pre-operative

EMG and gait analysis data. Performing virtual surgeries on the pre-operative model generates a post-operative model. This takes into account the changes in the

musculoskeletal parameters induced by the performed surgery. The motor control, on the other hand, is not affected by the surgery and the same motor control

model computed in the pre-operative condition is used also for the post-operative condition. The gait performance of the patient can be computed in both the pre-

and simulated post-operative conditions. In both cases, a synergy constrained optimization tries to match the joint moments relative to a desired motion while taking

into account the constraints imposed by the model and by the motor control. The differences between the moments generated by the model and the desired

moments are the capability gap, defining the gait performance.

Leuven, Belgium). Afterwards, anatomical reference frames, joint
axes and muscle origin and insertion points are defined and
a patient-specific musculoskeletal OpenSim model is created
using MuscleSegmenter (Leuven, Belgium) and customized
Matlab (The Mathworks, Natick, MA) scripts. The models with
personalized musculoskeletal geometry are then imported into
the SimCP framework.

Performing virtual surgery alters the musculoskeletal
geometry and hence generates a new model, which is linked to
the pre-operative model and appears in the post-operative model
list. In this manner, each pre-operative model can be linked to
multiple post-operative models, allowing for the exploration of
different treatment options (see also section Surgery Simulation).

Muscle Parameters
Using preoperative data, we tune the two parameters of the
Hill-type muscle model that have the largest influence on the
simulated muscle force: muscle optimal fiber length and tendon
slack length (lmoand lts) (De Groote et al., 2010). Maximum
isometric muscle forces are scaled based on the patient’s body
weight (Van Der Krogt et al., 2016; Kainz et al., 2018). Pennation

angles are taken from the gait2392 model in OpenSim as they
have a limited effect on simulated forces (Zajac, 1989).

Parameters are tuned using only the information from the
pre-operative walking trials (marker trajectories, ground reaction
forces and EMG) and, optionally, the clinical examination of
the passive joint range of motion (Table 1). The underlying
assumption of the procedure is that during gait the muscles
generate the inverse dynamic moments with activations that are
consistent with the measured EMGs and operate around their
optimal fiber length. In other words, given the joint excursions
during gait, muscles are not extremely short, as this would
limit their force production given the muscle’s force length
relationship, nor too stretched, as this would induce excessive
passive forces. In addition, it is assumed that at least part of
the resistance encountered during the clinical examination at
the extremes of the range of motion, is attributable to muscle
passive force, i.e., muscles being at a length well above their
optimal length.

To perform this tuning, we extended a static optimization
problem since this allows us to optimize the fit between the
computed activations and joint moments, and, respectively, the
EMGs and inverse dynamic joint moments. Static optimization
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TABLE 1 | Subjects demographics and data from clinical examination.

Patient 1 Patient 2 TD (15 subjects)

Age 12–16 years 12–16 years 9.86 (SD 2.98) years

Weight 33.1 kg 49.1 kg 34.61 (SD 13.33) Kg

Height 143 cm 171 cm 139 (SD 166) cm

Time between observation 407 days 304 days

Left Right Left Right Reference values

(Moon et al., 2017)

Passive range of motion

(degrees)

Hip flexion 145 ∼ / 140 ∼ / 105 ∼ / 110 ∼ / 126.8 (SD 7.6)

Hip extension −10 ∼ / −10 ∼ / / ∼ / / ∼ /

Hip abduction (Knee 0◦) 25 ∼ 40 25 ∼ 40 20 ∼ 15 10 ∼ 20 47.6 (SD 6.2)

Hip abduction (Knee 90◦) 45 ∼ 35 45 ∼ 35 35 ∼ 25 30 ∼ 30 55.6 (SD)

Hip adduction 0 ∼ / 0 ∼ / 0 ∼ / 0 ∼ /

Hip int rotation (prone) 60 ∼ 40 70 ∼ 60 45 ∼ 25 65 ∼ 25 40.1 (SD 11.1)

Hip ext rotation (prone) 25 ∼ 20 25 ∼ 20 20 ∼ 5 20 ∼ 5 40.1 (SD 8.5)

Hip int rotation (supine) 25 ∼ 25 30 ∼ 40 30 ∼ 20 45 ∼ 25

Hip ext rotation (supine) 55 ∼ 50 50 ∼ 40 45 ∼ 20 30 ∼ 10

Knee flexion 120 ∼ 110 120 ∼ 105 120 ∼ / 120 ∼ / 136.5 (SD 5.5)

Knee extension −20 ∼ 0 −15 ∼ 10 10 ∼ 5 −25 ∼ 0 1.0 (SD 1.8)

Knee spontaneous position −30 ∼ 5 −25 ∼ 5 / ∼ −10 / ∼ –10

Popliteal angle unilateral −70 ∼ 135 −65 ∼ 142 −75 ∼ −70 −85 ∼ −70 33.8 (SD 10.3)

Popliteal angle bilateral −65 ∼ 135 −60 ∼ 142 −70 ∼ −70 −75 ∼ −70 24.3 (SD 9.1)

Ankle dorsiflexion (Knee 90◦) 20 ∼ 30 25 ∼ 30 20 ∼ 30 −10 ∼ 10 19.6 (SD 4.5)

Ankle dorsiflexion (Knee 0◦) 15 ∼ 20 15 ∼ 20 10 ∼ 15 −20 ∼ 0 11.3 (SD 4.7)

Ankle plantarflexion 35 ∼ discr 35 ∼ discr 10 ∼ norm 20 ∼ norm 49.4 (SD 9.2)

Ankle inversion 40 ∼ norm 45 ∼ norm 50 ∼ norm 60 ∼ norm

Ankle eversion 10 ∼ norm 10 ∼ norm 10 ∼ norm 10 ∼ norm

Spasticity Hip flexion Mas 2 ∼ 0 2 ∼ 0 1.5 ∼ 1 2 ∼ 1

Hip adduction (Knee 0◦) mas 1.5 ∼ 0 1.5 ∼ 0 1.5 ∼ 1 2 ∼ 1

Hip adduction (Knee 90◦) mas 0 ∼ 0 0 ∼ 0 1.5 ∼ 1 2 ∼ 1

Hamstrings mas 1.5 ∼ 0 1 ∼ 0 2 ∼ 2 1.5 ∼ 1.5

Hamstrings tard −70 ∼ / / ∼ / −85 ∼ −90 −90 ∼ −75

DuncanElly mas 1.5 ∼ 0 1.5 ∼ 0 1.5 ∼ 1.5 2 ∼ 1.5

DuncanElly tard 2 ∼ 0 2 ∼ 0 2 ∼ 2 2 ∼ 2

Soleus mas 0 ∼ / 0 ∼ / 1.5 ∼ 1.5 1.5 ∼ 2

Soleus tard / ∼ / / ∼ / 10 ∼ 10 −15 ∼ 0

Gastrocnemius mas 1.5 ∼ / 1.5 ∼ / 3 ∼ 1.5 3 ∼ 2

Gastrocnemius tard 0 ∼ / 5 ∼ / −20 ∼ −10 −25 ∼ −10

Tibialis post mas 0 ∼ 0 0 ∼ 0 0 ∼ 0 2 ∼ 1.5

Clonus 0 ∼ / 0 ∼ / 2 ∼ 2 3 ∼ 2

Plantarflexors (Knee 90◦) mas / ∼ 1 / ∼ 1 / ∼ / / ∼ /

Plantarflexors (Knee 90◦) tar / ∼ 10 / ∼ 10 / ∼ / / ∼ /

Plantarflexors (Knee 0◦) mas / ∼ 0 / ∼ 0 / ∼ / / ∼ /

Selectivity Hip flexion 2 ∼ 2 2 ∼ 2 2 ∼ 2 2 ∼ 2

Hip extension 1.5 ∼ 1 1.5 ∼ 1 2 ∼ 2 1.5 ∼ 2

Hip abduction 1.5 ∼ 2 1.5 ∼ 1.5 2 ∼ 2 2 ∼ 1.5

Hip adduction 2 ∼ 2 2 ∼ 2 2 ∼ 2 2 ∼ 2

Knee flexion 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5 1.5 ∼ 1.5

Knee extension 1 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5 1.5 ∼ 1.5

Ankle dorsiflexion (Knee 90◦) 1.5 ∼ 1.5 1.5 ∼ 1.5 2 ∼ 1.5 1.5 ∼ 1.5

Ankle dorsiflexion (Knee 0◦) 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5 1.5 ∼ 1.5

(Continued)
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TABLE 1 | Continued

Left Right Left Right Reference values

(Moon et al., 2017)

Ankle plantarflexion 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5

Ankle inversion 1.5 ∼ 1.5 1.5 ∼ 2 2 ∼ 2 1.5 ∼ 1.5

Ankle eversion 2 ∼ 1.5 1.5 ∼ 1.5 2 ∼ 2 1.5 ∼ 1

Strength Hip flexion 4 ∼ 4 4 ∼ 4 5 ∼ 4 5 ∼ 4

Hip extension 3 ∼ 3+ 3 ∼ 3+ 3 ∼ 4 4 ∼ 4

Hip abduction 3 ∼ 3+ 3 ∼ 2 4 ∼ 4 3 ∼ 3

Hip adduction 4 ∼ 4 4 ∼ 4 5 ∼ 5 4 ∼ 5

Knee flexion 4 ∼ 4 3 ∼ 4 4 ∼ 4 4 ∼ 4

Knee extension 3 ∼ 4 3 ∼ 4 4∼ 4 4 ∼ 4

Ankle dorsiflexion (Knee 90◦) 4 ∼ 4 4 ∼ 4 4 ∼ 4 3 ∼ 4

Ankle dorsiflexion (Knee 0◦) 4 ∼ 4 4 ∼ 4 4 ∼ 4 3 ∼ 4

Ankle plantarflexion 4 ∼ 4 3 ∼ 4 3 ∼ 4 3 ∼ 3

Ankle inversion 4 ∼ 3+ 4 ∼ 4 5 ∼ 4 3 ∼ 4

Ankle eversion 4 ∼ 3+ 4 ∼ 3+ 4 ∼ 4 3 ∼ 3

Information about the subjects included in the study. Data are collected from the pre- and post-operative clinical reports. For each entry, the first value is relative to the pre-operative

condition, the second, in bold, is relative to the post-operative condition. “Mas” stands for manual Ashworth test (a score of 0 indicates no spasticity, a score of 4 maximal spasticity),

“Tard” for Tardieu test (measured in degrees, defines the position where the spasticity limits the movement). In “Selectivity” a score of 2 indicates the maximum motor control selectivity.

In “Strength” the maximum value is represented by a score of 5. “norm” stands for normal, defining full range of motion; “discr” stands for discrete, defining limited range of motion; “/”

replaces values not present in the report. Reference values for TD subjects are obtained from Moon et al. (2017).

computes muscle activations that produce the inverse dynamic
joint moments underlying a measured movement while
optimizing a performance criterion (e.g., minimizing sum of
activations squared). Here, we allow optimal fiber lengths and
tendon slack lengths to change during the optimization while
imposing constraints on the allowable muscle lengths that
represent the tuning criteria described above. In contrast to the
typical static optimization approach that is solved for each time
frame separately, here all time frames are coupled to obtain a
single set of muscle-tendon parameters. It is important to note
that static optimization neglects muscle dynamics by assuming
that tendons are rigid but allows accounting for the muscle
force-length-velocity relationship (De Groote et al., 2016). A
static optimization approach was preferred over a dynamic
approach that accounts for muscle dynamics (De Groote et al.,
2016) to limit computation times. The problem was then solved
using the fmincon function in Matlab.

To cope with the scarcity of input data (i.e., data from a
limited number of movements and a limited number of EMG
signals), we decided to tune the parameters only in a set of
major muscles (M) (Table 2). In addition, we used a different
level of detail when describing the force generated by these
major and other muscles. For the major muscles, the force-
length relationship, derived from (De Groote et al., 2016), was
taken into account (but not the force-velocity relationship).
Hence, the generated force has an active component (f L),

depending on normalized muscle fiber length (l̃) and muscle
activation (a), and a passive component, (f P) depending only on
fiber length:

mFi =
mf◦

[

mai
mf Li

(

m l̃i

)

+m f Pi

(

m l̃i

)]

, ∀m ∈ M, (1)

Where f is the maximum isometric force the muscle can exert
and the subscript i defines the instant in time. For the remaining
muscles (N), the generated force is proportional to activation:

mfi =
m f◦

mai , ∀m ∈ N. (2)

Hence, the resulting estimation problem has the following
structure. Optimization variables consist of muscle activations
and reserve moments (for each joint j) during the gait cycle

(mai,
jτ

R
i ), as well as the muscle parameters (mlmo, mlts). Reserve

moments are generated by ideal actuators and are added to
the muscle moments to guarantee that the inverse dynamic
joint moments can be matched even when the muscles are not
sufficiently strong. Since they are not physiological, their use is
heavily penalized in the cost function to keep their contribution
to a minimum:

CSO =
∑

i





∑

m

w1

(

mai
)2

+
∑

j

w2

(

jτ
R
i

)2



 , (3)

Where w1−2 are weighting coefficients that produced a
proportional balance between muscle and residual activations
(Hicks et al., 2015) in simple static optimization problems.

An additional penalty term is included in the cost function to
ensure that the computed activations of the subset of muscles (ε)
for which EMG was collected (see Table 2) reflect the pattern of
the measured data:

Cǫ =
∑

i

∑

m∈ǫ

w3

(

mσ mai −
mεi

)2
, (4)

Where ε represents the experimental EMG envelope. The scaling
factor σ was introduced as an optimization variable to impose
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TABLE 2 | List of muscle subsets.

Tuned muscles EMG muscles Passive range of motion

EMG channel Muscle name Measurement Muscles measured

Rectus Fems Rectus Fem Hip

Glut Max 1

Glut Max 2

Glut Max 3 Vast Lat Vast La Flexion Glut Max1, Glut Max2, Glut Max3,

Glut Med 1 Bic Fem Bic Fem lh Glut Med1, Glut Med2, Glut Med3

Glut Med 2 Hamstring Med Semimembr, Semitend Extension Iliacus, Psoas

Glut Med 3 Tibialis anterior Tibialis Ant Abduction 0◦ Add Mag 2, Add Mag 3, Add Long

Add Long Gastrocnemius Gastroc Med, Gastroc Lat Int Rot Sup Glut Med1, Glut Med2, Glut Med3

Add Mag 2 Soleus Soleus Int Rot Pro

Add Mag 3 Gluteus Glut Med 2 Ext Rot Sup

Tensor FL Ext Rot Pro

Gracilis Knee

Semimembr Flexion Rectus Fem, Vast Int, Vast Med, Vast Lat

Semitend Rectus Fem

Bic Fem lh Extension Semimembr, Semitend, Gracilis, Bic Fem lh, Bic Fem sh

Bic Fem sh Popl Ang Uni

Sartorius Popl Ang Bi

Rectus Fem Ankle

Vast Med Dorsiflex Kn 0◦ Soleus, Gastroc Lat, Gastroc Med

Vast Int Dorsiflex Kn 90◦

Vast Lat

Gastroc Med

Gastroc Lat

Soleus

Iliacus

Psoas

“Tuned muscles” reports the set of muscles whose parameters have been tuned; “EMG muscles” reports which muscles of the model were assigned to which EMG channels; “Passive

Range of motion” reports the clinical examination measures included into the framework and which muscles were measured in each position.

similarity between activations and EMG patterns irrespective of
signal amplitude since, in the absence of maximum voluntary
contraction tests, the relation between signal amplitude and
muscle activation cannot be accurately derived.

The cost function was minimized subject to the following
constraints. A first set of constraints describes that the muscles
should produce the inverse dynamic joint moments:

∑

m∈M

jmri
mFi +

∑

m∈N

jmri
mfi +

jτ
R
i − jτ

ID
i = 0, (5)

Where jτ
ID
i are the desired joint moments from inverse dynamics

and jmri is the moment arm of musclem with respect to joint j at
time i.

A second set of constraints imposes bounds on the muscle
fiber lengths during gait and the clinical exam of the range
of motion. To ensure that normalized muscle fiber lengths
during gait are within 0.4 and 1.5, we constrain the minimal
and maximal fiber lengths. In addition, to ensure that muscles
operate around their optimal length during gait, we constrain the
maximal fiber length to be above and the minimal fiber length to
be below optimal fiber length:

1 < max
i

(m l̃i) ≤ 1.5, (6)

0.4 ≤ min
i

(

m l̃i

)

< 1 , ∀m ∈ M, (7)

Maximal normalized fiber lengths during the clinical exam (l̃R)
should be in the range where passive force is generated:

1 < m l̃
R
≤ 1.5 , ∀m ∈ R, (8)

Where R defines the subset of muscles for which the length is
computed using information from the clinical passive range of
motion examination (Table 2).

To impose that muscles were stretched to a level where they
generated considerable passive force during the clinical exam, we
added a penalty term to the cost function:

CR =
∑

m∈R

w4

(

m l̃
R
− 1.5

)2
, (9)

Within our formulation, the passive force exerted by a muscle
stretched at 1.5 lmo is around 0.5 F. While a significant variation
in passive force is present between muscles (Prado et al., 2005)
and further variations are induced by CP (Kalkman et al., 2018),
we made this simplifying assumption to allow for the selection of
different sets of muscles without increasing the complexity of the
tuning procedure.
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Combining, (Equations 3, 4, and 9) and, the final cost
function becomes

CSO + Cǫ + CR , (10)

Input data jτ
ID
i , jmri, and muscle-tendon lengths mlmt

i are
computed based on the personalized musculoskeletal models
using OpenSim’s analysis tools, specifically Inverse Kinematics,
Inverse Dynamics and Muscle Analysis using the gait data
as input. Therefore, muscle moment arms are defined using
the generalized force method (Sherman et al., 2014). Muscle

fiber lengths (l) and normalized fiber length (l̃) during gait
were computed according to a Hill-type model assuming a
rigid tendon:

mli =
(

mlmt
i − mlts

)

/ cos (α), (11)

m l̃i =
mli/

mlmo , ∀m ∈ M, (12)

Where α is the pennation angle. Joint positions during the
clinical exam to test the passive range of motion are derived from
the description of the test and are used to compute the maximum
musculotendon lengths, muscle fiber lengths and normalized
fiber lengths reached during the test for the subset of muscles R

(lmtR, lR and l̃R, respectively).
The estimated parameters lmoand lts are incorporated into the

subject’s model and will define the force-length relationships of
the muscles included in the setM during the following analyses.

Motor Control
In cerebral palsy, the ability to selectively recruit muscles is
reduced. Therefore, we describe impaired motor control by
imposing the pathological muscle activation patterns when
computing gait performance. Muscle activation patterns are
derived from pre-operative EMG data collected during walking
using synergy analysis. For the motor control model to be useful
in our simulations, it has to account for the activations of all
the muscles. However, EMG data are collected from only a
small subset of muscles (typically<10) while the musculoskeletal
model contains many more muscles (typically more than 40). A
multi-step procedure is proposed to derive muscle coordination
for all muscles in the model based on EMG data from a limited
number of muscles (cfr. Meyer et al., 2016).

First, muscle synergies are derived from the pre-operative
EMG data acquired during three gait cycles to define the
complexity of the patient’s motor control by the number of
synergies (Ns) using non-negative matrix factorization (NNMF)
(Lee and Seung, 1999). The input matrix of EMG signals has
dimensions Nǫ × Ni where Nǫ is the number of muscles
and Ni is the number of time instants. The output of the
synergy analysis consists of two matrices: a Ns × Ni matrix
H containing the activation timing profiles of each synergy
and a Nǫ × Ns matrix W containing the weight vectors
specifying how much an individual muscle is activated by each
synergy. The matrices W and H are computed such that the
product WH best approximates the original input matrix for a
predefined number of synergies Ns. We quantified Ns using a

bootstrapping procedure such that the percentage of the original
signal explained by the synergies is above a predefined threshold
(Cheung et al., 2009). Both the EMG signal and the H matrix
were consistently resampled 500 times with replacements, using
Matlab function datasample. The resampled matrices have the
same dimension of the original ones and the same time instants of
the original matrices can appear more than once in the resampled
one. The variability accounted for (VAF) of these resampled
signals by the synergies extracted from the original signal is
computed. Ns is the lowest number of synergies for which VAF
is higher than 90% for at least 95% of the resampled signals. The
number of synergies Ns is used in the subsequent steps.

Next, an EMG-informed static optimization analysis is
performed on the patient’s pre-operative gait data, where the

optimization variables are mai,
jτ

R
i , and

mσ . The cost function
is obtained by combining (Equations 3 and 4):

CSO + Cǫ , (13)

The Cǫ term enables us to account for the pathological
characteristics of muscle activations, such as antagonistic muscle
co-contractions, which are very common in children with CP.
This cost is minimized subject to constraints describing the
equilibrium between inverse dynamic and muscle moments
(Equation 5).

Finally, muscle synergies are extracted by performing a
new NNMF on the muscle activations computed with static
optimization. The number of synergies for this analysis is Ns+ 1.
The extra synergy is included to take into account muscles for
which no surface EMG was collected. For instance, Allen and
Neptune (2012) found that a synergy including predominant
contributions from the iliacus and psoas muscles is needed to
control a 3Dmodel during walking, and EMG from thesemuscles
is typically not acquired. The result is a set of muscle synergies
(WpreandHpre) that define themotor controlmodel of the patient
and describe the activations of all themuscles. This motor control
model is later used in the computation of the gait performance of
the patient (section Capability Gap and Muscle Report).

Surgery Simulation
We developed a set of virtual surgeries and a GUI that allow
to directly manipulate the musculoskeletal models by leveraging
the Matlab-OpenSim application programming interfaces. The
surgeries implemented in the current version of the GUI are
Extension and Derotation Osteotomy, Derotation Osteotomy,
Muscle Transfer, Patella Advancement and Botulinum Toxin
Injection. Only the Muscle Transfer and Botulinum Toxin
Injections influence the muscle parameters.

In an Extension and Derotation Osteotomy (Figure 2B), two
cutting planes define the bone wedge for removal (Lenhart
et al., 2017). In the GUI, the pose of the cutting planes on the
desired bone can be defined. The wedge is removed and the
remaining bone segments are then reconnected by joining the
cutting planes. The intra-segment rotation perpendicular to the
cutting planes and the translation along the cutting plane can
be specified by the user. Based on bony landmarks, important
morphometric information, such as anteversion angle and neck
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FIGURE 2 | Framework components. (A) Muscle transfer surgery. Used to change the path of a muscle. The lines of action of other muscles are visualized as guide to

help during the transfer. (B) Extension and Derotation osteotomy surgery. Two sets of scrollbars define the pose of the two cutting planes (red and blue in the left side

figures) that define the wedge of bone to be removed. After wedge removal, the two segments are brought in contact and it is possible to rotate and translate the

distal part to correct for abnormal anteversion angles. (C) Patella advancement surgery. It is possible to define the new length of the patella ligament and/or move its

insertion on the tibia, during the operation the ligament in the new configuration is shown as a red cylinder.
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shaft angle of the simulated post-operative bone configuration are
visualized in real-time to guide the user in performing the virtual
surgery. The Derotation Osteotomy surgery is implemented in
a manner similar to the Extension and Derotation Osteotomy
but involves only a single cutting plane on the desired bone.
After cutting the bone, the distal part of the bone can be
rotated and translated with respect to the proximal part of
the bone to correct for bony deformities. Within the Muscle
Transfer tool (Figure 2A), we provide several options to modify
the muscle geometry. These options include adding, removing,
translating and changing the muscle attachment, insertion and
via points. The resulting change in musculotendon length is
translated into a change in tendon slack length. The underlying
assumption is that muscle transfer surgeries do not directly
affect the muscle fiber architecture, but change the length of the
tendon either by removing part of the tendon, lengthening the
tendon, or by transferring it to the tendon of another muscle.
Patella Advancement (Figure 2C) can be performed by either
changing the length of the patella ligament, or by transferring
the attachment of the ligament on the tibia to a new position.
Patella movement is defined as a function of knee flexion
angle. After changing the ligament attachment or length, the
new path of the patella is determined through an optimization
procedure. This optimization procedure defines the rotation and
the translations needed to represent the patella movement on
the plane perpendicular to the knee joint axis. This optimization
finds the patella movement that results in the most constant
distance between two points on the patella, one proximal and
one distal, and the femur surface throughout the motion while
maintaining the patella ligament length constant. Botulinum
Toxin Injections are modeled by a decrease in the injected
muscle’s maximum isometric force. This is a highly simplified
representation of what botulinum toxin injections do to the
muscle and further research is needed to refine this procedure
in our model.

Any change applied to a given model results in a new post-
operative model, which can be saved for future use.

Capability Gap and Muscle Report
As previously introduced, the main outcome of the present
framework is the capability gap. The capability gap is the
difference between the joint moments needed for performing
a “desired” motion, i.e., TD walking, and the joint moments
the personalized model of the patient (this can be either
a pre- or post-operative model) can generate. We use a
synergy-based static optimization approach to compute the
capability gap. Here, the reserve moments appearing in the
moment equilibrium function (Equation 5) represent the
torque deficit and hence the capability gap. Subject-specific
musculoskeletal geometry and muscle parameters are described
in themusculoskeletal model. Impairedmotor control is imposed
through additional constraints on the activations based on the
patient’s muscle synergies.

The desired motion used for the computation is derived by
scaling average TD walking data to the patient’s dimensions
(Table 1). First, TD kinematics are imposed to a generic model
that was scaled to the patient and corresponding 3D marker

trajectories are extracted. The magnitude of the ground reaction
forces is scaled based on mass and their point of application,
expressed in the foot reference frame, is scaled based on body
height. Successively, using the marker trajectories and ground
reaction forces, the joint moments required for the personalized
model to perform the desired motion are computed by an
inverse kinematics and inverse dynamics analysis. In addition,
correspondingmuscle moment arms andmusculotendon lengths
are computed. By tracking marker trajectories consistent with
TD walking instead of imposing TD joint kinematics directly to
the musculoskeletal model, we avoid that the presence of bony
deformities leads to unrealistic gait patterns. As an example, if the
femoral neck anteversion is 30◦ higher than normal, imposing
TD kinematics to the personalized model would result in a gait
pattern with the knee and foot pointing outwards by about 30◦,
whereas if we track the marker trajectories the knee and foot will
point forwards.

Afterwards, the synergy constrained static optimization is
performed. The cost function to be minimized is CSO as defined
by Equation (3). The moment equilibrium (Equation 5) has to be

satisfied. Inputs to Equation (5), jτ
ID
i , jmri, and

m l̃i, are computed
based on the patientmodel and a TDwalking pattern as described
above. Instead of solving for independent muscle activation
patterns, we now solve for synergy activation patterns Hopt . The

optimization variables are hence H
opt
i , jτ

R
i and mW, which is a

deviation from the pre-operative synergy weights (see below).
Individual muscle activation patterns (including both subsets N
and M) are then computed from the synergy activation patterns
using the synergy weight vectors that describe the patient’s motor
controlWpre (see section Motor Control):

mai = (Wpre + 1mW) × H
opt
i , (14)

The same muscle co-contraction patterns (Wpre) are used to
compute the pre- and post-operative CG, since we hypothesize
that the orthopedic intervention does not alter muscle co-
contraction patterns. Hence, we assume that the neural system
will respond to the alteredmusculoskeletal geometry by changing
the timing andmagnitude of the pre-operative activation patterns
H. A small deviation (W) from the original weights is allowed
because the synergy matrices computed using NNMF typically
do not capture 100% of the signal variability. In our formulation,
W is normalized so that themaximum value in each vector equals
one andW ≤ 0.05.

Because of the altered musculoskeletal geometry, muscle
parameters and synergy-based constraints on muscle activations,
it is likely that the muscles cannot generate the TD joint
moments. The non-selective motor control imposed by the
synergy weights might impose antagonistic co-contractions,
hindering the moment generating capacity of a muscle.
Alternatively, muscles could be excessively stretched when
imposing TD gait kinematics and generate high passive forces. A
considerable contribution from the residual actuators might thus
be required to satisfy the moment equilibrium. The magnitude of
the residuals moments required to match the desired moments
defines the capability gap.

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 5430

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Pitto et al. SimCP: Simulation Platform for CP

The CG is represented graphically as a function of the gait
cycle for the different degrees of freedom (Figure 3A) and is
quantified for each degree of freedom:

jCG =
∑

i

∣

∣

∣

jτ
R
i

∣

∣

∣
/
∑

i

∣

∣

∣

jτ
ID
i

∣

∣

∣
, (15)

Furthermore, we provide a muscle report (Figure 3B)
summarizing the intervals during which muscles operate
with excessively short or long fiber lengths. Excessively stretched
muscles are those whose passive force is >0.5 times their

maximum isometric force (corresponding to l̃ larger than
1.5 lmo). Muscles active at short lengths are those whose
activations are >0.25 when operating at normalized fiber lengths
smaller than 0.6, meaning that they are producing relatively
little force.

Alternative Analyses
This framework is originally intended to work with the
personalized neuro-musculoskeletal models as described above
but it is also possible to exclude one or more of the
personalization blocks. In fact, this procedure can be of
value when assessing the importance of the different factors
contributing to the impairment, as highlighted in section Case
Studies. It is for instance possible to import a scaled, generic
model, and perform the same analyses and surgeries, as envisaged
for the personalized models, in order to evaluate the importance
of the bony deformities in defining the impairment of the
patient. Alternatively, it is possible to investigate alternative
causes of the functional impairment by excluding the muscle
force/length relationships or the constraints imposed by the
motor control on themuscle activations when computing the gait
performance (CG).

Case Studies
We analyzed two representative patients with the proposed
framework (Table 1). Both were diagnosed with diplegic CP
and underwent SEMLS. For both patients, MRI images were
acquired prior to the intervention (for details on the protocol,
see Bosmans et al., 2014). A standardized clinical examination
protocol (Desloovere et al., 2006) was conducted to evaluate
the level of spasticity, strength, selectivity and range of motion.
Three-dimensional gait analysis was performed before and after
the intervention. Each participant was equipped with a set of
reflective markers using the Vicon Plug-in-Gait marker set for
lower limbs. Using a 10–15 cameramotion capture system (Vicon
Motion Systems, Oxford, UK) and two force plates (AMTI,
Watertown, MA, USA), marker trajectories and ground reaction
forces were collected during one static trial and at least three
walking trials at self-selected walking speed. EMG signals were
collected (Zerowire, Cometa, Italy) from eight major muscles per
leg (rectus femoris, vastus lateralis, biceps femoris long, medial
hamstrings, tibialis anterior, gastrocnemius, soleus, and gluteus
medius). The local ethical committee approved all procedures,
and written informed consent was obtained from the parents of
the children prior to participation.

We created pre-operative personalized models using
the experimental data (MRI, 3D gait analysis and clinical

examination report) and post-operative personalized model by
performing virtual surgeries according to the surgical plan of the
actual intervention. For Patient 1 the following interventions
were modeled: bilateral rectus femoris transfer, distal femur
extension, and derotation osteotomy, patella advancement.
Patient 1 also received a derotation of the tibia, but this was
not modeled due to the fact that the MRI from which the
musculoskeletal model was built did not include images of the
feet and distal tibiae. For Patient 2 the following interventions
were modeled: bilateral rectus femoris transfer, left distal
femur derotation, right distal femur extension, and derotation
osteotomy, patella advancement, right gastrocnemius and
psoas release.

To simulate the Extension and Derotation Osteotomy
intervention, the angle between the two cutting planes in the
femur was modeled based on the knee extension deficit observed
when testing the passive range of motion. For the femur
Derotation Osteotomy, the anteversion angle was corrected to be
equal to 0◦ in the simulated post-operative model in agreement
with information provided by the orthopedic surgeons. Patella
advancement was modeled by shortening the patella ligament by
2 cm, as reported in the surgical plan. Rectus Femoris Transfer
was modeled in two steps. First, a via point in the femur reference
frame was introduced in the middle of the muscle-tendon unit.
Second, the insertion site was transferred to the semitendinosus
tendon, while keeping the original length of the musculotendon
unit unchanged. Our approach replicates the surgical procedure
in which the rectus femoris is detached and reattached distally
but left attached proximally, thus maintaining its function
as a hip flexor. Muscle Release interventions were modeled by
completely removing themuscle contribution from the generated
moment, i.e., by setting the maximum isometric muscle force to
zero. Although both patients additionally received botulinum-
toxin injections, these were not included in the postoperative
model given that their effect can be considered small given the
time between the pre- and post-operative observations (10 and
13.5 months).

We compared the predicted motor performances of the
patients in terms of the capability gap for the pre-and post-
operative conditions (Figure 3). We tested the effect of different
treatment options on the capability gap of the right leg of Patient
2 (Figure 4). This was done by creating different models with
different angles of the cutting planes defining the extension
osteotomy (20◦ and 25◦) as well as two different shapes
of the wedge of bone (triangular and trapezoidal). We also
investigated the effect of including/excluding the altered muscle
parameters and motor control on the predicted gait performance
(Figure 5) in the pre-operative condition. When excluding
altered motor control from the analysis, muscle activations could
vary independently for all muscles. Finally, we tested the ability
of our framework to predict post-operative performance by
comparing the predicted gait performance (CG) with the gait
performance quantified based on the 3D gait analysis performed
before and after the intervention (Figure 6). We analyzed the
root mean square errors between patient and TD kinematics,
corresponding to the Gait Variable Scores and Gait Profile Scores
(Baker et al., 2009).
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FIGURE 3 | Capability gap and report on muscle operating lengths. (A) Capability gap computed for the two representative patients, before and after the virtual

surgery. The continuous black lines represent the joint moments required for the model to reach the desired kinematics [i.e., typically developed (TD) gait cycle].

Dotted black lines represent the moment exerted by the model. The light gray patches represent the capability gap. (B) Information about the operating conditions of

the muscles. Blue dots represent the time instants in which muscles are active at short lengths (activation >0.25 and normalized fiber length smaller than 0.6), red

dots the intervals in which muscles are stretched, and exert an excessive passive force (>0.5 times the maximum isometric force).
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FIGURE 4 | Effect of treatment options on the capability gap. Data reported are relative to the simulated post-operative condition of the right leg of Patient 2.

Capability gap is computed after rectus femoris transfer, femur extension and derotation osteotomy, and patella advancement interventions but before performing any

muscle release intervention. The continuous black lines represent the joint moments required for the model to reach the desired kinematics [i.e., typically developed

(TD) gait cycle].

RESULTS

Patient 1
The patient had near normal range of motion at the hip and
ankle, but a bilateral knee extension deficit in both limbs,

bilateral spasticity in most muscles, including rectus femoris,

good strength in most muscles bilaterally but slightly lower
strength in hip and knee extensors, as well as hip abductors, with

overall good selectivity (Table 1). The pre-operative gait analysis

(Figure 6A) indicates bilateral excessive knee flexion and ankle
dorsiflexion, with incomplete hip extension at the end of stance.

The right side hip presents excessive hip adduction.
Synergy analysis revealed that three synergies were sufficient

to describe the pre-operative EMG signals in both legs. For
comparison, previous work of the group found that, during

walking, 57% of TD children use four synergies, whereas the
remainder of the subjects uses three. Therefore, to take into

accountmuscles for which no EMGwere collected, four synergies
were used for the CG computation.

An important CG was found bilaterally at the level of the

knees and to a lesser extent hip adduction (Figures 3A, 6B).
The simulated interventions were able to reduce the calculated

CG, especially at the knees, but also when averaged across all

the joints. However, the effect on the CG at the level of the
other joints was more variable. In particular, the left hip flexion
and ankle dorsiflexion CG showed an increase after the surgery.
The post-operative gait analysis shows that knee extension was
restored successfully, whereas bilateral hip flexion increased after
surgery. Ankle dorsiflexion was restored bilaterally, however,
right ankle plantarflexion was still lacking.

The tuning of the muscle parameters was a necessary step
to perform the aforementioned analyses. After applying the
bony deformities to the model, most of the muscles would

have operated at excessive values of l̃ (Figure 7). Therefore, this
model would have been unable to generate the required joint
moments due to excessive passive forces generation, introducing
excessive muscle activations to compensate these and resulting
in high residual torques. For Patient 1, residual torques were
as high as 45Nm for the knee joint. Nevertheless, parameter
tuning was able to bring the residual torque values below 1Nm
and to produce muscle activations closer to the measured EMG
signals (Figure 7).

Within the framework, it is possible to evaluate the isolated
effect of motor control deficit, by in- or excluding the motor
control model when computing the post-operative CG. In
Figure 5, the CG computed in both conditions is presented.
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FIGURE 5 | Effect of motor control on capability gap. Capability gap computed relative to the pre-operative condition for the right legs of both patients (on the left side

is Patient 1, on the right is Patient 2). The continuous black lines represent the joint moments required for the model to reach the desired kinematics [i.e., typically

developed (TD) gait cycle]. When synergies are taken into account the muscle activations are computed from the pre-operative weight vectors, which define the

muscle coordination specific to the impairment; when synergies are not taken into account muscles are activated selectively, thus simulating an unimpaired motor

control.

For this patient, the CG gap is almost zero when the synergy
constraints on muscle activations are not considered. The
impaired motor control has thus a major contribution to the CG
for this patient.

Patient 2
The patient’s right side was more involved in terms of passive
ROM, spasticity and muscle weakness (Table 1). More specific,
hip adduction was slightly decreased whereas knee extension
and dorsiflexion were more severely restricted in the right
limb. Spasticity was present overall, although more pronounced
in the distal compared to the proximal muscles. Overall, the
patient had good muscle strength, with slightly lower values
for the right proximal muscles and hip abductors and for the
left hip extensors and plantarflexor muscles. The pre-operative
gait analysis revealed bilateral increased knee flexion and hip
adduction. Ankle dorsiflexion was increased on the left side,
whereas on the right side a reversed second rocker was present.
A reversed second rocker is defined by dorsiflexion during
loading response and the first half of mid-stance followed
by plantarflexion, whereas during normal gait, second rocker
is characterized by plantarflexion followed by dorsiflexion.

Insufficient hip extension in terminal stance was present at the
left hip.

Synergy analysis revealed that four and three synergies
could explain the pre-operative EMG signals for the left and
right leg, respectively, thus leading to the use of five and
four synergies in the CG computations. The CG in the pre-
operative condition reflected the reduced range of motion of
the right leg. CG was higher for the right then for the left
leg with muscles gastrocnemii, hamstrings, iliacus and psoas
being excessively stretched (Figure 3B), leading to a large
contribution of their passive forces to the CG. In addition, the
comparison of the CG computed with and without the inclusion
of the motor control (Figure 5) supports the interpretation
that the vast majority of the CG is due to the aberrant
musculoskeletal geometry and muscle properties, and not
motor control.

The simulated treatment had a very different impact on the
CG for the two legs. For the right leg, surgery massively reduced
the CG. The simulated extension and derotation osteotomy
in isolation reduced the CG generated by the hamstrings
at the hip and knee at the beginning and end of the gait
cycle. The use of a trapezoidal wedge, most commonly used
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FIGURE 6 | Predicted and measured changes in patient performance. Data on the left belong to Patient 1, on the right to Patient 2. (A) Kinematics of the two

representative cases measured in both pre- and post-operative conditions (mean and standard deviation). Black dotted line is the average data from typically

developed (TD) children used as reference for the computation of the capability gap (CG). (B) Changes in the predicted capability gap, and in the root mean square

differences (computed with respect to the TD kinematics) between the pre- and post-operative condition.

to correct large extension deficits, reduced the CG most by
reducing excessive stretch in the muscles (Figure 4). The effect
of the extension osteotomy was significant, but even after this
treatment a large CG was present. This CG was most elevated
in the stance phase for the ankle and knee joint and around
toe-off for the hip joint. The muscle report indicated that
the gastrocnemii, iliacus and psoas were markedly stretched
during these intervals (Figure 3B). These muscles were targeted
by the release procedure. The inclusion of these procedures
within the framework further reduced the predicted CG as
shown in Figure 3A. On the other hand, the pre-operative CG
of the left leg was smaller and our framework predicted a
slight increase in the CG after the intervention (Figures 3A,
6B).The post-operative gait analysis confirms the positive
outcome, with a bilateral marked improvement in the observed
kinematics (Figure 6).

DISCUSSION

We introduced a novel and promising musculoskeletal modeling
and simulation-based framework to assist clinicians in the
treatment selection process to improve gait function in patients
with CP. The salient feature of this framework is a comprehensive
personalization of the models comprising subject-specific
musculoskeletal geometry and muscle parameters as well as

motor control. Furthermore, we introduced a GUI to simulate
different orthopedic interventions and interactively modify
the musculoskeletal models. As a result, the effect of several
candidate orthopedic interventions on the gait performance,
evaluated in terms of the patient’s capability gap, can be
evaluated. In comparison with a number of other studies that
aimed to predict the outcome of orthopedic treatments (Hicks
et al., 2011; Schwartz et al., 2016; Galarraga et al., 2017), our
method differs by the fact that the predictions within our
framework are not based on statistical methods. This allows the
user to select different treatments or combinations thereof and to
evaluate their combined or isolated effects.

In comparison with studies applying forward predictive
simulations (Fox et al., 2009; Mansouri et al., 2016), our
framework offers the possibility to include a variety of
interventions and to fine-tune their parameters: it is for instance
possible to combine a muscle transfer or patella advancement
surgery with a femoral extension derotation osteotomy and to
specify the amount of bony correction. A recently published
paper (Lee et al., 2019) proposes a similar framework in which
it is possible to predict the post-operative gait after an orthopedic
surgery. However, several differences with respect to our work
are worth noticing. The model of the motor control used by Lee
et al. is obtained via a trajectory mimicking policy, which does
not take into account the patient’s coordination strategy, whereas
we include this feature using EMG based muscle synergies.
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FIGURE 7 | Effect of tuning of muscle parameters. On the top row are plotted the values of the normalized muscle fiber lengths of all the tuned muscles throughout

the gait cycle. The two horizontal dotted lines represent the constraints imposed during the optimization process. On the bottom row are plotted the activations of two

representative muscles (semitendinosus and gastrocnemius medialis), before and after the optimization, as well as the experimental EMG signal.

While in Lee’s work subject-specific muscle-tendon parameters
are not included, we proposed a tuning based on detailed
pre-operative information. In addition, there are differences in
the proposed sets of interventions. Both studies implemented
derotational osteotomies and muscle transfers, but Lee et al.
included muscle-tendon lengthening while we included patella
advancement and femoral extension osteotomy surgeries based
on the interventions that are commonly used in CP treatment.

We demonstrated the potential of our framework based on
two case studies. Indeed, we found a good agreement between
the evolution of the predicted motor performance measured with
the CG and the actual evolution of the patient kinematics. Using
our framework, we were able to highlight the importance of
taking into account the specific neurological and musculoskeletal
impairments of the patients with CP when assessing gait
dysfunction during the planning of an orthopedic intervention.

In Patient 1, virtual simulations of procedures correcting
the bony deformities were able to reduce the CG. This agrees
with the general trend of improved gait kinematics measured
during the post-operative gait analysis. The CG computed
without the inclusion of the motor control was almost negligible.
Therefore, a hypothetical patient with the same musculoskeletal
geometry and properties, but able to activate his/her muscles
selectively, could be able to achieve a normal gait pattern. For
this patient, the impaired motor control plays thus a major role
in determining the altered gait pattern. It is interesting to note
that, despite being mainly due to the impaired motor control,

the CG of the patient is sensitive to the orthopedic intervention,
suggesting an interaction between the motor control and
musculoskeletal condition of the patient. In other words, motor
control impairmentsmight limit the compensation strategies that
are available to patients with CP to counteract musculoskeletal
deformities. In contrast, excluding the muscle synergies from the
calculation of the CG for Patient 2 had little effect. This indicates
that the abnormal muscle parameters, specifically the shortness
of several muscles, are the main contributors to the altered gait
pattern. This is evident in the muscle report, which indicates that
many muscles, including gastrocnemius and psoas, operating
at excessive lengths when the CG is high (Figure 3B). These
findings support the need for additional muscular interventions
on the right side, more specific the gastrocnemius and psoas
release. The insights in the two case studies provided by our
SimCP framework suggest that the underlying causes for the
gait deviations might be very different in different patients, even
when they present with similar gait patterns. The constraints
imposed by the motor control and the musculoskeletal system
should hence be taken into account during the clinical
decision process.

Furthermore, we demonstrated that the implementation of
a specific orthopedic intervention, more specific the choice of
cutting planes and derotation magnitudes, might have a big
influence on post-operative gait performance. By creating several
models corresponding to different feasible variations in the
surgical technique, it is possible to evaluate which variation
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has the highest potential to reduce the functional impairment
of the patient. For example, increasing the angle of the bone
wedge reduced the CG in Patient 2, whereas a trapezoid
wedge reduced the CG even more. In the future, we plan
to develop an optimization based procedure to automatically
identify the combination of surgical parameters that minimizes
the predicted CG.

The presented framework has still several limitations that will
be addressed in future studies. First, there is a need for validation
of the model prediction. Although we showed the potential of the
framework here, manymore cases are needed to demonstrate that
the CG is a validmeasure of gait performance. To this aim, wewill
compare the computed change in CG with the measured change
in gait kinematics induced by the treatment in a large population
of CP children. In addition, the different subcomponents of
the framework need further validation. For example, we plan
to use MRI-images collected post-operative to validate our
implementation of the surgical interventions. Second, all analyses
are based on static optimization with musculotendon units
having rigid tendons. This approach was chosen to reduce
computational time and for ease of implementation. We are
currently developing a dynamic optimization implementation
that takes into account muscle dynamics enabling the inclusion
of a model of muscle spasticity (Falisse et al., 2018). These
developments might further improve prediction accuracy. Third,
the CG does not predict how the patient will walk in terms of
the kinematics. The CG does not describe how a patient will
move after treatment but how difficult it would be for him/her
to achieve a normal gait pattern. In other words, the CG does
not provide any insight in possible kinematic compensation
strategies. However, the CG has the advantage of being fast and
easy to compute, requiring only a few seconds per trial, and
thus enabling the comparison of multiple treatment options. In
the near future, we plan to include predictive simulations of
gait kinematics in our framework building on the workflow for
personalized modeling that we presented here.

A beta version of the developed GUI is freely available (https://
simtk.org/projects/simcp), which will enable the biomechanical
community to create post-operative models in an easy way
and therefore foster future research related to orthopedic
interventions and pathological gait. Furthermore, the GUI as well
as the concept of the CG can be applied to different populations
(e.g., stroke) and research questions (e.g., strength training).

To summarize, we conceptualized and developed a
simulation-based framework that relies on highly personalized
patient-specific models, including a description of the
musculoskeletal geometry, the muscle parameters and the
motor control. This framework is designed to assist clinicians in
selecting the most promising treatment option for an individual
patient solely based on pre-operative data. It is our aspiration
that this in silico-informed clinical decision making framework
will increase the number of positive treatment outcomes in
ambulatory children with CP.
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Determination of muscle energy expenditure by computer modeling and analysis is

of great interest to estimate the whole body energy consumption, while avoiding the

complex character of in vivo experimental measurements for some subjects or activities.

In previous papers, the authors presented optimization methods for estimating muscle

forces in spinal-cord-injured (SCI) subjects performing crutch-assisted gait. Starting from

those results, this work addresses the estimation of the whole body energy consumption

of a SCI subject during crutch-assisted gait using the models of human muscle energy

expenditure proposed by Umberger and Bhargava. First, the two methods were applied

to the gait of a healthy subject, and experimentally validated by means of a portable

gas analyzer in several 5-min tests. Then, both methods were used for a SCI subject

during crutch-assisted gait wearing either a passive or an active knee-ankle foot orthosis

(KAFO), in order to compare the energetic efficiency of both gait-assistive devices.

Improved gait pattern and reduced energy consumption were the results of using the

actuated gait device. Computer modeling and analysis can provide valuable indicators,

as energy consumption, to assess the impact of assistive devices in patients without the

need for long and uncomfortable experimental tests.

Keywords: energy expenditure, SCI subject, crutch-assisted gait, KAFO, human modeling and analysis, muscle

recruitment problem

INTRODUCTION

In the last decade, manymechanical and, more recently, electromechanical (or hybrid) devices have
been developed to allow spinal-cord-injured (SCI) patients to stand and walk (White et al., 2014;
Cuadrado et al., 2019). At the moment, the additional use of crutches is generally required for gait
stability. Despite these technological advances, most SCI subjects prefer the wheelchair to move for
energetic efficiency reasons (Merati et al., 2000). The gait efficiency can be defined as the percentage
of energy input that is transformed into useful work. Use of a cane or a pair of crutches requires
about 33% more energy than normal walking (Mcbeath et al., 1974). In addition, some devices
(KAFO), don’t allow some joints to move, which implies another gait pattern even less efficient.
Moreover, since structures of the upper extremities are designed primarily for prehensile activities,
not to walk, many patients suffer from shoulder and arm injuries (Lee and McMahon, 2002).

Energy cost in subjects using crutches was mainly studied by means of experimental
measurements (Mcbeath et al., 1974; Waters and Mulroy, 1999; Merati et al., 2000), generally
using a gas analyzer. IJzerman et al. (1998) proposed an alternative method to estimate the energy
expenditure of paraplegic gait using measurements of heart rate and crutch forces. In all the
previous methods, the patient must go through experimental tests lasting several minutes while

40
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wearing not only the assistive devices, but also measuring devices
as the gas analyzer, which is rather uncomfortable. This may
be too demanding for many patients. Conversely, the method
proposed in this paper just requires the motion-force-EMG
capture of a gait cycle, which is much more achievable for most
patients. Using the captured data, a musculoskeletal model of the
subject provides the joint efforts and muscle forces, activations
and excitations and, then, models of human muscle energy
expenditure proposed in the literature are applied to the results
to estimate the energy cost of the measured gait.

Various Hill-based models can be found in the literature to
calculate the human muscle energy expenditure (Minetti and
Alexander, 1997; Umberger et al., 2003; Bhargava et al., 2004;
Houdijk et al., 2006). Miller proposed a comparison of these
models for the gait of healthy subjects (Miller, 2014). According
to his recommendations, the models of Umberger and Bhargava
have been implemented in this work to calculate the energy
cost of SCI subjects during crutch gait. Since both muscle
energy expenditure models are based on the Hill’s muscle model,
they require the knowledge of some muscular parameters. Such
parameters had been obtained by the authors in a previous work
(Michaud et al., 2017), using physiological static optimization
(Ou, 2012), and a customized musculoskeletal model of the
SCI subject.

The objective of this work is to estimate the energetic cost
of the crutch-orthosis-assisted gait of a SCI subject so that
comparison from the energetic point of view may be established
between two assistive devices: a passive and an active KAFO. The
latter was obtained by simply adding to the passive device amotor
and gearbox at knee level and an inertial sensor at shank level,
so that motion intention is detected, and knee flexion/extension
is automatically produced during swing. First, the methods for
energetic cost estimation were applied to the gait of a healthy
subject, and experimentally validated by means of a portable gas
analyzer on several 5-min tests. Then the same methods were
applied to the SCI subject.

The motivation of the work comes from the fact that walking
is essential for the general health state of SCI subjects, thus
overcoming the sedentarism due to permanent use of the
wheelchair. Orthotic devices enable some SCI subjects to walk,
but sometimes the energetic cost of the resulting gait is so high
that patients reject this option. Therefore, evaluation of the
energetic cost of gait allows to assess, even since the early training
period, whether a certain orthotic device is promising for actual
use by the patient in the mid and long terms. Moreover, it can
provide valuable data to track the training progress. However,
experimental estimation of energetic cost through 5-min tests is
not feasible in most cases and, then, the alternative of getting an
acceptable estimation from a short motion/force/EMG capture
appears as greatly interesting.

Contributions of the paper are: (i) the detailed description
of Umberger’s and Bhargava’s methods for the estimation of
energetic cost, providing all the necessary elements required for
implementation of the methods; (ii) the experimental validation
of both methods for healthy gait by comparison with the results
obtained from 5-min tests; (iii) the application of both methods
to crutch-orthosis-assisted gait for the cases of passive and active

orthoses; (iv) the comparison, in terms of energetic cost, between
assisted gait with passive and active orthoses.

The remaining of the paper is organized as follows: section
Materials and Methods describes the experiments and models
used in this work; section Results presents the two energy
expenditure models implemented; and sections Discussion and
Conclusion provide, respectively, the obtained results and their
corresponding discussion.

MATERIALS AND METHODS

Subjects
The SCI subject was a 49-years-old male of mass 82 kg and height
1.90m, with injury corresponding to a Lower Extremity Muscle
Score (LEMS) of 13/50. His injury allowed him a normal motion
of the upper extremities and trunk, while partially limiting the
actuation at the hips and right knee due to partial or no muscular
innervation. Both motor and sensory functions at ankles and left
knee were totally lost. Therefore, in order to walk he required
the assistance of a passive KAFO at the left leg, a passive
ankle-foot orthosis at the right leg and two forearm crutches.
However, permanent left-knee extension, even during the swing
phase, made gait become very uncomfortable as hip raising was
required for swing, thus demanding high efforts which led to
fatigue quickly. Consequently, in daily life he mainly used a
wheelchair to move and resorted to the mentioned assisted gait
only occasionally and during short periods of time.

To improve SCI subjects’ mobility, a research prototype of a
low-cost active KAFOwas developed (Font-Llagunes et al., 2016).
Starting from a conventional passive device, an electric motor
(EC90 flat of 160W) plus a Harmonic gearbox (CCD-P-20-100-
C-I with a ratio of 100:1) was placed at knee level substituting
the external original joint, so as to launch the swing cycle when
motion intention was detected by an inertial sensor placed at
shank level, in order to avoid foot-collision with the ground.
After some training sessions, the subject was able to walk with
the mentioned prototype, featuring an actuated left-knee flexion
of 30 degrees.

In order to assess the subject’s muscle activity at hip and
knee levels, surface EMG measurements were taken during
simple exercises.

The healthy subject was a 28-years-old male of mass 85 kg and
height 1.87 m.

Instrumentation and Data Collection
Subjects walked over two embedded force plates (AMTI,
AccuGait, sampling at 100Hz), with the help of two instrumented
crutches for ground reaction measurement in the case of the SCI
subject (Lugris et al., 2013), while their motion was captured by
12 optical infrared cameras that computed the position of 37
optical markers attached to the subjects’ body, and 3 more for
each crutch in the case of the SCI subject. Moreover, 10 EMG
signals were recorded (2 at the right leg, 3 at the trunk, 4 at
the right arm, and 1 at the left arm) for the SCI subject and
10 for the healthy subject at the lower extremities (Figures 1A,
3A). A complete gait cycle was captured of the SCI subject
walking with (i) the passive orthosis owned by the subject; (ii) the
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FIGURE 1 | Gait of SCI subject assisted by passive orthoses and crutches: (A) motion-force-EMG capture; (B) skeletal model; and (C) musculoskeletal model.

FIGURE 2 | 2-point crutch-assisted gait cycle.

active orthosis with the motor locking the knee; (iii) the active
orthosis with the motor moving the knee. He used the 2-point
crutch-assisted gait cycle shown in Figure 2.

For the healthy subject, 21 complete gait cycles were recorded
at seven different speeds (between the free selected speed and fast
speed) for energetic cost calculation. The energy expenditure was
alsomeasured experimentally bymeans of a portable gas analyzer
(Cortex MetaMax 3B) during two 5-min tests at free selected
speed and fast speed (Figure 3B). This experimental method
requires that the subject maintains a constant speed during at
least 5min. Since this was thought to be too demanding for SCI
subjects, it was decided to carry out the experimental validation
with a healthy subject.

Calculations were performed on an Intel R© CoreTM i7–6,700K,
at 4.00 GHz with 16 Gb of RAM.

Model Description
For the healthy subject, the human 3D model consisted of 18
anatomical segments: pelvis, torso, neck, head, and two hind feet,

FIGURE 3 | Energy consumption for a healthy subject: (A) motion-force-EMG

capture; (B) 5-min test with portable gas analyzer. (Written informed consent

was obtained from the individual for the publication of these images. FlM, the

main author, is on this picture).

forefeet, shanks, thighs, arms, forearms and hands. For the SCI
subject (Figure 1B), the same model was used, but the hands
were rigidly connected to the crutches, and the orthosis at the left
leg was embedded in the corresponding body links (thigh, calve,
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FIGURE 4 | Hill’s muscle model.

and foot). The segments were linked by ideal spherical joints,
thus defining a model with 57◦ of freedom (6 of the base body
plus 17 × 3 of the joints). The geometric and inertial parameters
of the model were obtained, for the lower limbs, by applying
correlation equations from a reduced set of measurements taken
on the subject, following the procedures described in Vaughan
et al. (1999). For the upper part of the body, data from standard
tables (Ambrosio and Kecskemethy, 2007) was scaled according
to the mass, and height of the subject. In order to adjust the total
mass of the subject, a second scaling was applied to the inertial
parameters of the upper part of the body. Assistive devices were
taken into account by altering the inertia properties of hands
(crutches) and thigh, calve and foot (orthosis). Mixed (natural
and joint) coordinates along with matrix-R formulation (de Jalon
and Bayo, 1994) were applied to obtain the joint drive torques
along the motion using the in-house developed MBSLIM library
(Dopico, 2016) programmed in FORTRAN language.

The musculoskeletal model was customized to the SCI subject
according to his muscle activity (previously measured through
EMG). The musculoskeletal model (Figure 1C) was composed of
112 muscles for the whole body: 28 at the right hip, 5 at the right
knee, 21 at the left hip, 6 at the trunk, 15 at each shoulder, and 11
at each elbow. For the healthy subject, only the lower extremities
were considered with their 92 muscles (43 muscles per leg plus
6 at trunk); the energy consumption of upper body muscles was
considered into the basal energy consumption. Muscle properties
were taken from Delp et al. (2007). The Hill’s muscle model
shown in Figure 4 was employed, being considered both the
tendon and the muscle, with its contractile (CE), and passive
(PE) elements. The muscle recruitment problem was addressed
by means of the physiological static optimization method (Ou,
2012) using in-house developed code programmed in Matlab,
and calling to fmincon Matlab’s function for optimization, thus
getting the histories of muscle forces, activations and excitations.
Energy expenditure calculations were also programmed in the
same in-house code.

Energy Expenditure
Once muscular activity obtained as previously explained, results
were validated with the experimental EMG measurements. The
obtained activation, length, velocity and force of themuscles were
used as input for the two models of energy expenditure. Both of
them are based on the first law of thermodynamics. According to
this law, the total rate of energy consumption Ė, is equal to the
rate at which heat is liberated, Ḣ, plus the rate at which work is
done, Ẇ:

Ė = Ḣ + Ẇ (1)

Umberger’s Model
Umberger’s muscle energy expenditure model (Umberger et al.,
2003) considers the activation heat rate (ḣA), the maintenance
heat rate (ḣM), the shortening/lengthening heat rate (ḣSL), and
the mechanical work rate of the contractile element of the muscle
(ẇCE), to determine the total rate of muscle energy expenditure
(Ė). The relation is given by the sum of this four terms expressed
in (2), where Ė is calculated for each muscle in W.kg−1.

Ė = ḣA + ḣM + ḣSL + ẇCE (2)

Activation and maintenance heat rate
A combined expression of the activation and maintenance heat
rate is used for this first term,

ḣA + ḣM = ḣAM = 1.28×%FT + 25 (3)

where %FT represents the percentage of fast twitch found in
Johnson et al. (1973).

Shortening and lengthening heat rate
During CE shortening (VM(t) ≤ 0) and lengthening (VM(t) >
0), the rate of heat production is modeled as the product
of a coefficient αS and VM , the velocity of the muscular
contractile element:
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ḣSL(t) =

{

− αS(ST)ṼM(t)(1−%FT/100)− αS(FT)ṼM(t)(%FT/100) if VM(t) ≤ 0

αLṼM(t) if VM(t) > 0
(4)

with the constant terms αS(ST) = 4×25
ṼM(MAX−ST)

, αS(FT) =

153
ṼM(MAX−FT)

, αL = 4αS(ST), ṼM = VM

lM0
, ṼM(MAX−FT) =

VM
MAX

lM0
,

ṼM(MAX−ST) = ṼM(MAX−FT)/2.5, and VM
MAX = lM0 /0.1 (lM0 the

optimal fiber length).

Mechanical work rate
The specific mechanical work rate is given by:

ẇCE(t) = −(FMCE(t)VM(t))/m (5)

so that this value is positive for concentric effort and negative for
eccentric effort.m represents the mass of the muscle.

Total energy expenditure scaled
Equation (2) provides the energy expenditure of the muscle for
the case of full activation and the contractile element length of
the muscle (lM) is equal to the optimal muscular length (lM0 ) of
the contractile element. Scaling factors are needed to account for
the length and activation dependence of ḣAM (dependence factor
AAM) and ḣSL (dependence factor ASL), and the dependence of
the total heat rate on the metabolic working conditions (S = 1
for primarily anaerobic conditions and S = 1.5 for primarily
aerobic conditions),

Ė(t) =







ḣAMAAM (t)S+ ḣSL(t)ASL(t)S+ ẇCE(t) if lM (t) ≤ lM0

(0.4× ḣAM + 0.6× ḣAM × FM0 )AAM (t)S+ ḣSL(t)ASL(t)S+ ẇCE(t) if lM (t) > lM0

(6)

with AAM(t) = A(t)0.6, ASL(t) = A(t)2, and

A(t) =

{

u(t) if u(t) ≤ a(t)

(u(t)+ a(t))/2 if u(t) > a(t)
(7)

where u(t) and a(t) represent the excitation and activation of the
muscle, respectively.

Bhargava’s Model
Bhargava’s model presents some similarities with the previous
one, since the general expression is similar to equation (2) with
an additional a basal metabolic rate ḣB:

Ė = ḣA + ḣM + ḣSL + ẇCE + ḣB (8)

However, expressions of the components are slightly different.

Activation heat rate

ḣA = φfFTȦFTuFT(t)+ φfSTȦSTuST(t) (9)

with φ = 0.06+ exp(−tstimu(t)/τφ), (10)

uFT(t) = 1− cos(
π

2
u(t)) (11)

and uST(t) = sin(
π

2
u(t)), (12)

and the constant terms: fFT = %FT/100, fST = 1 − %FT/100,
ȦFT= 133 and ȦST = 40.

Maintenance heat rate

ḣM(t) = L(l̃M(t))fFTṀFTuFT(t)+ L(l̃M(t))fSTṀSTuST(t) (13)

where L(l̃M(t)) is a function that models the dependence on
muscle length:

L(l̃M(t)) =



























0.5 if l̃M(t) ≤ 0.5

l̃M(t) if 0.5 < l̃M(t) ≤ 1

− 2(l̃M(t))+ 3 if 1 < l̃M(t) ≤ 1.5

0 if l̃M(t) > 1.5

(14)

with l̃M = lM/lM0 and the maintenance heat rate constants:
ṀFT = 111 and ṀST = 74.

Shortening and lengthening heat rate
During CE shortening and lengthening, the rate of heat
production is modeled as the product of a coefficient αS and VM ,
as it happened in Umberger’s model,

ḣSL(t) = −αS(t)ṼM(t). (15)

However, expression of αS is different:

αS(t) =

{

0.16FM0 + 0.18FMCE(t) if VM(t) ≤ 0

0.157FMCE(t) if VM(t) > 0
(16)

Basal heat rate
In addition, Bhargava’s model proposes a basal metabolic rate
calculated from a frog skeletal model at 0◦C and given by:

ḣB = 0.0225 (17)

Mechanical work rate
Both models consider the same expression for the mechanical
work rate:

ẇCE(t) = −(FMCE(t)VM(t))/m (18)

Total Energy Consumption
Finally, the total energy consumption Ė of the full body during a
full stride was obtained for both models by:

Ė =













n
∑

i=1













tcycle
∫

t=0

(Ėi(t)×mi)dt

tcycle













+ kB ×mresidual













/msubject (19)

where msubject is to the mass of the subject, n the number of
muscles, tcycle the time of a gait cycle, and

mresidual = msubject −

n
∑

i=1

m i (20)

Lastly, kB represents the basal addedmetabolic rate of 1.2W.kg−1

which corresponds to the energy consumption for upright quiet
standing (Waters and Mulroy, 1999).
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FIGURE 5 | Comparison of normalized muscle activations (black) and normalized EMG measurements (blue) during gait for healthy subject.

RESULTS

Before estimating energy consumption, the musculoskeletal

model and the estimation of muscular activity were validated
with the EMG measurements for the healthy subject. As there

is no clear relationship between EMG amplitude and muscle

force (Hof, 1997), the comparison was focused on the shape of
the activity patterns, using normalized values. Good correlations
between muscular activations and EMG measurements were
obtained (Figure 5), with a mean R correlation over 0.70.

Then, both energy expenditure models were applied and
experimentally validated for the healthy subject. Twenty one

complete gait cycles were recorded at seven different speeds,
ranging between his free selected speed (75 m/min) and his
fast speed (90 m/min). As some variability was observed in the
obtained values of energy cost for different tests at the same
speed, a mean value is represented in Figure 6. Two experimental
tests were done, at free selected speed and fast speed, respectively,
to validate the models.

As it can be seen in Figure 6, a linear relation was obtained
between gait speed and energy consumption, showing a good
correlation with both experimental measurements and literature
(Waters and Mulroy, 1999). Since a constant discrepancy of the
results was observed with respect to the measured energy values,
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the model was calibrated with such a constant (0.12W.kg−1 for
Umberger’s model and 1.9W.kg−1 for Bhargava’s model). This
calibration can be considered as an adjustment of the whole-body
basal metabolic rate kB.

On the other hand, three gait cycles were compared for the
SCI subject, one with each assistive gait device presented before:
(i) passive orthosis owned by the subject; (ii) active orthosis with
motor locking the knee; (iii) active orthosis with motor moving
the knee. After some few training sessions, the SCI subject was
able to walk with confidence wearing the active KAFO, achieving
the same self-selected speed of 33 m/min in the three cases.

While the walking speed was the same in the three cases,
some kinematic differences could be observed (Table 1). First,
the step length, of 45 and 66 cm for the right and left legs,
respectively, using the original KAFO, changed to 58 cm for
both sides when using the active KAFO with motor moving
the knee. The initial circumduction of the left foot (KAFO’s
leg) of 11.5 cm with the original KAFO was reduced to 7.25 cm
thanks to the actuated knee flexion. Pelvic maximum rotations

FIGURE 6 | Energy expenditure for healthy subject.

were reduced from −27.6 and 44.8 to −22.5 and 35.3◦ in the
transverse plane, and from 19.18 to 15.23◦ in the frontal plane.
Finally, the mediolateral center of mass (COM) displacement was
significantly reduced from 13.48 to 11.54 cm, while the vertical
displacement was almost the same in the three cases.

Instrumented crutch measurements did not show significant
differences between devices. A mean load of 20% of the
bodyweight was observed during the gait cycle, with peaks of 55%
(left crutch), and 40% (right crutch) at swing start. Estimated
joint reaction forces at shoulder were similar too, with peaks
between 190 and 225% (left shoulder) of the bodyweight.

In order to check the validity of the inputs provided
to the energetic cost calculations for the SCI subject, the
muscle activations were compared with experimental EMG
measurements. As it can be observed in Figure 7, acceptable
correlations were obtained, with a mean R correlation of more
than 0.55.

Figure 8 and Table 1 show the estimated energy
consumptions yielded by both models. The energy cost obtained
with the original KAFO was 3.49W.kg−1 for Umberger’s model,
and 3.11W.kg−1 for Bhargava’s. Wearing the active KAFO with
motor locking the knee, it was 3.56 and 3.13W.kg−1. Finally,
wearing the active KAFO with motor moving the knee, the
energy cost was 3.28 and 3.02W.kg−1.

DISCUSSION

The energy expenditure of a healthy male during gait was
calculated, based on the muscular magnitudes obtained from
a motion-force-EMG capture and a musculoskeletal model of
the subject, through the application of two methods found in
the literature (Umberger’s and Bhargava’s), and was validated
by experimental measurements and references from literature
for several gait velocities. Results showed that calibration of the
methods is necessary to evaluate the whole-body basal metabolic
rate. However, the slopes (energy cost vs. gait speed) obtained
with both methods were coincident and agreed with those
from experiments and literature, which is the essential point to

TABLE 1 | Comparison of obtained results with the three gait-assistive devices.

Passive KAFO Active KAFO

(locked knee)

Active KAFO

(moving knee)

Gait velocity (m/min) 33 33 33

Vertical COM displacement (cm) 3.47 3.79 4.11

Mediolateral COM displacement (cm) 13.48 13.42 11.54

Step length (cm) Right 0.45 0.52 0.58

Left 0.66 0.62 0.58

Left circumduction (cm) 11.52 9.10 7.25

Range of pelvic rotations in frontal plane (◦) [−4.81; 19.18] [−4.56; 16.93] [−4.86; 15.23]

Range of pelvic rotations in transverse plane (◦) [−28.74; 42.87] [−28.32; 37.93] [−24.36; 31.83]

Maximum joint reaction forces at shoulders (BW) Right 1.92 2.13 2.22

Left 1.91 2.15 2.24

Energy cost (W/kg) Umberger 3.49 3.56 3.28

Bhargava 3.11 3.13 3.02
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FIGURE 7 | Comparison of normalized muscle activations (black) and normalized EMG measurements (blue) during the crutch-orthosis-assisted gait of a SCI subject.

compare two activities performed by the same subject, and using
the same model. Based on these findings, both methods were
applied to a SCI subject walking with the help of crutches and
wearing different gait-assistive devices.

The self-selected gait velocity achieved by the SCI subject with
the three devices was of 33 m/min, which is higher than the
velocity corresponding to his LEMS (20.2 m/min) according to
Waters and Mulroy (1999). This discrepancy can be explained

by the moderately strong linear relationship (R = 0.64) between
walking speed and the LEMS, and by the fact that the subject was
tall and athletic.

The SCI subject carried out few training sessions with
the active KAFO, and probably needed more experience to
show a significant evolution with respect to the passive device,
as observed in Font-Llagunes et al. (2016). However, some
improvements of the gait pattern thanks to the knee actuation
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FIGURE 8 | Energy consumptions obtained with Umberger’s model (red) and

Bhargava’s model (green) for the SCI subject wearing the three

gait-assistive devices.

provided by the KAFO were already detected, as symmetry in the
step lengths, reduced circumduction and reduced pelvic rotation.
COM displacements are generally used as indicators of balance
control to reflect the whole body motion during gait. While the
vertical displacement was almost the same for the three cases and
was close to that of healthy subjects [3.61 cm at 1 m/s (Orendurff
et al., 2004)], the mediolateral displacement reflected differences
in gait pattern and with respect to healthy subjects [5.96 cm at 1
m/s (Orendurff et al., 2004)].

Ground force reactions measured by the instrumented
crutches did not highlight any differences between the devices
used, likely because of the short training period with the new
device. However, the obtained values showed the demanding use
of the upper extremities, which are primarily not designed to walk
and to put up with such loads.

Same observations can be done regarding the joint reaction
force at shoulders, with estimated peaks >220% of the
bodyweight. Westerhoff et al. (2012) reported maximum loads of
up to 170% during in vivomeasurement of shoulder loads during
crutch-assisted walking, but subjects were not suffering from any
lower limb disability. Highest peaks at the left arm were observed
during the left-leg swing (leg wearing the KAFO), likely because
the subject needed to compensate the instability of the left foot
and the lack of force in the right leg, and to avoid the foot contact
with the ground.

Correlations observed between EMG measurements and
muscle activations for the SCI subject were acceptable and allow
trusting in the input used to calculate the energy cost.

The estimated energy consumptions presented for the SCI
subject were not calibrated because the 5-min tests carried out
by the healthy subject were not possible for him. Bhargava’s
results were lower than Umberger’s. However, the same order
was maintained among the three devices. The active KAFO with
locked knee showed the highest value, a bit more than the passive
KAFO. This difference could be explained by the additional mass
of the motor. The motor actuation reduced significantly (almost
8% for Umberger and 3.5% for Bhargava) the estimated energy
consumption despite the short period of training with the device.

As a reference, at the speed developed by the SCI subject
(33 m/min), a healthy subject should consume 2.385W.kg−1

(Waters and Mulroy, 1999). Continuing with Waters’ references
for SCI subjects, for a LEMS of 13, the subject should consume
149.8%more than a healthy subject at the same speed. This would
correspond to an energy consumption of 3.57W.kg−1, which is
close to the values obtained with Umberger for the two first cases
(3.49 and 3.56W.kg−1). In the third case the motor actuation
produces the knee flexion/extension, so that the LEMS could be
increased to 14. Then the corresponding energy consumption
increase should be of 145.5% with respect to a healthy subject,
thus leading to a consumption of 3.47 vs. 3.28W.kg−1 obtained
with Umberger. While results obtained without calibration are
closer to the mentioned references for Umberger’s model, slopes
(energy cost vs. LEMS) are closer (gradient of −0.1) using
Bhargava’s model (gradient of −0.11) than Umberger’s (gradient
of−0.28).

CONCLUSION

A method to estimate the energetic cost of the gait of SCI
subjects walking with the help of knee-ankle-foot orthosis and
crutches has been proposed in this paper. The method just
requires to make some motion-force-EMG captures of a subject’s
gait cycle and, using the generated data, perform an inverse-
dynamics analysis, and muscle force sharing optimization on
a musculoskeletal model of the subject, so that Umberger’s or
Bhargava’s method can be applied to the obtained results in order
to get an estimation of the energy consumption. Therefore, unlike
experimental methods reported in the literature which require
tests lasting several minutes, the method proposed here only
needs that the subject walks during two or three gait cycles, so
that one full gait cycle is captured in the gait analysis lab. This
makes the method feasible even for the training period, and
even for subjects who will not be capable of walking for several
minutes after the training period has been completed. However,
the advantage may also be a disadvantage, as lower accuracy
in the estimation can be expected due to the short duration of
exercise on which it is based.

Some limitations can be pointed out in this work. The first
limitation is that one single SCI subject was considered in the
study, but finding hip-flexion able SCI candidates for actively
assisted gait is not easy and developing customized devices for
them is expensive and time-consuming. A second limitation is
that the SCI subject performed few training sessions with the
active orthotic device; it would had been desirable to continue the
study for a longer period and see the evolution of the energetic
cost as the user became more acquainted with the device.

Future works could go in the direction of overcoming the
limitations previously described. Repeating the study for more
SCI subjects and spanning longer periods, from the initial
training in the use of active orthoses to the stage when a strong
skill is attained by the user, would allow to further confirm the
validity of the method and its ability to provide a clue, already
during the training period, on whether the particular orthotic
device will be successful for the particular patient in the mid and
long terms.
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Hybrid orthoses or rehabilitation exoskeletons have proven to be a powerful tool for

subjects with gait disabilities due to their combined use of electromechanical actuation

to provide motion and support, and functional electrical stimulation (FES) to contract

muscle tissue so as to improve the rehabilitation process. In these devices, each degree

of freedom is governed by two actuators. The main issue arises in the design of

the two actuation profiles for there to be natural or normative gait motion in which

the two actuators are transparent to each other. Hybrid exoskeleton control solutions

proposed in the literature have been based on tracking the desired kinematics and

applying FES to maintain the desired motion rather than to attain the values expected

for physiological movement. This work proposes a muscle-model approach involving

inverse dynamics optimization for the design of combined actuation in hybrid orthoses.

The FES profile calculated in this way has the neurophysiological meaningfulness for

the device to be able to fulfill its rehabilitative purpose. A general scheme is proposed

for a hybrid hip-knee-ankle-foot orthosis. The actuation profiles, when muscle tissue is

fatigued due to FES actuation are analyzed, and an integrated approach is presented for

estimating the actuation profiles so as to overcome muscle peak force reduction during

stimulation. The objective is to provide a stimulation profile for each muscle individually

that is compatible with the desired kinematics and actuation of the orthosis. The hope is

that the results may contribute to the design of subject-specific rehabilitation routines

with hybrid exoskeletons, improving the exoskeleton’s actuation while maintaining its

rehabilitative function.

Keywords: hybrid orthosis, functional electrical stimulation, inverse dynamics analysis, muscle model,

biomechanics, rehabilitation, gait, fatigue

1. INTRODUCTION

Spinal cord injury (SCI) and other neurological disorders impair the lower limbs’ motor and
sensory functions. The main treatment used to stop muscle atrophy is the use of robot assisted
gait training devices. Currently there are many developments of active orthotics and exoskeletons
under way, and some are already being commercialized. Several authors have reported on the state
of the art of active orthoses and exoskeletons, see for example Aliman et al. (2017), on their control
strategies (Jimenez-Fabian and Verlinden, 2012), or on the perspectives of their use (Herr, 2009;
Young and Ferris, 2017). Assistance strategies for the most relevant active exoskeletons may be
found in Yan et al. (2015).
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Devices that combine functional electrical stimulation (FES)
with active orthoses to assist gait, known as hybrid orthoses or
FES-robot devices, have emerged as a promising technology in
gait rehabilitation. The use of active orthoses in combination
with FES is an effective strategy to optimize the outcomes of
gait rehabilitation training. Using hybrid orthosis to stimulate
the lower extremity muscles has proven to evoke muscle
hypertrophy, increase strength, improve cardiopulmonary
fitness, and reduce fatigue during gait, even in subjects with
severe spasticity (Nightingale et al., 2007; Qiu and Taylor, 2016;
Deley et al., 2017; Ekelem and Goldfarb, 2018; Lambach et al.,
2018). Complete recent reviews of hybrid exoskeletons can be
found in Stewart et al. (2017) for the upper limbs, and Anaya
et al. (2018) for the lower limbs.

The correct use of FES in a hybrid orthosis presents various
challenges. Examples are the prevention of the rapid onset of
muscle fatigue, the design of the co-actuation scheme with
the other actuators (electric motor drives), and the selection
of the appropriate stimulation waveforms and the duration of
the maximum stimulation current during gait. The effector
redundancy produced in a hybrid actuation (FES and electric
motors) complicates the system and makes it hard to control.

There have been different proposals in literature to overcome
the aforementioned problems. To address actuator redundancy
problems and the rapid onset of muscle fatigue, Ha et al. (2016)
presented two control loops to assist the hybrid actuation so as
to optimize the issue of the onset of muscle fatigue. The first is
based on tracking the desired joint trajectories, and the second
uses joint torque profiles already available from previous steps
to improve the motor torque efficiency, by shaping the muscle
stimulation profile for the subsequent step. These two control
loops provide feedback on the joint torque produced by the
motor and FES so as to minimize the motor torque contribution
required for a joint angle trajectory. Although the work presents a
real-time control solution, the applied FES is not based onmuscle
dynamics but is designed to track some desired kinematics. Also,
while fatigue is measured indirectly based on variations of motor
current, it is considered to be generalized, i.e., there is no control
of which muscle is the earliest to fatigue.

In the same line, Kirsch et al. (2016) established a switching
control strategy to change between combined actuation and
electromechanical actuation only in accordance with the subject’s
previously calibrated fatigue state. The main limitation of
this work is that actuation is switched between FES and
electromechanical actuators, i.e., when muscle fatigue is detected
due to electrical stimulation, the controller disconnects the FES
actuation and connects motor actuators to facilitate muscle
recovery. When the recovery time is up, this motor actuation is
disconnected, and the FES actuator is again applied to the subject.

To overcome the electromechanical delay when applying
FES and the change in muscle performance over time, Del-
Ama et al. (2014) proposed a controller to balance muscle
and robotic actuation during walking. The main limitation is
that the FES profiles are those that maintain the kinematics,
and, as is also the case with the aforementioned works, the
controller’s efficiency must be further investigated with regard to
therapeutic applications.

Regarding the design of the FES profiles, Sharma et al. (2014)
proposed a dynamic optimization approach to compute the
stimulation profiles. Using a biomechanical model, a customized
range of stimulations can also be obtained to determine the
optimal step length and walking speed. Nevertheless, the model
is so complex that in practice it requires several simplifications
to reduce the computational cost. Furthermore, Anderson
and Pandy (2001b) had already previously demonstrated that
dynamic and static optimization solutions were practically the
same, and therefore that simulations can be optimized. Ferrante
et al. (2016) proposed a method to design a personalized
multi-channel FES controller for gait training based on muscle
synergies, but electromechanical actuation is not considered.
Doll et al. (2018) proposed an off-line dynamic optimization
method to determine the minimum number of pulses that
would maintain a constant desired isometric contraction force.
The main drawback of the method is that only isometric
contractions are considered, not muscle behavior during
dynamic contractions. Also, only knee extensor muscles are
considered. Alibeji et al. (2018) presented a controller in which
dynamic postural synergies between the electric motors and
FES of the muscles were artificially generated by means of
optimizations. The main limitations of their study were the
electromechanical delay, muscle fatigue, and actuator dynamics.

There is still no clear strategy to overcome early fatigue due
to FES actuation. As mentioned above, some authors argue for
switching between FES and electromechanical actuation based on
the subject’s specific fatigue state (Del-Ama et al., 2014; Ha et al.,
2016; Kirsch et al., 2016). Others propose a leading actuation
of the motors to ensure the appropriate kinematics and a pre-
configured low-amplitude stimulation to improve rehabilitation
therapy (Obinata et al., 2007; Farris et al., 2009; Kobetic et al.,
2009). While this ensures kinematic guidance, the stimulation
may not be enough to produce functional contractions of
muscle tissue, and therefore the rehabilitation process may
be compromised. To the best of our knowledge, no subject-
specific design of stimulation profiles and the exoskeleton’s
electromechanical actuation has been proposed in the literature.
Došen and Milovanović (2009) proposed a form of dynamic
optimization to obtain FES profiles with which to track some
desired kinematics, but the exoskeleton was not included.

The aforementioned works provide a methodological
approach to controlling the hybrid exoskeleton so as to follow
some desired kinematics. Nevertheless, the FES profiles applied
are those that track the proposed kinematics, not the kinematics
expected in a physiological contraction. Consequently, the
rehabilitation process may lack neurophysiological feedback.
The objective of the present work was twofold: first, to develop
a method to simultaneously calculating the FES profiles and the
electromechanical actuation of hybrid orthosis; and second, to
design orthosis actuation and FES profiles that consider fatigue.

2. METHODS

The proposed algorithm to estimate the combined actuation of
both the electromechanical and the FES actuators is presented
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in Figure 1. Briefly, the process starts with the inverse dynamics
analysis of a normative gait. Alternatively, the normative motion
can be obtained from gait databases (see e.g., Liu et al., 2008;
Rajagopal et al., 2016). Once the net joint torques and joint
reaction forces are known, the idea is to distribute them between
the orthosis and FES systems. The orthosis torque profile can
be directly applied in the electromechanical actuator. The FES
torque, however, must be distributed among muscles. To do so,
a load sharing problem must be solved. Once the distribution
of forces among the muscles spanning any of the selected joints
has been obtained, the artificially activated muscle model can be
inverted to finally obtain the stimulation profiles that have to be
applied to the selected muscles to provide the given FES torque.
The following subsections will describe the different stages of
the algorithm proposed to obtain the actuation profiles for the
hybrid exoskeleton. The description of themethod is based on the
scheme depicted in Figure 1, and therefore we first present the
data acquisition of the normative gait, then the inverse dynamics
analysis (IDA), followed by the approach to the load sharing
problem in order to estimate the contribution of each actuator,
and lastly the inversion of the artificially activated model.

2.1. Data Acquisition: Normative Gait
As one objective is to define the actuation profiles for the hybrid
exoskeleton, we must first define the desired motion. Since
the intended wearer of the exoskeleton is unable to perform
normal motion, gait databases can be used (Liu et al., 2008;
Rajagopal et al., 2016) and adapted to the anthropometric data
of the specific subject. In this work, we used the database of Liu
et al. (2008), and the model weighed 72.6 kg with no history
of neurological disorders. To perform the inverse dynamics
analysis, the latest version of OpenSim software was used (Delp
et al., 2007; Seth et al., 2018) (OpenSim, RRID:SCR002683).

2.2. Biomechanical Model
The biomechanical model used has 23 degrees of freedom and
92 actuators. It consists of 12 rigid bodies, and the joints are
representative of the allowed motion, i.e., revolute joints at the
knee or ankle, spherical joints at the hip, etc. The motion of
the model is restricted to the sagittal plane, thus reducing the
actuators to 15 in each leg (seeTable 1). The actuators correspond

to the model’s flexor and extensor muscles. The rigid bodies are
characterized by their mass, length, moment of inertia about
the center of mass, and distance from the center of mass to the
proximal joint. The equations of motion can be written as:

{

Mq̈+8T
qλ = Q

8(q, t) = 0
(1)

where M is the system’s mass matrix, q̈ the acceleration
vector, 8T

qλ the generalized forces associated with the Lagrange
multipliers (λ), and Q the generalized force vector. 8 is the
constraint equations vector, and 8q is the Jacobian matrix
of the constraint equations. The net joint reaction forces and
net driver (human-orthosis actuation) moments during some
physical activity or motion can be estimated using kinematic and
anthropometric data in Equation (1) together with information
given by the force plates.

2.3. Co-actuation: Estimation of FES and
Electromechanical Actuation Profiles
Since several muscles serve each joint of the skeletal system,
muscle forces cannot be directly computed from joint moments.
This is the well-known redundant actuator problem in
biomechanics. In order to solve this problem, optimization
procedures are used. Various methods (static optimization,
dynamic optimization, augmented static optimization, large-
scale static optimization) and criteria (minimum metabolic cost
of transport, minimum sum of muscle stresses, minimum hyper-
extension of the joints, time-integral cost of activations, torque-
tracking) for this optimization are available in the literature
(Crowninshield and Brand, 1981; Nigg and Herzog, 1999;
Anderson and Pandy, 2001a,b; Menegaldo et al., 2006; Ambrosio
and Kecskemethy, 2007; Pipeleers et al., 2007; Rengifo et al.,
2010). See Ojeda (2012) for a review of the optimization
methods, and Ou (2011) for a review of the optimization criteria.
The optimization assumes that the load sharing among the
muscles follows certain rules during learned motor activities,
and that the muscle recruitment strategy is governed by
physiological criteria aimed at achieving functional efficiency. In
order to quantify the simultaneous muscle and active orthosis
contributions to the net joint torques of the human-orthosis

FIGURE 1 | Schematic representation of the proposed algorithm to estimate the co-actuation profiles in hybrid orthoses.
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TABLE 1 | Classification of the muscles used in this work according to the joint

(hip, knee, or ankle) and movement (flexion, extension) provided.

Joint Movement Muscle

Hip Flexion Rectus femoris

Extension Gluteus maximus (1,2,3)

Adductor magnus

Semitendinosus

Semimembranosus

Biceps femoris long head

Biceps femoris short head

Knee Flexion Semitendinosus

Semimembranosus

Biceps femoris long head

Biceps femoris short head

Gastrocnemius medial

Gastrocnemius lateral

Extension Rectus femoris

Vastus lateralis

Vastus medialis

Ankle Dorsiflexion Tibialis anterior

Plantar Flexion Gastrocnemius medial

Gastrocnemius lateral

Tibialis posterior

system, this analysis considered the aforementioned 15 muscle
groups per leg and three external torques applied to the
ankles, knees, and hips. The external actuation proposed in
this theoretical approach is the complete case in the sense
that it is an active hip-knee-ankle-foot orthosis (A-HKAFO)
to provide hip, knee, and ankle joint moments that assist
the pathological gait of impaired subjects. Furthermore, as
many of the muscles considered are biarticular (spanning two
rather than just one joint), the optimization problem should
consider all the lower limbs joints simultaneously (Michaud
et al., 2015). For an ankle-foot orthosis (AFO) or knee-ankle-
foot orthosis (KAFO), the problem is solved in the same way
but neglects the contribution of the electromechanical actuation
at the hip and knee joints in the first case, and the hip in the
second case.

2.4. Joint Torque Distribution
Inverse dynamics-based static optimization methods have been
known for more than three decades. The net joint torques are
calculated using the inverse dynamics approach, and then the
muscle load sharing problem is solved at each time step by
minimizing a cost functionJ (FM) that depends onmuscle forces
(e.g., the sum of muscle stresses). This optimization problem is
subject to two constraints: that the sum of muscle moments must
equal the net joint torque obtained by inverse dynamics, and that
the maximum possible muscle force is limited by their maximum
isometric force, FM0 = [fM0,1, . . . , f

M
0,n]

T (Crowninshield and Brand,
1981). The results are that the muscle forces provide the acquired
motion. However, for impaired subjects or for cases in which the
motion is provided by the exoskeleton, the net joint torque must

also be distributed between the electromechanical actuator and
the natural actuators (i.e., the muscles). The formal expression of
this problem is given by Alonso et al. (2012):

min J (FM,To)
s.t. R · F = T

0 ≤ FM ≤ FM0
−T∗

o ≤ To ≤ T∗
o

(2)

where J is a cost function that depends on the muscle (FM) and
orthosis actuation (To) vectors. In particular, F = [FM,To]

T =

[fM1 , . . . , fMn ,To,1, . . . ,To,m]
T is the muscle and orthosis actuation

vector at each instant, n the number of muscle groups, m the
number of joint actuators, R the matrix of equivalent moment
arms of the different muscle groups and orthosis actuators, T
the vector of net joint torques obtained from IDA, and FM0 =

[fM0,1, . . . , f
M
0,N]

T the vector of maximum isometric forces that
limits themaximumpossible muscle actuation.Moment arms are
defined as the distance between the muscle’s line of action and the
joint’s axis of rotation. The muscle lengths and moment arms can
be obtained from the OpenSim IDA results. The moment arms of
each muscle with respect to ankle (ra), knee (rk), and hip (rh) are
considered to be variables of the motion. The orthosis actuation
moment arm is taken to be 1 for the actuated joint and 0 for
the rest. The third constraint above is to ensure that the orthosis
actuation does not exceed the maximum available torque.

Static optimization (SO) is computationally more efficient
than dynamic optimization since it does not require multiple
integrations of the equations of motion. Nevertheless, it does
not consider the activation and contraction dynamics of the
muscle (see Figure 2, top), which can lead to physiologically
inconsistent results. In the present work we therefore use the so-
called physiological static optimization (PSO) approach (Alonso
et al., 2012) which is a modification of the classical SO approach
that considers muscle physiology. This scheme maintains
the computational efficiency relative to dynamic optimization
approaches while considering the muscle contraction dynamics,
thus ensuring the physiological consistency of the solution
obtained. The approach consists of two steps. In the first,
the inverse contraction dynamics problem is solved, assuming
that muscle activations are maximal at every instant, i.e.,
A = [a1, . . . , aN]

T = [1, . . . , 1]T , where A is the activation
vector and aj are the activation values for each muscle (j =

1, . . . ,N = 15). In particular, the contraction dynamics ordinary
differential equation

ḟM(t) = g(a(t), fM(t), lM(t), l̇M(t)) (3)

is integrated given a = 1 for all muscles once the
values of lM(t) and l̇M(t) are known from the generalized
coordinates of the multi-body model, i.e., from the OpenSim
IDA results. The resulting muscle forces, expressed as fM,∗(t)
are the maximum achievable muscle forces compatible with the
measured kinematics considering full activation of muscle tissue.
For the sake of simplicity, the tendon is considered to be stiff
(a rigid element). The result is the trajectory of the maximally
achievable muscle force for each muscle.

Frontiers in Neurorobotics | www.frontiersin.org 4 July 2019 | Volume 13 | Article 5854

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Romero-Sánchez et al. Design of the Cooperative Actuation in Hybrid Orthoses

FIGURE 2 | Comparison of the different dynamics that lead to muscle force production.

In the second step, these force vectors are scaled to the
real activations by solving an optimization scheme. Specifically,
the activations compatible with the net joint torques obtained
by inverse dynamics are calculated using a static optimization
approach. The design variables are the activation vector, A,
and the orthosis actuation vector, To. The cost function F

is the sum of a function of muscle contribution to the net
joint torque, J (Am), and a function of the electromechanical
actuation,H(To):

Min F = J (A)+H(To)
subject to R · (Am · F∗) = T,

J (A) ·H(To) ≤ 0
0 ≤ aj ≤ 1, j = 1, . . . ,N = 15,

Tmin ≤ To,k ≤ Tmax, k = 1, 2, 3

(4)

where F∗ = [FM,∗,T∗
o]

T = [fM,∗
1 , . . . , fM,∗

n ,T∗
o,1, . . .T

∗
o,k
]T is

the maximum muscle and orthosis actuation vector at each
instant, Am = [A,To]

T = [a1, . . . , an,To,1, . . .To,k]
T is the

design variable vector with aj being the activations for each
muscle and To,k the orthosis actuations at each joint. The first
(equality) constraint ensures that the contribution of the two
actuation profiles equals the net available torque, T. The second
(nonlinear inequality) constraint ensures that the muscle and
orthosis torques always assist each other. The third constraint
bounds the values of the activation to between 0 and 1. And
the fourth is used to allow both flexion and extension for
the electromechanical actuation within the bounds set by the
torque limits.

The cost function F may be expressed in different forms
depending on the physiological criteria selected (Rasmussen
et al., 2001; Ou, 2011). It has a strong influence on the
result (Michaud et al., 2015). The term corresponding to
the electromechanical actuation implies that one has to use
either dimensionless cost functions, or the same units for both
the electromechanical and the muscular actuations (provided
by FES). A general expression for the cost function in the

optimization problem can be written as:

F = J (A)+H(To) = δ ·

Nm
∑

j=1

(

h1

(

aj(t), f
M
j (t)

))n

+ (1− δ) ·

Nj
∑

k=1

(

h2
(

To,k(t)
))n

(5)

where h1 and h2 are different functions (see the list below) and
Nm and Nj are the numbers of muscles and joints, respectively.
We tested four cost functions.

• CF1: Force and torque normalized to the j − th isometric

muscle force (fM0,j ) and the k− thmaximum torque (Tmax
o,k

):

F1 = δ ·

N
∑

j=1

(

aj(t) ·
fM,∗
j (t)

fM0,j

)n

+ (1− δ) ·

3
∑

k=1

(

To,k(t) ·
1

Tmax
o,k

)n

(6)

• CF2: Muscle and electromechanical power:

F2 = δ ·

N
∑

j=1

(

−aj(t) · f
M,∗
j (t) · vMj (t)

)n

+ (1− δ) ·

3
∑

k=1

(

To,k(t) · θ̇k(t)
)n

(7)

• CF3: Force and torque normalized to the j−thmaximum value
of the trajectory ofmaximally achievablemuscle force (fmax

j ) in

the cycle and the k− thmaximum torque (Tmax
o,k

), respectively:

F3 = δ ·

N
∑

j=1

(

aj(t) ·
fMj (t)

fmax
j

)n

+ (1− δ) ·

3
∑

k=1

(

To,k(t) ·
1

Tmax
o,k

)n

(8)

• CF4: Largest relative muscle force and torque normalized to
the k− thmaximum torque (Tmax

o,k
).

F4 = max

{

a1(t) ·
fM,∗
1 (t)

fmax
1

, . . . , aN(t) ·
fM,∗
Nm

(t)

fmax
Nm

,
To,1(t)

Tmax
o,1

,
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. . . ,
To,Nj (t)

Tmax
o,Nj

}

(9)

where n is usually set to 2 (Michaud et al., 2015), although
different values have been applied in the literature Ou (2011).
According to Yamaguchi (2005), contraction velocity vM(t) can
be expressed as vM(t) = −l̇M(t) in Equation (7). Rasmussen
et al. (2001) proposed a method to deal with a min/max objective
function (F4). Their procedure generates activation patterns
consistent with contraction dynamics only if muscle force (fM)
scales linearly with muscle activation. Although this is certainly
not the case for standard Hill models, this assumption has been
widely used in the literature, and is the basis of OpenSim’s
static optimization algorithm. In this first approach, we take
the weighting factors to be the same for both actuators (δ =

0.5). The weighting factors can be associated with the level of
assistance in a hybrid orthosis (Anaya et al., 2018). The parameter
δ basically represents some priority given to the use of either
the FES actuation or the motor actuators. A higher value of
δ prioritizes muscle actuation through FES, and a lower value
reduces FES actuations and increases the torque provided by the
electromechanical actuation. Parameters accounting for atrophy
should be considered in the computational model if present in the
subject under analysis. For instance, various studies (Amankwah
et al., 2004; McDonald et al., 2005) have shown that passive
torque tends to be greater in pathological participants than in
healthy ones, especially in the ankle and hip joints.

At the end of this step, two signals are available: the
electromechanical actuation joint torque which can be applied
directly to the exoskeleton, and the activation signal for each
muscle that scales the maximummuscle force temporal histories.
In the following subsection, these activation signals will be used
as inputs in the artificial activation dynamics to calculate the FES
profiles to apply to the subject so as to obtain the joint torque
calculated in this step.

2.5. Estimation of FES Profiles
The dynamic behavior of a muscle is modeled by means of
two cascaded differential equations (Zajac, 1989): the excitation-
to-activation dynamics which describes the transformation of a
neural signal into muscle recruitment levels, and the activation-
to-force dynamics which represents the transformation of an
activation signal into muscle force (Figure 2, top). For an
artificially stimulated muscle (Figure 2, bottom), the contraction
process is considered to be the same as in the physiological
case since the muscle parameters considered in the contraction
dynamics do not vary significantly. Nevertheless, the excitation-
to-activation dynamics do change, since FES artificially induces
a current in specific motor neurons, not in muscle tissue (Lynch
and Popovic, 2008).

2.5.1. Excitation-to-Activation Dynamics in

Physiologically Activated Muscles
According to Nagano and Gerritsen (2001), the excitation-to-
activation dynamics of a healthy, physiologically activatedmuscle

(Figure 2, top) are described by:

ȧ(t) = (u(t)− a(t)) · (t1u(t)+ t2) (10)

where a(t) is the muscle activation, u(t) the excitation signal,
and t2 = 1/Tfall and t1 = 1/(Trise − t2) parameters depending
on time constants Trise and Tfall (Nagano and Gerritsen, 2001).
This equation transforms an idealized muscle excitation signal,
a dimensionless value between 0 and 1, into delayed muscle
activation levels, also constrained to the same range of values.

2.5.2. Excitation-to-Activation Dynamics in

FES-Activated Muscles
In the case of a subject with gait disability (spinal cord injury,
post-polio syndrome, knee extensor failure or weakness, etc.), the
natural path of the neural signal to the muscles is interrupted
in some way. It has been proven that the use of FES to induce
muscle contractions under these circumstances has some benefits
for the patient. The activation signal produced by FES depends on
the stimulus’s intensity and frequency, where the former can be
controlled by the amplitude or pulse width of the stimulus signal.
In the literature, there are mathematical models that describe
excitation-to-activation dynamics in FES-induced contractions:
Makssoud et al. (2004) presented an FES muscle model based on
Huxley’s cross-bridge theory, which was divided into activation
and contraction parts, with the former accounting for stimulation
intensity, pulse width, and frequency. Watanabe et al. (1999)
presented a mathematical description of the frequency-force
relationship which was completed by Gföhler et al. (2004) by
including the effects of amplitude. In the present work, this last
model is used to obtain an estimate of FES profiles in terms
of intensity or of pulse width and/or frequency. The activation
dynamics for this type of induced contraction can be represented
by a nonlinear static block (related to stimulus frequency and
intensity) coupled with a linear dynamics block represented by
a second-order differential equation (relating FES and activation
signals) by means of a two-block Hammerstein structure (Durfee
and McLean, 1989).

The excitation signal, e(t), output of the first block, combines
the influence of stimulus intensity, Ustim (in terms of amplitude
or pulse width) and frequency, fstim, and can be expressed as:

e(t) = Su · Sf (11)

where Su and Sf are scaling factors for stimulus intensity
and frequency, respectively. The first factor corresponds to an
isometric recruitment curve divided into three regions. In the
first, no muscle fibers are recruited below a threshold (Utr); in the
third, all fibers are recruited above the saturation level (Usat); and,
in the intermediate region, there is active recruitment between
those limits (Gföhler et al., 2004):

Su =











0 for Ustim < Utr
Ustim − Utr

Usat − Utr
for Utr ≤ Ustim ≤ Usat

1 for Ustim > Usat

(12)

As this expression represents a process of scaling between
intensity threshold and saturation levels, either a pulse-width
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or an amplitude signal can be used as the input Ustim. The
threshold and saturation values can be measured experimentally.
The former corresponds to the amplitude of the input signal
that produces the first effective contraction (minimal variation
in the joint angle). The latter is the value of the amplitude beyond
which no more motion is observed during muscle contraction.
Both values depend strongly on the subject’s morphology, muscle
atrophy, treatment with botulinum toxin, and sensitivity, and
they must be measured independently for each muscle. The
values of Ustim may range from 10 to 50 mA. Greater values
combined with higher stimulation frequencies or different pad
sizes may cause skin burns or neuromuscular injuries (Martín,
2004). In the present work, we have assumed equal physiological
actuators since we have no access to the database’s subjects to
perform any measurements. This assumption also maintains the
simplicity of the calculations.

The second factor in Equation (11) has been defined as
(Watanabe et al., 1999):

Sf =
k1 − k2

1+ e(fstim−f0)/R
+ k2 (13)

where k1, k2, R, and f0 are appropriate constants. The values of a1
and f0 can be obtained by assuming Sf = 0 at f = 0, and Sf = 1
at the critical fusion frequency (f = fCF):

k1 = −k2e
−f0/R (14)

f0 = R · ln
[

(k2 − 1) · efCF/R − k2

]

(15)

where k2 is the ratio of the maximum force to the force at fCF , i.e.,
k2 = Fmax/FCF , and can be determined experimentally. In the
present work, we set the parameter R to 15, although it can also
be measured on patients (Watanabe et al., 1999).

The second block of the Hammerstein structure can be
represented as a second-order ordinary differential equation
(Gföhler et al., 2004):

k1 · ä(t)+ k2 · ȧ(t)+ a(t) = e(t) (16)

where k1 = Te · Trise/fall and k2 = (Trise/fall + Te), with
Trise and Tfall being time constants (Nagano and Gerritsen,
2001), and Te a time constant for the excitation of artificially
stimulated muscles. These constants depend on the physiological
cross-section area, muscle mass, and fast-twitch muscle fiber
percentage (Gföhler et al., 2004). The model therefore takes
into consideration atrophy in disabled patients, which is usually
associated with those values.

As the activations of eachmuscle are known from the previous
step, the excitation signal e(t) can be obtained directly from
Equation (16) using backward differences and interpolating the
last values with splines to avoid the loss of values during the
process. If the stimulus frequency is fixed at typical values, i.e.,
20–40 Hz, it is then possible to calculate Sf from Equation (13)
and then Su from Equation (11) to solve Ustim in Equation (12),
and thus obtain the stimulation profile in terms of variable
amplitude and constant frequency. Contrariwise, if the stimulus
amplitude is fixed between typical values of 20–35 mA, then
it is possible to calculate Su from Equation (12), then Sf from

FIGURE 3 | Comparison of the different torque profiles for the proposed optimization cost functions.
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Equation (11), and last fstim from Equation (13) to obtain
the stimulation profile in terms of variable frequency and
constant amplitude.

2.6. Fatigue in FES-Induced Contractions
One of the major drawbacks when dealing with artificial
activation of muscle tissue is the lack of selectivity in
muscle fibers. A characteristic tetanic contraction that produces
movement in physiologically activated muscles is defined by the
sequential stimulation of adjacent fibers at a frequency of 6-8
Hz. This sequential recruitment guarantees a value of fatigue
in accordance with the activity. Contrariwise, in a FES-induced
contraction, in which the system is stimulated at 20–40 Hz, the
individual motor units are not stimulated sequentially. Instead,
all types of fibers (type I, slow; type IIa, mid; and type IIb, fast)
are stimulated at the same time with the consequent early onset
of fatigue, since type IIb (fast) fibers present high levels of force
production but also have poor fatigue resistance (Lynch and
Popovic, 2008; Vromans and Faghri, 2018).

Since a hybrid exoskeleton must facilitate motion, fatigue
effects should also be considered. In order to maintain the
level of actuation, clinicians often increase stimulation intensity
or frequency. Unfortunately, an increase of either of these
parameters accelerates the onset of fatigue (Ding et al., 2003).
This may be counter-productive during FES training. When
using an exoskeleton, however, a variation of those parameters
may contribute to prolonging the electromechanical actuation
battery life.

There are several studies in the literature that address
mathematical models of muscle fatigue under FES (Ding et al.,
2003; Cai et al., 2010; Marion et al., 2013). They are mainly based
on the physiological mechanism. These models are complicated
to use in an IDA approach because of their large number of
variables. In order to evaluate the evolution of the combined FES
actuation and electromechanical actuation, we hold to the idea of
calculating the co-actuation with the inclusion of a fatigue term.
Tepavac and Schwirtlich (1997) proposed an exponential decay
to describe the reduction in muscle force production under FES
in the first 5 min of electrical stimulation. Chou and Binder-
Macleod (2007) measured a 50% reduction in the peak force
in the first 180 s. These variations must be considered when
designing appropriate actuation profiles.

From this approach, there arises a new fatigue cost function
(G) which accounts for the decrease in muscle actuation due to
FES-induced fatigue:

G = J (A)+H(To) = δ ·

N
∑

j=1

h1

(

aj, f
M
j

)

· ψp(t)

+ (1− δ) ·

3
∑

k=1

h2
(

To,k

)

(17)

where h1 and h2 are the functions described in Equations (6–9),
and ψp(t) represents a fatigue function that limits the actuation,
where p describes the type of the function used (see Equations
18 and 19). We shall compare two different fatigue functions.
The first represents an exponential decay that models the peak

force reduction observed in the aforementioned works. It can be
expressed as:

ψexp(t) = e−C1·t−C2 + C3 (18)

where C1, C2, and C3 are appropriate constants to model a
decay of some 80% in peak force with a gentle slope. For the
present work, we set these values to C1 = 0.02, C2 = 0.3, and
C3 = 0.2. The actuation profiles resulting from the optimization
already consider muscle fatigue, and therefore, to compensate for
the variation in muscle actuation, variation in electromechanical
actuation is also considered.

The second fatigue function is that proposed by Riener et al.
(1996):

dψR(t)

dt
=

(ψmin
R − ψR(t)) · a(t)

Tfat
+

(1− ψR(t)) · (1− a(t))

Trec

(19)

where ψmin is the minimum value achievable when a muscle is
fatigued, and Tfat and Trec are time constants representing fatigue
and recovery times. In this work, we took the values proposed by
Riener et al. (1996) for these constants. The use of these dynamics
requires a slight modification in the optimization routine. At
each step, the required activations for cooperative actuation are
calculated by means of the proposed algorithm. These activations
are then used to compute the fatigue function, which basically
reduces muscle force capacity by scaling the activation. A second
optimization is then computed to calculate simultaneously the
muscle activations under fatigue conditions (and therefore FES
profiles) and the compensated orthosis actuation profiles.

3. RESULTS AND DISCUSSION

The procedure described was implemented in Matlab (The
MathWorks Inc.) running on an Intel(R) Core(TM) i5 CPU 650 at
3.20 GHz. We used the Matlab fmincon routine for CF1 to CF3,
and fminimax for CF4. Simulation times (as obtained for a single
cycle) were 28.35 s for CF1, 8.83 s for CF2, 18.87 s for CF3, and
35.69 s for CF4. The different cost functions evaluated yielded
different actuation profiles. Figure 3 shows the output of the
optimization algorithm in terms of joint torque distribution. The
“softest” results were obtained with cost functions CF1 and CF3.
Normalizing the muscle force to the isometric muscle force fM0,j
(CF1) instead of to the maximum force in each cycle fmax

j (CF3)

led to lower calculated joint torques related to muscle actuation.
Although the results for the hip seem to be similar, there is a
greater muscle contribution in CF3 than in CF1, concordant with
the activations shown in Figure 4. One observes that the contrary
is the case for these cost functions in terms of orthosis actuation.
In general, the use of muscle force-based cost functions (CF1,
CF3, and CF4) results in similar contributions for the hip, but not
for the other joints. The use of CF2 results in muscle actuators
having greater relevance than electromechanical actuators. The
differences in joint torque contribution for these two actuators
may be explained by the individual contributions of the muscles
to the joint torque.
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FIGURE 4 | Comparison of the different activation profiles for the proposed optimization cost functions. CF1: Thick solid orange line. CF2: Dashed blue line. CF3: Thin

solid black line. CF4: Dotted green line.

FIGURE 5 | Comparison of the different FES profiles for the proposed optimization cost functions. CF1: Thick solid orange line. CF2: Dashed blue line. CF3: Thin solid

black line. CF4: Dotted green line.
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FIGURE 6 | Evolution of the FES profiles for the proposed muscles using exponential decay fatigue factor for function F1. Dashed orange line: Initial FES profile.

Dotted yellow line: FES profile at 60 s. Solid green line: FES profile at 120 s. Dash-dotted blue line: FES profile at 180 s.

FIGURE 7 | Evolution of the FES profiles for the proposed muscles using the fatigue factor proposed by Riener et al. (1996) for function F1. Dashed orange line: Initial

FES profile. Dotted yellow line: FES profile at 60 s. Solid green line: FES profile at 120 s. Dash-dotted blue line: FES profile at 180 s.
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FIGURE 8 | Evolution of the electromechanical and FES actuation at the hip, knee, and ankle joints using exponential decay fatigue factor for function F1. Thick solid

black line: Total joint torque. Dashed orange line: Initial joint torque. Dotted yellow line: Joint torque at 60 s. Solid green line: Joint torque at 120 s. Dash-dotted blue

line: Joint torque at 180 s.

FIGURE 9 | Evolution of the electromechanical and FES actuation at the hip, knee, and ankle joints the fatigue factor proposed by Riener et al. (1996) for function F1.

Thick solid black line: Total joint torque. Dashed orange line: Initial joint torque. Dotted yellow line: Joint torque at 60 s. Solid green line: Joint torque at 120 s.

Dash-dotted blue line: joint torque at 180 s.

The muscle activations for the different cost functions are
depicted in Figure 4. As noted above, the results for CF1 and
CF3 are similar but the muscle activation values for the latter are
greater, reflecting the greater contribution of muscles to torque

production. There are marked spikes in the CF2 activations, with,
at some points, tetanic contractions that may be inappropriate
for rehabilitation purposes or for smooth control of the degree of
freedom with the two actuators.

Frontiers in Neurorobotics | www.frontiersin.org 11 July 2019 | Volume 13 | Article 5861

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Romero-Sánchez et al. Design of the Cooperative Actuation in Hybrid Orthoses

Once the artificial activation dynamics have been inverted,
the FES profiles can be evaluated. For simplicity, we here
assumed that all the muscles have the same threshold and
saturation values. The results are shown in Figure 5. The
process that leads from Figures 4, 5 (see section 2.5.2) is a
temporal shift of the activation signal, followed by nonlinear
scaling, and then normalization between the threshold and
saturation levels. The main features of the activation profiles are
preserved, i.e., the FES profiles obtained with CF2 are higher
and at some points spiked, which, in terms of stimulation,
may cause muscle tissue contractions that are hard to control.
Moreover, a sustained FES-induced tetanic contraction, as in
tibialis posterior or lateral gastrocnemius, may also result in early
muscle fatigue.

If fatigue is included in the optimization process by using
Equation (17), the FES and electromechanical actuation time
profiles are expected to vary during time. Both fatigue functions
proposed in Equations (18) and (19) decrease exponentially
being the first one softer than the second one. Another
difference is that second one allows the muscle to recover
partially. As the activations in the cost function are limited
by this fatigue factor, which is decreasing over time, the
results of the optimization process lead to increasing values
of the activation profiles, and therefore of the FES profiles
(see Figures 6, 7). As fatigue is compensated with increased
values of muscle stimulation, the results in terms of joint
torque are the same as in Figure 3 for CF1, i.e., the torque
profiles remain constant and distributed as in Figure 3 for CF1
throughout the 180 s. These results are consistent with those
of Del-Ama et al. (2014), in which the stimulation parameters
are increased when fatigue appears to maintain a constant
joint torque.

In terms of joint torque, if FES profiles of Figures 8, 9 are
used, the contribution of FES and electromechanical actuation
must be updated to reflect the effect of the fatigue factor. As
the designed FES profiles increase over time, the contribution
of the artificial contractions to joint torque decreases while the
contribution of the electromechanical actuator must increase

to compensate the effects of fatigue. These results are reflected
in Figures 6, 7. Both show a decrease in FES actuation while
the motor actuation increases. The exponential decay limits
the actuation and, from the beginning, leads to a major but
steady decline in amplitude that is sustained over the 180 s of
the tested cycle. On the contrary, the dynamics proposed by
Riener et al. (1996) presents a sharp decline in the first 50 s
that must be compensated by the motor actuation. This strong
decline in muscle force production may be due to the values of
the time constants which were determined from patients with
complete thoracic spinal cord injury. This factor reflects the
characteristics of the two fatigue dynamics: in the first case,
the exponential decay function is adapted in accordance with
the observed reduction in muscle force production over 180
s, whereas, in the second case, although fatigue and recovery
dynamics are considered, themuscle force reduction is constantly
updated in accordance with the current state of the muscle,
so that fatigue appears earlier in muscles with higher levels
of stimulation, as in medial gastrocnemius, and the same level
of stimulation can be applied and maintained in muscles
with a lower stimulation profile, as in adductor magnus or
tibialis posterior.

The present results are not directly comparable with those
of previous work in which the proposed controller either
switches between actuators and there is no information about
the combined actuation, or there is only information for
one actuator. Nevertheless, the results shown in Figure 3 are
similar to those provided by Ha et al. (2016) for CF2 and
CF3 at the knee level in which there was a reduction in
the orthosis contribution to torque when FES was applied.
Furthermore, the results obtained in this work explain,
with a physiological model in the background, the use of
bang-bang controllers to switch between orthosis and FES
actuation when muscle fatigues or more complex controllers
to switch between both actuators as in Ha et al. (2016) or
Kirsch et al. (2016).

The proposed method is off-line. Nevertheless, it could be
applied to improve current control algorithms using the designed

FIGURE 10 | Control architecture of the cooperative controller.
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FES profiles which are physiologically consistent with themotion,
instead of pre-defined ones that ensure kinematic guidance but
may not have a rehabilitative function or result in delivering
excessive electrical stimulation to the muscles causing either
early fatigue or an exaggerated gait pattern (Anaya et al.,
2018). For instance, Ha et al. (2016), Del-Ama et al. (2014),
or Kirsch et al. (2016) do not design specific FES profiles for
each muscle. In some cases, the FES profiles are already pre-
defined, or the control algorithm switches between actuators to
prevent fatigue. The method proposed here could be used to
improve existing control algorithms, as in Ha et al. (2016), by
including stimulation profiles that are physiologically consistent
with the motion. Furthermore, according to Pizzolato et al.
(2017), it might be possible to perform the inverse kinematics in
real-time. By optimizing the programmed routines, cooperative
control could be reached that is near real-time, or at most
one step back, as in Ha et al. (2016), which may be enough
for a cooperative controller that uses rehabilitative stimulation
profiles. A possible solution for the control architecture of
the cooperative controller is shown in Figure 10. A reference
orthosis torque can be averaged (To,ref ) from the reference
kinematics and total torque, measured in the absence of
muscle stimulation. Then the proposed method would be used
to predict a distribution of the required net joint moments
between the motors and the artificially activated (i.e., electrically
stimulated) muscles to comply with the desired kinematics.
The difference between the reference and the predicted orthosis
torques provides an estimate of the FES torque (T∗

FES). Then
the difference between this value and the one predicted in
the proposed scheme is used by a high-level controller to
adapt the weightings (δ) in the optimization to reduce muscle
fatigue. This scheme is similar to that proposed by Ha et al.
(2016) but introduces muscle fatigue into the cooperative control
of the hybrid orthosis by including the artificially activated
muscle dynamics.

4. CONCLUSIONS

This work has described a method for the simultaneous design
of the actuation provided by the electrical stimulator and
the electromechanical actuators during gait assisted hybrid
exoskeletons. The scheme ensures the physiological consistency
of the results and is computationally efficient. There has
been previous work (Ferrante et al., 2016; Ha et al., 2016;
Alibeji et al., 2018) proposing methods for the control of
such exoskeletons, but nothing regarding the design of the
two actuation profiles at the same time. The present approach
provided promising results for the definition of rehabilitation
routines for hybrid exoskeletons or their control strategies.
Furthermore, since fatigue was included in the model, estimates
can be made of the rest intervals needed to improve muscle
tissue recovery times. Despite the promising nature of the
results, the following topics must be addressed to work toward
a generalized solution:

• The optimization problem should consider the masses and
inertias of the different lower limb segments of the exoskeleton
since they may modify the joint torques, as well as the contact
forces between the exoskeleton and the human body.

• The parameters used in the contraction dynamics must be
measured on each subject. Also, the muscle stimulation
threshold and saturation levels must be measured
independently for each of the exoskeleton wearer’s muscles.
This may be a problem for some muscles due to the size of the
pads and the crosstalk between muscles.

• Related to the previous item, the optimization problem of
quantifying the minimum number of muscles to stimulate
so as to produce some functional movement needs to
be investigated further. To this end, and to reduce the
dimensionality of the problem, the use of muscle synergies
should be explored. This might reduce not only the complexity
of donning and doffing the exoskeleton, but also the overall
energy requirements of the system.

• For online applications, the value of δ should be optimized.
A time-varying weighting factor may improve the trade-off
between FES and orthosis actuation so as to put back the onset
of muscle fatigue.

• Although a physiological criterion is applied in the load
sharing problem, the contractions induced by electrical
stimulation are non-physiological. The model proposed by
Gföhler et al. (2004) already considers that modification in the
activation dynamics, but it does not consider fatigue, therefore,
further investigation is required in this area.

• While in a physiological contraction muscle fiber recruitment
depends on the percentage of fast fibers by way of time
constants (see Nagano and Gerritsen, 2001), muscle fibers
during FES-induced contractions are all recruited together.
This could be resolved by using time-dependent values instead
of time constants to characterize the fatigue process.

• The results must be compared with an IDA of the gait assisted
hybrid exoskeleton, i.e., the results need to be validated with
the performance of tests.
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Computer simulation can be used to predict human walking motions as a tool of basic

science, device design, and for surgical planning. One the challenges of predicting human

walking is accurately synthesizing both the movements and ground forces of the stance

foot. Though the foot is commonly modeled as a viscoelastic element, rigid foot-ground

contact models offer some advantages: fitting is reduced to a geometric problem, and

the numerical stiffness of the equations of motion is similar in both swing and stance.

In this work, we evaluate two rigid-foot ground contact models: the ellipse-foot (a

single-segment foot), and the double-circle foot (a two-segment foot). To evaluate the

foot models we use three different comparisons to experimental data: first we compare

how accurately the kinematics of the ankle frame fit those of the model when it is forced to

track the measured center-of-pressure (CoP) kinematics; second, we compare how each

foot affects how accuracy of a sagittal plane gait model that tracks a subjects walking

motion; and third, we assess how each model affects a walking motion prediction. For

the prediction problem we consider a unique cost function that includes terms related

to both muscular effort and foot-ground impacts. Although the ellipse-foot is superior

to the double-circle foot in terms of fit and the accuracy of the tracking OCP solution,

the predictive simulation reveals that the ellipse-foot is capable of producing large force

transients due to its geometry: when the ankle quickly traverses its u-shaped trajectory,

the body is accelerated the body upwards, and large ground forces result. In contrast, the

two-segment double-circle foot produces ground forces that are of a similar magnitude

to the experimental subject because the additional forefoot segment plastically contacts

the ground, arresting its motion, similar to a human foot.

Keywords: foot contact, musculoskeletal model, motion prediction, optimal control, multibody dynamics

1. INTRODUCTION

Understanding the relationships between force and movement in the musculoskeletal system is
key to correcting movement pathology. Though it is possible to study muscle movement in-vivo
(Fukunaga et al., 2001; Ishikawa et al., 2003; Maganaris, 2003; Reeves and Narici, 2003) measuring
muscle force in-vivo is not possible without invasive surgery. Currently the only way to study
the motion and forces of the human musculoskeletal system is to use mathematical models and
computer methods to predict quantities that cannot easily be measured.

The mathematics of optimal control can be used to predict the movements of a model
(Ackermann and van den Bogert, 2010; Schultz andMombaur, 2010;Mordatch et al., 2013). Casting
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human motion prediction as an optimal control problem
(OCP) requires four components: a musculoskeletal model, a
cost function, problem-specific constraints, and a method to
solve for the vector of state and muscle force waveforms that
simultaneously satisfy the equations of motion and minimize the
cost function. While the underlying mathematics of multibody
dynamics and optimal control is well-developed, many tissues
and structures of the body are challenging to model. Though the
human body contains many mechanically complex structures,
it has proven particularly difficult to formulate models of foot
ground contact that are both accurate and well-suited for the
prediction of walking.

Inaccuracies in themodel of foot ground contact affect the rest
of the body because the foot forms the only boundary between
the body and the ground during typical walking. The shape that
a foot model makes during walking determines how ground
forces are transformed into ankle torques and vice-versa. Though
impressive movement predictions have been realized without an
accurate foot shape (Van den Bogert et al., 2012; Mordatch et al.,
2013; Koelewijn et al., 2018), differences in foot shape ultimately
affect the ankle kinematics, and CoP progression. Accurately
fitting the loaded shape of a foot model to experimental data
is challenging because the optical markers placed on the skin
of the foot move on the order of a centimeter with respect to
the underlying bones (Fuller et al., 1997). Both the fitting and
the simulation of viscoelastic foot models is made difficult by the
widely varying stiffness of human foot pads (Aerts et al., 1995)
which are compliant at initial contact (∼20 N/mm) and rapidly
stiffen with load (1,445 N/mm at 1 body weight). Although the
literature contains some excellent examples of fitted viscoelastic
foot models (Halloran et al., 2010; Pàmies-Vilà et al., 2014;
Shourijeh and McPhee, 2014, 2015; Millard and Kecskeméthy,
2015; Jackson et al., 2016; Brown and McPhee, 2018), rigid foot-
ground contact models are an attractive alternative: the fitting
process is strictly dependent on geometry, and the numerical
stiffness of the model does not change appreciably from swing
to stance. A reduction in the numerical stiffness of the model is
attractive because this makes the resulting optimization problem
less sensitive and therefore easier to solve.

Although rigid-foot ground contact models are common in
the passive dynamic walking literature (McGeer, 1990; Collins
and Ruina, 2005) few rigid foot-ground models exist in the
musculoskeletal modeling literature. Hansen et al. (2004) and
Srinivasan et al. (2008) modeled the lower leg and foot in two-
dimensions (2D) as a single rigid body that rolls on the ground
using a rigid cylinder-plane contact pair. While this approach
can accurately replicate the motion of the entire lower stance
leg, for many applications it is not acceptable to fix the ankle
joint. Although the foot has been modeled using point contacts
for sprinting motions (Kleesattel and Mombaur, 2018), point
contacts do not capture the rolling motion of the foot during
walking (García-Vallejo et al., 2016). The foot has been modeled
as a single convex cam (Ren et al., 2010; Römer, 2018; Römer
et al., 2018) which contacts the ground at a single point and
rolls-without-slipping across the ground plane. Ren et al. (2010)’s
planar foot model closely matched the ankle position of the 12
subjects they tested (≈1 cm on average), with the largest errors

appearing during heel strike (≈2.5 cm) and toe-off (≈1.5 cm).
It is worth noting that a certain amount of kinematic error
is expected during heel-contact and toe-off since a rigid foot
ground contact model does not capture the compression of heel
(Gefen et al., 2001) and forefoot pads (Cavanagh, 1999). Felis
and Mombaur (2016) developed a 3D rigid foot-ground contact
model using a sphere and a planar triangle to represent the
heel and forefoot, respectively, but did not fit the model to
experimental data. Though there are good examples of rigid foot
ground contact models that interact through the ground using a
single curved shape (Ren et al., 2010; Römer, 2018; Römer et al.,
2018), there are no examples of fitted rigid contact models that
treat the hind and forefoot separately.

Unfortunately a foot model that fits kinematic data isolation
does not necessarily translate into a walking prediction that
produces human-like foot ground forces. Optimal walking
solutions in the literature typically have ground force profiles
that deviate from experimental data, sometimes dramatically, at
heel contact (Ackermann and van den Bogert, 2010; Geyer and
Herr, 2010; Dorn et al., 2015) where differences between two and
three times body weight are typical. Large simulated heel contact
forces often arise from pairing a musculoskeletal model with a
viscoelastic foot and using a problem formulation that inherently
does not adjust its walking pattern in response to large contact
forces. Another common problem, in which an obvious solution
is not clear, are ground forces that have an appropriate magnitude
but a shape that differs from experimental data (Anderson and
Pandy, 2001; Ren et al., 2007; Geyer and Herr, 2010; Sreenivasa
et al., 2017). To make an improvement in prediction accuracy it
is necessary to distinguish error that is caused by the model of the
foot from error caused by other sources.

In this work we model and evaluate two planar foot-ground
contact models using three different methods in an effort to
identify differences with experimental data that are caused by the
foot model. The first of the rigid foot-ground contact models we
consider is similar to existing works in the literature because it
interacts with the ground through a single curved segment (Ren
et al., 2010; Römer, 2018; Römer et al., 2018). In contrast, the
second foot-ground contact model has separate contact shapes
for the heel and forefoot. As is typical, we evaluate how well
the kinematics of each foot model track the stance kinematics
of a subject’s foot in isolation. In addition, we consider how well
each foot model performs as part of a whole body gait model:
first, when the gait model is used as part of an optimal-control
problem (OCP) to track experimental data; and second, in an
OCP that predicts motion. The musculoskeletal model and foot
models are described in section 2 while the detailed evaluation
procedure used to assess the foot models is described in section
3. The results of the work appear in section 4 and a discussion of
the results in section 5.

2. MODEL

We model the human body as a planar floating base rigid-body
system (Figure 1A) which interacts with the ground through one
of two different rigid foot ground contact models (Figure 1B).
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FIGURE 1 | The human body is modeled using a 9 DoF rigid body model in

which the hip, knee, and ankle are actuated by pairs of extensor and flexor

MTGs (A). The two sagittal plane models are identical except for the

foot-ground contact model. In one case foot-ground contact is modeled as a

kinematic constraint between an ellipse and a plane, in the other between a

pair of circles and a plane (B).

Foot ground interaction is modeled using contact and rolling
constraints between an ellipse and a plane, and also between a
pair of circles and a plane. The human body models used to test
each foot are identical and have seven segments, nine degrees-of-
freedom (DoF), and are driven by six pairs of agonist-antagonist
muscle-torque-generators (MTGs).

The differential-algebraic equations (DAEs) governing this
system are described as

M(q)q̈+ c(q, q̇) = τ + G(q, q̇)Tλ (1)

gV (q, q̇) = 0 (2)

where q, q̇, and q̈ are the generalized positions, velocities,
and accelerations of the model; M(q) is the mass matrix, and
c(q, q̇) is the vector of Coriolis, centripetal, and gravitational
forces. The kinematic constraints between the foot and the
ground are in the vector gV (q, q̇), while the generalized forces
these constraints apply to the system are contained in the
term G(q, q̇)Tλ where G(q, q̇) is the Jacobian of the constraint
equations gV (q, q̇) with respect to q̇ and λ is a vector of

Lagrange multipliers. The foot ground constraints, gV (q, q̇), are
described at the velocity level, index-reduced, and applied at the
acceleration level.

Throughout this work we indicate position vectors using r,
direction vectors with e, frames with K (which are composed
of a position vector to the origin and a rotation matrix), points
using letters, linear velocity with v, and angular velocities with ω.
Forces are denoted using f while functions are indicated with f
and appear with an argument. Subscripts are used with direction
vectors and frames to provide additional information, while a
more elaborate system is used with kinematic vectors: the origin
of the vector appears in the left subscript, the termination in
the right subscript, and the frame the vector is resolved into (if
necessary) is indicated in the left superscript. Thus ArH means
the position vector that begins at point A and terminates at point
H but is not yet resolved into any particular frame since the left
superscript is blank.

The constraints between the ellipse and the plane are applied
at the point-of-closest approach (nS) and are described at the
velocity-level using a contact constraint

(vA + ωA × (ArE + rS(φ)eφ))
TeZ = 0 (3)

and a rolling constraint

(vA + ωA × (ArE + rS(φ)eφ))
TeX = 0 (4)

where vA is the linear velocity of the origin of the ankle frame
KA, ωA is angular velocity of KA, ArE is the vector from KA to
the center of the ellipse, eφ the direction vector that points to nS,
and rS(φ) is the radius of the ellipse at the polar angle φ. Since
there is no closed form equation for the point of closest approach
between an ellipse and a plane, we numerically solve for φ using
first the bisection method, and finally Newton’s method to polish
the root to high accuracy. The parameters of the ellipse-foot (pE)
are defined by the offset of the ellipse from the ankle (ArE), its
relative orientation to the angle frame (AθE), and the lengths of
the major and minor axes of the ellipse (rX and rY).

The double circle foot contact model uses one of three
different sets of constraint equations depending on which circle
is in contact with the ground. During heel contact the constraint
equations are

(vA + ωA × (ArH − rHeZ))
TeZ = 0 (5)

(vA + ωA × (ArH − rHeZ))
TeX = 0 (6)

where rH is the radius of the heel circle. During forefoot contact
the constraint equations are given by

(vA + ωA × (ArF − rFeZ))
TeZ = 0 (7)

(vA + ωA × (ArF − rFeZ))
TeX = 0 (8)

where rF is the radius of the forefoot contact. These equations
are nearly identical to the constraints used for the ellipse, but
without the extra computational expense incurred in computing
the point of closest approach. To ensure that the foot is not
over-constrained when both circles touch the ground, we apply
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the contact and rolling constraints of one circle, while the other
is constrained with just a contact constraint. The parameters
of the double-circle foot (pC) are defined by the offset of each
circle from the ankle (ArH and ArF), and the radius of each circle
(rH and rF).

Themodel is actuated by six pairs of agonist-antagonist MTGs
each of which model groups of extensors and flexors that cross
the hip, knee, and ankle. The torque τ M developed by a single
MTG resembles that of a rigid-tendon Hill-type muscle model
(Zajac, 1988; Millard et al., 2013) and is given by

τ M = ±τ M
o (a fA(θ)fV(ω)) (9)

where τ M
o is the maximum active isometric torque of the MTG,

a represents the chemical activation of the MTG, fA(θ) is the
active-torque-angle characteristic, fV(ω) is the torque-angular-
velocity curve, and the sign is set to be consistent with the
anatomy of the muscle group and the generalized coordinates
used to describe the model. The parameters (τ M

o ) and curves
[fA(θ) and fV(ω)] that define the flexors and extensors of the hip,
knee, and ankle are fitted to the data of Anderson et al. (2007)
and Jackson (2010). Please see Millard et al. (2017) for a more
detailed description of the formulation and parameters of the
MTGs. Since walking does not typically stretch the leg muscles
appreciably (Arnold andDelp, 2011), we ignore the passive forces
developed by the parallel element.

Although it is conventional to describe activation dynamics
using an ordinary differential equation with a discontinuity,
this formulation is not compatible with gradient-based optimal
control methods which require C2 continuity. Here we describe
activation dynamics using a C2 approximation

ȧ =
e− a

1
2 (τA + τD)

(10)

where e is the excitation signal, a is the activation of the muscle.
The activation τA and deactivation τD time constants are 15 and
50ms, respectively (Thelen, 2003).

At each leg joint the net torque is given by

τi = τ MF
i + τ ME

i − βωi. (11)

where F and E designate the joint’s flexors and extensors, and β is
light passive damping introduced by the musculature and tissue
surrounding the joint. The damping coefficient is defined as

β = η
τ MF
o + τ ME

o

ωMF
max + ωME

max

(12)

so that the amount of damping is proportional to the strength
the musculature, the scaling factor η, and inversely proportional
to the maximum angular velocity of the musculature. We use a
value of 2.0 for η which results in damping coefficients which
range between 2.7 and 7.3 Nms/rad.

We use the open-source dynamics library Rigid Body
Dynamics Library1 (RBDL), an implementation of Featherstone’s

1https://github.com/ORB-HD/rbdl-orb

order-n dynamics methods (Featherstone, 2014), developed by
Felis (2016), to solve the forward dynamics of our model.
To simulate the MTGs, we use RBDL’s muscle model library
developed by Millard et al. (2017).

3. EVALUATION PROCEDURE

As is typical, we first evaluate each foot model in isolation by
considering how accurately each tracks the kinematics of the
ankle and CoP of a subject’s foot. Next, we pair each candidate
foot model with a musculoskeletal model and solve a tracking
OCP to determine if the experimental subject’s gait is in the
solution space of each foot model. Finally, we solve a prediction
OCP to examine how well each foot performs when it is not
guided by experimental data and is free to move.

3.1. Experimental Data
The experimental data used in this study comes from a
walking trial recorded in an experiment described in Millard
et al. (2017). Briefly, the motions and ground forces of a 35-
year old male subject (mass 81.7 kg and height of 1.72 m)
wearing light hiking shoes were recorded during level walking.
OptoTrack IRED markers clusters were used to track the 3-
dimensional (3D) movements of 14 body segments (head,
upper-torso, mid-back, pelvis, thighs, shanks, feet, upper-
arms, and lower arms) while Kistler force plates (Kistler
GmbH, Germany) were used to measure ground forces. The
recordings were conducted at Vrije Universiteit Amsterdam
according to the guidelines of the Declaration of Helsinki 2013,
approved by the ethics committee in Faculteit der Gedrags- en
Bewegingswetenschappen (Faculty of Behavioral and Movement
Sciences), and with written and informed consent from the
subject. Mass and inertia properties were computed using
Zatsiorsky’s regression equations (Zatsiorsky, 2002) while the
geometry of the human model is extracted using digitized bony
landmarks from the experimental subject.

3.2. Foot Model Fitting
As is typical in the literature, first we will fit the foot model in
isolation before proceeding to use it with the whole body model.
Since the force plates very accurately record the CoP trajectory,
we have elected to fit the foot model by precisely matching the
recorded CoP kinematics (experimental quantities are denoted
with EXP) and then measuring the error between the position and
orientation of the KA and the KEXP

A frame (Figure 2). Prior to
fitting the foot model, the data used for fitting was segmented to
only include samples in which the normal contact force was>5%
of the peak recorded ground force (928N). To fit the model foot,
it was initially posed at the same orientation as the subject’s foot
had at toe-off (at time sample n) and offset so that the contact
point of the model rP,n coincided with the recorded CoP rEXPP,n .
Next, the model foot was rolled without slipping backwards until
the foot contact point of the model matched the recorded CoP, a
process which continued until the time of heel strike was reached
(at time sample 1). We elected to pose the model in the toe-off
position and roll it backwards because this made it easier for us to
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FIGURE 2 | The error in the geometry of each foot model is fitted by posing

the foot model so that its contact point and foot orientation matches the

subject’s at toe-off. Next the foot model is rolled backwards (without slipping)

so that it’s contact point matches the subject’s recorded CoP. This process is

continued until heel strike. The geometric error of the foot model is the

weighted sum of position and orientation errors between the model’s ankle

frame and the subject’s ankle frame.

manually find a good set of initial parameters prior to beginning
the optimization.

The geometric parameters of each foot model (pE and pC) are
fitted by minimizing the cost function

min

1
∑

i=n

(f EXPP,i )TeZ

max((f EXPP )TeZ)
(wr(rA,i − rEXPA,i )2 + wα(αA,i − αEXP

A,i )2),

(13)

where the vectors rA and αA are the origin and orientation of
the ankle frame, and f EXPP,i is ith experimentally recorded ground
reaction force vector. The cost of each sample i, is weighted by
the normalized magnitude of the contact force so that the final
fit is closest when the ground forces are highest. The weights wr

and wα are set to (1/0.01)2 and (1/( 14π))
2 so that distances on

the order of 1 cm and 1
4π , which we consider to be large errors

in this context, result in an error value of 1. We did not allow all
parameters to vary but fixed the total length of the foot model to
be 30.5 cm, which is 0.5 cm longer than the light hiking shoes
worn by the subject. This extra constraint is added to prevent
the optimization routine from converging on an unrealistically
short foot. Though a shorter foot may fit the kinematics of this
test best, it causes problems when the subject’s CoP is followed in
the tracking OCP problem (described in section 3.4).

The resulting prediction problem for the ellipse-foot has only
four optimization variables (the center and orientation of the
ellipse and the radius of the minor axis) while the double-circle
foot has five parameters (the radius of both circles, the center
location of the forefoot circle, and the height of the center of
the hind-foot circle). In each case the least squares problem is
initialized using manually and then solved using a Nelder-Mead
simplex method (Nelder and Mead, 1965; Lagarias et al., 1998) to
a tolerance of 10−6 (MATLABR2018a). Each model is evaluated
based on the how closely the ankle frame of the model tracks the
subject’s ankle movements.

3.3. Walking as an Optimal Control Problem
In this work we use two different types of OCPs: a tracking
problem which tries to follow experimental data, and a
prediction problem that tries to minimize a cost function. Both
of these OCPs define walking using the same mathematical
framework, and differ only in the cost function used and
a few constraints. Here we describe how walking is defined
as optimal control problem in general before proceeding to
describe the specific differences between the tracking and
prediction OCPs.

An OCP has the objective of identifying the vector of state x(·)
trajectories, control u(·) trajectories, and constant parameters p,
that minimize the sum of the Lagrange φL and Mayer 8M terms
in the cost function across np distinct phases

min
x(·),u(·),ν

np−1
∑

j=0

(

∫ νj+1

νj

φL
j (x(t), u(t), p)dt

)

+

np−1
∑

j=0

8M
j (x(t), u(t), p)

(14)

where j iterates sequentially across the phases that begin at time
νj and terminate at time νj+1. In addition to minimizing the cost
function, the state trajectories must satisfy the state derivatives
and impact state transitions

ẋ(t) = fj(t, x(t), u(t), p), (15)

x(t+j ) = cj(x(t
−
j )), for t ∈ [νj−1, νj], (16)

j = 1, ..., np, ν0 = 0, νnp = T.

which take the form of the DAEs in Equations (1, 2), and
activation dynamics of the MTGs in Equation (10). In this
work, state transitions from foot impacts cause discrete changes
in the generalized velocities of the model but affect no
other states.

The state vector, x = (q, q̇, a), of the musculoskeletal model
has 30 states, 18 of which correspond to generalized positions and
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velocities while the additional 12 come from the vector of muscle
activations. The vector of control signals, u(·), is composed of the
twelve excitation signals that affect the activation dynamics of the
MTGs as described in Equation (10). The vector of generalized
forces has 6 non-zero elements, τ = (0, 0, 0, τ4, τ5, τ6, τ7, τ8, τ9),
corresponding to torques that the MTGs and passive damping
apply to each joint. The leading three entries in τ are zero
because there are no generalized forces acting between the inertial
frame and the pelvis. The number of kinematic constraints
applied to the model ranges between 2 and 6 depending on
the foot-model being simulated and the constraint set that
is active.

We formulate walking as a multi-phase OCP that has four
phases for the ellipse-foot (Figure 3A), and seven phases with
the double-circle foot (Figure 3B). To distinguish between the

FIGURE 3 | We model walking as a multi-phase process. The ellipse-foot

results in a four-phase definition of walking (A), while the double-circle foot

(with its separate hind and forefoot contacts) results in a 7 phase definition of

walking (B). For brevity we refer to the ellipse model with an “e”, the double

circle model with a “c”, double stance with (DS), and single-stance with (SS).

Black chevrons indicate an impact occurs. An “*” indicates that the phase is

instantaneous.

various phases and foot model we introduce a number of short
forms: ellipse-foot (e), double-circle foot (c), double-stance (DS),
single-stance (SS), and instantaneous phases are marked with an
“*.” Walking using the ellipse-foot consists of two continuous
phases and two instantaneous phases:

• 1e*. DSa occurs when the left foot touches the ground;
• 2e. DSb: is a double stance phase;
• 3e. SSa: is a continuous single-stance phase that begins when

the right foot’s ground force goes to zero;
• 4e. DSa: is identical to 1e* but with the left and right

legs mirrored.

The double-circle foot requires four continuous phases and three
instantaneous phases to describe walking:

• 1c*. DSa: occurs when the left heel circle touches the ground;
• 2c. DSb: a double-stance phase between the right forefoot and

left heel;
• 3c*. DSc: occurs when the left forefoot touches the ground;
• 4c. DSd: a double-stance phase between the right forefoot, left

heel, and left forefoot;
• 5c. SSa: a single-stance phase with left heel and forefoot on the

ground;
• 6c. SSb: a single-stance phase with the left forefoot on the

ground;
• 7c*. DSa: is identical to 1c* but with the left and right

legs mirrored.

In both cases the foot-ground impulse are stored in the
vector 1. Note that these specific phase descriptions match the
experimental subject’s gait, but there are many other possible
phase descriptions for the double-circle foot.

We use continuous constraints

0 ≤ gj(t, x(t), u(t), p) for t ∈ [νj−1, νj] (17)

on state and control bounds, as well as using phase specific
constraints. The bounds on q are set to be at least ±1m and
(for the linear coordinates) and ±1 radian (for the angular
coordinates) larger than the experimental measurements (except
in knee extension where 0.1 radian of hyper-extension is
permitted). Similarly the bounds on q̇ are set to be at least±1m/s
and ±1 rad./s larger than the experimental measurements. The
vectors a(·) and u(·) are constrained to be between zero and one.
Phases which begin with an impact include equality constraints at
the position level so that the respective foot-ground constraints
begin on the constraint manifold. During swing phases an
inequality constraint is used to ensure that the swing foot does
not touch the ground. All ground forces and impulses are
constrained act unilaterally and have tangential components that
are limited by the coefficient of friction which we assume to be
0.8. To ensure that the final solution represents periodic and
symmetric walking we apply periodicity constraints so that the
joint angles, activations, and ground forces of the right leg (left
leg) in the initial phase match the corresponding values of the
left leg (right leg) in the final phase. At the velocity level we
apply periodicity constraints to the linear and angular velocity
of the pelvis.
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3.4. Least-Squares Tracking Problem
To determine if the subject’s gait is within the solution space of
the model we form a least-squares OCP to track the subject’s data.
As previously noted, not all of the experimental measurements
are of equal accuracy: while the CoP and ground forces are very
accuracy measured by the force plates, the kinematic data is
subject to error on the order of a centimeter or two due to skin
artifact (Fuller et al., 1997). To make the best use of the data, we
have formulated a tracking (indicated by T where appropriate)
problem which has a Lagrange φL

T and Mayer 8M
T terms of

φL
T =

9
∑

i=3

(

wθ ,i(θi − θEXPi )2 + wω,i(ωi − ωEXP
i )2

)

+ wP(rP − rEXPP )2 + wF(fP − f EXPP )2 + 10−3
nu
∑

i=0

(

u2i + a2i
)

(18)

8M
T = 10−5

n1
∑

i=0

12
i (19)

where nu and n1 are the number of control signals and the
number of impulses respectively. This cost function is applied
across all phases of the problem. Note that the Lagrange term
is an integrated quantity, as such all of the experimental data
is interpolated as a function of time prior to evaluating and
numerically integrating (Equation 18).

The Lagrange term is formulated so that the angles and
angular velocities of the pelvis and leg joints (indices for θ3 − θ9
illustrated in Figure 1) are tracked along with the CoP , and
ground forces. The weighting terms on the angles wθ ,i, and
angular velocities wω,i are set to

1
π/4 and 0.1

π/4 , respectively with

the exception of the ankle joint which is set to 1
100 of these

nominal values: kinematic error that the foot introduces will be
most readily observed at the ankle. The weighting terms wP and
wF associated with the normal components are normalized with
respect to maximum recorded contact forces. In addition, we
have introduced three regularization terms: the sum of squared
control signals u2 and activations a2 in the Lagrange term, and
the sum of squared ground impulses 12 in the Mayer term.
The coefficient on the regularization terms has been chosen so
that the terms have a similar magnitude. Here we evaluate the
Lagrange term only at the shooting nodes (making this a discrete
least-squares problem).

3.5. Minimization Prediction Problem
Inspired by the experimental work of Hoyt and Taylor (1981)
and later Farley and Taylor (1991), we formulate a prediction
(indicated with a P) cost function in with a Lagrange term on
muscle activation

φL
P =

nu
∑

i=0

a2i (20)

and a Mayer term that includes foot-ground impacts

8M
P = w1

n1
∑

i=0

12
i . (21)

Here w1 is set to 10−2, a value which found in our
preliminary simulations to be sufficient to reduce the ground
force discontinuities introduced by ground impacts to levels
consistent with the experimental data. So that the physical
demands placed on the foot models are comparable to the subject
data, in addition, we introduce two constraints: that the average
forward velocity of the solution is identical to the subject’s (1.01
m/s), and that the step length of the model matches that of the
subject (0.61m). Note that this problem formulation, while useful
for our purposes, cannot be used to predict human walking in
general because we have explicitly included a desired forward
velocity and step length.

3.6. Numerical Solution Method
To solve the tracking and prediction OCPs specified we use
a direct multiple shooting method described by Bock and Pitt
(1984) and implemented in the software package MUSCOD-
II developed by Leineweber et al. (2003). In a direct approach,
the infinite-dimensional space of control functions u(·) is
discretized in time using functions which provide only local
support. Here we use piece-wise linear functions to describe
the excitation signals to the MTGs. State parameterization is
performed by the multiple shooting technique which transforms
the OCP, together with the control discretization, from an
infinite dimensional problem into a finite dimensional problem
which is then solved iteratively using a sequential-quadratic-
programming (SQP) solver that has been tailored to exploit the
structure of the problem.

We initialize the problem with a rough initial solution:
positions and velocities are initialized using a linear interpolation
of the experimental positions which are then polished to satisfy
the foot ground constraints, activations are set to 0.01, control
signals are set to 0.025. The initial solution does not satisfy the
OCP constraints and is not a feasible motion. The OCPs using
the ellipse and double circle foot models are discretized using
25 and 31 shooting nodes and control intervals, respectively.
Each shooting interval is integrated using the Runge-Kutta-
Fehlberg method with an absolute and relative tolerance of 10−8.
Note that, in contrast to direct-collocation (Von Stryk, 1993),
the dynamics of the system are simulated using a variable-
step integrator over the entire duration of the simulation. To
reduce the drift of the foot-ground constraints, we use Baumgarte
stabilization (Baumgarte, 1972) applied to the contact constraint
position and velocity errors, and to the rolling constraint
velocity errors. The OCPs are run until the Karush-Kuhn-Tucker
condition is satisfied to a tolerance of 10−5. Each problem
required between 20 and 50 min of processing time on an Intel
i7-3630QM CPU with a clock speed of 2.40 GHz.

4. RESULTS

When forced to track the recorded CoP, both the fitted ellipse-
foot and the double-circle foot produce ankle trajectories that
differ from the subject’s on the order of one centimeter, but
have maximum errors that exceed this desired limit as shown
in Table 1. Though the fitting process restricted the length of
the foot models to have a realistic length, the height of the
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TABLE 1 | The position (rA − rEXPA ) and orientation (αA − αEXPA ) errors between the

ankle frame of each respective foot model and experimental data of a subject’s

foot during the stance phase.

Ellipse Circle-circle

ε(t) µ(|ε(t)|2) ± σ (|ε(t)|2)

rA − rEXPA 1.1 ± 1.1 cm 0.7 ± 0.9 cm

αA − αEXPA 4.7◦ ± 3.1◦ 7.1◦ ± 2.8◦

ε(t) max(|ε(t)|2)

rA − rEXPA 4.4 cm 4.3 cm

αA − αEXPA 10.6◦ 18.1◦

These differences are present when each foot model is constrained to have a CoP which

is identical to that of the subject.

TABLE 2 | The parameters of each foot model which best fit the subject’s data

are listed below.

Ellipse foot

A
ArE (4.30, −8.11)

AαE 0

rX 15.25

rY 4.03

Double circle foot

A
ArH (−6.19, −6.64)

rH 4.87

A
ArF (11.97, −6.56)

rF 7.46

As noted in section 3.2, the heel segment is placed so that the length of the foot is 30.5

cm, while all other parameters are free to vary. Note that AαE is the rotation from KA to

KE. Please see Figure 1 for a graphical depiction of the remaining parameters.

foot model shapes does exceed the size of a shoe particularly
at the forefoot of the double-circle foot as shown by the
parameter value for rF shown in Table 2. The double-circle foot
offers a slightly better tracking of the subject’s ankle position
while the ellipse-foot is slightly superior in its reproduction
of the orientation of the ankle frame. The ankle trajectory
(Figures 4, 5) traced by the two different foot models show
that the highest errors occur during heel contact: it is during
this period that the rigid approximation to the foot is worst
because the heel pad and shoe are compressing. Further, the
ankle trajectory of the two models displays a characteristic
difference: the ellipse foot produces a u-shaped ankle trajectory
(marked with a “*” in Figure 4) while the double circle produces
a v-shaped trajectory due to the forefoot circle plastically
contacting the ground.

The solution of the tracking OCP shows that the ellipse-
foot is able to reproduce the orientation of the subject’s foot
(Figure 6A), and ankle angle (Figure 6D) with better accuracy
than the double-circle foot as the summary statistics show in
Table 3. Both tracking OCPs had difficulty reproducing the
subject’s knee angle (Figure 6E) between near 75% of the stance
phase, because the foot models fail to capture the shape of the

FIGURE 4 | When the ellipse-foot is constrained to track the CoP (illustrated

with the butterfly plots for reference) from the subject’s data it is able to closely

reproduce the subject’s foot movements during mid-stance and for most of

toe-off. The initial kinematics of the foot during heel contact are not

well-captured. The continuous rolling motion of the foot forces the ankle frame

through a smoothened cusp which is annotated with an “*”. Note that the dots

which appear on each line would coincide if the foot model perfectly fit the

subject’s foot movements.

FIGURE 5 | The double-circle foot is able to capture the subjects ankle

kinematics during initial heel contact better than the ellipse-foot, though it has

difficulty tracking the points between heel contact and mid-stance. During

mid-stance both the heel and forefoot contacts touch the ground which fixes

the ankle at the same location. Note that the dots which appear on each line

would coincide if the foot model perfectly fit the subject’s foot movements.

foot at the transition between mid-stance and toe-off. The hip
angle is tracked with comparable accuracy by both foot models
(Figure 6F and Table 3). Though the double-circle foot tracks
the CoP more accurately than the ellipse-foot (Figure 6B and
Table 3), the ground forces produced by the double-circle foot
exhibit oscillations that are present to a lesser degree in the
ellipse-foot (Figure 6C).

The solutions of the prediction OCP from eachmodel deviates
from the subject’s data in general as shown in Table 4, but in
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FIGURE 6 | A comparison between the tracking OCP solutions from the ellipse-foot and double-circle foot models and the subject’s data. Transitions between

phases are indicated using a circle mark, while the labels for the continuous phases (described in section 3.3) appear at the top (ellipse-foot in red) and bottom

(double-circle foot in blue) of each plot. Note that the ankle angle (D) [and thus orientation of the foot (A)] is weakly tracked because kinematic errors at this joint are

scaled to be 1
100 the value of other tracked quantities. The ellipse-foot uniformly tracks the subject’s data with a higher degree of accuracy than the double-circle foot.

Both models have difficulty tracking the subject’s knee angle at 75% stance (E), and the subject’s ground forces near 25% and 75% of stance. During heel-only

contact the double-circle foot is not able to track the subject’s CoP movements (B), but closely follows the subject’s CoP trajectory thereafter. Due to ground impacts

both models have ground forces that begin the stance phase with finite values. The double-circle foot has an additional discontinuity in both the CoP profile (B) and

ground force profile (C) when the forefoot strikes the ground. The forefoot strike completely arrests the angular velocity of the double-circle foot (see the flat line in

phases 4c and 5c in A) while the ellipse-foot continuously rotates during stance. Both solutions are able to closely follow the subject’s hip angle trajectory (F).

different ways as observed at the kinematics of the hip, knee and
ankle (Figures 7D–F). These large differences underscore how
influential the shape of the foot is on the gait of themodel because
everything else about the two problems is identical except for
the foot model. Another difference of note is observed in the
ground forces produced by the ellipse-foot model: the normal
and tangential forces exhibit a transient that is about 13 ms in
duration that departs from the recorded ground forces by 6582.7
N and 2137.0 N (marked with a “*” Figure 7C), respectively. The
nature of the transient is not numerical (the largest Baumgarte
forces are 10.6 N), nor due to an impact, but due to an interaction
between the motion of the model and the single curved foot
segment: at precisely this moment the ankle of the ellipse-foot
is at the bottom-most part of the u-shaped trajectory it traces
(marked with a “*” in Figure 4). The ellipse-foot rotates the
ankle quickly (hitting the upper bound 14.6 rad

s ) through the u-
shaped trajectory accelerating the ankle frame upwards. Since the

knee is nearly straight at this time the entire mass of the torso
is also accelerated upwards. The brief, but rapid, acceleration
of the ankle frame of the ellipse-foot results in a brief, but
large, spike in the simulated ground reaction forces. To confirm
this suspicion we re-ran the prediction OCP with but limited
the angular velocity (from 14.6 rad

s to 3.96 rad
s ) of the ankle

joint until the peak contact forces were comparable to those of
the double-circle foot (1,444 N vs. 1,219 N). Though this extra
constraint reduced the unrealistic ground forces, the constraint
itself represents a departure from reality because the subject’s

ankle rotated at a greater velocity (4.41 rad
s > 3.96 rad

s ) during
the experiment. In contrast, the plastic impact of the forefoot
circle arrests the motion of the double-circle foot effectively
preventing the force transient produced by the ellipse-foot.
Please see the accompanying Supplementary Material section
for videos, additional plots, and code for both the models and
the OCPs.
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TABLE 3 | The average and maximum errors between the subject’s stance foot

and that of the tracking solution show that the ellipse-foot results in a better

replication of the subject’s gait than the double-circle foot, particularly at the ankle.

Ellipse Circle-circle

ε(t) µ(|ε(t)|2) ± σ (|ε(t)|2)

αA − αEXPA 3.6◦ ± 2.6◦ 5.4◦ ± 2.1◦

rP − rEXPP 1.5 ± 1.6 cm 0.8 ± 1.0 cm

(fP − fEXPP )TeX 30.0 ± 17.5 N 29.2 ± 23.7 N

(fP − fEXPP )TeZ 46.8 ± 38.1 N 69.6 ± 58.9 N

θA − θEXPA 3.1◦ ± 2.1◦ 7.3◦ ± 2.1◦

θK − θEXPK 1.6◦ ± 1.7◦ 2.2◦ ± 1.8◦

θH − θEXPH 2.9◦ ± 2.5◦ 3.0◦ ± 1.5◦

ε(t) max(|ε(t)|2)

αA − αEXPA 14.6◦ 8.5◦

rP − rEXPP 4.7 cm 5.4 cm

(fP − fEXPP )TeX 74.7 N 130.2 N

(fP − fEXPP )TeZ 128.4 N 266.1 N

θA − θEXPA 13.9◦ 12.7◦

θK − θEXPK 6.4◦ 6.9◦

θH − θEXPH 7.5◦ 6.0◦

Note that the ankle angle and foot orientation are free to vary, while all other quantities

listed below are tracked.

TABLE 4 | The difference between the results of the prediction OCP of each

model’s stance leg and that of the subject show that, when free to vary, the final

gait is quite different from that of the subject.

Ellipse Circle-circle

ε(t) µ(|ε(t)|2) ± σ (|ε(t)|2)

αA − αEXPA 9.9◦ ± 5.8◦ 10.7◦ ± 7.7◦

rP − rEXPP 5.8 ± 5.0 cm 4.1 ± 2.8 cm

(fP − fEXPP )TeX 102.2 ± 212.1 N 40.2 ± 27.5 N

(fP − fEXPP )TeZ 290.1 ± 666.2 N 105.4 ± 102.9 N

θA − θEXPA 8.2◦ ± 4.3◦ 12.8◦ ± 4.2◦

θK − θEXPK 14.6◦ ± 6.3◦ 7.5◦ ± 3.7◦

θH − θEXPH 8.5◦ ± 4.1◦ 4.2◦ ± 2.4◦

ε(t) max(|ε(t)|2)

αA − αEXPA 17.0◦ 22.9◦

rP − rEXPP 16.3 cm 12.7 cm

(fP − fEXPP )TeX 2137.0 N 144.6 N

(fP − fEXPP )TeZ 6582.7 N 595.6 N

θA − θEXPA 19.4◦ 20.7◦

θK − θEXPK 21.9◦ 17.7◦

θH − θEXPH 15.0◦ 9.6◦

Although the kinematics of the stance ankle from the ellipse-foot model more closely follow

the subject than the double-circle foot, the ellipse-foot has a large force transient (see

section 4 for details) due to its mechanics. Though the ground forces created by the

double-circle foot model differ from the subject, these errors are relatively small when

compared to similar works in the literature.

5. DISCUSSION

While there are many applications for computerized gait
prediction, few applications are possible without an accurate

model of foot-ground contact. Though much attention has
been given to modeling the foot it has proven difficult to
simultaneously achieve realistic foot-ground contact kinematics
and simulated ground forces. In this work we evaluated two
rigid foot-ground contact models in terms of how well each
replicated the kinematics of the stance foot and how each affected
a tracking OCP and a prediction OCP. The multiple layers of
evaluation proved useful. Although the ellipse foot model is
better able to fit the kinematics of the stance foot in the least
squares OCP, the prediction OCP illustrates that, because this
foot model continuously rolls at a single contact point, it is
capable of producing enormous contact forces due to the curve
it forces the ankle through. This result has a larger implication:
the accuracy displayed by a foot-ground contact model during an
isolated fitting, or a trackingOCP , does not necessarily generalize
to a prediction OCP. In addition, to our knowledge, this is the
first work in the literature which solves two prediction OCPs that
are identical in every respect except for the model of foot ground
contact. The differing predictions of the ellipse-foot and double-
circle foot models confirm a long held suspicion that the model of
foot-ground contact has a large influence on the optimal motion
of the model.

The transient present in the prediction OCP of the ellipse-foot
indicates that foot models consisting of a single roll-over shape
(Ren et al., 2007; Römer, 2018; Römer et al., 2018) should be
treated with some caution. Although the transient we observed
with the ellipse-foot does not appear in the work of Ren et al.
(2007) there are a few reasons why this might be true. First,
Ren et al. (2007) did not allow the feet to move freely during
double stance, but constrained the CoP trajectory and ground
forces under each foot to follow prescribed linear function.
Constraining the movements reduces the magnitude of the
simulated ground forces as clearly shown by the tracking solution
(Figure 6C) and the prediction OCP with the constrained ankle
angular velocity. While the constrained solutions produce more
realistic results, this is an undesirable option: it is not clear what
the constraint should be ahead of time. The second reason why
Ren et al. (2007) may not have observed this transient is because
they sampled system dynamics discretely during the solution
process: the transient could have been skipped between grid
points. Due to the brief nature of the transient, if the model
is being simulated using a grid of time points (as is typical of
direct-collocation) it is important that a final high-resolution
integration be performed to ensure that the results have not been
unduly affected.

The optimal control solutions of Römer (2018) also
have ground forces which are free of transients (personal
communication, ground forces are not reported in the thesis)
likely because of differences in the problem formulation and
solution method. We have used a forward-dynamics problem
formulation which allows the optimization routine to manipulate
the generalized forces but then integrates the dynamics of
the system forward in time. Römer (2018) made use of a
hybrid-zero-dynamic (HZD) approach developed by Westervelt
et al. (2007) which uses a mixture of an inverse- and forward-
dynamic problem formulation: all of the joints of the model are
constrained to follow polynomial functions of the whole-body
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FIGURE 7 | A comparison between the prediction OCP solutions from the ellipse-foot and double-circle foot models and the subject’s data. As in Figure 6, phase

transitions are marked with a circle, continuous phase labels appear at the top (ellipse-foot in red) and bottom (double-circle foot in blue) of each plot. Though both

solutions differ from the subject’s data, both solutions also differ from each other: the shape of the foot has a large influence on the kinematics of the ankle (D), knee

(E), and hip (F) of the stance leg. In one regard the solutions of the ellipse-foot and double-circle foot are similar: in both cases the model keeps its weight on its heel

until the last moments of the stance phase (B). Note that the double-circle foot produces ground forces that are similar in magnitude to the tracking problem while the

ellipse-foot produces a large transient ground force (C) shortly after contact within the continuous phase 2e. This transient is not due to an impact, nor constraint

stabilization, but instead due to an interaction between the walking motion and the ellipse-foot model. As with the tracking solution, the angular velocity of the

double-circle foot is arrested between phases 4c and 5c by the forefoot contact while the ellipse-foot continuously rotates during stance (A). Finally note that phase

4c, while of brief duration in the tracking solution, is of zero duration in the prediction solution.

lean angle; the entire system is reduced to a single DoF which
is integrated forward in time. The force transient we observed
required a rapid change in the angular velocity of a foot, a
rapid change which cannot be described using the polynomials
employed by Römer (2018).

The inevitable discrepancies that arise between predicted
motions and typical human movement can be illustrative of
gaps between our understanding of the mechanics of the body,
and how these structures coordinated during movement. Both
models resulted in tracking OCP solutions in which the ankle
angles which differed from the subject’s at heel contact, and the
knee angle departed from the subject’s near 75% of the stance
phase. The most likely explanation for both of these problems
is that the shapes we used to represent the foot are a poor
match at heel contact and near the transition from mid-stance
to toe-off. The large increase in error between the prediction
OCP and the experimental data show some obvious directions
for improvement. In both cases, the model kept its weight close
to its hind foot (Figure 7B) before rapidly pushing-off. This

trajectory results in a large error between the simulations and the
experimental data of the orientation of the foot (Figure 7A) and
the CoP trajectory (Figure 7B). The departure in CoP trajectory
is likely due to the fact that the MTGs we used in this work have
rigid tendons which do not offer the cost savings that a elastic
tendon can when it is loaded slowly and allowed to recoil rapidly.
The rapid force oscillations present during the stance phase of
the double-circle foot prediction OCP solution, while within the
limits of the activation model, are not present in experimental
recordings of human walking (Figure 7C). We suspect that these
oscillations may be due to the fact that a Hill-model does a poor
job of capturing the stiffness and damping properties of actively
lengthened muscle (Kirsch et al., 1994). These force oscillations
would appear larger with the double-circle foot during heel and
forefoot contact because it is constrained from moving and thus
perfectly transmits the wrench applied to the ankle to the ground.
The ellipse-foot, in contrast, is always free to rotate about its
contact point and would move, attenuating the observed ground
force oscillation.
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6. CONCLUSIONS

Single segment rigid foot ground contact models are an attractive
means to model the foot but should be treated with caution:
under the right circumstances these foot models can produce
large transient forces if the ankle rapidly moves through a u-
shaped trajectory after heel contact. In contrast, we did not
observe the same transient using the two-segment rigid foot
model because the plastic impact of the forefoot arrests the
motion of the ankle through its v-shaped trajectory. Although
the two-segmented rigid foot model results in an OCP with
substantially more phases than a single segment foot, the two-
segmented foot has a benefit: it does not require special treatment
andmay be a closermechanical analog to the human foot. Finally,
though we treated the foot as a rigid object the ground forces of
the prediction OCP are relatively smooth due to the inclusion of
the impulses in the cost function. Though the inclusion of the
impulse term improved our simulation results, the experimental
work of Hoyt and Taylor (1981) and later Farley and Taylor
(1991) suggests that terms for both muscular effort and ground
contact terms should appear in cost functions used to predict
legged locomotion.
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Stroke is a leading cause of long-term disability worldwide and often impairs walking

ability. To improve recovery of walking function post-stroke, researchers have investigated

the use of treatments such as fast functional electrical stimulation (FastFES). During

FastFES treatments, individuals post-stroke walk on a treadmill at their fastest

comfortable speed while electrical stimulation is delivered to two muscles of the

paretic ankle, ideally to improve paretic leg propulsion and toe clearance. However,

muscle selection and stimulation timing are currently standardized based on clinical

intuition and a one-size-fits-all approach, which may explain in part why some patients

respond to FastFES training while others do not. This study explores how personalized

neuromusculoskeletal models could potentially be used to enable individual-specific

selection of target muscles and stimulation timing to address unique functional limitations

of individual patients post-stroke. Treadmill gait data, including EMG, surface marker

positions, and ground reactions, were collected from an individual post-stroke who was

a non-responder to FastFES treatment. The patient’s gait data were used to personalize

key aspects of a full-body neuromusculoskeletal walking model, including lower-body

joint functional axes, lower-body muscle force generating properties, deformable

foot-ground contact properties, and paretic and non-paretic leg neural control properties.

The personalized model was utilized within a direct collocation optimal control framework

to reproduce the patient’s unstimulated treadmill gait data (verification problem) and

to generate three stimulated walking predictions that sought to minimize inter-limb

propulsive force asymmetry (prediction problems). The three predictions used: (1)

Standard muscle selection (gastrocnemius and tibialis anterior) with standard stimulation

timing, (2) Standard muscle selection with optimized stimulation timing, and (3) Optimized

muscle selection (soleus and semimembranosus) with optimized stimulation timing.

Relative to unstimulated walking, the optimal control problems predicted a 41% reduction

in propulsive force asymmetry for scenario (1), a 45% reduction for scenario (2), and a

64% reduction for scenario (3), suggesting that non-standard muscle selection may be
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superior for this patient. Despite these predicted improvements, kinematic symmetry was

not noticeably improved for any of the walking predictions. These results suggest that

personalized neuromusculoskeletal models may be able to predict personalized FastFES

training prescriptions that could improve propulsive force symmetry, though inclusion of

kinematic requirements would be necessary to improve kinematic symmetry as well.

Keywords: fast treadmill training, functional electrical stimulation, neuromusculoskeletal modeling, computational

modeling, direct collocation optimal control, paretic propulsion, stroke, muscle synergies

INTRODUCTION

Approximately 15 million people experience a stroke each year
(MacKay and Mensah, 2004), with walking dysfunction being
one of the most common sequelae (Lloyd-Jones et al., 2010;
Verma et al., 2012). Stroke-related walking disability has been
associated with a host of co-morbidities including hypertension,
heart disease, diabetes, and cognitive decline (Ostwald et al.,
2006; Abellan van Kan et al., 2009; Mutikainen et al., 2011;
Ostir et al., 2013; Garcia-Pinillos et al., 2016; Rosso et al., 2017;
Savica et al., 2017) resulting in a decreased quality of life and
increased risk of death (Nor Azlin et al., 2016). While stroke
rehabilitation treatments often restore some level of walking
function (Balaban et al., 2011), they rarely restore walking
ability to a pre-stroke level (Bogey and Hornby, 2007). Stroke-
induced walking deficits primarily affect one side of the body,
resulting in a slow and asymmetric gait pattern (Verma et al.,
2012) characterized by neural control changes (Lamontagne
et al., 2007) and compensatory motion patterns. For example,
post-stroke gait is often characterized by reduced paretic leg
propulsion during stance phase (McGinley et al., 2006) and
decreased paretic leg toe clearance from the ground during swing
phase (Verma et al., 2012). These changes lead to inefficient
compensatory strategies such as increased propulsive force
generation on the non-paretic side and hip hiking to facilitate toe
clearance on the paretic side.

Fast-speed treadmill training with functional electrical
stimulation (FastFES) is a promising treatment for improving
walking ability post-stroke. However, little data currently exist
for determining the best way to customize the treatment
to individual-specific gait deficits. The rationale for FastFES
training is that fast speed walking by itself can improve gait
biomechanics in individuals post-stroke, while task-specific
electrical stimulation of selected muscles can provide feedback to
the nervous system to promote motor learning of the appropriate
timing and activation of the stimulated muscles (Kesar et al.,
2011; Awad et al., 2014, 2016). The FastFES intervention has
been shown to improve gait function and energy cost of gait
in individuals with chronic post-stroke hemiparesis (Awad
et al., 2014, 2016). This combination may help the damaged
central nervous system adapt favorably to the new post-stroke
reality. However, selection of muscles to stimulate, along with
stimulation timing and amplitude, are currently standardized
based on the normal activation profile of muscles during
gait, clinical intuition, and the subject’s tolerance to electrical
stimulation. Furthermore, during FastFES, only two muscles

are typically targeted for stimulation—tibialis anterior and
gastrocnemius—due to technical limitations. Tibialis anterior is
stimulated to improve paretic toe clearance during swing phase,
and gastrocnemius is stimulated to improve paretic propulsion at
the end of stance phase (Allen et al., 2018). Timing patterns of the
stimulation are usually constrained to simple on/off cycles based
on foot switch signals.

Though stroke affects each patient’s neural control capabilities
differently, current standardized FastFES treatment does not
account for this reality. Patient specific coordination deficits
suggest the need for patient-specific treatment prescriptions
(Allen et al., 2018). Inter-individual variability in post-stroke
sensorimotor impairments may explain why some patients
respond to standardized treatment while others do not.
Non-responders could potentially experience greater treatment
efficacy if different muscles were stimulated, or if the standard
muscles were stimulated with different timing. However, no
method currently exists for predicting a prioriwhich twomuscles
are the best targets for stimulation, and how they should be
stimulated, to achieve the maximal improvement in walking
function for any particular patient.

An emerging approach for addressing the treatment
personalization problem is personalized neuromusculoskeletal
modeling. If key parameter values in a neuromusculoskeletal
model are personalized to the unique anatomical, physiological,
and neurological characteristics of a specific patient, then the
resulting personalized model could potentially be used to predict
and even optimize an individual patient’s functional outcome for
different treatment scenarios under consideration (Fregly et al.,
2012; Meyer et al., 2016). Several modeling studies have already
analyzed or optimized various aspects of muscle electrical
stimulation, including electrode shape in epiretinal stimulation
(Cao et al., 2015), stimulation site selection for hand opening (De
Marchis et al., 2016), stimulation pulse duration and polarity for
de-enervated muscles (Pieber et al., 2015), stimulation profiles
and lower limb trajectories to improve FES- and orthosis-based
walking (Sharma et al., 2014), and stimulation timing for foot
drop correction (Azevedo Coste et al., 2014). However, no
study to date has used a personalized neuromusculoskeletal
model to design a personalized FastFES treatment tailored to the
functional limitations of a specific individual post-stroke.

This study evaluates the feasibility of designing a
personalized FastFES treatment protocol using a personalized
neuromusculoskeletal model coupled with direct collocation
optimal control. The subject studied was a non-responder to the
standard FastFES treatment protocol (Allen et al., 2018), making
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him an excellent candidate for computational exploration
of alternative muscle stimulation protocols that theoretically
could improve his treatment outcome. The treatment design
problem was framed as a direct collocation optimal control
problem that minimized propulsive force asymmetry between
the two legs while making minimal changes to the subject’s non-
stimulated neural control strategy, which was modeled using
subject-specific muscle synergies. Propulsive force symmetry
was targeted for improvement since recent studies have shown
that it is an important determinant of walking ability (Bowden
et al., 2006; Schmid et al., 2007). The computational treatment
design process involved personalizing key parameters in a
full-body neuromusculoskeletal walking model to treadmill
walking data collected from the subject, and then using the
personalized model to solve a sequence of direct collocation
optimal control problems. An initial optimal control problem
verified that the personalized model could be used to predict
the subject’s unstimulated muscle activations, joint kinematics,
and ground reactions. The remaining optimal control problems
predicted how the subject would walk when two paretic leg
muscles were stimulated in three ways: (1) Standard muscle
selection with standard stimulation timing, (2) Standard muscle
selection with optimized stimulation timing, and (3) Optimized
muscle selection with optimized stimulation timing. The
results demonstrate the feasibility of using this computational
treatment design approach for identifying new avenues of
clinical exploration.

MATERIALS AND METHODS

Experimental Data Collection
We collected treadmill gait data from an individual post-stroke
(age >70 years, ∼8 years after stroke) who was a non-responder
to the standard FastFES treatment protocol. The subject gave
written informed consent, and the study was approved by
the institutional review boards of Emory University and the
University of Florida. Collected data included full-body video
motion capture data (Vicon, Centennial, CO, USA), bilateral
force plate data from a split-belt instrumented treadmill with
belts tied (Bertec Corporation, Columbus, OH,USA), and surface
EMG data from 14 muscles per leg (Table 1; 28 total signals)
(Konigsberg Instruments, Pasadena, CA, USA). The subject had
a slow self-selected walking speed of 0.3 m/s and a visually
asymmetric gait pattern, with the paretic right leg exhibiting
stereotypical hip hiking. The same subject was participant NR1
in a recently published FastFES clinical study (Allen et al.,
2018), although the data used in the present study (which were
much more extensive) were collected more than a year after
completion of the clinical study. Notes taken during the clinical
study indicated that further investigation into the causes of non-
response and corresponding alterations to treatment design were
needed for this subject.

Experimental data were collected for several types of trials.
Static trial data were collected in which the subject stood upright
with an anatomically neutral joint alignment for several seconds
with feet pointing forward. Data from this static trial were
used for scaling an initial generic musculoskeletal model and

TABLE 1 | List of muscles present in each leg of the neuromusculoskeletal model,

including muscles with measured EMG signals (Measured), muscles whose EMG

signals were copied from neighboring muscles with similar anatomical function

(Copied), and muscles whose EMG signals were predicted using synergy signals

extracted from measured EMG signals (Predicted).

Muscle Abbreviation Measured Copied Predicted

Adductor brevis AddBrev X

Adductor longus AddLong X

Adductor magnus (Distal) AddMagDist X

Adductor magnus (Ischial) AddMagIsch X

Adductor magnus (Mid) AddMagMid X

Adductor magnus (Proximal) AddMagProx X

Gluteus maximus 1 GlutMax1 X

Gluteus maximus 2 GlutMax2 X

Gluteus maximus 3 GlutMax3 X

Gluteus medius 1 GlutMed1 X

Gluteus medius 2 GlutMed2 X

Gluteus medius 3 GlutMed3 X

Gluteus minimus 1 GlutMin1 X

Gluteus minimus 2 GlutMin2 X

Gluteus minimus 3 GlutMin3 X

Tensor fasciae latae TFL X

Semimembranosus Semimem X

Semitendinosus Semiten X

Biceps femoris long head BifemLH X

Biceps femoris short head BifemSH X

Rectus femoris RecFem X

Vastus medialis VasMed X

Vastus lateralis VasLat X

Vastus intermedius VasInt X

Gastrocnemius lateralis GasLat X

Gastrocnemius medialis GasMed X

Tibialis anterior TibAnt X

Peroneus brevis PerBrev X

Peroneus longus PerLong X

Peroneus tertius PerTert X

Soleus Sol X

Iliopsoas IP X

Tibialis posterior TibPost X

Extensor digitorum longus EDL X

Flexor digitorum longus FDL X

determining the locations of reflective surface markers on the
model (see below). Six different isolated joint motion trials were
performed to facilitate calibration of lower-body joint positions
and orientations in the body segments. One isolated joint motion
trial was performed for each hip, knee, and ankle, where each
trial exercised all functional axes for the selected joint (Reinbolt
et al., 2005, 2008). Gait trials were performed at the subject’s
fastest comfortable walking speed of 0.6 m/s without FES, which
was the speed used for the subject’s previous FastFES training.
To help maintain balance during the treadmill gait trials, the
subject rested his hands on a handlebar suspended from the
ceiling. One representative gait trial was selected for subsequent
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computational modeling and optimization efforts. The selection
process involved identifying gait cycles with clean surfacemarker,
ground reaction, and EMG data, eliminating cycles near the start
and end of the trial where transient conditions were present, and
finally determining the one gait cycle whose period was closest to
the mean.

Computational Model Personalization
We personalized a generic full-body musculoskeletal model
(Hamner et al., 2010) developed in OpenSim (Delp et al., 2007;
Seth et al., 2018) to the unique anatomical, physiological, and
neurological characteristics of the subject using the subject’s
experimental movement data. The generic model possessed 44
lower-body muscles, of which 36 were retained, and 37 degrees-
of-freedom (DOFs), including three DOF hip joints, one DOF
knee joints, and two DOF ankle joints. As a preliminary task, the
generic OpenSim model was scaled to the subject’s dimensions
using surface marker data from the static trial and OpenSim’s
Scale Model tool. Three mutually perpendicular forces and
moments were added to each hand in the model to account
for the subject’s hands resting on a handlebar. In addition, a
backpack was added to the torso of themodel to account for EMG
system hardware. Muscles controlled the hips, knees, and ankles
of themodel, while net torque actuators controlled the lower back
joint and the two shoulder, elbow, and toes joints. Activation
dynamics, Hill-type muscle models with rigid tendons (De
Groote et al., 2016), surrogate musculoskeletal geometry models,
and deformable foot-ground contact models were implemented
in Matlab (the Mathworks, Natick, MA, USA) for use within the
OpenSim skeletal model.

As described briefly below, model personalization involved a
four-step calibration process performed in Matlab with calls to
OpenSim analyses throughMatlabMex functions and OpenSim’s
C++ API. Traditional optimization problems used to calibrate
model parameter values were solved with either the “lsqnonlin”
or “fmincon” optimizer in Matlab, while direct collocation
optimal control problems used to calibrate model parameter
values and controls and to predict new gait motions were solved
with GPOPS-II optimal control software for Matlab (Patterson
and Rao, 2014) using the IPOPT optimizer (Wächter and Biegler,
2006). The four steps in the model personalization process were
similar to the ones presented in a recent study (Meyer et al.,
2016), which provides further details on the process.

Joint Model Personalization
The first step involved personalization of the model’s lower-body
functional axes using data from the isolated joint motion trials
and selected gait trial combined with repeated OpenSim “Inverse
Kinematics” analyses. Only pelvis and lower bodymarker motion
data were needed for this step.

To perform this model personalization step, we formulated
an optimization problem that sought to calibrate parameters
defining the positions and orientations of the lower body joints
(hips, knees, and ankles) in their respective body segments
as well as parameters defining the positions and orientations
of marker triads placed on the pelvis, thighs, shanks, and
feet of the model. The cost function minimized the sum of

squares of errors between experimental and model-predicted
marker positions using all motion trials together. Each function
evaluation performed an OpenSim “Inverse Kinematics” analysis
to calculate the current marker location errors. Matlab’s
“lsqnonlin” non-linear least squares algorithm was used to
perform the optimization. The calibrated joint and marker triad
positions and orientations were applied to the model and used in
a final OpenSim “Inverse Kinematics” analysis to determine joint
position, velocity, and acceleration time histories for subsequent
steps of the model personalization process.

Muscle-Tendon Model Personalization
The second step involved personalization of the model’s EMG-
driven muscle-tendon force and moment generating properties
using data from 40 gait cycles and OpenSim “Inverse Dynamics”
and “Muscle” analyses. The data needed for this step included
joint kinematics found as in the first step along with ground
reaction and EMG data. Three tasks were performed in
preparation for this model personalization step. First, EMG
data from 40 gait cycles were processed (high-pass filtered,
demeaned, rectified, and low-pass filtered) as described in
Meyer et al. (2016), resulting in envelopes of muscle excitation.
Second, an OpenSim “Inverse Dynamics” analysis was performed
to calculate the net hip, knee, and ankle joint moments to
be matched by muscle forces estimated by this step of the
model personalization process. Third, an OpenSim “Muscle”
analysis was performed repeatedly to calculate muscle-tendon
lengths and moment arms for each muscle over a wide range
of sampled combinations of lower-body joint positions. The
sampled quantities were fitted simultaneously as polynomial
functions of joint positions as described in Meyer et al. (2016),
thereby producing surrogate representations of the subject’s
musculoskeletal geometry for rapid calculation of muscle-tendon
lengths, velocities, and moment arms.

Once these preparatory tasks were completed, we formulated
an optimization problem that sought to calibrate Hill-type
muscle-tendon model parameters (scale factors for EMG
normalization, electromechanical delays, activation dynamics
time constants, activation non-linearization shape factors,
optimal muscle fiber lengths, and tendon slack lengths)
along with parameters defining the surrogate musculoskeletal
geometry. The cost function minimized the weighted sum of
squares of errors between three types of lower-body quantities:
(1) inverse dynamic and model-predicted total joint moments,
(2) published experimentally measured (Silder et al., 2007) and
model-predicted passive joint moments, and (3) initial and
current model parameter values as regularization terms (i.e.,
terms that minimized changes in parameter values away from
their initial guesses to make the optimal solution unique).
Joint moment errors were calculated for hip flexion-extension
and adduction-abduction, knee flexion-extension, and ankle
plantarflexion-dorsiflexion and inversion-eversion. Twice as
much weight was placed on hip moment errors as on knee
and ankle moment errors to produce comparable magnitude
errors at all three joints. No OpenSim analyses were needed
for function evaluations. Matlab’s “fmincon” sequential quadratic
programming algorithm was used to perform the optimization.
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The calibrated muscle activations were required for the final step
of the model personalization process.

Because fine-wire EMG data were not available for important
deep muscles (i.e., iliopsoas, tibialis posterior, extensor digitorum
longus, and flexor digitorum longus), we incorporated muscle
synergy techniques into the optimization process to estimate the
activations for the 4 muscles in each leg with missing EMG
signals (Bianco et al., 2017). Synergy analysis of the subject’s
muscle activations revealed that only 2 or 3 synergies (depending
on normalization method) were needed to achieve 95% total
VAF for each leg. However, since our muscle synergies were
not simply fitting EMG data but rather making the subject’s
personalizedmodel walk in a dynamically consistent manner that
closely matched all available experimental data, we wanted all
muscle activations in the model to be reconstructed with at least
95% VAF. Consequently, we chose to control each leg with 5
synergies, which was the number required to surpass the 95%
individual muscle VAF threshold and ensure enough flexibility
for constructing the shapes of the missing muscle activations.

Once the number of synergies was selected, we used
muscle synergy concepts to extend our EMG-driven model
personalization process (Meyer et al., 2017) to the case where 4
important muscles per leg hadmissing EMG signals. The original
personalization process was developed using a full set of EMG
signals, where every muscle in the lower body model had either
a measured EMG signal or an EMG signal that could be copied
from a neighboring muscle with similar anatomical function
(e.g., the semimembranosus EMG signal was copied from the
semitendinosus EMG signal). Thus, no EMG signals needed to
be predicted. To accommodate missing EMG signals, we added
two new steps to the personalization process immediately after
activation dynamics (Figure 1). The first new step performed
muscle synergy analysis via non-negative matrix factorization
(Lee and Seung, 1999; Tresch et al., 1999; Ting and Chvatal,
2010) on the 14 muscle activations per leg with associated
measured EMG signals. This step produced 5 time-varying
synergy activations that were assumed to apply to the 4 muscles
with missing EMG signals (Bianco et al., 2017). The second new
step performed muscle synergy reconstruction by multiplying
the 5 time-varying synergy activations extracted in the previous
step with the optimization’s current guess for the 5 synergies
× 4 unknown synergy vector weights/synergy = 20 synergy
vector weights per leg for muscles with missing EMG signals.
These synergy vector weights were new parameters added to the
optimization problem formulation. The second step yielded 4
predicted muscle activations consistent with the optimization’s
current guess for excitation scale factors, activation parameters,
and synergy vector weights for predicted muscles. The 4 muscle
activations predicted for each leg were used in the current
optimization iteration and updated in future iterations based on
the latest values of the optimization parameters.

Ground Contact Model Personalization
The third step involved personalization of the model’s foot-
ground contact properties using data from the selected gait
trial combined with repeated OpenSim “Point Kinematics” and
“Inverse Dynamics” analyses. The data needed for this step

included inverse dynamic joint moments found in the second
step along with marker motion and ground reaction data.
Compressive non-linear spring-dampers were distributed over
a rectangular grid on the bottom of each two-segment foot
model (Neptune et al., 2000). Overall grid dimensions were
defined using a foot outline generated with a marker pointer
(Jackson et al., 2016). Contact elements whose center points were
inside the foot outline were retained, while those whose center
points were outside of the foot outline were discarded. Contact
elements were split between the rear foot and toes segments
according to the segment in which they resided. The normal
force generated by each contact element was a function of the
element’s penetration and penetration rate into the floor, while
the frictional force generated by each contact element was a
function of the element’s normal force and slip velocity relative
to the floor (Meyer et al., 2016).

To perform this model personalization step, we formulated
a direct collocation optimal control problem that sought
to calibrate parameters defining the stiffness, damping, and
frictional properties of the non-linear spring-dampers on the
bottom of each foot (Table 2, Model Personalization Problem 1.1;
Meyer et al., 2016). The cost function minimized the weighted
sum of squares of errors between four types of quantities:
(1) experimental and model-predicted marker positions, (2)
experimental and model-predicted ground reaction forces and
moments, (3) lower-body inverse dynamic and model-predicted
joint moments (no muscles were used in this step), and (4)
inverse kinematic and model-predicted toe joint angles. The last
term was included since a small error in toe marker position
could produce a large change in ground reactions, making
the foot-ground contact model calibration process much more
difficult. Three mutually perpendicular forces and moments were
applied to each hand to approximate the loads applied to the
hands by the handlebar. Path constraints were used to ensure
that the full-body skeletal dynamic equations were satisfied to
within the specified tolerance of 1e-6. Each function evaluation
performedOpenSim “Point Kinematics” and “Inverse Dynamics”
analyses to calculate the current errors in ground reactions,
marker positions, and joint moments (cost function) and in
skeletal dynamics (constraints). Since skeletal dynamics were
evaluated in an inverse rather than forward sense, we added
joint jerk controls to the problem formulation to provide explicit
forward dynamic equations (e.g., joint jerk is the first time
derivative of joint acceleration, etc.) as required by GPOPS-II.
Thus, the state vector consisted of joint positions, joint velocities,
and joint accelerations.

Using the model with calibrated foot-ground contact
parameter values, we solved a subsequent direct collocation
optimal control problem to generate a dynamically consistent
walking motion that closely tracked experimental marker,
ground reaction, and inverse dynamic joint moment data
(Table 2, Model Personalization Problem 1.2). The problem
formulation was identical to the previous one except that
foot-ground contact model parameter values were fixed to their
calibrated values, minimization of joint jerk controls and the
three mutually perpendicular forces and moments applied to
each hand were added to the cost function, and bounds were
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FIGURE 1 | Flowchart showing modifications to the original EMG-driven model personalization process to accommodate muscles with missing EMG signals. Two

new steps—“Muscle synergy analysis” and “Muscle synergy reconstruction”—were added to the existing process to predict missing muscle activations whose shapes

were consistent with synergy activations extracted from muscles with measured EMG signals.
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TABLE 2 | Overview of direct collocation optimal control problem formulations for the neuromusculoskeletal model personalization and FastFES treatment optimization

process.

Cost function Constraints Controls Static

parameters

1 MODEL PERSONALIZATION

1.1 Calibrate foot-ground contact

model to reproduce experimental data

Track experimental marker, ground

reaction, joint moment, and toe angle

data

Satisfy skeletal dynamics Joint jerk; hand

loads

Foot-ground

contact model

parameters

1.2 Generate dynamically consistent

motion using calibrated foot-ground

contact model

Track experimental marker, ground

reaction, and joint moment data;

minimize joint jerk

Satisfy skeletal dynamics; bound toe angle

error; enforce ground reaction and joint

angle periodicity

Joint jerk; hand

loads

None

1.3 Calibrate synergy vectors and

activations to reproduce experimental

motion, ground reaction, and EMG data

Track experimental joint angle, ground

reactions, joint moment, and muscle

activation data; minimize joint jerk and

hand loads

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound joint angle, ground

reaction, and hand position errors; enforce

periodicity and unit magnitude synergy

vectors

Joint jerk; hand

loads; synergy

activations

Synergy vector

weights

1.4 Verify calibrated model reproduces

experimental motion and ground

reactions without tracking any

experimental quantities

Minimize joint jerk Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

None

2 TREATMENT OPTIMIZATION

2.1 Baseline—Add AP force asymmetry

minimization to verification cost function

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

None

2.2 Standard muscles/standard

timing—Add TibAnt and GasMed

stimulation with experimental timing

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position, synergy

activation, and stimulation timing errors;

enforce periodicity

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing

2.3 Standard muscles/optimal

timing—Use TibAnt and GasMed

stimulation with free timing

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing

2.4 Find optimal combination of two

stimulated muscles

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity; limit

number of stimulated muscles to two

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing for all

paretic leg

muscles

2.5 Optimal muscles/optimal

timing—Find optimal stimulation of two

identified muscles

Minimize joint jerk and AP force

asymmetry

Satisfy skeletal dynamics; match OpenSim

lower body joint moments using synergy

controls; bound hand position and synergy

activation errors; enforce periodicity

Joint jerk;

synergy

activations

Stimulation

amplitude and

timing

Model personalization required solving four separate optimal control problems, while treatment optimization involved solving five separate optimal control problems, each of which used

a full-body walking model developed in OpenSim and Matlab.

placed on allowable toe angle errors and on ground reaction and
joint angle periodicity errors. The results of this problem were
used as the starting point for the final model personalization step.

Neural Control Model Personalization
The final step involved personalization of the model’s neural
control properties using data from the selected gait trial
combined with repeated OpenSim “Point Kinematics” and
“Inverse Dynamics” analyses. The data needed for this step were
the same as for the previous step except for the addition of muscle
activations produced by the second step.

To perform this final model personalization step, we
formulated a direct collocation optimal control problem that

sought to calibrate parameters defining synergy vector weights
and controls defining synergy activations (Table 2, Model
Personalization Problem 1.3). Similar to Meyer et al. (2016), five
muscle synergies were used to construct 36 muscle activations
per leg. The cost function minimized the sum of squares of
errors between four types of quantities: (1) inverse kinematic and
model-predicted joint positions, (2) experimental and model-
predicted ground reaction forces and moments, (3) lower-body
inverse dynamic and model-predicted joint moments, and (4)
EMG-driven and synergy-constructed muscle activations. The
cost function again included regularization terms that minimized
joint jerk controls and the three mutually perpendicular forces
and torques applied to each hand. Path constraints ensured
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that the full-body skeletal dynamic equations were satisfied,
lower body joint moments calculated from inverse skeletal
dynamics matched corresponding joint moments calculated
from synergy activations, and the hands remained on the
handlebars in their experimentally measured positions. Each
function evaluation performed OpenSim “Point Kinematics” and
“Inverse Dynamics” analyses to calculate the current errors in
ground reactions and joint moments (cost function) and in
skeletal dynamics and hand positions (constraints). This final
calibration optimization yielded muscle synergy controls that
closely reproduced not only the subject’s muscle activations but
also his experimental marker motion and ground reaction data
while also producing a dynamically consistent full-body walking
motion. The results of this optimization served as the starting
point for all subsequent optimal control problems that explored
different FastFES treatment scenarios.

Complete Model Verification
To gain confidence in the complete personalized model, we
solved a verification optimal control problem to demonstrate
that we could predict the subject’s unstimulated walking motion,
joint moments, ground reactions, andmuscle activations without
tracking any of these quantities in the cost function or bounding
any of these quantities in the path constraints (Table 2, Model
Personalization Problem 1.4). The problem formulation used
path constraints to bound synergy activation changes and hand
position errors and terminal constraints to enforce motion and
ground reaction periodicity. Changes in synergy activations were
limited by path constraints rather than tracking terms in the
cost function to guarantee a solution with only small changes
in synergy activations. No changes in calibrated synergy vector
weights were permitted, and applied hand forces and torques
were defined to match those found by neural control model
personalization. Thus, the only term in the cost function was
minimization of joint jerk controls. The verification problem
predicted a walking motion that essentially represented the
results of a forward dynamic simulation using the complete
personalized model.

FastFES Treatment Optimizations
We used the subject’s personalized neuromusculoskeletal
model and direct collocation optimal control to predict the
theoretically achievable improvement in anterior-posterior
(AP) force symmetry for three FastFES treatment scenarios: (1)
Standard muscle selection with standard stimulation timing,
(2) Standard muscle selection with optimized stimulation
timing, and (3) Optimized muscle selection with optimized
stimulation timing. These three treatment scenarios built
upon a baseline treatment optimization that predicted the
theoretically achievable improvement in AP force symmetry
under unstimulated conditions so that the effects of electrical
stimulation could be isolated.

Each FastFES treatment optimization built upon a baseline
treatment optimization with no electrical stimulation (see
below) by adding simulated electrical stimulation to two
selected paretic leg muscles. For each treatment optimization,
simulated electrical stimulation was added on top of the subject’s

simulated unstimulatedmuscle activations. Electrical stimulation
waveforms were assumed to be simple step functions defined
by an on-time ton, off-time toff , and amplitude A. Since our
optimal control prediction problems used controls related to
muscle activation (i.e., the output of activation dynamics) rather
than muscle excitation (i.e., the input to activation dynamics),
we developed a closed-form equation that approximated the
amplitude and shape of the activation output produced by
activation dynamics (He et al., 1991) when given a step function
excitation input:

astim(t) =
A

2

{

tanh
(

c1
(

t − ton − toffset1
))

− tanh
(

c2
(

t − toff − toffset2
))}

+
A

2

{

1− tanh
(

c2
(

t − toff − toffset2 + tend
))}

(1)

In this equation, astim(t) is the amplitude of activation produced
by electrical stimulation at the current time t, tend is the final
time of the gait cycle, and c1, c2, toffset1, and toffset2 are adjustable
parameters. For any stimulated muscle, we used non-linear least
squares optimization to calibrate the four parameters c1, c2,
toffset1, and toffset2 to match the output of the muscle’s activation
dynamics as closely as possible given a step function input of
amplitude one. Thus, given A, ton, and toff for any muscle,
Equation (1) with calibrated parameters was used to define the
muscle’s time-varying activation from electrical stimulation. The
form of Equation (1) also allows for electrical stimulation to
extend beyond the end of the gait cycle and wrap around into
the start of the same gait cycle. The total activation of a stimulated
muscle was assumed to be the sum of its activation from electrical
stimulation and its activation from muscle synergies, where the
sum was constrained to be less than one. Furthermore, the
maximum activation from electrical stimulation was bounded to
be ≤0.7 so that total activation would never exceed one.

Baseline Treatment Optimization With No Stimulation
As a starting point for treatment optimization, we formulated
and solved a baseline optimal control problem to quantify
AP force asymmetry in the absence of electrical stimulation
but with minimization of AP force asymmetry added to the
cost function (Table 2, Treatment Optimization Problem 2.1).
The optimal control problem formulation was identical to
that of the verification problem except for the addition of
a cost function term that minimized the squared difference
in AP force impulse between the two legs. The weight on
the AP force asymmetry term was chosen to be as large
as possible without visibly affecting the predicted motion.
This problem formulation allowed AP force asymmetry to
be reduced primarily through changes in initial conditions,
which were the initial positions and velocities of the
skeletal model generalized coordinates, rather than through
changes in muscle activations. The AP force asymmetry
produced by this baseline problem served as the reference
for quantifying improvements produced by the three FastFES
treatment scenarios.
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FastFES Treatment Optimization With Standard

Muscles and Standard Timing
The first treatment scenario used standard paretic leg muscle
selection—tibialis anterior (TibAnt) and medial gastrocnemius
(GasMed)—with standard stimulation timing (Table 2,
Treatment Optimization Problem 2.2). This optimal control
problem assessed how stimulation amplitude for the standard
muscles could affect propulsive force asymmetry. The main
optimization parameters were stimulation amplitude for
both muscles. Stimulation on-time ton for both muscles was
constrained to be within ±0.05 s of the standard experimental
on-time, stimulation duration was fixed to the experimental
duration, and stimulation off-time toff was set to on-time
plus duration.

FastFES Treatment Optimization With Standard

Muscles and Optimized Timing
The second FastFES treatment scenario used standard muscle
selection with optimized stimulation timing (Table 2, Treatment
Optimization Problem 2.3). This optimal control problem
assessed how altered stimulation timing for the standard
muscles could affect propulsive force asymmetry. The problem
formulation was the same as for the first FastFES treatment
scenario except that bounds on stimulation on-time were
eliminated so that stimulation amplitude, on-time, and duration
for both muscles became the main optimization parameters.

FastFES Treatment Optimization With Optimized

Muscles and Optimized Timing
The third FastFES treatment scenario used optimized muscle
selection with optimized stimulation timing. To predict the
outcome of this treatment scenario, we followed a two-step
process: First, we predicted which two muscles to stimulate,
and second, we predicted when and how much they should
be stimulated. For the first step, we solved an optimal control
problem that identified which two paretic leg muscles should
be stimulated to achieve the maximum reduction in AP force
asymmetry (Table 2, Treatment Optimization Problem 2.4).
Muscles without EMG data were not candidates for stimulation,
since their unstimulated activations were not known with
certainty. Muscles that shared EMG data between multiple heads
used shared stimulation properties, leaving 25 muscles for the
selection process. The stimulation properties of these 25 muscles
were defined by 75 adjustable parameters that accounted for
stimulation amplitude A, on-time ton, and duration, which fixed
stimulation off-time toff . A terminal constraint was added to
force the optimization to select only two muscles. Since gradient-
based optimizations require continuous functions, a continuous
approximation to the number of stimulated muscles n was
constructed as a function of the stimulation amplitude Ai of
each muscle:

n =

25
∑

i=1

(

1− e−4Ai
)

(2)

This approximation was constrained to be less than or equal to
two plus a small tolerance to account for muscles with very low
stimulation amplitude.

For the second step, we solved another optimal control
problem that optimized stimulation amplitude and timing
for these two new muscles (Table 2, Treatment Optimization
Problem 2.5). The problem formulation was identical to that
of the second FastFES treatment scenario except that the
two stimulated muscles were changed, and thus stimulation
amplitude, on-time, and duration for both muscles were again
the main optimization parameters. This optimization was
formulated to investigate whether stimulation of two different
muscles in place of the standard ones might be a better choice
for this particular patient.

RESULTS

Neuromusculoskeletal Model
Personalization
The neuromusculoskeletal model personalization process
successfully calibrated model parameter values to closely
reproduce the subject’s marker motion, joint motion, joint
moment, ground reaction, and muscle activation data.
EMG-driven joint moments from muscle-tendon model
personalization matched inverse dynamic joint moments with
root-mean-square errors (RMSE) ranging from 2.5 to 6.4Nm
and mean absolute errors (MAE) between 2.0 and 4.7Nm
(Table 3). Ground reaction forces and moments from ground
contact model personalization reproduced experimental ground
reactions with RMS errors below 2.1N for forces and 2.9Nm for
moments (Table 4). The verification optimal control problem
using the complete personalized model produced a dynamically
consistent full-body walking motion that matched lower body
inverse kinematic joint angles to within 3.2 deg RMSE and
2.2 deg MAE, lower body inverse dynamic joint moments to
within 4.8Nm RMSE and 3.4Nm MAE, measured ground
reaction forces to within 31N RMSE and 17N MAE, and
calibrated muscle activations to within 0.05 RMSE and 0.04 MAE
(Figure 2; Table 5).

FastFES Treatment Optimization
The three FastFES treatment optimizations predicted
progressively lower AP force asymmetry relative to the baseline

TABLE 3 | Root-mean-square error (RMSE), mean absolute error (MAE),

maximum absolute error (MaxAE), and range in joint moments over the gait cycle

from muscle-tendon model personalization.

Quantity Hip

extension

(Nm)

Hip

abduction

(Nm)

Knee

extension

(Nm)

Ankle

plantarflexion

(Nm)

Ankle

eversion

(Nm)

RMSE 5.37 6.19 4.90 6.36 2.54

MAE 4.16 4.69 3.81 4.62 1.98

MaxAE 21.59 30.28 21.92 42.05 12.17

Range 98.69 86.98 69.86 151.87 31.34

Errors represent the difference between inverse dynamic joint moments calculated

by OpenSim and net joint moments calculated by the calibrated EMG-driven model.

Quantities represent averages between the two legs for 80 gait cycles (40 per leg) used

in the model personalization process.
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optimization with no muscle stimulation (Table 6) along with
visible changes in muscle activation patterns relative to baseline
(Figure 3). Stimulation of standard muscles with standard
timing decreased the difference in AP force impulse between
the two legs by 41% relative to baseline, stimulation of standard
muscles with optimal timing produced a 45% decrease relative to
baseline, and stimulation of optimal muscles with optimal timing
yielded a 64% decrease. When stimulation timing was allowed
to change for standard muscle selection, TibAnt stimulation
amplitude and timing remained relatively unchanged, while
GasMed stimulation amplitude was decreased by 66% and
stimulation duration was increased by 600% to cover a much
larger portion of stance phase with greater similarity to healthy
stimulation timing (Table 7). When the two stimulated muscles
were allowed to change, the preliminary optimization selected
soleus (Sol) and semimembranosus (Semimem) as the best two
muscles to stimulate, and the subsequent treatment optimization
predicted unique stimulation timings present only during stance
phase (Table 7).

Predicted reductions in AP force asymmetry were
accompanied by notable changes in predicted propulsive as

TABLE 4 | Root-mean-square error (RMSE), mean absolute error (MAE),

maximum absolute error (MaxAE), and range in ground reaction forces and

moments over the gait cycle from foot-ground contact model personalization.

Quantity Anterior

force (N)

Superior

force (N)

Lateral

force (N)

Anterior

moment

(Nm)

Superior

moment

(Nm)

Lateral

moment

(Nm)

RMSE 1.79 2.06 1.64 2.89 0.70 2.34

MAE 1.47 1.54 1.33 2.31 0.60 1.97

MaxAE 4.77 6.22 4.21 5.78 1.29 5.65

Range 160.47 770.68 59.54 23.73 14.91 71.73

Errors represent the difference between ground reactions measured experimentally and

ground reactions calculated by calibrated two-segment foot-ground contact models.

Quantities represent averages between the two legs for representative gait cycle.

well as braking force (Figure 4; Table 8). Experimentally,
more propulsive force (positive peak and impulse) and less
braking force (negative peak and impulse) were present on
the non-paretic (left) side than on the paretic (right) side.
Each of the three FastFES treatment optimizations decreased
propulsive force and increased braking force on the non-paretic

TABLE 5 | Root-mean-square error (RMSE), mean absolute error (MAE),

maximum absolute error (MaxAE), and range in joint angles, joint

moments, ground reaction forces, and muscle activations from the verification

optimal control problem.

General quantity Specific quantity RMSE MAE MaxAE Range

Joint angles

(deg)

Hip flexion 2.3 1.8 5.2 34.0

Hip adduction 1.4 1.1 2.8 13.6

Knee flexion 3.2 2.2 8.5 65.0

Ankle dorsiflexion 1.4 0.8 4.7 26.9

Ankle inversion 1.8 1.4 4.6 15.4

Joint moments

(Nm)

Hip extension 3.5 2.8 10.2 63.8

Hip abduction 4.8 3.4 12.9 61.5

Knee extension 1.9 1.3 7.5 41.0

Ankle plantarflexion 3.8 2.2 12.4 107.0

Ankle eversion 1.4 1.0 4.4 20.1

Ground reaction

forces (N)

Normal 30.9 16.7 119.1 782.7

Propulsive 6.7 4.4 24.9 159.6

Lateral 14.1 10.3 30.8 68.9

Muscle

activations

(unitless)

Uniarticular hip 0.023 0.015 0.121 0.749

Uniarticular knee 0.033 0.025 0.112 0.440

Uniarticular ankle 0.044 0.033 0.141 0.834

Biarticular hip-knee 0.023 0.020 0.091 0.353

Biarticular knee-ankle 0.016 0.013 0.036 0.155

Errors represent the difference between quantities measured experimentally or calculated

from experimental data and quantities predicted by the verification problem. None of the

quantities included in this table was tracked in the verification cost function. Quantities

represent averages between the two legs for the representative gait cycle.

FIGURE 2 | Animation strip comparing the subject’s experimental gait motion (translucent skeleton) with his verification gait motion (opaque skeleton). The verification

gait motion was predicted by a direct collocation optimal control problem that used the subject’s personalized neuromusculoskeletal model but did not track any

experimental quantities in the cost function. This gait motion prediction was used to gain confidence in the personalized model and optimal control problem

formulation.
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side while simultaneously increasing propulsive force and
decreasing braking force on the paretic side. The one exception
was standard muscles with optimal timing, which predicted a
decreased propulsive force peak with an increased propulsive
force impulse on the paretic side. Overall, the extent of
predicted propulsive force changes tended to increase with each
subsequent treatment optimization, though this general trend
was not strictly followed. The AP force profile was the most
similar between the two sides for optimal muscle selection with
optimal stimulation timing.

While the predicted joint angles for the four treatment
optimizations were similar to the experimental gait motion,
some differences were still evident (Figure 5, see animations in
Supplementary Material). For paretic leg hip flexion relative
to the experimental trajectory, all four optimizations predicted

TABLE 6 | Difference in anterior-posterior (AP) force impulse between the two legs

for the baseline optimization with no muscle stimulation and the three FastFES

treatment optimizations, along with percent reduction in AP force impulse

difference relative to baseline.

Treatment optimization problem AP impulse

difference (Ns)

Reduction in

difference (%)

No stimulation-baseline 19.5 —

Stimulate standard muscles with

standard timing

11.6 40.6

Stimulate standard muscles with

optimal timing

10.6 45.4

Stimulate optimal muscles with

optimal timing

7.0 64.1

a decrease over most of stance phase, an increase during the
first half of swing phase, and a decrease during the second
half of swing phase. These changes made the paretic leg hip
flexion trajectories more similar to the non-paretic leg hip flexion
trajectories. For paretic leg knee flexion, the four optimizations
predicted an increase over most of stance phase and a decrease
at the end of swing phase. The increase during stance phase
was most pronounced for the optimization that used optimal
muscle selection. The decrease at the end of swing phase
made the paretic leg knee flexion trajectories more similar to
the non-paretic leg knee flexion trajectories. Maximum paretic
leg knee flexion just after toe off increased only for the two
optimizations that used standard muscle selection, and even
then, the increases did not approach the corresponding peak
values on the non-paretic side. For paretic leg ankle dorsiflexion,

TABLE 7 | Muscle stimulation parameters found by FastFES treatment

optimizations.

Treatment optimization

problem

Stimulated

muscles

A ton (%) toff (%)

Stimulate standard muscles with

standard timing

GasMed 0.70 46 49

TibAnt 0.70 65 2

Stimulate standard muscles with

optimal timing

GasMed 0.24 34 55

TibAnt 0.70 64 6

Stimulate optimal muscles with

optimal timing

Sol 0.62 16 45

Semimem 0.70 0 7

Muscle name abbreviations are defined in Table 1. A is stimulation amplitude, ton is

stimulation on-time as percent of gait cycle, and toff is stimulation off-time as percent

of gait cycle. Off-time is less than on-time if the stimulation wrapped around the end of

the gait cycle to the start of the same gait cycle.

FIGURE 3 | Experimental and predicted activation patterns for electrically stimulated muscles. Activation patterns for standard muscle selection involving stimulation

of GasMed and TibAnt (top row) and optimal muscle selection involving stimulation of Sol and Semimem (bottom row) are presented for the paretic leg. Exp indicates

experimental curves, Base indicates curves from the baseline treatment optimization with no muscle stimulation, Std/Std indicates curves from the FastFES treatment

optimization using standard muscle selection with standard stimulation timing, Std/Opt indicates curves from the FastFES treatment optimization using standard

muscle selection with optimized stimulation timing, and Opt/Opt indicates curves from the FastFES treatment optimization using optimized muscle selection with

optimized stimulation timing.
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FIGURE 4 | Experimental and predicted ground reaction forces over the gait cycle. Normal ground reaction force (top row) and propulsive ground reaction force

(bottom row) are presented for the non-paretic leg (left column) and the paretic leg (right column). Thin vertical lines indicate locations of heel strike and toe off. Exp

indicates experimental curves, Base indicates curves from the baseline treatment optimization with no muscle stimulation, Std/Std indicates curves from the FastFES

treatment optimization using standard muscle selection with standard stimulation timing, Std/Opt indicates curves from the FastFES treatment optimization using

standard muscle selection with optimized stimulation timing, and Opt/Opt indicates curves from the FastFES treatment optimization using optimized muscle selection

with optimized stimulation timing. Note that the non-paretic leg is the left leg while the paretic leg is the right leg.

TABLE 8 | Peak and impulse of propulsive force and breaking force for the paretic and non-paretic leg for the baseline optimization with no muscle stimulation and the

three FastFES treatment optimizations, along with percent reductions relative to baseline (indicated in parentheses).

Force Treatment optimization problem Paretic leg Non-paretic leg

Peak (N) Impulse (Ns) Peak (N) Impulse (Ns)

Propulsive No stimulation—baseline 37.8 (–) 7.2 (–) 106.2 (–) 25.6 (–)

Stimulate standard muscles with standard timing 44.9 (18.6%) 9.9 (36.8%) 97.7 (−8.0%) 22.6 (−11.6%)

Stimulate standard muscles with optimal timing 34.7 (−8.3%) 9.5 (31.9%) 97.0 (−8.6%) 22.7 (−11.3%)

Stimulate optimal muscles with optimal timing 41.6 (9.9%) 10.1 (39.0%) 91.1 (−14.2%) 20.0 (−21.9%)

Braking No stimulation—baseline −113.3 (–) −22.0 (–) −81.9 (–) −20.9 (–)

Stimulate standard muscles with standard timing −107.2 (−6.1%) −21.3 (−3.3%) −83.9 (2.5%) −22.4 (7.4%)

Stimulate standard muscles with optimal timing −104.5 (−8.8%) −20.4 (−7.3%) −94.2 (15.0%) −22.9 (9.7%)

Stimulate optimal muscles with optimal timing −78.8 (−34.5%) −18.7 (−15.0%) −92.7 (13.2%) −21.7 (3.7%)

all four optimizations predicted an increase over the first
half of stance phase. For paretic leg ankle inversion, the two
optimizations that used standard muscle selection predicted
an increase over the entire gait cycle, while the optimization
that used optimal muscle selection predicted a decrease over
most of stance phase. The same optimization predicted an
increase in non-paretic leg ankle inversion over much of the
gait cycle.

Predicted lower body joint moments also exhibited notable
changes in response to the different simulated stimulation
conditions (Figure 6). For all four optimizations, the hip
extension and abduction moments were similar to experimental
trajectories, with the largest deviation being an increased paretic
leg hip abduction moment in the middle of stance phase. The

knee extension moment on the paretic side showed little change
from the experimental trajectory except for the optimization
that used optimal muscle selection, which predicted a decreased
knee extension moment at the start of stance phase and an
increased moment from the middle to the end of stance phase.
On the non-paretic side, the knee extension moment increased at
the end of stance phase for all four optimizations. The paretic
ankle plantarflexion moment exhibited the most prominent
joint moment changes, with all four optimizations predicting
an increase over stance phase relative to the experimental
trajectory. The optimization that used optimal muscle selection
predicted the largest increase, with the peak value reaching the
corresponding peak on the non-paretic side. The paretic ankle
eversion moment also exhibited prominent changes. The two
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FIGURE 5 | Experimental and predicted lower body joint angles over the gait cycle. Hip flexion (first row), hip adduction (second row), knee flexion (third row), ankle

dorsiflexion (fourth row), and ankle inversion (fifth row) are presented for the non-paretic leg (left column) and the paretic leg (right column). The legend is the same as

in Figure 2.

optimizations that used standard muscle selection predicted a
decreased ankle eversion moment over most of stance phase,
while the optimization that used optimal muscle selection
predicted an increase over the same region.

DISCUSSION

This study used a personalized neuromusculoskeletal walking
model coupled with direct collocation optimal control to
predict how FastFES treatments should be implemented to

maximize propulsive force symmetry for an individual post-
stroke who was a non-responder to the standard FastFES
training protocol. Though FastFES is a promising treatment for
post-stroke gait neurorehabilitation, methods for customizing
FastFES prescriptions to the unique needs of individual patients
have yet to be developed. Using treadmill gait data collected
from a non-responder to FastFES training, we personalized
a full-body neuromusculoskeletal model and then used it
to predict improvement in the subject’s AP force symmetry
for three FastFES treatment scenarios: (1) Standard muscle
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FIGURE 6 | Experimental and predicted lower body joint moments over the gait cycle. Hip extension moment (first row), hip abduction moment (second row), knee

extension moment (third row), ankle plantarflexion moment (fourth row), and ankle eversion moment (fifth row) are presented for the non-paretic leg (left column) and

the paretic leg (right column). The legend is the same as in Figure 2.

selection with standard stimulation timing, (2) Standard muscle
selection with optimized stimulation timing, and (3) Optimized
muscle selection with optimized stimulation timing. Overall, the
more flexibility a FastFES treatment optimization was given,
the more the subject’s predicted AP force asymmetry was
reduced. Our results suggest that for this particular subject,
(1) Stimulation of standard muscles (i.e., TibAnt and GasMed)
with standard timing should produce an acute improvement in
the subject’s propulsive force symmetry between the two legs,
(2) A comparable improvement in propulsive force symmetry

could potentially be achieved for this subject by stimulating
TibAnt with standard settings and GasMed with decreased
amplitude but increased duration, (3) A larger improvement
in the subject’s propulsive force symmetry could potentially be
achieved by stimulating Sol and Semimem in place of TibAnt
and GasMed, and (4) Large improvements in propulsive force
symmetrymay not guarantee large improvements in jointmotion
symmetry. Thus, future optimal control studies should explore
adding kinematic symmetry terms to the optimization cost
function so that improvements in both types of symmetry
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can be predicted simultaneously. The methodology developed
in this study therefore provides only a first step toward
computational design of personalized FastFES prescriptions
that are customized to the unique functional limitations of
the patient.

Since our subject was the non-responder in a recent FastFES
clinical study (Allen et al., 2018), an important question is
why our treatment optimization using standard muscle selection
with standard stimulation timing predicted a large improvement
in propulsive force symmetry. This apparent inconsistency can
be explained by considering the differences between these two
situations. During training in the laboratory with stimulation
(the situation predicted by the model), AP force symmetry is
improved due to an acute response to the electrical stimulation,
often termed an orthotic effect. This orthotic effect demonstrates
that the FES is able to augment force generation in the
ankle muscles and generate greater paretic leg propulsion
while the FES is on. In contrast, after multiple sessions of
FastFES training, when gait performance is evaluated in the
community or measured in the lab without stimulation, AP
force symmetry is determined by the therapeutic or long-
term retention effect of the treatment. The therapeutic effect
may be influenced by multiple factors including the magnitude
of favorable neuroplasticity induced through repeated training
as well as improvements in muscle strength, cardiovascular
endurance, and psychosocial factors. EMG data published in
the previous FastFES clinical study (Allen et al., 2018) indicates
that our subject exhibited statistically significant increases in
unstimulated Sol and TibAnt activity pre- to post-training.
However, increases in Sol activity were small in magnitude and
thus potentially insignificant functionally, while the increase in
TibAnt activity was in stance phase rather than swing phase as
desired. Thus, our results suggest that for this subject, the level of
acute improvement obtained due to stimulation during training
may have been larger than the level of long-term improvement
obtained due to neuroplasticity after the completion of training.
The fact that this subject improved AP force symmetry during
stimulation but did not retain the improvement afterward
when tested without stimulation explains in part why he was
classified as a non-responder to the intervention. A challenge
for the future is finding a way to predict reliably which
muscle excitations are the most amenable to long-term training-
induced neuroplasticity.

Three additional considerations may help explain this
apparent inconsistency further. First, the subject did improve
peak paretic propulsive force following FastFES training
(Allen et al., 2018), but he started with extremely low peak
propulsive force (as seen in Figure 4) and achieved only a
small improvement following training. Second, our optimal
control problems quantified improvements in propulsive force
symmetry using the integral of AP force over the gait cycle,
which accounts for not only peak propulsive force but also
peak braking force using a mathematical function that is
continuous and differentiable. In the clinical study, the change
in the subject’s peak paretic braking force was not reported,
though our optimal control predictions suggest that standard
muscle selection may not reduce peak paretic braking force

as substantially as does optimal muscle selection (Figure 4;
Table 8). Third, it is possible that the subject did not try
to minimize propulsive force asymmetry when relearning to
walk. A potentially insightful experiment would be to provide
the subject with real-time feedback of his propulsive force
asymmetry and instruct him to attempt to minimize it,
similar to recent studies performed on healthy individuals
(Schenck and Kesar, 2017) and individuals post-stroke (Genthe
et al., 2018). Such an experiment could elucidate whether the
subject’s propulsive force asymmetry is primarily due to neural
control limitations, biomechanical constraints, or a subconscious
decision to optimize other quantities (e.g., metabolic cost
Zarrugh et al., 1974; Bertram, 2005).

Our optimal control predictions suggest two alternate FastFES
protocols that could potentially benefit this subject. The
first alternate protocol would decrease GasMed’s stimulation
amplitude while prolonging its stimulation duration. This change
is consistent with GasMed being stimulated to increase late-
stance paretic propulsion, whereas TibAnt is stimulated to
prevent foot drop during swing phase (Hakansson et al., 2011;
Kesar et al., 2011). This protocol has the potential benefits
of reducing GasMed fatigue and stimulation discomfort while
also reducing the sensitivity of the resulting motion to the
selected stimulation on-time and off-time. The second alternate
protocol would replace GasMed and TibAnt stimulation with
Sol and Semimem stimulation. This protocol has never been
investigated, so it is unknown whether stimulation of these
alternate muscles would facilitate or hinder the subject’s long-
term neuroplasticity and motor learning. A potential benefit
of the Sol and Semimem stimulation protocol is that it may
produce a large decrease in braking force peak and impulse for
the paretic leg (see Figure 4; Table 8). For any FastFES protocol
change, implementation of predicted stimulation amplitudes
would be a challenge. Some method would be needed to calibrate
the relationship between model-predicted and experimentally-
applied stimulation amplitude (Kesar et al., 2008; Perumal
et al., 2008). However, if the predicted relative stimulation
amplitude between the two stimulated muscles was reliable, then
it could be possible to constrain the two stimulation amplitudes
to maintain the desired ratio. With this approach, only a
single stimulation amplitude would need to be manipulated
experimentally when exploring subject-specific stimulation
settings, realizing that the maximum achievable stimulation will
depend on the subject’s tolerance of the discomfort caused by
electrical stimulation.

It is interesting to consider whether the two muscles (Sol
and Semimem) selected by our third treatment optimization
would be logical choices based on interpretation of their
biomechanical roles. While paretic (right) propulsive force
generation was clearly inhibited in the subject’s experimental
gait pattern, braking force was also larger on the paretic side
than on the non-paretic side, likely due to poor coordination.
Thus, muscle stimulation that acts to decrease early-stance
braking and/or increase late-stance propulsion would improve
propulsion symmetry in this subject. Indeed, the optimization
that selected the best two muscles to stimulate chose one muscle
to increase propulsive force in late stance (Sol) and another

Frontiers in Neurorobotics | www.frontiersin.org 15 October 2019 | Volume 13 | Article 8093

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Sauder et al. Computational Design of FastFES Treatment

muscle to decrease braking force in early stance (Semimem),
consistent with minimization of AP force impulse asymmetry.
Several studies have reported that Sol and GasMed contribute to
forward acceleration of the trunk in mid to late stance (Neptune
et al., 2001; Liu et al., 2006) and that both contribute to propulsive
ground reaction force in late stance (Neptune et al., 2004; Allen
and Neptune, 2012). Thus, selection of Sol as a replacement
for GasMed is not surprising. Although stimulating Sol can
improve propulsive force in late-stance, stimulation of Sol during
mid-stance may actually contribute to increased braking forces
(Neptune et al., 2004). In contrast, published studies have also
reported that the hamstrings contribute to propulsive ground
reaction force in early to mid-stance (Neptune et al., 2004;
Allen and Neptune, 2012), potentially explaining the selection
of Semimem to counteract increased braking from the Sol.
However, these choices also resulted in increased knee flexion
throughout most of stance phase, which may not be desirable
from either a metabolic perspective or an aesthetic perspective.
Finally, despite elimination of TibAnt stimulation, our optimal
treatment still predicted that the paretic toe would clear the
ground, potentially through increased knee flexion at the start of
swing phase (Figure 5).

Though muscle synergy analysis is often used to quantify
control complexity and inter-muscle coupling in experimentally
measured EMG signals, our study used muscle synergy
concepts for broader control-related reasons. First, we used
a low-dimensional set of synergy activations rather than 36
independent muscle activations to control each leg since
synergy activations have been shown to generate more accurate
predictions of walking under new conditions (Meyer et al., 2016).
Second, we used synergy rather than muscle activation controls
to simplify the model’s control structure, which significantly
improves computational speed and convergence of optimal
control walking predictions (Meyer et al., 2016). Third, we used
synergy activation controls so that missing muscle activations
could be predicted as linear combinations of the synergy
activations extracted from muscle activations with associated
EMGmeasurements (Bianco et al., 2017).

While our choice of five synergies to control each leg was
based on achieving at least 95% VAF for each individual muscle
activation in both legs, this choice was informed by three
additional considerations. First, to closely match all available
experimental data (i.e., joint angles, ground reactions, and
muscle activations), more synergies are required than indicated
by synergy analysis of muscle activation data alone. Because
our walking predictions are dynamically consistent, the muscle
activations controlling the model must be of high enough fidelity
to reproduce the subject’s experimental data closely. Based on
our previous work (Meyer et al., 2016), the number of synergies
found by synergy analysis of EMG data alone may not be enough
to produce a simulated walking motion that tracks experimental
data as closely as desired. The reason is that matching joint
motion, ground reaction, and EMG data simultaneously with
muscle synergy controls is a much more constrained situation
than matching only EMG data with muscle synergy controls,
thereby necessitating a larger number of synergies than would
have been retained otherwise. Second, to predict missing muscle

activations using synergy activations extracted frommuscles with
EMG data, more synergies are required than indicated by synergy
analysis of EMG data alone (Bianco et al., 2017). As noted earlier,
95% total VAF does not guarantee a comparably high individual
muscle %VAF. To minimize the risk of poor construction of
missing activations, we chose the number of synergies so that
all measured muscle activations were reconstructed with at
least 95% VAF. Use of more than 5 synergies would likely not
improve our ability to fit measured activations or predict missing
activations, while use of fewer than 5 synergies would produce
poorer fitting of some measured activations and likely poorer
prediction of missing activations.

To evaluate theoretically whether stimulation of our two
predicted muscles (Sol and Semimem) might be more effective
for this subject than stimulation of the two standard muscles
(GasMed and TibAnt), we examined the structure of the subject’s
synergy vectors (SVs) for 2 and 3 paretic leg synergies (Figure 7).
We chose these low numbers of synergies since they achieved
95% total VAF for experimental muscle activations from both
legs and provide the simplest perspective for interpretation
purposes. For the 2-synergy solution, paretic GasMed did
not appear predominantly in either SV, while paretic TibAnt
appeared with moderate weight in the first SV. Thus, if training
does not alter the composition of the SVs, then increased
recruitment of GasMed may produce large unwarned increases
in the recruitment of other muscles. In contrast, paretic Sol
possessed the largest weight in the second SV, and paretic
Semimem possessed a moderate weight in the same SV. Thus,
if stimulating paretic Sol and Semimem during FastFES training
resulted in enhanced recruitment of the second synergy, the
activations of bothmuscles would increase together, which would
be undesirable since no overlap exists in the predicted optimal
stimulation timing for these two muscles. Not surprisingly, this
interpretation changes for the 3-synergy solution, where paretic
Sol and Semimem appear prominently in two different SVs—
the second synergy for Sol and the third synergy for Semimem.
Since the optimal stimulation timing for these two muscles
is non-overlapping, decoupling the recruitment of these two
muscles could be beneficial. Increased recruitment of the second
and third synergies would also increase recruitment of other
muscles (e.g., gluteus maximus, peroneus longus, tensor fascia
latae, and vastus medialis), which may or may not be beneficial.
In contrast, neither GasMed nor TibAnt appears prominently
in any of the three SVs, suggesting that it could be difficult
to increase the activation of these muscles without creating
undesirable activation increases in other muscles. If the number
of synergies is increased further, GasMed and TibAnt remain
weakly represented in the SVs, while Sol and Semimem become
more dominant in separate SVs, which is consistent with the
idea that the activation of these two muscles could potentially
be trained independently. Thus, analysis of the subject’s muscle
synergies at least hints at the possibility that the two new
muscles selected by the optimization may be worth considering
for stimulation.

Interestingly, the three FastFES treatment optimizations
predicted comparable values for peak paretic propulsive force
during stance phase (Figure 4) as well as peak paretic knee flexion
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FIGURE 7 | Synergy vectors for 14 paretic leg muscle activations derived from measured EMG signals for 2 (top) and 3 (bottom) synergies. Prior to synergy analysis,

measured EMG signals were processed and normalized as part of the muscle-tendon model personalization process. Muscle name abbreviations are listed in Table 1.

during swing phase (Figure 5). In both cases, these peak values
were substantially lower than the corresponding peak values
predicted for the non-paretic leg. For our subject, a low value
of peak paretic propulsive force resulted in a slow self-selected
walking speed, while a low value of peak paretic knee flexion
necessitated a compensatory hip hiking strategy to ensure that
the paretic foot cleared the ground during swing phase (Chen
et al., 2005). Since AP force asymmetry was minimized in the
cost function, these observations suggest that the personalized
model hit a “ceiling” on the increase in paretic propulsive force

achievable using electrical stimulation of only twomuscles.While
the model may have also hit a “ceiling” on the achievable increase
in paretic knee flexion, this conclusion is less clear since a knee
flexion asymmetry term was not included in the cost function.
If such a term were added, the resulting increase in paretic
knee flexion would likely be accompanied by a corresponding
decrease in paretic propulsive force. To improve peak paretic
propulsive force and peak paretic knee flexion to the desired
levels simultaneously, the optimal control problem would need
to change the subject’s paretic leg muscle synergies. A future
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optimal control study could therefore explore finding the smallest
changes to a single paretic leg synergy activation that would
bring the subject’s peak paretic propulsive force and peak paretic
knee flexion as close as possible to their desired levels. The
predicted synergy changes could then inform complementary
neurorehabilitation efforts or even electrical stimulation of the
spinal cord to recruit the identified synergy (Wenger et al., 2016).

Our study possesses several important limitations that inform
interpretation of our current results and suggest directions for
future investigation. First, only a single subject was studied. We
specifically selected a non-responder to FastFES training so as
to maximize our chances of identifying alternate stimulation
protocols that could potentially improve the subject’s walking
ability. Whether or not the same modeling approach would
work for other subjects will require further investigation.
Second, no measurements were available for the forces and
torques exerted by the handlebar on each hand, plus the
hand loads estimated during the model personalization process
were applied to the model during the treatment optimization
process. Experimental measurement of hand loads would greatly
simplify model personalization. Allowing the hand loads to vary
during treatment optimization could alter our propulsive force
predictions. Third, experimental stimulation does not target
individual muscles as directly as modeled in this study. In
practice, medial and lateral gastrocnemius are often stimulated
together by a single electrode. Even if GasMed and TibAnt
were well-targeted for electrical stimulation, some stimulation
would likely “bleed” into other plantarflexor and dorsiflexor
muscles. Modeling of this “bleeding” phenomenon would impact
our treatment predictions, though the extent to which the
predictions would be changed is unknown. Fourth, no measure
of kinematic asymmetry was included in the optimal control
cost function. When initiating this study, we expected that
improved propulsive force symmetry would naturally result
in improved joint motion symmetry. This expectation proved
to be incorrect, suggesting that some measure of kinematic
asymmetry should be included in future optimal control studies
of FastFES treatment design. However, no published study to
date has presented an optimal control problem formulation
that is capable of turning an asymmetric walking motion
into a symmetric one. Thus, development of a problem
formulation that enforces kinematic symmetry remains an
important challenge for the neuromusculoskeletal modeling
research community. Fifth, simulated electrical stimulation was
explored for only two paretic leg muscles due to current
technical limitations in the FastFES hardware and software. If
stimulation of three or even four muscles was investigated, it
is possible that substantial improvements in both propulsive
force symmetry and kinematic symmetry could be predicted.
However, stimulation of more than two muscles is not feasible
with the electrical stimulation system used in this study. Sixth,
our FastFES treatment optimizations assumed that the subject’s
neural control strategy remained largely unchanged by the
application of FES. In reality, if a subject responds to FastFES
training, one would expect his or her neural control strategy to
change over the course of treatment as favorable neuroplasticity
occurred (Allen et al., 2018). Modeling how a patient’s neural

control strategy changes over time with training would likely alter
our treatment predictions.

Another important limitation of this study was the amount
of time and effort required to perform the entire sequence of
optimizations used for model personalization and treatment
optimization. Generation of the results reported in this study
required over 2 years of effort by a single Ph.D. student. Once
the entire process was set up for a new subject performing
a new task (walking with hands on handlebars), all model
personalization optimizations could be completed in roughly
5 h of CPU time, while each treatment optimization required
between 3 and 15min of CPU time. Thus, the primary bottleneck
was not computation time but rather the time required to learn
the entire computational workflow, process the experimental
data to get them into the correct format, and identify appropriate
optimization problem formulations to get each step to work
properly the first time. In the present study, the most challenging
problem formulation issues were related to how to minimize
propulsive force asymmetry, model the hands grasping the
handlebar, and predict the best two muscles to stimulate. None
of these issues had been explored in previous optimal control
studies of human walking, and all of them required running
hundreds of optimal control problems before appropriate
problem formulations could be identified. We are continuing
to refine our model personalization and treatment optimization
workflow so that the steep learning curve currently required to
become proficient in the entire process can be eliminated as
a bottleneck.

One of the biggest limitations of this study was our
inability to evaluate experimentally our optimal FastFES
treatment prediction. Such an evaluation would have required
completion of an additional training study for this subject,
which unfortunately we were unable to perform. We hope to be
able to apply our optimal treatment prediction to this subject,
as well as explore the use of model-based optimal treatment
predictions for other subjects, as part of a future FastFES
training study.

In conclusion, this study explored the feasibility of using
subject-specific neuromusculoskeletal models combined with
direct collocation optimal control to predict novel FastFES
treatment prescriptions that may improve a specified treatment
target—in this case, inter-leg propulsive force symmetry. The
ability to tailor neurorehabilitation treatments to the unique
needs of individual patients would be an important next
step in modern healthcare. In the case of stroke, walking
deficits vary widely from patient to patient, highlighting the
need for an objective and effective treatment customization
process. In the current study, a computational approach to
FastFES treatment customization predicted that changing the
stimulation amplitude and timing of a typically stimulated
muscle, or changing which two muscles are stimulated, may
improve a specific subject’s paretic propulsion significantly.
While this computational approach is still too difficult and
time consuming to be feasible on a large scale, future
improvements in computational methodology and technology
may eventually make it possible to perform this approach
on a routine basis, potentially allowing treatment decisions
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to be based on objective predictions of a patient’s post-
treatment function.
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Musculoskeletal models enable movement scientists to examine muscle function by

computing the mechanical work done by muscles during motor tasks. To estimate

muscle work accurately requires a model that is physiologically plausible. Previous

models of the human shoulder have coupled scapula movement to humeral movement.

While coupled movement produces a stereotypical scapulohumeral rhythm, it cannot

model shrugging or independent movement of the scapula and humerus. The artificial

coupling of humeral elevation to scapular rotation permits muscles that cross the

glenohumeral joint, such as the rotator-cuff muscles and deltoids, to do implausible work

to elevate and rotate the scapula. In reality, the motion of the scapula is controlled by

thoracoscapular muscles, yet the roles of these muscles in shoulder function remains

unclear. To elucidate the roles of the thoracoscapular muscles, we developed a shoulder

model with an accurate scapulothoracic joint and includes scapular muscles to drive

its motion. We used the model to compute the work done by the thoracoscapular

muscles during shrugging and arm elevation. We found that the bulk of the work done

in upper-extremity tasks is performed by the largest muscles of the shoulder: trapezius,

deltoids, pectoralis major, and serratus-anterior. Trapezius and serratus anterior prove

to be important synergists in performing upward-rotation of the scapula. We show that

the large thoracoscapular muscles do more work than glenohumeral muscles during

arm-elevation tasks. The model, experimental data and simulation results are freely

available on SimTK.org to enable anyone to explore our results and to perform further

studies in OpenSim 4.0.

Keywords: computational shoulder model, scapula mechanics, thoracoscapular muscle work, serratus anterior,

trapezius, deltoids, rotator-cuff muscles

INTRODUCTION

Abnormal scapular movement is indicative of shoulder dysfunction, such as subacromial
impingement, rotator-cuff tears, and other injuries (Struyf et al., 2011). A symptom of shoulder
dysfunction is scapular dyskinesia (Kibler et al., 2013), including scapular winging (Martin and
Fish, 2008), in which the medial border of the scapula lifts off the thoracic surface. Before
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researchers can investigate shoulder dysfunctions, we
require biomechanical models with the degrees of freedom
and musculature attached to the scapula, which is
currently unavailable.

Models designed to understand glenohumeral injury and
rehabilitation (Garner and Pandy, 2001; Holzbaur et al., 2005;
Dickerson et al., 2007; Chadwick et al., 2009; Bolsterlee
et al., 2013; Saul et al., 2015) ignore muscle actions of the
largest thoracoscapular muscles: trapezius, rhomboids, and
serratus-anterior (Rockwood, 2009). These muscles likely play
important roles in human upper-extremity movements given
their size and force-generation capacity. While Odle et al.
(2019) included the rhomboids and serratus-anterior muscles
in their model, they maintained the scapulohumeral coupling
from the model reported by Saul et al. (2015), which does not
need thoracoscapular muscles to move. We can only assume
that coupling scapular kinematics to humeral rotation yields
the perplexing results that the rotator-cuff muscles generate
the largest forces during the recovery phase of wheel-chair
propulsion, while the larger superior trapezius, rhomboids,
anterior deltoid, and pectoralis major muscles produced virtually
no force throughout the movement (Odle et al., 2019).

The model by van der Helm (1994a), was the first to include
thoracoscapular muscles and enable realistic scapula kinematics
by including scapular contact with the thoracic surface. While
numerous models (van der Helm, 1994b; Garner and Pandy,
2001; Dickerson et al., 2007; Dubowsky et al., 2008; Odle et al.,
2019) have computed thoracoscapular muscle forces for a variety
of upper-extremity tasks, the work performed by these muscles
during these tasks was not reported.

We have developed a musculoskeletal model of the shoulder
that includes the large thoracoscapular muscles and the
kinematically uncoupled movement of the scapula so that
we may answer two fundamental questions about upper-
extremity muscle function. First, how much work is done by

FIGURE 1 | Musculoskeletal model with (A) scapula degrees-of-freedom and (B) shoulder muscles that control the scapula.

the thoracoscapular and glenohumeral muscles during shoulder
shrugging and arm-elevation tasks? Second, what motions of the
scapula are controlled by large thoracoscapular muscles such as
trapezius and serratus anterior during these shoulder tasks?

METHODS

Model of the Human Shoulder
We developed a model of the human shoulder in OpenSim
(Delp et al., 2007; Seth et al., 2018) (Figure 1) that combines a
fast and accurate skeletal model of scapulothoracic kinematics
(Seth et al., 2016) with muscle paths and architecture based
on (Klein Breteler et al., 1999). To reduce complexity and
improve computational performance of the model, muscle
bundles from van der Helm (1994a) were aggregated and
their parameters combined (Table 1). Muscle paths including
wrapping surfaces and their geometry were adjusted to
produce moment arms bounded by measurements from cadaver
experiments (Ackland et al., 2008). Continuity of muscle
moment arms were verified over the full range-of-motion of
the model.

Model scaling and inverse kinematics were performed in
OpenSim to compute model joint angles from experimental
marker data (see below). Bones and corresponding joint locations

and muscle attachment locations were scaled linearly based
on marker-based distances between the subject and the base

(generic) model. Muscle optimal fiber and tendon slack lengths
were scaled to preserve their ratio over the muscle path length

in the scaled model. The ellipsoid surface of the thorax in the
scapulothoracic joint was scaled by optimizing the ellipsoid tilt

and radii that minimized marker-tracking errors. The thorax
muscle wrapping object was initially scaled according to the
thorax scale factors, however this lead to serratus anterior
insertions on the anterior scapula to enter the wrapping surface,
which results in the wrapping path becoming undefined. The

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2019 | Volume 13 | Article 90101

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Seth et al. Muscle Work in the Human Shoulder

TABLE 1 | Thoracoscapular shoulder model muscle parameters adapted from Klein Breteler et al. (1999) with aggregated bundles from by van der Helm (1994a).

Muscle Group Max isometric

force

Optimal

fiber length

Tendon

slack length

Pennation

Angle

van der Helm

bundles

Trapezius Scapula superior 1043 0.1127 0.027 0 1–6

Scapula middle 470.4 0.0832 0.032 0 7–9

Scapula inferior 414.4 0.1264 0.035 0 10-12

Clavicle 201.6 0.1116 0.027 0 C1-C2

Serratus anterior Superior 387.8 0.0945 0.000 0 9-12

Middle 508 0.1538 0.012 0 5-8

Inferior 430 0.1587 0.000 0 1–4

Rhomboideus Superior 200.2 0.0986 0.015 0 1–2

Inferior 407.4 0.1152 0.028 0 3–4

Levator scapulae 280 0.1578 0.019 0 All

Coracobrachialis 648.2 0.0683 0.104 0 All

Deltoideus Anterior 707.7 0.0940 0.088 5 C1–C4

Middle 2597.8 0.0748 0.064 5 4–11

Posterior 1324.4 0.0949 0.076 5 1–3

Latissimus Dorsi Superior 201.6 0.2109 0.081 0 1–2

Middle 315 0.2656 0.095 0 3–4

Inferior 270.2 0.3062 0.062 0 5–6

Pectoralis Major Clavicle 408.8 0.1087 0.014 0 C1–C2

Thorax middle 683.2 0.1500 0.026 0 4–6

Thorax inferior 571.2 0.1830 0.043 0 1–3

Teres Major 851.2 0.1410 0.006 0 All

Infraspinatus Superior 967.4 0.0698 0.050 0 4–6

Inferior 1037.4 0.0677 0.084 0 1–3

Pectoralis minor 429.8 0.1183 0.032 0 All

Teres minor 695.8 0.0550 0.051 0 All

Subscapularis Superior 540.4 0.0676 0.059 5 1–3

Middle 609 0.0744 0.055 5 4–5,10

Inferior 854 0.0721 0.059 0 6–9, 11

Supraspinatus Anterior 543.2 0.0554 0.031 0 3–4

Posterior 326.2 0.0591 0.025 0 1–2

Triceps long 1580.6 0.0969 0.241 10 All

Biceps Long 485.8 0.1412 0.257 0 All

Brevis 693 0.1264 0.212 0 All

wrapping ellipsoid surface was then hand adjusted by tilting
the top of the ellipsoid toward the sternum until the path of
the serratus anterior was well-defined for the complete scapula
range of motion across all tasks. The greater freedom of the
scapula also resulted in some muscles exceeding 150% of the
optimal fiber-length and/or being too short (<50%) resulting
in their inability to produce active force during the range-of-
motion of the anticipated tasks. In these situations, the muscle
optimal fiber-length was incrementally increased (by 2%) and
tendon slack-length reduced by the same length until muscle
forces alone were sufficient to track desired task kinematics. See
Table 1 for the complete set of muscle parameters implemented
in the shoulder model.

Computed muscle control (CMC) (Thelen et al., 2003) was
used to generate muscle-driven simulations that tracked joint
angles from inverse kinematics. All simulations were performed
using OpenSim 4.0 (Seth et al., 2018) on a desktop computer

with an Intel i7 3930K 3.2GHz processor and 32GB of RAM. All
computations were evaluated running on a single CPU core.

Experimental Data Collection and
Comparison Methods
To test the shoulder model, we collected upper-extremity
kinematics using Ascension 3D trakSTAR (Ascension
Technology Corp, USA) and Motion Monitor software
(Innovative Sports Training, Chicago, Illinois) to simultaneously
and continuously track four miniaturize sensors (model 800)
at a sampling rate of 120Hz. Three sensors were fixed to the
thorax, scapula and humerus, respectively. Prior to continuous
collection, a fourth sensor was rigidly affixed to a stylus and used
to digitize the locations of bony landmarks with respect to the
corresponding sensors, while the subject was in a neutral pose.
The thorax sensor was placed on the T1 spinous process; the
scapula sensor was placed over the flat surface on the superior
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TABLE 2 | Model computation vs. real time ratio (compute/real) by task.

Task IK CMC FD

Shrug 1.3 377 11

Shrug+ 1.3 404 18

Flexion 1.2 408 13

Flexion+ 1.1 401 18

Abduction 1.0 384 17

Abduction+ 0.9 385 17

Lower values are faster. Computation times evaluated for inverse kinematics (IK),

computed muscle control (CMC) and forward dynamic (FD) simulations.

+Indicates the task with a 2 kg hand-held mass.

acromion. Both sensors were held in place with double-sided
adhesive tape wrapped with EnduraSports tape (Endura-Tape).
The arm sensor was fixed on a strap that was tightly adjusted
around the lateral aspect of the most distal part of the humerus.
The ISB shoulder protocol (Wu et al., 2005) implemented in
the MotionMonitor software was used to collect data based on
the recorded sensor and digitized landmark locations (Ludewig
et al., 2009) and identified as markers in OpenSim.

Surface electromyography (EMG) electrodes were placed
on the skin after preparation (Basmajian and de Luca, 1985)
according to Cram (2010) with an interelectrode distance of
20mm over the: superior, middle and inferior trapezius; serratus
anterior; anterior, middle, and posterior deltoids; infraspinatus;
teres major; pectoralis major (clavicular), and latissimus dorsi
muscles. A reference electrode was placed on the contralateral
acromion. We collected three trials of shoulder shrugging,
forward flexion and abduction without and with a 2 kg hand-
held weight, for a total of 18 trials from the dominant shoulder
(right) of a 26-year-old healthy female subject (height: 162 cm,
weight: 52 kg). The experimental protocol was approved by the
ethics committee of the Polytechnic Institute of Setúbal.

We processed the raw EMG by high pass filtering at 100Hz,
full-wave rectifying the resultant signal, and then low-pass
filtering at 4Hz to obtain EMG envelopes according to ISEK
(Merletti, 1999). Processed EMG envelopes were normalized by
maximum voluntary contractions obtained according to (Kendall
et al., 2005).

We compared muscle computed activations to processed
EMG waveforms by computing the mean-absolute error (MAE)
over the shoulder task interval (de Zee et al., 2007; Dubowsky
et al., 2008; Odle et al., 2019) for each muscle across all tasks.
For serratus anterior, the average activation of the three muscle
bundles in the model was used in the comparison.

To understand the contribution of individual muscles to
shoulder movement in our subject, we calculated the work done
by muscles by integrating the positive muscle power during
scapular and humeral elevation. Muscle power was computed
from the product of muscle-tendon unit force (from CMC) and
shortening velocity, where concentric contractions yield positive
power. The total positive muscle work during the elevation phase
of the tasks was compared to the external work computed as the
change in model potential energy due to elevating the arm (and
added mass) against gravity. We expected the positive muscle

work to be greater than external work due to negative work
of lengthening muscles and the acceleration of limb segments
relative to the center-of-mass.

RESULTS

We generated muscle-driven simulations for all (18)
experimental trials. Inverse kinematics accuracy for each
trial was within 1 cm RMSE with respect to experimental marker
locations and computed within 1.3 × of real-time. The average
computation to real-time ratio for all CMC muscle-driven
simulations was below 400 compute/real time. Table 2, presents
the compute to real-time ratio for simulating our model for
each task. For comparison, we obtained a 4–17 × speedup when
executing CMC with our model vs. the model by (Saul et al.,
2015) for the flexion and abduction tasks.

Muscle activations from muscle-driven simulations of the
shoulder model were compared to the EMG for the same tasks,
which yielded an average MAE of 0.06, with the vast majority
of measured muscles below 0.1 (Table 3). The Pectoralis major
muscle showed the worst agreement during the shrugging task
(without a handheld weight) where EMG was relatively silent
in the depression phase, while the model estimated low but
consistent activation throughout the movement (Figure 2B).

The simulated shoulder shrug demonstrates that the model
can elevate and rotate the scapula independent of humerus
rotations (Figure 2A). Simulated muscle activity during
shrugging indicates that levator scapulae elevates the scapula
while superior trapezius may both elevate and upward rotate the
scapula during shrugging (Figure 2B).

The MAE values for superior trapezius, deltoids and serratus
anterior muscle activations when compared to EMG during
shoulder flexion and abduction tasks (Figure 3) where 0.1 or
below (Table 2) indicative of a high quantitative correlation
(Morrow et al., 2010; Odle et al., 2019) between simulated and
subject muscle activity.

Superior trapezius, serratus anterior, and deltoids showed the
greatest muscle activity and did the most positive work during
the elevation phase of each task (Figure 4). As expected, the
total positive muscle work was consistently greater than the
external work. For example, the total positive muscle work of
61.6J exceeded the total external work (49.5J) necessary to elevate
the arm during abduction with a 2 kg handheld weight.

DISCUSSION

We have developed a musculoskeletal shoulder model that
reproduces the observed skeletal kinematics and muscle activity
during shoulder shrugging and arm-elevation tasks. The model
enabled us to compute the work done by upper-extremity
muscles that drive the scapula and the glenohumeral joint. Prior
to this study, scapulothoracic interaction was modeled either by
forces of deformation using finite elements (van derHelm, 1994a)
or by contact point constraints (Garner and Pandy, 1999) making
use of these models challenging. The inherent model stiffness
due to large (muscle and scapulothoracic contact) forces and a
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TABLE 3 | Mean absolute error between subject EMG and model muscle activations across tasks.

Task Superior

trapezius

Middle

trapezius

Inferior

trapezius

Serratus

anterior

Anterior

deltoid

Middle

deltoid

Posterior

deltoid

Infra-

spinatus

Teres

Major

Pec.Maj.

clavicle

Latissimus

dorsi

Shrug 0.09 0.01 0.01 0.05 0.01 0.01 0.01 0.05 0.01 0.06 0.02

Shrug+ 0.05 0.02 0.01 0.08 0.01 0.05 0.02 0.01 0.02 0.01 0.08

Flexion 0.05 0.04 0.03 0.05 0.04 0.06 0.02 0.02 0.05 0.04 0.08

Flexion+ 0.07 0.05 0.03 0.08 0.05 0.07 0.05 0.03 0.08 0.05 0.15

Abduction 0.10 0.07 0.05 0.05 0.09 0.08 0.06 0.04 0.02 0.01 0.04

Abduction+ 0.10 0.05 0.04 0.08 0.05 0.07 0.08 0.08 0.04 0.02 0.11

A value below 0.1 corresponds to <10% difference between two signals. Values > 0.1 are in bold. +Indicates the task with a 2kg hand-held mass.

FIGURE 2 | Muscle-driven simulation of shoulder shrugging. (A) Scapulothoracic joint kinematics and (B) simulated muscle activations (red, bold mean ± 1 SD

shaded) compared to EMG (±1 SD gray shaded).

low mass scapula body has required custom system dynamics
and contact formulations and the use of implicit integration
(Chadwick et al., 2014) that are not widely accessible to the
clinical and rehabilitation communities. Available models that
couple humeral elevation to scapular rotation (Saul et al., 2015;
Odle et al., 2019) are unable to accurately account for the
muscle work required to move the scapula and the subsequent
upper-extremity. We show that a model can capture scapular
kinematics and account for muscles that drive the scapula,
without a detriment to computational performance. In fact, the
model computes 4–17× faster than a comparable model (Saul
et al., 2015) without these capabilities while allowing researchers
to study the function of thoracoscapular muscles.

We simulated shrugging, flexion, and abduction tasks
with/out a 2 kg hand held weight using our shoulder model.
We found agreement between the simulated model and subject
measurements with marker tracking within 1 cm RMSE, and
model activation compared to subject EMG with an average
MAE below 0.1 for the most active muscles during the tasks
we examined. While we did not directly measure muscle forces

or velocities, the agreement of model kinematics and muscle
activity give us confidence that the muscle work computed by the
model is representative of the relative work done by the subject’s
shoulder muscles. One of the main benefits of complimenting
experimental measures with a computational model, is that we
can estimate quantities that are difficult to measure such as
muscle force and work.

Our first aim was to evaluate how much work is done by
the thoracoscapular and glenohumeral muscles during shoulder
shrugging and arm-elevation tasks? To address this aim, we
computed the work done by individual shoulder muscles
during the simulated shrugging, flexion and abduction tasks
(Figure 4) using the shoulder model. We found (superior)
trapezius, serratus anterior, and rhomboids (i.e., the large
thoracoscapular muscles) combined to exceed the work of the
deltoids, rotator-cuff, and teres major (i.e., the glenohumeral
muscles). While deltoids were the largest muscle contributor to
humeral elevation during flexion tasks, trapezius and serratus
anterior combined to do more work than deltoids for every task
including flexion.
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FIGURE 3 | Shoulder model muscle activations for primary muscles used to elevate the humerus during the (A) flexion and (B) abduction tasks with a 2 kg hand-held

mass. Simulated muscle activations (red, ±1 SD shaded) compared to EMG (gray shaded).

FIGURE 4 | The positive work (J) done by the top contributing shoulder muscles during the elevation phase of each task. Shaded bars are the work averaged over

three trials and thin error bars are ± SD. Top seven contributors are grouped into thoracoscapular (black) and glenohumeral (red) muscles. Excluded muscles

performed <3% of the total muscle work.

Our second aimwas to answer whatmotions of the scapula are
controlled by large thoracoscapularmuscles such as trapezius and
serratus anterior during these shoulder tasks? We addressed this
question by analyzing which thoracoscapular muscles perform
work on the scapula during shoulder tasks. Our results show
that levator scapulae elevates the scapula while trapezius and
serratus anterior upward rotate the scapula during shrugging. As
work demands increase due to a handheld weight, we found that
superior trapezius and serratus anterior work together to form a

powerful force-couple to upward-rotate the scapula during arm-
elevation tasks. These results confirm the function of superior
trapezius and serratus anterior muscles as described by anatomy
textbooks (Stranding, 2016).

The implications of these results for human rehabilitation
and neurorehabilitative robotics is significant. Examining the
functional roles of the major upper-extremity muscles is
key to understanding which muscles to assist and when to
apply assistance.
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The shoulder model provides unique opportunities to design
and test rehabilitative strategies directly in a physics and
physiologically consistent way. In the same way that simulation
was used to test ideal-assistance in human running (Uchida et al.,
2016) it can be applied to explore upper-extremity assistance
strategies that enable a weakened model to reach target locations
that minimizes device weight and power use. We can use the
model to discover principles for upper-extremity assistance that
enable patients to perform independently and effectively.

In patients with shoulder pathologies, for example due to
brachial nerve palsy, the model enables us to test hypotheses
about the causes and cures for scapula dyskinesia. There is
mounting evidence that altered scapula kinematics is indicative
of shoulder pathologies (Ludewig and Reynolds, 2009; Kibler
et al., 2013), and scapula-focused treatments improve outcomes
in patients with shoulder disorders (Struyf et al., 2013; Hotta
et al., 2018). The biomechanics underlying these improvements,
however, are poorly understood. Therefore, clinicians require
both reliable measurements and accurate models to examine how
muscles cause both healthy and pathological movements. We
have shown that the thoracoscapular muscles play a major role
in healthy upper-extremity movements.

While these results are promising, the shoulder model has its
limitations. First, we presented comparisons for tasks performed
by a single healthy subject. The inherent variability amongst
individuals and particularly patients with varying pathologies
calls for much more comprehensive testing. Second, scaling the
model and particularly thoracic muscle paths was an arduous and
time-consuming task. In some muscles, such as the rhomboids,
the range of motion of the scapula resulted in fibers either
being too short or too long to generate sufficient active force.
In these cases, we had to increase optimal fiber length and to
reduce tendon slack length for the muscles to generate force
over the full range of motion. There is considerable work to be
done to automate the scaling of the scapulothoracic joint and
associatedmuscle paths and parameters. Third, the glenohumeral
joint was modeled as a ball-and-socket joint, thereby ensuring
the stability of the joint and reducing the need for rotator-
cuff muscles. Nonetheless, rotator-cuff muscle forces required
for joint stability (Cain et al., 1987; Lippitt and Matsen, 1993)
are not expected to contribute significantly to the total muscle
work reported in this study because: i) their contribution to
reaction forces increases, but reactions do not perform work, and
ii) their elevation/abduction moment-arms are small (Yanagawa
et al., 2008). We recognize that stability of the glenohumeral joint
remains necessary to accurately estimate rotator-cuff forces and
glenohumeral reaction forces (Ameln et al., 2019).

CONCLUSIONS

Diagnosing, treating and augmenting human performance
requires deep understanding of the function of muscular
and skeletal structures that produce healthy and pathological
movements. The activity and work done by individual muscles
provides insight into the actions of muscles. Since the pioneering
model and analysis of the shoulder mechanism (van der Helm,

1994b), there has been little reported about shoulder muscle
forces and work to move the scapula and the arm. We
developed a model that includes both the musculature and
degrees-of-freedom of the human shoulder, which we combined
with experimental data to compute the work done by large
thoracoscapular muscles. We showed that of these muscles,
the trapezius and serratus anterior muscles combine to do the
majority of the work of upward rotating the scapula and elevating
the arm.

The shoulder model and simulation environment (OpenSim)
are provided freely from SimTK.org (https://simtk.org/projects/
thoracoscapular). The model runs natively in OpenSim without
third party dependencies. Clinicians, researchers and students
can probe the model for muscle and joint reaction forces from
the analysis of subject and patient motion capture data as we have
demonstrated. The capability of running the model in a purely
forward dynamics simulation also makes the model suitable to
ask “what if?” questions. For example, in the case that serratus
anterior is weakened, can external bracing prevent winging? If so,
why might bracing outcomes vary widely (e.g., Vastamäki et al.,
2015)? Or, can the model elevate the arm if serratus anterior
is incapacitated? If not, what rehabilitation strategy or assistive
device can support the role of serratus anterior to enable arm
elevation? These and other questions can now be explored with
our model.
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It is important for rehabilitation exoskeletons to move with a spatiotemporal motion

patterns that well match the upper-limb joint kinematic characteristics. However, few

efforts have been made to manipulate the motion control based on human kinematic

synergies. This work analyzed the spatiotemporal kinematic synergies of right arm

reaching movement and investigated their potential usage in upper limb assistive

exoskeleton motion planning. Ten right-handed subjects were asked to reach 10 target

button locations placed on a cardboard in front. The kinematic data of right arm

were tracked by a motion capture system. Angular velocities over time for shoulder

flexion/extension, shoulder abduction/adduction, shoulder internal/external rotation, and

elbow flexion/extension were computed. Principal component analysis (PCA) was used

to derive kinematic synergies from the reaching task for each subject. We found that

the first four synergies can explain more than 94% of the variance. Moreover, the joint

coordination patterns were dynamically regulated over time as the number of kinematic

synergy (PC) increased. The synergies with different order played different roles in

reaching movement. Our results indicated that the low-order synergies represented

the overall trend of motion patterns, while the high-order synergies described the fine

motions at specific moving phases. A 4-DoF upper limb assistive exoskeleton was

modeled in SolidWorks to simulate assistive exoskeleton movement pattern based on

kinematic synergy. An exoskeleton Denavit-Hartenberg (D-H) model was established to

estimate the exoskeleton moving pattern in reaching tasks. The results further confirmed

that kinematic synergies could be used for exoskeleton motion planning, and different

principal components contributed to the motion trajectory and end-point accuracy to

some extent. The findings of this study may provide novel but simplified strategies for

the development of rehabilitation and assistive robotic systems approximating the motion

pattern of natural upper-limb motor function.

Keywords: kinematic synergies, upper limbmovements, principal component analysis, motion planning, inter-joint

coordination

109

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00099
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00099&domain=pdf&date_stamp=2019-11-29
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.frisoli@sssup.it
mailto:w.s.hou@cqu.edu.cn
https://doi.org/10.3389/fnbot.2019.00099
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00099/full
http://loop.frontiersin.org/people/670444/overview
http://loop.frontiersin.org/people/520482/overview
http://loop.frontiersin.org/people/376050/overview
http://loop.frontiersin.org/people/854591/overview
http://loop.frontiersin.org/people/817174/overview
http://loop.frontiersin.org/people/52696/overview
http://loop.frontiersin.org/people/458111/overview


Tang et al. Kinematic Synergy for Exoskeleton Motion

INTRODUCTION

Hemiplegia, or unilateral paresis, is currently reported to be
one major cause of physical disability in the middle-aged
and elderly (Paul et al., 2002; Gert et al., 2003). Patients
often experience autonomic difficulties in daily life due to
the unilateral motor dysfunction. Recent works on upper-limb
robotic training experiments exhibited substantial improvements
on joint motions in either the horizontal plane or three-
dimensional space for the patients of motor impairment with
wearable exoskeletons (Kwakkel et al., 2008; Jarrassé et al.,
2014). Therefore, exoskeleton technology has attracted extensive
attentions for its noteworthy value of assisting multi-joint
rehabilitation movement and daily life performance (such as
reaching and grasping) (Frisoli et al., 2012). Pilot studies
suggested that spatiotemporal motion patterns that well match
the nature of upper-limb joint movement plays a key role in
the long lasting effects in rehabilitation (Liu et al., 2018). A
typical upper limb movement is fulfilled with spatiotemporal
motor coordination of multiple joints, and kinematic synergy
among limb joints have been widely explored as a control
principle for motor function (Tomita et al., 2017). However,
little is known how to effectively use kinematic synergies of
upper limbmovement in exoskeleton motion planning for motor
assistive purpose.

Numerous robotic devices for upper limb rehabilitation
have been developed with kinematic patterns mimicking actual
human arm movements with multiple degree of freedoms
(DoF). The kinematics ofmulti-joint coordination were extracted
and implemented in exoskeleton to conduct activities of
daily life (ADLs). Johnson et al. (2001) designed a 5-DoFs
motorized assistive device with a 3-DoFs cable driven shoulder
structure to enable patients with arm disorders to perform
controlled movements, strengthening exercises, and continuous
passive motion according to selective modes. Xu and Qiu
(2013) proposed an alternative design of a flexible continuum
exoskeleton apparatus to collaborate with human movements
for the shoulder joint only. Most of these devices were
programmed to certain trajectories for rehabilitation training
without full considerations of actual continuous multi-joint
movement modes, and may obstruct smooth performance of
consecutive upper limb movements (Ding et al., 2014). To
overcome the kinematic redundancy in reaching movements,
Li et al. introduced an exponential method of human motor
control strategy, which demonstrated accuracy improvements for
real-time motion control of designed upper limb exoskeleton
(Li et al., 2015). However, the regulation strategies in central
nervous system (CNS) for multi-joint coordination in upper
limb tasks were correlated to complex movement patterns
(Scano et al., 2017). A simulated framework based on muscular
and postural synergy indicated that a robotic arm with multi-
DoF could generate arbitrary trajectories similar to human
natural movements for the end-effector (Liu and Xiong, 2013),
but also increased redundancy that deteriorated the motion
control. Several studies attempted to simplify the motor control
of assistive device for upper limb actuating planar or three-
dimensional motion performance, such as the impedance control

(Hogan et al., 1992) and mirror-image movement enabler
technique (Lum et al., 2004).

The temporal and spatial inter-limb coordination plays a key
role in upper limb rehabilitation. The surface electromyography
(sEMG) signal was frequently employed to control multi-DoF
mechanical arm (Hang et al., 2014), however, the sEMG signal
did not directly reflect those complex temporal multi-joint
coordination across limbs (Merad et al., 2018). Alternative
motion kinematics model has also derived via fitting a high-order
polynomials based on sEMG analysis to estimate the multi-joint
angles of upper limb movements (Ding et al., 2014). However,
sEMG-based muscle activities were generally represented in high
dimensional feature space. It was difficult to meet the robustness
requirement of complicatedmulti-DOF armmotions (Ding et al.,
2016). Other strategies have also been developed to optimize the
near-natural trajectories of assistive equipment. For example, a
mathematical model based on a criterion function to characterize
planar two-joint arm movements was formulated by Flash and
Hogan, and the predicted trajectories matched experimental
observations of real human performance well in a horizontal
plane (Flash and Hogan, 1987). Nevertheless, how to temporally
represent motion patterns of the multi-joint coordination similar
to actual trajectory of human arm movements still left an
open question.

Kinematic synergy based on classical neuromechanic theories
(Bernstein, 1967) is another important concept in motor
coordination. Existing evidence suggests that the CNS generates
motor command to co-activate multiple muscles working with
specific extents, which was generally referred to as “synergy”
(Turvey, 2007; Mukta et al., 2015). During motion behaviors, the
neural control strategies were modulated to regulate synergistic
patterns dynamically to meet the task requirements (Burns et al.,
2017). Several pilot studies have employed kinematic synergies
to evaluate the inter-joint movement patterns of different human
motor approaches (Tresch et al., 2006; Chen and Xiong, 2013).
Artificial neural network (Devi et al., 2013), linear discriminant
analysis (LDA) (Ramana Vinjamuri et al., 2015), and several
other algorithms have been introduced to derive synergies;
however, principal component analysis (PCA) is most frequently
employed for kinematic synergies analysis (Ramana et al., 2010;
Chen and Xiong, 2013; Patel et al., 2016; Burns et al., 2017).
Burns et al. (2017) successfully used PCA method to derive
time-varying kinematic synergies of bilateral upper arm reaching
movement. Bockemühl et al. (2010) analyzed the kinematics
complexity of human catching movement, and found that the
first three principal components captured more than 97% of
variance. Further study confirmed that human upper limb
trajectories can be reconstructed by a linear combination of few
principal time-dependent functions (Averta et al., 2017). Also,
researchers employed synergy analysis as inputs to control the
rehabilitationmechanical system, such as upper limb exoskeleton
rehabilitation robot (Liu and Xiong, 2013) or dexterous hand
for grasping movements (Catalano et al., 2014). However, few
efforts have been made to manipulate the motion control
based on human kinematic synergies. This work analyzed
the spatiotemporal kinematic synergies of right arm reaching
movement and investigated their potential usage in upper limb
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FIGURE 1 | Block diagram of this work.

FIGURE 2 | (A) Subject interacting with the Perception Neuron device (incorporated with IMU), sitting at the desk while wearing the wearable system and performing

tasks. (B) The cardboard used in the experiment: the red dotted circles represent the 10 positions where the targets can be placed (named from “a” to “j”).

(C) Kinematic model with specific locations of the Perception Neuron sensors. The green circle indicates the sensor (IMU) in the corresponding position has

been activated.

assistive exoskeleton motion planning (see Figure 1). Therefore,
we employed PCA algorithm to analyze the spatiotemporal
kinematic synergistic pattern of the shoulder and elbow joint in
reaching activities and simulated the motion planning for upper
limb assistive exoskeleton with kinematic synergies.

SUBJECTS AND METHODS

This study was conducted at the Perceptual Robotics Laboratory
(Pisa, Italy). Ten healthy subjects (eight males and two females,
with the age of 26 ± 2) participated in the study after informed
consent was obtained. All subjects were right handed and
confirmed free of any arm neuromuscular disorder or previous
joint injury. The experimental procedures were conducted in

accordance with the Declaration of Helsinki and approved by the
Ethical Review Board of Scuola Superiore Sant’Anna.

Data Acquisition
An IMU-based motion capture system (Perception Neuron,
Noitom Technology Ltd., Beijing, China) was used to record
motion data of the subjects’ upper limb during tasks. Four IMU
sensors were placed on the subjects, as shown in Figure 2C

(P1–P4): left shoulder, right shoulder, right elbow, right wrist.
Then, the spatial position of shoulder, elbow, wrist, and their
trajectory of upper limb motion could be recorded during test.
Referred as an experimental report (Burns et al., 2017), frame
calibrations were performed before the data acquisition as: (1)
positive x extended backward away from the subject; (2) positive
y extended to the right side of subject, and (3) positive z
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extended upwards toward the ceiling. The axis x, y, and z were
illustrated in Figure 2A. Therefore, the data collected by this
motion capture system can scale the right arm motion pattern
with respect to subject’s torso. The sampling frequency is 120
samples per second.

Experimental Procedure
The participants were asked to reach the target button placed on
a cardboard in front of them. Three buttons (yellow, blue, and
green) were designed as targets and a white button was assigned
as the start point. A LED (light-emitting diode) was embedded in
white button to cue a reaching task beginning, whereas a LED
was embedded in yellow, blue or green button to show which
target should be reached in a trial. Five linear tracks in different
directions were defined by the angles from the central track
(Figures 2B,C) as: −60, −45, 0, 45, and 60◦. The central track
(i.e., 0◦) was directly in front of the subject. The target buttons
were placed on the selected 3 tracks. We assigned the yellow
button to one of the contralateral two tracks (−60 or −45◦),
blue button to the central track (0◦), and green button to one of
the ipsilateral two tracks (45 or 60◦). On each track, 6 different
locations with 5 cm interval were designed for the placement of
target buttons, however, only 2 locations were used (the second
and the fifth scales) in the experiments. Therefore, a total of 10
possible target locations, named in alphabetical order as “a” to “j,”
were involved (Figure 2B). The distance between the start and
the target position was designed as about 80% of the maximum
distance that the participant can reach.

The reaching task trial was conducted as: (1) pressing the
start button (white); (2) pressing a button located at ipsilateral
(green), central (blue) or contralateral (yellow) as the reaching
task required; (3) returning to the start position (white). An
acoustic trigger was used as the start cue for participants to reach
and press the target button. Each target was pressed six times,
but the target order was randomly assigned. The instructions
for reaching movements were given with a randomized interval
between 1 and 3 s. Each of these ten Participants were required to
avoid any redundant movement during the whole procedure of
task performance. A more detailed experimental procedure was
described in a previous report (Tang et al., 2018).

Kinematics Measurement of Right Upper

Limb
During our reaching task, the upper limb and joints performed
spatial motions, which could be projected to the calibrated
frame of axes. Then, the motion pattern of limb and joint can
be evaluated through calculating the angular course at each
time point. As illustrated in Figure 2C, the kinematics chain
of arm was modeled with four segments passing through the
five aforementioned joints to evaluate the following angles:
shoulder flexion/extension (SFE), shoulder abduction/adduction
(SAA), shoulder internal/external rotation (SIR), and elbow
flexion/extension (EFE). The kinematics is defined by the
following vectors:

pi =
[

xi, yi, zi
]

(1)

s12 = p1 − p2 (2)

s32 = p3 − p2 (3)

s43 = p4 − p3 (4)

where sn is a normal vector to the sagittal plane, and pi(xi, yi, zi) is
the spatial coordinates of each joint. The angle of SFE, SAA, SIR,
and EFE are then calculated as θsf , θsa, θsi, and θef , respectively.
sijx = 0 denotes the x coordinate in vector sij set to 0.

θsf = cos−1 s32 · sn

‖ s32 ‖‖ sn ‖
, s32z = 0 (5)

θsa = cos−1 s32 · sn

‖ s32 ‖‖ sn ‖
, s32x = 0 (6)

θsi = cos−1 s12 · s32

‖ s12 ‖‖ s32 ‖
, s12y = 0, s32y = 0 (7)

θef = cos−1 s42 · s23

‖ s43 ‖‖ s23 ‖
(8)

Synergy Derivation
The time-markers of action performance (button
pressed/released and LED on/off states) were recorded through
a Simulink model in MATLAB (the Mathworks, Natich, MA,
USA). A complete recording set was segmented between the
release and re-press of the white start button (Figure 3). The
PT.F (forward-performance time) was used to segment the
angular data of forward movement of reaching task trial by trial.

After data segmentation, the angular velocities were calculated
by the derivative of the temporal joint angle profiles. For further
processing, the angular velocity data of a reaching trial was
resampled to 150 samples for each DOF. Then, the ith sample
of a trial was used to construct a 6× 4 sub-matrix as following:

W (i) =











ω1
1 (i)

ω2
1 (i)
...

ω6
1 (i)

ω1
2 (i)

ω2
2 (i)
...

ω6
2 (i)

ω1
3 (i)

ω2
3 (i)
...

ω6
3 (i)

ω1
4 (i)

ω2
4 (i)
...

ω6
4 (i)











(i = 1, 2, 3, · · · , 150)

(9)

Where the subscript (row variable) and superscript (column
variable) represent the joint DOFs and task repetitions,
respectively. Then, a 6 × 600 matrix W composed of all 150
sub-matrixes was constructed to represent the six repetitions of
a target reaching task to each subject.

W =
[

W(1) W(2) . . . W(150)
]

(10)

Thus, W was 6-by-600 matrix, which was then given as input
to the PCA algorithm to extract spatiotemporal synergies. Then,
singular value decomposition (SVD) algorithm was performed
on angular velocity matrix W to derive kinematic synergies.
Three-component matrices U, 6, and S were computed fromW,
as shown in:

W = U6S (11)

U and S are orthogonal matrices, and 6 is a diagonal matrix.
In this case, U is a 6-by-6 matrix, which has orthonormal
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FIGURE 3 | Data segmentation process. “PT” for performance time, “F” and “B” for forward and backward, respectively. When the start button or target button was

pressed, the LED was turned off.

columns and S is a 600-by-600 matrix with orthogonal rows. The
diagonal matrix 6 is of 6-by-600 and the diagonal elements of 6
correspond to the singular values (λi) ofW.

6 =

















λ1 0 0 0 0 0 0 · · · 0
0 λ2 0 0 0 0 0 · · · 0
0 0 λ3 0 0 0 0 · · · 0
0 0 0 λ4 0 0 0 · · · 0
0 0 0 0 λ5 0 0 · · · 0
0 0 0 0 0 λ6 0 · · · 0

















(12)

Smatrix is defined as in equation below:

S =



















s11(1) · · · s14(1) · · ·
... ...

sm1 (1) · · · sm4 (1) · · ·

s11(tmax) · · · s14(tmax)
...

...
sm1 (tmax) · · · sm4 (tmax)

... ...

sM1 (1) · · · sM4 (1) · · ·

...
...

sM1 (tmax) · · · sM4 (tmax)



















(13)

The firstm rows of S are called the firstm principal components,
or “synergies” andM was the maximal number of synergies. The
approximationmatrix W̃can be composed by the firstm columns
of U, m-by-m of 6 (the other values are replaced by zeros), and
m rows of matrix S. The productUmdiag{λ1, λ2, · · · , λm} is called
the weight matrix.

W̃ = Umdiag{λ1, λ2, · · · , λm}Sm (14)

The fraction of sum-squared variance can be calculated from the
diagonal elements of 6 and this index was denoted as K.

K =
λ21 + λ22 + · · · + λ2

k

λ21 + λ22 + · · · + λ2M

(k = 1, 2, 3, · · · , M) (15)

K was used to determine how many principal components were
sufficient to represent the whole data. The index threshold of 94%
variance was used to determine the best number of synergies.

The angular velocity signal was reconstructed by selecting
different numbers of synergies. The reconstruction error e
between measured ωj(t) and reconstructed ω̃j(t) across joints
(J = 4) was computed for each reaching movement. One-
way analysis of variance (ANOVA) was performed based on
normalized reconstruction error according to different number
of recruited synergies.

e =

∑J
j=1

∑t
0 (ωj(t)− ω̃

j
(t))2

∑J
j=1

∑t
0 ωj(t)

2
(16)

Motion Planning for Upper Limb Assistive

Exoskeleton
To evaluate the impact of kinematic synergy on arm motion
control, an upper limb rehabilitation exoskeleton model was
built in SolidWorks (Dassault Systemes, Massachusetts, USA).
The simulated exoskeleton was used to guide the joints of right
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FIGURE 4 | The assistive exoskeleton model and its coordinate system. (A) Assistive exoskeleton model for right upper limb assistive exoskeleton model; (B) the

coordinate system of assistive exoskeleton for Denavit-Hartenberg (D-H) model. The red circle dot in left panel was the endpoint position in D-H model during

reaching movement (the end point of bracket 5).

TABLE 1 | Description of motors used in model.

Degree of freedoms (DoF) The range of motion (ROM) Driven motor Rotation mode Cooperate with brackets

SIR 0–105◦ I Rotating in transverse plane Rotate horizontally around the bracket 1

SAA 0–90◦ II Rotating in coronal plane Rotate and slide of bracket 2 on the chute 3

SFE 0–100◦ III Rotating in sagittal plane Control bracket 4 rotating around bracket 2

EFE 0–135◦ IV Rotating around bracket 4 Control bracket 5 rotating around bracket 4

SIR was the arm rotating in transverse plane, and the upper arm moving to right side of sagittal plane was set as positive; SAA was the arm rotating in coronal plane, and the upper

arm moving outward was set as positive; SFE was the arm rotating in sagittal plane, and the upper arm moving forward was set as positive.

arm moving in 3-DoFs rotation for shoulder joint and 1-DoF
flexion/extension for elbow joint. As illustrated in Figure 4, the
exoskeleton was driven by four stepping motors within the
controlled range of motion (ROM). The ROMs of EFE, SFE,
SAA, and SIR joint for reaching movements were set as 0–135,
0–100, 0–90, and 0–105◦, respectively. Motor I was assigned to
drive the device rotating horizontally to achieve internal/external
rotations of the shoulder joint. Motor II could enable the rotation
and slide of bracket 2 on the chute 3 to perform the shoulder
abduction/adduction. Motor III was used to control arm bracket
4 rotating around the bracket 2 to execute the flexion/extension.
Motor IV rotated the forearm bracket 5 around the upper-arm
bracket 4 to perform flexion/extension of the elbow joint. The
description of motors in this model were detailed in Table 1.

In order to evaluate the effect of kinematic synergy on arm
movement control, an exoskeleton Denavit-Hartenberg (D-H)
model was established. This model consisted of five coordinate
systems (see Figure 4B). The base coordinate system {0} was set
at the shoulder joint center, whereas the coordinate system {1},
{2}, {3}, and {4} were specified with SIR, SAA, SFE, and EFE,
respectively. In the Denavit-Hartenberg (D-H)model, the origins

TABLE 2 | Denavit-Hartenberg (D-H) parameter.

i a(i - 1) α(i - 1) di θ i

1 0 0 0 θsi

2 0 90 0 θsa − 90

3 r ∗ sin θsa −90 r θsf

4 l1 0 0 180− θef

5 l2 0 0 0

In our model, r = 70 mm, the radius of the exoskeleton slip ring; l1 = 240 mm, the length

upper arm in exoskeleton; l2 = 225 mm, the length of forearm in exoskeleton; θsi , θsa, θsf ,

θef represented angles of SIR, SAA, SFE, EFE, respectively.

of coordinate system {0}, {1}, and {2} were located at the center of
the shoulder joint; the origin of coordinate system {3} was located
at the position of motor for flexion and extension, and the origin
of coordinate system {4} was located at the motor position of
elbow joint. The origin of coordinate system {5} was located at
the position of the end of the exoskeleton (see the red circle dot
in Figure 4A).
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FIGURE 5 | Angular velocity profile based on the first four synergies of subject 9 performing the task of reaching target “e” (target location was illustrated in

Figure 2B). Each column corresponds to a specific synergy which have a duration time of 1 second (x-axis), and each row corresponds to a DoF (EFE, SFE, SAA,

and SIR, respectively). The Positive/Negative angular velocity amplitudes (y-axis) indicates the movements of elbow flexion/extension (EFE), shoulder flexion/extension

(SFE), shoulder abduction/adduction (SAA), and shoulder internal/external rotation (SIR), respectively.

To quantify the effect of kinematic synergy on reaching
movement control, we calculated the spatial position of
the end-point of the exoskeleton model when angular
variables was applied to D-H matrix. The Denavit-
Hartenberg (D-H) matrix for our exoskeleton model was
specified as









cos θi − sin θi 0 a(i−1)

sin θi cosα(i−1)

sin θi sinα(i−1)

0

cos θi cosα(i−1) − sinα(i−1) − sinα(i−1)di
cos θi sinα(i−1) cosα(i−1) cosα(i−1)di

0 0 1









(17)

5
0T = 1

0T
2
1T

3
2T

4
3T

5
4T (18)

Where ai−1 was the distance between Zi−1 to Zi along Xi−1,
αi−1 was the angle at which Zi−1 to Zi rotated around
Xi−1, di was the distance measured from Xi−1 to Xi along
Zi, θi was the angle at which Xi−1 to Xi rotated around
Zi. The Denavit-Hartenberg (D-H) parameters were listed
in Table 2.

RESULTS

Synergy Extraction Using PCA
All designed experiments have been successfully repeated 6 times
at each target location in randomized order, and the kinematic
data of right upper limb are collected during reaching task
being conducted. Spatiotemporal kinematic synergies are derived
using PCA subject by subject. Figure 5 presents an example of
angular velocity profile based on the first four synergies of subject
9 performing the task for reaching target “e.” Here, the first
synergy (column 1) involving shoulder flexion (SFE), abduction
(SAA) and external rotation (SIR) clearly demonstrate a forward
reaching movement. In the same time, an elbow extension (EFE)
was conducted and guide his/her right arm moving to press a
target. Synergy 2 (column 2) shows a similar shoulder kinematic
trend, with higher amplitudes and longer duration time for
the shoulder abduction (SAA) and flexion (SFE). Synergy 3
(column 3) consists of a shoulder extension (SFE), a combination
of a shoulder adduction followed by an abduction (SAA), and
a combination of internal rotation followed by a slight external
rotation (SIR). The corresponding elbow angular velocity profile
(EFE) illustrates the procedure of “flexion-extension-flexion.”
Synergy 4 (column 4) tends to behave similarly as synergy 2
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FIGURE 6 | (A) Explained Variance for all target positions (a–j) of subject 10. (B) Explained Variance of first four PCs at all reaching position across all subjects.

(C) Correlation analysis of the first PC (synergy 1) across subjects according to different DoFs.

(column 2), except that the elbow movement exhibits repeated
flexion/extension with a shorter execution time (EFE).

Figure 6A presents the explained variance of PCs (or
“synergies”). As shown in Figure 6B, four PCs are sufficient
to capture more than 94% of the data’s variance for all target
positions (a-j). Moreover, the first three PCs account for at least
87% of the variance, and the first two PCs are also able to
explained at least 64% of the variance. Specifically, the first two
PCs at position “f” accounting for variance even achieve 78%.

Correlation analysis of the first PC (synergy 1) has been
carried out for each DoF of upper limb across subjects
(Figure 6C). Ipsilateral reaching tasks (target position at g–j)
shows higher correlations than the central and contralateral tasks
(a–f), which suggests that personalized kinematic parameters
vary less in tasks of reaching the closer or more skilled positions.

The high level of coefficient value for SFE (red dots) also reveals
that the shoulder flexion/extension exhibits better stability across
subjects than the other three DoFs (EFE, SAA, and SIR).

Figure 7A give an example of the angular velocity
reconstruction based on different numbers of PCs (synergies)
for shoulder abduction reaching target “a” (Figure 2B). As
expected, the reconstructed kinematic profiles for upper limb
joints get closer to the actual measurement as the number
of synergies augmented. The reconstructed angular velocities
with the first 2 synergies (PC1 and PC2 only) can represent
similar kinematic trends, such as acceleration/deceleration
phases of the real movements, while higher orders of
synergies (PC3 and PC4) can supplement and refine
the reconstruction to match the true measurements with
higher accuracy.
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FIGURE 7 | (A) Comparison between the measured (solid) and reconstructed (dashed) angular velocity for shoulder abduction of task “a” (Figure 2B) (upper), and the

corresponding acceleration of movement (lower). The reconstructed angular velocities presented on the upper plots are calculated based on different numbers of

PCs. (B) Reconstruction errors of angular velocities within stable and changing periods, respectively. (C) Relationships of normalized reconstruction errors against

number of PCs (synergies) for angular velocity reconstruction. (D,E) Grouped comparison of the impact of synergy number and target position on reconstruction

errors in “changing” or “stable” periods. (F,G) Grouped comparison of the impact of synergy number and shoulder DOFs on reconstruction errors in “changing” or

“stable” periods (*indicates p < 0.05).
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FIGURE 8 | Simulated posture visualization for first four PCs (synergies) at four specific time points of subject 9.

We segment the movements into two specific periods
(changing and stable) depending on the value of acceleration:
the “changing period” refers to periods when the absolute
acceleration value is higher than 20% of the maximum, while
the rest period is considered as “stable period” (Figure 7A).
We compare the difference of normalized reconstruction errors
between the stable and changing period for reconstructed angular
velocities (Figure 7B), and significant differences are observed
(p < 0.05). The normalized errors tends to decrease as the
number of PCs (synergies) augmented. In detail, the first 2
synergies yield a normalized reconstruction error of 0.38 in
changing period and 0.28 in stable period, while the errors
reduce to 0.18 in changing period and 0.05 in stable period
when the first 4 PCs (synergies) were involved. Moreover, the
normalized errors also vary with movement phases, as the error
level for the first 3 PCs in changing period (0.29 ± 0.06) is
similar to that for the first 2 PCs in the stable period (0.28
± 0.05) (see the black dashed line in Figure 7C). In addition,
Figure 7C also indicates that the impact of recruited synergy
numbers on reconstruction error is greater in the changing
period than that in the stable period. When comparing the
impact of recruited synergies on reconstruction error among
different reaching target positions, it showed similar trend;
in other words, either for “changing” or “stable” period, the
reconstruction error of upper limb moving decreased with the
recruited synergy numbers (see Figures 7D,E). However, as
illustrated in Figure 7F, the kinematic synergies showed different
roles to reconstruct the moving pattern, and more synergies

significantly reduced the reconstruction error in “changing”
periods for DOF of shoulder abduction/adduction (SAA). In
“stable” period, DOF of shoulder internal/external rotation (SIR)
exhibited significant reconstruction error when only the first
synergy or the first two synergies were recruited (Figure 7G).

The reaching task conducted by right arm are normalized as
an angular trajectory. To simplify the simulation, the reaching
movement is divided into 3 equal periods (0–33.3, 33.3–66.6,
66.7–100%T), the angular value for shoulder joints (EFE, SFE,
and SAA) and elbow joint (SIR) are obtained through integrating
angular velocity with time. Then, the angular values of the DOFs
of EFE, SFE, SAA, and SIR are used to drive motor I, motor II,
motor III, and motor IV, respectively. An example visualization
of simulated postures at four specific time-points for subject 9
are presented in Figure 8. The postures are in accordance with
the angular velocity profiles with different synergies as shown
in Figure 5.

Motion Simulation Based on Kinematic

Synergies
As shown in Figure 9A, the movement profile of exoskeleton are
simulated when applied to assist subject 5 reaching target “a” in
SolidWorks. The first four columns demonstrate the postures of
assistive exoskeleton when different order of kinematic synergies
are employed to control exoskeleton movement at different
time point of reaching task. The last column is the movement
pattern of assistive exoskeleton when the original kinematic is
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FIGURE 9 | (A) The upper limb assistive exoskeleton model driving by the first four PCs (synergies) at three specific time points of subject 5. (B) The calculated

endpoint positions for subject 5 corresponds to reconstructions based on 1–4 PCs recruitment, with the true position of target “a” (location illustrated by Figure 2B)

shown as ⋆. (C) Distance errors between calculated and actual target positions for all participants, and its changing trends as the recruited PCs

(synergies) augmented.

used to drive the exoskeleton. It can be observed that, with the
angular input of shoulder internal/external rotations, shoulder
abduction/adduction, shoulder variable for the flexion/extension,
and elbow flexion/extension, the assistive exoskeleton moves to
target “a” step by step. Figure 9B visually illustrates the endpoint
positions of assistive exoskeleton when different number of PCs
are involved in D-H model for the subject 5. The distance
deviations between simulated reaching points and actual target
position are calculated, and the results also show that distance
errors of exoskeleton endpoint decrease as the kinematic
synergies augmented (Figure 9C).

DISCUSSION

Motor control optimization is one of the most important
issues in assistive arm device design. In our study, the time-
varying kinematics synergies of shoulder and elbow joints
during upper limb reaching tasks were analyzed using PCA

algorithm. Our results showed that the first four principal
components can sufficiently represent the dynamical profile
of upper limb joint angles, and principal components with
different scales exhibited different contributions to the multi-
joint motion behaviors. Specifically, the first two synergies (PC1
and PC2) could reflect the direction and motion range of the
movement, while the higher order synergies (PC3 and PC4) could
smooth the motion trajectory during acceleration period. The
motion planning simulation of right arm assistive exoskeleton
further confirmed that principal components with different
scales played different roles in the motion trajectory and end-
point accuracy.

Synergy is an assemble of individual functional units
performing motor behaviors in relatively independent
DoFs (Turvey, 2007), and can be represented as multi-joint
coordination in angular velocity space (Burns et al., 2017). Our
results indicated that the first four PCs can be used as surrogates
to describe synergistic characteristics since the four PCs were able
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to explain major proportion of variance. Moreover, we found that
the level of variance explained by PCs was significantly reliant
on the target position, and the joint coordination patterns were
dynamically regulated over time as the number of kinematic
synergy (PC) increased (Figures 6A,B). Bockemühl et al. (2010)
suggested that the proportion of each principal component
was modulated to compensate for the disadvantage of different
catching positions. Verrel et al. (2013) proved that the proportion
of variance explained by the first three PCs increased when more
skilled upper limb movements were performed. In addition,
Côté et al. (2002) reported that additional synergy modes were
involved when adapting to motion task complexity. Therefore,
our results were in accordance with these previous studies, and
the correlation coefficient (Figure 6C) further revealed that the
kinematic synergy of upper limb was associated with positions of
reaching target.

Upper limb movement is conducted through coordination
of multiple joints both in time and space (Tomita et al.,
2017). As illustrated in Figure 7B, the reconstruction error
varied in different motion periods (i.e., changing and stable)
defined by angular velocity profiles. This result agreed to a
previous finding, in which Ahmad et al. observed that hand
motion stability depends on the motion period (Nadzri et al.,
2014). Moreover, Mukta et al. reported temporal compensation
during the motion starting period under different reach-to-
grasp conditions (Mukta et al., 2015). In our study, the error
performance in Figure 7C indicated that the reconstruction
results could significantly be improved as the number of
recruited PCs (synergies) increased. Furthermore, as observed in
Figure 7A, the low-order synergies appeared to show the overall
change trend of motion, while the high-order synergies reflected
the details at the special movement phase, which suggested
potential implications for the level assessments of motor function
and rehabilitation.

The multi-DoF synergistic pattern of upper limb movements
can help to simplify the motion planning of assistive device
for human rehabilitation. In fact, synergy has been considered
as an effective method to improve motion smoothness of
the rehabilitation device as human behavior (Burns et al.,
2017). Therefore, implementing the time-varying principal
component analysis into the upper limb prosthesis and
rehabilitation device was potential to fulfill the requirements.
Moreover, recent study (Tsai et al., 2018) investigated joint
kinematics regulation of postural system, and confirmed the
value of PCs in evaluating the contributions of individual joint.
Our results also demonstrated that the low-order synergies
or PCs, generally the first two PCs, represented major
variance of original kinematics, and could fulfill common
movements for rehabilitation devices. On the other hand,
to improve the endpoint accuracy of reaching movement,
additional high order components (such as the third and fourth
PCs) should be involved in. Therefore, specific to daily life
activities which generally require precise control, the high-
order PCs (synergies) would have advantages on accurate
control strategies for assistive device development. Altogether,

the simulation results in our study implied the high potential
of synergy being implemented for motion planning, and the
corresponding precision of endpoints can be improved by
synergy augments.

The present work has confirmed that the motion coordination
of shoulder and elbow joint is manifested in the coordination
of kinematic synergies. With the data from right arm reaching
tasks, it can be concluded that different synergies have specific
contributions to the upper limb movement, the low-order
synergies represented the overall trend of motion patterns,
while the high-order synergies described the fine motions at
some moving phases. The results of exoskeleton movement
simulation further confirmed that kinematic synergies could be
used for exoskeleton motion planning, and different principal
components contributed to the motion trajectory and end-
point accuracy with some specific extent. The findings of
this study may provide novel but simplified strategies for the
development of rehabilitation and assistive robotic systems
approximating the motion pattern of natural upper-limb
motor function.
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Concurrent stimulation and reinforcement of motor and sensory pathways has been
proposed as an effective approach to restoring function after developmental or
acquired neurotrauma. This can be achieved by applying multimodal rehabilitation
regimens, such as thought-controlled exoskeletons or epidural electrical stimulation to
recover motor pattern generation in individuals with spinal cord injury (SCI). However,
the human neuromusculoskeletal (NMS) system has often been oversimplified in
designing rehabilitative and assistive devices. As a result, the neuromechanics of
the muscles is seldom considered when modeling the relationship between electrical
stimulation, mechanical assistance from exoskeletons, and final joint movement.
A powerful way to enhance current neurorehabilitation is to develop the next generation
prostheses incorporating personalized NMS models of patients. This strategy will
enable an individual voluntary interfacing with multiple electromechanical rehabilitation
devices targeting key afferent and efferent systems for functional improvement. This
narrative review discusses how real-time NMS models can be integrated with finite
element (FE) of musculoskeletal tissues and interface multiple assistive and robotic
devices with individuals with SCI to promote neural restoration. In particular, the
utility of NMS models for optimizing muscle stimulation patterns, tracking functional
improvement, monitoring safety, and providing augmented feedback during exercise-
based rehabilitation are discussed.

Keywords: spinal cord injury, neuromusculoskeletal modeling, neural restoration, functional electrical
stimulation, brain-computer interface, real-time, digital twin, rehabilitation robotics

INTRODUCTION

Spinal cord injury (SCI) partially or fully interrupts physiological connections between the brain,
the spinal cord, and the muscles. Motor commands can still be generated but may not reach the
muscles to produce movement. Similarly, sensory signals from below the injury site, such as signals
indicating gravity, motion, touch, pain and/or temperature, cannot travel back to the spinal cord
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and brain for proprioceptive input to motor pattern generators,
somatosensorimotor perception, and neocortical/conscious
interpretation. This feedback loop must be reconnected if
mobility, motor pattern generation, and sensation are to reoccur
after SCI (Jackson and Zimmermann, 2012).

Recent advances in neural prosthetics and rehabilitation
robotics have shown great promise for restoration of voluntary
movement in individuals with SCI. These techniques have
been shown to restore function in rats with a transected
spinal cord (van den Brand et al., 2012). Direct electrical
stimulation of the injured spinal cord with co-application of
pharmacological agents, such as serotonergic receptor agonists,
has also enabled individuals with SCI to regain some voluntary
movement (Gerasimenko et al., 2015; Angeli et al., 2018; Gill
et al., 2018; Sayenko et al., 2018). Researchers (Donati et al.,
2016) recently combined motor-driven exoskeleton gait training
and tactile feedback using simulated foot pressures (movement
sensation) with advanced brain-computer interfaces (BCI) and
virtual reality to restore the brain-muscle loop. Preliminary
evidence suggests that concurrently engaging the central and
peripheral nervous (e.g., propriospinal projection network,
reticulospinal serotonergic neurotransmission) and muscular
(e.g., proprioceptive receptors and neuromuscular junctions)
systems may promote restoration of the central pattern generator
of the spinal cord (i.e., neural restoration) (Ropper et al., 2017;
Teng, 2019).

The abovementioned studies have raised expectations about
the feasibility of designing non-invasive efficacious therapies
for the SCI population, a prospect heretofore considered
unattainable. However, application of these technologies often
requires guesswork from clinicians or researchers to define the
parameters associated with the amount of stimulation or support.
For example, functional electrical stimulation (FES) requires
users to specify frequency, duty cycle, current amplitude, and
timing to achieve a predefined movement pattern. Parameters
are usually predefined by the manufacturer, leaving the clinician
to adapt the therapy to the patient based on trial-and-
error approaches and clinical experience (Doucet et al., 2012).
Similarly, motorized rehabilitation robotics require users to pre-
select gait kinematics and/or kinetics, which are then used to
drive the patient during rehabilitation. These sets of parameters
need to be maintained within safe limits to prevent injury
(He et al., 2017; Angeli et al., 2018). Otherwise, applying
electrical stimulation or powered rehabilitation robotics can
result in excessive tissue strains and consequent tissue failure
given the atrophied musculoskeletal tissues and low bone density
present in individuals with SCI (He et al., 2017). However,
these approaches to assisted therapy are currently often not
personalized to the patient, which could potentially result in poor
patient engagement, and consequently, sub-optimal interaction-
enhanced neural plasticity.

A neuromusculoskeletal (NMS) model is a physics-based
functional representation of an individual’s NMS anatomy and
physiology, which can be used to estimate the internal states of
musculoskeletal tissues non-observable via instruments external
to the body. A NMS model may account for individual-
specific musculoskeletal capabilities, and be used to quantify the

difference between voluntary muscle activation and the external
assistance required to perform a specific task. NMS models
may also monitor musculoskeletal tissue stress/strain to prevent
injury, and quantify improvement following rehabilitation, such
as increases in voluntary force. Using NMS models, existing
rehabilitation methods could be further expanded and improved
upon developing a personalized therapy that reduces clinician
guesswork by automatically stimulating the patient’s muscles,
adapting to the patient’s recovering muscle activation patterns,
challenging the patient in recovery to maximize engagement, and
maintaining the amount of external assistance within safe limits.

Here we intended to focus on how NMS models can
be used to integrate different neuromechanical prostheses
to maximize potency of neurorehabilitation following SCI.
The review comprises an overview of currently available
neuromechanical prostheses and describes how real-time NMS
models can be integrated with assistive devices to improve
rehabilitation outcomes. We concluded with a summary of
current limitations of the presented approach and suggestions for
future research directions.

PubMed was searched for articles published in English
from January 1980 to October 2020. Search terms included
“FES,” “BCI,” ”neural prosthesis,” “exoskeleton,” “rehabilitation
robotics,” “NMS modeling,” “finite element (FE) modeling,” and
“digital twin.” Abstracts were reviewed, and papers with a focus
on applications in SCI were further analyzed in detail.

NEUROMECHANICAL PROSTHESES
FOR INDIVIDUALS WITH SPINAL CORD
INJURY

A neuromechanical prosthesis can be defined as any device
or combination of devices that support and/or replace any
neural or mechanical function of an individual. In the
context of SCI, neuromechanical prostheses to restore function
include BCI, peripheral and spinal electrical stimulation, and
rehabilitation robotics.

Brain-Computer Interfaces
Brain-computer interface can capture the user’s intention
to perform a movement, which can be used to control
computer simulations and/or external electromechanical devices
(Pfurtscheller et al., 2003a; Silvoni et al., 2011). The patient’s
movement or force output is captured by the afferent pathways,
which in turn affects the patient’s brain activity. Motor
imagery, the act of imagining performing a movement without
producing mechanical output, can modify the neuronal activity
of the sensorimotor cortex, similar to what occurs when
performing the real movement (Pfurtscheller and Neuper, 2001).
Electroencephalogram (EEG) recordings acquired synchronously
with motor imagery of tasks such as cycling or walking can
be used to train a machine learning classifier to discriminate
between different brain states (Lotte et al., 2018). Using this
approach, BCI can then be used in real-time to classify
different motor intentions and control assistive devices, such
as rehabilitation robotics (Barsotti et al., 2015) and FES
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(Pfurtscheller et al., 2003b). BCI has also been used in
combination with more sophisticated machine learning methods
to predict kinematic of movement (Cheron et al., 2012) and
control the gait of a virtual reality avatar in real-time (Luu
et al., 2016). Practically, this means that EEG acquired by a
BCI can be transformed into an output in the real world.
Current evidence suggests rehabilitation using a BCI can induce
neural plasticity and improve motor function in people with
neurological conditions (Grosse-Wentrup et al., 2011).

Peripheral and Spinal Electrical
Stimulation
Electrical stimulation uses electrical current to stimulate the
spine, peripheral nerves, or musculoneuronal junctions to
artificially induce muscle contraction. Stimulation results in
synchronous recruitment of motor neurons and force production
at the level of muscle fibers. Force is then transmitted via
tendons to the skeletal system producing final effector force and
movement. Electrical stimulation of muscles, often referred to
as FES, is non-invasive and can be performed transcutaneously
via pairs of electrodes applied to each muscle or muscle
group. FES during leg cycling is a popular rehabilitation
modality (Ragnarsson, 2008), as the pedaling motion is a
closed kinematic chain (i.e., constrained mechanical action) and
accessible to people with tetraplegia. Even when implemented
more than 20 years following SCI (Mohr et al., 1997), FES leg
cycling continuously showed multiple clinical benefits, such as
increased cardiorespiratory performance (Pollack et al., 1989)
and endurance (Mohr et al., 1997), prevention of muscle atrophy
(Baldi et al., 1998), and increased muscle mass (Mohr et al., 1997).

Epidural electrical stimulation of the spinal cord has been
used to evoke rhythmic electromyograms (EMGs) from muscles
of the lower limbs, resulting in individuals with complete SCI
to independently walk again (Angeli et al., 2018; Gill et al.,
2018). Less invasive transcutaneous electrical stimulation of
the spinal cord also restored movement in the lower limbs of
individuals with SCI, resulting in retention of some volitional
movement control even in the absence of electrical stimulation
(Gerasimenko et al., 2015). However, improper stimulation of
the spinal cord may interfere with afferent neural pathways
and disrupt proprioceptive information (Formento et al., 2018),
which are proposed to be essential for restoration of neural
function (Rushton, 2003). Moreover, there might be potential for
adverse events when stimulation is applied to SCI patients using
guesswork alone to define input parameters. Thus, technologies
and methods for preventing excessive tissue loading in response
to electrical stimulation are essential.

Treatments involving electrical stimulation necessitate a set
of parameters to be defined, such as on/off timing of muscle
stimulation, and stimulation frequency and amplitude. Clinically,
these parameters are commonly set by the operator based on
predefined values or via trial and error experiential approaches
(Doucet et al., 2012). Automatic parameters selection can be
achieved via closed-loop control strategies that automatically
tune amplitude and/or frequency of stimulation to track
predefined kinematics or kinetics targets (Hunt et al., 2004;

Lynch and Popovic, 2008; Li et al., 2016). However, most control
strategies presently available do not appropriately model the
underlying NMS system of an individual, overly simplifying
or ignoring the dynamics of muscle activation and contraction
and their effects on joint movement (Sartori et al., 2016).
These control strategies do not permit observation of the
internal state of the musculoskeletal system, nor allow for
planning optimal muscle coordination strategies when multiple
degrees of freedom are involved. Moreover, even most recent
approaches to controlling do not account for variations in
an individual’s anatomy, physiology, or neuromuscular system,
nor do they automatically adapt to a patient’s changing neural
capabilities on any time scale. Collectively, these technologies
have many limitations, that if addressed, could greatly enhance
rehabilitation outcomes.

Rehabilitation Robotics
Rehabilitation robotics involves any motorized
electromechanical system, either wearable or stationary,
that assists an individual to perform a target movement, such as
exoskeletons (Jezernik et al., 2003) and motorized ergometers
(Mekki et al., 2018). Robotic-assisted rehabilitation commonly
involves securing the patient to the machine and the therapist
defining what specific gait or cycling kinematics pattern the
robot should provide. In most cases involving individuals with
complete SCI, the patient is completely and passively guided by
the robot and minimally engaged in the rehabilitation process,
due to no need to deliver any kind of executive command
from the brain. During this process, intact spinal loops and
reflexes may be triggered, resulting in some amount of muscle
contraction, force and movement generation, and may also
contribute to maintaining overall musculoskeletal tissue health,
but effectiveness of these therapies on walking function remains
poor (Swinnen et al., 2010; Mehrholz et al., 2017). If these robotic
assistive devices could be designed to maximally engage the
individual’s motor imagery, this would be an improvement over
current use of this technology.

Combined Use of Multiple Assistive
Devices
Multiple assistive devices have been combined to maximize
functional outcomes (Mekki et al., 2018). In a study involving
BCI-controlled FES of wrist, continuous and sustained motor
imagery throughout FES resulted in greater cortical activity
when compared to lack of motor imagery during FES (Reynolds
et al., 2015), potentially suggesting strengthening of corticospinal
pathways (Pfurtscheller and Lopes da Silva, 1999). A similar
strategy was also used to successfully restore wrist motor function
in post-stroke individuals, wherein FES was significantly more
effective when controlled by a BCI (Biasiucci et al., 2018).
Combining FES with rehabilitation robotics has been proposed
to enhance devices’ performance (i.e., reduce the power of
exoskeletons’ motors) (Ha et al., 2012, 2016) and to prolong
the length of the rehabilitation session (del-Ama et al., 2014).
Finally, BCI has also been combined with virtual reality and/or
assistive robotic devices for rehabilitation of individuals with SCI
(Donati et al., 2016).
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The fast pace at which research involving neuromechanical
protheses is growing (Marchal-Crespo and Reinkensmeyer, 2009)
reveals an increasing need to integrate multiple assistive devices
that can collaborate with the individual to promote adaptive
and patient-centered therapy (Holanda et al., 2017). However,
current approaches based on classic control theory or machine
learning often oversimplify the complex dynamics of the human
NMS system, omitting the mechanism underlying the causal
relationship between observed input and output data (Sartori
et al., 2016). Physics-based NMS models are an alternative
approach that enables natural control of neuromechanical
prostheses and permits assessing the internal state of an
individual’s NMS system.

REAL-TIME NMS MODELING TO
INTEGRATE ASSISTIVE DEVICES

Electromyogram -informed NMS models used experimentally
measured EMG to perform forward dynamics simulations of
muscle dynamics and estimate musculoskeletal tissue states
(Lloyd and Besier, 2003; Sartori et al., 2012; Pizzolato et al.,
2015). Musculotendon units are modeled using a Hill-type
structure, where an elastic tendon is in series with a contractile
muscle fiber. Musculotendon units are connected to bones via
insertion points and follow anatomically derived paths that wrap
around bones, which are used to estimate musculotendon units’
lengths and moment arms. The skeletal system is defined by
multiple segments (i.e., bones) connected by three-dimensional
joints mobilized accordingly to their anatomical function (Seth
et al., 2018). EMG-informed NMS models have been used to
successfully estimate muscle forces, joint contact forces, and joint
stiffness in the lower and upper limbs of individuals with a
variety of neuromuscular conditions (Sartori et al., 2015; Konrath
et al., 2017; Hall et al., 2018; Hoang et al., 2018, 2019; Lenton
et al., 2018; Kian et al., 2019). NMS models are the optimal
platform for integration of multiple assistive devices, enabling
physics-based sensor fusion, where input and output quantities
are mechanistically and causally related. This is equivalent to the
modern concept of a digital twin (Glaessgen and Stargel, 2012;
Boschert and Rosen, 2016), but here applied to a person and their
assistive device(s) (Figure 1). Although not explicitly addressed
as such, digital twins based on NMS models are becoming
a core technology for human-machine interaction (Sreenivasa
et al., 2019) and personalized rehabilitation (Sartori et al., 2016;
Pizzolato et al., 2017a, 2019), promising exciting technological
advancement in prosthetic limb control (Sartori et al., 2019).

Calibration of NMS model parameters is an identification
procedure whereby an optimization algorithm finds the optimal
set of parameters that minimize the error between experimentally
observed and model-predicted quantities (e.g., joint movement,
joint moments, joint powers, and EMG). Importantly, calibration
ensures that non-observable quantities predicted by the model
(e.g., muscle forces, joint contact forces) are physiologically
plausible (Gerus et al., 2013; Hoang et al., 2018). Prediction
of muscle force has been shown to be particularly sensitive
to optimal fiber length, tendon slack length, and maximum

FIGURE 1 | Schematic representation of the interaction between real world
devices and digital twin. Data measured in the real world include physiological
measurements from the individual, such as electroencephalograms (EEG) and
electromyograms (EMG); and sensor data from assistive devices, such as
force, torque, and position. EEG are used as input for machine learning
methods to classify motor intention. Measured data and motor intention are
then provided as input to digital twin of the patient and assistive devices. The
digital twin implements a personalized NMS model of the individual that
combines the input data to estimate optimal muscle activation patterns,
localized musculoskeletal tissue stress and strains, and the amount of
mechanical support that needs to be provided via rehabilitation robotics. Data
modeled via the digital twin are then used to control assistive devices (e.g.,
electrical stimulation parameters and mechanical assistance) and provide
augmented afferent feedback via visual and/or haptic monitors. This figure
depicts a stationary ergometer and electrodes for functional electrical
stimulation (FES), but the same concept can be applied to other types of
rehabilitation robotics (e.g., exoskeletons) and electrical stimulation (e.g.,
epidural stimulation).

isometric force (Scovil and Ronsky, 2006). Furthermore,
parameters associated with muscle activation dynamics have also
been shown to require calibration (Lloyd and Besier, 2003).
Robotic devices (e.g., the motors of exoskeletons or cycling
ergometers) with no stimulation can be used to acquire the
joint moments generated by passive musculotendinous and
ligamentous tissue (Yoon and Mansour, 1982), and to limit the
range of motion of each joint within specific thresholds based
on passive moments, both of which are parameters that can
be directly input into a personalized musculoskeletal model of
an individual with SCI. Similarly, electrically stimulating one
muscle group at a time would isolate the effects of contractile
properties and activation dynamics of specific muscles and
their causal contribution to joint moments and movement.
Thus, through performing a sequence of robotic movements
and electrical stimulation of different muscle groups, it may
be possible to create an automated protocol to identify critical
neuromuscular parameters. Future research focused into these
domains is required to establish robust protocols for model
personalization in individual with SCI.

Following calibration, NMS models need to operate in real-
time to appropriately control multiple assistive devices. This
means that variables used for controlling or monitoring devices
need to be calculated with minimum delay by the NMS model.
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Recently, large scale real-time EMG-informed NMS model
involving multiple degrees of freedom and musculotendon
units have been used to estimate muscle forces and joint
contact forces for the full lower limbs using experimental
EMGs and motion capture (Pizzolato et al., 2017b,c; Durandau
et al., 2018). This was enabled by an optimized multi-threaded
software architecture, where a publisher-subscriber software
pattern was used to independently handle the multiple input
and output devices minimizing idle times (Pizzolato et al.,
2017b). Another advantage of this architecture is the ability
to modify input or output devices independently from the
underlying NMS model, in a plug-and-play fashion. This allows,
for example, the operator to easily use wearable sensors, or any
other device in place of stereophotogrammetry motion capture
systems to acquire human motion in real-time. Output devices
may include audio, visual and/or haptic monitors to provide
augmented somatosensory information, or control commands
for external devices, such as neuromechanical prostheses. The
multithreaded software architecture used in recent real-time
NMS modeling enables compete decoupling between input and
output devices whereby the NMS model acts as super-controller
and interpreter between the human and the machine (Ceseracciu
et al., 2015). This decoupling allows NMS models to be adapted
for a multitude of neurological conditions and neuromechanical
prostheses. Finally, these EMG-informed NMS models have the
potential to be applied to individuals with SCI to (i) generate
optimal muscle stimulation, (ii) improvement tracking and safety
monitoring, and (iii) augment afferent feedback.

Generating Optimal Muscle Stimulation
Successful rehabilitation for SCI patients will involve generating
an appropriate set of muscle activation patterns that account
for an individual’s capabilities. From optimal activation patterns
required to generate the desired kinematic or kinetic task, it is
then possible to calculate the required amplitude and frequency
of stimulation for FES. However, individuals with SCI have
different levels of neuromuscular dysfunction, with varying
ability to produce voluntary muscle activations (Kirshblum et al.,
2011). To further promote neural restoration, it is necessary
to engage the patient such that they actively participate in the
rehabilitation process. Examples of this approach involve EMG-
gated FES, where muscle stimulation is provided only when
concurrent voluntary contraction from the participant is present
(Burridge and Ladouceur, 2001). This approach has been shown
to produce better outcomes than standard non-EMG-gated FES
(Dutta et al., 2009), though muscle stimulation occurs only if
the patient is able to produce sufficiently large voluntary EMG,
for which some patients are unable due to the severity of their
injury. Furthermore, inter-individual anatomical differences in
musculotendon lengths, moment arms, as well as differences in
seating position and overall movement kinematics will result
in different joint forces and moments for a given FES profile
(Schutte et al., 1993). NMS models can appropriately account for
these inter-individual differences, providing causal relationships
between muscle stimulation and produced force.

A NMS model can be combined with a model of an
electromechanical device to calculate an optimal set of muscle

activation patterns required to perform a rehabilitation task. In
a closed kinematic chain, such as in cycling, the hip, knee, and
ankle joint angles are determined as a function of the crank
and pedal angles. Thus, joint moments can be easily calculated
when the desired values for average power output and cadence
are provided (Farahani et al., 2014). NMS models are readily
used in conjunction with mathematical optimization (e.g., static
optimization) to estimate the optimal set of muscle activation
pattern required to perform a predetermined movement. The
difference between the voluntary muscle activations of the
patient and the target muscle activations from the NMS
model provides an objective basis for calculation of the FES
compensation level (Yeom and Chang, 2010). Using NMS
models, it is also possible to estimate the contribution of
voluntary activation from each muscle of the patient to the final
joint moments. Consequently, the ratio between the support
provided to the patient via electrical stimulation of muscles
and the support provided via mechanical assistance can be
modulated, which introduces the possibility of creating advanced
control strategies that reward patient engagement and voluntary
muscle contractions.

A NMS model can be used as layer between a BCI and
multiple assistive devices, transforming high level efferent
neural commands into appropriate signals to control electrical
stimulation and rehabilitation robotics. EEG acquired while an
individual with SCI attempts to perform coordinated movement,
such as cycling or walking, can be classified in real-time using
machine learning approaches, and used to control a NMS
model. A primitive but currently feasible solution would involve
triggering the NMS model to perform a predetermined trajectory
(e.g., cycling). Future approaches may explore BCI to extract
basic spinal primitives that can be mapped to individual muscle
to enable intuitive control of NMS models (Ubeda et al., 2018).
This solution may be more advantageous compared to direct
control of joint angles (Fitzsimmons et al., 2009) as it better
reflects the current understanding of how the mammalian central
nervous system organizes large groups of synergistic muscles
during complex movement.

Tracking of Improvements and Safety
Monitoring
Globally, health-care system models are being redesigned to
move from volume-based healthcare to value-based healthcare,
which is organized around meeting a set of patient needs
over the full care cycle (Porter et al., 2013). Although SCI
patients consistently rate recovery of paralyzed limb function as
their main priority (Anderson, 2004), clinical assessment alone
is subjective and unable to quantify meaningful changes that
precede major clinical and functional breakthroughs. Objective
measurement of musculoskeletal states via NMS models can
monitor a patient’s state and identify required adjustments in
therapy, such as muscle-specific functional improvements. These
measurements also have an important strategic objective: to
define trajectories of rehabilitation to better inform guidelines for
best-clinical practice so therapists and service providers can tailor
patient support during the most critical stages of care.
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Critical variables that reveal patient improvement can be
tracked during NMS model-based therapies, which include
the amount of robotic assistance required to perform the
task and calibrated neuromuscular parameters assessed at each
session. The mechanisms underlying any reduction in robotic
assistance, such as increased volitional muscle activation or
force production, may also be tracked. Such improvements
may be below the detectable thresholds of standard clinical
assessments, especially if the improvement is not sufficiently
large to generate observable changes in movement. Similarly,
musculoskeletal parameters calibrated at each session, such as
maximum isometric force, could provide longitudinal measures
of neuromuscular adaptation.

Individuals with SCI experience tremendous tissue atrophy
(Giangregorio and McCartney, 2006), often losing up to 55% of
muscle cross-sectional after 6 months from initial injury (Castro
et al., 1999). If, through therapy, inappropriate loads are applied
to these weakened tissues, tissue failure may occur (Angeli et al.,
2018). Powered exoskeletons and rehabilitation robotics that
have been recently approved by the United States Food and
Drug Administration (He et al., 2017) as medical devices are
expected to be increasingly marked; however, appropriate risk
mitigation strategies to prevent injury are lacking (He et al.,
2017). Additionally, incorrectly applied magnitude and timing of
electrical stimulation to muscles can trigger pain that adversely
affects rehabilitation-induced functional recovery and quality of
life (Turtle et al., 2018). These risks may partially be mitigated
using NMS modeling approaches.

The FE method is a computational method that can be
used to predict tissue damage or rupture by modeling the
internal mechanics of tissue (i.e., localized stress and strain), as
demonstrated by ex vivo studies (Shim et al., 2014, 2018). The
geometry of FE models can be personalized to the individual
via medical imaging (e.g., magnetic resonance imaging, x-ray
computed tomography, or ultrasound) (Devaprakash et al.,
2019), while material properties are typically applied from
literature data or estimated experimentally (Hansen et al., 2017;
Shim et al., 2019). Individual-specific boundary conditions
calculated from NMS models (i.e., model pose and applied
external forces) are supplied to FE models to estimate the internal
stresses and strains of selected musculoskeletal tissues. However,
FE analysis is computationally intensive and consequently,
cannot be executed in real-time. Surrogate models of FE models
have been developed for muscles (Fernandez et al., 2018), tendons
(Shim et al., 2018), and bones (Ziaeipoor et al., 2019), enabling
rapid evaluation of stress and strain patterns. Given a FE model
of a tissue of interest, surrogate models are created in an offline
process whereby a FE model is first solved for a complete set
of physiologically plausible boundary conditions (e.g., known
joint ranges of motion and applied muscle forces). Stress and
strain data from all solutions are then used in conjunction with
machine learning methods, such as partial least square regression,
to create a surrogate model able to replicate the complete FE
model with minimal computational complexity in real-time
(Ziaeipoor et al., 2019). Surrogate FE models (Fernandez et al.,
2018; Ziaeipoor et al., 2019) are currently being combined with
real-time EMG-informed NMS models (Pizzolato et al., 2017c)

to provide instantaneously estimates of tissue stresses and strains,
as described in Pizzolato et al. (2017a, 2019). This is an exciting
development, as it is now possible to combine NMS and FE
models that are personalized to the individual to generate muscle
activation patterns that ensure musculoskeletal tissues are loaded
within safe limits. Furthermore, it is now feasible to objectively
assess the effects of a rehabilitation exercise on the tissue-level
signals that regulate the mechanobiology of musculoskeletal
tissues (i.e., stress and strain), which could be coupled with tissue
mechanobiology models (Mehdizadeh et al., 2017) to predict

FIGURE 2 | Schematic representation of closed-loop neuromechanical
prostheses and their effect on movement and tissue adaptation.
Neuromechanical prostheses interface with the central and peripheral nervous
system bypass the spinal cord injury to modulate sensorimotor spinal loops,
wherein activation of muscles and mobilization of joints result in limb
movement and generation of sensory inflow via the somatosensory
apparatus. Afferent signals synthetized by a digital twin of the person are
redirected via alternative pathways to higher brain areas. At tissue level, the
biomechanics (i.e., movement and muscle contraction) result in forces that are
applied to the structure of tissues, generating a local mechanical environment
(i.e., tissue strain) that modulates tissue biology and consequent tissue
structural adaptation.
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long term tissue adaptation following quantifiable mechanical
stimulation (Pizzolato et al., 2017a; Figure 2).

Augmented Afferent Feedback
In people with SCI, afferent signaling from somatosensory
receptors below the level of injury is hindered, abnormal or
absent. To maximize likelihood of neural restoration, afferent
signals need to be redirected to intact somatosensory areas
for neocortical and conscious interpretation (Jackson and
Zimmermann, 2012). It remains unclear what somatosensory
signals are most critical to augment technologically, the
minimum amount of afferent feedback required, or the preferred
delivery modality. It has, however, been proposed that efferent
and afferent stimulation need to be consistent and synchronized
to enable plastic remodeling of the central nervous system
(Rushton, 2003; Jackson and Zimmermann, 2012). Consistent
with what has been shown in motor learning and biofeedback
studies (Kannape and Blanke, 2013; Sigrist et al., 2013), the
delay in delivering technology-augmented afferent feedback
must be minimized in order for patients to associate their
own movement with the augmented afferent feedback. Using
this principle, a recent study employing robotically assisted
and virtual reality gait retraining measured plantar pressure
transformed into haptic feedback delivered via pads applied to the
shoulder region to provide movement sensation (Donati et al.,
2016). Further, visual feedback via virtual reality has been used
to display patient’s avatar limbs during BCI training (Donati
et al., 2016), and augmented reality has been used to provide
somatosensory feedback non-intrusively via peripheral vision
(Clemente et al., 2017).

Neuromusculoskeletal models can be used to augment afferent
somatosensory feedback and synthesize mechanoreceptors
signals that are not externally observable (Pizzolato et al.,
2017a,c). However, synthesized signals need to be integrated
into a meaningful single or multi-modal feedback that can be
easily interpreted by the patient (Sigrist et al., 2013). Peripheral
nerve stimulation has been used to induce sensory feedback
in amputees (Dhillon et al., 2004), and the same technique
could be applied to redirect NMS model-synthesized afferent
signals to intact sensorimotor areas for natural integration to
mechanosensing feedback. Cortical interfaces are an alternative
but invasive solution that could also be used to relieve burden
from the visual system (Tomlinson and Miller, 2016). Cortical
interfaces use an electrode microarray that is directly implanted
into the sensorimotor cortex to provide electrical stimulation
that mimics the natural cortex activity (Tomlinson and Miller,
2016), partially restoring proprioceptive function. Although
still in its infancy, cortical interfaces have shown promise in
animal studies, and could, in the future, be combined with
multiple assistive devices to maximize neural restoration in
individual with SCI.

LIMITATIONS AND FUTURE DIRECTIONS

A variety of assistive technologies are currently available
to aid the rehabilitation of individuals with SCI. However,

significant improvements and recovery of motor function
have been predominantly shown when these devices were
combined rather than used in isolation. In this review we
have proposed integrating these different technologies via
computational NMS models. These models can be considered
as a digital twin of the patient and their devices acting
as an interpreter between human and machine, continuously
monitoring internal tissue state, and tracking longitudinal
changes throughout the rehabilitation journey. Nonetheless,
several challenges will need to be addressed to achieve
this goal, which will require the combined effort from
multidisciplinary research engagements.

Current approaches to BCI based on motor imagery are
not sufficiently robust and require retraining neural decoders
at the beginning of each rehabilitation session (Lotte et al.,
2018). Furthermore, only a few movements can be classified
via this approach, limiting the use of BCI to simple motor
tasks (Bamdad et al., 2015). Part of the problem resides in
the poor signal to noise ratio, spatial resolution, and inter-
session variability of the EEG signals acquired at the scalp.
More robust classification methods able to adapt to the user are
currently being explored by the BCI research community, but an
optimal classification method is yet to be established (Lotte et al.,
2018). Recently developed minimally invasive implantable BCI
have been able to acquire EEG for extended time periods with
greater signal quality than superficial EEG (Oxley et al., 2016).
In the future, this technology may enable superior classification
of motor intention and seamless integration of humans with
assistive devices.

Our proposed strategy involves using NMS models
personalized to the individual; however, current personalization
methods involve time consuming semi-automatic processing of
medical imaging data (Valente et al., 2017). Machine learning
methods to automatically segment tissue from medical imaging
[e.g., neural networks (Zhou et al., 2018)] and to generate
personalized models from population databases [e.g., statistical
shape modeling (Suwarganda et al., 2019)] are emerging as
promising technologies to personalize anatomy and function of
NMS models. However, further efforts will be required to simplify
the creation of these models via seamless processing pipelines
(Zhang et al., 2014) in order to enable their routine clinical use.

The same NMS modeling-based approach described here
for individuals with SCI can be applied for neurorehabilitation
of other types of acquired neurological impairments, such
as traumatic brain injury and stroke. NMS model-based
neuromechanical prostheses are currently possible and within
reach, but these assistive technologies will need to be co-
designed with clinicians, care providers, and patients to
develop devices that are fit for purpose and aligned with
the expectations of the final users. If accepted by the clinical
community, NMS modeling approaches to neurorehabilitation
have the potential to reduce current clinical guesswork
by automatically adapt to the individualized needs of
each patient, enabling minimally supervised rehabilitation
sessions, and reducing costs of care. Clearly, efficacy of NMS
modeling-based neuromechanical prostheses will first need
to be addressed in clinical trials to understand the effect
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of exercise dosage, afferent feedback modality, and
pharmacological agents on rehabilitation outcomes. Overall,
personalized NMS models have the potential to improve
current assistive technologies and potentiate neural recovery
after SCI.
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Neuromusculoskeletal simulation provides a promising platform to inform the design
of assistive devices or inform rehabilitation. For these applications, a simulation must
be able to accurately represent the person of interest, such as an individual with a
neurologic injury. If a simulation fails to predict how an individual recruits and coordinates
their muscles during movement, it will have limited utility for informing design or
rehabilitation. While inverse dynamic simulations have previously been used to evaluate
anticipated responses from interventions, like orthopedic surgery or orthoses, they
frequently struggle to accurately estimate muscle activations, even for tasks like walking.
The simulated muscle activity often fails to represent experimentally measured muscle
activity from electromyographic (EMG) recordings. Research has theorized that the
nervous system may simplify the range of possible activations used during dynamic
tasks, by constraining activations to weighted groups of muscles, referred to as muscle
synergies. Synergies are altered after neurological injury, such as stroke or cerebral palsy
(CP), and may provide a method for improving subject-specific models of neuromuscular
control. The aim of this study was to test whether constraining simulation to synergies
could improve estimated muscle activations compared to EMG data. We evaluated
modeled muscle activations during gait for six typically developing (TD) children and
six children with CP. Muscle activations were estimated with: (1) static optimization
(SO), minimizing muscle activations squared, and (2) synergy SO (SynSO), minimizing
synergy activations squared using the weights identified from EMG data for two to five
synergies. While SynSO caused changes in estimated activations compared to SO, the
correlation to EMG data was not higher in SynSO than SO for either TD or CP groups.
The correlations to EMG were higher in CP than TD for both SO (CP: 0.48, TD: 0.36) and
SynSO (CP: 0.46, TD: 0.26 for five synergies). Constraining activations to SynSO caused
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the simulated muscle stress to increase compared to SO for all individuals, causing a
157% increase with two synergies. These results suggest that constraining simulated
activations in inverse dynamic simulations to subject-specific synergies alone may not
improve estimation of muscle activations during gait for generic musculoskeletal models.

Keywords: electromyography, muscle synergies, musculoskeletal modeling, cerebral palsy, static optimization

INTRODUCTION

Muscle synergies have been used as a method to describe how
muscles are commonly activated during tasks such as walking,
by identifying a low dimensional space of weighted muscle
groupings (Bizzi and Cheung, 2013). These weighted groups of
muscles have been shown to be altered among individuals with
neurologic injuries, such as stroke or cerebral palsy (CP) (Cheung
et al., 2009; Clark et al., 2010; Steele et al., 2015a; Tang et al.,
2015; Shuman et al., 2016). Synergies appear to mature in stable
patterns early in an individual’s lifespan, making them a potential
platform for quantifying and modeling an individual’s motor
control. In unimpaired children, synergies have been shown to
be similar to adults after five years of age (Dominici et al., 2011;
Rozumalski et al., 2017). For children with CP, synergies are
altered but do not change over time, even after extensive surgical
interventions with inpatient rehabilitation (Shuman et al., 2019).
Although calculation of synergies has been used to describe
muscle activation patterns in experimental data, these patterns
have only begun to be applied to support musculoskeletal
modeling. Using an individual’s synergies calculated from
experimental data to inform neuromusculoskeletal simulations
may improve estimates of an individual’s muscle coordination or
response to interventions like assistive devices or rehabilitation.

Estimating muscle forces and activations are important for
many questions asked with musculoskeletal modeling (Hicks
et al., 2015). Examples include contributions of specific muscles
to gait (Correa et al., 2011; Mcgowan et al., 2011; Steele
et al., 2013; Mansouri et al., 2016) loads acting upon joints
(Steele et al., 2012; Walter et al., 2014; Wesseling et al., 2015;
Serrancolí et al., 2016), impacts of surgical interventions (Delp
et al., 1996; Reinbolt et al., 2008; Fox et al., 2009), and
use of orthotic devices (Hegarty et al., 2017; Rosenberg and
Steele, 2017). However, when muscle activations are calculated
using optimization-based methods, there are large variations in
estimated muscle activations across studies (Tinler et al., 2018).
Comparisons of modeled muscle activations to experimental
data from electromyographic (EMG) recordings are frequently
performed only qualitatively, broadly assessing timing and
amplitudes (Hamner et al., 2010; Dorn et al., 2012; Hicks et al.,
2015; Lerner et al., 2015; Wesseling et al., 2015; Krogt et al.,
2016; Żuk et al., 2018b). Prior quantitative assessments revealed
only moderate correlations between experimental and modeled
muscle activations for both typically developing (TD) individuals
and individuals with neurologic injuries (Heintz and Gutierrez-
Farewik, 2007; Blazkiewicz, 2013; Żuk et al., 2018b; Veerkamp
et al., 2019). A recent study found similar correlations between
individuals with CP and TD individuals (Veerkamp et al.,
2019). Prior research often used custom constraints, specifying

when a muscle must be on and off, or other strategies to
try to get better agreement between simulated activations and
experimental measures from EMG data (Liu et al., 2008; Steele
et al., 2012). Synergies may improve estimates of computed
muscle activations by providing an alternate method to constrain
which muscles are simultaneously activated based upon an
individual’s EMG data (Ting et al., 2012).

Static optimization (SO) is a common algorithm used to
estimate muscle activity that minimizes an objective function,
such as minimizing the sum of squared muscle activations, while
satisfying the system’s equations of motion. These optimization
methods are theorized to reflect the strategies that unimpaired
adults use to coordinate muscle activity. However, a recent
study by Simpson et al. (2016) found that individual muscle
activations could be adjusted to almost any level at any point
in the gait cycle while still satisfying kinematic and kinetic
constraints, suggesting that shapes of modeled activation patterns
are driven predominantly by the choice of optimization function,
rather than being required by the joint torques (Simpson et al.,
2016). As high levels of co-contraction are a hallmark of gait
in clinical populations like CP (Gage et al., 2009; Steele et al.,
2017), other optimization criteria may be more appropriate
when modeling pathologic gait (Steele et al., 2013; Sartori et al.,
2017). If synergies reflect an individual’s neuromuscular control
strategy, constraining to individualized synergy structures may
help capture subject-specific activations patterns.

Synergies have previously been used to constrain muscle
activity for musculoskeletal simulations, most prominently in
forward dynamic simulations (Neptune et al., 2009; Mcgowan
et al., 2011; Allen and Neptune, 2012; Sartori et al., 2013;
Gopalakrishnan et al., 2014; Gonzalez-vargas et al., 2015;
Mehrabi et al., 2019). Two studies have employed synergies
with musculoskeletal modeling in pathologic gait of adult stroke
survivors (Allen et al., 2013; Meyer et al., 2016). Most of
these simulation studies have focused on tracking ideal synergy
activation patterns as part of the optimization (Allen et al., 2013;
Sartori et al., 2013; Gonzalez-vargas et al., 2015; Meyer et al.,
2016; Serrancolí et al., 2016), which has allowed for performance
similar to EMG tracking simulations, while reducing the number
of input parameters. These methods require extensive model
calibration achieved by adjusting model parameters like muscle
activation delays, EMG scale factors, and tendon slack lengths
such that the models closely match experimental kinematics
and kinetics. These procedures are time and computationally
expensive. One study applied synergy controls without EMG
tracking and found better calculation of joint loads than
individual EMG alone; however, this model was also highly
calibrated for a single individual (Walter et al., 2014). Another
study in the upper limb used optimization of synergy activations
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to model muscle activations during three-dimensional force
generation and found that synergies better represented EMG data
than independent muscle optimization (Borzelli et al., 2013).

The goal of this research was to evaluate whether constraining
simulated muscle activations to an individual’s synergies
calculated from experimental EMG data can improve estimates
of muscle coordination for both TD children and children with
CP. We hypothesized that the similarity between EMG data
and activations for traditional SO methods would be lower for
children with CP than TD peers, due to altered motor control. By
specifying and constraining muscle activations to an individual’s
synergies, we hypothesized that the similarity between EMG data
and modeled activations would improve for both groups. This
investigation examines whether synergy-based constraints alone,
without changes to the model properties, can be used to improve
fidelity of neuromusculoskeletal models to inform clinical or
rehabilitation applications.

MATERIALS AND METHODS

Participants
We retrospectively analyzed clinical motion analysis data
collected at UZ Pellenberg, Belgium, for six children with CP
(four males, age = 10.0 ± 3.3 years, mass = 33.2 ± 13.6 kg,
height = 1366 ± 233 mm) and six TD children (three
males, age = 8.9 ± 1.1 years, mass = 29.2 ± 1.8 kg,
height = 1334 ± 39 mm). All children with CP were in Gross
Motor Function Classification System (GMFCS) Levels I or II.
Marker trajectories were tracked using a 10–15 camera VICON
system (Nexus 1.8.4. Vicon-UK, Oxford, United Kingdom)
sampled at 100 Hz. Each trial consisted of barefoot walking at a
self-selected speed on a 10 m walkway. Ground reaction forces
were collected using two AMTI force plates sampled at either
1000 or 1500 Hz. The number of over ground walking trials
ranged between 4 and 8 for CP and 3 and 10 for TD.

Electromyography
Surface EMG data (Wave Wireless EMG, Cometa, Bareggio,
Italy) were collected at either 1000 or 1500 Hz from eight muscles
bilaterally (gluteus medius, rectus femoris, vastus lateralis, medial
hamstrings, lateral hamstrings, tibialis anterior, gastrocnemius,
and soleus) during clinical gait analysis. Because we were using
retrospective clinical data, not all muscles were recorded for
every trial and, for some individuals, a single muscle was missing
from all trials (right vastus lateralis in CP03, CP04, and CP05,
left tibialis anterior in TD02, and left rectus femoris in TD04).
Raw EMG data were bandpass filtered between 20 and 500 Hz
upon collection. We calculated a linear envelope for each muscle
by high-pass filtering at 20 Hz, rectifying the data, and low-
pass filtering at 6 Hz (Shuman et al., 2017). Prior to calculating
synergies, we concatenated the middle 80% of EMG data for all
available trials for each participant to maximize the amount of
data for synergy analysis while removing periods of transient
acceleration or deceleration near the beginning and end of each
trial (Oliveira et al., 2014; Shuman et al., 2017). Each trial
contained three to five strides of EMG data. The concatenated

data were down-sampled to 100 Hz and scaled to a peak
amplitude of one for each muscle.

Synergy Analysis
For each individual, we calculated synergies with weighted
non-negative matrix factorization (WNMF) using the Matrix
Factorization Toolbox (Kim and Park, 2007; Li and Ngom, 2013)
in Matlab (MathWorks, Inc., Natick, MA, United States) from
the concatenated EMG data. We have previously used WMNF to
accommodate clinical EMG data with poor or missing channels
by assigning a weight of zero to those data points, allowing us to
maximize data for synergy analysis (Shuman et al., 2018, 2019).
Aside from the missing EMG channels noted above, all muscles
were recorded in at least two trials within the concatenated
session. WNMF numerically identifies a set of synergy weights
(Wmxn) which are activated (Cnxt) such that the processed
EMGmxt data are approximated, where m is the number of
muscles (7 or 8), n is the number of synergies (2–5), and t is the
number of time points in the concatenated EMG session:

EMG = W x C + error

Synergies were calculated for each side (unilaterally) using
the following WNMF settings: 50 replicates, 1000 maximum
iterations, 1 × 10−4 minimum threshold for convergence,
and 1 × 10−6 threshold for completion. Synergy weights and
activations were scaled such that the maximum weight in a
synergy was one. Similar to prior research, reconstruction of the
EMG data by n synergies accounted for more EMG variance
in CP than to TD for all numbers of synergies (Figure 1)
(Steele et al., 2015a).

Musculoskeletal Modeling
We used marker trajectories from an extended marker set,
based upon the Plug-in-Gait (PiG) model, to scale a generic
19 degree-of-freedom and 92 musculotendon actuator model in
OpenSim version 3.2 (Delp et al., 1990, 2007; Anderson and
Pandy, 1999). We used inverse kinematics to calculate joint angles
by minimizing the error between the experimental markers and
virtual model markers. The average RMS marker error was
0.92 ± 0.19 cm and the average maximum marker error was
2.64 ± 0.97 cm (Hicks et al., 2015). The force plate data used
in this study had a threshold applied upon collection where
forces under 25 N were not recorded. Thus, to avoid dynamic
inconsistencies in our models occurring near heel strike and
toe off, we limited our investigation to single-limb stance. We
performed a residual reduction analysis to improve dynamic
consistency in our models by making small adjustments to joint
angles and adjusting the position of the center of mass in the
lumped head, arms, trunk, segment (Thelen and Anderson,
2006). A total of 88 simulations of single-limb stance phase
(44 CP, 44 TD) were generated. Swing phase was evaluated for
each limb when the opposite limb was in stance. The number
of simulations per individual ranged between 3–13 for CP
and 5–10 for TD.

We calculated simulated muscle activations using two
methods (Figure 2). First, we used the standard SO algorithm
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FIGURE 1 | Synergies calculated from EMG data: (A) Muscle weights for two to five synergies for CP and TD. (B) The total variance in EMG data accounted for by a
given number of synergies was greater for children with CP than TD peers. The “+” represents outlier points (greater than the 75th percentile + 1.5∗ IQR or less than
the 25th percentile – 1.5∗ IQR.

FIGURE 2 | Musculoskeletal modeling framework: Musculotendon activations are computed from the musculoskeletal model using the static optimization algorithm
or the synergy static optimization algorithm and compared to measured EMG data. Static optimization minimizes the sum of all 92 actuators squared. Synergy static
optimization groups muscles together using synergy weights from the measured EMG data and minimizes the sum of the activations of those synergies squared.

in OpenSim (Anderson and Pandy, 2001). SO estimates muscle
forces that satisfy joint inverse dynamics at each point in
time while accounting for muscle force-length properties. The
cost function employed by SO minimizes muscle stress as the
sum of squared muscle activations (Crowninshield and Brand,
1981; Kaufman et al., 1991; Anderson and Pandy, 2001). To
evaluate whether constraining to synergies improved estimates
of muscle activity, we used the synergy optimization (synSO)
plug-in previously described by Steele et al. (2015b). SynSO
allows the user to specify weighted groups of muscles to be
commonly activated while minimizing the sum of squared

synergy activations. For each synergy, the synergy weights we
calculated from experimental EMG data were applied to the
corresponding musculotendon actuators for each muscle. Note
that the synergy weights were calculated from concatenated
EMG data representing all parts of the gait cycle (not just
single-limb stance). Thus, synergy weights for the gastrocnemius
were applied to both the medial and lateral gastrocnemius
actuators, weights for the medial hamstrings were applied to
both semimembranosus and semitendinosus actuators, weights
for the lateral hamstrings were applied to both biceps femoris
long head and short head actuators, and weights for the rectus
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femoris, vastus lateralis, tibialis anterior, and soleus were all
applied to their individual musculotendon actuators. As only
26 of the model’s 92 musculotendon actuators were accounted
for with EMG data, the remaining 66 musculotendon actuators
were independently activated as in SO. For each trial, we
evaluated SynSO for sets of two, three, four, or five synergies
for each participant. Synergies were calculated and applied
independently for each individual and each leg (e.g., in a four-
synergy simulation, we calculated and used four synergies for
the right leg and four synergies for the left leg). Constraining
activations through SynSO to fewer synergies reduced the
number of successful simulations. For all numbers of synergies,
more simulations were successful in CP than TD (e.g., 95 vs 86%
for five synergies; 45 vs 34% for two synergies).

Outcome Measures
To determine whether constraining to synergies resulted in
simulated muscle activations that were more similar to measured
EMG data, we calculated the cosine similarity between the
filtered EMG data and simulated muscle activations for SO
and SynSO. We determined that the similarity due to chance
was 0.55, which we calculated as the average cosine similarity
across all individuals and EMG channels to 1000 random
vectors with a truncated Laplacian distribution (Tresch et al.,
2006). Thus, cosine similarity was normalized such that the
similarity due to chance was given a value of zero (e.g., a
similarity of 0.55 would have a normalized similarity of 0.0). We
examined the similarity for each muscle by concatenating the
simulated activations from all trials and calculating the cosine
similarity to the corresponding measured EMG data. For muscles
modeled with multiple musculotendon actuators, we averaged
activations for comparison to EMG. We calculated the average
similarity for each participant across all muscles. We compared
the average normalized similarity of estimated activations to
EMG data between SO and SynSO, and between single-limb
stance and swing for each algorithm. We also computed the
change in summed muscle stress (overall and by muscle) as
the summed activation of each muscle and computed peak
activation of muscles. Descriptive statistics (median and IQR)
were used to compare normalized similarity, muscle stress, and
peak simulated activations.

RESULTS

The similarity of estimated activations and experimental EMG
data was similar between SO and SynSO, but generally poor for
both algorithms. The normalized similarity across single-limb
stance and swing between EMG and simulated muscle activations
from SO was higher in CP [median (IQR): 0.48 (0.17)] than in
TD [0.36 (0.18)] (Figure 3). Normalized similarity for SynSO in
CP was less than SO when fewer synergies were used, with values
of 0.37 (0.10), 0.38 (0.09), 0.48 (0.17), and 0.47 (0.19) for two to
five synergies, respectively. In TD, similarity from SynSO was less
than in CP and was lower than SO with a similarity of 0.24 (0.21),
0.19 (0.16), 0.27 (0.24), 0.26 (0.19) for two to five synergies. For
SynSO, estimates of muscle activity were more similar to EMG

FIGURE 3 | Normalized similarity of simulated activations and EMG data:
Cosine similarity was used to examine how well estimated activations from
simulation represented experimental EMG data for the TD and CP groups
during single-limb stance and/or swing. Similarity was normalized such that
zero equals similarity due to random chance and one equals perfectly
similarity. Median similarity was better than chance for both CP and TD for SO
and SynSO. Single-limb stance phase was better represented by SynSO than
SO. The “+” represents outlier points (greater than the 75th percentile +
1.5∗ IQR or less than the 25th percentile – 1.5∗ IQR.

data during single-limb stance phase (CP: 0.59–0.65, TD: 0.48–
0.51) than swing (CP: 0.36–0.61, TD: 0.26–0.32). For SO, there
was no difference in single-limb stance [CP: 0.39 (0.26), TD: 0.34
(0.16)] or swing [CP: 0.38 (0.26), TD: 0.33 (0.21)] for estimates of
muscle activity compared to EMG data.

Similarity to EMG data was highly variable between
individuals. The gastrocnemius, soleus, and tibialis anterior were
the most similar muscles to EMG recordings using SO (Figure 4).
SynSO tended to improve the similarity to EMG for the plantar
flexors (CP: median soleus similarity increased from 0.65 for SO
to 0.76 for three SynSO) and decreased the similarity to EMG for
the tibialis anterior (TD: median similarity decreased from 0.57
for SO to –0.24 for three SynSO). The similarity of the gluteus
medius to EMG was higher in CP [SO: 0.72 (0.22)] than TD
[0.37 (0.30)] but did not become more similar when SynSO was
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FIGURE 4 | Similarity of individual muscles: The similarity of each muscle was
compared for SO and SynSO for CP and TD groups. Similarity was
normalized such that zero equals similarity due to random chance and one
equals perfectly similarity. Activations computed with SO had the lowest
similarity to EMG data for the rectus femoris (REF), vastus lateralis (VAL), and
biceps femoris (BIF). Activations computed with SynSO had poor similarity to
EMG data for the tibialis anterior (TIA), REF, and BIF (for the TD group). The
gastrocnemius (GAS) and soleus (SOL) had the greatest similarity to EMG
data for both algorithms. The “+” represents outlier points (greater than the
75th percentile + 1.5∗ IQR or less than the 25th percentile – 1.5∗ IQR.

employed. The hamstrings and rectus femoris tended to become
less similar to EMG when constrained to SynSO for the TD
group and had only small changes in CP. The vastus lateralis
tended to be only as similar as chance using SO and became more
similar to EMG for all numbers of synergies in CP, but was still
poorly represented in the TD group (SO: –0.16; five SynSO 0.19).
Examination of the activation patterns between SO and SynSO
showed that most muscles were recruited to higher amplitudes in
single-limb stance (Figure 5).

Simulated muscle stress increased in SynSO relative to SO
for all individuals and was highest for the two synergy solutions
(Figure 6) with an increase of 157% (72%). Simulated muscle
stress is a rough estimate of energetic cost, indicating that the
constraints of SynSO find solutions requiring greater effort.
Muscles that were constrained to a synergy increased muscle

stress by 72% (61%) for two synergies and 64% (45%) for five
synergies compared to SO. Muscles that were not constrained to a
synergy in SynSO increased muscle stress by 323% (235%) for two
synergies and 147% (98%) for five, suggesting that constraining to
synergies for muscles with EMG data led to greater dependence
on non-constrained musculotendon actuators in the model.
Despite the large changes in summed muscle stress, changes in
peak activation were less than 10% for over 60% of the muscles
across all numbers of synergies in SynSO.

SynSO caused changes in simulated activations both for
muscles included within synergies and muscles that were
independently controlled (no EMG data, Figure 7). Muscles that
were constrained to synergies demonstrated the largest changes,
with a normalized similarity between SO activations and SynSO
of 0.17 (0.22) for two synergies and 0.54 (0.16) for five synergies.
Muscles that were independently controlled had smaller changes,
with a normalized similarity between SO and SynSO activations
of 0.52 (0.09) for two synergies and 0.60 (0.14) for five synergies.

DISCUSSION

We investigated whether constraining musculoskeletal
simulations to an individual’s synergies calculated from
experimental EMG data could improve estimations of muscle
activation from inverse dynamic simulations of gait. Across all
subjects, SynSO caused changes in estimated muscle activation
patterns compared to traditional SO. Compared to SO, estimated
muscle activations using SynSO tended to better match EMG
data during single-limb stance for both TD and CP individuals.
However, SynSO also tended to estimate activations that were
less similar to EMG data during swing, such that overall SynSO
did not better estimate EMG data than SO. These differences
may indicate that synergies better represent coordination
patterns in stance than swing. For both algorithms, the similarity
to experimental EMG data for both CP and TD groups was
generally poor, emphasizing the need for new methods to model
muscle activity for analyses of human movement. As modeling
methods are used to inform rehabilitation or assistive device
design, identifying the changes in modeling and simulation
methods required to accurately capture muscle coordination will
be critical to ensure that predicted effects will be relevant for a
specific individual.

The correlations found in this study between EMG and SO
were similar to those previously reported (Heintz and Gutierrez-
Farewik, 2007; Blazkiewicz, 2013; Żuk et al., 2018b; Veerkamp
et al., 2019). These four studies demonstrate variability both
between individuals and across muscles, similar to our results.
The best-represented muscles during gait were the plantar flexors,
while the worst represented muscles were the knee extensors
and hamstrings, consistent with our results for both CP and
TD (Heintz and Gutierrez-Farewik, 2007; Blazkiewicz, 2013;
Żuk et al., 2018b).

Selection of an appropriate number of synergies is challenging
for this type of problem. To avoid biasing our results based upon
and ad hoc threshold, we computed our results over a range of two
to five synergies. We chose to apply a minimum of two synergies,
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FIGURE 5 | Average SO, 4 SynSO, and EMG activation patterns for CP and TD: The modeled activation tended to be higher for SynSO than SO for most muscles in
both TD and CP during single-limb stance. EMG activations are scaled to the maximum activation in either SynSO or SO.

as a representation of gross flexion and extension which has
been previously been found to well represent data in infants and
individuals with CP (Dominici et al., 2011; Steele et al., 2015a).
As additional synergies were added, muscle activation patterns
within each synergy became more independent (e.g., the tibialis
anterior was largely independent in the five-synergy solution for
CP and TD), more closely representing the conditions in SO
(Figure 1). Constraining to a smaller number of synergies led to
higher levels of overall muscle stress, indicating an overall less
optimal solution. As SynSO did not tend to improve correlation
with EMG data for any number of synergies, we were unable to
find an optimal number of synergies needed for either group.

Our results using synergies to improve estimations of muscle
activation during gait contrasts with previous studies (Borzelli
et al., 2013; Walter et al., 2014; Meyer et al., 2016; Serrancolí
et al., 2016) which found generally good estimation of EMG

with synergies. The differences between the previous work
and our results here broadly fit into three categories: the
optimization criteria, the challenge of relating EMG amplitudes
to neural excitations, and generic musculoskeletal properties. In
the prior studies of Walter et al. (2014), Meyer et al. (2016),
and Serrancolí et al. (2016), EMG shape tracking was used as
part of the optimization algorithm. In this study, we sought to
model muscle activations through a modified SO cost function
which minimized synergy activations squared, consistent with
the optimization previously implemented by McKay and Ting
(2012) and Borzelli et al. (2013). This cost was motivated
by the traditional physiologically motivated cost functions
which seek to minimize fatigue or load in individual muscles
(Crowninshield and Brand, 1981; Anderson and Pandy, 2001;
Ackermann and Van Den Bogert, 2010), while constraining the
space of allowable muscle activations to specified patterns
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FIGURE 6 | Increased sum of muscle stresses for SynSO: Muscle stress
measured as the muscle activations squared increased for both TD and CP
across all number of synergies. Increases in muscle stress were highest for
two synergies and lowest for five synergies. The “+” represents outlier points
(greater than the 75th percentile + 1.5∗ IQR or less than the 25th percentile –
1.5∗ IQR.

FIGURE 7 | Similarity of activations computed with SO and SynSO:
Activations computed with SynSO were different than those calculated from
SO, for both muscles that were constrained to a synergy and muscles that did
not have EMG data and were independently activated. Similarity was
normalized such that zero equals similarity due to random chance and one
equals perfectly similarity. The “+” represents outlier points (greater than the
75th percentile + 1.5∗ IQR or less than the 25th percentile – 1.5∗ IQR.

of coactivation. The constrained search space resulted in
higher muscle stresses than what is found with independent
actuation, consistent with prior studies (McKay and Ting,
2012; Borzelli et al., 2013). We note that minimizing synergy
activations squared alters the cost function, removing the direct
physiological relationship to muscle stress. A prior investigation
by McKay and Ting (2012) in cats suggests that minimizing

synergy activations squared, as performed in this study, results
in higher muscle stress than minimizing muscle stresses squared
subject to synergy constraints. A further difference is that, unlike
the prior studies (McKay and Ting, 2012; Borzelli et al., 2013),
we did not have EMG data for all muscles in the model and
thus allowed the unmonitored muscles to have their activations
optimized independently.

The challenges in directly comparing EMG to musculoskeletal
modeling have been well documented (Farina et al., 2004;
Sartori et al., 2017) and include scaling EMG to peak neural
excitations (Ting et al., 2012; Borzelli et al., 2013; Kristiansen
et al., 2015), electromechanical delays (Durandau et al., 2018),
as well as interpretation of EMG stemming from inter-step
variability, crosstalk, cancelation, measurement orientation, and
pre-processing decisions (Farina et al., 2004; Shuman et al.,
2017). In this study, we modeled activations using subject-
specific synergies whose weights were derived from EMG data
normalized by peak measured EMG amplitude during walking.
This choice was necessitated by our use of retrospective data
and represents the simplest implementation of synergies into
musculoskeletal modeling. To compensate for the uncertain
scaling parameters between EMG and neural activation, previous
forward dynamic simulations have tracked activation patterns
but allowed the relative weights of the modeled muscles to vary
either through a minimization of muscle stress with synergy
activation tracking (Neptune et al., 2009; Allen and Neptune,
2012) or as part of the initial EMG tracking calibration process
(Walter et al., 2014; Meyer et al., 2016; Serrancolí et al., 2016).
Alternate methods of scaling synergies experimentally, such as
by a maximum voluntary contraction or the use of force-to-
EMG measurements (Borzelli et al., 2013), require the collection
and integration of additional data, significantly complicating
the implementation. Although the choice of amplitude scaling
prior to calculating synergies can impact the relative weights
of muscles within a given synergy (Shuman et al., 2017), a
recent investigation by Kieliba et al. (2018) found nearly identical
synergy structures between EMG data normalized by maximum
voluntary contractions or peak activations in healthy adults. The
consistency of these synergy structures suggests that the relative
weights of muscles within a synergy scaled by experimental data
may only have a small impact on our results.

A key limitation of our ability to model muscle activations
using SynSO is the lack of any electromechanical delay, which
neglects activation/deactivation dynamics. In those studies that
used EMG shape tracking, the electromechanical delay was also
uniquely scaled for each muscle (Walter et al., 2014; Meyer et al.,
2016) or applied from the literature (Serrancolí et al., 2016).
In a post hoc analysis, we evaluated the impacts of including a
delay between EMG and modeled activations of 10–100 ms but
found inconsistent impacts on similarity between phases of the
gait cycle and number of synergies included in the optimization.
For the previous studies which used an SO-based algorithm, the
investigations were limited to examining muscle activity during
a isometric force generation task across a variety of directions
(McKay and Ting, 2012; Borzelli et al., 2013), negating the
impact of activation dynamics. Conversely, for dynamic tasks
such as walking, in which a gait cycle may take approximately
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one second, even a 50 ms delay may have substantial impacts
on the similarity between simulated muscle activity and
experimental EMG. This is likely a defining difference in the
higher accuracy of estimated muscle activity in previous studies
incorporating synergies compared to the results of this research.

A significant limitation of this study was the use of
generic musculoskeletal models. While generic models have
the advantage of minimizing the amount of data that must
be collected for any individual, they achieve this by including
sample-based assumptions about geometry (e.g., muscle
attachment points, and bone geometry) and muscle properties
(e.g., activation delays, maximum muscle forces, and tendon
lengths). These assumptions can have large impacts on estimated
muscle activations (Correa et al., 2011; Ackland et al., 2012;
Serrancolí et al., 2016; Roelker et al., 2017; Sartori et al.,
2017; Żuk et al., 2018a; Hegarty et al., 2019) and may not
represent individual properties (Zajac, 1989), especially for
individuals not well represented by the population used to
develop the models, such as children or individuals with CP
(Barber et al., 2012; Barrett and Barber, 2013; Mudge et al.,
2014; Handsfield et al., 2016). We found variable results across
participants and muscles in both TD and CP groups emphasizing
the limitations of generic musculoskeletal models to capture
heterogeneity in our populations. To address this, previous
studies examining synergies in musculoskeletal modeling that
use EMG shape tracking tune musculotendon properties as
part of the model calibration (Walter et al., 2014; Meyer
et al., 2016; Serrancolí et al., 2016), but these parameters are
difficult to validate. Other musculoskeletal studies incorporate
imaging data to personalize bone and muscle geometry
(Barber et al., 2011; Scheys et al., 2011; Kohout et al., 2013;
Handsfield et al., 2016; Modenese et al., 2016; Sartori et al.,
2017). Incorporation of subject-specific geometry and muscle
properties may influence the utility of synergies in modeling
muscle activations, but the degree of personalization required
remains unclear.

This study demonstrated that muscle activations estimated
from SO using generic musculoskeletal modeling does not
accurately predict EMG profiles for children with CP or TD peers.
Constraining activation patterns to experimentally measured
synergies increased estimated muscle stresses, but did not
improve the estimation of muscle activations for either group.

These findings suggest that when generic musculoskeletal models
are used, constraining muscle activations to synergistic patterns
alone may not improve estimation of muscle activations during
gait. Additional methods, such as tuning of muscle-tendon model
parameters, may be required to create neuromusculoskeletal
simulations that can accurately represent muscle coordination for
rehabilitation or assistive device applications.
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